



New York State Department of Environmental Conservation – Division of Environmental Remediation

# GLADDING CORDAGE SITE QUARTERLY REPORT

SITE 7-09-009

Fourth Quarter 2018

#### GLADDING CORDAGE SITE QUARTERLY REPORT - FOURTH QUARTER 2018

#### GLADDING CORDAGE SITE QUARTERLY REPORT

Fourth Quarter 2018

Andy Vitolins, PG

Associate Vice President

Jeremy Wyckoff, PG

**Project Geologist** 

Prepared for:

New York State Department of Environmental Conservation – Division of Environmental Remediation

625 Broadway

Albany, NY 12233-7011

Prepared by:

Arcadis CE, Inc.

855 Route 146

Suite 210

Clifton Park

New York 12065

Tel 518 250 7300

Fax 518 250 7301

Our Ref.:

00266406.0000

Date:

February 2019

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

#### **CONTENTS**

| Ac | ronyms and  | Abbreviations             | iii |
|----|-------------|---------------------------|-----|
| 1  | Introductio | on                        | 1   |
| 2  | Site Descr  | iption                    | 2   |
| 3  | Operation   | and Maintenance           | 3   |
|    | 3.1 Treat   | ment Plant Upgrades       | 3   |
|    | 3.1.1       | Variable Frequency Drive  | 3   |
|    | 3.1.2       | Treatment Plant Controls  | 3   |
|    | 3.1.3       | Geothermal Heat Exchanger | 4   |
|    | 3.2 Treat   | ment Plant Operation      | 4   |
|    | 3.3 Treat   | ment System Sampling      | 4   |
|    | 3.3.1       | Influent Sample Results   | 4   |
|    | 3.3.2       | Effluent Sample Results   | 5   |
| 4  | Groundwa    | ter Monitoring Program    | 6   |
| 5  | Recomme     | ndations                  | 7   |
| 6  | Summary.    |                           | 8   |
| 7  | Reference   | S                         | 9   |

#### **TABLES**

| Table 3-1 | Treatment System Status and Flow Summary     |
|-----------|----------------------------------------------|
| Table 3-2 | Groundwater Treatment System VOCs (RW-1)     |
| Table 3-3 | Groundwater Treatment System VOCs (RW-2)     |
| Table 3-4 | Groundwater Treatment System VOCs (Effluent) |

#### **FIGURES**

Figure 2-1 Site Location

Figure 3-1 Treatment System Influent Sample Concentration (1,1,1-TCA)

#### GLADDING CORDAGE SITE QUARTERLY REPORT – FOURTH QUARTER 2018

#### **APPENDICES**

- A PLC Facsimile Reports
- B O&M Checklists
- C Analytical Reporting Forms

#### **ACRONYMS AND ABBREVIATIONS**

Amsl above mean sea level

BTEX Benzene, toluene, ethylbenzene, and xylene.

Ft feet

GPM gallons per minute

GAP generally accepted procedure

HZ hertz

μg/L micrograms per liter

NYSDEC New York State Department of Environmental Conservation

O&M operation and maintenance

PDB passive diffusion bag

PLC programmable logic controller

PCE Tetrachloroethene

USEPA United States Environmental Protection Agency

VFD variable frequency drive

VOC volatile organic compound

1,1-DCA 1,2-dichloroethane

1,1-DCE 1,2-dichloroethene

1,1,1-TCA 1,1,1-trichloroethane

#### 1 INTRODUCTION

The New York State Department of Environmental Conservation (NYSDEC) has issued a Work Assignment (# D007618-9) to Arcadis CE, Inc. (Arcadis) for Operation, Maintenance, and Monitoring at the Gladding Cordage Site (Site # 7-09-009). This Quarterly Report has been prepared in accordance with the NYSDEC-approved Work Plan to summarize fourth quarter 2018 site activities.

#### **2 SITE DESCRIPTION**

The Gladding Cordage Site is located on Ridge Road, South Otselic, Chenango County, New York (Figure 2-1), along the western bank of the Otselic River. The site contains an active braided wire and rope manufacturing facility that has been in operation since 1892.

#### 3 OPERATION AND MAINTENANCE

On August 23, 2007, the NYSDEC provided a training session to Arcadis personnel on the operation and maintenance (O&M) of the groundwater treatment plant at the Gladding Cordage Site. Since then, Arcadis has maintained operation of the groundwater treatment plant. This includes the operation, maintenance, and influent/effluent sampling in accordance with the Site Management Plan (SMP) and NYSDEC O&M manual (Operation and Maintenance Manual, Volume I, Gladding Cordage Site, Site 7-09-009, TAMS Consultants, Inc., 1996) (O&M Manual).

#### 3.1 Treatment Plant Upgrades

#### 3.1.1 Variable Frequency Drive

A variable frequency drive (VFD) was installed on January 9, 2008 to regulate the speed of the air stripper blower motor for reduced energy usage. Following the installation of the VFD, effluent samples were collected at various blower motor frequencies (speeds) to evaluate the minimum blower frequency required for the treatment plant to effectively treat groundwater extracted from the source area. Additional sampling was conducted again in February 2008 to further optimize the air stripper blower speed. Based on the results, the VFD setting was reduced to 42 hertz (HZ) beginning in March 2008. However, based on the detection of low-level volatile organic compounds (VOCs) in effluent samples from the treatment system, the VFD setting was subsequently increased to 46 HZ in September 2010 and was maintained at that frequency until November 19, 2014.

Based on a general trend of lower concentrations of VOCs in influent treatment system samples since September 2010, the NYSDEC authorized a reduction of the VFD frequency to 44 HZ in an attempt to further optimize treatment plant operations and reduce electric usage. The VFD frequency was lowered to 44 HZ on November 19, 2014. Following approximately one-half hour of operation, post-treatment effluent samples were collected in accordance with the Work Plan (see Section 3.2.1). Based on a review of post-treatment effluent sample data from November 19, 2014, 1,1,1-Trichloroethane (1,1,1-TCA) and toluene were detected with the air stripper blower operating at 44 HZ, but at concentrations below the corresponding NYSDEC Class GA Standards. The NYSDEC was notified of the VOC detections and the blower motor frequency was subsequently increased to 46 HZ and has been maintained at that level since the December 18, 2014 O&M event.

#### 3.1.2 Treatment Plant Controls

In August 2011, the NYSDEC authorized construction and installation of a new treatment plant controls system. The new control system is designed to provide remote access to treatment plant operating parameters and improve reliability of the groundwater remediation system. The treatment plant was shut down to begin repairs and upgrades on January 30, 2012 by Aztech Technologies, Inc. (Aztech). The upgrades to the treatment system controls were completed and the treatment plant resumed operation on March 22, 2012. The treatment plant functions are controlled and monitored using an EOS Research Ltd. ProControl Programmable Logic Controller (PLC). The interface software allows remote connection to the PLC via analog phone line. The PLC and interface software also allows the treatment system to be started or stopped remotely. The PLC is programmed to send a facsimile with the status of system inputs and

outputs on a daily basis. If input and/or output device values exceed the defined operating parameters, an alarm condition is set and the corresponding alarm information is sent via facsimile to the system user (i.e. Arcadis).

#### 3.1.3 Geothermal Heat Exchanger

The NYSDEC authorized the installation of a geothermal heat exchanger to provide climate control (heating and humidity) for the treatment system building. The treatment plant was shut down to begin installation of the system on May 8, 2012 by Aztech. The geothermal heat exchanger installation and testing was completed on May 10, 2012. The heat-exchanger uses groundwater from the treatment plant as a geo-thermal energy source.

#### 3.2 Treatment Plant Operation

As shown on PLC facsimile reports (Appendix A) and O&M Checklist and Operation Logs (Appendix B), the Gladding Cordage groundwater treatment system was intermittently shut down in October, November, and December due to power interruptions, resulting in system runtimes of 65 percent in October, 60 percent in November, and 81 percent in December. After each power failure, the system was restarted remotely and manually.

The average monthly flow rates and total flow volumes for the fourth quarter 2018 operating period are summarized in Table 3-1. As shown in Table 3-1, the reported average flow rate from recovery well RW-1 was 0.0 gallons per minute (GPM). However, the flow transmitter for RW-1 previously stopped working and will need to be replaced. Therefore, the flow total from RW-1 is greater than the values reported by the PLC. The average flow from RW-2 was approximately 24 GPM. Based on the total flow values, approximately 3.7 million gallons of water were treated and discharged to the Otselic River between October and December 2018. However, the actual treated volume is likely greater, but is being diminished by the lower flow meter readings from RW-1.

#### 3.3 Treatment System Sampling

Influent and effluent groundwater samples were collected from the Gladding Cordage treatment system in accordance with the SMP and submitted to Contest Analytical following chain-of-custody protocols. Each sample was analyzed for VOCs by United States Environmental Protection Agency (USEPA) Method 624. Analytical Reporting Forms are provided in Appendix C.

#### 3.3.1 Influent Sample Results

Table 3-2 and Table 3-3 summarize influent VOC sample results from recovery wells RW-1 and RW-2, respectively. Figure 3-1 provides a summary of 1,1,1-TCA concentrations in samples from recovery wells RW-1 and RW-2 since September 2007.

Table 3-2 and Figure 3-1 show that the concentrations of 1,1,1-TCA in samples from recovery well RW-1 were measured at 47 micrograms per liter (ug/L) in October 2018, 35 ug/L in November 2018, and 35 (μg/L) in December 2018. The concentrations of 1,1,1-TCA for recovery well RW-2 were measured at 37 ug/L (October 2018), 29 ug/L (November 2018), and 29 μg/L (December 2018), which is consistent with or

lower than the third quarter 2018 concentrations of 1,1,1-TCA. Table 3-3 and Figure 3-1 show that the concentrations of 1,1,1-TCA in the samples from recovery wells RW-1 and RW-2 are within the range of historic concentrations and exceed the corresponding NYSDEC Class GA Standard of 5  $\mu$ g/L.

As shown in Tables 3-2 and 3-3, 1,1-dichloroethane (1,1-DCA), 1,1-dichloroethene (1,1-DCE), and bromomethane were detected in the fourth quarter 2018 samples from recovery wells RW-1 and RW-2. Consistent with previous results, the concentrations of these compounds were below the respective NYSDEC Class GA standard of 5  $\mu$ g/L.

#### 3.3.2 Effluent Sample Results

Table 3-4 summarizes laboratory analytical data for effluent samples collected from the treatment system. As shown in Table 3-4, bromomethane was detected at estimated concentrations in the November and December 2018 effluent samples at 0.82 J  $\mu$ g/L and 0.93 J  $\mu$ g/L, respectively.

Based on influent sample concentrations and total flow volumes from the Gladding Cordage treatment system, approximately 0.7 pound of VOCs were removed by the treatment system during the fourth quarter 2018.

#### **4 GROUNDWATER MONITORING PROGRAM**

Groundwater samples are collected on a five-quarter sampling interval in accordance with the SMP. Groundwater sampling was conducted October 24<sup>th</sup> and 25<sup>th</sup>, 2017 to provide information on groundwater quality, monitor contaminant migration in groundwater, and assess hydrogeologic site conditions, including groundwater flow. In October 2017 at the request of NYSDEC, groundwater samples were also analyzed for Perfluorinated Alkyl Substances (PFAS) by USEPA Method 537 Modified, and 1,4-Dioxane by USEPA Method 8260 SIM. Since PDBs are not appropriate for the collection of samples for analysis of PFAS, passive diffusion bag (PDBs) were not used during the fourth quarter 2017 sampling event. Samples were collected from monitoring wells using a peristaltic pump and dedicated PFAS-free sample tubing in accordance with USEPA low-flow sampling techniques. The next groundwater sampling event is scheduled to occur during the first quarter 2019.

#### **5 RECOMMENDATIONS**

Based on the data presented herein, there are no recommended changes to the operation of the treatment plant. The recovery well RW-1 flow transmitter will be repaired in February 2019.

#### **6 SUMMARY**

The Gladding Cordage groundwater treatment system was shut down in October, November, and December due to power interruptions. The average total flow through the treatment system during the fourth quarter 2018 was approximately 24 GPM. However, due to a faulty flow meter for RW-1, the total flow through the treatment system for this timeframe is likely under-reported.

The concentrations of VOCs detected in pre-treatment influent samples from recovery wells RW-1 and RW-2 were consistent with previous results.

Bromomethane was detected at estimated concentrations in the effluent samples collected from the treatment system.

The treatment successfully removes VOCs from groundwater extracted from the capture zone at the current VFD setting of 46 Hz. The VFD setting will continue to be evaluated based on system monitoring results.

Approximately 0.7 pounds of VOCs were removed by the treatment system during the fourth quarter 2018. However, the VOC removal mass is likely to be greater since the flow meter for RW-1 is not functioning properly.

Based on the current five-quarter sampling interval, the next groundwater monitoring event is scheduled to occur during the first quarter 2019.

#### 7 REFERENCES

Malcolm Pirnie, 2007, Gladding Cordage Site Work Plan, Site 7-09-009, Malcolm Pirnie, Inc., June 2007.

TAMS, 1996, Operation and Maintenance Manual, Volume I, Gladding Cordage Site. Site 7-09-009, TAMS Consultants, Inc., March 1996.

### **TABLES**

TABLE 3-1
TREATMENT SYSTEM STATUS AND FLOW SUMMARY
GLADDING CORDAGE SITE
SOUTH OTSELIC, NEW YORK
NYSDEC SITE NO. 7-04-009A

| Date           | System    | System               | Well On-time |              | Flow Rates |       | Totalizer Totalizer |            | Recovery We | ell Total Flows | Total System | Quarterly |
|----------------|-----------|----------------------|--------------|--------------|------------|-------|---------------------|------------|-------------|-----------------|--------------|-----------|
|                | Operation | On-time              | RW-1         | RW-2         | RW-1       | RW-2  | RW-1                | RW-2       | RW-1        | RW-2            | Flow         | Totals    |
|                | (days)    | (% of possible days) | (% possible) | (% possible) | (gpm)      | (gpm) | (gallons)           | (gallons)  | (gallons)   | (gallons)       | (gallons)    | (gallons) |
| January-18     | 31        | 100%                 | 100%         | 100%         | 18         | 24.2  | 60,433,982          | 58,414,531 | 747,042     | 999,814         | 1,746,856    |           |
| February-18    | 23        | 82%                  | 100%         | 100%         | 19.3       | 23.7  | 61,058,149          | 59,201,714 | 624,167     | 787,183         | 1,411,350    | 4,833,473 |
| March-18       | 29        | 94%                  | 100%         | 100%         | 18.9       | 24    | 61,800,025          | 60,135,105 | 741,876     | 933,391         | 1,675,267    |           |
| April-18       | 4         | 13%                  | 4%           | 4%           | 19         | 23.5  | 62,019,377          | 60,410,372 | 219,352     | 275,267         | 494,619      |           |
| May-18         | 0         | 0%                   | 0%           | 0%           | 19.1       | 23.6  | 62,365,293          | 60,849,209 | 345,916     | 438,837         | 784,753      | 1,458,414 |
| June-18        | 4         | 13%                  | 4%           | 4%           | 18.3       | 23.5  | 62,442,457          | 60,951,087 | 77,164      | 101,878         | 179,042      |           |
| July-18        | 19        | 63%                  | 100%         | 100%         | 17.8       | 23.6  | 62,731,304          | 61,333,323 | 288,847     | 382,236         | 671,083      |           |
| August-18      | 16        | 52%                  | 100%         | 100%         | 19.6       | 23.9  | 63,023,435          | 61,929,590 | 292,131     | 596,267         | 888,398      | 3,206,285 |
| September-18   | ŭ .       |                      | 100%         | 100%         | 0 *        | 24.6  | 63,770,477          | 62,829,352 | 747,042     | 899,762         | 1,646,804    |           |
| October-18     | 20        | 65%                  | 100%         | 100%         | 0 *        | 24.5  | 64,059,324          | 63,724,027 | 288,847     | 894,675         | 1,183,522    |           |
| November-18    | 18        | 60%                  | 100%         | 100%         | 0 *        | 23.5  | 64,351,455          | 64,451,177 | 292,131     | 727,150         | 1,019,281    | 3,695,708 |
| December-18    | 25        | 81%                  | 100%         | 100%         | 0 *        | 23.4  | 64,975,622          | 65,319,915 | 624,167     | 868,738         | 1,492,905    |           |
| Total Flow 201 | 8         |                      |              |              | 16.7       | 23.8  |                     |            | 4 083 537   | 5 414 635       | 9 498 172    |           |

**Total Flow 2018** 16.7 23.8 4,083,537 5,414,635 9,498,172

#### Notes:

gpm - Gallons per minute

\* - flow meter not reading properly

TABLE 3-2
SUMMARY OF GROUNDWATER TREATMENT SYSTEM VOCS (INFLUENT - RW-1)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

| Sample ID                     | NYSDEC   | RW-1           | RW-1           | RW-1       | RW-1           | RW-1           | RW-1           | RW-1           | RW-1           | RW-1           | RW-1           | RW-1           | RW-1           | RW-1           | RW-1           | RW-1           |
|-------------------------------|----------|----------------|----------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Sampling Date                 | Class GA | 10/23/2017     | 10/25/2017     | 10/26/2017 | 11/28/2017     | 12/29/2017     | 1/29/2018      | 2/26/2018      | 3/29/2018      | 6/22/2018      | 7/29/2018      | 8/27/2018      | 9/27/2018      | 10/19/2018     | 11/26/2018     | 12/16/2018     |
| Matrix                        | Standard | WATER          | WATER          | WATER      | WATER          | WATER          | WATER          | WATER          | WATER          | WATER          | WATER          | WATER          | WATER          | WATER          | WATER          | WATER          |
| Units                         | ug/L     | ug/L           | ug/L           | ug/L       | ug/L           | ug/L           | ug/L           | ug/L           | ug/L           | ug/L           | ug/L           | ug/L           | ug/L           | ug/L           | ug/L           | ug/L           |
| VOCs                          |          | - J            |                |            |                |                |                |                |                |                |                |                | <b>J</b>       |                |                |                |
| 1,1,1-Trichloroethane         | 5        | 34             | 37             | 37         | 38             | 41             | 38             | 40             | 37             | 41             | 42 J           | 45             | 47             | 47             | 35             | 35             |
| 1,1,2,2-Tetrachloroethane     | 5        | 2.0 U          | 2.0 U          | 2 U        | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          |
| 1,1,2-Trichloroethane         | 1        | 2.0 U          | 2.0 U          | 2 U        | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          |
| 1,1-Dichloroethane            | 5        | 1.6 J          | 1.8 J          | 1.8 J      | 1.9 J          | 1.7 J          | 1.5 J          | 1.6 J          | 1.3 J          | 1.9 J          | 1.7 J          | 1.8 J          | 1.6 J          | 1.7 J          | 1.6 J          | 1.7 J          |
| 1,1-Dichloroethene            | 5        | 0.74 J         | 0.74 J         | 0.74 J     | 0.98 J         | 0.97 J         | 0.84 J         | 0.87 J         | 0.77 J         | 0.85 J         | 0.79 J         | 1.0 J          | 0.99 J         | 1.0 J          | 0.96 J         | 0.98 J         |
| 1,2-Dichlorobenzene           | 3        | 2.0 U          | 2.0 U          | 2 U        | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          |
| 1,2-Dichloroethane            | 0.6      | 2.0 U          | 2.0 U          | 2 U        | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          |
| 1,2-Dichloropropane           | 1        | 2.0 U          | 2.0 U          | 2 U        | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          |
| 1,3-Dichlorobenzene           | 3        | 2.0 U          | 2.0 U          | 2 U        | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          |
| 1,4-Dichlorobenzene           | 3        | 2.0 U          | 2.0 U          | 2 U        | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          |
| Benzene                       | 1        | 1.0 U          | 1.0 U          | 1 U        | 1.0 U          | 1.0 U          | 1.0 U          | 1.0 U          | 1.0 U          | 1.0 U          | 1.0 U          | 1.0 U          | 1.0 U          | 1.0 U          | 1.0 U          | 1.0 U          |
| Bromodichloromethane          | 50       | 2.0 U          | 2.0 U          | 2 U        | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          |
| Bromoform                     | 50       | 2.0 U          | 2.0 U          | 2 U        | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          |
| Bromomethane                  | 5        | 2.0 U          | 2.0 U          | 2 U        | 2.0 U          | 2.0 U          | 5.0 U          | 2.0 U          | 0.6 J          | 0.9 J          |
| Carbon Tetrachloride          | 5        | 2.0 U          | 2.0 U          | 2 U        | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          |
| Chlorobenzene                 | 5        | 2.0 U          | 2.0 U          | 2 U        | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          |
| Chloroethane                  | 5        | 2.0 U          | 2.0 U          | 2 U        | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          |
| Chloroform                    | 7        | 2.0 U          | 2.0 U          | 2 U        | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          |
| Chloromethane                 | 5        | 2.0 U          | 2.0 U          | 2 U        | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 UR-06      | 2.0 U          |
| cis-1,3-Dichloropropene       | 0.4      | 2.0 U          | 2.0 U          | 2 U        | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          |
| Ethyl Benzene                 | 5        | 2.0 U          | 2.0 U          | 2 U        | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          |
| m/p-Xylenes                   | 5        | 2.0 U          | 2.0 U          | 2 U        | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          |
| Methyl tert-butyl Ether       |          | 2.0 U          | 2.0 U          | 2 U        | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          |
| Methylene Chloride            | 5        | 5.0 U          | 5.0 U          | 5 U        | 5.0 U          | 5.0 U          | 5.0 U          | 5.0 U          | 5.0 U          | 5.0 U          | 5.0 U          | 5.0 U          | 5.0 U          | 5.0 U          | 5.0 U          | 5.0 U          |
| o-Xylene<br>Tetrachloroethene | 5        | 2.0 U          | 2.0 U          | 2 U<br>2 U | 2.0 U          | 2.0 U<br>2.0 U | 2.0 U          | 2.0 U<br>2.0 U | 2.0 U<br>2.0 U | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U<br>2.0 U |
| Toluene                       | 5        | 2.0 U          | 2.0 U          |            | 2.0 U          |                | 2.0 U          |                |                | 2.0 U          | 2.0 U<br>1.0 U | 2.0 U          |
| trans-1.2-Dichloroethene      | 5        | 1.0 U<br>2.0 U | 1.0 U<br>2.0 U | 1 U<br>2 U | 1.0 U<br>2.0 U |
| trans-1,2-Dichloroethene      | 0.4      | 2.0 U          | 2.0 U          | 2 U        | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          |
| Trichloroethene               | 5        | 2.0 U          | 2.0 U          | 2 U        | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          |
| Trichlorofluoromethane        | 5        | 2.0 U          | 2.0 U          | 2 U        | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          |
| Vinyl Chloride                | 2        | 2.0 U          | 2.0 U          | 2 U        | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          | 2.0 U          |
| Total VOCs                    |          | 36.3           | 39.5           | 39.5       | 40.9           | 43.7           | 40.3           | 42.5           | 39.1           | 43.8           | 44.5           | 47.8           | 49.6           | 49.7           | 38.2           | 38.6           |
| 10101 4005                    |          | 30.3           | 33.3           | 33.3       | 40.5           | 43.7           | 40.3           | 44.0           | 33.1           | 43.0           | 44.5           | 47.0           | 45.0           | 43.1           | 30.2           | 30.0           |

- Concentration exceeds corresponding | Class GA Standard.

U - Not detected at the indicated concentration

J - Estimated concentration.

TABLE 3-3
SUMMARY OF GROUNDWATER TREATMENT SYSTEM VOCS (INFLUENT - RW-2)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

| Sample ID                 | NYSDEC   | RW-2       | RW-2       | RW-2       | RW-2       | RW-2      | RW-2      | RW-2      | RW-2      | RW-2      | RW-2      | RW-2      | RW-2       | RW-2       | RW-2       |
|---------------------------|----------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|
| Sampling Date             | Class GA | 10/23/2017 | 10/25/2017 | 11/28/2017 | 12/29/2017 | 1/29/2018 | 2/27/2018 | 3/29/2018 | 6/22/2018 | 7/29/2018 | 8/27/2018 | 9/27/2018 | 10/19/2018 | 11/26/2018 | 12/16/2018 |
| Matrix                    | Standard | WATER      | WATER      | WATER      | WATER      | WATER     | WATER     | WATER     | WATER     | WATER     | WATER     | WATER     | WATER      | WATER      | WATER      |
| Units                     | ug/L     | ug/L       | ug/L       | ug/L       | ug/L       | ug/L      | ug/L      | ug/L      | ug/L      | ug/L      | ug/L      | ug/L      | ug/L       | ug/L       | ug/L       |
|                           | VOCs     |            |            |            |            |           |           |           |           |           |           |           |            |            |            |
| 1,1,1-Trichloroethane     | 5        | 28         | 36         | 30         | 32         | 30        | 32        | 29        | 50        | 49        | 51        | 43        | 37         | 29         | 29         |
| 1,1,2,2-Tetrachloroethane | 5        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| 1,1,2-Trichloroethane     | 1        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| 1,1-Dichloroethane        | 5        | 0.66 J     | 0.9 J      | 0.82 J     | 0.71 J     | 0.63 J    | 0.73 J    | 0.64 J    | 1.4 J     | 1.3 J     | 1.3 J     | 0.92 J    | 0.89 J     | 0.76 J     | 0.78 J     |
| 1,1-Dichloroethene        | 5        | 0.6 J      | 0.8 J      | 0.66 J     | 0.72 J     | 0.61 J    | 0.67 J    | 0.57 J    | 1.2 J     | 0.93 J    | 1.1 J     | 0.92 J    | 0.85 J     | 0.75 J     | 0.75 J     |
| 1,2-Dichlorobenzene       | 3        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| 1,2-Dichloroethane        | 0.6      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| 1,2-Dichloropropane       | 1        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| 1,3-Dichlorobenzene       | 3        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| 1,4-Dichlorobenzene       | 3        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Benzene                   | 1        | 1.0 U      | 1.0 U      | 1.0 U      | 1.0 U      | 1.0 U     | 1.0 U     | 1.0 U     | 1.0 U     | 1.0 U     | 1.0 U     | 1.0 U     | 1.0 U      | 1.0 U      | 1.0 U      |
| Bromodichloromethane      | 50       | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Bromoform                 | 50       | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Bromomethane              | 5        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 5.0 U     | 2.0 U     | 5.0 U     | 5.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 0.62 J     | 0.65 J     |
| Carbon Tetrachloride      | 5        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Chlorobenzene             | 5        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Chloroethane              | 5        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Chloroform                | 7        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Chloromethane             |          | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| cis-1,3-Dichloropropene   | 0.4      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Ethyl Benzene             | 5        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| m/p-Xylenes               | 5        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Methyl tert-butyl Ether   |          | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Methylene Chloride        | 5        | 5.0 U      | 5.0 U      | 5.0 U      | 5.0 U      | 5.0 U     | 5.0 U     | 5.0 U     | 5.0 U     | 5.0 U     | 5.0 U     | 5.0 U     | 5.0 U      | 5.0 U      | 5.0 U      |
| o-Xylene                  |          | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Tetrachloroethene         | 5        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Toluene                   | 5        | 1.0 U      | 1.0 U      | 1.0 U      | 1.0 U      | 1.0 U     | 1.0 U     | 1.0 U     | 1.0 U     | 1.0 U     | 1.0 U     | 1.0 U     | 1.0 U      | 1.0 U      | 1.0 U      |
| trans-1,2-Dichloroethene  | 5        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| trans-1,3-Dichloropropene | 0.4      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Trichloroethene           | 5        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Trichlorofluoromethane    | 5        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Vinyl Chloride            | 2        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Total VOCs                |          | 29.3       | 37.7       | 31.5       | 33.4       | 31.2      | 33.4      | 30.2      | 52.6      | 51.2      | 53.4      | 44.8      | 38.7       | 30.5       | 30.5       |

<sup>-</sup> Concentration exceeds corresponding NYSDEC Class GA Standard.

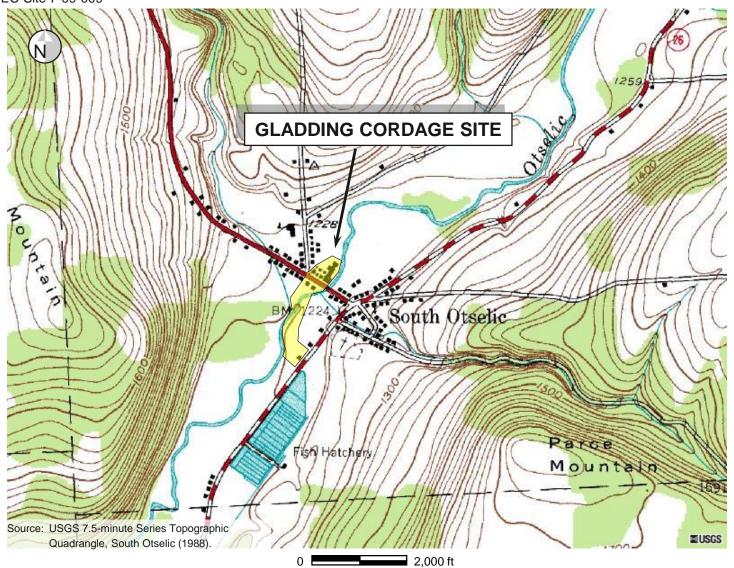
U - Not detected at the indicated concentration

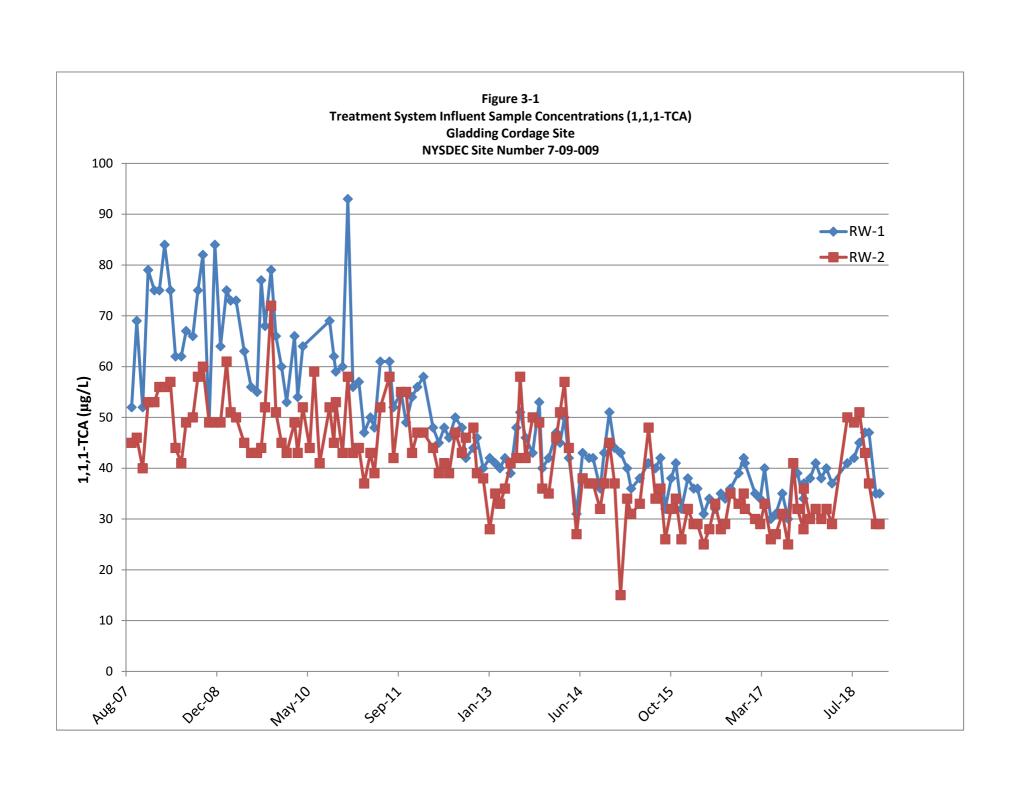
J - Estimated concentration.

TABLE 3-4 SUMMARY OF GROUNDWATER TREATMENT SYSTEM VOCS (EFFLUENT) GLADDING CORDAGE SOUTH OTSELIC, NEW YORK NYSDEC Site No. 7-09-009

| Sample ID                 | NYSDEC   | EFF(46HZ)  | EFF(46HZ)  | EFF(46HZ)  | EFF(46HZ)  | EFF(46HZ) | EFF(46HZ) | EFF(46HZ) | EFF(46HZ) | EFF(46HZ) | EFF(46HZ) | EFF(46HZ) | EFF(46HZ) | EFF(46HZ)  | EFF(46HZ)  | EFF(46HZ)  |
|---------------------------|----------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|
| Sampling Date             | GA       | 10/23/2017 | 10/25/2017 | 11/28/2017 | 12/29/2017 | 1/29/2018 | 1/30/2018 | 2/26/2018 | 3/29/2018 | 6/22/2018 | 7/29/2018 | 8/28/2018 | 9/27/2018 | 10/19/2018 | 11/26/2018 | 12/16/2018 |
| Matrix                    | Standard | WATER      | WATER      | WATER      | WATER      | WATER     | WATER     | WATER     | WATER     | WATER     | WATER     | WATER     | WATER     | WATER      | WATER      | WATER      |
| Units                     | ug/L     | ug/L       | ug/L       | ug/L       | ug/L       | ug/L      | ug/L      | ug/L      | ug/L      | ug/L      | ug/L      | ug/L      | ug/L      | ug/L       | ug/L       | ug/L       |
| VOCs                      |          |            | _          | •          |            | •         |           |           |           |           |           |           | Ĭ         |            |            |            |
| 1,1,1-Trichloroethane     | 5        | 1.0 U      | 1.0 U      | 1.0 U      | 1.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| 1,1,2,2-Tetrachloroethane | 5        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| 1,1,2-Trichloroethane     | 1        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| 1,1-Dichloroethane        | 5        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| 1,1-Dichloroethene        | 5        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| 1,2-Dichlorobenzene       | 3        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| 1,2-Dichloroethane        | 0.6      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| 1,2-Dichloropropane       | 1        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| 1,3-Dichlorobenzene       | 3        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| 1,4-Dichlorobenzene       | 3        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Benzene                   | 1        | 1.0 U      | 1.0 U      | 1.0 U      | 1.0 U      | 1.0 U     | 1.0 U     | 1.0 U     | 1.0 U     | 1.0 U     | 1.0 U     | 1.0 U     | 1.0 U     | 1.0 U      | 1.0 U      | 1.0 U      |
| Bromodichloromethane      | 50       | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Bromoform                 | 50       | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Bromomethane              | 5        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 5.0 U     | 2.0 U      | 0.82 J     | 0.93 J     |
| Carbon Tetrachloride      | 5        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Chlorobenzene             | 5        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Chloroethane              | 5        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Chloroform                | 7        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Chloromethane             |          | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| cis-1,3-Dichloropropene   | 0.4      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Dibromochloromethane      | 50       | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | NA        | 2.0 U      | 2.0 U      | 2.0 U      |
| Ethyl Benzene             | 5        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| m/p-Xylenes               | 5        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Methyl tert-butyl Ether   |          | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Methylene Chloride        | 5        | 5.0 U      | 5.0 U      | 5.0 U      | 5.0 U      | 5.0 U     | 5.0 U     | 5.0 U     | 5.0 U     | 5.0 U     | 5.0 U     | 5.0 U     | 5.0 U     | 5.0 U      | 5.0 U      | 5.0 U      |
| o-Xylene                  |          | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Tetrachloroethene         | 5        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Toluene                   | 5        | 1.0 U      | 1.0 U      | 1.0 U      | 1.0 U      | 1.0 U     | 1.0 U     | 1.0 U     | 1.0 U     | 1.0 U     | 1.0 U     | 1.0 U     | 1.0 U     | 1.0 U      | 1.0 U      | 1.0 U      |
| trans-1,2-Dichloroethene  | 5        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| trans-1,3-Dichloropropene | 0.4      | 5.0 U      | 5.0 U      | 5.0 U      | 5.0 U      | 5.0 U     | 2.0 U     | 2.0 U     | 5.0 U      | 5.0 U      | 2.0 U      |
| Trichloroethene           | 5        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Trichlorofluoromethane    | 5        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |
| Vinyl Chloride            | 2        | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U      | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U     | 2.0 U      | 2.0 U      | 2.0 U      |

#### Notes


U - Not detected at the indicated concentration.
J - Estimated concentration.


### **FIGURES**

### Figure 2-1 Site Location



Gladding Cordage Site South Otselic, New York NYSDEC Site 7-09-009





### **APPENDIX A**

**PLC Facsimile Reports** 

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/01/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.4 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62864539 GAL ASBPRS is H: 30.0 10.3 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC 0.00 TOTAL FLOW is 687983 HP FLO is **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP\_AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.47AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.63 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.33  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.64  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.1 PSI LIMITS are PSI PSI INTEMP is 58.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/02/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.1 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62899699 GAL ASBPRS is H: 30.0 10.2 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC TOTAL FLOW is 687983 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP\_AMP is 0.07 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1\_AMP is 4.43AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.59AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.09  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.53  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2\_PRS is 3.8 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 59.6DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/03/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.6 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62934651 GAL ASBPRS is 5.0 H: 30.0 10.2 LIMITS are IWC IWC  $\mathbf{L}$  : IWC TOTAL FLOW is 687983 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 1.2 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.42AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 31.20  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 56.76 9.00 W2 LVL is  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ 4.2 W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2\_PRS is 2.6 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 60.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/04/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.1 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 62969642 GAL  $AS\overline{B}PRS$  is 5.0 H: 30.0 10.2 LIMITS are IWC IWC  $\mathbf{L}$  : IWC TOTAL FLOW is 687983 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.44AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.62AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.65  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 56.25  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2\_PRS is 2.8 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 58.2DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/05/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is OFF W2\_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is OFF AIR HH is OFF SMPALM is OFF W2\_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 0.0 **GPM** 63023435 TOTAL FLOW is GAL 62990398 GPM TOTAL FLOW is GAL ASBPRS is 5.0 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : IWC TOTAL FLOW is 687983 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP\_AMP is 0.09 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1\_AMP is 0.01 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 58.11  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 54.9DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:



# ALARM Fax Report ProControl Series II+

EOS Research Ltd.

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 13:56:53 ON 10/05/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

vstem Status:

LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD P20 :

FAX REPORT INITIATED BY PROCESS 20

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP ASP\_LO is OFF is OFF ASP\_HH is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

SMP\_GO is OFF W1\_ALM is ON W1 GO is ON W2 GO is ON ASB GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF AIR\_LL is OFF W2 ALM is OFF SMPALM is OFF ASBALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 63023435 GAL 62990426 W2 FLO is 24.5**GPM** TOTAL FLOW is GAL ASBPRS is 9.6 LIMITS are H: 30.0 IWC IWC L: 5.0 IWC  $ext{HP}$   $ext{FLO}$  is 0.00 **GPM** TOTAL FLOW is 687983 GAL H: 20.0 PRS is PSI LIMITS are  $\mathbf{L}$ : -2.0 PSI PSI 0.09 AMP is 0.00 AMP LIMITS AMP H: AMPare $\mathbf{L}$  : W1 AMP is AMP LIMITS are 0.00 AMP H: 10.00 AMP W2 AMP is 4.64AMP LIMITS L: 0.00 AMP H: 10.00 AMP H: 28.00 LIMITS are  $\mathbf{FT}$ W1 LVL is 30.87  $\mathbf{FT}$ L: 8.00  $\mathbf{FT}$ is M5\_TAT 56.36  $\mathbf{FT}$ LIMITS areL:9.00  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ 4.2  $\mathbf{PRS}$ is PSI LIMITS are L:0.5PSI н: 100.0 PSI W2 PRS is H: 100.0 3.3 PSI LIMITS are $\mathbf{L}$ : 0.5 PSI PSI INTEMP is 60.8 DEG LIMITS are  $\mathbf{L}$ : 42.0 DEG H: 130.0 DEG

Analog Outputs:

ASBSPD 0.0 PCT

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/06/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24. **GPM** 63023435 TOTAL FLOW is GAL 24.6 GPM TOTAL FLOW is 63014074 GAL ASBPRS is H: 30.0 10.2 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC TOTAL FLOW is 687983 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP\_AMP is 0.08 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1\_AMP is 4.50AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.69AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.76  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 56.17  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2\_PRS is 3.1 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 58.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/07/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.2 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 63049369 GAL  $AS\overline{B}PRS$  is H: 30.0 10.1 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC 0.00 TOTAL FLOW is 687983 HP FLO is GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP\_AMP is 0.09 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.50AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.69AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.65  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 56.04 $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 1.7 PSI LIMITS are PSI PSI INTEMP is 62.9DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/08/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24. **GPM** 63023435 TOTAL FLOW is GAL 24.6 GPM TOTAL FLOW is 63084608 GAL ASBPRS is H: 30.0 10.2 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC TOTAL FLOW is 687983 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP\_AMP is 0.08 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1\_AMP is 4.38 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.70  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.93  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 1.0 PSI LIMITS are PSI PSI INTEMP is 61.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/09/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.3 **GPM** 63023435 TOTAL FLOW is GAL 63119777 GPM TOTAL FLOW is GAL ASBPRS is H: 30.0 10.0 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC TOTAL FLOW is 687983 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.39AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.58AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.55  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 0.6 PSI LIMITS are PSI PSI INTEMP is 64.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:



## ALARM Fax Report ProControl Series II+

EOS Research Ltd.

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 03:22:20 ON 10/10/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

vstem Status:

LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD P23 : FAX REPORT INITIATED BY PROCESS 23

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP ASP\_LO is OFF is OFF ASP\_HH is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

SMP\_GO is OFF W1\_ALM is ON W1 GO is ON W2 GO is ON ASB GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF AIR\_LL is OFF W2 ALM is ON SMPALM is OFF ASBALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 63023435 GAL W2FLO is 24.3 **GPM** TOTAL FLOW is 63151067 GAL LIMITS are H: 30.0 IWC ASBPRS is 10.1IWC IWC L: 5.0 $ext{HP}$   $ext{FLO}$  is 0.00 **GPM** TOTAL FLOW is 687983 GAL H: 20.0 PRS is PSI LIMITS are  $\mathbf{L}$ : -2.0 PSI PSI 0.09 AMP is 0.00 AMP LIMITS are AMPH: AMP $\mathbf{L}$  : W1 AMP is AMP LIMITS are 0.00 AMP H: 10.00 AMP  $W2^{-}AMP$  is 4.68AMP LIMITS are L: 0.00 AMP H: 10.00 AMP W1\_LVL is 30.29 H: 28.00 LIMITS are  $\mathbf{FT}$  $\mathbf{FT}$ L: 8.00  $\mathbf{FT}$ is M5\_TAT 55.64  $\mathbf{FT}$ LIMITS areL:9.00  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$  $\mathbf{PRS}$ is 4.0PSI LIMITS are L:0.5PSI н: 100.0 PSI W2 PRS is H: 100.0 0.5 PSI LIMITS are $\mathbf{L}$ : 0.5 PSI PSI INTEMP is 62.5 DEG LIMITS are  $\mathbf{L}$ : 42.0 DEG H: 130.0 DEG

Analog Outputs:

0.0 PCT ASBSPD

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/10/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P23 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is ON ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.7 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 63154913 GAL ASBPRS is 10.0 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC TOTAL FLOW is 687983 HP FLO is 0.14GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.08 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.43AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.62AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.26  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.62  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2\_PRS is 0.4 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 63.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/11/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is OFF W2\_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is OFF AIR HH is OFF SMPALM is OFF W2\_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 0.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 63186039 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC TOTAL FLOW is 687983 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.10 AMP L: 0.00AMP H: AMPH: 10.00 W1\_AMP is 0.01 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 31.56  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 57.18  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 65.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/12/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is OFF W2\_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is OFF AIR HH is OFF SMPALM is OFF W2\_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 0.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 63186039 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC TOTAL FLOW is 687983 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP\_AMP is 0.09 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1\_AMP is 0.01 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 32.27  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 58.24  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 59.4DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/13/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is OFF W2\_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is OFF AIR HH is OFF SMPALM is OFF W2\_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 0.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 63186039 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC TOTAL FLOW is 687983 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP\_AMP is 0.09 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1\_AMP is 0.01 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 31.88  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 57.84  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 54.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/14/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is OFF W2\_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is OFF AIR HH is OFF SMPALM is OFF W2\_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 0.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 63186039 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC TOTAL FLOW is 687983 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is 1.0 PSI LIMITS are -2.0 PSI PSI HP\_AMP is 0.09 LIMITS are AMPL: 0.00AMP H: AMPH: 10.00 W1\_AMP is 0.01 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ 32.11 are $\mathbf{L}$ : 9.00 W2 LVL is 57.67  $\mathbf{FT}$ LIMITS are $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 50.1DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:



# ALARM Fax Report EOS Research Lid ProControl Series II+

To:

JEREMY WYCKOFF

From:

SYSTEM IN SOUTH OTSELIC NY @ 11:59:02 ON 10/14/2018 THE NYSDEC GLADDING SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

vstem Status:

LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD P20 :

FAX REPORT INITIATED BY PROCESS 20

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP ASP\_LO is OFF is OFF ASP\_HH is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

SMP\_GO is OFF W1\_ALM is ON W1 GO is ON W2 GO is ON ASB GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF AIR\_LL is OFF W2 ALM is OFF SMPALM is OFF ASBALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 63023435 GAL W2FLO is 24.2 **GPM** TOTAL FLOW is 63186068 GAL ASBPRS is 9.8 LIMITS are H: 30.0 IWC IWC IWC L: 5.0 $ext{HP}$   $ext{FLO}$  is 0.00 **GPM** TOTAL FLOW is 687983 GAL H: 20.0 PRS is PSI LIMITS are  $\mathbf{L}$ : -2.0 PSI PSI 0.09 AMP is 0.00 AMP LIMITS AMPH: AMPare $\mathbf{L}$  : W1 AMP is AMP LIMITS are 0.00 AMP H: 10.00 AMP W2 AMP is 4.62AMP LIMITS L: 0.00 AMP H: 10.00 AMP H: 28.00 LIMITS are  $\mathbf{FT}$ W1 LVL is 30.55  $\mathbf{FT}$ L: 8.00  $\mathbf{FT}$ is M5\_TAT 56.08  $\mathbf{FT}$ LIMITS areL:9.00  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$  $\mathbf{PRS}$ is 4.1PSI LIMITS are L:0.5PSI н: 100.0 PSI W2 PRS is H: 100.0 4.1PSI LIMITS are $\mathbf{L}$ : 0.5 PSI PSI INTEMP is 53.3 DEG LIMITS are  $\mathbf{L}$ : 42.0 DEG H: 130.0 DEG

Analog Outputs:

0.0 PCT ASBSPD

#### Compol Series EGS Research Ltd. Text Report

To

JEREMY WYCKOFF

From.

**SYSTEM IN SOUTH OTSELIC MY @ 06:00:00 ON 10/15/2018** THE HYSDEC CLADDING - : NOM 2.1996 : NODEL  $ilde{A}2$ EER NO 9605 : EETUP VER 1

System Status

LAST SHITTOWN @ 10:13:24 ON 08/15/2018 BY ASBVED AHTO P20 :

Discrete Inputs:

wil\_crm lm on wilcom in on имможо 16 ом. ampure le ora HP OP is OFF ΛSP HH is OFF ASP LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Onlynds.

SMP\_GO is OFF W1\_ALM is ON is ON is ON W1 GO W2 GO ASB\_GO is ON ASMOHH IN OFF ASMOLL is OFF AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRST is OFF VFDRUN is OFF HPMPGO is ON

Analog Inputs

CDM W1 FLO is 0.0 TOTAL FLOW is 63023435 CAL  $W2^{-}FLO$  is 24.8 **GPM** TOTAL FLOW IS 63212512 GAL ACBPRC io 10.3 LIHITE are H: 30.0 IWC 5.0 IWC: IWC  $\mathbf{L}$  :  $\mathbf{L}_{\mathbf{r}}$ 8.88 200505 시민 11 TATEL PLAN 씨타로 H: 20.0 PET אחים יחוז 1a 1.2 PET LINTER are 2.0 PET is 0 04 LIMITS are 0.00IIP\_AMP AMP **AMP** и. AMP T. H: 10.00 W1\_AMP is 4.41AMP LIMITS. are 0.00 AMP AMP ь: 0.00 H: 10.00 W2\_NIM 10 1.61MLIMITC arcLι ΜIE  $n_{100}$ 30.51 8.00 n: 28.00 wT\_rar Is  $\mathbf{E}^{-}\mathbf{T}^{-}$ LIMITS are ь:  $\mathbf{E}^{-}\mathbf{T}^{-}$  $\mathbf{E}^{*}\mathbf{T}^{*}$  $W2^{-}LVL$  is 55.96FΤ 9.00 FΤ H: 52.00 FTTITMTTS are  $T_1$ : በ 5 W1\_PRS PST LIMITS PST H · 100 0 PST in 4 N are  $T_1 =$ LIMITS are W2 DRS is 4.2 DSI L: 0.5 DSI H: 100.0 DSI INTEMP is 60.5DEG  $T_1: 42.0$ DEGH: 130.0 DEG LIMITS are

ualor Outputs



#### Fels Reveareh Lea Est Republic

To

JEREMY WYCKOFF

l'rom:

SYSTEM TH SOUTH OTSELTC BY @ 06:00:00 ON 10/15/2018 THE NYSDEC GLADDING SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status

AUTO PEU 1 таят япитолия ы тисттера он ин/ть/рити их аявуро

Discrete Imputs

W1 CTR is ON W2 CTR 1s ON SMDCTR 16 OFF ASBVED is ON HP OP is OFF ASP IIII is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

DIM CO is OFF **U1** 00 is on TIO OO is on ROB CO As ON AIR IIII 1s OFF ASMPHH Is OFF ASMPLL Is OFF W1 ALM IS ON W2 ĀLM is OFF ASBALM is OFF ATE II. is OFF SMPALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.8 TOTAL FLOW is TOTAL FLOW is CPM 63023435 CAL 63212512 CVL CPH ASBPRS is 10.3 IWC LIMITS are  $\mathbf{L}\colon \mathbf{5.0}$ IWC H: 30.0IWC  $HP\_FLO$  is 0.00**GPM** TOTAL FLOW 600575 GALн: 20.0 HP PKS 15 1.2 ART LIMITS RTO -2.0 ART RRI HP\_AMP V1\_AMP  $\Lambda MP$ 0.00  $\Lambda MP$  $\Lambda MP$ 16 0.04 LIMITS are T.: H: II. 10.00 4.41  $\lambda HP$ LIHITO 0.00 λŀΨ λIIP io ат с И: 10.00 W2\_AMP 0.00 18 4.64 AMP LIMITS are  $\mathbf{L}$ : AMP AMP 30.51  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$ H: 28.00  $\mathbf{FT}$ W1 LVL is ar e L:9.00 H: 52.00 W2\_LVL 55.96  $\mathbf{FT}$  $\mathbf{FT}$  $\mathbf{FT}$ is LIMITS are W1\_PRS is 4.0 W2\_PRS is 4.2 H: 100.0 H: 100.0 H: 130.0 0.5PST LIMITS are  $T_1$ : PST PST \_PRS is 4.2 PSTLIMITS 0.5PSTPSTare ь: INTEMP is 60.5 42.0  $\mathbf{DEG}$ LIMITS are  $\mathbf{L}$ : DEG $\mathbf{DEG}$ 

Analog Outputs:

ASBSPU 0.0 PCT MAN

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/16/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP OP is OFF ASP HH is OFF ASP LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

SMP\_GO is OFF W1 GO W2 GO is ON ASB\_GO is ON is ON W1\_ALM is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF W2 ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 **GPM** TOTAL FLOW is 63023435 GAL W2FLO is 24.5 **GPM** 63247793 TOTAL FLOW is GAL H: 30.0 IWC ASBPRS is 10.4 IWC LIMITS are L: 5.0 IWC HP\_FLO is 0.00 **GPM** 689225 TOTAL FLOW is GAL PRS is 1.2 PSI LIMITS are  $\mathbf{L}$ : -2.0PSI H: 20.0 PSI HP\_AMP 0.00 0.04LIMITS is AMP are AMPH: AMPW1 AMP 4.34 H: 10.00 is AMP LIMITS are 0.00 AMP AMP L:LIMITS 0.00 AMP H: 10.00 AMP W2 AMP is AMP are L:8.00 W1 LVL is 30.71 F.T. LIMITS are $\mathbf{F}^{*}\mathbf{T}^{*}$ н: 28.00  $\mathbf{F}^{*}\mathbf{T}^{*}$ н: 52.00 9.00 W2\_LVL is 56.06  $\mathbf{F}\mathbf{T}$ LIMITS are  $\mathbf{F}\mathbf{T}$  $\mathbf{F}\mathbf{T}$ ь: 0.5H: 100.0  $W1\_PRS$  is 4.0PSI LIMITS are L:PSI PSI II: 100.0  $W2_{PRS}$  is 4.2PSI LIMITS are 0.5PSI PSI L!H: 130.0 TNTEMP is 56.5DEG LIMITS are 42.0 DEG DEG

Analog Outputs:



## ProControl Series II....

ιο χ. **(**Σ

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY 0.06:00:00 ON 10/16/2010 CER NO 9605 : CETUP VER 1 : NOH 2.1996 : HODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVED

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF
HP\_OP is OFF AUP\_HH is OFF AUP\_LO is OFF PLRUMP is OFF
ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2\_GO is ON ASMPHH is OFF W2 GO W1 GO is ON ASB GO is ON SMP\_GO is OFF W1\_ĀĿM is ON AIR\_HH is OFF ASMPLL IS OFF W2 ALM is OFF SMPALM is OFF ASBALM is OFF AIR\_LL is OFF VEDRUN IS OFF VEDRST is OFF HPMPGO is ON

Anales Inputs

W1 FLO is 0.0 GPM TOTAL FLOW is 63023435 GAL  $W2^{-}FLO$  is 24.5 GPM TOTAL FLOW is 63247793 GAL HIMITS are ASHPRS 18 TU.4 TWC TWC H: 30.0 TWC ե: 5.0 HP\_FLO is 0.00 GPM TOTAL FLOW is 689225 GAL PRS PSI -2.0PSI H: 20.0 1s1.2 LIMITS are  $\mathbf{L}$ : PSI HP\_AMP is 0.04 AMP LIMITS are  $T_1$ : 0.00 AMP H: AMP 4.54 WI AMP 15 L: 0.00 H: IU.UU AMP AME LIMITS Are AMM W2 AMP is 4.59AMPLIMITS are L: 0.00 AMP H: 10.00 AMP 8.00 H: 28.00 30.71  $W1\_LVL$  is  $\mathbf{FT}$ LIMITS are  $\mathbf{FT}$  $\mathbf{FT}$ L:H: 52.00 H: 100.0 W2\_LVL is W1\_PRS is 9.00 56.06  $\mathbf{FT}$ LIMITS are  $\mathbf{FT}$  $\mathbf{FT}$ L:4.0PSI LIMITS areL:0.5PSI PSI W2\_PRS is 4.2 II: 100.0 PSI 0.5 PSI PSI LIMITS are  $\mathbf{L}$ : INTEMP is 56.5DEG LIMITE are  $L_1 = 42.0$ DEGH. 130.0  $\mathbf{DEG}$ 

Analog Outputs:



#### ProControl Series II+ EOS Research Ltd. Fox Report

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY  $\oplus$  06:00:00 ON 10/16/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

Wl\_GO is ON W2\_GO is ON ASB\_GO is ON SMP\_GO is OFF
AIR\_HH is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON
W2\_ALM is OFF ASHALM is OFF SMPALM is OFF AIR\_LL is OFF
VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24. TOTAL FLOW is **GPM** 63023435 GAL 24.5 **GPM** TOTAL FLOW is 63247793 GAL ASBPRS is 10.4ь: 5.0 H: 30.0 TWC LIMITS are TWC TWC HP FLO is 0.00 TOTAL FLOW is 689225 GPM GAL HP PRS is PSI LIMITS are -2.0 PSI H: 20.0 PSI HP\_ΛMP is 0.04 ΛMP LIMITS are 0.00 $\Lambda MP$  $\Lambda MP$ T.: **H**: W1\_AMP is W2 AMP is H: 10.00 H: 10.00 4.34 AMP LIMITS are 0.00 AMP AMP L: AMP LIMITS are 0.00 AMP AMP W1 LVL is H: 20.00 30.71  $\mathbf{FT}$ LIMITS 0.00  $\mathbf{FT}$ are  $\mathbf{L}$ :  $\mathbf{FT}$ W2LVL is 56.06  $\mathbf{FT}$ 9.00  $\mathbf{FT}$ II: 52.00  $\mathbf{FT}$ LIMITS are $\mathbf{L}$ : L: 0.5 H: 100.0 W1\_PRS is 4.0 PSI LIMITS are PSI PSI W2\_PRS is 4.2 LIMITS are L: 0.5PSI H: 100.0 PSI PSI **ዘ** · 13በ በ TNTRMD is 56 5 DEG LIMITS are 42 N DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/17/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.4 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 63283054 GAL  $AS\overline{B}PRS$  is H: 30.0 10.4 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC 0.00 TOTAL FLOW is 690087 HP FLO is **GPM** GAL -2.0 H: 20.0 HP PRS is PSI LIMITS are PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.35AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.31  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.85  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2\_PRS is 4.3 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 57.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/18/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is OFF W2\_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is OFF AIR HH is OFF SMPALM is OFF W2\_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 0.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 63303302 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC TOTAL FLOW is 690531 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.96 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1\_AMP is 0.01 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 32.25  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : W2 LVL is 9.00 57.46  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 49.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/19/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is OFF W2\_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is OFF AIR HH is OFF SMPALM is OFF W2\_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 0.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 63303302 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC TOTAL FLOW is 690531 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP\_AMP is 0.97 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1\_AMP is 0.01 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 57.29 9.00 W2 LVL is  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 45.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:



#### ALARM Fax Report <u>ProControl Series II+</u>

EOS Research Ltd.

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:26:07 ON 10/19/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

vstem Status:

LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD P20 :

FAX REPORT INITIATED BY PROCESS 20

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP ASP\_LO is OFF is ON ASP\_HH is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

SMP\_GO is OFF W1\_ALM is ON W1 GO is ON W2 GO is ON ASB GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF AIR\_LL is OFF W2 ALM is OFF SMPALM is OFF ASBALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 63023435 GAL W2FLO is 24.3 **GPM** TOTAL FLOW is 63303331 GAL LIMITS are H: 30.0 IWC ASBPRS is 10.1IWC IWC L: 5.0  $ext{HP}$   $ext{FLO}$  is 2.48 **GPM** TOTAL FLOW is 690534 GAL PRS is H: 20.0 10.2 PSI LIMITS are L:-2.0 PSI PSI AMP is 4.290.00 AMP LIMITS AMPH: AMPare $\mathbf{L}$  : W1 AMP is 4.39 AMP LIMITS are 0.00 AMP H: 10.00 AMP W2 AMP is 4.65AMP LIMITS are L: 0.00 AMP H: 10.00 AMP H: 28.00 LIMITS are  $\mathbf{FT}$ W1 LVL is 30.46  $\mathbf{FT}$ L: 8.00  $\mathbf{FT}$ is M5\_TAT 55.89  $\mathbf{FT}$ LIMITS areL:9.00  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$  $\mathbf{PRS}$ is 4.0PSI LIMITS are L:0.5PSI н: 100.0 PSI W2 PRS is 4.5 H: 100.0 PSI LIMITS are $\mathbf{L}$ : 0.5 PSI PSI INTEMP is 45.6 DEG LIMITS are  $\mathbf{L}$ : 42.0 DEG H: 130.0 DEG

Analog Outputs:

ASBSPD 0.0 PCT

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/20/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.4 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 63337937 GAL ASBPRS is L: 5.0 H: 30.0 10.2 LIMITS are IWC IWC IWC TOTAL FLOW is 691098 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.41AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.66AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 29.95  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 55.58 9.00 W2 LVL is  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.4 PSI LIMITS are PSI PSI INTEMP is 60.2DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/21/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is ON ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24. **GPM** 63023435 TOTAL FLOW is GAL 24.4 GPM TOTAL FLOW is 63373097 GAL ASBPRS is L: 5.0 H: 30.0 10.5 LIMITS are IWC IWC IWC TOTAL FLOW is 691606 HP FLO is 2.44 **GPM** GAL 9.9 H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 5.01 AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.41AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.62AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.16  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.68  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.4 PSI LIMITS are PSI PSI INTEMP is 57.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/22/2018

SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL Ã2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24. **GPM** 63023435 TOTAL FLOW is GAL 24.6 GPM TOTAL FLOW is 63408183 GAL ASBPRS is H: 30.0 10.5 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC TOTAL FLOW is 692368 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.31AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.38  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.55  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 59.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/23/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is ON ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.5 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 63443200 GAL ASBPRS is H: 30.0 10.4 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC TOTAL FLOW is 692954 HP FLO is 2.46 **GPM** GAL 9.9H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP\_AMP is LIMITS are 5.02 AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.33AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.11  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.45  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.4 PSI LIMITS are PSI PSI INTEMP is 58.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:



## ProControl Series II+ EOS Research Lea Fox Rejust

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/24/2010 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVED

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFATL is OFF E STOP is OFF

Discrete Outputs:

is ON W2 GO is ON ASB GO is ON SMP GO is OFF W1 ALM is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF W2\_ALM is OFF SMPALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24. ASBPRS is 10. **GPM** TOTAL FLOW is 63023435 GAL 24.6 **GPM** TOTAL FLOW is 63478191 GAL H: 30.0 TWC: 10.4 LIMITS are TWC: TWC  $T_1$ : 693527 HP FLO is 0.00 **GPM** TOTAL FLOW is GAL 1.2LIMITS are L: -2.0HP PRS is PSI H: 20.0 PSI PSI  $HP^{\top}\Lambda MP$  is 0.04 $\Lambda MP$  $T_{i}: 0.00$  $\Lambda MP$ LIMITS are **H**:  $\Lambda MP$ 4.34 H: 10.00 W1 AMP is AMP LIMITS are L: 0.00 AMP AMP H: 10.00 W2\_AMP is L: 0.00AMP LIMITS are AMP. AMP W1\_LVL is H: 28.00 30.54  $\mathbf{FT}$ LIMITS are 8.00  $\mathbf{FT}$  $\mathbf{FT}$ L:W2\_LVT 1s 55.83 W1\_PRS is 4.0 W2\_PRS is 4.4 H: 52.00 FT 9.00 FT FT LIMITS are  $T_{i}$ : H: 100.0 0.5  $\mathbf{L}$ : PSI PSI LIMITS are PSI H: 100.0 PSI LIMITS are  $\mathbf{L}$ : 0.5PSI PSI INTEMP is 57.6DEG LIMITS are L: 42.0DEG H: 130.0 DEG

Analog Outputs:

### ProControl Series II+

EOS Research Ltd.

Fax Report

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/24/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

w1\_CTR is ONW2\_CTR is ONASBVED is ONSMPCTR is OFFHP\_OP is OFFASP\_LO is OFFFLRSMP is OFFACFAIL is OFFE\_STOP is OFF

Discrete Outputs:

W1\_GO is ON W2\_GO is ON ASB\_GO is ON SMP\_GO is OFF
AIR\_HH is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON
W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR\_LL is OFF
VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 63023435 GALW2\_FLO is 24.6 TOTAL FLOW is 63478191 GPM GAL ASBPRS is 10.4 H: 30.0 IWC LIMITS are L: 5.0IWC IWC HP FLO is 0.00 GPM TOTAL FLOW is 693527 GAL H: 20.0 HP PRS is 1.2 PSI LIMITS are -2.0 PSI PSI HP\_AMP is 0.04AMP LIMITS are 0.00 AMP H: AMP  $\mathbf{L}:$ W1\_AMP W2\_AMP 10.00 4.34  $\Lambda$ MD LIMITS are0.00 ΛMD  $\mathbf{H}$ :  $\Lambda$ MP is L:H: 10.00 0.00 is LIMITS AMPareAMPAMPW1 LVL is 30.54  $\mathbf{FT}$ LIMITS are 8.00  $\mathbf{FT}$ H: 28.00  $\mathbf{FT}$ T.: W2 LVL is  $\mathbf{FT}$ LIMITS 9.00  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ areH: 100.0 LIMITS L: 0.5PSI W1\_PRS is PSI PSI 4.0areH: 100.0 H: 130.0 W2\_PRS is 4.4 PSI LIMITS are L: 0.5 PSI PSI INTEMP is 57.6DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

### 

.....

EOS Research Ltd.

Fax Report

To.

JEREMY WYCKOFF

From:

THE NYEDEC GLADDING EYETEM IN ECHTH OTHERLIC NY  $\S$  05:00:00 ON 10/25/2018 GER NO 9605 : GETUP VER 1  $\odot$  : ROH 2.1996 : HODEL A2

System Status:

AUTO P20 . LAST SHUTDOWN @ 10.13.24 ON 0U/15/2010 BY ASBVFD

Discrete Inputs:

Discrete Ocapiats

W1\_GO is ON W2\_GO is ON ASB\_GO is ON SMP\_GO is OFF ATB\_HH is OFF ASMPHH is OFF ASMPHH is OFF ASMPHH is OFF W1\_ALM is ON W1\_OLM is OFF W1\_ALM is ON WFDRIN is OFF WFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FEG IS 8.8 CPM 63823435 TOTAL FLOW IN GAT CPM WY\_FLO 16 Y4.5 TOTAL FLOW 16 63513259 CVT ASBPRS is 10.5 H: 30.0INC IWC LIMITS are  $\mathbf{L}$ : 5.0 INC 694261 HP FT∩ is 0 00 GPM TOTAL FLOW is GAL H: 20.0 HP PRS is 1.2 PSI LIMITS are -2.0**PST** RST**L**: HP AMP 18 U.U4 L: U.UU AMP LIMITS are AMP н: AMP 1.55 4. 8.88 ... 18.88 ..1\_..... .... .... .... ий Тами н. 40.00 4.60LIMITS are 0.00 AHP AHP AHP H 28 00 W1\_T.VI. in 30 84 FФ LINTER are T 8 00 FФ FФ wż\_LvL is 56.00  $\mathbf{E}^{*}\mathbf{T}^{*}$ LIMITS are ь: 9.00  $\mathbf{E}^{*}\mathbf{T}^{*}$ н: 52.00  $\mathbf{E}^{*}\mathbf{T}^{*}$ # · 100 በ W1\_PR5 In 4 1 P5T LIMITS are T₁ ለ 5 PST PST WY DRS is 4.4 POI LIMITS are L: = 0.5POI H: 100.0 POI ...... I.. **ДФ.**.¶ ... [81.1 ... 17 . 1

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC CLADDING SYSTEM IN SOUTH OTSELIC NY (6,06:00:00] ON 10/25/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLR9MP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W1\_GO ls ON W2\_GO ls ON A5B\_GO ls ON 5MP\_GO ls OFF
AIR\_HH is OFF A8MDHH is OFF A8MDLL is OFF W1\_ALM is OFF
W2\_ALM is OFF A8BALM is OFF SMPALM is OFF AIR\_LL is OFF
VFDRUN is OFF VFDRST is OFF HPMPCO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.5 63023435 CPM TOTAL FLOW is CVL **GPM** TOTAL FLOW is 63513259 GAL ASBPRS is 10.5 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW 694201 HP FIA is A AA GPM GAL HP PRS is 1.2 PSI LIMITS are L: -2.0PSI H: 20.0 PSI HP\_AMP 15 U.U4 AMP LIMITS are ь: U.UU AMP **H**: AMP \_AMP H: 10.00 4.360.00 **i**5 AMP LIMITS are L:AMP AMP AMP is 4.60 **AMP** LIMITS are 0.00AMP H: 10.00 AMP W1 LVL is H: 28.00 30.84  $\mathbf{FT}$ LIMITS are  $\mathbf{FT}$  $\mathbf{FT}$  $T_1$ : 8.00 W2 LVL is  $\mathbf{FT}$ 9.00  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ 56.00 LIMITS are L:L: 0.5 II: 100.0  $W1\_PR9$  is 4.1POI LIMITS are POI P3IH: 100.0 H: 130.0 W2\_PRS is 4.4 LIMITS are L: 0.5 PSI PSI PST L: 42.0 INTEMP is 57.9DEG LIMITS are DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/26/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is ON ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.1 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 63548315 GAL ASBPRS is H: 30.0 10.6 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC TOTAL FLOW is 694930 HP FLO is 2.42 **GPM** GAL 9.9H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP\_AMP is 4.93LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1\_AMP is 4.31 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.62  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.85  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.1PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 57.1DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/27/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.2 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 63583382 GAL ASBPRS is H: 30.0 10.4 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC TOTAL FLOW is 695556 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.41AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.64AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.32  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 55.72 9.00 W2 LVL is  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 59.2DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/28/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is ON ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.3 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 63618544 GAL ASBPRS is L: 5.0 H: 30.0 10.4 LIMITS are IWC IWC IWC TOTAL FLOW is 696228 HP FLO is 2.44 **GPM** GAL 9.9H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP\_AMP is LIMITS are 5.04 AMP L: 0.00AMP н: AMPH: 10.00 4.39 W1\_AMP is AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.60AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 31.56  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 57.16  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2\_PRS is 4.5 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 58.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/29/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is ON ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.1 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 63653759 GAL ASBPRS is L: 5.0 H: 30.0 10.3 LIMITS are IWC IWC IWC TOTAL FLOW is 696813 HP FLO is 2.46 **GPM** GAL 9.9H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP\_AMP is LIMITS are 5.12 AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.32AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 31.27  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 56.84  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.4 PSI LIMITS are PSI PSI INTEMP is 60.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/30/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.3 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 63688910 GAL  $AS\overline{B}PRS$  is L: 5.0 H: 30.0 10.4 LIMITS are IWC IWC IWC TOTAL FLOW is 697414 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.32AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 31.33  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 56.61  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.1PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 60.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 10/31/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.5 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 63724027 GAL ASBPRS is H: 30.0 10.6 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC TOTAL FLOW is 698079 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.33AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 31.10  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 56.31  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.1PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 59.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/01/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24. **GPM** 63023435 TOTAL FLOW is GAL 24.6 GPM TOTAL FLOW is 63759087 GAL ASBPRS is L: 5.0 H: 30.0 10.3 LIMITS are IWC IWC IWC TOTAL FLOW is 698483 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP H: AMPH: 10.00 W1\_AMP is 4.35AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.82  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 56.17  $\mathbf{FT}$ LIMITS are $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.4 PSI LIMITS are PSI PSI  $\overline{\text{INTEMP}}$  is 61.1DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/02/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.3 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 63794143 GAL ASBPRS is L: 5.0 H: 30.0 10.0 LIMITS are IWC IWC IWC TOTAL FLOW is 698891 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.41AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.64AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.61  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 56.10  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 LIMITS are L: 0.5 W2\_PRS is 4.4 PSI PSI PSI INTEMP is 64.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/03/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.2 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 63829234 GAL ASBPRS is L: 5.0 H: 30.0 10.3 LIMITS are IWC IWC IWC 0.00 TOTAL FLOW is 699206 HP FLO is **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.36AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.83  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 56.44  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.1PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.3 PSI LIMITS are PSI PSI INTEMP is 60.4DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/04/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.3 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 63864343 GAL ASBPRS is H: 30.0 10.6 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC TOTAL FLOW is 699776 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.36AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 31.71  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 56.53 9.00 W2 LVL is  $\mathbf{FT}$ LIMITS are $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.4 PSI LIMITS are PSI PSI INTEMP is 61.4DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/05/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is ON ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 23. **GPM** 63023435 TOTAL FLOW is GAL 23.8 GPM TOTAL FLOW is 63899401 GAL ASBPRS is H: 30.0 10.5 LIMITS are IWC IWC  $\mathbf{L}$ : 5.0 IWC TOTAL FLOW is 700277 HP FLO is 2.44 **GPM** GAL 9.9H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 5.10 AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.36AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 31.37  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 56.25  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.4 PSI LIMITS are PSI PSI INTEMP is 61.4DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/06/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.3 **GPM** 63023435 TOTAL FLOW is GAL 63934405 GPM TOTAL FLOW is GAL ASBPRS is 10.3 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$ : 5.0 IWC TOTAL FLOW is 700776 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.38 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.90  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 56.15  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.4 PSI LIMITS are PSI PSI INTEMP is 62.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/07/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is OFF W2\_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is OFF AIR HH is OFF SMPALM is OFF W2\_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 0.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 63953284 GAL ASBPRS is 5.0 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$ : IWC TOTAL FLOW is 700980 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.95 LIMITS are AMPL: 0.00AMP H: AMPH: 10.00 W1\_AMP is 0.01 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : W2 LVL is 9.00 57.96  $\mathbf{FT}$ LIMITS are $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 62.9DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/08/2018

SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL Ã2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is OFF W2\_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is OFF AIR HH is OFF SMPALM is OFF W2\_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 0.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 63953284 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$ : 5.0 IWC TOTAL FLOW is 700980 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.95 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1\_AMP is 0.01 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 57.71 9.00 W2 LVL is  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 61.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/09/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is OFF W2\_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is OFF AIR HH is OFF SMPALM is OFF W2\_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 0.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 63953284 GAL ASBPRS is 5.0 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$ : IWC TOTAL FLOW is 700980 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.95 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1\_AMP is 0.01 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 32.56  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 57.58  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 59.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/10/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is OFF W2\_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is OFF AIR HH is OFF SMPALM is OFF W2\_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 0.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 63953284 GAL ASBPRS is 5.0 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$ : IWC TOTAL FLOW is 700980 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.95 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1\_AMP is 0.01 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 57.92  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 59.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/11/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is OFF W2\_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is OFF AIR HH is OFF SMPALM is OFF W2\_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 0.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 63953284 GAL ASBPRS is 5.0 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$ : IWC TOTAL FLOW is 700980 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.95 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1\_AMP is 0.01 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 32.81  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 57.86  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 59.2DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/15/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is OFF W2\_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is OFF AIR HH is OFF SMPALM is OFF W2\_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 0.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64073830 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$ : 5.0 IWC TOTAL FLOW is 703716 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 1.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.95 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1\_AMP is 0.01 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 32.76  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 57.48  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 57.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/16/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is OFF W2\_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is OFF AIR HH is OFF SMPALM is OFF W2\_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 0.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64073830 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$ : 5.0 IWC TOTAL FLOW is 703716 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.95 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1\_AMP is 0.01 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ 31.86 are $\mathbf{L}$ : 9.00 W2 LVL is 57.27  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 58.9DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:



## ALARM Fax Report EOS Research Lid ProControl Series II+

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 12:16:21 ON 11/16/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

vstem Status:

LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD P20 :

FAX REPORT INITIATED BY PROCESS 20

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP ASP\_LO is OFF is ON ASP\_HH is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

SMP\_GO is OFF W1\_ALM is ON W1 GO is ON W2 GO is ON ASB GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF AIR\_LL is OFF W2 ALM is OFF SMPALM is OFF ASBALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 63023435 GAL W2FLO is 24.7 **GPM** TOTAL FLOW is 64073859 GAL LIMITS are H: 30.0 IWC ASBPRS is 10.1IWC IWC L: 5.0 $ext{HP}$   $ext{FLO}$  is 2.46 **GPM** TOTAL FLOW is 703718 GAL PRS is H: 20.0 10.1 PSI LIMITS are  $\mathbf{L}$ : -2.0PSI PSI AMP is 0.00 AMP LIMITS AMP H: AMPare $\mathbf{L}$  : W1 AMP is AMP LIMITS are 0.00 AMP H: 10.00 AMP W2 AMP is AMP LIMITS L: 0.00 AMP H: 10.00 AMP H: 28.00 LIMITS are  $\mathbf{FT}$ W1 LVL is 30.26  $\mathbf{FT}$ L: 8.00  $\mathbf{FT}$ is M5\_TAT 55.81  $\mathbf{FT}$ LIMITS areL:9.00  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ 4.3 $\mathbf{PRS}$ is PSI LIMITS are L:0.5PSI н: 100.0 PSI W2 PRS is H: 100.0 4.7PSI LIMITS are $\mathbf{L}$ : 0.5 PSI PSI INTEMP is 58.6 DEG LIMITS are  $\mathbf{L}$ : 42.0 DEG H: 130.0 DEG

Analog Outputs:

0.0 PCT ASBSPD



## ALARM Fax Report ProControl Series II+

EOS Research Ltd.

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 12:21:00 ON 11/16/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

vstem Status:

LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD P20 :

FAX REPORT INITIATED BY KEYPAD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP ASP\_LO is OFF is ON ASP\_HH is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

SMP\_GO is OFF W1\_ALM is ON W1 GO is ON W2 GO is ON ASB GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF AIR\_LL is OFF W2 ALM is OFF SMPALM is OFF ASBALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 63023435 GAL W2 FLO is 24.1**GPM** TOTAL FLOW is 64073972 GAL LIMITS are H: 30.0 IWC ASBPRS is 10.6 IWC IWC L: 5.0  $ext{HP}$   $ext{FLO}$  is 2.46 **GPM** TOTAL FLOW is 703730 GAL PRS is 9.9H: 20.0 PSI LIMITS are  $\mathbf{L}$ : -2.0 PSI PSI 4.90 AMP is 0.00 AMP LIMITS  $\mathbf{L}$ : AMPH: AMPare4.36 W1 AMP is AMP LIMITS are 0.00 AMP H: 10.00 AMP W2 AMP is 4.57AMP LIMITS are L: 0.00 AMP H: 10.00 AMP H: 28.00 LIMITS are  $\mathbf{FT}$ W1\_LVL is 30.12  $\mathbf{FT}$ L: 8.00  $\mathbf{FT}$  $W2\_LVL$  is 55.74 $\mathbf{FT}$ LIMITS areL:9.00  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ 4.2 $\mathbf{PRS}$ is PSI LIMITS are L:0.5PSI н: 100.0 PSI W2 PRS is H: 100.0 4.6PSI LIMITS are $\mathbf{L}$ : 0.5 PSI PSI INTEMP is 58.9DEG LIMITS are  $\mathbf{L}$ : 42.0 DEG H: 130.0 DEG

Analog Outputs:

0.0 PCT ASBSPD

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/17/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.2 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64099652 GAL ASBPRS is H: 30.0 10.4 LIMITS are IWC IWC  $\mathbf{L}$ : 5.0 IWC TOTAL FLOW is 704329 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.44AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.66AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.65  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.77  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.6 PSI LIMITS are PSI PSI INTEMP is 59.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/18/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 23.8 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64134491 GAL ASBPRS is 10.8 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$ : IWC TOTAL FLOW is 705129 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.38 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.66  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is -55.41 $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 LIMITS are L: 0.5 W2\_PRS is 4.5 PSI PSI PSI INTEMP is 57.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/19/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is ON ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24. **GPM** 63023435 TOTAL FLOW is GAL 24.4 GPM TOTAL FLOW is 64169295 GAL ASBPRS is H: 30.0 10.5 LIMITS are IWC IWC  $\mathbf{L}$ : IWC TOTAL FLOW is 705902 HP FLO is GPM GAL H: 20.0 **HP PRS is 10.1** PSI LIMITS are L: -2.0PSI PSI LIMITS are HP AMP is 5.10 AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.40AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.61 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.38  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.28  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 60.1DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/20/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.3 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64204106 GAL ASBPRS is H: 30.0 10.6 LIMITS are IWC IWC  $\mathbf{L}$ : IWC TOTAL FLOW is 706602 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 4.39 W1\_AMP is AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.42  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.68  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.1PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2\_PRS is 4.5 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 57.1DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/21/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.1 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64238908 GAL ASBPRS is 10.7 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$ : IWC 0.00 TOTAL FLOW is 707411 HP FLO is GPM GAL H: 20.0 HP PRS is 1.3PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.37AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.23  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.30  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 58.2DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/22/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is ON ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 23.9 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64273690 GAL ASBPRS is H: 30.0 11.1 LIMITS are IWC IWC  $\mathbf{L}$ : IWC TOTAL FLOW is 708650 HP FLO is 2.41 GPM GAL 9.9 H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP\_AMP is 4.91LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.36AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.88  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.89  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.6 PSI LIMITS are PSI PSI INTEMP is 52.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/23/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is ON ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 23.9 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64308142 GAL ASBPRS is H: 30.0 11.5 LIMITS are IWC IWC  $\mathbf{L}$ : 5.0 IWC TOTAL FLOW is HP FLO is 2.42 **GPM** 710513 GAL 9.9 H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI 4.87HP\_AMP is LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1\_AMP is 4.37AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.95  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 55.98 9.00 W2 LVL is  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 LIMITS are L: 0.5 W2\_PRS is 4.6 PSI PSI PSI INTEMP is 52.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/24/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 23.7 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64342453 GAL ASBPRS is 10.8 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$ : IWC TOTAL FLOW is 711900 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.37AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.63  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.81  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.6 PSI LIMITS are PSI PSI INTEMP is 53.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/25/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 23.7 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64376722 GAL ASBPRS is 10.5 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : IWC TOTAL FLOW is HP FLO is 0.00 **GPM** 712721 GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.41AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.63AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.35  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.60  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.6 PSI LIMITS are PSI PSI INTEMP is 59.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/26/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 23. **GPM** 63023435 TOTAL FLOW is GAL 23.6 GPM TOTAL FLOW is 64411101 GAL ASBPRS is 10.5 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$ : IWC 713464 TOTAL FLOW is HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.36AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.66  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.81  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.6 PSI LIMITS are PSI PSI INTEMP is 58.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/27/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 23.3 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64445562 GAL ASBPRS is H: 30.0 10.4 LIMITS are IWC IWC  $\mathbf{L}$  : IWC TOTAL FLOW is HP FLO is 0.00 **GPM** 714173 GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.35AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 31.83  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 57.56  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2\_PRS is 4.5 LIMITS are L: 0.5 PSI PSI PSI INTEMP is 57.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/28/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is OFF W2\_CTR is OFF ASBVFD is OFF SMPCTR is OFF SMPCTR is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1\_GO is OFF W2\_GO is OFF ASB\_GO is OFF SMP\_GO is OFF AIR\_HH is OFF ASBALH is OFF ASBALH is OFF W1\_ALM is OFF W2\_ALH is OFF ASBALH is OFF SHPALH is OFF AIR\_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPCO is OFF

Analog Inputs:

W1 FLO is 0.0GPM TOTAL FLOW is 63023435 GAL  $W2^{-}FLO$  is 0.0 TOTAL FLOW is GPM 64451177 GAL ASBPRS is 0.2 H: 30.0LIMITS are IWC IWC  $\mathbf{L}$ : 5.0 IWC 0.00 TOTAL FLOW is 714296 HP FLO is GPM GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP\_AMP is 0.95 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 0.01 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 20.00  $\mathbf{FT}$ LIMITS 0.00 $\mathbf{FT}$ 32.02  $\mathbf{FT}$ are  $\mathbf{L}$ : 9.00 W2 LVL is 58.17  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 0.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2\_PRS 1s 0.0 PST LIMITS are  $T_1: 0.5$ PST PST INTEMP is 56.1DEG LIMITS are L: 42.0DEG H: 130.0DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/28/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is OFF W2\_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

SMP\_GO is OFF W1 GO is OFF W2 GO is OFF ASB\_GO is OFF AIR\_HH is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is OFF W2\_ALM is OFF VFDRUN is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 63023435 GAL W2FLO is 0.0 TOTAL FLOW is 64451177 GPM GAL ASBPRS is 0.2 IWC LIMITS are L: 5.0IWC H: 30.0 IWC HP\_FLO is 0.00 GPM TOTAL FLOW is 714296 GAL HP\_PRS is 1.2 PSI LIMITS are -2.0PSI H: 20.0 PSI  $\mathbf{L}$ : HP\_AMP W1\_AMP is 0.95AMP LIMITS are  $\mathbf{L}$ : 0.00 AMP H: AMP H: 10.00 0.01 0.00 is AMPLIMITS areL:AMPAMPLIMITS H: 10.00 W2 AMP 0.00 0.00 is AMP AMP AMP are L:W1 LVL is  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$ H: 28.00  $\mathbf{FT}$ 32.82 areW2\_LVL 9.00 H: 52.00 is 58.17  $\mathbf{FT}$ LIMITS are $\mathbf{FT}$  $\mathbf{FT}$ H: 100.0 PSI LIMITS 0.5PSI PSI  $W1_PRS$  is 0.0are $\mathbf{L}$ : W2\_PRS 1s 0.0 INTEMP is 56.1 H: 100.0 H: 130.0 0.5 PSI PSI LIMITS are  $\mathbf{L}$ : PSI  $T_1: 42.0$ DEGLITMITS are DEG DEG

Analog Outputs:

JEREMY WYCKOFF

trom

THE NYSDEC CLADDING SYSTEM IN SOUTH OTSELIC NY (∅ 06:00:00 ON 11/29/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is OFF ASBVFD is OFF W2\_CTR is OFF SMPCTR is OFF HP\_OP is OFF ACFAIL is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF E STOP is OFF

Discrete Outputs:

SMP\_GO is OFF W1\_ALM is OFF is OFF W1\_GO is OFF W2 GO ASB\_GO is OFF AIR\_HH is OFF W2\_ALM is OFF ASMPHH 1s OFF ASMPLL is OFF ASBALM is OFF SMPALM is OFF  $AT\overline{R}_{-}LL$  is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1 FLO is 0.0 GPM 63023435 TOTAL FLOW is GAL 64451177 W2 FLO is 0.0 GPM TOTAL FLOW is GAL ASBPRS is 0.2 IWC LIMITS are H: 30.0 IWC  $\mathbf{L}$ : 5.0 IWC 0.00 **GPM** 714296 HP FLO is TOTAL FLOW is GAL HP PRS H: 20.0 PST -2.0PST is LIMITS are PST HP\_AMP 0.94 0.00 is LIMITS are AMPAMP H: AMP $\mathbf{L}$ : W1 AMP is 0.01 AMP LIMITS are 0.00 AMP H: 10.00 AMP  $\mathbf{L}:$ W2 AMP is AMP LIMITS are0.00 AMP H: 10.00 AMP 33.22 8.00  $\mathbf{E}^{*}\mathbf{T}^{*}$ H: 28.00 MT\_TAT LIMITS is  $\mathbf{F}_{\cdot \cdot}\mathbf{T}_{\cdot \cdot}$ are  $\mathbf{F}_{c}\mathbf{T}_{c}$ H: 52.00 H: 100.0 W2\_LVL iε 58.32  $\mathbf{FT}$ LIMITS are 9.00 $\mathbf{FT}$  $\mathbf{FT}$ Τ. • PRS is 0.0 PSI LIMITS are 0.5PSI PSI L:W2 PRS is H: 100.0 0.5 0.0 PSI LIMITS are $\mathbf{L}$ : PSI PSI INTEMP is 58.6DEG LIMITS are 42.0 DEG H: 130.0 DEG  $\mathbf{L}$ :

Analog Outputs:

0.0 PCT MAN ASBSPD

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/29/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVED

Discrete Inputs:

W1\_CTR is OFF W2\_CTR is OFF ASBVED is OFF SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

is OFF SMP\_GO is OFF  $W1_GO$  $W2\_GO$ is OFF ASB\_GO is OFF AIR HH is OFF ASMPHH is OFF W1\_ALM is OFF ASMPLL is OFF SMPALM is OFF W2 ALM is OFF ASBALM is OFF AIR LL is OFF HPMPGO is OFF VFDRUN 1s OFF VFDRST is OFF

Analog Inputs:

**GPM** TOTAL FLOW is 63023435 W1 FLO is 0.0GAL W2FLO is 0.0 **GPM** TOTAL FLOW is 64451177 GAL H: 30.0 ASBPRS is 0.2 IWC IWC LIMITS are L: 5.0IWC GPM HP\_FLO is 0.00 714296 TOTAL FLOW is GAL HP\_PRS HP\_AMP LIMITS are -2.0PSI H: 20.0 PSI is 1.1 PSI L:0.94is AMP LIMITS are 0.00 AMP**H**: AMPW1 AMP H: 10.00 1s0.01 0.00 AMP LIMITS are AMP AMP L:LIMITS are 0.00 H: 10.00 W2 AMP is 0.00AMP AMP AMP T. : 33.22 LIMITS are W1 LVL is  $\mathbf{FT}$ L: 8.00  $\mathbf{FT}$ H: 28.00  $\mathbf{FT}$ W2\_LVL is -58.32  $\mathbf{FT}$ LIMITS are 9.00  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ H: 100.0 H: 100.0 H: 130.0  $W1\_PRS$  is 0.0PSI LIMITS are 0.5PSI PSI ь: W2 PRS is 0.0 PSI LIMITS 0.5 PSI PSI are $\mathbf{L}$  : INTEMP is 58.6 DEG L: 42.0 DEG DEG LIMITS are

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 11/30/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is OFF W2\_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is OFF AIR HH is OFF SMPALM is OFF W2\_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 0.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64451177 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : IWC TOTAL FLOW is 714296 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.95 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1\_AMP is 0.01 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 32.98  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 57.67  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 60.9DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/01/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is OFF W2\_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is OFF AIR HH is OFF SMPALM is OFF W2\_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 0.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64451177 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : IWC TOTAL FLOW is 714296 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.95 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1\_AMP is 0.01 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 33.00  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 57.50  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 59.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/02/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is OFF W2\_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is OFF AIR HH is OFF SMPALM is OFF W2\_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 0.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64451177 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : IWC 0.00 TOTAL FLOW is 714296 HP FLO is GPM GAL H: 20.0 HP PRS is 1.0 PSI LIMITS are L: -2.0PSI PSI HP\_AMP is 0.95 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1\_AMP is 0.01 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 33.06  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 58.07  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 0.0 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 61.4DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/03/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is OFF W2\_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is OFF AIR HH is OFF SMPALM is OFF W2\_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 0.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64451177 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : IWC 0.00 TOTAL FLOW is 714296 HP FLO is GPM GAL H: 20.0 HP PRS is 1.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.95 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1\_AMP is 0.01 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 33.79  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 58.87  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 61.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/04/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is OFF W2\_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO ASB\_GO is OFF SMP\_GO is OFF W1 GO is OFF is OFF AIR HH is OFF ASMPHH is OFF ASMPLL is OFF W1 ALM is OFF W2 ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 63023435 GAL W2 FLO is 0.0 GPM TOTAL FLOW is 64451177 GALH: 30.0 ASBPRS is 0.2 IWC LIMITS are 5.0 IWC IWC  $\mathbf{L}$  : HP FLO is 0.00 **GPM** TOTAL FLOW is 714296 GAL HP PRS is -2.0H: 20.0 PSI PSI LIMITS are PSI HP\_AMP is L: 0.00 AMPLIMITS are AMP H: AMP 0.01 0.00 H: 10.00 W1 AMP is AMP LIMITS areAMP AMP  $\mathbf{L}$ : 0.00 W2 AMP is AMP LIMITS areAMP H: 10.00 AMP H: 28.00 34.22 8.00 W1 LVL is  $\mathbf{FT}$ LIMITS are  $\mathbf{FT}$  $\mathbf{FT}$ H: 52.00 H: 100.0 H: 100.0  $W2\_LVL$  is 58.96  $\mathbf{FT}$ LIMITS are $\mathbf{L}$ : 9.00  $\mathbf{FT}$  $\mathbf{FT}$ W1\_PRS is 0.0 W2\_PRS is 0.0 PSI LIMITS are $\mathbf{L}$ : 0.5PSI PSI PSI LIMITS are $\mathbf{L}$ : 0.5PSI PSI  $IN\overline{T}EMP$  is 58.3H: 130.0 DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/04/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is OFF W2\_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is OFF AIR HH is OFF SMPALM is OFF W2\_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 0.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64451177 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : IWC TOTAL FLOW is 714296 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.94 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1\_AMP is 0.01 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 34.22  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 58.96  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 0.0 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 58.3DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/05/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is OFF W2\_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is OFF AIR HH is OFF SMPALM is OFF W2\_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 0.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64451177 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : IWC TOTAL FLOW is 714296 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.95 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1\_AMP is 0.01 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 33.79  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 58.43  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 55.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:



## ALARM Fax Report <u>ProControl Series II+</u>

EOS Research Ltd.

To:

JEREMY WYCKOFF

From:

SYSTEM IN SOUTH OTSELIC NY @ 14:15:39 ON 12/05/2018 THE NYSDEC GLADDING SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

vstem Status:

LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD P20 :

FAX REPORT INITIATED BY PROCESS 20

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP ASP\_LO is OFF is OFF ASP\_HH is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

SMP\_GO is OFF W1\_ALM is ON W1 GO is ON W2 GO is ON ASB GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF AIR\_LL is OFF W2 ALM is OFF SMPALM is OFF ASBALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 63023435 GAL W2FLO is 24.5 **GPM** TOTAL FLOW is 64451205 GAL LIMITS are H: 30.0 IWC ASBPRS is 10.3 IWC IWC L: 5.0  $ext{HP}$   $ext{FLO}$  is 2.28 **GPM** TOTAL FLOW is 714297 GAL PRS is H: 20.0 10.0 PSI LIMITS are L:-2.0 PSI PSI  $\mathtt{AMP}$  is 4.760.00 AMP LIMITS  $\mathbf{L}$ : AMPH: AMPareW1 AMP is 4.37 AMP LIMITS are 0.00 AMP H: 10.00 AMP  $W2^-AMP$  is AMP LIMITS are L: 0.00 AMP H: 10.00 AMP H: 28.00 LIMITS are  $\mathbf{FT}$ W1\_LVL is 32.16  $\mathbf{FT}$ L: 8.00  $\mathbf{FT}$  $W2\_LVL$  is 56.99  $\mathbf{FT}$ LIMITS areL:9.00  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$  $\mathbf{PRS}$ is 4.3PSI LIMITS are L:0.5PSI н: 100.0 PSI W2 PRS is H: 100.0 4.7 PSI LIMITS are $\mathbf{L}$ : 0.5 PSI PSI INTEMP is 59.9 DEG LIMITS are  $\mathbf{L}$ : 42.0 DEG H: 130.0 DEG

Analog Outputs:

ASBSPD 0.0 PCT

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/06/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.0 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64474117 GAL ASBPRS is H: 30.0 10.9 LIMITS are IWC IWC  $\mathbf{L}$ : IWC 0.00 TOTAL FLOW is 715078 HP FLO is **GPM** GAL H: 20.0 HP PRS is 1.3 PSI LIMITS are L: -2.0PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.38 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 31.78  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 56.86  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.6 PSI LIMITS are PSI PSI INTEMP is 55.9DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/07/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.6 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64509048 GAL ASBPRS is H: 30.0 10.7 LIMITS are IWC IWC  $\mathbf{L}$ : IWC 0.00 TOTAL FLOW is 715935 HP FLO is **GPM** GAL H: 20.0 HP PRS is 1.3 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.34 AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 31.70  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 56.59  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ 4.2 W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.7 PSI LIMITS are PSI PSI INTEMP is 54.6DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/08/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.3 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64544004 GAL  $AS\overline{B}PRS$  is H: 30.0 11.1 LIMITS are IWC IWC  $\mathbf{L}$ : IWC TOTAL FLOW is 716276 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.41AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.61AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 31.62  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 56.50  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ 4.2 W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.7 PSI LIMITS are PSI PSI INTEMP is 50.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/09/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.4 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64578896 GAL ASBPRS is H: 30.0 11.1 LIMITS are IWC IWC  $\mathbf{L}$  : IWC 0.00 TOTAL FLOW is HP FLO is **GPM** 716614 GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.47AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.64AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 31.48  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 56.40  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.6 PSI LIMITS are PSI PSI INTEMP is 52.4DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/10/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.1 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64613651 GAL ASBPRS is 10.7 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC 0.00 TOTAL FLOW is 716983 HP FLO is **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.44AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.63AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 31.03  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 56.04 $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.3PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.7 PSI LIMITS are PSI PSI INTEMP is 52.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/11/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 24.4 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64648419 GAL ASBPRS is H: 30.0 10.8 LIMITS are IWC IWC  $\mathbf{L}$  : IWC TOTAL FLOW is 717320 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.37AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.92  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 55.96 9.00 W2 LVL is  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.6 PSI LIMITS are PSI PSI INTEMP is 52.9DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/12/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 23.3 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64682813 GAL ASBPRS is 10.7 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : IWC TOTAL FLOW is HP FLO is 0.00 **GPM** 717667 GAL H: 20.0 HP PRS is 1.3 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.44AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.76  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.85  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.6 PSI LIMITS are PSI PSI INTEMP is 52.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/13/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 23.1 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64716326 GAL ASBPRS is 10.7 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : IWC 0.00 TOTAL FLOW is 717990 HP FLO is **GPM** GAL H: 20.0 HP PRS is 1.3 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.41AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.87  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.81  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 LIMITS are L: 0.5 W2\_PRS is 4.6 PSI PSI PSI INTEMP is 53.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/14/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 23.4 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64749891 GAL ASBPRS is H: 30.0 10.6 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC TOTAL FLOW is 718304 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.44AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.59AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.95  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 55.72 9.00 W2 LVL is  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areL: 0.5 H: 100.0 W2\_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 54.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/15/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 23.4 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64783452 GAL ASBPRS is 10.7 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC 0.00 TOTAL FLOW is 718584 HP FLO is **GPM** GAL H: 20.0 HP PRS is 1.3 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.44AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.61AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.83  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.79  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.6 PSI LIMITS are PSI PSI INTEMP is 55.6DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/16/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 22.7 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64817006 GAL  $AS\overline{B}PRS$  is 10.7 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : IWC 0.00 TOTAL FLOW is 718787 HP FLO is **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.42AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.58AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.43  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.30  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.1PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2\_PRS is 4.5 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 56.4DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/17/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 23.2 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64850513 GAL ASBPRS is 10.4 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : IWC TOTAL FLOW is 719004 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.45AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.62AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.17  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.30  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 55.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/18/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVED

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVED is ON SMPCTR is OFF HP OP is OFF ASP HH is OFF ASP LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

 W1\_GO
 1s ON
 ASB\_GO
 1s ON
 SMP\_GO
 1s OFF

 AIR\_HH
 is OFF
 ASMPHH
 is OFF
 ASMPHL
 is OFF
 W1\_ALM
 is OFF

 W2\_ALM
 is OFF
 ASBALM
 is OFF
 SMPALM
 is OFF
 AIR\_LL
 is OFF

 VFDRUN
 is OFF
 VFDRST
 is OFF
 HPMPGO
 is ON

Analog Inputs:

Wi\_klO is 0.0 W2\_FLO is 23.2 TOTAL FLOW is TOTAL FLOW is CDM 63023435 CAL CPH 64884050 CAT. ASBPRS is H: 30.0 10.8 IWC LIMITS are IWC IWC  $\mathbf{L}$  : TOTAL FLOW 719933 HP FLO is 0 00 GPM GAL и: 20.0 nr rns 10 1.3 PET2.0 PBT $\Gamma$ ET HP AMP 1s 0.04 AMP LIMITS are 0.00 AMP H: AMP W1 AMP is 4.43 0.00 H: 10.00 AMP LIMITS are AMP AMP W2\_AMP W1\_LVL 1s4.58 AMP LIMITS are 0.00 AMP H: 10.00 AMP  $\mathbf{L}:$ 1s30.62  $\mathbf{FT}$ LIMITS are L:8.00  $\mathbf{FT}$ H: 28.00  $\mathbf{FT}$ W2\_LVL is H: 52.00 55.01  $\mathbf{FT}$  $\mathbf{FT}$ LIMITS 9.00  $\mathbf{FT}$ are  $\mathbf{L}$ : L: 0.5 W1\_PRS is 4.2 PSI H: 100.0 PSI PSI LIMITS areH: 100.0 W2 PRS in 4.6 PRT LIMITS area T.: 0.5 PRT PRT DEG DEG DEG INTEMP is 51.7 LIMITS are L: 42.0H: 130.0

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/18/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1\_GO is ON W2\_GO is ON ASB\_GO is ON SMP\_GO is OFF AIR\_HH is OFF ASMPLL is OFF W1\_ALM is ON W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR\_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 63023435 GAL W2 FLO is 23.2 TOTAL FLOW is 64884050 GPM GAL ASBPRS is 10.8 H: 30.0 IWC LIMITS are 5.0 IWC IWC  $\mathbf{L}$ : 719233 HP FLO is 0.00 GPM TOTAL FLOW is GAL H: 20.0 HP PRS is 1.3 PSI LIMITS are -2.0 PSI PSI HP\_AMP is 0.04AMP LIMITS are 0.00 AMP H: AMP  $\mathbf{L}:$ W1\_AMP W2\_AMP 10.00 4.43AMP LIMITS are0.00 AMP **H**: AMP is L:H: 10.00 0.00 4.58LIMITS is AMPareAMPAMPW1 LVL is LIMITS 30.62  $\mathbf{FT}$ are 8.00  $\mathbf{FT}$ H: 28.00  $\mathbf{FT}$ T.: W2 LVL is  $\mathbf{FT}$ LIMITS 9.00  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ areL: 0.5 H: 100.0 LIMITS PSI PSI PSI W1\_PRS is 4.2 areH: 100.0 H: 130.0 W2\_PRS is 4.6 PSI LIMITS are L: 0.5 PSI PSI INTEMP is 51.7DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/19/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 23.4 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64917522 GAL ASBPRS is 11.0 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : IWC TOTAL FLOW is 719530 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.40AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.35  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.43  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.1PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 50.2DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/20/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 23.3 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 64950985 GAL ASBPRS is 10.7 5.0 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : IWC TOTAL FLOW is 719829 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.40AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.56AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.49  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.72  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 51.9DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/22/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 23.7 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 65018001 GAL ASBPRS is 10.4 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC TOTAL FLOW is 720145 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.45AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.62AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 31.29  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 56.89  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.1PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 57.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/23/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is ON ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 23.4 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 65051656 GAL ASBPRS is 10.7 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC TOTAL FLOW is 720522 HP FLO is 2.46 GPM GAL H: 20.0 **HP PRS is 10.1** PSI LIMITS are L: -2.0PSI PSI LIMITS are HP AMP is 2.04 AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.36AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 31.88  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 56.89  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2\_PRS is 4.6 PSI LIMITS are PSI PSI INTEMP is 54.6DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/24/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 23.4 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 65085146 GAL ASBPRS is H: 30.0 10.6 LIMITS are IWC IWC  $\mathbf{L}$  : 5.0 IWC 721056 TOTAL FLOW is HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.36AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 31.17  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 56.08  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5W2\_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 54.9DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/25/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF ASMPHH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRST is OFF VFDRUN is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 63023435 GAL W2FLO is 23.5 TOTAL FLOW is 65118643 GAL GPM  $AS\overline{B}PRS$  is 10.7 LIMITS are IWC H: 30.0 IWC IWC  $\mathbf{L}$  : HP FLO is 0.00 **GPM** TOTAL FLOW is 721410 GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP\_AMP is 0.04AMP LIMITS are  $\mathbf{L}$ : 0.00 AMP **H**: AMP W1\_AMP W2\_AMP H: 10.00 H: 10.00 is 4.43AMP LIMITS areL:0.00 AMP AMP LIMITS 0.00 is 4.57AMPareAMPAMPLIMITS H: 28.00 W1 LVL is 31.43  $\mathbf{FT}$ 8.00  $\mathbf{FT}$  $\mathbf{FT}$ areT.: W2 LVL is 56.34  $\mathbf{FT}$ LIMITS 9.00  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ areL: 0.5 H: 100.0 LIMITS W1\_PRS is 4.1PSI arePSI PSI  $W2\_PRS$  is 4.5 INTEMP is 53.8 H: 100.0 H: 130.0 LIMITS are L: 0.5 PSI PSI PSI DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/25/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 23.5 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 65118643 GAL ASBPRS is 10.7 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : IWC 721410 TOTAL FLOW is HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.43AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 31.43  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 56.34  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.1PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2\_PRS is 4.5 L: 0.5PSI LIMITS are PSI PSI INTEMP is 53.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/26/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVED

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

ASB\_GO is ON is ON WŽ GO is ON SMP\_GO is OFF W1 ALM is ON ASMPLL is OFF AIR HH is OFF ASMPHH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 22.9 ASBPRS is 10.9 63023435 **GPM** TOTAL FLOW is GAL GPM TOTAL FLOW is 65152157 GAL LIMITS are IWC H: 30.0 IWC IWC  ${f L}$  : 0.00 HP FLO is GPH TOTAL FLOW is 721842 GAL HP PRS is 1.2 LIMITS are L: -2.0 H: 20.0 PSI PSI PSI HP AMP is 0.04 AMP LIMITS are ь: 0.00 AMP H: AMP н: 10.00 4.43 0.00 W1 AMP is LIMITS are AMPAMP AMP W2\_AMP 4.50AMP LIMITS are L:0.00 AMP H: 10.00 AMP 15 W1\_LVL W2\_LVL is 31.18  $\mathbf{FT}$ LIMITS areL:8.00  $\mathbf{FT}$ H: 28.00  $\mathbf{FT}$ 9.00  $\mathbf{FT}$ H: 52.00 is 55.85  $\mathbf{FT}$ LIMITS are  $\mathbf{FT}$ W1 PRS is 4.2 0.5 H: 100.0 PSI LIMITS are  $\mathbf{L}$ : PSI PSI W2 PRS is 4.5 PSI LIMITS are L: 0.5PSI H: 100.0 PSI INTEMP is 52.7DEG L: 42.0 DEG H: 130.0 DEG LIMITS are

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/26/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 22.9 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 65152157 GAL ASBPRS is 10.9 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : IWC 721842 TOTAL FLOW is HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.43AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 31.18  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.85  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5W2\_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 52.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/27/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 23. **GPM** 63023435 TOTAL FLOW is GAL 23.6 GPM TOTAL FLOW is 65185670 GAL ASBPRS is H: 30.0 10.9 LIMITS are IWC IWC  $\mathbf{L}$  : IWC TOTAL FLOW is 722227 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.03 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.39AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 31.51  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 56.15  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5W2\_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 54.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/28/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 23.2 **GPM** 63023435 TOTAL FLOW is GAL 65219192 GPM TOTAL FLOW is GAL ASBPRS is H: 30.0 10.6 LIMITS are IWC IWC  $\mathbf{L}$  : IWC TOTAL FLOW is 722593 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.40AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.56AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 30.67  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 55.43  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.2PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 LIMITS are L: 0.5W2\_PRS is 4.5 PSI PSI PSI INTEMP is 56.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/29/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 23. **GPM** 63023435 TOTAL FLOW is GAL 23.6 GPM TOTAL FLOW is 65252728 GAL ASBPRS is 10.5 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : IWC TOTAL FLOW is 722847 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.44AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis 4.61 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 31.55  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 56.63  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.1PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2\_PRS is 4.5 L: 0.5PSI LIMITS are PSI PSI INTEMP is 56.4DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/30/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20: LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 23.3 **GPM** 63023435 TOTAL FLOW is GAL GPM TOTAL FLOW is 65286321 GAL ASBPRS is 10.8 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : IWC TOTAL FLOW is 723265 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.45AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 31.20  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 56.02  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.1PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5W2\_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 55.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 12/31/2018 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P20 : LAST SHUTDOWN @ 10:13:24 ON 08/15/2018 BY ASBVFD

Discrete Inputs:

W1\_CTR is ON W2\_CTR is ON ASBVFD is ON SMPCTR is OFF HP\_OP is OFF ASP\_HH is OFF ASP\_LO is OFF FLRSMP is OFF ACFAIL is OFF E\_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1\_ALM is ON AIR HH is OFF W2\_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1\_FLO is 0.0 W2\_FLO is 23.4 **GPM** 63023435 TOTAL FLOW is GAL 65319915 GPM TOTAL FLOW is GAL ASBPRS is 10.7 H: 30.0 LIMITS are IWC IWC  $\mathbf{L}$  : IWC 723696 TOTAL FLOW is HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1\_AMP is 4.43AMP LIMITS are0.00 AMP AMP  $\mathbf{L}$ : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1\_LVL is H: 28.00 31.33  $\mathbf{FT}$ LIMITS 8.00  $\mathbf{FT}$  $\mathbf{FT}$ are $\mathbf{L}$ : 9.00 W2 LVL is 56.29  $\mathbf{FT}$ LIMITS are  $\mathbf{L}:$  $\mathbf{FT}$ H: 52.00  $\mathbf{FT}$ W1 PRS is 4.1PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5W2\_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 53.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

## **APPENDIX B**

**O&M Checklists** 

| Gladding Cordage                   |              | Date                            | 10/5/2018   |
|------------------------------------|--------------|---------------------------------|-------------|
| South Otselic, New York            |              | Inspector                       | L. Whalen   |
| NYSDEC Site #709009                |              | Time                            | 14:12:00 PM |
|                                    |              |                                 |             |
| Treatment System Operation         |              | Alarms                          |             |
|                                    | 'es          |                                 | lo          |
|                                    | 'es          | RW-1 (Y/N) Y                    | es          |
| RW-2 On (Y/N)                      | 'es          | RW-2 (Y/N)                      | lo .        |
| Blower On (Y/N)                    | 'es          | Blower Pressure (Y/N)           | lo          |
| Sump Pump On (Y/N)                 | No           | Sump Level (Y/N)                | lo          |
| Recovery Wells                     | RW-1         | RW-2                            |             |
| Flow Rate (GPM)                    | NA           | 24.6                            |             |
| Total Flow (Gallons)               | Not Reported | Not Reported                    |             |
| Water Level (Feet Above Probe)     | 30.82        | 56.36                           |             |
| Probe Depth (Feet BTOC)            | 40.00        | 65.00                           |             |
| Air Stripper                       |              |                                 |             |
| Blower VFD Setting (Hertz)         | 46           | Intake/Exhaust Piping OK? (Y/N) | Yes         |
| System Pressure (inches water)     | 10.0         | Water Leaks (Y/N)               | No          |
| Influent/Effluent Piping OK? (Y/N) | Yes          | Water Temperature (°F)          | 60.9°       |
| Heat Exchanger                     |              |                                 |             |
| Heat (On/Off)                      | Off          | Building Temperature (°F)       | 63°         |
| Heat Exchanger Flow (GPM)          | 0.00         | Heat Exchanger Pressure (PSI)   | 1.2         |
| General Building/Site              |              |                                 |             |
| Building Condition OK? (Y/N)       | Yes          | Circuit Breakers Checked (Y/N)  | Yes         |
| Grass Mowed (Y/N)                  | No           | Outfall Condition OK? (Y/N)     | Yes         |
| Monitoring Wells OK? (Y/N)         | Yes          | Samples Collected (Y/N)         | No          |
| Notes:                             |              |                                 |             |
| Sytem Restart: 1415                |              |                                 |             |
| System Check: 1420                 |              |                                 |             |
|                                    |              |                                 |             |
|                                    |              |                                 |             |
|                                    |              |                                 |             |
|                                    |              |                                 |             |
|                                    |              |                                 |             |
|                                    |              |                                 |             |
|                                    |              |                                 |             |

| Gladding Cordage                                        |              | Date                            | 10/14/2018 |
|---------------------------------------------------------|--------------|---------------------------------|------------|
| South Otselic, New York                                 |              | Inspector                       | L. Whalen  |
| NYSDEC Site #709009                                     |              | Time                            | 12:30      |
| Treatment System Operation                              |              | Alarms                          |            |
| Treatment System Operation System On (Y/N) Y            | es           |                                 | lo         |
|                                                         |              | ` '                             |            |
| - ( · /                                                 | es           |                                 | es         |
|                                                         | es           |                                 | lo .       |
| ` ,                                                     | es           | . ,                             | lo         |
| Sump Pump On (Y/N)                                      | No           | Sump Level (Y/N) N              | lo         |
| Recovery Wells                                          | RW-1         | RW-2                            |            |
| Flow Rate (GPM)                                         | NA           | 24.7                            |            |
| Total Flow (Gallons)                                    | Not Reported | Not Reported                    |            |
| Water Level (Feet Above Probe)                          | 30.43        | 56.04                           |            |
| Probe Depth (Feet BTOC)                                 | 40.00        | 65.00                           |            |
| Air Stripper                                            |              |                                 |            |
| Blower VFD Setting (Hertz)                              | 46           | Intake/Exhaust Piping OK? (Y/N) | Yes        |
| System Pressure (inches water)                          | 10.2         | Water Leaks (Y/N)               | No         |
| Influent/Effluent Piping OK? (Y/N)                      | Yes          | Water Temperature (°F)          | 53.5°      |
| initiative Emiliani i i i i i i i i i i i i i i i i i i |              | valor romporatoro (1)           |            |
| Heat Exchanger                                          |              |                                 |            |
| Heat (On/Off)                                           | On           | Building Temperature (°F)       | 56°        |
| Heat Exchanger Flow (GPM)                               | 2.52         | Heat Exchanger Pressure (PSI)   | 9.9        |
| General Building/Site                                   |              |                                 |            |
| Building Condition OK? (Y/N)                            | Yes          | Circuit Breakers Checked (Y/N)  | Yes        |
| Grass Mowed (Y/N)                                       | No           | Outfall Condition OK? (Y/N)     | Yes        |
| Monitoring Wells OK? (Y/N)                              | Yes          | Samples Collected (Y/N)         | No         |
| Notes:                                                  |              |                                 |            |
| Sytem Restart: 1215                                     |              |                                 |            |
| Turned System Heat on                                   |              |                                 |            |
| System Check: 1230                                      |              |                                 |            |
| Well Field Check: 1240                                  |              |                                 |            |
| 110                                                     |              |                                 |            |
|                                                         |              |                                 |            |
|                                                         |              |                                 |            |
|                                                         |              |                                 |            |
|                                                         |              |                                 |            |
|                                                         |              |                                 |            |
|                                                         |              |                                 |            |
|                                                         |              |                                 |            |

|                                          |                | _                               |               |
|------------------------------------------|----------------|---------------------------------|---------------|
| Gladding Cordage                         |                | Date                            | 10/19/2018    |
| South Otselic, New York                  |                | Inspector                       | L. Whalen     |
| NYSDEC Site #709009                      |                | Time                            | 8:40          |
| Treatment System Operation               |                | Alarms                          |               |
| System On (Y/N) Ye                       | S              | A/C Fail (Y/N)                  | lo            |
| RW-1 On (Y/N)                            | S              | RW-1 (Y/N) Yo                   | <del>es</del> |
| RW-2 On (Y/N) Ye                         | S              | RW-2 (Y/N)                      | lo            |
| Blower On (Y/N) Ye                       | S              | Blower Pressure (Y/N)           | lo            |
| Sump Pump On (Y/N)                       | )              | Sump Level (Y/N)                | 0             |
| Recovery Wells                           | RW-1           | RW-2                            |               |
| Flow Rate (GPM)                          | NA             | 24.5                            |               |
| Total Flow (Gallons)                     | Not Reported   | Not Reported                    |               |
| Water Level (Feet Above Probe)           | 30.49          | <u>55.81</u>                    |               |
| Probe Depth (Feet BTOC)                  | 40.00          | 65.00                           |               |
| Air Stripper                             |                |                                 |               |
| Blower VFD Setting (Hertz)               | 46             | Intake/Exhaust Piping OK? (Y/N) | Yes           |
| System Pressure (inches water)           | 10.7           | Water Leaks (Y/N)               | No            |
| Influent/Effluent Piping OK? (Y/N)       | Yes            | Water Temperature (°F)          | 48.7°         |
| Heat Exchanger                           |                |                                 |               |
| Heat (On/Off)                            | <u>On</u>      | Building Temperature (°F)       | 68°           |
| Heat Exchanger Flow (GPM)                | 0.00           | Heat Exchanger Pressure (PSI)   | 1.4           |
| General Building/Site                    |                |                                 |               |
| Building Condition OK? (Y/N)             | Yes            | Circuit Breakers Checked (Y/N)  | Yes           |
| Grass Mowed (Y/N)                        | Yes            | Outfall Condition OK? (Y/N)     | Yes           |
| Monitoring Wells OK? (Y/N)               | Yes            | Samples Collected (Y/N)         | Yes           |
| Notes:                                   |                |                                 |               |
| Sampled: RW-1 815                        |                |                                 |               |
| RW-1-MS 815                              |                |                                 |               |
| RW-1-MSD 815                             |                |                                 |               |
| RW-2 825                                 |                |                                 |               |
| EFF 46 HZ 830                            |                |                                 |               |
| System Restart: 0645                     |                |                                 |               |
| System Check: 0840                       |                |                                 |               |
| Turned Electric heat on for Winter seaso |                |                                 |               |
| Trimmed brush around building and som    | e small areas. |                                 |               |

| Cladding Cardons                   |              | Dete                            | 44/00/0040 |
|------------------------------------|--------------|---------------------------------|------------|
| Gladding Cordage                   |              | Date                            | 11/26/2018 |
| South Otselic, New York            |              | Inspector                       | L. Whalen  |
| NYSDEC Site #709009                |              | Time                            | 8:30       |
| Treatment System Operation         |              | Alarms                          |            |
|                                    | es           | A/C Fail (Y/N)                  | lo         |
| RW-1 On (Y/N) Y                    | es           | RW-1 (Y/N) Y                    | es         |
| RW-2 On (Y/N)                      | es           | RW-2 (Y/N)                      | lo         |
| Blower On (Y/N)                    | es           | Blower Pressure (Y/N)           | lo         |
| Sump Pump On (Y/N)                 | lo           | Sump Level (Y/N)                | lo         |
| Recovery Wells                     | RW-1         | RW-2                            |            |
| Flow Rate (GPM)                    | NA           | 23.5                            |            |
| Total Flow (Gallons)               | Not Reported | Not Reported                    |            |
| Water Level (Feet Above Probe)     | 30.59        | 55.77                           |            |
| Probe Depth (Feet BTOC)            | 40.00        | 65.00                           |            |
| Air Stripper                       |              |                                 |            |
| Blower VFD Setting (Hertz)         | 46           | Intake/Exhaust Piping OK? (Y/N) | Yes        |
| System Pressure (inches water)     | 10.4         | Water Leaks (Y/N)               | No         |
| Influent/Effluent Piping OK? (Y/N) | Yes          | Water Temperature (°F)          | 58.3°      |
| Heat Exchanger                     |              |                                 |            |
| Heat (On/Off)                      | <u>On</u>    | Building Temperature (°F)       | 69°        |
| Heat Exchanger Flow (GPM)          | 0.00         | Heat Exchanger Pressure (PSI)   | 1.4        |
| General Building/Site              |              |                                 |            |
| Building Condition OK? (Y/N)       | Yes          | Circuit Breakers Checked (Y/N)  | Yes        |
| Grass Mowed (Y/N)                  | No           | Outfall Condition OK? (Y/N)     | Yes        |
| Monitoring Wells OK? (Y/N)         | <u>Yes</u>   | Samples Collected (Y/N)         | Yes        |
| Notes:                             |              |                                 |            |
| Sampled: RW-1 800                  |              |                                 |            |
| RW-1-MS 800                        |              |                                 |            |
| RW-1-MSD 800                       |              |                                 |            |
| RW-2 810                           |              |                                 |            |
| EFF 46 HZ 815                      |              |                                 |            |
| System Check: 0830                 |              |                                 |            |
| Well Field Check: 0850             |              |                                 |            |
|                                    |              |                                 |            |

| Gladding Cordage                   |              | Date                                    | 12/5/2018 |
|------------------------------------|--------------|-----------------------------------------|-----------|
| South Otselic, New York            |              | Inspector                               | L. Whalen |
| NYSDEC Site #709009                |              | Time                                    | 13:50     |
| Treatment System Operation         |              | Alarms                                  |           |
|                                    | 'es          | A/C Fail (Y/N)                          | lo        |
|                                    | es es        | RW-1 $(Y/N)$ Y                          | es        |
|                                    | es es        |                                         | lo .      |
|                                    | es es        | ` '                                     | lo        |
|                                    | No           | • • • • • • • • • • • • • • • • • • • • | lo        |
| Recovery Wells                     | RW-1         | RW-2                                    |           |
| Flow Rate (GPM)                    | NA           | 24.6                                    |           |
| Total Flow (Gallons)               | Not Reported | Not Reported                            |           |
| Water Level (Feet Above Probe)     | 32.03        | 56.93                                   |           |
| Probe Depth (Feet BTOC)            | 40.00        | 65.00                                   |           |
| Air Stripper                       |              |                                         |           |
| Blower VFD Setting (Hertz)         | 46           | Intake/Exhaust Piping OK? (Y/N)         | Yes       |
| System Pressure (inches water)     | 10.6         | Water Leaks (Y/N)                       | No        |
| Influent/Effluent Piping OK? (Y/N) | Yes          | Water Temperature (°F)                  | 50°       |
| Heat Exchanger                     |              |                                         |           |
| Heat (On/Off)                      | <u>On</u>    | Building Temperature (°F)               | 63.2      |
| Heat Exchanger Flow (GPM)          | 2.41         | Heat Exchanger Pressure (PSI)           | 10        |
| General Building/Site              |              |                                         |           |
| Building Condition OK? (Y/N)       | Yes          | Circuit Breakers Checked (Y/N)          | Yes       |
| Grass Mowed (Y/N)                  | No           | Outfall Condition OK? (Y/N)             | Yes       |
| Monitoring Wells OK? (Y/N)         | Yes          | Samples Collected (Y/N)                 | No        |
| Notes:                             |              |                                         |           |
| System Restart: 1330               |              |                                         |           |
| Well Field Check: 1340             |              |                                         |           |
| System Check: 1350                 |              |                                         |           |
|                                    |              |                                         |           |
|                                    |              |                                         |           |
|                                    |              |                                         |           |
|                                    |              |                                         |           |
|                                    |              |                                         |           |
|                                    |              |                                         |           |
|                                    |              |                                         |           |
|                                    |              |                                         |           |
|                                    |              |                                         |           |

| Gladding Cordage                    |              | Date                            | 12/16/2018 |
|-------------------------------------|--------------|---------------------------------|------------|
| South Otselic, New York             |              | Inspector                       | L. Whalen  |
| NYSDEC Site #709009                 |              | Time                            | 16:50      |
|                                     |              |                                 |            |
| Treatment System Operation          |              | Alarms                          |            |
| System On (Y/N)                     | Yes          | A/C Fail (Y/N)                  | <u>lo</u>  |
| RW-1 On (Y/N)                       | Yes          | RW-1 (Y/N) Y                    | es         |
| RW-2 On (Y/N)                       | Yes          | ( ' /                           | lo         |
| Blower On (Y/N)                     | Yes          | Blower Pressure (Y/N)           | lo         |
| Sump Pump On (Y/N)                  | No           | Sump Level (Y/N)                | lo         |
| Recovery Wells                      | RW-1         | RW-2                            |            |
| Flow Rate (GPM)                     | NA           | 23.7                            |            |
| Total Flow (Gallons)                | Not Reported | Not Reported                    |            |
| Water Level (Feet Above Probe)      | 30.33        | 55.28                           |            |
| Probe Depth (Feet BTOC)             | 40.00        | 65.00                           |            |
| Air Stripper                        |              |                                 |            |
| Blower VFD Setting (Hertz)          | 46           | Intake/Exhaust Piping OK? (Y/N) | Yes        |
| System Pressure (inches water)      | 10.5         | Water Leaks (Y/N)               | No         |
| Influent/Effluent Piping OK? (Y/N)  | Yes          | Water Temperature (°F)          | 51.6°      |
| Heat Exchanger                      |              |                                 |            |
| Heat (On/Off)                       | <u>On</u>    | Building Temperature (°F)       | 69.2°      |
| Heat Exchanger Flow (GPM)           | 2.49         | Heat Exchanger Pressure (PSI)   | 10.2       |
| General Building/Site               |              |                                 |            |
| Building Condition OK? (Y/N)        | Yes          | Circuit Breakers Checked (Y/N)  | Yes        |
| Grass Mowed (Y/N)                   | No           | Outfall Condition OK? (Y/N)     | Yes        |
| Monitoring Wells OK? (Y/N)          | Yes          | Samples Collected (Y/N)         | Yes        |
| Notes:                              |              |                                 |            |
| Sampled: RW-1 -                     | 1600         |                                 |            |
| RW-1-MS -                           | 1600         |                                 |            |
| RW-1-MSD -                          | 1600         |                                 |            |
| RW-2 -                              | 1610         |                                 |            |
| EFF 46 HZ -                         | 1615         |                                 |            |
| Site walk and well inspection: 1625 |              |                                 |            |
| System inspection: 1650             |              |                                 |            |
|                                     |              |                                 |            |
|                                     |              |                                 |            |

# APPENDIX C Analytical Reporting Forms



October 29, 2018

Jeremy Wyckoff Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210 Clifton Park, NY 12065

Project Location: South Otselic

Client Job Number:

Project Number: 00266406.0000

Laboratory Work Order Number: 18J1037

Enclosed are results of analyses for samples received by the laboratory on October 20, 2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Aaron L. Benoit Project Manager

### Table of Contents

| Sample Summary                      | 3  |
|-------------------------------------|----|
| Case Narrative                      | 4  |
| Sample Results                      | 5  |
| 18J1037-01                          | 5  |
| 18J1037-02                          | 6  |
| 18J1037-03                          | 7  |
| 18J1037-04                          | 8  |
| Sample Preparation Information      | 9  |
| QC Data                             | 10 |
| Volatile Organic Compounds by GC/MS | 10 |
| B215779                             | 10 |
| Flag/Qualifier Summary              | 13 |
| Certifications                      | 14 |
| Chain of Custody/Sample Receipt     | 16 |



Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210

Clifton Park, NY 12065 ATTN: Jeremy Wyckoff PURCHASE ORDER NUMBER:

REPORT DATE: 10/29/2018

PROJECT NUMBER: 00266406.0000

#### ANALYTICAL SUMMARY

WORK ORDER NUMBER: 18J1037

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: South Otselic

| FIELD SAMPLE # | LAB ID:    | MATRIX           | SAMPLE DESCRIPTION | TEST      | SUB LAB |
|----------------|------------|------------------|--------------------|-----------|---------|
| RW-1 (MS/MSD)  | 18J1037-01 | Ground Water     |                    | EPA 624.1 |         |
| RW-2           | 18J1037-02 | Ground Water     |                    | EPA 624.1 |         |
| EFF 46 HZ      | 18J1037-03 | Ground Water     |                    | EPA 624.1 |         |
| TRIP BLANK     | 18J1037-04 | Trip Blank Water |                    | EPA 624.1 |         |



#### CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Project Manager



Project Location: South Otselic Sample Description: Work Order: 18J1037

Date Received: 10/20/2018

Field Sample #: RW-1 (MS/MSD)

Sampled: 10/19/2018 08:15

Sample ID: 18J1037-01
Sample Matrix: Ground Water

| Volatile | Organic | Compounds | by | GC/MS |  |
|----------|---------|-----------|----|-------|--|
|          |         |           |    |       |  |

| Analyte                           | Results | RL  | DL   | Units     | Dilution | Flag/Qual | Method    | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-----------------------------------|---------|-----|------|-----------|----------|-----------|-----------|------------------|-----------------------|---------|
| Benzene                           | ND      | 1.0 | 0.34 | μg/L      | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| Bromodichloromethane              | ND      | 2.0 | 0.48 | μg/L      | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| Bromoform                         | ND      | 2.0 | 0.28 | μg/L      | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| Bromomethane                      | ND      | 2.0 | 0.44 | μg/L      | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| Carbon Tetrachloride              | ND      | 2.0 | 0.39 | μg/L      | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| Chlorobenzene                     | ND      | 2.0 | 0.30 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| Chlorodibromomethane              | ND      | 2.0 | 0.27 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| Chloroethane                      | ND      | 2.0 | 0.38 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| Chloroform                        | ND      | 2.0 | 0.33 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| Chloromethane                     | ND      | 2.0 | 0.30 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| 1,2-Dichlorobenzene               | ND      | 2.0 | 0.31 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| 1,3-Dichlorobenzene               | ND      | 2.0 | 0.33 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| 1,4-Dichlorobenzene               | ND      | 2.0 | 0.39 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| 1,2-Dichloroethane                | ND      | 2.0 | 0.28 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| 1,1-Dichloroethane                | 1.7     | 2.0 | 0.33 | $\mu g/L$ | 1        | J         | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| 1,1-Dichloroethylene              | 1.0     | 2.0 | 0.25 | $\mu g/L$ | 1        | J         | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| trans-1,2-Dichloroethylene        | ND      | 2.0 | 0.40 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| 1,2-Dichloropropane               | ND      | 2.0 | 0.31 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| cis-1,3-Dichloropropene           | ND      | 2.0 | 0.47 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| trans-1,3-Dichloropropene         | ND      | 2.0 | 0.37 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| Ethylbenzene                      | ND      | 2.0 | 0.37 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| Methyl tert-Butyl Ether (MTBE)    | ND      | 2.0 | 0.24 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| Methylene Chloride                | ND      | 5.0 | 0.42 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| 1,1,2,2-Tetrachloroethane         | ND      | 2.0 | 0.27 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| Tetrachloroethylene               | ND      | 2.0 | 0.32 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| Toluene                           | ND      | 1.0 | 0.35 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| 1,1,1-Trichloroethane             | 43      | 2.0 | 0.25 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| 1,1,2-Trichloroethane             | ND      | 2.0 | 0.22 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| Trichloroethylene                 | ND      | 2.0 | 0.41 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| Trichlorofluoromethane (Freon 11) | ND      | 2.0 | 0.27 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| Vinyl Chloride                    | ND      | 2.0 | 0.30 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| m+p Xylene                        | ND      | 2.0 | 0.65 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |
| o-Xylene                          | ND      | 2.0 | 0.35 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18         | 10/27/18 11:17        | LBD     |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |                |
|-----------------------|------------|-----------------|-----------|----------------|
| 1,2-Dichloroethane-d4 | 101        | 70-130          |           | 10/27/18 11:17 |
| Toluene-d8            | 99.9       | 70-130          |           | 10/27/18 11:17 |
| 4-Bromofluorobenzene  | 101        | 70-130          |           | 10/27/18 11:17 |



Sample Description: Work Order: 18J1037

Project Location: South Otselic Date Received: 10/20/2018 Field Sample #: RW-2

Sampled: 10/19/2018 08:25

Sample ID: 18J1037-02
Sample Matrix: Ground Water

#### Volatile Organic Compounds by GC/MS

|                                   |         |     | Volutile | organic co. | inpounds by C | ·C/1/15   |           |          |                |         |
|-----------------------------------|---------|-----|----------|-------------|---------------|-----------|-----------|----------|----------------|---------|
|                                   |         |     |          |             |               |           |           | Date     | Date/Time      |         |
| Analyte                           | Results | RL  | DL       | Units       | Dilution      | Flag/Qual | Method    | Prepared | Analyzed       | Analyst |
| Benzene                           | ND      | 1.0 | 0.34     | $\mu g/L$   | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| Bromodichloromethane              | ND      | 2.0 | 0.48     | μg/L        | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| Bromoform                         | ND      | 2.0 | 0.28     | μg/L        | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| Bromomethane                      | ND      | 2.0 | 0.44     | $\mu g/L$   | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| Carbon Tetrachloride              | ND      | 2.0 | 0.39     | $\mu g/L$   | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| Chlorobenzene                     | ND      | 2.0 | 0.30     | $\mu g/L$   | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| Chlorodibromomethane              | ND      | 2.0 | 0.27     | $\mu g/L$   | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| Chloroethane                      | ND      | 2.0 | 0.38     | $\mu g/L$   | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| Chloroform                        | ND      | 2.0 | 0.33     | $\mu g/L$   | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| Chloromethane                     | ND      | 2.0 | 0.30     | $\mu g/L$   | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| 1,2-Dichlorobenzene               | ND      | 2.0 | 0.31     | $\mu g/L$   | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| 1,3-Dichlorobenzene               | ND      | 2.0 | 0.33     | $\mu g/L$   | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| 1,4-Dichlorobenzene               | ND      | 2.0 | 0.39     | $\mu g/L$   | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| 1,2-Dichloroethane                | ND      | 2.0 | 0.28     | $\mu g/L$   | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| 1,1-Dichloroethane                | 0.89    | 2.0 | 0.33     | $\mu g/L$   | 1             | J         | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| 1,1-Dichloroethylene              | 0.85    | 2.0 | 0.25     | $\mu g/L$   | 1             | J         | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| trans-1,2-Dichloroethylene        | ND      | 2.0 | 0.40     | μg/L        | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| 1,2-Dichloropropane               | ND      | 2.0 | 0.31     | μg/L        | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| cis-1,3-Dichloropropene           | ND      | 2.0 | 0.47     | μg/L        | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| trans-1,3-Dichloropropene         | ND      | 2.0 | 0.37     | μg/L        | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| Ethylbenzene                      | ND      | 2.0 | 0.37     | μg/L        | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| Methyl tert-Butyl Ether (MTBE)    | ND      | 2.0 | 0.24     | μg/L        | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| Methylene Chloride                | ND      | 5.0 | 0.42     | μg/L        | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| 1,1,2,2-Tetrachloroethane         | ND      | 2.0 | 0.27     | μg/L        | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| Tetrachloroethylene               | ND      | 2.0 | 0.32     | μg/L        | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| Toluene                           | ND      | 1.0 | 0.35     | μg/L        | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| 1,1,1-Trichloroethane             | 37      | 2.0 | 0.25     | μg/L        | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| 1,1,2-Trichloroethane             | ND      | 2.0 | 0.22     | μg/L        | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| Trichloroethylene                 | ND      | 2.0 | 0.41     | μg/L        | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| Trichlorofluoromethane (Freon 11) | ND      | 2.0 | 0.27     | μg/L        | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| Vinyl Chloride                    | ND      | 2.0 | 0.30     | μg/L        | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| m+p Xylene                        | ND      | 2.0 | 0.65     | μg/L        | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
| o-Xylene                          | ND      | 2.0 | 0.35     | μg/L        | 1             |           | EPA 624.1 | 10/26/18 | 10/27/18 11:48 | LBD     |
|                                   |         |     |          |             |               |           |           |          |                |         |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |                |
|-----------------------|------------|-----------------|-----------|----------------|
| 1,2-Dichloroethane-d4 | 101        | 70-130          |           | 10/27/18 11:48 |
| Toluene-d8            | 101        | 70-130          |           | 10/27/18 11:48 |
| 4-Bromofluorobenzene  | 100        | 70-130          |           | 10/27/18 11:48 |



Project Location: South Otselic Sample Description: Work Order: 18J1037

Date Received: 10/20/2018

Field Sample #: EFF 46 HZ

Sampled: 10/19/2018 08:30

Sample ID: 18J1037-03
Sample Matrix: Ground Water

| Volatile Organic ( | Compounds by | GC/MS |
|--------------------|--------------|-------|
|--------------------|--------------|-------|

|                                   |         |     |      |           |          |           |           | Date     | Date/Time      |         |
|-----------------------------------|---------|-----|------|-----------|----------|-----------|-----------|----------|----------------|---------|
| Analyte                           | Results | RL  | DL   | Units     | Dilution | Flag/Qual | Method    | Prepared | Analyzed       | Analyst |
| Benzene                           | ND      | 1.0 | 0.34 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| Bromodichloromethane              | ND      | 2.0 | 0.48 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| Bromoform                         | ND      | 2.0 | 0.28 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| Bromomethane                      | ND      | 2.0 | 0.44 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| Carbon Tetrachloride              | ND      | 2.0 | 0.39 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| Chlorobenzene                     | ND      | 2.0 | 0.30 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| Chlorodibromomethane              | ND      | 2.0 | 0.27 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| Chloroethane                      | ND      | 2.0 | 0.38 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| Chloroform                        | ND      | 2.0 | 0.33 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| Chloromethane                     | ND      | 2.0 | 0.30 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| 1,2-Dichlorobenzene               | ND      | 2.0 | 0.31 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| 1,3-Dichlorobenzene               | ND      | 2.0 | 0.33 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| 1,4-Dichlorobenzene               | ND      | 2.0 | 0.39 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| 1,2-Dichloroethane                | ND      | 2.0 | 0.28 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| 1,1-Dichloroethane                | ND      | 2.0 | 0.33 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| 1,1-Dichloroethylene              | ND      | 2.0 | 0.25 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| trans-1,2-Dichloroethylene        | ND      | 2.0 | 0.40 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| 1,2-Dichloropropane               | ND      | 2.0 | 0.31 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| cis-1,3-Dichloropropene           | ND      | 2.0 | 0.47 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| trans-1,3-Dichloropropene         | ND      | 2.0 | 0.37 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| Ethylbenzene                      | ND      | 2.0 | 0.37 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| Methyl tert-Butyl Ether (MTBE)    | ND      | 2.0 | 0.24 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| Methylene Chloride                | ND      | 5.0 | 0.42 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| 1,1,2,2-Tetrachloroethane         | ND      | 2.0 | 0.27 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| Tetrachloroethylene               | ND      | 2.0 | 0.32 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| Toluene                           | ND      | 1.0 | 0.35 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| 1,1,1-Trichloroethane             | ND      | 2.0 | 0.25 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| 1,1,2-Trichloroethane             | ND      | 2.0 | 0.22 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| Trichloroethylene                 | ND      | 2.0 | 0.41 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| Trichlorofluoromethane (Freon 11) | ND      | 2.0 | 0.27 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| Vinyl Chloride                    | ND      | 2.0 | 0.30 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| m+p Xylene                        | ND      | 2.0 | 0.65 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |
| o-Xylene                          | ND      | 2.0 | 0.35 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:46 | LBD     |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |                |
|-----------------------|------------|-----------------|-----------|----------------|
| 1,2-Dichloroethane-d4 | 100        | 70-130          |           | 10/27/18 10:46 |
| Toluene-d8            | 99.1       | 70-130          |           | 10/27/18 10:46 |
| 4-Bromofluorobenzene  | 99.0       | 70-130          |           | 10/27/18 10:46 |



Project Location: South Otselic Sample Description: Work Order: 18J1037

Date Received: 10/20/2018

Field Sample #: TRIP BLANK

Sampled: 10/19/2018 00:00

Sample ID: 18J1037-04
Sample Matrix: Trip Blank Water

|                                   |         |     |      |           |          |           |           | Date     | Date/Time      |         |
|-----------------------------------|---------|-----|------|-----------|----------|-----------|-----------|----------|----------------|---------|
| Analyte                           | Results | RL  | DL   | Units     | Dilution | Flag/Qual | Method    | Prepared | Analyzed       | Analyst |
| Benzene                           | ND      | 1.0 | 0.34 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| Bromodichloromethane              | ND      | 2.0 | 0.48 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| Bromoform                         | ND      | 2.0 | 0.28 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| Bromomethane                      | ND      | 2.0 | 0.44 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| Carbon Tetrachloride              | ND      | 2.0 | 0.39 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| Chlorobenzene                     | ND      | 2.0 | 0.30 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| Chlorodibromomethane              | ND      | 2.0 | 0.27 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| Chloroethane                      | ND      | 2.0 | 0.38 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| Chloroform                        | ND      | 2.0 | 0.33 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| Chloromethane                     | ND      | 2.0 | 0.30 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| 1,2-Dichlorobenzene               | ND      | 2.0 | 0.31 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| 1,3-Dichlorobenzene               | ND      | 2.0 | 0.33 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| 1,4-Dichlorobenzene               | ND      | 2.0 | 0.39 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| 1,2-Dichloroethane                | ND      | 2.0 | 0.28 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| 1,1-Dichloroethane                | ND      | 2.0 | 0.33 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| 1,1-Dichloroethylene              | ND      | 2.0 | 0.25 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| trans-1,2-Dichloroethylene        | ND      | 2.0 | 0.40 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| 1,2-Dichloropropane               | ND      | 2.0 | 0.31 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| cis-1,3-Dichloropropene           | ND      | 2.0 | 0.47 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| trans-1,3-Dichloropropene         | ND      | 2.0 | 0.37 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| Ethylbenzene                      | ND      | 2.0 | 0.37 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| Methyl tert-Butyl Ether (MTBE)    | ND      | 2.0 | 0.24 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| Methylene Chloride                | 1.1     | 5.0 | 0.42 | μg/L      | 1        | J         | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| 1,1,2,2-Tetrachloroethane         | ND      | 2.0 | 0.27 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| Tetrachloroethylene               | ND      | 2.0 | 0.32 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| Toluene                           | ND      | 1.0 | 0.35 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| 1,1,1-Trichloroethane             | ND      | 2.0 | 0.25 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| 1,1,2-Trichloroethane             | ND      | 2.0 | 0.22 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| Trichloroethylene                 | ND      | 2.0 | 0.41 | μg/L      | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| Trichlorofluoromethane (Freon 11) | ND      | 2.0 | 0.27 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| Vinyl Chloride                    | ND      | 2.0 | 0.30 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| m+p Xylene                        | ND      | 2.0 | 0.65 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |
| o-Xylene                          | ND      | 2.0 | 0.35 | $\mu g/L$ | 1        |           | EPA 624.1 | 10/26/18 | 10/27/18 10:16 | LBD     |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |                |
|-----------------------|------------|-----------------|-----------|----------------|
| 1,2-Dichloroethane-d4 | 102        | 70-130          |           | 10/27/18 10:16 |
| Toluene-d8            | 100        | 70-130          |           | 10/27/18 10:16 |
| 4-Bromofluorobenzene  | 101        | 70-130          |           | 10/27/18 10:16 |



# Sample Extraction Data

# Prep Method: SW-846 5030B-EPA 624.1

| Lab Number [Field ID]      | Batch   | Initial [mL] | Final [mL] | Date     |
|----------------------------|---------|--------------|------------|----------|
| 18J1037-01 [RW-1 (MS/MSD)] | B215779 | 5            | 5.00       | 10/26/18 |
| 18J1037-02 [RW-2]          | B215779 | 5            | 5.00       | 10/26/18 |
| 18J1037-03 [EFF 46 HZ]     | B215779 | 5            | 5.00       | 10/26/18 |
| 18J1037-04 [TRIP BLANK]    | B215779 | 5            | 5.00       | 10/26/18 |

%REC

RPD



## 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

#### QUALITY CONTROL

Spike

Source

## Volatile Organic Compounds by GC/MS - Quality Control

Reporting

| Analyte                           | Result | Limit | Units             | Level        | Result       | %REC         | Limits | RPD | Limit    | Notes |
|-----------------------------------|--------|-------|-------------------|--------------|--------------|--------------|--------|-----|----------|-------|
| Batch B215779 - SW-846 5030B      |        |       |                   |              |              |              |        |     | <u> </u> |       |
| Blank (B215779-BLK1)              |        |       |                   | Prepared: 10 | )/26/18 Anal | yzed: 10/27/ | 18     |     |          |       |
| Benzene                           | ND     | 1.0   | μg/L              |              |              |              |        |     |          |       |
| Bromodichloromethane              | ND     | 2.0   | $\mu \text{g/L}$  |              |              |              |        |     |          |       |
| Bromoform                         | ND     | 2.0   | $\mu g/L$         |              |              |              |        |     |          |       |
| Bromomethane                      | ND     | 2.0   | $\mu \text{g/L}$  |              |              |              |        |     |          |       |
| Carbon Tetrachloride              | ND     | 2.0   | μg/L              |              |              |              |        |     |          |       |
| Chlorobenzene                     | ND     | 2.0   | $\mu g \! / \! L$ |              |              |              |        |     |          |       |
| Chlorodibromomethane              | ND     | 2.0   | $\mu \text{g/L}$  |              |              |              |        |     |          |       |
| Chloroethane                      | ND     | 2.0   | μg/L              |              |              |              |        |     |          |       |
| Chloroform                        | ND     | 2.0   | μg/L              |              |              |              |        |     |          |       |
| Chloromethane                     | ND     | 2.0   | μg/L              |              |              |              |        |     |          |       |
| 1,2-Dichlorobenzene               | ND     | 2.0   | μg/L              |              |              |              |        |     |          |       |
| 1,3-Dichlorobenzene               | ND     | 2.0   | μg/L              |              |              |              |        |     |          |       |
| 1,4-Dichlorobenzene               | ND     | 2.0   | μg/L              |              |              |              |        |     |          |       |
| 1,2-Dichloroethane                | ND     | 2.0   | μg/L              |              |              |              |        |     |          |       |
| 1,1-Dichloroethane                | ND     | 2.0   | μg/L              |              |              |              |        |     |          |       |
| 1,1-Dichloroethylene              | ND     | 2.0   | μg/L              |              |              |              |        |     |          |       |
| trans-1,2-Dichloroethylene        | ND     | 2.0   | μg/L              |              |              |              |        |     |          |       |
| 1,2-Dichloropropane               | ND     | 2.0   | μg/L              |              |              |              |        |     |          |       |
| cis-1,3-Dichloropropene           | ND     | 2.0   | μg/L              |              |              |              |        |     |          |       |
| trans-1,3-Dichloropropene         | ND     | 2.0   | μg/L              |              |              |              |        |     |          |       |
| Ethylbenzene                      | ND     | 2.0   | μg/L              |              |              |              |        |     |          |       |
| Methyl tert-Butyl Ether (MTBE)    | ND     | 2.0   | μg/L              |              |              |              |        |     |          |       |
| Methylene Chloride                | ND     | 5.0   | μg/L              |              |              |              |        |     |          |       |
| 1,1,2,2-Tetrachloroethane         | ND     | 2.0   | μg/L              |              |              |              |        |     |          |       |
| Tetrachloroethylene               | ND     | 2.0   | μg/L              |              |              |              |        |     |          |       |
| Toluene                           | ND     | 1.0   | μg/L              |              |              |              |        |     |          |       |
| 1,1,1-Trichloroethane             | ND     | 2.0   | μg/L              |              |              |              |        |     |          |       |
| 1,1,2-Trichloroethane             | ND     | 2.0   | μg/L              |              |              |              |        |     |          |       |
| Trichloroethylene                 | ND     | 2.0   | μg/L              |              |              |              |        |     |          |       |
| Trichlorofluoromethane (Freon 11) | ND     | 2.0   | μg/L              |              |              |              |        |     |          |       |
| Vinyl Chloride                    | ND     | 2.0   | μg/L              |              |              |              |        |     |          |       |
| m+p Xylene                        | ND     | 2.0   | μg/L              |              |              |              |        |     |          |       |
| o-Xylene                          | ND     | 2.0   | μg/L              |              |              |              |        |     |          |       |
| Surrogate: 1,2-Dichloroethane-d4  | 25.3   |       | μg/L              | 25.0         |              | 101          | 70-130 |     |          |       |
| Surrogate: Toluene-d8             | 25.0   |       | μg/L              | 25.0         |              | 99.8         | 70-130 |     |          |       |
| Surrogate: 4-Bromofluorobenzene   | 25.3   |       | $\mu g/L$         | 25.0         |              | 101          | 70-130 |     |          |       |
| LCS (B215779-BS1)                 |        |       |                   | Prepared: 10 | 0/26/18 Anal | yzed: 10/27/ | 18     |     |          |       |
| Benzene                           | 19.6   | 1.0   | $\mu g \! / \! L$ | 20.0         |              | 98.0         | 65-135 |     |          |       |
| Bromodichloromethane              | 19.8   | 2.0   | $\mu g \! / \! L$ | 20.0         |              | 99.1         | 65-135 |     |          |       |
| Bromoform                         | 20.0   | 2.0   | μg/L              | 20.0         |              | 99.9         | 70-130 |     |          |       |
| Bromomethane                      | 20.2   | 2.0   | μg/L              | 20.0         |              | 101          | 15-185 |     |          |       |
| Carbon Tetrachloride              | 20.6   | 2.0   | μg/L              | 20.0         |              | 103          | 70-130 |     |          |       |
| Chlorobenzene                     | 19.9   | 2.0   | μg/L              | 20.0         |              | 99.5         | 65-135 |     |          |       |
| Chlorodibromomethane              | 21.6   | 2.0   | μg/L              | 20.0         |              | 108          | 70-135 |     |          |       |
| Chloroethane                      | 17.7   | 2.0   | μg/L              | 20.0         |              | 88.6         | 40-160 |     |          |       |
| Chloroform                        | 19.3   | 2.0   | μg/L              | 20.0         |              | 96.6         | 70-135 |     |          |       |
| Chloromethane                     | 17.8   | 2.0   | μg/L              | 20.0         |              | 89.0         | 20-205 |     |          |       |
| 1,2-Dichlorobenzene               | 19.9   | 2.0   | μg/L              | 20.0         |              | 99.6         | 65-135 |     |          |       |
| 1,3-Dichlorobenzene               | 20.1   | 2.0   | μg/L              | 20.0         |              | 101          | 70-130 |     |          |       |
| 1,4-Dichlorobenzene               | 19.7   | 2.0   | $\mu g \! / \! L$ | 20.0         |              | 98.4         | 65-135 |     |          |       |
| 1,2-Dichloroethane                | 20.5   | 2.0   | μg/L              | 20.0         |              | 103          | 70-130 |     |          |       |



#### QUALITY CONTROL

## Volatile Organic Compounds by GC/MS - Quality Control

| Analyte                           | Result | Reporting<br>Limit | Units            | Spike<br>Level       | Source<br>Result | %REC              | %REC<br>Limits             | RPD | RPD<br>Limit | Notes |
|-----------------------------------|--------|--------------------|------------------|----------------------|------------------|-------------------|----------------------------|-----|--------------|-------|
| Batch B215779 - SW-846 5030B      |        |                    |                  |                      |                  |                   |                            |     |              |       |
| LCS (B215779-BS1)                 |        |                    |                  | Prepared: 10         | 0/26/18 Analyz   | zed: 10/27/       | 18                         |     |              |       |
| 1,1-Dichloroethane                | 20.1   | 2.0                | μg/L             | 20.0                 |                  | 101               | 70-130                     |     |              |       |
| 1,1-Dichloroethylene              | 19.1   | 2.0                | $\mu g/L$        | 20.0                 |                  | 95.7              | 50-150                     |     |              |       |
| trans-1,2-Dichloroethylene        | 20.0   | 2.0                | $\mu \text{g/L}$ | 20.0                 |                  | 100               | 70-130                     |     |              |       |
| 1,2-Dichloropropane               | 19.7   | 2.0                | $\mu \text{g/L}$ | 20.0                 |                  | 98.5              | 35-165                     |     |              |       |
| cis-1,3-Dichloropropene           | 19.4   | 2.0                | $\mu \text{g/L}$ | 20.0                 |                  | 97.0              | 25-175                     |     |              |       |
| trans-1,3-Dichloropropene         | 19.9   | 2.0                | $\mu g/L$        | 20.0                 |                  | 99.6              | 50-150                     |     |              |       |
| Ethylbenzene                      | 19.3   | 2.0                | $\mu g/L$        | 20.0                 |                  | 96.5              | 60-140                     |     |              |       |
| Methyl tert-Butyl Ether (MTBE)    | 20.3   | 2.0                | $\mu g/L$        | 20.0                 |                  | 102               | 70-130                     |     |              |       |
| Methylene Chloride                | 19.1   | 5.0                | $\mu g/L$        | 20.0                 |                  | 95.4              | 60-140                     |     |              |       |
| 1,1,2,2-Tetrachloroethane         | 19.5   | 2.0                | μg/L             | 20.0                 |                  | 97.7              | 60-140                     |     |              |       |
| Tetrachloroethylene               | 19.6   | 2.0                | μg/L             | 20.0                 |                  | 98.1              | 70-130                     |     |              |       |
| Toluene                           | 19.2   | 1.0                | $\mu \text{g/L}$ | 20.0                 |                  | 95.8              | 70-130                     |     |              |       |
| 1,1,1-Trichloroethane             | 19.7   | 2.0                | μg/L             | 20.0                 |                  | 98.4              | 70-130                     |     |              |       |
| 1,1,2-Trichloroethane             | 19.9   | 2.0                | μg/L             | 20.0                 |                  | 99.7              | 70-130                     |     |              |       |
| Trichloroethylene                 | 20.1   | 2.0                | μg/L             | 20.0                 |                  | 101               | 65-135                     |     |              |       |
| Trichlorofluoromethane (Freon 11) | 19.1   | 2.0                | μg/L             | 20.0                 |                  | 95.3              | 50-150                     |     |              |       |
| Vinyl Chloride                    | 17.3   | 2.0                | μg/L             | 20.0                 |                  | 86.6              | 5-195                      |     |              |       |
| m+p Xylene                        | 39.1   | 2.0                | μg/L             | 40.0                 |                  | 97.8              | 70-130                     |     |              |       |
| o-Xylene                          | 19.7   | 2.0                | μg/L             | 20.0                 |                  | 98.4              | 70-130                     |     |              |       |
| Surrogate: 1,2-Dichloroethane-d4  | 25.2   |                    | $\mu g/L$        | 25.0                 |                  | 101               | 70-130                     |     |              |       |
| Surrogate: Toluene-d8             | 24.9   |                    | μg/L             | 25.0                 |                  | 99.7              | 70-130                     |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 25.0   |                    | $\mu g/L$        | 25.0                 |                  | 100               | 70-130                     |     |              |       |
| Matrix Spike (B215779-MS1)        | Sou    | rce: 18J1037-0     | 01               | Prepared: 10         | 0/26/18 Analyz   | zed: 10/27/       | 18                         |     |              |       |
| Benzene                           | 20.6   | 1.0                | μg/L             | 20.0                 | ND               | 103               | 37-151                     |     |              |       |
| Bromodichloromethane              | 20.4   | 2.0                | $\mu \text{g/L}$ | 20.0                 | ND               | 102               | 35-155                     |     |              |       |
| Bromoform                         | 19.8   | 2.0                | $\mu \text{g/L}$ | 20.0                 | ND               | 99.0              | 45-169                     |     |              |       |
| Bromomethane                      | 21.4   | 2.0                | $\mu \text{g/L}$ | 20.0                 | ND               | 107               | 20-242                     |     |              |       |
| Carbon Tetrachloride              | 22.2   | 2.0                | μg/L             | 20.0                 | ND               | 111               | 70-140                     |     |              |       |
| Chlorobenzene                     | 21.0   | 2.0                | μg/L             | 20.0                 | ND               | 105               | 37-160                     |     |              |       |
| Chlorodibromomethane              | 21.7   | 2.0                | μg/L             | 20.0                 | ND               | 109               | 53-149                     |     |              |       |
| Chloroethane                      | 19.0   | 2.0                | μg/L             | 20.0                 | ND               | 95.2              | 14-230                     |     |              |       |
| Chloroform                        | 20.4   | 2.0                | μg/L             | 20.0                 | ND               | 102               | 51-138                     |     |              |       |
| Chloromethane                     | 19.2   | 2.0                | μg/L             | 20.0                 | ND               | 96.2              | 20-273                     |     |              |       |
| 1,2-Dichlorobenzene               | 21.0   | 2.0                | μg/L             | 20.0                 | ND               | 105               | 18-190                     |     |              |       |
| 1,3-Dichlorobenzene               | 21.0   | 2.0                | μg/L             | 20.0                 | ND               | 105               | 59-156                     |     |              |       |
| 1,4-Dichlorobenzene               | 20.6   | 2.0                | μg/L             | 20.0                 | ND               | 103               | 18-190                     |     |              |       |
| 1,2-Dichloroethane                | 21.3   | 2.0                | μg/L             | 20.0                 | ND               | 106               | 49-155                     |     |              |       |
| 1,1-Dichloroethane                | 22.9   | 2.0                | μg/L             | 20.0                 | 1.66             | 106               | 59-155                     |     |              |       |
| 1,1-Dichloroethylene              | 21.8   | 2.0                | μg/L             | 20.0                 | 1.00             | 104               | 20-234                     |     |              |       |
| trans-1,2-Dichloroethylene        | 22.0   | 2.0                | μg/L             | 20.0                 | ND               | 110               | 54-156                     |     |              |       |
| 1,2-Dichloropropane               | 20.6   | 2.0                | μg/L             | 20.0                 | ND               | 103               | 20-210                     |     |              |       |
| cis-1,3-Dichloropropene           | 19.1   | 2.0                | μg/L             | 20.0                 | ND               | 95.6              | 20-227                     |     |              |       |
| trans-1,3-Dichloropropene         | 19.8   | 2.0                | μg/L             | 20.0                 | ND               | 99.2              | 17-183                     |     |              |       |
| Ethylbenzene                      | 20.5   | 2.0                | μg/L             | 20.0                 | ND               | 102               | 37-162                     |     |              |       |
| Methyl tert-Butyl Ether (MTBE)    | 20.8   | 2.0                | μg/L             | 20.0                 | ND               | 104               | 70-130                     |     |              |       |
| Methylene Chloride                | 20.0   | 5.0                | μg/L             | 20.0                 | ND               | 99.8              | 20-221                     |     |              |       |
| 1,1,2,2-Tetrachloroethane         | 19.8   | 2.0                | μg/L             | 20.0                 | ND               | 98.8              | 46-157                     |     |              |       |
| m                                 |        | 2.0                | μg/L             | 20.0                 | ND               | 106               | 64-148                     |     |              |       |
| Tetrachloroethylene               | 21.3   |                    |                  |                      |                  |                   |                            |     |              |       |
| Toluene                           | 20.5   | 1.0                | $\mu g/L$        | 20.0                 | ND               | 103               | 47-150                     |     |              |       |
|                                   |        |                    |                  | 20.0<br>20.0<br>20.0 | ND<br>42.9<br>ND | 103<br>101<br>102 | 47-150<br>52-162<br>52-150 |     |              |       |



#### QUALITY CONTROL

#### Volatile Organic Compounds by GC/MS - Quality Control

|                                   |        | Reporting     |                   | Spike                                 | Source         |             | %REC   |        | RPD          |       |
|-----------------------------------|--------|---------------|-------------------|---------------------------------------|----------------|-------------|--------|--------|--------------|-------|
| Analyte                           | Result | Limit         | Units             | Level                                 | Result         | %REC        | Limits | RPD    | Limit        | Notes |
| Batch B215779 - SW-846 5030B      |        |               |                   |                                       |                |             |        |        |              |       |
| Matrix Spike (B215779-MS1)        | Sour   | ce: 18J1037-0 | )1                | Prepared: 10/26/18 Analyzed: 10/27/18 |                |             |        |        |              |       |
| Trichloroethylene                 | 21.4   | 2.0           | μg/L              | 20.0                                  | ND             | 107         | 70-157 |        |              |       |
| Trichlorofluoromethane (Freon 11) | 21.0   | 2.0           | $\mu g/L$         | 20.0                                  | ND             | 105         | 17-181 |        |              |       |
| Vinyl Chloride                    | 19.2   | 2.0           | $\mu g/L$         | 20.0                                  | ND             | 95.8        | 20-251 |        |              |       |
| m+p Xylene                        | 41.3   | 2.0           | μg/L              | 40.0                                  | ND             | 103         | 70-130 |        |              |       |
| o-Xylene                          | 20.3   | 2.0           | $\mu g/L$         | 20.0                                  | ND             | 102         | 70-130 |        |              |       |
| Surrogate: 1,2-Dichloroethane-d4  | 25.2   |               | μg/L              | 25.0                                  |                | 101         | 70-130 |        |              |       |
| Surrogate: Toluene-d8             | 25.0   |               | $\mu g/L$         | 25.0                                  |                | 99.9        | 70-130 |        |              |       |
| Surrogate: 4-Bromofluorobenzene   | 24.8   |               | μg/L              | 25.0                                  |                | 99.3        | 70-130 |        |              |       |
| Matrix Spike Dup (B215779-MSD1)   | Sour   | ce: 18J1037-0 | 11                | Prepared: 10                          | 0/26/18 Analyz | red: 10/27/ | 18     |        |              |       |
| Benzene                           | 20.5   | 1.0           | μg/L              | 20.0                                  | ND             | 103         | 37-151 | 0.0973 | 61           |       |
| Bromodichloromethane              | 21.8   | 2.0           | μg/L              | 20.0                                  | ND             | 109         | 35-155 | 6.36   | 56           |       |
| Bromoform                         | 21.5   | 2.0           | μg/L              | 20.0                                  | ND             | 107         | 45-169 | 8.19   | 42           |       |
| Bromomethane                      | 22.3   | 2.0           | μg/L              | 20.0                                  | ND             | 111         | 20-242 | 3.71   | 61           |       |
| Carbon Tetrachloride              | 22.7   | 2.0           | μg/L              | 20.0                                  | ND             | 114         | 70-140 | 2.14   | 41           |       |
| Chlorobenzene                     | 21.8   | 2.0           | $\mu g/L$         | 20.0                                  | ND             | 109         | 37-160 | 3.60   | 53           |       |
| Chlorodibromomethane              | 23.1   | 2.0           | μg/L              | 20.0                                  | ND             | 116         | 53-149 | 6.15   | 50           |       |
| Chloroethane                      | 19.7   | 2.0           | μg/L              | 20.0                                  | ND             | 98.3        | 14-230 | 3.20   | 78           |       |
| Chloroform                        | 20.4   | 2.0           | μg/L              | 20.0                                  | ND             | 102         | 51-138 | 0.245  | 54           |       |
| Chloromethane                     | 19.8   | 2.0           | μg/L              | 20.0                                  | ND             | 99.0        | 20-273 | 2.82   | 60           |       |
| 1,2-Dichlorobenzene               | 21.4   | 2.0           | $\mu g/L$         | 20.0                                  | ND             | 107         | 18-190 | 1.84   | 57           |       |
| 1,3-Dichlorobenzene               | 21.9   | 2.0           | $\mu g/L$         | 20.0                                  | ND             | 109         | 59-156 | 4.39   | 43           |       |
| 1,4-Dichlorobenzene               | 21.2   | 2.0           | μg/L              | 20.0                                  | ND             | 106         | 18-190 | 3.11   | 57           |       |
| 1,2-Dichloroethane                | 22.1   | 2.0           | $\mu g/L$         | 20.0                                  | ND             | 111         | 49-155 | 3.78   | 49           |       |
| 1,1-Dichloroethane                | 22.3   | 2.0           | $\mu g/L$         | 20.0                                  | 1.66           | 103         | 59-155 | 2.83   | 40           |       |
| 1,1-Dichloroethylene              | 21.7   | 2.0           | $\mu g/L$         | 20.0                                  | 1.00           | 104         | 20-234 | 0.414  | 32           |       |
| trans-1,2-Dichloroethylene        | 21.2   | 2.0           | $\mu g/L$         | 20.0                                  | ND             | 106         | 54-156 | 3.74   | 45           |       |
| 1,2-Dichloropropane               | 21.4   | 2.0           | μg/L              | 20.0                                  | ND             | 107         | 20-210 | 4.15   | 55           |       |
| cis-1,3-Dichloropropene           | 20.1   | 2.0           | μg/L              | 20.0                                  | ND             | 101         | 20-227 | 5.14   | 58           |       |
| trans-1,3-Dichloropropene         | 20.8   | 2.0           | μg/L              | 20.0                                  | ND             | 104         | 17-183 | 4.77   | 86           |       |
| Ethylbenzene                      | 21.0   | 2.0           | μg/L              | 20.0                                  | ND             | 105         | 37-162 | 2.51   | 63           |       |
| Methyl tert-Butyl Ether (MTBE)    | 20.5   | 2.0           | μg/L              | 20.0                                  | ND             | 102         | 70-130 | 1.79   | 20           |       |
| Methylene Chloride                | 19.9   | 5.0           | $\mu g/L$         | 20.0                                  | ND             | 99.4        | 20-221 | 0.401  | 28           |       |
| 1,1,2,2-Tetrachloroethane         | 21.4   | 2.0           | $\mu g/L$         | 20.0                                  | ND             | 107         | 46-157 | 8.11   | 61           |       |
| Tetrachloroethylene               | 22.4   | 2.0           | $\mu g/L$         | 20.0                                  | ND             | 112         | 64-148 | 5.22   | 39           |       |
| Γoluene                           | 21.8   | 1.0           | $\mu g \! / \! L$ | 20.0                                  | ND             | 109         | 47-150 | 6.05   | 41           |       |
| 1,1,1-Trichloroethane             | 62.0   | 2.0           | $\mu g/L$         | 20.0                                  | 42.9           | 95.4        | 52-162 | 1.77   | 36           |       |
| 1,1,2-Trichloroethane             | 21.4   | 2.0           | $\mu \text{g/L}$  | 20.0                                  | ND             | 107         | 52-150 | 5.31   | 45           |       |
| Γrichloroethylene                 | 23.0   | 2.0           | $\mu g/L$         | 20.0                                  | ND             | 115         | 70-157 | 7.16   | 48           |       |
| Trichlorofluoromethane (Freon 11) | 20.8   | 2.0           | $\mu \text{g/L}$  | 20.0                                  | ND             | 104         | 17-181 | 0.861  | 84           |       |
| Vinyl Chloride                    | 19.8   | 2.0           | $\mu g/L$         | 20.0                                  | ND             | 99.0        | 20-251 | 3.23   | 66           |       |
| n+p Xylene                        | 42.2   | 2.0           | $\mu g/L$         | 40.0                                  | ND             | 106         | 70-130 | 2.18   | 20           |       |
| o-Xylene                          | 21.1   | 2.0           | μg/L              | 20.0                                  | ND             | 106         | 70-130 | 3.81   | 20           |       |
| Surrogate: 1,2-Dichloroethane-d4  | 24.4   |               | μg/L              | 25.0                                  | <del>_</del>   | 97.8        | 70-130 |        | <del>_</del> |       |
| Surrogate: Toluene-d8             | 25.5   |               | $\mu g/L$         | 25.0                                  |                | 102         | 70-130 |        |              |       |
| Surrogate: 4-Bromofluorobenzene   | 25.1   |               | $\mu g/L$         | 25.0                                  |                | 100         | 70-130 |        |              |       |



#### FLAG/QUALIFIER SUMMARY

| *   | QC result is outside of established limits.                                 |
|-----|-----------------------------------------------------------------------------|
| †   | Wide recovery limits established for difficult compound.                    |
| ‡   | Wide RPD limits established for difficult compound.                         |
| #   | Data exceeded client recommended or regulatory level                        |
| ND  | Not Detected                                                                |
| RL  | Reporting Limit is at the level of quantitation (LOQ)                       |
| DL  | Detection Limit is the lower limit of detection determined by the MDL study |
| MCL | Maximum Contaminant Level                                                   |
|     |                                                                             |

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the

calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

J Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).



## CERTIFICATIONS

## Certified Analyses included in this Report

| EPA 624.1 in Water                |                   |
|-----------------------------------|-------------------|
| Benzene                           | CT,NY,RI,NC,MA,NH |
| Bromodichloromethane              | CT,NY,RI,NC,MA,NH |
| Bromoform                         | CT,NY,RI,NC,MA,NH |
| Bromomethane                      | CT,NY,RI,NC,MA,NH |
| Carbon Tetrachloride              | CT,NY,RI,NC,MA,NH |
| Chlorobenzene                     | CT,NY,RI,NC,MA,NH |
| Chlorodibromomethane              | CT,NY,RI,NC,MA,NH |
| Chloroethane                      | CT,NY,RI,NC,MA,NH |
| Chloroform                        | CT,NY,RI,NC,MA,NH |
| Chloromethane                     | CT,NY,RI,NC,MA,NH |
| 1,2-Dichlorobenzene               | CT,NY,RI,NC,MA,NH |
| 1,3-Dichlorobenzene               | CT,NY,RI,NC,MA,NH |
| 1,4-Dichlorobenzene               | CT,NY,RI,NC,MA,NH |
| 1,2-Dichloroethane                | CT,NY,RI,NC,MA,NH |
| 1,1-Dichloroethane                | CT,NY,RI,NC,MA,NH |
| 1,1-Dichloroethylene              | CT,NY,RI,NC,MA,NH |
| trans-1,2-Dichloroethylene        | CT,NY,RI,NC,MA,NH |
| 1,2-Dichloropropane               | CT,NY,RI,NC,MA,NH |
| cis-1,3-Dichloropropene           | CT,NY,RI,NC,MA,NH |
| trans-1,3-Dichloropropene         | CT,NY,RI,NC,MA,NH |
| Ethylbenzene                      | CT,NY,RI,NC,MA,NH |
| Methyl tert-Butyl Ether (MTBE)    | NY,NC,MA,NH       |
| Methylene Chloride                | CT,NY,RI,NC,MA,NH |
| 1,1,2,2-Tetrachloroethane         | CT,NY,RI,NC,MA,NH |
| Tetrachloroethylene               | CT,NY,RI,NC,MA,NH |
| Toluene                           | CT,NY,RI,NC,MA,NH |
| 1,1,1-Trichloroethane             | CT,NY,RI,NC,MA,NH |
| 1,1,2-Trichloroethane             | CT,NY,RI,NC,MA,NH |
| Trichloroethylene                 | CT,NY,RI,NC,MA,NH |
| Trichlorofluoromethane (Freon 11) | CT,NY,RI,NC,MA,NH |
| Vinyl Chloride                    | CT,NY,RI,NC,MA,NH |
| m+p Xylene                        | CT,NY,RI,NC,MA,NH |
| o-Xylene                          | CT,NY,RI,NC,MA,NH |



The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

| Code  | Description                                  | Number        | Expires    |
|-------|----------------------------------------------|---------------|------------|
| AIHA  | AIHA-LAP, LLC - ISO17025:2005                | 100033        | 03/1/2020  |
| MA    | Massachusetts DEP                            | M-MA100       | 06/30/2019 |
| CT    | Connecticut Department of Publile Health     | PH-0567       | 09/30/2019 |
| NY    | New York State Department of Health          | 10899 NELAP   | 04/1/2019  |
| NH-S  | New Hampshire Environmental Lab              | 2516 NELAP    | 02/5/2019  |
| RI    | Rhode Island Department of Health            | LAO00112      | 12/30/2018 |
| NC    | North Carolina Div. of Water Quality         | 652           | 12/31/2018 |
| NJ    | New Jersey DEP                               | MA007 NELAP   | 06/30/2019 |
| FL    | Florida Department of Health                 | E871027 NELAP | 06/30/2019 |
| VT    | Vermont Department of Health Lead Laboratory | LL015036      | 07/30/2019 |
| ME    | State of Maine                               | 2011028       | 06/9/2019  |
| VA    | Commonwealth of Virginia                     | 460217        | 12/14/2018 |
| NH-P  | New Hampshire Environmental Lab              | 2557 NELAP    | 09/6/2019  |
| VT-DW | Vermont Department of Health Drinking Water  | VT-255716     | 06/12/2019 |
| NC-DW | North Carolina Department of Health          | 25703         | 07/31/2019 |

**Table of Contents** Dissolved Metals Samples 1 Matrix Codes: GW = Ground Water WW - Wate Water DW - Drinking Weter <sup>2</sup> Preservation Codes: B = Sodium Bisuifate X = Sodium Hydroxide SL = Sludge SOL = Solid O = Other (please S = Summa Canister 3 Container Codes: T = Tedlar Bag O = Other (please 0 = Other (please A = Amber Glass Non Soxhlet S = Sulfuric Acid PCB ONLY 2 Preservation Code Field Filtered Soxhlet N = Nitric Acid Field Filtered H = HCL M = Methanol ☐ Lab to Filter Lab to Filter <sup>3</sup> Container Code P = Plastic ST = Sterile # of Containers Thiosulfate = Sodium G = Glass ¥= 5= 5 deffne) V = Vial define) pao = define) NY Regulatory EDD EQuIS (Standard) EDD NY Regs Hits-Only EDD Enhanced Data Package NYSDEC EQUIS EDD Please use the following codes to indicate possible sample concentration NELAC and Alth-LAP, LLC Accredited East Longmeadow, MA 01028 Chromatogram AIHA-LAP, LLC H · High; M · Medium; L · Low; C · Clean; U · Unknown ANAL YSIS REQUESTED 39 Spruce Street within the Conc Code column above: Other WRTA MWRA Schoot MBTA h79 X > ゾ t Sont Cortle CHAIN OF CUSTODY RECORD (New York) 冈 ☐ NY CP-51 NY TOGS Matrix Code 3 Þ Municipality Brownfield 10-Day 3-Day 4-Day X EXCEL Grab 乂 CLP Like Data Pkg Required: 21.J NYC Sewer Discharge Part 360 GW (Landfill) Composite **NY Unrestricted Use** NY Restricted Use PDF NY Part 375 Government Ending Date/Time Due Date: 19/19/18 0825 paralis AWQ STDS 0830 lidfelf8 mail To: ax To# -ormat: Federal 7-Day Other: 1-Day 2-Day City Project Entity Date/Time 0815 Beginning Phone: 473-525-2332 2 Email: info@contestlabs.com 200 25/2/ Lorduge Client Sample ID / Description 146 STE 210 CliPan Pack RW-12ms/msD Fax: 413-525-6405 607-206-6262 Date/Time: EFF 46 HZ 10/18 Date/Time Date/Time Date/Time Date/Time Date/Time Trip Blank 00266 406,0000 5. Uyckott Arcadis Gladding 0tselic Z RW-2 through 518-250-7300 South Con-Test Quote Name/Number: CON-TEST Relinquished by: (signature) elinquished by: (signature) -a-11-12/haten luished by: (signature) Received by (Aggature) Work Order# ved by: (signature) ved by: (signature) Con-Test Project Location: Invoice Recipient: Address: 855 Project Manager: Project Number: sampled By: comments: Phone: Page 16 of 18

Doc # 380 Rev 1\_03242017

http://www.contestlabs.com



Swart to

TRACK ANOTHER SHIPMENT

806832457692



Delivered Saturday 10/20/2018 at 9:46 am



#### DELIVERED

Signed for by: R.PATRAIDAS

GET STATUS UPDATES
OBTAIN PROOF OF DELIVERY

#### FROM

Syracuse, NY US

TO

EAST LONGMEADOW, MA US

Travel History Shipment Facts 10/20/2018 - Saturday 9:46 am Delivered East Longmeadow, MA Expand History 🗸 10/19/2018 - Friday 8:15 am Shipment information sent to FedEx **OUR COMPANY** MORE FROM FEDEX LANGUAGE About FedEx FedEx Blog FedEx Compatible Change Country Our Portfolio Corporate Responsibility Developer Resource Center Investor Relations Newsroom FedEx Cross Border English

FOLLOW FEDEX

Contact Us

ASK FedEX

I Have Not Confirmed Sample Container Numbers With Lab Staff Before Relinquishing Over Samples\_\_\_\_\_



Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

| Client                                                                                                        | Arcad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ξ,                                                                                                                                                            |              |                                                                                                                          | ,                                                                                                                       | 1                          |                                                                  |                                                                     |                                        |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------|
| Recei                                                                                                         | ved By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | esp                                                                                                                                                           |              | Date                                                                                                                     | 10 20                                                                                                                   | lig                        | Time                                                             | 946                                                                 |                                        |
|                                                                                                               | the samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | In Cooler                                                                                                                                                     | T            | No Cooler                                                                                                                | ,                                                                                                                       | On Ice                     | +                                                                | No Ice                                                              |                                        |
| rece                                                                                                          | ived?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Direct from Samp                                                                                                                                              | oling        | •                                                                                                                        |                                                                                                                         | -<br>Ambient               |                                                                  | Melted Ice                                                          | ************************************** |
| More see                                                                                                      | منطائب ممام                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                                                                                                                                                             | By Gun#      | (57                                                                                                                      |                                                                                                                         | Actual Tem                 | 1p- 3.2                                                          | _ Moned lee                                                         |                                        |
|                                                                                                               | nples within<br>ure? 2-6°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                               |              |                                                                                                                          |                                                                                                                         |                            | 1                                                                |                                                                     | •                                      |
| ·-                                                                                                            | s Custody S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and Intent?                                                                                                                                                   | By Blank #   | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                    |                                                                                                                         | Actual Tem                 |                                                                  |                                                                     | _                                      |
|                                                                                                               | s COC Relin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                               | <u>MA</u>    |                                                                                                                          |                                                                                                                         | s Tampered                 |                                                                  | M                                                                   | -                                      |
|                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eaking/loose caps                                                                                                                                             | <u> </u>     | Does                                                                                                                     |                                                                                                                         | ree With Sa                | mples?                                                           |                                                                     | _                                      |
|                                                                                                               | nk/ Legible?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                               | on any sam   |                                                                                                                          | <u> </u>                                                                                                                |                            | anata na G                                                       |                                                                     |                                        |
|                                                                                                               | include all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Client                                                                                                                                                        | · _          | Analysis                                                                                                                 | pies recei                                                                                                              |                            | olding time?                                                     |                                                                     | -                                      |
|                                                                                                               | nformation?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Project                                                                                                                                                       | <del> </del> | ID's                                                                                                                     | 1                                                                                                                       |                            | er Name                                                          |                                                                     |                                        |
| •                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f out and legible?                                                                                                                                            |              | 103                                                                                                                      | }                                                                                                                       | Collection                 | Dates/Times                                                      |                                                                     | <del>.</del>                           |
|                                                                                                               | ab to Filters?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                               | <del></del>  |                                                                                                                          | Mhowo                                                                                                                   | n natifical?               |                                                                  |                                                                     |                                        |
| Are there R                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               | <del></del>  |                                                                                                                          |                                                                                                                         | s notified?<br>s notified? |                                                                  |                                                                     | _                                      |
| Are there SI                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |              |                                                                                                                          |                                                                                                                         | s notified?                |                                                                  |                                                                     |                                        |
|                                                                                                               | ough Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ?                                                                                                                                                             |              |                                                                                                                          | willo wa:                                                                                                               | s nouneu?<br>~n            |                                                                  |                                                                     |                                        |
|                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | re applicable?                                                                                                                                                | <u> </u>     | ħ                                                                                                                        | NS/MSD?                                                                                                                 | ORCI                       |                                                                  |                                                                     |                                        |
|                                                                                                               | ia/Container                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • •                                                                                                                                                           | T            |                                                                                                                          |                                                                                                                         | samples rec                | zuirod?                                                          | £                                                                   |                                        |
|                                                                                                               | anks receive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                               |              |                                                                                                                          | On COC?                                                                                                                 |                            | fulled:                                                          | 1                                                                   |                                        |
| •                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | proper pH?                                                                                                                                                    | × ( / 4      | Acid _                                                                                                                   | Jii 000 :                                                                                                               |                            | Base                                                             |                                                                     |                                        |
| Vials                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Containers:                                                                                                                                                   | # 1          | <u>-</u>                                                                                                                 |                                                                                                                         | #                          | 5400                                                             |                                                                     | # 1                                    |
|                                                                                                               | A MARKANIA M |                                                                                                                                                               |              |                                                                                                                          |                                                                                                                         |                            |                                                                  |                                                                     |                                        |
| unp-                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 Liter Amb.                                                                                                                                                  |              | 1 Liter F                                                                                                                | Plastic                                                                                                                 | #                          | 16.07                                                            | Amb                                                                 | **                                     |
| Unp-<br>HCL-                                                                                                  | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 Liter Amb.<br>500 mL Amb.                                                                                                                                   |              | 1 Liter F<br>500 mL I                                                                                                    |                                                                                                                         | ,                          | 16 oz<br>80z Am                                                  | ~~~~                                                                |                                        |
|                                                                                                               | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                               |              | 500 mL I                                                                                                                 | Plastic                                                                                                                 | <b>.</b>                   | 8oz Am                                                           | b/Clear                                                             | 7                                      |
| HCL-<br>Meoh-<br>Bisulfate-                                                                                   | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500 mL Amb.                                                                                                                                                   |              | 500 mL l<br>250 mL l                                                                                                     | Plastic<br>Plastic                                                                                                      | <b>+</b>                   | 8oz Am<br>4oz Am                                                 | b/Clear<br>b/Clear                                                  | *                                      |
| HCL-<br>Meoh-<br>Bisulfate-<br>DI-                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500 mL Amb.<br>250 mL Amb.                                                                                                                                    |              | 500 mL I                                                                                                                 | Plastic<br>Plastic<br>point                                                                                             | *                          | 8oz Am<br>4oz Am<br>2oz Am                                       | b/Clear<br>b/Clear<br>b/Clear                                       | *                                      |
| HCL-<br>Meoh-<br>Bisulfate-<br>DI-<br>Thiosulfate-                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500 mL Amb.<br>250 mL Amb.<br>Col./Bacteria<br>Other Plastic<br>SOC Kit                                                                                       |              | 500 mL l<br>250 mL l<br>Flashp                                                                                           | Plastic<br>Plastic<br>Joint<br>Blass                                                                                    |                            | 8oz Am<br>4oz Am                                                 | b/Clear<br>b/Clear<br>b/Clear                                       |                                        |
| HCL-<br>Meoh-<br>Bisulfate-<br>DI-<br>Thiosulfate-                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500 mL Amb.<br>250 mL Amb.<br>Col./Bacteria<br>Other Plastic                                                                                                  |              | 500 mL I<br>250 mL I<br>Flashp<br>Other O                                                                                | Plastic<br>Plastic<br>Point<br>Blass<br>Bag                                                                             |                            | 8oz Am<br>4oz Am<br>2oz Am<br>Enc                                | b/Clear<br>b/Clear<br>b/Clear                                       |                                        |
| HCL-<br>Meoh-<br>Bisulfate-<br>DI-<br>Thiosulfate-<br>Sulfuric-                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500 mL Amb.<br>250 mL Amb.<br>Col./Bacteria<br>Other Plastic<br>SOC Kit                                                                                       |              | 500 mL I<br>250 mL I<br>Flashp<br>Other G<br>Plastic                                                                     | Plastic<br>Plastic<br>point<br>Blass<br>Bag<br>ck                                                                       |                            | 8oz Am<br>4oz Am<br>2oz Am<br>Enc                                | b/Clear<br>b/Clear<br>b/Clear                                       |                                        |
| HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate  Containers:                                                                          | #            | 500 mL I<br>250 mL I<br>Flashp<br>Other O<br>Plastic<br>Ziplo                                                            | Plastic<br>Plastic<br>point<br>Blass<br>Bag<br>ck                                                                       |                            | 8oz Am<br>4oz Am<br>2oz Am<br>Enc                                | b/Clear<br>b/Clear<br>b/Clear                                       | #                                      |
| HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp-                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate  Containers: 1 Liter Amb.                                                             | #            | 500 mL F<br>250 mL F<br>Flashp<br>Other C<br>Plastic<br>Ziplo<br>Unused M                                                | Plastic |                            | 8oz Am<br>4oz Am<br>2oz Am<br>Enc<br>Frozen:                     | b/Clear<br>b/Clear<br>b/Clear<br>core                               |                                        |
| HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp- HCL-                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb.                                                 | # 1          | 500 mL I<br>250 mL I<br>Flashp<br>Other C<br>Plastic<br>Ziplo<br>Unused M                                                | Plastic |                            | 8oz Am<br>4oz Am<br>2oz Am<br>Enc                                | b/Clear<br>b/Clear<br>b/Clear<br>core                               |                                        |
| HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp- HCL- Meoh-                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb.                                     | #            | 500 mL F<br>250 mL F<br>Flashp<br>Other C<br>Plastic<br>Ziplo<br>Unused M                                                | Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic                                                         |                            | 8oz Am<br>4oz Am<br>2oz Am<br>Enc<br>Frozen:                     | b/Clear<br>b/Clear<br>b/Clear<br>core                               |                                        |
| HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials  Unp- HCL- Weoh- Bisulfate-                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria                       | #            | 500 mL F<br>250 mL F<br>Flashp<br>Other C<br>Plastic<br>Ziplo<br>Unused M<br>1 Liter P<br>500 mL F<br>250 mL F<br>Flashp | Plastic Plastic Plastic Roint Blass Bag ck edia lastic Plastic Plastic oint                                             |                            | 8oz Am 4oz Am 2oz Am Enc Frozen:                                 | b/Clear<br>b/Clear<br>b/Clear<br>core<br>Amb.<br>b/Clear<br>b/Clear |                                        |
| HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp- HCL- Meoh- Bisulfate- DI-                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic         | # 1          | 500 mL F 250 mL F Flashp Other C Plastic Ziplo Unused M  1 Liter P 500 mL F 250 mL F Flashp Other C                      | Plastic Plastic Slass Bag ck edia lastic Plastic Plastic oint slass                                                     |                            | 8oz Am 4oz Am 2oz Am Enc Frozen:  16 oz 8oz Am 4oz Am            | Amb.<br>b/Clear<br>b/Clear                                          |                                        |
| HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Jnp- HCL- Weoh- Bisulfate- DI- Thiosulfate-           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit | # 1          | 500 mL F 250 mL F Flashp Other C Plastic Ziplo Unused M  1 Liter P 500 mL F 250 mL F Flashp Other G Plastic              | Plastic Plastic Plastic Riass Bag ck edia Plastic Plastic Plastic Plastic Riass Bag Bag                                 | #                          | 8oz Am 4oz Am 2oz Am Enc Frozen:  16 oz 8oz Am 4oz Am 2oz Am     | Amb.<br>b/Clear<br>b/Clear                                          |                                        |
| HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic         | #            | 500 mL F 250 mL F Flashp Other C Plastic Ziplo Unused M  1 Liter P 500 mL F 250 mL F Flashp Other C                      | Plastic Plastic Plastic Riass Bag ck edia Plastic Plastic Plastic Plastic Riass Bag Bag                                 | #                          | 8oz Am 4oz Am 2oz Am Enc Frozen:  16 oz 8oz Am 4oz Am 2oz Am Enc | Amb.<br>b/Clear<br>b/Clear                                          |                                        |
| HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials  Unp- HCL- Weoh- Bisulfate-                           | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit | ***          | 500 mL F 250 mL F Flashp Other C Plastic Ziplo Unused M  1 Liter P 500 mL F 250 mL F Flashp Other G Plastic              | Plastic Plastic Plastic Riass Bag ck edia Plastic Plastic Plastic Plastic Riass Bag Bag                                 | #                          | 8oz Am 4oz Am 2oz Am Enc Frozen:  16 oz 8oz Am 4oz Am 2oz Am Enc | Amb.<br>b/Clear<br>b/Clear                                          |                                        |
| HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit | # 1          | 500 mL F 250 mL F Flashp Other C Plastic Ziplo Unused M  1 Liter P 500 mL F 250 mL F Flashp Other G Plastic              | Plastic Plastic Plastic Riass Bag ck edia Plastic Plastic Plastic Plastic Riass Bag Bag                                 | #                          | 8oz Am 4oz Am 2oz Am Enc Frozen:  16 oz 8oz Am 4oz Am 2oz Am Enc | Amb.<br>b/Clear<br>b/Clear                                          |                                        |
| HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-  | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit Perchlorate  Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit | #            | 500 mL F 250 mL F Flashp Other C Plastic Ziplo Unused M  1 Liter P 500 mL F 250 mL F Flashp Other G Plastic              | Plastic Plastic Plastic Riass Bag ck edia Plastic Plastic Plastic Plastic Riass Bag Bag                                 | #                          | 8oz Am 4oz Am 2oz Am Enc Frozen:  16 oz 8oz Am 4oz Am 2oz Am Enc | Amb.<br>b/Clear<br>b/Clear                                          |                                        |

December 6, 2018

Jeremy Wyckoff Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210 Clifton Park, NY 12065

Project Location: South Otselic

Client Job Number:

Project Number: 00266406.0000

Laboratory Work Order Number: 18K1106

Enclosed are results of analyses for samples received by the laboratory on November 27, 2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Aaron L. Benoit Project Manager

# Table of Contents

| Sample Summary                      | 3  |
|-------------------------------------|----|
| Case Narrative                      | 4  |
| Sample Results                      | 5  |
| 18K1106-01                          | 5  |
| 18K1106-02                          | 6  |
| 18K1106-03                          | 7  |
| 18K1106-04                          | 8  |
| Sample Preparation Information      | 9  |
| QC Data                             | 10 |
| Volatile Organic Compounds by GC/MS | 10 |
| B218510                             | 10 |
| Flag/Qualifier Summary              | 13 |
| Certifications                      | 14 |
| Chain of Custody/Sample Receipt     | 16 |



Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210 Clifton Park, NY 12065

ATTN: Jeremy Wyckoff

PURCHASE ORDER NUMBER:

REPORT DATE: 12/6/2018

PROJECT NUMBER: 00266406.0000

#### ANALYTICAL SUMMARY

18K1106 WORK ORDER NUMBER:

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: South Otselic

| FIELD SAMPLE # | LAB ID:    | MATRIX           | SAMPLE DESCRIPTION | TEST      | SUB LAB |
|----------------|------------|------------------|--------------------|-----------|---------|
| RW-1 (MS/MSD)  | 18K1106-01 | Ground Water     |                    | EPA 624.1 |         |
| RW-2           | 18K1106-02 | Ground Water     |                    | EPA 624.1 |         |
| EFF 46 HZ      | 18K1106-03 | Ground Water     |                    | EPA 624.1 |         |
| Trip Blank     | 18K1106-04 | Trip Blank Water |                    | EPA 624.1 |         |



#### CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Project Manager



Project Location: South Otselic Sample Description: Work Order: 18K1106

Date Received: 11/27/2018

Field Sample #: RW-1 (MS/MSD) Sampled: 11/26/2018 08:00

Sample ID: 18K1106-01

Sample Matrix: Ground Water

|                                   |         |     | Volutile | organic co. | inpounds by | <b>10,111</b> 5 |           |          |              |         |
|-----------------------------------|---------|-----|----------|-------------|-------------|-----------------|-----------|----------|--------------|---------|
|                                   |         |     |          |             |             | T (0 )          |           | Date     | Date/Time    |         |
| Analyte                           | Results | RL  | DL       | Units       | Dilution    | Flag/Qual       | Method    | Prepared | Analyzed     | Analyst |
| Benzene                           | ND      | 1.0 | 0.34     | μg/L        | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| Bromodichloromethane              | ND      | 2.0 | 0.48     | μg/L        | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| Bromoform                         | ND      | 2.0 | 0.28     | μg/L        | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| Bromomethane                      | 0.60    | 2.0 | 0.44     | μg/L        | 1           | J               | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| Carbon Tetrachloride              | ND      | 2.0 | 0.39     | μg/L        | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| Chlorobenzene                     | ND      | 2.0 | 0.30     | $\mu g/L$   | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| Chlorodibromomethane              | ND      | 2.0 | 0.27     | $\mu g/L$   | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| Chloroethane                      | ND      | 2.0 | 0.38     | $\mu g/L$   | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| Chloroform                        | ND      | 2.0 | 0.33     | $\mu g/L$   | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| Chloromethane                     | ND      | 2.0 | 0.30     | $\mu g/L$   | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| 1,2-Dichlorobenzene               | ND      | 2.0 | 0.31     | $\mu g/L$   | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| 1,3-Dichlorobenzene               | ND      | 2.0 | 0.33     | $\mu g/L$   | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| 1,4-Dichlorobenzene               | ND      | 2.0 | 0.39     | $\mu g/L$   | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| 1,2-Dichloroethane                | ND      | 2.0 | 0.28     | $\mu g/L$   | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| 1,1-Dichloroethane                | 1.6     | 2.0 | 0.33     | $\mu g/L$   | 1           | J               | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| 1,1-Dichloroethylene              | 0.96    | 2.0 | 0.25     | $\mu g/L$   | 1           | J               | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| trans-1,2-Dichloroethylene        | ND      | 2.0 | 0.40     | $\mu g/L$   | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| 1,2-Dichloropropane               | ND      | 2.0 | 0.31     | $\mu g/L$   | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| cis-1,3-Dichloropropene           | ND      | 2.0 | 0.47     | μg/L        | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| trans-1,3-Dichloropropene         | ND      | 2.0 | 0.37     | μg/L        | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| Ethylbenzene                      | ND      | 2.0 | 0.37     | μg/L        | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| Methyl tert-Butyl Ether (MTBE)    | ND      | 2.0 | 0.24     | μg/L        | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| Methylene Chloride                | ND      | 5.0 | 0.42     | μg/L        | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| 1,1,2,2-Tetrachloroethane         | ND      | 2.0 | 0.27     | μg/L        | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| Tetrachloroethylene               | ND      | 2.0 | 0.32     | μg/L        | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| Toluene                           | ND      | 1.0 | 0.35     | μg/L        | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| 1,1,1-Trichloroethane             | 35      | 2.0 | 0.25     | μg/L        | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| 1,1,2-Trichloroethane             | ND      | 2.0 | 0.22     | μg/L        | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| Trichloroethylene                 | ND      | 2.0 | 0.41     | μg/L        | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| Trichlorofluoromethane (Freon 11) | ND      | 2.0 | 0.27     | μg/L        | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| Vinyl Chloride                    | ND      | 2.0 | 0.30     | μg/L        | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| m+p Xylene                        | ND      | 2.0 | 0.65     | μg/L        | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
| o-Xylene                          | ND      | 2.0 | 0.35     | μg/L        | 1           |                 | EPA 624.1 | 12/5/18  | 12/6/18 0:15 | LBD     |
|                                   |         |     |          |             |             |                 |           |          |              |         |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |              |
|-----------------------|------------|-----------------|-----------|--------------|
| 1,2-Dichloroethane-d4 | 101        | 70-130          |           | 12/6/18 0:15 |
| Toluene-d8            | 100        | 70-130          |           | 12/6/18 0:15 |
| 4-Bromofluorobenzene  | 99.0       | 70-130          |           | 12/6/18 0:15 |



Project Location: South Otselic Sample Description: Work Order: 18K1106

Date Received: 11/27/2018

Field Sample #: RW-2

Sampled: 11/26/2018 08:10

Sample ID: 18K1106-02

Sample Matrix: Ground Water

| Volatile | Organic | Compounds by | GC/MS |
|----------|---------|--------------|-------|

|                                   |         |     | , omene | organic co | inpounds by | ic/1415   |           |          |              |         |
|-----------------------------------|---------|-----|---------|------------|-------------|-----------|-----------|----------|--------------|---------|
|                                   |         |     |         |            |             |           |           | Date     | Date/Time    |         |
| Analyte                           | Results | RL  | DL      | Units      | Dilution    | Flag/Qual | Method    | Prepared | Analyzed     | Analyst |
| Benzene                           | ND      | 1.0 | 0.34    | $\mu g/L$  | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| Bromodichloromethane              | ND      | 2.0 | 0.48    | $\mu g/L$  | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| Bromoform                         | ND      | 2.0 | 0.28    | $\mu g/L$  | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| Bromomethane                      | 0.62    | 2.0 | 0.44    | $\mu g/L$  | 1           | J         | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| Carbon Tetrachloride              | ND      | 2.0 | 0.39    | $\mu g/L$  | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| Chlorobenzene                     | ND      | 2.0 | 0.30    | $\mu g/L$  | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| Chlorodibromomethane              | ND      | 2.0 | 0.27    | $\mu g/L$  | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| Chloroethane                      | ND      | 2.0 | 0.38    | $\mu g/L$  | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| Chloroform                        | ND      | 2.0 | 0.33    | $\mu g/L$  | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| Chloromethane                     | ND      | 2.0 | 0.30    | $\mu g/L$  | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| 1,2-Dichlorobenzene               | ND      | 2.0 | 0.31    | $\mu g/L$  | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| 1,3-Dichlorobenzene               | ND      | 2.0 | 0.33    | $\mu g/L$  | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| 1,4-Dichlorobenzene               | ND      | 2.0 | 0.39    | $\mu g/L$  | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| 1,2-Dichloroethane                | ND      | 2.0 | 0.28    | $\mu g/L$  | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| 1,1-Dichloroethane                | 0.76    | 2.0 | 0.33    | $\mu g/L$  | 1           | J         | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| 1,1-Dichloroethylene              | 0.75    | 2.0 | 0.25    | $\mu g/L$  | 1           | J         | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| trans-1,2-Dichloroethylene        | ND      | 2.0 | 0.40    | $\mu g/L$  | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| 1,2-Dichloropropane               | ND      | 2.0 | 0.31    | $\mu g/L$  | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| cis-1,3-Dichloropropene           | ND      | 2.0 | 0.47    | $\mu g/L$  | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| trans-1,3-Dichloropropene         | ND      | 2.0 | 0.37    | $\mu g/L$  | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| Ethylbenzene                      | ND      | 2.0 | 0.37    | $\mu g/L$  | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| Methyl tert-Butyl Ether (MTBE)    | ND      | 2.0 | 0.24    | μg/L       | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| Methylene Chloride                | ND      | 5.0 | 0.42    | μg/L       | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| 1,1,2,2-Tetrachloroethane         | ND      | 2.0 | 0.27    | μg/L       | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| Tetrachloroethylene               | ND      | 2.0 | 0.32    | μg/L       | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| Toluene                           | ND      | 1.0 | 0.35    | μg/L       | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| 1,1,1-Trichloroethane             | 29      | 2.0 | 0.25    | μg/L       | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| 1,1,2-Trichloroethane             | ND      | 2.0 | 0.22    | μg/L       | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| Trichloroethylene                 | ND      | 2.0 | 0.41    | μg/L       | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| Trichlorofluoromethane (Freon 11) | ND      | 2.0 | 0.27    | μg/L       | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| Vinyl Chloride                    | ND      | 2.0 | 0.30    | μg/L       | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| m+p Xylene                        | ND      | 2.0 | 0.65    | μg/L       | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
| o-Xylene                          | ND      | 2.0 | 0.35    | μg/L       | 1           |           | EPA 624.1 | 12/5/18  | 12/6/18 0:46 | LBD     |
|                                   |         |     |         |            |             |           |           |          |              |         |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |              |
|-----------------------|------------|-----------------|-----------|--------------|
| 1,2-Dichloroethane-d4 | 102        | 70-130          |           | 12/6/18 0:46 |
| Toluene-d8            | 99.4       | 70-130          |           | 12/6/18 0:46 |
| 4-Bromofluorobenzene  | 97.0       | 70-130          |           | 12/6/18 0:46 |



Project Location: South Otselic Sample Description: Work Order: 18K1106

Date Received: 11/27/2018

Field Sample #: EFF 46 HZ

Sampled: 11/26/2018 08:15

Sample ID: 18K1106-03

Sample Matrix: Ground Water

| Volatile O | rganic | Compounds | bv | GC/MS |
|------------|--------|-----------|----|-------|
|------------|--------|-----------|----|-------|

|                                   |         |     |      |           |          |           |           | Date     | Date/Time     |         |
|-----------------------------------|---------|-----|------|-----------|----------|-----------|-----------|----------|---------------|---------|
| Analyte                           | Results | RL  | DL   | Units     | Dilution | Flag/Qual | Method    | Prepared | Analyzed      | Analyst |
| Benzene                           | ND      | 1.0 | 0.34 | μg/L      | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| Bromodichloromethane              | ND      | 2.0 | 0.48 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| Bromoform                         | ND      | 2.0 | 0.28 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| Bromomethane                      | 0.82    | 2.0 | 0.44 | $\mu g/L$ | 1        | J         | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| Carbon Tetrachloride              | ND      | 2.0 | 0.39 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| Chlorobenzene                     | ND      | 2.0 | 0.30 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| Chlorodibromomethane              | ND      | 2.0 | 0.27 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| Chloroethane                      | ND      | 2.0 | 0.38 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| Chloroform                        | ND      | 2.0 | 0.33 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| Chloromethane                     | ND      | 2.0 | 0.30 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| 1,2-Dichlorobenzene               | ND      | 2.0 | 0.31 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| 1,3-Dichlorobenzene               | ND      | 2.0 | 0.33 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| 1,4-Dichlorobenzene               | ND      | 2.0 | 0.39 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| 1,2-Dichloroethane                | ND      | 2.0 | 0.28 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| 1,1-Dichloroethane                | ND      | 2.0 | 0.33 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| 1,1-Dichloroethylene              | ND      | 2.0 | 0.25 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| trans-1,2-Dichloroethylene        | ND      | 2.0 | 0.40 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| 1,2-Dichloropropane               | ND      | 2.0 | 0.31 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| cis-1,3-Dichloropropene           | ND      | 2.0 | 0.47 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| trans-1,3-Dichloropropene         | ND      | 2.0 | 0.37 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| Ethylbenzene                      | ND      | 2.0 | 0.37 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| Methyl tert-Butyl Ether (MTBE)    | ND      | 2.0 | 0.24 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| Methylene Chloride                | ND      | 5.0 | 0.42 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| 1,1,2,2-Tetrachloroethane         | ND      | 2.0 | 0.27 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| Tetrachloroethylene               | ND      | 2.0 | 0.32 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| Toluene                           | ND      | 1.0 | 0.35 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| 1,1,1-Trichloroethane             | ND      | 2.0 | 0.25 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| 1,1,2-Trichloroethane             | ND      | 2.0 | 0.22 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| Trichloroethylene                 | ND      | 2.0 | 0.41 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| Trichlorofluoromethane (Freon 11) | ND      | 2.0 | 0.27 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| Vinyl Chloride                    | ND      | 2.0 | 0.30 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| m+p Xylene                        | ND      | 2.0 | 0.65 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |
| o-Xylene                          | ND      | 2.0 | 0.35 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18  | 12/5/18 23:44 | LBD     |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |               |
|-----------------------|------------|-----------------|-----------|---------------|
| 1,2-Dichloroethane-d4 | 99.0       | 70-130          |           | 12/5/18 23:44 |
| Toluene-d8            | 97.6       | 70-130          |           | 12/5/18 23:44 |
| 4-Bromofluorobenzene  | 99 4       | 70-130          |           | 12/5/18 23:44 |



Project Location: South Otselic Sample Description: Work Order: 18K1106

Date Received: 11/27/2018

Field Sample #: Trip Blank

Sampled: 11/26/2018 00:00

Sample ID: 18K1106-04
Sample Matrix: Trip Blank Water

| Analyte                           | Results | RL  | DL   | Units     | Dilution | Flag/Qual | Method    | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-----------------------------------|---------|-----|------|-----------|----------|-----------|-----------|------------------|-----------------------|---------|
| Benzene                           | ND      | 1.0 | 0.34 | μg/L      | 1        | g         | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| Bromodichloromethane              | ND      | 2.0 | 0.48 | μg/L      | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| Bromoform                         | ND      | 2.0 | 0.28 | μg/L      | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| Bromomethane                      | 0.81    | 2.0 | 0.44 | μg/L      | 1        | J         | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| Carbon Tetrachloride              | ND      | 2.0 | 0.39 | μg/L      | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| Chlorobenzene                     | ND      | 2.0 | 0.30 | μg/L      | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| Chlorodibromomethane              | ND      | 2.0 | 0.27 | μg/L      | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| Chloroethane                      | ND      | 2.0 | 0.38 | μg/L      | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| Chloroform                        | ND      | 2.0 | 0.33 | μg/L      | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| Chloromethane                     | ND      | 2.0 | 0.30 | μg/L      | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| 1,2-Dichlorobenzene               | ND      | 2.0 | 0.31 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| 1,3-Dichlorobenzene               | ND      | 2.0 | 0.33 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| 1,4-Dichlorobenzene               | ND      | 2.0 | 0.39 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| 1,2-Dichloroethane                | ND      | 2.0 | 0.28 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| 1,1-Dichloroethane                | ND      | 2.0 | 0.33 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| 1,1-Dichloroethylene              | ND      | 2.0 | 0.25 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| trans-1,2-Dichloroethylene        | ND      | 2.0 | 0.40 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| 1,2-Dichloropropane               | ND      | 2.0 | 0.31 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| cis-1,3-Dichloropropene           | ND      | 2.0 | 0.47 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| trans-1,3-Dichloropropene         | ND      | 2.0 | 0.37 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| Ethylbenzene                      | ND      | 2.0 | 0.37 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| Methyl tert-Butyl Ether (MTBE)    | ND      | 2.0 | 0.24 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| Methylene Chloride                | ND      | 5.0 | 0.42 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| 1,1,2,2-Tetrachloroethane         | ND      | 2.0 | 0.27 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| Tetrachloroethylene               | ND      | 2.0 | 0.32 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| Toluene                           | ND      | 1.0 | 0.35 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| 1,1,1-Trichloroethane             | ND      | 2.0 | 0.25 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| 1,1,2-Trichloroethane             | ND      | 2.0 | 0.22 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| Trichloroethylene                 | ND      | 2.0 | 0.41 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| Trichlorofluoromethane (Freon 11) | ND      | 2.0 | 0.27 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| Vinyl Chloride                    | ND      | 2.0 | 0.30 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| m+p Xylene                        | ND      | 2.0 | 0.65 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |
| o-Xylene                          | ND      | 2.0 | 0.35 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/5/18          | 12/5/18 23:13         | LBD     |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |               |
|-----------------------|------------|-----------------|-----------|---------------|
| 1,2-Dichloroethane-d4 | 99.2       | 70-130          |           | 12/5/18 23:13 |
| Toluene-d8            | 99.8       | 70-130          |           | 12/5/18 23:13 |
| 4-Bromofluorobenzene  | 97.0       | 70-130          |           | 12/5/18 23:13 |



# Sample Extraction Data

# Prep Method: SW-846 5030B-EPA 624.1

| Lab Number [Field ID]      | Batch   | Initial [mL] | Final [mL] | Date     |
|----------------------------|---------|--------------|------------|----------|
| 18K1106-01 [RW-1 (MS/MSD)] | B218510 | 5            | 5.00       | 12/05/18 |
| 18K1106-02 [RW-2]          | B218510 | 5            | 5.00       | 12/05/18 |
| 18K1106-03 [EFF 46 HZ]     | B218510 | 5            | 5.00       | 12/05/18 |
| 18K1106-04 [Trip Blank]    | B218510 | 5            | 5.00       | 12/05/18 |

%REC

RPD



## 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

#### QUALITY CONTROL

Spike

Source

## Volatile Organic Compounds by GC/MS - Quality Control

Reporting

| Analyte                                       | Result   | Limit      | Units            | Level      | Result       | %REC   | Limits | RPD | Limit | Notes |
|-----------------------------------------------|----------|------------|------------------|------------|--------------|--------|--------|-----|-------|-------|
| Batch B218510 - SW-846 5030B                  |          |            |                  |            |              |        |        |     |       |       |
| Blank (B218510-BLK1)                          |          |            |                  | Prepared & | Analyzed: 12 | /05/18 |        |     |       |       |
| Benzene                                       | ND       | 1.0        | μg/L             |            |              |        |        |     |       |       |
| Bromodichloromethane                          | ND       | 2.0        | $\mu \text{g/L}$ |            |              |        |        |     |       |       |
| Bromoform                                     | ND       | 2.0        | $\mu \text{g/L}$ |            |              |        |        |     |       |       |
| Bromomethane                                  | 0.90     | 2.0        | $\mu g/L$        |            |              |        |        |     |       | J     |
| Carbon Tetrachloride                          | ND       | 2.0        | $\mu \text{g/L}$ |            |              |        |        |     |       |       |
| Chlorobenzene                                 | ND       | 2.0        | μg/L             |            |              |        |        |     |       |       |
| Chlorodibromomethane                          | ND       | 2.0        | $\mu \text{g/L}$ |            |              |        |        |     |       |       |
| Chloroethane                                  | ND       | 2.0        | $\mu \text{g/L}$ |            |              |        |        |     |       |       |
| Chloroform                                    | ND       | 2.0        | μg/L             |            |              |        |        |     |       |       |
| Chloromethane                                 | ND       | 2.0        | μg/L             |            |              |        |        |     |       |       |
| 1,2-Dichlorobenzene                           | ND       | 2.0        | μg/L             |            |              |        |        |     |       |       |
| ,3-Dichlorobenzene                            | ND       | 2.0        | μg/L             |            |              |        |        |     |       |       |
| 1,4-Dichlorobenzene                           | ND       | 2.0        | μg/L             |            |              |        |        |     |       |       |
| 1,2-Dichloroethane                            | ND       | 2.0        | μg/L             |            |              |        |        |     |       |       |
| 1,1-Dichloroethane                            | ND       | 2.0        | μg/L             |            |              |        |        |     |       |       |
| 1,1-Dichloroethylene                          | ND       | 2.0        | μg/L             |            |              |        |        |     |       |       |
| rans-1,2-Dichloroethylene                     | ND       | 2.0        | μg/L             |            |              |        |        |     |       |       |
| ,2-Dichloropropane                            | ND       | 2.0        | μg/L             |            |              |        |        |     |       |       |
| eis-1,3-Dichloropropene                       | ND       | 2.0        | μg/L             |            |              |        |        |     |       |       |
| rans-1,3-Dichloropropene                      | ND       | 2.0        | μg/L             |            |              |        |        |     |       |       |
| Ethylbenzene  Methyl text Potent Ethyl (MTDE) | ND       | 2.0        | μg/L             |            |              |        |        |     |       |       |
| Methyl tert-Butyl Ether (MTBE)                | ND       | 2.0        | μg/L             |            |              |        |        |     |       |       |
| Methylene Chloride                            | ND       | 5.0        | μg/L             |            |              |        |        |     |       |       |
| 1,1,2,2-Tetrachloroethane                     | ND       | 2.0        | μg/L             |            |              |        |        |     |       |       |
| Tetrachloroethylene                           | ND       | 2.0        | μg/L             |            |              |        |        |     |       |       |
| Γoluene<br>1,1,1-Trichloroethane              | ND       | 1.0        | μg/L             |            |              |        |        |     |       |       |
|                                               | ND       | 2.0        | μg/L<br>μα/Ι     |            |              |        |        |     |       |       |
| 1,1,2-Trichloroethane Frichloroethylene       | ND       | 2.0<br>2.0 | μg/L<br>μg/L     |            |              |        |        |     |       |       |
| Frichlorofluoromethane (Freon 11)             | ND       | 2.0        | μg/L<br>μg/L     |            |              |        |        |     |       |       |
| Vinyl Chloride                                | ND       | 2.0        |                  |            |              |        |        |     |       |       |
| n+p Xylene                                    | ND       | 2.0        | μg/L<br>μg/L     |            |              |        |        |     |       |       |
| o-Xylene                                      | ND<br>ND | 2.0        | μg/L<br>μg/L     |            |              |        |        |     |       |       |
| Surrogate: 1,2-Dichloroethane-d4              | 24.9     |            | μg/L             | 25.0       |              | 99.6   | 70-130 |     |       |       |
| Surrogate: Toluene-d8                         | 24.8     |            | μg/L             | 25.0       |              | 99.4   | 70-130 |     |       |       |
| Surrogate: 4-Bromofluorobenzene               | 24.8     |            | $\mu g/L$        | 25.0       |              | 99.4   | 70-130 |     |       |       |
| LCS (B218510-BS1)                             |          |            |                  | Prepared & | Analyzed: 12 | /05/18 |        |     |       |       |
| Benzene                                       | 19.4     | 1.0        | μg/L             | 20.0       |              | 96.8   | 65-135 |     |       |       |
| Bromodichloromethane                          | 18.7     | 2.0        | $\mu \text{g/L}$ | 20.0       |              | 93.4   | 65-135 |     |       |       |
| Bromoform                                     | 19.2     | 2.0        | μg/L             | 20.0       |              | 96.0   | 70-130 |     |       |       |
| Bromomethane                                  | 18.9     | 2.0        | μg/L             | 20.0       |              | 94.6   | 15-185 |     |       |       |
| Carbon Tetrachloride                          | 18.3     | 2.0        | $\mu g/L$        | 20.0       |              | 91.4   | 70-130 |     |       |       |
| Chlorobenzene                                 | 20.8     | 2.0        | μg/L             | 20.0       |              | 104    | 65-135 |     |       |       |
| Chlorodibromomethane                          | 19.8     | 2.0        | μg/L             | 20.0       |              | 99.2   | 70-135 |     |       |       |
| Chloroethane                                  | 20.5     | 2.0        | μg/L             | 20.0       |              | 103    | 40-160 |     |       |       |
| Chloroform                                    | 18.6     | 2.0        | μg/L             | 20.0       |              | 93.1   | 70-135 |     |       |       |
| Chloromethane                                 | 24.9     | 2.0        | μg/L             | 20.0       |              | 125    | 20-205 |     |       |       |
| 1,2-Dichlorobenzene                           | 20.7     | 2.0        | μg/L             | 20.0       |              | 104    | 65-135 |     |       |       |
| 1,3-Dichlorobenzene                           | 20.5     | 2.0        | μg/L             | 20.0       |              | 103    | 70-130 |     |       |       |
| 1,4-Dichlorobenzene                           | 19.9     | 2.0        | μg/L             | 20.0       |              | 99.5   | 65-135 |     |       |       |
| 1,2-Dichloroethane                            | 20.1     | 2.0        | μg/L             | 20.0       |              | 100    | 70-130 |     |       |       |



#### QUALITY CONTROL

## Volatile Organic Compounds by GC/MS - Quality Control

| Analyte                           | Result | Reporting<br>Limit | Units             | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|-----------------------------------|--------|--------------------|-------------------|----------------|------------------|-------------|----------------|-----|--------------|-------|
| -                                 | Result | Limit              | Units             | Level          | Result           | %REC        | Limits         | KPD | Limit        | Notes |
| Batch B218510 - SW-846 5030B      |        |                    |                   |                |                  |             |                |     |              |       |
| LCS (B218510-BS1)                 |        |                    |                   |                | Analyzed: 12/0   |             |                |     |              |       |
| 1,1-Dichloroethane                | 21.5   | 2.0                | μg/L              | 20.0           |                  | 107         | 70-130         |     |              |       |
| 1,1-Dichloroethylene              | 20.6   | 2.0                | μg/L              | 20.0           |                  | 103         | 50-150         |     |              |       |
| trans-1,2-Dichloroethylene        | 21.9   | 2.0                | μg/L              | 20.0           |                  | 110         | 70-130         |     |              |       |
| 1,2-Dichloropropane               | 21.7   | 2.0                | μg/L              | 20.0           |                  | 109         | 35-165         |     |              |       |
| cis-1,3-Dichloropropene           | 18.4   | 2.0                | μg/L              | 20.0           |                  | 91.8        | 25-175         |     |              |       |
| trans-1,3-Dichloropropene         | 18.1   | 2.0                | μg/L              | 20.0           |                  | 90.3        | 50-150         |     |              |       |
| Ethylbenzene                      | 19.9   | 2.0                | μg/L              | 20.0           |                  | 99.4        | 60-140         |     |              |       |
| Methyl tert-Butyl Ether (MTBE)    | 18.2   | 2.0                | μg/L              | 20.0           |                  | 90.8        | 70-130         |     |              |       |
| Methylene Chloride                | 24.3   | 5.0                | μg/L              | 20.0           |                  | 122         | 60-140         |     |              |       |
| 1,1,2,2-Tetrachloroethane         | 20.7   | 2.0                | μg/L              | 20.0           |                  | 103         | 60-140         |     |              |       |
| Tetrachloroethylene               | 19.2   | 2.0                | μg/L              | 20.0           |                  | 96.1        | 70-130         |     |              |       |
| Toluene                           | 19.0   | 1.0                | μg/L              | 20.0           |                  | 95.2        | 70-130         |     |              |       |
| 1,1,1-Trichloroethane             | 17.5   | 2.0                | μg/L              | 20.0           |                  | 87.4        | 70-130         |     |              |       |
| 1,1,2-Trichloroethane             | 19.1   | 2.0                | μg/L              | 20.0           |                  | 95.3        | 70-130         |     |              |       |
| Trichloroethylene                 | 19.0   | 2.0                | μg/L              | 20.0           |                  | 95.2        | 65-135         |     |              |       |
| Trichlorofluoromethane (Freon 11) | 18.0   | 2.0                | μg/L              | 20.0           |                  | 90.0        | 50-150         |     |              |       |
| Vinyl Chloride                    | 21.0   | 2.0                | μg/L              | 20.0           |                  | 105         | 5-195          |     |              |       |
| m+p Xylene                        | 39.8   | 2.0                | μg/L              | 40.0           |                  | 99.5        | 70-130         |     |              |       |
| o-Xylene                          | 19.9   | 2.0                | μg/L              | 20.0           |                  | 99.4        | 70-130         |     |              |       |
| Surrogate: 1,2-Dichloroethane-d4  | 24.2   |                    | $\mu g/L$         | 25.0           |                  | 96.6        | 70-130         |     |              |       |
| Surrogate: Toluene-d8             | 25.1   |                    | μg/L              | 25.0           |                  | 100         | 70-130         |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 25.0   |                    | $\mu g/L$         | 25.0           |                  | 100         | 70-130         |     |              |       |
| Matrix Spike (B218510-MS1)        | Sou    | rce: 18K1106-      | -01               | Prepared: 12   | 2/05/18 Analyz   | zed: 12/06/ | 18             |     |              |       |
| Benzene                           | 20.8   | 1.0                | μg/L              | 20.0           | ND               | 104         | 37-151         |     |              |       |
| Bromodichloromethane              | 19.8   | 2.0                | $\mu \text{g/L}$  | 20.0           | ND               | 99.2        | 35-155         |     |              |       |
| Bromoform                         | 19.2   | 2.0                | $\mu g \! / \! L$ | 20.0           | ND               | 96.0        | 45-169         |     |              |       |
| Bromomethane                      | 19.1   | 2.0                | $\mu g \! / \! L$ | 20.0           | 0.600            | 92.7        | 20-242         |     |              |       |
| Carbon Tetrachloride              | 20.1   | 2.0                | $\mu g \! / \! L$ | 20.0           | ND               | 100         | 70-140         |     |              |       |
| Chlorobenzene                     | 21.7   | 2.0                | $\mu g \! / \! L$ | 20.0           | ND               | 109         | 37-160         |     |              |       |
| Chlorodibromomethane              | 20.5   | 2.0                | $\mu g \! / \! L$ | 20.0           | ND               | 102         | 53-149         |     |              |       |
| Chloroethane                      | 21.7   | 2.0                | $\mu g \! / \! L$ | 20.0           | ND               | 108         | 14-230         |     |              |       |
| Chloroform                        | 19.9   | 2.0                | $\mu g \! / \! L$ | 20.0           | ND               | 99.5        | 51-138         |     |              |       |
| Chloromethane                     | 26.7   | 2.0                | $\mu g \! / \! L$ | 20.0           | ND               | 133         | 20-273         |     |              |       |
| 1,2-Dichlorobenzene               | 21.5   | 2.0                | $\mu g \! / \! L$ | 20.0           | ND               | 108         | 18-190         |     |              |       |
| 1,3-Dichlorobenzene               | 22.1   | 2.0                | $\mu g \! / \! L$ | 20.0           | ND               | 110         | 59-156         |     |              |       |
| 1,4-Dichlorobenzene               | 21.4   | 2.0                | $\mu g \! / \! L$ | 20.0           | ND               | 107         | 18-190         |     |              |       |
| 1,2-Dichloroethane                | 21.0   | 2.0                | $\mu g \! / \! L$ | 20.0           | ND               | 105         | 49-155         |     |              |       |
| 1,1-Dichloroethane                | 25.1   | 2.0                | $\mu g \! / \! L$ | 20.0           | 1.64             | 117         | 59-155         |     |              |       |
| 1,1-Dichloroethylene              | 23.3   | 2.0                | $\mu g \! / \! L$ | 20.0           | 0.960            | 112         | 20-234         |     |              |       |
| rans-1,2-Dichloroethylene         | 24.2   | 2.0                | μg/L              | 20.0           | ND               | 121         | 54-156         |     |              |       |
| 1,2-Dichloropropane               | 22.8   | 2.0                | μg/L              | 20.0           | ND               | 114         | 20-210         |     |              |       |
| cis-1,3-Dichloropropene           | 19.4   | 2.0                | μg/L              | 20.0           | ND               | 96.8        | 20-227         |     |              |       |
| rans-1,3-Dichloropropene          | 19.2   | 2.0                | μg/L              | 20.0           | ND               | 96.0        | 17-183         |     |              |       |
| Ethylbenzene                      | 21.0   | 2.0                | μg/L              | 20.0           | ND               | 105         | 37-162         |     |              |       |
| Methyl tert-Butyl Ether (MTBE)    | 19.2   | 2.0                | μg/L              | 20.0           | ND               | 96.0        | 70-130         |     |              |       |
| Methylene Chloride                | 25.4   | 5.0                | $\mu g \! / \! L$ | 20.0           | ND               | 127         | 20-221         |     |              |       |
| ,1,2,2-Tetrachloroethane          | 21.1   | 2.0                | $\mu g \! / \! L$ | 20.0           | ND               | 106         | 46-157         |     |              |       |
| Γetrachloroethylene               | 21.2   | 2.0                | $\mu g \! / \! L$ | 20.0           | ND               | 106         | 64-148         |     |              |       |
| Γoluene                           | 20.9   | 1.0                | μg/L              | 20.0           | ND               | 104         | 47-150         |     |              |       |
| 1,1,1-Trichloroethane             | 53.7   | 2.0                | μg/L              | 20.0           | 34.6             | 95.2        | 52-162         |     |              |       |
| 1,1,2-Trichloroethane             | 55.7   | 2.0                | μg/L              |                |                  |             |                |     |              |       |



#### QUALITY CONTROL

#### Volatile Organic Compounds by GC/MS - Quality Control

|                                   |        | Reporting     |                   | Spike        | Source         |              | %REC   |        | RPD   |       |
|-----------------------------------|--------|---------------|-------------------|--------------|----------------|--------------|--------|--------|-------|-------|
| Analyte                           | Result | Limit         | Units             | Level        | Result         | %REC         | Limits | RPD    | Limit | Notes |
| Batch B218510 - SW-846 5030B      |        |               |                   |              |                |              |        |        |       |       |
| Matrix Spike (B218510-MS1)        | Source | ce: 18K1106-0 | 01                | Prepared: 12 | 2/05/18 Analyz | red: 12/06/  | 18     |        |       |       |
| Trichloroethylene                 | 21.2   | 2.0           | μg/L              | 20.0         | ND             | 106          | 70-157 |        |       |       |
| Trichlorofluoromethane (Freon 11) | 20.0   | 2.0           | $\mu g/L$         | 20.0         | ND             | 99.9         | 17-181 |        |       |       |
| Vinyl Chloride                    | 22.4   | 2.0           | $\mu g/L$         | 20.0         | ND             | 112          | 20-251 |        |       |       |
| m+p Xylene                        | 41.8   | 2.0           | μg/L              | 40.0         | ND             | 105          | 70-130 |        |       |       |
| o-Xylene                          | 21.0   | 2.0           | $\mu g/L$         | 20.0         | ND             | 105          | 70-130 |        |       |       |
| Surrogate: 1,2-Dichloroethane-d4  | 24.6   |               | μg/L              | 25.0         |                | 98.4         | 70-130 |        |       |       |
| Surrogate: Toluene-d8             | 25.2   |               | μg/L              | 25.0         |                | 101          | 70-130 |        |       |       |
| Surrogate: 4-Bromofluorobenzene   | 24.9   |               | μg/L              | 25.0         |                | 99.6         | 70-130 |        |       |       |
| Matrix Spike Dup (B218510-MSD1)   | Source | ce: 18K1106-0 | 01                | Prepared: 12 | 2/05/18 Analyz | red: 12/06/1 | 18     |        |       |       |
| Benzene                           | 20.8   | 1.0           | μg/L              | 20.0         | ND             | 104          | 37-151 | 0.00   | 61    |       |
| Bromodichloromethane              | 19.4   | 2.0           | μg/L              | 20.0         | ND             | 97.1         | 35-155 | 2.09   | 56    |       |
| Bromoform                         | 19.6   | 2.0           | μg/L              | 20.0         | ND             | 98.2         | 45-169 | 2.21   | 42    |       |
| Bromomethane                      | 21.4   | 2.0           | μg/L              | 20.0         | 0.600          | 104          | 20-242 | 11.0   | 61    |       |
| Carbon Tetrachloride              | 20.1   | 2.0           | μg/L              | 20.0         | ND             | 101          | 70-140 | 0.348  | 41    |       |
| Chlorobenzene                     | 22.1   | 2.0           | μg/L              | 20.0         | ND             | 110          | 37-160 | 1.64   | 53    |       |
| Chlorodibromomethane              | 20.5   | 2.0           | μg/L              | 20.0         | ND             | 103          | 53-149 | 0.195  | 50    |       |
| Chloroethane                      | 21.4   | 2.0           | μg/L              | 20.0         | ND             | 107          | 14-230 | 1.35   | 78    |       |
| Chloroform                        | 19.7   | 2.0           | μg/L              | 20.0         | ND             | 98.5         | 51-138 | 1.01   | 54    |       |
| Chloromethane                     | 26.4   | 2.0           | μg/L              | 20.0         | ND             | 132          | 20-273 | 1.17   | 60    |       |
| 1,2-Dichlorobenzene               | 21.4   | 2.0           | μg/L              | 20.0         | ND             | 107          | 18-190 | 0.465  | 57    |       |
| 1,3-Dichlorobenzene               | 21.7   | 2.0           | μg/L              | 20.0         | ND             | 109          | 59-156 | 1.69   | 43    |       |
| 1,4-Dichlorobenzene               | 21.0   | 2.0           | μg/L              | 20.0         | ND             | 105          | 18-190 | 1.51   | 57    |       |
| 1,2-Dichloroethane                | 20.7   | 2.0           | μg/L              | 20.0         | ND             | 104          | 49-155 | 1.25   | 49    |       |
| 1,1-Dichloroethane                | 24.5   | 2.0           | μg/L              | 20.0         | 1.64           | 114          | 59-155 | 2.54   | 40    |       |
| 1,1-Dichloroethylene              | 23.7   | 2.0           | μg/L              | 20.0         | 0.960          | 114          | 20-234 | 1.74   | 32    |       |
| trans-1,2-Dichloroethylene        | 24.2   | 2.0           | μg/L              | 20.0         | ND             | 121          | 54-156 | 0.0825 | 45    |       |
| 1,2-Dichloropropane               | 22.6   | 2.0           | $\mu g/L$         | 20.0         | ND             | 113          | 20-210 | 0.792  | 55    |       |
| cis-1,3-Dichloropropene           | 19.1   | 2.0           | $\mu g/L$         | 20.0         | ND             | 95.6         | 20-227 | 1.30   | 58    |       |
| trans-1,3-Dichloropropene         | 18.7   | 2.0           | $\mu g/L$         | 20.0         | ND             | 93.6         | 17-183 | 2.59   | 86    |       |
| Ethylbenzene                      | 21.6   | 2.0           | $\mu g/L$         | 20.0         | ND             | 108          | 37-162 | 2.96   | 63    |       |
| Methyl tert-Butyl Ether (MTBE)    | 19.4   | 2.0           | $\mu g/L$         | 20.0         | ND             | 97.2         | 70-130 | 1.29   | 20    |       |
| Methylene Chloride                | 25.6   | 5.0           | $\mu g/L$         | 20.0         | ND             | 128          | 20-221 | 0.902  | 28    |       |
| 1,1,2,2-Tetrachloroethane         | 21.7   | 2.0           | $\mu g \! / \! L$ | 20.0         | ND             | 109          | 46-157 | 2.85   | 61    |       |
| Tetrachloroethylene               | 20.8   | 2.0           | $\mu g/L$         | 20.0         | ND             | 104          | 64-148 | 2.24   | 39    |       |
| Γoluene                           | 20.8   | 1.0           | $\mu g/L$         | 20.0         | ND             | 104          | 47-150 | 0.288  | 41    |       |
| 1,1,1-Trichloroethane             | 54.4   | 2.0           | $\mu g \! / \! L$ | 20.0         | 34.6           | 98.9         | 52-162 | 1.37   | 36    |       |
| 1,1,2-Trichloroethane             | 19.6   | 2.0           | $\mu g \! / \! L$ | 20.0         | ND             | 98.2         | 52-150 | 3.06   | 45    |       |
| Γrichloroethylene                 | 20.9   | 2.0           | $\mu g/L$         | 20.0         | ND             | 105          | 70-157 | 1.28   | 48    |       |
| Γrichlorofluoromethane (Freon 11) | 19.9   | 2.0           | $\mu g \! / \! L$ | 20.0         | ND             | 99.6         | 17-181 | 0.351  | 84    |       |
| Vinyl Chloride                    | 22.3   | 2.0           | $\mu g \! / \! L$ | 20.0         | ND             | 111          | 20-251 | 0.627  | 66    |       |
| m+p Xylene                        | 42.8   | 2.0           | $\mu g \! / \! L$ | 40.0         | ND             | 107          | 70-130 | 2.20   | 20    |       |
| o-Xylene                          | 21.2   | 2.0           | μg/L              | 20.0         | ND             | 106          | 70-130 | 0.853  | 20    |       |
| Surrogate: 1,2-Dichloroethane-d4  | 24.0   |               | μg/L              | 25.0         |                | 96.2         | 70-130 |        |       |       |
| Surrogate: Toluene-d8             | 25.1   |               | μg/L              | 25.0         |                | 101          | 70-130 |        |       |       |
| Surrogate: 4-Bromofluorobenzene   | 25.2   |               | μg/L              | 25.0         |                | 101          | 70-130 |        |       |       |



#### FLAG/QUALIFIER SUMMARY

| *   | QC result is outside of established limits.                                 |
|-----|-----------------------------------------------------------------------------|
| †   | Wide recovery limits established for difficult compound.                    |
| ‡   | Wide RPD limits established for difficult compound.                         |
| #   | Data exceeded client recommended or regulatory level                        |
| ND  | Not Detected                                                                |
| RL  | Reporting Limit is at the level of quantitation (LOQ)                       |
| DL  | Detection Limit is the lower limit of detection determined by the MDL study |
| MCL | Maximum Contaminant Level                                                   |
|     |                                                                             |

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the

calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

J Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).



## CERTIFICATIONS

## Certified Analyses included in this Report

| Analyte                           | Certifications       |
|-----------------------------------|----------------------|
| EPA 624.1 in Water                |                      |
| Benzene                           | CT,NY,MA,NH,RI,NC,ME |
| Bromodichloromethane              | CT,NY,MA,NH,RI,NC,ME |
| Bromoform                         | CT,NY,MA,NH,RI,NC,ME |
| Bromomethane                      | CT,NY,MA,NH,RI,NC,ME |
| Carbon Tetrachloride              | CT,NY,MA,NH,RI,NC,ME |
| Chlorobenzene                     | CT,NY,MA,NH,RI,NC,ME |
| Chlorodibromomethane              | CT,NY,MA,NH,RI,NC,ME |
| Chloroethane                      | CT,NY,MA,NH,RI,NC,ME |
| Chloroform                        | CT,NY,MA,NH,RI,NC,ME |
| Chloromethane                     | CT,NY,MA,NH,RI,NC,ME |
| 1,2-Dichlorobenzene               | CT,NY,MA,NH,RI,NC,ME |
| 1,3-Dichlorobenzene               | CT,NY,MA,NH,RI,NC,ME |
| 1,4-Dichlorobenzene               | CT,NY,MA,NH,RI,NC,ME |
| 1,2-Dichloroethane                | CT,NY,MA,NH,RI,NC,ME |
| 1,1-Dichloroethane                | CT,NY,MA,NH,RI,NC,ME |
| 1,1-Dichloroethylene              | CT,NY,MA,NH,RI,NC,ME |
| trans-1,2-Dichloroethylene        | CT,NY,MA,NH,RI,NC,ME |
| 1,2-Dichloropropane               | CT,NY,MA,NH,RI,NC,ME |
| cis-1,3-Dichloropropene           | CT,NY,MA,NH,RI,NC,ME |
| trans-1,3-Dichloropropene         | CT,NY,MA,NH,RI,NC,ME |
| Ethylbenzene                      | CT,NY,MA,NH,RI,NC,ME |
| Methyl tert-Butyl Ether (MTBE)    | NY,MA,NH,NC          |
| Methylene Chloride                | CT,NY,MA,NH,RI,NC,ME |
| 1,1,2,2-Tetrachloroethane         | CT,NY,MA,NH,RI,NC,ME |
| Tetrachloroethylene               | CT,NY,MA,NH,RI,NC,ME |
| Toluene                           | CT,NY,MA,NH,RI,NC,ME |
| 1,1,1-Trichloroethane             | CT,NY,MA,NH,RI,NC,ME |
| 1,1,2-Trichloroethane             | CT,NY,MA,NH,RI,NC,ME |
| Trichloroethylene                 | CT,NY,MA,NH,RI,NC,ME |
| Trichlorofluoromethane (Freon 11) | CT,NY,MA,NH,RI,NC,ME |
| Vinyl Chloride                    | CT,NY,MA,NH,RI,NC,ME |
| m+p Xylene                        | CT,NY,MA,NH,RI,NC    |
| o-Xylene                          | CT,NY,MA,NH,RI,NC    |



The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

| Code  | Description                                  | Number        | Expires    |
|-------|----------------------------------------------|---------------|------------|
| AIHA  | AIHA-LAP, LLC - ISO17025:2005                | 100033        | 03/1/2020  |
| MA    | Massachusetts DEP                            | M-MA100       | 06/30/2019 |
| CT    | Connecticut Department of Publile Health     | PH-0567       | 09/30/2019 |
| NY    | New York State Department of Health          | 10899 NELAP   | 04/1/2019  |
| NH-S  | New Hampshire Environmental Lab              | 2516 NELAP    | 02/5/2019  |
| RI    | Rhode Island Department of Health            | LAO00112      | 12/30/2018 |
| NC    | North Carolina Div. of Water Quality         | 652           | 12/31/2018 |
| NJ    | New Jersey DEP                               | MA007 NELAP   | 06/30/2019 |
| FL    | Florida Department of Health                 | E871027 NELAP | 06/30/2019 |
| VT    | Vermont Department of Health Lead Laboratory | LL015036      | 07/30/2019 |
| ME    | State of Maine                               | 2011028       | 06/9/2019  |
| VA    | Commonwealth of Virginia                     | 460217        | 12/14/2018 |
| NH-P  | New Hampshire Environmental Lab              | 2557 NELAP    | 09/6/2019  |
| VT-DW | Vermont Department of Health Drinking Water  | VT-255716     | 06/12/2019 |
| NC-DW | North Carolina Department of Health          | 25703         | 07/31/2019 |

Dissolved Metals Samples 2 Preservation Codes: WW - Wate Water DW = Drinking Water X = Sodium Hydroxide **Watrk Cedes:** GW = Ground Wate B = Sodium Bisulfate S = Summa Canister O = Other (please T = Tedlar Bag O = Other (please 0 = Other (please Non Soxhlet A = Amber Glass S = Sulfuric Acid PCB ONLY Preservation Code Soxhlet Field Filtered N = Nitric Acid Field Filtered ☐ Lab to Filter ☐ Lab to Filter Container Code SL = Slidge SOL = Selid M = Methanol ST = Sterile # of Containers **Thiosulfate** P = Plastic = Sodium G = Glass deffne) 3 = Iced V = Vial define) 12 1 1 define) NYSDEC EQUIS EDD EQuIS (Standard) EDD NY Regulatory EDD NY Regs Hits-Only EDD 🖍 Enhanced Data Package Please use the following codes to indicate possible sample concentration WELAC and Allia-LAP LLC Accredited Chromatogram 39 Spruce Street East Longmeadow, MA 01028 AIHA-LAP, LLC H - High; M - Medium; L - Low; C - Clean; U - Unknown ANALYSIS REQUESTED within the Conc Code column above WRTA MWRA School MBTA 4 ¥ 4 4 I CHAIN OF CUSTODY RECORD (New York) NY TOGS ☐ NY CP-51 Program & Requilatory Information Matrix Code ろ <u>ろ</u> メ Municipality Brownfield 10-Day 3-Оау 4-Day Y EXCEL Grab CLP Like Data Pkg Required Part 360 GW (Landfill) **NYC Sewer Discharge** Composite NY Unrestricted Use NY Restricted Use PDF NY Part 375 Government AWO STDS Jue Date: mail To: Ending Date/Time 81/72/11 0089 ax To# ormat: Federal 7-Day Other: 1-Day 2-Day City Project Entity Beginning Date/Time 0815 0810 Roste 146, STE 210, Cliffon Park NY | \$ | C | 110 | C | Phone: 413-525-2332 Email: info@contestlabs.com 000 450 206-6262 Client Sample 10 / Description Ordage 11/27/118 Fax: 413-525-6405 Date/Time: Date/Time: Date/Time: RW-1(MS/MSD) Date/Time Date/Time Mache EFF 46 HZ Trip Blank Arcadis 5. 124cKott Gladding , LOS RW-2 Otselic ナインナットのこと 518-250-7300 L. Whaler N South Con-Test Quote Name/Number COD-KSK plinquighed by; (signature) luished by: (signature) y: (signature eceived by: (signature) ived by: (signature) ved by: (signature) Work Order# Con-Test Invoice Recipient: Company Names Address: 855 Project Location: Project Manager: Project Number: Sampled By: Refinquished Comments Phone: Page 16 of 18

Doc # 380 Rev 1 03242017

http://www.contestlabs.com

**Table of Contents** 







# Delivered Tuesday 11/27/2018 at 9:47 am



#### **DELIVERED**

Signed for by: B.BECCA

# **GET STATUS UPDATES** OBTAIN PROOF OF DELIVERY

**FROM** 

Syracuse, NY US

TO

E Longmeadow, MA US

Local Scan Time

#### Shipment Facts

TRACKING NUMBER

783977603257

SERVICE

FedEx Priority Overnight

WEIGHT 13 lbs / 5.9 kgs

DIMENSIONS

15x12x11 in.

DELIVERED TO

Shipping/Receiving

**TOTAL PIECES** 

TOTAL SHIPMENT WEIGHT

13 lbs / 5.9 kgs

**TERMS** 

**PACKAGING** Third Party Your Packaging

SPECIAL HANDLING SECTION

Deliver Weekday, Additional Handling Surcharge

STANDARD TRANSIT

(?)

11/27/2018 by 10:30 am

SHIP DATE

(?)

Mon 11/26/2018

#### **ACTUAL DELIVERY**

Tue 11/27/2018 9:47 am

#### Travel History

Tuesday, 11/27/2018

9:47 am

E Longmeadow, MA

Delivered

7:59 am

WINDSOR LOCKS, CT

On FedEx vehicle for delivery

7:48 am

WINDSOR LOCKS, CT

At local FedEx facility

2:42 am

NEWARK, NJ

12:09 am

NEWARK, NJ

Departed FedEx location Arrived at FedEx location

Monday, 11/26/2018

8:38 pm

NORTH SYRACUSE, NY

Left FedEx origin facility

Page 17 of 18

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples\_\_\_\_\_



Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

| Receiv             | ed By       | RAP                      |             | Date       | (1           | 27                                      | 118         | Time         | 947                   |              |
|--------------------|-------------|--------------------------|-------------|------------|--------------|-----------------------------------------|-------------|--------------|-----------------------|--------------|
| How were th        | ne samples  | In Cooler                |             | No Cooler  | <del>-</del> |                                         | On Ice      |              | No Ice                | <del> </del> |
| recei              |             | Direct from Samp         |             | 140 000161 |              | *************************************** |             |              |                       |              |
|                    |             | Direct from Samp         | •           |            |              |                                         | Ambient     |              | _ Melted Ice          |              |
| Were samp          |             |                          | By Gun#     | <u> </u>   |              |                                         | Actual Tem  | 1p- 2.4      |                       | •            |
| Temperatu          |             |                          | By Blank #  |            |              |                                         | Actual Tem  |              |                       |              |
|                    | Custody Se  |                          | NA          |            |              |                                         | Tampered    |              | MA                    |              |
|                    | COC Relin   | •                        | て           | Does       | s Chair      | n Agre                                  | ee With Sa  | mples?       | T                     | •            |
|                    |             | eaking/loose caps        | on any sam  | ples?      | F            |                                         |             |              |                       | •            |
| Is COC in in       | ~           |                          |             |            | nples re     | eceiv                                   | ed within h | olding time? |                       |              |
| Did COC is         |             | Client                   | <u> </u>    | Analysis   | I            |                                         | •           | er Name      | $\overline{}$         |              |
| pertinent Inf      |             | Project                  |             | ID's       | 7-           |                                         | Collection  | Dates/Times  | て                     |              |
|                    |             | out and legible?         |             |            |              |                                         |             |              |                       |              |
| Are there La       |             |                          | <u> </u>    |            | Who          | was                                     | notified?   |              |                       |              |
| Are there Ru       |             |                          | <u> </u>    |            | Who          | was                                     | notified?   |              |                       |              |
| Are there Sh       |             | _                        | E           |            | Who          | was                                     | notified?   |              |                       |              |
| s there enou       |             |                          |             |            |              |                                         | 7           |              |                       |              |
|                    |             | re applicable?           | <u> </u>    |            | MS/MS        | _                                       | j           | _            |                       |              |
| Proper Media       |             |                          | T           |            |              |                                         | amples red  | quired?      | <u> </u>              |              |
| Were trip bla      |             |                          | 1           |            | On CO        | C?_                                     | 7           | -            |                       |              |
| Do all sample      | es have the | proper pH?               | <b>/</b> √~ | - Acid     |              |                                         |             | Base         |                       |              |
| /ials              | #           | Containers:              | #           |            |              |                                         | #           |              |                       | #            |
| Jnp-               |             | 1 Liter Amb.             |             | 1 Liter l  | Plastic      |                                         |             | 16 oz        | Amb.                  |              |
| HCL-               | 171         | 500 mL Amb.              |             | 500 mL     | ****         |                                         |             | 8oz An       | nb/Clear              |              |
| /leoh-             |             | 250 mL Amb.              |             | 250 mL     |              | ;                                       |             | 4oz Am       | nb/Clear              |              |
| Bisulfate-         |             | Flashpoint               |             | Col./Ba    |              |                                         |             |              | ıb/Clear              |              |
| DI-<br>hiosulfate- |             | Other Glass              |             | Other F    |              |                                         |             |              | core                  |              |
| Sulfuric-          |             | SOC Kit                  |             | Plastic    |              |                                         |             | Frozen:      |                       |              |
| Juliune-           |             | Perchlorate              |             | Ziplo      | ock          | ennikeekkoesko                          |             |              | 014504745544564555555 | Day Control  |
|                    |             |                          |             | Unused N   | ledia        |                                         |             | 2.6 (2.1)    |                       |              |
| /ials              | # !         | Containers:              | #           |            |              |                                         | #           |              |                       | #            |
| Jnp-               |             | 1 Liter Amb.             |             | 1 Liter F  |              |                                         |             | 16 oz        |                       |              |
| ICL-<br>Ieoh-      |             | 500 mL Amb.              |             | 500 mL     |              |                                         |             | 8oz Am       |                       |              |
| lisulfate-         |             | 250 mL Amb.              |             | 250 mL     |              |                                         | *****       | 4oz Am       |                       | *****        |
| olsuliate-<br>)I-  |             | Col./Bacteria            |             | Flash      |              |                                         |             | 2oz Am       |                       |              |
| hiosulfate-        |             | Other Plastic<br>SOC Kit |             | Other (    |              |                                         |             | <u>Enc</u>   | ore                   |              |
| Sulfuric-          |             | Perchlorate              |             | Plastic    |              | +                                       |             | Frozen:      |                       |              |
| Q,1Q(10            |             | i Civilitiale            |             | Ziplo      | CK           |                                         |             |              |                       |              |
| comments:          |             |                          |             |            |              |                                         |             |              |                       |              |



December 24, 2018

Jeremy Wyckoff Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210 Clifton Park, NY 12065

Project Location: South Otselic, NY

Client Job Number:

Project Number: 00266406.0000

Laboratory Work Order Number: 18L0849

Enclosed are results of analyses for samples received by the laboratory on December 18, 2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Aaron L. Benoit Project Manager

# Table of Contents

| Sample Summary                      | 3  |
|-------------------------------------|----|
| Case Narrative                      | 4  |
| Sample Results                      | 5  |
| 18L0849-01                          | 5  |
| 18L0849-02                          | 6  |
| 18L0849-03                          | 7  |
| 18L0849-04                          | 8  |
| Sample Preparation Information      | 9  |
| QC Data                             | 10 |
| Volatile Organic Compounds by GC/MS | 10 |
| B219567                             | 10 |
| Flag/Qualifier Summary              | 13 |
| Certifications                      | 14 |
| Chain of Custody/Sample Receipt     | 16 |



Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210

Clifton Park, NY 12065 ATTN: Jeremy Wyckoff PURCHASE ORDER NUMBER:

REPORT DATE: 12/24/2018

PROJECT NUMBER: 00266406.0000

#### ANALYTICAL SUMMARY

WORK ORDER NUMBER: 18L0849

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: South Otselic, NY

| FIELD SAMPLE # | LAB ID:    | MATRIX           | SAMPLE DESCRIPTION | TEST      | SUB LAB |
|----------------|------------|------------------|--------------------|-----------|---------|
| RW-1 (MS/MSD)  | 18L0849-01 | Ground Water     |                    | EPA 624.1 |         |
| RW-2           | 18L0849-02 | Ground Water     |                    | EPA 624.1 |         |
| EFF 46HZ       | 18L0849-03 | Ground Water     |                    | EPA 624.1 |         |
| Trip Blank     | 18L0849-04 | Trip Blank Water |                    | EPA 624.1 |         |



#### CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Tod E. Kopyscinski Laboratory Director



Project Location: South Otselic, NY Sample Description: Work Order: 18L0849

Date Received: 12/18/2018

Field Sample #: RW-1 (MS/MSD)

Sample ID: 18L0849-01
Sample Matrix: Ground Water

Sampled: 12/16/2018 16:00

|                                   |         |     |      |           |          |           |           | Date     | Date/Time      |         |
|-----------------------------------|---------|-----|------|-----------|----------|-----------|-----------|----------|----------------|---------|
| Analyte                           | Results | RL  | DL   | Units     | Dilution | Flag/Qual | Method    | Prepared | Analyzed       | Analyst |
| Benzene                           | ND      | 1.0 | 0.34 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| Bromodichloromethane              | ND      | 2.0 | 0.48 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| Bromoform                         | ND      | 2.0 | 0.28 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| Bromomethane                      | 0.90    | 2.0 | 0.44 | $\mu g/L$ | 1        | J         | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| Carbon Tetrachloride              | ND      | 2.0 | 0.39 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| Chlorobenzene                     | ND      | 2.0 | 0.30 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| Chlorodibromomethane              | ND      | 2.0 | 0.27 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| Chloroethane                      | ND      | 2.0 | 0.38 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| Chloroform                        | ND      | 2.0 | 0.33 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| Chloromethane                     | ND      | 2.0 | 0.30 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| 1,2-Dichlorobenzene               | ND      | 2.0 | 0.31 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| 1,3-Dichlorobenzene               | ND      | 2.0 | 0.33 | μg/L      | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| 1,4-Dichlorobenzene               | ND      | 2.0 | 0.39 | μg/L      | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| 1,2-Dichloroethane                | ND      | 2.0 | 0.28 | μg/L      | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| 1,1-Dichloroethane                | 1.7     | 2.0 | 0.33 | μg/L      | 1        | J         | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| 1,1-Dichloroethylene              | 0.98    | 2.0 | 0.25 | μg/L      | 1        | J         | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| trans-1,2-Dichloroethylene        | ND      | 2.0 | 0.40 | μg/L      | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| 1,2-Dichloropropane               | ND      | 2.0 | 0.31 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| cis-1,3-Dichloropropene           | ND      | 2.0 | 0.47 | μg/L      | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| trans-1,3-Dichloropropene         | ND      | 2.0 | 0.37 | μg/L      | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| Ethylbenzene                      | ND      | 2.0 | 0.37 | μg/L      | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| Methyl tert-Butyl Ether (MTBE)    | ND      | 2.0 | 0.24 | μg/L      | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| Methylene Chloride                | ND      | 5.0 | 0.42 | μg/L      | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| 1,1,2,2-Tetrachloroethane         | ND      | 2.0 | 0.27 | μg/L      | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| Tetrachloroethylene               | ND      | 2.0 | 0.32 | μg/L      | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| Toluene                           | ND      | 1.0 | 0.35 | μg/L      | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| 1,1,1-Trichloroethane             | 35      | 2.0 | 0.25 | μg/L      | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| 1,1,2-Trichloroethane             | ND      | 2.0 | 0.22 | μg/L      | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| Trichloroethylene                 | ND      | 2.0 | 0.41 | μg/L      | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| Trichlorofluoromethane (Freon 11) | ND      | 2.0 | 0.27 | μg/L      | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| Vinyl Chloride                    | ND      | 2.0 | 0.30 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| m+p Xylene                        | ND      | 2.0 | 0.65 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |
| o-Xylene                          | ND      | 2.0 | 0.35 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:35 | LBD     |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |                |
|-----------------------|------------|-----------------|-----------|----------------|
| 1,2-Dichloroethane-d4 | 94.4       | 70-130          |           | 12/20/18 18:35 |
| Toluene-d8            | 101        | 70-130          |           | 12/20/18 18:35 |
| 4-Bromofluorobenzene  | 100        | 70-130          |           | 12/20/18 18:35 |

Work Order: 18L0849



39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

Project Location: South Otselic, NY Sample Description:

Date Received: 12/18/2018
Field Sample #: RW-2

Sampled: 12/16/2018 16:10

Sample ID: 18L0849-02
Sample Matrix: Ground Water

| Analyte                           | Results | RL  | DL   | Units     | Dilution | Flag/Qual | Method    | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-----------------------------------|---------|-----|------|-----------|----------|-----------|-----------|------------------|-----------------------|---------|
| Benzene                           | ND      | 1.0 | 0.34 | μg/L      | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| Bromodichloromethane              | ND      | 2.0 | 0.48 | μg/L      | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| Bromoform                         | ND      | 2.0 | 0.28 | μg/L      | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| Bromomethane                      | 0.65    | 2.0 | 0.44 | μg/L      | 1        | J         | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| Carbon Tetrachloride              | ND      | 2.0 | 0.39 | μg/L      | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| Chlorobenzene                     | ND      | 2.0 | 0.30 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| Chlorodibromomethane              | ND      | 2.0 | 0.27 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| Chloroethane                      | ND      | 2.0 | 0.38 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| Chloroform                        | ND      | 2.0 | 0.33 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| Chloromethane                     | ND      | 2.0 | 0.30 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| 1,2-Dichlorobenzene               | ND      | 2.0 | 0.31 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| 1,3-Dichlorobenzene               | ND      | 2.0 | 0.33 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| 1,4-Dichlorobenzene               | ND      | 2.0 | 0.39 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| 1,2-Dichloroethane                | ND      | 2.0 | 0.28 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| 1,1-Dichloroethane                | 0.78    | 2.0 | 0.33 | $\mu g/L$ | 1        | J         | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| 1,1-Dichloroethylene              | 0.75    | 2.0 | 0.25 | $\mu g/L$ | 1        | J         | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| trans-1,2-Dichloroethylene        | ND      | 2.0 | 0.40 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| 1,2-Dichloropropane               | ND      | 2.0 | 0.31 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| cis-1,3-Dichloropropene           | ND      | 2.0 | 0.47 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| trans-1,3-Dichloropropene         | ND      | 2.0 | 0.37 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| Ethylbenzene                      | ND      | 2.0 | 0.37 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| Methyl tert-Butyl Ether (MTBE)    | ND      | 2.0 | 0.24 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| Methylene Chloride                | ND      | 5.0 | 0.42 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| 1,1,2,2-Tetrachloroethane         | ND      | 2.0 | 0.27 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| Tetrachloroethylene               | ND      | 2.0 | 0.32 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| Toluene                           | ND      | 1.0 | 0.35 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| 1,1,1-Trichloroethane             | 29      | 2.0 | 0.25 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| 1,1,2-Trichloroethane             | ND      | 2.0 | 0.22 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| Trichloroethylene                 | ND      | 2.0 | 0.41 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| Trichlorofluoromethane (Freon 11) | ND      | 2.0 | 0.27 | μg/L      | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| Vinyl Chloride                    | ND      | 2.0 | 0.30 | μg/L      | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| m+p Xylene                        | ND      | 2.0 | 0.65 | μg/L      | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |
| o-Xylene                          | ND      | 2.0 | 0.35 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18         | 12/20/18 19:06        | LBD     |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |                |
|-----------------------|------------|-----------------|-----------|----------------|
| 1,2-Dichloroethane-d4 | 96.3       | 70-130          |           | 12/20/18 19:06 |
| Toluene-d8            | 99.8       | 70-130          |           | 12/20/18 19:06 |
| 4-Bromofluorobenzene  | 98.5       | 70-130          |           | 12/20/18 19:06 |



Project Location: South Otselic, NY Sample Description: Work Order: 18L0849

Date Received: 12/18/2018
Field Sample #: EFF 46HZ

Sampled: 12/16/2018 16:15

Sample ID: 18L0849-03
Sample Matrix: Ground Water

|                                   |         |     |      | _         |          |           |           | Date     | Date/Time      |         |
|-----------------------------------|---------|-----|------|-----------|----------|-----------|-----------|----------|----------------|---------|
| Analyte                           | Results | RL  | DL   | Units     | Dilution | Flag/Qual | Method    | Prepared | Analyzed       | Analyst |
| Benzene                           | ND      | 1.0 | 0.34 | μg/L      | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| Bromodichloromethane              | ND      | 2.0 | 0.48 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| Bromoform                         | ND      | 2.0 | 0.28 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| Bromomethane                      | 0.93    | 2.0 | 0.44 | $\mu g/L$ | 1        | J         | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| Carbon Tetrachloride              | ND      | 2.0 | 0.39 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| Chlorobenzene                     | ND      | 2.0 | 0.30 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| Chlorodibromomethane              | ND      | 2.0 | 0.27 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| Chloroethane                      | ND      | 2.0 | 0.38 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| Chloroform                        | ND      | 2.0 | 0.33 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| Chloromethane                     | ND      | 2.0 | 0.30 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| 1,2-Dichlorobenzene               | ND      | 2.0 | 0.31 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| 1,3-Dichlorobenzene               | ND      | 2.0 | 0.33 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| 1,4-Dichlorobenzene               | ND      | 2.0 | 0.39 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| 1,2-Dichloroethane                | ND      | 2.0 | 0.28 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| 1,1-Dichloroethane                | ND      | 2.0 | 0.33 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| 1,1-Dichloroethylene              | ND      | 2.0 | 0.25 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| trans-1,2-Dichloroethylene        | ND      | 2.0 | 0.40 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| 1,2-Dichloropropane               | ND      | 2.0 | 0.31 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| cis-1,3-Dichloropropene           | ND      | 2.0 | 0.47 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| trans-1,3-Dichloropropene         | ND      | 2.0 | 0.37 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| Ethylbenzene                      | ND      | 2.0 | 0.37 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| Methyl tert-Butyl Ether (MTBE)    | ND      | 2.0 | 0.24 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| Methylene Chloride                | ND      | 5.0 | 0.42 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| 1,1,2,2-Tetrachloroethane         | ND      | 2.0 | 0.27 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| Tetrachloroethylene               | ND      | 2.0 | 0.32 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| Toluene                           | ND      | 1.0 | 0.35 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| 1,1,1-Trichloroethane             | ND      | 2.0 | 0.25 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| 1,1,2-Trichloroethane             | ND      | 2.0 | 0.22 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| Trichloroethylene                 | ND      | 2.0 | 0.41 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| Trichlorofluoromethane (Freon 11) | ND      | 2.0 | 0.27 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| Vinyl Chloride                    | ND      | 2.0 | 0.30 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| m+p Xylene                        | ND      | 2.0 | 0.65 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |
| o-Xylene                          | ND      | 2.0 | 0.35 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 18:05 | LBD     |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |                |
|-----------------------|------------|-----------------|-----------|----------------|
| 1,2-Dichloroethane-d4 | 97.6       | 70-130          |           | 12/20/18 18:05 |
| Toluene-d8            | 101        | 70-130          |           | 12/20/18 18:05 |
| 4-Bromofluorobenzene  | 98.5       | 70-130          |           | 12/20/18 18:05 |

Work Order: 18L0849



39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

Project Location: South Otselic, NY Sample Description:

Date Received: 12/18/2018
Field Sample #: Trip Blank

Sampled: 12/16/2018 00:00

Sample ID: 18L0849-04
Sample Matrix: Trip Blank Water

#### Volatile Organic Compounds by GC/MS

|                                   |         |     |      |           |          |           |           | Date     | Date/Time      |         |
|-----------------------------------|---------|-----|------|-----------|----------|-----------|-----------|----------|----------------|---------|
| Analyte                           | Results | RL  | DL   | Units     | Dilution | Flag/Qual | Method    | Prepared | Analyzed       | Analyst |
| Benzene                           | ND      | 1.0 | 0.34 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| Bromodichloromethane              | ND      | 2.0 | 0.48 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| Bromoform                         | ND      | 2.0 | 0.28 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| Bromomethane                      | 0.93    | 2.0 | 0.44 | $\mu g/L$ | 1        | J         | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| Carbon Tetrachloride              | ND      | 2.0 | 0.39 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| Chlorobenzene                     | ND      | 2.0 | 0.30 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| Chlorodibromomethane              | ND      | 2.0 | 0.27 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| Chloroethane                      | ND      | 2.0 | 0.38 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| Chloroform                        | ND      | 2.0 | 0.33 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| Chloromethane                     | ND      | 2.0 | 0.30 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| 1,2-Dichlorobenzene               | ND      | 2.0 | 0.31 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| 1,3-Dichlorobenzene               | ND      | 2.0 | 0.33 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| 1,4-Dichlorobenzene               | ND      | 2.0 | 0.39 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| 1,2-Dichloroethane                | ND      | 2.0 | 0.28 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| 1,1-Dichloroethane                | ND      | 2.0 | 0.33 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| 1,1-Dichloroethylene              | ND      | 2.0 | 0.25 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| trans-1,2-Dichloroethylene        | ND      | 2.0 | 0.40 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| 1,2-Dichloropropane               | ND      | 2.0 | 0.31 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| cis-1,3-Dichloropropene           | ND      | 2.0 | 0.47 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| trans-1,3-Dichloropropene         | ND      | 2.0 | 0.37 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| Ethylbenzene                      | ND      | 2.0 | 0.37 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| Methyl tert-Butyl Ether (MTBE)    | ND      | 2.0 | 0.24 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| Methylene Chloride                | 0.69    | 5.0 | 0.42 | $\mu g/L$ | 1        | J         | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| 1,1,2,2-Tetrachloroethane         | ND      | 2.0 | 0.27 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| Tetrachloroethylene               | ND      | 2.0 | 0.32 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| Toluene                           | 0.39    | 1.0 | 0.35 | $\mu g/L$ | 1        | J         | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| 1,1,1-Trichloroethane             | ND      | 2.0 | 0.25 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| 1,1,2-Trichloroethane             | ND      | 2.0 | 0.22 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| Trichloroethylene                 | ND      | 2.0 | 0.41 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| Trichlorofluoromethane (Freon 11) | ND      | 2.0 | 0.27 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| Vinyl Chloride                    | ND      | 2.0 | 0.30 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| m+p Xylene                        | ND      | 2.0 | 0.65 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |
| o-Xylene                          | ND      | 2.0 | 0.35 | $\mu g/L$ | 1        |           | EPA 624.1 | 12/19/18 | 12/20/18 17:34 | LBD     |

| Surrogates            | % Recovery | Recovery Limits | Flag/Qual |                |
|-----------------------|------------|-----------------|-----------|----------------|
| 1,2-Dichloroethane-d4 | 95.5       | 70-130          |           | 12/20/18 17:34 |
| Toluene-d8            | 101        | 70-130          |           | 12/20/18 17:34 |
| 4-Bromofluorobenzene  | 99.8       | 70-130          |           | 12/20/18 17:34 |



## Sample Extraction Data

## Prep Method: SW-846 5030B-EPA 624.1

| Lab Number [Field ID]      | Batch   | Initial [mL] | Final [mL] | Date     |
|----------------------------|---------|--------------|------------|----------|
| 18L0849-01 [RW-1 (MS/MSD)] | B219567 | 5            | 5.00       | 12/19/18 |
| 18L0849-02 [RW-2]          | B219567 | 5            | 5.00       | 12/19/18 |
| 18L0849-03 [EFF 46HZ]      | B219567 | 5            | 5.00       | 12/19/18 |
| 18L0849-04 [Trip Blank]    | B219567 | 5            | 5.00       | 12/19/18 |

%REC

RPD



## 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

#### QUALITY CONTROL

Spike

Source

## Volatile Organic Compounds by GC/MS - Quality Control

Reporting

| Analyte                                  | Result       | Limit      | Units        | Level        | Result       | %REC         | Limits           | RPD | Limit | Notes |
|------------------------------------------|--------------|------------|--------------|--------------|--------------|--------------|------------------|-----|-------|-------|
| atch B219567 - SW-846 5030B              |              |            |              |              |              |              |                  |     |       |       |
| lank (B219567-BLK1)                      |              |            |              | Prepared: 12 | 2/19/18 Anal | yzed: 12/20/ | 18               |     |       |       |
| enzene                                   | ND           | 1.0        | μg/L         |              |              |              |                  |     |       |       |
| romodichloromethane                      | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| romoform                                 | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| romomethane                              | 1.1          | 2.0        | μg/L         |              |              |              |                  |     |       | J     |
| arbon Tetrachloride                      | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| hlorobenzene                             | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| hlorodibromomethane                      | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| hloroethane                              | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| hloroform                                | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| hloromethane                             | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| 2-Dichlorobenzene                        | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| 3-Dichlorobenzene                        | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| 4-Dichlorobenzene                        | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| 2-Dichloroethane                         | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| 1-Dichloroethane                         | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| 1-Dichloroethylene                       | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| ans-1,2-Dichloroethylene                 | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| ,2-Dichloropropane                       | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| is-1,3-Dichloropropene                   | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| ans-1,3-Dichloropropene                  | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| thylbenzene                              | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| Methyl tert-Butyl Ether (MTBE)           | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| fethylene Chloride                       | ND           | 5.0        | μg/L         |              |              |              |                  |     |       |       |
| 1,2,2-Tetrachloroethane                  | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| etrachloroethylene                       | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| oluene                                   | ND           | 1.0        | μg/L         |              |              |              |                  |     |       |       |
| 1,1-Trichloroethane                      | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| 1,2-Trichloroethane                      | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| richloroethylene                         | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| richlorofluoromethane (Freon 11)         | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| Tinyl Chloride                           | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| n+p Xylene                               | ND           | 2.0        | μg/L         |              |              |              |                  |     |       |       |
| -Xylene                                  | ND           | 2.0        | μg/L         |              |              | 0            |                  |     |       |       |
| urrogate: 1,2-Dichloroethane-d4          | 23.8         |            | μg/L         | 25.0         |              | 95.1         | 70-130           |     |       |       |
| urrogate: Toluene-d8                     | 25.1         |            | μg/L         | 25.0         |              | 100          | 70-130           |     |       |       |
| urrogate: 4-Bromofluorobenzene           | 25.0         |            | μg/L         | 25.0         |              | 99.9         | 70-130           |     |       |       |
| CS (B219567-BS1)                         |              | 1.0        | /r           |              | 2/19/18 Anal | -            |                  |     |       |       |
| enzene                                   | 19.4         | 1.0        | μg/L         | 20.0         |              | 96.8         | 65-135           |     |       |       |
| romodichloromethane                      | 18.7         | 2.0        | μg/L         | 20.0         |              | 93.4         | 65-135           |     |       |       |
| romoform                                 | 18.3         | 2.0        | μg/L<br>ug/I | 20.0         |              | 91.6         | 70-130           |     |       |       |
| romomethane                              | 13.8         | 2.0        | μg/L         | 20.0         |              | 68.8         | 15-185           |     |       |       |
| arbon Tetrachloride  hlorobenzene        | 17.9         | 2.0        | μg/L<br>μα/Ι | 20.0         |              | 89.4         | 70-130           |     |       |       |
|                                          | 20.9         | 2.0        | μg/L         | 20.0         |              | 104          | 65-135           |     |       |       |
| hlorodibromomethane                      | 19.8         | 2.0        | μg/L         | 20.0         |              | 99.2         | 70-135           |     |       |       |
| hloroethane                              | 22.0         | 2.0        | μg/L         | 20.0         |              | 110          | 40-160           |     |       |       |
| hloroform                                | 19.1         | 2.0        | μg/L         | 20.0         |              | 95.7         | 70-135           |     |       |       |
| hloromethane                             | 25.5         | 2.0        | μg/L         | 20.0         |              | 127          | 20-205           |     |       |       |
| 2-Dichlorobenzene                        | 20.1         | 2.0        | μg/L         | 20.0         |              | 100          | 65-135           |     |       |       |
| 2 Diahlandanana                          |              |            |              |              |              | 100          | 70 120           |     |       |       |
| ,3-Dichlorobenzene<br>,4-Dichlorobenzene | 20.0<br>19.4 | 2.0<br>2.0 | μg/L<br>μg/L | 20.0<br>20.0 |              | 100<br>97.0  | 70-130<br>65-135 |     |       |       |



#### QUALITY CONTROL

## Volatile Organic Compounds by GC/MS - Quality Control

| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result                                                                                                                                       | Reporting<br>Limit                                                 | Units                                                        | Spike<br>Level                                               | Source<br>Result                                                    | %REC                                                                                                                     | %REC<br>Limits                                                                                                                                                         | RPD | RPD<br>Limit | Notes |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|-------|
| Batch B219567 - SW-846 5030B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                              |                                                                    |                                                              |                                                              |                                                                     |                                                                                                                          |                                                                                                                                                                        |     |              |       |
| LCS (B219567-BS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              |                                                                    |                                                              | Prepared: 12                                                 | 2/19/18 Analyz                                                      | red: 12/20/                                                                                                              | 18                                                                                                                                                                     |     |              |       |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.7                                                                                                                                         | 2.0                                                                | μg/L                                                         | 20.0                                                         |                                                                     | 108                                                                                                                      | 70-130                                                                                                                                                                 |     |              |       |
| 1,1-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.2                                                                                                                                         | 2.0                                                                | $\mu g/L$                                                    | 20.0                                                         |                                                                     | 106                                                                                                                      | 50-150                                                                                                                                                                 |     |              |       |
| rans-1,2-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22.4                                                                                                                                         | 2.0                                                                | $\mu g/L$                                                    | 20.0                                                         |                                                                     | 112                                                                                                                      | 70-130                                                                                                                                                                 |     |              |       |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.9                                                                                                                                         | 2.0                                                                | $\mu g/L$                                                    | 20.0                                                         |                                                                     | 109                                                                                                                      | 35-165                                                                                                                                                                 |     |              |       |
| cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.4                                                                                                                                         | 2.0                                                                | $\mu g/L$                                                    | 20.0                                                         |                                                                     | 96.9                                                                                                                     | 25-175                                                                                                                                                                 |     |              |       |
| rans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19.4                                                                                                                                         | 2.0                                                                | $\mu g/L$                                                    | 20.0                                                         |                                                                     | 97.2                                                                                                                     | 50-150                                                                                                                                                                 |     |              |       |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.5                                                                                                                                         | 2.0                                                                | $\mu g/L$                                                    | 20.0                                                         |                                                                     | 97.6                                                                                                                     | 60-140                                                                                                                                                                 |     |              |       |
| Methyl tert-Butyl Ether (MTBE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.4                                                                                                                                         | 2.0                                                                | $\mu g/L$                                                    | 20.0                                                         |                                                                     | 97.0                                                                                                                     | 70-130                                                                                                                                                                 |     |              |       |
| Methylene Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25.2                                                                                                                                         | 5.0                                                                | $\mu g/L$                                                    | 20.0                                                         |                                                                     | 126                                                                                                                      | 60-140                                                                                                                                                                 |     |              |       |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.0                                                                                                                                         | 2.0                                                                | $\mu g/L$                                                    | 20.0                                                         |                                                                     | 105                                                                                                                      | 60-140                                                                                                                                                                 |     |              |       |
| Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.0                                                                                                                                         | 2.0                                                                | $\mu g/L$                                                    | 20.0                                                         |                                                                     | 100                                                                                                                      | 70-130                                                                                                                                                                 |     |              |       |
| Γoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.4                                                                                                                                         | 1.0                                                                | $\mu g/L$                                                    | 20.0                                                         |                                                                     | 96.8                                                                                                                     | 70-130                                                                                                                                                                 |     |              |       |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.3                                                                                                                                         | 2.0                                                                | μg/L                                                         | 20.0                                                         |                                                                     | 86.6                                                                                                                     | 70-130                                                                                                                                                                 |     |              |       |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.0                                                                                                                                         | 2.0                                                                | $\mu g/L$                                                    | 20.0                                                         |                                                                     | 100                                                                                                                      | 70-130                                                                                                                                                                 |     |              |       |
| Trichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.2                                                                                                                                         | 2.0                                                                | μg/L                                                         | 20.0                                                         |                                                                     | 95.8                                                                                                                     | 65-135                                                                                                                                                                 |     |              |       |
| Trichlorofluoromethane (Freon 11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.1                                                                                                                                         | 2.0                                                                | μg/L                                                         | 20.0                                                         |                                                                     | 90.4                                                                                                                     | 50-150                                                                                                                                                                 |     |              |       |
| Vinyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.8                                                                                                                                         | 2.0                                                                | μg/L                                                         | 20.0                                                         |                                                                     | 104                                                                                                                      | 5-195                                                                                                                                                                  |     |              |       |
| n+p Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39.1                                                                                                                                         | 2.0                                                                | μg/L                                                         | 40.0                                                         |                                                                     | 97.7                                                                                                                     | 70-130                                                                                                                                                                 |     |              |       |
| -Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.4                                                                                                                                         | 2.0                                                                | μg/L                                                         | 20.0                                                         |                                                                     | 96.9                                                                                                                     | 70-130                                                                                                                                                                 |     |              |       |
| Surrogate: 1,2-Dichloroethane-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23.4                                                                                                                                         |                                                                    | μg/L                                                         | 25.0                                                         |                                                                     | 93.5                                                                                                                     | 70-130                                                                                                                                                                 |     |              |       |
| Surrogate: Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.1                                                                                                                                         |                                                                    | μg/L                                                         | 25.0                                                         |                                                                     | 100                                                                                                                      | 70-130                                                                                                                                                                 |     |              |       |
| Surrogate: 4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.9                                                                                                                                         |                                                                    | μg/L                                                         | 25.0                                                         |                                                                     | 104                                                                                                                      | 70-130                                                                                                                                                                 |     |              |       |
| Matrix Spike (B219567-MS2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sou                                                                                                                                          | rce: 18L0849-                                                      | 01                                                           | Prepared: 12                                                 | 2/19/18 Analyz                                                      | red: 12/21/                                                                                                              | 18                                                                                                                                                                     |     |              |       |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.4                                                                                                                                         | 1.0                                                                | μg/L                                                         | 10.0                                                         | ND                                                                  | 104                                                                                                                      | 37-151                                                                                                                                                                 |     |              |       |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.67                                                                                                                                         | 2.0                                                                | $\mu g/L$                                                    | 10.0                                                         | ND                                                                  | 96.7                                                                                                                     | 35-155                                                                                                                                                                 |     |              |       |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.93                                                                                                                                         | 2.0                                                                | $\mu g/L$                                                    | 10.0                                                         | ND                                                                  | 89.3                                                                                                                     | 45-169                                                                                                                                                                 |     |              |       |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.07                                                                                                                                         | 2.0                                                                | $\mu g/L$                                                    | 10.0                                                         | 0.900                                                               | 61.7                                                                                                                     | 20-242                                                                                                                                                                 |     |              |       |
| Carbon Tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.4                                                                                                                                         | 2.0                                                                | $\mu g/L$                                                    | 10.0                                                         | ND                                                                  | 104                                                                                                                      | 70-140                                                                                                                                                                 |     |              |       |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.9                                                                                                                                         | 2.0                                                                | $\mu g/L$                                                    | 10.0                                                         | ND                                                                  | 109                                                                                                                      | 37-160                                                                                                                                                                 |     |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              | 2.0                                                                | μg/L                                                         | 10.0                                                         | NID                                                                 | 99.8                                                                                                                     | 53-149                                                                                                                                                                 |     |              |       |
| Chlorodibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.98                                                                                                                                         | 2.0                                                                |                                                              | 10.0                                                         | ND                                                                  |                                                                                                                          |                                                                                                                                                                        |     |              |       |
| Chlorodibromomethane<br>Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.98<br>11.0                                                                                                                                 | 2.0                                                                | μg/L                                                         | 10.0                                                         | ND<br>ND                                                            | 110                                                                                                                      | 14-230                                                                                                                                                                 |     |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |                                                                    | μg/L<br>μg/L                                                 |                                                              |                                                                     | 110<br>99.6                                                                                                              | 14-230<br>51-138                                                                                                                                                       |     |              |       |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.0                                                                                                                                         | 2.0                                                                |                                                              | 10.0                                                         | ND                                                                  |                                                                                                                          |                                                                                                                                                                        |     |              |       |
| Chloroethane<br>Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.0<br>9.96                                                                                                                                 | 2.0<br>2.0                                                         | $\mu g/L$                                                    | 10.0<br>10.0                                                 | ND<br>ND                                                            | 99.6                                                                                                                     | 51-138                                                                                                                                                                 |     |              |       |
| Chloroethane<br>Chloroform<br>Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.0<br>9.96<br>14.6                                                                                                                         | 2.0<br>2.0<br>2.0                                                  | μg/L<br>μg/L                                                 | 10.0<br>10.0<br>10.0                                         | ND<br>ND<br>ND                                                      | 99.6<br>146                                                                                                              | 51-138<br>20-273                                                                                                                                                       |     |              |       |
| Chloroethane<br>Chloroform<br>Chloromethane<br>1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.0<br>9.96<br>14.6<br>10.0<br>10.2                                                                                                         | 2.0<br>2.0<br>2.0<br>2.0                                           | μg/L<br>μg/L<br>μg/L                                         | 10.0<br>10.0<br>10.0<br>10.0                                 | ND<br>ND<br>ND<br>ND                                                | 99.6<br>146<br>100                                                                                                       | 51-138<br>20-273<br>18-190                                                                                                                                             |     |              |       |
| Chloroethane Chloroform Chloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.0<br>9.96<br>14.6<br>10.0                                                                                                                 | 2.0<br>2.0<br>2.0<br>2.0<br>2.0                                    | μg/L<br>μg/L<br>μg/L<br>μg/L                                 | 10.0<br>10.0<br>10.0<br>10.0<br>10.0                         | ND<br>ND<br>ND<br>ND                                                | 99.6<br>146<br>100<br>102                                                                                                | 51-138<br>20-273<br>18-190<br>59-156                                                                                                                                   |     |              |       |
| Chloroethane Chloroform Chloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.0<br>9.96<br>14.6<br>10.0<br>10.2<br>9.85<br>10.4                                                                                         | 2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0                             | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                         | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0                 | ND<br>ND<br>ND<br>ND<br>ND<br>ND                                    | 99.6<br>146<br>100<br>102<br>98.5                                                                                        | 51-138<br>20-273<br>18-190<br>59-156<br>18-190                                                                                                                         |     |              |       |
| Chloroethane Chloroform Chloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.0<br>9.96<br>14.6<br>10.0<br>10.2<br>9.85<br>10.4                                                                                         | 2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0                      | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                 | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0                 | ND<br>ND<br>ND<br>ND<br>ND                                          | 99.6<br>146<br>100<br>102<br>98.5<br>104                                                                                 | 51-138<br>20-273<br>18-190<br>59-156<br>18-190<br>49-155                                                                                                               |     |              |       |
| Chloroethane Chloroform Chloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.0<br>9.96<br>14.6<br>10.0<br>10.2<br>9.85<br>10.4<br>13.1<br>12.9                                                                         | 2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0               | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L         | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0         | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                              | 99.6<br>146<br>100<br>102<br>98.5<br>104<br>114                                                                          | 51-138<br>20-273<br>18-190<br>59-156<br>18-190<br>49-155<br>59-155                                                                                                     |     |              |       |
| Chloroethane Chloroform Chloromethane ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane ,1-Dichloroethylene rans-1,2-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.0<br>9.96<br>14.6<br>10.0<br>10.2<br>9.85<br>10.4                                                                                         | 2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0        | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0 | ND ND ND ND ND ND 1.72 0.980                                        | 99.6<br>146<br>100<br>102<br>98.5<br>104<br>114<br>119                                                                   | 51-138<br>20-273<br>18-190<br>59-156<br>18-190<br>49-155<br>59-155<br>20-234                                                                                           |     |              |       |
| Chloroethane Chloroform Chloromethane ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane ,1-Dichloroethane ,1-Dichloroethylene rans-1,2-Dichloroethylene ,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.0<br>9.96<br>14.6<br>10.0<br>10.2<br>9.85<br>10.4<br>13.1<br>12.9<br>12.4<br>11.4                                                         | 2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0 | ND 1.72 0.980 ND ND                   | 99.6<br>146<br>100<br>102<br>98.5<br>104<br>114<br>119<br>124                                                            | 51-138<br>20-273<br>18-190<br>59-156<br>18-190<br>49-155<br>59-155<br>20-234<br>54-156                                                                                 |     |              |       |
| Chloroethane Chloroform Chloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethylene rans-1,2-Dichloroethylene 1,2-Dichloropropane cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.0<br>9.96<br>14.6<br>10.0<br>10.2<br>9.85<br>10.4<br>13.1<br>12.9<br>12.4                                                                 | 2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0 | ND N                            | 99.6<br>146<br>100<br>102<br>98.5<br>104<br>114<br>119<br>124<br>114                                                     | 51-138<br>20-273<br>18-190<br>59-156<br>18-190<br>49-155<br>59-155<br>20-234<br>54-156<br>20-210                                                                       |     |              |       |
| Chloroethane Chloroform Chloromethane ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane ,1-Dichloroethylene rans-1,2-Dichloropropane iis-1,3-Dichloropropene rans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.0<br>9.96<br>14.6<br>10.0<br>10.2<br>9.85<br>10.4<br>13.1<br>12.9<br>12.4<br>11.4<br>9.49<br>9.05                                         | 2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0 | ND 1.72 0.980 ND ND ND                   | 99.6<br>146<br>100<br>102<br>98.5<br>104<br>114<br>119<br>124<br>114<br>94.9                                             | 51-138<br>20-273<br>18-190<br>59-156<br>18-190<br>49-155<br>59-155<br>20-234<br>54-156<br>20-210<br>20-227                                                             |     |              |       |
| Chloroethane Chloroform Chloromethane ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane ,1-Dichloroethane ,1-Dichloroethylene rans-1,2-Dichloroethylene ,2-Dichloropropane is-1,3-Dichloropropene cans-1,3-Dichloropropene cans-1,3-Dichloropropene cans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.0<br>9.96<br>14.6<br>10.0<br>10.2<br>9.85<br>10.4<br>13.1<br>12.9<br>12.4<br>11.4<br>9.49<br>9.05<br>10.4                                 | 2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L                      | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0 | ND N                            | 99.6<br>146<br>100<br>102<br>98.5<br>104<br>114<br>119<br>124<br>114<br>94.9<br>90.5                                     | 51-138<br>20-273<br>18-190<br>59-156<br>18-190<br>49-155<br>59-155<br>20-234<br>54-156<br>20-210<br>20-227<br>17-183<br>37-162                                         |     |              |       |
| Chloroethane Chloroform Chloromethane ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane ,1-Dichloroethane ,1-Dichloroethylene rans-1,2-Dichloroethylene ,2-Dichloropropane cis-1,3-Dichloropropene ethylbenzene Methyl tert-Butyl Ether (MTBE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.0<br>9.96<br>14.6<br>10.0<br>10.2<br>9.85<br>10.4<br>13.1<br>12.9<br>12.4<br>11.4<br>9.49<br>9.05<br>10.4<br>9.53                         | 2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L                      | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0 | ND N                            | 99.6<br>146<br>100<br>102<br>98.5<br>104<br>114<br>119<br>124<br>114<br>94.9<br>90.5                                     | 51-138<br>20-273<br>18-190<br>59-156<br>18-190<br>49-155<br>59-155<br>20-234<br>54-156<br>20-210<br>20-227<br>17-183<br>37-162<br>70-130                               |     |              |       |
| Chloroethane Chloroform Chloromethane ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane ,1-Dichloroethane ,1-Dichloroethylene rans-1,2-Dichloroethylene ,2-Dichloropropane cis-1,3-Dichloropropene ethylbenzene Methyl tert-Butyl Ether (MTBE) Methylene Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.0<br>9.96<br>14.6<br>10.0<br>10.2<br>9.85<br>10.4<br>13.1<br>12.9<br>12.4<br>11.4<br>9.49<br>9.05<br>10.4<br>9.53<br>13.2                 | 2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L                      | 10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0 | ND ND ND ND ND ND 1.72 0.980 ND | 99.6<br>146<br>100<br>102<br>98.5<br>104<br>114<br>119<br>124<br>114<br>94.9<br>90.5<br>104<br>95.3                      | 51-138<br>20-273<br>18-190<br>59-156<br>18-190<br>49-155<br>59-155<br>20-234<br>54-156<br>20-210<br>20-227<br>17-183<br>37-162                                         |     |              |       |
| Chloroethane Chloroform Chloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloroethylene 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dic | 11.0<br>9.96<br>14.6<br>10.0<br>10.2<br>9.85<br>10.4<br>13.1<br>12.9<br>12.4<br>11.4<br>9.49<br>9.05<br>10.4<br>9.53<br>13.2<br>10.6         | 2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L                      | 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0                      | ND N                            | 99.6<br>146<br>100<br>102<br>98.5<br>104<br>114<br>119<br>124<br>114<br>94.9<br>90.5<br>104<br>95.3<br>132               | 51-138<br>20-273<br>18-190<br>59-156<br>18-190<br>49-155<br>59-155<br>20-234<br>54-156<br>20-210<br>20-227<br>17-183<br>37-162<br>70-130<br>20-221<br>46-157           |     |              |       |
| Chloroethane<br>Chloroform<br>Chloromethane<br>1,2-Dichlorobenzene<br>1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.0<br>9.96<br>14.6<br>10.0<br>10.2<br>9.85<br>10.4<br>13.1<br>12.9<br>12.4<br>11.4<br>9.49<br>9.05<br>10.4<br>9.53<br>13.2<br>10.6<br>10.9 | 2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L                      | 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0                      | ND ND ND ND ND ND 1.72 0.980 ND | 99.6<br>146<br>100<br>102<br>98.5<br>104<br>114<br>119<br>124<br>114<br>94.9<br>90.5<br>104<br>95.3<br>132<br>106<br>109 | 51-138<br>20-273<br>18-190<br>59-156<br>18-190<br>49-155<br>59-155<br>20-234<br>54-156<br>20-210<br>20-227<br>17-183<br>37-162<br>70-130<br>20-221<br>46-157<br>64-148 |     |              |       |
| Chloroethane Chloroform Chloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene rans-1,2-Dichloroethylene 1,2-Dichloropropane cis-1,3-Dichloropropene Ethylbenzene Methyl tert-Butyl Ether (MTBE) Methylene Chloride 1,1,2,2-Tetrachloroethane Fetrachloroethylene Fetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.0<br>9.96<br>14.6<br>10.0<br>10.2<br>9.85<br>10.4<br>13.1<br>12.9<br>12.4<br>11.4<br>9.49<br>9.05<br>10.4<br>9.53<br>13.2<br>10.6         | 2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0 | μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L                      | 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0                      | ND N                            | 99.6<br>146<br>100<br>102<br>98.5<br>104<br>114<br>119<br>124<br>114<br>94.9<br>90.5<br>104<br>95.3<br>132               | 51-138<br>20-273<br>18-190<br>59-156<br>18-190<br>49-155<br>59-155<br>20-234<br>54-156<br>20-210<br>20-227<br>17-183<br>37-162<br>70-130<br>20-221<br>46-157           |     |              |       |



#### QUALITY CONTROL

#### Volatile Organic Compounds by GC/MS - Quality Control

|                                   |        | Reporting     |              | Spike        | Source         |              | %REC   |       | RPD   |       |
|-----------------------------------|--------|---------------|--------------|--------------|----------------|--------------|--------|-------|-------|-------|
| Analyte                           | Result | Limit         | Units        | Level        | Result         | %REC         | Limits | RPD   | Limit | Notes |
| Batch B219567 - SW-846 5030B      |        |               |              |              |                |              |        |       |       |       |
| Matrix Spike (B219567-MS2)        | Sourc  | ce: 18L0849-( | )1           | Prepared: 12 | 2/19/18 Analyz | zed: 12/21/1 | 18     |       |       |       |
| Trichloroethylene                 | 10.6   | 2.0           | μg/L         | 10.0         | ND             | 106          | 70-157 |       |       |       |
| Trichlorofluoromethane (Freon 11) | 10.2   | 2.0           | $\mu g/L$    | 10.0         | ND             | 102          | 17-181 |       |       |       |
| Vinyl Chloride                    | 11.8   | 2.0           | μg/L         | 10.0         | ND             | 118          | 20-251 |       |       |       |
| m+p Xylene                        | 20.4   | 2.0           | μg/L         | 20.0         | ND             | 102          | 70-130 |       |       |       |
| o-Xylene                          | 10.2   | 2.0           | μg/L         | 10.0         | ND             | 102          | 70-130 |       |       |       |
| Surrogate: 1,2-Dichloroethane-d4  | 23.5   |               | μg/L         | 25.0         |                | 94.2         | 70-130 |       |       |       |
| Surrogate: Toluene-d8             | 25.2   |               | μg/L         | 25.0         |                | 101          | 70-130 |       |       |       |
| Surrogate: 4-Bromofluorobenzene   | 25.4   |               | μg/L         | 25.0         |                | 101          | 70-130 |       |       |       |
| Matrix Spike Dup (B219567-MSD2)   | Sourc  | ce: 18L0849-( |              | Prepared: 12 | 2/19/18 Analyz | red: 12/21/1 | .8     |       |       |       |
| Benzene                           | 11.0   | 1.0           | μg/L         | 10.0         | ND             | 110          | 37-151 | 5.58  | 61    |       |
| Bromodichloromethane              | 10.2   | 2.0           | μg/L<br>μg/L | 10.0         | ND<br>ND       | 102          | 35-155 | 5.82  | 56    |       |
| Bromoform                         | 9.01   | 2.0           | μg/L<br>μg/L | 10.0         | ND<br>ND       | 90.1         | 45-169 | 0.892 | 42    |       |
| Bromomethane                      | 8.81   | 2.0           | μg/L<br>μg/L | 10.0         | 0.900          | 79.1         | 20-242 | 21.9  | 61    |       |
| Carbon Tetrachloride              | 10.9   | 2.0           | μg/L<br>μg/L | 10.0         | 0.900<br>ND    | 109          | 70-140 | 4.79  | 41    |       |
| Chlorobenzene                     | 11.4   | 2.0           | μg/L         | 10.0         | ND             | 114          | 37-160 | 4.57  | 53    |       |
| Chlorodibromomethane              | 10.6   | 2.0           | μg/L         | 10.0         | ND             | 106          | 53-149 | 5.65  | 50    |       |
| Chloroethane                      | 12.4   | 2.0           | μg/L<br>μg/L | 10.0         | ND<br>ND       | 124          | 14-230 | 12.1  | 78    |       |
| Chloroform                        | 10.5   | 2.0           | μg/L<br>μg/L | 10.0         | ND<br>ND       | 105          | 51-138 | 5.56  | 54    |       |
| Chloromethane                     | 15.2   | 2.0           | μg/L<br>μg/L | 10.0         | ND<br>ND       | 152          | 20-273 | 4.44  | 60    |       |
| 1,2-Dichlorobenzene               | 10.6   | 2.0           | μg/L<br>μg/L | 10.0         | ND<br>ND       | 106          | 18-190 | 6.00  | 57    |       |
| 1,3-Dichlorobenzene               | 10.7   | 2.0           | μg/L         | 10.0         | ND<br>ND       | 107          | 59-156 | 4.70  | 43    |       |
| 1,4-Dichlorobenzene               | 10.7   | 2.0           | μg/L         | 10.0         | ND             | 105          | 18-190 | 6.77  | 57    |       |
| 1,2-Dichloroethane                | 10.9   | 2.0           | μg/L         | 10.0         | ND             | 109          | 49-155 | 4.80  | 49    |       |
| 1,1-Dichloroethane                | 14.1   | 2.0           | μg/L         | 10.0         | 1.72           | 124          | 59-155 | 7.58  | 40    |       |
| 1,1-Dichloroethylene              | 13.6   | 2.0           | μg/L         | 10.0         | 0.980          | 126          | 20-234 | 5.59  | 32    |       |
| trans-1,2-Dichloroethylene        | 13.0   | 2.0           | μg/L         | 10.0         | 0.980<br>ND    | 130          | 54-156 | 5.19  | 45    |       |
| 1,2-Dichloropropane               | 11.9   | 2.0           | μg/L         | 10.0         | ND             | 119          | 20-210 | 4.54  | 55    |       |
| cis-1,3-Dichloropropene           | 9.46   | 2.0           | μg/L         | 10.0         | ND             | 94.6         | 20-227 | 0.317 | 58    |       |
| trans-1,3-Dichloropropene         | 9.53   | 2.0           | μg/L         | 10.0         | ND             | 95.3         | 17-183 | 5.17  | 86    |       |
| Ethylbenzene                      | 10.8   | 2.0           | μg/L         | 10.0         | ND             | 108          | 37-162 | 4.26  | 63    |       |
| Methyl tert-Butyl Ether (MTBE)    | 10.8   | 2.0           | μg/L         | 10.0         | ND             | 101          | 70-130 | 6.10  | 20    |       |
| Methylene Chloride                | 14.0   | 5.0           | μg/L         | 10.0         | ND             | 140          | 20-221 | 5.89  | 28    |       |
| 1,1,2,2-Tetrachloroethane         | 10.8   | 2.0           | μg/L         | 10.0         | ND             | 108          | 46-157 | 1.12  | 61    |       |
| Tetrachloroethylene               | 11.7   | 2.0           | μg/L         | 10.0         | ND             | 117          | 64-148 | 7.53  | 39    |       |
| Γoluene                           | 11.7   | 1.0           | μg/L         | 10.0         | ND             | 110          | 47-150 | 6.66  | 41    |       |
| 1,1,1-Trichloroethane             | 46.4   | 2.0           | μg/L         | 10.0         | 35.1           | 113          | 52-162 | 4.36  | 36    |       |
| 1,1,2-Trichloroethane             | 10.8   | 2.0           | μg/L         | 10.0         | ND             | 108          | 52-150 | 6.77  | 45    |       |
| Γrichloroethylene                 | 11.2   | 2.0           | μg/L         | 10.0         | ND             | 112          | 70-157 | 6.33  | 48    |       |
| Frichlorofluoromethane (Freon 11) | 11.0   | 2.0           | μg/L         | 10.0         | ND             | 110          | 17-181 | 7.18  | 84    |       |
| Vinyl Chloride                    | 12.4   | 2.0           | μg/L         | 10.0         | ND             | 124          | 20-251 | 4.78  | 66    |       |
| m+p Xylene                        | 21.4   | 2.0           | μg/L         | 20.0         | ND             | 107          | 70-130 | 5.02  | 20    |       |
| o-Xylene                          | 10.7   | 2.0           | μg/L         | 10.0         | ND             | 107          | 70-130 | 5.37  | 20    |       |
| Surrogate: 1,2-Dichloroethane-d4  | 23.7   |               | μg/L         | 25.0         |                | 94.7         | 70-130 |       |       |       |
| Surrogate: Toluene-d8             | 25.6   |               | μg/L         | 25.0         |                | 102          | 70-130 |       |       |       |
| Surrogate: 4-Bromofluorobenzene   | 25.3   |               | μg/L<br>μg/L | 25.0         |                | 101          | 70-130 |       |       |       |



#### FLAG/QUALIFIER SUMMARY

| *   | QC result is outside of established limits.                                 |
|-----|-----------------------------------------------------------------------------|
| †   | Wide recovery limits established for difficult compound.                    |
| ‡   | Wide RPD limits established for difficult compound.                         |
| #   | Data exceeded client recommended or regulatory level                        |
| ND  | Not Detected                                                                |
| RL  | Reporting Limit is at the level of quantitation (LOQ)                       |
| DL  | Detection Limit is the lower limit of detection determined by the MDL study |
| MCL | Maximum Contaminant Level                                                   |
|     |                                                                             |

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the

calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

J Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).



## CERTIFICATIONS

## Certified Analyses included in this Report

| Analyte                           | Certifications          |
|-----------------------------------|-------------------------|
| EPA 624.1 in Water                |                         |
| Benzene                           | CT,NY,MA,NH,RI,NC,ME,VA |
| Bromodichloromethane              | CT,NY,MA,NH,RI,NC,ME,VA |
| Bromoform                         | CT,NY,MA,NH,RI,NC,ME,VA |
| Bromomethane                      | CT,NY,MA,NH,RI,NC,ME,VA |
| Carbon Tetrachloride              | CT,NY,MA,NH,RI,NC,ME,VA |
| Chlorobenzene                     | CT,NY,MA,NH,RI,NC,ME,VA |
| Chlorodibromomethane              | CT,NY,MA,NH,RI,NC,ME,VA |
| Chloroethane                      | CT,NY,MA,NH,RI,NC,ME,VA |
| Chloroform                        | CT,NY,MA,NH,RI,NC,ME,VA |
| Chloromethane                     | CT,NY,MA,NH,RI,NC,ME,VA |
| 1,2-Dichlorobenzene               | CT,NY,MA,NH,RI,NC,ME,VA |
| 1,3-Dichlorobenzene               | CT,NY,MA,NH,RI,NC,ME,VA |
| 1,4-Dichlorobenzene               | CT,NY,MA,NH,RI,NC,ME,VA |
| 1,2-Dichloroethane                | CT,NY,MA,NH,RI,NC,ME,VA |
| 1,1-Dichloroethane                | CT,NY,MA,NH,RI,NC,ME,VA |
| 1,1-Dichloroethylene              | CT,NY,MA,NH,RI,NC,ME,VA |
| trans-1,2-Dichloroethylene        | CT,NY,MA,NH,RI,NC,ME,VA |
| 1,2-Dichloropropane               | CT,NY,MA,NH,RI,NC,ME,VA |
| cis-1,3-Dichloropropene           | CT,NY,MA,NH,RI,NC,ME,VA |
| trans-1,3-Dichloropropene         | CT,NY,MA,NH,RI,NC,ME,VA |
| Ethylbenzene                      | CT,NY,MA,NH,RI,NC,ME,VA |
| Methyl tert-Butyl Ether (MTBE)    | NY,MA,NH,NC             |
| Methylene Chloride                | CT,NY,MA,NH,RI,NC,ME,VA |
| 1,1,2,2-Tetrachloroethane         | CT,NY,MA,NH,RI,NC,ME,VA |
| Tetrachloroethylene               | CT,NY,MA,NH,RI,NC,ME,VA |
| Toluene                           | CT,NY,MA,NH,RI,NC,ME,VA |
| 1,1,1-Trichloroethane             | CT,NY,MA,NH,RI,NC,ME,VA |
| 1,1,2-Trichloroethane             | CT,NY,MA,NH,RI,NC,ME,VA |
| Trichloroethylene                 | CT,NY,MA,NH,RI,NC,ME,VA |
| Trichlorofluoromethane (Freon 11) | CT,NY,MA,NH,RI,NC,ME,VA |
| Vinyl Chloride                    | CT,NY,MA,NH,RI,NC,ME,VA |
| m+p Xylene                        | CT,NY,MA,NH,RI,NC       |
| o-Xylene                          | CT,NY,MA,NH,RI,NC       |



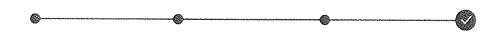
The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

| Code  | Description                                  | Number        | Expires    |
|-------|----------------------------------------------|---------------|------------|
| AIHA  | AIHA-LAP, LLC - ISO17025:2005                | 100033        | 03/1/2020  |
| MA    | Massachusetts DEP                            | M-MA100       | 06/30/2019 |
| CT    | Connecticut Department of Publile Health     | PH-0567       | 09/30/2019 |
| NY    | New York State Department of Health          | 10899 NELAP   | 04/1/2019  |
| NH-S  | New Hampshire Environmental Lab              | 2516 NELAP    | 02/5/2019  |
| RI    | Rhode Island Department of Health            | LAO00112      | 12/30/2019 |
| NC    | North Carolina Div. of Water Quality         | 652           | 12/31/2019 |
| NJ    | New Jersey DEP                               | MA007 NELAP   | 06/30/2019 |
| FL    | Florida Department of Health                 | E871027 NELAP | 06/30/2019 |
| VT    | Vermont Department of Health Lead Laboratory | LL015036      | 07/30/2019 |
| ME    | State of Maine                               | 2011028       | 06/9/2019  |
| VA    | Commonwealth of Virginia                     | 460217        | 12/14/2019 |
| NH-P  | New Hampshire Environmental Lab              | 2557 NELAP    | 09/6/2019  |
| VT-DW | Vermont Department of Health Drinking Water  | VT-255716     | 06/12/2019 |
| NC-DW | North Carolina Department of Health          | 25703         | 07/31/2019 |

Dissolved therais Samples selfulles energianitations Preservation Codes:
= Iced K = Sodium Hydroxide WW - Waste Water DW - Drinking Wate Metrix Cedes: GW = Ground Water B = Sodium Bisulfate <sup>3</sup>Container Codes: S = Summa Canister O = Other (please T = Tedlar Bag O = Other (please 0 = Other (please Non Soxhlet A = Amber Glass PCB ONLY S = Sulfuric Acid Soxhlet Preservation Code N = Nitric Acid Field Filtered Field Filtered A = Air S = Soil SL = Siudge SOL = Soild M = Methanol P = Plastic ST = Sterile Lab to Filter Lab to Filter Container Code = Sodium hiosulfate # of Containers G = Glass define) V = Vial define) H HC define) EQuis (Standard) EDD NY Regulatory EDD NY Regs Hits-Only EDD Enhanced Data Package NYSDEC EQUIS EDD Please use the following codes to indicate possible sample concentration NELAC and Allta-LAP, LLC Accredited Chromatogram AIHA-LAP, LLC East Longmeadow, MA 01028 H - High; M - Medium; L - Low; C - Clean; U - Unknown entivereliles REQUESTED 39 Spruce Street within the Conc Code column above **ANALYSIS** WRTA MWRA School MBTA 429 メ \* I > ナ ታ Code CHAIN OF CUSTODY RECORD (New York) ☐ NY CP-51 7 NY TOGS Matrix Code ર્જી Municipality Brownfield диподелицу, пексепте 10-Day 4-Day EXCEL. 3-Day Grab CLP Like Data Pkg Required: 4 Part 360 GW (Landfill) **NYC Sewer Discharge** Composite NY Unrestricted Use NY Restricted Use PDF NY Part 375 Government AWQ STDS Ending Date/Time Due Date: imail To: ax To#: こる ormat: Federal 0011 81/11/12 <u>د</u>ه 7-Day 2-Day Other 1-Day City Project Entity Beginning Date/Time 186849 Company Warres.
Address: 855 Rate 146, STE 210, Cliffor Refe, Wy Email: info@contestlabs.com 12/10 Date/Time: 1500 Gladding Cordage Client Sample ID / Description 607-206-6262 Fax: 413-525-6405 R-U-18 Date/Įime; Date/Time: Date/Time: Date/Time: Date/Time: RW-1(ms/msD Trip Blank **EFF** 46 HZ 0000 406 99700 Otselic 22-7 J. Wyckor 3 L.Whalen Phone: 518-250-7300 South Con-Test Quote Name/Number CON-KSK\* nquished by: (signature) dinguisked by: (signature) (signature) Received by; (signature) eived by: (kignature) ived by: (signature) Work Order# Con-Test Invoice Recipient: Project Location: Project Number: Project Manager: Retinquished the Sampled By: Comments: Page 16 of 18

Doc # 380 Rev 1\_03242017

http://www.contestlabs.com


**Table of Contents** 











#### **DELIVERED**

Signed for by: M.PETRATIS

# GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM SOL US

то

MA US

#### Shipment Facts

TRACKING NUMBER

806832457979

SERVICE

FedEx Priority Overnight

WEIGHT

14 lbs / 6.35 kgs

DIMENSIONS

14x11x11 in.

DELIVERED TO

Shipping/Receiving

TOTAL PIECES

1

TOTAL SHIPMENT WEIGHT

14 lbs / 6.35 kgs

TERMS Recipient

PACKAGING

Your Packaging

SPECIAL HANDLING SECTION

Deliver Weekday

STANDARD TRANSIT

(?)

12/18/2018 by 10:30 am

SHIP DATE

3

Mon 12/17/2018

#### **ACTUAL DELIVERY**

Tue 12/18/2018 9:59 am

#### Travel History

Local Scan Time



Tuesday , 12/18/2018

9:59 am

MA

Delivered

8:57 am

WINDSOR LOCKS, CT

On FedEx vehicle for delivery

7:47 am

WINDSOR LOCKS, CT

At local FedEx facility

2:18 am

NEWARK, NJ

Departed FedEx location

12:42 am

NEWARK, NJ

Arrived at FedEx location

Monday , 12/17/2018

7:36 pm

WATERTOWN, NY

Left FedEx origin facility

Page 17 of 18

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples\_\_\_\_\_



Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

| How were the samples In Cooler No Cooler On Ice No Ice received? Direct from Sampling Ambient Melted Ice  Were samples within Temperature? 2-6°C By Blank # Actual Temp - Was Custody Seal Intact? NA Were Samples Tampered with? Was COC Relinquished? Does Chain Agree With Samples?  Are there broken/leaking/loose caps on any samples?  Is COC in ink/ Legible? Were Samples received within holding time? Did COC include all Client Analysis Sampler Name pertinent Information? Project ID's Collection Dates/Times  Are Sample labels filled out and legible?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Temperature? 2-6°C By Blank # Actual Temp -  Was Custody Seal Intact? Melted Ice  Was COC Relinquished? Does Chain Agree With Samples?  Are there broken/leaking/loose caps on any samples?  Is COC in ink/ Legible? Were Samples received within holding time?  Did COC include all Client Analysis Sampler Name pertinent Information? Project ID's Collection Dates/Times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Were samples within Temperature? 2-6°C Was Custody Seal Intact? Was COC Relinquished? Are there broken/leaking/loose caps on any samples?  Is COC in ink/ Legible? Did COC include all Client Did Coc include all Di | ., |
| Were samples within Temperature? 2-6°C Was Custody Seal Intact? Was COC Relinquished? Are there broken/leaking/loose caps on any samples?  Is COC in ink/ Legible? Did COC include all Did COC include all Client  |    |
| Temperature? 2-6°C By Blank # Actual Temp -  Was Custody Seal Intact? NA Were Samples Tampered with? NA  Was COC Relinquished? T Does Chain Agree With Samples?  Are there broken/leaking/loose caps on any samples?  Is COC in ink/ Legible? T Were samples received within holding time?  Did COC include all Client T Analysis Sampler Name pertinent Information? Project T ID's Collection Dates/Times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Was Custody Seal Intact?  Was COC Relinquished?  Are there broken/leaking/loose caps on any samples?  Is COC in ink/ Legible?  Did COC include all  Client  Pertinent Information?  Were Samples Tampered with?  Does Chain Agree With Samples?  Were samples received within holding time?  Analysis  Sampler Name  Tolection Dates/Times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| Was COC Relinquished?  Are there broken/leaking/loose caps on any samples?  Is COC in ink/ Legible?  Did COC include all  Client  Pertinent Information?  Does Chain Agree With Samples?  Were samples received within holding time?  Analysis  Sampler Name  T  Dis Collection Dates/Times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Are there broken/leaking/loose caps on any samples?  Is COC in ink/ Legible?  Did COC include all  Client  Project  T  Analysis  Collection Dates/Times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| Is COC in ink/ Legible?   Did COC include all Client Analysis Sampler Name   pertinent Information? Project ID's Collection Dates/Times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| Did COC include all Client T Analysis Sampler Name pertinent Information? Project T ID's Collection Dates/Times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| pertinent Information? Project — ID's Collection Dates/Times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| THE SUPERIOR REPORT THOU VOLUME TOURING (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| Are there Lab to Filters?  Who was notified?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Are there Rushes? Who was notified?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| Are there Short Holds?  Who was notified?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| Is there enough Volume?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| Is there Headspace where applicable?  MS/MSD?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| Proper Media/Containers Used? Is splitting samples required?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Were trip blanks received?  T On COC?  T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| Do all samples have the proper pH?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| Vialr #   Containers: #   #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | #  |
| Unp- 1 Liter Amb. 1 Liter Plastic 16 oz Amb.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| HCL- (? 500 mL Amb. 500 mL Plastic 8oz Amb/Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| Bisulfate- Flashpoint Col./Bacteria 2oz Amb/Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| DI- Other Glass Other Plastic Encore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| Thiosulfate- SOC Kit Plastic Bag Frozen:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| Sulfuric- Perchlorate Ziplock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| Unused Media                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Vials # Containers: # #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | #  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Unp- 1 Liter Amb. 1 Liter Plastic 16 oz Amb.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Unp-         1 Liter Amb.         1 Liter Plastic         16 oz Amb.           HCL-         500 mL Amb.         500 mL Plastic         8oz Amb/Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| Unp-         1 Liter Amb.         1 Liter Plastic         16 oz Amb.           HCL-         500 mL Amb.         500 mL Plastic         8oz Amb/Clear           Meoh-         250 mL Amb.         250 mL Plastic         4oz Amb/Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| Unp-         1 Liter Amb.         1 Liter Plastic         16 oz Amb.           HCL-         500 mL Amb.         500 mL Plastic         8oz Amb/Clear           Meoh-         250 mL Amb.         250 mL Plastic         4oz Amb/Clear           Bisulfate-         Col./Bacteria         Flashpoint         2oz Amb/Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| Unp-         1 Liter Amb.         1 Liter Plastic         16 oz Amb.           HCL-         500 mL Amb.         500 mL Plastic         8oz Amb/Clear           Meoh-         250 mL Amb.         250 mL Plastic         4oz Amb/Clear           Bisulfate-         Col./Bacteria         Flashpoint         2oz Amb/Clear           DI-         Other Plastic         Other Glass         Encore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| Unp-         1 Liter Amb.         1 Liter Plastic         16 oz Amb.           HCL-         500 mL Amb.         500 mL Plastic         8oz Amb/Clear           Meoh-         250 mL Amb.         250 mL Plastic         4oz Amb/Clear           Bisulfate-         Col./Bacteria         Flashpoint         2oz Amb/Clear           DI-         Other Plastic         Other Glass         Encore           Thiosulfate-         SOC Kit         Plastic Bag         Frozen:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Unp-         1 Liter Amb.         1 Liter Plastic         16 oz Amb.           HCL-         500 mL Amb.         500 mL Plastic         8oz Amb/Clear           Meoh-         250 mL Amb.         250 mL Plastic         4oz Amb/Clear           Bisulfate-         Col./Bacteria         Flashpoint         2oz Amb/Clear           DI-         Other Plastic         Other Glass         Encore           Thiosulfate-         SOC Kit         Plastic Bag         Frozen:           Sulfuric-         Perchlorate         Ziplock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| Unp-         1 Liter Amb.         1 Liter Plastic         16 oz Amb.           HCL-         500 mL Amb.         500 mL Plastic         8oz Amb/Clear           Meoh-         250 mL Amb.         250 mL Plastic         4oz Amb/Clear           Bisulfate-         Col./Bacteria         Flashpoint         2oz Amb/Clear           DI-         Other Plastic         Other Glass         Encore           Thiosulfate-         SOC Kit         Plastic Bag         Frozen:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Unp-         1 Liter Amb.         1 Liter Plastic         16 oz Amb.           HCL-         500 mL Amb.         500 mL Plastic         8oz Amb/Clear           Meoh-         250 mL Amb.         250 mL Plastic         4oz Amb/Clear           Bisulfate-         Col./Bacteria         Flashpoint         2oz Amb/Clear           DI-         Other Plastic         Other Glass         Encore           Thiosulfate-         SOC Kit         Plastic Bag         Frozen:           Sulfuric-         Perchlorate         Ziplock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |



## Arcadis CE, Inc.

855 Route 146 Suite 210

Clifton Park, New York 12065

Tel 518 250 7300

Fax 518 250 7301

www.arcadis.com