

New York State Department of Environmental Conservation – Division of Environmental Remediation

GLADDING CORDAGE SITE QUARTERLY REPORT

SITE 7-09-009

Second Quarter 2021

GLADDING CORDAGE SITE QUARTERLY REPORT

Second Quarter 2021

Andy Vitolins, P.G.

Vice President

Jeremy Wyckoff, P.G.

Senior Geologist

Prepared for:

New York State Department of Environmental Conservation – Division of Environmental Remediation

625 Broadway

Albany, NY 12233-7011

Prepared by:

Arcadis of New York, Inc.

855 Route 146

Suite 210

Clifton Park

New York 12065

Tel 518 250 7300

Fax 518 371 2757

Our Ref.:

30055695

Date:

July 2021

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

CONTENTS

Acı	ronyms and Abbreviations	ii
1	Introduction	1
2	Site Description	2
	Operation and Maintenance	
	3.1 Treatment Process Overview	
	3.2 Treatment Plant Operation	3
	3.3 Treatment System Sampling	4
	3.3.1 Influent Sample Results	4
	3.3.2 Effluent Sample Results	4
4	Water Monitoring Program	4
5	Recommendations	5
6	Summary	6
	References	

TABLES

Table 3-1	Treatment System Status and Flow Summary
Table 3-2	Groundwater Treatment System VOCs (RW-1)
Table 3-3	Groundwater Treatment System VOCs (RW-2)
Table 3-4	Groundwater Treatment System VOCs (Effluent)

FIGURES

Figure 2-1 Site Location

Figure 3-1 Treatment System Influent Sample Concentrations (1,1,1-TCA)

APPENDICES

Appendix A O&M Checklists

Appendix B NYSDEC Daily Inspection Reports

Appendix C Analytical Reports

ACRONYMS AND ABBREVIATIONS

Arcadis Arcadis of New York, Inc.

amsl above mean sea level

Ft feet

GES Groundwater and Environmental Services, Inc.

GPM gallons per minute

HZ hertz

μg/L micrograms per liter

NYSDEC New York State Department of Environmental Conservation

O&M Operation and Maintenance

OM&M Operation, Maintenance, and Monitoring

PLC Programmable logic controller

ROD Record of Decision

SMP Site Management Plan

USEPA United States Environmental Protection Agency

VFD Variable frequency drive

VOC Volatile organic compound

1,1-DCA 1,2-dichloroethane

1,1-DCE 1,2-dichloroethene

1,1,1-TCA 1,1,1-trichloroethane

1 INTRODUCTION

The New York State Department of Environmental Conservation (NYSDEC) has issued a Work Assignment (# D009804-11) to Arcadis of New York, Inc. (Arcadis) for Operation, Maintenance, and Monitoring (OM&M) at the Gladding Cordage Site (Site # 7-09-009). This Quarterly Report has been prepared in accordance with the NYSDEC-approved Work Plan to summarize the second quarter 2021 site activities.

2 SITE DESCRIPTION

The Gladding Cordage Site is located on Ridge Road, South Otselic, Chenango County, New York (Figure 2-1), along the western bank of the Otselic River. The site contains an active braided wire and rope manufacturing facility that has been in operation since 1892.

3 OPERATION AND MAINTENANCE

On August 23, 2007, the NYSDEC provided a training session to Arcadis personnel on the operation and maintenance (O&M) of the groundwater treatment plant at the Gladding Cordage Site. Arcadis maintained operation of the groundwater treatment plant from that time until February 2020, when site operations were temporarily transitioned to Groundwater and Environmental Services, Inc. (GES), a NYSDEC Remedial Services Contractor, due to contract expiration/start dates. These activities include the operation, maintenance, and influent/effluent sampling in accordance with the Site Management Plan (SMP) and NYSDEC O&M manual (Operation and Maintenance Manual, Volume I, Gladding Cordage Site, Site 7-09-009, TAMS Consultants, Inc., 1996) (O&M Manual). Arcadis resumed operation of the groundwater treatment plant in April 2021.

3.1 Treatment Process Overview

Groundwater is extracted from two 8-inch recovery wells (RW-1 and RW-2) using submersible electric pumps and conveyed to the groundwater treatment plant (Figure 2-2) via buried 2-inch pressure mains. Groundwater enters the treatment plant building and is then directed to a shallow tray air stripper for removal of VOCs. A variable frequency drive (VFD) is used to regulate the speed of the air stripper blower motor for reduced energy usage. Following the installation of the VFD, effluent samples were collected at various blower motor frequencies (speeds) to evaluate the minimum blower frequency required for the air stripper to effectively treat groundwater extracted from the source area to the applicable NYSDEC Class GA Effluent Limits. Based on the result of periodic performance testing conducted between 2010 and 2014, the minimum blower motor frequency required to meet these conditions is 46 hertz (HZ). The blower frequency has been maintained at this level since December 2014. Treated groundwater is discharged from the air stripper via gravity to an outfall on the western bank of the Otselic River.

Treatment plant functions are controlled and monitored using a programmable logic controller (PLC). The PLC and ProControl interface software allow the treatment system to be monitored and started or stopped remotely. The PLC is programmed to transmit status of system inputs and outputs on a daily basis. If input and/or output device values exceed the defined operating parameters, an alarm is triggered, and the corresponding alarm information is transmitted to the system user.

3.2 Treatment Plant Operation

The groundwater treatment system has operated continuously from April 2007 until present, except for minor shutdowns for routine maintenance, power outages, and/or system upgrades. Appendix A presents the completed O&M Checklist and Operation Logs from the second quarter 2021, and Appendix B includes the NYSDEC Daily Inspection Reports completed for each site visit. The Gladding Cordage groundwater treatment system was temporarily offline in April, May, and June 2021 due to power outages and was reset in person or remotely. This resulted in system runtimes of 61 percent (%) in April, 42% in May, and 57% in June 2021.

The average monthly flow rates and total flow volumes for the second quarter 2021 operating period are summarized in Table 3-1. As shown in Table 3-1, the reported average flow rate from recovery well RW-1 was 15.3 gallons per minute (GPM). The average flow from RW-2 was 21.2 GPM. Based on the total flow

values, approximately 2.4 million gallons of water were treated and discharged to the Otselic River between April and June 2021.

3.3 Treatment System Sampling

Influent and effluent groundwater samples were collected from the Gladding Cordage treatment system in accordance with the SMP and submitted to Eurofins TestAmerica following chain-of-custody protocols. Each monthly sample was analyzed for VOCs by United States Environmental Protection Agency (USEPA) Method 8260C. Analytical reporting forms are provided in Appendix C.

3.3.1 Influent Sample Results

Table 3-2 and Table 3-3 summarize influent VOC sample results from recovery wells RW-1 and RW-2, respectively. Figure 3-1 provides a summary of 1,1,1-TCA concentrations in samples from recovery wells RW-1 and RW-2 since January 2017.

Table 3-2 shows that the concentrations of 1,1,1-TCA reported in samples from recovery well RW-1 were 42 micrograms per liter (μ g/L) in April 2021, 39 μ g/L in May 2021, and 38 μ g/L in June 2021. The compounds 1,1-dichloroethane (1,1-DCA) and 1,1-dichloroethene (1,1-DCE) were also detected, but concentrations were less than their respective NYSDEC Class GA standard of 5 μ g/L.

The concentrations of 1,1,1-TCA in the samples from recovery well RW-2 were 32 μ g/L in April 2021, 33 μ g/L in May 2021, and 32 μ g/L in June 2021. As shown in Table 3-3, 1,1-DCA, 1,1-DCE were detected in the second quarter 2021 samples from RW-2. Consistent with previous results, the concentrations of these compounds were less than the NYSDEC Class GA standard of 5 μ g/L.

Figure 3-1 shows that the concentrations of 1,1,1-TCA in the samples from recovery wells RW-1 and RW-2 in the second quarter 2021 are within the range of historic concentrations from these wells.

3.3.2 Effluent Sample Results

Table 3-4 summarizes laboratory analytical data for effluent samples collected from the treatment system. No VOCs have been detected in the effluent since the December 2018 sampling event.

Based on influent sample concentrations and total flow volumes from the Gladding Cordage treatment system, approximately 0.7 pounds of VOCs were removed by the treatment system during the second quarter 2021.

4 WATER MONITORING PROGRAM

Groundwater samples are collected on a once every five quarters sampling schedule in accordance with the SMP. Groundwater sampling was conducted from October 12 through 14, 2020 to provide information on groundwater quality, monitor contaminant migration in groundwater, and assess hydrogeologic site conditions, including groundwater flow. The results of the fourth quarter 2020 groundwater monitoring event were reported to the NYSDEC in a separate monitoring report. The next groundwater sampling event is scheduled to occur during the first quarter 2022.

5 RECOMMENDATIONS

It is recommended that the NYSDEC move forward with the planned remedial optimization study as indicated in the amended Scope of Work submitted to the NYSDEC on March 23, 2021 to evaluate the effectiveness of the groundwater extraction and treatment remediation strategy at meeting the objectives of the 1993 Record of Decision (ROD). The results of the evaluation, and, if deemed necessary, changes to the remediation strategy will be presented under separate cover.

6 SUMMARY

The Gladding Cordage groundwater treatment system was intermittently shut down in the second quarter 2021 due to power outages. The average total flow through the treatment system during the second quarter 2021 was approximately 18.3 GPM. The treatment successfully removes VOCs from groundwater extracted from the capture zone at the current VFD setting of 46 Hz. The VFD setting will continue to be evaluated based on system monitoring results. Approximately 0.7 pounds of VOCs were removed by the treatment system during the second quarter 2021.

The concentrations of VOCs detected in the RW-1 and RW-2 are within the range of historical values. The effluent sample was non-detect for all analytes.

Based on the current five-quarter sampling interval, the next groundwater monitoring event is scheduled to occur during the first quarter of 2022.

7 REFERENCES

Malcolm Pirnie, 2007, Gladding Cordage Site Work Plan, Site 7-09-009, Malcolm Pirnie, Inc., June 2007.

TAMS, 1996, Operation and Maintenance Manual, Volume I, Gladding Cordage Site. Site 7-09-009, TAMS Consultants, Inc., March 1996.

TABLES

FIGURES

APPENDIX A

O&M Checklists

APPENDIX B NYSDEC Daily Inspection Reports

APPENDIX C

Analytical Reports

Arcadis of New York, Inc.

855 Route 146
Suite 210
Clifton Park, New York 12065
Tel 518 250 7300
Fax 518 371 2757

www.arcadis.com

TABLES

	System	System	Well O	n-time	Flow	Rates	Totalizer	Totalizer	Recovery We	II Total Flows	Total System	Quarterly
Date	Operation	On-time	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	Flow	Totals
	(days)	% of possible days	(% possible)	(% possible)	(gpm)	(gpm)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
January-17	31	100%	100%	100%	25.7	23.7	50,412,604	46,629,621	1,213,626	1,139,731	2,353,357	
February-17	28	100%	100%	100%	25.5	23.6	51,438,294	47,591,095	1,025,690	961,474	1,987,164	6,229,301
March-17	30	97%	100%	100%	25.4	23.7	52,415,109	48,503,060	976,815	911,965	1,888,780	
April-17	30	100%	100%	100%	25.0	23.6	53,511,717	49,527,491	1,096,608	1,024,431	2,121,039	
May-17	31	100%	100%	100%	24.5	23.4	54,444,161	50,411,047	932,444	883,556	1,816,000	6,300,342
June-17	29	97%	100%	100%	19.7	24.1	55,646,695	51,571,816	1,202,534	1,160,769	2,363,303	
July-17	23	74%	100%	100%	15.9 *	23.7	56,191,182	52,359,043	544,487	787,227	1,331,714	
August-17	22	71%	100%	100%	16.5 *	23.8	56,726,638	53,145,185	535,456	786,142	1,321,598	4,577,965
September-17	30	100%	100%	100%	16.4 *	24.0	57,513,034	54,283,442	786,396	1,138,257	1,924,653	
October-17	31	100%	100%	100%	15.9 *	23.2	58,219,935	55,325,647	706,901	1,042,205	1,749,106	
November-17	30	100%	100%	100%	15.9 *	23.2	58,901,735	56,353,922	681,800	1,028,275	1,710,075	5,305,181
December-17	31	100%	100%	100%	17.6 *	23.9	59,686,940	57,414,717	785,205	1,060,795	1,846,000	
Total Flow 201	7				20.3	23.7			10,487,962	11,924,827	22,412	2,789

gpm - Gallons per minute
* - flow meter not reading properly

% - percent

Notes:

1 - System started on 8/23/2007.

	System	System	Well O	n-time	Flow I	Rates	Totalizer	Totalizer	Recovery We	II Total Flows	Total System	Quarterly
Date	Operation	On-time	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	Flow	Totals
	(days)	% of possible days	(% possible)	(% possible)	(gpm)	(gpm)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
January-18	31	100%	100%	100%	18.0	24.2	60,433,982	58,414,531	747,042	999,814	1,746,856	
February-18	23	82%	100%	100%	19.3	23.7	61,058,149	59,201,714	624,167	787,183	1,411,350	4,833,473
March-18	29	94%	100%	100%	18.9	24.0	61,800,025	60,135,105	741,876	933,391	1,675,267	
April-18	4	13%	4%	4%	19.0	23.5	62,019,377	60,410,372	219,352	275,267	494,619	
May-18	0	0%	0%	0%	19.1	23.6	62,365,293	60,849,209	345,916	438,837	784,753	1,458,414
June-18	4	13%	4%	4%	18.3	23.5	62,442,457	60,951,087	77,164	101,878	179,042	
July-18	19	63%	100%	100%	17.8	23.6	62,731,304	61,333,323	288,847	382,236	671,083	
August-18	16	52%	100%	100%	19.6	23.9	63,023,435	61,929,590	292,131	596,267	888,398	3,201,119
September-18	30	100%	100%	100%	0.0 *	24.6	63,647,602	62,829,352	741,876	899,762	1,641,638	
October-18	20	65%	100%	100%	0.0 *	24.5	63,936,449	63,724,027	288,847	894,675	1,183,522	
November-18	18	60%	100%	100%	0.0 *	23.5	64,228,580	64,451,177	292,131	727,150	1,019,281	3,360,388
December-18	25	81%	100%	100%	0.0 *	23.4	64,517,427	65,319,915	288,847	868,738	1,157,585	
Total Flow 201	8				16.7	23.8			4,078,371	5,414,635	12,853	3,394

gpm - Gallons per minute
* - flow meter not reading properly

% - percent

Notes:

1 - System started on 8/23/2007.

	System	System	Well O	n-time	Flow	Rates	Totalizer	Totalizer	Recovery We	II Total Flows	Total System	Quarterly
Date	Operation	On-time	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	Flow	Totals
	(days)	% of possible days	(% possible)	(% possible)	(gpm)	(gpm)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
January-19	22	71%	100%	100%	0 *	22.7	64,635,136	66,057,723	117,709	737,808	855,517	
February-19	20	71%	100%	100%	0 *	22.7	64,924,058	66,815,952	288,922	758,229	1,047,151	3,639,634
March-19	29	94%	100%	100%	17.1	22.2	65,687,411	67,789,565	763,353	973,613	1,736,966	
April-19	19	61%	100%	100%	17.2	21.8	66,104,842	68,305,647	417,431	516,082	933,513	
May-19	31	100%	100%	100%	17.2	21.5	66,882,614	69,275,331	777,772	969,684	1,747,456	4,057,080
June-19	24	77%	100%	100%	17.0	21.5	67,496,022	70,038,034	613,408	762,703	1,376,111	
July-19	30	97%	100%	100%	16.9	21.8	68,239,052	70,976,048	743,030	938,014	1,681,044	
August-19	30	97%	100%	100%	16.8	21.7	68,971,487	71,919,204	732,435	943,156	1,675,591	4,912,641
September-19	27	87%	100%	100%	17.1	23.5	69,636,342	72,810,355	664,855	891,151	1,556,006	
October-19	29	94%	100%	100%	16.8	22.2	70,381,253	73,808,871	744,911	998,516	1,743,427	
November-19	16	52%	100%	100%	16.0	22.4	70,885,743	74,493,869	504,490	684,998	1,189,488	4,585,676
December-19	30	97%	100%	100%	16.4	22.5	71,580,987	75,451,386	695,244	957,517	1,652,761	
Total Flow 201	9				16.9	22.2			7,063,560	10,131,471	17,19	5,031

gpm - Gallons per minute
* - flow meter not reading properly

% - percent

Notes:

1 - System started on 8/23/2007.

	System	System	Well O	n-time	Flow	Rates	Totalizer	Totalizer	Recovery We	II Total Flows	Total System	Quarterly
Date	Operation	On-time	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	Flow	Totals
	(days)	% of possible days	(% possible)	(% possible)	(gpm)	(gpm)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
January-20	31	100%	100%	100%	16.7	22.5	72,358,759	76,437,247	777,772	985,861	1,763,633	
February-20	27	93%	100%	100%	16.0	22.7	73,023,614	77,283,169	664,855	845,922	1,510,777	4,641,973
March-20	27	87%	100%	100%	15.6	21.2	73,528,104	78,146,242	504,490	863,073	1,367,563	
April-20	26	87%	100%	100%	15.4	20.3	74,223,348	78,903,084	695,244	756,842	1,452,086	
May-20	30	97%	100%	100%	15.1	20.1	75,001,120	79,654,656	777,772	751,572	1,529,344	4,119,682
June-20	29	97%	100%	100%	15.5	20.2	75,614,528	80,179,500	613,408	524,844	1,138,252	
July-20	29	94%	100%	100%	18.4	20.5	76,359,439	81,179,065	744,911	999,565	1,744,476	
August-20	28	90%	100%	100%	18.5	21.9	77,024,294	82,019,058	664,855	839,993	1,504,848	4,965,190
September-20	30	100%	100%	100%	18.1	21.6	77,802,066	82,957,152	777,772	938,094	1,715,866	
October-20	28	90%	100%	100%	18.6	21.7	78,546,977	83,844,922	744,911	887,770	1,632,681	
November-20	28	90%	100%	100%	18.5	21.6	717,261	750,638	717,261	750,638	1,467,899	4,780,976
December-20	27	87%	100%	100%	21.4	22.0	1,548,415	1,599,880	831,154	849,242	1,680,396	
Total Flow 202	0				17.3	21.4			8,514,405	9,993,416	18,50	7,821

gpm - Gallons per minute

* - flow meter not reading properly

% - percent

Notes:

- 1 System started on 8/23/2007.
- 2 Totalizer reset on 11/5/2020.

	System	System	Well O	n-time	Flow	Rates	Totalizer	Totalizer	Recovery We	II Total Flows	Total System	Quarterly
Date	Operation	On-time	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	Flow	Totals
	(days)	% of possible days	(% possible)	(% possible)	(gpm)	(gpm)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
January-21	31	100%	100%	100%	16.7	22.5	2,479,526	2,518,399	931,111	918,519	1,849,630	
February-21	27	93%	100%	100%	16.0	22.7	3,251,954	3,325,019	772,428	806,620	1,579,048	4,950,535
March-21	27	87%	100%	100%	15.6	21.2	3,906,161	4,192,669	654,207	867,650	1,521,857	
April-21	19	61%	100%	100%	15.3	21.7	4,292,528	4,764,853	386,367	572,184	958,551	
May-21	13	42%	100%	100%	15.2	21.5	4,421,700	5,235,886	129,172	471,033	600,205	2,420,100
June-21	17	57%	100%	100%	15.5	20.6	4,783,523	5,735,407	361,823	499,521	861,344	
Total Flow 202	1				15.7	21.7			3,235,108	4,135,527	7,370	,635


gpm - Gallons per minute
* - flow meter not reading properly

% - percent

Notes:

1 - System started on 8/23/2007.

2 - Totalizer reset on 11/5/2020.

Sample ID	NYSDEC Class	RW-1	RW-1	RW-1	RW-1	RW-1									
Sampling Date	GA Standard	1/30/2017	2/27/2017	3/23/2017	4/26/2017	5/24/2017	6/29/2017	7/31/2017	8/28/2017	9/20/2017	10/23/2017	10/25/2017	10/26/2017	11/28/2017	12/29/2017
Volatile Organic Compounds (μ	g/L)														
1,1,1-Trichloroethane	5.0	35	34	40	30	31	35	30	41	39	34	37	37	38	41
1,1,2,2-Tetrachloroethane	5.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
1,1,2-Trichloroethane	1.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
1,1-Dichloroethane	5.0*	1.5 J	1.5 J	1.7 J	1.4 J	1.4 J	1.5 J	1.4 J	1.8 J	1.6 J	1.6 J	1.8 J	1.8 J	1.9 J	1.7 J
1,1-Dichloroethene	5.0	0.86 J	1.7 J	0.99 J	0.65 J	0.69 J	0.74 J	0.77 J	0.98 J	0.83 J	0.74 J	0.74 J	0.74 J	0.98 J	0.97 J
1,2-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
1,2-Dichloroethane	0.6	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
1,2-Dichloropropane	1.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
1,3-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
1,4-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
Benzene	1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U									
Bromodichloromethane	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
Bromoform	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
Bromomethane	5.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
Carbon Tetrachloride	5.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
Chlorobenzene	5.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
Chloroethane	5.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
Chloroform	7.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
Chloromethane	5.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
cis-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
Ethyl Benzene	5.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
m/p-Xylenes	5.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
Methyl tert-butyl Ether	10	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
Methylene Chloride	5.0	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U									
o-Xylene	5.0*	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
Tetrachloroethene	5.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
Toluene	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U									
trans-1,2-Dichloroethene	5.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
trans-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
Trichloroethene	5.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
Trichlorofluoromethane	5.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
Vinyl Chloride	2.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U									
Total VOCs		37.36	37.2	42.69	32.05	33.09	37.24	32.17	43.78	41.43	36.34	39.54	39.54	40.88	43.67

 * - NYSDEC Principal Organic Contaminant Standard of 5 $\mu\text{g}/\text{L}$ applies to this compound.

μg/L - microgram per liter

F1 - MS and/or MSD recovery exceeds control limits

J - Compound was detected below the reporting limit or concentration is estimated for TICS.

NYSDEC - New York State Department of Environmental Conservation

U - The compound was not detected at the indicated concentration.

B - Compound was found in the blank and sample

Notes:

TABLE 3-2
SUMMARY OF GROUNDWATER TREATMENT SYSTEM VOCS (INFLUENT - RW-1)
GLADDING CORDAGE SITE
SOUTH OTSELIC, NEW YORK
NYSDEC SITE NO. 7-09-009

Sample ID	NYSDEC Class	RW-1	RW-1	RW-1							
Sampling Date	GA Standard	1/29/2018	2/26/2018	3/29/2018	6/22/2018	7/29/2018	8/27/2018	9/27/2018	10/19/2018	11/26/2018	12/16/2018
Volatile Organic Compounds (μ			<u>.</u>								
1,1,1-Trichloroethane	5.0	38	40	37	41	42 J	45	47	47	35	35
1,1,2,2-Tetrachloroethane	5.0	2.0 U	2.0 U	2.0 U							
1,1,2-Trichloroethane	1.0	2.0 U	2.0 U	2.0 U							
1,1-Dichloroethane	5.0*	1.5 J	1.6 J	1.3 J	1.9 J	1.7 J	1.8 J	1.6 J	1.7 J	1.6 J	1.7 J
1,1-Dichloroethene	5.0	0.84 J	0.87 J	0.77 J	0.85 J	0.79 J	1.0 J	0.99 J	1.0 J	0.96 J	0.98 J
1,2-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U							
1,2-Dichloroethane	0.6	2.0 U	2.0 U	2.0 U							
1,2-Dichloropropane	1.0	2.0 U	2.0 U	2.0 U							
1,3-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U							
1,4-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U							
Benzene	1.0	1.0 U	1.0 U	1.0 U							
Bromodichloromethane	50	2.0 U	2.0 U	2.0 U							
Bromoform	50	2.0 U	2.0 U	2.0 U							
Bromomethane	5.0	5.0 U	2.0 U	0.6 J	0.9 J						
Carbon Tetrachloride	5.0	2.0 U	2.0 U	2.0 U							
Chlorobenzene	5.0	2.0 U	2.0 U	2.0 U							
Chloroethane	5.0	2.0 U	2.0 U	2.0 U							
Chloroform	7.0	2.0 U	2.0 U	2.0 U							
Chloromethane	5.0	2.0 U	2.0 UR-06	2.0 U	2.0 U	2.0 U					
cis-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U							
Ethyl Benzene	5.0	2.0 U	2.0 U	2.0 U							
m/p-Xylenes	5.0	2.0 U	2.0 U	2.0 U							
Methyl tert-butyl Ether	10	2.0 U	2.0 U	2.0 U							
Methylene Chloride	5.0	5.0 U	5.0 U	5.0 U							
o-Xylene	5.0*	2.0 U	2.0 U	2.0 U							
Tetrachloroethene	5.0	2.0 U	2.0 U	2.0 U							
Toluene	5.0	1.0 U	1.0 U	1.0 U							
trans-1,2-Dichloroethene	5.0	2.0 U	2.0 U	2.0 U							
trans-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U							
Trichloroethene	5.0	2.0 U	2.0 U	2.0 U							
Trichlorofluoromethane	5.0	2.0 U	2.0 U	2.0 U							
Vinyl Chloride	2.0	2.0 U	2.0 U	2.0 U							
Total VOCs		40.34	42.47	39.07	43.75	44.49	47.8	49.59	49.7	38.16	38.58

μg/L - microgram per liter

F1 - MS and/or MSD recovery exceeds control limits

J - Compound was detected below the reporting limit or concentration is estimated for TICS.

NYSDEC - New York State Department of Environmental Conservation

U - The compound was not detected at the indicated concentration.

B - Compound was found in the blank and sample

Notes:

 $^{^{\}star}$ - NYSDEC Principal Organic Contaminant Standard of 5 $\mu\text{g}/\text{L}$ applies to this compound.

TABLE 3-2
SUMMARY OF GROUNDWATER TREATMENT SYSTEM VOCS (INFLUENT - RW-1)
GLADDING CORDAGE SITE
SOUTH OTSELIC, NEW YORK
NYSDEC SITE NO. 7-09-009

Sample ID	NYSDEC Class	RW-1	RW-1	RW-1									
Sampling Date	GA Standard	1/21/2019	2/14/2019	3/26/2019	4/30/2019	5/20/2019	6/22/2019	7/26/2019	8/15/2019	9/26/2019	10/25/2019	11/22/2019	12/12/2019
Volatile Organic Compounds (μ	• ·												
1,1,1-Trichloroethane	5.0	36.1	39.4	32.3	42.6	35.4	35.3	34.4	42.8	40.9	34.4	33.6	40.7
1,1,2,2-Tetrachloroethane	5.0	2.0 U	2.0 U	2.0 U									
1,1,2-Trichloroethane	1.0	2.0 U	2.0 U	2.0 U									
1,1-Dichloroethane	5.0*	1.37 J	1.4 J	1.02 J	1.58 J	1.26 J	1.3 J	1.34 J	1.36 J	1.78 J	1.48 J	1.55	1.65 J
1,1-Dichloroethene	5.0	3.39 J	0.79 J	0.7 J	1.08 J	0.86 J	0.86 J	0.77 J	0.73 J	1.08 J	0.82 J	0.89	0.85 J
1,2-Dichlorobenzene	3.0	2.0 U	3.0 U	3.0 U									
1,2-Dichloroethane	0.6	2.0 U	2.0 U	2.0 U									
1,2-Dichloropropane	1.0	2.0 U	2.0 U	2.0 U									
1,3-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U									
1,4-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U									
Benzene	1.0	1.0 U	1.0 U	1.0 U									
Bromodichloromethane	50	2.0 U	2.0 U	2.0 U									
Bromoform	50	2.0 U	2.0 U	2.0 U									
Bromomethane	5.0	2.0 U	2.0 U	2.0 U									
Carbon Tetrachloride	5.0	2.0 U	2.0 U	2.0 U									
Chlorobenzene	5.0	2.0 U	2.0 U	2.0 U									
Chloroethane	5.0	2.0 U	2.0 U	2.0 U									
Chloroform	7.0	2.0 U	2.0 U	2.0 U									
Chloromethane	5.0	2.0 U	2.0 U	2.0 U									
cis-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U									
Ethyl Benzene	5.0	2.0 U	2.0 U	0.13 J									
m/p-Xylenes	5.0	2.0 U	2.0 U	0.63 J									
Methyl tert-butyl Ether	10	2.0 U	2.0 U	2.0 U									
Methylene Chloride	5.0	5.0 U	5.0 U	5.0 U									
o-Xylene	5.0*	2.0 U	2.0 U	0.21 J									
Tetrachloroethene	5.0	2.0 U	2.0 U	3.0 U									
Toluene	5.0	1.0 U	1.0 U	0.37 J									
trans-1,2-Dichloroethene	5.0	2.0 U	2.0 U	2.0 U									
trans-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U									
Trichloroethene	5.0	2.0 U	2.0 U	2.0 U									
Trichlorofluoromethane	5.0	2.0 U	2.0 U	2.0 U									
Vinyl Chloride	2.0	2.0 U	2.0 U	2.0 U									
Total VOCs		42.86	43.59	34.02	45.26	37.52	37.46	36.51	44.89	43.76	36.7	36.04	43.2

μg/L - microgram per liter

F1 - MS and/or MSD recovery exceeds control limits

J - Compound was detected below the reporting limit or concentration is estimated for TICS.

NYSDEC - New York State Department of Environmental Conservation

U - The compound was not detected at the indicated concentration.

B - Compound was found in the blank and sample

Notes:

 $^{^{\}star}$ - NYSDEC Principal Organic Contaminant Standard of 5 $\mu\text{g}/\text{L}$ applies to this compound.

TABLE 3-2
SUMMARY OF GROUNDWATER TREATMENT SYSTEM VOCS (INFLUENT - RW-1)
GLADDING CORDAGE SITE
SOUTH OTSELIC, NEW YORK
NYSDEC SITE NO. 7-09-009

Sample ID	NYSDEC Class	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1
Sampling Date	GA Standard	1/13/2020	2/6/2020	3/12/2020	4/15/2020	5/5/2020	6/15/2020	7/7/2020	8/4/2020	9/16/2020	10/6/2020	11/10/2020	12/8/2020
Volatile Organic Compounds (µ	ıg/L)	•					•	•					
1,1,1-Trichloroethane	5.0	38.1	35.6	31	37	35 F1	39 F1	32	35	39	43	38	40 F1
1,1,2,2-Tetrachloroethane	5.0	2.0 U	2.0 U	0.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	1.0	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	5.0*	1.5 J	1.44 J	1.2	1.4	1.2	1.2	1.2	1.3	1.2	1.5	1.3	1.5
1,1-Dichloroethene	5.0	0.81 J	0.78 J	1.0 U	0.89 J	1.1	1.0	1.1	0.79 J	0.91 J	1.5	1.0	0.56 J
1,2-Dichlorobenzene	3.0	3.0 U	3.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	0.6	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	1.0	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	3.0	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	3.0	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Benzene	1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	50	2.0 U	2.0 U	0.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	50	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane	5.0	2.0 U	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon Tetrachloride	5.0	2.0 U	2.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	5.0	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane	5.0	2.0 U	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform	7.0	2.0 U	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	5.0	2.0 U	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	0.4	2.0 U	2.0 U	0.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Ethyl Benzene	5.0	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
m/p-Xylenes	5.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Methyl tert-butyl Ether	10	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylene Chloride	5.0	5.0 U	5.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.54 J B	1.0 U	1.0 U
o-Xylene	5.0*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	5.0	2.0 U	2.0 U	1.0 U	1.0 U F1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	5.0	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	0.4	2.0 U	2.0 U	0.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	5.0	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane	5.0	2.0 U	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl Chloride	2.0	2.0 U	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Total VOCs		40.41	37.82	32.2	39.29	37.3	41.2	34.3	37.1	41.1	46.0	40.3	42.1

 * - NYSDEC Principal Organic Contaminant Standard of 5 $\mu\text{g}/\text{L}$ applies to this compound.

μg/L - microgram per liter

F1 - MS and/or MSD recovery exceeds control limits

J - Compound was detected below the reporting limit or concentration is estimated for TICS.

NYSDEC - New York State Department of Environmental Conservation

U - The compound was not detected at the indicated concentration.

B - Compound was found in the blank and sample

Notes:

TABLE 3-2
SUMMARY OF GROUNDWATER TREATMENT SYSTEM VOCS (INFLUENT - RW-1)
GLADDING CORDAGE SITE
SOUTH OTSELIC, NEW YORK
NYSDEC SITE NO. 7-09-009

Sample ID	NYSDEC Class	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1
Sampling Date	GA Standard	1/12/2021	2/9/2021	3/9/2021	4/15/2021	5/11/2021	6/23/2021
Volatile Organic Compounds (μ	g/L)						
1,1,1-Trichloroethane	5.0	39	35	39	42	39	38
1,1,2,2-Tetrachloroethane	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	5.0*	1.3	1.2	1.3	1.6	0.93	1.2
1,1-Dichloroethene	5.0	0.82 J	0.79 J	1.0 J	1.1 J	1.0 J	1.0
1,2-Dichlorobenzene	3.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	0.6	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	3.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	3.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Benzene	1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	50	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	50	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon Tetrachloride	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform	7.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	0.4	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Ethyl Benzene	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
m/p-Xylenes	5.0	1.0 U	1.0 U	1.0 U	2.0 U	2.0 U	2.0 U
Methyl tert-butyl Ether	10	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylene Chloride	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
o-Xylene	5.0*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	0.4	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl Chloride	2.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Total VOCs		41.12	36.99	41.3	44.7	40.93	40.2

Notes:

 $^{^{\}star}$ - NYSDEC Principal Organic Contaminant Standard of 5 $\mu\text{g}/\text{L}$ applies to this compound.

μg/L - microgram per liter

F1 - MS and/or MSD recovery exceeds control limits

J - Compound was detected below the reporting limit or concentration is estimated for TICS.

NYSDEC - New York State Department of Environmental Conservation

U - The compound was not detected at the indicated concentration.

B - Compound was found in the blank and sample

^{1.} Concentrations detected above the NYSDEC Class GA Standard are highlighted in yellow.

TABLE 3-3
SUMMARY OF GROUNDWATER TREATMENT SYSTEM VOCS (INFLUENT - RW-2)
GLADDING CORDAGE SITE
SOUTH OTSELIC, NEW YORK
NYSDEC SITE NO. 7-09-009

Sample ID	NYSDEC Class	RW-2	RW-2	RW-2	RW-2									
Sampling Date	GA Standard	1/30/2017	2/27/2017	3/23/2017	4/26/2017	5/24/2017	6/29/2017	7/31/2017	8/28/2017	9/20/2017	10/23/2017	10/25/2017	11/28/2017	12/29/2017
Volatile Organic Compounds (µ	<u> </u>													
1,1,1-Trichloroethane	5.0	30	29	33	26	27	31	25	41	32	28	36	30	32
1,1,2,2-Tetrachloroethane	5.0	2.0 U	2.0 U	2.0 U	2.0 U									
1,1,2-Trichloroethane	1.0	2.0 U	2.0 U	2.0 U	2.0 U									
1,1-Dichloroethane	5.0*	0.63 J	0.66 J	0.76 J	0.63 J	0.65 J	0.75 J	0.64 J	1.0 J	0.72 J	0.66 J	0.9 J	0.82 J	0.71 J
1,1-Dichloroethene	5.0	0.65 J	1.1 J	0.71 J	0.51 J	0.57 J	0.55 J	0.65 J	0.92 J	0.61 J	0.6 J	0.8 J	0.66 J	0.72 J
1,2-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U	2.0 U									
1,2-Dichloroethane	0.6	2.0 U	2.0 U	2.0 U	2.0 U									
1,2-Dichloropropane	1.0	2.0 U	2.0 U	2.0 U	2.0 U									
1,3-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U	2.0 U									
1,4-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U	2.0 U									
Benzene	1.0	1.0 U	1.0 U	1.0 U	1.0 U									
Bromodichloromethane	50	2.0 U	2.0 U	2.0 U	2.0 U									
Bromoform	50	2.0 U	2.0 U	2.0 U	2.0 U									
Bromomethane	5.0	2.0 U	2.0 U	2.0 U	2.0 U									
Carbon Tetrachloride	5.0	2.0 U	2.0 U	2.0 U	2.0 U									
Chlorobenzene	5.0	2.0 U	2.0 U	2.0 U	2.0 U									
Chloroethane	5.0	2.0 U	2.0 U	2.0 U	2.0 U									
Chloroform	7.0	2.0 U	2.0 U	2.0 U	2.0 U									
Chloromethane	5.0	2.0 U	2.0 U	2.0 U	2.0 U									
cis-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U	2.0 U									
Ethyl Benzene	5.0	2.0 U	2.0 U	2.0 U	2.0 U									
m/p-Xylenes	5.0	2.0 U	2.0 U	2.0 U	2.0 U									
Methyl tert-butyl Ether	10	2.0 U	2.0 U	2.0 U	2.0 U									
Methylene Chloride	5.0	5.0 U	5.0 U	5.0 U	5.0 U									
o-Xylene	5.0*	2.0 U	2.0 U	2.0 U	2.0 U									
Tetrachloroethene	5.0	2.0 U	2.0 U	2.0 U	2.0 U									
Toluene	5.0	1.0 U	1.0 U	1.0 U	1.0 U									
trans-1,2-Dichloroethene	5.0	2.0 U	2.0 U	2.0 U	2.0 U									
trans-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U	2.0 U									
Trichloroethene	5.0	2.0 U	2.0 U	2.0 U	2.0 U									
Trichlorofluoromethane	5.0	2.0 U	2.0 U	2.0 U	2.0 U									
Vinyl Chloride	2.0	2.0 U	2.0 U	2.0 U	2.0 U									
Total VOCs		31.28	30.76	34.47	27.14	28.22	32.3	26.29	42.92	33.33	29.26	37.7	31.48	33.43

 * - NYSDEC Principal Organic Contaminant Standard of 5 $\mu\text{g}/\text{L}$ applies to this compound.

μg/L - microgram per liter

F1 - MS and/or MSD recovery exceeds control limits

J - Compound was detected below the reporting limit or concentration is estimated for TICS.

NYSDEC - New York State Department of Environmental Conservation

U - The compound was not detected at the indicated concentration.

B - Compound was found in the blank and sample

Notes:

TABLE 3-3
SUMMARY OF GROUNDWATER TREATMENT SYSTEM VOCS (INFLUENT - RW-2)
GLADDING CORDAGE SITE
SOUTH OTSELIC, NEW YORK
NYSDEC SITE NO. 7-09-009

Sample ID	NYSDEC Class	RW-2	RW-2	RW-2							
Sampling Date	GA Standard	1/29/2018	2/27/2018	3/29/2018	6/22/2018	7/29/2018	8/27/2018	9/27/2018	10/19/2018	11/26/2018	12/16/2018
Volatile Organic Compounds (μ	g/L)										
1,1,1-Trichloroethane	5.0	30	32	29	50	49	51	43	37	29	29
1,1,2,2-Tetrachloroethane	5.0	2.0 U	2.0 U	2.0 U							
1,1,2-Trichloroethane	1.0	2.0 U	2.0 U	2.0 U							
1,1-Dichloroethane	5.0*	0.63 J	0.73 J	0.64 J	1.4 J	1.3 J	1.3 J	0.92 J	0.89 J	0.76 J	0.78 J
1,1-Dichloroethene	5.0	0.61 J	0.67 J	0.57 J	1.2 J	0.93 J	1.1 J	0.92 J	0.85 J	0.75 J	0.75 J
1,2-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U							
1,2-Dichloroethane	0.6	2.0 U	2.0 U	2.0 U							
1,2-Dichloropropane	1.0	2.0 U	2.0 U	2.0 U							
1,3-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U							
1,4-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U							
Benzene	1.0	1.0 U	1.0 U	1.0 U							
Bromodichloromethane	50	2.0 U	2.0 U	2.0 U							
Bromoform	50	2.0 U	2.0 U	2.0 U							
Bromomethane	5.0	5.0 U	2.0 U	5.0 U	5.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.62 J	0.65 J
Carbon Tetrachloride	5.0	2.0 U	2.0 U	2.0 U							
Chlorobenzene	5.0	2.0 U	2.0 U	2.0 U							
Chloroethane	5.0	2.0 U	2.0 U	2.0 U							
Chloroform	7.0	2.0 U	2.0 U	2.0 U							
Chloromethane	5.0	2.0 U	2.0 U	2.0 U							
cis-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U							
Ethyl Benzene	5.0	2.0 U	2.0 U	2.0 U							
m/p-Xylenes	5.0	2.0 U	2.0 U	2.0 U							
Methyl tert-butyl Ether	10	2.0 U	2.0 U	2.0 U							
Methylene Chloride	5.0	5.0 U	5.0 U	5.0 U							
o-Xylene	5.0*	2.0 U	2.0 U	2.0 U							
Tetrachloroethene	5.0	2.0 U	2.0 U	2.0 U							
Toluene	5.0	1.0 U	1.0 U	1.0 U							
trans-1,2-Dichloroethene	5.0	2.0 U	2.0 U	2.0 U							
trans-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U							
Trichloroethene	5.0	2.0 U	2.0 U	2.0 U							
Trichlorofluoromethane	5.0	2.0 U	2.0 U	2.0 U							
Vinyl Chloride	2.0	2.0 U	2.0 U	2.0 U							
Total VOCs		31.24	33.4	30.21	52.6	51.23	53.4	44.84	38.74	30.51	30.53

 * - NYSDEC Principal Organic Contaminant Standard of 5 $\mu\text{g}/\text{L}$ applies to this compound.

μg/L - microgram per liter

F1 - MS and/or MSD recovery exceeds control limits

J - Compound was detected below the reporting limit or concentration is estimated for TICS.

NYSDEC - New York State Department of Environmental Conservation

U - The compound was not detected at the indicated concentration.

B - Compound was found in the blank and sample

Notes:

TABLE 3-3
SUMMARY OF GROUNDWATER TREATMENT SYSTEM VOCS (INFLUENT - RW-2)
GLADDING CORDAGE SITE
SOUTH OTSELIC, NEW YORK
NYSDEC SITE NO. 7-09-009

Sample ID	NYSDEC Class	RW-2	RW-2	RW-2									
Sampling Date	GA Standard	1/21/2019	2/14/2019	3/26/2019	4/30/2019	5/20/2019	6/22/2019	7/26/2019	8/15/2019	9/26/2019	10/25/2019	11/22/2019	12/12/2019
Volatile Organic Compounds (µ													
1,1,1-Trichloroethane	5.0	27.8	40.2	28	43.2	29.2	29.5	27.9	34.2	38.4	26.9	25.8	32.6
1,1,2,2-Tetrachloroethane	5.0	2.0 U	2.0 U	2.0 U									
1,1,2-Trichloroethane	1.0	2.0 U	2.0 U	2.0 U									
1,1-Dichloroethane	5.0*	0.67 J	0.9 J	0.54 J	1.0 J	0.63 J	0.7 J	2.0 U	0.67 J	1.05 J	0.73 J	0.73 J	0.79 J
1,1-Dichloroethene	5.0	4.1	0.78 J	0.61 J	1.05 J	0.68 J	0.66 J	0.67 J	0.57 J	0.95 J	0.73 J	0.69 J	0.68 J
1,2-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U									
1,2-Dichloroethane	0.6	2.0 U	2.0 U	2.0 U									
1,2-Dichloropropane	1.0	2.0 U	2.0 U	2.0 U									
1,3-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U									
1,4-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U									
Benzene	1.0	1.0 U	1.0 U	1.0 U									
Bromodichloromethane	50	2.0 U	2.0 U	2.0 U									
Bromoform	50	2.0 U	2.0 U	2.0 U									
Bromomethane	50	2.0 U	2.0 U	2.0 U									
Carbon Tetrachloride	50	2.0 U	2.0 U	2.0 U									
Chlorobenzene	50	2.0 U	2.0 U	2.0 U									
Chloroethane	50	2.0 U	2.0 U	2.0 U									
Chloroform	50	2.0 U	2.0 U	2.0 U									
Chloromethane	50	2.0 U	2.0 U	2.0 U									
cis-1,3-Dichloropropene	50	2.0 U	2.0 U	2.0 U									
Ethyl Benzene	50	2.0 U	2.0 U	2.0 U									
m/p-Xylenes	50	2.0 U	2.0 U	2.0 U									
Methyl tert-butyl Ether	50	2.0 U	2.0 U	2.0 U									
Methylene Chloride	50	5.0 U	5.0 U	5.0 U									
o-Xylene	50	2.0 U	2.0 U	2.0 U									
Tetrachloroethene	50	2.0 U	2.0 U	2.0 U									
Toluene	50	1.0 U	1.0 U	1.0 U									
trans-1,2-Dichloroethene	50	2.0 U	2.0 U	2.0 U									
trans-1,3-Dichloropropene	50	2.0 U	2.0 U	2.0 U									
Trichloroethene	50	2.0 U	2.0 U	2.0 U									
Trichlorofluoromethane	50	2.0 U	2.0 U	2.0 U									
Vinyl Chloride	50	2.0 U	2.0 U	2.0 U									
Total VOCs		32.57	41.88	29.15	45.25	30.51	30.86	28.57	35.44	40.4	28.36	27.22	34.07

 * - NYSDEC Principal Organic Contaminant Standard of 5 $\mu\text{g}/\text{L}$ applies to this compound.

μg/L - microgram per liter

F1 - MS and/or MSD recovery exceeds control limits

J - Compound was detected below the reporting limit or concentration is estimated for TICS.

NYSDEC - New York State Department of Environmental Conservation

U - The compound was not detected at the indicated concentration.

B - Compound was found in the blank and sample

Notes:

TABLE 3-3
SUMMARY OF GROUNDWATER TREATMENT SYSTEM VOCS (INFLUENT - RW-2)
GLADDING CORDAGE SITE
SOUTH OTSELIC, NEW YORK
NYSDEC SITE NO. 7-09-009

Sample ID	NYSDEC Class	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2
Sampling Date	GA Standard	1/13/2020	2/6/2020	3/12/2020	4/15/2020	5/5/2020	6/15/2020	7/7/2020	8/4/2020	9/16/2020	10/6/2020	11/10/2020	12/8/2020
Volatile Organic Compounds (µ	ıg/L)												
1,1,1-Trichloroethane	5.0	28.4	29.9	26	24	29	43	28	29	32	32	29	30
1,1,2,2-Tetrachloroethane	5.0	2.0 U	2.0 U	0.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	1.0	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	5.0*	0.65 J	0.7 J	1.0 U	0.62 J	0.61 J	0.82 J	0.62 J	0.69 J	0.62 J	0.75 J	0.64 J	0.61 J
1,1-Dichloroethene	5.0	0.57 J	0.64 J	1.0 U	0.6 J	0.78 J	1.0	0.95 J	0.76 J	0.65 J	1.3	0.67 J	0.53 J
1,2-Dichlorobenzene	3.0	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	0.6	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	1.0	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	3.0	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	3.0	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Benzene	1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	50	2.0 U	2.0 U	0.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	50	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane	5.0	2.0 U	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon Tetrachloride	5.0	2.0 U	2.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	5.0	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane	5.0	2.0 U	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform	7.0	2.0 U	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	5.0	2.0 U	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	0.4	2.0 U	2.0 U	0.50 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Ethyl Benzene	5.0	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
m/p-Xylenes	5.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Methyl tert-butyl Ether	10	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylene Chloride	5.0	5.0 U	5.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.52 JB	1.0 U	1.0 U
o-Xylene	5.0*	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	5.0	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	5.0	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	0.4	2.0 U	2.0 U	0.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	5.0	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane	5.0	2.0 U	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl Chloride	2.0	2.0 U	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Total VOCs		29.62	31.24	26	25.22	30.4	44.8	29.6	30.5	33.3	34.1	30.3	31.1

 * - NYSDEC Principal Organic Contaminant Standard of 5 $\mu\text{g}/\text{L}$ applies to this compound.

μg/L - microgram per liter

F1 - MS and/or MSD recovery exceeds control limits

J - Compound was detected below the reporting limit or concentration is estimated for TICS.

NYSDEC - New York State Department of Environmental Conservation

U - The compound was not detected at the indicated concentration.

B - Compound was found in the blank and sample

Notes:

TABLE 3-3
SUMMARY OF GROUNDWATER TREATMENT SYSTEM VOCS (INFLUENT - RW-2)
GLADDING CORDAGE SITE
SOUTH OTSELIC, NEW YORK
NYSDEC SITE NO. 7-09-009

Sample ID	NYSDEC	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2
Sampling Date	Class GA	1/12/2021	2/9/2021	3/9/2021	4/15/2021	5/11/2021	6/23/2021
Volatile Organic Compounds							
1,1,1-Trichloroethane	5.0	28	28	30	32	33	32
1,1,2,2-Tetrachloroethane	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	5.0*	0.56 J	0.67 J	0.65 U	0.68 J	0.81 J	0.66 J
1,1-Dichloroethene	5.0	0.58 J	0.52 J	0.77 U	0.9 J	1.1 J	0.83 J
1,2-Dichlorobenzene	3.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	0.6	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	3.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	3.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Benzene	1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	50	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	50	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon Tetrachloride	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform	7.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	0.4	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Ethyl Benzene	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
m/p-Xylenes	5.0	1.0 U	1.0 U	1.0 U	2.0 U	2.0 U	2.0 U
Methyl tert-butyl Ether	10	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylene Chloride	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
o-Xylene	5.0*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	0.4	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl Chloride	2.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Total VOCs		29.14	29.19	31	33.59	34.91	33.49

 * - NYSDEC Principal Organic Contaminant Standard of 5 $\mu\text{g}/\text{L}$ applies to this compound.

μg/L - microgram per liter

F1 - MS and/or MSD recovery exceeds control limits

J - Compound was detected below the reporting limit or concentration is estimated for TICS.

NYSDEC - New York State Department of Environmental Conservation

U - The compound was not detected at the indicated concentration.

B - Compound was found in the blank and sample

Notes:

TABLE 3-4
SUMMARY OF GROUNDWATER TREATMENT SYSTEM VOCS (EFFLUENT)
GLADDING CORDAGE SITE
SOUTH OTSELIC, NEW YORK
NYSDEC SITE NO. 7-09-009

Sample ID	NYSDEC Class	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)									
Sampling Date	GA Standard	1/30/2017	2/27/2017	3/23/2017	4/26/2017	5/24/2017	6/29/2017	7/31/2017	8/28/2017	9/20/2017	10/23/2017	10/25/2017	11/28/2017	12/29/2017
Volatile Organic Compounds (μg/L)														
1,1,1-Trichloroethane	5.0	1.0 U	1.0 U	1.0 U	1.0 U	0.22	1.0 U	1.0 U	1.0 U	1.0 U				
1,1,2,2-Tetrachloroethane	5.0	2.0 U	2.0 U	2.0 U	2.0 U									
1,1,2-Trichloroethane	1.0	2.0 U	2.0 U	2.0 U	2.0 U									
1,1-Dichloroethane	5.0*	2.0 U	2.0 U	2.0 U	2.0 U									
1,1-Dichloroethene	5.0	2.0 U	2.0 U	2.0 U	2.0 U									
1,2-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U	2.0 U									
1,2-Dichloroethane	0.6	2.0 U	2.0 U	2.0 U	2.0 U									
1,2-Dichloropropane	1.0	2.0 U	2.0 U	2.0 U	2.0 U									
1,3-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U	2.0 U									
1,4-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U	2.0 U									
Benzene	1.0	1.0 U	1.0 U	1.0 U	1.0 U									
Bromodichloromethane	50	2.0 U	2.0 U	2.0 U	2.0 U									
Bromoform	50	2.0 U	2.0 U	2.0 U	2.0 U									
Bromomethane	5.0	2.0 U	2.0 U	2.0 U	2.0 U									
Carbon Tetrachloride	5.0	2.0 U	2.0 U	2.0 U	2.0 U									
Chlorobenzene	5.0	2.0 U	2.0 U	2.0 U	2.0 U									
Chloroethane	5.0	2.0 U	2.0 U	2.0 U	2.0 U									
Chloroform	7.0	2.0 U	2.0 U	2.0 U	2.0 U									
Chloromethane	5.0	2.0 U	2.0 U	0.66 J	2.0 U	2.0 U	2.0 U	2.0 U						
cis-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U	2.0 U									
Dibromochloromethane	50	2.0 U	2.0 U	2.0 U	2.0 U									
Ethyl Benzene	5.0	2.0 U	2.0 U	2.0 U	2.0 U									
m/p-Xylenes	5.0	2.0 U	2.0 U	2.0 U	2.0 U									
Methyl tert-butyl Ether	10	2.0 U	2.0 U	2.0 U	2.0 U									
Methylene Chloride	5.0	5.0 U	5.0 U	5.0 U	5.0 U									
o-Xylene	5.0*	2.0 U	2.0 U	2.0 U	2.0 U									
Tetrachloroethene	5.0	2.0 U	2.0 U	2.0 U	2.0 U									
Toluene	5.0	1.0 U	1.0 U	1.0 U	1.0 U									
trans-1,2-Dichloroethene	5.0	2.0 U	2.0 U	2.0 U	2.0 U									
trans-1,3-Dichloropropene	0.4	5.0 U	5.0 U	5.0 U	5.0 U									
Trichloroethene	5.0	2.0 U	2.0 U	2.0 U	2.0 U									
Trichlorofluoromethane	5.0	2.0 U	2.0 U	2.0 U	2.0 U									
Vinyl Chloride	2.0	2.0 U	2.0 U	2.0 U	2.0 U									
Total VOCs		ND	ND	0.66	ND	0.22	ND	ND	ND	ND	ND	ND	ND	ND

* - NYSDEC Principal Organic Contaminant Standard of 5 μg/L applies to this compound.

μg/L - microgram per liter

J - Compound was detected below the reporting limit or concentration is estimated for TICS.

NA - Not analyzed

ND - Non-detect

NYSDEC - New York State Department of Environmental Conservation

U - The compound was not detected at the indicated concentration.

B - Compound was found in the blank and sample

Notes

TABLE 3-4
SUMMARY OF GROUNDWATER TREATMENT SYSTEM VOCS (EFFLUENT)
GLADDING CORDAGE SITE
SOUTH OTSELIC, NEW YORK
NYSDEC SITE NO. 7-09-009

Sample ID	NYSDEC Class	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)								
Sampling Date	GA Standard	1/29/2018	1/30/2018	2/26/2018	3/29/2018	6/22/2018	7/29/2018	8/28/2018	9/27/2018	10/19/2018	11/26/2018	12/16/2018
Volatile Organic Compounds (μg/L)												
1,1,1-Trichloroethane	5.0	2.0 U	2.0 U	2.0 U								
1,1,2,2-Tetrachloroethane	5.0	2.0 U	2.0 U	2.0 U								
1,1,2-Trichloroethane	1.0	2.0 U	2.0 U	2.0 U								
1,1-Dichloroethane	5.0*	2.0 U	2.0 U	2.0 U								
1,1-Dichloroethene	5.0	2.0 U	2.0 U	2.0 U								
1,2-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U								
1,2-Dichloroethane	0.6	2.0 U	2.0 U	2.0 U								
1,2-Dichloropropane	1.0	2.0 U	2.0 U	2.0 U								
1,3-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U								
1,4-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U								
Benzene	1.0	1.0 U	1.0 U	1.0 U								
Bromodichloromethane	50	2.0 U	2.0 U	2.0 U								
Bromoform	50	2.0 U	2.0 U	2.0 U								
Bromomethane	5.0	2.0 U	5.0 U	2.0 U	0.82 J	0.93 J						
Carbon Tetrachloride	5.0	2.0 U	2.0 U	2.0 U								
Chlorobenzene	5.0	2.0 U	2.0 U	2.0 U								
Chloroethane	5.0	2.0 U	2.0 U	2.0 U								
Chloroform	7.0	2.0 U	2.0 U	2.0 U								
Chloromethane	5.0	2.0 U	2.0 U	2.0 U								
cis-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U								
Dibromochloromethane	50	2.0 U	NA	2.0 U	2.0 U	2.0 U						
Ethyl Benzene	5.0	2.0 U	2.0 U	2.0 U								
m/p-Xylenes	5.0	2.0 U	2.0 U	2.0 U								
Methyl tert-butyl Ether	10	2.0 U	2.0 U	2.0 U								
Methylene Chloride	5.0	5.0 U	5.0 U	5.0 U								
o-Xylene	5.0*	2.0 U	2.0 U	2.0 U								
Tetrachloroethene	5.0	2.0 U	2.0 U	2.0 U								
Toluene	5.0	1.0 U	1.0 U	1.0 U								
trans-1,2-Dichloroethene	5.0	2.0 U	2.0 U	2.0 U								
trans-1,3-Dichloropropene	0.4	5.0 U	2.0 U	2.0 U	5.0 U	5.0 U	2.0 U					
Trichloroethene	5.0	2.0 U	2.0 U	2.0 U								
Trichlorofluoromethane	5.0	2.0 U	2.0 U	2.0 U								
Vinyl Chloride	2.0	2.0 U	2.0 U	2.0 U								
Total VOCs		ND	0.82	0.93								

 * - NYSDEC Principal Organic Contaminant Standard of 5 $\mu\text{g}/\text{L}$ applies to this compound.

μg/L - microgram per liter

J - Compound was detected below the reporting limit or concentration is estimated for TICS.

NA - Not analyzed

ND - Non-detect

NYSDEC - New York State Department of Environmental Conservation

U - The compound was not detected at the indicated concentration.

B - Compound was found in the blank and sample

Notes

TABLE 3-4
SUMMARY OF GROUNDWATER TREATMENT SYSTEM VOCS (EFFLUENT)
GLADDING CORDAGE SITE
SOUTH OTSELIC, NEW YORK
NYSDEC SITE NO. 7-09-009

Sample ID	NYSDEC Class	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)									
Sampling Date	GA Standard	1/21/2019	2/14/2019	3/26/2019	4/30/2019	5/20/2019	6/22/219	7/26/2019	8/15/2019	9/26/2019	10/25/2019	11/22/2019	12/12/2020
Volatile Organic Compounds (μg/L)												
1,1,1-Trichloroethane	5.0	2.0 U	2.0 U	2.0 U									
1,1,2,2-Tetrachloroethane	5.0	2.0 U	2.0 U	2.0 U									
1,1,2-Trichloroethane	1.0	2.0 U	2.0 U	2.0 U									
1,1-Dichloroethane	5.0*	2.0 U	2.0 U	2.0 U									
1,1-Dichloroethene	5.0	2.0 U	2.0 U	2.0 U									
1,2-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U									
1,2-Dichloroethane	0.6	2.0 U	2.0 U	2.0 U									
1,2-Dichloropropane	1.0	2.0 U	2.0 U	2.0 U									
1,3-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U									
1,4-Dichlorobenzene	3.0	2.0 U	2.0 U	2.0 U									
Benzene	1.0	1.0 U	1.0 U	1.0 U									
Bromodichloromethane	50	2.0 U	2.0 U	2.0 U									
Bromoform	50	2.0 U	2.0 U	2.0 U									
Bromomethane	5.0	2.0 U	2.0 U	2.0 U									
Carbon Tetrachloride	5.0	2.0 U	2.0 U	2.0 U									
Chlorobenzene	5.0	2.0 U	2.0 U	2.0 U									
Chloroethane	5.0	2.0 U	2.0 U	2.0 U									
Chloroform	7.0	2.0 U	2.0 U	2.0 U									
Chloromethane	5.0	2.0 U	2.0 U	2.0 U									
cis-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U									
Dibromochloromethane	50	2.0 U	2.0 U	2.0 U									
Ethyl Benzene	5.0	2.0 U	2.0 U	2.0 U									
m/p-Xylenes	5.0	2.0 U	2.0 U	2.0 U									
Methyl tert-butyl Ether	10	2.0 U	2.0 U	2.0 U									
Methylene Chloride	5.0	5.0 U	5.0 U	5.0 U									
o-Xylene	5.0*	2.0 U	2.0 U	2.0 U									
Tetrachloroethene	5.0	2.0 U	2.0 U	2.0 U									
Toluene	5.0	1.0 U	1.0 U	1.0 U									
trans-1,2-Dichloroethene	5.0	2.0 U	2.0 U	2.0 U									
trans-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U									
Trichloroethene	5.0	2.0 U	2.0 U	2.0 U									
Trichlorofluoromethane	5.0	2.0 U	2.0 U	2.0 U									
Vinyl Chloride	2.0	2.0 U	2.0 U	2.0 U									
Total VOCs		ND	ND	ND									

 * - NYSDEC Principal Organic Contaminant Standard of 5 $\mu\text{g}/\text{L}$ applies to this compound.

μg/L - microgram per liter

J - Compound was detected below the reporting limit or concentration is estimated for TICS.

NA - Not analyzed

ND - Non-detect

NYSDEC - New York State Department of Environmental Conservation

U - The compound was not detected at the indicated concentration.

B - Compound was found in the blank and sample

Notes

TABLE 3-4
SUMMARY OF GROUNDWATER TREATMENT SYSTEM VOCS (EFFLUENT)
GLADDING CORDAGE SITE
SOUTH OTSELIC, NEW YORK
NYSDEC SITE NO. 7-09-009

Sample ID	NYSDEC Class	EFF(46HZ)	EFF(46HZ)										
Sampling Date	GA Standard	1/13/2020	2/6/2020	3/12/2020	4/15/2020	5/5/2020	6/15/2020	7/7/2020	8/4/2020	9/16/2020	10/6/2020	11/10/2020	12/8/2020
Volatile Organic Compounds (μg/L)													
1,1,1-Trichloroethane	5.0	2.0 U	2.0 U										
1,1,2,2-Tetrachloroethane	5.0	2.0 U	2.0 U										
1,1,2-Trichloroethane	1.0	2.0 U	2.0 U										
1,1-Dichloroethane	5.0*	2.0 U	2.0 U										
1,1-Dichloroethene	5.0	2.0 U	2.0 U										
1,2-Dichlorobenzene	3.0	2.0 U	2.0 U										
1,2-Dichloroethane	0.6	2.0 U	2.0 U										
1,2-Dichloropropane	1.0	2.0 U	2.0 U										
1,3-Dichlorobenzene	3.0	2.0 U	2.0 U										
1,4-Dichlorobenzene	3.0	2.0 U	2.0 U										
Benzene	1.0	1.0 U	1.0 U										
Bromodichloromethane	50	2.0 U	2.0 U										
Bromoform	50	2.0 U	2.0 U										
Bromomethane	5.0	2.0 U	2.0 U										
Carbon Tetrachloride	5.0	2.0 U	2.0 U										
Chlorobenzene	5.0	2.0 U	2.0 U										
Chloroethane	5.0	2.0 U	2.0 U										
Chloroform	7.0	2.0 U	2.0 U										
Chloromethane	5.0	2.0 U	2.0 U										
cis-1,3-Dichloropropene	0.4	2.0 U	2.0 U										
Dibromochloromethane	50	2.0 U	2.0 U										
Ethyl Benzene	5.0	2.0 U	2.0 U										
m/p-Xylenes	5.0	2.0 U	2.0 U										
Methyl tert-butyl Ether	10	2.0 U	2.0 U										
Methylene Chloride	5.0	5.0 U	0.6 J B	5.0 U	5.0 U								
o-Xylene	5.0*	2.0 U	2.0 U										
Tetrachloroethene	5.0	2.0 U	2.0 U										
Toluene	5.0	1.0 U	1.0 U										
trans-1,2-Dichloroethene	5.0	2.0 U	2.0 U										
trans-1,3-Dichloropropene	0.4	2.0 U	2.0 U										
Trichloroethene	5.0	2.0 U	2.0 U										
Trichlorofluoromethane	5.0	2.0 U	2.0 U										
Vinyl Chloride	2.0	2.0 U	2.0 U										
Total VOCs		ND	0.6	ND	ND								

Definitions:

 * - NYSDEC Principal Organic Contaminant Standard of 5 $\mu\text{g}/\text{L}$ applies to this compound.

μg/L - microgram per liter

J - Compound was detected below the reporting limit or concentration is estimated for TICS.

NA - Not analyzed

ND - Non-detect

NYSDEC - New York State Department of Environmental Conservation

U - The compound was not detected at the indicated concentration.

B - Compound was found in the blank and sample

Notes

1. Concentrations detected above the NYSDEC Class GA Standard are highlighted in yellow.

TABLE 3-4
SUMMARY OF GROUNDWATER TREATMENT SYSTEM VOCS (EFFLUENT)
GLADDING CORDAGE SITE
SOUTH OTSELIC, NEW YORK
NYSDEC SITE NO. 7-09-009

Sample ID	NYSDEC Class	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)
Sampling Date	GA Standard	1/12/2021	2/9/2021	3/9/2021	4/15/2021	5/11/2021	6/23/2021
Volatile Organic Compounds (μg/L)							
1,1,1-Trichloroethane	5.0	1.0 U					
1,1,2,2-Tetrachloroethane	5.0	1.0 U					
1,1,2-Trichloroethane	1.0	1.0 U					
1,1-Dichloroethane	5.0*	1.0 U					
1,1-Dichloroethene	5.0	1.0 U					
1,2-Dichlorobenzene	3.0	1.0 U					
1,2-Dichloroethane	0.6	1.0 U					
1,2-Dichloropropane	1.0	1.0 U					
1,3-Dichlorobenzene	3.0	1.0 U					
1,4-Dichlorobenzene	3.0	1.0 U					
Benzene	1.0	1.0 U					
Bromodichloromethane	50	1.0 U					
Bromoform	50	1.0 U					
Bromomethane	5.0	1.0 U					
Carbon Tetrachloride	5.0	1.0 U					
Chlorobenzene	5.0	1.0 U					
Chloroethane	5.0	1.0 U					
Chloroform	7.0	1.0 U					
Chloromethane	5.0	1.0 U					
cis-1,3-Dichloropropene	0.4	1.0 U					
Dibromochloromethane	50	1.0 U					
Ethyl Benzene	5.0	1.0 U					
m/p-Xylenes	5.0	1.0 U	1.0 U	1.0 U	2.0 U	2.0 U	2.0 U
Methyl tert-butyl Ether	10	1.0 U					
Methylene Chloride	5.0	1.0 U					
o-Xylene	5.0*	1.0 U					
Tetrachloroethene	5.0	1.0 U					
Toluene	5.0	1.0 U					
trans-1,2-Dichloroethene	5.0	1.0 U					
trans-1,3-Dichloropropene	0.4	1.0 U					
Trichloroethene	5.0	1.0 U					
Trichlorofluoromethane	5.0	1.0 U					
Vinyl Chloride	2.0	1.0 U					
Total VOCs		ND	ND	ND	ND	ND	ND

Definitions:

* - NYSDEC Principal Organic Contaminant Standard of 5 μg/L applies to this compound.

μg/L - microgram per liter

J - Compound was detected below the reporting limit or concentration is estimated for TICS.

NA - Not analyzed

ND - Non-detect

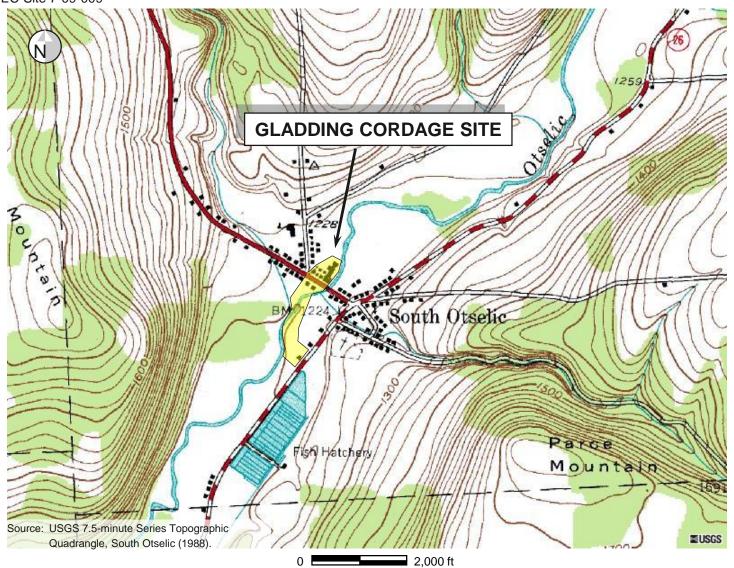
NYSDEC - New York State Department of Environmental Conservation

U - The compound was not detected at the indicated concentration.

B - Compound was found in the blank and sample

Notes

1. Concentrations detected above the NYSDEC Class GA Standard are highlighted in yellow.



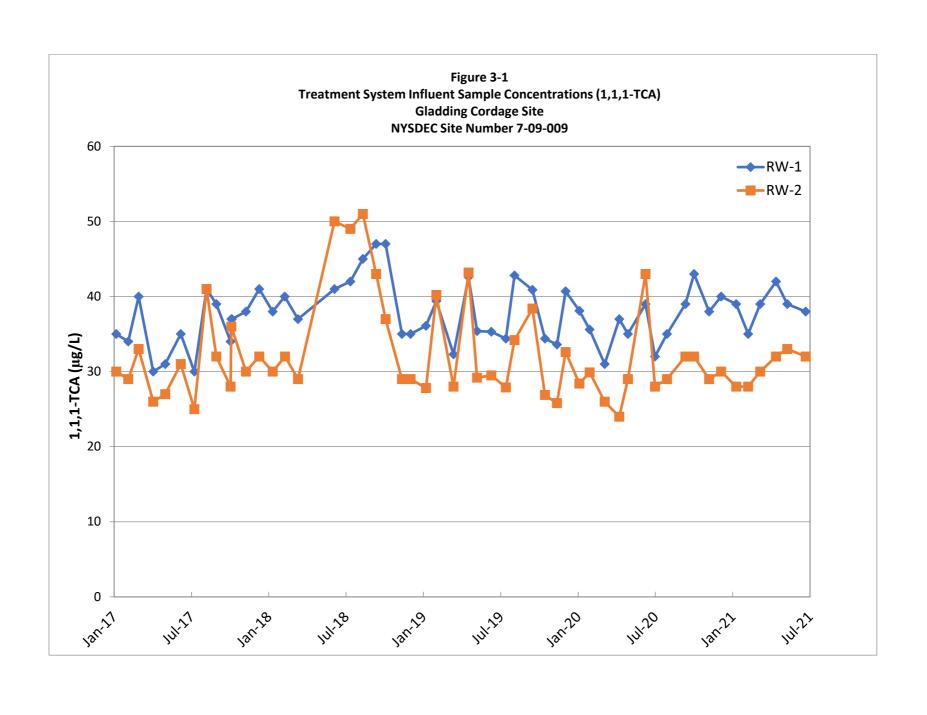

FIGURES

Figure 2-1 Site Location

Gladding Cordage Site South Otselic, New York NYSDEC Site 7-09-009

APPENDIX A

O&M Checklists

Gladding Cordage	Date 4/15/21	
South Otselic, New York	Inspector Jason Guthowshi	
NYSDEC Site #709009	Time 1100	
NYSDEC Sile #709009		
Treatment System Operation	Alarms	
System On (Y/N)	A/C Fail (Y/N)	NO
RW-1 On (Y/N)	RW-1 (Y/N)	NO
RW-2 On (Y/N)	RW-2 (Y/N)	NO
Blower On (Y/N)	Blower Pressure (Y/N)	NO
Sump Pump On (Y/N)	Sump Level (Y/N)	NS
Recovery Wells RW-1		RW-2
Flow Rate (GPM 15	- 3	21.7
Total Flow (Gallons) See Emai		ee Email
Vater Level (Feet Above Probe) 27.3		156.65 375
Probe Depth (Feet BTOC)	59 system / 25,56 59.75 0ff / 000	
ir Stripper		
lower VFD Setting (Hertz) 46	Intake/Exhaust Piping OK? (Y/N)	ves.
ystem Pressure (inches water) 10.	Water Leaks (Y/N)	NO
fluent/Effluent Piping OK? (Y/N)	VA/-4 Τ	50
eat Exchanger	Building Temperature (°F)	59.0
eat (On/Off) yes (Low)	Building Temperature (°F) Heat Exchanger Pressure (PSI)	59.0
是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	Building Temperature (°F) Heat Exchanger Pressure (PSI)	59.0
eat (On/Off) eat Exchanger Flow (GPM) eneral Building/Site	Heat Exchanger Pressure (PSI)	2.1
eat (On/Off) eat Exchanger Flow (GPM) eneral Building/Site ailding Condition OK? (Y/N)	Heat Exchanger Pressure (PSI) Circuit Breakers Checked (Y/N)	
eat (On/Off) eat Exchanger Flow (GPM) eneral Building/Site ailding Condition OK? (Y/N)	Heat Exchanger Pressure (PSI) Circuit Breakers Checked (Y/N) Outfall Condition OK? (Y/N)	2.1
eat (On/Off) eat Exchanger Flow (GPM) eneral Building/Site ailding Condition OK? (Y/N)	Circuit Breakers Checked (Y/N) Outfall Condition OK? (Y/N)	yes
eat (On/Off) eat Exchanger Flow (GPM) eneral Building/Site filding Condition OK? (Y/N) ass Mowed (Y/N) NO (NO+ Next	Circuit Breakers Checked (Y/N) Outfall Condition OK? (Y/N)	yes yes
eat (On/Off) eat Exchanger Flow (GPM) eneral Building/Site filding Condition OK? (Y/N) ass Mowed (Y/N) onitoring Wells OK? (Y/N) otes:	Circuit Breakers Checked (Y/N) Outfall Condition OK? (Y/N)	yes yes
eat (On/Off) eat Exchanger Flow (GPM) eneral Building/Site filding Condition OK? (Y/N) ass Mowed (Y/N) onitoring Wells OK? (Y/N) otes: mpled: RW-1 yes (Low)	Circuit Breakers Checked (Y/N) Outfall Condition OK? (Y/N)	yes yes
eat (On/Off) eat Exchanger Flow (GPM) eneral Building/Site filding Condition OK? (Y/N) ass Mowed (Y/N) onitoring Wells OK? (Y/N) filding Condition OK? (Y/N) Arc (No+ Next) filding Condition OK? (Y/N)	Circuit Breakers Checked (Y/N) Outfall Condition OK? (Y/N)	yes yes
eat (On/Off) eat Exchanger Flow (GPM) eneral Building/Site filding Condition OK? (Y/N) ass Mowed (Y/N) onitoring Wells OK? (Y/N) Personal Building/Site filding Condition OK? (Y/N) April 1	Circuit Breakers Checked (Y/N) Outfall Condition OK? (Y/N) Samples Collected (Y/N)	yes yes
eat (On/Off) eat Exchanger Flow (GPM) eneral Building/Site filding Condition OK? (Y/N) ass Mowed (Y/N) onitoring Wells OK? (Y/N) filding Condition OK? (Y/N) AND (NO+ NE) Otes: TCL UC T	Circuit Breakers Checked (Y/N) Outfall Condition OK? (Y/N) Samples Collected (Y/N)	yes yes
eat (On/Off) eat Exchanger Flow (GPM) eneral Building/Site filding Condition OK? (Y/N) ass Mowed (Y/N) onitoring Wells OK? (Y/N) filding Condition OK? (Y/N) AND (NO+ NE) ONES: TOLL UC RW-2	Circuit Breakers Checked (Y/N) Outfall Condition OK? (Y/N) Samples Collected (Y/N)	yes yes
eat (On/Off) eat Exchanger Flow (GPM) eneral Building/Site filding Condition OK? (Y/N) ass Mowed (Y/N) onitoring Wells OK? (Y/N) filding Condition OK? (Y/N) AND (NO+ NE) Otes: TCL UC T	Circuit Breakers Checked (Y/N) Outfall Condition OK? (Y/N) Samples Collected (Y/N)	yes yes
eat (On/Off) eat Exchanger Flow (GPM) eneral Building/Site filding Condition OK? (Y/N) ass Mowed (Y/N) onitoring Wells OK? (Y/N) filding Condition OK? (Y/N) AND (NO+ NE) ONES: TOLL UC RW-2	Circuit Breakers Checked (Y/N) Outfall Condition OK? (Y/N) Samples Collected (Y/N)	yes yes
eat (On/Off) eat Exchanger Flow (GPM) eneral Building/Site filding Condition OK? (Y/N) ass Mowed (Y/N) onitoring Wells OK? (Y/N) filding Condition OK? (Y/N) About 1	Circuit Breakers Checked (Y/N) Outfall Condition OK? (Y/N) Samples Collected (Y/N)	yes yes
eat (On/Off) eat Exchanger Flow (GPM) eneral Building/Site filding Condition OK? (Y/N) ass Mowed (Y/N) onitoring Wells OK? (Y/N) PW 1 MS RW 1 MS RW-2 EFF 46 HZ ewalk and well inspection:	Circuit Breakers Checked (Y/N) Outfall Condition OK? (Y/N) Samples Collected (Y/N)	yes yes
eat (On/Off) eat Exchanger Flow (GPM) eneral Building/Site filding Condition OK? (Y/N) ass Mowed (Y/N) onitoring Wells OK? (Y/N) PW 1 MS RW 1 MS RW-2 EFF 46 HZ ewalk and well inspection:	Circuit Breakers Checked (Y/N) Outfall Condition OK? (Y/N) Samples Collected (Y/N)	yes yes

Gladding Cordage		Date 5/11/21	
South Otselic, New York		Inspector Jason Gutkon	ws ki
NYSDEC Site #709009		Time 1530	
Freatment System Operation		Alarms	
System On (Y/N)	Ves	A/C Fail (Y/N)	NO
RW-1 On (Y/N)	ves	RW-1 (Y/N)	NO
RW-2 On (Y/N)	ues	RW-2 (Y/N)	NO
Blower On (Y/N)		Blower Pressure (Y/N)	NO
Sump Pump On (Y/N)	NO	Sump Level (Y/N)	NO
Recovery Wells	RW-1		RW-2
Flow Rate (GPM	15.2		21.5
Total Flow (Gallons)	see Email		See Email
Water Level (Feet Above Probe)	3.70		55.79
Probe Depth (Feet BTOC)	3.70		55:17
Air Stripper			
Blower VFD Setting (Hertz)	46.0	Intake/Exhaust Piping OK? (Y/N)	V
System Pressure (inches water)	10.0	Water Leaks (Y/N)	6
Influent/Effluent Piping OK? (Y/N)	V	Water Temperature (°F)	50
Hoof Evolunes			
Heat Exchanger Heat (On/Off)	y Low	Building Temperature (°F)	1 / //
Heat Exchanger Flow (GPM)	9 000	Heat Exchanger Pressure (PSI)	66.4
		_	1.4
General Building/Site			
Building Condition OK? (Y/N)	yes	Circuit Breakers Checked (Y/N)	405
Grass Mowed (Y/N)	yes	Outfall Condition OK? (Y/N)	ves
Monitoring Wells OK? (Y/N)	NO	Samples Collected (Y/N)	yes
Notes:			
Sampled: RW-1 - 152	5		
- RW-1-MS			
RW-1-MSD _			
T	CL . VOC'S		
RW-2 - 1520)		
EFF 46 HZ - 1515			
Site walk and well inspection:			
System inspection:			

Gladding Cordage	Date 5 / 2 5 / 2 1
South Otselic, New York	Inspector Jason Gutkowski
NYSDEC Site #709009	Time
Treatment System Operation	Alarms
System On (Y/N)	A/C Fail (Y/N)
RW-1 On (Y/N)	RW-1 (Y/N)
RW-2 On (Y/N)	RW-2 (Y/N)
Blower On (Y/N)	Blower Pressure (Y/N)
Sump Pump On (Y/N)	Sump Level (Y/N)
Recovery Wells RW-1	RW-2
Flow Rate (GPM / 4) . %	_ 70.5
Total Flow (Gallons) 2,379,464	3087,886
Water Level (Feet Above Probe) 23.66	54.69
Probe Depth (Feet BTOC)	
Air Stripper	
Blower VFD Setting (Hertz) 46.0	Intake/Exhaust Piping OK? (Y/N)
System Pressure (inches water)	Water Leaks (Y/N)
Influent/Effluent Piping OK? (Y/N)	Water Temperature (°F) 500F
,	
Heat Exchanger	
Heat (On/Off)	Building Temperature (°F)
Heat Exchanger Flow (GPM)	Heat Exchanger Pressure (PSI)
General Building/Site	
Building Condition OK? (Y/N)	Circuit Breakers Checked (Y/N)
Grass Mowed (Y/N) Y Aroun & Brilding	Outfall Condition OK? (Y/N)
Monitoring Wells OK? (Y/N)	Samples Collected (Y/N)
/	
Notes:	
Sampled: RW-1 RW-1-MS -	
RW-1-MSD _	
1(VV-1-IVISD	
RW-2 -	
EFF 46 HZ	
Site walk and well inspection:	
System inspection:	

É.

Gladding Cordage		Date 6/23/21	
South Otselic, New York		Inspector Jason Gutkow	ski
NYSDEC Site #709009		Time 1410	
Treatment System Operation		Alarms	NO
System On (Y/N)	Ves	A/C Fail (Y/N)	NO
RW-1 On (Y/N)	yes	RW-1 (Y/N)	NO
RW-2 On (Y/N)	Ves	RW-2 (Y/N)	NO
Blower On (Y/N)	yes	Blower Pressure (Y/N)	NO
Sump Pump On (Y/N)	NO	Sump Level (Y/N)	NO
Recovery Wells	RW-1		Sec RW-2
Flow Rate (GPM 15.1	23.550		20.6 54.47
T (F ())	Email		See Email
Miles I amal (Fresh Alessa Dasha)	23.55		54.41
Probe Depth (Feet BTOC)	_		
Air Stripper	60		
Blower VFD Setting (Hertz)	46.0	Intake/Exhaust Piping OK? (Y/N)	yes
System Pressure (inches water)	9.5	Water Leaks (Y/N)	NO
Influent/Effluent Piping OK? (Y/N)	11.05	Water Temperature (°F)	53
Heat Exchanger	Low		1.4
Heat (On/Off)	Low	Building Temperature (°F)	66.8
Heat Exchanger Flow (GPM)	6	Heat Exchanger Pressure (PSI)	2.3
General Building/Site			403
Building Condition OK? (Y/N)	yes	Circuit Breakers Checked (Y/N)	yes
Grass Mowed (Y/N)	405	Outfall Condition OK? (Y/N)	yes
Monitoring Wells OK? (Y/N)	yes	Samples Collected (Y/N)	yes.
Notes:			
Sampled: RW-1 - 1355			
RW-1-M9 _			
RW-1-MSD			
DIAL O			
RW-2 EFF 46 HZ - 1345			
- 1345			
Site walk and well inspection:			
System inspection:			

APPENDIX B NYSDEC Daily Inspection Reports

Report No. 4 Gladding Cordage - NYSDEC Site No. 709009

Date: 4/6/2021 NYSDEC Contract No. Department of Environmental NYSDEC D009804-11 Division of Environmental Remediation Superintendent: Site Location: South Otselic, New York NYSDEC PM: Payson Long **Weather Conditions** Consultant PM: Andy Vitolins, P.G. **General Description** PMSunny AM Sunny **Temperature** 58°F AM 59°F PMConsultant Site Inspectors: Daniel Wind 14 MPH N AM 10 MPH NW PM**Health & Safety** If any box below is checked "Yes", provide explanation under "Health & Safety Comments". Were there any changes to the Health & Safety Plan? *Yes NA NA Were there any exceedances of the perimeter air monitoring reported on this date? *Yes No NA Were there any nuisance issues reported/observed on this date? *Yes No **Health & Safety Comments** Completed Health and Safety audit of Treatment System building. **Summary of Work Performed** Arrived at site: 1440 Departed Site: 1500 Completed site walkthrough, inspection of equipment, and review of site documentation. **Equipment/Material Tracking** If any box below is checked "Yes", provide explanation under "Material Tracking Comments". Were there any vehicles which did not display proper D.O.T numbers and placards? *Yes No NA Were there any vehicles which were not tarped? * Yes No NA Were there any vehicles which were not decontaminated prior to exiting the work site? * Yes NA No Personnel and Equipment Individual Trade **Total Hours** Company Daniel Zuck Arcadis Geologist 0.3 **Equipment Description** Contractor/Vendor Quantity Used Imported/ Daily **Waste Profile** Exported Source or Disposal Daily **Material Description** Delivered Weight off Site (If Applicable) Facility (If Applicable) Loads to Site (tons)*

*On-Site scale for off-site shipment, delivery ticket for material received

Equipment/Material Tracking Comments:

Visitors to Site				
Name	Re	presenting	Entered	Exclusion/CRZ Zone
			Yes	No
Site Representatives		,		
Name		Representing		
Project Schedule Comments				
None at this time.				
Issues Pending				
None at this time.				
None at this time.				
Interaction with Public, Property C	Owners. Media. et			
	, ,			
None at this time.				

Include (insert) figures with markups showing location of work and job progress

Yellow outlined area indicates the location of work performed on April 6, 2021.

Site Photographs (Descriptions Below)

Interior view of Treatment System building.

View of Exit Sign located above entry door.

Fire Extinguisher with inspection record.

Ground-fault circuit interrupter (GFCI) outlet.

Comments

None at this time.

Date: 4/6/2021 Site Inspector(s): Daniel Zuck

DAILY HEALTH CHECKLIST

Is social distancing being practiced?	Yes ⊠	No □
Is the tail gate safety meeting held outdoors?	Yes ⊠	No □
Are remote/call in job meetings being held in lieu of meeting in person where possible?	Yes ⊠	No □
Were personal protective gloves, masks, and eye protection being used?	Yes ⊠	No □
Are sanitizing wipes, wash stations or spray available?	Yes ⊠	No □
Have any workers/visitors been excluded based on close contact with individuals diagnosed with COVID-19, have recently traveled to restricted areas or countries, or are symptomatic (fever, chills, cough/shortness of breath)?	Yes □	No ⊠
Comments: Employees have sanitizing wipes/spray available with field gear.		

REMEDIAL ACTIVITIES AT PROPERTIES

_				
	1.	Have anyone at this location been tested and confirmed to have COVID-19?	Yes □	No ⊠
Ī	2.	Is anyone at this location isolated or quarantined for COVID-19?	Yes □	No ⊠
	3.	Has anyone at this location had contact with anyone known to have COVID-19 in the past 14 days?	Yes □	No ⊠
	4.	Does anyone at this locaton have any symptoms of a respiratory infection (e.g., cough, sore throat, fever, or shortness of breath)?	Yes □	No ⊠
	5.	Does the Department and its contractors have your permission to enter the property at this time?	Yes □	No ⊠
	If Y	Yes to any of 1-4 above: If it is not critical that service/entry be carried out immediately and can be postponed until the risk of COVID-19 is lower, or can be accomplished remotely/without entry, postpone or conduct service without entry. If it is critical that service/entry be carried out immediately, advise occupants that as a precaution and for our own protection, project personnel will be donning appropriate PPE* (including respiratory protection) - and do so prior to entry.	Yes 🗆	No 🗆
	_	mments: ne at this time.		ı
L				

NUISANCE CHECKLIST

Were there any community complaints related to work on this date?	Yes □	No ⊠	N/A□
Were there any odors detected on this date?	Yes □	No ⊠	N/A□
Was noise outside specification and/or above background on this date?	Yes □	No ⊠	N/A□
Were vibration readings outside specification and/or above background on this date?	Yes □	No □	N/A⊠
Any visible dust observed beyond the work perimeter on this date?	Yes □	No ⊠	N/A□
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes □	No □	N/A⊠
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes □	No □	N/A⊠
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes □	No ⊠	N/A□
If yes, has Contractor been notified?	Yes □	No □	N/A□
Comments: None at this time.			

Report No. 5 Gladding Cordage - NYSDEC Site No. 709009

NYSDEC Division of Environmental Remediation

Department of Environmental

NYSDEC Contract No. D009804-11

Superintendent:

Date: 4/15/2021

NYSDEC PM: Payson Long

Consultant PM: Andy Vitolins, P.G.

Consultant Site Inspectors: J.Wyckoff / J.Gutkowski

Site Location:	South	Otselic	New York
Site Location:	Soulli	CASCIIC	INEW TOIK

Weather Conditions							
General Description Cloudy AM Cloudy – light drizzle PM							
Temperature	45	AM	45	PM			
Wind	calm	AM	calm	PM			

Health & Safety

If any box below is checked "Yes", provide explanation under "Health & Safety Comments".

Were there any changes to the Health & Safety Plan?	*Yes	No	NA
Were there any exceedances of the perimeter air monitoring reported on this date?	*Yes	No	NA
Were there any nuisance issues reported/observed on this date?	*Yes	No	NA

Health & Safety Comments

Replaced eyewash solution and installed maintenance checklist. Solution needs to be replaced every 90 days.

Summary of Work Performed	Arrived at site:	0800	Departed Site:	1545
---------------------------	------------------	------	----------------	------

Routine O&M - Perform routine system inspection and monthly system influent/effluent sampling.

Housekeeping – Sweep floors, organize tools and equipment. Move tools/supplies from flammable storage cabinet to new tool storage cabinet.

Controls - Air stripper blower off on arrival. Worked on communications issues with PLC and wireless network. Moved antenna locations in attempt to gain stronger signal. Worked with EOS and project engineer via conference call to confirm system programming and logic. Tested interlocks for air stripper blower.

Eyewash Station - Flushed out eyewash station with potable water and mix new batch of eyewash solution. Added inspection tag to track operation and changeouts.

Equipment/Material Tracking

If any box below is checked "Yes", provide explanation under "Material Tracking Comments".

Were there any vehicles which did not display proper D.O.T numbers and placards?	*Yes	No	NA
Were there any vehicles which were not tarped?	* Yes	No	NA
Were there any vehicles which were not decontaminated prior to exiting the work site?	* Yes	No	NA

Personnel and Equipment

Individual	Company	Trade		Total Hours
Jeremy Wyckoff	Arcadis	Geologist		7.5
Jason Gutkowski	Arcadis	Field Tech		7.75
Equipment Description	Contractor/Vend	dor	Quantity	Used

Equipment Description	Contractor/vendor	Qualitity	Useu

Material Description	Imported/ Delivered to Site	Exported off Site	Waste Profile (If Applicable)	Source or Disposal Facility (If Applicable)	Daily Loads	Daily Weight (tons)*

*On-Site scale for off-site shipment, delivery ticket for material received

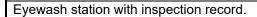
Equipment/Material Tracking Comments:

Visitors to Site Name Representing **Entered Exclusion/CRZ Zone** No Yes Yes No **Site Representatives** Name Representing **Project Schedule Comments** None at this time. **Issues Pending** None at this time. Interaction with Public, Property Owners, Media, etc. None at this time.

Include (insert) figures with markups showing location of work and job progress

Yellow outlined area indicates the location of work performed on April 15, 2021.

Site Photographs (Descriptions Below)



Flammable liquid storage cabinet following cleanout.

Control panel showing extraction well and air-stripper blower status upon arrival.

Comments

None at this time.

Date: 4/15/2021 Site Inspector(s): Jeremy Wyckoff

DAILY HEALTH CHECKLIST

Is social distancing being practiced?	Yes ⊠	No □
Is the tail gate safety meeting held outdoors?	Yes ⊠	No □
Are remote/call in job meetings being held in lieu of meeting in person where possible?	Yes ⊠	No □
Were personal protective gloves, masks, and eye protection being used?	Yes ⊠	No □
Are sanitizing wipes, wash stations or spray available?	Yes ⊠	No □
Have any workers/visitors been excluded based on close contact with individuals diagnosed with COVID-19, have recently traveled to restricted areas or countries, or are symptomatic (fever, chills, cough/shortness of breath)?	Yes □	No ⊠
Comments: Employees have sanitizing wipes/spray available with field gear.		

REMEDIAL ACTIVITIES AT PROPERTIES

1	. Have anyone at this location been tested and confirmed to have COVID-19?	Yes □	No ⊠
2	. Is anyone at this location isolated or quarantined for COVID-19?	Yes □	No ⊠
3	. Has anyone at this location had contact with anyone known to have COVID-19 in the past 14 days?	Yes □	No ⊠
4	Does anyone at this location have any symptoms of a respiratory infection (e.g., cough, sore throat, fever, or shortness of breath)?	Yes □	No ⊠
5	Does the Department and its contractors have your permission to enter the property at this time?	Yes □	No ⊠
•	If it is <u>not</u> critical that service/entry be carried out immediately and can be postponed until the risk of COVID-19 is lower, or can be accomplished remotely/without entry, postpone or conduct service without entry. If it <u>is</u> critical that service/entry be carried out immediately, advise occupants that as a precaution and for our own protection, project personnel will be donning appropriate PPE* (including respiratory protection) - and do so prior to entry.	Yes □	No □
	Comments: Ione at this time.	1	1
ш.			

NUISANCE CHECKLIST

Were there any community complaints related to work on this date?	Yes □	No ⊠	N/A□
Were there any odors detected on this date?	Yes □	No ⊠	N/A□
Was noise outside specification and/or above background on this date?	Yes □	No ⊠	N/A□
Were vibration readings outside specification and/or above background on this date?	Yes □	No □	N/A⊠
Any visible dust observed beyond the work perimeter on this date?	Yes □	No ⊠	N/A□
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes □	No □	N/A⊠
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes □	No □	N/A⊠
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes □	No ⊠	N/A□
If yes, has Contractor been notified?	Yes □	No □	N/A□
Comments: None at this time.			

Gladding Cordage - NYSDEC Site No. 709009 Report No. 6

Date: 5/11/2021 NYSDEC Contract No. **NYSDEC** Department of Environmental D009804-11 Division of Environmental Remediation Superintendent: Site Location: South Otselic, New York NYSDEC PM: Payson Long **Weather Conditions** Consultant PM: Andy Vitolins, P.G. **General Description** PMCloudy AM Cloudy **Temperature** 55°F AM 56°F PMConsultant Site Inspectors: Jason Gutkowski Wind 22 MPH WNW AM 18 MPH WNW PM**Health & Safety** If any box below is checked "Yes", provide explanation under "Health & Safety Comments" Were there any changes to the Health & Safety Plan? *Yes NA Were there any exceedances of the perimeter air monitoring reported on this date? *Yes No NA NA Were there any nuisance issues reported/observed on this date? *Yes No **Health & Safety Comments** Used hearing and eye protection, and wore a high-vis vest while performing routine operation and maintenance (O&M). **Summary of Work Performed** 1330 Departed Site: 1600 Arrived at site: Routine O&M - Perform routine system inspection and monthly system influent/effluent sampling. **Housekeeping** – Swept floors, organized tools and equipment. Controls - Air stripper blower off on arrival and recovery well pumps in alarm. Reset alarms, started system, then completed monthly sampling after half hour. **Equipment/Material Tracking** If any box below is checked "Yes", provide explanation under "Material Tracking Comments". Were there any vehicles which did not display proper D.O.T numbers and placards? *Yes No NA * Yes Were there any vehicles which were not tarped? No NA Were there any vehicles which were not decontaminated prior to exiting the work site? * Yes No NA Personnel and Equipment Individual Company Trade **Total Hours** Field Tech Jason Gutkowski Arcadis 2.5 **Equipment Description** Contractor/Vendor Used Quantity Imported/ Daily Source or Disposal **Exported Waste Profile** Daily **Material Description** Delivered Weight off Site (If Applicable) Facility (If Applicable) Loads to Site (tons)* *On-Site scale for off-site shipment, delivery ticket for material received **Equipment/Material Tracking Comments: Visitors to Site Entered Exclusion/CRZ Zone** Name Representing

Yes

Yes

No

No

Site Representatives		
Name	Representing	
Project Schedule Comments		
None at this time.		
Issues Pending		
Nigno et this time		
None at this time.		
Interaction with Public, Property Owners, Media, et	tc.	
Nigno at this time		
None at this time.		

Include (insert) figures with markups showing location of work and job progress

Yellow outlined area indicates the location of work performed on May 11, 2021.

Site Photographs (Descriptions Below)

Date: 5/11/2021

View of Treatment System building side.

View of Treatment System building side.

Comments

None at this time.

Site Inspector(s): Jason Gutkowski

DAILY HEALTH CHECKLIST

Is social distancing being practiced?	Yes ⊠	No □
Is the tail gate safety meeting held outdoors?	Yes ⊠	No □
Are remote/call in job meetings being held in lieu of meeting in person where possible?	Yes ⊠	No □
Were personal protective gloves, masks, and eye protection being used?	Yes ⊠	No □
Are sanitizing wipes, wash stations or spray available?	Yes ⊠	No □
Have any workers/visitors been excluded based on close contact with individuals diagnosed with COVID-19, have recently traveled to restricted areas or countries, or are symptomatic (fever, chills, cough/shortness of breath)?	Yes □	No ⊠
Comments: Employees have sanitizing wipes/spray available with field gear.		

REMEDIAL ACTIVITIES AT PROPERTIES

	1.	Have anyone at this location been tested and confirmed to have COVID-19?	Yes □	No ⊠
ĺ	2.	Is anyone at this location isolated or quarantined for COVID-19?	Yes □	No ⊠
	3.	Has anyone at this location had contact with anyone known to have COVID-19 in the past 14 days?	Yes □	No ⊠
	4.	Does anyone at this location have any symptoms of a respiratory infection (e.g., cough, sore throat, fever, or shortness of breath)?	Yes □	No ⊠
	5.	Does the Department and its contractors have your permission to enter the property at this time?	Yes □	No ⊠
	If Y	Yes to <u>any</u> of 1-4 above: If it is <u>not</u> critical that service/entry be carried out immediately and can be postponed until the risk of COVID-19 is lower, or can be accomplished remotely/without entry, postpone or conduct service without entry. If it <u>is</u> critical that service/entry be carried out immediately, advise occupants that as a precaution and for our own protection, project personnel will be donning appropriate PPE* (including respiratory protection) - and do so prior to entry.	Yes □	No □
-	_	mments: ne at this time.		
1				

NUISANCE CHECKLIST

Were there any community complaints related to work on this date?	Yes □	No ⊠	N/A□
Were there any odors detected on this date?	Yes □	No ⊠	N/A□
Was noise outside specification and/or above background on this date?	Yes □	No ⊠	N/A□
Were vibration readings outside specification and/or above background on this date?	Yes □	No □	N/A⊠
Any visible dust observed beyond the work perimeter on this date?	Yes □	No ⊠	N/A□
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes □	No □	N/A⊠
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes □	No □	N/A⊠
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes □	No ⊠	N/A□
If yes, has Contractor been notified?	Yes □	No □	N/A□
Comments: None at this time.			

Report No. 7 Gladding Cordage - NYSDEC Site No. 709009

NYSDEC

Division of Environmental Remediation

NYSDEC Contract No. D009804-11

Superintendent:

Date: 5/25/2021

NYSDEC PM: Payson Long

Consultant PM: Andy Vitolins, P.G.

Consultant Site Inspectors: Jason Gutkowski/Jeremy Wyckoff

Weather Conditions					
General Description	Partly Cloudy	AM	Cloudy	PM	
Temperature	50°F	AM	61°F	PM	
Wind	S 8 MPH	AM	WSW 10 MPH	PM	

Health & Safety

If any box below is checked "Yes", provide explanation under "Health & Safety Comments".

Were there any changes to the Health & Safety Plan?	*Yes	No	NA
Were there any exceedances of the perimeter air monitoring reported on this date?	*Yes	No	NA
Were there any nuisance issues reported/observed on this date?	*Yes	No	NA

Health & Safety Comments

Used hearing and eye protection while trimming grass.

Summary of Work Performed	Arrived at site:	0800	Departed Site:	1130
---------------------------	------------------	------	----------------	------

Routine O&M – Perform routine system inspection; adjust cell signal booster antenna, troubleshoot and replace RW-1 pressure transducer.

Housekeeping - Trimmed grass.

Controls – Air stripper blower off on arrival due to power loss. RW-1 in alarm on restart. Found RW-1 pressure transducer defective. Replaced transducer with unit from spare parts inventory. Reset alarms, started system, and confirmed communications with PLC. Now able to send status emails and access system remotely.

Equipment/Material Tracking

If any box below is checked "Yes", provide explanation under "Material Tracking Comments".

Were there any vehicles which did not display proper D.O.T numbers and placards?	*Yes	No	NA
Were there any vehicles which were not tarped?	* Yes	No	NA
Were there any vehicles which were not decontaminated prior to exiting the work site?	* Yes	No	NA

Personnel and Equipment

Individual	Company	Trade	Total Hours
Jason Gutkowski	Arcadis	Field Tech	3.5 on-site
Jeremy Wyckoff	Arcadis	Field Tech	3.5 on-site

Equipment Description	Contractor/Vendor	Quantity	Used

Material Description	Imported/ Delivered to Site	Exported off Site	Waste Profile (If Applicable)	Source or Disposal Facility (If Applicable)	Daily Loads	Daily Weight (tons)*

^{*}On-Site scale for off-site shipment, delivery ticket for material received

Equipment/Material Tracking Comments:

Visitors to Site

Name	Representing	Entered Exclusion/CRZ Zone		
		Yes	No	
		Yes	No	

Site Representatives		
Name	Representing	
Project Schedule Comments		
None at this time.		
Issues Pending		
None at this time.		
Interaction with Public, Property Owners	s, Media, etc.	
None at this time.		

Include (insert) figures with markups showing location of work and job progress

Yellow outlined area indicates the location of work performed on May 25, 2021.

Trimming grass.

Old (left) and replacement RW-1 pressure transducer.

Cell signal booster antenna aligned to 214 degrees.

Discharge from treatment plant.

Comments

None at this time.

Site Inspector(s): Jason Gutkowski / Jeremy Wyckoff

Date: 5/25/2021

DAILY HEALTH CHECKLIST

Is social distancing being practiced?	Yes ⊠	No □
Is the tail gate safety meeting held outdoors?	Yes ⊠	No □
Are remote/call in job meetings being held in lieu of meeting in person where possible?	Yes ⊠	No □
Were personal protective gloves, masks, and eye protection being used?	Yes ⊠	No □
Are sanitizing wipes, wash stations or spray available?	Yes ⊠	No □
Have any workers/visitors been excluded based on close contact with individuals diagnosed with COVID-19, have recently traveled to restricted areas or countries, or are symptomatic (fever, chills, cough/shortness of breath)?	Yes □	No ⊠
Comments: Employees have sanitizing wipes/spray available with field gear.		

REMEDIAL ACTIVITIES AT PROPERTIES

1.	Have anyone at this location been tested and confirmed to have COVID-19?	Yes □	No ⊠
2.	Is anyone at this location isolated or quarantined for COVID-19?	Yes □	No ⊠
3.	Has anyone at this location had contact with anyone known to have COVID-19 in the past 14 days?	Yes □	No ⊠
4.	Does anyone at this location have any symptoms of a respiratory infection (e.g., cough, sore throat, fever, or shortness of breath)?	Yes □	No ⊠
5.	Does the Department and its contractors have your permission to enter the property at this time?	Yes □	No ⊠
If'	Yes to <u>any</u> of 1-4 above: If it is <u>not</u> critical that service/entry be carried out immediately and can be postponed until the risk of COVID-19 is lower, or can be accomplished remotely/without entry, postpone or conduct service without entry. If it <u>is</u> critical that service/entry be carried out immediately, advise occupants that as a precaution and for our own protection, project personnel will be donning appropriate PPE* (including respiratory protection) - and do so prior to entry.	Yes □	No □
	omments: one at this time.		

NUISANCE CHECKLIST

Were there any community complaints related to work on this date?	Yes □	No ⊠	N/A□
Were there any odors detected on this date?	Yes □	No ⊠	N/A□
Was noise outside specification and/or above background on this date?	Yes □	No ⊠	N/A□
Were vibration readings outside specification and/or above background on this date?	Yes □	No □	N/A⊠
Any visible dust observed beyond the work perimeter on this date?	Yes □	No ⊠	N/A□
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes □	No □	N/A⊠
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes □	No □	N/A⊠
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes □	No ⊠	N/A□
If yes, has Contractor been notified?	Yes □	No □	N/A□
Comments: None at this time			

NYSDEC
Division of Environmental Remediation

Department of Environmental Conservation

Site Location: South Otselic, New York

Weather Conditions					
General Description Partly Cloudy AM Sunny P					
Temperature	62°F	AM	70°F	PM	
Wind	NNW 10 MPH	AM	N 5 MPH	PM	

NYSDEC Contract No. D009804-11

Superintendent:

NYSDEC PM: Payson Long

Consultant PM: Andy Vitolins, P.G.

Consultant Site Inspectors: Jason

Gutkowski

Health & Safety

If any box below is checked "Yes", provide explanation under "Health & Safety Comments".

Were there any changes to the Health & Safety Plan?	*Yes	No	NA
Were there any exceedances of the perimeter air monitoring reported on this date?	*Yes	No	NA
Were there any nuisance issues reported/observed on this date?	*Yes	No	NA

Health & Safety Comments

Hearing, Eye & Face Shield Protection with use of String Trimmer.

Summary of Work Performed	Arrived at site:	1230	Departed Site:	1530
---------------------------	------------------	------	----------------	------

Routine O&M – Performed routine system inspection and monthly system influent/effluent sampling. **Housekeeping** – Swept floors and trimmed grass.

Equipment/Material Tracking

If any box below is checked "Yes", provide explanation under "Material Tracking Comments".

Were there any vehicles which did not display proper D.O.T numbers and placards?	*Yes	No	NA
Were there any vehicles which were not tarped?	* Yes	No	NA
Were there any vehicles which were not decontaminated prior to exiting the work site?	* Yes	No	NA

Personnel and Equipment

Individual	Company	Trade	Total Hours
Jason Gutkowski	Arcadis	Field Tech	3.0
Fauinment Description	Contractor/Ven	dor Quantity	Used

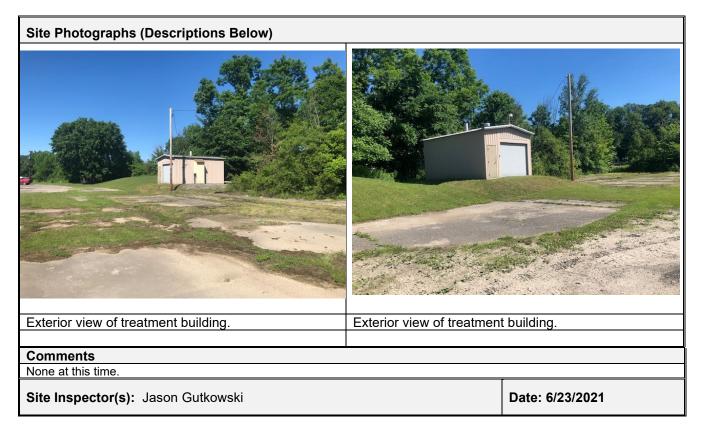
Material Description	Imported/ Delivered to Site	Exported off Site	Waste Profile (If Applicable)	Source or Disposa Facility (If Applicabl	Daily Weight (tons)*

^{*}On-Site scale for off-site shipment, delivery ticket for material received

Equipment/Material Tracking Comments:

Visitors to Site

Visitors to ofte				
Name	Representing	Entered Exclusion/CRZ Zone		
		Yes	No	
		Yes	No	
		Yes	No	


Site Representatives				
Name	Representing			
Project Schedule Comments				
None at this time.				
Issues Pending				
None at this time.				
Interaction with Public, Property Owners, Media, etc.				
None at this time.				

Include (insert) figures with markups showing location of work and job progress

Yellow outlined area indicates the location of work performed on June 23, 2021.

DAILY HEALTH CHECKLIST

Is social distancing being practiced?	Yes ⊠	No □
Is the tail gate safety meeting held outdoors?	Yes ⊠	No □
Are remote/call in job meetings being held in lieu of meeting in person where possible?	Yes ⊠	No □
Were personal protective gloves, masks, and eye protection being used?	Yes ⊠	No □
Are sanitizing wipes, wash stations or spray available?	Yes ⊠	No □
Have any workers/visitors been excluded based on close contact with individuals diagnosed with COVID-19, have recently traveled to restricted areas or countries, or are symptomatic (fever, chills, cough/shortness of breath)?	Yes □	No ⊠
Comments: Employees have sanitizing wipes/spray available with field gear.		

REMEDIAL ACTIVITIES AT PROPERTIES

1.	Have anyone at this location been tested and confirmed to have COVID-19?	Yes □	No ⊠
2.	Is anyone at this location isolated or quarantined for COVID-19?	Yes □	No ⊠
3.	Has anyone at this location had contact with anyone known to have COVID-19 in the past 14 days?	Yes □	No ⊠
4.	Does anyone at this location have any symptoms of a respiratory infection (e.g., cough, sore throat, fever, or shortness of breath)?	Yes □	No ⊠
5.	Does the Department and its contractors have your permission to enter the property at this time?	Yes □	No ⊠
If \	es to <u>any</u> of 1-4 above:		
•	If it is <u>not</u> critical that service/entry be carried out immediately and can be postponed until the risk of COVID-19 is lower, or can be accomplished remotely/without entry, postpone or conduct service without entry.	Yes □	No □
•	If it <u>is</u> critical that service/entry be carried out immediately, advise occupants that as a precaution and for our own protection, project personnel will be donning appropriate PPE* (including respiratory protection) - and do so prior to entry.		
	mments:		
No	one at this time.		

NUISANCE CHECKLIST

Were there any community complaints related to work on this date?	Yes □	No ⊠	N/A□
Were there any odors detected on this date?	Yes □	No ⊠	N/A□
Was noise outside specification and/or above background on this date?	Yes □	No ⊠	N/A□
Were vibration readings outside specification and/or above background on this date?	Yes □	No □	N/A⊠
Any visible dust observed beyond the work perimeter on this date?	Yes □	No ⊠	N/A□
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes □	No □	N/A⊠
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes □	No □	N/A⊠
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes □	No ⊠	N/A□
If yes, has Contractor been notified?	Yes □	No □	N/A□
Comments: None at this time.			

APPENDIX C

Analytical Reports

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-183456-1

Client Project/Site: Gladding Corporation #709009

For:

New York State D.E.C. 625 Broadway 4th Floor Albany, New York 12233

Attn: Mr. Payson Long

Authorized for release by: 4/28/2021 4:36:34 PM

Judy Stone, Senior Project Manager (484)685-0868

Judy.Stone@Eurofinset.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

3

4

5

7

0

10

12

13

14

10

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

_ _

5

6

G

9

10

12

1/

1

Judy Stone Senior Project Manager 4/28/2021 4:36:34 PM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	15
QC Sample Results	16
QC Association Summary	19
Lab Chronicle	20
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24
Receipt Checklists	25

Definitions/Glossary

Client: New York State D.E.C. Job ID: 480-183456-1

Project/Site: Gladding Corporation #709009

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Case Narrative

Client: New York State D.E.C. Job ID: 480-183456-1

Project/Site: Gladding Corporation #709009

Job ID: 480-183456-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-183456-1

Comments

No additional comments.

Receipt

The samples were received on 4/17/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.4° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

1

4

6

9

10

11

13

14

Detection Summary

Client: New York State D.E.C. Job ID: 480-183456-1

Project/Site: Gladding Corporation #709009

Client Sample ID: EFF 46HZ Lab Sample ID: 480-183456-1

No Detections.

Client Sample ID: RW-2 Lab Sample ID: 480-183456-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,1-Trichloroethane	32		1.0	0.82	ug/L	1		8260C	Total/NA
1,1-Dichloroethane	0.68	J	1.0	0.38	ug/L	1		8260C	Total/NA
1,1-Dichloroethene	0.91	J	1.0	0.29	ug/L	1		8260C	Total/NA

Client Sample ID: RW-1 Lab Sample ID: 480-183456-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,1-Trichloroethane	42		1.0	0.82	ug/L	1	_	8260C	Total/NA
1,1-Dichloroethane	1.6		1.0	0.38	ug/L	1		8260C	Total/NA
1 1-Dichloroethene	1 1		1.0	0.29	ua/l	1		8260C	Total/NA

Client Sample ID: TRIP BLANK Lab Sample ID: 480-183456-4

Analyte	Result	Qualifier	RL	MDL	Unit	Di	il Fac	D Method	Prep Type
Acetone	3.0	J	10	3.0	ug/L		1	8260C	Total/NA

This Detection Summary does not include radiochemical test results.

D ID. 400-100430-1

2

5

6

0

10

111

13

14

Client: New York State D.E.C. Job ID: 480-183456-1

Project/Site: Gladding Corporation #709009

Client Sample ID: EFF 46HZ

Date Received: 04/17/21 08:00

Lab Sample ID: 480-183456-1 Date Collected: 04/15/21 13:08

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS
Method. 6260C - Volatile Organic Compounds by GC/MS
Analyta Posult Qualifier

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			04/19/21 15:20	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/19/21 15:20	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			04/19/21 15:20	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/19/21 15:20	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			04/19/21 15:20	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/19/21 15:20	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/19/21 15:20	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			04/19/21 15:20	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			04/19/21 15:20	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			04/19/21 15:20	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			04/19/21 15:20	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			04/19/21 15:20	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			04/19/21 15:20	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			04/19/21 15:20	1
2-Butanone (MEK)	ND		10	1.3	ug/L			04/19/21 15:20	1
2-Hexanone	ND		5.0	1.2	ug/L			04/19/21 15:20	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			04/19/21 15:20	1
Acetone	ND		10	3.0	ug/L			04/19/21 15:20	1
Benzene	ND		1.0	0.41	ug/L			04/19/21 15:20	1
Bromodichloromethane	ND		1.0	0.39	_			04/19/21 15:20	1
Bromoform	ND		1.0	0.26	ug/L			04/19/21 15:20	1
Bromomethane	ND		1.0		ug/L			04/19/21 15:20	1
Carbon disulfide	ND		1.0	0.19	-			04/19/21 15:20	1
Carbon tetrachloride	ND		1.0		ug/L			04/19/21 15:20	1
Chlorobenzene	ND		1.0		ug/L			04/19/21 15:20	1
Chloroethane	ND		1.0		ug/L			04/19/21 15:20	1
Chloroform	ND		1.0		ug/L			04/19/21 15:20	1
Chloromethane	ND		1.0		ug/L			04/19/21 15:20	
cis-1,2-Dichloroethene	ND		1.0	0.81	_			04/19/21 15:20	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			04/19/21 15:20	1
Cyclohexane	ND		1.0		ug/L			04/19/21 15:20	 1
Dibromochloromethane	ND		1.0	0.32	_			04/19/21 15:20	1
Dichlorodifluoromethane	ND		1.0	0.68	•			04/19/21 15:20	1
Ethylbenzene	ND		1.0		ug/L			04/19/21 15:20	·
Isopropylbenzene	ND		1.0	0.79	_			04/19/21 15:20	1
Methyl acetate	ND		2.5		ug/L			04/19/21 15:20	1
Methyl tert-butyl ether	ND		1.0	0.16				04/19/21 15:20	· 1
Methylcyclohexane	ND		1.0		ug/L			04/19/21 15:20	
Methylene Chloride	ND		1.0		ug/L			04/19/21 15:20	1
Styrene	ND		1.0		ug/L			04/19/21 15:20	
Tetrachloroethene	ND		1.0		ug/L			04/19/21 15:20	1
Toluene	ND		1.0		ug/L			04/19/21 15:20	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			04/19/21 15:20	 1
trans-1,3-Dichloropropene	ND ND		1.0		ug/L ug/L			04/19/21 15:20	1
Trichloroethene	ND ND		1.0		ug/L ug/L			04/19/21 15:20	1
Trichlorofluoromethane	ND		1.0	0.40				04/19/21 15:20	'
Vinyl chloride	ND ND		1.0		ug/L ug/L			04/19/21 15:20	1
Xylenes, Total	ND ND		2.0	0.90	ug/L ug/L			04/19/21 15:20	1

Eurofins TestAmerica, Buffalo

Page 7 of 25

Client: New York State D.E.C. Job ID: 480-183456-1

Project/Site: Gladding Corporation #709009

Client Sample ID: EFF 46HZ Lab Sample ID: 480-183456-1

Date Collected: 04/15/21 13:08 Matrix: Water
Date Received: 04/17/21 08:00

Surrogate	%Recovery Qualif	ier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105	77 - 120		04/19/21 15:20	1
4-Bromofluorobenzene (Surr)	99	73 - 120		04/19/21 15:20	1
Dibromofluoromethane (Surr)	108	75 - 123		04/19/21 15:20	1
Toluene-d8 (Surr)	98	80 - 120		04/19/21 15:20	1

5

6

9

10

12

4 4

Client: New York State D.E.C. Job ID: 480-183456-1

Project/Site: Gladding Corporation #709009

Client Sample ID: RW-2

Lab Sample ID: 480-183456-2

Matrix: Water

Date Collected: 04/15/21 13:10 Date Received: 04/17/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	32		1.0	0.82	ug/L			04/19/21 15:44	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/19/21 15:44	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			04/19/21 15:44	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/19/21 15:44	
1,1-Dichloroethane	0.68	J	1.0	0.38	ug/L			04/19/21 15:44	
1,1-Dichloroethene	0.91	J	1.0	0.29	ug/L			04/19/21 15:44	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/19/21 15:44	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			04/19/21 15:44	
1,2-Dibromoethane	ND		1.0	0.73	ug/L			04/19/21 15:44	
1,2-Dichlorobenzene	ND		1.0		ug/L			04/19/21 15:44	
1,2-Dichloroethane	ND		1.0	0.21	ug/L			04/19/21 15:44	
1,2-Dichloropropane	ND		1.0		ug/L			04/19/21 15:44	
1,3-Dichlorobenzene	ND		1.0		ug/L			04/19/21 15:44	
1,4-Dichlorobenzene	ND		1.0		ug/L			04/19/21 15:44	
2-Butanone (MEK)	ND		10		ug/L			04/19/21 15:44	
2-Hexanone	ND		5.0		ug/L			04/19/21 15:44	
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			04/19/21 15:44	
Acetone	ND		10		ug/L			04/19/21 15:44	
Benzene	ND		1.0		ug/L			04/19/21 15:44	
Bromodichloromethane	ND		1.0		ug/L			04/19/21 15:44	
Bromoform	ND		1.0		ug/L			04/19/21 15:44	
Bromomethane	ND		1.0		ug/L			04/19/21 15:44	
Carbon disulfide	ND		1.0		ug/L			04/19/21 15:44	
Carbon tetrachloride	ND		1.0		ug/L ug/L			04/19/21 15:44	
Chlorobenzene	ND		1.0		ug/L ug/L			04/19/21 15:44	
Chloroethane	ND ND		1.0		ug/L ug/L			04/19/21 15:44	
Chloroform	ND ND		1.0					04/19/21 15:44	
					ug/L				
Chloromethane	ND		1.0		ug/L			04/19/21 15:44	
cis-1,2-Dichloroethene	ND ND		1.0		ug/L			04/19/21 15:44	
cis-1,3-Dichloropropene			1.0		ug/L			04/19/21 15:44	
Cyclohexane	ND		1.0	0.18				04/19/21 15:44	
Dibromochloromethane	ND		1.0		ug/L			04/19/21 15:44	
Dichlorodifluoromethane	ND		1.0		ug/L			04/19/21 15:44	
Ethylbenzene	ND		1.0		ug/L			04/19/21 15:44	
Isopropylbenzene	ND		1.0		ug/L			04/19/21 15:44	
Methyl acetate	ND		2.5		ug/L			04/19/21 15:44	
Methyl tert-butyl ether	ND		1.0		ug/L			04/19/21 15:44	
Methylcyclohexane	ND		1.0		ug/L			04/19/21 15:44	
Methylene Chloride	ND		1.0		ug/L			04/19/21 15:44	
Styrene	ND		1.0		ug/L			04/19/21 15:44	
Tetrachloroethene	ND		1.0		ug/L			04/19/21 15:44	
Toluene	ND		1.0		ug/L			04/19/21 15:44	
rans-1,2-Dichloroethene	ND		1.0		ug/L			04/19/21 15:44	
rans-1,3-Dichloropropene	ND		1.0		ug/L			04/19/21 15:44	
Trichloroethene	ND		1.0	0.46	ug/L			04/19/21 15:44	
Trichlorofluoromethane	ND		1.0		ug/L			04/19/21 15:44	
Vinyl chloride	ND		1.0	0.90	ug/L			04/19/21 15:44	
Xylenes, Total	ND		2.0	0.66	ug/L			04/19/21 15:44	

Eurofins TestAmerica, Buffalo

4/28/2021

Page 9 of 25

6

_

6

0

10

12

Client: New York State D.E.C. Job ID: 480-183456-1

Project/Site: Gladding Corporation #709009

Client Sample ID: RW-2 Lab Sample ID: 480-183456-2 Date Collected: 04/15/21 13:10

Matrix: Water

Date Received: 04/17/21 08:00

Surrogate	%Recovery Qu	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	114	77 - 120		04/19/21 15:44	1
4-Bromofluorobenzene (Surr)	110	73 - 120		04/19/21 15:44	1
Dibromofluoromethane (Surr)	115	75 - 123		04/19/21 15:44	1
Toluene-d8 (Surr)	104	80 - 120		04/19/21 15:44	1

Client: New York State D.E.C. Job ID: 480-183456-1

Project/Site: Gladding Corporation #709009

Client Sample ID: RW-1

Lab Sample ID: 480-183456-3

Matrix: Water

Date Collected: 04/15/21 13:12 Date Received: 04/17/21 08:00

Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	42	1.0	0.82	ug/L			04/19/21 16:08	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			04/19/21 16:08	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			04/19/21 16:08	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/19/21 16:08	
1,1-Dichloroethane	1.6	1.0	0.38	ug/L			04/19/21 16:08	
1,1-Dichloroethene	1.1	1.0	0.29	ug/L			04/19/21 16:08	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			04/19/21 16:08	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			04/19/21 16:08	
1,2-Dibromoethane	ND	1.0	0.73	ug/L			04/19/21 16:08	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			04/19/21 16:08	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			04/19/21 16:08	
1,2-Dichloropropane	ND	1.0	0.72	ug/L			04/19/21 16:08	
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			04/19/21 16:08	
1,4-Dichlorobenzene	ND	1.0		ug/L			04/19/21 16:08	
2-Butanone (MEK)	ND	10		ug/L			04/19/21 16:08	
2-Hexanone	ND	5.0		ug/L			04/19/21 16:08	
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			04/19/21 16:08	
Acetone	ND	10		_			04/19/21 16:08	
Benzene	ND	1.0		ug/L			04/19/21 16:08	
Bromodichloromethane	ND	1.0	0.39	ug/L			04/19/21 16:08	
Bromoform	ND	1.0		ug/L			04/19/21 16:08	
Bromomethane	ND	1.0		ug/L			04/19/21 16:08	
Carbon disulfide	ND	1.0		ug/L			04/19/21 16:08	
Carbon tetrachloride	ND	1.0		ug/L			04/19/21 16:08	
Chlorobenzene	ND	1.0		ug/L			04/19/21 16:08	
Chloroethane	ND	1.0		ug/L			04/19/21 16:08	
Chloroform	ND ND	1.0		ug/L ug/L			04/19/21 16:08	
Chloromethane	ND	1.0		ug/L			04/19/21 16:08	
cis-1,2-Dichloroethene	ND ND	1.0		ug/L			04/19/21 16:08	
cis-1,3-Dichloropropene		1.0		ug/L			04/19/21 16:08	
Cyclohexane	ND	1.0		ug/L			04/19/21 16:08	
Dibromochloromethane	ND	1.0		ug/L			04/19/21 16:08	
Dichlorodifluoromethane	ND	1.0		ug/L			04/19/21 16:08	
Ethylbenzene	ND	1.0		ug/L			04/19/21 16:08	
Isopropylbenzene	ND	1.0		ug/L			04/19/21 16:08	
Methyl acetate	ND	2.5		ug/L			04/19/21 16:08	
Methyl tert-butyl ether	ND	1.0		ug/L			04/19/21 16:08	
Methylcyclohexane	ND	1.0		ug/L			04/19/21 16:08	
Methylene Chloride	ND	1.0		ug/L			04/19/21 16:08	
Styrene	ND	1.0		ug/L			04/19/21 16:08	
Tetrachloroethene	ND	1.0		ug/L			04/19/21 16:08	
Toluene	ND	1.0		ug/L			04/19/21 16:08	
trans-1,2-Dichloroethene	ND	1.0		ug/L			04/19/21 16:08	
trans-1,3-Dichloropropene	ND	1.0		ug/L			04/19/21 16:08	
Trichloroethene	ND	1.0	0.46	ug/L			04/19/21 16:08	
Trichlorofluoromethane	ND	1.0		ug/L			04/19/21 16:08	
Vinyl chloride	ND	1.0	0.90	ug/L			04/19/21 16:08	
Xylenes, Total	ND	2.0	0.66	ug/L			04/19/21 16:08	

Eurofins TestAmerica, Buffalo

4/28/2021

Page 11 of 25

G

4

6

9

4 4

12

Client: New York State D.E.C. Job ID: 480-183456-1

Project/Site: Gladding Corporation #709009

Client Sample ID: RW-1 Lab Sample ID: 480-183456-3 Date Collected: 04/15/21 13:12

Matrix: Water

Date Received: 04/17/21 08:00

Surrogate	%Recovery Qua	ualifier Limits	Prepared Analyz	zed Dil Fac
1,2-Dichloroethane-d4 (Surr)		77 - 120	04/19/21	16:08 1
4-Bromofluorobenzene (Surr)	104	73 - 120	04/19/21	16:08 1
Dibromofluoromethane (Surr)	115	75 - 123	04/19/21	16:08 1
Toluene-d8 (Surr)	102	80 - 120	04/19/21	16:08 1

Client: New York State D.E.C. Job ID: 480-183456-1

Project/Site: Gladding Corporation #709009

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-183456-4

Date Collected: 04/15/21 00:00 **Matrix: Water** Date Received: 04/17/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			04/19/21 16:31	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/19/21 16:31	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			04/19/21 16:31	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/19/21 16:31	
1,1-Dichloroethane	ND		1.0	0.38	ug/L			04/19/21 16:31	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/19/21 16:31	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/19/21 16:31	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			04/19/21 16:31	
1,2-Dibromoethane	ND		1.0	0.73	ug/L			04/19/21 16:31	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			04/19/21 16:31	
1,2-Dichloroethane	ND		1.0	0.21	ug/L			04/19/21 16:31	
1,2-Dichloropropane	ND		1.0	0.72	ug/L			04/19/21 16:31	
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			04/19/21 16:31	
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			04/19/21 16:31	
2-Butanone (MEK)	ND		10	1.3	ug/L			04/19/21 16:31	
2-Hexanone	ND		5.0	1.2	ug/L			04/19/21 16:31	
4-Methyl-2-pentanone (MIBK)	ND		5.0		-			04/19/21 16:31	
Acetone	3.0	J	10		ug/L			04/19/21 16:31	
Benzene	ND		1.0		ug/L			04/19/21 16:31	
Bromodichloromethane	ND		1.0		ug/L			04/19/21 16:31	
Bromoform	ND		1.0		ug/L			04/19/21 16:31	
Bromomethane	ND		1.0		ug/L			04/19/21 16:31	
Carbon disulfide	ND		1.0		ug/L			04/19/21 16:31	
Carbon tetrachloride	ND		1.0		ug/L			04/19/21 16:31	
Chlorobenzene	ND		1.0		ug/L			04/19/21 16:31	
Chloroethane	ND		1.0		ug/L			04/19/21 16:31	
Chloroform	ND		1.0		ug/L			04/19/21 16:31	
Chloromethane	ND		1.0		ug/L			04/19/21 16:31	
cis-1,2-Dichloroethene	ND		1.0		ug/L			04/19/21 16:31	
cis-1,3-Dichloropropene	ND		1.0		ug/L			04/19/21 16:31	
Cyclohexane	ND		1.0		ug/L			04/19/21 16:31	
Dibromochloromethane	ND		1.0		ug/L			04/19/21 16:31	
Dichlorodifluoromethane	ND		1.0		ug/L			04/19/21 16:31	
Ethylbenzene	ND		1.0		ug/L			04/19/21 16:31	
Isopropylbenzene	ND		1.0		ug/L			04/19/21 16:31	
Methyl acetate	ND		2.5		ug/L			04/19/21 16:31	
Methyl tert-butyl ether	ND		1.0		ug/L			04/19/21 16:31	
Methylcyclohexane	ND		1.0		ug/L			04/19/21 16:31	
Methylene Chloride	ND		1.0		ug/L			04/19/21 16:31	
Styrene	ND		1.0		ug/L			04/19/21 16:31	
Tetrachloroethene	ND		1.0		ug/L			04/19/21 16:31	
Toluene	ND		1.0		ug/L			04/19/21 16:31	
trans-1,2-Dichloroethene	ND ND		1.0		ug/L ug/L			04/19/21 16:31	
trans-1,3-Dichloropropene	ND		1.0		ug/L ug/L			04/19/21 16:31	
Trichloroethene	ND		1.0		ug/L ug/L			04/19/21 16:31	
Trichlorofluoromethane								04/19/21 16:31	
	ND ND		1.0		ug/L				
Vinyl chloride Xylenes, Total	ND ND		1.0 2.0		ug/L ug/L			04/19/21 16:31 04/19/21 16:31	

Client: New York State D.E.C. Job ID: 480-183456-1

Project/Site: Gladding Corporation #709009

Client Sample ID: TRIP BLANK Lab Sample ID: 480-183456-4

Date Collected: 04/15/21 00:00 Matrix: Water
Date Received: 04/17/21 08:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	77 - 120		04/19/21 16:31	1
4-Bromofluorobenzene (Surr)	106	73 - 120		04/19/21 16:31	1
Dibromofluoromethane (Surr)	107	75 - 123		04/19/21 16:31	1
Toluene-d8 (Surr)	102	80 - 120		04/19/21 16:31	1

_

_

R

9

11

13

14

Surrogate Summary

Client: New York State D.E.C. Job ID: 480-183456-1

Project/Site: Gladding Corporation #709009

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Sur	rrogate Rec
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(75-123)	(80-120)
480-183456-1	EFF 46HZ	105	99	108	98
480-183456-2	RW-2	114	110	115	104
480-183456-3	RW-1	111	104	115	102
480-183456-4	TRIP BLANK	103	106	107	102
LCS 480-576840/4	Lab Control Sample	101	103	109	100
MB 480-576840/6	Method Blank	102	104	109	100

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Eurofins TestAmerica, Buffalo

4/28/2021

QC Sample Results

Client: New York State D.E.C. Job ID: 480-183456-1

Project/Site: Gladding Corporation #709009

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-576840/6

Analysis Batch: 576840

Matrix: Water

lient Sample	ID: Meti	nod Blank
Pr	ер Туре	: Total/NA

	MB					_			B.: -
Analyte		Qualifier	RL	MDL		<u>D</u> -	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0		ug/L			04/19/21 12:04	1
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			04/19/21 12:04	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0		ug/L			04/19/21 12:04	1
1,1,2-Trichloroethane	ND		1.0		ug/L			04/19/21 12:04	1
1,1-Dichloroethane	ND		1.0		ug/L			04/19/21 12:04	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/19/21 12:04	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/19/21 12:04	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			04/19/21 12:04	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			04/19/21 12:04	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			04/19/21 12:04	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			04/19/21 12:04	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			04/19/21 12:04	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			04/19/21 12:04	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			04/19/21 12:04	1
2-Butanone (MEK)	ND		10	1.3	ug/L			04/19/21 12:04	1
2-Hexanone	ND		5.0	1.2	ug/L			04/19/21 12:04	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			04/19/21 12:04	1
Acetone	ND		10		ug/L			04/19/21 12:04	1
Benzene	ND		1.0		ug/L			04/19/21 12:04	 1
Bromodichloromethane	ND		1.0		ug/L			04/19/21 12:04	1
Bromoform	ND		1.0		ug/L			04/19/21 12:04	1
Bromomethane	ND		1.0		ug/L			04/19/21 12:04	
Carbon disulfide	ND		1.0		ug/L			04/19/21 12:04	1
Carbon tetrachloride	ND		1.0		ug/L			04/19/21 12:04	1
Chlorobenzene	ND		1.0		ug/L			04/19/21 12:04	
Chloroethane	ND		1.0		ug/L			04/19/21 12:04	1
Chloroform	ND		1.0		ug/L			04/19/21 12:04	1
Chloromethane	ND		1.0		ug/L			04/19/21 12:04	1
cis-1,2-Dichloroethene	ND ND		1.0		ug/L ug/L			04/19/21 12:04	1
	ND ND		1.0					04/19/21 12:04	1
cis-1,3-Dichloropropene					ug/L			04/19/21 12:04	
Cyclohexane	ND		1.0		ug/L				1
Dibromochloromethane	ND		1.0		ug/L			04/19/21 12:04	1
Dichlorodifluoromethane	ND		1.0		ug/L			04/19/21 12:04	1
Ethylbenzene	ND		1.0		ug/L			04/19/21 12:04	1
Isopropylbenzene	ND		1.0		ug/L			04/19/21 12:04	1
Methyl acetate	ND		2.5		ug/L			04/19/21 12:04	1
Methyl tert-butyl ether	ND		1.0		ug/L			04/19/21 12:04	1
Methylcyclohexane	ND		1.0		ug/L			04/19/21 12:04	1
Methylene Chloride	ND		1.0		ug/L			04/19/21 12:04	1
Styrene	ND		1.0	0.73	ug/L			04/19/21 12:04	1
Tetrachloroethene	ND		1.0	0.36	ug/L			04/19/21 12:04	1
Toluene	ND		1.0	0.51	ug/L			04/19/21 12:04	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			04/19/21 12:04	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			04/19/21 12:04	1
Trichloroethene	ND		1.0	0.46	ug/L			04/19/21 12:04	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			04/19/21 12:04	1
Vinyl chloride	ND		1.0	0.90	ug/L			04/19/21 12:04	1
Xylenes, Total	ND		2.0	0.66	ug/L			04/19/21 12:04	1

Eurofins TestAmerica, Buffalo

Page 16 of 25

QC Sample Results

Client: New York State D.E.C. Job ID: 480-183456-1

Project/Site: Gladding Corporation #709009

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-576840/6

Matrix: Water

Analysis Batch: 576840

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 102 77 - 120 04/19/21 12:04 4-Bromofluorobenzene (Surr) 104 73 - 120 04/19/21 12:04 75 - 123 Dibromofluoromethane (Surr) 109 04/19/21 12:04 Toluene-d8 (Surr) 100 80 - 120 04/19/21 12:04

Lab Sample ID: LCS 480-576840/4 Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 576840

	Choire Gampio 12. 245 Control Gampio
	Prep Type: Total/NA
76840	

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	27.1		ug/L		108	73 - 126
1,1,2,2-Tetrachloroethane	25.0	25.6		ug/L		103	76 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	28.4		ug/L		113	61 _ 148
ne							
1,1,2-Trichloroethane	25.0	25.6		ug/L		102	76 - 122
1,1-Dichloroethane	25.0	27.1		ug/L		108	77 - 120
1,1-Dichloroethene	25.0	26.1		ug/L		104	66 - 127
1,2,4-Trichlorobenzene	25.0	24.9		ug/L		100	79 - 122
1,2-Dibromo-3-Chloropropane	25.0	25.4		ug/L		101	56 - 134
1,2-Dibromoethane	25.0	25.7		ug/L		103	77 - 120
1,2-Dichlorobenzene	25.0	25.3		ug/L		101	80 - 124
1,2-Dichloroethane	25.0	25.4		ug/L		101	75 - 120
1,2-Dichloropropane	25.0	26.0		ug/L		104	76 - 120
1,3-Dichlorobenzene	25.0	24.8		ug/L		99	77 - 120
1,4-Dichlorobenzene	25.0	24.2		ug/L		97	80 _ 120
2-Butanone (MEK)	125	103		ug/L		82	57 - 140
2-Hexanone	125	121		ug/L		97	65 _ 127
1-Methyl-2-pentanone (MIBK)	125	128		ug/L		103	71 - 125
Acetone	125	106		ug/L		85	56 - 142
Benzene	25.0	26.4		ug/L		106	71 - 124
Bromodichloromethane	25.0	27.8		ug/L		111	80 - 122
Bromoform	25.0	29.9		ug/L		119	61 - 132
Bromomethane	25.0	26.9		ug/L		107	55 - 144
Carbon disulfide	25.0	25.9		ug/L		104	59 - 134
Carbon tetrachloride	25.0	29.2		ug/L		117	72 _ 134
Chlorobenzene	25.0	26.3		ug/L		105	80 - 120
Chloroethane	25.0	25.2		ug/L		101	69 - 136
Chloroform	25.0	25.8		ug/L		103	73 - 127
Chloromethane	25.0	25.8		ug/L		103	68 - 124
cis-1,2-Dichloroethene	25.0	27.5		ug/L		110	74 - 124
cis-1,3-Dichloropropene	25.0	26.1		ug/L		104	74 - 124
Cyclohexane	25.0	27.4		ug/L		110	59 - 135
Dibromochloromethane	25.0	28.6		ug/L		115	75 - 125
Dichlorodifluoromethane	25.0	26.1		ug/L		104	59 - 135
Ethylbenzene	25.0	25.9		ug/L		104	77 - 123
sopropylbenzene	25.0	26.3		ug/L		105	77 - 122
Methyl acetate	50.0	41.7		ug/L		83	74 - 133
Methyl tert-butyl ether	25.0	25.5		ug/L		102	77 - 120
Methylcyclohexane	25.0	27.8		ug/L		111	68 - 134

Eurofins TestAmerica, Buffalo

4/28/2021

Page 17 of 25

3

4

6

8

10

QC Sample Results

Client: New York State D.E.C. Job ID: 480-183456-1

Project/Site: Gladding Corporation #709009

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-576840/4

Matrix: Water

Surrogate

1,2-Dichloroethane-d4 (Surr)

Analysis Batch: 576840

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methylene Chloride	25.0	26.2		ug/L		105	75 - 124	
Styrene	25.0	25.1		ug/L		100	80 - 120	
Tetrachloroethene	25.0	24.5		ug/L		98	74 - 122	
Toluene	25.0	25.4		ug/L		102	80 - 122	
trans-1,2-Dichloroethene	25.0	25.9		ug/L		103	73 - 127	
trans-1,3-Dichloropropene	25.0	24.5		ug/L		98	80 - 120	
Trichloroethene	25.0	27.6		ug/L		110	74 - 123	
Trichlorofluoromethane	25.0	25.7		ug/L		103	62 - 150	
Vinyl chloride	25.0	23.4		ug/L		94	65 - 133	
Xylenes, Total	50.0	51.0		ug/L		102	76 - 122	

LCS LCS %Recovery Qualifier Limits 101 77 - 120

4-Bromofluorobenzene (Surr) 103 73 - 120 Dibromofluoromethane (Surr) 109 75 - 123 Toluene-d8 (Surr) 100 80 - 120

QC Association Summary

Client: New York State D.E.C. Job ID: 480-183456-1

Project/Site: Gladding Corporation #709009

GC/MS VOA

Analysis Batch: 576840

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-183456-1	EFF 46HZ	Total/NA	Water	8260C	
480-183456-2	RW-2	Total/NA	Water	8260C	
480-183456-3	RW-1	Total/NA	Water	8260C	
480-183456-4	TRIP BLANK	Total/NA	Water	8260C	
MB 480-576840/6	Method Blank	Total/NA	Water	8260C	
LCS 480-576840/4	Lab Control Sample	Total/NA	Water	8260C	

3

4

5

7

ŏ

4.0

11

13

14

Lab Chronicle

Client: New York State D.E.C. Job ID: 480-183456-1

Project/Site: Gladding Corporation #709009

Client Sample ID: EFF 46HZ

Lab Sample ID: 480-183456-1 Date Collected: 04/15/21 13:08

Matrix: Water

Date Received: 04/17/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	576840	04/19/21 15:20	CDC	TAL BUF

Client Sample ID: RW-2 Lab Sample ID: 480-183456-2

Date Collected: 04/15/21 13:10 **Matrix: Water**

Date Received: 04/17/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	576840	04/19/21 15:44	CDC	TAL BUF

Client Sample ID: RW-1 Lab Sample ID: 480-183456-3

Date Collected: 04/15/21 13:12 **Matrix: Water**

Date Received: 04/17/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	576840	04/19/21 16:08	CDC	TAL BUF

Client Sample ID: TRIP BLANK Lab Sample ID: 480-183456-4

Date Collected: 04/15/21 00:00 **Matrix: Water**

Date Received: 04/17/21 08:00

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C			576840	04/19/21 16:31	CDC	TAL BUF	•

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: New York State D.E.C. Job ID: 480-183456-1

Project/Site: Gladding Corporation #709009

Laboratory: Eurofins TestAmerica, Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	04-01-22

3

4

5

7

9

11

12

14

Method Summary

Client: New York State D.E.C. Job ID: 480-183456-1

Project/Site: Gladding Corporation #709009

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
5030C	Purge and Trap	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

6

2

9

41

12

1 <u>/</u>

Sample Summary

Client: New York State D.E.C. Job ID: 480-183456-1

Project/Site: Gladding Corporation #709009

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-183456-1	EFF 46HZ	Water	04/15/21 13:08	04/17/21 08:00	
480-183456-2	RW-2	Water	04/15/21 13:10	04/17/21 08:00	
480-183456-3	RW-1	Water	04/15/21 13:12	04/17/21 08:00	
480-183456-4	TRIP BLANK	Water	04/15/21 00:00	04/17/21 08:00	

3

9

10

11

13

14

THE LEADER IN ENVIRONMENTAL TESTING

OEX Special Instructic Conditions of Rec Standard (A fee may be assessed if samples are retained longer than 1 month) Chain of Custody Number of 391486 Syracuse #225 Tun Page__ Analysis (Attach list if more space is needed) 4/15 (21 Lab Number __ Months 480-183456 Chain of Custody ☐ Archive For र र $\frac{\overline{x}}{2}$ 70/1 メメ X 701 X QC Requirements (Specify) Judy Stome \partial AnZ HObN Containers & Preservatives Disposal By Lab HOPN 2. Received By 3. Received By 1. Received By X X × IOH Telephone Number (Area Code)/Fax Number 6267 Lab Contact EONH ₽OSZH səıdu∩ ☐ Return To Client 100 1457 1 607 206 Site Contact Sample Disposal J. Wycko (Carrier/Waybill Number 1105 Matrix pəs Project Manager snoənbı X X 4-11-2 ЛÞ ☐ Unknown Other 1312 1310 Time 4115/21 1308 21 Days 12/51/6 12/5/1/ Poison B Date 855 Rt.146 STE210, Cl. flowbark Zip Code ☐ 14 Days Sample I.D. No. and Description (Containers for each sample may be combined on one line) Skin Irritant State 23 Gladding South Otselic ☐ 7 Days 30055695.00003 | Flammable Clifton Park Project Name and Location (State) Rt 48 Hours Possible Hazard Identification Turn Around Time Required Eff 46HZ Aelinquished By Trip Blank 2 Relinquished By 3. Relinquished By Arcadis Non-Hazard FAL-4142 (0907) RW-2 24 Hours RW-1 Comments

DISTRIBUTION: WHITE - Returned to Client with Report. CANARY - Stays with the Sample: PINK - Field Copy

4567

13 14

I

Client: New York State D.E.C.

Job Number: 480-183456-1

Login Number: 183456 List Source: Eurofins TestAmerica, Buffalo

List Number: 1 Creator: Stopa, Erik S

		•
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	ARCADIS
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Eurofins TestAmerica, Buffalo

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-184543-1

Laboratory Sample Delivery Group: South Otselic Client Project/Site: Gladding Corporation #709009

For:

New York State D.E.C. 625 Broadway 4th Floor Albany, New York 12233

Attn: Mr. Payson Long

Wyst Bloton

Authorized for release by: 5/24/2021 4:58:18 PM
Wyatt Watson, Project Management Assistant I
Wyatt.Watson@Eurofinset.com

Designee for

Judy Stone, Senior Project Manager (484)685-0868
Judy.Stone@Eurofinset.com

..... Links

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

5

6

8

11

12

Project/Site: Gladding Corporation #709009

Laboratory Job ID: 480-184543-1

SDG: South Otselic

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Wystl BWat Don

Wyatt Watson

Project Management Assistant I

5/24/2021 4:58:18 PM

2

4

5

6

Q

10

11

13

14

uth Otselic

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	15
QC Sample Results	16
QC Association Summary	19
Lab Chronicle	20
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24
Receipt Checklists	25

K

Definitions/Glossary

Client: New York State D.E.C.

Project/Site: Gladding Corporation #709009 SDG: South Otselic

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Job ID: 480-184543-1

5

e

7

0

10

111

13

14

Case Narrative

Client: New York State D.E.C.

Project/Site: Gladding Corporation #709009

Job ID: 480-184543-1 SDG: South Otselic

Job ID: 480-184543-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-184543-1

Comments

No additional comments.

Receipt

The samples were received on 5/12/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.7° C.

GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-581081 recovered outside acceptance criteria, low biased, for 1,1,2-Trichloro-1,2,2-trifluoroethane, Cyclohexane and Methylcyclohexane. A reporting limit (RL) standard was analyzed, and the target analytes were detected. Since the associated samples were non-detect for these analytes, the data have been reported. The associated samples are impacted: RW-1 051121 (480-184543-1), RW-2 051121 (480-184543-2), EFF-46 HZ 051121 (480-184543-3) and TRIP BLANK 051121 (480-184543-4).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: New York State D.E.C.

Project/Site: Gladding Corporation #709009

Lab Sample ID: 480-184543-1

Job ID: 480-184543-1 SDG: South Otselic

Client Sample ID: RV	V-1 U51121
----------------------	------------

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
1,1,1-Trichloroethane	39	1.0	0.82 ug/L	1	8260C	Total/NA
1,1-Dichloroethane	0.93 J	1.0	0.38 ug/L	1	8260C	Total/NA
1,1-Dichloroethene	1.0	1.0	0.29 ug/L	1	8260C	Total/NA

Client Sample ID: RW-2 051121

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,1-Trichloroethane	33	1.0	0.82	ug/L	1	_	8260C	Total/NA
1,1-Dichloroethane	0.81 J	1.0	0.38	ug/L	1		8260C	Total/NA
1,1-Dichloroethene	1.1	1.0	0.29	ug/L	1		8260C	Total/NA

Client Sample ID: EFF-46 HZ 051121

No Detections.

Client Sample ID: TRIP BLANK 051121

No Detections.

Lab Sample ID: 480-184543-2

Lab Sample ID: 480-184543-3

Lab Sample ID: 480-184543-4

8

9

10

11

13

14

Client: New York State D.E.C.

Job ID: 480-184543-1 Project/Site: Gladding Corporation #709009 SDG: South Otselic

Client Sample ID: RW-1 051121

Lab Sample ID: 480-184543-1 Date Collected: 05/11/21 15:25 **Matrix: Water** Date Received: 05/12/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	39		1.0	0.82	ug/L		-	05/15/21 12:13	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			05/15/21 12:13	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			05/15/21 12:13	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			05/15/21 12:13	
1,1-Dichloroethane	0.93	J	1.0	0.38	ug/L			05/15/21 12:13	
1,1-Dichloroethene	1.0		1.0	0.29	ug/L			05/15/21 12:13	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			05/15/21 12:13	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			05/15/21 12:13	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			05/15/21 12:13	
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/15/21 12:13	
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/15/21 12:13	
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			05/15/21 12:13	
1,4-Dichlorobenzene	ND		1.0		ug/L			05/15/21 12:13	
2-Butanone (MEK)	ND		10		ug/L			05/15/21 12:13	
2-Hexanone	ND		5.0		ug/L			05/15/21 12:13	
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			05/15/21 12:13	
Acetone	ND		10		ug/L			05/15/21 12:13	
Benzene	ND		1.0		ug/L			05/15/21 12:13	
Bromodichloromethane	ND		1.0		ug/L			05/15/21 12:13	
Bromoform	ND		1.0		ug/L			05/15/21 12:13	
Bromomethane	ND		1.0		ug/L			05/15/21 12:13	
Carbon disulfide	ND		1.0		ug/L			05/15/21 12:13	
Carbon tetrachloride	ND		1.0		ug/L			05/15/21 12:13	
Chlorobenzene	ND		1.0		ug/L			05/15/21 12:13	
Dibromochloromethane	ND		1.0		ug/L			05/15/21 12:13	
Chloroethane	ND		1.0		ug/L			05/15/21 12:13	
Chloroform	ND		1.0		ug/L			05/15/21 12:13	
Chloromethane	ND		1.0		ug/L			05/15/21 12:13	
cis-1,2-Dichloroethene	ND		1.0		ug/L			05/15/21 12:13	
cis-1,3-Dichloropropene	ND		1.0		ug/L			05/15/21 12:13	
Cyclohexane	ND		1.0		ug/L			05/15/21 12:13	
Dichlorodifluoromethane	ND		1.0		ug/L			05/15/21 12:13	
Ethylbenzene	ND		1.0		ug/L			05/15/21 12:13	
1,2-Dibromoethane	ND		1.0		ug/L			05/15/21 12:13	
Isopropylbenzene	ND		1.0		ug/L			05/15/21 12:13	
Methyl acetate	ND		2.5		ug/L			05/15/21 12:13	
Methyl tert-butyl ether	ND		1.0		ug/L			05/15/21 12:13	
Methylcyclohexane	ND		1.0		ug/L			05/15/21 12:13	
Methylene Chloride	ND		1.0		ug/L			05/15/21 12:13	
Styrene	ND		1.0		ug/L			05/15/21 12:13	
Tetrachloroethene	ND		1.0		ug/L			05/15/21 12:13	
Toluene	ND		1.0		ug/L			05/15/21 12:13	
trans-1,2-Dichloroethene	ND		1.0		ug/L			05/15/21 12:13	
trans-1,3-Dichloropropene	ND		1.0		ug/L			05/15/21 12:13	
Trichloroethene	ND		1.0		ug/L			05/15/21 12:13	
Trichlorofluoromethane	ND		1.0		ug/L			05/15/21 12:13	
Vinyl chloride	ND		1.0		ug/L			05/15/21 12:13	
Xylenes, Total	ND		2.0		ug/L			05/15/21 12:13	

Eurofins TestAmerica, Buffalo

Page 7 of 25

Client: New York State D.E.C.

Project/Site: Gladding Corporation #709009

Lab Sample ID: 480-184543-1

Matrix: Water

Job ID: 480-184543-1

SDG: South Otselic

Olland Onnuals ID: DW/4	054404
Client Sample ID: RW-1	051121
	••••
D . O	_

Date Collected: 05/11/21 15:25 Date Received: 05/12/21 08:00

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	87		80 - 120		05/15/21 12:13	1
1,2-Dichloroethane-d4 (Surr)	92		77 - 120		05/15/21 12:13	1
4-Bromofluorobenzene (Surr)	93		73 - 120		05/15/21 12:13	1
Dibromofluoromethane (Surr)	98		75 - 123		05/15/21 12:13	1

Client: New York State D.E.C.

Client Sample ID: RW-2 051121

Project/Site: Gladding Corporation #709009

Lab Sample ID: 480-184543-2

Matrix: Water

Job ID: 480-184543-1

SDG: South Otselic

Date Collected: 05/11/21 15:20	
Date Received: 05/12/21 08:00	
_	

Method: 8260C - Volatile Organ Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	33		1.0	0.82	ug/L			05/15/21 12:35	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			05/15/21 12:35	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			05/15/21 12:35	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			05/15/21 12:35	1
1,1-Dichloroethane	0.81	J	1.0	0.38	ug/L			05/15/21 12:35	1
1,1-Dichloroethene	1.1		1.0	0.29	ug/L			05/15/21 12:35	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			05/15/21 12:35	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			05/15/21 12:35	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			05/15/21 12:35	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/15/21 12:35	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/15/21 12:35	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			05/15/21 12:35	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			05/15/21 12:35	1
2-Butanone (MEK)	ND		10	1.3	ug/L			05/15/21 12:35	1
2-Hexanone	ND		5.0	1.2	ug/L			05/15/21 12:35	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			05/15/21 12:35	1
Acetone	ND		10	3.0	ug/L			05/15/21 12:35	1
Benzene	ND		1.0	0.41	ug/L			05/15/21 12:35	1
Bromodichloromethane	ND		1.0	0.39	ug/L			05/15/21 12:35	1
Bromoform	ND		1.0	0.26	ug/L			05/15/21 12:35	1
Bromomethane	ND		1.0	0.69	ug/L			05/15/21 12:35	1
Carbon disulfide	ND		1.0	0.19	ug/L			05/15/21 12:35	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			05/15/21 12:35	1
Chlorobenzene	ND		1.0	0.75	ug/L			05/15/21 12:35	1
Dibromochloromethane	ND		1.0	0.32	ug/L			05/15/21 12:35	1
Chloroethane	ND		1.0	0.32	ug/L			05/15/21 12:35	1
Chloroform	ND		1.0	0.34	ug/L			05/15/21 12:35	1
Chloromethane	ND		1.0	0.35	ug/L			05/15/21 12:35	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/15/21 12:35	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			05/15/21 12:35	1
Cyclohexane	ND		1.0	0.18	ug/L			05/15/21 12:35	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			05/15/21 12:35	1
Ethylbenzene	ND		1.0	0.74	ug/L			05/15/21 12:35	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			05/15/21 12:35	1
Isopropylbenzene	ND		1.0	0.79				05/15/21 12:35	1
Methyl acetate	ND		2.5	1.3	ug/L			05/15/21 12:35	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			05/15/21 12:35	1
Methylcyclohexane	ND		1.0		ug/L			05/15/21 12:35	1
Methylene Chloride	ND		1.0		ug/L			05/15/21 12:35	1
Styrene	ND		1.0		ug/L			05/15/21 12:35	1
Tetrachloroethene	ND		1.0		ug/L			05/15/21 12:35	1
Toluene	ND		1.0		ug/L			05/15/21 12:35	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			05/15/21 12:35	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			05/15/21 12:35	1
Trichloroethene	ND		1.0		ug/L			05/15/21 12:35	1
Trichlorofluoromethane	ND		1.0		ug/L			05/15/21 12:35	1
Vinyl chloride	ND		1.0		ug/L			05/15/21 12:35	1
Xylenes, Total	ND		2.0	0.66	_			05/15/21 12:35	1

Eurofins TestAmerica, Buffalo

Page 9 of 25

Client: New York State D.E.C.

Job ID: 480-184543-1 Project/Site: Gladding Corporation #709009 SDG: South Otselic

Client Sample ID: RW-2 051121 Lab Sample ID: 480-184543-2

Date Collected: 05/11/21 15:20 **Matrix: Water** Date Received: 05/12/21 08:00

Surrogate	%Recovery Qualifi	er Limits	Prepared An	alyzed Dil Fac
Toluene-d8 (Surr)	89	80 - 120	<u></u>	/21 12:35 1
1,2-Dichloroethane-d4 (Surr)	89	77 - 120	05/15	/21 12:35 1
4-Bromofluorobenzene (Surr)	93	73 - 120	05/15	/21 12:35 1
Dibromofluoromethane (Surr)	91	75 ₋ 123	05/15	/21 12:35 1

Client: New York State D.E.C.

Project/Site: Gladding Corporation #709009

SDG: South Otselic

Client Sample ID: EFF-46 HZ 051121

Date Collected: 05/11/21 15:15 Date Received: 05/12/21 08:00 Lab Sample ID: 480-184543-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			05/15/21 12:58	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			05/15/21 12:58	•
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			05/15/21 12:58	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			05/15/21 12:58	
1,1-Dichloroethane	ND		1.0	0.38	ug/L			05/15/21 12:58	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			05/15/21 12:58	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			05/15/21 12:58	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			05/15/21 12:58	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			05/15/21 12:58	
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/15/21 12:58	
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/15/21 12:58	
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			05/15/21 12:58	
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			05/15/21 12:58	
2-Butanone (MEK)	ND		10	1.3	ug/L			05/15/21 12:58	
2-Hexanone	ND		5.0	1.2	ug/L			05/15/21 12:58	
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			05/15/21 12:58	
Acetone	ND		10	3.0	ug/L			05/15/21 12:58	
Benzene	ND		1.0	0.41	ug/L			05/15/21 12:58	
Bromodichloromethane	ND		1.0	0.39	ug/L			05/15/21 12:58	
Bromoform	ND		1.0	0.26	-			05/15/21 12:58	
Bromomethane	ND		1.0	0.69	-			05/15/21 12:58	
Carbon disulfide	ND		1.0	0.19	ug/L			05/15/21 12:58	
Carbon tetrachloride	ND		1.0	0.27	-			05/15/21 12:58	
Chlorobenzene	ND		1.0	0.75	-			05/15/21 12:58	
Dibromochloromethane	ND		1.0		ug/L			05/15/21 12:58	
Chloroethane	ND		1.0	0.32	-			05/15/21 12:58	
Chloroform	ND		1.0	0.34	-			05/15/21 12:58	
Chloromethane	ND		1.0		ug/L			05/15/21 12:58	
cis-1,2-Dichloroethene	ND		1.0	0.81	-			05/15/21 12:58	
cis-1,3-Dichloropropene	ND		1.0	0.36	-			05/15/21 12:58	
Cyclohexane	ND		1.0		ug/L			05/15/21 12:58	
Dichlorodifluoromethane	ND		1.0	0.68	-			05/15/21 12:58	
Ethylbenzene	ND		1.0	0.74	-			05/15/21 12:58	
1,2-Dibromoethane	ND		1.0		ug/L			05/15/21 12:58	
Isopropylbenzene	ND		1.0	0.79	-			05/15/21 12:58	
Methyl acetate	ND		2.5		ug/L			05/15/21 12:58	
Methyl tert-butyl ether	ND		1.0		ug/L			05/15/21 12:58	
Methylcyclohexane	ND		1.0		ug/L			05/15/21 12:58	
Methylene Chloride	ND		1.0		ug/L			05/15/21 12:58	
Styrene	ND		1.0		ug/L			05/15/21 12:58	
Tetrachloroethene	ND		1.0		ug/L			05/15/21 12:58	
Toluene	ND		1.0		ug/L			05/15/21 12:58	
trans-1,2-Dichloroethene	ND		1.0		ug/L			05/15/21 12:58	
trans-1,3-Dichloropropene	ND		1.0		ug/L			05/15/21 12:58	
Trichloroethene	ND		1.0		ug/L			05/15/21 12:58	
Trichlorofluoromethane	ND		1.0		ug/L			05/15/21 12:58	
Vinyl chloride	ND		1.0		ug/L			05/15/21 12:58	
Xylenes, Total	ND		2.0		ug/L			05/15/21 12:58	

Eurofins TestAmerica, Buffalo

5/24/2021

Page 11 of 25

2

3

5

8

10

12

1 /

Client: New York State D.E.C.

Job ID: 480-184543-1 Project/Site: Gladding Corporation #709009 SDG: South Otselic

Client Sample ID: EFF-46 HZ 051121 Lab Sample ID: 480-184543-3

Date Collected: 05/11/21 15:15 Date Received: 05/12/21 08:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	84	80 - 120		05/15/21 12:58	1
1,2-Dichloroethane-d4 (Surr)	84	77 - 120		05/15/21 12:58	1
4-Bromofluorobenzene (Surr)	88	73 - 120		05/15/21 12:58	1
Dibromofluoromethane (Surr)	86	75 - 123		05/15/21 12:58	1

Matrix: Water

Client: New York State D.E.C. Job ID: 480-184543-1 Project/Site: Gladding Corporation #709009 SDG: South Otselic

Client Sample ID: TRIP BLANK 051121

Lab Sample ID: 480-184543-4 Date Collected: 05/11/21 00:00 Date Received: 05/12/21 08:00

Method: 8260C - Volatile Organic Compounds by GC/MS Result Qualifier **MDL** Unit Dil Fac Analyte RL D Prepared Analyzed 1,1,1-Trichloroethane ND 1.0 0.82 ug/L 05/15/21 13:21 ND 1,1,2,2-Tetrachloroethane 1.0 0.21 ug/L 05/15/21 13:21 1,1,2-Trichloroethane ND 1.0 0.23 ug/L 05/15/21 13:21 0.31 ug/L 1,1,2-Trichloro-1,2,2-trifluoroethane ND 1.0 05/15/21 13:21 1.1-Dichloroethane ND 0.38 ug/L 05/15/21 13:21 1.0 1.1-Dichloroethene ND 1.0 0.29 ug/L 05/15/21 13:21 1,2,4-Trichlorobenzene ND 1.0 0.41 ug/L 05/15/21 13:21 1,2-Dibromo-3-Chloropropane ND 1.0 0.39 ug/L 05/15/21 13:21 1,2-Dichlorobenzene ND 1.0 0.79 ug/L 05/15/21 13:21 1,2-Dichloroethane ND 1.0 0.21 ug/L 05/15/21 13:21 1,2-Dichloropropane ND 1.0 0.72 ug/L 05/15/21 13:21 1.3-Dichlorobenzene ND 1.0 0.78 ug/L 05/15/21 13:21 1 1,4-Dichlorobenzene ND 1.0 0.84 ug/L 05/15/21 13:21 2-Butanone (MEK) ND 10 1.3 ug/L 05/15/21 13:21 2-Hexanone ND 5.0 1.2 ug/L 05/15/21 13:21 2.1 4-Methyl-2-pentanone (MIBK) ND 5.0 ug/L 05/15/21 13:21 Acetone ND 10 3.0 ug/L 05/15/21 13:21 Benzene ND 1.0 0.41 ug/L 05/15/21 13:21 Bromodichloromethane 1.0 ND 0.39 ug/L 05/15/21 13:21 Bromoform ND 1.0 0.26 ug/L 05/15/21 13:21 Bromomethane ND 1.0 0.69 ug/L 05/15/21 13:21 Carbon disulfide ND 1.0 0.19 ug/L 05/15/21 13:21 Carbon tetrachloride ND 0.27 1.0 ug/L 05/15/21 13:21 Chlorobenzene ND 1.0 0.75 ug/L 05/15/21 13:21 Dibromochloromethane ND 1.0 0.32 ug/L 05/15/21 13:21 Chloroethane 0.32 ug/L ND 1.0 05/15/21 13:21 Chloroform ND 1.0 0.34 ug/L 05/15/21 13:21 ND 0.35 ug/L Chloromethane 1.0 05/15/21 13:21 cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 05/15/21 13:21 cis-1,3-Dichloropropene ND 1.0 ug/L 0.36 05/15/21 13:21 Cyclohexane ND 1.0 0.18 ug/L 05/15/21 13:21 Dichlorodifluoromethane ND 1.0 0.68 ug/L 05/15/21 13:21 Ethylbenzene ND 1.0 0.74 ug/L 05/15/21 13:21 1,2-Dibromoethane ND 10 0.73 ug/L 05/15/21 13:21 Isopropylbenzene ND 1.0 0.79 ug/L 05/15/21 13:21 Methyl acetate ND 2.5 05/15/21 13:21 1.3 ug/L Methyl tert-butyl ether ND 1.0 0.16 ug/L 05/15/21 13:21 Methylcyclohexane ND 1.0 0.16 ug/L 05/15/21 13:21 Methylene Chloride ND 1.0 0.44 ug/L 05/15/21 13:21 Styrene ND 1.0 0.73 ug/L 05/15/21 13:21 Tetrachloroethene ND 1.0 0.36 ug/L 05/15/21 13:21 Toluene ND 1.0 0.51 ug/L 05/15/21 13:21 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 05/15/21 13:21 trans-1,3-Dichloropropene 0.37 ND 1.0 ug/L 05/15/21 13:21 Trichloroethene ND 1.0 0.46 ug/L 05/15/21 13:21 Trichlorofluoromethane ND 1.0 0.88 ug/L 05/15/21 13:21 Vinyl chloride ND 1.0 0.90 ug/L 05/15/21 13:21 Xylenes, Total ND 2.0 0.66 ug/L 05/15/21 13:21

Eurofins TestAmerica, Buffalo

5/24/2021

Matrix: Water

Client: New York State D.E.C.

Job ID: 480-184543-1 Project/Site: Gladding Corporation #709009 SDG: South Otselic

Client Sample ID: TRIP BLANK 051121 Lab Sample ID: 480-184543-4 **Matrix: Water**

Date Collected: 05/11/21 00:00 Date Received: 05/12/21 08:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	86	80 - 120		05/15/21 13:21	1
1,2-Dichloroethane-d4 (Surr)	93	77 - 120		05/15/21 13:21	1
4-Bromofluorobenzene (Surr)	90	73 - 120		05/15/21 13:21	1
Dibromofluoromethane (Surr)	95	75 - 123		05/15/21 13:21	1

Surrogate Summary

Client: New York State D.E.C.

Job ID: 480-184543-1 Project/Site: Gladding Corporation #709009 SDG: South Otselic

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			PE	ercent Surro	ogate Reco
		TOL	DCA	BFB	DBFM
Lab Sample ID	Client Sample ID	(80-120)	(77-120)	(73-120)	(75-123)
480-184543-1	RW-1 051121	87	92	93	98
480-184543-2	RW-2 051121	89	89	93	91
480-184543-3	EFF-46 HZ 051121	84	84	88	86
480-184543-4	TRIP BLANK 051121	86	93	90	95
LCS 480-581081/5	Lab Control Sample	90	86	95	91
MB 480-581081/7	Method Blank	92	91	101	96

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job ID: 480-184543-1 Project/Site: Gladding Corporation #709009 SDG: South Otselic

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-581081/7

Matrix: Water

Analysis Batch: 581081

Client Samp	ole ID:	Metho	od Blank	
	Prep '	Type:	Total/NA	

		MB							
Analyte		Qualifier	RL	MDL		<u>D</u> .	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0		ug/L			05/15/21 11:19	1
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			05/15/21 11:19	1
1,1,2-Trichloroethane	ND		1.0		ug/L			05/15/21 11:19	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0		ug/L			05/15/21 11:19	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			05/15/21 11:19	1
1,1-Dichloroethene	ND		1.0		ug/L			05/15/21 11:19	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			05/15/21 11:19	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			05/15/21 11:19	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			05/15/21 11:19	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/15/21 11:19	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/15/21 11:19	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			05/15/21 11:19	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			05/15/21 11:19	1
2-Butanone (MEK)	ND		10	1.3	ug/L			05/15/21 11:19	1
2-Hexanone	ND		5.0	1.2	ug/L			05/15/21 11:19	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			05/15/21 11:19	1
Acetone	ND		10	3.0	ug/L			05/15/21 11:19	1
Benzene	ND		1.0	0.41	ug/L			05/15/21 11:19	1
Bromodichloromethane	ND		1.0	0.39	ug/L			05/15/21 11:19	1
Bromoform	ND		1.0		ug/L			05/15/21 11:19	1
Bromomethane	ND		1.0		ug/L			05/15/21 11:19	1
Carbon disulfide	ND		1.0		ug/L			05/15/21 11:19	1
Carbon tetrachloride	ND		1.0		ug/L			05/15/21 11:19	1
Chlorobenzene	ND		1.0		ug/L			05/15/21 11:19	1
Dibromochloromethane	ND		1.0		ug/L			05/15/21 11:19	1
Chloroethane	ND		1.0		ug/L			05/15/21 11:19	1
Chloroform	ND		1.0		ug/L			05/15/21 11:19	1
Chloromethane	ND		1.0		ug/L			05/15/21 11:19	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			05/15/21 11:19	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			05/15/21 11:19	1
Cyclohexane	ND		1.0		ug/L			05/15/21 11:19	1
Dichlorodifluoromethane	ND		1.0		ug/L			05/15/21 11:19	1
Ethylbenzene	ND		1.0		ug/L			05/15/21 11:19	1
1,2-Dibromoethane	ND		1.0		ug/L			05/15/21 11:19	
Isopropylbenzene	ND		1.0		ug/L			05/15/21 11:19	1
Methyl acetate	ND		2.5		ug/L			05/15/21 11:19	1
Methyl tert-butyl ether	ND		1.0		ug/L			05/15/21 11:19	
Methylcyclohexane	ND		1.0		ug/L			05/15/21 11:19	1
Methylene Chloride	ND		1.0		ug/L			05/15/21 11:19	1
Styrene	ND		1.0		ug/L			05/15/21 11:19	1
Tetrachloroethene	ND		1.0		ug/L			05/15/21 11:19	1
Toluene	ND ND		1.0		ug/L ug/L			05/15/21 11:19	1
trans-1,2-Dichloroethene	ND								
•	ND ND		1.0 1.0		ug/L			05/15/21 11:19	1
trans-1,3-Dichloropropene Trichloroethene	ND ND		1.0		ug/L			05/15/21 11:19	1
					ug/L			05/15/21 11:19	1
Trichlorofluoromethane	ND		1.0		ug/L			05/15/21 11:19	1
Vinyl chloride	ND		1.0		ug/L			05/15/21 11:19	1
Xylenes, Total	ND		2.0	0.66	ug/L			05/15/21 11:19	1

Eurofins TestAmerica, Buffalo

Page 16 of 25

Client: New York State D.E.C.

Job ID: 480-184543-1 Project/Site: Gladding Corporation #709009 SDG: South Otselic

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-581081/7

Matrix: Water

Analysis Batch: 581081

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB M	ИB				
Surrogate	%Recovery Q	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	92		30 - 120		05/15/21 11:19	1
1,2-Dichloroethane-d4 (Surr)	91		77 - 120		05/15/21 11:19	1
4-Bromofluorobenzene (Surr)	101		73 - 120		05/15/21 11:19	1
Dibromofluoromethane (Surr)	96		75 - 123		05/15/21 11:19	1

Lab Sample ID: LCS 480-581081/5

Matrix: Water

Analysis Batch: 581081

Client Sample	ID: Lab Control Sample
	Pron Type: Total/NA

Analyte Added Result Qualifier Unif. D %Rec Limits 1,1,1-Trichloroethane 25.0 28.4 ug/L 114 76.120 1,1,2-Trichloroethane 25.0 28.8 ug/L 107 76.122 1,1,2-Trichloroethane 25.0 18.6 ug/L 107 76.122 1,1-Dichloroethane 25.0 24.0 ug/L 82 66.127 1,1-Dichloroethane 25.0 24.9 ug/L 100 79.122 1,2-Dibrono-Chloropropane 25.0 24.9 ug/L 100 79.122 1,2-Dichloroethane 25.0 24.9 ug/L 100 79.122 1,2-Dichloropropane 25.0 24.9 ug/L 100 78.120 1,2-Dichloropropane 25.0 24.2 ug/L 100 78.120 1,2-Dichloropropane 25.0 25.2 ug/L 101 77.120 1,3-Dichloropropane 25.0 25.2 ug/L 101 77.120		Spike	LCS	LCS				%Rec.	
1,1,2,2-Tetrachloroethane 25.0 28.4 ug/L 177 76.122 1,1,2-Trichloroethane 25.0 26.8 ug/L 75 61.148 1,12-Trichloroethane 25.0 18.6 ug/L 96 77.120 1,1-Dichloroethane 25.0 24.0 ug/L 82 66.127 1,2-Trichloroethane 25.0 24.9 ug/L 100 79.122 1,2-Dichroos-Schloropropane 25.0 24.9 ug/L 100 79.122 1,2-Dichloroethane 25.0 24.9 ug/L 100 79.122 1,2-Dichloroptogoane 25.0 24.9 ug/L 100 76.120 1,2-Dichloroptogoane 25.0 24.9 ug/L 100 76.120 1,3-Dichloroptogoane 25.0 25.2 ug/L 101 77.7.120	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,2-Trichloroethane 25.0 26.8 ug/L 107 76.122 1,1,2-Trichloroe-1,2,2-triffluoroetha 25.0 18.6 ug/L 75 61.148 1,1-Dichloroethane 25.0 24.0 ug/L 96 77.120 1,1-Dichloroethane 25.0 24.9 ug/L 100 79.122 1,2-Dichloroethane 25.0 24.9 ug/L 100 56.134 1,2-Dichloroethane 25.0 24.9 ug/L 100 56.134 1,2-Dichloroethane 25.0 24.9 ug/L 100 30.124 1,2-Dichloroethane 25.0 24.2 ug/L 97 75.120 1,2-Dichloroethane 25.0 24.2 ug/L 100 76.120 1,2-Dichloroethane 25.0 24.9 ug/L 100 76.120 1,2-Dichloroethane 25.0 25.2 ug/L 101 77.120 1,2-Dichloroethane 25.0 25.2 ug/L 101 77.120 1,2-Dichloroethane 25.0 25.2 ug/L 101 77.120 1,3-Dichloroethane 25.0 25.2 ug/L 101 77.120 1,4-Dichlorobenzene 25.0 25.2 ug/L 101 80.120 2,2-Butanone (MEK) 125 136 ug/L 105 57.140 2,4-Hexanone 125 158 ug/L 122 65.127 4,4-Methyl-2-pentanone (MIBK) 125 136 ug/L 109 71.125 4,2-Ebranone 25.0 25.0 23.6 ug/L 105 80.122 Bromodichloromethane 25.0 25.0 23.6 ug/L 105 80.122 Bromodichloromethane 25.0 25.0 23.0 ug/L 103 80.120 Dibromochloromethane 25.0 25.0 ug/L 103 80.120 Dibromochloromethane 25.0 25.0 ug/L 107 69.136 Chloroform 25.0 25.0 ug/L 107 69.136 Chloroform 25.0 25.0 ug/L 107 75.126 Chloroethane 25.0 25.0 ug/L 107 75.126 Chloroethane 25.0 25.0 ug/L 107 77.120 Sopropylenzene 25.0 25.0 ug/L 107 77.120 Sopropylenzen	1,1,1-Trichloroethane	25.0	24.0		ug/L		96	73 - 126	
1,1,2-Trichloro-1,2,2-trifluoroethan ne	1,1,2,2-Tetrachloroethane	25.0	28.4		ug/L		114	76 - 120	
The The	1,1,2-Trichloroethane	25.0	26.8		ug/L		107	76 - 122	
1,1-Dichloroethane 25.0 24.0 ug/L 86 77 - 120 1,1-Dichloroethene 25.0 20.5 ug/L 100 79 - 122 1,2-Dichlorobezene 25.0 24.9 ug/L 100 79 - 122 1,2-Dichloroethane 25.0 26.5 ug/L 106 56 - 134 1,2-Dichloroethane 25.0 24.9 ug/L 100 76 - 120 1,2-Dichloroethane 25.0 24.9 ug/L 100 76 - 120 1,2-Dichloroethane 25.0 25.2 ug/L 101 77 - 120 1,2-Dichlorobenzene 25.0 25.2 ug/L 101 77 - 120 1,3-Dichlorobenzene 25.0 25.2 ug/L 101 77 - 120 2-Butanone (MEK) 125 143 ug/L 115 57 - 140 2-Hexanone 125 158 ug/L 126 - 127 122 4-Methyl-2-pentanone (MIBK) 125 158 ug/L 120 57 - 140 Acetone	1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	18.6		ug/L		75	61 - 148	
1,1-Dichloroethene 25.0 20.5 ug/L 82 66.127 1,2-L-Tichlorobenzene 25.0 24.9 ug/L 100 79.122 1,2-Dichloros-Chloropropane 25.0 24.9 ug/L 100 80.124 1,2-Dichloroethane 25.0 24.9 ug/L 100 80.124 1,2-Dichloropropane 25.0 24.9 ug/L 100 76.120 1,3-Dichlorobenzene 25.0 25.2 ug/L 101 77.120 1,3-Dichlorobenzene 25.0 25.2 ug/L 101 77.120 1,4-Dichlorobenzene 25.0 25.2 ug/L 101 77.140 2-Hexanone 125 158 ug/L 101 70.1122 2-Hexanone 125 158 ug/L 102 65.127 4-Methyl-2-pen	ne								
1,2,4-Trichlorobenzene 25.0 24.9 ug/L 100 79-122 1,2-Dichloropropane 25.0 26.5 ug/L 106 56-134 1,2-Dichlorobenzene 25.0 24.9 ug/L 100 80-124 1,2-Dichloropropane 25.0 24.9 ug/L 100 76-120 1,3-Dichlorobenzene 25.0 25.2 ug/L 101 77-120 1,4-Dichlorobenzene 25.0 25.2 ug/L 101 77-120 1,4-Dichlorobenzene 25.0 25.2 ug/L 101 77-120 1,4-Dichlorobenzene 25.0 25.2 ug/L 101 80-120 2-Butanone (MEK) 125 143 ug/L 115 57-140 2-Hexanone 125 152 ug/L 109 71-125 Acetone 125 158 ug/L 109 71-125 Acetone 125 158 ug/L 105 80-122 Bromodichloromethane 25.0	1,1-Dichloroethane		24.0		Ū		96	77 - 120	
1,2-Dibromo-3-Chloropropane 25.0 26.5 ug/L 106 56.134 1,2-Dichlorobenzene 25.0 24.9 ug/L 100 80.124 1,2-Dichloroptena 25.0 24.2 ug/L 107 75.120 1,2-Dichloropropane 25.0 25.0 ug/L 100 76.120 1,3-Dichlorobenzene 25.0 25.2 ug/L 101 77.120 1,4-Dichlorobenzene 25.0 25.2 ug/L 101 77.120 2-Butanone (MEK) 125 143 ug/L 115 57.140 2-Hexanone 125 152 ug/L 122 66.127 4-Methyl-2-pentanone (MIBK) 125 136 ug/L 109 71.125 Acetone 125 158 ug/L 126 65.142 Benzene 25.0 23.6 ug/L 195 71.124 Bernzene 25.0 23.6 ug/L 105 86.142 Bromodichloromethane 25.0 22.7 ug/L 110 61.322 Bromodichloromethane 25.0	1,1-Dichloroethene	25.0	20.5		ug/L		82	66 - 127	
1,2-Dichlorobenzene 25.0 24.9 ug/L 100 80.124 1,2-Dichloroethane 25.0 24.2 ug/L 100 75.120 1,2-Dichloropenzene 25.0 25.2 ug/L 100 76.120 1,3-Dichlorobenzene 25.0 25.2 ug/L 101 77.120 1,4-Dichlorobenzene 25.0 25.2 ug/L 101 80.120 2-Butanone (MEK) 125 143 ug/L 115 57.140 2-Hexanone 125 152 ug/L 109 71.125 4-Methyl-2-pentanone (MIBK) 125 136 ug/L 109 71.125 Acetone 125 158 ug/L 109 71.125 Acetone 25.0 23.6 ug/L 105 56.142 Benzene 25.0 23.6 ug/L 95 71.124 Bromodichloromethane 25.0 26.2 ug/L 105 80.122 Bromodithloromethane 25.0 23.3 ug/L 110 61.132 Carbon disulfide 25.0	1,2,4-Trichlorobenzene	25.0	24.9		ug/L		100	79 - 122	
1,2-Dichloroethane 25.0 24.2 ug/L 97 75-120 1,2-Dichloropropane 25.0 24.9 ug/L 100 76-120 1,3-Dichlorobenzene 25.0 25.2 ug/L 101 77-120 1,4-Dichlorobenzene 25.0 25.2 ug/L 101 80-120 2-Butanone (MEK) 125 143 ug/L 115 57-140 2-Hexanone 125 152 ug/L 109 71-125 4-Methyl-2-pentanone (MIBK) 125 136 ug/L 109 71-125 Acetone 125 158 ug/L 109 71-124 Benzene 25.0 23.6 ug/L 105 80-122 Bromoform 25.0 22.6 ug/L 105 80-122 Bromoform 25.0 27.4 ug/L 110 61-132 Bromoform 25.0 23.0 ug/L 93 72-134 Carbon disulfide 25.0 23.3 ug/L 93 72-134 Carbon tetrachloride 25.0 25.3 <	1,2-Dibromo-3-Chloropropane	25.0	26.5		ug/L		106	56 - 134	
1,2-Dichloropropane 25.0 24.9 ug/L 100 76.120 1,3-Dichlorobenzene 25.0 25.2 ug/L 101 77.120 1,4-Dichlorobenzene 25.0 25.2 ug/L 101 80.120 2-Butanone (MEK) 125 143 ug/L 115 57.140 2-Hexanone 125 152 ug/L 109 71.125 4-Methyl-2-pentanone (MIBK) 125 136 ug/L 109 71.125 Acetone 125 158 ug/L 109 71.124 Benzene 25.0 23.6 ug/L 105 80.122 Bromodichloromethane 25.0 22.6 ug/L 110 61.132 Bromomethane 25.0 22.1 ug/L 110 61.132 Bromomethane 25.0 23.0 ug/L 110 61.132 Carbon disulfide 25.0 23.3 ug/L 93 72.134 Calron tetrachloride 25.0 23.3 ug/L 103 80.120 Dibromochloromethane 25.0	1,2-Dichlorobenzene	25.0	24.9		ug/L		100	80 - 124	
1,3-Dichlorobenzene 25.0 25.2 ug/L 101 77 - 120 1,4-Dichlorobenzene 25.0 25.2 ug/L 101 80 . 120 2-Butanone (MEK) 125 143 ug/L 115 57 . 140 2-Hexanone 125 152 ug/L 122 65 - 127 4-Methyl-2-pentanone (MIBK) 125 136 ug/L 109 71 . 125 Acetone 125 158 ug/L 126 56 . 142 Benzene 25.0 23.6 ug/L 95 71 . 124 Bromofichloromethane 25.0 26.2 ug/L 105 80 . 122 Bromoform 25.0 27.4 ug/L 110 61 - 132 Bromomethane 25.0 23.0 ug/L 92 55 . 144 Carbon disulfide 25.0 22.1 ug/L 88 59 - 134 Chiorobenzene 25.0 25.6 ug/L 93 72 . 134 Chiorobenzene 25.0 25.6 ug/L 111 75 . 125 Chiorobenzene 25.0	1,2-Dichloroethane	25.0	24.2		ug/L		97	75 - 120	
1,4-Dichlorobenzene 25.0 25.2 ug/L 101 80.120 2-Butanone (MEK) 125 143 ug/L 115 57.140 2-Hexanone 125 152 ug/L 122 65-127 4-Methyl-2-pentanone (MIBK) 125 136 ug/L 109 71.125 Acetone 125 158 ug/L 126 56.142 Benzene 25.0 23.6 ug/L 95 71.124 Bromodichloromethane 25.0 26.2 ug/L 105 80.122 Bromofform 25.0 27.4 ug/L 110 81.22 Bromofethane 25.0 23.0 ug/L 105 80.122 Bromomethane 25.0 22.1 ug/L 110 61.32 Carbon disulfide 25.0 23.3 ug/L 93 72.134 Chiorobenzene 25.0 25.6 ug/L 103 80.120 Dibromochloromethane 25.0 27.7 ug/L 111 75.125 Chlorofirm 25.0 24.2 ug/L	1,2-Dichloropropane	25.0	24.9		ug/L		100	76 - 120	
2-Butanone (MEK) 125 143 ug/L 115 57 - 140 2-Hexanone 125 152 ug/L 122 65 - 127 4-Methyl-2-pentanone (MIBK) 125 136 ug/L 109 71 - 125 Acetone 125 158 ug/L 126 56 - 142 Benzene 25.0 23.6 ug/L 95 71 - 124 Bromodichloromethane 25.0 26.2 ug/L 105 80 - 122 Bromoform 25.0 27.4 ug/L 110 61 - 132 Bromoethane 25.0 22.1 ug/L 105 80 - 122 Bromoethane 25.0 22.1 ug/L 110 61 - 132 Carbon fetrachloride 25.0 23.3 ug/L 88 59 - 134 Chlorobenzene 25.0 25.6 ug/L 133 80 - 120 Dibromochloromethane 25.0 25.6 ug/L 111 75 - 125 Chloroform 25.0 22.5	1,3-Dichlorobenzene	25.0	25.2		ug/L		101	77 - 120	
2-Hexanone 125 152 ug/L 122 65-127 4-Methyl-2-pentanone (MIBK) 125 136 ug/L 109 71-125 Acetone 125 158 ug/L 126 56-142 Benzene 25.0 23.6 ug/L 195 71-124 Bromodichloromethane 25.0 26.2 ug/L 105 80-122 Bromoform 25.0 27.4 ug/L 110 61-132 Bromomethane 25.0 23.0 ug/L 92 55-144 Carbon disulfide 25.0 22.1 ug/L 88 59-134 Carbon tetrachloride 25.0 23.3 ug/L 93 72-134 Chlorobenzene 25.0 25.6 ug/L 103 80-142 Dibromochloromethane 25.0 25.6 ug/L 111 75-125 Chloroform 25.0 22.5 ug/L 90 73-127 Chloromethane 25.0 22.5 ug/L 97 68-124 cis-1,3-Dichloropropene 25.0 24.2	1,4-Dichlorobenzene	25.0	25.2		ug/L		101	80 - 120	
4-Methyl-2-pentanone (MIBK) 125 136 ug/L 109 71 - 125 Acetone 125 158 ug/L 126 56 - 142 Benzene 25.0 23.6 ug/L 95 71 - 124 Bromodichloromethane 25.0 26.2 ug/L 105 80 - 122 Bromoform 25.0 22.7 ug/L 110 61 - 132 Bromomethane 25.0 23.0 ug/L 92 55 - 144 Carbon disulfide 25.0 23.3 ug/L 88 59 - 134 Carbon tetrachloride 25.0 23.3 ug/L 93 72 - 134 Chlorobenzene 25.0 25.6 ug/L 103 80 - 120 Dibromochloromethane 25.0 25.6 ug/L 103 80 - 120 Chloroform 25.0 27.7 ug/L 111 75 - 125 Chloroform 25.0 22.5 ug/L 90 73 - 127 Chlorofethane 25.0 24.2 ug/L 97 68 - 124 cis-1,2-Dichloropropene 25.0 <td>2-Butanone (MEK)</td> <td>125</td> <td>143</td> <td></td> <td>ug/L</td> <td></td> <td>115</td> <td>57 - 140</td> <td></td>	2-Butanone (MEK)	125	143		ug/L		115	57 - 140	
Acetone 125 158 ug/L 126 56-142 Benzene 25.0 23.6 ug/L 95 71-124 Bromodichloromethane 25.0 26.2 ug/L 105 80-122 Bromoform 25.0 27.4 ug/L 110 61-132 Bromomethane 25.0 23.0 ug/L 92 55-144 Carbon disulfide 25.0 22.1 ug/L 88 59-134 Carbon tetrachloride 25.0 23.3 ug/L 93 72-134 Chlorobenzene 25.0 25.6 ug/L 103 80-120 Dibromochloromethane 25.0 25.6 ug/L 103 80-120 Dibromochloromethane 25.0 25.0 25.6 ug/L 111 75-125 Chloroform 25.0 25.0 19.4 ug/L 77 69-136 Chlorofethane 25.0 22.5 ug/L 90 73-127 Chloromethane 25.0 22.5 ug/L 90 73-127 cis-1,2-Dichlorogethene <	2-Hexanone	125	152		ug/L		122	65 - 127	
Benzene 25.0 23.6 ug/L 95 71.124 Bromodichloromethane 25.0 26.2 ug/L 105 80.122 Bromoform 25.0 27.4 ug/L 110 61.132 Bromomethane 25.0 23.0 ug/L 92 55.144 Carbon disulfide 25.0 22.1 ug/L 88 59.134 Carbon tetrachloride 25.0 23.3 ug/L 93 72.134 Chlorobenzene 25.0 25.6 ug/L 93 72.134 Chlorobersene 25.0 25.6 ug/L 103 80.120 Dibromochloromethane 25.0 25.6 ug/L 111 75.125 Chloroform 25.0 22.5 ug/L 90 73.127 Chloromethane 25.0 22.5 ug/L 97 68.124 cis-1,2-Dichlorogthene 25.0 23.8 ug/L 95 74.124 Cyclohexane 25.0 26.4 ug/L 71 59.135 Dichlorodifluoromethane 25.0 25.0	4-Methyl-2-pentanone (MIBK)	125	136		ug/L		109	71 - 125	
Bromodichloromethane 25.0 26.2 ug/L 105 80 - 122 Bromoform 25.0 27.4 ug/L 110 61 - 132 Bromomethane 25.0 23.0 ug/L 92 55 - 144 Carbon disulfide 25.0 22.1 ug/L 88 59 - 134 Carbon tetrachloride 25.0 23.3 ug/L 93 72 - 134 Chlorobenzene 25.0 25.6 ug/L 103 80 - 120 Dibromochloromethane 25.0 25.6 ug/L 111 75 - 125 Chloroform 25.0 27.7 ug/L 111 75 - 125 Chloroform 25.0 22.5 ug/L 90 73 - 127 Chloromethane 25.0 22.5 ug/L 97 68 - 124 cis-1,2-Dichloroethene 25.0 23.8 ug/L 95 74 - 124 Cyclohexane 25.0 26.4 ug/L 105 74 - 124 Cyclohexane 25.0 19	Acetone	125	158		ug/L		126	56 - 142	
Bromoform 25.0 27.4 ug/L 110 61-132 Bromomethane 25.0 23.0 ug/L 92 55-144 Carbon disulfide 25.0 22.1 ug/L 88 59-134 Carbon tetrachloride 25.0 23.3 ug/L 93 72-134 Chlorobenzene 25.0 25.6 ug/L 103 80-120 Dibromochloromethane 25.0 27.7 ug/L 111 75-125 Chloroethane 25.0 27.7 ug/L 77 69-136 Chloroform 25.0 22.5 ug/L 90 73-127 Chloromethane 25.0 22.5 ug/L 97 68-124 cis-1,2-Dichloroethene 25.0 23.8 ug/L 95 74-124 cis-1,3-Dichloropropene 25.0 26.4 ug/L 105 74-124 Cyclohexane 25.0 17.8 ug/L 71 59-135 Dichlorodifluoromethane 25.0 19.2 ug/L 77 59-135 Ethylbenzene 25.0 25.0	Benzene	25.0	23.6		ug/L		95	71 - 124	
Bromomethane 25.0 23.0 ug/L 92 55 - 144 Carbon disulfide 25.0 22.1 ug/L 88 59 - 134 Carbon tetrachloride 25.0 23.3 ug/L 93 72 - 134 Chlorobenzene 25.0 25.6 ug/L 103 80 - 120 Dibromochloromethane 25.0 27.7 ug/L 111 75 - 125 Chloroethane 25.0 19.4 ug/L 77 69 - 136 Chloroform 25.0 22.5 ug/L 90 73 - 127 Chloromethane 25.0 22.5 ug/L 97 68 - 124 cis-1,2-Dichloroethene 25.0 24.2 ug/L 95 74 - 124 cis-1,3-Dichloropropene 25.0 28.4 ug/L 105 74 - 124 cis-1,3-Dichloropropene 25.0 26.4 ug/L 105 74 - 124 Cyclohexane 25.0 19.2 ug/L 77 59 - 135 Ethylbenzene 25.0 25.0 ug/L 100 77 - 123 1,2-Dibromoethane	Bromodichloromethane	25.0	26.2		ug/L		105	80 - 122	
Bromomethane 25.0 23.0 ug/L 92 55 - 144 Carbon disulfide 25.0 22.1 ug/L 88 59 - 134 Carbon tetrachloride 25.0 23.3 ug/L 93 72 - 134 Chlorobenzene 25.0 25.6 ug/L 103 80 - 120 Dibromochloromethane 25.0 27.7 ug/L 111 75 - 125 Chloroethane 25.0 19.4 ug/L 77 69 - 136 Chloroform 25.0 22.5 ug/L 90 73 - 127 Chloromethane 25.0 22.5 ug/L 97 68 - 124 cis-1,2-Dichloroethene 25.0 23.8 ug/L 95 74 - 124 cis-1,3-Dichloropropene 25.0 26.4 ug/L 105 74 - 124 Cyclohexane 25.0 17.8 ug/L 71 59 - 135 Dichlorodifluoromethane 25.0 19.2 ug/L 77 59 - 135 Ethylbenzene 25.0 25.0 ug/L 100 77 - 123 1,2-Dibromoethane	Bromoform	25.0	27.4		ug/L		110	61 - 132	
Carbon tetrachloride 25.0 23.3 ug/L 93 72 - 134 Chlorobenzene 25.0 25.6 ug/L 103 80 - 120 Dibromochloromethane 25.0 27.7 ug/L 111 75 - 125 Chloroethane 25.0 19.4 ug/L 77 69 - 136 Chloroform 25.0 22.5 ug/L 90 73 - 127 Chloromethane 25.0 24.2 ug/L 97 68 - 124 cis-1,2-Dichloroethene 25.0 23.8 ug/L 95 74 - 124 cis-1,3-Dichloropropene 25.0 26.4 ug/L 105 74 - 124 Cyclohexane 25.0 17.8 ug/L 71 59 - 135 Dichlorodifluoromethane 25.0 19.2 ug/L 77 59 - 135 Ethylbenzene 25.0 25.0 ug/L 100 77 - 123 1,2-Dibromoethane 25.0 27.4 ug/L 110 77 - 120 Isopropylbenzene 25.0 25.3 ug/L 101 77 - 122 Methyl acetate </td <td>Bromomethane</td> <td>25.0</td> <td>23.0</td> <td></td> <td>-</td> <td></td> <td>92</td> <td>55 - 144</td> <td></td>	Bromomethane	25.0	23.0		-		92	55 - 144	
Carbon tetrachloride 25.0 23.3 ug/L 93 72 - 134 Chlorobenzene 25.0 25.6 ug/L 103 80 - 120 Dibromochloromethane 25.0 27.7 ug/L 111 75 - 125 Chloroethane 25.0 19.4 ug/L 77 69 - 136 Chloroform 25.0 22.5 ug/L 90 73 - 127 Chloromethane 25.0 24.2 ug/L 97 68 - 124 cis-1,2-Dichloroethene 25.0 23.8 ug/L 95 74 - 124 cis-1,3-Dichloropropene 25.0 26.4 ug/L 105 74 - 124 Cyclohexane 25.0 17.8 ug/L 71 59 - 135 Dichlorodifluoromethane 25.0 19.2 ug/L 77 59 - 135 Ethylbenzene 25.0 25.0 25.0 ug/L 100 77 - 123 1,2-Dibromoethane 25.0 25.0 27.4 ug/L 110 77 - 120 Isopropylbenzene 25.0 25.3 ug/L 101 77 - 122 <	Carbon disulfide	25.0	22.1		ug/L		88	59 - 134	
Chlorobenzene 25.0 25.6 ug/L 103 80 - 120 Dibromochloromethane 25.0 27.7 ug/L 111 75 - 125 Chloroethane 25.0 19.4 ug/L 77 69 - 136 Chloroform 25.0 22.5 ug/L 90 73 - 127 Chloromethane 25.0 24.2 ug/L 97 68 - 124 cis-1,2-Dichloroethene 25.0 23.8 ug/L 95 74 - 124 cis-1,3-Dichloropropene 25.0 26.4 ug/L 105 74 - 124 Cyclohexane 25.0 17.8 ug/L 71 59 - 135 Dichlorodifluoromethane 25.0 19.2 ug/L 77 59 - 135 Ethylbenzene 25.0 25.0 ug/L 100 77 - 123 1,2-Dibromoethane 25.0 27.4 ug/L 110 77 - 120 Isopropylbenzene 25.0 25.3 ug/L 101 77 - 122 Methyl tert-butyl ether 25.0 25.9 ug/L 104 77 - 120	Carbon tetrachloride	25.0	23.3		ug/L		93	72 - 134	
Chloroethane 25.0 19.4 ug/L 77 69 - 136 Chloroform 25.0 22.5 ug/L 90 73 - 127 Chloromethane 25.0 24.2 ug/L 97 68 - 124 cis-1,2-Dichloroethene 25.0 23.8 ug/L 95 74 - 124 cis-1,3-Dichloropropene 25.0 26.4 ug/L 105 74 - 124 Cyclohexane 25.0 17.8 ug/L 71 59 - 135 Dichlorodifluoromethane 25.0 19.2 ug/L 77 59 - 135 Ethylbenzene 25.0 25.0 ug/L 100 77 - 123 1,2-Dibromoethane 25.0 27.4 ug/L 110 77 - 120 Isopropylbenzene 25.0 25.3 ug/L 101 77 - 122 Methyl acetate 50.0 52.6 ug/L 105 74 - 133 Methyl tert-butyl ether 25.0 25.9 ug/L 104 77 - 120	Chlorobenzene	25.0	25.6		ug/L		103	80 - 120	
Chloroethane 25.0 19.4 ug/L 77 69 - 136 Chloroform 25.0 22.5 ug/L 90 73 - 127 Chloromethane 25.0 24.2 ug/L 97 68 - 124 cis-1,2-Dichloroethene 25.0 23.8 ug/L 95 74 - 124 cis-1,3-Dichloropropene 25.0 26.4 ug/L 105 74 - 124 Cyclohexane 25.0 17.8 ug/L 71 59 - 135 Dichlorodifluoromethane 25.0 19.2 ug/L 77 59 - 135 Ethylbenzene 25.0 25.0 ug/L 100 77 - 123 1,2-Dibromoethane 25.0 27.4 ug/L 110 77 - 120 Isopropylbenzene 25.0 25.3 ug/L 101 77 - 122 Methyl acetate 50.0 52.6 ug/L 105 74 - 133 Methyl tert-butyl ether 25.0 25.9 ug/L 104 77 - 120	Dibromochloromethane	25.0	27.7		ug/L		111	75 - 125	
Chloroform 25.0 22.5 ug/L 90 73 - 127 Chloromethane 25.0 24.2 ug/L 97 68 - 124 cis-1,2-Dichloroethene 25.0 23.8 ug/L 95 74 - 124 cis-1,3-Dichloropropene 25.0 26.4 ug/L 105 74 - 124 Cyclohexane 25.0 17.8 ug/L 71 59 - 135 Dichlorodifluoromethane 25.0 19.2 ug/L 77 59 - 135 Ethylbenzene 25.0 25.0 ug/L 100 77 - 123 1,2-Dibromoethane 25.0 27.4 ug/L 110 77 - 120 Isopropylbenzene 25.0 25.3 ug/L 101 77 - 122 Methyl acetate 50.0 52.6 ug/L 105 74 - 133 Methyl tert-butyl ether 25.0 25.9 ug/L 104 77 - 120	Chloroethane	25.0	19.4		-		77	69 - 136	
cis-1,2-Dichloroethene 25.0 23.8 ug/L 95 74 - 124 cis-1,3-Dichloropropene 25.0 26.4 ug/L 105 74 - 124 Cyclohexane 25.0 17.8 ug/L 71 59 - 135 Dichlorodifluoromethane 25.0 19.2 ug/L 77 59 - 135 Ethylbenzene 25.0 25.0 ug/L 100 77 - 123 1,2-Dibromoethane 25.0 27.4 ug/L 110 77 - 120 Isopropylbenzene 25.0 25.3 ug/L 101 77 - 122 Methyl acetate 50.0 52.6 ug/L 105 74 - 133 Methyl tert-butyl ether 25.0 25.9 ug/L 104 77 - 120	Chloroform	25.0	22.5		-		90	73 - 127	
cis-1,2-Dichloroethene 25.0 23.8 ug/L 95 74 - 124 cis-1,3-Dichloropropene 25.0 26.4 ug/L 105 74 - 124 Cyclohexane 25.0 17.8 ug/L 71 59 - 135 Dichlorodifluoromethane 25.0 19.2 ug/L 77 59 - 135 Ethylbenzene 25.0 25.0 ug/L 100 77 - 123 1,2-Dibromoethane 25.0 27.4 ug/L 110 77 - 120 Isopropylbenzene 25.0 25.3 ug/L 101 77 - 122 Methyl acetate 50.0 52.6 ug/L 105 74 - 133 Methyl tert-butyl ether 25.0 25.9 ug/L 104 77 - 120	Chloromethane	25.0	24.2		ug/L		97	68 - 124	
cis-1,3-Dichloropropene 25.0 26.4 ug/L 105 74 - 124 Cyclohexane 25.0 17.8 ug/L 71 59 - 135 Dichlorodifluoromethane 25.0 19.2 ug/L 77 59 - 135 Ethylbenzene 25.0 25.0 ug/L 100 77 - 123 1,2-Dibromoethane 25.0 27.4 ug/L 110 77 - 120 Isopropylbenzene 25.0 25.3 ug/L 101 77 - 122 Methyl acetate 50.0 52.6 ug/L 105 74 - 133 Methyl tert-butyl ether 25.0 25.9 ug/L 104 77 - 120	cis-1,2-Dichloroethene	25.0	23.8		-		95	74 - 124	
Cyclohexane 25.0 17.8 ug/L 71 59 - 135 Dichlorodifluoromethane 25.0 19.2 ug/L 77 59 - 135 Ethylbenzene 25.0 25.0 ug/L 100 77 - 123 1,2-Dibromoethane 25.0 27.4 ug/L 110 77 - 120 Isopropylbenzene 25.0 25.3 ug/L 101 77 - 122 Methyl acetate 50.0 52.6 ug/L 105 74 - 133 Methyl tert-butyl ether 25.0 25.9 ug/L 104 77 - 120	cis-1,3-Dichloropropene						105	74 - 124	
Dichlorodifluoromethane 25.0 19.2 ug/L 77 59 - 135 Ethylbenzene 25.0 25.0 ug/L 100 77 - 123 1,2-Dibromoethane 25.0 27.4 ug/L 110 77 - 120 Isopropylbenzene 25.0 25.3 ug/L 101 77 - 122 Methyl acetate 50.0 52.6 ug/L 105 74 - 133 Methyl tert-butyl ether 25.0 25.9 ug/L 104 77 - 120			17.8		ug/L		71	59 - 135	
Ethylbenzene 25.0 25.0 ug/L 100 77 - 123 1,2-Dibromoethane 25.0 27.4 ug/L 110 77 - 120 Isopropylbenzene 25.0 25.3 ug/L 101 77 - 122 Methyl acetate 50.0 52.6 ug/L 105 74 - 133 Methyl tert-butyl ether 25.0 25.9 ug/L 104 77 - 120	Dichlorodifluoromethane	25.0	19.2				77	59 - 135	
1,2-Dibromoethane 25.0 27.4 ug/L 110 77 - 120 Isopropylbenzene 25.0 25.3 ug/L 101 77 - 122 Methyl acetate 50.0 52.6 ug/L 105 74 - 133 Methyl tert-butyl ether 25.0 25.9 ug/L 104 77 - 120					-				
Isopropylbenzene 25.0 25.3 ug/L 101 77 - 122 Methyl acetate 50.0 52.6 ug/L 105 74 - 133 Methyl tert-butyl ether 25.0 25.9 ug/L 104 77 - 120							110	77 - 120	
Methyl acetate 50.0 52.6 ug/L 105 74 - 133 Methyl tert-butyl ether 25.0 25.9 ug/L 104 77 - 120					_				
Methyl tert-butyl ether 25.0 25.9 ug/L 104 77 - 120					-				
·									
Methylcyclonexane 25.0 18.4 ug/L 74 68 - 134	Methylcyclohexane	25.0	18.4		ug/L		74	68 - 134	

Eurofins TestAmerica, Buffalo

Page 17 of 25

Client: New York State D.E.C.

Project/Site: Gladding Corporation #709009

Job ID: 480-184543-1 SDG: South Otselic

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-581081/5

Matrix: Water

Analysis Batch: 581081

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methylene Chloride	25.0	24.2		ug/L		97	75 - 124	
Styrene	25.0	26.7		ug/L		107	80 - 120	
Tetrachloroethene	25.0	23.3		ug/L		93	74 - 122	
Toluene	25.0	25.1		ug/L		100	80 - 122	
trans-1,2-Dichloroethene	25.0	23.1		ug/L		92	73 - 127	
trans-1,3-Dichloropropene	25.0	28.0		ug/L		112	80 - 120	
Trichloroethene	25.0	21.5		ug/L		86	74 - 123	
Trichlorofluoromethane	25.0	20.5		ug/L		82	62 - 150	
Vinyl chloride	25.0	22.4		ug/L		89	65 - 133	

LCS LCS

	_00		
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	90		80 - 120
1,2-Dichloroethane-d4 (Surr)	86		77 - 120
4-Bromofluorobenzene (Surr)	95		73 - 120
Dibromofluoromethane (Surr)	91		75 - 123

QC Association Summary

Client: New York State D.E.C.

Job ID: 480-184543-1 Project/Site: Gladding Corporation #709009 SDG: South Otselic

GC/MS VOA

Analysis Batch: 581081

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-184543-1	RW-1 051121	Total/NA	Water	8260C	
480-184543-2	RW-2 051121	Total/NA	Water	8260C	
480-184543-3	EFF-46 HZ 051121	Total/NA	Water	8260C	
480-184543-4	TRIP BLANK 051121	Total/NA	Water	8260C	
MB 480-581081/7	Method Blank	Total/NA	Water	8260C	
LCS 480-581081/5	Lab Control Sample	Total/NA	Water	8260C	

Lab Chronicle

Client: New York State D.E.C.

Project/Site: Gladding Corporation #709009

SDG: South Otselic Client Sample ID: RW-1 051121

Lab Sample ID: 480-184543-1

Job ID: 480-184543-1

Date Collected: 05/11/21 15:25

Date Received: 05/12/21 08:00

Matrix: Water

Batch Dilution Batch Batch **Prepared** Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab Total/NA Analysis 8260C 581081 05/15/21 12:13 OMI TAL BUF

Client Sample ID: RW-2 051121 Lab Sample ID: 480-184543-2 **Matrix: Water**

Date Collected: 05/11/21 15:20 Date Received: 05/12/21 08:00

Batch Batch Dilution **Batch** Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 581081 05/15/21 12:35 OMI TAL BUF

Client Sample ID: EFF-46 HZ 051121 Lab Sample ID: 480-184543-3

Date Collected: 05/11/21 15:15 Date Received: 05/12/21 08:00

Batch Batch Dilution Batch **Prepared Prep Type** Method **Factor** Number or Analyzed Type Run Analyst Lab TAL BUF Total/NA Analysis 8260C 581081 05/15/21 12:58 OMI

Client Sample ID: TRIP BLANK 051121 Lab Sample ID: 480-184543-4

Date Collected: 05/11/21 00:00 **Matrix: Water**

Date Received: 05/12/21 08:00

Batch **Batch** Dilution Batch **Prepared Prep Type** Method Run Factor Number or Analyzed Type Analyst Lab Analysis 8260C 581081 05/15/21 13:21 OMI TAL BUF Total/NA

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Eurofins TestAmerica, Buffalo

10

Matrix: Water

Accreditation/Certification Summary

Client: New York State D.E.C.

Job ID: 480-184543-1 Project/Site: Gladding Corporation #709009 SDG: South Otselic

Laboratory: Eurofins TestAmerica, Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	04-01-22

Method Summary

Client: New York State D.E.C.

Project/Site: Gladding Corporation #709009

Job ID: 480-184543-1

SDG: South Otselic

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
5030C	Purge and Trap	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: New York State D.E.C.

Project/Site: Gladding Corporation #709009

Job ID: 480-184543-1

SDG: South Otselic

t ID

Lab PM: Stone, Judy L E-Mail: Judy.Stone@Eurofinset.com Chain of Custody Record Phone: Sca 60+400 6 Ki

💸 eurofins Environment Testing America

#225 Carrier Tracking No(s):

Syracuse

Eurofins TestAmerica, Buffalo

10 Hazelwood Drive Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

	Sampler:	Mode	11660	
Client Information	12 San Guthows Ki		Carrier Tracking No(s):	COC No: 480-158695-34888 1
Client Confact: Jasmine Mullins	Phone: 315 436 3665		State of Origin:	Page:
Company:				Page 1 of 1
ARCADIS U.S. Inc		Anal	Analysis Requested	:# qop
Aduless. 855 Route 146 Suite 210	Due Date Requested:			Preservation Codes:
City: Clifton Park	TAT Requested (days):			
:065	Compliance Project: A Yes A No	有意思		C - Zn Acetate O - AsNaO2 D - Nitric Acid P - Na2O4S E - NaHSO4
Phone: 518-402-9625(TeI)	PO #: Callout 139083	(c		
Email: jasmine.mullins@arcadis.com	WO#:			H - Ascorbic Acid I - Ice
Project Name: Gladding Corporation #709009	Project #: 48022018	10 50	Joule	K - EDTA L - EDA
South Otselic	SSOW#:	/4)/GBI		Other:
	Sample Date Time G=grab)	Matrix (www.ee. (www.ee. Sealed. Files of the Constant of the	sadmiN lsto	otal Number of
	X	ation Code:		special instructions/Note:
RW-1 0 5 1 2 1	5/11/21 1525 6	Water		
RW-2 05 1121	15.20	Water		
EFF-46 HZ O S 11 2 1	1515	Water		
Trip Blank	1	Water		
			480-184543 Chaill of Custory	, and the second
			Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	ined longer than 1 month)
Non-Hazard Hammable Skin Irritant Poison B Deliverable Requested: I, III, IV, Other (specify)	on B Unknown Radiological		Disposal By Lab	Archive For Months
Emoty Kit Relinauished by:)		
Relinguished by:	DataTime:	: Ime:	Method of Shipment:	
Survey	5/11/21/1825	HICACL C / / / / / / /	Date/Time:	Company - Cf.
Polled	STITE MOU	Company Received by:	Date/Time:	
	Dấte/Time:	Company Received by:	Date/Time:	Company Company
Custody Seals Intact: Custody Seal No.:		Cooler Temperaturé(s) ⁵ C and Other Remarks:	2.5	#
				Ver: 11/01/2020

Client: New York State D.E.C.

Job Number: 480-184543-1 SDG Number: South Otselic

List Source: Eurofins TestAmerica, Buffalo

Login Number: 184543 List Number: 1

Creator: Sabuda, Brendan D

Creator: Sabuda, Brendan D		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.7 #1 ICE
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-186455-1

Client Project/Site: Gladding Corporation #709009

For:

New York State D.E.C. 625 Broadway 4th Floor Albany, New York 12233

Attn: Mr. Payson Long

WightBWatDon

Authorized for release by: 7/2/2021 1:50:01 PM
Wyatt Watson, Project Management Assistant I
Wyatt.Watson@Eurofinset.com

Designee for

Judy Stone, Senior Project Manager (484)685-0868
Judy.Stone@Eurofinset.com

·····LINKS ······

Review your project results through
Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Α

5

6

8

4.0

11

12

. .

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Wigott Bloton

Wyatt Watson

Project Management Assistant I

7/2/2021 1:50:01 PM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	15
QC Sample Results	16
QC Association Summary	19
Lab Chronicle	20
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24
Receipt Checklists	25

3

4

8

10

12

IC

Definitions/Glossary

Client: New York State D.E.C. Job ID: 480-186455-1

Project/Site: Gladding Corporation #709009

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER**

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

7/2/2021

Case Narrative

Client: New York State D.E.C.

Project/Site: Gladding Corporation #709009

Job ID: 480-186455-1

Job ID: 480-186455-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-186455-1

Comments

No additional comments.

Receipt

The samples were received on 6/24/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.4° C.

Method 8260C: The following sample(s) was collected in a properly preserved vial; however, the pH was outside the required criteria when verified by the laboratory. The sample was analyzed within the 7-day holding time specified for unpreserved samples: RW-1 062321 (480-186455-1). pH is 7.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: New York State D.E.C. Job ID: 480-186455-1

Project/Site: Gladding Corporation #709009

Client Sample ID: RW-1 062321 Lab Sample ID: 480-186455-1

Analyte	Result Qualifier	RL	MDL Uni	t Dil Fac	D	Method	Prep Type
1,1,1-Trichloroethane	38	1.0	0.82 ug/l	1	_	8260C	Total/NA
1,1-Dichloroethane	1.2	1.0	0.38 ug/L	_ 1		8260C	Total/NA
1,1-Dichloroethene	1.0	1.0	0.29 ug/L	_ 1		8260C	Total/NA

Client Sample ID: RW-2 062321

Analyte	Result Qualif	ier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,1-Trichloroethane	32	1.0	0.82	ug/L		_	8260C	Total/NA
1,1-Dichloroethane	0.66 J	1.0	0.38	ug/L	1		8260C	Total/NA
1,1-Dichloroethene	0.83 J	1.0	0.29	ug/L	1		8260C	Total/NA

Client Sample ID: EFF-46 HZ 062321 Lab Sample ID: 480-186455-3

No Detections.

Client Sample ID: TRIP BLANK 062321 Lab Sample ID: 480-186455-4

No Detections.

Lab Sample ID: 480-186455-2

Client: New York State D.E.C. Job ID: 480-186455-1

Project/Site: Gladding Corporation #709009

Client Sample ID: RW-1 062321

Lab Sample ID: 480-186455-1 Date Collected: 06/23/21 13:55

Matrix: Water

Date Received: 06/24/21 08:00

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
1,1,1-Trichloroethane	38	1.0	0.82	ug/L			06/29/21 16:59	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			06/29/21 16:59	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			06/29/21 16:59	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			06/29/21 16:59	
1,1-Dichloroethane	1.2	1.0	0.38	ug/L			06/29/21 16:59	
1,1-Dichloroethene	1.0	1.0	0.29	ug/L			06/29/21 16:59	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			06/29/21 16:59	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			06/29/21 16:59	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			06/29/21 16:59	
I,2-Dichloroethane	ND	1.0	0.21	ug/L			06/29/21 16:59	
I,2-Dichloropropane	ND	1.0	0.72	ug/L			06/29/21 16:59	
,3-Dichlorobenzene	ND	1.0	0.78	ug/L			06/29/21 16:59	
I,4-Dichlorobenzene	ND	1.0	0.84	ug/L			06/29/21 16:59	
2-Butanone (MEK)	ND	10	1.3	ug/L			06/29/21 16:59	
2-Hexanone	ND	5.0	1.2	ug/L			06/29/21 16:59	
l-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			06/29/21 16:59	
Acetone	ND	10	3.0	ug/L			06/29/21 16:59	
Benzene	ND	1.0	0.41	ug/L			06/29/21 16:59	
Bromodichloromethane	ND	1.0	0.39	ug/L			06/29/21 16:59	
Bromoform	ND	1.0	0.26	ug/L			06/29/21 16:59	
Bromomethane	ND	1.0	0.69	ug/L			06/29/21 16:59	
Carbon disulfide	ND	1.0	0.19	ug/L			06/29/21 16:59	
Carbon tetrachloride	ND	1.0	0.27	ug/L			06/29/21 16:59	
Chlorobenzene	ND	1.0	0.75	ug/L			06/29/21 16:59	
Dibromochloromethane	ND	1.0	0.32	ug/L			06/29/21 16:59	
Chloroethane	ND	1.0	0.32	ug/L			06/29/21 16:59	
Chloroform	ND	1.0	0.34	ug/L			06/29/21 16:59	
Chloromethane	ND	1.0	0.35	ug/L			06/29/21 16:59	
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			06/29/21 16:59	
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			06/29/21 16:59	
Cyclohexane	ND	1.0	0.18	ug/L			06/29/21 16:59	
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			06/29/21 16:59	
Ethylbenzene	ND	1.0	0.74	ug/L			06/29/21 16:59	
I,2-Dibromoethane	ND	1.0	0.73	ug/L			06/29/21 16:59	
sopropylbenzene	ND	1.0	0.79	ug/L			06/29/21 16:59	
Methyl acetate	ND	2.5	1.3	ug/L			06/29/21 16:59	
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			06/29/21 16:59	
Methylcyclohexane	ND	1.0	0.16	ug/L			06/29/21 16:59	
Methylene Chloride	ND	1.0	0.44	ug/L			06/29/21 16:59	
Styrene	ND	1.0	0.73	ug/L			06/29/21 16:59	
- etrachloroethene	ND	1.0	0.36	ug/L			06/29/21 16:59	
oluene	ND	1.0	0.51	ug/L			06/29/21 16:59	
rans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			06/29/21 16:59	
rans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			06/29/21 16:59	
richloroethene	ND	1.0	0.46	ug/L			06/29/21 16:59	
richlorofluoromethane	ND	1.0	0.88	ug/L			06/29/21 16:59	
/inyl chloride	ND	1.0	0.90	-			06/29/21 16:59	
Kylenes, Total	ND	2.0	0.66	-			06/29/21 16:59	

Eurofins TestAmerica, Buffalo

Page 7 of 25 7/2/2021

Client: New York State D.E.C. Job ID: 480-186455-1

Project/Site: Gladding Corporation #709009

Client Sample ID: RW-1 062321 Lab Sample ID: 480-186455-1

Date Collected: 06/23/21 13:55

Date Received: 06/24/21 08:00

Matrix: Water

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100	80 - 120		06/29/21 16:59	1
1,2-Dichloroethane-d4 (Surr)	96	77 - 120		06/29/21 16:59	1
4-Bromofluorobenzene (Surr)	95	73 - 120		06/29/21 16:59	1
Dibromofluoromethane (Surr)	100	75 - 123		06/29/21 16:59	1

5

-

8

10

11

13

14

Client: New York State D.E.C. Job ID: 480-186455-1

Project/Site: Gladding Corporation #709009

Client Sample ID: RW-2 062321

Lab Sample ID: 480-186455-2 Date Collected: 06/23/21 13:50

Matrix: Water

Date Received: 06/24/21 08:00

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	32		1.0	0.82	ug/L			06/29/21 17:21	
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			06/29/21 17:21	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			06/29/21 17:21	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			06/29/21 17:21	
1,1-Dichloroethane	0.66	J	1.0	0.38	ug/L			06/29/21 17:21	
1,1-Dichloroethene	0.83	J	1.0	0.29	ug/L			06/29/21 17:21	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			06/29/21 17:21	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			06/29/21 17:21	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			06/29/21 17:21	
1,2-Dichloroethane	ND		1.0	0.21	ug/L			06/29/21 17:21	
1,2-Dichloropropane	ND		1.0	0.72	ug/L			06/29/21 17:21	
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			06/29/21 17:21	
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			06/29/21 17:21	
2-Butanone (MEK)	ND		10	1.3	ug/L			06/29/21 17:21	
2-Hexanone	ND		5.0	1.2	ug/L			06/29/21 17:21	
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			06/29/21 17:21	
Acetone	ND		10	3.0	ug/L			06/29/21 17:21	
Benzene	ND		1.0	0.41	ug/L			06/29/21 17:21	
Bromodichloromethane	ND		1.0		ug/L			06/29/21 17:21	
Bromoform	ND		1.0		ug/L			06/29/21 17:21	
Bromomethane	ND		1.0		ug/L			06/29/21 17:21	
Carbon disulfide	ND		1.0		ug/L			06/29/21 17:21	
Carbon tetrachloride	ND		1.0		ug/L			06/29/21 17:21	
Chlorobenzene	ND		1.0		ug/L			06/29/21 17:21	
Dibromochloromethane	ND		1.0		ug/L			06/29/21 17:21	
Chloroethane	ND		1.0	0.32	-			06/29/21 17:21	
Chloroform	ND		1.0		ug/L			06/29/21 17:21	
Chloromethane	ND		1.0		ug/L			06/29/21 17:21	
cis-1,2-Dichloroethene	ND		1.0		ug/L			06/29/21 17:21	
cis-1,3-Dichloropropene	ND		1.0		ug/L			06/29/21 17:21	
Cyclohexane	ND		1.0		ug/L			06/29/21 17:21	
Dichlorodifluoromethane	ND		1.0		ug/L			06/29/21 17:21	
Ethylbenzene	ND		1.0		ug/L			06/29/21 17:21	
1,2-Dibromoethane	ND		1.0		ug/L			06/29/21 17:21	
Isopropylbenzene	ND		1.0		ug/L			06/29/21 17:21	
Methyl acetate	ND		2.5		ug/L			06/29/21 17:21	
Methyl tert-butyl ether	ND		1.0		ug/L			06/29/21 17:21	
Methylcyclohexane	ND		1.0		ug/L			06/29/21 17:21	
Methylene Chloride	ND		1.0		ug/L			06/29/21 17:21	
Styrene	ND		1.0		ug/L			06/29/21 17:21	
Tetrachloroethene	ND		1.0		ug/L			06/29/21 17:21	
Toluene	ND		1.0		ug/L			06/29/21 17:21	
trans-1,2-Dichloroethene	ND		1.0		ug/L			06/29/21 17:21	
trans-1,3-Dichloropropene	ND		1.0		ug/L			06/29/21 17:21	
Trichloroethene	ND		1.0		ug/L			06/29/21 17:21	
Trichlorofluoromethane	ND		1.0		ug/L			06/29/21 17:21	
Vinyl chloride	ND		1.0		ug/L			06/29/21 17:21	
Xylenes, Total	ND		2.0		ug/L			06/29/21 17:21	

Eurofins TestAmerica, Buffalo

Page 9 of 25 7/2/2021

Client: New York State D.E.C. Job ID: 480-186455-1

Project/Site: Gladding Corporation #709009

Client Sample ID: RW-2 062321 Lab Sample ID: 480-186455-2

Date Collected: 06/23/21 13:50 Matrix: Water Date Received: 06/24/21 08:00

Surrogate	%Recovery Qualit	fier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100	80 - 120		06/29/21 17:21	1
1,2-Dichloroethane-d4 (Surr)	97	77 - 120		06/29/21 17:21	1
4-Bromofluorobenzene (Surr)	95	73 - 120		06/29/21 17:21	1
Dibromofluoromethane (Surr)	102	75 - 123		06/29/21 17:21	1

5

6

8

9

11

13

14

Client: New York State D.E.C. Job ID: 480-186455-1

Project/Site: Gladding Corporation #709009

Client Sample ID: EFF-46 HZ 062321

Lab Sample ID: 480-186455-3 Date Collected: 06/23/21 13:45

Matrix: Water

Date Received: 06/24/21 08:00 Method: 8260C - Volatile Organic Compounds by GC/MS Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 1,1,1-Trichloroethane ND 1.0 0.82 ug/L 06/29/21 17:44 ND 1.0 0.21 ug/L 06/29/21 17:44 1,1,2,2-Tetrachloroethane

1,1,2-Trichloroethane	ND	1.0	0.23 ug/L	06/29/21 17:44 1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31 ug/L	06/29/21 17:44 1
1,1-Dichloroethane	ND	1.0	0.38 ug/L	06/29/21 17:44 1
1,1-Dichloroethene	ND	1.0	0.29 ug/L	06/29/21 17:44 1
1,2,4-Trichlorobenzene	ND	1.0	0.41 ug/L	06/29/21 17:44 1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39 ug/L	06/29/21 17:44 1
1,2-Dichlorobenzene	ND	1.0	0.79 ug/L	06/29/21 17:44 1
1,2-Dichloroethane	ND	1.0	0.21 ug/L	06/29/21 17:44 1
1,2-Dichloropropane	ND	1.0	0.72 ug/L	06/29/21 17:44 1
1,3-Dichlorobenzene	ND	1.0	0.78 ug/L	06/29/21 17:44 1
1,4-Dichlorobenzene	ND	1.0	0.84 ug/L	06/29/21 17:44 1
2-Butanone (MEK)	ND	10	1.3 ug/L	06/29/21 17:44 1
2-Hexanone	ND	5.0	1.2 ug/L	06/29/21 17:44 1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1 ug/L	06/29/21 17:44 1
Acetone	ND	10	3.0 ug/L	06/29/21 17:44 1
Benzene	ND	1.0	0.41 ug/L	06/29/21 17:44 1
Bromodichloromethane	ND	1.0	0.39 ug/L	06/29/21 17:44 1
Bromoform	ND	1.0	0.26 ug/L	06/29/21 17:44 1
Bromomethane	ND	1.0	0.69 ug/L	06/29/21 17:44 1
Carbon disulfide	ND	1.0	0.19 ug/L	06/29/21 17:44 1
Carbon tetrachloride	ND	1.0	0.27 ug/L	06/29/21 17:44 1
Chlorobenzene	ND	1.0	0.75 ug/L	06/29/21 17:44 1
Dibromochloromethane	ND	1.0	0.32 ug/L	06/29/21 17:44 1
Chloroethane	ND	1.0	0.32 ug/L	06/29/21 17:44 1
Chloroform	ND	1.0	0.34 ug/L	06/29/21 17:44 1
Chloromethane	ND	1.0	0.35 ug/L	06/29/21 17:44 1
cis-1,2-Dichloroethene	ND	1.0	0.81 ug/L	06/29/21 17:44 1
cis-1,3-Dichloropropene	ND	1.0	0.36 ug/L	06/29/21 17:44 1
Cyclohexane	ND	1.0	0.18 ug/L	06/29/21 17:44 1
Dichlorodifluoromethane	ND	1.0	0.68 ug/L	06/29/21 17:44 1
Ethylbenzene	ND	1.0	0.74 ug/L	06/29/21 17:44 1
1,2-Dibromoethane	ND	1.0	0.73 ug/L	06/29/21 17:44 1
Isopropylbenzene	ND	1.0	0.79 ug/L	06/29/21 17:44 1
Methyl acetate	ND	2.5	1.3 ug/L	06/29/21 17:44 1
Methyl tert-butyl ether	ND	1.0	0.16 ug/L	06/29/21 17:44 1
Methylcyclohexane	ND	1.0	0.16 ug/L	06/29/21 17:44 1
Methylene Chloride	ND	1.0	0.44 ug/L	06/29/21 17:44 1
Styrene	ND	1.0	0.73 ug/L	06/29/21 17:44 1
Tetrachloroethene	ND	1.0	0.36 ug/L	06/29/21 17:44 1
Toluene	ND	1.0	0.51 ug/L	06/29/21 17:44 1
trans-1,2-Dichloroethene	ND	1.0	0.90 ug/L	06/29/21 17:44 1
trans-1,3-Dichloropropene	ND	1.0	0.37 ug/L	06/29/21 17:44 1
Trichloroethene	ND	1.0	0.46 ug/L	06/29/21 17:44 1
Trichlorofluoromethane	ND	1.0	0.88 ug/L	06/29/21 17:44 1
Vinyl chloride	ND	1.0	0.90 ug/L	06/29/21 17:44 1
Xylenes, Total	ND	2.0	0.66 ug/L	06/29/21 17:44 1

7/2/2021

Client: New York State D.E.C. Job ID: 480-186455-1

Project/Site: Gladding Corporation #709009

Client Sample ID: EFF-46 HZ 062321 Lab Sample ID: 480-186455-3

Date Collected: 06/23/21 13:45 Matrix: Water Date Received: 06/24/21 08:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99	80 - 120		06/29/21 17:44	1
1,2-Dichloroethane-d4 (Surr)	96	77 - 120		06/29/21 17:44	1
4-Bromofluorobenzene (Surr)	94	73 - 120		06/29/21 17:44	1
Dibromofluoromethane (Surr)	99	75 - 123		06/29/21 17:44	1

5

6

8

9

11

13

14

Client: New York State D.E.C. Job ID: 480-186455-1

Project/Site: Gladding Corporation #709009

Client Sample ID: TRIP BLANK 062321

Lab Sample ID: 480-186455-4

Date Collected: 06/23/21 00:00 **Matrix: Water** Date Received: 06/24/21 08:00

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			06/29/21 18:06	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			06/29/21 18:06	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			06/29/21 18:06	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			06/29/21 18:06	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			06/29/21 18:06	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			06/29/21 18:06	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			06/29/21 18:06	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			06/29/21 18:06	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			06/29/21 18:06	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			06/29/21 18:06	
1,2-Dichloropropane	ND	1.0	0.72	ug/L			06/29/21 18:06	
1,3-Dichlorobenzene	ND	1.0		ug/L			06/29/21 18:06	
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			06/29/21 18:06	
2-Butanone (MEK)	ND	10		ug/L			06/29/21 18:06	
2-Hexanone	ND	5.0		ug/L			06/29/21 18:06	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			06/29/21 18:06	
Acetone	ND	10		ug/L			06/29/21 18:06	
Benzene	ND	1.0		ug/L			06/29/21 18:06	
Bromodichloromethane	ND	1.0		ug/L			06/29/21 18:06	
Bromoform	ND	1.0		ug/L			06/29/21 18:06	
3romomethane	ND	1.0		ug/L			06/29/21 18:06	
Carbon disulfide	ND	1.0		ug/L			06/29/21 18:06	
Carbon tetrachloride	ND	1.0		ug/L			06/29/21 18:06	
Chlorobenzene	ND	1.0		ug/L			06/29/21 18:06	
Dibromochloromethane	ND	1.0		ug/L			06/29/21 18:06	
Chloroethane	ND	1.0		ug/L			06/29/21 18:06	
Chloroform	ND	1.0		ug/L			06/29/21 18:06	
Chloromethane	ND	1.0		ug/L			06/29/21 18:06	
cis-1,2-Dichloroethene	ND	1.0		ug/L			06/29/21 18:06	
cis-1,3-Dichloropropene	ND	1.0		ug/L			06/29/21 18:06	
Cyclohexane	ND	1.0		ug/L			06/29/21 18:06	
Dichlorodifluoromethane	ND	1.0		ug/L			06/29/21 18:06	
Ethylbenzene	ND	1.0		ug/L			06/29/21 18:06	
1,2-Dibromoethane	ND	1.0		ug/L			06/29/21 18:06	
sopropylbenzene	ND	1.0		ug/L			06/29/21 18:06	
Methyl acetate	ND	2.5		ug/L			06/29/21 18:06	
Methyl tert-butyl ether	ND	1.0		ug/L			06/29/21 18:06	
Methylcyclohexane	ND	1.0		ug/L			06/29/21 18:06	
Methylene Chloride	ND	1.0		ug/L			06/29/21 18:06	
Styrene	ND	1.0		ug/L			06/29/21 18:06	
Tetrachloroethene	ND	1.0		ug/L			06/29/21 18:06	
Toluene	ND	1.0		ug/L			06/29/21 18:06	
rans-1,2-Dichloroethene	ND	1.0		ug/L			06/29/21 18:06	
rans-1,3-Dichloropropene	ND	1.0		ug/L			06/29/21 18:06	
Trichloroethene	ND	1.0		ug/L			06/29/21 18:06	
Trichlorofluoromethane	ND	1.0		ug/L			06/29/21 18:06	
Vinyl chloride	ND	1.0		ug/L			06/29/21 18:06	
Xylenes, Total	ND	2.0		ug/L			06/29/21 18:06	

Eurofins TestAmerica, Buffalo

Page 13 of 25

7/2/2021

Client: New York State D.E.C. Job ID: 480-186455-1

Project/Site: Gladding Corporation #709009

Client Sample ID: TRIP BLANK 062321 Lab Sample ID: 480-186455-4

Date Collected: 06/23/21 00:00
Date Received: 06/24/21 08:00

ı	Jampie	ID.	400-100	TUU-T
			Matrix:	Water

Surrogate	%Recovery	Qualifier	Limits	Prepare	ed Analyzed	Dil Fac
Toluene-d8 (Surr)	100		80 - 120		06/29/21 18:06	1
1,2-Dichloroethane-d4 (Surr)	98		77 - 120		06/29/21 18:06	1
4-Bromofluorobenzene (Surr)	94		73 - 120		06/29/21 18:06	1
Dibromofluoromethane (Surr)	100		75 - 123		06/29/21 18:06	1

5

9

44

12

4 4

Surrogate Summary

Client: New York State D.E.C. Job ID: 480-186455-1

Project/Site: Gladding Corporation #709009

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		TOL	DCA	BFB	DBFM
Lab Sample ID	Client Sample ID	(80-120)	(77-120)	(73-120)	(75-123)
480-186455-1	RW-1 062321	100	96	95	100
480-186455-2	RW-2 062321	100	97	95	102
480-186455-3	EFF-46 HZ 062321	99	96	94	99
480-186455-4	TRIP BLANK 062321	100	98	94	100
LCS 480-587342/5	Lab Control Sample	101	95	98	98
MB 480-587342/7	Method Blank	99	95	94	98

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Page 15 of 25

Client: New York State D.E.C. Job ID: 480-186455-1

Project/Site: Gladding Corporation #709009

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-587342/7

Matrix: Water

Analysis Batch: 587342

lient Sample ID: Method Blank
Prep Type: Total/NA
Prep Type: Total/NA

Analyte		MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			06/29/21 11:18	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			06/29/21 11:18	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			06/29/21 11:18	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			06/29/21 11:18	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			06/29/21 11:18	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			06/29/21 11:18	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			06/29/21 11:18	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			06/29/21 11:18	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			06/29/21 11:18	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			06/29/21 11:18	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			06/29/21 11:18	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			06/29/21 11:18	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			06/29/21 11:18	1
2-Butanone (MEK)	ND		10	1.3	ug/L			06/29/21 11:18	1
2-Hexanone	ND		5.0	1.2	ug/L			06/29/21 11:18	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			06/29/21 11:18	1
Acetone	ND		10	3.0	ug/L			06/29/21 11:18	1
Benzene	ND		1.0	0.41	ug/L			06/29/21 11:18	1
Bromodichloromethane	ND		1.0	0.39	ug/L			06/29/21 11:18	1
Bromoform	ND		1.0	0.26	ug/L			06/29/21 11:18	1
Bromomethane	ND		1.0	0.69	ug/L			06/29/21 11:18	1
Carbon disulfide	ND		1.0	0.19	ug/L			06/29/21 11:18	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			06/29/21 11:18	1
Chlorobenzene	ND		1.0	0.75	ug/L			06/29/21 11:18	1
Dibromochloromethane	ND		1.0	0.32	ug/L			06/29/21 11:18	1
Chloroethane	ND		1.0	0.32	ug/L			06/29/21 11:18	1
Chloroform	ND		1.0	0.34	ug/L			06/29/21 11:18	1
Chloromethane	ND		1.0	0.35	ug/L			06/29/21 11:18	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			06/29/21 11:18	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			06/29/21 11:18	1
Cyclohexane	ND		1.0	0.18	ug/L			06/29/21 11:18	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			06/29/21 11:18	1
Ethylbenzene	ND		1.0	0.74	ug/L			06/29/21 11:18	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			06/29/21 11:18	1
Isopropylbenzene	ND		1.0	0.79	ug/L			06/29/21 11:18	1
Methyl acetate	ND		2.5	1.3	ug/L			06/29/21 11:18	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			06/29/21 11:18	1
Methylcyclohexane	ND		1.0	0.16	ug/L			06/29/21 11:18	1
Methylene Chloride	0.576	J	1.0	0.44	ug/L			06/29/21 11:18	1
Styrene	ND		1.0	0.73	ug/L			06/29/21 11:18	1
Tetrachloroethene	ND		1.0	0.36	ug/L			06/29/21 11:18	1
Toluene	ND		1.0	0.51	ug/L			06/29/21 11:18	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			06/29/21 11:18	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			06/29/21 11:18	1
Trichloroethene	ND		1.0	0.46	ug/L			06/29/21 11:18	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			06/29/21 11:18	1
Vinyl chloride	ND		1.0		ug/L			06/29/21 11:18	1
Xylenes, Total	ND		2.0	0.66	ug/L			06/29/21 11:18	1

Eurofins TestAmerica, Buffalo

Page 16 of 25 7/2/2021

Client: New York State D.E.C. Job ID: 480-186455-1

Project/Site: Gladding Corporation #709009

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-587342/7

Matrix: Water

1,2-Dibromoethane

Methyl tert-butyl ether

Methylcyclohexane

Isopropylbenzene

Methyl acetate

Analysis Batch: 587342

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB %Recovery Dil Fac Surrogate Qualifier Limits Prepared Analyzed Toluene-d8 (Surr) 99 80 - 120 06/29/21 11:18 1,2-Dichloroethane-d4 (Surr) 95 77 - 120 06/29/21 11:18 4-Bromofluorobenzene (Surr) 94 73 - 120 06/29/21 11:18 Dibromofluoromethane (Surr) 98 75 - 123 06/29/21 11:18

Lab Sample ID: LCS 480-587342/5 Matrix: Water				Clie	ent Sa	mple ID	: Lab Control Samp Prep Type: Total/N
Analysis Batch: 587342	Spike	LCS	LCS				%Rec.
Analyte	Added	_	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	27.4		ug/L		110	73 - 126
1,1,2,2-Tetrachloroethane	25.0	24.1		ug/L		96	76 - 120
1,1,2-Trichloroethane	25.0	24.8		ug/L		99	76 - 122
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	22.4		ug/L		90	61 - 148
1,1-Dichloroethane	25.0	25.4		ug/L		102	77 - 120
1,1-Dichloroethene	25.0	23.6		ug/L		94	66 - 127
1,2,4-Trichlorobenzene	25.0	23.6		ug/L		95	79 - 122
1,2-Dibromo-3-Chloropropane	25.0	20.9		ug/L		84	56 - 134
1,2-Dichlorobenzene	25.0	25.0		ug/L		100	80 - 124
1,2-Dichloroethane	25.0	22.0		ug/L		88	75 - 120
1,2-Dichloropropane	25.0	25.7		ug/L		103	76 - 120
1,3-Dichlorobenzene	25.0	25.1		ug/L		100	77 - 120
1,4-Dichlorobenzene	25.0	25.0		ug/L		100	80 - 120
2-Butanone (MEK)	125	113		ug/L		90	57 - 140
2-Hexanone	125	113		ug/L		91	65 - 127
4-Methyl-2-pentanone (MIBK)	125	116		ug/L		93	71 - 125
Acetone	125	117		ug/L		94	56 - 142
Benzene	25.0	25.2		ug/L		101	71 - 124
Bromodichloromethane	25.0	23.8		ug/L		95	80 - 122
Bromoform	25.0	23.4		ug/L		94	61 - 132
Bromomethane	25.0	23.2		ug/L		93	55 - 144
Carbon disulfide	25.0	25.7		ug/L		103	59 - 134
Carbon tetrachloride	25.0	26.5		ug/L		106	72 - 134
Chlorobenzene	25.0	24.5		ug/L		98	80 - 120
Dibromochloromethane	25.0	24.3		ug/L		97	75 - 125
Chloroethane	25.0	25.5		ug/L		102	69 - 136
Chloroform	25.0	23.9		ug/L		96	73 - 127
Chloromethane	25.0	19.9		ug/L		79	68 - 124
cis-1,2-Dichloroethene	25.0	24.6		ug/L		98	74 - 124
cis-1,3-Dichloropropene	25.0	24.3		ug/L		97	74 - 124
Cyclohexane	25.0	27.6		ug/L		110	59 - 135
Dichlorodifluoromethane	25.0	19.1		ug/L		76	59 - 135
Ethylbenzene	25.0	24.9		ug/L		100	77 - 123
1 , 2 2,	· · · · · · · · · · · · · · · <u></u>						

Eurofins TestAmerica, Buffalo

77 - 120

77 - 122

74 - 133 77 - 120

68 - 134

96

99

92

91

113

Page 17 of 25

24.1

24.7

46.0

22.7

28.2

ug/L

ug/L

ug/L

ug/L

ug/L

25.0

25.0

50.0

25.0

25.0

7/2/2021

Client: New York State D.E.C.

Project/Site: Gladding Corporation #709009

Job ID: 480-186455-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-587342/5

Matrix: Water

Vinyl chloride

Analysis Batch: 587342

Client Sample ID: Lab Control Sample

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D %R	ec	Limits	
Methylene Chloride	25.0	26.3		ug/L		05	75 - 124	
Styrene	25.0	25.0		ug/L	1	00	80 - 120	
Tetrachloroethene	25.0	24.7		ug/L		99	74 - 122	
Toluene	25.0	24.8		ug/L		99	80 - 122	
trans-1,2-Dichloroethene	25.0	27.7		ug/L	1	11	73 - 127	
trans-1,3-Dichloropropene	25.0	23.5		ug/L		94	80 - 120	
Trichloroethene	25.0	24.4		ug/L		98	74 - 123	
Trichlorofluoromethane	25.0	22.3		ug/L		89	62 - 150	

22.6

ug/L

25.0

LCS LCS

	_00		
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	101		80 - 120
1,2-Dichloroethane-d4 (Surr)	95		77 - 120
4-Bromofluorobenzene (Surr)	98		73 - 120
Dibromofluoromethane (Surr)	98		75 - 123

Prep Type: Total/NA

90

65 - 133

QC Association Summary

Client: New York State D.E.C. Job ID: 480-186455-1

Project/Site: Gladding Corporation #709009

GC/MS VOA

Analysis Batch: 587342

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-186455-1	RW-1 062321	Total/NA	Water	8260C	
480-186455-2	RW-2 062321	Total/NA	Water	8260C	
480-186455-3	EFF-46 HZ 062321	Total/NA	Water	8260C	
480-186455-4	TRIP BLANK 062321	Total/NA	Water	8260C	
MB 480-587342/7	Method Blank	Total/NA	Water	8260C	
LCS 480-587342/5	Lab Control Sample	Total/NA	Water	8260C	

3

4

5

9

1 4

12

. .

Lab Chronicle

Client: New York State D.E.C. Job ID: 480-186455-1

Project/Site: Gladding Corporation #709009

Client Sample ID: RW-1 062321

Date Collected: 06/23/21 13:55

Date Received: 06/24/21 08:00

Batch Dilution Batch Batch **Prepared** Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab Total/NA 8260C 587342 06/29/21 16:59 LCH TAL BUF Analysis

Client Sample ID: RW-2 062321

Date Collected: 06/23/21 13:50 Date Received: 06/24/21 08:00

Batch Batch Dilution **Batch** Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 587342 06/29/21 17:21 LCH TAL BUF

Client Sample ID: EFF-46 HZ 062321

Date Collected: 06/23/21 13:45 Date Received: 06/24/21 08:00

Batch Batch Dilution Batch **Prepared Prep Type** Method **Factor** Number or Analyzed Type Run **Analyst** Lab TAL BUF Total/NA Analysis 8260C 587342 06/29/21 17:44 LCH

Client Sample ID: TRIP BLANK 062321

Date Collected: 06/23/21 00:00

Date Received: 06/24/21 08:00

Batch **Batch** Dilution Batch **Prepared Prep Type** Method Run Factor Number or Analyzed Type Analyst Lab Analysis 8260C 587342 06/29/21 18:06 LCH TAL BUF Total/NA

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 480-186455-1

Lab Sample ID: 480-186455-2

Lab Sample ID: 480-186455-3

Lab Sample ID: 480-186455-4

А

5

6

8

10

12

11

Accreditation/Certification Summary

Client: New York State D.E.C. Job ID: 480-186455-1

Project/Site: Gladding Corporation #709009

Laboratory: Eurofins TestAmerica, Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	04-01-22

3

Ę

7

0

10

12

4 4

Method Summary

Client: New York State D.E.C.

Project/Site: Gladding Corporation #709009

MethodMethod DescriptionProtocolLaboratory8260CVolatile Organic Compounds by GC/MSSW846TAL BUF5030CPurge and TrapSW846TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Job ID: 480-186455-1

6

8

9

11

12

14

Sample Summary

Client: New York State D.E.C.

Project/Site: Gladding Corporation #709009

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset I
480-186455-1	RW-1 062321	Water	06/23/21 13:55	06/24/21 08:00	
480-186455-2	RW-2 062321	Water	06/23/21 13:50	06/24/21 08:00	
480-186455-3	EFF-46 HZ 062321	Water	06/23/21 13:45	06/24/21 08:00	
480-186455-4	TRIP BLANK 062321	Water	06/23/21 00:00	06/24/21 08:00	

Job ID: 480-186455-1

2

4

5

7

8

10

11

4 /

Eurofins TestAmerica, Buffalo							
10 Hazelwood Drive Amherst, NY 14228-2298	๋	Chain of Custody Record	ustody	Record	(eurofins En	Environment Testing
Phone: 716-691-2600 Fax: 716-691-7991	Sampler			10.17	Syracuse		
Client Information	Sample:	Sutleousk'	. •	Lab PM: Stone, Judy L	Carrior Tracking No(s):	COC No: 480-158696-34888 1	
Client Contact: Jasmine Mullins		>070		E-Mail: Judy:Stone@Furofinset.com	State of gir	Page:	
Company: ARCADIS U.S. Inc		PWSID:		len A	Analysis Poymostad	Job #:	
Address: 855 Route 146 Suite 210	Due Date Requested:				Day of dealer	Preservation Codes:	
City: Clifton Park	TAT Requested (days):	s):					lexane Jone
	Standar	り	5 5				\sNaO2 \a2O4S
	Compliance Project:	∆ Yes ∆ No				E - NaHSO4 Q - R - MeOH R - N	Q - Na2SO3 R - Na2S2O3
518-402-9625(1e) Email:	Callout 139083 WO#:						42SO4 SP Dodecahydrate
jasmine.mullins@arcadis.com						I - Ice J - DI Water	vcetone ACAA
et Name: Iding Corporation #709009	Project #: 48022018			10 SO		K-EDTA L-EDA	W - pH 4-5 Z - other (specify)
Sile South Otselic	SSOW#:			A) as		Other:	
		Sample	Matrix	tered MS/M		mber (
Sample Identification	Sample Date	Sample (C=comp,		ield Fil		ini leto	
	and and	1	Preservation Code:			Special Instructions/Note	tions/Note:
RW-1 06232)	6/23/21	355	S Water				
RW-2 062321	_		Water				
EFF-46 HZ 6 62321		345	Water				
Trip Blank	->		Water				
					480-186455 Chain of Custody		
2,5							
Precible Harard Idoniffication							
Non-Hazard Plammable Skin Irritant Poison B	on B Unknown	ın Radiological	gical	Sample Disposal (A fee	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	ined longer than 1 mor	nth)
i, III, IV, Other (specify)		1		Special Instructions/QC Requirements.	osal Dy Lab	Micrine For	Months
Empty Kit Relinquished by:		Date:		Time:	Method of Shipment:		
remains to by With Baimmished by Baimmished by	Date/Time: 6/23/21/	1608	Company Alcodis	م. <i>ک</i> و	11, 4 Date/Time:	100 A 09/ 17	Company
45119hil	12-5-1	1505	Comp	V	Date/Time:		Company
Custody Seals Intact: Custody Seal No.:	Date/ lime:		Company	Received by:		OBEC	Company
A Yes A No					2.4	#1	

Client: New York State D.E.C.

Job Number: 480-186455-1

Login Number: 186455 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Sabuda, Brendan D

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.4 #1 ICE
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

Arcadis of New York, Inc.

855 Route 146
Suite 210
Clifton Park, New York 12065
Tel 518 250 7300

Fax 518 371 2757

www.arcadis.com