

New York State Department of Environmental Conservation – Division of Environmental Remediation

GLADDING CORDAGE SITE QUARTERLY REPORT

SITE 7-09-009

Second Quarter 2019

GLADDING CORDAGE SITE QUARTERLY REPORT

Second Quarter 2019

Andy Vitolins, PG

Associate Vice President

Jeremy Wyckoff, PG

Project Geologist

Prepared for:

New York State Department of Environmental Conservation – Division of Environmental Remediation

625 Broadway

Albany, NY 12233-7011

Prepared by:

Arcadis U.S., Inc.

855 Route 146

Suite 210

Clifton Park

New York 12065

Tel 518 250 7300

Fax 518 371 2757

Our Ref.:

00266406.0000

Date:

August 2019

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

CONTENTS

Ac	ronyms and Abbreviations	ii
1	Introduction	1
2	Site Description	2
	Operation and Maintenance	
	3.1 Treatment Plant Upgrades	
	3.2 Treatment Plant Operation	3
	3.3 Treatment System Sampling	3
	3.3.1 Influent Sample Results	3
	3.3.2 Effluent Sample Results	4
4	Groundwater Monitoring Program	5
5	Recommendations	6
6	Summary	7
7	References	8

TABLES

Table 3-1 Treatment System Status and Flow Summary
 Table 3-2 Groundwater Treatment System VOCs (RW-1)
 Table 3-3 Groundwater Treatment System VOCs (RW-2)
 Table 3-4 Groundwater Treatment System VOCs (Effluent)

FIGURES

Figure 2-1 Site Location

Figure 3-1 Treatment System Influent Sample Concentration (1,1,1-TCA)

APPENDICES

Appendix A PLC Facsimile Reports

Appendix B O&M Checklists

Appendix C Analytical Reporting Forms

ACRONYMS AND ABBREVIATIONS

Amsl above mean sea level

BTEX Benzene, toluene, ethylbenzene, and xylene.

Ft feet

GPM gallons per minute

GAP generally accepted procedure

HZ hertz

μg/L micrograms per liter

NYSDEC New York State Department of Environmental Conservation

O&M operation and maintenance

PDB passive diffusion bag

PLC programmable logic controller

PCE Tetrachloroethene

USEPA United States Environmental Protection Agency

VFD variable frequency drive

VOC volatile organic compound

1,1-DCA1,2-dichloroethane1,1-DCE1,2-dichloroethene

1,1,1-TCA 1,1,1-trichloroethane

1 INTRODUCTION

The New York State Department of Environmental Conservation (NYSDEC) has issued a Work Assignment (# D007618-9) to Arcadis CE, Inc. (Arcadis) for Operation, Maintenance, and Monitoring at the Gladding Cordage Site (Site # 7-09-009). This Quarterly Report has been prepared in accordance with the NYSDEC-approved Work Plan to summarize second quarter 2019 site activities.

2 SITE DESCRIPTION

The Gladding Cordage Site is located on Ridge Road, South Otselic, Chenango County, New York (Figure 2-1), along the western bank of the Otselic River. The site contains an active braided wire and rope manufacturing facility that has been in operation since 1892.

3 OPERATION AND MAINTENANCE

On August 23, 2007, the NYSDEC provided a training session to Arcadis personnel on the operation and maintenance (O&M) of the groundwater treatment plant at the Gladding Cordage Site. Since then, Arcadis has maintained operation of the groundwater treatment plant. This includes the operation, maintenance, and influent/effluent sampling in accordance with the Site Management Plan (SMP) and NYSDEC O&M manual (Operation and Maintenance Manual, Volume I, Gladding Cordage Site, Site 7-09-009, TAMS Consultants, Inc., 1996) (O&M Manual).

3.1 Treatment Plant Upgrades

No treatment plant upgrades were performed during this quarter.

3.2 Treatment Plant Operation

As shown on PLC facsimile reports (Appendix A) and O&M Checklist and Operation Logs (Appendix B), the Gladding Cordage groundwater treatment system was intermittently shut down in April and June due to power interruptions, resulting in system runtimes of 61 percent in April and 77 percent in June. After each power failure, the system was restarted remotely and manually.

The average monthly flow rates and total flow volumes for the second quarter 2019 operating period are summarized in Table 3-1. As shown in Table 3-1, the reported average flow rate from recovery well RW-1 was 17.1 gallons per minute (GPM). However, the flow transmitter for RW-1 previously stopped working and was replaced in March 2019. Therefore, the flow total from RW-1 is greater than the values reported by the PLC. The average flow from RW-2 was approximately 21.6 GPM. Based on the total flow values, approximately 4.4 million gallons of water were treated and discharged to the Otselic River between April and June 2019. However, the actual treated volume is likely greater, but is being diminished by the lower flow meter readings from RW-1.

3.3 Treatment System Sampling

Influent and effluent groundwater samples were collected from the Gladding Cordage treatment system in accordance with the SMP and submitted to Contest Analytical following chain-of-custody protocols. Each sample was analyzed for VOCs by United States Environmental Protection Agency (USEPA) Method 624. Analytical Reporting Forms are provided in Appendix C.

3.3.1 Influent Sample Results

Table 3-2 and Table 3-3 summarize influent VOC sample results from recovery wells RW-1 and RW-2, respectively. Figure 3-1 provides a summary of 1,1,1-TCA concentrations in samples from recovery wells RW-1 and RW-2 since September 2007.

Table 3-2 and Figure 3-1 show that the concentrations of 1,1,1-TCA in samples from recovery well RW-1 were measured at 42.6 micrograms per liter (ug/L) in April 2019, 35.4 ug/L in May 2019, and 35.3 (μg/L) in June 2019. The concentrations of 1,1,1-TCA for recovery well RW-2 were measured at 43.2 ug/L (April 2019), 29.2 ug/L (May 2019), and 29.5 μg/L (June 2019), which is consistent with the first quarter 2019

concentrations of 1,1,1-TCA. Table 3-3 and Figure 3-1 show that the concentrations of 1,1,1-TCA in the samples from recovery wells RW-1 and RW-2 are within the range of historic concentrations and exceed the corresponding NYSDEC Class GA Standard of 5 μ g/L.

As shown in Tables 3-2 and 3-3, 1,1-dichloroethane (1,1-DCA), 1,1-dichloroethene (1,1-DCE), and bromomethane were detected in the second quarter 2019 samples from recovery wells RW-1 and RW-2. Consistent with previous results, the concentrations of these compounds were below the respective NYSDEC Class GA standard of 5 µg/L.

3.3.2 Effluent Sample Results

Table 3-4 summarizes laboratory analytical data for effluent samples collected from the treatment system. As shown in Table 3-4, no VOCs were detected in samples collected from April 2019, May 2019, and June 2019.

Based on influent sample concentrations and total flow volumes from the Gladding Cordage treatment system, approximately 1.4 pounds of VOCs were removed by the treatment system during the second quarter 2019.

4 GROUNDWATER MONITORING PROGRAM

Groundwater samples are collected on a five-quarter sampling interval in accordance with the SMP. Groundwater sampling was conducted March 25th and March 26th, 2019 to provide information on groundwater quality, monitor contaminant migration in groundwater, and assess hydrogeologic site conditions, including groundwater flow. The results of the March 2019 groundwater monitoring event were reported to the NYSDEC in a separate monitoring report. The next groundwater sampling event is scheduled to occur during the second quarter 2020.

5 RECOMMENDATIONS

Based on the data presented herein, there are no recommended changes to the operation of the treatment plant.

6 SUMMARY

The Gladding Cordage groundwater treatment system was shut down in April and June due to power interruptions. The average total flow through the treatment system during the second quarter 2019 was approximately 19.4 GPM.

The concentrations of VOCs detected in pre-treatment influent samples from recovery wells RW-1 and RW-2 were consistent with previous results.

No VOCs were detected in the effluent samples collected from the treatment system.

The treatment successfully removes VOCs from groundwater extracted from the capture zone at the current VFD setting of 46 Hz. The VFD setting will continue to be evaluated based on system monitoring results.

Approximately 1.4 pounds of VOCs were removed by the treatment system during the second quarter 2019.

Based on the current five-quarter sampling interval, the next groundwater monitoring event is scheduled to occur during the second quarter 2020.

7 REFERENCES

Malcolm Pirnie, 2007, Gladding Cordage Site Work Plan, Site 7-09-009, Malcolm Pirnie, Inc., June 2007.

TAMS, 1996, Operation and Maintenance Manual, Volume I, Gladding Cordage Site. Site 7-09-009, TAMS Consultants, Inc., March 1996.

TABLES

TABLE 3-1 TREATMENT SYSTEM STATUS AND FLOW SUMMARY **GLADDING CORDAGE SITE** SOUTH OTSELIC, NEW YORK NYSDEC SITE NO. 7-04-009A

Date	System	System	Well On-time		Flow Rates		Totalizer	Totalizer	Recovery We	II Total Flows	Total System	Quarterly	
	Operation	On-time	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	Flow	Totals	
	(days)	(% of possible days)	(% possible)	(% possible)	(gpm)	(gpm)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	
January-19	22	71%	100%	100%	0 *	22.7	65,264,469	66,057,723	288,847	737,808	1,026,655		
February-19	20	71%	100%	100%	0 *	22.7	65,553,391	66,815,952	288,922	758,229	1,047,151	3,794,461	
March-19	29	94%	100%	100%	17.1	22.2	66,300,433	67,789,565	747,042	973,613	1,720,655		
April-19	19	61%	100%	100%	17.2	21.8	67,047,475	68,305,647	763,353	516,082	1,279,435		
May-19	31	100%	100%	100%	17.2	21.5	67,810,828	69,275,331	777,772	969,684	1,747,456	4,403,002	
June-19	24	77%	100%	100%	17	21.5	68,588,600	70,038,034	613,408	762,703	1,376,111		
Total Flow 201	9				17.1	21.6			5,288,682	7,905,198	13,193,880		

Notes:

gpm - Gallons per minute
* - flow meter not reading properly

TABLE 3-2
SUMMARY OF GROUNDWATER TREATMENT SYSTEM VOCS (INFLUENT - RW-1)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1
Sampling Date	Class GA	6/22/2018	7/29/2018	8/27/2018	9/27/2018	10/19/2018	11/26/2018	12/16/2018	1/21/2019	2/14/2019	3/26/2019	4/30/2019	5/20/2019	6/22/219
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs														
1,1,1-Trichloroethane	5	41	42 J	45	47	47	35	35	36.1	39.4	32.3	42.6	35.4	35.3
1,1,2,2-Tetrachloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
1,1,2-Trichloroethane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
1,1-Dichloroethane	5	1.9 J	1.7 J	1.8 J	1.6 J	1.7 J	1.6 J	1.7 J	1.37 J	1.4 J	1.02 J	1.58 J	1.26 J	1.3 J
1,1-Dichloroethene	5	0.85 J	0.79 J	1.0 J	0.99 J	1.0 J	0.96 J	0.98 J	3.39 J	0.79 J	0.70 J	1.08 J	0.86 J	0.86 J
1,2-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
1,2-Dichloroethane	0.6	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
1,2-Dichloropropane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
1,3-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
1,4-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Benzene	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U				
Bromodichloromethane	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Bromoform	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Bromomethane	5	2.0 U	0.6 J	0.9 J	2.0 U	2.0 U								
Carbon Tetrachloride	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Chlorobenzene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Chloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Chloroform	7	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Chloromethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
cis-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Ethyl Benzene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
m/p-Xylenes	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Methyl tert-butyl Ether		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Methylene Chloride	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U				
o-Xylene		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Tetrachloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Toluene	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U				
trans-1,2-Dichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
trans-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Trichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Trichlorofluoromethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Vinyl Chloride	2	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Total VOCs		43.8	44.5	47.8	49.6	49.7	38.2	38.6	42.9	43.6	34.0	45.3	37.5	37.5

- Concentration exceeds corresponding Class GA Standard.

U - Not detected at the indicated concentration

J - Estimated concentration.

TABLE 3-3
SUMMARY OF GROUNDWATER TREATMENT SYSTEM VOCS (INFLUENT - RW-2)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Matrix Units Uni	Sample ID	NYSDEC	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2
Units Unit	Sampling Date	Class GA	6/22/2018	7/29/2018	8/27/2018	9/27/2018	10/19/2018	11/26/2018	12/16/2018	1/21/2019	2/14/2019	3/26/2019	4/30/2019	5/20/2019	6/22/2019
Voca 1,1-Trichloroethane 5 50 49 51 43 37 29 29 27.8 40.2 28 43.2 29.2 29.5 1,1,2-Trichloroethane 5 2.0 U 2.0	Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Voca 1,1-Trichloroethane 5	Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1.1.2-Frierachroreshane	VOCs	•	•										•	-	
1,1-2/infoltorethane	1,1,1-Trichloroethane	5	50	49	51	43	37	29	29	27.8	40.2	28	43.2	29.2	29.5
1.1-Dichloroethene	1,1,2,2-Tetrachloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
1.1-Dichloroethene	1,1,2-Trichloroethane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
12-Dichloroebragene	1,1-Dichloroethane	5	1.4 J	1.3 J	1.3 J	0.92 J	0.89 J	0.76 J	0.78 J	0.67 J	0.9 J	0.54 J	1 J	0.63 J	0.7 J
1.2-Dichloroethane 0.6 2.0 U 2	1,1-Dichloroethene	5	1.2 J	0.93 J	1.1 J	0.92 J	0.85 J	0.75 J	0.75 J	4.1	0.78 J	0.61 J	1.05 J	0.68 J	0.66 J
1.2-Dichloropropane	1,2-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
1.3-Dichlorobenzene 3 2.0 U	1,2-Dichloroethane	0.6	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
1,4-Dichlorobenzene 3	1,2-Dichloropropane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Benzene	1,3-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Bromofichmethane	1,4-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Bromoferm S0	Benzene	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U				
Bromorethane	Bromodichloromethane	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Carbon Tetrachloride	Bromoform	50				2.0 U				2.0 U	2.0 U			2.0 U	2.0 U
Chlorobenzene 5	Bromomethane	5	5.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.62 J	0.65 J	2.0 U					
Chloroethane	Carbon Tetrachloride	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Chloroform 7 2.0 U	Chlorobenzene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Chloromethane 2.0 U															2.0 U
cis-1,3-Dichloropropene 0.4 2.0 U 2.0 U<		7													2.0 U
Ethyl Benzene 5 2.0 U															2.0 U
m/p-Xylenes 5 2.0 U <															2.0 U
Methyl tert-butyl Ether 2.0 U 2.0															2.0 U
Methylene Chloride 5 5.0 U		5													2.0 U
o-Xylene 2.0 U															2.0 U
Tetrachloroethene 5 2.0 U	· · · · · · · · · · · · · · · · · · ·	5													5.0 U
Toluene 5 1.0 U 1	,														2.0 U
trans-1,2-Dichloroethene 5 2.0 U 2.0 U </th <th></th> <th>2.0 U</th>															2.0 U
trans-1,3-Dichloropropene 0.4 2.0 U 2.0															1.0 U
Trichloroethene 5 2.0 U															2.0 U
															2.0 U
Trichlorofluoromethane 5 2.0 U															2.0 U
															2.0 U
		2													2.0 U
Total VOCs 52.6 51.2 53.4 44.8 38.7 30.5 30.5 32.6 41.9 29.2 45.3 30.5 30.9	Total VOCs		52.6	51.2	53.4	44.8	38.7	30.5	30.5	32.6	41.9	29.2	45.3	30.5	30.9

 Concentration exceeds corresponding NYSDEC Class GA Standard.

U - Not detected at the indicated concentration

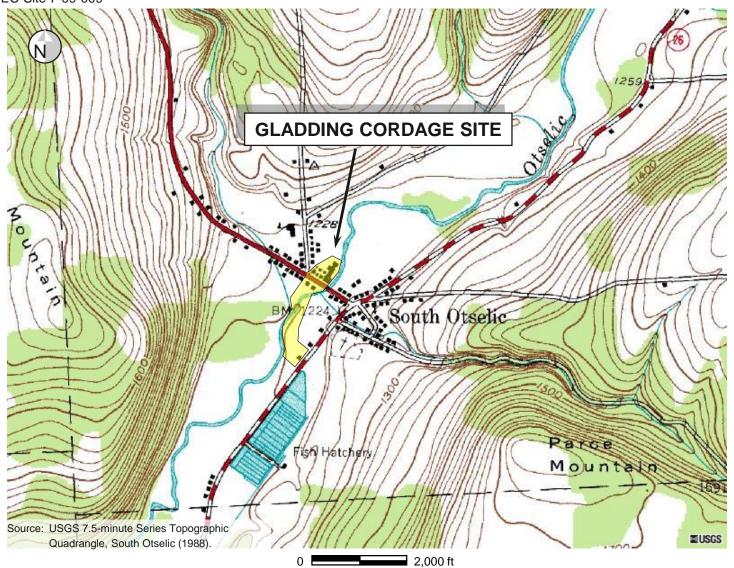
J - Estimated concentration.

TABLE 3-4
SUMMARY OF GROUNDWATER TREATMENT SYSTEM VOCS (EFFLUENT)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)
Sampling Date	GA	6/22/2018	7/29/2018	8/28/2018	9/27/2018	10/19/2018	11/26/2018	12/16/2018	1/21/2019	2/14/2019	3/26/2019	4/30/2019	5/20/2019	6/22/219
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs										<u>-</u>				
1,1,1-Trichloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
1,1,2,2-Tetrachloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
1,1,2-Trichloroethane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
1,1-Dichloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
1,1-Dichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
1,2-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
1,2-Dichloroethane	0.6	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
1,2-Dichloropropane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
1,3-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
1,4-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Benzene	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U				
Bromodichloromethane	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Bromoform	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Bromomethane	5	2.0 U	0.82 J	0.93 J	2.0 U									
Carbon Tetrachloride	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Chlorobenzene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Chloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Chloroform	7	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Chloromethane		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
cis-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Dibromochloromethane	50	NA	NA	NA	NA	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Ethyl Benzene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
m/p-Xylenes	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Methyl tert-butyl Ether		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Methylene Chloride	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U				
o-Xylene		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Tetrachloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Toluene	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U				
trans-1,2-Dichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
trans-1,3-Dichloropropene	0.4	5.0 U	5.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Trichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Trichlorofluoromethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Vinyl Chloride	2	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				

Note:

U - Not detected at the indicated concentration.


J - Estimated concentration.

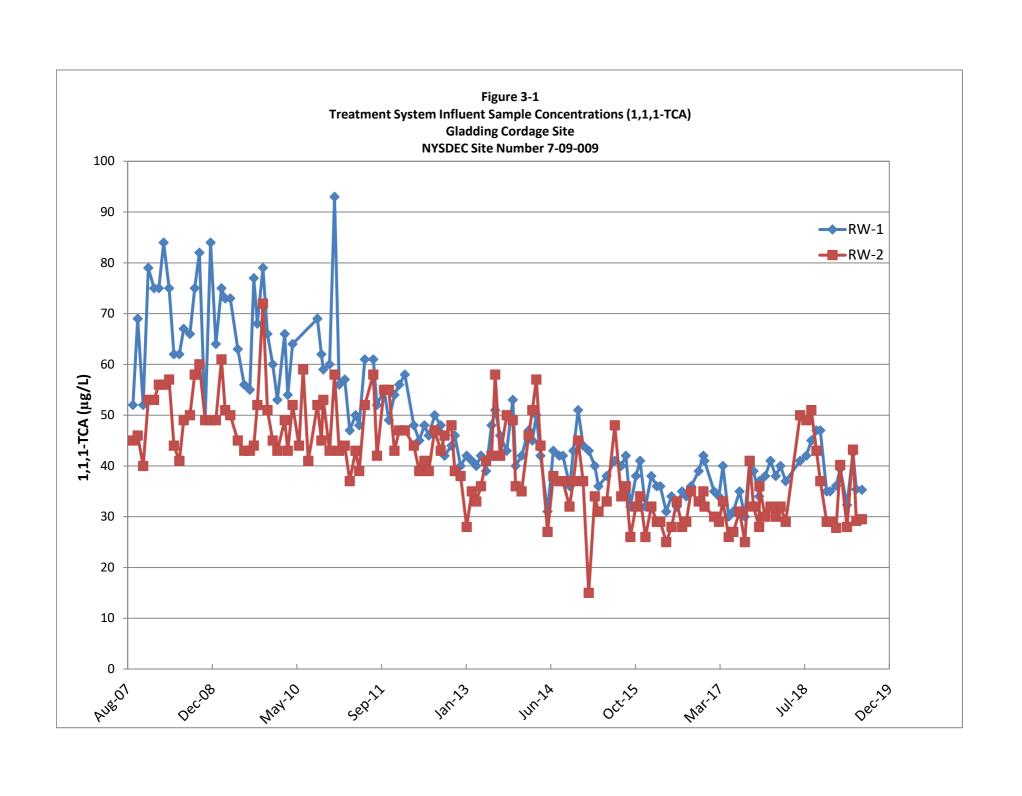

FIGURES

Figure 2-1 Site Location

Gladding Cordage Site South Otselic, New York NYSDEC Site 7-09-009

APPENDIX A

PLC Facsimile Reports

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/01/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRST is OFF HPMPGO is ON VFDRUN is OFF

Analog Inputs:

W1_FLO is 17.9 W2_FLO is 21.5 **GPM** 64093979 TOTAL FLOW is GAL GPM TOTAL FLOW is 67811615 GAL ASBPRS is 10.8 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.43 AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 32.00 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 57.01 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 63.4DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/02/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.4 W2_FLO is 21.3 **GPM** 64119706 TOTAL FLOW is GAL GPM TOTAL FLOW is 67842746 GAL ASBPRS is 11.2 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL L: -2.0 H: 20.0 HP PRS is PSI LIMITS are PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.41AMP LIMITS are 0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is 4.41AMP LIMITS are 0.00 AMP H: 10.00 AMP L:H: 28.00 31.82 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 56.59 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.3PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.6 PSI LIMITS are PSI PSI INTEMP is 60.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/03/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.6 W2_FLO is 21.4 **GPM** 64145285 TOTAL FLOW is GAL GPM TOTAL FLOW is 67873856 GAL ASBPRS is 10.8 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.44 AMP LIMITS are 0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is AMP LIMITS are 0.00 AMP H: 10.00 AMP L:H: 28.00 31.36 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 56.34 W2 LVL is 9.00 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.3PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 64.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/04/2019

SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF W1 GO ASMPHH is OFF ASMPLL is OFF W1 ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRST is OFF HPMPGO is OFF VFDRUN is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 64152658 TOTAL FLOW is GAL GPM TOTAL FLOW is 67882859 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC L:5.0 IWC 736997 HP FLO is 0.00 **GPM** TOTAL FLOW is GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.01 LIMITS are AMPL: 0.00AMP H: AMPн: 10.00 W1_AMP is 0.01 AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 0.00AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 33.82 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 57.84 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 62.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/05/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF W1 GO ASMPHH is OFF ASMPLL is OFF W1 ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRST is OFF HPMPGO is OFF VFDRUN is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 64152658 TOTAL FLOW is GAL GPM TOTAL FLOW is 67882859 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC L:5.0 IWC 736997 HP FLO is 0.00 **GPM** TOTAL FLOW is GAL H: 20.0 HP PRS is 1.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.01 LIMITS are AMPL: 0.00AMPH: AMPн: 10.00 W1_AMP is 0.01 AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 0.00AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 33.71 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 57.62 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 0.0 PSI LIMITS are PSI PSI $\overline{\text{INTEMP}}$ is 61.1DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/06/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF W1 GO ASMPHH is OFF ASMPLL is OFF W1 ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF HPMPGO is OFF VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 64152658 TOTAL FLOW is GAL GPM TOTAL FLOW is 67882859 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC L:5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 1.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.01 LIMITS are AMPL: 0.00AMPH: AMPн: 10.00 W1_AMP is 0.01 AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 0.00AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 33.47 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 57.52 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 0.0 PSI LIMITS are PSI PSI $IN\overline{I}EMP$ is 65.4 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/07/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF W1 GO ASMPHH is OFF ASMPLL is OFF W1 ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF HPMPGO is OFF VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 64152658 TOTAL FLOW is GAL GPM TOTAL FLOW is 67882859 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC L:5.0 IWC 736997 HP FLO is 0.00 **GPM** TOTAL FLOW is GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.01 LIMITS are AMPL: 0.00AMP H: AMPн: 10.00 W1_AMP is 0.01 AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 0.00AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 33.55 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 57.60 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 65.6 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/08/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 18.1 W2_FLO is 22.0 **GPM** 64170374 TOTAL FLOW is GAL 22.0 GPM TOTAL FLOW is 67904415 GAL ASBPRS is 10.3 5.0 H: 30.0 LIMITS are IWC IWC \mathbf{L} : IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL L: -2.0 H: 20.0 HP PRS is PSI LIMITS are PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.48 AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 4.47AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.94 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 56.17 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 65.2 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/09/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 18.3 W2_FLO is 21.4 **GPM** 64196036 TOTAL FLOW is GAL GPM TOTAL FLOW is 67935627 GAL ASBPRS is 10.5 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.49AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 4.47AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.96 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:56.38 9.00 W2 LVL is \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.4 PSI LIMITS are PSI PSI INTEMP is 62.9 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/10/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.8 W2_FLO is 21.7 **GPM** 64221664 TOTAL FLOW is GAL GPM TOTAL FLOW is 67966731 GAL ASBPRS is 10.6 H: 30.0 LIMITS are IWC IWC L:5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.52AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.95 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 56.27 9.00 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.4 PSI LIMITS are PSI PSI $IN\overline{I}EMP$ is 61.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/11/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.8 W2_FLO is 21.6 **GPM** 64247232 TOTAL FLOW is GAL GPM TOTAL FLOW is 67997813 GAL ASBPRS is 10.8 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMPL: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.45AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 31.10 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:9.00 W2 LVL is 56.06 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.4 PSI LIMITS are PSI PSI INTEMP is 60.1DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/12/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.9 W2_FLO is 21.5 **GPM** 64272704 TOTAL FLOW is GAL GPM TOTAL FLOW is 68028790 GAL ASBPRS is 10.5 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.50AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.84 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 55.77 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.4 PSI LIMITS are PSI PSI INTEMP is 63.6DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

ALARM Fax Report EOS Research Ltd. ProControl Series II+

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 11:53:42 ON 04/19/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

vstem Status:

LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD P36 :

FAX REPORT INITIATED BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP OP is OFF ASP_HH is OFF ASP LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

SMP_GO is OFF W1_ALM is OFF W1 GO is ON W2 GO is ON ASB GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF AIR_LL is OFF W2 ALM is OFF ASBALM is OFF SMPALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 17.0 **GPM** TOTAL FLOW is 64285338 GAL W2 FLO is 22.3 **GPM** TOTAL FLOW is 68044171 GAL ASBPRS is 9.6 LIMITS are H: 30.0 IWC IWC L: 5.0IWC HP_FLO is 0.00 **GPM** TOTAL FLOW is 736997 GAL PRS is H: 20.0 PSI LIMITS are L:-2.0 PSI PSI 0.00 HP AMP is 0.00 LIMITS are \mathbf{L} : **H**: AMP AMP AMPW1 AMP is AMP LIMITS are 0.00 AMP H: 10.00 AMP \mathbf{L} : W2 AMP is 4.56AMP LIMITS are L: 0.00 AMP H: 10.00 AMP W1_LVL is 30.79 H: 28.00 \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} \mathbf{FT} W2_LVL is 55.74 \mathbf{FT} LIMITS are \mathbf{L} : 9.00 \mathbf{FT} H: 52.00 \mathbf{FT} 4.2 PRS is PSI LIMITS are L:0.5PSI H: 100.0 PSI W2 PRS is H: 100.0 PSI LIMITS are \mathbf{L} : 0.5 PSI PSI INTEMP is 73.4 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

ASBSPD 0.0 PCT

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/20/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.7 W2_FLO is 21.6 **GPM** 64304284 TOTAL FLOW is GAL GPM TOTAL FLOW is 68067889 GAL ASBPRS is 10.1 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMPL: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.53AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 31.38 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:9.00 W2 LVL is 56.86 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.4 PSI LIMITS are PSI PSI INTEMP is 69.4DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/21/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.6 W2_FLO is 21.8 **GPM** 64329506 TOTAL FLOW is GAL GPM TOTAL FLOW is 68099439 GAL ASBPRS is 10.4 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMPL: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.52AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 31.18 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:9.00 W2 LVL is 56.48 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.1PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.3 PSI LIMITS are PSI PSI $IN\overline{I}EMP$ is 65.4 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/22/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.4 W2_FLO is 21.6 **GPM** 64354579 TOTAL FLOW is GAL GPM TOTAL FLOW is 68131064 GAL ASBPRS is 10.5 H: 30.0 LIMITS are 5.0 IWC IWC \mathbf{L} : IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.47AMP LIMITS are 0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is AMP LIMITS are 0.00 AMP H: 10.00 AMP L:H: 28.00 31.25 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 56.23 9.00 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.2 PSI LIMITS are PSI PSI INTEMP is 64.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/23/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.1 W2_FLO is 21.6 **GPM** 64379497 TOTAL FLOW is GAL GPM TOTAL FLOW is 68162554 GAL ASBPRS is 10.6 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.44 AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 4.47AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.90 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:55.98 9.00 W2 LVL is \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.3 PSI LIMITS are PSI PSI INTEMP is 64.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/24/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.4 W2_FLO is 21.7 **GPM** 64404358 TOTAL FLOW is GAL GPM TOTAL FLOW is 68193892 GAL ASBPRS is 10.4 H: 30.0 LIMITS are IWC IWC L:5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.42AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.56 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 55.98 9.00 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.2 PSI LIMITS are PSI PSI INTEMP is 63.0 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/25/2019

SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL Ã2

System Status:

AUTO P36: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.1 W2_FLO is 21.7 **GPM** 64429203 TOTAL FLOW is GAL GPM TOTAL FLOW is 68225270 GAL ASBPRS is 10.7 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC 0.00 TOTAL FLOW is 736997 HP FLO is **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.43 AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.59 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 55.85 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.3 PSI LIMITS are PSI PSI INTEMP is 61.9DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/26/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.1 W2_FLO is 22.0 **GPM** 64454123 TOTAL FLOW is GAL GPM TOTAL FLOW is 68256605 GAL ASBPRS is 10.3 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.47AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.16 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 55.68 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 4.3 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 65.1 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/27/2019

SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL Ã2

System Status:

MANUAL : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF W1 GO ASMPHH is OFF ASMPLL is OFF W1 ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRST is OFF HPMPGO is OFF VFDRUN is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 64468057 TOTAL FLOW is GAL GPM TOTAL FLOW is 68274126 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC L:5.0 IWC 736997 HP FLO is 0.00 **GPM** TOTAL FLOW is GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.01 LIMITS are AMPL: 0.00AMP H: AMPн: 10.00 W1_AMP is 0.01 AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 0.00 AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} 32.47 areL:W2 LVL is 9.00 57.62 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 61.4 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/28/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF W1 GO ASMPHH is OFF ASMPLL is OFF W1 ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRST is OFF HPMPGO is OFF VFDRUN is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 64468057 TOTAL FLOW is GAL GPM TOTAL FLOW is 68274126 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC L:5.0 IWC 736997 HP FLO is 0.00 **GPM** TOTAL FLOW is GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.01 LIMITS are AMPL: 0.00AMP H: AMPн: 10.00 W1_AMP is 0.01 AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 0.00 AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 32.80 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 57.48 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 61.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:29 ON 04/29/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P07: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.3 W2_FLO is 21.5 **GPM** 64468065 TOTAL FLOW is GAL GPM TOTAL FLOW is 68274134 GAL ASBPRS is 10.0 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 1.4 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.45AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 31.73 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 56.12 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 56.8 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/30/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.2 W2_FLO is 21.8 **GPM** 64493141 TOTAL FLOW is GAL GPM TOTAL FLOW is 68305641 GAL ASBPRS is 10.5 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP_AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.39AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 4.41AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.62 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.74 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.1PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 4.3 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 71.1DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/01/2019

SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL Ã2

System Status:

AUTO P36: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.3 W2_FLO is 22.0 **GPM** 64518136 TOTAL FLOW is GAL GPM TOTAL FLOW is 68336994 GAL ASBPRS is 10.6 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.44AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.83 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.72 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.4 PSI LIMITS are PSI PSI INTEMP is 71.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/02/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 16.9 W2_FLO is 21.8 **GPM** 64543070 TOTAL FLOW is GAL GPM TOTAL FLOW is 68368264 GAL ASBPRS is 10.2 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.47AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.55 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 55.70 W2 LVL is 9.00 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.1PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 4.3 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 75.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/03/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.4 W2_FLO is 22.0 **GPM** 64567944 TOTAL FLOW is GAL 22.0 GPM TOTAL FLOW is 68399513 GAL ASBPRS is 10.3 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMPL: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.51AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.45 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.64 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.2 PSI LIMITS are PSI PSI INTEMP is 74.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/04/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.4 W2_FLO is 21.3 **GPM** 64592826 TOTAL FLOW is GAL GPM TOTAL FLOW is 68430751 GAL ASBPRS is 10.3 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMPL: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.55AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.54 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.89 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.1 PSI LIMITS are PSI PSI INTEMP is 74.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/05/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.3 W2_FLO is 22.0 **GPM** 64617686 TOTAL FLOW is GAL GPM TOTAL FLOW is 68461985 GAL ASBPRS is 10.3 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL -2.0H: 20.0 HP PRS is PSI LIMITS are PSI PSI HP AMP is 0.00 LIMITS are AMPL: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.56AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.32 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 55.74 9.00 W2 LVL is \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.1 PSI LIMITS are PSI PSI $IN\overline{I}EMP$ is 74.4DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/06/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.2 W2_FLO is 21.6 **GPM** 64642510 TOTAL FLOW is GAL GPM TOTAL FLOW is 68493179 GAL ASBPRS is 10.3 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMPL: 0.00AMPH: AMPн: 10.00 W1_AMP is 4.45AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.33 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 55.74 9.00 W2 LVL is \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.1 PSI LIMITS are PSI PSI INTEMP is 76.2DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

ALARM Fax Report <u>ProControl Series II+</u>

EOS Research Ltd.

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 11:13:44 ON 05/06/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

vstem Status:

LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD P12 : FAX REPORT INITIATED BY PROCESS 11

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP OP is OFF ASP LO is OFF ASP_HH is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

SMP_GO is OFF W1_ALM is OFF W1 GO is ON W2 GO is ON ASB GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF W2 ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 17.7 **GPM** TOTAL FLOW is 64647912 GAL W2_FLO is 21.7 **GPM** TOTAL FLOW is 68499969 GAL LIMITS are H: 30.0 IWC ASBPRS is 10.2 IWC L: 5.0IWC HP_FLO is 0.00 **GPM** TOTAL FLOW is 736997 GAL PRS is H: 20.0 0.0PSI LIMITS are L:-2.0 PSI PSI HP AMP is 0.01 0.00 AMP LIMITS are \mathbf{L} : H: AMP AMPW1 AMP is 4.49 AMP LIMITS are 0.00 AMP H: 10.00 AMP \mathbf{L} : $W2^{-}AMP$ is 4.51AMP LIMITS are L: 0.00 AMP H: 10.00 AMP H: 28.00 W1 LVL is 30.48 \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} \mathbf{FT} $W2_LVL$ is 55.74 \mathbf{FT} LIMITS are \mathbf{L} : 9.00 \mathbf{FT} H: 52.00 \mathbf{FT} 4.2 PRS is PSI LIMITS are L:0.5PSI H: 100.0 PSI W2 PRS is H: 100.0 4.1PSI LIMITS are \mathbf{L} : 0.5 PSI PSI INTEMP is 69.8 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

ASBSPD 0.0 PCT

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/07/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.5 W2_FLO is 21.3 **GPM** 64667419 TOTAL FLOW is GAL GPM TOTAL FLOW is 68524399 GAL ASBPRS is 10.3 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMPH: AMPH: 10.00 W1_AMP is 4.42AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.40 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:9.00 W2 LVL is 55.62 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.2 PSI LIMITS are PSI PSI INTEMP is 58.6DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/08/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.0 W2_FLO is 21.5 **GPM** 64692411 TOTAL FLOW is GAL GPM TOTAL FLOW is 68555737 GAL ASBPRS is 10.6 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.43 AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.57 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 55.68 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.2 PSI LIMITS are PSI PSI INTEMP is 55.5 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/09/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.5 W2_FLO is 22.0 **GPM** 64717360 TOTAL FLOW is GAL GPM TOTAL FLOW is 68587158 GAL ASBPRS is 10.5 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL L: -2.0 H: 20.0 HP PRS is 0.0 PSI LIMITS are PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.47AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 4.50AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.43 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 55.45 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.1PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.3 PSI LIMITS are PSI PSI INTEMP is 55.2 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/10/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.0 W2_FLO is 21.6 **GPM** 64742238 TOTAL FLOW is GAL GPM TOTAL FLOW is 68618554 GAL ASBPRS is 10.2 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.47AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 4.49AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.20 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 55.47 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.2 PSI LIMITS are PSI PSI INTEMP is 57.6DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/11/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.1 W2_FLO is 21.7 **GPM** 64767209 TOTAL FLOW is GAL GPM TOTAL FLOW is 68649961 GAL ASBPRS is 10.5 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.54AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.94 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:56.23 W2 LVL is 9.00 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.2 PSI LIMITS are PSI PSI INTEMP is 54.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/12/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.4 W2_FLO is 21.6 **GPM** 64792249 TOTAL FLOW is GAL GPM TOTAL FLOW is 68681338 GAL ASBPRS is 10.5 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.58AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.53 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 55.87 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.2 PSI LIMITS are PSI PSI INTEMP is 54.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/13/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.3 W2_FLO is 22.2 **GPM** 64817623 TOTAL FLOW is GAL GPM TOTAL FLOW is 68712716 GAL ASBPRS is 10.3 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.44AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.93 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 56.42 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 4.3 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 52.8 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/14/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.4 W2_FLO is 22.0 **GPM** 64843136 TOTAL FLOW is GAL 22.0 GPM TOTAL FLOW is 68744163 GAL ASBPRS is 10.4 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.40AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 31.72 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 57.35 9.00 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.3 PSI LIMITS are PSI PSI INTEMP is 52.7 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/15/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.9 W2_FLO is 21.9 **GPM** 64868721 TOTAL FLOW is GAL GPM TOTAL FLOW is 68775653 GAL ASBPRS is 10.5 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC HP FLO is 0.00 TOTAL FLOW is 736997 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMPL: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.40AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 31.72 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 57.24 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.3 PSI LIMITS are PSI PSI INTEMP is 52.6DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/16/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 18.1 W2_FLO is 21.5 **GPM** 64894247 TOTAL FLOW is GAL GPM TOTAL FLOW is 68807075 GAL ASBPRS is 10.3 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.43 AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 31.21 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 56.76 9.00 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.2 PSI LIMITS are PSI PSI INTEMP is 53.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/17/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.7 W2_FLO is 21.8 **GPM** 64919681 TOTAL FLOW is GAL GPM TOTAL FLOW is 68838462 GAL ASBPRS is 10.3 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.48 AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.73 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 56.38 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.1PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.3 PSI LIMITS are PSI PSI INTEMP is 57.0 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/18/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRST is OFF HPMPGO is ON VFDRUN is OFF

Analog Inputs:

W1_FLO is 18.0 W2_FLO is 21.5 **GPM** 64945032 TOTAL FLOW is GAL GPM TOTAL FLOW is 68869822 GAL ASBPRS is 10.5 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.53AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.82 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 56.25 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.2 PSI LIMITS are PSI PSI INTEMP is 52.2 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/19/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRST is OFF HPMPGO is ON VFDRUN is OFF

Analog Inputs:

W1_FLO is 17.8 W2_FLO is 22.0 **GPM** 64970318 TOTAL FLOW is GAL GPM TOTAL FLOW is 68901140 GAL ASBPRS is 10.3 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.61 AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 4.62AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.57 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 56.00 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.2 PSI LIMITS are PSI PSI INTEMP is 56.1DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/20/2019

SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL Ã2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.5 W2_FLO is 22.0 **GPM** 64995582 TOTAL FLOW is GAL GPM TOTAL FLOW is 68932405 GAL ASBPRS is 10.1 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC HP FLO is 0.00 TOTAL FLOW is 736997 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.48 AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.50 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 56.06 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.0 PSI LIMITS are PSI PSI INTEMP is 61.6 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/21/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.6 W2_FLO is 21.7 **GPM** 65020805 TOTAL FLOW is GAL GPM TOTAL FLOW is 68963662 GAL ASBPRS is 10.5 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMPL: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.50AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.48 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.06 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.0 PSI LIMITS are PSI PSI $IN\overline{I}EMP$ is 55.4 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/22/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 16.8 W2_FLO is 22.2 **GPM** 65045976 TOTAL FLOW is GAL GPM TOTAL FLOW is 68994920 GAL ASBPRS is 10.6 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.44AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.56 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.87 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.1 PSI LIMITS are PSI PSI INTEMP is 52.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/23/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.4 W2_FLO is 21.7 **GPM** 65071084 TOTAL FLOW is GAL GPM TOTAL FLOW is 69026152 GAL ASBPRS is 10.3 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.49AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.27 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.64 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.1 PSI LIMITS are PSI PSI INTEMP is 56.9 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/24/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRST is OFF HPMPGO is ON VFDRUN is OFF

Analog Inputs:

W1_FLO is 17.1 W2_FLO is 21.7 **GPM** 65096131 TOTAL FLOW is GAL GPM TOTAL FLOW is 69057351 GAL ASBPRS is 10.2 H: 30.0 LIMITS are IWC IWC L:5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMPL: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.48 AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 29.98 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.55 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.0 PSI LIMITS are PSI PSI $IN\overline{I}EMP$ is 58.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/25/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 17.4 W2_FLO is 21.7 **GPM** 65121179 TOTAL FLOW is GAL GPM TOTAL FLOW is 69088520 GAL ASBPRS is 10.5 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC HP FLO is 0.00 TOTAL FLOW is 736997 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.55AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 30.17 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.53 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.1 PSI LIMITS are PSI PSI INTEMP is 54.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/26/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.3 W2_FLO is 20.9 **GPM** 65146230 TOTAL FLOW is GAL GPM TOTAL FLOW is 69119670 GAL ASBPRS is 10.1 H: 30.0 LIMITS are IWC IWC L:5.0 IWC 0.00 TOTAL FLOW is 736997 HP FLO is **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMPL: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.57AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.11 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.68 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 3.8 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 60.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/27/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.2 W2_FLO is 21.4 **GPM** 65171340 TOTAL FLOW is GAL GPM TOTAL FLOW is 69150790 GAL ASBPRS is 10.3 H: 30.0 LIMITS are IWC IWC L:5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMPL: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.55AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 29.98 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 55.51 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 3.8 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 56.0 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/28/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.2 W2_FLO is 21.9 **GPM** 65196383 TOTAL FLOW is GAL GPM TOTAL FLOW is 69181895 GAL ASBPRS is 10.2 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.51AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 29.67 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 55.24 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 3.8 L: 0.5 PSI LIMITS are PSI PSI $IN\overline{I}EMP$ is 58.4DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/29/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.2 W2_FLO is 22.0 **GPM** 65221404 TOTAL FLOW is GAL GPM TOTAL FLOW is 69213057 GAL ASBPRS is 10.2 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMPH: AMPн: 10.00 W1_AMP is 4.45AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 4.47AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is 29.65 H: 28.00 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.36 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 3.8 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 57.6DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/30/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.6 W2_FLO is 21.6 **GPM** 65246170 TOTAL FLOW is GAL GPM TOTAL FLOW is 69244206 GAL ASBPRS is 10.2 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.48AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 4.49AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 29.54 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.22 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 3.6 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 59.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/31/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.2 W2_FLO is 21.5 **GPM** 65270913 TOTAL FLOW is GAL 69275331 GPM TOTAL FLOW is GAL ASBPRS is 10.1 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC HP FLO is 0.00 TOTAL FLOW is 736997 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.49AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 4.50AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 29.45 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.22 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 3.3 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 59.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/01/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.2 W2_FLO is 21.5 **GPM** 65295605 TOTAL FLOW is GAL GPM TOTAL FLOW is 69306445 GAL ASBPRS is 10.3 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMPL: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.53AMP LIMITS are 0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is AMP LIMITS are 0.00 AMP H: 10.00 AMP L:H: 28.00 29.45 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.07 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 3.6 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 56.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/02/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.0 W2_FLO is 21.7 **GPM** 65320275 TOTAL FLOW is GAL GPM TOTAL FLOW is 69337543 GAL ASBPRS is 10.2 H: 30.0 LIMITS are IWC IWC L:5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.56AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 29.23 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 54.96 9.00 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 3.3 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 58.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/03/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.1 W2_FLO is 21.5 **GPM** 65344968 TOTAL FLOW is GAL GPM TOTAL FLOW is 69368641 GAL ASBPRS is 10.4 H: 30.0 LIMITS are IWC IWC L:5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.45AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 29.33 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.03 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 3.5 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 54.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/04/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.4 W2_FLO is 21.4 **GPM** 65369630 TOTAL FLOW is GAL GPM TOTAL FLOW is 69399736 GAL ASBPRS is 10.6 H: 30.0 LIMITS are IWC IWC L:5.0 IWC 736997 HP FLO is 0.00 **GPM** TOTAL FLOW is GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMPL: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.49AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 4.50AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 29.58 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 54.94 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.1 PSI LIMITS are PSI PSI INTEMP is 52.2 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/05/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.1 W2_FLO is 21.8 **GPM** 65394191 TOTAL FLOW is GAL GPM TOTAL FLOW is 69430770 GAL ASBPRS is 10.2 H: 30.0 LIMITS are IWC IWC L:5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.45AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 29.30 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 54.90 9.00 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.0 PSI LIMITS are PSI PSI INTEMP is 57.4DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/06/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRST is OFF HPMPGO is ON VFDRUN is OFF

Analog Inputs:

W1_FLO is 17.1 W2_FLO is 21.6 **GPM** 65418711 TOTAL FLOW is GAL GPM TOTAL FLOW is 69461768 GAL ASBPRS is 10.1 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC HP FLO is 0.00 TOTAL FLOW is 736997 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.46AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 29.26 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.01 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 3.6 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 60.2DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/07/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.6 W2_FLO is 21.2 **GPM** 65443426 TOTAL FLOW is GAL GPM TOTAL FLOW is 69492738 GAL ASBPRS is $10.\overline{4}$ H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMPL: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.51AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 29.41 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 55.03 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 3.6 L: 0.5 PSI LIMITS are PSI PSI $IN\overline{I}EMP$ is 55.4 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/08/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.0 W2_FLO is 21.8 **GPM** 65468470 TOTAL FLOW is GAL GPM TOTAL FLOW is 69523600 GAL ASBPRS is 10.3 H: 30.0 LIMITS are IWC IWC L:5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMPL: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.56AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 29.50 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 54.94 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 3.8 L: 0.5 PSI LIMITS are PSI PSI $IN\overline{I}EMP$ is 55.9 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/09/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.4 W2_FLO is 21.4 **GPM** 65493502 TOTAL FLOW is GAL GPM TOTAL FLOW is 69554519 GAL ASBPRS is 10.5 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.59AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 4.60AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 29.57 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 54.84 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 3.9 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 56.9 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/10/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.3 W2_FLO is 21.5 **GPM** 65518550 TOTAL FLOW is GAL GPM TOTAL FLOW is 69585433 GAL ASBPRS is 10.4 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC HP FLO is 0.00 TOTAL FLOW is 736997 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.49AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 4.48AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 29.34 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 54.73 9.00 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 3.9 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 57.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/11/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P09: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.3 W2_FLO is 21.6 **GPM** 65543606 TOTAL FLOW is GAL GPM TOTAL FLOW is 69616357 GAL ASBPRS is 10.2 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.51AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 29.63 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 55.28 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 3.7 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 59.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/12/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF W1 GO ASMPHH is OFF ASMPLL is OFF W1 ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF HPMPGO is OFF VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 65546485 TOTAL FLOW is GAL GPM TOTAL FLOW is 69619902 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC L:5.0 IWC 736997 HP FLO is 0.00 **GPM** TOTAL FLOW is GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.01 LIMITS are AMPL: 0.00AMPH: AMPн: 10.00 W1_AMP is 0.01 AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 0.00 AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} 31.88 areL:W2 LVL is 9.00 56.59 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 54.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/13/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF W1 GO ASMPHH is OFF ASMPLL is OFF W1 ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF HPMPGO is OFF VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 65546485 TOTAL FLOW is GAL GPM TOTAL FLOW is 69619902 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC L:5.0 IWC 736997 HP FLO is 0.00 **GPM** TOTAL FLOW is GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.01 LIMITS are AMPL: 0.00AMPH: AMPн: 10.00 W1_AMP is 0.01 AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 0.00 AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 31.44 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 56.36 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 61.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/14/2019

SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL Ã2

System Status:

MANUAL : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF W1 GO ASMPHH is OFF ASMPLL is OFF W1 ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF HPMPGO is OFF VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 65546485 TOTAL FLOW is GAL GPM TOTAL FLOW is 69619902 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC L:5.0 IWC 736997 HP FLO is 0.00 **GPM** TOTAL FLOW is GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.01 LIMITS are AMPL: 0.00AMPH: AMPн: 10.00 W1_AMP is 0.01 AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 0.00 AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 31.26 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 56.34 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 59.1 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/15/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.7 W2_FLO is 22.1 **GPM** 65563331 TOTAL FLOW is GAL GPM TOTAL FLOW is 69640571 GAL ASBPRS is $10.\overline{3}$ H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMPL: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.58AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 29.33 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 54.82 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.2 PSI LIMITS are PSI PSI INTEMP is 56.8 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/16/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.5 W2_FLO is 22.2 **GPM** 65588801 TOTAL FLOW is GAL GPM TOTAL FLOW is 69671947 GAL ASBPRS is 10.1 H: 30.0 LIMITS are IWC IWC L:5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMPL: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.55AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 29.11 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 54.69 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} 4.4W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 4.1 PSI LIMITS are PSI PSI INTEMP is 60.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/17/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.6 W2_FLO is 21.7 **GPM** 65614283 TOTAL FLOW is GAL GPM TOTAL FLOW is 69703367 GAL ASBPRS is 10.2 H: 30.0 LIMITS are IWC IWC L:5.0 IWC 0.00 TOTAL FLOW is 736997 HP FLO is **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.01 LIMITS are AMP L: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.47AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 4.49AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 29.93 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 55.43 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 3.8 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 58.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/18/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.1 W2_FLO is 22.3 **GPM** 65639733 TOTAL FLOW is GAL GPM TOTAL FLOW is 69734753 GAL ASBPRS is 10.1 H: 30.0 LIMITS are IWC IWC L:5.0 IWC HP_FLO is 0.00 TOTAL FLOW is 736997 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.45AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 4.47AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 29.62 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 55.07 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 3.6 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 59.7 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/19/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRST is OFF HPMPGO is ON VFDRUN is OFF

Analog Inputs:

W1_FLO is 17.4 W2_FLO is 21.6 **GPM** 65665094 TOTAL FLOW is GAL GPM TOTAL FLOW is 69766089 GAL ASBPRS is 10.0 H: 30.0 LIMITS are IWC IWC L:5.0 IWC 736997 HP FLO is 0.00 **GPM** TOTAL FLOW is GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.52AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 29.51 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are L:W2 LVL is 9.00 55.11 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 3.2 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 61.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/20/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.8 W2_FLO is 22.0 **GPM** 65690444 TOTAL FLOW is GAL 69797382 GPM TOTAL FLOW is GAL ASBPRS is 9.9 H: 30.0 LIMITS are IWC IWC L:5.0 IWC 736997 HP FLO is 0.00 **GPM** TOTAL FLOW is GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMPL: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.45AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 29.16 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 54.96 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 2.5 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 63.4DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/21/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.6 W2_FLO is 22.0 **GPM** 65716005 TOTAL FLOW is GAL GPM TOTAL FLOW is 69828714 GAL ASBPRS is 9.9 H: 30.0 LIMITS are IWC IWC L:5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMPL: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.51AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.55 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} areL:W2 LVL is 9.00 56.42 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 3.8 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 1.8 PSI LIMITS are PSI PSI $IN\overline{I}EMP$ is 61.4DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/22/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36: LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 18.0 W2_FLO is 21.7 **GPM** 65741587 TOTAL FLOW is GAL GPM TOTAL FLOW is 69860113 GAL ASBPRS is 10.3 H: 30.0 LIMITS are IWC IWC L:5.0 IWC 0.00 TOTAL FLOW is 736997 HP FLO is **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.01 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.57 AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.46 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 56.02 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 2.5 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 57.5DEG LIMITS are L: 42.0DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/23/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 18.2 W2_FLO is 21.8 **GPM** 65766901 TOTAL FLOW is GAL GPM TOTAL FLOW is 69891445 GAL ASBPRS is 10.4 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC HP FLO is 0.00 TOTAL FLOW is 736997 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMPL: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.58AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 30.28 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.64 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 3.2 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 57.0 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/24/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.9 W2_FLO is 21.3 **GPM** 65792054 TOTAL FLOW is GAL GPM TOTAL FLOW is 69922769 GAL ASBPRS is 10.2 H: 30.0 LIMITS are IWC IWC L:5.0 IWC TOTAL FLOW is 736997 HP FLO is 0.00 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.00 LIMITS are AMPL: 0.00AMP H: AMPн: 10.00 W1_AMP is 4.48 AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 4.49AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 29.88 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.41 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 3.5 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 57.1 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/25/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.2 W2_FLO is 21.6 **GPM** 65817159 TOTAL FLOW is GAL GPM TOTAL FLOW is 69954118 GAL ASBPRS is 9.9 H: 30.0 LIMITS are IWC IWC L:5.0 IWC HP FLO is 0.00 TOTAL FLOW is 736997 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.47AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 4.49AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 29.56 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.24 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 2.8 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 63.4DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/26/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W2 GO is ON ASB GO is ON SMP GO is OFF W1 GO is ON ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF HPMPGO is ON VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 17.4 W2_FLO is 21.7 **GPM** 65842219 TOTAL FLOW is GAL GPM TOTAL FLOW is 69985452 GAL ASBPRS is 10.1 H: 30.0 LIMITS are IWC IWC \mathbf{L} : 5.0 IWC HP FLO is 0.00 TOTAL FLOW is 736997 **GPM** GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.00 LIMITS are AMPL: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.49AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 4.51AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 29.88 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.30 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 2.4 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 60.2DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/27/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF W1 GO ASMPHH is OFF ASMPLL is OFF W1 ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF VFDRST is OFF HPMPGO is OFF VFDRUN is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 65853869 TOTAL FLOW is GAL GPM TOTAL FLOW is 70000034 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC $\mathbf L$: 5.0 IWC 736997 HP FLO is 0.00 **GPM** TOTAL FLOW is GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.01 LIMITS are AMPL: 0.00AMPH: AMPн: 10.00 W1_AMP is 0.01 AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 0.00 AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 32.09 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 56.78 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 62.1 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/29/2019

SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL Ã2

System Status:

MANUAL : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF W1 GO ASMPHH is OFF ASMPLL is OFF W1 ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF HPMPGO is OFF VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 65884253 TOTAL FLOW is GAL GPM TOTAL FLOW is 70037949 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC $\mathbf L$: 5.0 IWC 736997 HP FLO is 0.00 **GPM** TOTAL FLOW is GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.01 LIMITS are AMPL: 0.00AMP H: AMPн: 10.00 W1_AMP is 0.01 AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 0.00AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 31.72 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 56.44 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 66.7 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/30/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF W1 GO ASMPHH is OFF ASMPLL is OFF W1 ALM is OFF AIR HH is OFF SMPALM is OFF W2_ALM is OFF ASBALM is OFF AIR LL is OFF HPMPGO is OFF VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 65884253 TOTAL FLOW is GAL GPM TOTAL FLOW is 70037949 GAL ASBPRS is H: 30.0 LIMITS are IWC IWC $\mathbf L$: 5.0 IWC 736997 HP FLO is 0.00 **GPM** TOTAL FLOW is GAL H: 20.0 HP PRS is 0.0 PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.01 LIMITS are AMPL: 0.00AMPH: AMPн: 10.00 W1_AMP is 0.01 AMP LIMITS are 0.00 AMP AMP \mathbf{L} : AMPis 0.00AMP LIMITS are 0.00 AMP H: 10.00 AMP L:W1_LVL is H: 28.00 31.42 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 56.38 \mathbf{FT} LIMITS are L : \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 L: 0.5 W2_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 65.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

ALARM Fax Report <u>ProControl Series II+</u>

EOS Research Ltd.

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 12:43:07 ON 06/30/2019 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

vstem Status:

LAST SHUTDOWN @ 12:06:04 ON 03/14/2019 BY ASBVFD P35 :

FAX REPORT INITIATED BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP OP is OFF ASP_HH is OFF ASP LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

SMP_GO is OFF W1_ALM is OFF W1 GO is ON W2 GO is ON ASB GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF W2 ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 17.0 **GPM** TOTAL FLOW is 65884321 GAL W2 FLO is 21.5 **GPM** TOTAL FLOW is 70038034 GAL ASBPRS is 9.9 LIMITS are H: 30.0 IWC IWC L: 5.0IWC HP_FLO is 0.00 **GPM** TOTAL FLOW is 736997 GAL PRS is H: 20.0 0.0PSI LIMITS are L:-2.0 PSI PSI HP AMP is 0.00 0.00 AMP LIMITS are \mathbf{L} : **H**: AMP AMPW1 AMP is AMP LIMITS are 0.00 AMP H: 10.00 AMP \mathbf{L} : $W2^{-}AMP$ is 4.56AMP LIMITS are L: 0.00 AMP H: 10.00 AMP H: 28.00 W1 LVL is 29.43 \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} \mathbf{FT} $W2_LVL$ is 54.94 \mathbf{FT} LIMITS are \mathbf{L} : 9.00 \mathbf{FT} H: 52.00 \mathbf{FT} PRS is 4.2PSI LIMITS are L:0.5PSI H: 100.0 PSI W2 PRS is H: 100.0 3.9 PSI LIMITS are \mathbf{L} : 0.5 PSI PSI INTEMP is 69.9 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

ASBSPD 0.0 PCT

APPENDIX B

O&M Checklists

Gladding Cordage		Date	4/7/2019
South Otselic, New York		Inspector	L. Whalen
NYSDEC Site #709009		Time	1345
Treatment System Operation		Alarms	
System On (Y/N)	Yes		No
RW-1 On (Y/N)	Yes	RW-1 (Y/N)	No
RW-2 On (Y/N)	Yes	RW-2 (Y/N)	No
Blower On (Y/N)	Yes	Blower Pressure (Y/N)	No
Sump Pump On (Y/N)	No	Sump Level (Y/N)	No
Recovery Wells	RW-1	RW-2	
Flow Rate (GPM)	17.3	21.2	
Total Flow (Gallons)	Not Reported	Not Reported	
Water Level (Feet Ábove Probe)	31.71	56.06	
Probe Depth (Feet BTOC)	40.00	65.00	
Air Stripper			
Blower VFD Setting (Hertz)	46	Intake/Exhaust Piping OK? (Y/N)	Yes
System Pressure (inches water)	10.1	Water Leaks (Y/N)	No
Influent/Effluent Piping OK? (Y/N)	Yes	Water Temperature (°F)	58°
Heat Exchanger			
Heat (On/Off)	Off	Building Temperature (°F)	
Heat Exchanger Flow (GPM)	0.0	Heat Exchanger Pressure (PSI)	1.5
General Building/Site			
Building Condition OK? (Y/N)	Yes	Circuit Breakers Checked (Y/N)	Yes
Grass Mowed (Y/N)	No	Outfall Condition OK? (Y/N)	Yes
Monitoring Wells OK? (Y/N)	<u>Yes</u>	Samples Collected (Y/N)	No
Notes:			
System Restart: 1345			
System Check: 1405			

Gladding Cordage		Date	4/29/2019
South Otselic, New York		Inspector	L. Whalen
NYSDEC Site #709009		Time	0650
Freatment System Operation	-	Alarms	_
System On (Y/N) Ye		A/C Fail (Y/N) N	
RW-1 On (Y/N) Ye		RW-1 (Y/N) N	
RW-2 On (Y/N) Ye		RW-2 (Y/N) N	-
Blower On (Y/N) Ye		Blower Pressure (Y/N) N	-
Sump Pump On (Y/N) N	<u>0</u>	Sump Level (Y/N) N	0
Recovery Wells	RW-1	RW-2	
Flow Rate (GPM)	17.2	21.6	
Total Flow (Gallons)	Not Reported	Not Reported	
Nater Level (Feet Ábove Probe)	31.06	55.89	
Probe Depth (Feet BTOC)	40.00	65.00	
Air Stripper			
Blower VFD Setting (Hertz)	46	Intake/Exhaust Piping OK? (Y/N)	Ye
System Pressure (inches water)	10.9	Water Leaks (Y/N)	No.
nfluent/Effluent Piping OK? (Y/N)	Yes	Water Temperature (°F)	44
Heat Exchanger			
Heat (On/Off)	Off	Building Temperature (°F)	60
Heat Exchanger Flow (GPM)	0.0	Heat Exchanger Pressure (PSI)	1.5
General Building/Site			
Building Condition OK? (Y/N)	Yes	Circuit Breakers Checked (Y/N)	Ye
Grass Mowed (Y/N)	No	Outfall Condition OK? (Y/N)	Ye
Monitoring Wells OK? (Y/N)	Yes	Samples Collected (Y/N)	Ye
Notes:			
System Restart: 0600			
Collected Samples: RW-1 (MS/MSD)	. 0620		
RW-2 - 06			
	635		
E11 TO 112 - 0			
System Check: 1340			
Building Check: 0700 Turned wall hea	ter back up a little. 25	5° out- will check again next week	

Gladding Cordage		Date	5/20/2019
South Otselic, New York		Inspector	L. Whalen
NYSDEC Site #709009		Time	1030
T			
Treatment System Operation		Alarms	1-
System On (Y/N) Yes		. ,	No
RW-1 On (Y/N) Yes			<u>\o</u>
RW-2 On (Y/N) Yes			<u>\o</u>
Blower On (Y/N) Yes		` /	<u>lo</u>
Sump Pump On (Y/N) No	<u> </u>	Sump Level (Y/N)	No
Recovery Wells	RW-1	RW-2	
Flow Rate (GPM)	17.2	21.4	
Total Flow (Gallons)	Not Reported	Not Reported	
Water Level (Feet Ábove Probe)	30.51	56.08	
Probe Depth (Feet BTOC)	40.00	65.00	
Air Stripper			
Blower VFD Setting (Hertz)	46	Intake/Exhaust Piping OK? (Y/N)	Yes
System Pressure (inches water)	10.0	Water Leaks (Y/N)	No
Influent/Effluent Piping OK? (Y/N)	Yes	Water Temperature (°F)	59°
initiaent indent i ping etc. (1714)	100	vator remperature (1)	
Heat Exchanger			
Heat (On/Off)	Off	Building Temperature (°F)	64.7°
Heat Exchanger Flow (GPM)	Off	Heat Exchanger Pressure (PSI)	Off
General Building/Site			
Building Condition OK? (Y/N)	Yes	Circuit Breakers Checked (Y/N)	Yes
Grass Mowed (Y/N)	Yes	Outfall Condition OK? (Y/N)	Yes
Monitoring Wells OK? (Y/N)	Yes	Samples Collected (Y/N)	Yes
Notes:			
Samples Collected: RW-1 (MS/MSD) -	0830		
RW-2 - 08			
EFF-46 HZ - 08	345		
Grass mowed			
Building and well check: 1030			

Gladding Cordage		Date	6/21/2019
South Otselic, New York		Inspector	L. Whalen
NYSDEC Site #709009		Time	0900
Torontono and Constant Constant		Alama	
Treatment System Operation		Alarms	•
System On (Y/N) Ye			lo
RW-1 On (Y/N) Ye			lo
RW-2 On (Y/N)			lo
Blower On (Y/N) Ye			<u>lo</u>
Sump Pump On (Y/N)	<u> </u>	Sump Level (Y/N)	lo
Recovery Wells	RW-1	RW-2	
Flow Rate (GPM)	17.6	21.7	
Total Flow (Gallons)	Not Reported	Not Reported	
Water Level (Feet Above Probe)	30.57	56.42	
Probe Depth (Feet BTOC)	40.00	65.00	
Air Strinner			
Air Stripper	40	Intoka/Evhauat Dining OVA (V/A)	V
Blower VFD Setting (Hertz)	46	Intake/Exhaust Piping OK? (Y/N)	Yes
System Pressure (inches water)	10.1	Water Leaks (Y/N)	No Too
Influent/Effluent Piping OK? (Y/N)	Yes	Water Temperature (°F)	58°
Heat Exchanger			
Heat (On/Off)	Off	Building Temperature (°F)	62.1°
Heat Exchanger Flow (GPM)	0.0	Heat Exchanger Pressure (PSI)	0.0
General Building/Site			
Building Condition OK? (Y/N)	Yes	Circuit Breakers Checked (Y/N)	Yes
Grass Mowed (Y/N)	Yes	Outfall Condition OK? (Y/N)	Yes
Monitoring Wells OK? (Y/N)	Yes	Samples Collected (Y/N)	Yes
Worldding Wells Ore: (1714)	103	Gamples Collected (1714)	103
Notes:			
Building/ System Check: 0645			
Samples Collected: RW-1 (MS/MSD) -	0710		
RW-2 - 07	'20		
EFF-46 HZ - 0	725		
0 1 0745			
Grass mowed: 0745			
System Check: 0850			
	-		

APPENDIX C Analytical Reporting Forms

May 9, 2019

Jeremy Wyckoff Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210 Clifton Park, NY 12065

Project Location: South Otselic, NY

Client Job Number:

Project Number: 00266406.0000

Laboratory Work Order Number: 19D1563

Enclosed are results of analyses for samples received by the laboratory on April 30, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Aaron L. Benoit Project Manager

Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210 Clifton Park, NY 12065 ATTN: Jeremy Wyckoff

PURCHASE ORDER NUMBER:

REPORT DATE: 5/9/2019

PROJECT NUMBER: 00266406.0000

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19

19D1563

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: South Otselic, NY

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
RW-1 (MS/MSD) 42919	19D1563-01	Ground Water		624.1	
RW-2 42919	19D1563-02	Ground Water		624.1	
EFF 46 HZ 42919	19D1563-03	Ground Water		624.1	
Trip Blank 42919	19D1563-04	Ground Water		624.1	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

Project Location: South Otselic, NY Sample Description: Work Order: 19D1563

Date Received: 4/30/2019

Field Sample #: RW-1 (MS/MSD) 42919

103

105

104

70-130

70-130

70-130

5/8/19 14:04

5/8/19 14:04

5/8/19 14:04

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Toluene-d8

Sampled: 4/29/2019 06:20

Sample ID: 19D1563-01 Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	<1.00	1.00	0.180	μg/L	1		624.1	5/7/19	5/8/19 14:04	LBD
Bromodichloromethane	< 2.00	2.00	0.160	μg/L	1		624.1	5/7/19	5/8/19 14:04	LBD
Bromoform	< 2.00	2.00	0.460	μg/L	1		624.1	5/7/19	5/8/19 14:04	LBD
Bromomethane	< 5.00	5.00	0.780	μg/L	1		624.1	5/7/19	5/8/19 14:04	LBD
Carbon Tetrachloride	< 2.00	2.00	0.110	μg/L	1		624.1	5/7/19	5/8/19 14:04	LBD
Chlorobenzene	< 2.00	2.00	0.150	μg/L	1		624.1	5/7/19	5/8/19 14:04	LBD
Chlorodibromomethane	< 2.00	2.00	0.210	μg/L	1		624.1	5/7/19	5/8/19 14:04	LBD
Chloroethane	< 2.00	2.00	0.350	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:04	LBD
Chloroform	< 2.00	2.00	0.170	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:04	LBD
Chloromethane	< 2.00	2.00	0.450	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:04	LBD
1,2-Dichlorobenzene	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:04	LBD
1,3-Dichlorobenzene	< 2.00	2.00	0.120	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:04	LBD
1,4-Dichlorobenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:04	LBD
1,2-Dichloroethane	< 2.00	2.00	0.410	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:04	LBD
1,1-Dichloroethane	1.58	2.00	0.160	$\mu g/L$	1	J	624.1	5/7/19	5/8/19 14:04	LBD
1,1-Dichloroethylene	1.08	2.00	0.320	$\mu g/L$	1	J	624.1	5/7/19	5/8/19 14:04	LBD
trans-1,2-Dichloroethylene	< 2.00	2.00	0.310	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:04	LBD
1,2-Dichloropropane	< 2.00	2.00	0.200	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:04	LBD
cis-1,3-Dichloropropene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:04	LBD
trans-1,3-Dichloropropene	< 2.00	2.00	0.230	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:04	LBD
Ethylbenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:04	LBD
Methyl tert-Butyl Ether (MTBE)	< 2.00	2.00	0.250	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:04	LBD
Methylene Chloride	< 5.00	5.00	0.340	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:04	LBD
1,1,2,2-Tetrachloroethane	< 2.00	2.00	0.220	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:04	LBD
Tetrachloroethylene	< 2.00	2.00	0.180	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:04	LBD
Toluene	<1.00	1.00	0.140	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:04	LBD
1,1,1-Trichloroethane	42.6	2.00	0.200	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:04	LBD
1,1,2-Trichloroethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:04	LBD
Trichloroethylene	< 2.00	2.00	0.240	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:04	LBD
Trichlorofluoromethane (Freon 11)	< 2.00	2.00	0.330	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:04	LBD
Vinyl Chloride	< 2.00	2.00	0.450	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:04	LBD
m+p Xylene	< 2.00	2.00	0.300	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:04	LBD
o-Xylene	< 2.00	2.00	0.170	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:04	LBD
Surrogates		% Reco	very	Recovery Limits	6	Flag/Qual				

Project Location: South Otselic, NY Sample Description: Work Order: 19D1563

Date Received: 4/30/2019
Field Sample #: RW-2 42919

Sampled: 4/29/2019 06:30

102

104

102

70-130

70-130

70-130

5/8/19 14:35

5/8/19 14:35 5/8/19 14:35

Sample ID: 19D1563-02
Sample Matrix: Ground Water

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Toluene-d8

Volatile Organic Compounds by GC/MS

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	<1.00	1.00	0.180	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
Bromodichloromethane	<2.00	2.00	0.160	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
Bromoform	<2.00	2.00	0.460	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
Bromomethane	< 5.00	5.00	0.780	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
Carbon Tetrachloride	< 2.00	2.00	0.110	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
Chlorobenzene	< 2.00	2.00	0.150	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
Chlorodibromomethane	< 2.00	2.00	0.210	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
Chloroethane	< 2.00	2.00	0.350	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
Chloroform	< 2.00	2.00	0.170	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
Chloromethane	< 2.00	2.00	0.450	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
1,2-Dichlorobenzene	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
1,3-Dichlorobenzene	< 2.00	2.00	0.120	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
1,4-Dichlorobenzene	<2.00	2.00	0.130	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
1,2-Dichloroethane	< 2.00	2.00	0.410	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
1,1-Dichloroethane	1.00	2.00	0.160	$\mu g/L$	1	J	624.1	5/7/19	5/8/19 14:35	LBD
1,1-Dichloroethylene	1.05	2.00	0.320	$\mu g/L$	1	J	624.1	5/7/19	5/8/19 14:35	LBD
trans-1,2-Dichloroethylene	< 2.00	2.00	0.310	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
1,2-Dichloropropane	< 2.00	2.00	0.200	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
cis-1,3-Dichloropropene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
trans-1,3-Dichloropropene	< 2.00	2.00	0.230	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
Ethylbenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
Methyl tert-Butyl Ether (MTBE)	< 2.00	2.00	0.250	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
Methylene Chloride	< 5.00	5.00	0.340	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
1,1,2,2-Tetrachloroethane	< 2.00	2.00	0.220	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
Tetrachloroethylene	< 2.00	2.00	0.180	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
Toluene	<1.00	1.00	0.140	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
1,1,1-Trichloroethane	43.2	2.00	0.200	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
1,1,2-Trichloroethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
Trichloroethylene	< 2.00	2.00	0.240	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
Trichlorofluoromethane (Freon 11)	< 2.00	2.00	0.330	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
Vinyl Chloride	< 2.00	2.00	0.450	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
m+p Xylene	<2.00	2.00	0.300	μg/L	1		624.1	5/7/19	5/8/19 14:35	LBD
o-Xylene	< 2.00	2.00	0.170	$\mu g/L$	1		624.1	5/7/19	5/8/19 14:35	LBD
Surrogates		% Reco	very	Recovery Limits	s	Flag/Qual				

Project Location: South Otselic, NY Sample Description:

Date Received: 4/30/2019

Field Sample #: EFF 46 HZ 42919

Sample ID: 19D1563-03 Sample Matrix: Ground Water

Work Order: 19D1563

Volatile Organic Compounds by GC/MS

Sampled: 4/29/2019 06:35

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	<1.00	1.00	0.180	μg/L	1		624.1	5/7/19	5/8/19 12:32	LBD
Bromodichloromethane	< 2.00	2.00	0.160	μg/L	1		624.1	5/7/19	5/8/19 12:32	LBD
Bromoform	< 2.00	2.00	0.460	μg/L	1		624.1	5/7/19	5/8/19 12:32	LBD
Bromomethane	< 5.00	5.00	0.780	μg/L	1		624.1	5/7/19	5/8/19 12:32	LBD
Carbon Tetrachloride	< 2.00	2.00	0.110	μg/L	1		624.1	5/7/19	5/8/19 12:32	LBD
Chlorobenzene	< 2.00	2.00	0.150	μg/L	1		624.1	5/7/19	5/8/19 12:32	LBD
Chlorodibromomethane	< 2.00	2.00	0.210	μg/L	1		624.1	5/7/19	5/8/19 12:32	LBD
Chloroethane	< 2.00	2.00	0.350	μg/L	1		624.1	5/7/19	5/8/19 12:32	LBD
Chloroform	< 2.00	2.00	0.170	μg/L	1		624.1	5/7/19	5/8/19 12:32	LBD
Chloromethane	< 2.00	2.00	0.450	μg/L	1		624.1	5/7/19	5/8/19 12:32	LBD
1,2-Dichlorobenzene	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	5/7/19	5/8/19 12:32	LBD
1,3-Dichlorobenzene	< 2.00	2.00	0.120	$\mu g/L$	1		624.1	5/7/19	5/8/19 12:32	LBD
1,4-Dichlorobenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	5/7/19	5/8/19 12:32	LBD
1,2-Dichloroethane	< 2.00	2.00	0.410	$\mu g/L$	1		624.1	5/7/19	5/8/19 12:32	LBD
1,1-Dichloroethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	5/7/19	5/8/19 12:32	LBD
1,1-Dichloroethylene	< 2.00	2.00	0.320	$\mu g/L$	1		624.1	5/7/19	5/8/19 12:32	LBD
trans-1,2-Dichloroethylene	< 2.00	2.00	0.310	$\mu g/L$	1		624.1	5/7/19	5/8/19 12:32	LBD
1,2-Dichloropropane	< 2.00	2.00	0.200	$\mu g/L$	1		624.1	5/7/19	5/8/19 12:32	LBD
cis-1,3-Dichloropropene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	5/7/19	5/8/19 12:32	LBD
trans-1,3-Dichloropropene	< 2.00	2.00	0.230	$\mu g/L$	1		624.1	5/7/19	5/8/19 12:32	LBD
Ethylbenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	5/7/19	5/8/19 12:32	LBD
Methyl tert-Butyl Ether (MTBE)	< 2.00	2.00	0.250	$\mu g/L$	1		624.1	5/7/19	5/8/19 12:32	LBD
Methylene Chloride	< 5.00	5.00	0.340	$\mu g/L$	1		624.1	5/7/19	5/8/19 12:32	LBD
1,1,2,2-Tetrachloroethane	< 2.00	2.00	0.220	$\mu g/L$	1		624.1	5/7/19	5/8/19 12:32	LBD
Tetrachloroethylene	< 2.00	2.00	0.180	$\mu g/L$	1		624.1	5/7/19	5/8/19 12:32	LBD
Toluene	<1.00	1.00	0.140	$\mu g/L$	1		624.1	5/7/19	5/8/19 12:32	LBD
1,1,1-Trichloroethane	< 2.00	2.00	0.200	$\mu g/L$	1		624.1	5/7/19	5/8/19 12:32	LBD
1,1,2-Trichloroethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	5/7/19	5/8/19 12:32	LBD
Trichloroethylene	< 2.00	2.00	0.240	$\mu g/L$	1		624.1	5/7/19	5/8/19 12:32	LBD
Trichlorofluoromethane (Freon 11)	< 2.00	2.00	0.330	$\mu g/L$	1		624.1	5/7/19	5/8/19 12:32	LBD
Vinyl Chloride	< 2.00	2.00	0.450	$\mu g/L$	1		624.1	5/7/19	5/8/19 12:32	LBD
m+p Xylene	< 2.00	2.00	0.300	$\mu g/L$	1		624.1	5/7/19	5/8/19 12:32	LBD
o-Xylene	<2.00	2.00	0.170	μg/L	1		624.1	5/7/19	5/8/19 12:32	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	102	70-130		5/8/19 12:32
Toluene-d8	104	70-130		5/8/19 12:32
4-Bromofluorobenzene	104	70-130		5/8/19 12:32

Surrogates

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Toluene-d8

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: South Otselic, NY Sample Description: Work Order: 19D1563

Date Received: 4/30/2019

Field Sample #: Trip Blank 42919

Sampled: 4/29/2019 00:00

% Recovery

101

105

104

Recovery Limits

70-130

70-130

70-130

Flag/Qual

5/8/19 13:02

5/8/19 13:02 5/8/19 13:02

Sample ID: 19D1563-04
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	<1.00	1.00	0.180	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
Bromodichloromethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
Bromoform	< 2.00	2.00	0.460	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
Bromomethane	< 5.00	5.00	0.780	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
Carbon Tetrachloride	< 2.00	2.00	0.110	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
Chlorobenzene	< 2.00	2.00	0.150	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
Chlorodibromomethane	< 2.00	2.00	0.210	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
Chloroethane	< 2.00	2.00	0.350	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
Chloroform	0.170	2.00	0.170	$\mu g/L$	1	J	624.1	5/7/19	5/8/19 13:02	LBD
Chloromethane	< 2.00	2.00	0.450	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
1,2-Dichlorobenzene	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
1,3-Dichlorobenzene	< 2.00	2.00	0.120	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
1,4-Dichlorobenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
1,2-Dichloroethane	< 2.00	2.00	0.410	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
1,1-Dichloroethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
1,1-Dichloroethylene	< 2.00	2.00	0.320	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
trans-1,2-Dichloroethylene	< 2.00	2.00	0.310	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
1,2-Dichloropropane	< 2.00	2.00	0.200	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
cis-1,3-Dichloropropene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
trans-1,3-Dichloropropene	< 2.00	2.00	0.230	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
Ethylbenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
Methyl tert-Butyl Ether (MTBE)	< 2.00	2.00	0.250	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
Methylene Chloride	< 5.00	5.00	0.340	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
1,1,2,2-Tetrachloroethane	< 2.00	2.00	0.220	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
Tetrachloroethylene	< 2.00	2.00	0.180	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
Toluene	<1.00	1.00	0.140	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
1,1,1-Trichloroethane	< 2.00	2.00	0.200	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
1,1,2-Trichloroethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
Trichloroethylene	< 2.00	2.00	0.240	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
Trichlorofluoromethane (Freon 11)	< 2.00	2.00	0.330	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
Vinyl Chloride	< 2.00	2.00	0.450	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
m+p Xylene	< 2.00	2.00	0.300	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD
o-Xylene	< 2.00	2.00	0.170	$\mu g/L$	1		624.1	5/7/19	5/8/19 13:02	LBD

Sample Extraction Data

Prep Method: SW-846 5030B-624.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D1563-01 [RW-1 (MS/MSD) 42919]	B230049	5	5.00	05/07/19
19D1563-02 [RW-2 42919]	B230049	5	5.00	05/07/19
19D1563-03 [EFF 46 HZ 42919]	B230049	5	5.00	05/07/19
19D1563-04 [Trip Blank 42919]	B230049	5	5.00	05/07/19

QUALITY CONTROL

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B230049 - SW-846 5030B										
Blank (B230049-BLK1)				Prepared: 05	/07/19 Anal	yzed: 05/08/	19			
Benzene	ND	1.00	μg/L							
Bromodichloromethane	ND	2.00	$\mu \text{g/L}$							
Bromoform	ND	2.00	$\mu g/L$							
Bromomethane	ND	2.00	$\mu \text{g/L}$							
Carbon Tetrachloride	ND	2.00	$\mu \text{g/L}$							
Chlorobenzene	ND	2.00	μg/L							
Chlorodibromomethane	ND	2.00	μg/L							
Chloroethane	ND	2.00	μg/L							
Chloroform	ND	2.00	μg/L							
Chloromethane	ND	2.00	μg/L							
1,2-Dichlorobenzene	ND	2.00	μg/L							
1,3-Dichlorobenzene	ND	2.00	μg/L							
1,4-Dichlorobenzene	ND	2.00	μg/L							
1,2-Dichloroethane	ND	2.00	μg/L							
1,1-Dichloroothylono	ND	2.00	μg/L							
1,1-Dichloroethylene trans-1,2-Dichloroethylene	ND	2.00	μg/L							
1,2-Dichloropropane	ND	2.00	μg/L μα/I							
cis-1,3-Dichloropropene	ND	2.00	μg/L μα/I							
trans-1,3-Dichloropropene	ND	2.00 2.00	μg/L μα/I							
Ethylbenzene	ND	2.00	μg/L μg/L							
Methyl tert-Butyl Ether (MTBE)	ND ND	2.00	μg/L μg/L							
Methylene Chloride	ND ND	5.00	μg/L μg/L							
1,1,2,2-Tetrachloroethane	ND ND	2.00	μg/L μg/L							
Tetrachloroethylene	ND ND	2.00	μg/L μg/L							
Toluene	ND ND	1.00	μg/L μg/L							
1,1,1-Trichloroethane	ND ND	2.00	μg/L μg/L							
1,1,2-Trichloroethane	ND ND	2.00	μg/L μg/L							
Trichloroethylene	ND ND	2.00	μg/L μg/L							
Trichlorofluoromethane (Freon 11)	ND	2.00	μg/L							
Vinyl Chloride	ND	2.00	μg/L							
m+p Xylene	ND	2.00	μg/L							
o-Xylene	ND	2.00	μg/L							
Surrogate: 1,2-Dichloroethane-d4	25.7		μg/L	25.0		103	70-130			
Surrogate: Toluene-d8	25.9		μg/L μg/L	25.0		103	70-130			
Surrogate: 4-Bromofluorobenzene	25.8		μg/L μg/L	25.0		103	70-130			
LCS (B230049-BS1)				Prepared: 05	/07/19 Anals					
Benzene	10	1.00	μg/L	•	And And					
Bromodichloromethane	19	2.00	μg/L μg/L	20.0		96.8	65-135 65-135			
Bromoform	21	2.00	μg/L μg/L	20.0 20.0		104 98.8	65-135 70-130			
Bromomethane	20	2.00	μg/L μg/L	20.0		98.8 65.9	15-185			
Carbon Tetrachloride	13	2.00	μg/L μg/L	20.0		103	70-130			
Chlorobenzene	21 20	2.00	μg/L μg/L	20.0		99.6	65-135			
Chlorodibromomethane	20 22	2.00	μg/L μg/L	20.0		99.6 111	70-135			
Chloroethane	19	2.00	μg/L μg/L	20.0		96.7	40-160			
Chloroform		2.00	μg/L μg/L	20.0		99.8	70-135			
Chloromethane	20 12	2.00	μg/L μg/L	20.0		61.8	20-205			
1,2-Dichlorobenzene	19	2.00	μg/L μg/L	20.0		97.2	65-135			
1,3-Dichlorobenzene	19	2.00	μg/L μg/L	20.0		96.4	70-130			
1,4-Dichlorobenzene	19	2.00	μg/L μg/L	20.0		94.6	65-135			
1,2-Dichloroethane	21	2.00	μg/L	20.0		107	70-130			
,	21	2.00	r-8/2	20.0		107	, 0 150			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B230049 - SW-846 5030B										
LCS (B230049-BS1)				Prepared: 05	/07/19 Analyz	zed: 05/08/	19			
,1-Dichloroethane	20	2.00	$\mu \text{g/L}$	20.0		101	70-130			
,1-Dichloroethylene	19	2.00	μg/L	20.0		97.2	50-150			
rans-1,2-Dichloroethylene	20	2.00	μg/L	20.0		102	70-130			
,2-Dichloropropane	20	2.00	$\mu g/L$	20.0		99.2	35-165			
eis-1,3-Dichloropropene	20	2.00	$\mu g/L$	20.0		99.0	25-175			
rans-1,3-Dichloropropene	20	2.00	$\mu g/L$	20.0		97.7	50-150			
Ethylbenzene	19	2.00	$\mu g/L$	20.0		94.4	60-140			
Methyl tert-Butyl Ether (MTBE)	21	2.00	$\mu g/L$	20.0		103	70-130			
Methylene Chloride	19	5.00	$\mu g/L$	20.0		96.2	60-140			
,1,2,2-Tetrachloroethane	21	2.00	μg/L	20.0		104	60-140			
Tetrachloroethylene	22	2.00	μg/L	20.0		109	70-130			
Foluene	20	1.00	μg/L	20.0		99.4	70-130			
,1,1-Trichloroethane	20	2.00	μg/L	20.0		97.8	70-130			
,1,2-Trichloroethane	20	2.00	μg/L	20.0		102	70-130			
Frichloroethylene	20	2.00	μg/L μg/L	20.0		102	65-135			
Frichlorofluoromethane (Freon 11)	18	2.00	μg/L μg/L	20.0		91.6	50-150			
Vinyl Chloride		2.00	μg/L μg/L	20.0		80.6	5-195			
n+p Xylene	16	2.00	μg/L μg/L							
	38	2.00		40.0		96.2	70-130			
o-Xylene	20	2.00	μg/L	20.0		97.6	70-130			
Surrogate: 1,2-Dichloroethane-d4	24.8		$\mu g/L$	25.0		99.2	70-130			
Surrogate: Toluene-d8	25.4		$\mu g/L$	25.0		102	70-130			
Surrogate: 4-Bromofluorobenzene	25.8		$\mu g/L$	25.0		103	70-130			
Matrix Spike (B230049-MS1)	Sou	rce: 19D1563-	01	Prepared: 05	/07/19 Analyz	zed: 05/08/	19			
Benzene	11	1.00	μg/L	10.0	ND	106	37-151			
Bromodichloromethane	11	2.00	μg/L	10.0	ND	111	35-155			
Bromoform	9.5	2.00	μg/L	10.0	ND	95.0	45-169			
Bromomethane	7.6	2.00	μg/L	10.0	ND	76.3	20-242			
Carbon Tetrachloride	11	2.00	μg/L	10.0	ND	115	70-140			
Chlorobenzene		2.00	μg/L μg/L	10.0	ND	108	37-160			
Chlorodibromomethane	11	2.00	μg/L μg/L		ND		53-149			
	11				ND					
				10.0	ND	113				
Chloroform	11	2.00	$\mu g/L$	10.0	ND	112	14-230			
Chloroform	11	2.00 2.00	μg/L μg/L	10.0 10.0	ND ND	112 109	14-230 51-138			
Chloroform Chloromethane	11 7.2	2.00 2.00 2.00	μg/L μg/L μg/L	10.0 10.0 10.0	ND ND ND	112 109 72.1	14-230 51-138 20-273			
Chloroform Chloromethane ,2-Dichlorobenzene	11 7.2 10	2.00 2.00 2.00 2.00	μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0	ND ND ND ND	112 109 72.1 100	14-230 51-138 20-273 18-190			
Chloroform Chloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene	11 7.2 10 10	2.00 2.00 2.00 2.00 2.00	μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0	ND ND ND ND	112 109 72.1 100 102	14-230 51-138 20-273 18-190 59-156			
Chloroform Chloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	11 7.2 10 10	2.00 2.00 2.00 2.00 2.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0	ND ND ND ND ND	112 109 72.1 100 102 100	14-230 51-138 20-273 18-190 59-156 18-190			
Chloroform Chloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane	11 7.2 10 10 10	2.00 2.00 2.00 2.00 2.00 2.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0	ND ND ND ND ND ND	112 109 72.1 100 102 100 114	14-230 51-138 20-273 18-190 59-156 18-190 49-155			
Chloroform Chloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethane	11 7.2 10 10	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0	ND ND ND ND ND	112 109 72.1 100 102 100	14-230 51-138 20-273 18-190 59-156 18-190 49-155 59-155			
Chloroform Chloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethylene	11 7.2 10 10 10	2.00 2.00 2.00 2.00 2.00 2.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	ND ND ND ND ND ND	112 109 72.1 100 102 100 114 110 112	14-230 51-138 20-273 18-190 59-156 18-190 49-155			
Chloroform Chloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane	11 7.2 10 10 10 11	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0	ND ND ND ND ND ND ND ND ND 1.6	112 109 72.1 100 102 100 114 110	14-230 51-138 20-273 18-190 59-156 18-190 49-155 59-155			
Chloroform Chloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethylene	11 7.2 10 10 10 11 13	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	ND ND ND ND ND ND ND ND 1.6	112 109 72.1 100 102 100 114 110 112	14-230 51-138 20-273 18-190 59-156 18-190 49-155 59-155 20-234			
Chloroform Chloromethane ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane ,1-Dichloroethylene rans-1,2-Dichloroethylene	11 7.2 10 10 10 11 13 12	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	ND N	112 109 72.1 100 102 100 114 110 112 117	14-230 51-138 20-273 18-190 59-156 18-190 49-155 59-155 20-234 54-156			
Chloroform Chloromethane ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane ,1-Dichloroethylene rans-1,2-Dichloroethylene ,2-Dichloropropane	11 7.2 10 10 10 11 13 12 12	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	ND 1.6 1.1 ND ND	112 109 72.1 100 102 100 114 110 112 117	14-230 51-138 20-273 18-190 59-156 18-190 49-155 59-155 20-234 54-156 20-210			
Chloroform Chloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloropropane 1,2-Dichloropropane 1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene	11 7.2 10 10 10 11 13 12 12 11	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	ND 1.6 1.1 ND ND ND	112 109 72.1 100 102 100 114 110 112 117 109	14-230 51-138 20-273 18-190 59-156 18-190 49-155 59-155 20-234 54-156 20-210 20-227			
Chloroform Chloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloropropane 1,2-Dichloropropane 1,3-Dichloropropene	11 7.2 10 10 10 11 13 12 12 11 10 9.6	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	ND ND ND ND ND ND ND ND ND 1.6 1.1 ND	112 109 72.1 100 102 100 114 110 112 117 109 100 95.7	14-230 51-138 20-273 18-190 59-156 18-190 49-155 59-155 20-234 54-156 20-210 20-227 17-183 37-162			
Chloroform Chloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloropropane 1,2-Dichloropropane 1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene	11 7.2 10 10 10 11 13 12 12 11 10 9.6	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	ND N	112 109 72.1 100 102 100 114 110 112 117 109 100 95.7 106 108	14-230 51-138 20-273 18-190 59-156 18-190 49-155 59-155 20-234 54-156 20-210 20-227 17-183 37-162 70-130			
Chloroform Chloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloropropane 1,2-Dichloropropane 1,3-Dichloropropene	11 7.2 10 10 10 11 13 12 12 11 10 9.6 11	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	ND N	112 109 72.1 100 102 100 114 110 112 117 109 100 95.7 106 108 107	14-230 51-138 20-273 18-190 59-156 18-190 49-155 59-155 20-234 54-156 20-210 20-227 17-183 37-162 70-130 20-221			
Chloroform Chloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,1-Z-Z-Tetrachloroethane	11 7.2 10 10 10 11 13 12 12 11 10 9.6 11 11	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	ND N	112 109 72.1 100 102 100 114 110 112 117 109 100 95.7 106 108 107 105	14-230 51-138 20-273 18-190 59-156 18-190 49-155 59-155 20-234 54-156 20-210 20-227 17-183 37-162 70-130 20-221 46-157			
Chloroform Chloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloroethylene 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropene 1,2-Dichloropropene 1,2-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethylene	11 7.2 10 10 10 11 13 12 12 11 10 9.6 11 11 11	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	ND N	112 109 72.1 100 102 100 114 110 112 117 109 100 95.7 106 108 107 105 119	14-230 51-138 20-273 18-190 59-156 18-190 49-155 59-155 20-234 54-156 20-210 20-227 17-183 37-162 70-130 20-221 46-157 64-148			
Chloroform Chloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,1-Z-Z-Tetrachloroethane	11 7.2 10 10 10 11 13 12 12 11 10 9.6 11 11	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	ND N	112 109 72.1 100 102 100 114 110 112 117 109 100 95.7 106 108 107 105	14-230 51-138 20-273 18-190 59-156 18-190 49-155 59-155 20-234 54-156 20-210 20-227 17-183 37-162 70-130 20-221 46-157			

QUALITY CONTROL

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B230049 - SW-846 5030B										
Matrix Spike (B230049-MS1)	Sour	ce: 19D1563-	01	Prepared: 05	/07/19 Analyz	zed: 05/08/	19			
Trichloroethylene	11	2.00	μg/L	10.0	ND	112	70-157			
Trichlorofluoromethane (Freon 11)	11	2.00	$\mu g\!/\!L$	10.0	ND	106	17-181			
Vinyl Chloride	9.6	2.00	$\mu g\!/\!L$	10.0	ND	95.5	20-251			
n+p Xylene	21	2.00	$\mu g\!/\!L$	20.0	ND	105	70-130			
-Xylene	11	2.00	$\mu \text{g}/L$	10.0	ND	106	70-130			
surrogate: 1,2-Dichloroethane-d4	25.0		μg/L	25.0		99.9	70-130			
Surrogate: Toluene-d8	25.3		μg/L	25.0		101	70-130			
durrogate: 4-Bromofluorobenzene	26.0		$\mu g/L$	25.0		104	70-130			
Aatrix Spike Dup (B230049-MSD1)	Sour	ce: 19D1563-	01	Prepared: 05	/07/19 Analyz	zed: 05/08/	19			
Benzene	9.8	1.00	μg/L	10.0	ND	97.6	37-151	8.44	61	
Bromodichloromethane	10	2.00	$\mu \text{g/L}$	10.0	ND	104	35-155	6.63	56	
Bromoform	8.6	2.00	$\mu \text{g}/L$	10.0	ND	86.1	45-169	9.83	42	
Bromomethane	7.4	2.00	$\mu \text{g/L}$	10.0	ND	74.2	20-242	2.79	61	
Carbon Tetrachloride	11	2.00	$\mu \text{g}/L$	10.0	ND	107	70-140	7.23	41	
Chlorobenzene	10	2.00	$\mu \text{g}/L$	10.0	ND	99.5	37-160	8.56	53	
Chlorodibromomethane	11	2.00	$\mu \text{g}/L$	10.0	ND	107	53-149	5.37	50	
Chloroethane	10	2.00	$\mu g/L$	10.0	ND	101	14-230	9.88	78	
hloroform	10	2.00	$\mu \text{g/L}$	10.0	ND	102	51-138	6.94	54	
Chloromethane	6.6	2.00	$\mu \text{g/L}$	10.0	ND	66.3	20-273	8.38	60	
2-Dichlorobenzene	9.4	2.00	$\mu \text{g/L}$	10.0	ND	93.7	18-190	6.80	57	
3-Dichlorobenzene	9.4	2.00	$\mu \text{g/L}$	10.0	ND	94.3	59-156	7.94	43	
4-Dichlorobenzene	9.4	2.00	$\mu \text{g/L}$	10.0	ND	93.5	18-190	6.92	57	
2-Dichloroethane	11	2.00	$\mu \text{g/L}$	10.0	ND	106	49-155	7.72	49	
1-Dichloroethane	12	2.00	$\mu g\!/\!L$	10.0	1.6	103	59-155	5.70	40	
1-Dichloroethylene	11	2.00	$\mu g\!/\!L$	10.0	1.1	103	20-234	7.94	32	
ans-1,2-Dichloroethylene	11	2.00	$\mu g\!/\!L$	10.0	ND	107	54-156	8.49	45	
,2-Dichloropropane	10	2.00	$\mu g\!/\!L$	10.0	ND	101	20-210	7.05	55	
is-1,3-Dichloropropene	9.2	2.00	$\mu \text{g}/L$	10.0	ND	92.0	20-227	8.53	58	
ans-1,3-Dichloropropene	8.9	2.00	$\mu \text{g}/L$	10.0	ND	89.0	17-183	7.26	86	
thylbenzene	9.6	2.00	$\mu \text{g}/L$	10.0	ND	96.3	37-162	9.50	63	
Methyl tert-Butyl Ether (MTBE)	9.9	2.00	$\mu \text{g/L}$	10.0	ND	99.4	70-130	8.57	20	
Methylene Chloride	9.9	5.00	$\mu \text{g/L}$	10.0	ND	99.0	20-221	7.67	28	
,1,2,2-Tetrachloroethane	9.8	2.00	$\mu \text{g/L}$	10.0	ND	97.8	46-157	6.81	61	
etrachloroethylene	11	2.00	$\mu g \! / \! L$	10.0	ND	112	64-148	6.07	39	
oluene	10	1.00	$\mu g \! / \! L$	10.0	ND	102	47-150	7.58	41	
,1,1-Trichloroethane	52	2.00	μg/L	10.0	43	92.9	52-162	0.289	36	
1,2-Trichloroethane	10	2.00	μg/L	10.0	ND	101	52-150	5.58	45	
richloroethylene	10	2.00	μg/L	10.0	ND	101	70-157	10.2	48	
richlorofluoromethane (Freon 11)	9.4	2.00	μg/L	10.0	ND	94.0	17-181	11.9	84	
inyl Chloride	8.5	2.00	μg/L	10.0	ND	85.4	20-251	11.2	66	
n+p Xylene	20	2.00	μg/L	20.0	ND	97.6	70-130	7.21	20	
-Xylene	9.6	2.00	μg/L	10.0	ND	96.4	70-130	9.49	20	
Surrogate: 1,2-Dichloroethane-d4	25.3		$\mu g/L$	25.0		101	70-130			
Surrogate: Toluene-d8	25.8		$\mu g/L$	25.0		103	70-130			
Surrogate: 4-Bromofluorobenzene	25.6		$\mu g/L$	25.0		103	70-130			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated

concentration (CLP J-Flag).

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
624.1 in Water	
Benzene	CT,NY,MA,NH,RI,NC,ME,VA
Bromodichloromethane	CT,NY,MA,NH,RI,NC,ME,VA
Bromoform	CT,NY,MA,NH,RI,NC,ME,VA
Bromomethane	CT,NY,MA,NH,RI,NC,ME,VA
Carbon Tetrachloride	CT,NY,MA,NH,RI,NC,ME,VA
Chlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
Chlorodibromomethane	CT,NY,MA,NH,RI,NC,ME,VA
Chloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Chloroform	CT,NY,MA,NH,RI,NC,ME,VA
Chloromethane	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,3-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,4-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
trans-1,2-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichloropropane	CT,NY,MA,NH,RI,NC,ME,VA
cis-1,3-Dichloropropene	CT,NY,MA,NH,RI,NC,ME,VA
trans-1,3-Dichloropropene	CT,NY,MA,NH,RI,NC,ME,VA
Ethylbenzene	CT,NY,MA,NH,RI,NC,ME,VA
Methyl tert-Butyl Ether (MTBE)	NY,MA,NH,NC
Methylene Chloride	CT,NY,MA,NH,RI,NC,ME,VA
1,1,2,2-Tetrachloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Tetrachloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
Toluene	CT,NY,MA,NH,RI,NC,ME,VA
1,1,1-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1,2-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Trichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
Trichlorofluoromethane (Freon 11)	CT,NY,MA,NH,RI,NC,ME,VA
Vinyl Chloride	CT,NY,MA,NH,RI,NC,ME,VA
m+p Xylene	CT,NY,MA,NH,RI,NC
o-Xylene	CT,NY,MA,NH,RI,NC

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

May 28, 2019

Jeremy Wyckoff Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210 Clifton Park, NY 12065

Project Location: South Otselic, NY

Client Job Number:

Project Number: 00266406.0000

Laboratory Work Order Number: 19E1160

Enclosed are results of analyses for samples received by the laboratory on May 21, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kaitlyn A. Feliciano Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
19E1160-01	5
19E1160-02	6
19E1160-03	7
19E1160-04	8
Sample Preparation Information	9
QC Data	10
Volatile Organic Compounds by GC/MS	10
B231467	10
Flag/Qualifier Summary	13
Certifications	14
Chain of Custody/Sample Receipt	16

Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210

Clifton Park, NY 12065 ATTN: Jeremy Wyckoff PURCHASE ORDER NUMBER:

REPORT DATE: 5/28/2019

PROJECT NUMBER: 00266406.0000

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19E1160

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: South Otselic, NY

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
RW-1 (MS/MSD) 52019	19E1160-01	Ground Water		624.1	
RW-2 52019	19E1160-02	Ground Water		624.1	
EFF 46 HZ 52019	19E1160-03	Ground Water		624.1	
Trip Blank	19E1160-04	Trip Blank Water		624.1	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Tod E. Kopyscinski Laboratory Director

Project Location: South Otselic, NY

Sample Description:

Work Order: 19E1160

Date Received: 5/21/2019

Field Sample #: RW-1 (MS/MSD) 52019

Sampled: 5/20/2019 08:30

Sample ID: 19E1160-01
Sample Matrix: Ground Water

			Volat	tile Organic Comp	ounds by G	GC/MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	<1.00	1.00	0.180	μg/L	1		624.1	5/22/19	5/23/19 5:19	LBD
Bromodichloromethane	<2.00	2.00	0.160	μg/L	1		624.1	5/22/19	5/23/19 5:19	LBD
Bromoform	<2.00	2.00	0.460	μg/L	1		624.1	5/22/19	5/23/19 5:19	LBD
Bromomethane	<5.00	5.00	0.780	μg/L	1		624.1	5/22/19	5/23/19 5:19	LBD
Carbon Tetrachloride	<2.00	2.00	0.110	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:19	LBD
Chlorobenzene	<2.00	2.00	0.150	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:19	LBD
Chlorodibromomethane	<2.00	2.00	0.210	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:19	LBD
Chloroethane	< 2.00	2.00	0.350	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:19	LBD
Chloroform	<2.00	2.00	0.170	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:19	LBD
Chloromethane	< 2.00	2.00	0.450	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:19	LBD
1,2-Dichlorobenzene	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:19	LBD
1,3-Dichlorobenzene	< 2.00	2.00	0.120	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:19	LBD
1,4-Dichlorobenzene	<2.00	2.00	0.130	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:19	LBD
1,2-Dichloroethane	< 2.00	2.00	0.410	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:19	LBD
1,1-Dichloroethane	1.26	2.00	0.160	$\mu g/L$	1	J	624.1	5/22/19	5/23/19 5:19	LBD
1,1-Dichloroethylene	0.860	2.00	0.320	$\mu g/L$	1	J	624.1	5/22/19	5/23/19 5:19	LBD
trans-1,2-Dichloroethylene	< 2.00	2.00	0.310	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:19	LBD
1,2-Dichloropropane	< 2.00	2.00	0.200	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:19	LBD
cis-1,3-Dichloropropene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:19	LBD
trans-1,3-Dichloropropene	< 2.00	2.00	0.230	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:19	LBD
Ethylbenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:19	LBD
Methyl tert-Butyl Ether (MTBE)	< 2.00	2.00	0.250	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:19	LBD
Methylene Chloride	< 5.00	5.00	0.340	μg/L	1		624.1	5/22/19	5/23/19 5:19	LBD
1,1,2,2-Tetrachloroethane	< 2.00	2.00	0.220	μg/L	1		624.1	5/22/19	5/23/19 5:19	LBD
Tetrachloroethylene	< 2.00	2.00	0.180	μg/L	1		624.1	5/22/19	5/23/19 5:19	LBD
Toluene	<1.00	1.00	0.140	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:19	LBD
1,1,1-Trichloroethane	35.4	2.00	0.200	μg/L	1		624.1	5/22/19	5/23/19 5:19	LBD
1,1,2-Trichloroethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:19	LBD
Trichloroethylene	< 2.00	2.00	0.240	μg/L	1		624.1	5/22/19	5/23/19 5:19	LBD
Trichlorofluoromethane (Freon 11)	< 2.00	2.00	0.330	μg/L	1		624.1	5/22/19	5/23/19 5:19	LBD
Vinyl Chloride	< 2.00	2.00	0.450	μg/L	1		624.1	5/22/19	5/23/19 5:19	LBD
m+p Xylene	< 2.00	2.00	0.300	μg/L	1		624.1	5/22/19	5/23/19 5:19	LBD
o-Xylene	<2.00	2.00	0.170	μg/L	1		624.1	5/22/19	5/23/19 5:19	LBD
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	106	70-130		5/23/19 5:19
Toluene-d8	105	70-130		5/23/19 5:19
4-Bromofluorobenzene	98.2	70-130		5/23/19 5:19

Project Location: South Otselic, NY

Sample Description:

Work Order: 19E1160

Date Received: 5/21/2019
Field Sample #: RW-2 52019

Sampled: 5/20/2019 08:40

Sample ID: 19E1160-02

Sample Matrix: Ground Water

Volatile	Organic	Compounds	bv	GC/MS
----------	---------	-----------	----	-------

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	<1.00	1.00	0.180	μg/L	1	-	624.1	5/22/19	5/23/19 5:50	LBD
Bromodichloromethane	< 2.00	2.00	0.160	μg/L	1		624.1	5/22/19	5/23/19 5:50	LBD
Bromoform	< 2.00	2.00	0.460	μg/L	1		624.1	5/22/19	5/23/19 5:50	LBD
Bromomethane	< 5.00	5.00	0.780	μg/L	1		624.1	5/22/19	5/23/19 5:50	LBD
Carbon Tetrachloride	< 2.00	2.00	0.110	μg/L	1		624.1	5/22/19	5/23/19 5:50	LBD
Chlorobenzene	< 2.00	2.00	0.150	μg/L	1		624.1	5/22/19	5/23/19 5:50	LBD
Chlorodibromomethane	< 2.00	2.00	0.210	μg/L	1		624.1	5/22/19	5/23/19 5:50	LBD
Chloroethane	< 2.00	2.00	0.350	μg/L	1		624.1	5/22/19	5/23/19 5:50	LBD
Chloroform	< 2.00	2.00	0.170	μg/L	1		624.1	5/22/19	5/23/19 5:50	LBD
Chloromethane	< 2.00	2.00	0.450	μg/L	1		624.1	5/22/19	5/23/19 5:50	LBD
1,2-Dichlorobenzene	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:50	LBD
1,3-Dichlorobenzene	< 2.00	2.00	0.120	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:50	LBD
1,4-Dichlorobenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:50	LBD
1,2-Dichloroethane	< 2.00	2.00	0.410	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:50	LBD
1,1-Dichloroethane	0.630	2.00	0.160	$\mu g/L$	1	J	624.1	5/22/19	5/23/19 5:50	LBD
1,1-Dichloroethylene	0.680	2.00	0.320	$\mu g/L$	1	J	624.1	5/22/19	5/23/19 5:50	LBD
trans-1,2-Dichloroethylene	< 2.00	2.00	0.310	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:50	LBD
1,2-Dichloropropane	< 2.00	2.00	0.200	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:50	LBD
cis-1,3-Dichloropropene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:50	LBD
trans-1,3-Dichloropropene	< 2.00	2.00	0.230	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:50	LBD
Ethylbenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:50	LBD
Methyl tert-Butyl Ether (MTBE)	< 2.00	2.00	0.250	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:50	LBD
Methylene Chloride	< 5.00	5.00	0.340	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:50	LBD
1,1,2,2-Tetrachloroethane	< 2.00	2.00	0.220	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:50	LBD
Tetrachloroethylene	< 2.00	2.00	0.180	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:50	LBD
Toluene	<1.00	1.00	0.140	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:50	LBD
1,1,1-Trichloroethane	29.2	2.00	0.200	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:50	LBD
1,1,2-Trichloroethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:50	LBD
Trichloroethylene	< 2.00	2.00	0.240	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:50	LBD
Trichlorofluoromethane (Freon 11)	< 2.00	2.00	0.330	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:50	LBD
Vinyl Chloride	< 2.00	2.00	0.450	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:50	LBD
m+p Xylene	< 2.00	2.00	0.300	$\mu g/L$	1		624.1	5/22/19	5/23/19 5:50	LBD
o-Xylene	<2.00	2.00	0.170	μg/L	1		624.1	5/22/19	5/23/19 5:50	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	103	70-130		5/23/19 5:50
Toluene-d8	105	70-130		5/23/19 5:50
4-Bromofluorobenzene	96.5	70-130		5/23/19 5:50

Work Order: 19E1160

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: South Otselic, NY Sample Description:

Date Received: 5/21/2019

Field Sample #: EFF 46 HZ 52019

Sample ID: 19E1160-03 Sample Matrix: Ground Water

Sampled: 5/20/2019 08:50

Volatile Organic Compounds by GC/MS

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	<1.00	1.00	0.180	μg/L	1		624.1	5/22/19	5/23/19 4:49	LBD
Bromodichloromethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:49	LBD
Bromoform	<2.00	2.00	0.460	μg/L	1		624.1	5/22/19	5/23/19 4:49	LBD
Bromomethane	< 5.00	5.00	0.780	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:49	LBD
Carbon Tetrachloride	< 2.00	2.00	0.110	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:49	LBD
Chlorobenzene	< 2.00	2.00	0.150	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:49	LBD
Chlorodibromomethane	< 2.00	2.00	0.210	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:49	LBD
Chloroethane	< 2.00	2.00	0.350	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:49	LBD
Chloroform	< 2.00	2.00	0.170	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:49	LBD
Chloromethane	< 2.00	2.00	0.450	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:49	LBD
1,2-Dichlorobenzene	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:49	LBD
1,3-Dichlorobenzene	< 2.00	2.00	0.120	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:49	LBD
1,4-Dichlorobenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:49	LBD
1,2-Dichloroethane	< 2.00	2.00	0.410	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:49	LBD
1,1-Dichloroethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:49	LBD
1,1-Dichloroethylene	< 2.00	2.00	0.320	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:49	LBD
trans-1,2-Dichloroethylene	< 2.00	2.00	0.310	μg/L	1		624.1	5/22/19	5/23/19 4:49	LBD
1,2-Dichloropropane	< 2.00	2.00	0.200	μg/L	1		624.1	5/22/19	5/23/19 4:49	LBD
cis-1,3-Dichloropropene	< 2.00	2.00	0.130	μg/L	1		624.1	5/22/19	5/23/19 4:49	LBD
trans-1,3-Dichloropropene	< 2.00	2.00	0.230	μg/L	1		624.1	5/22/19	5/23/19 4:49	LBD
Ethylbenzene	< 2.00	2.00	0.130	μg/L	1		624.1	5/22/19	5/23/19 4:49	LBD
Methyl tert-Butyl Ether (MTBE)	< 2.00	2.00	0.250	μg/L	1		624.1	5/22/19	5/23/19 4:49	LBD
Methylene Chloride	< 5.00	5.00	0.340	μg/L	1		624.1	5/22/19	5/23/19 4:49	LBD
1,1,2,2-Tetrachloroethane	< 2.00	2.00	0.220	μg/L	1		624.1	5/22/19	5/23/19 4:49	LBD
Tetrachloroethylene	< 2.00	2.00	0.180	μg/L	1		624.1	5/22/19	5/23/19 4:49	LBD
Toluene	<1.00	1.00	0.140	μg/L	1		624.1	5/22/19	5/23/19 4:49	LBD
1,1,1-Trichloroethane	< 2.00	2.00	0.200	μg/L	1		624.1	5/22/19	5/23/19 4:49	LBD
1,1,2-Trichloroethane	< 2.00	2.00	0.160	μg/L	1		624.1	5/22/19	5/23/19 4:49	LBD
Trichloroethylene	< 2.00	2.00	0.240	μg/L	1		624.1	5/22/19	5/23/19 4:49	LBD
Trichlorofluoromethane (Freon 11)	<2.00	2.00	0.330	μg/L	1		624.1	5/22/19	5/23/19 4:49	LBD
Vinyl Chloride	< 2.00	2.00	0.450	μg/L	1		624.1	5/22/19	5/23/19 4:49	LBD
m+p Xylene	<2.00	2.00	0.300	μg/L	1		624.1	5/22/19	5/23/19 4:49	LBD
o-Xylene	<2.00	2.00	0.170	μg/L	1		624.1	5/22/19	5/23/19 4:49	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	109	70-130		5/23/19 4:49
Toluene-d8	106	70-130		5/23/19 4:49
4-Bromofluorobenzene	97.3	70-130		5/23/19 4:49

Work Order: 19E1160

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: South Otselic, NY Sample Description:

Date Received: 5/21/2019
Field Sample #: Trip Blank

Sampled: 5/20/2019 00:00

Sample ID: 19E1160-04
Sample Matrix: Trip Blank Water

Volatile Organic Compounds by GC/MS

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	<1.00	1.00	0.180	μg/L	1		624.1	5/22/19	5/23/19 4:18	LBD
Bromodichloromethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
Bromoform	< 2.00	2.00	0.460	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
Bromomethane	< 5.00	5.00	0.780	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
Carbon Tetrachloride	< 2.00	2.00	0.110	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
Chlorobenzene	< 2.00	2.00	0.150	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
Chlorodibromomethane	< 2.00	2.00	0.210	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
Chloroethane	< 2.00	2.00	0.350	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
Chloroform	< 2.00	2.00	0.170	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
Chloromethane	< 2.00	2.00	0.450	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
1,2-Dichlorobenzene	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
1,3-Dichlorobenzene	< 2.00	2.00	0.120	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
1,4-Dichlorobenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
1,2-Dichloroethane	< 2.00	2.00	0.410	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
1,1-Dichloroethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
1,1-Dichloroethylene	< 2.00	2.00	0.320	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
trans-1,2-Dichloroethylene	< 2.00	2.00	0.310	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
1,2-Dichloropropane	< 2.00	2.00	0.200	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
cis-1,3-Dichloropropene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
trans-1,3-Dichloropropene	< 2.00	2.00	0.230	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
Ethylbenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
Methyl tert-Butyl Ether (MTBE)	< 2.00	2.00	0.250	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
Methylene Chloride	< 5.00	5.00	0.340	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
1,1,2,2-Tetrachloroethane	< 2.00	2.00	0.220	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
Tetrachloroethylene	< 2.00	2.00	0.180	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
Toluene	<1.00	1.00	0.140	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
1,1,1-Trichloroethane	< 2.00	2.00	0.200	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
1,1,2-Trichloroethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
Trichloroethylene	< 2.00	2.00	0.240	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
Trichlorofluoromethane (Freon 11)	< 2.00	2.00	0.330	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
Vinyl Chloride	< 2.00	2.00	0.450	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
m+p Xylene	< 2.00	2.00	0.300	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD
o-Xylene	<2.00	2.00	0.170	$\mu g/L$	1		624.1	5/22/19	5/23/19 4:18	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	105	70-130		5/23/19 4:18
Toluene-d8	106	70-130		5/23/19 4:18
4-Bromofluorobenzene	95.2	70-130		5/23/19 4:18

Sample Extraction Data

Prep Method: SW-846 5030B-624.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19E1160-01 [RW-1 (MS/MSD) 52019]	B231467	5	5.00	05/22/19
19E1160-02 [RW-2 52019]	B231467	5	5.00	05/22/19
19E1160-03 [EFF 46 HZ 52019]	B231467	5	5.00	05/22/19
19E1160-04 [Trip Blank]	B231467	5	5.00	05/22/19

%REC

RPD

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Source

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B231467 - SW-846 5030B										
Blank (B231467-BLK1)				Prepared: 05	5/22/19 Anal	yzed: 05/23/	19			
Benzene	ND	1.00	μg/L							
Bromodichloromethane	ND	2.00	μg/L							
Bromoform	ND	2.00	$\mu g/L$							
Bromomethane	ND	2.00	μg/L							
Carbon Tetrachloride	ND	2.00	μg/L							
Chlorobenzene	ND	2.00	μg/L							
Chlorodibromomethane	ND	2.00	$\mu g/L$							
Chloroethane	ND	2.00	μg/L							
Chloroform	ND	2.00	$\mu \text{g/L}$							
Chloromethane	ND	2.00	μg/L							
1,2-Dichlorobenzene	ND	2.00	$\mu g \! / \! L$							
1,3-Dichlorobenzene	ND	2.00	μg/L							
1,4-Dichlorobenzene	ND	2.00	$\mu \text{g/L}$							
1,2-Dichloroethane	ND	2.00	$\mu g \! / \! L$							
1,1-Dichloroethane	ND	2.00	$\mu g \! / \! L$							
1,1-Dichloroethylene	ND	2.00	$\mu \text{g/L}$							
trans-1,2-Dichloroethylene	ND	2.00	$\mu g \! / \! L$							
1,2-Dichloropropane	ND	2.00	$\mu \text{g/L}$							
cis-1,3-Dichloropropene	ND	2.00	$\mu \text{g/L}$							
rans-1,3-Dichloropropene	ND	2.00	μg/L							
Ethylbenzene	ND	2.00	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	2.00	$\mu g \! / \! L$							
Methylene Chloride	ND	5.00	μg/L							
1,1,2,2-Tetrachloroethane	ND	2.00	μg/L							
Tetrachloroethylene	ND	2.00	μg/L							
Toluene	ND	1.00	μg/L							
1,1,1-Trichloroethane	ND	2.00	μg/L							
1,1,2-Trichloroethane	ND	2.00	μg/L							
Trichloroethylene	ND	2.00	μg/L							
Trichlorofluoromethane (Freon 11)	ND	2.00	μg/L							
Vinyl Chloride	ND	2.00	μg/L							
m+p Xylene	ND	2.00	μg/L							
o-Xylene	ND	2.00	μg/L							
Surrogate: 1,2-Dichloroethane-d4	26.1		$\mu g/L$	25.0		104	70-130			
Surrogate: Toluene-d8	25.8		$\mu g/L$	25.0		103	70-130			
Surrogate: 4-Bromofluorobenzene	24.0		μg/L	25.0		95.8	70-130			
LCS (B231467-BS1)				Prepared: 05	5/22/19 Anal	yzed: 05/23/	19			
Benzene	18	1.00	$\mu \text{g/L}$	20.0		90.0	65-135			
Bromodichloromethane	19	2.00	$\mu \text{g/L}$	20.0		94.4	65-135			
Bromoform	18	2.00	$\mu \text{g/L}$	20.0		91.4	70-130			
Bromomethane	16	2.00	$\mu g \! / \! L$	20.0		79.3	15-185			
Carbon Tetrachloride	19	2.00	$\mu g \! / \! L$	20.0		93.3	70-130			
Chlorobenzene	19	2.00	$\mu \text{g/L}$	20.0		93.2	65-135			
Chlorodibromomethane	19	2.00	μg/L	20.0		96.2	70-135			
Chloroethane	18	2.00	$\mu \text{g/L}$	20.0		88.2	40-160			
Chloroform	18	2.00	$\mu g \! / \! L$	20.0		89.8	70-135			
Chloromethane	12	2.00	$\mu \text{g/L}$	20.0		59.0	20-205			
1,2-Dichlorobenzene	18	2.00	$\mu g \! / \! L$	20.0		88.1	65-135			
1,3-Dichlorobenzene	18	2.00	$\mu \text{g/L}$	20.0		88.2	70-130			
1,4-Dichlorobenzene	18	2.00	$\mu g/L$	20.0		89.6	65-135			
1,2-Dichloroethane	21	2.00	$\mu g/L$	20.0		104	70-130			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B231467 - SW-846 5030B										
				Proporad: 05	5/22/19 Analy	zod: 05/22	/10			
LCS (B231467-BS1) 1.1-Dichloroethane	10	2.00	μg/L	20.0	5/22/19 Allaly	93.1	70-130			
1,1-Dichloroethylene	19	2.00	μg/L μg/L	20.0		96.6	50-150			
trans-1,2-Dichloroethylene	19	2.00	μg/L μg/L	20.0		94.3	70-130			
1,2-Dichloropropane	19	2.00	μg/L μg/L	20.0		93.0	35-165			
cis-1,3-Dichloropropene	19	2.00	μg/L μg/L	20.0		81.7	25-175			
trans-1,3-Dichloropropene	16	2.00	μg/L μg/L	20.0		79.0	50-150			
Ethylbenzene	16 18	2.00	μg/L μg/L	20.0		89.4	60-140			
Methyl tert-Butyl Ether (MTBE)	18	2.00	μg/L μg/L	20.0		91.2	70-130			
Methylene Chloride	19	5.00	μg/L μg/L	20.0		94.0	60-140			
1,1,2,2-Tetrachloroethane		2.00	μg/L μg/L	20.0		99.8	60-140			
Tetrachloroethylene	20	2.00	μg/L μg/L	20.0		98.2	70-130			
Foluene	20	1.00	μg/L μg/L	20.0		98.2	70-130			
1,1,1-Trichloroethane	18	2.00	μg/L μg/L	20.0		89.2	70-130			
1,1,2-Trichloroethane	18 19	2.00	μg/L μg/L	20.0		96.7	70-130			
Frichloroethylene	19	2.00	μg/L μg/L	20.0		94.0	65-135			
Frichlorofluoromethane (Freon 11)	18	2.00	μg/L μg/L	20.0		88.8	50-150			
Vinyl Chloride		2.00	μg/L μg/L	20.0		80.4	5-195			
n+p Xylene	16 37	2.00	μg/L μg/L	40.0		92.9	70-130			
o-Xylene		2.00	μg/L μg/L	20.0		95.2	70-130			
	19	2.00								
Surrogate: 1,2-Dichloroethane-d4	25.0		μg/L	25.0		100	70-130			
Surrogate: Toluene-d8	25.2		μg/L	25.0		101	70-130			
Surrogate: 4-Bromofluorobenzene	25.1		μg/L	25.0		100	70-130			
Matrix Spike (B231467-MS1)	Sou	rce: 19E1160-		Prepared: 05	5/22/19 Analy	zed: 05/23/	19			
Benzene	8.8	1.00	$\mu \text{g/L}$	10.0	ND	88.4	37-151			
Bromodichloromethane	9.5	2.00	$\mu \text{g/L}$	10.0	ND	94.7	35-155			
Bromoform	7.8	2.00	$\mu \text{g/L}$	10.0	ND	77.6	45-169			
Bromomethane	7.7	2.00	$\mu \text{g/L}$	10.0	ND	77.2	20-242			
Carbon Tetrachloride	9.6	2.00	$\mu \text{g/L}$	10.0	ND	96.5	70-140			
Chlorobenzene	9.4	2.00	$\mu \text{g/L}$	10.0	ND	94.0	37-160			
Chlorodibromomethane	9.5	2.00	$\mu \text{g/L}$	10.0	ND	95.1	53-149			
Chloroethane	9.7	2.00	$\mu \text{g/L}$	10.0	ND	97.2	14-230			
Chloroform	9.3	2.00	$\mu \text{g/L}$	10.0	ND	93.0	51-138			
Chloromethane	6.5	2.00	$\mu \text{g/L}$	10.0	ND	64.7	20-273			
1,2-Dichlorobenzene	9.0	2.00	$\mu \text{g/L}$	10.0	ND	90.1	18-190			
1,3-Dichlorobenzene	8.8	2.00	$\mu \text{g/L}$	10.0	ND	88.3	59-156			
,4-Dichlorobenzene	8.7	2.00	$\mu \text{g/L}$	10.0	ND	87.3	18-190			
,2-Dichloroethane	10	2.00	$\mu \text{g/L}$	10.0	ND	99.8	49-155			
,1-Dichloroethane	10	2.00	$\mu \text{g/L}$	10.0	1.3	92.4	59-155			
,1-Dichloroethylene	11	2.00	$\mu \text{g/L}$	10.0	0.86	102	20-234			
rans-1,2-Dichloroethylene	10	2.00	$\mu \text{g/L}$	10.0	ND	100	54-156			
,2-Dichloropropane	9.6	2.00	$\mu \text{g/L}$	10.0	ND	95.7	20-210			
is-1,3-Dichloropropene	7.9	2.00	$\mu \text{g/L}$	10.0	ND	79.4	20-227			
rans-1,3-Dichloropropene	7.2	2.00	$\mu \text{g/L}$	10.0	ND	72.2	17-183			
Ethylbenzene	9.1	2.00	$\mu \text{g/L}$	10.0	ND	91.3	37-162			
Methyl tert-Butyl Ether (MTBE)	8.6	2.00	$\mu \text{g/L}$	10.0	ND	86.3	70-130			
Methylene Chloride	9.2	5.00	$\mu \text{g}/L$	10.0	ND	92.3	20-221			
	0.4	2.00	$\mu g/L$	10.0	ND	93.5	46-157			
,1,2,2-Tetrachloroethane	9.4						64.140			
1,1,2,2-Tetrachloroethane Tetrachloroethylene	9.4 10	2.00	μg/L	10.0	ND	104	64-148			
Tetrachloroethylene		2.00 1.00	μg/L μg/L	10.0 10.0	ND ND	93.7	64-148 47-150			
	10									

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B231467 - SW-846 5030B										
Matrix Spike (B231467-MS1)	Sou	rce: 19E1160-	01	Prepared: 05	/22/19 Analy	zed: 05/23/1	19			
Trichloroethylene	9.5	2.00	μg/L	10.0	ND	94.6	70-157			
Trichlorofluoromethane (Freon 11)	9.5	2.00	$\mu g/L$	10.0	ND	95.4	17-181			
Vinyl Chloride	8.6	2.00	$\mu g/L$	10.0	ND	86.5	20-251			
m+p Xylene	18	2.00	$\mu g/L$	20.0	ND	92.4	70-130			
o-Xylene	9.1	2.00	$\mu g/L$	10.0	ND	90.7	70-130			
Surrogate: 1,2-Dichloroethane-d4	24.9		μg/L	25.0		99.7	70-130			
Surrogate: Toluene-d8	25.5		μg/L	25.0		102	70-130			
Surrogate: 4-Bromofluorobenzene	24.8		μg/L	25.0		99.1	70-130			
Matrix Spike Dup (B231467-MSD1)	Sou	rce: 19E1160-	01	Prepared: 05	//22/19 Analy:	zed: 05/23/1	19			
Benzene	9.0	1.00	μg/L	10.0	ND	90.3	37-151	2.13	61	
Bromodichloromethane	9.5	2.00	μg/L	10.0	ND	94.9	35-155	0.211	56	
Bromoform	8.1	2.00	μg/L	10.0	ND	81.3	45-169	4.66	42	
Bromomethane	8.1	2.00	μg/L	10.0	ND	80.7	20-242	4.43	61	
Carbon Tetrachloride	9.9	2.00	μg/L	10.0	ND	98.8	70-140	2.36	41	
Chlorobenzene	9.4	2.00	μg/L	10.0	ND	94.5	37-160	0.531	53	
Chlorodibromomethane	9.3	2.00	μg/L	10.0	ND	92.8	53-149	2.45	50	
Chloroethane	9.8	2.00	μg/L	10.0	ND	97.6	14-230	0.411	78	
Chloroform	9.5	2.00	μg/L	10.0	ND	94.8	51-138	1.92	54	
Chloromethane	6.6	2.00	μg/L	10.0	ND	65.6	20-273	1.38	60	
1,2-Dichlorobenzene	9.0	2.00	μg/L	10.0	ND	89.5	18-190	0.668	57	
1,3-Dichlorobenzene	9.0	2.00	μg/L	10.0	ND	90.0	59-156	1.91	43	
1,4-Dichlorobenzene	8.9	2.00	μg/L	10.0	ND	89.0	18-190	1.93	57	
1,2-Dichloroethane	10	2.00	μg/L	10.0	ND	101	49-155	1.59	49	
1,1-Dichloroethane	11	2.00	μg/L	10.0	1.3	95.7	59-155	3.09	40	
1,1-Dichloroethylene	11	2.00	μg/L	10.0	0.86	104	20-234	1.43	32	
trans-1,2-Dichloroethylene	10	2.00	μg/L	10.0	ND	102	54-156	1.49	45	
1,2-Dichloropropane	9.5	2.00	$\mu g/L$	10.0	ND	94.6	20-210	1.16	55	
cis-1,3-Dichloropropene	7.8	2.00	$\mu g \! / \! L$	10.0	ND	77.5	20-227	2.42	58	
trans-1,3-Dichloropropene	7.3	2.00	$\mu g/L$	10.0	ND	73.2	17-183	1.38	86	
Ethylbenzene	9.2	2.00	$\mu g/L$	10.0	ND	92.5	37-162	1.31	63	
Methyl tert-Butyl Ether (MTBE)	8.8	2.00	$\mu \text{g/L}$	10.0	ND	88.3	70-130	2.29	20	
Methylene Chloride	9.5	5.00	$\mu g/L$	10.0	ND	94.7	20-221	2.57	28	
1,1,2,2-Tetrachloroethane	9.5	2.00	$\mu \text{g/L}$	10.0	ND	94.8	46-157	1.38	61	
Tetrachloroethylene	10	2.00	$\mu \text{g/L}$	10.0	ND	104	64-148	0.0957	39	
Toluene	9.5	1.00	$\mu \text{g/L}$	10.0	ND	94.8	47-150	1.17	41	
1,1,1-Trichloroethane	44	2.00	$\mu \text{g/L}$	10.0	35	81.2	52-162	0.161	36	
1,1,2-Trichloroethane	9.1	2.00	$\mu g/L$	10.0	ND	91.2	52-150	1.42	45	
Trichloroethylene	9.5	2.00	$\mu g/L$	10.0	ND	95.4	70-157	0.842	48	
Trichlorofluoromethane (Freon 11)	9.5	2.00	$\mu g/L$	10.0	ND	95.0	17-181	0.420	84	
Vinyl Chloride	8.7	2.00	$\mu g/L$	10.0	ND	87.4	20-251	1.04	66	
m+p Xylene	19	2.00	$\mu \text{g/L}$	20.0	ND	92.8	70-130	0.540	20	
o-Xylene	9.2	2.00	$\mu \text{g/L}$	10.0	ND	92.2	70-130	1.64	20	
Surrogate: 1,2-Dichloroethane-d4	25.4		μg/L	25.0		102	70-130			
Surrogate: Toluene-d8	25.5		μg/L	25.0		102	70-130			
Surrogate: 4-Bromofluorobenzene	25.3		μg/L	25.0		101	70-130			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the

calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

J Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
624.1 in Water	
Benzene	CT,NY,MA,NH,RI,NC,ME,VA
Bromodichloromethane	CT,NY,MA,NH,RI,NC,ME,VA
Bromoform	CT,NY,MA,NH,RI,NC,ME,VA
Bromomethane	CT,NY,MA,NH,RI,NC,ME,VA
Carbon Tetrachloride	CT,NY,MA,NH,RI,NC,ME,VA
Chlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
Chlorodibromomethane	CT,NY,MA,NH,RI,NC,ME,VA
Chloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Chloroform	CT,NY,MA,NH,RI,NC,ME,VA
Chloromethane	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,3-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,4-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
trans-1,2-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichloropropane	CT,NY,MA,NH,RI,NC,ME,VA
cis-1,3-Dichloropropene	CT,NY,MA,NH,RI,NC,ME,VA
trans-1,3-Dichloropropene	CT,NY,MA,NH,RI,NC,ME,VA
Ethylbenzene	CT,NY,MA,NH,RI,NC,ME,VA
Methyl tert-Butyl Ether (MTBE)	NY,MA,NH,NC
Methylene Chloride	CT,NY,MA,NH,RI,NC,ME,VA
1,1,2,2-Tetrachloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Tetrachloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
Toluene	CT,NY,MA,NH,RI,NC,ME,VA
1,1,1-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1,2-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Trichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
Trichlorofluoromethane (Freon 11)	CT,NY,MA,NH,RI,NC,ME,VA
Vinyl Chloride	CT,NY,MA,NH,RI,NC,ME,VA
m+p Xylene	CT,NY,MA,NH,RI,NC
o-Xylene	CT,NY,MA,NH,RI,NC

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publile Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

Table of Contents Omfophosphate Samples ² <u>Preservation Codes</u>: I = Iced X = Sodium Hydroxide WW = Wante Water DW = Drinking Wate ** Matrix Codes: GW = Ground Water B = Sodium Bisulfate S = Summa Canister Container Codes: O = Other (please 0 = Other (please 0 = Other (please A = Amber Glass Non Soxhlet S = Sulfuric Acid PCB ONL) Soxhlet ² Preservation Code N = Nitric Acid = Tedlar Bag → Field Filtered Field Filtered P = Plastic ST = Sterile A = At 5 = 50ff 5L = 5ludge 5C = 50lid M = Methanol ☐ Lab to Filter Lab to Filter Container Code Thiosulfate T = Sodium of # of Containers G = Glass deffne) V = Vial define) 오== define) Page EQuIS (Standard) EDD NY Regulatory EDD Enhanced Data Package NYSDEC EQUIS EDD NY Regs Hits-Only EDD Please use the following codes to indicate possible sample concentration NELAC and AIHA-LAP, LLC Accredited Chromatogram AIHA-LAP, LLC East Longmeadow, MA 01028 H - High; M - Medium; L - Low; C - Clean; U - Unknown Setting ables REQUESTED 39 Spruce Street within the Conc Code column above: Other \mathbf{A} ANAL YSIS WRTA School MWRA MBTA 429 × メ メ 98 89 89 CHAIN OF CUSTODY RECORD (New York) □ NY CP-51 NY TOGS Program & Regulatory Internation Matrix Code Municipality Brownfield 10-Day 4-Day 3-Бау X EXCEL Grab CLP Like Data Pkg Required: Part 360 GW (Landfill) NYC Sewer Discharge Composite **NY Unrestricted Use** NY Restricted Use PDF NY Part 375 Government Ending Date/Time AWQ STDS Show in Due Date: mail To: .# o1 xe. ormat: Federal -Day Other: -Day -Day City Project Entity 0820 Beginning Date/Time 5% 0870 Ruste 146, STE 210, Cliften Park NIX 607-206-6262 Email: info@contestlabs.com Cardage 232 3 19 F1160 RW-1(m5/msp) 52019 52019 52016 Client Sample ID / Description Phone: 413-525-2332 Date/Time: Fax: 413-525-6405 Date/Time Jate/Time Date/Time Date/Time Date/Time 0000 Stay19 BISNY 3 EFF 16 HE (5) 20 ding Prad's 15. the warket ひとかいい 202 Trip P. 2-2 5. White 1387 T. Whaler **3** 20200 J 4000 Con-Test Quote Name/Number: Took CON-KSE elinquished by: (signature) (signature) iished by: (signature) Received by (signature) /ed by: (\$ignature) red by: (signature) Work Order# Con-Test invoice Recipient: (S) ーサンシン Project Location: Project Manager: Project Number: 25 elinquished b Sampled By: omments 4ddress: Phone: Page 16 of 18

Doc # 380 Rev 1_03242017

http://www.contestlabs.com

Delivered Tuesday 5/21/2019 at 9:02 am

DELIVERED

Signed for by: J.PETRAKIS

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM

Syracuse, NY US Origin Terminal SYRACUSE, NY то

E Longmeadow, MA US Destination Location WINDSOR LOCKS, CT

Shipment Facts

TRACKING NUMBER

806832457876

SERVICE

FedEx Priority Overnight

WEIGHT

14 lbs / 6.35 kgs

DIMENSIONS

14x14x11 in.

DELIVERED TOShipping/Receiving

7

TOTAL PIECES

TOTAL SHIPMENT WEIGHT

14 lbs / 6.35 kgs

TERMS
Third Party

PACKAGING
Your Packaging

SPECIAL HANDLING SECTION

Deliver Weekday, Additional Handling Surcharge, No Signature Required STANDARD TRANSIT

(?)

5/21/2019 by 10:30 am

SHIP DATE

(?)

Mon 5/20/2019

ACTUAL DELIVERY

Tue 5/21/2019 9:02 am

Travel History

Local Scan Time

Tuesday, 5/21/2019

9:02 am E Longmeadow, MA

Delivered

8:21 am

WINDSOR LOCKS, CT

On FedEx vehicle for delivery

7:17 am

WINDSOR LOCKS, CT

At local FedEx facility

Page 17 of 18

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Receive	Arcad	1220		Date	5/21	119	Time	902	
		· · · · · · · · · · · · · · · · · · ·		· -	316.				
How were the receiv		In Cooler		No Cooler_	***	On Ice	· (No Ice	
receiv	eu:	Direct from Samp	oling			Ambient		Melted Ice	
Were samp	les within		By Gun#			Actual Tem	p- 4.1		-
Temperatur		-	By Blank #			Actual Tem	p -		
•	Custody Se	eal Intact?	~~~		re Sample	s Tampered	**************************************	~	•
	COC Relin			•	=	ree With Sa			_
		eaking/loose caps	on any sam	ples?	4	_			•
Is COC in inl			-		nples recei	ved within h	olding time?		
Did COC ir	-	Client		Analysis	Τ		er Name		-
pertinent Info	ormation?	Project		ID's	1-	Collection	Dates/Times		_
Are Sample	labels filled	out and legible?	-,	_				,	
Are there Lat	to Filters?	,	6		Who was	s notified?			_
Are there Ru	shes?		F		Who wa	s notified?			_
Are there She	ort Holds?		F	•	Who wa	s notified?			
ls there enou	gh Volume	?	T	-					
ls there Head	space whe	ere applicable?	F		MS/MSD?		_	_	
Proper Media	a/Container	s Used?			Is splitting	samples rec	quired?	<u></u>	-
Were trip bla	nks receive	ed?	T	_	On COC?		_		
Do all sample	es have the	proper pH?	M	Acid		_	Base	***************************************	_
Vials	#	Containers:	#			#			#
Unp-		1 Liter Amb.		1 Liter	Plastic		16 oz	z Amb.	
HCL-	17-	500 mL Amb.		500 mL	Plastic		8oz An	nb/Clear	
Meoh-		250 mL Amb.		250 mL	Plastic			nb/Clear	
D 17 1			1	Col./Ba	acteria			nb/Clear	
Bisulfate-		Flashpoint							
Bisulfate- DI-		Other Glass		Other I				core	1
DI- Thiosulfate-		Other Glass SOC Kit		Other I Plastic	c Bag		Frozen:	core	
DI- Thiosulfate-		Other Glass		Other I	c Bag			core	
		Other Glass SOC Kit		Other I Plastic	c Bag ock			core	
DI- Thiosulfate-	#	Other Glass SOC Kit	#	Other I Plastic Ziple	c Bag ock	#	Frozen:		#
DI- Thiosulfate- Sulfuric-	#	Other Glass SOC Kit Perchlorate	#	Other I Plastic Ziple	c Bag ock Media	#	Frozen:	z Amb.	#
DI- Thiosulfate- Sulfuric- Vials Unp- HCL-	#	Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb.	#	Other I Plastic Ziple Unused I 1 Liter 500 mL	c Bag ock Media Plastic Plastic	#	Frozen: 16 oz 8oz An	z Amb. nb/Clear	#
DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh-	*	Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb.	#	Other I Plastic Ziple Unused I 1 Liter 500 mL 250 mL	c Bag ock Media Plastic Plastic Plastic Plastic	#	Frozen: 16 oz 8oz An 4oz An	z Amb. nb/Clear nb/Clear	#
DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate-	#	Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria	#	Other I Plastic Ziple Unused I 1 Liter 500 mL 250 mL Flash	c Bag ock Media Plastic Plastic Plastic Plastic	#	Frozen: 16 oz 8oz An 4oz An 2oz An	z Amb. nb/Clear nb/Clear nb/Clear	#
DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate- DI-	#	Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic	#	Other I Plastic Ziple Unused I 1 Liter 500 mL 250 mL Flash Other	c Bag ock Media Plastic Plastic Plastic Plastic point Glass	#	Frozen: 16 oz 8oz An 4oz An 2oz An	z Amb. nb/Clear nb/Clear	#
DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate-	#	Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit	#	Other I Plastic Ziple Unused I 1 Liter 500 mL 250 mL Flash Other Plastic	c Bag ock Media Plastic Plastic Plastic Plastic Glass c Bag	#	Frozen: 16 oz 8oz An 4oz An 2oz An	z Amb. nb/Clear nb/Clear nb/Clear	#
DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-	#	Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic	#	Other I Plastic Ziple Unused I 1 Liter 500 mL 250 mL Flash Other	c Bag ock Media Plastic Plastic Plastic Plastic Glass c Bag	#	Frozen: 16 oz 8oz An 4oz An 2oz An	z Amb. nb/Clear nb/Clear nb/Clear	
DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-	#	Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit	#	Other I Plastic Ziple Unused I 1 Liter 500 mL 250 mL Flash Other Plastic	c Bag ock Media Plastic Plastic Plastic Plastic Glass c Bag	#	Frozen: 16 oz 8oz An 4oz An 2oz An	z Amb. nb/Clear nb/Clear nb/Clear	#
DI- Thiosulfate- Sulfuric- Vials	#	Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit	#	Other I Plastic Ziple Unused I 1 Liter 500 mL 250 mL Flash Other Plastic	c Bag ock Media Plastic Plastic Plastic Plastic Glass c Bag	#	Frozen: 16 oz 8oz An 4oz An 2oz An	z Amb. nb/Clear nb/Clear nb/Clear	#
DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-	#	Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit	#	Other I Plastic Ziple Unused I 1 Liter 500 mL 250 mL Flash Other Plastic	c Bag ock Media Plastic Plastic Plastic Plastic Glass c Bag	#	Frozen: 16 oz 8oz An 4oz An 2oz An	z Amb. nb/Clear nb/Clear nb/Clear	

June 25, 2019

Jeremy Wyckoff Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210 Clifton Park, NY 12065

Project Location: South Otselic, NY

Client Job Number:

Project Number: 00266406.0000

Laboratory Work Order Number: 19F1245

Enclosed are results of analyses for samples received by the laboratory on June 22, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kaitlyn A. Feliciano Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
19F1245-01	5
19F1245-02	6
19F1245-03	7
19F1245-04	8
Sample Preparation Information	9
QC Data	10
Volatile Organic Compounds by GC/MS	10
B234015	10
Flag/Qualifier Summary	13
Certifications	14
Chain of Custody/Sample Receipt	16

Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210 Clifton Park, NY 12065 ATTN: Jeremy Wyckoff

REPORT DATE: 6/25/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 00266406.0000

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19F1245

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: South Otselic, NY

FIELD SAMPLE # LAB ID: MATRIX SAMPLE DESCRIPTION TEST SUB LAB	
RW-1 (MS/MSD) 19F1245-01 Ground Water 624.1	
RW-2 19F1245-02 Ground Water 624.1	
EFF 46 HZ 19F1245-03 Ground Water 624.1	
Trip Blank 19F1245-04 Trip Blank Water 624.1	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the

best of my knowledge and belief, accurate and complete.

Lua Warrlengton

Lisa A. Worthington

Technical Representative

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: South Otselic, NY Sample Description:

Date Received: 6/22/2019

Field Sample #: RW-1 (MS/MSD)

Sampled: 6/21/2019 07:10

Sample ID: 19F1245-01
Sample Matrix: Ground Water

Volotilo	Organia	Compounds by	CC/MS
voiame	Organic	Compounds by	CrC/IVIS

			voiatile	Organic Co	inpounds by G	C/NIS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	<1.00	1.00	0.180	μg/L	1		624.1	6/24/19	6/24/19 15:37	LBD
Bromodichloromethane	< 2.00	2.00	0.160	μg/L	1		624.1	6/24/19	6/24/19 15:37	LBD
Bromoform	< 2.00	2.00	0.460	μg/L	1		624.1	6/24/19	6/24/19 15:37	LBD
Bromomethane	< 5.00	5.00	0.780	μg/L	1		624.1	6/24/19	6/24/19 15:37	LBD
Carbon Tetrachloride	< 2.00	2.00	0.110	μg/L	1		624.1	6/24/19	6/24/19 15:37	LBD
Chlorobenzene	< 2.00	2.00	0.150	μg/L	1		624.1	6/24/19	6/24/19 15:37	LBD
Chlorodibromomethane	< 2.00	2.00	0.210	μg/L	1		624.1	6/24/19	6/24/19 15:37	LBD
Chloroethane	< 2.00	2.00	0.350	μg/L	1		624.1	6/24/19	6/24/19 15:37	LBD
Chloroform	< 2.00	2.00	0.170	μg/L	1		624.1	6/24/19	6/24/19 15:37	LBD
Chloromethane	< 2.00	2.00	0.450	μg/L	1		624.1	6/24/19	6/24/19 15:37	LBD
1,2-Dichlorobenzene	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	6/24/19	6/24/19 15:37	LBD
1,3-Dichlorobenzene	< 2.00	2.00	0.120	$\mu g/L$	1		624.1	6/24/19	6/24/19 15:37	LBD
1,4-Dichlorobenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	6/24/19	6/24/19 15:37	LBD
1,2-Dichloroethane	< 2.00	2.00	0.410	μg/L	1		624.1	6/24/19	6/24/19 15:37	LBD
1,1-Dichloroethane	1.30	2.00	0.160	μg/L	1	J	624.1	6/24/19	6/24/19 15:37	LBD
1,1-Dichloroethylene	0.860	2.00	0.320	μg/L	1	J	624.1	6/24/19	6/24/19 15:37	LBD
trans-1,2-Dichloroethylene	< 2.00	2.00	0.310	μg/L	1		624.1	6/24/19	6/24/19 15:37	LBD
1,2-Dichloropropane	< 2.00	2.00	0.200	$\mu g/L$	1		624.1	6/24/19	6/24/19 15:37	LBD
cis-1,3-Dichloropropene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	6/24/19	6/24/19 15:37	LBD
trans-1,3-Dichloropropene	< 2.00	2.00	0.230	$\mu g/L$	1		624.1	6/24/19	6/24/19 15:37	LBD
Ethylbenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	6/24/19	6/24/19 15:37	LBD
Methyl tert-Butyl Ether (MTBE)	< 2.00	2.00	0.250	$\mu g/L$	1		624.1	6/24/19	6/24/19 15:37	LBD
Methylene Chloride	< 5.00	5.00	0.340	$\mu g/L$	1		624.1	6/24/19	6/24/19 15:37	LBD
1,1,2,2-Tetrachloroethane	< 2.00	2.00	0.220	$\mu g/L$	1		624.1	6/24/19	6/24/19 15:37	LBD
Tetrachloroethylene	< 2.00	2.00	0.180	$\mu g/L$	1		624.1	6/24/19	6/24/19 15:37	LBD
Toluene	<1.00	1.00	0.140	$\mu g/L$	1		624.1	6/24/19	6/24/19 15:37	LBD
1,1,1-Trichloroethane	35.3	2.00	0.200	$\mu g/L$	1		624.1	6/24/19	6/24/19 15:37	LBD
1,1,2-Trichloroethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	6/24/19	6/24/19 15:37	LBD
Trichloroethylene	< 2.00	2.00	0.240	$\mu g/L$	1		624.1	6/24/19	6/24/19 15:37	LBD
Trichlorofluoromethane (Freon 11)	< 2.00	2.00	0.330	$\mu g/L$	1		624.1	6/24/19	6/24/19 15:37	LBD
Vinyl Chloride	< 2.00	2.00	0.450	$\mu g/L$	1		624.1	6/24/19	6/24/19 15:37	LBD
m+p Xylene	< 2.00	2.00	0.300	$\mu g/L$	1		624.1	6/24/19	6/24/19 15:37	LBD
o-Xylene	<2.00	2.00	0.170	μg/L	1		624.1	6/24/19	6/24/19 15:37	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	95.4	70-130		6/24/19 15:37
Toluene-d8	110	70-130		6/24/19 15:37
4-Bromofluorobenzene	93.0	70-130		6/24/19 15:37

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: South Otselic, NY Sample Description:

Date Received: 6/22/2019
Field Sample #: RW-2

Sampled: 6/21/2019 07:20

Sample ID: 19F1245-02
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	<1.00	1.00	0.180	μg/L	1		624.1	6/24/19	6/24/19 16:08	LBD
Bromodichloromethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
Bromoform	< 2.00	2.00	0.460	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
Bromomethane	< 5.00	5.00	0.780	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
Carbon Tetrachloride	< 2.00	2.00	0.110	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
Chlorobenzene	< 2.00	2.00	0.150	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
Chlorodibromomethane	< 2.00	2.00	0.210	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
Chloroethane	< 2.00	2.00	0.350	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
Chloroform	< 2.00	2.00	0.170	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
Chloromethane	< 2.00	2.00	0.450	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
1,2-Dichlorobenzene	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
1,3-Dichlorobenzene	< 2.00	2.00	0.120	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
1,4-Dichlorobenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
1,2-Dichloroethane	< 2.00	2.00	0.410	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
1,1-Dichloroethane	0.700	2.00	0.160	$\mu g/L$	1	J	624.1	6/24/19	6/24/19 16:08	LBD
1,1-Dichloroethylene	0.660	2.00	0.320	$\mu g/L$	1	J	624.1	6/24/19	6/24/19 16:08	LBD
trans-1,2-Dichloroethylene	< 2.00	2.00	0.310	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
1,2-Dichloropropane	< 2.00	2.00	0.200	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
cis-1,3-Dichloropropene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
trans-1,3-Dichloropropene	< 2.00	2.00	0.230	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
Ethylbenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
Methyl tert-Butyl Ether (MTBE)	< 2.00	2.00	0.250	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
Methylene Chloride	< 5.00	5.00	0.340	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
1,1,2,2-Tetrachloroethane	< 2.00	2.00	0.220	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
Tetrachloroethylene	< 2.00	2.00	0.180	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
Toluene	<1.00	1.00	0.140	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
1,1,1-Trichloroethane	29.5	2.00	0.200	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
1,1,2-Trichloroethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
Trichloroethylene	< 2.00	2.00	0.240	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
Trichlorofluoromethane (Freon 11)	< 2.00	2.00	0.330	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
Vinyl Chloride	< 2.00	2.00	0.450	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
m+p Xylene	< 2.00	2.00	0.300	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD
o-Xylene	< 2.00	2.00	0.170	$\mu g/L$	1		624.1	6/24/19	6/24/19 16:08	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	95.1	70-130		6/24/19 16:08
Toluene-d8	112	70-130		6/24/19 16:08
4-Bromofluorobenzene	91.0	70-130		6/24/19 16:08

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: South Otselic, NY Sample Description:

Date Received: 6/22/2019
Field Sample #: EFF 46 HZ

Sampled: 6/21/2019 07:25

Sample ID: 19F1245-03
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	<1.00	1.00	0.180	μg/L	1		624.1	6/24/19	6/24/19 13:34	LBD
Bromodichloromethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
Bromoform	< 2.00	2.00	0.460	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
Bromomethane	< 5.00	5.00	0.780	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
Carbon Tetrachloride	< 2.00	2.00	0.110	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
Chlorobenzene	< 2.00	2.00	0.150	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
Chlorodibromomethane	< 2.00	2.00	0.210	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
Chloroethane	< 2.00	2.00	0.350	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
Chloroform	< 2.00	2.00	0.170	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
Chloromethane	< 2.00	2.00	0.450	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
1,2-Dichlorobenzene	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
1,3-Dichlorobenzene	< 2.00	2.00	0.120	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
1,4-Dichlorobenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
1,2-Dichloroethane	< 2.00	2.00	0.410	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
1,1-Dichloroethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
1,1-Dichloroethylene	< 2.00	2.00	0.320	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
trans-1,2-Dichloroethylene	< 2.00	2.00	0.310	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
1,2-Dichloropropane	< 2.00	2.00	0.200	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
cis-1,3-Dichloropropene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
trans-1,3-Dichloropropene	< 2.00	2.00	0.230	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
Ethylbenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
Methyl tert-Butyl Ether (MTBE)	< 2.00	2.00	0.250	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
Methylene Chloride	< 5.00	5.00	0.340	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
1,1,2,2-Tetrachloroethane	< 2.00	2.00	0.220	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
Tetrachloroethylene	< 2.00	2.00	0.180	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
Toluene	<1.00	1.00	0.140	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
1,1,1-Trichloroethane	< 2.00	2.00	0.200	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
1,1,2-Trichloroethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
Trichloroethylene	< 2.00	2.00	0.240	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD
Trichlorofluoromethane (Freon 11)	< 2.00	2.00	0.330	μg/L	1		624.1	6/24/19	6/24/19 13:34	LBD
Vinyl Chloride	< 2.00	2.00	0.450	μg/L	1		624.1	6/24/19	6/24/19 13:34	LBD
m+p Xylene	< 2.00	2.00	0.300	μg/L	1		624.1	6/24/19	6/24/19 13:34	LBD
o-Xylene	< 2.00	2.00	0.170	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:34	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	95.4	70-130		6/24/19 13:34
Toluene-d8	111	70-130		6/24/19 13:34
4-Bromofluorobenzene	92.4	70-130		6/24/19 13:34

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: South Otselic, NY Sample Description:

Date Received: 6/22/2019

Field Sample #: Trip Blank

Sampled: 6/21/2019 00:00

Sample ID: 19F1245-04
Sample Matrix: Trip Blank Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	<1.00	1.00	0.180	μg/L	1		624.1	6/24/19	6/24/19 13:03	LBD
Bromodichloromethane	< 2.00	2.00	0.160	μg/L	1		624.1	6/24/19	6/24/19 13:03	LBD
Bromoform	< 2.00	2.00	0.460	μg/L	1		624.1	6/24/19	6/24/19 13:03	LBD
Bromomethane	< 5.00	5.00	0.780	μg/L	1		624.1	6/24/19	6/24/19 13:03	LBD
Carbon Tetrachloride	< 2.00	2.00	0.110	μg/L	1		624.1	6/24/19	6/24/19 13:03	LBD
Chlorobenzene	< 2.00	2.00	0.150	μg/L	1		624.1	6/24/19	6/24/19 13:03	LBD
Chlorodibromomethane	< 2.00	2.00	0.210	μg/L	1		624.1	6/24/19	6/24/19 13:03	LBD
Chloroethane	<2.00	2.00	0.350	μg/L	1		624.1	6/24/19	6/24/19 13:03	LBD
Chloroform	< 2.00	2.00	0.170	μg/L	1		624.1	6/24/19	6/24/19 13:03	LBD
Chloromethane	< 2.00	2.00	0.450	μg/L	1		624.1	6/24/19	6/24/19 13:03	LBD
1,2-Dichlorobenzene	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:03	LBD
1,3-Dichlorobenzene	< 2.00	2.00	0.120	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:03	LBD
1,4-Dichlorobenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:03	LBD
1,2-Dichloroethane	< 2.00	2.00	0.410	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:03	LBD
1,1-Dichloroethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:03	LBD
1,1-Dichloroethylene	< 2.00	2.00	0.320	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:03	LBD
trans-1,2-Dichloroethylene	< 2.00	2.00	0.310	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:03	LBD
1,2-Dichloropropane	< 2.00	2.00	0.200	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:03	LBD
cis-1,3-Dichloropropene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:03	LBD
trans-1,3-Dichloropropene	< 2.00	2.00	0.230	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:03	LBD
Ethylbenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:03	LBD
Methyl tert-Butyl Ether (MTBE)	< 2.00	2.00	0.250	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:03	LBD
Methylene Chloride	< 5.00	5.00	0.340	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:03	LBD
1,1,2,2-Tetrachloroethane	< 2.00	2.00	0.220	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:03	LBD
Tetrachloroethylene	< 2.00	2.00	0.180	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:03	LBD
Toluene	<1.00	1.00	0.140	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:03	LBD
1,1,1-Trichloroethane	<2.00	2.00	0.200	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:03	LBD
1,1,2-Trichloroethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:03	LBD
Trichloroethylene	< 2.00	2.00	0.240	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:03	LBD
Trichlorofluoromethane (Freon 11)	< 2.00	2.00	0.330	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:03	LBD
Vinyl Chloride	<2.00	2.00	0.450	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:03	LBD
m+p Xylene	<2.00	2.00	0.300	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:03	LBD
o-Xylene	<2.00	2.00	0.170	$\mu g/L$	1		624.1	6/24/19	6/24/19 13:03	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	97.2	70-130		6/24/19 13:03
Toluene-d8	108	70-130		6/24/19 13:03
4-Bromofluorobenzene	92.6	70-130		6/24/19 13:03

Sample Extraction Data

Prep Method: SW-846 5030B-624.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19F1245-01 [RW-1 (MS/MSD)]	B234015	5	5.00	06/24/19
19F1245-02 [RW-2]	B234015	5	5.00	06/24/19
19F1245-03 [EFF 46 HZ]	B234015	5	5.00	06/24/19
19F1245-04 [Trip Blank]	B234015	5	5.00	06/24/19

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	%REC Limits	RPD	Limit	Notes
Batch B234015 - SW-846 5030B										
Blank (B234015-BLK1)				Prepared & A	Analyzed: 06	/24/19				
Benzene	ND	1.00	μg/L							
Bromodichloromethane	ND	2.00	$\mu g/L$							
Bromoform	ND	2.00	$\mu g/L$							
Bromomethane	ND	2.00	$\mu g/L$							
Carbon Tetrachloride	ND	2.00	$\mu g/L$							
Chlorobenzene	ND	2.00	$\mu g/L$							
Chlorodibromomethane	ND	2.00	$\mu g/L$							
Chloroethane	ND	2.00	$\mu \text{g/L}$							
Chloroform	ND	2.00	μg/L							
Chloromethane	ND	2.00	$\mu g/L$							
,2-Dichlorobenzene	ND	2.00	$\mu g/L$							
,3-Dichlorobenzene	ND	2.00	$\mu g/L$							
,4-Dichlorobenzene	ND	2.00	$\mu \text{g/L}$							
,2-Dichloroethane	ND	2.00	μg/L							
,1-Dichloroethane	ND	2.00	$\mu g \! / \! L$							
,1-Dichloroethylene	ND	2.00	$\mu \text{g/L}$							
rans-1,2-Dichloroethylene	ND	2.00	$\mu \text{g/L}$							
,2-Dichloropropane	ND	2.00	$\mu \text{g/L}$							
sis-1,3-Dichloropropene	ND	2.00	$\mu g/L$							
rans-1,3-Dichloropropene	ND	2.00	$\mu g/L$							
Ethylbenzene	ND	2.00	$\mu g \! / \! L$							
Methyl tert-Butyl Ether (MTBE)	ND	2.00	$\mu g/L$							
Methylene Chloride	ND	5.00	$\mu g/L$							
,1,2,2-Tetrachloroethane	ND	2.00	$\mu g/L$							
Tetrachloroethylene	ND	2.00	$\mu g/L$							
Toluene	ND	1.00	$\mu g \! / \! L$							
,1,1-Trichloroethane	ND	2.00	$\mu g/L$							
,1,2-Trichloroethane	ND	2.00	μg/L							
Trichloroethylene	ND	2.00	$\mu \text{g/L}$							
Frichlorofluoromethane (Freon 11)	ND	2.00	$\mu \text{g/L}$							
Vinyl Chloride	ND	2.00	$\mu g/L$							
n+p Xylene	ND	2.00	$\mu g/L$							
-Xylene	ND	2.00	μg/L							
Surrogate: 1,2-Dichloroethane-d4	24.0		$\mu g/L$	25.0		95.8	70-130			
Surrogate: Toluene-d8	26.9		μg/L	25.0		108	70-130			
surrogate: 4-Bromofluorobenzene	23.5		$\mu g/L$	25.0		93.9	70-130			
.CS (B234015-BS1)				Prepared & A	Analyzed: 06					
Benzene	20	1.00	μg/L	20.0		97.6	65-135			
Bromodichloromethane	20	2.00	μg/L	20.0		101	65-135			
Bromoform	22	2.00	μg/L	20.0		110	70-130			
Bromomethane	12	2.00	μg/L	20.0		62.4	15-185			
Carbon Tetrachloride	19	2.00	μg/L	20.0		94.5	70-130			
Chlorobenzene	21	2.00	μg/L	20.0		103	65-135			
Chlorodibromomethane	23	2.00	μg/L	20.0		115	70-135			
Chloroethane	21	2.00	μg/L	20.0		103	40-160			
Chloroform	18	2.00	μg/L	20.0		90.6	70-135			
Chloromethane	15	2.00	μg/L	20.0		73.7	20-205			
1,2-Dichlorobenzene	20	2.00	μg/L	20.0		98.5	65-135			
,3-Dichlorobenzene	19	2.00	μg/L	20.0		97.2	70-130			
1,4-Dichlorobenzene	19	2.00	$\mu g\!/\!L$	20.0		95.2	65-135			
1,2-Dichloroethane	21	2.00	μg/L	20.0		104	70-130			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B234015 - SW-846 5030B										
.CS (B234015-BS1)				Prepared &	Analyzed: 06/2	4/19				
,1-Dichloroethane	19	2.00	μg/L	20.0		96.6	70-130			
,1-Dichloroethylene	20	2.00	$\mu g/L$	20.0		98.0	50-150			
rans-1,2-Dichloroethylene	20	2.00	$\mu g/L$	20.0		100	70-130			
,2-Dichloropropane	21	2.00	$\mu g/L$	20.0		106	35-165			
is-1,3-Dichloropropene	20	2.00	$\mu g/L$	20.0		98.0	25-175			
rans-1,3-Dichloropropene	19	2.00	$\mu g/L$	20.0		95.4	50-150			
thylbenzene	20	2.00	$\mu g/L$	20.0		98.1	60-140			
Methyl tert-Butyl Ether (MTBE)	18	2.00	$\mu g/L$	20.0		92.2	70-130			
Methylene Chloride	20	5.00	$\mu g/L$	20.0		102	60-140			
,1,2,2-Tetrachloroethane	22	2.00	$\mu g/L$	20.0		112	60-140			
etrachloroethylene	23	2.00	$\mu g/L$	20.0		114	70-130			
oluene	20	1.00	$\mu g/L$	20.0		98.6	70-130			
,1,1-Trichloroethane	19	2.00	$\mu g/L$	20.0		93.0	70-130			
,1,2-Trichloroethane	22	2.00	$\mu g/L$	20.0		109	70-130			
richloroethylene	20	2.00	$\mu g/L$	20.0		97.6	65-135			
richlorofluoromethane (Freon 11)	17	2.00	$\mu g/L$	20.0		82.6	50-150			
inyl Chloride	18	2.00	μg/L	20.0		88.2	5-195			
n+p Xylene	40	2.00	μg/L	40.0		99.4	70-130			
-Xylene	20	2.00	μg/L	20.0		98.3	70-130			
urrogate: 1,2-Dichloroethane-d4	22.4		μg/L	25.0		89.6	70-130			
urrogate: Toluene-d8	26.2		μg/L	25.0		105	70-130			
urrogate: 4-Bromofluorobenzene	25.3		μg/L	25.0		101	70-130			
Tatrix Spike (B234015-MS1)		rce: 19F1245-0			Analyzed: 06/2	4/19				
Senzene	9.6	1.00	υι μg/L	10.0	ND	96.3	37-151			
romodichloromethane	9.6	2.00	μg/L μg/L	10.0	ND ND	104	35-155			
romoform	9.9	2.00	μg/L	10.0	ND ND	99.3	45-169			
romomethane	6.1	2.00	μg/L μg/L	10.0	ND	60.6	20-242			
arbon Tetrachloride	9.6	2.00	μg/L	10.0	ND	96.0	70-140			
Phlorobenzene	10	2.00	μg/L	10.0	ND	100	37-160			
hlorodibromomethane	10	2.00	μg/L μg/L	10.0	ND	112	53-149			
hloroethane	11	2.00	μg/L μg/L	10.0	ND ND	106	14-230			
Chloroform	9.3	2.00	μg/L μg/L	10.0	ND ND	92.8	51-138			
hloromethane	9.3 8.0	2.00	μg/L μg/L	10.0	ND ND	80.1	20-273			
,2-Dichlorobenzene	9.4	2.00	μg/L μg/L	10.0	ND ND	93.6	18-190			
,3-Dichlorobenzene	9.4	2.00	μg/L μg/L	10.0	ND ND	92.0	59-156			
.4-Dichlorobenzene	9.2 9.1	2.00	μg/L μg/L	10.0	ND ND	91.3	18-190			
,2-Dichloroethane	9.1	2.00	μg/L μg/L	10.0	ND ND	103	49-155			
,1-Dichloroethane	10	2.00	μg/L μg/L	10.0	1.3	96.9	59-155			
,	11	2.00	μg/L μg/L	10.0	0.86	104	20-234			
1-Dichloroethylene		2.00	μg/ L		0.80		54-156			
•		2.00	110/1	10.0	ND	1014				
ans-1,2-Dichloroethylene	10	2.00 2.00	μg/L ug/L	10.0	ND ND	103				
ans-1,2-Dichloroethylene 2-Dichloropropane	10 11	2.00	$\mu g/L$	10.0	ND	105	20-210			
ans-1,2-Dichloroethylene 2-Dichloropropane s-1,3-Dichloropropene	10 11 9.0	2.00 2.00	μg/L μg/L	10.0 10.0	ND ND	105 90.3	20-210 20-227			
ans-1,2-Dichloroethylene 2-Dichloropropane s-1,3-Dichloropropene ans-1,3-Dichloropropene	10 11 9.0 8.7	2.00 2.00 2.00	μg/L μg/L μg/L	10.0 10.0 10.0	ND ND ND	105 90.3 87.2	20-210 20-227 17-183			
ans-1,2-Dichloroethylene 2-Dichloropropane s-1,3-Dichloropropene ans-1,3-Dichloropropene thylbenzene	10 11 9.0 8.7 9.5	2.00 2.00 2.00 2.00	μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0	ND ND ND ND	105 90.3 87.2 95.0	20-210 20-227 17-183 37-162			
ans-1,2-Dichloroethylene 2-Dichloropropane s-1,3-Dichloropropene ans-1,3-Dichloropropene thylbenzene lethyl tert-Butyl Ether (MTBE)	10 11 9.0 8.7 9.5 8.5	2.00 2.00 2.00 2.00 2.00	μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0	ND ND ND ND	105 90.3 87.2 95.0 84.8	20-210 20-227 17-183 37-162 70-130			
ans-1,2-Dichloroethylene ,2-Dichloropropane is-1,3-Dichloropropene ans-1,3-Dichloropropene thylbenzene fethyl tert-Butyl Ether (MTBE) fethylene Chloride	10 11 9.0 8.7 9.5 8.5	2.00 2.00 2.00 2.00 2.00 5.00	μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0	ND ND ND ND ND	105 90.3 87.2 95.0 84.8 100	20-210 20-227 17-183 37-162 70-130 20-221			
rans-1,2-Dichloroethylene ,2-Dichloropropane is-1,3-Dichloropropene rans-1,3-Dichloropropene ithylbenzene dethyl tert-Butyl Ether (MTBE) dethylene Chloride ,1,2,2-Tetrachloroethane	10 11 9.0 8.7 9.5 8.5 10	2.00 2.00 2.00 2.00 2.00 5.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0	ND ND ND ND ND ND	105 90.3 87.2 95.0 84.8 100 106	20-210 20-227 17-183 37-162 70-130 20-221 46-157			
rans-1,2-Dichloroethylene ,2-Dichloropropane is-1,3-Dichloropropene rans-1,3-Dichloropropene thylbenzene Methyl tert-Butyl Ether (MTBE) Methylene Chloride ,1,2,2-Tetrachloroethane etrachloroethylene	10 11 9.0 8.7 9.5 8.5 10	2.00 2.00 2.00 2.00 2.00 5.00 2.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0	ND ND ND ND ND ND ND ND ND	105 90.3 87.2 95.0 84.8 100 106 115	20-210 20-227 17-183 37-162 70-130 20-221 46-157 64-148			
,1-Dichloroethylene rans-1,2-Dichloroethylene ,2-Dichloropropane is-1,3-Dichloropropene rans-1,3-Dichloropropene thylbenzene Methyl tert-Butyl Ether (MTBE) Methylene Chloride ,1,2,2-Tetrachloroethane retrachloroethylene foluene ,1,1-Trichloroethane	10 11 9.0 8.7 9.5 8.5 10	2.00 2.00 2.00 2.00 2.00 5.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0	ND ND ND ND ND ND	105 90.3 87.2 95.0 84.8 100 106	20-210 20-227 17-183 37-162 70-130 20-221 46-157			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B234015 - SW-846 5030B										
Matrix Spike (B234015-MS1)	Source	e: 19F1245-()1	Prepared & A	Analyzed: 06/2	24/19				
Trichloroethylene	10	2.00	μg/L	10.0	ND	99.5	70-157			
Γrichlorofluoromethane (Freon 11)	8.8	2.00	$\mu g/L$	10.0	ND	87.6	17-181			
Vinyl Chloride	9.4	2.00	$\mu g/L$	10.0	ND	93.6	20-251			
n+p Xylene	19	2.00	$\mu g/L$	20.0	ND	94.6	70-130			
p-Xylene	9.1	2.00	$\mu g/L$	10.0	ND	91.3	70-130			
Surrogate: 1,2-Dichloroethane-d4	23.2		μg/L	25.0		92.6	70-130			
Surrogate: Toluene-d8	27.1		μg/L	25.0		108	70-130			
Surrogate: 4-Bromofluorobenzene	25.6		μg/L	25.0		102	70-130			
Matrix Spike Dup (B234015-MSD1)	Sourc	e: 19F1245-()1	Prepared & A	Analyzed: 06/2	24/19				
Benzene	9.8	1.00	μg/L	10.0	ND	98.1	37-151	1.85	61	
Bromodichloromethane	10	2.00	μg/L	10.0	ND	104	35-155	0.0961	56	
Bromoform	10	2.00	μg/L	10.0	ND	103	45-169	3.27	42	
Bromomethane	6.8	2.00	μg/L	10.0	ND	67.8	20-242	11.2	61	
Carbon Tetrachloride	10	2.00	μg/L	10.0	ND	103	70-140	6.65	41	
Chlorobenzene	10	2.00	μg/L	10.0	ND	104	37-160	3.43	53	
Chlorodibromomethane	11	2.00	μg/L	10.0	ND	112	53-149	0.268	50	
Chloroethane	11	2.00	μg/L	10.0	ND	109	14-230	2.42	78	
Chloroform	9.5	2.00	μg/L	10.0	ND	94.8	51-138	2.13	54	
Chloromethane	8.0	2.00	μg/L	10.0	ND	79.8	20-273	0.375	60	
,2-Dichlorobenzene	9.7	2.00	μg/L	10.0	ND	96.8	18-190	3.36	57	
3-Dichlorobenzene	9.7	2.00	μg/L	10.0	ND	97.2	59-156	5.50	43	
,4-Dichlorobenzene	9.3	2.00	μg/L	10.0	ND	93.2	18-190	2.06	57	
,2-Dichloroethane	11	2.00	$\mu g/L$	10.0	ND	106	49-155	2.79	49	
1-Dichloroethane	11	2.00	μg/L	10.0	1.3	98.1	59-155	1.09	40	
,1-Dichloroethylene	11	2.00	$\mu g/L$	10.0	0.86	105	20-234	0.976	32	
rans-1,2-Dichloroethylene	10	2.00	$\mu g/L$	10.0	ND	103	54-156	0.291	45	
,2-Dichloropropane	11	2.00	$\mu g/L$	10.0	ND	106	20-210	0.190	55	
is-1,3-Dichloropropene	9.3	2.00	$\mu g/L$	10.0	ND	92.6	20-227	2.52	58	
rans-1,3-Dichloropropene	9.0	2.00	$\mu g/L$	10.0	ND	90.2	17-183	3.38	86	
Ethylbenzene	9.7	2.00	$\mu g/L$	10.0	ND	96.9	37-162	1.98	63	
Methyl tert-Butyl Ether (MTBE)	8.7	2.00	$\mu g/L$	10.0	ND	87.4	70-130	3.02	20	
Methylene Chloride	10	5.00	$\mu g/L$	10.0	ND	103	20-221	2.95	28	
,1,2,2-Tetrachloroethane	11	2.00	$\mu g/L$	10.0	ND	111	46-157	4.81	61	
etrachloroethylene	12	2.00	$\mu g/L$	10.0	ND	118	64-148	2.67	39	
oluene	10	1.00	$\mu g/L$	10.0	ND	103	47-150	3.37	41	
,1,1-Trichloroethane	44	2.00	$\mu g/L$	10.0	35	87.3	52-162	0.273	36	
,1,2-Trichloroethane	11	2.00	$\mu \text{g/L}$	10.0	ND	107	52-150	2.27	45	
richloroethylene	10	2.00	$\mu \text{g/L}$	10.0	ND	99.8	70-157	0.301	48	
richlorofluoromethane (Freon 11)	9.1	2.00	$\mu g \! / \! L$	10.0	ND	90.7	17-181	3.48	84	
inyl Chloride	9.7	2.00	$\mu g \! / \! L$	10.0	ND	97.0	20-251	3.57	66	
n+p Xylene	19	2.00	$\mu g \! / \! L$	20.0	ND	96.5	70-130	1.94	20	
-Xylene	9.2	2.00	μg/L	10.0	ND	92.1	70-130	0.872	20	
Surrogate: 1,2-Dichloroethane-d4	22.6		μg/L	25.0		90.3	70-130			
Surrogate: Toluene-d8	27.1		$\mu g/L$	25.0		108	70-130			
Surrogate: 4-Bromofluorobenzene	25.3		μg/L	25.0		101	70-130			

FLAG/QUALIFIER SUMMARY

†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level

QC result is outside of established limits.

ND Not Detected

RL Reporting Limit is at the level of quantitation (LOQ)

DL Detection Limit is the lower limit of detection determined by the MDL study

MCL Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the

calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

J Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated

concentration (CLP J-Flag).

CERTIFICATIONS

Certified Analyses included in this Report

Bromodichloromethane CT,NY,MA,N	H,RI,NC,ME,VA H,RI,NC,ME,VA H,RI,NC,ME,VA
Bromodichloromethane CT,NY,MA,N	H,RI,NC,ME,VA H,RI,NC,ME,VA H,RI,NC,ME,VA
· · · · · · · · · · · · · · · · · · ·	H,RI,NC,ME,VA H,RI,NC,ME,VA
Bromoform CT,NY,MA,N	H,RI,NC,ME,VA
Bromomethane CT,NY,MA,N	III DI NOME VA
Carbon Tetrachloride CT,NY,MA,N	H,RI,NC,ME,VA
Chlorobenzene CT,NY,MA,N	H,RI,NC,ME,VA
Chlorodibromomethane CT,NY,MA,N	H,RI,NC,ME,VA
Chloroethane CT,NY,MA,N	H,RI,NC,ME,VA
Chloroform CT,NY,MA,N	H,RI,NC,ME,VA
Chloromethane CT,NY,MA,N	H,RI,NC,ME,VA
1,2-Dichlorobenzene CT,NY,MA,N	H,RI,NC,ME,VA
1,3-Dichlorobenzene CT,NY,MA,N	H,RI,NC,ME,VA
1,4-Dichlorobenzene CT,NY,MA,N	H,RI,NC,ME,VA
1,2-Dichloroethane CT,NY,MA,N	H,RI,NC,ME,VA
1,1-Dichloroethane CT,NY,MA,N	H,RI,NC,ME,VA
1,1-Dichloroethylene CT,NY,MA,N	H,RI,NC,ME,VA
trans-1,2-Dichloroethylene CT,NY,MA,N	H,RI,NC,ME,VA
1,2-Dichloropropane CT,NY,MA,N	H,RI,NC,ME,VA
cis-1,3-Dichloropropene CT,NY,MA,N	H,RI,NC,ME,VA
trans-1,3-Dichloropropene CT,NY,MA,N	H,RI,NC,ME,VA
Ethylbenzene CT,NY,MA,N	H,RI,NC,ME,VA
Methyl tert-Butyl Ether (MTBE) NY,MA,NH,N	NC
Methylene Chloride CT,NY,MA,N	H,RI,NC,ME,VA
1,1,2,2-Tetrachloroethane CT,NY,MA,N	H,RI,NC,ME,VA
Tetrachloroethylene CT,NY,MA,N	H,RI,NC,ME,VA
Toluene CT,NY,MA,N	H,RI,NC,ME,VA
1,1,1-Trichloroethane CT,NY,MA,N	H,RI,NC,ME,VA
1,1,2-Trichloroethane CT,NY,MA,N	H,RI,NC,ME,VA
Trichloroethylene CT,NY,MA,N	H,RI,NC,ME,VA
Trichlorofluoromethane (Freon 11) CT,NY,MA,N	H,RI,NC,ME,VA
Vinyl Chloride CT,NY,MA,N	H,RI,NC,ME,VA
m+p Xylene CT,NY,MA,N	H,RI,NC
o-Xylene CT,NY,MA,N	H,RI,NC

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2020
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2020
FL	Florida Department of Health	E871027 NELAP	06/30/2020
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2020
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2019

la F1248

1 Matrix Cades: GW = Ground Water WW = Weste Water DW = Drinking Water ² Preservation Codes: | = Iced X = Sodium Hydroxide S = Sulfuric Acid B = Sodium Bisulfate A = Air S = Soil SL = Studge SOL = Solid O = Other (please \$ = Summa Canister Container Codes: 0 = Other (please T = Tedlar Bag O = Other (please Non Soxhlet A = Amber Glass PCB ONLY Soxhlet N = Nitric Acid Preservation Code Field Filtered Field Filtered G = Glass P = Plastic ST = Sterile M = Methanol Lab to Filter Lab to Filter 3 Container Code Thiosulfate T = Sodium # of Containers deffre) V = Vial H=HCL define) define) NY Regulatory EDD NY Regs Hits-Only EDD Enhanced Data Package **NYSDEC EQUIS EDD** EQuIS (Standard) EDD Please use the following codes to indicate possible sample concentration NELAC and AIHA-LAP, LLC Accredited Chromatogram AIHA-LAP, LLC 39 Spruce Street East Longmeadow, MA 01028 H - High; M - Medium; L - Low; C - Clean; U - Unknown ANALYSIS REQUESTED within the Conc Code column above: Doc # 380 Rev 1_03242017 ☐ WRTA MWRA School MBTA HZ9 > × × I Conc CHAIN OF CUSTODY RECORD (New York) NY TOGS http://www.contestlabs.com > Matrix 3 Municipality Brownfield 10-Day 3-Day 4-Day N EXCEL GEED CLP Like Data Pkg Required: E Part 360 GW (Landfill) **NYC Sewer Discharge** Composite NY Unrestricted Use NY Restricted Use PDF NY Part 375 Government AWQ STDS Ending Date/Time いだい Email To: 0720 6/21/19 Due Date: 0725 W4/19 Pax To #: Federal ormat: Other: 7-Day -Day 2-Day City Project Entity Beginning Date/Time 9110 Address: 855 Rowle 140, STE 210, Clifton Pak, NY Email: info@contestlabs.com Date/Time: U/22/19 11:14 35 Cordage Cient Sample ID / Description 607-206-6262 Phone; 413-525-2332 Fax: 413-525-6405 RW-1 (m5/m5D) V PILLEY Date/Time: Date/Time: Date/Time: Date/Time: ate/Time Trip Blank EFF 40 HZ RW-2 Project Number: 002664106, 0000 Project Manager: 3. Wyck off Gladding Otselic-Invoice Recipient: 3. Wyckoff Aca 313 L.Whalen 518-250-7300 South Con-Test Quote Name/Number: linquished by: (signature) (signature) Relinquished by: (signature ceived by: (Signature) eceived by: (signature) Received by: (signatoria) Work Order# Con-Test Project Location: inquished by Sampled By: かんか Comments Phone:

Table of Contents

16 of 18

Page

Delivered Saturday 6/22/2019 at 11:14 am

DELIVERED

Signed for by: M.PROSPET

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM

Syracuse, NY US Origin Terminal SYRACUSE, NY

TO

EAST LONGMEADOW, MA US Destination Location WINDSOR LOCKS, CT

Shipment Facts

TRACKING NUMBER

806832458173

SERVICE

FedEx Priority Overnight

WEIGHT

14 lbs / 6.35 kgs

DIMENSIONS

14x12x11 in.

DELIVERED TO

Shipping/Receiving

TOTAL PIECES

TOTAL SHIPMENT WEIGHT

14 lbs / 6.35 kgs

TERMS

Third Party

PACKAGING Your Packaging

SPECIAL HANDLING SECTION

Saturday Delivery, Additional Handling Surcharge

STANDARD TRANSIT

6/22/2019 by 12:00 pm

SHIP DATE

Fri 6/21/2019

ACTUAL DELIVERY

Sat 6/22/2019 11:14 am

Travel History

Local Scan Time

Saturday , 6/22/2019

11:14 am

EAST LONGMEADOW, MA

Delivered

8:33 am

WINDSOR LOCKS, CT

On FedEx vehicle for delivery

7:53 am

WINDSOR LOCKS, CT

At local FedEx facility

https://www.fedex.com/apps/fedextrack/?action=track&tracknumbers=806832458173&locale=en_US&cntry_code=us

Page 17 of 18

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples____

Doc# 277 Rev 5 2017

Login Sa	mpie Rec	ceipt Check	dist - (Rejection	Criteria i	Listing -	Using A	cceptance	Policy) A	nv False
	Statem	ent will be	brought to the	attention	of the Cl	lient - St	ate True	or Falso	ny i aloc
	Λ	1 -	•		T		iale inde (Ji i aise	

Client	HYCO	A. S							
Receiv	ed By	NAP		Date	6/22	119	Time	(/:.0	Ч
	he samples	In Cooler		No Cooler		On Ice	- -	No Ice	
recei	ved?	Direct from Samp	oling	·		Ambient		Melted Ice	
Were sam	nles within		By Gun#	***************************************		Actual Tem	n - 20	_ Money ree	
Temperatu			By Blank #	<u> </u>				· (AT)	-
	Custody Se	eal Intact?	N/A	10/-		Actual Tem			-
	COC Relin					Tampered		14	
		eaking/loose caps	00.000.000	Does	Chain Agr	ee With Sa	mples?		-
Is COC in ir	k/Legible?	-t-	on any sam						
Did COC i		Client	· —	vvere sam	pies receiv		olding time?		
pertinent In		Project		Analysis _ ID's	<u></u>		er Name	* T	•
		out and legible?		10.9		Collection	Dates/Times		
Are there La					140-				
Are there Ru			— -		Who was				
Are there Sh					Who was				
Is there enou		2			Who was	notified?	-		
	-	re applicable?			AC/AACDO				
Proper Medi			<u> </u>		MS/MSD?_	<u>}</u>		\subset	
Were trip bla						amples req	juired?		
Do all sampl					On COC?_		<u> </u>		
			M	Acid _			Base	····	
Vials	#	Containers:	#			#			#
Unp- HCL-	17	1 Liter Amb.		1 Liter P			16 oz		
Meoh-		500 mL Amb.		500 mL F			8oz Am		
Bisulfate-		250 mL Amb.		250 mL F			4oz Am	b/Clear	
DI-		Flashpoint Other Class		Col./Bac		****	2oz Am	b/Clear	
Thiosulfate-		Other Glass SOC Kit		Other PI			Enc	ore	
Sulfuric-		Perchlorate		Plastic			Frozen:		
		reciliorate		Ziplod	CK				
<i>(</i> -1				Unused Mo	edia				
/ials	# (Containers:	#			#			# 1
Jnp- -ICL-		1 Liter Amb.		1 Liter Pl			16 oz	Amb.	
Meoh-		500 mL Amb.		500 mL P			8oz Am	b/Clear	
		250 mL Amb.		250 mL P			4oz Am	b/Clear	
Bisulfate- DI-		Col./Bacteria		Flashpo			2oz Am		
		Other Plastic		Other G			Enc	ore	
hiosulfate- Sulfuric-		SOC Kit		Plastic I			Frozen:		
omments:		Perchlorate		Ziploc	k				
A No	number	untten a	n temp	blank.					

Arcadis U.S., Inc.

855 Route 146
Suite 210
Clifton Park, New York 12065
Tel 518 250 7300

www.arcadis.com

Fax 518 371 2757