

New York State Department of Environmental Conservation – Division of Environmental Remediation

GLADDING CORDAGE SITE QUARTERLY REPORT

SITE 7-09-009

Third Quarter 2018

November 2018

GLADDING CORDAGE SITE QUARTERLY REPORT

Third Quarter 2018

Andy Vitolins, PG

Associate Vice President

Jeremy Wyckoff, PG

Project Geologist

Prepared for:

New York State Department of Environmental Conservation – Division of Environmental Remediation

625 Broadway

Albany, NY 12233-7011

Prepared by:

Arcadis CE, Inc.

855 Route 146

Suite 210

Clifton Park

New York 12065

Tel 518 250 7300

Fax 518 250 7301

Our Ref.:

00266406.0000

Date:

November 2018

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

GLADDING CORDAGE SITE QUARTERLY REPORT - THIRD QUARTER 2018

CONTENTS

Ac	ronyms and	Abbreviations	iii
1	Introduction	on	1
2	Site Descr	ription	2
3	Operation	and Maintenance	3
	3.1 Treat	tment Plant Upgrades	3
	3.1.1	Variable Frequency Drive	3
	3.1.2	Treatment Plant Controls	3
	3.1.3	Geothermal Heat Exchanger	4
	3.2 Treat	tment Plant Operation	4
	3.3 Treat	tment System Sampling	4
	3.3.1	Influent Sample Results	4
	3.3.2	Effluent Sample Results	5
4	Groundwa	ater Monitoring Program	6
5	Recomme	endations	7
6	Summary.		8
7	Reference	98	9

TABLES

Table 3-1	Treatment System Status and Flow Summary
Table 3-2	Groundwater Treatment System VOCs (RW-1)
Table 3-3	Groundwater Treatment System VOCs (RW-2)
Table 3-4	Groundwater Treatment System VOCs (Effluent)

FIGURES

Figure 2-1 Site Location

Figure 3-1 Treatment System Influent Sample Concentration (1,1,1-TCA)

GLADDING CORDAGE SITE QUARTERLY REPORT - THIRD QUARTER 2018

APPENDICES

- A PLC Facsimile Reports
- B O&M Checklists
- C Analytical Reporting Forms

ACRONYMS AND ABBREVIATIONS

Amsl above mean sea level

BTEX Benzene, toluene, ethylbenzene, and xylene.

Ft feet

GPM gallons per minute

GAP generally accepted procedure

HZ hertz

μg/L micrograms per liter

NYSDEC New York State Department of Environmental Conservation

O&M operation and maintenance

PDB passive diffusion bag

PLC programmable logic controller

PCE Tetrachloroethene

USEPA United States Environmental Protection Agency

VFD variable frequency drive

VOC volatile organic compound

1,1-DCA 1,2-dichloroethane

1,1-DCE 1,2-dichloroethene

1,1,1-TCA 1,1,1-trichloroethane

1 INTRODUCTION

The New York State Department of Environmental Conservation (NYSDEC) has issued a Work Assignment (# D007618-9) to Arcadis CE, Inc. (Arcadis) for Operation, Maintenance, and Monitoring at the Gladding Cordage Site (Site # 7-09-009). This Quarterly Report has been prepared in accordance with the NYSDEC-approved Work Plan to summarize third quarter 2018 site activities.

2 SITE DESCRIPTION

The Gladding Cordage Site is located on Ridge Road, South Otselic, Chenango County, New York (Figure 2-1), along the western bank of the Otselic River. The site contains an active braided wire and rope manufacturing facility that has been in operation since 1892.

3 OPERATION AND MAINTENANCE

On August 23, 2007, the NYSDEC provided a training session to Arcadis personnel on the operation and maintenance (O&M) of the groundwater treatment plant at the Gladding Cordage Site. Since then, Arcadis has maintained operation of the groundwater treatment plant. This includes the operation, maintenance, and influent/effluent sampling in accordance with the Site Management Plan (SMP) and NYSDEC O&M manual (Operation and Maintenance Manual, Volume I, Gladding Cordage Site, Site 7-09-009, TAMS Consultants, Inc., 1996) (O&M Manual).

3.1 Treatment Plant Upgrades

3.1.1 Variable Frequency Drive

A variable frequency drive (VFD) was installed on January 9, 2008 to regulate the speed of the air stripper blower motor for reduced energy usage. Following the installation of the VFD, effluent samples were collected at various blower motor frequencies (speeds) to evaluate the minimum blower frequency required for the treatment plant to effectively treat groundwater extracted from the source area. Additional sampling was conducted again in February 2008 to further optimize the air stripper blower speed. Based on the results, the VFD setting was reduced to 42 hertz (HZ) beginning in March 2008. However, based on the detection of low-level volatile organic compounds (VOCs) in effluent samples from the treatment system, the VFD setting was subsequently increased to 46 HZ in September 2010 and was maintained at that frequency until November 19, 2014.

Based on a general trend of lower concentrations of VOCs in influent treatment system samples since September 2010, the NYSDEC authorized a reduction of the VFD frequency to 44 HZ in an attempt to further optimize treatment plant operations and reduce electric usage. The VFD frequency was lowered to 44 HZ on November 19, 2014. Following approximately one-half hour of operation, post-treatment effluent samples were collected in accordance with the Work Plan (see Section 3.2.1). Based on a review of post-treatment effluent sample data from November 19, 2014, 1,1,1-Trichloroethane (1,1,1-TCA) and toluene were detected with the air stripper blower operating at 44 HZ, but at concentrations below the corresponding NYSDEC Class GA Standards. The NYSDEC was notified of the VOC detections and the blower motor frequency was subsequently increased to 46 HZ and has been maintained at that level since the December 18, 2014 O&M event.

3.1.2 Treatment Plant Controls

In August 2011, the NYSDEC authorized construction and installation of a new treatment plant controls system. The new control system is designed to provide remote access to treatment plant operating parameters and improve reliability of the groundwater remediation system. The treatment plant was shut down to begin repairs and upgrades on January 30, 2012 by Aztech Technologies, Inc. (Aztech). The upgrades to the treatment system controls were completed and the treatment plant resumed operation on March 22, 2012. The treatment plant functions are controlled and monitored using an EOS Research Ltd. ProControl Programmable Logic Controller (PLC). The interface software allows remote connection to the PLC via analog phone line. The PLC and interface software also allows the treatment system to be started or stopped remotely. The PLC is programmed to send a facsimile with the status of system inputs and

outputs on a daily basis. If input and/or output device values exceed the defined operating parameters, an alarm condition is set and the corresponding alarm information is sent via facsimile to the system user (i.e. Arcadis).

3.1.3 Geothermal Heat Exchanger

The NYSDEC authorized the installation of a geothermal heat exchanger to provide climate control (heating and humidity) for the treatment system building. The treatment plant was shut down to begin installation of the system on May 8, 2012 by Aztech. The geothermal heat exchanger installation and testing was completed on May 10, 2012. The heat-exchanger uses groundwater from the treatment plant as a geo-thermal energy source.

3.2 Treatment Plant Operation

As shown on PLC facsimile reports (Appendix A) and O&M Checklist and Operation Logs (Appendix B), the Gladding Cordage groundwater treatment system shut down in July and August due to power interruptions, resulting in system runtimes of 63 percent in July and 52 percent in August. After each power failure, the system was restarted remotely. In September 2018, the system operated without interruption.

The average monthly flow rates and total flow volumes for the third quarter 2018 operating period are summarized in Table 3-1. As shown in Table 3-1, the average flow rate from recovery well RW-1 was 12.5 gallons per minute (GPM). However, the flow transmitter for RW-1 has stopped working and will need to be replaced. Therefore, the flow total from RW-1 is greater than the values reported by the PLC. The average flow from RW-2 was approximately 24 GPM. Based on the total flow values, approximately 2.5 million gallons of water were treated and discharged to the Otselic River between July and September 2018. However, the actual treated volume is likely greater, but is being diminished by the lower flow meter readings from RW-1.

3.3 Treatment System Sampling

Influent and effluent groundwater samples were collected from the Gladding Cordage treatment system in accordance with the SMP and submitted to Contest Analytical following chain-of-custody protocols. Each sample was analyzed for VOCs by United States Environmental Protection Agency (USEPA) Method 624. Analytical Reporting Forms are provided in Appendix C.

3.3.1 Influent Sample Results

Table 3-2 and Table 3-3 summarize influent VOC sample results from recovery wells RW-1 and RW-2, respectively. Figure 3-1 provides a summary of 1,1,1-TCA concentrations in samples from recovery wells RW-1 and RW-2 since September 2007.

Table 3-2 and Figure 3-1 show that the concentrations of 1,1,1-TCA in samples from recovery well RW-1 were measured at 42 micrograms per liter (ug/L) in July 2018, 45 ug/L in August 2018, and 47 (µg/L) in September 2018. The concentrations of 1,1,1-TCA for recovery well RW-2 were measured at 49 ug/L (July 2018), 51 ug/L (August 2018), and 43 µg/L (September 2018), which is consistent with the second

quarter 2018 concentrations of 1,1,1-TCA. Table 3-3 and Figure 3-1 show that the concentrations of 1,1,1-TCA in the samples from recovery wells RW-1 and RW-2 are within the range of historic concentrations and exceed the corresponding NYSDEC Class GA Standard of 5 μ g/L.

As shown in Tables 3-2 and 3-3, 1,1-dichloroethane (1,1-DCA) and 1,1-dichloroethene (1,1-DCE) were detected in the third quarter 2018 samples from recovery wells RW-1 and RW-2. Consistent with previous results, the concentrations of these compounds were below the respective NYSDEC Class GA standard of $5 \mu g/L$.

3.3.2 Effluent Sample Results

Table 3-4 summarizes laboratory analytical data for effluent samples collected from the treatment system. As shown in Table 3-4, no VOCs were detected in the third quarter 2018 effluent samples.

Based on influent sample concentrations and total flow volumes from the Gladding Cordage treatment system, approximately 1 pound of VOCs were removed by the treatment system during the third quarter 2018.

4 GROUNDWATER MONITORING PROGRAM

Groundwater samples are collected on a five-quarter sampling interval in accordance with the SMP. Groundwater sampling was conducted October 24th and 25th, 2017 to provide information on groundwater quality, monitor contaminant migration in groundwater, and assess hydrogeologic site conditions, including groundwater flow. In October 2017 at the request of NYSDEC, groundwater samples were also analyzed for Perfluorinated Alkyl Substances (PFAS) by USEPA Method 537 Modified, and 1,4-Dioxane by USEPA Method 8260 SIM. Since PDBs are not appropriate for the collection of samples for analysis of PFAS, passive diffusion bag (PDBs) were not used during the fourth quarter 2017 sampling event. Samples were collected from monitoring wells using a peristaltic pump and dedicated PFAS-free sample tubing in accordance with USEPA low-flow sampling techniques. The next groundwater sampling event is scheduled to occur during the first quarter 2019.

5 RECOMMENDATIONS

Based on the data presented herein, there are no recommended changes to the operation of the treatment plant. The recovery well RW-1 flow transmitter will be repaired pending NYSDEC budget approval.

6 SUMMARY

The Gladding Cordage groundwater treatment system was shut down in July and August due to power interruptions. In September, the treatment system operated without interruption. The average total flow through the treatment system during the third quarter 2018 was approximately 22 GPM. However, due to a faulty flow meter for RW-1, the total flow through the treatment system for this timeframe is likely underreported.

The concentrations of VOCs detected in pre-treatment influent samples from recovery wells RW-1 and RW-2 were consistent with previous results.

No VOCs were detected in any of the effluent samples collected from the treatment system.

The treatment successfully removes VOCs from groundwater extracted from the capture zone at the current VFD setting of 46 Hz. The VFD setting will continue to be evaluated based on system monitoring results.

Approximately 1 pound of VOCs were removed by the treatment system during the third quarter 2018. However, the VOC removal mass is likely to be greater since the flow meter for RW-1 is not functioning properly.

Based on the current five-quarter sampling interval, the next groundwater monitoring event is scheduled to occur during the first quarter 2019.

7 REFERENCES

Malcolm Pirnie, 2007, Gladding Cordage Site Work Plan, Site 7-09-009, Malcolm Pirnie, Inc., June 2007.

TAMS, 1996, Operation and Maintenance Manual, Volume I, Gladding Cordage Site. Site 7-09-009, TAMS Consultants, Inc., March 1996.

TABLES

TABLE 3-1
TREATMENT SYSTEM STATUS AND FLOW SUMMARY
GLADDING CORDAGE SITE
SOUTH OTSELIC, NEW YORK
NYSDEC SITE NO. 7-04-009A

Date	System	System	Well O	n-time	Flow Rates		Totalizer	Totalizer	Recovery We	II Total Flows	Total System	Quarterly	
	Operation	On-time	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	Flow	Totals	
	(days)	(% of possible days)	(% possible)	(% possible)	(gpm)	(gpm)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	
January-18	31	100%	100%	100%	18	24.2	60,433,982	58,414,531	747,042	999,814	1,746,856		
February-18	23	82%	100%	100%	19.3	23.7	61,058,149	59,201,714	624,167	787,183	1,411,350	4,833,473	
March-18	29	94%	100%	100%	18.9	24	61,800,025	60,135,105	741,876	933,391	1,675,267		
April-18	4	13%	4%	4%	19	23.5	62,019,377	60,410,372	219,352	275,267	494,619		
May-18	0	0%	0%	0%	19.1	23.6	62,365,293	60,849,209	345,916	438,837	784,753	1,458,414	
June-18	4	13%	4%	4%	18.3	23.5	62,442,457	60,951,087	77,164	101,878	179,042		
July-18	19	63%	100%	100%	17.8	23.6	62,731,304	61,333,323	288,847	382,236	671,083		
August-18	16	52%	100%	100%	19.6	23.9	63,023,435	61,929,590	292,131	596,267	888,398	2,459,243	
September-18	eptember-18 30		100%	100%	0	24.6	63,023,435	62,829,352	0	899,762	899,762		

Total Flow 2018 16.7 23.84 3,336,495 5,414,635 8,751,130

Notes:

gpm - Gallons per minute

* - flow meter not reading properly

TABLE 3-2
SUMMARY OF GROUNDWATER TREATMENT SYSTEM VOCS (INFLUENT - RW-1)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1
Sampling Date	Class GA	7/31/2017	8/28/2017	9/20/2017	10/23/2017	10/25/2017	10/26/2017	11/28/2017	12/29/2017	1/29/2018	2/26/2018	3/29/2018	6/22/2018	7/29/2018	8/27/2018	9/27/2018
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs																
1,1,1-Trichloroethane	5	30	41	39	34	37	37	38	41	38	40	37	41	42 J	45	47
1,1,2,2-Tetrachloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,1,2-Trichloroethane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,1-Dichloroethane	5	1.4 J	1.8 J	1.6 J	1.6 J	1.8 J	1.8 J	1.9 J	1.7 J	1.5 J	1.6 J	1.3 J	1.9 J	1.7 J	1.8 J	1.6 J
1,1-Dichloroethene	5	0.77 J	0.98 J	0.83 J	0.74 J	0.74 J	0.74 J	0.98 J	0.97 J	0.84 J	0.87 J	0.77 J	0.85 J	0.79 J	1.0 J	0.99 J
1,2-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichloroethane	0.6	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichloropropane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,3-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,4-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Benzene	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Bromoform	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Bromomethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	5.0 U	2.0 U					
Carbon Tetrachloride	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chlorobenzene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloroform	7	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloromethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	2.0 U	2.0 UR-06	2.0 U				
cis-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Ethyl Benzene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
m/p-Xylenes	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Methyl tert-butyl Ether		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Methylene Chloride	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
o-Xylene		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Tetrachloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Toluene	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
trans-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Trichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Trichlorofluoromethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Vinyl Chloride	2	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Total VOCs		32.2	43.8	41.4	36.3	39.5	39.5	40.9	43.7	40.3	42.5	39.1	43.8	44.5	47.8	49.6

- Concentration exceeds corresponding | Class GA Standard.

U - Not detected at the indicated concentration

J - Estimated concentration.

TABLE 3-3
SUMMARY OF GROUNDWATER TREATMENT SYSTEM VOCS (INFLUENT - RW-2)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2
Sampling Date	Class GA	7/31/2017	8/28/2017	9/20/2017	10/23/2017	10/25/2017	11/28/2017	12/29/2017	1/29/2018	2/27/2018	3/29/2018	6/22/2018	7/29/2018	8/27/2018	9/27/2018
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs															
1,1,1-Trichloroethane	5	25	41	32	28	36	30	32	30	32	29	50	49	51	43
1,1,2,2-Tetrachloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,1,2-Trichloroethane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,1-Dichloroethane	5	0.64 J	1.0 J	0.72 J	0.66 J	0.9 J	0.82 J	0.71 J	0.63 J	0.73 J	0.64 J	1.4 J	1.3 J	1.3 J	0.92 J
1,1-Dichloroethene	5	0.65 J	0.92 J	0.61 J	0.6 J	0.8 J	0.66 J	0.72 J	0.61 J	0.67 J	0.57 J	1.2 J	0.93 J	1.1 J	0.92 J
1,2-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichloroethane	0.6	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichloropropane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,3-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,4-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Benzene	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Bromoform	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Bromomethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	5.0 U	2.0 U	5.0 U	5.0 U	2.0 U	2.0 U	2.0 U
Carbon Tetrachloride	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chlorobenzene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloroform	7	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloromethane		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
cis-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Ethyl Benzene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
m/p-Xylenes	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Methyl tert-butyl Ether		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Methylene Chloride	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
o-Xylene		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Tetrachloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Toluene	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
trans-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Trichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Trichlorofluoromethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Vinyl Chloride	2	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Total VOCs		26.3	42.9	33.3	29.3	37.7	31.5	33.4	31.2	33.4	30.2	52.6	51.2	53.4	44.8

⁻ Concentration exceeds corresponding NYSDEC Class GA Standard.

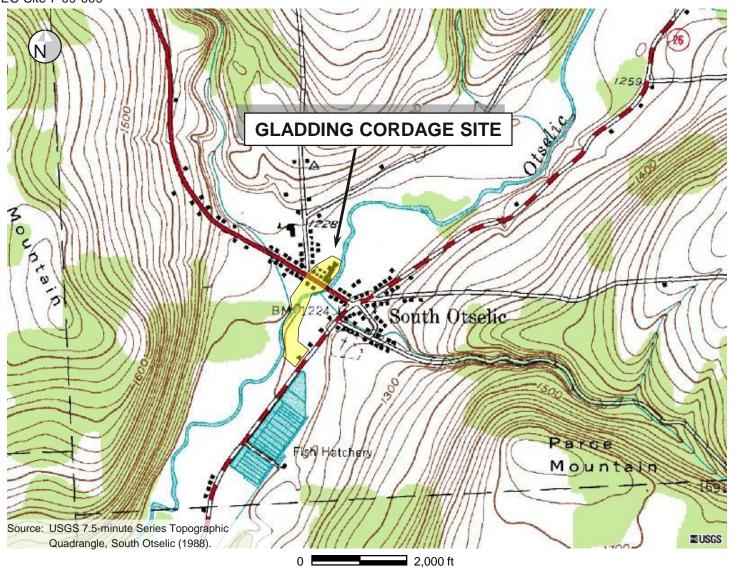
U - Not detected at the indicated concentration

J - Estimated concentration.

TABLE 3-4 SUMMARY OF GROUNDWATER TREATMENT SYSTEM VOCS (EFFLUENT) GLADDING CORDAGE SOUTH OTSELIC, NEW YORK NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)
Sampling Date	GA	7/31/2017	8/28/2017	9/20/2017	10/23/2017	10/25/2017	11/28/2017	12/29/2017	1/29/2018	1/30/2018	2/26/2018	3/29/2018	6/22/2018	7/29/2018	8/28/2018	9/27/2018
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ua/L	ua/L	ua/L	ua/L	ua/L	ua/L	ua/L	ua/L	ua/L	ua/L	ua/L	ua/L	ua/L	ua/L	ua/L	ug/L
VOCs										•	J					
1.1.1-Trichloroethane	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1.1.2.2-Tetrachloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,1,2-Trichloroethane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,1-Dichloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,1-Dichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichloroethane	0.6	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichloropropane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,3-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,4-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Benzene	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Bromoform	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Bromomethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	5.0 U	2.0 U					
Carbon Tetrachloride	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chlorobenzene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloroform	7	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloromethane		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
cis-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Dibromochloromethane	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	NA						
Ethyl Benzene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
m/p-Xylenes	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Methyl tert-butyl Ether		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Methylene Chloride	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
o-Xylene		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Tetrachloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Toluene	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
trans-1,3-Dichloropropene	0.4	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	2.0 U	2.0 U	5.0 U				
Trichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Trichlorofluoromethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Vinyl Chloride	2	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U

Notes


U - Not detected at the indicated concentration.
J - Estimated concentration.

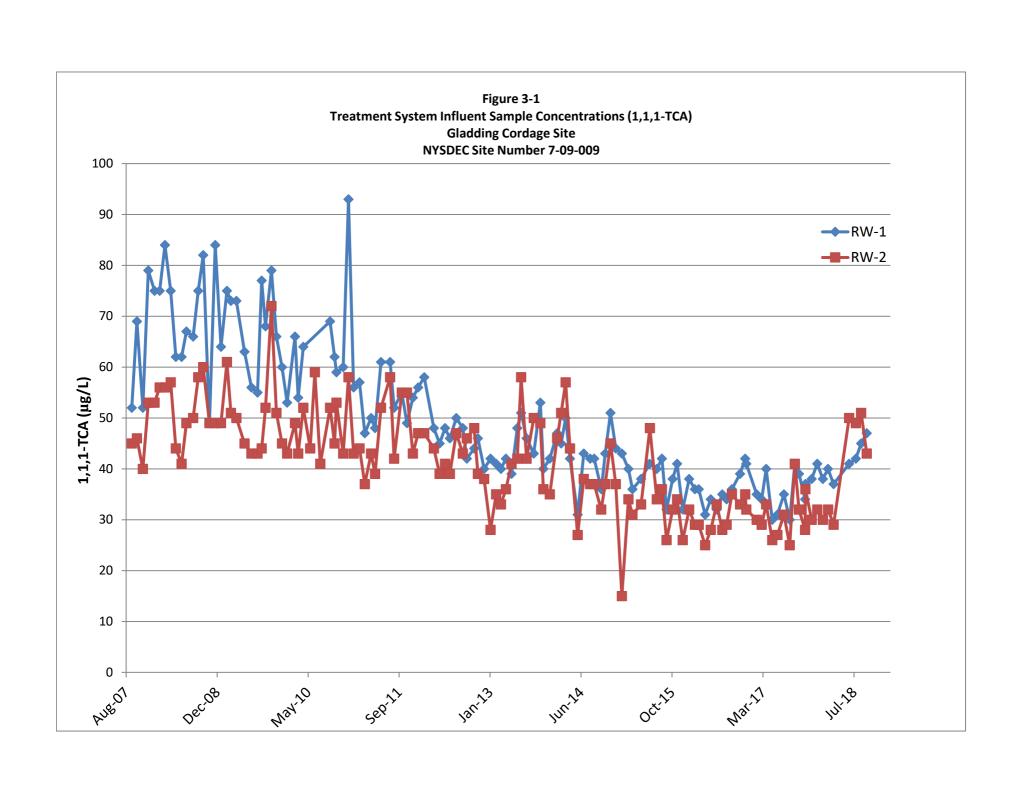

FIGURES

Figure 2-1 Site Location

Gladding Cordage Site South Otselic, New York NYSDEC Site 7-09-009

APPENDIX A

PLC Facsimile Reports

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 07/01/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36: LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 17.2 W2_FLO is 23.5 **GPM** 62468087 TOTAL FLOW is GAL 23.5 GPM TOTAL FLOW is 60985027 GAL ASBPRS is 10.0 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 683487 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.52AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.60AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 28.80 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 54.71 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 3.2 LIMITS are L: 0.5 PSI PSI PSI INTEMP is 64.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 07/02/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 18.0 W2_FLO is 23.5 **GPM** 62493671 TOTAL FLOW is GAL 23.5 GPM TOTAL FLOW is 61018981 GAL $AS\overline{B}PRS$ is 10.1L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 683877 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.50AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 28.72 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 54.65 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 2.9 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 64.2DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 07/03/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 17.7 W2_FLO is 23.5 **GPM** 62519259 TOTAL FLOW is GAL GPM TOTAL FLOW is 61052958 GAL ASBPRS is 10.0 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is HP FLO is 0.00 **GPM** 684102 GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.48AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.55AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.28 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 3.9 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 2.2 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 65.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 07/04/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 17.8 W2_FLO is 24.2 **GPM** 62544879 TOTAL FLOW is GAL GPM TOTAL FLOW is 61086984 GAL $AS\overline{B}PRS$ is 10.1L: 5.0 H: 30.0 LIMITS are IWC IWC IWC 0.00 TOTAL FLOW is 684334 HP FLO is **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.09 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.50AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.41 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.05 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 2.3 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 62.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 07/05/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 17.5 W2_FLO is 23.7 **GPM** 62570417 TOTAL FLOW is GAL GPM TOTAL FLOW is 61120980 GAL ASBPRS is 10.1 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC 0.00 TOTAL FLOW is 684605 HP FLO is **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.51AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.15 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 54.84 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 3.9 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 2.0 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 64.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 07/06/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 17.5 W2_FLO is 23.5 **GPM** 62595898 TOTAL FLOW is GAL GPM TOTAL FLOW is 61154941 GAL ASBPRS is L: 5.0 H: 30.0 10.0 LIMITS are IWC IWC IWC TOTAL FLOW is 684775 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.09 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.54AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.62AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 28.85 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 54.79 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 3.6 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 1.3 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 66.9DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 07/07/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 18.1 W2_FLO is 23.5 **GPM** 62621406 TOTAL FLOW is GAL 23.5 GPM TOTAL FLOW is 61188917 GAL $AS\overline{B}PRS$ is 10.3 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 684775 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.09 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.58AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.63AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.06 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 54.73 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 1.9 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 58.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 07/08/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 17.9 W2_FLO is 23.7 **GPM** 62646908 TOTAL FLOW is GAL GPM TOTAL FLOW is 61222861 GAL ASBPRS is 10.5 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 684847 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.09 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.53AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.04 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 54.65 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areW2_PRS is 2.9 H: 100.0 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 59.2DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 07/09/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 18.0 W2_FLO is 23.8 **GPM** 62672413 TOTAL FLOW is GAL 23.8 GPM TOTAL FLOW is 61256790 GAL ASBPRS is H: 30.0 10.3 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 684980 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.50AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 28.99 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 54.75 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 3.3 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 60.2DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 07/21/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 62682589 TOTAL FLOW is GAL GPM TOTAL FLOW is 61270337 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 684980 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.10 AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 0.01 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 30.87 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.34 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 0.0 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 67.7DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 07/22/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 62682589 TOTAL FLOW is GAL GPM TOTAL FLOW is 61270337 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 684980 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 1.0 PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.10 AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 0.01 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 30.51 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.23 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 0.0 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 71.3DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 07/23/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 62682589 TOTAL FLOW is GAL GPM TOTAL FLOW is 61270337 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 684980 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.9 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.98 LIMITS are AMPL: 0.00AMP H: AMPH: 10.00 W1_AMP is 0.01 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 30.79 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.23 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 0.0 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 74.0DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 07/24/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 62682589 TOTAL FLOW is GAL GPM TOTAL FLOW is 61270337 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 684980 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.9 PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.97 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 0.01 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 30.82 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.17 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 0.0 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 76.0DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 07/25/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 62682589 TOTAL FLOW is GAL GPM TOTAL FLOW is 61270337 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 684980 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.9 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.98 LIMITS are AMPL: 0.00AMP H: AMPH: 10.00 W1_AMP is 0.01 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 31.44 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.99 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5W2_PRS is 0.0 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 75.8DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 07/26/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 62682589 TOTAL FLOW is GAL GPM TOTAL FLOW is 61270337 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 684980 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.9 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.98 LIMITS are AMPL: 0.00AMP H: AMPH: 10.00 W1_AMP is 0.01 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 31.62 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 57.31 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5W2_PRS is 0.0 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 74.7DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 07/27/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 62682589 TOTAL FLOW is GAL GPM TOTAL FLOW is 61270337 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 684980 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.9 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.98 LIMITS are AMPL: 0.00AMP H: AMPH: 10.00 W1_AMP is 0.01 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 31.37 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 57.01 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 0.0 L: 0.5PSI LIMITS are PSI PSI H: 130.0 INTEMP is 74.4DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 07/28/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 62682589 TOTAL FLOW is GAL GPM TOTAL FLOW is 61270337 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 684980 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.9 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.98 LIMITS are AMPL: 0.00AMP H: AMPH: 10.00 W1_AMP is 0.01 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 31.31 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.89 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5W2_PRS is 0.0 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 73.4DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 07/29/2018

SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL Ã2

System Status:

MANUAL : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 62682589 TOTAL FLOW is GAL GPM TOTAL FLOW is 61270337 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 684980 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.9 PSI LIMITS are -2.0 PSI PSI HP AMP is 1.03 LIMITS are AMPL: 0.00AMP H: AMPH: 10.00 W1_AMP is 0.01 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} 31.45 are \mathbf{L} : 9.00 W2 LVL is 56.89 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5W2_PRS is 0.0 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 71.4DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 07/30/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36: LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 17.8 W2_FLO is 23.6 **GPM** 62705022 TOTAL FLOW is GAL 23.6 GPM TOTAL FLOW is 61299322 GAL ASBPRS is 10.3 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 685247 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.48AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.22 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.24 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5W2_PRS is 4.3 PSI LIMITS are PSI PSI INTEMP is 63.2DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 07/31/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 17.8 W2_FLO is 23.6 **GPM** 62731304 TOTAL FLOW is GAL 23.6 GPM TOTAL FLOW is 61333323 GAL ASBPRS is 10.2 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 685247 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.49AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.54AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.10 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.11 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.3PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 LIMITS are L: 0.5W2_PRS is 4.2 PSI PSI PSI H: 130.0 INTEMP is 64.0DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 08/01/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 18.3 W2_FLO is 23.8 **GPM** 62757500 TOTAL FLOW is GAL GPM TOTAL FLOW is 61367247 GAL ASBPRS is L: 5.0 H: 30.0 10.0 LIMITS are IWC IWC IWC TOTAL FLOW is 685247 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.51AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 28.91 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 54.98 9.00 W2 LVL is \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5W2_PRS is 4.0 PSI LIMITS are PSI PSI INTEMP is 66.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 08/02/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 18.3 W2_FLO is 23.6 **GPM** 62783612 TOTAL FLOW is GAL 23.6 GPM TOTAL FLOW is 61401147 GAL ASBPRS is 10.0 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 685247 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.45AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 28.93 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.01 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 3.6 L: 0.5PSI LIMITS are PSI PSI INTEMP is 66.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 08/03/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 18.0 W2_FLO is 23.4 **GPM** 62809678 TOTAL FLOW is GAL 23.4 GPM TOTAL FLOW is 61435054 GAL ASBPRS is 10.0 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 685267 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.09 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.47AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.53AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.01 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 54.96 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 3.1 L: 0.5PSI LIMITS are PSI PSI INTEMP is 65.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 08/04/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 18.0 W2_FLO is 23.6 **GPM** 62835716 TOTAL FLOW is GAL 23.6 GPM TOTAL FLOW is 61468950 GAL ASBPRS is 10.0 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 685267 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.08 AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.51AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.02 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 54.98 9.00 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 3.9 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 2.4 L: 0.5PSI LIMITS are PSI PSI INTEMP is 65.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 08/06/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 18.0 W2_FLO is 23.4 **GPM** 62887670 TOTAL FLOW is GAL 23.4 GPM TOTAL FLOW is 61536716 GAL $AS\overline{B}PRS$ is 10.1L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is HP FLO is 0.00 **GPM** 685655 GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.46AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 28.94 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 54.86 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 2.1 L: 0.5PSI LIMITS are PSI PSI INTEMP is 63.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 08/07/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 17.9 W2_FLO is 23.2 **GPM** 62913510 TOTAL FLOW is GAL GPM TOTAL FLOW is 61570562 GAL ASBPRS is 10.0 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 685892 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.09 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 4.49 W1_AMP is AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.57AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 28.74 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 54.77 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 1.9 L: 0.5PSI LIMITS are PSI PSI INTEMP is 64.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 08/08/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 18.3 W2_FLO is 23.6 **GPM** 62939336 TOTAL FLOW is GAL 23.6 GPM TOTAL FLOW is 61604390 GAL ASBPRS is 10.0 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 685944 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.48AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.53AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 28.62 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 54.75 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 3.8 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5W2_PRS is 1.3 PSI LIMITS are PSI PSI INTEMP is 66.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 08/09/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 18.1 W2_FLO is 23.2 **GPM** 62965330 TOTAL FLOW is GAL GPM TOTAL FLOW is 61638208 GAL ASBPRS is L: 5.0 H: 30.0 10.0 LIMITS are IWC IWC IWC TOTAL FLOW is 685944 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.09 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.50AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 28.71 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 54.92 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 3.7 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 0.9 L: 0.5PSI LIMITS are PSI PSI INTEMP is 65.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 08/10/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:35:48 ON 03/10/2018 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 18.2 W2_FLO is 23.5 **GPM** 62991388 TOTAL FLOW is GAL 23.5 GPM TOTAL FLOW is 61672024 GAL ASBPRS is 10.0 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 685974 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.49AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 28.73 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 54.90 9.00 W2 LVL is \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 3.8 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 0.8 PSI LIMITS are PSI PSI INTEMP is 63.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

ALARM Fax Report EOS Research Lid ProControl Series II+

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 12:01:44 ON 08/15/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

vstem Status:

LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD P20 :

FAX REPORT INITIATED BY PROCESS 20

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP ASP_LO is OFF is ON ASP_HH is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

SMP_GO is OFF W1_ALM is ON W1 GO is ON W2 GO is ON ASB GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF AIR_LL is OFF W2 ALM is OFF SMPALM is OFF ASBALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 63023435 GAL W2 FLO is 24.1 **GPM** TOTAL FLOW is 61715690 GAL ASBPRS is 9.4 LIMITS are H: 30.0 IWC IWC IWC L: 5.0 $ext{HP}$ $ext{FLO}$ is 2.46 **GPM** TOTAL FLOW is 686031 GAL H: 20.0 PRS is PSI LIMITS are L:-2.0 PSI PSI AMP is 4.35 0.00 AMP LIMITS AMPH: AMPare \mathbf{L} : W1 AMP is AMP LIMITS are 0.00 AMP H: 10.00 AMP W2 AMP is 4.50AMP LIMITS L: 0.00 AMP H: 10.00 AMP H: 28.00 LIMITS are \mathbf{FT} $W1_LVL$ is 31.47 \mathbf{FT} L: 8.00 \mathbf{FT} is M5_TAT 57.35 \mathbf{FT} LIMITS areL:9.00 \mathbf{FT} H: 52.00 \mathbf{FT} \mathbf{PRS} is 4.4PSI LIMITS are L:0.5PSI н: 100.0 PSI W2 PRS is H: 100.0 3.9 PSI LIMITS are \mathbf{L} : 0.5 PSI PSI INTEMP is 76.0 DEG LIMITS are \mathbf{L} : 42.0 DEG H: 130.0 DEG

Analog Outputs:

ASBSPD 0.0 PCT

ALARM Fax Report EOS Research Lid ProControl Series II+

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 12:06:00 ON 08/15/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

vstem Status:

LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD P20 :

FAX REPORT INITIATED BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP ASP_LO is OFF is ON ASP_HH is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

SMP_GO is OFF W1_ALM is ON W1 GO is ON W2 GO is ON ASB GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF AIR_LL is OFF W2 ALM is OFF SMPALM is OFF ASBALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 63023435 GAL W2 FLO is 23.7 **GPM** TOTAL FLOW is 61715790 GAL ASBPRS is 9.8 LIMITS are H: 30.0 IWC IWC L: 5.0 IWC $ext{HP}$ $ext{FLO}$ is 2.47 **GPM** TOTAL FLOW is 686042 GAL PRS is H: 20.0 PSI LIMITS are L:-2.0PSI PSI _AMP is 4.32 0.00 AMP LIMITS are AMPH: AMP \mathbf{L} : W1 AMP is AMP LIMITS are 0.00 AMP H: 10.00 AMP W2 AMP is AMP LIMITS are L: 0.00 AMP H: 10.00 AMP H: 28.00 W1_LVL is 31.21 LIMITS are \mathbf{FT} \mathbf{FT} L: 8.00 \mathbf{FT} 57.27 $W2_LVL$ is \mathbf{FT} LIMITS areL:9.00 \mathbf{FT} H: 52.00 \mathbf{FT} \mathbf{PRS} is 4.3PSI LIMITS are L:0.5PSI н: 100.0 PSI W2 PRS is H: 100.0 3.9 PSI LIMITS are \mathbf{L} : 0.5 PSI PSI INTEMP is 75.8 DEG LIMITS are \mathbf{L} : 42.0 DEG H: 130.0 DEG

Analog Outputs:

ASBSPD 0.0 PCT

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 08/16/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 23.1 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 61741126 GAL ASBPRS is H: 30.0 10.1 LIMITS are L: 5.0 IWC IWC IWC TOTAL FLOW is 686322 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.09 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.52AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 30.73 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 56.78 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.3PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 3.4 LIMITS are L: 0.5 PSI PSI PSI INTEMP is 64.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 08/17/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 23.9 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 61775149 GAL ASBPRS is L: 5.0 H: 30.0 10.0 LIMITS are IWC IWC IWC TOTAL FLOW is 686478 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.53AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 30.33 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.34 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 2.7 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 65.2DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

ALARM Fax Report <u>ProControl Series II+</u>

EOS Research Ltd.

To:

JEREMY WYCKOFF

From:

SYSTEM IN SOUTH OTSELIC NY @ 09:02:34 ON 08/27/2018 THE NYSDEC GLADDING SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

vstem Status:

LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD P20 :

FAX REPORT INITIATED BY PROCESS 20

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP ASP_LO is OFF is ON ASP_HH is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

SMP_GO is OFF W1_ALM is ON W1 GO is ON W2 GO is ON ASB GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF AIR_LL is OFF W2 ALM is OFF SMPALM is OFF ASBALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 63023435 GAL W2 FLO is 24.6 **GPM** TOTAL FLOW is 61794004 GAL ASBPRS is 9.6 LIMITS are H: 30.0 IWC IWC L: 5.0IWC $ext{HP}$ $ext{FLO}$ is 2.54 **GPM** TOTAL FLOW is 686480 GAL H: 20.0 PRS is 9.8 PSI LIMITS are L:-2.0 PSI PSI AMP is 0.00 AMP LIMITS AMP H: AMPare \mathbf{L} : W1 AMP is AMP LIMITS are 0.00 AMP H: 10.00 AMP \mathbf{L} : $W2^-AMP$ is 4.53AMP LIMITS are L: 0.00 AMP H: 10.00 AMP H: 28.00 LIMITS are \mathbf{FT} W1 LVL is 29.80 \mathbf{FT} L: 8.00 \mathbf{FT} is M5_TAT 55.53 \mathbf{FT} LIMITS areL:9.00 \mathbf{FT} H: 52.00 \mathbf{FT} 4.2 \mathbf{PRS} is PSI LIMITS are L:0.5PSI н: 100.0 PSI W2 PRS is H: 100.0 4.2PSI LIMITS are \mathbf{L} : 0.5 PSI PSI INTEMP is 72.0 DEG LIMITS are \mathbf{L} : 42.0 DEG H: 130.0 DEG

Analog Outputs:

0.0 PCT ASBSPD

ALARM Fax Report <u>ProControl Series II+</u>

EOS Research Ltd.

To:

JEREMY WYCKOFF

From:

SYSTEM IN SOUTH OTSELIC NY @ 09:59:05 ON 08/27/2018 THE NYSDEC GLADDING SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

vstem Status:

LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD P20 :

FAX REPORT INITIATED BY PROCESS 20

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP ASP_LO is OFF is OFF ASP_HH is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

SMP_GO is OFF W1_ALM is ON W1 GO is ON W2 GO is ON ASB GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF AIR_LL is OFF W2 ALM is OFF SMPALM is OFF ASBALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 63023435 GAL W2FLO is 24.2 **GPM** TOTAL FLOW is 61795331 GAL ASBPRS is 9.6 LIMITS are H: 30.0 IWC IWC IWC L: 5.0 $ext{HP}$ $ext{FLO}$ is 0.00 **GPM** TOTAL FLOW is 686498 GAL PRS is H: 20.0 PSI LIMITS are L:-2.0 PSI PSI 0.09 AMP is 0.00 AMP LIMITS AMPH: AMPare \mathbf{L} : W1 AMP is AMP LIMITS are 0.00 AMP H: 10.00 AMP \mathbf{L} : W2 AMP is 4.61AMP LIMITS are L: 0.00 AMP H: 10.00 AMP H: 28.00 LIMITS are \mathbf{FT} $W1_LVL$ is 29.72 \mathbf{FT} L: 8.00 \mathbf{FT} is M5_TAT 55.39 \mathbf{FT} LIMITS areL:9.00 \mathbf{FT} H: 52.00 \mathbf{FT} 4.3 \mathbf{PRS} is PSI LIMITS are L:0.5PSI н: 100.0 PSI W2 PRS is H: 100.0 4.4PSI LIMITS are \mathbf{L} : 0.5 PSI PSI INTEMP is 71.1DEG LIMITS are \mathbf{L} : 42.0 DEG H: 130.0 DEG

Analog Outputs:

0.0 PCT ASBSPD

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 08/28/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 24.5 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 61824618 GAL ASBPRS is 10.0 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 686742 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.09 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.50AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.39 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.26 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.5PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.2 PSI LIMITS are PSI PSI INTEMP is 65.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 08/29/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 23.9 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 61859650 GAL ASBPRS is 10.0 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 686997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.55AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.62AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.28 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.24 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.3PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 3.8 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 65.6DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 08/30/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 24.1 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 61894606 GAL ASBPRS is L: 5.0 H: 30.0 10.0 LIMITS are IWC IWC IWC TOTAL FLOW is 687209 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.09 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.50AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.68 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.58 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 3.1 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 66.4DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 08/31/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 24.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 61929590 GAL ASBPRS is H: 30.0 10.2 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC 0.00 TOTAL FLOW is 687209 HP FLO is **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.53AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.87 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.53 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 2.8 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 62.4DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/01/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 24.3 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 61964442 GAL ASBPRS is L: 5.0 H: 30.0 10.1 LIMITS are IWC IWC IWC TOTAL FLOW is 687209 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.58AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.64AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.78 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.39 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 2.1 LIMITS are L: 0.5 PSI PSI PSI INTEMP is 64.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/02/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 24.3 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 61999284 GAL ASBPRS is L: 5.0 H: 30.0 10.0 LIMITS are IWC IWC IWC TOTAL FLOW is 687209 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.09 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.53AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.63AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.65 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.30 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 1.5 PSI LIMITS are PSI PSI INTEMP is 65.9DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/03/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 23.9 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62034106 GAL ASBPRS is L: 5.0 H: 30.0 10.1 LIMITS are IWC IWC IWC 0.00 TOTAL FLOW is 687248 HP FLO is **GPM** GAL H: 20.0 HP PRS is 1.3 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.09 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.50AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.61 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.61 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.20 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 3.9 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 1.0 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 64.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/04/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62059424 GAL ASBPRS is L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 687401 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.09 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 0.01 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 31.47 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.65 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 66.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/05/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62059424 GAL ASBPRS is L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 687401 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 1.0 PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.10 AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 0.01 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 31.37 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.63 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 69.2DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

ALARM Fax Report ProControl Series II+

EOS Research Ltd.

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 12:02:11 ON 09/05/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

vstem Status:

LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD P20 :

FAX REPORT INITIATED BY PROCESS 20

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP ASP_LO is OFF is ON ASP_HH is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

SMP_GO is OFF W1_ALM is ON W1 GO is ON W2 GO is ON ASB GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF AIR_LL is OFF W2 ALM is OFF SMPALM is OFF ASBALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 63023435 GAL W2FLO is 24.3 **GPM** TOTAL FLOW is 62059453 GAL ASBPRS is 9.4 LIMITS are H: 30.0 IWC IWC IWC L: 5.0 $ext{HP}$ $ext{FLO}$ is 2.50 **GPM** TOTAL FLOW is 687403 GAL H: 20.0 PRS is PSI LIMITS are L:-2.0 PSI PSI AMP is 0.00 AMP LIMITS AMP H: AMPare \mathbf{L} : W1 AMP is AMP LIMITS are 0.00 AMP H: 10.00 AMP W2 AMP is AMP LIMITS L: 0.00 AMP H: 10.00 AMP H: 28.00 LIMITS are \mathbf{FT} W1 LVL is 29.54 \mathbf{FT} L: 8.00 \mathbf{FT} is M5_TAT 54.88 \mathbf{FT} LIMITS areL:9.00 \mathbf{FT} H: 52.00 \mathbf{FT} \mathbf{PRS} is 4.2PSI LIMITS are L:0.5PSI н: 100.0 PSI W2 PRS is H: 100.0 3.6 PSI LIMITS are \mathbf{L} : 0.5 PSI PSI INTEMP is 75.4DEG LIMITS are \mathbf{L} : 42.0 DEG H: 130.0 DEG

Analog Outputs:

0.0 PCT ASBSPD

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/06/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 24.5 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62085644 GAL $AS\overline{B}PRS$ is L: 5.0 H: 30.0 10.1 LIMITS are IWC IWC IWC 0.00 TOTAL FLOW is 687831 HP FLO is **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.44AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.33 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.05 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 2.6 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 66.1DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/07/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 24.2 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62120481 GAL ASBPRS is L: 5.0 H: 30.0 10.1 LIMITS are IWC IWC IWC 0.00 TOTAL FLOW is 687831 HP FLO is **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.09 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.44AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.34 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : $W2^{-}LVL$ is 54.989.00 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 1.7 PSI LIMITS are PSI PSI INTEMP is 64.2DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/08/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 23.5 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62155124 GAL ASBPRS is L: 5.0 H: 30.0 10.3 LIMITS are IWC IWC IWC TOTAL FLOW is 687831 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 1.2 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.48AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.61 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.30 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 54.94 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.1PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 1.8 PSI LIMITS are PSI PSI INTEMP is 61.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

ProControl Series II+ EOS Research Ltd. Fax Report

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/09/2010 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF W1_ALM is ON ASMPLL is OFF AIR HH is OFF ASMPHH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL IS OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 63023435 GAL $W2^{-}FLO$ is 24.1 TOTAL FLOW is 62189738 GPM GAL ASBPRS is 10.3 H: 30.0 IWC LIMITS are L: 5.0IWC IWC HP FLO is 0.00 **GPM** TOTAL FLOW is 687831 GALHP PRS is PSI LIMITS are L: -2.0PSI H: 20.0 PSI 0.09 HP AMP is AMP LIMITS are L: 0.00AMPн: AMPW1_AMD is ΛMP H: 10.00 4.53LIMITS are 0.00 Λ MP Λ MP \mathbf{L} : W2_AMP is W1_LVL is H : II : LIMITS 0.00 AMP 10.00 AMP 4.64AMP areL:29.30 8.00 28.00 $\mathbf{\Gamma}\mathbf{T}$ LIMITS are $\mathbf{L}:$ $\mathbf{F}\mathbf{T}$ \mathbf{FT} W2LVL is 54.94 \mathbf{FT} 9.00 \mathbf{FT} H: 52.00 \mathbf{FT} LIMITS areL:н. 100.0 W1 PRS is 4.2 PSI LIHITS 0.5PSI PSI L. ате W2_PRS is 2.8 H: 100.0 PSI LIMITS are L: 0.5PSI PSI INTEMP is 58.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/09/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

ASB_GO is ON SMP_GO is OFF W1 GO W2 GO is ON is ON W1_∏LM is ON AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W2_\bar{\bar{\L}}\LM is OFF VFDRUN 1s OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 63023435 GAL W2FLO is 24.1 **GPM** TOTAL FLOW is 62189738 GAL L: 5.0 ASBPRS is 10.3 IWC LIMITS are IWC H: 30.0 IWC 0.00 GPM 687831 HP_FLO is TOTAL FLOW is GAL HP_PRS 1.3PSI LIMITS are -2.0PSI H: 20.0 PSI \mathbf{L} : is HP_AMP W1_AMP 0.09 AMP LIMITS 0.00 AMP AMP is areL:H: 10.00 4.53 is AMPLIMITS are \mathbf{L} : 0.00 AMP \mathbf{H} : AMPLIMITS W2 AMP AMP 0.00 AMP H: 10.00 AMP is 4.64areL:W1 LVL is 29.30 \mathbf{FT} LIMITS 8.00 \mathbf{FT} H: 28.00 \mathbf{FT} are W2 LVL is 54.94 \mathbf{FT} LIMITS are 9.00 \mathbf{FT} H: 52.00 \mathbf{FT} H: 100.0 H: 100.0 H: 130.0 W1_PRS is 4.2 PSI LIMITS \mathbf{L} : 0.5PSI PSI are $W2_PRS$ is 2.8 INTEMP is 58.3 PSI LIMITS 0.5 PSI PSI are \mathbf{L} : DEG L: 42.0 DEG DEG LIMITS are

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/10/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 23.8 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62224372 GAL ASBPRS is 10.2 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 687831 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 1.2 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.42AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.26 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 54.88 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 3.6 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 59.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/11/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 23.9 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62258999 GAL ASBPRS is L: 5.0 H: 30.0 10.2 LIMITS are IWC IWC IWC 0.00 TOTAL FLOW is 687831 HP FLO is **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.45AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.60AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 30.57 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.34 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 3.0 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 60.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/12/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 24.2 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62293484 GAL ASBPRS is L: 5.0 H: 30.0 10.2 LIMITS are IWC IWC IWC TOTAL FLOW is 687831 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.09 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.43AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 30.43 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.00 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 2.1 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 61.4DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/13/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 23.9 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62327816 GAL ASBPRS is 10.1 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC 0.00 TOTAL FLOW is 687831 HP FLO is **GPM** GAL H: 20.0 HP PRS is 1.3 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.45AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 30.21 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : $W2^{-}LVL$ is 55.72 9.00 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.1PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 LIMITS are L: 0.5 W2_PRS is 1.4 PSI PSI PSI INTEMP is 63.6DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/14/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 24.1 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62362037 GAL ASBPRS is L: 5.0 H: 30.0 10.1 LIMITS are IWC IWC IWC TOTAL FLOW is 687831 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.37AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 30.00 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.55 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 3.9 PSI LIMITS L: 0.5PSI H: 100.0 PSI areW2_PRS is 0.9 H: 100.0 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 63.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/15/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 23.6 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62396195 GAL ASBPRS is 10.1 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 687831 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is 1.2 PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.09 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.46AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.58AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.85 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.43 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 0.6 PSI LIMITS are PSI PSI INTEMP is 63.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/16/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 24.1 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62430361 GAL ASBPRS is L: 5.0 H: 30.0 10.2 LIMITS are IWC IWC IWC TOTAL FLOW is 687922 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.09 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.49AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.61 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.83 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.39 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 0.5 PSI LIMITS are PSI PSI INTEMP is 63.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

ALARM Fax Report

EOS Research Ltd.

<u>ProControl Series II+</u>

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 14:07:49 ON 09/16/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P23: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

FAX REPORT INITIATED BY PROCESS 23

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

SMP_GO is OFF W1_ALM is ON W1 GO is ON W2 GO is ON ASB GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF AIR_LL is OFF W2 ALM is ON SMPALM is OFF ASBALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 63023435 GAL W2 FLO is 23.8 **GPM** TOTAL FLOW is 62441959 GAL ASBPRS is 9.8 LIMITS are H: 30.0 IWC IWC IWC L: 5.0 $ext{HP}$ $ext{FLO}$ is 0.00 **GPM** TOTAL FLOW is 687922 GAL PRS is H: 20.0 PSI LIMITS are L:-2.0PSI PSI 0.09 AMP is 0.00 AMP LIMITS AMPH: AMPare \mathbf{L} : W1 AMP is AMP LIMITS are 0.00 AMP H: 10.00 AMP W2 AMP is AMP LIMITS are L: 0.00 AMP H: 10.00 AMP H: 28.00 LIMITS are \mathbf{FT} $W1_LVL$ is 29.77 \mathbf{FT} L: 8.00 \mathbf{FT} is M5_TAT 55.26 \mathbf{FT} LIMITS areL:9.00 \mathbf{FT} H: 52.00 \mathbf{FT} \mathbf{PRS} is 3.8 PSI LIMITS are L:0.5PSI н: 100.0 PSI W2 PRS is H: 100.0 0.4PSI LIMITS are \mathbf{L} : 0.5 PSI PSI INTEMP is 70.7DEG LIMITS are \mathbf{L} : 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/17/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P23 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is ON ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 23.4 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62464599 GAL ASBPRS is 5.0 H: 30.0 10.2 LIMITS are IWC IWC \mathbf{L} : IWC TOTAL FLOW is 687983 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.09 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.40AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.55AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.66 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.28 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 0.4 PSI LIMITS are PSI PSI INTEMP is 62.4DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/18/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P23 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is ON ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 23.4 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62498784 GAL ASBPRS is 10.0 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 687983 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 1.2 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.42AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.55AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.69 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.62 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 3.9 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 0.3 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 64.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/19/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P23 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is ON ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 23.8 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62532997 GAL ASBPRS is H: 30.0 10.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 687983 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.08 AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.37AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.73 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.60 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 3.9 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 0.2 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 62.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/20/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P23 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is ON ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 23.7 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62567227 GAL ASBPRS is 10.3 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 687983 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 1.3 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.44AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.57AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.80 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.47 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 0.3 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 60.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/21/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P23 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is ON ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 23.7 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62601426 GAL ASBPRS is 10.0 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 687983 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 1.3 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.46AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.72 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.32 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 LIMITS are L: 0.5 W2_PRS is 0.4 PSI PSI PSI INTEMP is 63.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/22/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P23 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is ON ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 23.7 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62635653 GAL ASBPRS is 10.1 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC 0.00 TOTAL FLOW is 687983 HP FLO is **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.43AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.55AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.69 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.36 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 3.9 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 0.2 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 61.1DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/23/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P23 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is ON ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 24.3 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62670076 GAL ASBPRS is H: 30.0 10.4 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 687983 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.50AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.66AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.78 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.34 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 1.6 PSI LIMITS are PSI PSI INTEMP is 56.6DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/24/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P23 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is ON ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 24.4 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62704650 GAL ASBPRS is L: 5.0 H: 30.0 10.4 LIMITS are IWC IWC IWC 0.00 TOTAL FLOW is 687983 HP FLO is **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.44AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.59AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.87 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.24 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 3.0 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 55.6DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/25/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P23: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is ON ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 24.3 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62739218 GAL ASBPRS is 10.3 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 687983 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is 1.2 PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.09 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.45AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.60AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 29.76 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.09 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 3.2 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 59.2DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/26/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62743911 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 687983 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.10 AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 0.01 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 31.66 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 57.14 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 64.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/27/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62743911 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 687983 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.09 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 0.01 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.86 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 58.19 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5W2_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 57.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

ALARM Fax Report ProControl Series II+

EOS Research Ltd.

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 13:27:24 ON 09/27/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

vstem Status:

LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD P20 :

FAX REPORT INITIATED BY PROCESS 20

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP ASP_LO is OFF is OFF ASP_HH is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

SMP_GO is OFF W1_ALM is ON W1 GO is ON W2 GO is ON ASB GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF AIR_LL is OFF W2 ALM is OFF SMPALM is OFF ASBALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 63023435 GAL W2FLO is 24.3 **GPM** TOTAL FLOW is 62743940 GAL ASBPRS is 9.6 LIMITS are H: 30.0 IWC IWC L: 5.0IWC $ext{HP}$ $ext{FLO}$ is 0.00 **GPM** TOTAL FLOW is 687983 GAL H: 20.0 PRS is PSI LIMITS are \mathbf{L} : -2.0 PSI PSI 0.09 AMP is 0.00 AMP LIMITS AMPH: AMPare \mathbf{L} : W1 AMP is AMP LIMITS are 0.00 AMP H: 10.00 AMP W2 AMP is 4.62AMP LIMITS are L: 0.00 AMP H: 10.00 AMP W1_LVL is 30.93 H: 28.00 LIMITS are \mathbf{FT} \mathbf{FT} L: 8.00 \mathbf{FT} $W2_LVL$ is 56.42 \mathbf{FT} LIMITS areL:9.00 \mathbf{FT} H: 52.00 \mathbf{FT} \mathbf{PRS} is 4.3PSI LIMITS are L:0.5PSI н: 100.0 PSI W2 PRS is H: 100.0 3.9 PSI LIMITS are \mathbf{L} : 0.5 PSI PSI INTEMP is 63.5 DEG LIMITS are \mathbf{L} : 42.0 DEG H: 130.0 DEG

Analog Outputs:

0.0 PCT ASBSPD

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/28/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62767070 GAL ASBPRS is L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 687983 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.09 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 0.01 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.39 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 57.67 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5W2_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 59.2DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

ALARM Fax Report

EOS Research Ltd.

ProControl Series II+

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 11:43:47 ON 09/28/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

FAX REPORT INITIATED BY PROCESS 20

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

SMP_GO is OFF W1_ALM is ON W1 GO is ON W2 GO is ON ASB GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF AIR_LL is OFF W2 ALM is OFF SMPALM is OFF ASBALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 63023435 GAL W2 FLO is 24.4**GPM** TOTAL FLOW is 62767098 GAL ASBPRS is 9.7 LIMITS are H: 30.0 IWC IWC L: 5.0 IWC $ext{HP}$ $ext{FLO}$ is 0.00 **GPM** TOTAL FLOW is 687983 GAL H: 20.0 PRS is 1.3 PSI LIMITS are \mathbf{L} : -2.0 PSI PSI 0.09 AMP is 0.00 AMP LIMITS AMP H: AMPare \mathbf{L} : W1 AMP is AMP LIMITS are 0.00 AMP H: 10.00 AMP W2 AMP is 4.62AMP LIMITS L: 0.00 AMP H: 10.00 AMP H: 28.00 \mathbf{FT} W1 LVL is 30.62 \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} is M5_TAT 56.25 \mathbf{FT} LIMITS areL:9.00 \mathbf{FT} H: 52.00 \mathbf{FT} \mathbf{PRS} is 4.3PSI LIMITS are L:0.5PSI н: 100.0 PSI W2 PRS is 3.8 H: 100.0 PSI LIMITS are \mathbf{L} : 0.5 PSI PSI INTEMP is 61.8 DEG LIMITS are \mathbf{L} : 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/29/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 24.2 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62794038 GAL ASBPRS is H: 30.0 10.3 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC 0.00 TOTAL FLOW is 687983 HP FLO is GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.47AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.63AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 30.59 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 56.04 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.3PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 3.6 L: 0.5PSI LIMITS are PSI PSI INTEMP is 59.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 09/30/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 24.7 **GPM** 63023435 TOTAL FLOW is GAL 62829352 GPM TOTAL FLOW is GAL $AS\overline{B}PRS$ is 10.5 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC 0.00 TOTAL FLOW is 687983 HP FLO is GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.50AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.67AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 30.54 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.83 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5W2_PRS is 4.1 PSI LIMITS are PSI PSI INTEMP is 56.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

APPENDIX B

O&M Checklists

Gladding Cordage		Date	7/29/2018
South Otselic, New York		Inspector	L. Whalen
NYSDEC Site #709009		Time	9:40
1410DEC Site #709009		11111e	9.40
Treatment System Operation		Alarms	
System On (Y/N)	Yes	A/C Fail (Y/N)	0
RW-1 On (Y/N)	Yes	RW-1 (Y/N) N	0
	Yes	RW-2 (Y/N) N	<u> </u>
Blower On (Y/N)	Yes	Blower Pressure (Y/N)	<u> </u>
Sump Pump On (Y/N)	No	Sump Level (Y/N) N	0
Recovery Wells	RW-1	RW-2	
Flow Rate (GPM)	18.4	23.5	
Total Flow (Gallons)	Not Reported	Not Reported	
Water Level (Feet Above Probe)	29.26	55.36	
Probe Depth (Feet BTOC)	40.00	65.00	
Probe Deptil (Feet B100)	40.00		
Air Stripper			, .
Blower VFD Setting (Hertz)	46	Intake/Exhaust Piping OK? (Y/N)	Yes
System Pressure (inches water)	10.0	Water Leaks (Y/N)	No
Influent/Effluent Piping OK? (Y/N)	<u>Yes</u>	Water Temperature (°F)	55
Heat Exchanger			
Heat (On/Off)	Off	Building Temperature (°F)	NR
Heat Exchanger Flow (GPM)	0.00	Heat Exchanger Pressure (PSI)	1.2
General Building/Site			
Building Condition OK? (Y/N)	Yes	Circuit Breakers Checked (Y/N)	Yes
Grass Mowed (Y/N)	Yes	Outfall Condition OK? (Y/N)	Yes
Monitoring Wells OK? (Y/N)	Yes	Samples Collected (Y/N)	Yes
Notes:			
Sampled: RW-1 -	1110		
RW-1-MS -	1110		
RW-1-MSD -	1110		
RW-2 -	1115		
EFF 46 HZ -	1120		
System Restart (0950) - Power failure	readings (AC Fail)		
System Start up (0951)	<u> </u>		
Trimmed Grass			

Gladding Cordage		Date	8/27/2018
South Otselic, New York		Inspector	L. Whalen
NYSDEC Site #709009		Time	9:40
Treatment System Operation		Alarms	
System On (Y/N)	Yes		<u>lo</u>
RW-1 On (Y/N)	Yes		lo
RW-2 On (Y/N)	Yes		lo .
Blower On (Y/N)	Yes		<u>lo</u>
Sump Pump On (Y/N)	No	Sump Level (Y/N)	<u>lo</u>
Recovery Wells	RW-1	RW-2	
Flow Rate (GPM)	19.6	23.9	
Total Flow (Gallons)	Not Reported	Not Reported	
Water Level (Feet Above Probe)	29.52	55.32	
Probe Depth (Feet BTOC)	40.00	65.00	
Air Stripper			
Blower VFD Setting (Hertz)	46	Intake/Exhaust Piping OK? (Y/N)	Yes
System Pressure (inches water)	9.2	Water Leaks (Y/N)	No.
Influent/Effluent Piping OK? (Y/N)	Yes	Water Temperature (°F)	58
Initiative indentity iping etc. (1714)	100	valor remperature (1)	
Heat Exchanger			
Heat (On/Off)	<u>On</u>	Building Temperature (°F)	73°
Heat Exchanger Flow (GPM)	0.00	Heat Exchanger Pressure (PSI)	1.5
General Building/Site			
Building Condition OK? (Y/N)	Yes	Circuit Breakers Checked (Y/N)	Yes
Grass Mowed (Y/N)	Yes	Outfall Condition OK? (Y/N)	Yes
Monitoring Wells OK? (Y/N)	Yes	Samples Collected (Y/N)	Yes
Notes:			
Sampled: RW-1 -	0900		
RW-1-MS -	0900		
RW-1-MSD -	0900		
RW-2 -	0910		
EFF 46 HZ -	0920		
0			
System Restart at 0830			
Mowed Grass			
System Check at 0940			
Well Check at 1000			

Gladding Cordage		Date	9/5/2018	
South Otselic, New York		Inspector	L. Whalen	
NYSDEC Site #709009		Time	12:18	
1410DE0 One #103003			12.10	
Treatment System Operation		Alarms		
System On (Y/N) Yes	3	A/C Fail (Y/N)	No	
RW-1 On (Y/N) Yes	3	RW-1 (Y/N)	Yes	
RW-2 On (Y/N) Yes	3	RW-2 (Y/N)	No	
Blower On (Y/N) Yes	3	Blower Pressure (Y/N)	No	
Sump Pump On (Y/N) Yes	<u> </u>	Sump Level (Y/N)	No	
Recovery Wells	RW-1	RW-2		
Flow Rate (GPM)	0	24.4		
Total Flow (Gallons)	Not Reported	Not Reported		
Water Level (Feet Above Probe)	29.34	54.89		
Probe Depth (Feet BTOC)	40.00	65.00		
Air Stripper				
Blower VFD Setting (Hertz)	46	Intake/Exhaust Piping OK? (Y/N)	Y	'es
System Pressure (inches water)	9.7	Water Leaks (Y/N)		No
Influent/Effluent Piping OK? (Y/N)	Yes	Water Temperature (°F)	6	3°
Heat Exchanger				
Heat (On/Off)	On	Building Temperature (°F)	7	75°
Heat Exchanger Flow (GPM)	2.49	Heat Exchanger Pressure (PSI)		٧R
General Building/Site				
Building Condition OK? (Y/N)	Yes	Circuit Breakers Checked (Y/N)	Y	'es
Grass Mowed (Y/N)	No	Outfall Condition OK? (Y/N)	Y	'es
Monitoring Wells OK? (Y/N)	Yes	Samples Collected (Y/N)	1	No
Notes:				
System Restart: 1218				
System Check: 1230				
	·		· · · · · · · · · · · · · · · · · · ·	

Gladding Cordage South Otselic, New York		Date Inspector	9/27/2018 L. Whalen
NYSDEC Site #709009		Time	13:35
Treatment System Operation		Alarms	
System On (Y/N)	Yes		lo
RW-1 On (Y/N)	Yes		es
RW-2 On (Y/N)	Yes	· · ·	lo
Blower On (Y/N)	Yes	Blower Pressure (Y/N)	lo
Sump Pump On (Y/N)	No	Sump Level (Y/N)	lo
Recovery Wells	RW-1	RW-2	
Flow Rate (GPM)	NA	24.6	
Total Flow (Gallons)	Not Reported		
Water Level (Feet Above Probe)	30.83	56.36	
Probe Depth (Feet BTOC)	40.00	65.00	
Air Stripper			
Blower VFD Setting (Hertz)	46	Intake/Exhaust Piping OK? (Y/N)	Yes
System Pressure (inches water)	10.1	Water Leaks (Y/N)	No
Influent/Effluent Piping OK? (Y/N)	Yes	Water Temperature (°F)	58°
Heat Exchanger			
Heat (On/Off)	Off	Building Temperature (°F)	64.7°
Heat Exchanger Flow (GPM)	0.00	Heat Exchanger Pressure (PSI)	1.3
General Building/Site			
Building Condition OK? (Y/N)	Yes	Circuit Breakers Checked (Y/N)	Yes
Grass Mowed (Y/N)	Yes	Outfall Condition OK? (Y/N)	Yes
Monitoring Wells OK? (Y/N)	Yes	Samples Collected (Y/N)	Yes
Notes:			
Sampled: RW-1 -	1500		
RW-1-MS -	1500		
RW-1-MSD -	1500		
RW-2 -	1510		
EFF 46 HZ -	1515		
System Restart: 1340			
Mowed Grass: 1340 to 1440			
System Check: 1530			
Well Field Check: 1600			

APPENDIX C Analytical Reporting Forms

August 6, 2018

Jeremy Wyckoff Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210 Clifton Park, NY 12065

Project Location: S. Otselic, NY

Client Job Number:

Project Number: 00266406.0000

Laboratory Work Order Number: 18G1289

Enclosed are results of analyses for samples received by the laboratory on July 31, 2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Aaron L. Benoit Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
18G1289-01	5
18G1289-02	6
18G1289-03	7
18G1289-04	8
Sample Preparation Information	9
QC Data	10
Volatile Organic Compounds by GC/MS	10
B209309	10
Flag/Qualifier Summary	13
Certifications	14
Chain of Custody/Sample Receipt	16

Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210 Clifton Park, NY 12065

ATTN: Jeremy Wyckoff

REPORT DATE: 8/6/2018

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 00266406.0000

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 18

18G1289

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: S. Otselic, NY

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
RW-1 072918 + MS/MSD	18G1289-01	Ground Water		EPA 624.1	
RW-2 072918	18G1289-02	Ground Water		EPA 624.1	
EFF 46 HZ 072918	18G1289-03	Ground Water		EPA 624.1	
Trip Blank	18G1289-04	Trip Blank Water		EPA 624.1	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the

best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Project Manager

Project Location: S. Otselic, NY Sample Description: Work Order: 18G1289

Date Received: 7/31/2018

Field Sample #: RW-1 072918 + MS/MSD Sampled: 7/29/2018 11:10

Sample ID: 18G1289-01
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.34	μg/L	1	0 -	EPA 624.1	8/2/18	8/2/18 9:13	LBD
Bromodichloromethane	ND	2.0	0.48	μg/L	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
Bromoform	ND	2.0	0.28	μg/L	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
Bromomethane	ND	2.0	0.44	μg/L	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
Carbon Tetrachloride	ND	2.0	0.39	μg/L	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
Chlorobenzene	ND	2.0	0.30	μg/L	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
Chlorodibromomethane	ND	2.0	0.27	μg/L	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
Chloroethane	ND	2.0	0.38	μg/L	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
Chloroform	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
Chloromethane	ND	2.0	0.30	μg/L	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
1,2-Dichlorobenzene	ND	2.0	0.31	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
1,3-Dichlorobenzene	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
1,4-Dichlorobenzene	ND	2.0	0.39	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
1,2-Dichloroethane	ND	2.0	0.28	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
1,1-Dichloroethane	1.7	2.0	0.33	$\mu g/L$	1	J	EPA 624.1	8/2/18	8/2/18 9:13	LBD
1,1-Dichloroethylene	0.79	2.0	0.25	$\mu g/L$	1	J	EPA 624.1	8/2/18	8/2/18 9:13	LBD
trans-1,2-Dichloroethylene	ND	2.0	0.40	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
1,2-Dichloropropane	ND	2.0	0.31	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
cis-1,3-Dichloropropene	ND	2.0	0.47	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
trans-1,3-Dichloropropene	ND	2.0	0.37	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
Ethylbenzene	ND	2.0	0.37	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.24	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
Methylene Chloride	ND	5.0	0.42	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
1,1,2,2-Tetrachloroethane	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
Tetrachloroethylene	ND	2.0	0.32	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
Toluene	ND	1.0	0.35	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
1,1,1-Trichloroethane	42	2.0	0.25	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
1,1,2-Trichloroethane	ND	2.0	0.22	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
Trichloroethylene	ND	2.0	0.41	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
Trichlorofluoromethane (Freon 11)	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
Vinyl Chloride	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
m+p Xylene	ND	2.0	0.65	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD
o-Xylene	ND	2.0	0.35	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:13	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	94.9	70-130		8/2/18 9:13
Toluene-d8	96.6	70-130		8/2/18 9:13
4-Bromofluorobenzene	98.0	70-130		8/2/18 9:13

Sample Description: Work Order: 18G1289

Project Location: S. Otselic, NY
Date Received: 7/31/2018
Field Sample #: RW-2 072918

Sampled: 7/29/2018 11:15

Sample ID: 18G1289-02
Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.34	μg/L	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
Bromodichloromethane	ND	2.0	0.48	μg/L	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
Bromoform	ND	2.0	0.28	μg/L	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
Bromomethane	ND	2.0	0.44	μg/L	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
Carbon Tetrachloride	ND	2.0	0.39	μg/L	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
Chlorobenzene	ND	2.0	0.30	μg/L	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
Chlorodibromomethane	ND	2.0	0.27	μg/L	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
Chloroethane	ND	2.0	0.38	μg/L	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
Chloroform	ND	2.0	0.33	μg/L	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
Chloromethane	ND	2.0	0.30	μg/L	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
1,2-Dichlorobenzene	ND	2.0	0.31	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
1,3-Dichlorobenzene	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
1,4-Dichlorobenzene	ND	2.0	0.39	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
1,2-Dichloroethane	ND	2.0	0.28	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
1,1-Dichloroethane	1.3	2.0	0.33	$\mu g/L$	1	J	EPA 624.1	8/2/18	8/2/18 9:44	LBD
1,1-Dichloroethylene	0.93	2.0	0.25	$\mu g/L$	1	J	EPA 624.1	8/2/18	8/2/18 9:44	LBD
trans-1,2-Dichloroethylene	ND	2.0	0.40	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
1,2-Dichloropropane	ND	2.0	0.31	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
cis-1,3-Dichloropropene	ND	2.0	0.47	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
trans-1,3-Dichloropropene	ND	2.0	0.37	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
Ethylbenzene	ND	2.0	0.37	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.24	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
Methylene Chloride	ND	5.0	0.42	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
1,1,2,2-Tetrachloroethane	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
Tetrachloroethylene	ND	2.0	0.32	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
Toluene	ND	1.0	0.35	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
1,1,1-Trichloroethane	49	2.0	0.25	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
1,1,2-Trichloroethane	ND	2.0	0.22	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
Trichloroethylene	ND	2.0	0.41	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
Trichlorofluoromethane (Freon 11)	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
Vinyl Chloride	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
m+p Xylene	ND	2.0	0.65	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD
o-Xylene	ND	2.0	0.35	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 9:44	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	93.6	70-130		8/2/18 9:44
Toluene-d8	96.8	70-130		8/2/18 9:44
4-Bromofluorobenzene	97.4	70-130		8/2/18 9:44

Project Location: S. Otselic, NY Sample Description: Work Order: 18G1289

Date Received: 7/31/2018

Field Sample #: EFF 46 HZ 072918

Sample ID: 18G1289-03
Sample Matrix: Ground Water

Sampled: 7/29/2018 11:20

			Volutile	Organic Co.	inpounds by C			ъ.	D . //E!	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.34	μg/L	1	I ing/ Quai	EPA 624.1	8/2/18	8/2/18 8:42	LBD
Bromodichloromethane	ND	2.0	0.48	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
Bromoform	ND	2.0	0.28	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
Bromomethane	ND	2.0	0.44	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
Carbon Tetrachloride	ND	2.0	0.39	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
Chlorobenzene	ND	2.0	0.30	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
Chlorodibromomethane	ND	2.0	0.27	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
Chloroethane	ND	2.0	0.38	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
Chloroform	ND	2.0	0.33	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
Chloromethane	ND	2.0	0.30	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
1,2-Dichlorobenzene	ND	2.0	0.31	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
1,3-Dichlorobenzene	ND	2.0	0.33	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
1,4-Dichlorobenzene	ND	2.0	0.39	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
1,2-Dichloroethane	ND	2.0	0.28	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
1,1-Dichloroethane	ND	2.0	0.33	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
1,1-Dichloroethylene	ND	2.0	0.25	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
trans-1,2-Dichloroethylene	ND	2.0	0.40	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
1,2-Dichloropropane	ND	2.0	0.31	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
cis-1,3-Dichloropropene	ND	2.0	0.47	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
trans-1,3-Dichloropropene	ND	2.0	0.37	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
Ethylbenzene	ND	2.0	0.37	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.24	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
Methylene Chloride	ND	5.0	0.42	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
1,1,2,2-Tetrachloroethane	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
Tetrachloroethylene	ND	2.0	0.32	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
Toluene	ND	1.0	0.35	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
1,1,1-Trichloroethane	ND	2.0	0.25	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
1,1,2-Trichloroethane	ND	2.0	0.22	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
Trichloroethylene	ND	2.0	0.41	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
Trichlorofluoromethane (Freon 11)	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
Vinyl Chloride	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
m+p Xylene	ND	2.0	0.65	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD
o-Xylene	ND	2.0	0.35	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:42	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	94.0	70-130		8/2/18 8:42
Toluene-d8	95.6	70-130		8/2/18 8:42
4-Bromofluorobenzene	94.9	70-130		8/2/18 8:42

Project Location: S. Otselic, NY Sample Description: Work Order: 18G1289

Date Received: 7/31/2018

Field Sample #: Trip Blank

Sampled: 7/29/2018 00:00

Sample ID: 18G1289-04
Sample Matrix: Trip Blank Water

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	ND	1.0	0.34	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
Bromodichloromethane	ND	2.0	0.48	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
Bromoform	ND	2.0	0.28	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
Bromomethane	ND	2.0	0.44	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
Carbon Tetrachloride	ND	2.0	0.39	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
Chlorobenzene	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
Chlorodibromomethane	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
Chloroethane	ND	2.0	0.38	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
Chloroform	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
Chloromethane	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
1,2-Dichlorobenzene	ND	2.0	0.31	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
1,3-Dichlorobenzene	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
1,4-Dichlorobenzene	ND	2.0	0.39	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
1,2-Dichloroethane	ND	2.0	0.28	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
1,1-Dichloroethane	ND	2.0	0.33	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
1,1-Dichloroethylene	ND	2.0	0.25	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
trans-1,2-Dichloroethylene	ND	2.0	0.40	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
1,2-Dichloropropane	ND	2.0	0.31	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
cis-1,3-Dichloropropene	ND	2.0	0.47	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
trans-1,3-Dichloropropene	ND	2.0	0.37	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
Ethylbenzene	ND	2.0	0.37	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.24	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
Methylene Chloride	1.0	5.0	0.42	μg/L	1	J	EPA 624.1	8/2/18	8/2/18 8:11	LBD
1,1,2,2-Tetrachloroethane	ND	2.0	0.27	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
Tetrachloroethylene	ND	2.0	0.32	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
Toluene	ND	1.0	0.35	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
1,1,1-Trichloroethane	ND	2.0	0.25	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
1,1,2-Trichloroethane	ND	2.0	0.22	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
Trichloroethylene	ND	2.0	0.41	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
Trichlorofluoromethane (Freon 11)	ND	2.0	0.27	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
Vinyl Chloride	ND	2.0	0.30	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
m+p Xylene	ND	2.0	0.65	μg/L	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD
o-Xylene	ND	2.0	0.35	$\mu g/L$	1		EPA 624.1	8/2/18	8/2/18 8:11	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	95.7	70-130		8/2/18 8:11
Toluene-d8	96.1	70-130		8/2/18 8:11
4-Bromofluorobenzene	94.3	70-130		8/2/18 8:11

Sample Extraction Data

Prep Method: SW-846 5030B-EPA 624.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18G1289-01 [RW-1 072918 + MS/MSD]	B209309	5	5.00	08/02/18
18G1289-02 [RW-2 072918]	B209309	5	5.00	08/02/18
18G1289-03 [EFF 46 HZ 072918]	B209309	5	5.00	08/02/18
18G1289-04 [Trip Blank]	B209309	5	5.00	08/02/18

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	%REC Limits	RPD	Limit	Notes
Batch B209309 - SW-846 5030B										
Blank (B209309-BLK1)				Prepared & A	Analyzed: 08	/02/18				
Benzene	ND	1.0	μg/L							
Bromodichloromethane	ND	2.0	$\mu g \! / \! L$							
Bromoform	ND	2.0	$\mu g/L$							
Bromomethane	ND	2.0	$\mu g/L$							
Carbon Tetrachloride	ND	2.0	$\mu g/L$							
Chlorobenzene	ND	2.0	$\mu g/L$							
Chlorodibromomethane	ND	2.0	$\mu g/L$							
Chloroethane	ND	2.0	$\mu \text{g/L}$							
Chloroform	ND	2.0	μg/L							
Chloromethane	ND	2.0	$\mu g/L$							
,2-Dichlorobenzene	ND	2.0	$\mu \text{g/L}$							
,3-Dichlorobenzene	ND	2.0	$\mu \text{g/L}$							
,4-Dichlorobenzene	ND	2.0	$\mu \text{g/L}$							
,2-Dichloroethane	ND	2.0	$\mu \text{g/L}$							
,1-Dichloroethane	ND	2.0	$\mu \text{g/L}$							
,1-Dichloroethylene	ND	2.0	$\mu \text{g/L}$							
rans-1,2-Dichloroethylene	ND	2.0	$\mu \text{g/L}$							
,2-Dichloropropane	ND	2.0	$\mu g/L$							
is-1,3-Dichloropropene	ND	2.0	$\mu g/L$							
rans-1,3-Dichloropropene	ND	2.0	$\mu g/L$							
thylbenzene	ND	2.0	$\mu g/L$							
Methyl tert-Butyl Ether (MTBE)	ND	2.0	$\mu g/L$							
Methylene Chloride	ND	5.0	$\mu g/L$							
,1,2,2-Tetrachloroethane	ND	2.0	$\mu g/L$							
etrachloroethylene	ND	2.0	$\mu g/L$							
Coluene	ND	1.0	$\mu g/L$							
,1,1-Trichloroethane	ND	2.0	$\mu g/L$							
,1,2-Trichloroethane	ND	2.0	$\mu g/L$							
richloroethylene	ND	2.0	μg/L							
Crichlorofluoromethane (Freon 11)	ND	2.0	$\mu g/L$							
/inyl Chloride	ND	2.0	$\mu g/L$							
n+p Xylene	ND	2.0	μg/L							
-Xylene	ND	2.0	μg/L							
durrogate: 1,2-Dichloroethane-d4	23.7		μg/L	25.0		94.9	70-130			
Surrogate: Toluene-d8	24.5		$\mu g/L$	25.0		98.0	70-130			
urrogate: 4-Bromofluorobenzene	23.7		$\mu g/L$	25.0		94.8	70-130			
.CS (B209309-BS1)				Prepared & A	Analyzed: 08	/02/18				
Benzene	21.3	1.0	μg/L	20.0		106	65-135			
Bromodichloromethane	19.8	2.0	μg/L	20.0		99.0	65-135			
Bromoform	22.6	2.0	μg/L	20.0		113	70-130			
Bromomethane	14.7	2.0	μg/L	20.0		73.4	15-185			
Carbon Tetrachloride	21.6	2.0	μg/L	20.0		108	70-130			
Chlorobenzene	22.1	2.0	μg/L	20.0		111	65-135			
Chlorodibromomethane	20.1	2.0	μg/L	20.0		101	70-135			
Chloroethane	20.3	2.0	μg/L	20.0		101	40-160			
Chloroform	20.7	2.0	μg/L	20.0		103	70-135			
Chloromethane	18.1	2.0	$\mu g\!/\!L$	20.0		90.6	20-205			
,2-Dichlorobenzene	20.8	2.0	μg/L	20.0		104	65-135			
,3-Dichlorobenzene	21.5	2.0	$\mu \text{g/L}$	20.0		108	70-130			
,4-Dichlorobenzene	21.0	2.0	$\mu \text{g/L}$	20.0		105	65-135			
,2-Dichloroethane	19.8	2.0	μg/L	20.0		98.8	70-130			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B209309 - SW-846 5030B										
.CS (B209309-BS1)				Prepared &	Analyzed: 08/0	2/18				
,1-Dichloroethane	20.6	2.0	μg/L	20.0		103	70-130			
,1-Dichloroethylene	17.7	2.0	$\mu g/L$	20.0		88.6	50-150			
rans-1,2-Dichloroethylene	19.9	2.0	$\mu g/L$	20.0		99.6	70-130			
,2-Dichloropropane	21.5	2.0	$\mu g/L$	20.0		108	35-165			
is-1,3-Dichloropropene	19.9	2.0	$\mu g/L$	20.0		99.6	25-175			
rans-1,3-Dichloropropene	21.0	2.0	$\mu g/L$	20.0		105	50-150			
thylbenzene	23.2	2.0	$\mu g/L$	20.0		116	60-140			
fethyl tert-Butyl Ether (MTBE)	20.2	2.0	$\mu g/L$	20.0		101	70-130			
fethylene Chloride	16.1	5.0	$\mu g/L$	20.0		80.4	60-140			
1,2,2-Tetrachloroethane	21.8	2.0	$\mu g/L$	20.0		109	60-140			
etrachloroethylene	23.3	2.0	μg/L	20.0		117	70-130			
bluene	21.7	1.0	μg/L	20.0		109	70-130			
1,1-Trichloroethane	20.4	2.0	μg/L	20.0		102	70-130			
1,2-Trichloroethane	21.2	2.0	μg/L	20.0		106	70-130			
richloroethylene	21.0	2.0	μg/L	20.0		105	65-135			
richlorofluoromethane (Freon 11)	17.0	2.0	μg/L	20.0		84.8	50-150			
inyl Chloride	20.4	2.0	μg/L	20.0		102	5-195			
+p Xylene	46.1	2.0	μg/L	40.0		115	70-130			
-Xylene	22.1	2.0	μg/L μg/L	20.0		110	70-130			
urrogate: 1,2-Dichloroethane-d4	23.3			25.0		93.2	70-130			
urrogate: 1,2-Dictioroethane-q4 urrogate: Toluene-d8	23.3 24.5		μg/L μg/L	25.0		93.2 97.9	70-130			
arrogate: 4-Bromofluorobenzene	24.8		μg/L μg/L	25.0		97.9	70-130			
_							/0-130			
Matrix Spike (B209309-MS1)		rce: 18G1289-			Analyzed: 08/0					
enzene	22.4	1.0	μg/L	20.0	ND	112	37-151			
romodichloromethane	20.7	2.0	μg/L	20.0	ND	103	35-155			
romoform	21.9	2.0	μg/L	20.0	ND	109	45-169			
romomethane	14.4	2.0	μg/L	20.0	ND	71.8	20-242			
arbon Tetrachloride	23.0	2.0	μg/L	20.0	ND	115	70-140			
hlorobenzene	22.7	2.0	μg/L	20.0	ND	114	37-160			
hlorodibromomethane	20.2	2.0	μg/L	20.0	ND	101	53-149			
hloroethane	20.5	2.0	$\mu \text{g/L}$	20.0	ND	103	14-230			
Chloroform	21.8	2.0	$\mu g/L$	20.0	ND	109	51-138			
hloromethane	19.2	2.0	$\mu g/L$	20.0	ND	96.0	20-273			
2-Dichlorobenzene	21.4	2.0	$\mu g/L$	20.0	ND	107	18-190			
,3-Dichlorobenzene	22.3	2.0	$\mu g/L$	20.0	ND	111	59-156			
4-Dichlorobenzene	21.6	2.0	$\mu g/L$	20.0	ND	108	18-190			
	20.0	2.0	$\mu g/L$	20.0	ND	100	49-155			
2-Dichloroethane	20.0			20.0		106	59-155			
	22.9	2.0	μg/L	20.0	1.66					
1-Dichloroethane		2.0 2.0	μg/L μg/L	20.0	1.66 0.790	91.8	20-234			
1-Dichloroethane 1-Dichloroethylene	22.9						20-234 54-156			
1-Dichloroethane 1-Dichloroethylene ans-1,2-Dichloroethylene	22.9 19.2 20.9	2.0	$\mu g/L$	20.0	0.790	91.8				
1-Dichloroethane 1-Dichloroethylene ans-1,2-Dichloroethylene 2-Dichloropropane	22.9 19.2 20.9 21.8	2.0 2.0	μg/L μg/L	20.0 20.0	0.790 ND ND	91.8 104	54-156			
1-Dichloroethane 1-Dichloroethylene ans-1,2-Dichloroethylene 2-Dichloropropane s-1,3-Dichloropropene	22.9 19.2 20.9 21.8 20.3	2.0 2.0 2.0	μg/L μg/L μg/L	20.0 20.0 20.0 20.0	0.790 ND ND ND	91.8 104 109	54-156 20-210 20-227			
1-Dichloroethane 1-Dichloroethylene ans-1,2-Dichloroethylene 2-Dichloropropane s-1,3-Dichloropropene ans-1,3-Dichloropropene	22.9 19.2 20.9 21.8 20.3 21.0	2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0	0.790 ND ND ND ND	91.8 104 109 101 105	54-156 20-210 20-227 17-183			
1-Dichloroethane 1-Dichloroethylene ans-1,2-Dichloroethylene 2-Dichloropropane s-1,3-Dichloropropene ans-1,3-Dichloropropene thylbenzene	22.9 19.2 20.9 21.8 20.3 21.0 24.1	2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0	0.790 ND ND ND ND	91.8 104 109 101 105 121	54-156 20-210 20-227 17-183 37-162			
1-Dichloroethane 1-Dichloroethylene ans-1,2-Dichloroethylene 2-Dichloropropane s-1,3-Dichloropropene ans-1,3-Dichloropropene thylbenzene ethyl tert-Butyl Ether (MTBE)	22.9 19.2 20.9 21.8 20.3 21.0 24.1 20.3	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0	0.790 ND ND ND ND ND	91.8 104 109 101 105 121 102	54-156 20-210 20-227 17-183 37-162 70-130			
1-Dichloroethane 1-Dichloroethylene ans-1,2-Dichloroethylene 2-Dichloropropane s-1,3-Dichloropropene ans-1,3-Dichloropropene thylbenzene lethyl tert-Butyl Ether (MTBE) lethylene Chloride	22.9 19.2 20.9 21.8 20.3 21.0 24.1 20.3 16.4	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 5.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	0.790 ND	91.8 104 109 101 105 121 102 82.0	54-156 20-210 20-227 17-183 37-162 70-130 20-221			
1-Dichloroethane 1-Dichloroethylene ans-1,2-Dichloroethylene 2-Dichloropropane s-1,3-Dichloropropene ans-1,3-Dichloropropene thylbenzene lethyl tert-Butyl Ether (MTBE) lethylene Chloride 1,2,2-Tetrachloroethane	22.9 19.2 20.9 21.8 20.3 21.0 24.1 20.3 16.4 21.8	2.0 2.0 2.0 2.0 2.0 2.0 2.0 5.0 2.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	0.790 ND	91.8 104 109 101 105 121 102 82.0 109	54-156 20-210 20-227 17-183 37-162 70-130 20-221 46-157			
,1-Dichloroethane ,1-Dichloroethylene ans-1,2-Dichloroethylene ,2-Dichloropropane is-1,3-Dichloropropene ans-1,3-Dichloropropene thylbenzene fethyl tert-Butyl Ether (MTBE) fethylene Chloride ,1,2,2-Tetrachloroethane etrachloroethylene	22.9 19.2 20.9 21.8 20.3 21.0 24.1 20.3 16.4 21.8 25.1	2.0 2.0 2.0 2.0 2.0 2.0 2.0 5.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	0.790 ND	91.8 104 109 101 105 121 102 82.0 109 125	54-156 20-210 20-227 17-183 37-162 70-130 20-221 46-157 64-148			
,2-Dichloroethane ,1-Dichloroethylene ans-1,2-Dichloroethylene ans-1,2-Dichloropropane is-1,3-Dichloropropene ans-1,3-Dichloropropene thylbenzene dethyl tert-Butyl Ether (MTBE) dethylene Chloride ,1,2,2-Tetrachloroethane etrachloroethylene oluene ,1,1-Trichloroethane	22.9 19.2 20.9 21.8 20.3 21.0 24.1 20.3 16.4 21.8	2.0 2.0 2.0 2.0 2.0 2.0 2.0 5.0 2.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	0.790 ND	91.8 104 109 101 105 121 102 82.0 109	54-156 20-210 20-227 17-183 37-162 70-130 20-221 46-157			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B209309 - SW-846 5030B										
Matrix Spike (B209309-MS1)	Sou	rce: 18G1289-	01	Prepared &	Analyzed: 08/0)2/18				
Trichloroethylene	22.9	2.0	μg/L	20.0	ND	114	70-157			
Trichlorofluoromethane (Freon 11)	18.0	2.0	$\mu g/L$	20.0	ND	90.2	17-181			
Vinyl Chloride	22.4	2.0	$\mu \text{g/L}$	20.0	ND	112	20-251			
m+p Xylene	48.3	2.0	$\mu \text{g/L}$	40.0	ND	121	70-130			
o-Xylene	23.0	2.0	$\mu \text{g/L}$	20.0	ND	115	70-130			
Surrogate: 1,2-Dichloroethane-d4	23.1		μg/L	25.0		92.4	70-130			
Surrogate: Toluene-d8	24.2		μg/L	25.0		96.8	70-130			
Surrogate: 4-Bromofluorobenzene	24.6		$\mu g/L$	25.0		98.2	70-130			
Matrix Spike Dup (B209309-MSD1)	Sou	rce: 18G1289-	01	Prepared &	Analyzed: 08/0	02/18				
Benzene	23.3	1.0	μg/L	20.0	ND	117	37-151	4.11	61	
Bromodichloromethane	21.8	2.0	$\mu \text{g/L}$	20.0	ND	109	35-155	5.09	56	
Bromoform	23.2	2.0	$\mu \text{g/L}$	20.0	ND	116	45-169	6.08	42	
Bromomethane	15.2	2.0	$\mu \text{g/L}$	20.0	ND	75.8	20-242	5.42	61	
Carbon Tetrachloride	24.3	2.0	$\mu g/L$	20.0	ND	121	70-140	5.33	41	
Chlorobenzene	24.6	2.0	$\mu \text{g/L}$	20.0	ND	123	37-160	7.94	53	
Chlorodibromomethane	20.9	2.0	$\mu \text{g/L}$	20.0	ND	104	53-149	3.36	50	
Chloroethane	19.8	2.0	$\mu \text{g/L}$	20.0	ND	99.2	14-230	3.42	78	
Chloroform	22.8	2.0	$\mu \text{g/L}$	20.0	ND	114	51-138	4.04	54	
Chloromethane	20.1	2.0	$\mu g/L$	20.0	ND	101	20-273	4.63	60	
1,2-Dichlorobenzene	22.6	2.0	$\mu g/L$	20.0	ND	113	18-190	5.27	57	
1,3-Dichlorobenzene	23.6	2.0	$\mu g/L$	20.0	ND	118	59-156	5.71	43	
1,4-Dichlorobenzene	22.5	2.0	$\mu g/L$	20.0	ND	112	18-190	3.72	57	
1,2-Dichloroethane	20.5	2.0	$\mu \text{g/L}$	20.0	ND	102	49-155	2.27	49	
1,1-Dichloroethane	24.2	2.0	$\mu \text{g/L}$	20.0	1.66	113	59-155	5.81	40	
1,1-Dichloroethylene	20.3	2.0	$\mu \text{g/L}$	20.0	0.790	97.5	20-234	5.73	32	
trans-1,2-Dichloroethylene	21.6	2.0	$\mu g \! / \! L$	20.0	ND	108	54-156	3.67	45	
1,2-Dichloropropane	22.7	2.0	$\mu \text{g/L}$	20.0	ND	114	20-210	4.45	55	
cis-1,3-Dichloropropene	20.7	2.0	$\mu \text{g/L}$	20.0	ND	103	20-227	1.91	58	
trans-1,3-Dichloropropene	21.4	2.0	$\mu \text{g/L}$	20.0	ND	107	17-183	2.12	86	
Ethylbenzene	25.8	2.0	$\mu \text{g/L}$	20.0	ND	129	37-162	6.65	63	
Methyl tert-Butyl Ether (MTBE)	21.3	2.0	$\mu \text{g/L}$	20.0	ND	107	70-130	4.85	20	
Methylene Chloride	17.0	5.0	$\mu \text{g/L}$	20.0	ND	85.0	20-221	3.71	28	
1,1,2,2-Tetrachloroethane	22.9	2.0	$\mu g/L$	20.0	ND	115	46-157	5.01	61	
Tetrachloroethylene	26.5	2.0	$\mu g/L$	20.0	ND	133	64-148	5.54	39	
Toluene	23.7	1.0	$\mu g/L$	20.0	ND	119	47-150	3.87	41	
1,1,1-Trichloroethane	63.9	2.0	$\mu g/L$	20.0	41.6	112	52-162	4.10	36	
1,1,2-Trichloroethane	22.8	2.0	$\mu g/L$	20.0	ND	114	52-150	4.03	45	
Trichloroethylene	23.8	2.0	$\mu g/L$	20.0	ND	119	70-157	3.90	48	
Trichlorofluoromethane (Freon 11)	17.8	2.0	$\mu g/L$	20.0	ND	89.1	17-181	1.23	84	
Vinyl Chloride	23.1	2.0	$\mu g/L$	20.0	ND	116	20-251	3.30	66	
m+p Xylene	51.2	2.0	$\mu g/L$	40.0	ND	128	70-130	5.82	20	
o-Xylene	24.4	2.0	μg/L	20.0	ND	122	70-130	5.77	20	
Surrogate: 1,2-Dichloroethane-d4	23.4		μg/L	25.0		93.5	70-130			
Surrogate: Toluene-d8	24.3		$\mu g/L$	25.0		97.2	70-130			
Surrogate: 4-Bromofluorobenzene	25.0		$\mu g/L$	25.0		100	70-130			

FLAG/QUALIFIER SUMMARY

†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level

QC result is outside of established limits.

ND Not Detected

RL Reporting Limit is at the level of quantitation (LOQ)

DL Detection Limit is the lower limit of detection determined by the MDL study

MCL Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the

calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

J Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated

concentration (CLP J-Flag).

CERTIFICATIONS

Certified Analyses included in this Report

CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH
NY,NC,MA,NH
CT,NY,RI,NC,MA,NH

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publile Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2019
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2019
RI	Rhode Island Department of Health	LAO00112	12/30/2018
NC	North Carolina Div. of Water Quality	652	12/31/2018
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2018
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2018
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

CON-KSE

CHAIN OF CUSTODY RECORD (New York)

http://www.contestlabs.com

Doc # 380 Rev 1_03242017

39 Spruce Street East Loigmeadow, MA 01028

	2010-010-01	New Jersey Coll (1917) Williams		
	Email: info@contestlabs.com	7-Day 10-Day	41:	# of Containers
Company Name:		Due Date:	2	² Preservation Code
Address: ARABIS 80	865 RT 146, STEZIO	Rush Approval Required		Container Code
2			ANALYSIS REQUESTED	Dissolved Metals Samples
Regiect Name, $arnothing$	Stadding Goldage	2-Day 4-Day		Eield Filtered
Project Location: S. OT S. I. S. V	י	Data Delivery		☐ Lab to Filter
Project Number: 002LL 40L	0000	Format: PDF		
Project Manager: J. レンとんが		Other:		Orithophosphate Samples
Con-Test Quote Name/Number:		CLP Like Data Pkg Required:		Field Filtered
Invoice Recipient:		Email To:		Lab to Filter
Sampled By: ずしンくとも		Fax To #:		
Con-Test Work Order#	Client Sample ID / Description Beg	Beginning Ending Composite Grab Hatrix Conc W Date/Time Date/Time Composite		Matrix Cedas: GW - Greund Water
1 R	RW-1072918+ms/ 11	11.10 1/m/18 By X 600 X		WW = Wate Water DW = Drinking Water
7 8	816260	NS The B X Co X		A=A!
13 8	8/	1,20 7/19/10 X 62 X		SL. = Sludge SOL = Salid
	24	1/82/2		O = Other (please define)
				² <u>Preservation Codes:</u> 1 = Iced
				H = HCL
				N = Nitric Acid
				B = Sodium Bisulfate Y = Sodium Hydroxida
				T = Sodium
Comments:		Please use the following codes to indicate possible sample concentration	c possible sample concentration	Infosultate O = Other (please define)
		within the Conc Code column above.	column above:	
		H - High; M - Medium; L - Low; C - Clean; U - Unknown	C - Clean; U - Unknown	³ Container Codes:
Refinquished by: (signature)	Date/Time: 7/30/10	Program & Regulatory Information	Deliverables Enhanced Date Darkens	A = Amber Glass G = Glass P = Plastic
Received by: (signature)	Y Time:	*	NYSDEC EQUIS EDD	ST = Sterile V = Vial
	13 12 000	Part 360 GW (Landfill)	EQuIS (Standard) EDD	S = Summa Canister
Kelinquished by (signature)	v Date/ Time:	NY Kestricted Use NY Unrestricted Use	NY Regulatory EDD NY Regs Hits-Only EDD	
Debote by: (signature)	Bate/Time:	NY Part 375 Oriner-Nitral NY Part 375 NELAC apr	Officer NELAC and AHA-LAP, LLC Accredited	Table
9 quished by: (signature)	Date/Time: Pro	nent Municipality WWRA	Other Chromatogram	of Cor Alba Soxhiet
8 ived by: (signature)	Date/Time:	☐ Federal ☐ 21.) ☐ School ☐ City ☐ Brownfield ☐ MBTA	☐ AIHA-LAP, LLC	Non Soxblet Non Soxblet

Delivered Tuesday 7/31/2018 at 9:06 am

DELIVERED

Signed for by: P.BLAKE

GET STATUS UPDATES
OBTAIN PROOF OF DELIVERY

FROM

CLIUS

TO

EAST LONGMEADOW, MA US

7/31/2018 - Tuesday

9:06 am

Delivered

MA

Expand History 🤝

7/30/2018 - Monday

4:47 pm

Picked up

BINGHAMTON, NY

OUR COMPANY

About FedEx

Our Portfolio

Investor Relations

Careers

FedEx Blog

Corporate Responsibility

Newsroom

Page 17 of 18

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

	reactis		Date	7/31	18	Time	906	
Received By					1-1	-		
How were the sam	ples In Cooler		No Cooler		On Ice		No Ice	
received?	Direct from Samp	oling			Ambient		Melted Ice	
		By Gun #	7		Actual Tem	_{1p} - 3.5		
Were samples wi		By Blank #			Actual Tem	ın -		
Temperature? 2-6				ra Campla	s Tampered		NA	
	dy Seal Intact?	NA			ree With Sa			
	Relinquished?		_	s Chain Ag	nee wiiii Sa	inpies:		
	ken/leaking/loose caps	on any sam	iples?		_ ivad within h	olding time?		
Is COC in ink/ Leg		-		npies rece		iolding time? Ier Name		
Did COC include			_ Analysis ID's			Dates/Times		
pertinent Informat			108		- Collection	Dates/Titles	3	
	filled out and legible?			144				
Are there Lab to Fi			_		s notified?			
Are there Rushes?		<u></u>			s notified?		· · · · · · · · · · · · · · · · · · ·	
Are there Short Ho		<u> </u>	-	Who wa	s notified?			
ls there enough Vo		<u></u>	_		rare			
Is there Headspace	e where applicable?	<u>E</u>	_	MS/MSD?			1	
Proper Media/Conf			_		samples re	quired?		
Were trip blanks re		F	_	On COC?	<u>' </u>			
Do all samples hav	ve the proper pH?	N	A Acid		-	Base		
Vials #		#		51 (1	#	40.0	- A b	#
Unp-	1 Liter Amb.	<u> </u>		Plastic			z Amb.	
HCL- 17				Plastic			nb/Clear nb/Clear	
Meoh-	250 mL Amb.			Plastic				
Bisulfate-	Col./Bacteria			npoint			nb/Clear core	
DI-	Other Plastic			Glass	<u> </u>	Frozen:	Core	<u> </u>
Thiosulfate-	SOC Kit		_}	ic Bag	1	F102e11.		
Sulfuric-	Perchlorate			lock		1		
			Unused	Media	1 0			ш
Vials #		#	4.15	BI ::	#	16.6	z Amb.	#
Unp-	1 Liter Amb.			Plastic	_		nb/Clear	
HCL-	500 mL Amb.			Plastic			******	
Meoh-	250 mL Amb.			_ Plastic			nb/Clear	
Bisulfate-	Col./Bacteria	<u> </u>		hpoint			nb/Clear	
DI-	Other Plastic	<u> </u>		Glass			core	L
Thiosulfate-	SOC Kit			ic Bag	1	Frozen:		
Sulfuric-	Perchlorate		I Zip	lock	<u> </u>	l		
Comments:								

August 31, 2018

Jeremy Wyckoff Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210 Clifton Park, NY 12065

Project Location: South Otselic, NY

Client Job Number:

Project Number: 00266406.0000

Laboratory Work Order Number: 18H1340

Enclosed are results of analyses for samples received by the laboratory on August 28, 2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Aaron L. Benoit Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
18H1340-01	5
18H1340-02	6
18H1340-03	7
18H1340-04	8
Sample Preparation Information	9
QC Data	10
Volatile Organic Compounds by GC/MS	10
B211335	10
Flag/Qualifier Summary	13
Certifications	14
Chain of Custody/Sample Receipt	16

Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210 Clifton Park, NY 12065 ATTN: Jeremy Wyckoff

REPORT DATE: 8/31/2018

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 00266406.0000

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 18H1340

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: South Otselic, NY

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
RW-1 (MS/MSD)	18H1340-01	Ground Water		EPA 624.1	
RW-2	18H1340-02	Ground Water		EPA 624.1	
EFF 46 HZ	18H1340-03	Ground Water		EPA 624.1	
Trip Blank	18H1340-04	Trip Blank Water		EPA 624.1	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Tod E. Kopyscinski Laboratory Director

Project Location: South Otselic, NY

Sample Description:

Work Order: 18H1340

Date Received: 8/28/2018

Field Sample #: RW-1 (MS/MSD)

Sampled: 8/27/2018 09:00

Sample ID: 18H1340-01
Sample Matrix: Ground Water

Volatile	Organic Cor	npounds by G	C/MS
DL	Units	Dilution	Flag/

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.34	μg/L	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
Bromodichloromethane	ND	2.0	0.48	μg/L	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
Bromoform	ND	2.0	0.28	μg/L	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
Bromomethane	ND	2.0	0.44	μg/L	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
Carbon Tetrachloride	ND	2.0	0.39	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
Chlorobenzene	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
Chlorodibromomethane	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
Chloroethane	ND	2.0	0.38	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
Chloroform	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
Chloromethane	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
1,2-Dichlorobenzene	ND	2.0	0.31	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
1,3-Dichlorobenzene	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
1,4-Dichlorobenzene	ND	2.0	0.39	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
1,2-Dichloroethane	ND	2.0	0.28	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
1,1-Dichloroethane	1.8	2.0	0.33	$\mu g/L$	1	J	EPA 624.1	8/29/18	8/29/18 10:29	LBD
1,1-Dichloroethylene	1.0	2.0	0.25	$\mu g/L$	1	J	EPA 624.1	8/29/18	8/29/18 10:29	LBD
trans-1,2-Dichloroethylene	ND	2.0	0.40	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
1,2-Dichloropropane	ND	2.0	0.31	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
cis-1,3-Dichloropropene	ND	2.0	0.47	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
trans-1,3-Dichloropropene	ND	2.0	0.37	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
Ethylbenzene	ND	2.0	0.37	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.24	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
Methylene Chloride	ND	5.0	0.42	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
1,1,2,2-Tetrachloroethane	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
Tetrachloroethylene	ND	2.0	0.32	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
Toluene	ND	1.0	0.35	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
1,1,1-Trichloroethane	45	2.0	0.25	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
1,1,2-Trichloroethane	ND	2.0	0.22	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
Trichloroethylene	ND	2.0	0.41	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
Trichlorofluoromethane (Freon 11)	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
Vinyl Chloride	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
m+p Xylene	ND	2.0	0.65	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD
o-Xylene	ND	2.0	0.35	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 10:29	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	99.0	70-130		8/29/18 10:29
Toluene-d8	98.6	70-130		8/29/18 10:29
4-Bromofluorobenzene	103	70-130		8/29/18 10:29

Project Location: South Otselic, NY Sample Description: Work Order: 18H1340

Date Received: 8/28/2018

Field Sample #: RW-2

Sampled: 8/27/2018 09:10

Sample ID: 18H1340-02
Sample Matrix: Ground Water

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	ND	1.0	0.34	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
Bromodichloromethane	ND	2.0	0.48	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
Bromoform	ND	2.0	0.28	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
Bromomethane	ND	2.0	0.44	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
Carbon Tetrachloride	ND	2.0	0.39	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
Chlorobenzene	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
Chlorodibromomethane	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
Chloroethane	ND	2.0	0.38	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
Chloroform	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
Chloromethane	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
1,2-Dichlorobenzene	ND	2.0	0.31	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
1,3-Dichlorobenzene	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
1,4-Dichlorobenzene	ND	2.0	0.39	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
1,2-Dichloroethane	ND	2.0	0.28	μg/L	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
1,1-Dichloroethane	1.3	2.0	0.33	μg/L	1	J	EPA 624.1	8/29/18	8/29/18 11:00	LBD
1,1-Dichloroethylene	1.1	2.0	0.25	μg/L	1	J	EPA 624.1	8/29/18	8/29/18 11:00	LBD
trans-1,2-Dichloroethylene	ND	2.0	0.40	μg/L	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
1,2-Dichloropropane	ND	2.0	0.31	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
cis-1,3-Dichloropropene	ND	2.0	0.47	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
trans-1,3-Dichloropropene	ND	2.0	0.37	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
Ethylbenzene	ND	2.0	0.37	μg/L	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.24	μg/L	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
Methylene Chloride	ND	5.0	0.42	μg/L	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
1,1,2,2-Tetrachloroethane	ND	2.0	0.27	μg/L	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
Tetrachloroethylene	ND	2.0	0.32	μg/L	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
Toluene	ND	1.0	0.35	μg/L	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
1,1,1-Trichloroethane	51	2.0	0.25	μg/L	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
1,1,2-Trichloroethane	ND	2.0	0.22	μg/L	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
Trichloroethylene	ND	2.0	0.41	μg/L	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
Trichlorofluoromethane (Freon 11)	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
Vinyl Chloride	ND	2.0	0.30	μg/L	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
m+p Xylene	ND	2.0	0.65	μg/L	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD
o-Xylene	ND	2.0	0.35	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 11:00	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	98.6	70-130		8/29/18 11:00
Toluene-d8	97.9	70-130		8/29/18 11:00
4-Bromofluorobenzene	104	70-130		8/29/18 11:00

Project Location: South Otselic, NY Sample Description: Work Order: 18H1340

Date Received: 8/28/2018
Field Sample #: EFF 46 HZ

Sampled: 8/27/2018 09:20

Sample ID: 18H1340-03
Sample Matrix: Ground Water

Volatile O	rganic	Compounds	bv	GC/MS
------------	--------	-----------	----	-------

			voiduic	organic co.	inpounds by C					
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	ND	1.0	0.34	μg/L	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
Bromodichloromethane	ND	2.0	0.48	μg/L	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
Bromoform	ND	2.0	0.28	μg/L	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
Bromomethane	ND	2.0	0.44	μg/L	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
Carbon Tetrachloride	ND	2.0	0.39	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
Chlorobenzene	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
Chlorodibromomethane	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
Chloroethane	ND	2.0	0.38	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
Chloroform	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
Chloromethane	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
1,2-Dichlorobenzene	ND	2.0	0.31	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
1,3-Dichlorobenzene	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
1,4-Dichlorobenzene	ND	2.0	0.39	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
1,2-Dichloroethane	ND	2.0	0.28	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
1,1-Dichloroethane	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
1,1-Dichloroethylene	ND	2.0	0.25	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
trans-1,2-Dichloroethylene	ND	2.0	0.40	μg/L	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
1,2-Dichloropropane	ND	2.0	0.31	μg/L	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
cis-1,3-Dichloropropene	ND	2.0	0.47	μg/L	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
trans-1,3-Dichloropropene	ND	2.0	0.37	μg/L	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
Ethylbenzene	ND	2.0	0.37	μg/L	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.24	μg/L	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
Methylene Chloride	ND	5.0	0.42	μg/L	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
1,1,2,2-Tetrachloroethane	ND	2.0	0.27	μg/L	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
Tetrachloroethylene	ND	2.0	0.32	μg/L	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
Toluene	ND	1.0	0.35	μg/L	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
1,1,1-Trichloroethane	ND	2.0	0.25	μg/L	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
1,1,2-Trichloroethane	ND	2.0	0.22	μg/L	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
Trichloroethylene	ND	2.0	0.41	μg/L	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
Trichlorofluoromethane (Freon 11)	ND	2.0	0.27	μg/L	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
Vinyl Chloride	ND	2.0	0.30	μg/L	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
m+p Xylene	ND	2.0	0.65	μg/L	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
o-Xylene	ND	2.0	0.35	μg/L μg/L	1		EPA 624.1	8/29/18	8/29/18 9:28	LBD
	112	2.0	0.55	MB/ L	1		21.1021.1	5,27,10	3/2//10 7.20	טטט

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	98.5	70-130		8/29/18 9:28
Toluene-d8	98.3	70-130		8/29/18 9:28
4-Bromofluorobenzene	102	70-130		8/29/18 9:28

Work Order: 18H1340

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: South Otselic, NY Sample Description:

Date Received: 8/28/2018
Field Sample #: Trip Blank

Sampled: 8/27/2018 00:00

Sample ID: 18H1340-04
Sample Matrix: Trip Blank Water

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	ND	1.0	0.34	μg/L	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
Bromodichloromethane	ND	2.0	0.48	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
Bromoform	ND	2.0	0.28	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
Bromomethane	ND	2.0	0.44	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
Carbon Tetrachloride	ND	2.0	0.39	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
Chlorobenzene	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
Chlorodibromomethane	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
Chloroethane	ND	2.0	0.38	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
Chloroform	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
Chloromethane	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
1,2-Dichlorobenzene	ND	2.0	0.31	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
1,3-Dichlorobenzene	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
1,4-Dichlorobenzene	ND	2.0	0.39	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
1,2-Dichloroethane	ND	2.0	0.28	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
1,1-Dichloroethane	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
1,1-Dichloroethylene	ND	2.0	0.25	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
trans-1,2-Dichloroethylene	ND	2.0	0.40	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
1,2-Dichloropropane	ND	2.0	0.31	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
cis-1,3-Dichloropropene	ND	2.0	0.47	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
trans-1,3-Dichloropropene	ND	2.0	0.37	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
Ethylbenzene	ND	2.0	0.37	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.24	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
Methylene Chloride	0.62	5.0	0.42	$\mu g/L$	1	J	EPA 624.1	8/29/18	8/29/18 8:26	LBD
1,1,2,2-Tetrachloroethane	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
Tetrachloroethylene	ND	2.0	0.32	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
Toluene	ND	1.0	0.35	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
1,1,1-Trichloroethane	ND	2.0	0.25	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
1,1,2-Trichloroethane	ND	2.0	0.22	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
Trichloroethylene	ND	2.0	0.41	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
Trichlorofluoromethane (Freon 11)	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
Vinyl Chloride	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
m+p Xylene	ND	2.0	0.65	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD
o-Xylene	ND	2.0	0.35	$\mu g/L$	1		EPA 624.1	8/29/18	8/29/18 8:26	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	96.9	70-130		8/29/18 8:26
Toluene-d8	100	70-130		8/29/18 8:26
4-Bromofluorobenzene	103	70-130		8/29/18 8:26

Sample Extraction Data

Prep Method: SW-846 5030B-EPA 624.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18H1340-01 [RW-1 (MS/MSD)]	B211335	5	5.00	08/29/18
18H1340-02 [RW-2]	B211335	5	5.00	08/29/18
18H1340-03 [EFF 46 HZ]	B211335	5	5.00	08/29/18
18H1340-04 [Trip Blank]	B211335	5	5.00	08/29/18

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B211335 - SW-846 5030B										
Blank (B211335-BLK1) Prepared & Analyzed: 08/29/18										
Tetrahydrofuran	ND	10	μg/L							
Benzene	ND	1.0	μg/L							
Bromodichloromethane	ND	2.0	μg/L							
romoform	ND	2.0	μg/L							
Bromomethane	ND	2.0	μg/L							
Carbon Tetrachloride	ND	2.0	μg/L							
hlorobenzene	ND	2.0	μg/L							
hlorodibromomethane	ND	2.0	μg/L							
hloroethane	ND	2.0	μg/L							
hloroform	ND	2.0	μg/L							
hloromethane	ND	2.0	μg/L							
2-Dichlorobenzene	ND	2.0	$\mu g/L$							
3-Dichlorobenzene	ND	2.0	μg/L							
4-Dichlorobenzene	ND	2.0	μg/L							
2-Dichloroethane	ND	2.0	μg/L							
1-Dichloroethane	ND	2.0	μg/L							
1-Dichloroethylene	ND	2.0	μg/L							
ans-1,2-Dichloroethylene	ND	2.0	μg/L							
2-Dichloropropane	ND	2.0	μg/L							
s-1,3-Dichloropropene	ND	2.0	μg/L							
ans-1,3-Dichloropropene	ND	2.0	μg/L							
thylbenzene	ND	2.0	μg/L							
lethyl tert-Butyl Ether (MTBE)	ND	2.0	μg/L							
lethylene Chloride	ND	5.0	μg/L							
1,2,2-Tetrachloroethane	ND	2.0	μg/L							
etrachloroethylene	ND	2.0	μg/L							
oluene	ND	1.0	μg/L							
,1,1-Trichloroethane	ND	2.0	μg/L							
1,2-Trichloroethane	ND	2.0	μg/L							
richloroethylene	ND	2.0	μg/L							
richlorofluoromethane (Freon 11)	ND	2.0	μg/L							
inyl Chloride	ND	2.0	μg/L							
n+p Xylene	ND	2.0	μg/L							
-Xylene	ND	2.0	μg/L							
urrogate: 1,2-Dichloroethane-d4	24.5		$\mu g/L$	25.0		97.9	70-130			
urrogate: Toluene-d8	25.3		$\mu g/L$	25.0		101	70-130			
urrogate: 4-Bromofluorobenzene	25.0		μg/L	25.0		100	70-130			
CS (B211335-BS1)		10	/m	-	Analyzed: 08		5 0.40-			
etrahydrofuran	24.6	10	μg/L	20.0		123	70-130		25	
enzene	21.7	1.0	μg/L	20.0		108	65-135			
romodichloromethane	22.0	2.0	μg/L	20.0		110	65-135			
romoform	23.3	2.0	μg/L	20.0		116	70-130			
romomethane	13.5	2.0	μg/L	20.0		67.4	15-185			
arbon Tetrachloride	22.6	2.0	μg/L	20.0		113	70-130			
hlorobenzene	21.8	2.0	μg/L	20.0		109	65-135			
hlorodibromomethane	24.1	2.0	μg/L	20.0		120	70-135			
hloroethane	21.0	2.0	μg/L	20.0		105	40-160			
hloroform	21.6	2.0	μg/L	20.0		108	70-135			
Chloromethane	20.1	2.0	μg/L	20.0		100	20-205			
1,2-Dichlorobenzene 1,3-Dichlorobenzene	20.5 21.3	2.0 2.0	μg/L μg/L	20.0 20.0		103 106	65-135 70-130			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B211335 - SW-846 5030B										
LCS (B211335-BS1)				Prepared &	Analyzed: 08/29	9/18				
,4-Dichlorobenzene	20.5	2.0	μg/L	20.0		102	65-135			
,2-Dichloroethane	21.2	2.0	$\mu \text{g/L}$	20.0		106	70-130			
,1-Dichloroethane	22.3	2.0	$\mu g/L$	20.0		112	70-130			
,1-Dichloroethylene	21.6	2.0	$\mu g/L$	20.0		108	50-150			
rans-1,2-Dichloroethylene	22.4	2.0	$\mu \text{g/L}$	20.0		112	70-130			
,2-Dichloropropane	22.3	2.0	$\mu \text{g/L}$	20.0		112	35-165			
is-1,3-Dichloropropene	24.0	2.0	$\mu g/L$	20.0		120	25-175			
rans-1,3-Dichloropropene	25.9	2.0	$\mu g/L$	20.0		130	50-150			
Ethylbenzene	21.6	2.0	$\mu g/L$	20.0		108	60-140			
Methyl tert-Butyl Ether (MTBE)	23.3	2.0	$\mu g/L$	20.0		116	70-130			
Methylene Chloride	20.6	5.0	$\mu \text{g/L}$	20.0		103	60-140			
,1,2,2-Tetrachloroethane	21.9	2.0	$\mu \text{g/L}$	20.0		110	60-140			
Tetrachloroethylene	24.1	2.0	$\mu \text{g/L}$	20.0		121	70-130			
Coluene	21.7	1.0	μg/L	20.0		108	70-130			
,1,1-Trichloroethane	23.2	2.0	$\mu \text{g/L}$	20.0		116	70-130			
,1,2-Trichloroethane	22.1	2.0	$\mu \text{g/L}$	20.0		111	70-130			
richloroethylene	22.8	2.0	$\mu \text{g/L}$	20.0		114	65-135			
richlorofluoromethane (Freon 11)	20.6	2.0	$\mu \text{g/L}$	20.0		103	50-150			
/inyl Chloride	19.6	2.0	$\mu \text{g/L}$	20.0		98.1	5-195			
n+p Xylene	43.8	2.0	$\mu \text{g/L}$	40.0		110	70-130			
-Xylene	22.0	2.0	$\mu \text{g/L}$	20.0		110	70-130			
Surrogate: 1,2-Dichloroethane-d4	24.9		μg/L	25.0		99.8	70-130			
Surrogate: Toluene-d8	24.8		μg/L	25.0		99.1	70-130			
urrogate: 4-Bromofluorobenzene	25.9		$\mu g/L$	25.0		104	70-130			
Matrix Spike (B211335-MS1)	Sou	rce: 18H1340-	01	Prepared &	Analyzed: 08/29	9/18				
Benzene	22.2	1.0	μg/L	20.0	ND	111	37-151			
romodichloromethane	22.9	2.0	μg/L	20.0	ND	114	35-155			
Bromoform	23.9	2.0	μg/L	20.0	ND	120	45-169			
Bromomethane	11.6	2.0	$\mu g/L$	20.0	ND	57.9	20-242			
Carbon Tetrachloride							70-140			
	24.5	2.0	$\mu \text{g/L}$	20.0	ND	123	70-140			
	24.5 22.0	2.0	μg/L μg/L	20.0 20.0	ND ND	110	37-160			
Chlorodibromomethane		2.0 2.0	μg/L μg/L							
Chlorodibromomethane Chloroethane	22.0	2.0 2.0 2.0	μg/L μg/L μg/L	20.0 20.0 20.0	ND ND ND	110 125 98.8	37-160 53-149 14-230			
Chlorodibromomethane Chloroethane Chloroform	22.0 25.0 19.8 22.0	2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0	ND ND ND ND	110 125 98.8 110	37-160 53-149 14-230 51-138			
Chlorodibromomethane Chloroethane Chloroform Chloromethane	22.0 25.0 19.8 22.0 16.8	2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0	ND ND ND ND	110 125 98.8 110 84.2	37-160 53-149 14-230 51-138 20-273			
Chlorobenzene Chlorodibromomethane Chloroethane Chloroform Chloromethane ,2-Dichlorobenzene	22.0 25.0 19.8 22.0	2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0	ND ND ND ND ND	110 125 98.8 110 84.2 106	37-160 53-149 14-230 51-138 20-273 18-190			
Chlorodibromomethane Chloroethane Chloroform Chloromethane ,2-Dichlorobenzene ,3-Dichlorobenzene	22.0 25.0 19.8 22.0 16.8	2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND ND ND ND ND ND	110 125 98.8 110 84.2 106 107	37-160 53-149 14-230 51-138 20-273 18-190 59-156			
Chlorodibromomethane Chloroethane Chloroform Chloromethane ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene	22.0 25.0 19.8 22.0 16.8 21.3	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND	110 125 98.8 110 84.2 106 107 105	37-160 53-149 14-230 51-138 20-273 18-190 59-156 18-190			
Chlorodibromomethane Chloroethane Chloroform Chloromethane ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane	22.0 25.0 19.8 22.0 16.8 21.3 21.4	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND	110 125 98.8 110 84.2 106 107 105 104	37-160 53-149 14-230 51-138 20-273 18-190 59-156 18-190 49-155			
thlorodibromomethane thloroethane thloroform thloromethane 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 2-Dichlorotenzene 1-Dichloroethane 1-Dichloroethane	22.0 25.0 19.8 22.0 16.8 21.3 21.4 20.9 20.7 24.7	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND	110 125 98.8 110 84.2 106 107 105 104	37-160 53-149 14-230 51-138 20-273 18-190 59-156 18-190 49-155 59-155			
hlorodibromomethane hloroform hloromethane ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane ,1-Dichloroethane ,1-Dichloroethylene	22.0 25.0 19.8 22.0 16.8 21.3 21.4 20.9 20.7	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND 1.83	110 125 98.8 110 84.2 106 107 105 104 114	37-160 53-149 14-230 51-138 20-273 18-190 59-156 18-190 49-155 59-155 20-234			
hlorodibromomethane hloroform hloromethane ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane ,1-Dichloroethane ,1-Dichloroethylene ans-1,2-Dichloroethylene	22.0 25.0 19.8 22.0 16.8 21.3 21.4 20.9 20.7 24.7 22.8 22.6	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND N	110 125 98.8 110 84.2 106 107 105 104 114 109 113	37-160 53-149 14-230 51-138 20-273 18-190 59-156 18-190 49-155 59-155 20-234 54-156			
chlorodibromomethane chloroethane chloroform chloromethane chlorobenzene chlorobenzene chlorobenzene chlorobenzene chlorobenzene chlorobenzene chlorobenzene chlorobenzene chlorothoroethane chloroethane chloroethloroethylene chloroethylene chloropropane	22.0 25.0 19.8 22.0 16.8 21.3 21.4 20.9 20.7 24.7 22.8 22.6 22.2	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND N	110 125 98.8 110 84.2 106 107 105 104 114 109 113	37-160 53-149 14-230 51-138 20-273 18-190 59-156 18-190 49-155 59-155 20-234 54-156 20-210			
hlorodibromomethane hloroethane hloroform hloromethane ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane ,1-Dichloroethane ,1-Dichloroethylene ans-1,2-Dichloroethylene ,2-Dichloropropane is-1,3-Dichloropropene	22.0 25.0 19.8 22.0 16.8 21.3 21.4 20.9 20.7 24.7 22.8 22.6 22.2 23.9	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND N	110 125 98.8 110 84.2 106 107 105 104 114 109 113 111 120	37-160 53-149 14-230 51-138 20-273 18-190 59-156 18-190 49-155 59-155 20-234 54-156 20-210 20-227			
hlorodibromomethane hloroethane hloroform hloromethane ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane ,1-Dichloroethane ,1-Dichloroethylene ans-1,2-Dichloropropane is-1,3-Dichloropropene ans-1,3-Dichloropropene	22.0 25.0 19.8 22.0 16.8 21.3 21.4 20.9 20.7 24.7 22.8 22.6 22.2	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND N	110 125 98.8 110 84.2 106 107 105 104 114 109 113 111 120 124	37-160 53-149 14-230 51-138 20-273 18-190 59-156 18-190 49-155 59-155 20-234 54-156 20-210 20-227 17-183			
hlorodibromomethane hloroethane hloroform hloromethane ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane ,1-Dichloroethane ,1-Dichloroethylene ans-1,2-Dichloropropane is-1,3-Dichloropropene ans-1,3-Dichloropropene thylbenzene	22.0 25.0 19.8 22.0 16.8 21.3 21.4 20.9 20.7 24.7 22.8 22.6 22.2 23.9	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND N	110 125 98.8 110 84.2 106 107 105 104 114 109 113 111 120 124 113	37-160 53-149 14-230 51-138 20-273 18-190 59-156 18-190 49-155 59-155 20-234 54-156 20-210 20-227 17-183 37-162			
chlorodibromomethane chloroform chloroform chlorobenzene ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichlorothane ,1-Dichloroethane ,1-Dichloroethylene cans-1,2-Dichloropropane is-1,3-Dichloropropane is-1,3-Dichloropropene cans-1,3-Dichloropropene cans-1	22.0 25.0 19.8 22.0 16.8 21.3 21.4 20.9 20.7 24.7 22.8 22.6 22.2 23.9 24.8	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND N	110 125 98.8 110 84.2 106 107 105 104 114 109 113 111 120 124 113 113	37-160 53-149 14-230 51-138 20-273 18-190 59-156 18-190 49-155 59-155 20-234 54-156 20-210 20-227 17-183 37-162 70-130			
Chlorodibromomethane Chloroform Chloromethane ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,4-Dichlorothane ,1-Dichloroethane ,1-Dichloroethylene rans-1,2-Dichloropropane is-1,3-Dichloropropane is-1,3-Dichloropropene chtylbenzene Methyl tert-Butyl Ether (MTBE) Methylene Chloride	22.0 25.0 19.8 22.0 16.8 21.3 21.4 20.9 20.7 24.7 22.8 22.6 22.2 23.9 24.8 22.6	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND N	110 125 98.8 110 84.2 106 107 105 104 114 109 113 111 120 124 113	37-160 53-149 14-230 51-138 20-273 18-190 59-156 18-190 49-155 59-155 20-234 54-156 20-210 20-227 17-183 37-162 70-130 20-221			
Chlorodibromomethane Chloroform Chloromethane ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,4-Dichlorothane ,1-Dichlorothane ,1-Dichlorothylene rans-1,2-Dichloropropane is-1,3-Dichloropropane is-1,3-Dichloropropene ethylbenzene Methyl tert-Butyl Ether (MTBE) Methylene Chloride ,1,2,2-Tetrachloroethane	22.0 25.0 19.8 22.0 16.8 21.3 21.4 20.9 20.7 24.7 22.8 22.6 22.2 23.9 24.8 22.6 22.6	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND N	110 125 98.8 110 84.2 106 107 105 104 114 109 113 111 120 124 113 113	37-160 53-149 14-230 51-138 20-273 18-190 59-156 18-190 49-155 59-155 20-234 54-156 20-210 20-227 17-183 37-162 70-130 20-221 46-157			
Chlorodibromomethane Chloroform Chloromethane ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,4-Dichlorothane ,1-Dichloroethane ,1-Dichloroethylene rans-1,2-Dichloropropane is-1,3-Dichloropropane is-1,3-Dichloropropene chtylbenzene Methyl tert-Butyl Ether (MTBE) Methylene Chloride	22.0 25.0 19.8 22.0 16.8 21.3 21.4 20.9 20.7 24.7 22.8 22.6 22.2 23.9 24.8 22.6 22.6 22.6 22.6 22.6	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ND N	110 125 98.8 110 84.2 106 107 105 104 114 109 113 111 120 124 113 113 102	37-160 53-149 14-230 51-138 20-273 18-190 59-156 18-190 49-155 59-155 20-234 54-156 20-210 20-227 17-183 37-162 70-130 20-221			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B211335 - SW-846 5030B										
Matrix Spike (B211335-MS1)	Sour	ce: 18H1340-	01	Prepared & Analyzed: 08/29/18						
1,1,1-Trichloroethane	69.4	2.0	μg/L	20.0	45.3	120	52-162			
1,1,2-Trichloroethane	23.1	2.0	$\mu g \! / \! L$	20.0	ND	115	52-150			
Trichloroethylene	24.0	2.0	$\mu g/L$	20.0	ND	120	70-157			
Trichlorofluoromethane (Freon 11)	20.0	2.0	$\mu g \! / \! L$	20.0	ND	100	17-181			
Vinyl Chloride	17.8	2.0	$\mu g \! / \! L$	20.0	ND	89.2	20-251			
m+p Xylene	44.8	2.0	$\mu g \! / \! L$	40.0	ND	112	70-130			
o-Xylene	22.8	2.0	$\mu \text{g/L}$	20.0	ND	114	70-130			
Surrogate: 1,2-Dichloroethane-d4	24.9		μg/L	25.0		99.8	70-130			
Surrogate: Toluene-d8	25.2		μg/L	25.0		101	70-130			
Surrogate: 4-Bromofluorobenzene	26.2		μg/L	25.0		105	70-130			
Matrix Spike Dup (B211335-MSD1)	Sour	ce: 18H1340-	01	Prepared & A	Analyzed: 08/2	9/18				
Benzene	22.3	1.0	μg/L	20.0	ND	112	37-151	0.494	61	
Bromodichloromethane	22.8	2.0	μg/L	20.0	ND	114	35-155	0.131	56	
Bromoform	25.1	2.0	μg/L	20.0	ND	126	45-169	4.85	42	
Bromomethane	13.3	2.0	μg/L	20.0	ND	66.6	20-242	14.0	61	
Carbon Tetrachloride	24.7	2.0	μg/L	20.0	ND	124	70-140	0.934	41	
Chlorobenzene	22.4	2.0	μg/L	20.0	ND	112	37-160	1.85	53	
Chlorodibromomethane	24.9	2.0	μg/L	20.0	ND	125	53-149	0.521	50	
Chloroethane	19.7	2.0	μg/L	20.0	ND	98.4	14-230	0.355	78	
Chloroform	22.7	2.0	μg/L	20.0	ND	113	51-138	2.95	54	
Chloromethane	16.3	2.0	μg/L	20.0	ND	81.7	20-273	3.07	60	
1,2-Dichlorobenzene	21.6	2.0	μg/L	20.0	ND	108	18-190	1.77	57	
1,3-Dichlorobenzene	22.0	2.0	μg/L	20.0	ND	110	59-156	2.49	43	
1,4-Dichlorobenzene	21.0	2.0	μg/L	20.0	ND	105	18-190	0.524	57	
1,2-Dichloroethane	21.4	2.0	μg/L	20.0	ND	107	49-155	3.37	49	
1,1-Dichloroethane	24.3	2.0	μg/L	20.0	1.83	112	59-155	1.71	40	
1,1-Dichloroethylene	22.7	2.0	μg/L	20.0	1.01	108	20-234	0.527	32	
trans-1,2-Dichloroethylene	22.6	2.0	μg/L	20.0	ND	113	54-156	0.0442	45	
1,2-Dichloropropane	22.4	2.0	μg/L	20.0	ND	112	20-210	1.08	55	
cis-1,3-Dichloropropene	23.6	2.0	μg/L	20.0	ND	118	20-227	1.18	58	
trans-1,3-Dichloropropene	25.5	2.0	μg/L	20.0	ND	127	17-183	2.67	86	
Ethylbenzene	22.7	2.0	μg/L	20.0	ND	114	37-162	0.706	63	
Methyl tert-Butyl Ether (MTBE)	22.7	2.0	$\mu g/L$	20.0	ND	114	70-130	0.441	20	
Methylene Chloride	20.5	5.0	$\mu g/L$	20.0	ND	102	20-221	0.686	28	
1,1,2,2-Tetrachloroethane	23.4	2.0	$\mu \text{g}/L$	20.0	ND	117	46-157	2.29	61	
Tetrachloroethylene	26.0	2.0	$\mu g/L$	20.0	ND	130	64-148	3.92	39	
Toluene	22.8	1.0	$\mu \text{g}/L$	20.0	ND	114	47-150	0.926	41	
1,1,1-Trichloroethane	68.3	2.0	$\mu \text{g/L}$	20.0	45.3	115	52-162	1.60	36	
1,1,2-Trichloroethane	22.9	2.0	$\mu \text{g/L}$	20.0	ND	115	52-150	0.696	45	
Trichloroethylene	23.7	2.0	$\mu \text{g/L}$	20.0	ND	119	70-157	1.09	48	
Trichlorofluoromethane (Freon 11)	20.0	2.0	$\mu g/L$	20.0	ND	100	17-181	0.0998	84	
Vinyl Chloride	17.6	2.0	$\mu g/L$	20.0	ND	88.0	20-251	1.24	66	
m+p Xylene	45.1	2.0	$\mu g/L$	40.0	ND	113	70-130	0.712	20	
o-Xylene	23.0	2.0	μg/L	20.0	ND	115	70-130	0.875	20	
Surrogate: 1,2-Dichloroethane-d4	24.7		μg/L	25.0		98.9	70-130			
Surrogate: Toluene-d8	25.2		μg/L	25.0		101	70-130			
Surrogate: 4-Bromofluorobenzene	25.6		μg/L	25.0		102	70-130			

FLAG/QUALIFIER SUMMARY

†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level

QC result is outside of established limits.

ND Not Detected

RL Reporting Limit is at the level of quantitation (LOQ)

DL Detection Limit is the lower limit of detection determined by the MDL study

MCL Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the

calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

J Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated

concentration (CLP J-Flag).

CERTIFICATIONS

Certified Analyses included in this Report

CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH
CT,NY,RI,NC,MA,NH
NY,NC,MA,NH
CT,NY,RI,NC,MA,NH

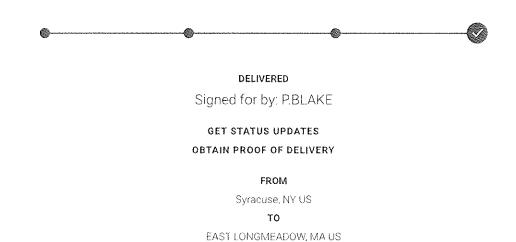
 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publile Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2019
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2019
RI	Rhode Island Department of Health	LAO00112	12/30/2018
NC	North Carolina Div. of Water Quality	652	12/31/2018
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2018
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2018
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

Table of Contents Dissolved Merals Samples Preservation Codes: B = Sodium Bisulfate X = Sodium Hydroxide WW - Waste Water DW - Drinking Water Matrix Codes: GW = Ground Water S = Summa Canister T = Tedlar Bag O = Other (please O = Other (please Container Codes 0 = Other (please Non Soxhlet A = Amber Glass S = Sulfuric Acid PCB ONLY Soxhlet ² Preservation Code Field Filtered N = Nitric Acid Field Filtered H = HCL M = Methanol ☐ Lab to Filter Lab to Filter SL. = Sludge SOL = Solid Container Code ST = Sterile T = Sodium Thiosulfate # of Containers P = Plastic G = Glass A .. A 3 V = Vial define) = Iced define) NY Regulatory EDD Enhanced Data Package NYSDEC EQUIS EDD EQuIS (Standard) EDD NY Regs Hits-Only EDD Please use the following codes to indicate possible sample concentration NELAC and AIHA-LAP, LLC Aconedited Chromatogram AIHA-LAP, LLC 39 Spruce Street East Longmeadow, MA 01028 H - High; M - Medium; L - Low; C - Clean; U - Unknown ANALYSIS REQUESTED within the Conc Code column above: WRTA 1110 MWRA School MBIA 1 ... Y CHAIN OF CUSTODY RECORD (New York) ☐ NY CP-51 X NY TOGS Program & Regulatory information Matrix Code <u>≥</u> Municipality Brownfield 10-Day 3-Day 4-Day EXCEL Grab CLP Like Data Pkg Required: Part 360 GW (Landfill) Z NYC Sewer Discharge Composite NY Unrestricted Use **NY Restricted Use** PDF NY Part 375 Government Ending Date/Time AWQ STDS Due Date: 0400 8127118 mail To ax To #: ormat: Federal /-Day Other: 1-Day -Day City Project Entity Date/Time 09.50 0250 Beginning Email: info@contestlabs.com 716 2800 Cardenge Client Sample ID / Description RW-1 (MS/MSD 812518 Fax: 413-525-6405 811/218 Date/Time: Date/Time: 210, Clitton ELF YO HA Date/Time: Date/Time: Jate/Time Date/Time Prio Blank -206 0000 40 40000 Sladding 子のでい R-7-100 Otseli 1. Walkett ころ、シアの Phone: 518-250-7300 していると South Con-Test Quote Name/Number: B OD-KSK **J** telinguished by: (signature) elinquished by: (signature) iished by: (signature) red by: (signature) Work Order# Received by: (signature) ed by: (signature) Con-Test Invoice Recipient: Project Location: Project Manager: Project Number: Address: 955 sampled By: Comments: Page 16 of 18

Doc # 380 Rev 1_03242017

http://www.contestlabs.com


Ngn in

TRACK ANOTHER SHIPMENT

Delivered Tuesday 8/28/2018 at 9:11 am

Travel History Shipment Facts 8/28/2018 - Tuesday 9:11 am Delivered E Longmeadow, MA Expand History 😾 8/27/2018 - Monday 11:48 am Shipment information sent to FedEx Ask FedEx OUR COMPANY MORE FROM FEDEX LANGUAGE About FedEx FedEx Blog FedEx Compatible Change Country Our Portfolio Corporate Responsibility Developer Resource Center English Investor Relations Newsroom FedEx Cross Border Careers Contact Us

FOLLOW FEDEX

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client	Acc	adis							
Receive	ed By	RLE		Date	828	348 <u> </u>	Time	911	
How were the	e samples	In Cooler	T	No Cooler		On Ice	T	No Ice	
receiv	ed?	Direct from Samp	ling			Ambient		Melted Ice	
			By Gun #	577		Actual Temp	o-4.0°		
Were samp			By Blank #		•	Actual Temp			₩
Temperatur		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	WA.		re Samples	,		1 1/2	-
	Custody Se COC Relin		<u> </u>	•	s Chain Agre	•			-
		eaking/loose caps	on any sam	•	C.	oo maa	p		-
Is COC in ink		_	on any oam		nples receiv	ed within ho	olding time?		
Did COC in		Client	7	Analysis	T		er Name		_
pertinent Info		Project	T	ID's	7	Collection	Dates/Time	s T	- -
•		l out and legible?	T	-					
Are there Lab			<u> </u>	•	Who was	notified?			_
Are there Rus			F-	-	Who was	notified?			_
Are there Sho			F	-	Who was	notified?			-
Is there enou		?	-_	•					
		ere applicable?	F	-	MS/MSD?_	Τ			
Proper Media	a/Container	s Used?	7	_	Is splitting s	samples req	uired?	I	•••
Were trip bla	nks receive	ed?	T	_	On COC?			_	
Do all sample	es have the	proper pH?		Acid	<u> 110</u>		Base	M	_
Vials	#	Containers:	#			#			#
Unp-		1 Liter Amb.			Plastic			oz Amb.	
HCL-		500 mL Amb.			Plastic			mb/Clear	
Meoh-		250 mL Amb.			_ Plastic			mb/Clear	
Bisulfate-		Col./Bacteria			npoint			mb/Clear	
DI-		Other Plastic			Glass			ncore	<u> </u>
Thiosulfate-		SOC Kit			ic Bag		Frozen:		
Sulfuric-		Perchlorate			lock				
				Unused	Media				#
Vials	#	Containers:	#	4 1 1 1 1 1 1 1	Disatio	#	167	oz Amb.	*
Unp-	-2-4-1994-7	1 Liter Amb.			Plastic Plastic			mb/Clear	
HCL-		500 mL Amb. 250 mL Amb.			_ Plastic			mb/Clear	
Meoh- Bisulfate-		Col./Bacteria	# / # / # / # / #		npoint			mb/Clear	
DI-		Other Plastic			Glass			ncore	
Thiosulfate-		SOC Kit		<u></u>	ic Bag		Frozen:		
Sulfuric-		Perchlorate			lock		<u> </u>		
Comments:									
									l
									ļ
 									

October 9, 2018

Jeremy Wyckoff Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210 Clifton Park, NY 12065

Project Location: South Otselic, NY

Client Job Number:

Project Number: 00266406.0000

Laboratory Work Order Number: 18J0025

Enclosed are results of analyses for samples received by the laboratory on October 1, 2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Aaron L. Benoit Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
18J0025-01	5
18J0025-02	6
18J0025-03	7
18J0025-04	8
Sample Preparation Information	9
QC Data	10
Volatile Organic Compounds by GC/MS	10
B214076	10
Flag/Qualifier Summary	13
Certifications	14
Chain of Custody/Sample Receipt	16

Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210

Clifton Park, NY 12065 ATTN: Jeremy Wyckoff

REPORT DATE: 10/9/2018

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 00266406.0000

ANALYTICAL SUMMARY

WORK ORDER NUMBER:

18J0025

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: South Otselic, NY

FIELD SAMPLE#	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
RW-1 (MS/MSD)	18J0025-01	Ground Water		EPA 624.1	
RW-2	18J0025-02	Ground Water		EPA 624.1	
EFF 46 HZ	18J0025-03	Ground Water		EPA 624.1	
Trip Blank	18J0025-04	Trip Blank Water		EPA 624.1	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

EPA 624.1

Qualifications:

L-01

Laboratory fortified blank /laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side.

Analyte & Samples(s) Qualified:

Tetrachloroethylene

B214076-BS1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Project Manager

Project Location: South Otselic, NY

Sample Description:

Work Order: 18J0025

Date Received: 10/1/2018

Field Sample #: RW-1 (MS/MSD)

Sampled: 10/1/2018 10:04

Sample ID: 18J0025-01
Sample Matrix: Ground Water

Volatile	Organic	Compounds	by	GC/MS	

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.34	μg/L	1	1 mg/ Qum	EPA 624.1	10/5/18	10/5/18 15:21	LBD
Bromodichloromethane	ND	2.0	0.48	μg/L	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
Bromoform	ND	2.0	0.28	μg/L	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
Bromomethane	ND	2.0	0.44	μg/L	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
Carbon Tetrachloride	ND	2.0	0.39	μg/L	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
Chlorobenzene	ND	2.0	0.30	μg/L	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
Chlorodibromomethane	ND	2.0	0.27	μg/L	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
Chloroethane	ND	2.0	0.38	μg/L	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
Chloroform	ND	2.0	0.33	μg/L	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
Chloromethane	ND	2.0	0.30	μg/L	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
1,2-Dichlorobenzene	ND	2.0	0.31	μg/L	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
1,3-Dichlorobenzene	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
1,4-Dichlorobenzene	ND	2.0	0.39	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
1,2-Dichloroethane	ND	2.0	0.28	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
1,1-Dichloroethane	1.6	2.0	0.33	$\mu g/L$	1	J	EPA 624.1	10/5/18	10/5/18 15:21	LBD
1,1-Dichloroethylene	0.99	2.0	0.25	$\mu g/L$	1	J	EPA 624.1	10/5/18	10/5/18 15:21	LBD
trans-1,2-Dichloroethylene	ND	2.0	0.40	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
1,2-Dichloropropane	ND	2.0	0.31	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
cis-1,3-Dichloropropene	ND	2.0	0.47	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
trans-1,3-Dichloropropene	ND	2.0	0.37	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
Ethylbenzene	ND	2.0	0.37	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.24	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
Methylene Chloride	ND	5.0	0.42	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
1,1,2,2-Tetrachloroethane	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
Tetrachloroethylene	ND	2.0	0.32	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
Toluene	ND	1.0	0.35	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
1,1,1-Trichloroethane	47	2.0	0.25	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
1,1,2-Trichloroethane	ND	2.0	0.22	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
Trichloroethylene	ND	2.0	0.41	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
Trichlorofluoromethane (Freon 11)	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
Vinyl Chloride	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
m+p Xylene	ND	2.0	0.65	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD
o-Xylene	ND	2.0	0.35	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:21	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	103	70-130		10/5/18 15:21
Toluene-d8	102	70-130		10/5/18 15:21
4-Bromofluorobenzene	103	70-130		10/5/18 15:21

Project Location: South Otselic, NY Sa

Sample Description:

Work Order: 18J0025

Date Received: 10/1/2018
Field Sample #: RW-2

Sampled: 10/1/2018 10:04

Sample ID: 18J0025-02

Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS	Volatile	Organic	Compounds l	by GC/MS
-------------------------------------	----------	---------	-------------	----------

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	ND	1.0	0.34	μg/L	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
Bromodichloromethane	ND	2.0	0.48	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
Bromoform	ND	2.0	0.28	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
Bromomethane	ND	2.0	0.44	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
Carbon Tetrachloride	ND	2.0	0.39	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
Chlorobenzene	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
Chlorodibromomethane	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
Chloroethane	ND	2.0	0.38	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
Chloroform	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
Chloromethane	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
1,2-Dichlorobenzene	ND	2.0	0.31	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
1,3-Dichlorobenzene	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
1,4-Dichlorobenzene	ND	2.0	0.39	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
1,2-Dichloroethane	ND	2.0	0.28	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
1,1-Dichloroethane	0.92	2.0	0.33	$\mu g/L$	1	J	EPA 624.1	10/5/18	10/5/18 15:52	LBD
1,1-Dichloroethylene	0.92	2.0	0.25	$\mu g/L$	1	J	EPA 624.1	10/5/18	10/5/18 15:52	LBD
trans-1,2-Dichloroethylene	ND	2.0	0.40	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
1,2-Dichloropropane	ND	2.0	0.31	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
cis-1,3-Dichloropropene	ND	2.0	0.47	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
trans-1,3-Dichloropropene	ND	2.0	0.37	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
Ethylbenzene	ND	2.0	0.37	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.24	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
Methylene Chloride	ND	5.0	0.42	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
1,1,2,2-Tetrachloroethane	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
Tetrachloroethylene	ND	2.0	0.32	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
Toluene	ND	1.0	0.35	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
1,1,1-Trichloroethane	43	2.0	0.25	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
1,1,2-Trichloroethane	ND	2.0	0.22	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
Trichloroethylene	ND	2.0	0.41	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
Trichlorofluoromethane (Freon 11)	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
Vinyl Chloride	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
m+p Xylene	ND	2.0	0.65	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD
o-Xylene	ND	2.0	0.35	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 15:52	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	100	70-130		10/5/18 15:52
Toluene-d8	99.4	70-130		10/5/18 15:52
4-Bromofluorobenzene	103	70-130		10/5/18 15:52

Project Location: South Otselic, NY Sample Description: Work Order: 18J0025

Date Received: 10/1/2018

Field Sample #: EFF 46 HZ

Sampled: 10/1/2018 10:04

Sample ID: 18J0025-03
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	ND	1.0	0.34	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
Bromodichloromethane	ND	2.0	0.48	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
Bromoform	ND	2.0	0.28	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
Bromomethane	ND	2.0	0.44	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
Carbon Tetrachloride	ND	2.0	0.39	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
Chlorobenzene	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
Chlorodibromomethane	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
Chloroethane	ND	2.0	0.38	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
Chloroform	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
Chloromethane	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
1,2-Dichlorobenzene	ND	2.0	0.31	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
1,3-Dichlorobenzene	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
1,4-Dichlorobenzene	ND	2.0	0.39	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
1,2-Dichloroethane	ND	2.0	0.28	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
1,1-Dichloroethane	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
1,1-Dichloroethylene	ND	2.0	0.25	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
trans-1,2-Dichloroethylene	ND	2.0	0.40	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
1,2-Dichloropropane	ND	2.0	0.31	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
cis-1,3-Dichloropropene	ND	2.0	0.47	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
trans-1,3-Dichloropropene	ND	2.0	0.37	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
Ethylbenzene	ND	2.0	0.37	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.24	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
Methylene Chloride	ND	5.0	0.42	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
1,1,2,2-Tetrachloroethane	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
Tetrachloroethylene	ND	2.0	0.32	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
Toluene	ND	1.0	0.35	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
1,1,1-Trichloroethane	ND	2.0	0.25	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
1,1,2-Trichloroethane	ND	2.0	0.22	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
Trichloroethylene	ND	2.0	0.41	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
Trichlorofluoromethane (Freon 11)	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
Vinyl Chloride	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
m+p Xylene	ND	2.0	0.65	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD
o-Xylene	ND	2.0	0.35	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:51	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	101	70-130		10/5/18 14:51
Toluene-d8	101	70-130		10/5/18 14:51
4-Bromofluorobenzene	104	70-130		10/5/18 14:51

Project Location: South Otselic, NY Sam

Sample Description:

Work Order: 18J0025

Date Received: 10/1/2018

Field Sample #: Trip Blank

Sampled: 10/1/2018 10:04

Sample ID: 18J0025-04
Sample Matrix: Trip Blank Water

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	ND	1.0	0.34	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
Bromodichloromethane	ND	2.0	0.48	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
Bromoform	ND	2.0	0.28	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
Bromomethane	ND	2.0	0.44	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
Carbon Tetrachloride	ND	2.0	0.39	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
Chlorobenzene	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
Chlorodibromomethane	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
Chloroethane	ND	2.0	0.38	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
Chloroform	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
Chloromethane	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
1,2-Dichlorobenzene	ND	2.0	0.31	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
1,3-Dichlorobenzene	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
1,4-Dichlorobenzene	ND	2.0	0.39	$\mu g/L$	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
1,2-Dichloroethane	ND	2.0	0.28	μg/L	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
1,1-Dichloroethane	ND	2.0	0.33	μg/L	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
1,1-Dichloroethylene	ND	2.0	0.25	μg/L	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
trans-1,2-Dichloroethylene	ND	2.0	0.40	μg/L	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
1,2-Dichloropropane	ND	2.0	0.31	μg/L	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
cis-1,3-Dichloropropene	ND	2.0	0.47	μg/L	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
trans-1,3-Dichloropropene	ND	2.0	0.37	μg/L	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
Ethylbenzene	ND	2.0	0.37	μg/L	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.24	μg/L	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
Methylene Chloride	0.42	5.0	0.42	μg/L	1	J	EPA 624.1	10/5/18	10/5/18 14:20	LBD
1,1,2,2-Tetrachloroethane	ND	2.0	0.27	μg/L	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
Tetrachloroethylene	ND	2.0	0.32	μg/L	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
Toluene	ND	1.0	0.35	μg/L	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
1,1,1-Trichloroethane	ND	2.0	0.25	μg/L	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
1,1,2-Trichloroethane	ND	2.0	0.22	μg/L	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
Trichloroethylene	ND	2.0	0.41	μg/L	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
Trichlorofluoromethane (Freon 11)	ND	2.0	0.27	μg/L	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
Vinyl Chloride	ND	2.0	0.30	μg/L	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
m+p Xylene	ND	2.0	0.65	μg/L	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD
o-Xylene	ND	2.0	0.35	μg/L	1		EPA 624.1	10/5/18	10/5/18 14:20	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	99.8	70-130		10/5/18 14:20
Toluene-d8	101	70-130		10/5/18 14:20
4-Bromofluorobenzene	103	70-130		10/5/18 14:20

Sample Extraction Data

Prep Method: SW-846 5030B-EPA 624.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18J0025-01 [RW-1 (MS/MSD)]	B214076	5	5.00	10/05/18
18J0025-02 [RW-2]	B214076	5	5.00	10/05/18
18J0025-03 [EFF 46 HZ]	B214076	5	5.00	10/05/18
18J0025-04 [Trip Blank]	B214076	5	5.00	10/05/18

%REC

RPD

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Source

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B214076 - SW-846 5030B										
Blank (B214076-BLK1)				Prepared &	Analyzed: 10	0/05/18				
Benzene	ND	1.0	μg/L							
Bromodichloromethane	ND	2.0	$\mu g\!/\!L$							
Bromoform	ND	2.0	$\mu g/L$							
Bromomethane	ND	2.0	$\mu g \! / \! L$							
Carbon Tetrachloride	ND	2.0	$\mu g \! / \! L$							
Chlorobenzene	ND	2.0	μg/L							
Chlorodibromomethane	ND	2.0	μg/L							
Chloroethane	ND	2.0	μg/L							
Chloroform	ND	2.0	μg/L							
Chloromethane	ND	2.0	μg/L							
1,2-Dichlorobenzene	ND	2.0	μg/L							
1,3-Dichlorobenzene	ND	2.0	μg/L							
1,4-Dichlorobenzene	ND	2.0	μg/L							
1,2-Dichloroethane	ND	2.0	μg/L							
1,1-Dichloroethane	ND	2.0	μg/L							
1,1-Dichloroethylene	ND	2.0	μg/L							
trans-1,2-Dichloroethylene	ND	2.0	μg/L							
1,2-Dichloropropane	ND	2.0	μg/L							
cis-1,3-Dichloropropene	ND	2.0	μg/L							
trans-1,3-Dichloropropene	ND	2.0	μg/L							
Ethylbenzene	ND	2.0	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	2.0	μg/L							
Methylene Chloride	ND	5.0	μg/L							
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L							
Γetrachloroethylene	ND	2.0	μg/L							
Foluene	ND	1.0	μg/L							
1,1,1-Trichloroethane	ND	2.0	μg/L							
1,1,2-Trichloroethane	ND	2.0	μg/L							
Trichloroethylene	ND	2.0	μg/L							
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L							
Vinyl Chloride	ND	2.0	μg/L							
m+p Xylene	ND	2.0	μg/L							
o-Xylene	ND	2.0	μg/L							
Surrogate: 1,2-Dichloroethane-d4	24.9		$\mu g/L$	25.0		99.7	70-130			
Surrogate: Toluene-d8	24.8		μg/L	25.0		99.1	70-130			
Surrogate: 4-Bromofluorobenzene	26.2		$\mu g/L$	25.0		105	70-130			
LCS (B214076-BS1)				Prepared &	Analyzed: 10	0/05/18				
Benzene	20.5	1.0	$\mu g \! / \! L$	20.0		102	65-135			
Bromodichloromethane	23.6	2.0	$\mu g \! / \! L$	20.0		118	65-135			
Bromoform	24.0	2.0	$\mu g\!/\!L$	20.0		120	70-130			
Bromomethane	16.8	2.0	$\mu g/L$	20.0		83.8	15-185			
Carbon Tetrachloride	24.1	2.0	μg/L	20.0		120	70-130			
Chlorobenzene	21.7	2.0	$\mu g/L$	20.0		109	65-135			
Chlorodibromomethane	26.5	2.0	$\mu g/L$	20.0		132	70-135			
Chloroethane	21.1	2.0	$\mu g/L$	20.0		106	40-160			
Chloroform	22.0	2.0	$\mu g/L$	20.0		110	70-135			
Chloromethane	17.7	2.0	$\mu g \! / \! L$	20.0		88.6	20-205			
1,2-Dichlorobenzene	19.7	2.0	$\mu g/L$	20.0		98.5	65-135			
1,3-Dichlorobenzene	19.9	2.0	$\mu g/L$	20.0		99.7	70-130			
1,4-Dichlorobenzene	19.4	2.0	$\mu g\!/\!L$	20.0		96.8	65-135			
1,2-Dichloroethane	23.1	2.0	$\mu g/L$	20.0		115	70-130			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B214076 - SW-846 5030B									-	
LCS (B214076-BS1)				Prepared &	Analyzed: 10/0	05/18				
1,1-Dichloroethane	21.3	2.0	μg/L	20.0		107	70-130			
1,1-Dichloroethylene	22.5	2.0	$\mu g/L$	20.0		112	50-150			
trans-1,2-Dichloroethylene	20.8	2.0	$\mu \text{g}/L$	20.0		104	70-130			
1,2-Dichloropropane	20.9	2.0	$\mu g/L$	20.0		105	35-165			
cis-1,3-Dichloropropene	24.1	2.0	$\mu g/L$	20.0		121	25-175			
trans-1,3-Dichloropropene	25.7	2.0	$\mu \text{g/L}$	20.0		128	50-150			
Ethylbenzene	21.2	2.0	$\mu \text{g/L}$	20.0		106	60-140			
Methyl tert-Butyl Ether (MTBE)	22.0	2.0	$\mu \text{g/L}$	20.0		110	70-130			
Methylene Chloride	18.0	5.0	$\mu \text{g/L}$	20.0		89.8	60-140			
1,1,2,2-Tetrachloroethane	20.2	2.0	$\mu \text{g/L}$	20.0		101	60-140			
Tetrachloroethylene	26.5	2.0	$\mu \text{g/L}$	20.0		132 *	70-130			L-01
Toluene	22.2	1.0	$\mu g \! / \! L$	20.0		111	70-130			
1,1,1-Trichloroethane	23.7	2.0	μg/L	20.0		118	70-130			
1,1,2-Trichloroethane	22.2	2.0	μg/L	20.0		111	70-130			
Trichloroethylene	23.9	2.0	μg/L	20.0		119	65-135			
Trichlorofluoromethane (Freon 11)	23.8	2.0	μg/L	20.0		119	50-150			
Vinyl Chloride	19.5	2.0	μg/L	20.0		97.5	5-195			
m+p Xylene	43.4	2.0	μg/L	40.0		108	70-130			
o-Xylene	21.6	2.0	μg/L	20.0		108	70-130			
Surrogate: 1,2-Dichloroethane-d4	25.1		μg/L	25.0		100	70-130			
Surrogate: Toluene-d8	25.8		$\mu g/L$	25.0		103	70-130			
Surrogate: 4-Bromofluorobenzene	27.7		$\mu g/L$	25.0		111	70-130			
Matrix Spike (B214076-MS1)	Sou	rce: 18J0025-	01	Prepared &	Analyzed: 10/0	05/18				
Benzene	21.6	1.0	μg/L	20.0	ND	108	37-151			
Bromodichloromethane	24.1	2.0	$\mu \text{g/L}$	20.0	ND	121	35-155			
Bromoform	22.7	2.0	$\mu g/L$	20.0	ND	114	45-169			
Bromomethane	17.5	2.0	$\mu g \! / \! L$	20.0	ND	87.4	20-242			
Carbon Tetrachloride	27.3	2.0	$\mu \text{g/L}$	20.0	ND	136	70-140			
Chlorobenzene	21.4	2.0	$\mu \text{g/L}$	20.0	ND	107	37-160			
Chlorodibromomethane	25.4	2.0	$\mu \text{g/L}$	20.0	ND	127	53-149			
Chloroethane	23.3	2.0	$\mu \text{g/L}$	20.0	ND	117	14-230			
Chloroform	23.5	2.0	$\mu \text{g/L}$	20.0	ND	117	51-138			
Chloromethane	25.4	2.0	μg/L	20.0	ND	127	20-273			
1,2-Dichlorobenzene	19.2	2.0	μg/L	20.0	ND	96.1	18-190			
1,3-Dichlorobenzene	19.4	2.0	μg/L	20.0	ND	97.0	59-156			
1,4-Dichlorobenzene	18.6	2.0	μg/L	20.0	ND	93.0	18-190			
1,2-Dichloroethane	23.1	2.0	μg/L	20.0	ND	115	49-155			
1,1-Dichloroethane	24.3	2.0	μg/L	20.0	1.62	113	59-155			
1,1-Dichloroethylene	26.0	2.0	μg/L	20.0	0.990	125	20-234			
trans-1,2-Dichloroethylene	22.4	2.0	μg/L	20.0	ND	112	54-156			
1,2-Dichloropropane	21.4	2.0	μg/L	20.0	ND	107	20-210			
cis-1,3-Dichloropropene	23.1	2.0	μg/L	20.0	ND	115	20-227			
trans-1,3-Dichloropropene	25.4	2.0	μg/L	20.0	ND	127	17-183			
Ethylbenzene Methyl tort Putyl Ether (MTPE)	20.9	2.0	μg/L	20.0	ND	104	37-162 70, 130			
Methyl tert-Butyl Ether (MTBE)	22.2	2.0	μg/L	20.0	ND	111	70-130			
Methylene Chloride	19.2	5.0	μg/L	20.0	ND	96.2	20-221			
1,1,2,2-Tetrachloroethane	18.8	2.0	μg/L	20.0	ND	94.2	46-157			
Telyone	26.4	2.0	μg/L	20.0	ND	132	64-148			
Toluene	22.3	1.0	μg/L	20.0	ND	111	47-150 52-162			
1,1,1-Trichloroethane	75.3	2.0	μg/L	20.0	46.6	143	52-162			
1,1,2-Trichloroethane	22.0	2.0	μg/L	20.0	ND	110	52-150			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B214076 - SW-846 5030B										
Matrix Spike (B214076-MS1)	Sou	rce: 18J0025-0)1	Prepared &	Analyzed: 10/0	05/18				
Trichloroethylene	23.8	2.0	μg/L	20.0	ND	119	70-157			<u> </u>
Trichlorofluoromethane (Freon 11)	27.1	2.0	$\mu \text{g/L}$	20.0	ND	136	17-181			
Vinyl Chloride	23.3	2.0	$\mu \text{g/L}$	20.0	ND	116	20-251			
m+p Xylene	42.6	2.0	$\mu g/L$	40.0	ND	106	70-130			
o-Xylene	21.2	2.0	μg/L	20.0	ND	106	70-130			
Surrogate: 1,2-Dichloroethane-d4	25.7		μg/L	25.0		103	70-130			
Surrogate: Toluene-d8	24.8		μg/L	25.0		99.3	70-130			
Surrogate: 4-Bromofluorobenzene	26.8		μg/L	25.0		107	70-130			
Matrix Spike Dup (B214076-MSD1)	Sou	rce: 18J0025-0)1	Prepared &	Analyzed: 10/0	05/18				
Benzene	22.5	1.0	μg/L	20.0	ND	113	37-151	4.13	61	
Bromodichloromethane	25.0	2.0	$\mu g/L$	20.0	ND	125	35-155	3.66	56	
Bromoform	23.9	2.0	$\mu g/L$	20.0	ND	119	45-169	5.07	42	
Bromomethane	20.9	2.0	$\mu g/L$	20.0	ND	105	20-242	17.9	61	
Carbon Tetrachloride	28.0	2.0	$\mu g/L$	20.0	ND	140	70-140	2.46	41	
Chlorobenzene	22.3	2.0	$\mu g/L$	20.0	ND	111	37-160	4.03	53	
Chlorodibromomethane	27.0	2.0	$\mu g/L$	20.0	ND	135	53-149	6.14	50	
Chloroethane	24.0	2.0	$\mu g/L$	20.0	ND	120	14-230	2.79	78	
Chloroform	24.8	2.0	$\mu g/L$	20.0	ND	124	51-138	5.55	54	
Chloromethane	26.3	2.0	$\mu g/L$	20.0	ND	131	20-273	3.60	60	
1,2-Dichlorobenzene	20.0	2.0	$\mu g/L$	20.0	ND	100	18-190	4.08	57	
1,3-Dichlorobenzene	20.3	2.0	$\mu g/L$	20.0	ND	102	59-156	4.48	43	
1,4-Dichlorobenzene	19.6	2.0	$\mu g/L$	20.0	ND	98.0	18-190	5.24	57	
1,2-Dichloroethane	24.2	2.0	$\mu g/L$	20.0	ND	121	49-155	4.90	49	
1,1-Dichloroethane	25.2	2.0	$\mu g/L$	20.0	1.62	118	59-155	3.72	40	
1,1-Dichloroethylene	26.2	2.0	$\mu g/L$	20.0	0.990	126	20-234	1.15	32	
trans-1,2-Dichloroethylene	23.5	2.0	$\mu \text{g/L}$	20.0	ND	118	54-156	4.61	45	
1,2-Dichloropropane	21.8	2.0	$\mu \text{g/L}$	20.0	ND	109	20-210	1.95	55	
cis-1,3-Dichloropropene	24.3	2.0	$\mu \text{g/L}$	20.0	ND	121	20-227	5.11	58	
trans-1,3-Dichloropropene	26.7	2.0	$\mu \text{g/L}$	20.0	ND	134	17-183	4.98	86	
Ethylbenzene	21.9	2.0	$\mu \text{g}/L$	20.0	ND	110	37-162	5.00	63	
Methyl tert-Butyl Ether (MTBE)	23.5	2.0	$\mu \text{g/L}$	20.0	ND	118	70-130	5.95	20	
Methylene Chloride	19.7	5.0	$\mu \text{g/L}$	20.0	ND	98.4	20-221	2.16	28	
1,1,2,2-Tetrachloroethane	20.1	2.0	$\mu g\!/\!L$	20.0	ND	101	46-157	6.47	61	
Tetrachloroethylene	27.5	2.0	$\mu g \! / \! L$	20.0	ND	137	64-148	4.01	39	
Toluene	23.4	1.0	$\mu g \! / \! L$	20.0	ND	117	47-150	4.91	41	
1,1,1-Trichloroethane	76.5	2.0	$\mu g \! / \! L$	20.0	46.6	149	52-162	1.55	36	
1,1,2-Trichloroethane	23.6	2.0	$\mu \text{g/L}$	20.0	ND	118	52-150	6.79	45	
Trichloroethylene	25.4	2.0	$\mu \text{g/L}$	20.0	ND	127	70-157	6.75	48	
Trichlorofluoromethane (Freon 11)	28.2	2.0	$\mu \text{g/L}$	20.0	ND	141	17-181	4.05	84	
Vinyl Chloride	24.5	2.0	$\mu g \! / \! L$	20.0	ND	123	20-251	5.19	66	
m+p Xylene	45.0	2.0	$\mu \text{g/L}$	40.0	ND	113	70-130	5.55	20	
o-Xylene	22.5	2.0	μg/L	20.0	ND	112	70-130	6.14	20	
Surrogate: 1,2-Dichloroethane-d4	25.2	<u> </u>	μg/L	25.0		101	70-130		<u> </u>	<u> </u>
Surrogate: Toluene-d8	24.8		μg/L	25.0		99.2	70-130			
Surrogate: 4-Bromofluorobenzene	26.9		$\mu g/L$	25.0		108	70-130			

FLAG/QUALIFIER SUMMARY

†	Wide recovery limits established for difficult compound.				
‡	Wide RPD limits established for difficult compound.				
#	Data exceeded client recommended or regulatory level				
ND	Not Detected				
RL	Reporting Limit is at the level of quantitation (LOQ)				
DL	Detection Limit is the lower limit of detection determined by the MDL study				
MCL	Maximum Contaminant Level				
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the				
	calculation which have not been rounded.				
	No results have been blank subtracted unless specified in the case narrative section.				
J					

QC result is outside of established limits.

CERTIFICATIONS

Certified Analyses included in this Report

	Certifications	
EPA 624.1 in Water		
Benzene	CT,NY,RI,NC,MA,NH	
Bromodichloromethane	CT,NY,RI,NC,MA,NH	
Bromoform	CT,NY,RI,NC,MA,NH	
Bromomethane	CT,NY,RI,NC,MA,NH	
Carbon Tetrachloride	CT,NY,RI,NC,MA,NH	
Chlorobenzene	CT,NY,RI,NC,MA,NH	
Chlorodibromomethane	CT,NY,RI,NC,MA,NH	
Chloroethane	CT,NY,RI,NC,MA,NH	
Chloroform	CT,NY,RI,NC,MA,NH	
Chloromethane	CT,NY,RI,NC,MA,NH	
1,2-Dichlorobenzene	CT,NY,RI,NC,MA,NH	
1,3-Dichlorobenzene	CT,NY,RI,NC,MA,NH	
1,4-Dichlorobenzene	CT,NY,RI,NC,MA,NH	
1,2-Dichloroethane	CT,NY,RI,NC,MA,NH	
1,1-Dichloroethane	CT,NY,RI,NC,MA,NH	
1,1-Dichloroethylene	CT,NY,RI,NC,MA,NH	
trans-1,2-Dichloroethylene	CT,NY,RI,NC,MA,NH	
1,2-Dichloropropane	CT,NY,RI,NC,MA,NH	
cis-1,3-Dichloropropene	CT,NY,RI,NC,MA,NH	
trans-1,3-Dichloropropene	CT,NY,RI,NC,MA,NH	
Ethylbenzene	CT,NY,RI,NC,MA,NH	
Methyl tert-Butyl Ether (MTBE)	NY,NC,MA,NH	
Methylene Chloride	CT,NY,RI,NC,MA,NH	
1,1,2,2-Tetrachloroethane	CT,NY,RI,NC,MA,NH	
Tetrachloroethylene	CT,NY,RI,NC,MA,NH	
Toluene	CT,NY,RI,NC,MA,NH	
1,1,1-Trichloroethane	CT,NY,RI,NC,MA,NH	
1,1,2-Trichloroethane	CT,NY,RI,NC,MA,NH	
Trichloroethylene	CT,NY,RI,NC,MA,NH	
Trichlorofluoromethane (Freon 11)	CT,NY,RI,NC,MA,NH	
Vinyl Chloride	CT,NY,RI,NC,MA,NH	
m+p Xylene	CT,NY,RI,NC,MA,NH	
o-Xylene	CT,NY,RI,NC,MA,NH	

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires	
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020	
MA	Massachusetts DEP	M-MA100	06/30/2019	
CT	Connecticut Department of Publile Health	PH-0567	09/30/2019	
NY	New York State Department of Health	10899 NELAP	04/1/2019	
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2019	
RI	Rhode Island Department of Health	LAO00112	12/30/2018	
NC	North Carolina Div. of Water Quality	652	12/31/2018	
NJ	New Jersey DEP	MA007 NELAP	06/30/2019	
FL	Florida Department of Health	E871027 NELAP	06/30/2019	
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019	
ME	State of Maine	2011028	06/9/2019	
VA	Commonwealth of Virginia	460217	12/14/2018	
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019	
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019	
NC-DW	North Carolina Department of Health	25703	07/31/2019	

Orthophosphate Samples WW - Wate Water DW - Drinking Water Preservation Codes X = Sodium Hydroxide ** Matrix Codes: GW = Ground Water S = Summa Canister T = Tedlar Bag O = Other (please B = Sodium Bisulfate 3 Container Codes: D = Other (plasse 0 = Other (please Non Soxhlet S = Sulfuric Acid A = Amber Glass PCB ONLY Soxhlet ² Preservation Code N = Nitric Acid Field Filtered Field Filtered A = Air 3 = Soil 5L = Siudge 80L = Soild P = Plastic ST = Sterile M = Methanol ☐ Lab to Filter ☐ Lab to Filter Container Code **Thiosulfate** = Sodium G = Glass # of Containers deffne) V = Vial define) **ゴ**エエ define) EQuIS (Standard) EDD NY Regulatory EDD NY Regs Hits-Only EDD Enhanced Data Package NYSDEC EQUIS EDD Please use the following codes to indicate possible sample concentration NELAC and AIHA-LAP, LLC Accredited Chromatogram AIHA-LAP, LLC East Longmeadow, MA 01028 H - High; M - Medium; L - Low; C - Clean; U - Unknown Deliverables ANAL YSIS REQUESTED within the Conc Code column above Other WRTA \Box MWRA School MBTA トてつ × **y**. y. × -± Sens Sede Phone: 413-525-2332 CHAIN OF CUSTODY RECORD (New York) ☐ NY CP-51 NY TOGS Ż Program & Regulatory Information Matrix Code 3 Municipality Brownfield 10-Day 3-Day 4-Day TEXCEIT 21.1 Grab CLP Like Data Pkg Required: × X ひら Part 360 GW (Landfill) **NYC Sewer Discharge** Composite NY Unrestricted Use NY Restricted Use PDF NY Part 375 Government AWQ STDS Ending Date/Time 911211 9112118 911118 Due Date: mail To: ax To# Federal ormat: Other: 7-Day -Day Day City Project Entity Beginning Date/Time N N 0 1500 } 2 Email: info@contestlabs.com 146, STE 210 CliBen Pack 200 3.0 20120 - 202 - 100 Cordage Client Sample ID / Description 21126 RW-1 (MS/MSD) Date/Time: 10-1-18 Fax: 413-525-6405 Date/Time: Date/Time Date/Time Jate/Time Date/Time MILL TO THE Trip Slank GRODING 5. Wyckott Orselia X2-7 5 となべるが L. Whaler SK-750-130 Con-Test Quote Name/Number: Soft CON-LESK* 855 Rote Relinquished by; (signature) quished by: (signature) ived by: (signature) ived by: (signature) Con-Test Work Order# poeived by: (signatype ð M 7 ō Successive! nvoice Recipient: Project Location: Project Manager: Project Number: elinquished by: ALB Project Name Tallo Sampled By: **Jomments:** Address: Phone: Page 16 of 18

39 Spruce Street

Doc # 380 Rev 1_03242017

http://www.contestlabs.com

Table of Contents

Sign In

TRACK ANOTHER SHIPMENT

806832457832

Delivered Monday 10/01/2018 at 10:04 am

DELIVERED

Signed for by: P.BLAKE

GET STATUS UPDATES
OBTAIN PROOF OF DELIVERY

FROM

EAST LONGMEADOW, MA US

то

EAST LONGMEADOW, MA US

Travel History		Shipment Facts	
10/01/2018 - Monday		10:04 am	Delivered
			E Longmeadow, MA
		Expand History	
9/28/2018 - Friday		6:15 pm	Shipment information sent to FedEx SK FEEDER X
OUR COMPANY		MORE FROM FEDEX	LANGUAGE
About FedEx	FedEx Blog	FedEx Compatible	Change Country
Our Portfolio	Corporate Responsibility	Developer Resource Center	
Investor Relations	Newsroom	FedEx Cross Border	English
Careers	Contact Us		i

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

	Arcas	11S						10.011	
Receiv	ed By	<u> </u>		Date	10.1.18	<u> </u>	Time	10:04_	
How were th	-	In Cooler	<u> </u>	No Cooler		On Ice		No Ice	
receiv	ed?	Direct from Samp			_	Ambient _		_ Melted Ice	T
14/	مناملة أنب عال		By Gun#	577		Actual Temp	- 15.1		
Were samp		_	By Blank #			Actual Temp) -		
•	Custody S	eal Intact?	NA		-	s Tampered		NA	•
	COC Relin		<u> </u>	-	-	ree With San		7	•
		eaking/loose caps	on any sam	-	F				•
Is COC in in					mples recei	ved within ho	lding time?	·	_
Did COC is	-	Client	T	Analysis	Ť	Sample	r Name	T	•
pertinent Inf	ormation?	Project	Τ	ID's	<u> </u>	Collection I	Dates/Time	s T	
Are Sample	labels filled	d out and legible?	T	_					
Are there La	b to Filters'	?			Who was	s notified?			•
Are there Ru	shes?				Who was	s notified?	A		•
Are there Sh	ort Holds?		Ē	···	Who was	s notified?			
Is there enou	igh Volume	?	Τ	.					
Is there Hea	dspace who	ere applicable?	F	<u>-</u>	MS/MSD?			4-11-11	
Proper Medi	a/Containe	rs Used?	<u> </u>	•		samples requ	uired?		-
Were trip bla			<u>T</u>		On COC?	160	_		
Do all sampl	es have the	e proper pH?	JA	Acid		-	Base		-
Vials	#	Containers:	#			#	100		#
Unp-		1 Liter Amb.			r Plastic			oz Amb.	
HCL-	17	500 mL Amb.			L Plastic			mb/Clear	
Meoh-		250 mL Amb.			L Plastic			mb/Clear	
Bisulfate-		Col./Bacteria			hpoint			mb/Clear ncore	
DI-		Other Plastic			r Glass		Frozen:	incore	L
Thiosulfate- Sulfuric-		SOC Kit Perchlorate			tic Bag block		1 102611.		
Sulfulic-		reichiorate							
				Unused	Media	# 1			# 1
Vials	#	Containers: 1 Liter Amb.	#	1 Lito	r Plastic	T	16	oz Amb.	7
Unp- HCL-		500 mL Amb.			L Plastic			\mb/Clear	
Meoh-		250 mL Amb.			L Plastic			\mb/Clear	
Bisulfate-		Col./Bacteria			hpoint			\mb/Clear	
DI-		Other Plastic			r Glass		E	ncore	
Thiosulfate-		SOC Kit		Plas	tic Bag		Frozen:		
Sulfuric-	**************************************	Perchlorate		Zi	olock				
Comments									

Arcadis CE, Inc.

855 Route 146
Suite 210
Clifton Park, New York 12065
Tel 518 250 7300
Fax 518 250 7301

www.arcadis.com