

ESC ENGINEERING OF NEW YORK, P.C.

5 Sullivan Street · Cazenovia, New York 13035 · (315) 655-3900 · Fax (315) 655-3907

ADDITIONAL GROUNDWATER INVESTIGATION REPORT

FORMER GENERAL INSTRUMENT CORPORATION SITE SHERBURNE, NEW YORK

PREPARED

 \mathbf{BY}

ESC ENGINEERING OF NEW YORK, P.C.

AUGUST 30, 2006

Contents

			Page
Acro	nym Li	ist	iii
1.0	Intro	oduction	1
2.0	Site 1	Background	2
	2.1	Previous Investigation and Remediation	2 5
	2.2	Adjacent Property	5
3.0	Scope of Work		7
	3.1	Monitoring Well Installation Activities	8
		3.1.1 Soil Borings and Monitoring Well Construction	8
		3.1.2 Soil Sampling	9
	3.2	Groundwater Monitoring	10
		3.2.1 Groundwater Elevations	10
		3.2.2 Water Quality	10
4.0	Investigation Results		13
	4.1	Soil Sampling Results	13
		4.1.1 Hydraulic Conductivity Estimates	14
		4.1.2 Organic Carbon Results	15
	4.2	Groundwater Investigation Results	16
		4.2.1 Elevation Results	17
		4.2.2 Analytical Results	18
5.0	Interpretation and Updated Conceptual Site Model		21
	5.1	Groundwater Quality	22
	5.2	Updated Conceptual Site Model	24
6.0	Conclusions and Recommendations		28
	6.1	Schedule	29
7.0	References		30

Contents (continued)

List of Figures and Sheets:

Figure 1 – Site Location

Sheet 2 – Site Layout

Sheet 3 – Groundwater Contour Map

Sheet 4 – Site-Related Constituents of Concern

Sheet 5 – Petroleum-Related Constituents of Concern

Sheet 6 – Conceptual Site Model

List of Tables:

Table 1 – Grain Size Analysis and Estimate of Hydraulic Conductivity

Table 2 – Soil Organic Carbon Analysis

Table 3 – Groundwater Elevations

Table 4 – Groundwater Sampling Results

Table 5 – Historic Groundwater Sampling Results

List of Appendices:

Appendix A – Geologic NY, Inc., Report

Appendix B – Standard Operating Procedures

Appendix C – Boring Logs

Appendix D – Low Flow Groundwater Sampling Monitoring Forms

Appendix E – Laboratory Analytical Reports (including CDs of laboratory report files)

Appendix F – Data Validation Report

Appendix G – Grain Size Analyses

Acronym List

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

cm/s centimeters per second CSM conceptual site model

CVOCs chlorinated volatile organic compounds

DCE dichloroethene DO dissolved oxygen

DOT Department of Transportation

EPA U.S. Environmental Protection Agency

ETI Environmetal Technologies, Inc.

ft/day feet per day

f_{oc} fraction of organic carbon

ID inside diameter

LNAPL light non-aqueous phase liquid

μg/l micrograms per liter mg/kg milligrams per kilogram

mm millimeter

MS/MSD matrix spike/matrix spike duplicate

MTBE methyl-tert-butyl-ether

NYSDEC New York State Department of Environmental Conservation

ORP oxygen reduction potential PRB permeable reactive barrier

PVC polyvinyl chloride

RI/FS remedial investigation/feasibility study

SOPs standard operating procedures SVE soil vapor extraction system S&W Stearns and Wheler, LLC 1,1,1-TCA 1,1,1-trichloroethane

TCE trichloroethene
TFE total fluid extraction
VGSI Vishay GSI, Inc.

VOCs volatile organic compounds

1.0 Introduction

ESC Engineering of New York, P.C., on behalf of the corporate successor of General Instrument, Vishay GSI, Inc. (VGSI), has prepared this report detailing additional investigation activities conducted at the former General Instrument Corporation site in Sherburne, New York. The investigations, which included the installation of nine groundwater monitoring wells, was performed as the second phase of work necessary to update the conceptual site model (CSM). The CSM was developed by ESC Engineering to evaluate the efficacy of a permeable reactive barrier (PRB) installed (by others) in 1997. The PRB was installed to treat chlorinated volatile organic compounds (CVOCs) in groundwater. Both ESC Engineering and the New York State Department of Environmental Conservation (NYSDEC) raised concerns about the performance of the PRB following independent reviews. Historical and recent data collected and reviewed as part of the development of the CSM suggested that too few wells were present to fully evaluate the flow pattern and the extent of the affected groundwater. Additional wells were installed in 2005 to further define the groundwater flow near and downgradient of the PRB and to provide additional water quality data. The newly installed wells were sampled along with the existing wells as part of the semiannual groundwater sampling event. The results of the well installation and combined sampling event are presented in this report.

All of the 2005 well installation activities were conducted in accordance with ESC Engineering's standard operating procedures (SOPs) and the approved work plan for well installation and groundwater sampling activities, dated October 17, 2005. The combined groundwater sampling event fulfills the requirements for monitoring and evaluating the performance of the PRB as stipulated in the Order of Consent (#A701578810) signed by General Instrument on August 1, 1989, and the Record of Decision issued for the site in December 1994. This report presents a brief site description and history, a description of the scope of work, and the results of the investigation. In addition, the report provides the updated CSM and ESC Engineering's conclusions and recommendations for the site.

2.0 Site Background

The site is located at 1 Kenyon Press Drive in Sherburne, Chenango County, New York (Figure 1). Originally developed in 1947 for the Technical Appliance Corporation of America, the 5.5-acre site was purchased by Jerrold Electronic Corporation in 1962 and by General Instrument Corporation in 1969. General Instrument used the facility to produce aluminum television antennas, antenna controllers, and other small electronics from 1969 until manufacturing operations ceased in 1983. The facility was decommissioned and subsequently sold in 1989. The site is currently owned and occupied by Kenyon Press Inc., a commercial printer.

The major features of the site include a 75,000-square-foot main building used for manufacturing, warehousing, and administration, and a 4,900-square-foot plating building used for plating, etching, and vapor degreasing (Sheet 2). The site also includes two other buildings, a 1,600-square-foot garage near the southeast corner of the main building that was formerly used as a maintenance shop, and a 2,800-square-foot wooden shed near the western property line that was formerly used to store machinery and materials. Several smaller buildings, including a second garage, an equipment storage shed, and a hazardous material shed, were located south of the main building. These three structures were razed in 1983 to the concrete pads that are still visible in the field south of the main building (also known as South Field).

The site is surrounded by a bulk petroleum storage facility and Quickway gasoline station to the north; light commercial property to the east and south; the Delaware, Lackawanna, and Western railroad to the west; and further to the west by agricultural fields. VGSI currently leases a portion of the agricultural fields west of the site to allow access for the investigations described herein.

2.1 Previous Investigation and Remediation

In 1983, General Instrument implemented a plan to close their manufacturing facilities at the Sherburne Plant. An investigation conducted as part of the closure activities revealed a variety of organic and inorganic compounds in soil surrounding the facility. In response, General Instrument excavated and removed contaminated onsite soils and, in 1985, initiated a groundwater investigation that included the installation of nine groundwater monitoring wells

and six piezometers. The results of the groundwater investigation indicated the presence of 1,1,1-trichloroethane (1,1,1-TCA), trichloroethene (TCE), tetrachloroethene, and several other CVOCs in the groundwater along the western (downgradient) edge of the property.

The site was classified by the NYSDEC as a Class 2 inactive hazardous waste site in 1987 and General Instrument entered into a consent agreement in 1989 to perform a remedial investigation/feasibility study (RI/FS). The RI/FS, conducted by Stearns and Wheler, LLC (S&W), of Cazenovia, New York, and completed in 1993, identified CVOCs in the soil beneath the plating building; a localized area of free-phase petroleum product (fuel oil) floating on the groundwater near the northwest loading dock; and a CVOC-affected groundwater plume in the uppermost water-bearing unit extending west beneath a portion of the adjacent property.

S&W developed a remedial design and remedial action plan for the site that proposed the installation of an *in situ* soil vapor extraction (SVE) system to treat the unsaturated soil beneath the plating building and a groundwater recovery and treatment system to address the free-phase petroleum. The remedial action developed by S&W for the dissolved CVOC groundwater plume was a passive *in situ* PRB, which was designed to reductively dechlorinate the affected groundwater. A Record of Decision was issued by the NYSDEC in December 1994 approving the selected site remedies.

Both the SVE and groundwater recovery and treatment systems were designed, installed, and operated by S&W in the mid to late 1990s; and, both systems were decommissioned by S&W after the NYSDEC agreed that their respective cleanup targets had been achieved. A PRB was initially installed as a pilot-scale funnel-and-gate treatment system. In 1997, based on their interpretation of the pilot test response, S&W installed a full-scale, zero-valent granular iron PRB consisting of two parallel walls oriented roughly north-south and perpendicular to their interpretation of regional groundwater flow (Sheet 2). The longer of the two walls is approximately 370 feet long and was designed to cover the entire breadth of the CVOC-affected groundwater plume. A second, smaller (120-foot-long) wall was installed approximately 30 feet east of the main wall section to provide additional groundwater treatment where the highest CVOC concentrations were expected (i.e., along the core of the affected groundwater plume). Both walls were constructed with granular iron extending from about 3 feet below ground surface (bgs) through the entire thickness of the uppermost water-bearing unit and were keyed into an underlying clay at approximately 21 feet bgs. Each barrier wall was designed with a

flow-through thickness of approximately 1 foot. S&W monitored the PRBs on a quarterly basis for a period of approximately 2 years after the installation, and twice a year thereafter.

In 2001, the NYSDEC raised a number of concerns regarding the performance of the PRB. The concerns centered on apparent shifts in the groundwater flow upgradient of the PRB and changes in the CVOC distribution, including the presence of affected groundwater directly downgradient of the barrier. S&W, as part of their evaluation, contracted Environmental Technologies, Inc. (ETI), the manufacturers of the iron for the PRB, to conduct an investigation of the barrier and the groundwater flow pattern around the walls. The analyses, performed in early 2002, included bench tests performed to evaluate the condition of the PRB iron (recovered from the barrier in a core sample) as compared to an unaltered sample of iron supplied by ETI; downhole flow measurements for both direction and velocity using the existing wells; and an isotopic analysis of the CVOCs to determine if treated and untreated compounds could be readily distinguished. The bench tests performed on the iron core sample indicated that there had been a 10-to-12-percent decrease in the porosity of the wall in the 4.5 years since the installation, which likely reduced the estimated 5E-02 centimeter per second (cm/s; 141 feet per day [ft/day]) hydraulic conductivity of the barrier (ETI, personal communication). The porosity decrease was due to the accumulation of precipitate on the upgradient edge of the wall but its reductive potential, according to ETI's analysis, was unaltered. The downhole directional analysis was inconclusive; however, flowmeter measurements indicated velocities in some of the wells that were significantly higher than the initial estimates of approximately 1 ft/day. This led ETI to conclude that the residence time for groundwater flowing through the southern portion of the wall may be insufficient to fully treat the CVOC concentrations observed in the upgradient wells. Environmental Technologies' attempt to differentiate CVOCs that may have flowed through or around the barrier untreated using isotopic signatures was not definitive.

In response to continuing concerns raised by the NYSDEC, VGSI requested that ESC Engineering complete a technical review of the site in March 2004 using data generated by S&W during the 2002 groundwater monitoring events (ESC Engineering 2004a). ESC Engineering reviewed the data and developed a CSM, which was later validated using the semiannual groundwater data collected in the spring of 2004. The data suggested that the groundwater flow pattern had been altered by the PRB and that CVOCs might be bypassing the barrier; however,

the data set did not include enough monitoring wells to fully evaluate the flow patterns and extent of affected groundwater.

2.2 Adjacent Property

Additional investigation and remediation activities were performed at the adjacent Quickway gasoline station and adjacent petroleum bulk storage facility, which is located directly north of the former General Instrument site (Sheet 2). The activities at the Quickway gasoline station were not related to the operations at the former General Instrument facility; however, groundwater data collected for this and previous reports suggest that some of the compounds released to the subsurface have migrated onto the former General Instrument site and are present in the PRB treatment area. A description of these compounds and their impact on the PRB treatment area is presented below and a copy of the 2004 Geologic NY, Inc., report is included in Appendix A for reference.

The Quickway site is listed on the NYSDEC Spill Incidents Database (#980327) for a release of gasoline in 1998 resulting from underground storage tank (UST) failures in two areas of the site (Sheet 2). According to a letter report obtained by ESC Engineering from Geologic NY, Inc., of Cortland, New York, to the NYSDEC, dated May 24, 2006, groundwater samples collected in 1998 from a monitoring well near the failed tank in the northeast corner of the site along Route 12 contained combined concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX) that exceeded 42,000 micrograms per liter (μg/l). In September 1998, methyltert-butyl-ether (MTBE) was added to the sampling program and concentrations as high as 1,500 μg/l were detected in groundwater samples from a well near the second UST suspected of failure located on the southeast corner of Quickway's property. Samples collected from an additional groundwater monitoring well located between the southeastern UST area and the former General Instrument property line (directly upgradient of the wooden shed and former plating building) contained concentrations of BTEX in groundwater as high as 452.1 μg/l (April 1999) and concentrations of MTBE as high as 513 μg/l (February 1999).

Notes in the letter and on the analytical tables indicate that a combined SVE system with two arrays (positioned in the northeast and southeast UST areas) and total fluid extraction (TFE) system with a single recovery well were installed in early 1999. Fluid extraction from the TFE

recovery well resulted in up to 0.23 foot of light non-aqueous phase liquid (LNAPL) in an adjacent monitoring well in November 1999. At the time of the letter report in 2004, the combined SVE/TFE system had apparently removed all LNAPL at the monitoring points and reduced the total BTEX compounds to concentrations ranging from 6 μ g/l in the southeast corner of the site to 722 μ g/l in the recovery well. Concentrations of MTBE in the monitoring wells between the southeastern UST and the former General Instrument site ranged from 17 to 360 μ g/l from 1999 to 2001 before decreasing to a level of 3.9 μ g/l in April 2004.

3.0 Scope of Work

The CSM developed during the technical review of the site indicated that the groundwater flow pattern in and around the PRB had been altered by the barrier itself. Elevation data collected by S&W in 2002 and during the subsequent semiannual groundwater sampling events appeared to show a marked gradient change across the center of the barrier, groundwater elevations above the top of the wall, and altered flow directions near the end of the walls subparallel to axis of the barrier, particularly in the north. Analytical data collected during the same sampling events suggested that the CVOC-affected groundwater was bypassing the barrier to the north and south of the wall along the projected flow lines and, in the center of the PRB, was flowing over the wall. Too few wells were present, however, to determine the flow patterns around the ends of the PRB and evaluate the distribution of CVOCs dissolved in groundwater. In addition, little was known about the site geology and hydrogeology beyond the limited information provided in the early reports. This information is necessary to evaluate groundwater velocity and likely distribution of the CVOCs.

To provide a better understanding of the hydraulics around the PRB and update the CSM, ESC Engineering installed and sampled (as part of the semiannual groundwater sampling event) nine groundwater monitoring wells around the northern and southern ends of the PRB and downgradient of the barrier. The well locations were selected to verify the projected flow lines around each side of the barrier and to further evaluate the distribution of the CVOC-affected groundwater plume. ESC Engineering also collected soil samples for grain size and total organic carbon analyses to determine the hydraulic and sorptive characteristics of the water-bearing zone.

All of the activities were performed in accordance with the procedures outlined in the work plan for well installation and groundwater sampling activities, dated October 17, 2005, the Record of Decision issued for the site in December 1994, and ESC Engineering's standard operating procedures (Appendix B). An overview of the scope of work, including the methods used, is presented below.

3.1 Monitoring Well Installation Activities

ESC Engineering installed nine groundwater monitoring wells between November 17 and 22, 2005. The monitoring wells, designated MW-31 through MW-39, were installed to provide data to further evaluate the groundwater flow pattern and characterize the water quality near and downgradient of the PRB (Sheet 2). Monitoring wells MW-31 through MW-33 were installed along potential flow lines in the vicinity of the southern end of the PRB, monitoring wells MW-34 through MW-36 were installed to define the flow near the northern end of the PRB, and MW-37 through MW-39 were positioned halfway between the PRB and downgradient wells MW-20 and MW-21 to provide additional information on the flow pattern and water quality downgradient of the PRB. ESC Engineering also collected soil samples during the well boring installation for grain size and fraction of organic carbon (foc) analyses to further characterize the hydraulic and sorptive characteristics of the subsurface.

3.1.1 Soil Borings and Monitoring Well Construction

The monitoring well borings were installed using a truck-mounted drill rig equipped with 4.25-inch inside-diameter (ID) hollow-stem augers. The borings were advanced through the shallow water-bearing zone to the top of the underlying silt layer. Continuous split-barrel soil samples were collected from each boring to characterize the soil and to accurately identify the silt interface, which was located between 11 and 24 feet bgs. Lithologic descriptions, which included soil color, texture, and moisture content, were recorded in the field book. Geologic logs of each boring and schematic well construction details are included in Appendix A.

A monitoring well was constructed in each boring once the silt interface was identified using 2-inch-ID, flush-threaded, Schedule 40 polyvinyl chloride (PVC) blank casing equipped with 0.010-inch continuous-wrap PVC screen. The wells were constructed so that the screened section straddled the water table surface and extended to the base of the shallow water-bearing zone. A reference mark was placed on the top of the inner PVC casing of each well, and the well was secured with a locking expandable plug and protective steel casing. Each well was developed 24 hours or later after the installation of the well seal with submersible pumps and surge blocks until the development water was relatively free of suspended sediment.

All downhole and sampling equipment was decontaminated before use, between each borehole, and before leaving the site in accordance with ESC Engineering's SOP 15. Decontamination rinsate, soil cuttings, and development water generated during the well

installation activities, were contained in Department of Transportation- (DOT-) authorized 55-gallon steel drums and staged onsite for later disposal in accordance with state and federal regulations.

The locations, reference mark elevations, and ground surface elevations of all of the newly installed wells were surveyed by a New York-licensed land surveyor prior to the semiannual monitoring event conducted in December 2005. All horizontal locations were measured to the nearest 0.1 foot and vertical locations to the nearest 0.01 foot.

3.1.2 <u>Soil Sampling</u>

In addition to the lithologic descriptions, soil samples for grain size distribution and f_{oc} analysis were collected from select borings to characterize the hydraulic and sorption properties of the shallow water-bearing zone. Eleven grain size analysis soil samples were collected from borings MW-31, MW-32, and MW-34 through MW-39 at depths ranging from 5 to 15 feet bgs¹ (Sheet 2). Nine the samples were collected from the water-bearing zone above the underlying silty clay; the samples from MW-34 and one of the two samples collected from MW-37 were used to characterize the silty clay. Ten soil samples were collected for analysis of total organic carbon, which was used to calculate the f_{oc} . One sample was collected from each of the nine soil borings at depths ranging from 5 to 17 feet bgs with a second sample collected from MW-36, the deepest boring at the site, between 17 and 19 feet bgs.

The grain size analyses were performed at Geotechnics Laboratories in Pittsburgh, Pennsylvania, using ASTM International Method D422. The f_{oc}, which was calculated from the total organic content, was analyzed at Severn Trent Laboratories in Buffalo, New York by US Environmental Protection Agency (EPA) Method 9060. The samples were collected and shipped in accordance with ESC Engineering's SOPs 10 and 20, which are included in Appendix B. Laboratory analytical reports of grain size analysis and total organic content are included in Appendices C and D, respectively.

3.2 Groundwater Monitoring

ESC Engineering performed the semiannual groundwater monitoring for the site between December 20 and 22, 2005, which combined the existing wells in the PRB monitoring network

_

¹ Soil samples for grain size analysis were not collected from MW-33 due to low recoveries.

and the newly installed monitoring wells. The activities included collecting water level data to determine the potentiometric surface in the vicinity of the PRB and analytical samples to evaluate the water quality upgradient and downgradient of the PRB. As with previous events, the groundwater samples were analyzed for VOCs by EPA Method 8260 and also included, at the request of the NYSDEC, analysis for MTBE and naphthalene.

All of the groundwater monitoring work at the site was performed in accordance with ESC Engineering's SOPs, which are presented in Appendix B. The methods for each activity are presented below and the results are summarized in Tables 3 and 4. For comparison, Tables 3 and 5 include elevation data and analytical results, respectively, from the previous groundwater monitoring event.

3.2.1 Groundwater Elevations

Water level data were collected from the wells prior to beginning sampling activities. The wells gauged included 18 of the 19 wells located within the PRB monitoring network (i.e., MW-2, MW-8, MW-17, MW-20 through MW-30, P-3, P-8, P-10, and P-11); MW-14, which was included in the gauging activities to provide additional information on the flow pattern upgradient of the barrier; and the nine newly installed groundwater monitoring wells (i.e., MW-31 through MW-39; Sheet 2). The water level in MW-18 was inadvertently not measured due to an oversight in the field.

Each well was uncapped and allowed to stand undisturbed for at least one hour (for equilibration) prior to gauging. The measurements were made to the nearest 0.01 foot using an electronic water-level indicator and recorded in the field notebook. The water level data are presented in Table 3.

3.2.2 Water Quality

Seventeen of the 19 wells in the PRB monitoring network (MW-2, MW-8, MW-17, MW-20 through MW-27, MW-29, MW-30, P-3, P-8, P-10, and P-11) and the nine newly installed monitoring wells (MW-31 through MW-39) were sampled using the low-flow purge protocol in accordance with ESC Engineering's SOP 3B and the EPA Low Flow (Minimal Drawdown) Procedures (1996; Appendix B; Sheet 2). Two of the network wells, MW-18 and MW-28, were

not sampled. Monitoring well MW-18 is a former petroleum product recovery well² that is typically not sampled due to the presence of a thin layer of LNAPL in the well³. Monitoring well MW-28 is damaged and could not be sampled using low-flow equipment. Samples were also not collected from monitoring well MW-14, which is outside the PRB monitoring network and is used to measure groundwater elevations only.

The wells were purged and sampled using QED Environmental Systems, Inc., MP15 Controllers and CO₂-driven MicroPurge bladder pumps equipped with disposable Teflon bladders and Teflon-lined polyethylene tubing. The pumps were set near the midpoint of each well screen and the wells were purged at rates between 0.2 and 0.5 liter per minute. Temperature, pH, specific conductance, dissolved oxygen (DO), turbidity, oxygen-reduction potential (ORP), and drawdown were monitored every 3 to 5 minutes during the purge process using a flow-through cell and an electronic water-level indicator. Low flow groundwater sampling forms recorded for each well during the purge process are presented in Appendix E.

Water quality samples were collected directly from the pump once the field parameters stabilized (±10 percent for temperature, turbidity, DO, and ORP; ±0.1 unit for pH; ± 3 percent for specific conductance; and drawdown variance less than 0.3 foot) and the turbidity readings were less than 50 nephelometric units. The samples were labeled, packed on ice, and shipped by overnight carrier to Severn Trent Laboratories, Inc., of Buffalo, New York, for analysis of VOCs using EPA Method 8260. All samples were maintained and shipped in accordance with ESC Engineering's SOP 20 (Appendix B). Laboratory results for the groundwater data collected in December 2005 are presented in Appendix D. The data usability report is presented in Appendix F.

After sampling each well, the bladder pumps were disassembled and decontaminated using non-phosphate soap and tap water in accordance with ESC Engineering's SOP

³ The water elevation and thickness of free product in monitoring well MW-18 was not measured during the December 2005 sampling event due to an oversight in the field. Product thicknesses in the well have ranged from 0.11 feet during the June and November 2004 event to 0.17 feet during the June 2005 event.

_

² Monitoring well MW-18 was installed as part of the onsite groundwater treatment and soil vapor extraction system. According to S&W's June 2000 decommissioning Plan, groundwater recovery from MW-18 was discontinued with approval from the NYSDEC in 1998. The well, along with onsite treatment system wells MW-2 and MW-8, was incorporated into the monitoring program for the PRB.

16 (Appendix B). All non-metal parts of the pumps, including rubber o-rings and the Teflon bladder, were replaced between each well. Investigation-derived wastes generated during the sampling activities (i.e., purge and decontamination water) were contained in DOT-approved 55-gallon steel drums. The drums were labeled and staged onsite for later disposal in accordance with state and federal regulations.

4.0 Investigation Results

ESC Engineering installed nine groundwater monitoring wells near and downgradient of the PRB to further assess the groundwater flow pattern and evaluate the water quality. The newly installed wells and 16 of the existing wells within the PRB network were sampled as part of the semiannual groundwater sampling event in December 2005. The results of these activities are presented below and are summarized in Tables 1 through 5. Table 1 and 2 detail the results of the soil sampling activities and include the grain size analysis classifications, estimates of the hydraulic conductivity, and the foc. Table 3 includes groundwater elevation data from the December sampling event and the two previous sampling events for comparison. Table 4 provides the analytical data collected from the wells and Table 5 summarizes the historical analytical data for the last three semiannual sampling events. A copy of the laboratory analytical results and the data usability study report are presented in Appendix F. Grain size analysis reports are presented in Appendix G and the boring logs and groundwater sampling logs are presented in Appendices C and D, respectively.

4.1 Soil Sampling Results

The nine soil borings installed for the monitoring wells were sampled continuously to provide geologic descriptions of the subsurface. Select intervals were also sampled for grain size and organic carbon analysis. Based on the soil descriptions and the grain size analyses, the area around the PRB is underlain by three stratigraphic units. The upper unit consists of 2 to 10 feet of organic-rich, yellowish-brown to olive brown silt or sandy silt with minor amounts of gravel. The silt forms a cap to the underlying units and is likely the result of overbank deposits formed during repeated flooding events of the nearby Chenango River. This unit is currently farmed by the local landowner. The upper silt unit is underlain by up to 15 feet of olive brown well to poorly graded coarse gravel with varying amounts of silt and sand. The gravel is often rounded to well-rounded and is weakly stratified with alternating layers of gravelly silt and gravely sand. Underlying the gravel unit is a dense, dark grey silty clay, which marks the base of the upper water-bearing zone. The unit appears to be contiguous across the site, though the depth it was encountered ranged widely from 11 to 21 feet bgs. The top of the unit was sampled during the

installation of MW-37 and appears to be at least 2-feet-thick. No borings were advanced through this unit.

4.1.1 <u>Hydraulic Conductivity Estimates</u>

Rough estimates of the hydraulic conductivity (K) were calculated from the samples using the grain size analyses and the empirical power-law relationship developed by Hazen, which uses the d_{10} effective grain size to predict K. The power-law relationship is given by:

$$K = Ad_{10}^{2}$$

where:

K = hydraulic conductivity (cm/s)

 d_{10} = the grain size diameter in millimeters (mm) at which 10-percent (by weight) of the soil particles are finer and 90-percent are coarser.

A = a unit conversion coefficient (equal to 1.0 for K in cm/s and d_{10} in mm; Freeze and Cherry, 1979).

This empirical formula provides only a crude estimate of the conductive capacity of the soil material because the homogenized sample does not differentiate between horizontal and vertical structures (e.g., bedding) that may have been present in the soil (i.e., the estimate of K is isotropic) nor is there any consideration for the packing of the grains. Calculations using this relationship, however, yielded hydraulic conductivity estimates of 1.2E-04 to 2.8E-02 cm/s (0.34 to 79 ft/day) for the sandy and silty gravels, 1.4E-04 cm/s (0.41 ft/day) for the silty sand sample recovered from MW-34, and 1.7E-06 to 2.6E-06 cm/s (4.8E-03 to 7.3E-03 ft/day) for the underlying silt clay, all of which are generally consistent with typical values for silty and sandy gravel mixtures (1E-03 to 1 cm/s; 2.8 to 2834 ft/day), silt and sand mixtures (1E-05 to 1E-02 cm/s; 2.8E-02 to 28.3 ft/day) and silt clay mixtures (IE-08 to 1E-04 cm/s; 2.8E-05 to 2.8E-01 ft/day), respectively (Table 1; Freeze and Cherry 1979). The values were also in close agreement with K estimates derived from slug tests performed by S&W using onsite and offsite wells⁴,

-

⁴ The slug tests were performed by S&W as part of the Remedial Investigation. Of the nine wells used for the slug tests, MW-3, MW-4, MW-9 through MW-12, and MW-15 through MW-17, only MW-17 still exists. The remainder of the wells were abandoned by S&W. See the Remedial Investigation Report (November 1992) for additional information.

which ranged from 5.55E-03 to 8.07E-02 cm/s (16 to 228 ft/day; S&W, 1992). These estimates suggest that the majority of the groundwater flow is horizontal through the gravel unit and the underlying silty clay, with a K that is up to 10,000 times less transmissive, is an effective aquitard for the upper water-bearing unit.

It is important to note here, as will be described more fully later in this text, that the estimates for the permeability of the gravel are similar and in fact could be higher than the permeability of the PRB.

4.1.2 Organic Carbon Results

The results of the organic carbon analyses indicate that total organic carbon was generally less than 3,000 milligrams per kilogram (mg/kg; 0.3 percent) ranging from a low of 980 mg/kg (0.98 percent) in the duplicate sample collected from the 5-to-7-foot depth interval of boring MW-31 to 2,600 mg/kg (0.26 percent) in the sample recovered from the 9-to-11-foot depth interval of MW-39 (Table 2). Significantly higher concentrations of organic carbon were detected in the 7-to-9-foot sample from MW-38 (6,100 mg/kg; 0.61-percent), in the 8-to-10-foot (19,000 mg/kg; 1.9-percent) and 17-to-19-foot (32,000 mg/kg; 3.2-percent) samples recovered from MW-36.

The mobility of an organic compound dissolved in groundwater is sensitive to the amount of physical sorption to the soil matrix and to the amount of chemical sorption by the soil organic matter (Chiou, *et al.*, 1979; Karickhoff, *et al.*, 1979). Increases in the amount of sorption result in a greater retardation of the dissolved compound (i.e., the velocity of the contaminants, V_c , is reduced) with respect to the linear velocity of the groundwater alone (V_w). For non-polar organic compounds such as TCE, the amount of retardation (R) is dominated by the soil organic content at concentrations of f_{oc} (a proxy for the total soil organic matter) greater than 0.1 percent (Pignatello 1989). Estimates of R were generated from the f_{oc} analysis using the relationship:

$$R = V_w/V_c = 1 + (\rho b/n) (K_d)$$

Where:

R = Retardation factor (unitless)

 $V_{\rm w}$ = Linear velocity of the groundwater

 V_c = Linear velocity of the contaminant

 ρ_b = bulk density of the porous medium (grams per cubic centimeter)

n = porosity of the porous medium (unitless)

K_d = distribution coefficient; equal to f_{oc}K_{oc}, where K_{oc} is the compound-specific organic carbon partitioning coefficient (liters per kilogram; Freeze and Cherry, 1979)

Estimates of the retardation factor for each of the samples were calculated for TCE using the default values for soil porosity (0.25), soil bulk density (1.99 grams per cubic centimeter), and TCE K_{oc} (166 liters per kilogram) recommended by the EPA's Soil Screening User's Guide (1996). The calculations yielded estimates for the majority of the samples ranging from 1.1 for the duplicate sample collected from the 5-to-7-foot depth interval of boring MW-31 to 1.3 for the sample recovered from the 9-to-11-foot depth interval of MW-39 (Table 2; Sheet 2). These values are near the low end of typical TCE retardation values, which typically range from 1 to 10 (Mackay, *et al.*, 1985), and are consistent with coarse-grained soils that generally have lower organic carbon content. The higher concentrations of organic carbon detected in the 7-to-9-foot sample from MW-38 and in the 8-to-10-foot and 17-to-19-foot samples recovered from MW-36 yielded retardation estimates of 1.8, 3.5, and 5.2, respectively. These values may be related to locally higher concentrations of organic silt or clay or the application of fertilizers, which can significantly increase the soil organic content. These results indicate that, with the exception of the sampled soil horizons in MW-36 and MW-38, the dissolved CVOCs appear to be undergoing little retardation and are migrating at a rate similar to the groundwater flow velocity.

4.2 Groundwater Investigation Results

The groundwater investigation was performed after the groundwater within the newly installed wells had been allowed to equilibrate with the surrounding formation for a minimum of two weeks. The investigation activities were timed to coincide with the semiannual groundwater sampling, which is normally conducted in November or December, and to provide a snapshot of the current groundwater elevations and water quality over the entire treatment area. A total of 28 wells were gauged and 26 sampled for water quality between December 20 and 22, 2006.

4.2.1 <u>Elevation Results</u>

The results of the December elevation measurements are generally consistent with the groundwater elevation data collected from the PRB monitoring network wells during previous events. Although water levels ranged from 1.02 to 1.31 feet higher than the elevations measured in June 2005, the overall site gradient of 0.0015 (as measured between P-8 and MW-21) was slightly shallower than the gradient calculated from the November data and is equivalent to the average (0.0015) of the last 3 sampling events (Table 1). Groundwater elevations in several of the wells directly upgradient of the PRB (i.e., MW-29, MW-30 and P-10) were either above (P-10) or within a few tenths of a foot of the top elevation of the barrier indicating that groundwater may be flowing over the top of the wall. The groundwater contour map (Sheet 3), which includes the elevation data from the nine newly installed wells, depicts a generally west-southwest groundwater flow direction towards MW-21.

The prominent groundwater mound identified east (upgradient) of the PRB, which was first described in the Preliminary Data Gathering and Semiannual Groundwater Sampling Report (ESC Engineering 2004b), is still present and appears to be centered between wells MW-29 and MW-30 (Sheet 3). Initial analysis of the elevations showed a distinct peak in the groundwater surface near the leading edge of the mound at well MW-28, which is reportedly installed within the smaller PRB wall. Because of questions about the level of hydraulic communication between the wall of the PRB and the surrounding formation (see Interpretation and Updated CSM section below) and because of ongoing concerns about the integrity of the well (the well casing is damaged), MW-28 was removed from the analysis. Even with MW-28 removed from the well field, local groundwater flow directions near the northern and southern end of the PRB appear to diverge from the regional groundwater flow direction to the north and south, respectively. This divergence from the regional flow direction is most pronounced east (upgradient) of the PRB's north end, where groundwater contours reveal a northwesterly groundwater flow direction and locally steep (0.003 as measured between MW-17 and MW-34) gradient extending from wells P-3 to MW-35. Data from the newly installed monitoring wells MW-34 through MW-39 near the north end of the wall indicate that the flow direction turns first westerly (near MW-35) and then southwesterly towards MW-21 as the groundwater flows around the end of the barrier. A similar, though less well defined pattern is present along the southern end of the PRB. Groundwater appears to flow south-southwest upgradient of the barrier between MW-29 and MW-22 before

turning sharply to the northwest at the southern end of the PRB near newly installed wells MW-31 through MW-33 before returning to a more west-southwesterly flow between wells MW-33 and MW-37.

The groundwater elevation in the wells immediately downgradient of the PRB (i.e., MW-23 through MW-27 and P-11) and four of the newly installed wells downgradient of the barrier (i.e., MW-33 and MW-36 through MW-38) indicate a depression in the water table extending from the PRB downgradient towards MW-21 (Sheet 3). This depression is consistent with previous results and is formed by the relatively steep drop in groundwater elevations along the barrier. Local gradients across the PRB are 0.033 at the northern end of the PRB (between MW-28 and MW-25), 0.027 near the midpoint of the barrier (between MW-24 and 30), and 0.015 at the southern end of the PRB (between MW-23 and MW-29). These gradients are 10 to 20 times higher than the average site gradient.

4.2.2 Analytical Results

The analytical results indicate that site-related CVOCs were detected in all of the samples from wells both upgradient and downgradient of the PRB with five of the compounds, TCE (5.6 to 680 μg/l), *cis*-1,2-dichloroethene (*cis*-1,2-DCE; 5.2 to 1,400 μg/l), *trans*-1,2-DCE (5.7 to 8.2 μg/l), vinyl chloride (3.2 to 63 μg/l), and 1,1,1-TCA (5.3 to 6.0 μg/l), detected at concentrations above the evaluation criteria⁵ (Table 4, Sheet 4). The highest total CVOC concentrations were detected upgradient of the PRB in samples from wells MW-17 (476 μg/l) and P-8 (2,096 μg/l), both of which are located directly east of the north end of the PRB. Concentrations of CVOCs exceeding the evaluation criteria were also detected in the wells directly upgradient of the barrier (19.3 to 50.8 μg/l), downgradient of the barrier (9.7 to 133.4 μg/l), and in the newly installed wells along the southern (10.1 to 179.7 μg/l) and northern (20.2 to 191.59 μg/l) boundaries of the PRB treatment area. Trace concentrations of CVOCs below the evaluation criteria were detected in upgradient wells MW-2 and MW-8, and near the center of the PRB in wells MW-24, MW-27, MW-29, and MW-30.

The analytical results from the wells within the existing monitoring well network are generally consistent with previous results. Changes in the CVOC concentrations were noted in

⁵ New York State Ambient Water Quality Standards or Guidance for Class GA water provided in the New York State Department of Environmental Conservation Division of Water, Technical, and Operation Guidance Series (1.1.1), dated June 1998, and in the April 2000 Addendum.

ESC Engineering

-

several of the samples (as compared to the previous sampling event), including an increase in the total CVOC concentrations from 967 µg/l to 2,096 µg/l in samples collected from piezometer P-8, and a decrease from 2,106 µg/l to 476 µg/l in samples from MW-17; however, the overall pattern of CVOC distribution remained essentially constant. The highest concentrations of CVOCs were centered near the north end of the PRB with lower concentrations detected along the PRB and in the downgradient wells MW-20 and MW-21. Little change (i.e., less than 5 µg/l) was noted in the total CVOC concentrations in samples collected from well pairs along the center of the PRB, including MW-24 through MW-26, MW-29, MW-30, P-10, and P-11. The ratios of the individual compounds also remained relatively constant with generally higher concentrations of the breakdown products *cis*-1,2-DCE, detected at similar concentrations above the evaluation criteria on both sides of the barrier, and vinyl chloride, than of the parent compound TCE, which was not detected on either side of the PRB at concentrations above the evaluation criterion of 5 µg/l.

The analytical sample results obtained from the newly installed wells north, south, and west of the PRB indicate concentrations of CVOCs above the evaluation criteria, including significant concentrations of TCE, present around the ends of the PRB and in the downgradient area between the barrier and wells MW-20 and MW-21 (Sheet 4). The highest total CVOC concentrations were detected in samples from well MW-34 (192 µg/l), which lies within the altered flow pattern near the north end of the barrier along the flow lines generally extending from P-8 and MW-17. The MW-34 results included relatively moderate concentrations of TCE (16 µg/l) and relatively high concentrations of cis-1,2-DCE (110 µg/l) and vinyl chloride (63 μg/l), which may indicated the TCE is naturally attenuating (Table 4). Lower but still elevated concentrations were also detected in samples from the wells MW-35 (20.2 µg/l total CVOCs) approximately 40 feet north of the end of the barrier, MW-36 (30.4 µg/l) approximately 60 feet west of the PRB, and MW-38 (26.7 µg/l) approximately 150 feet west of the wall. Similar results were obtained from wells installed around the southern end of the wall, MW-31 (155 µg/l), and MW-32 (180 µg/l), and in downgradient well MW-37 (133.4 µg/l). Samples from the southern wells generally contained higher average⁶ concentrations of TCE (up to 81 µg/l in the sample from MW-37) but lower concentrations of cis-1,2-DCE and vinyl chloride than the samples from new wells along the northern end of the barrier. The presence of *cis*-1,2-DCE and vinyl chloride in the samples suggest that natural breakdown of the TCE is occurring.

Trace concentrations of several petroleum-related VOCs, including ethylbenzene and xylenes, were also detected in the groundwater samples; however, only one compound, MTBE, was detected at concentrations above the evaluation criterion of 10 μg/l (Table 4, Sheet 5). The highest concentrations of MTBE were detected in newly installed wells MW-35 (28 μg/l), MW-36 (26 μg/l), and MW-38 (35 μg/l) all of which are southwest (downgradient) of the Quickway gasoline station located on the adjacent property. Lower concentrations, below the evaluation criterion, were detected in samples from two additional wells southwest of the gasoline station, MW-2, and MW-20, and in three of the newly installed monitoring wells, MW-31, MW-32, and MW-37, which are near the southern end of the PRB.

The trace concentrations of petroleum compounds detected at the site are likely the result of the release at the adjacent Quickway gasoline station and petroleum bulk storage facility rather than the localized release of fuel oil that was remediated at the site during the 1990s. All of the compounds detected, benzene, ethylbenzene, xylenes, and MTBE, are either typical or exclusive (i.e., MTBE) constituents of gasoline and are not commonly associated with fuel oil.

⁶ The highest concentration of TCE is in the sample from P-8 near the former source.

5.0 <u>Interpretation and Updated Conceptual Site Model</u>

The well installation activities and the combined groundwater sampling results indicate that the PRB continues to influence the overall groundwater flow pattern in the treatment area. The introduction of the barrier into the flow field in 1997 has resulted in steep gradients across the PRB more than an order of magnitude greater than the overall site gradient and the formation of a prominent, asymmetric groundwater mound east (upgradient) of the barrier (Sheet 3). Groundwater flow is clearly influenced by the wall, and some flow is believed to be redirected around the south and north ends of the wall and, during wetter periods of the year, over the top of the barrier.

The diversion is more obvious along the northern end of the PRB where the addition of the second, smaller barrier wall has apparently magnified the influence on groundwater flow. The alteration of the groundwater flow pattern appears to begin at least 250 feet to the northeast of the PRB near onsite well MW-14 where groundwater flow is shifted to the northwest (Sheet 3). The magnitude of the northerly shift becomes more pronounced towards the PRB until the flow direction is essentially parallel to the length of the barrier near the northern edge of the smaller PRB wall (i.e., between P-3 and P-8). Elevation data from the newly installed wells MW-34 through MW-36 confirm previous assumptions that the redirected groundwater along the northern portion of the PRB is flowing around the end of the wall. The return to the south-southwesterly flow is more rapid than might otherwise be expected due to the depression in the flow field caused by the PRB. The head differential along the edges of the depression creates a southerly gradient that allows groundwater near the end of the wall to flow south.

The direction of the flow lines around the southern end of the upgradient groundwater mound is more subtle (Sheet 3). Instead of the abrupt shift and steep gradient parallel to the barrier observed in the north, the flow pattern is marked by a broad, generally flat mound of groundwater that extends to the east dipping gently to the south-southwest. Groundwater along the center of the mound (i.e., east of the barrier between MW-29 and MW-30) appears to flow perpendicular to the PRB and is likely flowing through or over the wall. Groundwater west and upgradient of MW-29 appears to flow to the south-southwest in a direction that is sub-parallel to the barrier before it eventually flows around the southern edge of the wall towards the southwest and MW-21. Like the groundwater flowing around the northern end of the PRB, groundwater

passing the southern end of the wall flows toward the center of the depression caused by the PRB.

The site groundwater flow pattern around the PRB appears to be a result of a lower effective hydraulic conductivity in the iron filings or the trench walls that make up the barrier as compared to the surrounding formation. The rough estimates of permeability calculated from the grain size analyses and available in the literature for the gravel samples collected from MW-36, 2.8E-02 cm/s (79.1 ft/day); MW-37, 1.4E-02 cm/s (40.8 ft/day); and MW-39, 1E-02 cm/s (28.3 ft/day) and the hydraulic conductivity estimates from S&W's onsite and offsite slug tests, which ranges from 5.55E-03 to 8.07E-02 cm/s (16 to 228 ft/day), are closer to the hydraulic conductivity estimate for the iron in the PRB wall (5E-02 cm/s [141 ft/day]) than would be reasonable for a prudent design. The lack of contrast in the permeability indicates that, at the time of installation, the conductivities of the formation and the barrier were nearly equal (Table 1). This is a much different situation than the normal design approach of ensuring that conductivity of the barrier is 10 to 100 times greater than that of the surrounding formation (ETI, personal communication). There is insufficient data to evaluate the flow at the time when the PRB was first installed; however, the obstruction of flow may have been present from the start based on construction practices (i.e., smearing of the underlying clay along the sidewalls of the barrier trench). Grain size analyses for the underlying silty clay show that it has an estimated hydraulic conductivity up to four orders of magnitude less than the overlying gravels. Only a small amount of silty clay introduced into the PRB trench along the sidewalls would have resulted in a significant reduction in the flow of groundwater through the wall. Alternately, the reduced flow may have been a function of the precipitate that formed on the upgradient edge of the barrier, which, according to ETI's analysis, decreased the porosity by 10 to 12 percent within the first 5 years of operation. Precipitates may have continued to form in the intervening 4 years since the evaluation, further exacerbating the influence on groundwater flow.

5.1 Groundwater Quality

The apparent disturbance in the groundwater flow pattern has split the affected groundwater into two separate plumes (Sheet 6). The highest concentrations of CVOCs are located along each end of the PRB. These two areas of affected groundwater appear to be distinct

from each other within the treatment area. In the northern portion of the PRB, the total CVOC concentrations decrease along flow lines leading around the barrier wall from (Sheet 4; Table 4):

- P-8 (2,096 μg/l total; 680 μg/l TCE; 1,400 μg/l *cis*-1,2-DCE)
- MW-17 (476 μg/l total; 15 μg/l TCE; 400 μg/l *cis*-1,2-DCE)
- MW-34 (190.5 μg/l total; 16 μg/l TCE; 110 μg/l *cis*-1,2-DCE)
- MW-35 (20.2 μg/l total; 5.7 μg/l TCE; 5.7 μg/l *cis*-1,2-DCE)

Although the concentrations fluctuate somewhat, the impacted groundwater appears to continue on along the same flow line through:

- MW-36 (29.9 μg/l total; 13 μg/l TCE; 6.6 μg/l *cis*-1,2-DCE)
- MW-38 (26.7 μg/l total; 19 μg/l TCE; 0.5 μg/l *cis*-1,2-DCE)
- MW-20 (15.7 μg/l total; 6.4 μg/l TCE; 5.2 μg/l *cis*-1,2-DCE)

A similar trend is apparent in the results from wells at the southern end of the PRB:

- MW-31 (155 μg/l total; 48 μg/l TCE; 99 μg/l *cis*-1,2-DCE)
- MW-32 (171.7 μg/l total; 75 μg/l TCE; 91 μg/l *cis*-1,2-DCE)
- MW-37 (133.4 μ g/l total; 81 μ g/l TCE; 50 μ g/l *cis*-1,2-DCE)

In both cases, CVOCs were detected in samples from wells that are sidegradient of the original source and presumably were outside the area to be treated (i.e., not impacted) by the PRB, which was designed to cover the entire breadth of the affected groundwater plume. Based on the retardation calculations, both plumes appear to be migrating at roughly the same rate.

Between the "two" plumes near the center of the PRB is an area of relatively clean (i.e., low CVOC concentrations) groundwater. Concentrations of TCE (6.6 μg/l) and *cis*-1,2-DCE (13 μg/l) are present in samples from piezometer P-3; however, these concentrations are low given its location nearby wells MW-17 and P-8 and the former core of the affected groundwater plume (Sheet 4; Table 4). ESC Engineering believes, based on S&W's characterization of the initial plume, that the compounds detected in these wells represent residual concentrations stemming from the shift of affected groundwater to the north and its replacement by relatively clean water from upgradient areas that appears to be moving (in the area around P-3) northward parallel to the barrier. Likewise, the relatively low concentrations of CVOCs (less than 20 μg/l total) in samples from MW-29, MW-30, and P-10, all of which are located within a few feet of the upgradient edge of the PRB, are likely residual concentrations left after the majority of the

affected groundwater passed through the PRB, over the top of the barrier, or was forced along the gradients formed on the sides of the groundwater mound as it grew over time. The sample results from well pairs located directly downgradient of the wall opposite these wells (i.e., MW-23, MW-24, MW-26, MW-27, and P-11) suggest that the CVOCs consist of only the breakdown products on the downgradient side of the wall. This may be due to partial dechlorination of CVOCs as affected groundwater passes through the wall or untreated groundwater that has flowed over the top of the barrier.

The formation of the groundwater mound in the center of the PRB treatment area is also likely responsible for the presence of trace petroleum-related compounds that likely originated from the northern end of the treatment area (i.e., from Quickway gasoline station and petroleum bulk storage facility) along the southern edge of the treatment area. Of particular note is the presence of MTBE in samples from wells MW-31, MW-32, and MW-37, which are all within the southern flow line where CVOC-affected groundwater appears to be migrating around the end of the barrier (Sheet 5; Table 4). The similarity in the pattern of petroleum and nonpetroleum compounds suggests that, like the CVOCs, the MTBE was originally located upgradient of the PRB and was split and subsequently shifted to the south by the introduction of relatively clean groundwater along the center of the PRB as the groundwater mound formed. This supports the interpretation that the CVOCs detected in samples from the newly installed southern wells are the result of the same type of displacement by the mound rather than from a second, unrecognized source in the southern portion of the site. Unlike CVOCs, MTBE has a relatively high solubility in water and does not readily partition to the soil matrix resulting in a distinct separation of the two plumes with no residual concentrations in groundwater between the two plumes.

5.2 Updated Conceptual Site Model

The original CSM developed and validated by ESC Engineering in 2004 conjectured that CVOC-affected groundwater was bypassing the PRB around the ends and over the top of the barrier walls. The newly installed wells confirm the presence of CVOC-affected groundwater outside of the original treatment area as defined by S&W during the installation of the PRB. The elevation data provided by the new wells suggest that the CVOCs detected in these areas are indeed flowing around the edges of the barrier as depicted in Sheet 6. Based on this

interpretation and the data collected to date, the CSM can be summarized by the following fundamental components:

- 1. The natural groundwater flow across the site is from the east-northeast to the west-southwest.
- 2. The natural site gradient is approximately 0.0015 foot per foot, as approximated by measurements between wells MW-14 and MW-21.
- 3. The geology of the treatment area near the PRB consists of a generally thin (2 to 10 feet) veneer of silt or sandy silt underlain by up to 15 feet of silty or sandy coarse gravel, which in turn is underlain by silty clay encountered between 11 to 21 feet bgs.
- 4. Rough estimates for the hydraulic conductivity in the gravel unit ranges from 1.2E-04 to 2.8E-02 cm/s (0.34 to 79 ft/day), which are consistent with typical values reported in the literature and estimates derived from slug tests performed by S&W using onsite and offsite wells..
- 5. The underlying silty clay appears to be contiguous across the site and has an apparent thickness of at least two feet. Hydraulic conductivity estimates for the unit, 1.7E-06 to 2.6E-06 cm/s (4.8E-03 to 7.3E-03 ft/day), are approximately four orders of magnitude less than those for the overlying gravel unit suggesting that it is an effective aguitard.
- 6. The reported hydraulic conductivity of the PRB at the time of installation was 5E-02 cm/s (141 ft/day). The conductivity 4.5 years after installation was measured at 10 to 12 percent less due to the formation of a precipitate on the upgradient edge of the PRB wall.
- 7. A groundwater mound formed upgradient of the PRB after its installation in 1997 due to differences in the hydraulic conductivities of the formation and barrier.
- 8. The restriction in the flow of groundwater caused by the PRB has resulted in gradients across the barrier (e.g., MW-30 to MW-24) that are currently more than an order of magnitude above the overall site gradient.
- 9. The groundwater flow regime at each end of the PRB shows an alteration of the overall flow pattern. Groundwater flow is redirected around the edges of the wall.

- 10. The alteration of the groundwater flow in the northern area is more pronounced and is likely due to the added resistance to flow caused by the second, smaller PRB wall.
- 11. Groundwater is likely flowing over the top of the PRB.
- 12. The primary constituents of concern at the site are TCE, the *cis* and *trans*isomers of 1,2-DCE, 1,1,1-TCA, and vinyl chloride, all five of which were
 detected at concentrations above the evaluation criteria.
- 13. The formation of the groundwater mound has effectively split the CVOC-affected groundwater plume into two separate plumes located at either end of the PRB. The highest concentrations of CVOCs above the evaluation criteria are located near the ends of the PRB. The significantly lower concentrations of CVOCs in the center portion of the plume (i.e., MW-29, MW-30, P-10, and P-3) are likely residual concentrations resulting from the displacement of affected groundwater to either side of the groundwater mound.
- 14. Sample results from well pairs on either side of the center of the PRB indicate that CVOC concentrations are as high or higher in wells downgradient of the barrier when compared to the upgradient wells suggesting incomplete dechlorination of CVOCs in groundwater passing through the wall.
- 15. The majority of the CVOC-affected groundwater remains upgradient of the PRB and is located near MW-17 and P-8. The concentrations in these well samples are at least an order of magnitude higher than and detected concentration downgradient.
- 16. The presence of TCE breakdown products in the majority of groundwater samples collected indicates that natural attenuation is occurring at the site.
- 17. The BTEX and MTBE compounds detected in the groundwater samples are likely the result of a documented release in 1998 from the adjacent Quickway gasoline station and bulk petroleum storage facility where similar compounds were detected in groundwater. The petroleum compounds do not appear to be related to the fuel oil release at the former General Instruments site.
- 18. MTBE released from the nearby Quickway station has acted as a tracer in the southern area of the wall supporting the argument of CVOC displacement by the

groundwater mound rather than their transport to the area from a second, unrecognized source.

6.0 Conclusions and Recommendations

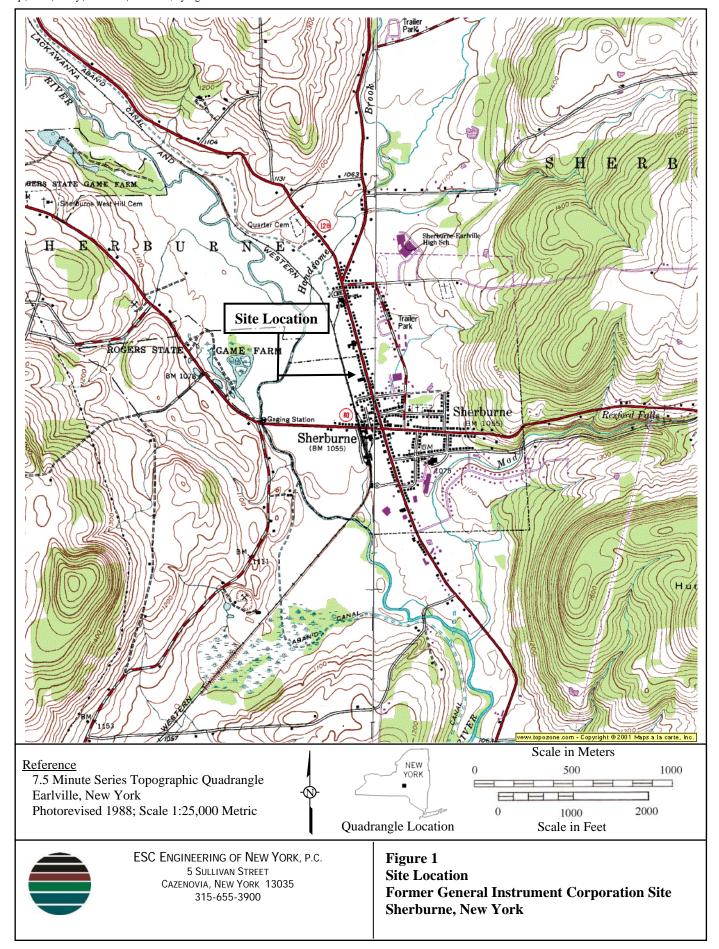
ESC Engineering believes that, based on the historical elevation and water quality data and the data obtained from the newly installed wells, the PRB is not treating all of the groundwater passing through the source area. The groundwater elevation and water quality data clearly demonstrate that some portion of the groundwater is not flowing through the wall and CVOC concentrations are present at concentrations above the evaluation criteria are present both north and south of the PRB outside of the original treatment area. These compounds are located along flow lines that indicate affected groundwater is flowing around the ends of the barrier.

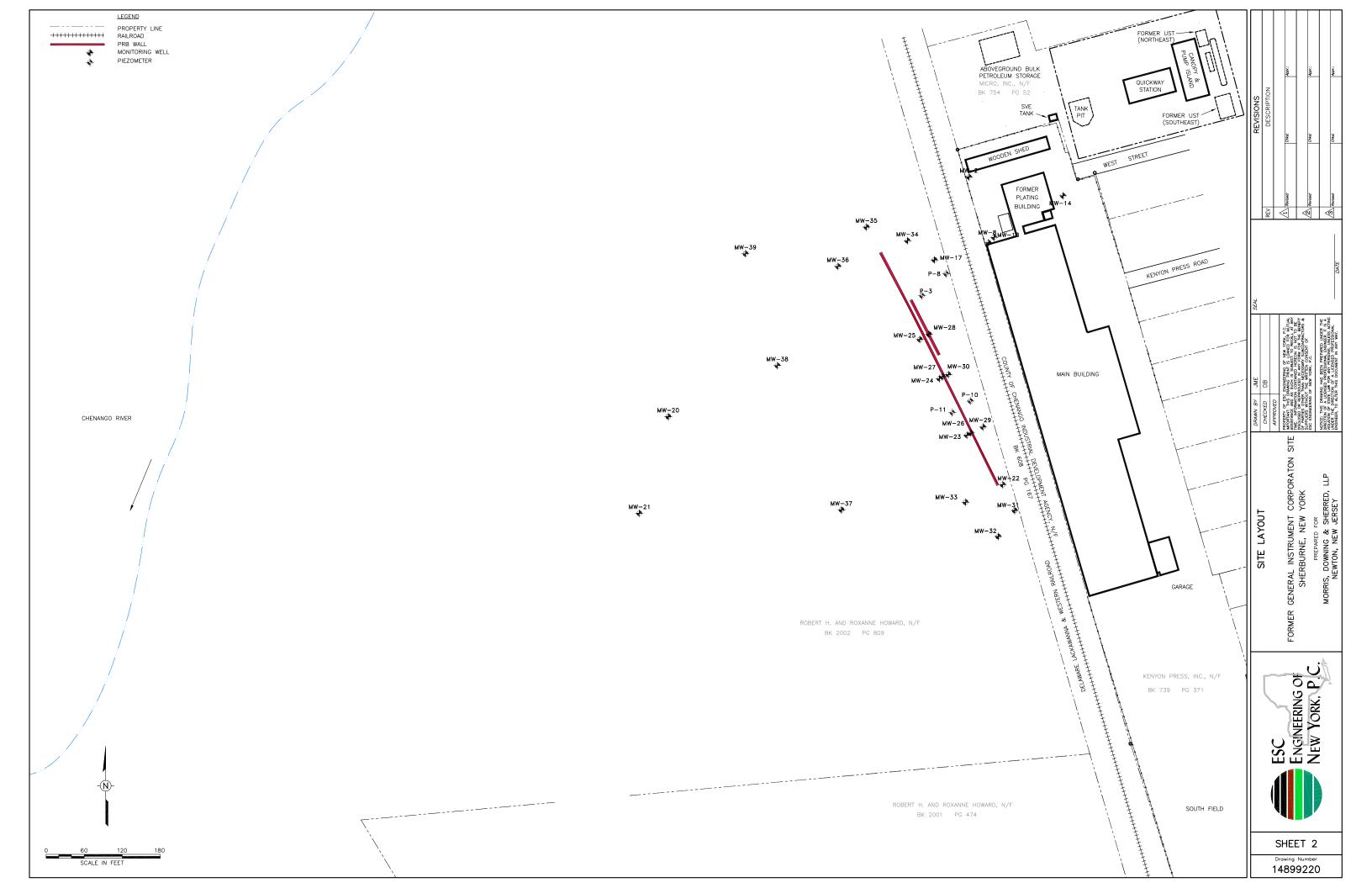
The majority of the affected groundwater, however, remains near the historic source of the plume (i.e., near MW-17 and P-8) upgradient of the PRB. The total CVOC concentrations in these wells are 1 to 2 orders of magnitude greater than in any other well onsite. ESC Engineering believes that the CVOCs in these wells represent the most significant environmental issue at the site.

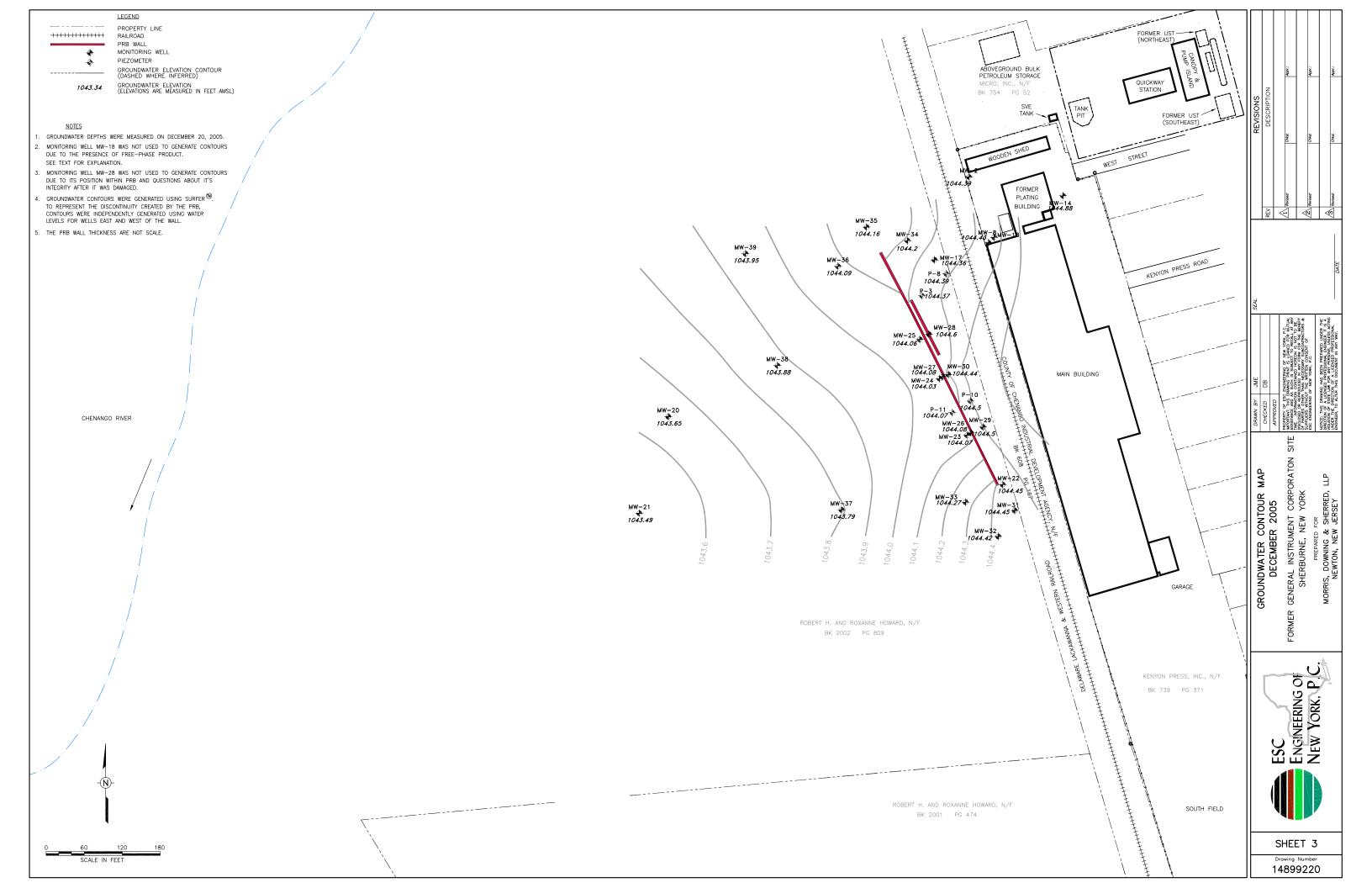
Reductive dechlorination is occurring. The presence of TCE breakdown products in samples collected from these wells suggest that the TCE is attenuating as it travels downgradient further reducing the need for additional treatment. The CVOC concentrations further downgradient of the barrier (e.g., MW-37, MW-38, MW-21), while somewhat higher than those directly adjacent to the wall, are low relative to the concentrations upgradient of the PRB and not significantly above the evaluation criteria.

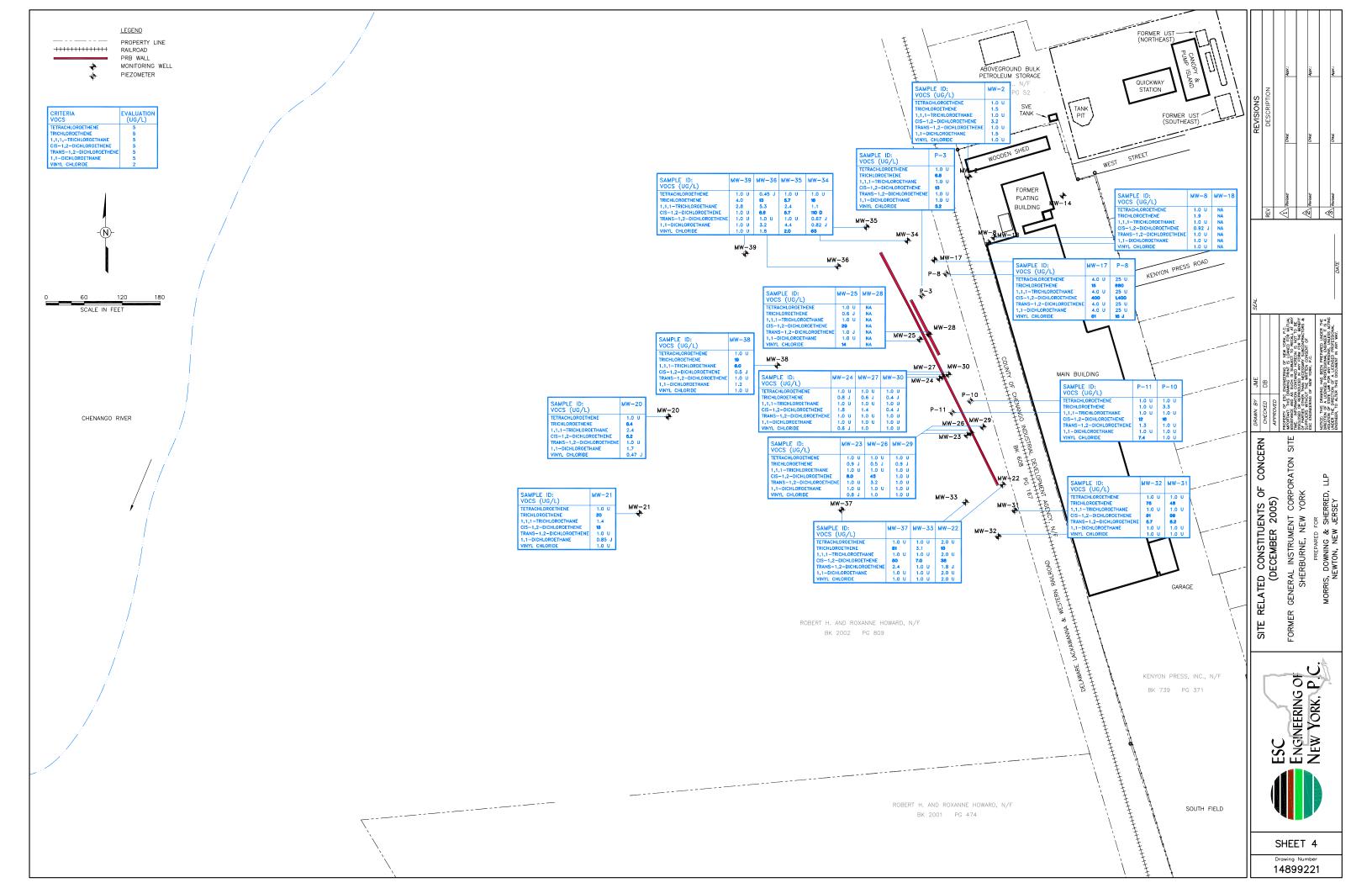
Rather than continue investigating the performance of the PRB, ESC Engineering is proposing to redirect the focus of activities at the site to an evaluation of potential supplemental remedial technologies to aid in the treatment of the remaining CVOCs. The evaluation will be directed towards those areas where additional treatment will yield the greatest reductions in the CVOC mass: along the northern end of the PRB near the former core of the plume (i.e., near monitoring wells MW-17, MW-34, P-3, and P-8) and around the southern end of the wall (Sheet 4). ESC Engineering does not believe an evaluation of supplemental treatment options in other areas of the site are warranted: the residual concentrations of CVOCs present directly upgradient and downgradient of the center of the PRB are only slightly above the evaluation criteria, and thus (1) do not represent a significant risk to the environment, and (2) absent receptors in the area (there are no groundwater users downgradient of the site) pose no potential health risk.

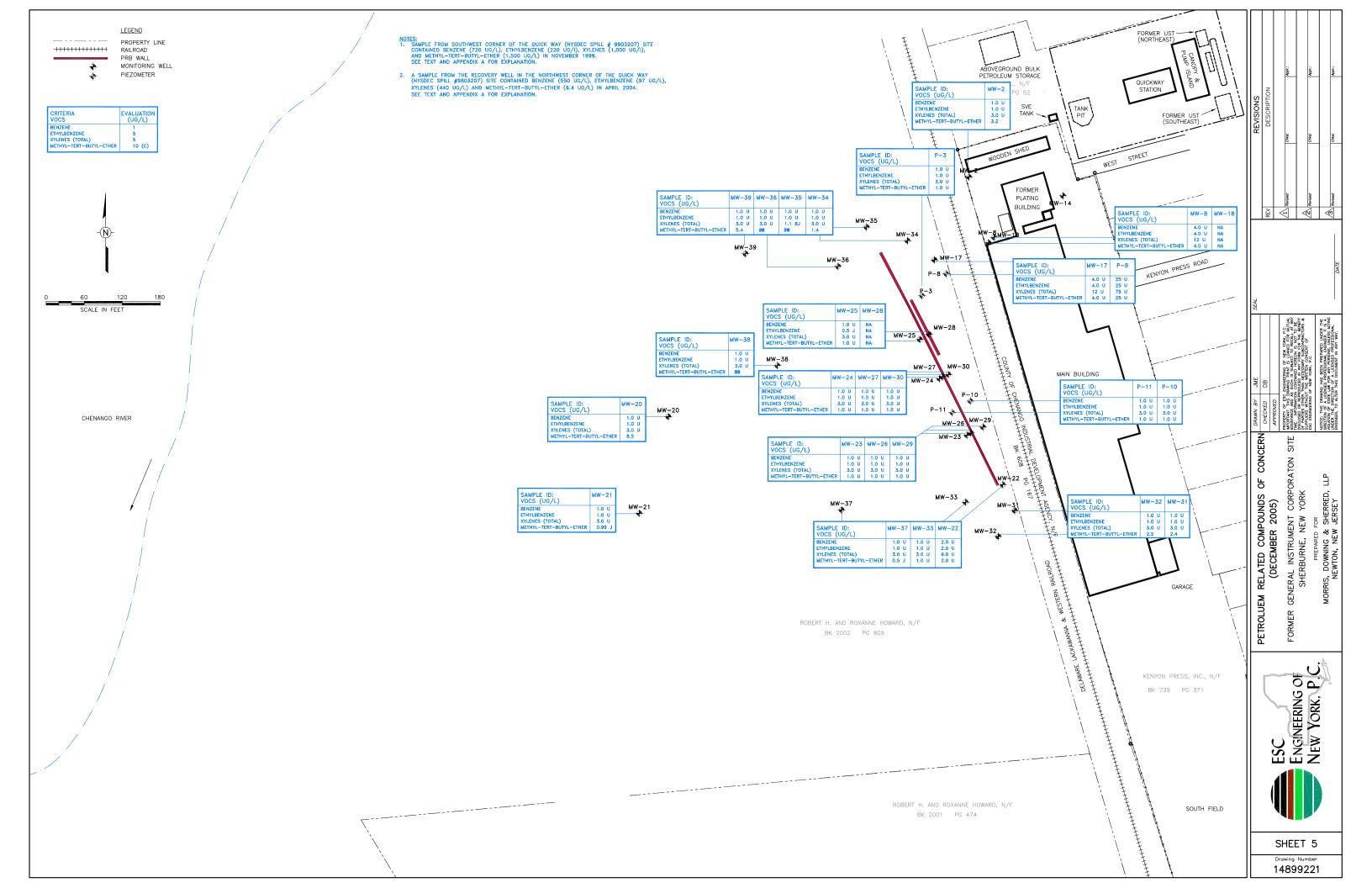
ESC Engineering believes that this targeted approach will expedite the treatment of the bulk of the CVOCs and potentially avoid any additional problems that may arise from any future decrease in the PRB efficiency.

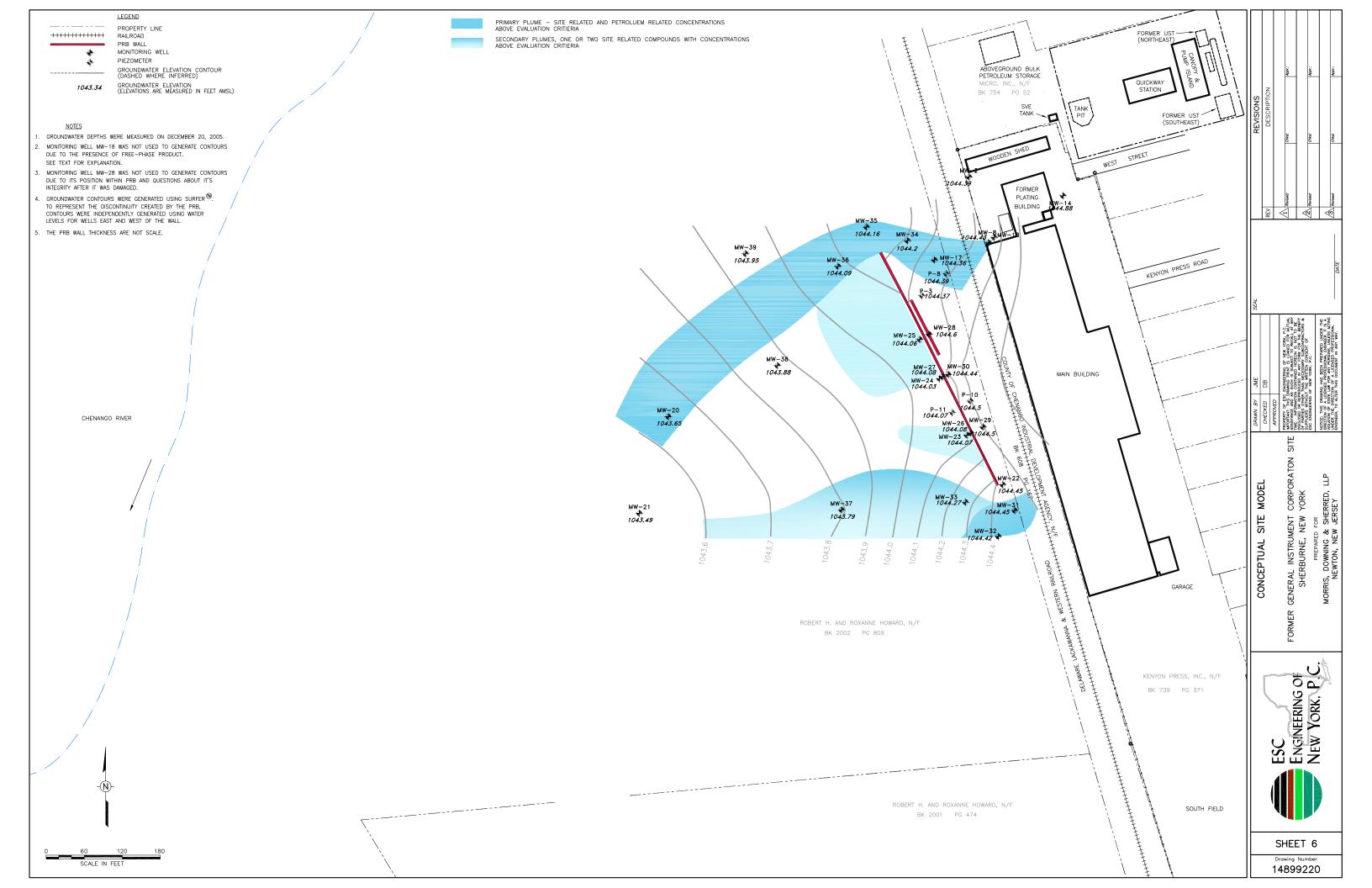

6.1 Schedule


ESC Engineering will prepare an alternatives analysis/pilot test work plan, which will include an evaluation of appropriate technologies that could be used to treat the CVOCs and the protocols for a field scale pilot test(s) to verify the selected technologies are effective for treatment of the residual concentrations of CVOCs at the Sherburne site. ESC Engineering will submit the work plan within 60 days of receiving approval of the revised approach from the NYSDEC.


7.0 References


- Chiou, C.T., L.J. Peters, and V. H. Freed, 1979. A physical concept of soil-water equilibrium for non-ionic compounds. Science 206: 831-832.
- ESC Engineering of New York, P.C. 2004a. Technical Review and Proposed Activities, Former General Instrument Corporation Site, Sherburne, New York. March 3.
- ESC Engineering of New York, P.C. 2004b. Preliminary Data Gathering and Semiannual Groundwater Sampling Report, Former General Instrument Corporation Site, Sherburne, New York. August 4.
- Freeze, R.A., and J.A. Cherry, 1979. Groundwater, Prentice-Hall, Inc. Englewood Cliffs, New Jersey. 604 p.
- Karickhoff, S.W., D.S. Brown, and T.A. Scott, 1979. Sorption of hydrophobic pollutants on natural sediments. Water Resources. 13:241-248.
- Mackay, D.M., P.V. Roberts, and J.A. Cherry, 1985. Transport of organic contaminants in groundwater. Environmental Science and Technology 19: 384-392.
- Pignatello, J.J., 1989. Sorption dynamics of organic compounds in soils and sediments, *in* Reactions and Movements of Organic Chemicals in Soils, Soil Science of America, Inc., and American Society of Agronomy, Inc., Special Publication No. 22:45-80
- Stearns & Wheler, Environmental Engineers and Scientists, 1992. Final Remedial Investigation for General Instrument Corporation, Sherburne, New York.
- U.S. Environmental Protection Agency, Region 1. 1996. Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Ground Water Samples from Monitoring Wells, Revision 2. July 30.


Figures and Sheets



Tables

Table 1

Grain Size Analysis and Estimate of Hydraulic Conductivity Former General Instrument Corporation Site Sherburne, New York November 2005 (a)

Well ID	Sample ID	USCS Symbol	d ₁₀	Estimated Hydra	alic Conductivity
			mm	cm/s	ft/day
MW-31	MW31050	sm	0.012	0.00014	0.41
MW-32	MW32110	gm	0.011	0.00012	0.34
MW-34	MW34105	gp-gm	0.074	0.0055	15.5
MW-34	MW34150	cl	0.0013 (b)	0.0000017	0.0048
MW-35	MW35090	gm	0.011	0.00012	0.34
MW-36	MW36088	gp-gm	0.167	0.028	79.1
MW-36	MW36125	gp-gm	0.077	0.0059	16.8
MW-37	MW37120	gp-gm	0.12	0.014	40.8
MW-37	MW37150	cl	0.0016	0.0000026	0.0073
MW-38	MW38110	gw-gm	0.042	0.0018	5.0
MW-39	MW39105	gp-gm	0.1	0.01	28.3

a/ USCS = Unified Soil Classification System; mm = millimeters; cm/s = centimeters per second; ft/day = feet per day; d_{10} = grain size diameter at which 10-percent (by weight) of the soil is finer and 90-percent is coarser; hydraulic conductivities were estimated using Hazen's power-law relationship. See text for explanation.

b/ Greater than 10 percent of the sample was smaller than the smallest sieve size used in the grain size analysis.

Table 2

Soil Organic Carbon Analysis Former General Instruments Corporation Site Sherburne, New York November 2005 (a)

Sample Location:	MW-31	MW-31 (b)	MW-32	MW-33	MW-34	MW-35	MW-36	MW-36	MW-37	MW-38	MW-39
Sample ID:	MW31050	MW92050	MW32050	MW33060	MW34070	MW35050	MW36080	MW36170	MW37070	MW38070	MW39090
Sample Depth (ft bgs):	5-7	5-7	5-7	6-8	7-9	5-7	8-10	17-19	7-9	7-9	9-11
T _{oc} (mg/kg)	1,100	980	1,500	1,400	1,700	1,700	19,000	32,000	1,300	6,100	2,600
f _{oc} (percent)	0.11	0.098	0.15	0.14	0.17	0.17	1.9	3.2	0.13	0.61	0.26
TCE Retardation	1.1	1.1	1.2	1.2	1.2	1.2	1.3	5.2	1.2	1.8	1.3

a/ ft bgs = feet below ground surface; T_{oc} = total organic carbon; f_{oc} = fraction of organic carbon (expressed as percent); TCE = trichloroethene.

b/ Sample MW92050 is a blind duplicate of sample MW31050 collected from 5 to 7 feet bgs at the location of monitoring well MW-31.

c/ TCE retardation is a unitless factor calculated from the fraction of organic carbon. Calculated values were rounded to two significant digits. See text for explanation.

Table 3

Groundwater Elevations Former General Instrument Corporation Site Sherburne, New York June 2004 through December 2005 (a)

				June 2004			November 2004	1		June 2005			December 200	5
Well ID	Ground Elevation	Reference Elevation	Depth To Water	Groundwater Elevation	Depth Below Ground Surface									
MW-2	1,048.46	1,050.07	5.98	1,044.09	4.37	5.89	1,044.18	4.28	6.77	1,043.30	5.16	5.68	1,044.39	4.07
MW-8	1,048.44 (d)	<i>'</i>	6.24	1,044.26	4.10	6.17	1,044.33	4.03	7.12	1,043.38	4.98	3.70	1,044.43	4.01
MW-14	1,049.63	1,049.67	NM	_	-	4.99	1,044.68	4.95	5.78	1,043.89	5.74	4.79	1,044.88	4.75
MW-17	1,047.85	1,050.74	6.67	1,044.07	3.78	6.60	1,044.14	3.71	7.46	1,043.28	4.57	6.38	1,044.36	3.49
MW-18 (b)	1,048.45	1,047.84	3.69	1,044.15	4.30	3.67	1,044.17	4.28	4.53	1,043.31	5.14	NM	_	-
MW-20	1,046.15	1,049.20	5.86	1,043.34	2.81	5.72	1,043.48	2.67	6.73	1,042.47	3.68	5.55	1,043.65	2.50
MW-21	1,047.70	1,049.97	6.84	1,043.13	4.57	6.70	1,043.27	4.43	7.70	1,042.27	5.43	6.48	1,043.49	4.21
MW-22	1,048.09	1,051.24	7.11	1,044.13	3.96	7.05	1,044.19	3.90	7.84	1,043.40	4.69	6.79	1,044.45	3.64
MW-23	1,047.67	1,050.84	7.09	1,043.75	3.92	7.00	1,043.84	3.83	7.88	1,042.96	4.71	6.77	1,044.07	3.60
MW-24	1,048.02	1,051.13	7.41	1,043.72	4.30	7.31	1,043.82	4.20	8.24	1,042.89	5.13	7.10	1,044.03	3.99
MW-25	1,047.99	1,051.16	7.40	1,043.76	4.23	7.31	1,043.85	4.14	8.20	1,042.96	5.03	7.10	1,044.06	3.93
MW-26	1,047.94	1,051.04	7.29	1,043.75	4.19	7.19	1,043.85	4.09	8.08	1,042.96	4.98	6.96	1,044.08	3.86
MW-27	1,047.93	1,051.07	7.34	1,043.73	4.20	7.23	1,043.84	4.09	8.11	1,042.96	4.97	6.99	1,044.08	3.85
MW-28	1,047.94	1,051.02	6.96	1,044.06	3.88	6.82	1,044.20	3.74	7.73	1,043.29	4.65	6.42	1,044.60	3.34
MW-29	1,047.23	1,049.37	5.14	1,044.23	3.00	5.10	1,044.27	2.96	5.89	1,043.48	3.75	4.87	1,044.50	2.73
MW-30	1,047.72	1,049.90	5.74	1,044.16	3.56	5.68	1,044.22	3.50	6.50	1,043.40	4.32	5.46	1,044.44	3.28
MW-31 (c)	1,048.40	1,050.54	-	-	-	-	-	-	-	-	-	6.09	1,044.45	3.95
MW-32 (c)	1,047.42	1,048.92	-	-	-	-	-	-	-	-	-	4.50	1,044.42	3.00
MW-33 (c)	1,047.03	1,049.13	-	-	-	-	-	-	-	-	-	4.86	1,044.27	2.76
MW-34 (c)	1,046.39	1,048.38	-	-	-	-	-	-	-	-	-	4.18	1,044.20	2.19
MW-35 (c)	1,047.32	1,049.85	-	-	-	-	-	-	-	-	-	5.69	1,044.16	3.16
MW-36 (c)	1,046.80	1,048.06	-	-	-	-	-	-	-	-	-	3.97	1,044.09	2.71
MW-37 (c)	1,047.70	1,049.50	-	-	-	-	-	-	-	-	-	5.71	1,043.79	3.91
MW-38 (c)	1,047.50	1,049.61	-	-	-	-	-	-	-	-	-	5.73	1,043.88	3.62
MW-39 (c)	1,047.36	1,049.31	-	-	-	-	-	-	-	-	-	5.36	1,043.95	3.41
P-3	1,047.83	1,050.25	6.16	1,044.09	3.74	6.09	1,044.16	3.67	6.95	1,043.30	4.53	5.88	1,044.37	3.46
P-8	1,048.81	1,051.32	7.23	1,044.09	4.72	7.13	1,044.19	4.62	8.01	1,043.31	5.50	6.93	1,044.39	4.42
P-10	1,047.60	1,049.64	5.42	1,044.22	3.38	5.37	1,044.27	3.33	6.17	1,043.47	4.13	5.14	1,044.50	3.10
P-11	1,047.46	1,049.60	5.85	1,043.75	3.71	5.75	1,043.85	3.61	6.64	1,042.96	4.50	5.53	1,044.07	3.39

a/ All measurements in feet, elevations are feet above Mean Sea Level; NM = not measured.

b/ Monitoring well MW-18 contained 0.11 feet of free-phase product in June and November 2004 and 0.17 feet of free-phase product in June 2005.

c/ Wells MW-31 through MW-39 were installed between November 17 and 22, 2005.

d/ The well head at MW-8 was converted to a flush-mount pad on June 8, 2005. The original ground elevation before conversion was 1048.36 feet, and the original reference elevation was 1050.50

Table 4

Groundwater Sampling Results Former General Instrument Corporation Site Sherburne, New York

December 20 through 22, 2005 (a)

Sample ID:	Evaluation	MW-2	MW-8	MW-8(DUP)	MW-17	MW-18
	Criteria (b)			(c)		(d)
VOCs (µg/l)						
Benzene	1	1.0 U	1.8	1.6	4.0 U	NA
1,1-Dichloroethane	5	1.5	1.0 U	1.0 U	4.0 U	NA
cis-1,2-Dichloroethene	5	3.2	0.92 J	0.78 J	400	NA
trans-1,2-Dichloroethene	5	1.0 U	1.0 U	1.0 U	4.0 U	NA
Ethylbenzene	5	1.0 U	1.0 U	1.0 U	4.0 U	NA
Isopropylbenzene	5	1.0 U	1.0 U	1.0 U	4.0 U	NA
Methyl-tert-butyl-ether	10	3.2	1.8	1.7	4.0 U	NA
Naphthalene	10	1.0 U	0.53 J	0.52 J	4.0 U	NA
Tetrachloroethene	5	1.0 U	1.0 U	1.0 U	4.0 U	NA
1,1,1-Trichloroethane	5	1.0 U	1.0 U	1.0 U	4.0 U	NA
Trichloroethene	5	1.5	1.9	1.8	15	NA
Vinyl chloride	2	1.0 U	1.0 U	1.0 U	61	NA
Xylenes (total)	5	3.0 U	3.0 U	3.0 U	12 U	NA
Sample ID:	Evaluation	MW-20	MW-21	MW-22	MW-23	MW-24
	Criteria (b)					
VOCs (µg/l)						
Benzene	1	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U
1,1-Dichloroethane	5	1.7	0.85 J	2.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	5	5.2	18	36	8.0	1.8
trans-1,2-Dichloroethene	5	1.0 U	1.0 U	1.8 J	1.0 U	1.0 U
Ethylbenzene	5	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U
Isopropylbenzene	5	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U
Methyl-tert-butyl-ether	10	8.5	0.99 J	2.0 U	1.0 U	1.0 U
Naphthalene	10	1.0 UJ	1.0 U	2.0 U	1.0 U	1.0 U
Tetrachloroethene	5	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U
1,1,1-Trichloroethane	5	2.4	1.4	2.0 U	1.0 U	1.0 U
Trichloroethene	5	6.4	20	13	0.9 J	0.8 J
Vinyl chloride	2	0.47 J	1.0 U	2.0 U	0.8 J	0.6 J
Xylenes (total)	5	3.0 U	3.0 U	6.0 U	3.0 U	3.0 U

Table 4

Groundwater Sampling Results Former General Instrument Corporation Site Sherburne, New York

December 20 through 22, 2005 (a)

Sample ID:	Evaluation	MW-25	MW-26	MW-27	MW-28	MW-29
•	Criteria (b)				(e)	
VOCs (µg/l)						
Benzene	1	1.0 U	1.0 U	1.0 U	NA	1.0 U
1,1-Dichloroethane	5	1.0 U	1.0 U	1.0 U	NA	1.0 U
cis-1,2-Dichloroethene	5	29	43	1.4	NA	1.0 U
trans-1,2-Dichloroethene	5	1.0 J	3.2	1.0 U	NA	1.0 U
Ethylbenzene	5	0.5 J	1.0 U	1.0 U	NA	1.0 U
Isopropylbenzene	5	0.6 J	1.0 U	1.0 U	NA	1.0 U
Methyl-tert-butyl-ether	10	1.0 U	1.0 U	1.0 U	NA	1.0 U
Naphthalene	10	1.0 U	1.0 U	1.0 U	NA	1.0 U
Tetrachloroethene	5	1.0 U	1.0 U	1.0 U	NA	1.0 U
1,1,1-Trichloroethane	5	1.0 U	1.0 U	1.0 U	NA	1.0 U
Trichloroethene	5	0.6 J	0.5 J	0.6 J	NA	0.9 J
Vinyl chloride	2	14	1.0	1.0	NA	1.0 U
Xylenes (total)	5	3.0 U	3.0 U	3.0 U	NA	3.0 U
Sample ID:	Evaluation	MW-30	MW-31	MW-32	MW-33	MW-34
	Criteria (b)					
VOCs (µg/l)						
Benzene	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	5	1.0 U	1.0 U	1.0 U	1.0 U	0.82 J
cis-1,2-Dichloroethene	5	0.4 J	99	91	7.0	110 D
trans-1,2-Dichloroethene	5	1.0 U	8.2	5.7	1.0 U	0.67 J
Ethylbenzene	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Isopropylbenzene	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methyl-tert-butyl-ether	10	1.0 U	2.4	2.5	1.0 U	1.4
Naphthalene	10	1.0 U	1.0 U	1.0 UJ	1.0 UJ	1.0 U
Tetrachloroethene	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,1-Trichloroethane	5	1.0 U	1.0 U	1.0 U	1.0 U	1.1
Trichloroethene	5	0.4 J	48	75	3.1	16
Vinyl chloride	2	1.0 U	1.0 U	1.0 U	1.0 U	63
Xylenes (total)	5	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U

Table 4

Groundwater Sampling Results Former General Instrument Corporation Site Sherburne, New York

December 20 through 22, 2005 (a)

Sample ID:	Evaluation	MW-35	MW-35(DUP)	MW-36	MW-37	MW-38
•	Criteria (b)		(c)			
VOCs (µg/l)						
Benzene	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	5	4.4	4.3	3.2	1.0 U	1.2
cis-1,2-Dichloroethene	5	5.7	5.9	6.6	50	0.5 J
trans-1,2-Dichloroethene	5	1.0 U	1.0 U	1.0 U	2.4	1.0 U
Ethylbenzene	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Isopropylbenzene	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methyl-tert-butyl-ether	10	28	28	26	0.5 J	35
Naphthalene	10	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 U
Tetrachloroethene	5	1.0 U	1.0 U	0.45 J	1.0 U	1.0 U
1,1,1-Trichloroethane	5	2.4	2.3	5.3	1.0 U	6.0
Trichloroethene	5	5.7	5.6	13	81	19
Vinyl chloride	2	2.0	1.7	1.8	1.0 U	1.0 U
Xylenes (total)	5	1.1 BJ	3.0 U	3.0 U	3.0 U	3.0 U
Sample ID:	Evaluation	MW-39	P-3	P-8	P-10	P-11
	Criteria (b)					
VOCs (µg/l)						
Benzene	1	1.0 U	1.0 U	25 U	1.0 U	1.0 U
1,1-Dichloroethane	5	1.0 U	1.0 U	25 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	5	1.0 U	13	1,400	16	12
trans-1,2-Dichloroethene	5	1.0 U	1.0 U	25 U	1.0 U	1.3
Ethylbenzene	5	1.0 U	1.0 U	25 U	1.0 U	1.0 U
Isopropylbenzene	5	1.0 U	1.0 U	25 U	1.0 U	1.0 U
Methyl-tert-butyl-ether	10	5.4	1.0 U	25 U	1.0 U	1.0 U
Naphthalene	10	1.0 UJ	1.0 U	25 U	1.0 U	1.0 U
Tetrachloroethene	5	1.0 U	1.0 U	25 U	1.0 U	1.0 U
1,1,1-Trichloroethane	5	2.8	1.0 U	25 U	1.0 U	1.0 U
Trichloroethene	5	4.0	6.8	680	3.3	1.0 U
Vinyl chloride	2	1.0 U	3.2	16 J	1.0 U	7.4
Xylenes (total)	5	3.0 U	3.0 U	75 U	3.0 U	3.0 U

a/ VOCs = volatile organic compounds; μ g/l = micrograms per liter; ND = compound not detected at or above the reporting limit; J = estimated value; D = compound identified in analysis at the secondary dilution factor; NA = not analyzed; bolded values exceed evaluation criteria.

b/ Evaluation criteria are the New York State Ambient Water Quality Standards or Guidance Values for Class GA groundwater provided in the New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series (1.1.1), dated June 1998, and the April 2000 Addendum.

c/MW-8(DUP) was designated MW-100 in the field for blind duplicate analysis. MW-35(DUP) was designated MW-101 in the field for blind duplicate analysis.

d/ MW-18 was not sampled due to the presence of free-phase product. See text for explanation.

e/ MW-28 was not sampled because the well is damaged.

Table 5

Historic Groundwater Sampling Results Former General Instrument Corporation Site Sherburne, New York June 2004 through December 2005 (a)

Well ID	Date	Acetone	Benzene	Cyclohexane	1,1-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2- Dichloroethene	Ethylbenzene	Isopropylbenzene	Methylcyclohexane	Methylene chloride	Methyl-tert-butyl-ether	Naphthalene	Tetrachloroethene	Toluene	1,1,1-Trichloroethane	Trichloroethene	Vinyl chloride	Total Xylenes
Evaluation Criteria	` ′	50 (d)	1	(c)	5	5	5	5	5	5	(c)	5	10	10	5	5	5	5	2	5
<u>MW-2</u>	Jun-04	5.0 U	1.0 U	1.0 U	2.1	1.0 U	3.9	1.6	1.0 U	0.24 J	0.76 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.8	1.0 U	3.0 U
	Nov-04	5.0 U	1.0 U	1.0 U	3.2	1.0 U	3.6	1.9	1.0 U	1.0 U	0.4 J	1.0 U	9.8	1.0 U	1.0 U	1.0 U	1.0 U	0.58 J	1.0 U	3.0 U
	Jun-05	5.0 U	1.0 U	1.0 U	3.1	1.0 U	1.5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	11.0	1.0 U	1.0 U	1.0 U	1.0 U	0.6 J	0.6 J	3.0 U
	Dec-05	5.0 U	1.0 U	1.0 U	1.5	1.0 U	3.2	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	3.2	1.0 U	1.0 U	1.0 U	1.0 U	1.5	1.0 U	3.0 U
<u>MW-8</u>	Jun-04	5.0 U	0.8 J	0.24 J	0.42 J	1.0 U	0.84 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.2	1.0 U	1.0 U	1.0 U	1.0 U	1.8	1.0 U	3.0 U
	Nov-04	5.0 U	0.44 J	1.0 U	0.52 J	1.0 U	0.8 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.1	1.0 U	1.0 U	1.0 U	1.0 U	2.6	1.0 U	3.0 U
	Jun-05	5.0 U	2.2	0.3 J	0.7 J	1.0 U	1.2	1.0 U	1.0 U	0.3 J	1.0 U	1.0 U	3.0	2.6	1.0 U	1.0 U	1.0 U	1.0	0.6 J	0.8 J
	Dec-05	5.0 U	1.8	1.0 U	1.0 U	1.0 U	0.92 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.8	0.53 J	1.0 U	1.0 U	1.0 U	1.9	1.0 U	3.0 U
MW-8(DUP) (e)	Dec-05	5.0 U	1.6	1.0 U	1.0 U	1.0 U	0.78 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.7	0.52 J	1.0 U	1.0 U	1.0 U	1.8	1.0 U	3.0 U
<u>MW-17</u>	Jun-04	5.0 U	0.73 J	1.0 U	0.45 J	0.96 J	510 D	3.6	1.0 U	1.0 U	1.0 U	1.0 U	8.4	1.0 U	1.0 U	1.0 U	0.58 J	26	120 D	3 U
	Nov-04	100 U	20 U	20 U	20 U	20 U	420	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	26	98	60 U
	Jun-05	100 U	20 U	20 U	20 U	20 U	1700 D	7.2 J	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	19 J	380	60 U
	Dec-05	20 U	4.0 U	4.0 U	4.0 U	4.0 U	400	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	15	61	12 U
<u>MW-18 (d)</u>	Jun-04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Jun-05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW 20	Dec-05	NA	NA 10 H	NA	NA 2.0	NA 10 II	NA	NA 0.20 I	NA	NA	NA 10 H	NA 10 II	NA 1.0	NA	NA	NA 10 II	NA 2.0	NA 2.2	NA 1.6	NA 2011
<u>MW-20</u>	Jun-04 Nov-04	5.0 U 5.0 U	1.0 U 1.0 U	1.0 U 1.0 U	2.9 3.3	1.0 U 1.0 U	7.5 6.9	0.38 J 0.46 J	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.9 9.8	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	2.0 1.8	3.3 4.2	1.6 1.8	3.0 U 3.0 U
MW 20(DHD) (a)	Nov-04 Nov-04	5.0 U	1.0 U	1.0 U	3.3	1.0 U	6.9	0.46 J 0.45 J	1.0 U	1.0 U	1.0 U	1.0 U	9.8 9.5	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	1.8		1.8	3.0 U
MW-20(DUP) (e)	Jun-05	5.0 U	1.0 U	1.0 U	2.7	1.0 U	8.4	0.43 J 0.4 J	1.0 U	1.0 U 1.0 U	1.0 U	1.0 U	9.3 5.6	1.0 U	1.0 U	1.0 U	2.7	4.5 6.9	2.4	3.0 U
	Dec-05	5.0 U	1.0 U	1.0 U	1.7	1.0 U	5.2	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	8.5	1.0 U 1.0 UJ	1.0 U	1.0 U	2.7	6.4	0.47 J	3.0 U
MW-21	Jun-04	5.0 U	1.0 U	1.0 U	3.4	1.0 U	87 D	0.48 J	1.0 U	1.0 U	1.0 U	1.0 U	2.4	1.0 U	0.34 J	1.0 U	4.8	100 D	12	3.0 U
1V1 VV 21	Nov-04	20 U	4.0 U	4.0 U	3.4 J	4.0 U	83	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	7.8	4.0 U	4.0 U	4.0 U	4.3	88	4.0 U	12.0 U
	Jun-05	10.0 U	2.0 U	2.0 U	2.9	2.0 U	72	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	6.0	2.0 U	2.0 U	2.0 U	4.8	59 D	4.4	6.0 U
	Dec-05	5.0 U	1.0 U	1.0 U	0.85 J	1.0 U	18	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 J	1.0 U	1.0 U	1.0 U	1.4	20	1.0 U	3.0 U
MW-22	Jun-04	20 U	4.0 U	4.0 U	4.0 U	4.0 U	90	5.6	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	25	4.0 U	12.0 U
	Nov-04	20 U	4.0 U	4.0 U	4.0 U	4.0 U	110	8.6	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	33	4.0 U	12.0 U
	Jun-05	10.0 U	2.0 U	2.0 U	2.0 U	2.0 U	70	2.5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	19	2.0 U	6.0 U
	Dec-05	10 U	2.0 U	2.0 U	2.0 U	2.0 U	36	1.8 J	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	13	2.0 U	6.0 U
<u>MW-23</u>	Jun-04	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	22	1.3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.9	1.7	1.0 U
	Nov-04	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	23	1.4	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.2	2.6	3.0 U
	Jun-05	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	13	0.76 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.6	2.0	3.0 U
	Dec-05	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	8.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.86 J	0.77 J	3.0 U
<u>MW-24</u>	Jun-04	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.75 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.41 J	1.0 U	1.0 U
	Nov-04	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.3	0.47 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.33 J	1.2	3.0 U
	Jun-05	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0	0.32 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.5 J	1.0 U	3.0 U
	Dec-05	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.8	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.77 J	0.62 J	3.0 U

Table 5

Historic Groundwater Sampling Results Former General Instrument Corporation Site Sherburne, New York June 2004 through December 2005 (a)

Well ID	Date	Acetone	Benzene	Cyclohexane	1,1-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2- Dichloroethene	Ethylbenzene	Isopropylbenzene	Methylcyclohexane	Methylene chloride	Methyl-tert-butyl-ether	Naphthalene	Tetrachloroethene	Toluene	1,1,1-Trichloroethane	Trichloroethene	Vinyl chloride	Total Xylenes
Evaluation Criteria	` ′	50 (d)	1	(c)	5	5	5	5	5	5	(c)	5	10	10	5	5	5	5	2	5
<u>MW-25</u>	Jun-04	5.0 U	0.35 J	2.3	1.0 U	1.0 U	7.6	0.44 J	1.0 U	6.1	3.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0	3.6	7.8
	Nov-04 Jun-05	5.0 U 5.0 U	0.68 J 0.4 J	1.4 1.5	1.0 U 1.0 U	0.24 J 0.2 J	26 26	1.7 0.86 J	3.1 3.8	2.7 2.8	3.6 2.9	1.0 U 1.0 U	0.6 J 1.0 U	2.7 5.4	1.0 U 1.0 U	0.4 J 1.0 U	1.0 U 1.0 U	0.27 J 0.7 J	19 15	1.3 J 2.0 J
	Dec-05	5.0 U	1.0 U	1.5 1.0 U	1.0 U	1.0 U	29	1.0 J	0.50 J	0.64 J	2.9 1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.7 J 0.58 J	14	3.0 U
MW-26	Jun-04	5.0 U	1.0 U	1.0 U	1.0	1.0 U	49 D	4.2	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0	1.4	3.0 U
	Nov-04	10 U	2.0 U	2.0 U	2.0 U	2.0 U	60	5.6	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	1.4 J	2.0	6.0 U
	Jun-05	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	39 D	2.9	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.6	1.7	3.0 U
	Dec-05	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	43	3.2	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.54 J	1.0	3.0 U
<u>MW-27</u>	Jun-04	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.3	3.0 U
MW-27(DUP) (e)	Jun-04	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.9	3.0 U
	Nov-04	4.8 J	0.44 J	1.0 U	1.0 U	1.0 U	1.1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.6	3.0 U
	Jun-05	5.0 U	0.3 J	1.0 U	1.0 U	1.0	9.7	0.4 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	8.8	12.0	3.0 U
MW-28 (f)	Dec-05 Jun-04	5.0 U NA	1.0 U NA	1.0 U NA	1.0 U NA	1.0 U NA	1.4 NA	1.0 U NA	1.0 U NA	1.0 U NA	1.0 U NA	1.0 U NA	1.0 U	1.0 U	1.0 U NA	1.0 U NA	1.0 U NA	0.59 J NA	1.0 NA	3.0 U NA
<u>IVI VV -28 (1)</u>	Nov-04	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Jun-05	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA NA
	Dec-05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-29	Jun-04	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.9	1.0 U	3.0 U
	Nov-04	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.46 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.4	1.0 U	3.0 U
	Jun-05	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.7 J	1.0 U	3.0 U
	Dec-05	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.90 J	1.0 U	3.0 U
<u>MW-30</u>	Jun-04	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	6.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	3.3	1.0 U	3.0 U
	Nov-04	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.8	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.3	1.0 U	3.0 U
	Jun-05	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0	1.0 U	3.0 U
MW-31	Dec-05	5.0 U 5.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	0.44 J 99	1.0 U 8.2	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 2.4	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	0.42 J 48	1.0 U 1.0 U	3.0 U 3.0 U
MW-32	Dec-05	5.0 U	1.0 U	1.0 U	1.0 U		91	5.7	1.0 U	1.0 U	1.0 UJ		2.4	1.0 UJ	1.0 U	1.0 U	1.0 U	75	1.0 U	3.0 U
MW-33	Dec-05	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	7.0	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	3.1	1.0 U	3.0 U
MW-34	Dec-05	5.0 U	1.0 U	1.0 U	0.82 J	1.0 U	110 D	0.67 J	1.0 U	1.0 U	1.0 U	1.0 U	1.4	1.0 U	1.0 U	1.0 U	1.1	16	63	3.0 U
MW-35	Dec-05	5.0 U	1.0 U	1.0 U	4.4	1.0 U	5.7	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	28	1.0 UJ	1.0 U	1.0 U	2.4	5.7	2.0	1.1 BJ
MW-35(DUP) (e)	Dec-05	5.0 U	1.0 U	1.0 U	4.3	1.0 U	5.9	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	28	1.0 UJ	1.0 U	1.0 U	2.3	5.6	1.7	3.0 U
<u>MW-36</u>	Dec-05	5.0 U	1.0 U	1.0 U	3.2	1.0 U	6.6	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	26	1.0 UJ	0.45 J	1.0 U	5.3	13	1.8	3.0 U
<u>MW-37</u>	Dec-05	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	50	2.4	1.0 U	1.0 U	1.0 U	1.0 U	0.51 J	1.0 U	1.0 U	1.0 U	1.0 U	81	1.0 U	3.0 U
MW-38	Dec-05	5.0 U	1.0 U	1.0 U	1.2	1.0 U	0.54 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	35	1.0 U	1.0 U	1.0 U	6.0	19	1.0 U	3.0 U
MW-39	Dec-05	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	5.4	1.0 UJ	1.0 U	1.0 U	2.8	4.0	1.0 U	3.0 U
<u>P-3</u>	Jun-04 Nov-04	5.0 U 5.0 U	0.34 J 0.34 J	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	13 15	0.32 J 0.44 J	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	0.6 J 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	8.5 11	2.2 5.0	3.0 U 3.0 U
	Jun-05	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	9.8	0.44 J 0.3 J	1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	1.0 U	7.0	2.9	3.0 U
	Dec-05	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	13.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U 1.0 U	1.0 U	1.0 U	1.0 U	6.8	3.2	3.0 U

Table 5

Historic Groundwater Sampling Results Former General Instrument Corporation Site Sherburne, New York June 2004 through December 2005 (a)

Well ID	Date	Acetone	Benzene	Cyclohexane	1,1-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2- Dichloroethene	Ethylbenzene	Isopropylbenzene	Methylcyclohexane	Methylene chloride	Methyl-tert-butyl-ether	Naphthalene	Tetrachloroethene	Toluene	1,1,1-Trichloroethane	Trichloroethene	Vinyl chloride	Total Xylenes
Evaluation Criteri	` ′	50 (d)	1	(c)	5	5	5	5	5	5	(c)	5	10	10	5	5	5	5	2	5
<u>P-8</u>	Jun-04	120 U	25 U	25 U	25 U	25 U	830	25 U	25 U	25 U	25 U	25 U	25 U	1.0 U	1.0 U	1.0 U	1.0 U	320	25	75 U
	Nov-04	120 U	25 U	25 U	25 U	25 U	730	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	260	27	75 U
	Jun-05	120 U	25 U	25 U	25 U	25 U	700	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	230	37	75 U
	Dec-05	120 U	25 U	25 U	25 U	25 U	1400	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	680	16 J	75 U
<u>P-10</u>	Jun-04	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	14	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.38 J	5.1	1.0 U	3.0 U
	Nov-04	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	18	0.35 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.3 J	4.2	1.0 U	3.0 U
	Jun-05	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	20	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.3 J	3.5	0.6 J	3.0 U
	Dec-05	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	16.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	3.3	1.0 U	3.0 U
<u>P-11</u>	Jun-04	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	14	0.6 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.9 J	1.3	3.0 U
	Nov-04	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	11	1.6	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.29 J	3.5	3.0 U
	Jun-05	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10	1.5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.3 J	5.6	3.0 U
P-11(DUP) (e)	Jun-05	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10	1.5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.3 J	5.6	3.0 U
	Dec-05	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	12.0	1.3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	7.4	3.0 U

a/ All results are reported in micrograms per liter (μ g/l); ND = compound not detected at or above the reporting limit; J = estimated value; D = compound identified in analysis at the secondary dilution factor; NA = not analyzed; value in bold exceeds evaluation criteria.

b/ Evaluation criteria are the New York State Ambient Water Quality Standards or Guidance Values for Class GA groundwater provided in the New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series (1.1.1), dated June 1998, and the April 2000 Addendum.

c/ No standard or guidance value for groundwater is available for this substance.

d/MW-18 was not sampled due to the presence of free product.

e/MW-20(DUP) was designated MW-201 in the field for blind duplicate analysis. MW-27(DUP) was designated MW-90 in the field for blind duplicate analysis. P-11(DUP) was designated P-101 in the field for blind duplicate analysis.

f/MW-28 was not sampled because the well is damaged.

 $Appendix\ A-Geologic\ NY,\ Inc.,\ Report$

NYSDEC - REGION-7

KIRKWOOD SUB-OFFICE

May 24, 2004

Mr. John Okesson NYSDEC - Region 7 Binghamton Sub-Office 1679 NY Route 11 Kirkwood, New York 13795-1602

Reference:

Project Status Report

Quickway Route 12 Sherburne, NY Project No. 98010C NYSDEC Spill #9803207

REPORTING PERIOD:

October 2002 - May 2004.

PROJECT PHASE:

Post remediation monitoring.

REMEDIAL TECHNOLOGY:

Soil Vapor Extraction (SVE) / Total Fluids Extraction (TFE).

ATTACHMENTS:

Site Plan;

Summary Tables (water level and analytical);

Analytical Results for 10/1/02, 6/23/03 and 4/28/04.

CURRENT CONDITIONS:

Annual groundwater monitoring.

RW-1 total BTEX - 722 ug/L (4/28/04). MW-2 total BTEX - 6 ug/L (4/28/04).

MODIFICATIONS:

None.

RECOMMENDATIONS / PLANNED CHANGES:

Groundwater BTEX concentrations at RW-1/MW-1, in the vicinity of the "North" vapor extraction array, have been reduced from 42,310 ug/L (7/24/98) to 722 ug/L (4/28/04). Groundwater BTEX concentrations at MW-2, in the vicinity of the "South" vapor extraction array, have been reduced from 3,555 ug/L (7/24/98) to 6 ug/L (4/28/04).

Project Status Report Cont'd NYSDEC Spill #9803207 May 2004 Page No. 2

Based on the analytical results, GeoLogic recommends that the Department consider closure of NYSDEC Spill #9803207.

If you have any questions or require additional information concerning this report, please do not hesitate to contact the undersigned at 607/836-4400.

Respectfully submitted,

GeoLogic NY, Inc.

Judson Powell Project Manager

Forrest C. Earl

Vice President/Principal Hydrogeologist

CC:

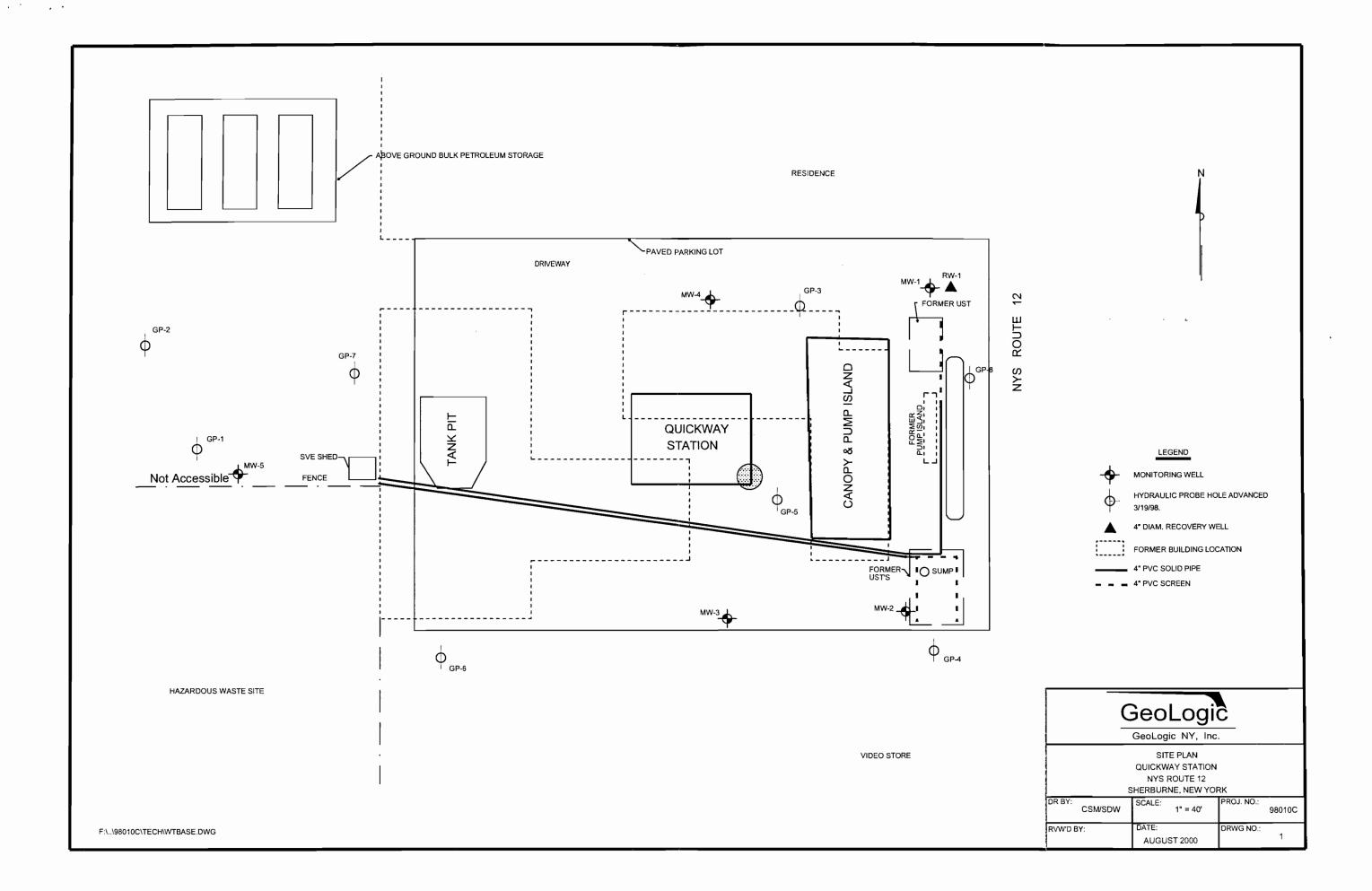
Mr. Mike Mirabito, Mirabito Fuel Group

File:..98010C\report\2002 Status

Sherburne Quikway Route 12 98010-C

GROUNDWATER ANALYTICAL DATA in ug/l

MW-1	Date	GW Elevation	Benzene	Ethylbenzene	Toluene	Xylenes	BTEX	МТВЕ
		Ref=97.00						
	07/24/98	92.11	5,310	2,490	21,900	12,610	42,310	
	08/06/98	91.49			No sa	imple taken		
	09/30/98	90.83	3,610	282	9,430	7,760	21,082	951
	12/02/98	90.68	1,270	113	1,320	1,060	3,763	508
	02/17/99	93.34	4,370.0	2,140.0	7,790	9,310.0	23,610	948
	03/29/99	93.74	6,300.0	1,800.0	14,000	10,400.0	32,500	990
	04/21/99	93.10	5,100.0	2,000.0	11,000	11,500.0	29,600	1200
	06/02/99	91.89	0.07 ft FP					
	07/01/99	91.15	0.04 ft FP					
	07/20/99		0.30 ft FP					
	08/11/99		0.20 ft FP					
	09/11/99	90.00	0.20 ft FP					
	11/02/99	91.18		4" diameter recov	•	•		
	12/09/99	91.80		Extracted 780 ga				
	01/13/00	94.08		Extracted 860 ga		-	well RW-1	
	02/24/00	93.75	0.00 ft FP	Sample taken fro	m adjacent	well RW-1		
RW-1	Date	GW Elevation	Benzene	Ethylbenzene	Toluene	Xylenes	BTEX	MTBE
		NA						
	12/09/00	wl - 6.50	0.01 ft FP	Extracted 780 ga	llons fluid			
	01/13/00	wl - 2.92	0.02 ft FP	Extracted 860 ga	llons fluid			
	02/24/00	wł - 2.71	970	350	3,500	3,400	8,220	<500
	06/28/00	wl - 3.43	150	150	420	940	1,660	<50
	05/02/01	wl - 3.92	350	160	1,100	810	2,420	210
	06/19/02	wl - 3.09	100	57	130	470	757	<50
	10/01/02	wl - 5.09	200	240	560	1,470	2,470	120
	06/23/03	wl - 3.46	<1	83	190	410	683	6
	04/28/04	wl - 3.23	55	97	130	440	722	6.4


MW-2	Date	GW Elevation	Benzene	Ethylbenzene	Toluene	Xylenes	BTEX	MTBE
		Ref=97.28						
	07/24/98		549	577	109	2,320	3,555	
	08/06/98				No sample	taken		
	09/30/98		242	50	258	492	1,042	339
	12/02/98		267	42	28	223	560	776
	02/17/99		133	13	15	95	256	306
	03/29/99		120	13	3	59	195	130
	04/21/99		240	72	30	197	539	300
	06/02/99		140	38	14	155	347	150
	07/01/99		160	28	31	<10	219	200
	07/20/99		220	13	<10	<10	233	680
	08/11/99		390	110	85	<1	585	480
	09/11/99		460	110	9	150	729	1,400
	11/02/99		720	220	150	1,000	2,090	1,500
	12/09/99		Vacuum extrac	ction event - no s	ample taken			
	01/13/00		Vacuum extrac	ction event - no s	ample taken			
	02/24/00		260	200	27	780	1,267	300
	06/28/00		54	<10	<10	<10	54	56
	05/02/01	92.93	45	12	1	16	74	100
	06/19/02		9	<1	<1	<1	9	8
	10/01/02		16	2	<1	8	26	51
	06/23/03		<1	1	<1	<3	<6	25
	04/28/04		4	2	<1	<3	6	3
MW-3	Date	GW Elevation	Benzene	Ethylbenzene	Toluene	Xylenes	BTEX	MTBE
MW-3	Date	GW Elevation	Benzene	Ethylbenzene	Toluene	Xylenes	BTEX	MTBE
MW-3		Ref = 96.45	Benzene 73.3	Ethylbenzene <1	Toluene <1	Xylenes <1	73.3	MTBE
MW-3	07/24/98	Ref = 96.45 91.20			<1			
MW-3	07/24/98 08/06/98	Ref = 96.45 91.20 90.51			<1	<1		179
MW-3	07/24/98 08/06/98 09/30/98	Ref = 96.45 91.20 90.51 90.10	73.3	<1	<1 No sa	<1 mple taken <1 <1	73.3 ND	179 79.5
E-WM	07/24/98 08/06/98 09/30/98 12/02/98	Ref = 96.45 91.20 90.51 90.10 90.19	73.3 <1	<1	<1 No sa	<1 imple taken <1	73.3 ND 89.9	179 79.5 513
MW-3	07/24/98 08/06/98 09/30/98 12/02/98 02/17/99	Ref = 96.45 91.20 90.51 90.10 90.19 92.57	73.3 <1 <1	<1 <1 <1	<1 No sa <1 <1	<1 mple taken <1 <1	73.3 ND 89.9 52.0	179 79.5 513 110
MW-3	07/24/98 08/06/98 09/30/98 12/02/98 02/17/99 03/29/99	Ref = 96.45 91.20 90.51 90.10 90.19 92.57 93.03	73.3 <1 <1 89.9	<1 <1 <1 <1	<1 No sa <1 <1 <1	<1 mple taken <1 <1 <1 <1	73.3 ND 89.9 52.0 452.1	179 79.5 513 110 330
MW-3	07/24/98 08/06/98 09/30/98 12/02/98 02/17/99 03/29/99 04/21/99	Ref = 96.45 91.20 90.51 90.10 90.19 92.57 93.03 92.24	73.3 <1 <1 89.9 52.0	<1 <1 <1 <1 <1	<1 No sa <1 <1 <1	<1 imple taken <1 <1 <1 <1 1.5	73.3 ND 89.9 52.0 452.1 79.0	179 79.5 513 110 330 260
MW-3	07/24/98 08/06/98 09/30/98 12/02/98 02/17/99 03/29/99	Ref = 96.45 91.20 90.51 90.10 90.19 92.57 93.03 92.24 91.02	73.3 <1 <1 89.9 52.0 440.0	<1 <1 <1 <1 <1 2.1	<1 No sa <1 <1 <1 <1 8.5 <1	<1 imple taken <1 <1 <1 <1 <1 5 <3 <10	73.3 ND 89.9 52.0 452.1 79.0 ND	179 79.5 513 110 330 260 240
MW-3	07/24/98 08/06/98 09/30/98 12/02/98 02/17/99 03/29/99 04/21/99 06/02/99 07/01/99	Ref = 96.45 91.20 90.51 90.10 90.19 92.57 93.03 92.24 91.02 90.30	73.3 <1 <1 89.9 52.0 440.0 79.0	<1 <1 <1 <1 <1 2.1 <1 <10 <1	<1 No sa <1 <1 <1 <1 8.5 <1 <10	<1 imple taken <1 <1 <1 <1 1.5 <3 <10 <1	73.3 ND 89.9 52.0 452.1 79.0 ND	179 79.5 513 110 330 260 240 440
MW-3	07/24/98 08/06/98 09/30/98 12/02/98 02/17/99 03/29/99 04/21/99 06/02/99	Ref = 96.45 91.20 90.51 90.10 90.19 92.57 93.03 92.24 91.02 90.30 89.94	73.3 <1 <1 89.9 52.0 440.0 79.0 <10	<1 <1 <1 <1 <1 <1 <2.1 <1 <10 <1 <1 <1 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1 No sa <1 <1 <1 <1 <1 8.5 <1 <10 <1	<1 cmple taken <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	73.3 ND 89.9 52.0 452.1 79.0 ND ND	179 79.5 513 110 330 260 240 440 270
MW-3	07/24/98 08/06/98 09/30/98 12/02/98 02/17/99 03/29/99 04/21/99 06/02/99 07/01/99	Ref = 96.45 91.20 90.51 90.10 90.19 92.57 93.03 92.24 91.02 90.30 89.94 89.35	73.3 <1 <1 89.9 52.0 440.0 79.0 <10 <1 <1 <1	<1 <1 <1 <1 <1 <2.1 <1 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1 No sz <1 <1 <1 <1 8.5 <1 <10 <1 <1	<1 cmple taken <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	73.3 ND 89.9 52.0 452.1 79.0 ND ND ND	179 79.5 513 110 330 260 240 440 270 250
MW-3	07/24/98 08/06/98 09/30/98 12/02/98 02/17/99 03/29/99 04/21/99 06/02/99 07/01/99 08/11/99	Ref = 96.45 91.20 90.51 90.10 90.19 92.57 93.03 92.24 91.02 90.30 89.94 89.35 89.25 90.36	73.3 <1 <1 89.9 52.0 440.0 79.0 <10 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1 No sa <1 <1 <1 <1 8.5 <1 <10 <1 <1 <1	<1 cmple taken <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	73.3 ND 89.9 52.0 452.1 79.0 ND ND	179 79.5 513 110 330 260 240 440 270
MW-3	07/24/98 08/06/98 09/30/98 12/02/98 02/17/99 03/29/99 04/21/99 06/02/99 07/01/99 07/20/99 08/11/99	Ref = 96.45 91.20 90.51 90.10 90.19 92.57 93.03 92.24 91.02 90.30 89.94 89.35 89.25 90.36	73.3 <1 <1 89.9 52.0 440.0 79.0 <10 <1 <1 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 No sa <1 <1 <1 <1 8.5 <1 <10 <1 <1 <1 <1	<1 cmple taken <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	73.3 ND 89.9 52.0 452.1 79.0 ND ND ND	179 79.5 513 110 330 260 240 440 270 250
MW-3	07/24/98 08/06/98 09/30/98 12/02/98 02/17/99 03/29/99 04/21/99 06/02/99 07/01/99 07/20/99 08/11/99 11/02/99	Ref = 96.45 91.20 90.51 90.10 90.19 92.57 93.03 92.24 91.02 90.30 89.94 89.35 89.25 90.36	73.3 <1 <1 89.9 52.0 440.0 79.0 <10 <1 <1 <1 <1 <1 Vacuum extract Vacuum extract	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 No sa <1 <1 <1 <1 8.5 <1 <10 <1 <1 <1 <1 ample taken	<1 cmple taken <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	73.3 ND 89.9 52.0 452.1 79.0 ND ND ND ND	179 79.5 513 110 330 260 240 440 270 250 150
MW-3	07/24/98 08/06/98 09/30/98 12/02/98 02/17/99 03/29/99 04/21/99 06/02/99 07/01/99 07/20/99 08/11/99 11/02/99 12/09/99	Ref = 96.45 91.20 90.51 90.10 90.19 92.57 93.03 92.24 91.02 90.30 89.94 89.35 89.25 90.36	73.3 <1 <1 89.9 52.0 440.0 79.0 <10 <1 <1 <1 <1 <1 Vacuum extract Vacuum extract <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 No sa <1 <1 <1 <1 8.5 <1 <10 <1 <1 <1 <1 ample taken ample taken	<1 cmple taken <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	73.3 ND 89.9 52.0 452.1 79.0 ND ND ND ND	179 79.5 513 110 330 260 240 440 270 250 150
MW-3	07/24/98 08/06/98 09/30/98 12/02/98 02/17/99 03/29/99 04/21/99 06/02/99 07/01/99 07/20/99 08/11/99 11/02/99 12/09/99	Ref = 96.45 91.20 90.51 90.10 90.19 92.57 93.03 92.24 91.02 90.30 89.94 89.35 89.25 90.36	73.3 <1 <1 89.9 52.0 440.0 79.0 <10 <1 <1 <1 <1 <1 Vacuum extract Vacuum extract <1 3.0	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 No sa <1 <1 <1 <1 8.5 <1 <10 <1 <1 <1 <1 ample taken ample taken	<1 cmple taken <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	73.3 ND 89.9 52.0 452.1 79.0 ND ND ND ND ND	179 79.5 513 110 330 260 240 440 270 250 150
MW-3	07/24/98 08/06/98 09/30/98 12/02/98 02/17/99 03/29/99 04/21/99 06/02/99 07/01/99 07/20/99 08/11/99 11/02/99 12/09/99 01/13/00	Ref = 96.45 91.20 90.51 90.10 90.19 92.57 93.03 92.24 91.02 90.30 89.94 89.35 89.25 90.36	73.3 <1 <1 89.9 52.0 440.0 79.0 <10 <1 <1 <1 <1 <1 Vacuum extract Vacuum extract <1 3.0 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 No sa <1 <1 <1 <1 8.5 <1 <10 <1 <1 <1 <1 ample taken ample taken <1 <1	<1 cmple taken <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	73.3 ND 89.9 52.0 452.1 79.0 ND ND ND ND ND	179 79.5 513 110 330 260 240 440 270 250 150
MW-3	07/24/98 08/06/98 09/30/98 12/02/98 02/17/99 03/29/99 04/21/99 06/02/99 07/01/99 08/11/99 09/11/99 11/02/99 12/09/99 01/13/00 06/28/00	Ref = 96.45 91.20 90.51 90.10 90.19 92.57 93.03 92.24 91.02 90.30 89.94 89.35 89.25 90.36	73.3 <1 <1 89.9 52.0 440.0 79.0 <10 <1 <1 <1 <1 <1 Vacuum extrac Vacuum extrac <1 3.0 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 No sa <1 <1 <1 <1 8.5 <1 <10 <1 <1 <1 <1 ample taken ample taken <1 <1 <1	<1 cmple taken <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	73.3 ND 89.9 52.0 452.1 79.0 ND ND ND ND ND ND	179 79.5 513 110 330 260 240 440 270 250 150
MW-3	07/24/98 08/06/98 09/30/98 12/02/98 02/17/99 03/29/99 04/21/99 06/02/99 07/01/99 07/20/99 08/11/99 11/02/99 12/09/99 01/13/00 06/28/00 05/02/01 06/19/02	Ref = 96.45 91.20 90.51 90.10 90.19 92.57 93.03 92.24 91.02 90.30 89.94 89.35 89.25 90.36 92.84 92.25 92.16 92.50 91.50	73.3 <1 <1 89.9 52.0 440.0 79.0 <10 <1 <1 <1 <1 <1 Vacuum extrac Vacuum extrac <1 3.0 <1 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 No sa <1 <1 <1 <1 8.5 <1 <10 <1 <1 <1 <1 ample taken ample taken <1 <1 <1 <1	<1 Imple taken <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 </th <th>73.3 ND 89.9 52.0 452.1 79.0 ND ND ND ND ND ND</th> <th>179 79.5 513 110 330 260 240 440 270 250 150</th>	73.3 ND 89.9 52.0 452.1 79.0 ND ND ND ND ND ND	179 79.5 513 110 330 260 240 440 270 250 150
MW-3	07/24/98 08/06/98 09/30/98 12/02/98 02/17/99 03/29/99 04/21/99 06/02/99 07/01/99 07/20/99 08/11/99 11/02/99 12/09/99 01/13/00 06/28/00 05/02/01 06/19/02	Ref = 96.45 91.20 90.51 90.10 90.19 92.57 93.03 92.24 91.02 90.30 89.94 89.35 89.25 90.36 92.84 92.25 92.16 92.50 91.50	73.3 <1 <1 89.9 52.0 440.0 79.0 <10 <1 <1 <1 <1 <1 Vacuum extrac Vacuum extrac <1 3.0 <1 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 No sa <1 <1 <1 <1 8.5 <1 <10 <1 <1 <1 <1 ample taken ample taken <1 <1 <1	<1 cmple taken <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	73.3 ND 89.9 52.0 452.1 79.0 ND ND ND ND ND ND	179 79.5 513 110 330 260 240 440 270 250 150

.

MW-4	Date	GW Elevation	Benzene	Ethylbenzene	Toluene	Xylenes	BTEX	MTBE
		Ref = 96.63						
	12/02/98	90.58	<1	<1	<1	<1	ND	<5
	02/17/99	93.16	<1	<1	<1	<1	ND	<5
	03/29/99	93.59	<1	<1	<1	<1	ND	<1
	04/21/99	92.88	<1	<1	<1	<1	ND	<1
	06/02/99	91.62	<1	<1	<1	<3	ND	<1
	07/01/99	90.63	<1	<1	<1	<1	ND	<1
	07/20/99	90.42	<1	<1	<1	<1	ND	<1
	08/11/99	89.76	<1	<1	<1	<1	ND	<1
	09/11/99	89.63	<1	<1	<1	<1	ND	<1
	11/02/99	90.82	<1	<1	<1	<1	ND	<1
	12/09/99			ction event - no sa				
	01/13/00			ction event - no sa				
	02/24/00	93.52	<1	<1	<1	<1	ND	<5
	06/28/00	92.82	<1	<1	<1	<1	ND	<5
	05/02/01		_	Inable to access				
	06/19/02		-	Inable to access				
	10/01/02		-	Inable to access				
	06/23/03			nable to access				
	04/28/04		U	Inable to access				
MW-5	Date	GW Elevation	Benzene	Ethylbenzene	Toluene	Xylenes	BTEX	MTBE
MW-5	Date	GW Elevation Ref = 96.10	Benzene	Ethylbenzene	Toluene	Xylenes	втех	MTBE
MW-5	Date 02/17/99	GW Elevation Ref = 96.10 91.75	Benzene 1	Ethylbenzene <1	Toluene <1	Xylenes <1	BTEX 1	MTBE <5
MW-5		Ref = 96.10		_				
MW-5	02/17/99	Ref = 96.10 91.75	1	<1	<1	<1	1 13 1	<u></u>
MW-5	02/17/99 03/29/99	Ref = 96.10 91.75 92.49	1 5	<1 <1	<1 <1	<1 8	1 13	<5 <1
MW-5	02/17/99 03/29/99 04/21/99	Ref = 96.10 91.75 92.49 91.34	1 5 1	<1 <1 <1	<1 <1 <1	<1 8 <1	1 13 1	<5 <1 <1
MW-5	02/17/99 03/29/99 04/21/99 06/02/99	Ref = 96.10 91.75 92.49 91.34 90.05	1 5 1 2 1	<1 <1 <1 <1	<1 <1 <1 <1 <1 <1	<1 8 <1 <3 <1 <1	1 13 1 2 1	<5 <1 <1 <1 <1 <1
MW-5	02/17/99 03/29/99 04/21/99 06/02/99 07/01/99	Ref = 96.10 91.75 92.49 91.34 90.05 86.40 89.19 88.76	1 5 1 2	ব ব ব ব ব ব	<1 <1 <1 <1 <1 <1 <1	<1 8 <1 <3 <1	1 13 1 2 1	<5 <1 <1 <1 <1
MW-5	02/17/99 03/29/99 04/21/99 06/02/99 07/01/99 07/20/99	Ref = 96.10 91.75 92.49 91.34 90.05 86.40 89.19	1 5 1 2 1	ব ব ব ব ব ব ব	<1 <1 <1 <1 <1 <1 <1 <1	<1 8 <1 <3 <1 <1	1 13 1 2 1 1 ND 4	<5 <1 <1 <1 <1 <1 6 28
MW-5	02/17/99 03/29/99 04/21/99 06/02/99 07/01/99 07/20/99 08/11/99 09/11/99	Ref = 96.10 91.75 92.49 91.34 90.05 86.40 89.19 88.76 88.76 89.64	1 5 1 2 1 1 <1 4 2	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	<1 <1 <1 <1 <1 <1 <1 <1	<1 8 <1 <3 <1 <1 <1	1 13 1 2 1 1 ND	<5 <1 <1 <1 <1 <1 6
MW-5	02/17/99 03/29/99 04/21/99 06/02/99 07/01/99 07/20/99 08/11/99	Ref = 96.10 91.75 92.49 91.34 90.05 86.40 89.19 88.76 88.76 89.64	1 5 1 2 1 1 <1 4 2	ব ব ব ব ব ব ব	<1 <1 <1 <1 <1 <1 <1 <1	<1 8 <1 <3 <1 <1 <1	1 13 1 2 1 1 ND 4	<5 <1 <1 <1 <1 <1 6 28
MW-5	02/17/99 03/29/99 04/21/99 06/02/99 07/01/99 07/20/99 08/11/99 09/11/99	Ref = 96.10 91.75 92.49 91.34 90.05 86.40 89.19 88.76 88.76 89.64	1 5 1 2 1 1 <1 4 2 acuum extrac	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	<1 <1 <1 <1 <1 <1 <1 <1 <1	<1 8 <1 <3 <1 <1 <1 <1	1 13 1 2 1 1 ND 4 2	<5 <1 <1 <1 <1 <1 6 28 <1
MW-5	02/17/99 03/29/99 04/21/99 06/02/99 07/01/99 07/20/99 08/11/99 09/11/99 11/02/99 12/09/99 01/13/00 02/24/00	Ref = 96.10 91.75 92.49 91.34 90.05 86.40 89.19 88.76 88.76 89.64	1 5 1 2 1 1 <1 4 2 acuum extrac acuum extrac	<1 <1 <1 <1 <1 <1 <1 tion event - no sa tion event - no sa	<1 <1 <1 <1 <1 <1 <1 <1 <1	<1 8 <1 <3 <1 <1 <1	1 13 1 2 1 1 ND 4	<5 <1 <1 <1 <1 <1 6 28
MW-5	02/17/99 03/29/99 04/21/99 06/02/99 07/01/99 07/20/99 08/11/99 11/02/99 12/09/99 01/13/00 02/24/00 06/28/00	Ref = 96.10 91.75 92.49 91.34 90.05 86.40 89.19 88.76 88.76 89.64	1 5 1 2 1 1 <1 4 2 acuum extrac acuum extrac 1 U	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 mple taken	<1 8 <1 <3 <1 <1 <1 <1	1 13 1 2 1 1 ND 4 2	<5 <1 <1 <1 <1 <1 6 28 <1
MW-5	02/17/99 03/29/99 04/21/99 06/02/99 07/01/99 07/20/99 08/11/99 11/02/99 12/09/99 01/13/00 02/24/00 06/28/00	Ref = 96.10 91.75 92.49 91.34 90.05 86.40 89.19 88.76 88.76 89.64	1 5 1 2 1 1 <1 4 2 acuum extrac acuum extrac 1 U U	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1 <1 <1 <1 <1 mple taken	<1 8 <1 <3 <1 <1 <1 <1	1 13 1 2 1 1 ND 4 2	<5 <1 <1 <1 <1 <1 6 28 <1
MW-5	02/17/99 03/29/99 04/21/99 06/02/99 07/01/99 07/20/99 08/11/99 11/02/99 12/09/99 01/13/00 02/24/00 06/28/00 05/02/01 06/19/02	Ref = 96.10 91.75 92.49 91.34 90.05 86.40 89.19 88.76 88.76 89.64	1 5 1 2 1 1 4 2 acuum extrac acuum extrac 1 U U U	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 tion event - no saition event - no saiti	<1 <1 <1 <1 <1 <1 <1 <1 mple taken	<1 8 <1 <3 <1 <1 <1 <1	1 13 1 2 1 1 ND 4 2	<5 <1 <1 <1 <1 <1 6 28 <1
MW-5	02/17/99 03/29/99 04/21/99 06/02/99 07/01/99 07/20/99 08/11/99 11/02/99 12/09/99 01/13/00 02/24/00 06/28/00 05/02/01 06/19/02	Ref = 96.10 91.75 92.49 91.34 90.05 86.40 89.19 88.76 88.76 89.64	1 5 1 2 1 1 4 2 acuum extrac acuum extrac 1 U U U	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <ti>tion event - no saition event - no s</ti>	<1 <1 <1 <1 <1 <1 <1 <1 mple taken	<1 8 <1 <3 <1 <1 <1 <1	1 13 1 2 1 1 ND 4 2	<5 <1 <1 <1 <1 <1 6 28 <1
MW-5	02/17/99 03/29/99 04/21/99 06/02/99 07/01/99 07/20/99 08/11/99 11/02/99 12/09/99 01/13/00 02/24/00 06/28/00 05/02/01 06/19/02	Ref = 96.10 91.75 92.49 91.34 90.05 86.40 89.19 88.76 88.76 89.64	1 5 1 2 1 1 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 tion event - no saition event - no saiti	<1 <1 <1 <1 <1 <1 <1 <1 mple taken	<1 8 <1 <3 <1 <1 <1 <1	1 13 1 2 1 1 ND 4 2	<5 <1 <1 <1 <1 <1 6 28 <1

. •

. .

BUCK

ENVIRONMENTAL LABORATORIES, INC. accredited environmental analysis

Report Date: 18-Oct-02 **Lab Log No:** 0210071

CLIENT:

MIRABITO FUEL GROUP

44 GRAND STREET

SIDNEY, NY 13838-

Project:

98010-C

Lab ID:

0210071-01A

Client Sample ID: MW-1

Sampled By: GEOLOGIC

Collection Date: 10/01/02

Received at Lab: 10/04/02

Matrix: AQUEOUS

Analyses	CAS	DF	PQL	Result	Units	Qual
STARS VOLATILES BY 8260		Analyst: JHB	Analysis Date: 10/	16/02		
Benzene	71-43-2	1	1.0	200	μg/L	
n-Butylbenzene	104-51-8	1	1.0	ND	μg/L	
sec-Butylbenzene	135-98-8	1	1.0	ND	μg/L	
tert-Butylbenzene	98-06-6	1	1.0	ND	μg/L	
Ethylbenzene	100-41-4	20	20	240	μg/L	
4-Isopropyltoluene	99-87-6	1	1.0	6.7	μg/L	
Methyl tert-butyl ether	1634-04-4	1	1.0	120	μg/L	
n-Propylbenzene	103-65-1	1	1.0	78	µg/L	
Isopropylbenzene	98-82-8	1	1.0	29	μg/L	
Naphthalene	91-20-3	1	1.0	120	µg/L	
Toluene	108-88-3	20	20	560	µg/L	
1,2,4-Trimethylbenzene	95-63-6	20	20	570	µg/L	
1,3,5-Trimethylbenzene	108-67-8	20	20	180	µg/L	
m,p-Xylene	1330-20-7	20	40	950	µg/L	
o-Xylene	95-47-6	20	20	520	µg/L	
Surr: 4-Bromofluorobenzene	460-00-4	1 85	5.3-110.1	109	%REC	
Surr: Dibromofluoromethane	1868-53-7	1	81.9-116	85.9	%REC	
Surr: Toluene-d8	2037-26-5	1 85	5.5-113.5	92.3	%REC	

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Laboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any action or the consequences of any action taken in connection with this report.

NYSDOH ELAP #10795

Abbreviations:

ND - Not Detected at the Reporting Limit

D - Surrogate diluted out

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

John H. Buck, P.E.

S - Spike Recovery outside accepted recovery limit

R - RPD outside accepted recovery limits

E - Est., Value exceeds quantitation range

H - Est., Holding time exceedance

BUCK

ENVIRONMENTAL LABORATORIES, INC. accredited environmental analysis

Report Date: 18-Oct-02 **Lab Log No:** 0210071

CLIENT:

MIRABITO FUEL GROUP

44 GRAND STREET

SIDNEY, NY 13838-

Project:

98010-C

Lab ID:

m,p-Xylene

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Surr: Toluene-d8

o-Xylene

0210071-02A

Client Sample ID: MW-2

Sampled By: GEOLOGIC

Collection Date: 10/01/02

Received at Lab: 10/04/02

Matrix: AQUEOUS

8.4

ND

102

90.1

99.2

μg/L

μg/L

%REC

%REC

%REC

Analyses	CAS	DF	PQL	Result	Units	Qual
STARS VOLATILES BY 8260		Analyst: JHB	Analysis Dat	e: 10/16/02		
Benzene	71-43-2	1	1.0	16	μg/L	
n-Butylbenzene	104-51-8	1	1.0	ND	μg/L	
sec-Butylbenzene	135-98-8	1	1.0	ND	μg/L	
tert-Butylbenzene	98-06-6	1	1.0	ND	μg/L	
Ethylbenzene	100-41-4	1	1.0	2.1	μg/L	
4-Isopropyltoluene	99-87-6	1	1.0	ND	μg/L	
Methyl tert-butyl ether	1634-04-4	1	1.0	51	µg/L	
n-Propylbenzene	103-65-1	1	1.0	3.1	μg/L	
Isopropylbenzene	98-82-8	1	1.0	1.4	μg/L	
Naphthalene	91-20-3	1	1.0	3.5	μg/L	
Toluene	108-88-3	1	1.0	ND	μg/L	
1,2,4-Trimethylbenzene	95-63-6	1	1.0	7.4	μg/L	
1,3,5-Trimethylbenzene	108-67-8	1	1.0	7.0	μ g/L	

2.0

1.0

85.3-110.1

81.9-116

85.5-113.5

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Laboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any action or the consequences of any action taken in connection with this report.

NYSDOH ELAP #10795

Abbreviations:

ND - Not Detected at the Reporting Limit

D - Surrogate diluted out

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

1330-20-7

95-47-6

460-00-4

1868-53-7

2037-26-5

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Est., Value exceeds quantitation range

H - Est., Holding time exceedance

John H. Buck, P.E. Laboratory Director

3821 Buck Drive, Cortland, NY 13045-5150 Tel 607.753.3403 Fax 607.753.3415

B IJ K

ENVIRONMENTAL LABORATORIES, INC. accredited environmental analysis Report Date: 18-Oct-02 Lab Log No: 0210071

CLIENT:

MIRABITO FUEL GROUP

44 GRAND STREET

SIDNEY, NY 13838-

Project:

98010-C

Lab ID:

0210071-03A

Client Sample ID: MW-3

Sampled By: GEOLOGIC

Collection Date: 10/01/02

Received at Lab: 10/04/02

Matrix: AQUEOUS

102

%REC

Analyses	CAS	DF	PQL	Result	Units	Qual
STARS VOLATILES BY 8260		Analyst: PI	Analysis D	ate:10/13/02		
Benzene	71-43-2	1	1.0	ND	μg/L	
n-Butylbenzene	104-51-8	1	1.0	ND	μg/L	
sec-Butylbenzene	135-98-8	1	1.0	ND	μg/L	
tert-Butylbenzene	98-06-6	1	1.0	ND	μg/L	
Ethylbenzene	100-41-4	1	1.0	ND	μg/L	
4-isopropyltoluene	99-87-6	1	1.0	ND	μg/L	
Methyl tert-butyl ether	1634-04-4	1	1.0	18	μg/L	
n-Propylbenzene	103-65-1	1	1.0	ND	μg/L	
Isopropylbenzene	98-82-8	1	1.0	ND	μg/L	
Naphthalene	91-20-3	1	1.0	ND	μg/L	
Toluene	108-88-3	1	1.0	ND	μg/L	
1,2,4-Trimethylbenzene	95-63-6	1	1.0	ND	µg/L	
1,3,5-Trimethylbenzene	108-67-8	1	1.0	ND	µg/L	
m,p-Xylene	1330-20-7	1	2.0	ND	µg/L	
o-Xylene	95-47-6	1	1.0	ND	µg/L	
Surr: 4-Bromoffuorobenzene	460-00-4	1	85.3-110.1	95.5	%REC	

85.5-113.5

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Laboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any action or the consequences of any action taken in connection with this _report.

NYSDOH ELAP #10795

Surr: Dibromofluoromethane

Surr: Toluene-d8

Abbreviations:

ND - Not Detected at the Reporting Limit

D - Surrogate diluted out

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

2037-26-5

* - Value exceeds Maximum Contaminant Level

Laboratory Director S - Spike Recovery outside accepted recovery limits

John H. Buck, P.E.

R - RPD outside accepted recovery limits-

E - Est., Value exceeds quantitation range H - Est., Holding time exceedance

3821 Buck Drive, Cortland, NY 13045-5150

Fax 607.753.3415 Tel 607.753.3403

Report Date: 03-Jul-03 Lab Log No: 0306293

CLIENT:

MIRABITO FUEL GROUP

44 GRAND STREET

SIDNEY, NY 13838-

Project:

98010-C

Lab ID:

0306293-01A

Client Sample ID: RW-1

Sampled By: GEOLOGIC

Collection Date: 06/23/03 1:40:00 PM

Received at Lab: 06/26/03

Matrix: AQUEOUS

Analyses	CAS	DF	PQL	Result	Units	Qual
STARS VOLATILES BY EPA 8260		Analyst: TZ	Analysi	s Date: Jun 29, 2003 10 :	53 nm	
1,2,4-Trimethylbenzene	95-63-6	1	1.0	130	μg/L	
1,3,5-Trimethylbenzene	108-67-8	1	1.0	37	μg/L	
4-Isopropyitoluene	99-87-6	1	1.0	ND	μg/L	
Benzene	71-43-2	1	1.0	ND	μg/L	
Ethylbenzene	100-41-4	1	1.0	83	μg/L	
isopropylbenzene	98-82-8	1	1.0	4.1	μg/L	
m,p-Xylene	1330-20-7	1	2.0	300	μg/L	
Methyl tert-butyl ether	1634-04-4	1	1.0	6.1	μg/Ľ	
n-Butylbenzene	104-51-8	1	1.0	6.2	µg/L	
n-Propylbenzene	103-65-1	1	1.0	16	μg/L	
Naphthalene	91-20-3	1	1.0	21	μg/L	
o-Xylene	95-47-6	1	1.0	110	μg/L	
sec-Butylbenzene	135-98-8	1	1.0	ND	μg/L	
tert-Butylbenzene	98-06-6	1	1.0	ND	μg/L	
Toluene	108-88-3	1	1.0	190	µg/L	
Surr: 1,2-Dichloroethane-d4	17060-07-0	1	80-120	91.7	%REC	
Surr: 4-Bromofluorobenzene	460-00-4	1 8	35.3-110.1	97.3	%REC	
Surr: Dibromofluoromethane	1868-53-7	1	81.9-116	93.9	%REC	
Surr: Toluene-d8	2037-26-5	1 8	35.5-113.5	98.7	%REC	

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Laboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any action or the consequences of any action taken in connection with this report. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included on the cover letter.

NYSDOH ELAP #10795

Report Date: 03-Jul-03

Lab Log No: 0306293

CLIENT:

MIRABITO FUEL GROUP

44 GRAND STREET

SIDNEY, NY 13838-

Project:

98010-C

Lab ID:

0306293-02A

Client Sample ID: MW-2

Sampled By: GEOLOGIC

Collection Date: 06/23/03 1:20:00 PM

Received at Lab: 06/26/03

Matrix: AQUEOUS

Analyses	CAS	DF	PQL	Result	Units	Qual
STARS VOLATILES BY EPA 8260		Analyst: TZ	Analys	is Date: Jun 30, 2003 3: 0	15 am	
1,2,4-Trimethylbenzene	95-63-6	1	1.0	ND	μg/L	
1,3,5-Trimethylbenzene	108-67-8	1	1.0	ND	µg/L	
4-Isopropyltoluene	99-87-6	1	1.0	ND	μg/L	
Benzene	71-43-2	1	1.0	ND	μg/L	
Ethylbenzene	100-41-4	1	1.0	1.3	μg/L	
Isopropylbenzene	98-82-8	1	1.0	ND	μg/L	
m,p-Xylene	1330-20-7	1	2.0	ND	μg/L	
Methyl tert-butyl ether	1634-04-4	1	1.0	25	μg/L	
n-Butylbenzene	104-51-8	1	1.0	ND	μg/L	
n-Propylbenzene	103-65-1	1	1.0	1.1	μg/L	
Naphthalene	91-20-3	1	1.0	ND	μg/L	
o-Xylene	95-47-6	1	1.0	ND	μg/L	
sec-Butylbenzene	135-98-8	1	1.0	ND	μg/L	
tert-Butylbenzene	98-06-6	1	1.0	ND	μg/L	
Toluene	108-88-3	1	1.0	ND	μg/L	
Surr: 1,2-Dichloroethane-d4	17060-07-0	1	80-120	90.9	%REC	
Surr: 4-Bromofluorobenzene	460-00-4	1 (85.3-110.1	101	%REC	
Surr: Dibromofluoromethane	1868-53-7	1	81.9-116	95.6	%REC	
Surr: Toluene-d8	2037-26-5	1 (85.5-113.5	98.6	%REC	

JUL 0 7 2003

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Laboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any action or the consequences of any action taken in connection with this report. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included on the cover letter.

NYSDOH ELAP #10795

Report Date: *03-Jul-03* Lab Log No: 0306293

CLIENT:

MIRABITO FUEL GROUP

44 GRAND STREET

SIDNEY, NY 13838-

Project:

98010-C

Lab ID:

0306293-03A

Client Sample ID: MW-3

Sampled By: GEOLOGIC

Collection Date: 06/23/03 1:00:00 PM

Received at Lab: 06/26/03

Matrix: AQUEOUS

Analyses	CAS	DF	PQL	Result	Units	Qual
STARS VOLATILES BY EPA 8260		Analyst: TZ	Analys	sis Date: Jun 30, 2003 3:4 2	2 am	
1,2,4-Trimethylbenzene	95-63-6	1	1.0	ND	µg/L	
1,3,5-Trimethylbenzene	108-67-8	1	1.0	ND	μg/L	
4-Isopropyltoluene	99-87-6	1	1.0	ND	μg/L	
Benzene	71-43-2	1	1.0	ND	µg/L	
Ethylbenzene	100-41-4	1	1.0	ND	μg/L	
Isopropylbenzene	98-82-8	1	1.0	ND	μg/L	
m,p-Xylene	1330-20-7	1	2.0	ND	μg/L	
Methyl tert-butyl ether	1634-04-4	1	1.0	16	μg/L	
n-Butylbenzene	104-51-8	1	1.0	ND	μg/L	
n-Propylbenzene	103-65-1	1	1.0	ND	μg/L	
Naphthalene	91-20-3	1	1.0	ND	μg/L	
o-Xylene	95-47-6	1	1.0	ND	μg/L	
sec-Butylbenzene	135-98-8	1	1.0	ND	µg/L	
tert-Butylbenzene	98-06-6	1	1.0	ND	μg/L	
Toluene	108-88-3	1	1.0	ND	μg/L	
Surr: 1,2-Dichloroethane-d4	17060-07-0	1	80-120	93.6	%REC	
Surr: 4-Bromofluorobenzene	460-00-4	1 8	5.3-110.1	100	%REC	
Surr: Dibromofluoromethane	1868-53-7	1	81.9-116	96.8	%REC	
Surr: Toluene-d8	2037-26-5	1 8	5.5-113.5	98.5	%REC	

W. 07 km

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Laboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any action or the consequences of any action taken in connection with this report. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included on the cover letter.

NYSDOH ELAP #10795

BUCK

ENVIRONMENTAL LABORATORIES, INC. accredited environmental analysis

Report Date: 11-May-04 Lab Log No: 0404301

CLIENT:

MIRABITO FUEL GROUP

44 GRAND STREET

SIDNEY, NY 13838-

Project:

98010-C

Lab ID:

0404301-01A

Client Sample ID: MW-1

Sampled By: GEOLOGIC

Collection Date: 04/28/04 1:30:00 PM

Received at Lab: 04/29/04

Matrix: AQUEOUS

Analyses	CAS	DF	PQL	Result	Units	Qual
	_					
STARS VOLATILES BY EPA 8260		Analyst: CP	Analys	is Date: May 09, 2004 5:	04 pm	
1,2,4-Trimethylbenzene	95-63-6	1	1.0	130	µg/L	
1,3,5-Trimethylbenzene	108-67-8	1	1.0	30	μg/L	
4-Isopropyltoluene	99-87-6	1	1.0	ND	µg/L	
Benzene	71-43-2	1	1.0	55	μg/L	
Ethylbenzene	100-41-4	1	1.0	97	μg/L	
Isopropyibenzene	98-82-8	1	1.0	3.8	μg/L	
m,p-Xylene	1330-20-7	1	2.0	330	μg/L	
Methyl tert-butyl ether	1634-04-4	1	1.0	6.4	μg/L	
n-Butylbenzene	104-51-8	1	1.0	ND	μg/L	
n-Propylbenzene	103-65-1	1	1.0	15	µg/L	
Naphthalene	91-20-3	1	1.0	19	µg/L	
o-Xylene	95-47-6	1	1.0	110	µg/L	
sec-Butylbenzene	135-98-8	1	1.0	ND	µg/L	
tert-Butylbenzene	98-06-6	1	1.0	ND	µg/L	
Toluene	108-88-3	1	1.0	130	μg/L	
Surr: 1,2-Dichloroethane-d4	17060-07-0	1	79-118	101	%REC	
Surr: 4-Bromofluorobenzene	460-00-4	1 8	5.3-110.1	99.2	%REC	
Surr: Dibromofluoromethane	1868-53-7	1	81.9-116	102	%REC	
Surr: Toluene-d8	2037-26-5	1 8	5.5-113.5	98.5	%REC	

DEWELL WITH

100 10

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Laboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any action or the consequences of any action taken in connection with this report. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included on the cover letter.

NYSDOH ELAP #10795

EPA LAB ID #NY00935

3821 Buck Drive, Cortland, NY 13045-5150 Tel 607.753.3403 Fax 607.753.3415

Report Date: 11-May-04 Lab Log No: 0404301

CLIENT:

MIRABITO FUEL GROUP

44 GRAND STREET

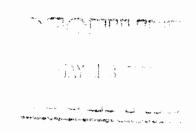
SIDNEY, NY 13838-

Project:

98010-C

Lab ID:

0404301-02A


Client Sample ID: MW-2

Sampled By: GEOLOGIC Collection Date: 04/28/04 1:50:00 PM

Received at Lab: 04/29/04

Matrix: AQUEOUS

Analyses	CAS	DF	PQL	Result	Units	Qual
STARS VOLATILES BY EPA 826	0	Analyst: CP	Analysis	Date: May 09, 2004 5:	37 pm	
1,2,4-Trimethylbenzene	95-63-6	1	1.0	ND	· μg/L	
1,3,5-Trimethylbenzene	108-67-8	1	1.0	ND	μg/L	
4-Isopropyltoluerie	99-87-6	1	1.0	ND	μ g /L	
Benzene	71-43-2	1	1.0	4.0	μg/L	
Ethylbenzene	100-41-4	1	1.0	1.7	μg/L	
Isopropylbenzene	98-82-8	1	1.0	ND	μg/L	
m,p-Xylene	1330-20-7	1	2.0	ND	μg/L	
Methyl tert-butyl ether	1634-04-4	1	1.0	2.5	μg/L	
n-Butylbenzene	104-51-8	1	1.0	ND	μg/L	
n-Propylbenzene	103-65-1	1	1.0	ND	μg/L	
Naphthalene	91-20-3	1	1.0	ND	μg/L	
o-Xylene	9 5-4 7-6	1	1.0	ND	μg/L	
sec-Butylbenzene	135-98-8	1	1.0	ND	μg/L	
tert-Butylbenzene	98-06-6	1	1.0	ND	μg/L	
Toluene	108-88-3	1	1.0	ND	µg/L	
Surr: 1,2-Dichloroethane-d4	17060-07-0	1	79-118	99.2	%REC	
Surr: 4-Bromofluorobenzene	460-00-4	1	85.3-110.1	101	%REC	
Surr: Dibromofluoromethane	1868-53-7	1	81.9-116	101	%REC	
Surr: Toluene-d8	2037-26-5	1	35.5-113.5	96.9	%REC	

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Laboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any action or the consequences of any action taken in connection with this report. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included on the cover letter.

NYSDOH ELAP #10795

BUCK

ENVIRONMENTAL LABORATORIES, INC. accredited environmental analysis

Report Date: 11-May-04 Lab Log No: 0404301

CLIENT:

MIRABITO FUEL GROUP

44 GRAND STREET

SIDNEY, NY 13838-

Project:

98010-C

Lab ID:

n-Butylbenzene

Naphthalene

o-Xviene

Toluene

n-Propylbenzene

sec-Butylbenzene

tert-Butylbenzene

Surr: Toluene-d8

Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

0404301-03A

Client Sample ID: MW-3

Sampled By: GEOLOGIC

Collection Date: 04/28/04 2:10:00 PM

Received at Lab: 04/29/04

Matrix: AQUEOUS

ND

ND

ND

ND

ND

ND

ND

102

99.5

99.7

98.0

μg/L

μg/L

µg/L

μg/L

μg/L

μg/L

μg/L

%REC

%REC

%REC

%REC

CAS DF PQL Result Units Qual **Analyses** STARS VOLATILES BY EPA 8260 Analyst: CP Analysis Date: May 09, 2004 6:09 pm 1,2,4-Trimethylbenzene 95-63-6 108-67-8 1.0 ND μg/L 1,3,5-Trimethylbenzene 1 4-Isopropyltoluene 99-87-6 1.0 ND μg/L 71-43-2 1.0 ND µg/L 1.0 Ethylbenzene 100-41-4 ND µg/L 1.0 ND 98-82-8 μg/L Isopropylbenzene 1330-20-7 2.0 ND μg/L m,p-Xylene 1634-04-4 1.0 3.9 μg/L Methyl tert-butyl ether

1.0

1.0

1.0

1.0

1.0

1.0

1.0

79-118

85.3-110.1

85.5-113.5

81.9-116

104-51-8

103-65-1

91-20-3

95-47-6

135-98-8

98-06-6

108-88-3

17060-07-0

460-00-4

1868-53-7

2037-26-5

MAY 1 3 2001

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Laboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any action or the consequences of any action taken in connection with this report. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included on the cover letter.

NYSDOH ELAP #10795

EPA LAB ID #NY00935

3821 Buck Drive, Cortland, NY 13045-5150 Tel 607.753.3403 Fax 607.753.3415

Appendix B – Standard Operating Procedures	

Standard Operating Procedure – 3b

Groundwater Sampling Using Low – Flow Submersible Pump

Materials:

Sampling notebook/Field log book

Groundwater monitoring data log forms

Well key

Adjustable wrench or manhole wrench

Photoionization detector (PID)

Flashlight or mirror

Electronic water level indicator

pH, conductivity, temperature meter

Oxidation potential meter (Eh)

Dissolved oxygen meter

Turbidity meter

Sample bottles, sample tags or labels, indelible markers, and clear tape

Appropriate power supply

Redi-Flo 2 submersible pump (or equivalent) and Teflon® tubing

Flow-through cell for pump or appropriate-sized beakers for meters

Buckets or drum for water storage

Pocket knife or scissors

Level C or Level D Personal Protective Equipment

Nitrile or latex gloves

Note: This SOP is only to be used if the applicable state of federal agency approves of purging and sampling groundwater using a submersible pump.

Procedure:

- 1. Verify locations of wells, media to be sampled, and parameters to be analyzed as specified in the sampling plan.
- 2. Prepare field log book with description of site, weather, participants, and other relevant observations (Refer to SOP-1)
- 3. As the following steps are completed, fill-in both front and back of the groundwater monitoring data log (Attachment 1 in SOP-1).
- 4. With the field personnel in Level D personal protective equipment, unless historical data, information, or suspicious warrants upgrading to Level C protective equipment, survey around the base of the well and wellhead with a PID; remove well cap, place probe of PID in wellhead, and record PID response in field book. Survey breathing zone to ensure that the level of personal protection is appropriate. Note observations on the groundwater monitoring data log. (See Site Health and Safety Plan for appropriate measuring techniques and upgrade requirements).
- 5. Inspect water surface in the well; use flashlight if necessary. Note any observable floating product and record observations in the field book.

- 6. Measure and record the extent of the top of the well riser above the ground. If well is a flush mount, measure and record the top of the well riser below the ground. Measure the casing (riser) inside diameter (CID) and record in inches. From the top of the riser, measure the depth (in feet) to water (DTW) with an electronic water level indicator and record on the groundwater monitoring data log. Static water level measurements must be recorded from the surveyor's mark at the top of the riser, if present. If no mark is present, mark a location with a metal file or indelible marker on the north side of the riser for future reference. Measure and record the total depth (TD, in feet) to the bottom of the well.
- 7. Check for light non-aqueous phase liquids (LNAPLs) and dense non-aqueous phase liquids (DNAPLs). Measure thickness with a oil/water interface probe in accordance with the RCRA Groundwater Monitoring Technical Enforcement Guidance Document (November 1992).
- 8. Monitoring wells should be purged/sampled by starting with the upgradient (or clean wells) and proceeding downgradient (in the order from least to most contaminated wells) for the remaining monitoring wells.
- 9. If LNAPL was observed, carefully lower a bailer attached to an appropriate length of new nylon rope into the well, and allow the bottom to sink 1 foot below the water surface to capture LNAPL only. Remove bailer and dispose of LNAPL appropriately. Record the quantity of LNAPL removed in the field book.
- 10. Place plastic sheeting around the wellhead. Carefully lower the pump into the well and place the pump intake in the center of the saturated screen interval, near the top of the well screen if the screen is submerged.
- 11. Begin purging the well at 0.2 to 0.5 L/min (0.05 to 0.13 gal/min). The water level should optimally be monitored continuously, but at a minimum, every 3 to 5 minutes during purging. Ideally, a steady flow rate should be maintained that results in a stabilized water level (less than 0.3 feet of variation). Pumping rates should, if needed, be reduced to the minimum capabilities of the pump to ensure stabilization of the water level. However, care should be taken to maintain pump suction and to avoid entrainment of air in the tubing. Record each adjustment made to the pumping rate ad the water level measured immediately after each adjustment.
- 12. If the recharge rate of the well is very low, care should be taken to avoid loss of pressure in the tubing line, cascading through the sand pack, or pumping the well dry. In these cases, purging should be interrupted before the water in the well reaches a level below the top of the pump. Sampling should commence as soon as the volume in the well has recovered sufficiently to permit collection of samples.
- 13. During purging of the well, monitor the following geochemical parameters every 3 to 5 minutes: turbidity, dissolved oxygen, redox potential (Eh), temperature, specific conductance, and pH. In-line analyzers and continuous readout displays are highly recommended. The well is considered stabilized and ready for sample collection once turbidity, redox potential, and dissolved oxygen in in-line or downhole analyses of groundwater have stabilized within approximately 10% over at least two measurements for example, over two successive measurements made three minutes apart. Turbidity should be less than 50 NTUs (decrease pumping rate to lower turbidity measurements). Dissolved oxygen and Eh must be obtained in a manner in which the sample is not exposed to air prior to the measurement. Other parameters may be taken in a clean container, such as a glass beaker.

- 14. If a well is purged to dryness before removing three well volumes, allow well to recharge and proceed to collect sample. If full recovery exceeds 2 hours, the well should be sampled as soon as sufficient volume is available or within a maximum of 3 hours from purging dry.
- 15. Collect groundwater samples after purging is completed. Collect the samples using the sampling pump operated at a maximum rate of 0.25 L/min (0.07 gal/min)(or to the rate of the purging activities) to avoid agitating the water. Sample first for VOCs, taking care to remove all air bubbles from the vial and minimize agitation. Collect remaining organic samples then inorganic samples.

The recommended order of sample collection is as follows:

In-field measurements (e.g., temperature, pH, Eh, specific conductance, dissolved oxygen, turbidity)

Volatile organic compounds (VOCs)

Purgeable organic carbon (POC)

Purgeable organic halogens (POX)

Total organic halogens (TOX)

Total organic carbon (TOC)

Extractable organics

Pesticides and herbicides

Total metals

Dissolved metals

Phenols

Cyanide

Sulfate and chloride

Nitrate and ammonia

Radionuclides

- 16. Affix a sample tag or label to each sample container and complete all required information (sample no., date, time, sampler's initials, analysis, preservatives). Place clear tape over the tag or label. Record sample designation, date, time, and the sampler's initials on the sample tracking form and in the field book. Complete chain-of-custody forms with appropriate sampling information.
- 17. Remove the pump and tubing from the well. Inspect the well for soundness of protective casing and surface ground seal. Record water color, suspended particulates, discoloration of casing, any unusual occurrences during sampling, and any pertinent weather details on the groundwater monitoring data log.
- 18. Thoroughly decontaminate all equipment used before proceeding to the next well. See SOP No. 16 for details on decontamination procedures. Discard used towels, tubing, gloves, etc., in a plastic bag. Refer to the Investigation Derived Waste Management Plan for the site for appropriate storage and disposal methods of these materials.

Standard Operating Procedure - 10

Split-Spoon Soil Sampling

Application:

To collect soil samples with a split-spoon sampler that is advanced and retrieved with a drill rig.

Materials:

Field log book
Personal protective equipment (PPE)
Split-spoon samplers
Stainless steel spoons or trowels
Mixing tray or bowl
Pipe wrenches
Expanding ruler or tape measure

Note: Decontamination is not required for dedicated sampling equipment.

Procedure:

- 1. Use appropriate PPE as specified in the site-specific health and safety plan.
- 2. Ensure that the soil boring has reached the desired sample depth and that loose soil in the bottom of the boring has been cleaned out.
- 3. The drillers will attach a decontaminated split-spoon sampler to the lead drilling rod, lower it to the bottom of the boring, and advance the split-spoon into the undisturbed soil. Record in the field logbook the number of blows for every 6 inches the sampler is advanced.
- 4. When the split-spoon has reached the desired depth, the driller will retrieve the split-spoon and disconnect the split-spoon from the drilling rod.
- 5. Remove the head and shoe from the split-spoon and note which end of the sampler is the top and bottom. Separate the split-spoon sampler into two halves keeping all of the soil in one of the halves (if possible).
- 6. Measure the length of material recovered in the sampler with respect to the penetration depth and record this ratio in the field logbook.
- 7. If field screening for organic vapors is required, break or cut the soil core every 3 to 4 inches and quickly scan the breaks in the core material with a PID/OVA. Headspace analyses, if required, should be performed in accordance with SOP 22. Record the reading in the field logbook.
- 8. For VOC samples, transfer the soil directly into the sample containers with a decontaminated stainless steel spoon. A closed-system sampler (e.g., Encore Sampler) should be used, if necessary, to collect sludge samples for VOC analysis using EPA Method 5035 for preservation.

9. Describe the remaining sample material in accordance with ASTM International Standard D 2488 and the Unified Soil Classification System. Record the information in the field logbook.

<u>Note</u>: the top of the split-spoon often contains float material, which is not to be included in the soil sample or sample description.

- 10. If it is necessary to collect soil samples for non-volatile parameters, transfer the recovered soil to a decontaminated mixing tray or bowl with a decontaminated stainless steel spoon. Soil material lodged within the split-spoon shoe should also be placed in the mixing tray or bowl for sampling.
- 11. Examine contents of the tray and remove pebbles, organic material, (e.g., roots, grass, and woody material), and other debris with the stainless steel spoon. Use the same spoon to chop apart clumps of soil and mix the contents of the tray to a homogeneous particle size and texture.
- 12. Transfer the soil material to the appropriate sample containers using the stainless steel spoon.
- 13. Label the containers, cover the labels with tape, and immediately place the containers in a cooler maintained at an ambient temperature of 4° Celsius with wet ice. Freezer packs or dry ice should not be used for sample preservation.
- 14. Record the sample location, sample depth, sampler name, and the requested analytical parameters in the field log book.
- 15. Complete the chain-of-custody form with appropriate sampling information.
- 16. Samples should be maintained and shipped in accordance with SOP 20.
- 17. Properly manage all PPE and investigation-derived wastes in accordance with state and federal requirements.

Second Parameter Paramet			NG LOG		PROJECT	1	Boring No.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ESC E	ngineering				
Reston, Virginia 20190 Date Drilled Drilling Co. Boring Location Ground Elevation TOC Elevation TOC Elevation Method Hole Diameter Type Method Hole Diameter Diameter Length (ft) Inside Diameter Screen Length Hammer (lb) Total Depth Screen Slot Size Fall (in) P.I.D. Percent Sample		of New	York, P.C.				Sheet _of
Drilling Co. Boring Location Ground Elevation TOC Elevation Total Depth Type Method Hole Diameter Diameter Length (ft) Screen Length Hammer (lb) Screen Slot Size Fall (in) P.I.D. Percent Sample Well							Dec. D.20.4
			1rg1n1a 2019	0		D 1	
		0.				Boring Lo	cation
Boring Casing/S Sampler Method Type Method Hole Diameter Diameter Length (ft) Inside Diameter Screen Length Hammer (lb) Total Depth Screen Slot Size Fall (in) P.I.D. Percent Sample Well Well							
Method Type Method Hole Diameter Diameter Length (ft) Inside Diameter Screen Length Hammer (lb) Total Depth Screen Slot Size Fall (in) P.I.D. Percent Sample Well	Geologist	D	oring				
Hole Diameter Inside Diameter Screen Length Total Depth P.I.D. Percent Sample Length (ft) Hammer (lb) Fall (in) Fall (in)	Method	<u>D</u>	ornig		Type	<u>Casing/a</u>	
Inside Diameter Total Depth P.I.D. Percent Sample Screen Length Screen (Ib) Fall (in) Well		eter					
Total Depth Screen Slot Size Fall (in) P.I.D. Percent Sample Well						oth	
P.I.D. Percent Sample Well					Screen Slot	Size	
Depth (ppm) Recovery Depth Blows/6" Design Sample Description 1 <td< td=""><td>10tm 20pt</td><td></td><td>Percent</td><td>Sample</td><td>Sereen Sie</td><td></td><td>T was (as)</td></td<>	10tm 20pt		Percent	Sample	Sereen Sie		T was (as)
	Depth			Denth	Blows/6"		Sample Description
		(PP)	11000 (01)	2 op ui	210 (1.5)	2 001811	
Company							
Company							
Company							
Company							

Standard Operating Procedure - 15

Decontamination of Drilling Equipment

Materials:

Canvas or plastic tarp(s)
4-mil polyethylene liner
Pressurized steam cleaner (steam jenny)
55-gallon steel drums with bung (closed) tops
55-gallon steel drums with open tops, rings, lids, ring-nut and ring-bolt
Hammer, nails, duct tape, extension cord(s)
Wood boards - 4" x 4", 2" x 4" or 2" x6"
Portable wet/dry vacuum
Shovel, funnel, and squeegee

Construction of Decontamination Basin:

- 1. Place tarp(s) on flat, firm surface in an accessible area of the site away from areas of surface contamination. Use enough tarp to accommodate the rear of the drilling rig and hollow stem augers and to prevent overspray from the steam jenny from falling onto adjacent soil surfaces. If necessary, place more than one tarp on the ground. Overlap tarp edges and secure with duct tape. Area should be slightly inclined toward one corner so that the decontamination water will pool in one corner for easier pumping to the containment drums.
- 2. Place a layer of polyethylene liner on top of the tarp(s). If one sheet cannot completely cover the tarp, use another one. Overlap the sheets at the edges and secure with duct tape.
- 3. Place 4" x 4" boards along the tarp's outer edges to form a square or rectangular basin. Roll each 4" x 4" board toward the center so the tarp and polyethylene wrap completely around it at least once. Secure the tarp and liner to the top of the boards with nails, tacks or heavy-duty staples.
- 4. Place the drums, steam cleaner, and wet/dry vacuum adjacent to one side of the basin on the outside.

Decontamination Procedure:

- 1. Unload drilling equipment from the drilling rig and place in one side of the basin.
- 2. Activate the steam cleaner. Personnel performing steam cleaning should don rubber boots, Tyvek or Saranex suits, rubber gloves, and a hard hat with a face shield for splash protection.
- 3. Clean each piece of drilling equipment, including auger bits, drill bits, portable power augers, hollow stem augers, auger holders, split spoons, rod lifters, and drilling rods, by holding the nozzle of the steam cleaner a few inches away. Wood 2" x 4"s can be placed on the basin floor to prevent drilling equipment from coming into contact with solids that will build up beneath it as it is being steam cleaned.
- 4. After each piece is cleaned, place it on rows of 2" x 4" boards in a separate area of the basin.

- 5. If space allows, position the rear of the drill rig in the basin and use the steam cleaner to clean off rig surfaces and the hoist and derrick as needed.
- 6. Reload drilling equipment onto rig and drive it out of the basin.
- 7. Vacuum up liquids on the basin floor with the flexible hose of the portable wet/dry vacuum. A long-handled squeegee can be used to pool liquid together to aid vacuuming.
- 8. Remove accumulated solids from the basin floor with a shovel and place in open-top drums. During removal of the accumulated solids, be careful so that the polyethylene liner is not torn, cut, or punctured with the shovel.
- 9. Empty the canister of the wet/dry vacuum into a bung-top drum using a funnel.
- 10. Secure and tighten tops of drums and apply appropriate hazardous waste or nonhazardous waste labels to each drum. The accumulation date should be placed on each drum. An inventory of all onsite drums should be entered into the field log book by field personnel. All drums should be marked, numbered, or labeled with an indelible marker for future reference.
- 11. On completion of onsite work, the properly labeled and inventoried drums should be stored within a newly constructed pad or basin until disposal is arranged. This containment area should be constructed of wooden boards with a polyethylene liner, as described above.
- 12. Materials used in construction of the decontamination basin or pad should be disassembled and placed into a properly labeled drum for future disposal.
- 13. All drilling equipment and the drill rig should be decontaminated on arrival onsite and before the start of any drilling activity. On completion of site work, the drilling equipment and rig should be decontaminated by the drilling contractor before departure from the site.

Standard Operating Procedure - 16

Decontamination of Submersible Pumps

Materials:

Field logbook

Personal protective equipment (PPE)

Polyethylene sheeting

Garbage bags

Nonphosphate detergent (e.g., Liquinox or Alconox)

Tap water

Deionized water

Two containers (e.g., garbage cans, buckets, plastic tubs)

Nylon brushes

Isopropanol

Spray bottles

Paper towels

<u>Note</u>: To limit the potential for cross-contamination between wells, wells should be pumped in the order of increasing constituent concentrations whenever possible. This SOP assumes that dedicated tubing is being used at each well. If dedicated tubing is not being used, the tubing should also be decontaminated using the following procedures.

Decontamination Procedure:

- 1. Use appropriate PPE as specified in the site-specific health and safety plan.
- 2. Prepare a decontamination area by spreading polyethylene sheeting on a firm, flat surface (if possible). Create a berm around the decontamination area to contain inadvertent spillage. A berm can be created by rolling under the edges of the polysheeting or by draping the plastic over a wooden frame, etc.
- 3. Place two clean containers (e.g., garbage cans, buckets, plastic tubs) on the polysheeting. Place tap water in one container with non-phosphate detergent. Place only tap water in the second container. The containers may also be lined with garbage bags.
- 4. If an oily film or residue is observed on the pump or leads when they are removed from the well, the pump should be sprayed with isopropanol to remove the oil and then wiped clean with paper towels before proceeding with Step 5 below. The oily rinsate should be contained in a separate container for proper disposal.
- 5. Place the pump and wire leads in the container of non-phosphate detergent and tap water and scrub the exterior of the pump with a brush. Circulate the soapy solution through the pump for at least 5 minutes. Rinse the exterior of the pump and leads with additional tap water to remove excess soap (if necessary) before proceeding with Step 6.
- 6. Place the pump and leads in the container of tap water and run the pump for a least 5 minutes. Run water through the pump until all residual detergent has been removed. The soapy solution and rinse water should be changed when it becomes oily or too silty.

- 7. Remove the pump and leads from the rinse water. Spray off the pump thoroughly with deionized water and wipe it dry with clean paper towels. Wipe off the wire leads with a paper towel soaked with deionized water.
- 8. Wrap the pump and leads in plastic sheeting or a new plastic garbage bag to prevent possible contamination during transportation. Label the sheeting or bag with the date of decontamination for future reference.
- 9. Properly manage all PPE and decontamination rinsate in accordance with state and federal requirements (See SOP 26). The spent wash water and rinse water can potentially be placed in the facility's waste water treatment system. However, field personnel should obtain approval from facility personnel and from the local POTW.

Standard Operating Procedure – 20

Sample Shipping Procedures

Materials:

Suitable shipping container (e.g., plastic cooler or lab supplied styrofoam cooler)

Chain-of-custody forms

Custody seals

ESC Engineering mailing labels

Strapping, clear packing, or duct tape

Ziploc® plastic bags

Knife or scissors

Permanent marker

Latex or nitrile gloves

Large plastic garbage bag

Wet ice

Bubble wrap or other packing material

Universal sorbent materials

Sample container custody seals (if required)

Federal Express form (with ESC Engineering account number)

Vermiculite (or commercially available cat litter)

Procedures:

For shipping purposes, samples are segregated into two classes; environmental samples and restricted articles (i.e., hazardous materials). Environmental samples can also be categorized based on expected or historical analyte concentrations (i.e., low or high). An environmental sample is one that is not defined as a hazardous material by the Department of Transportation (DOT, 49 CFR Part 171.8). The DOT defines a "hazardous material" as a substance which has been determined by the Secretary of Transportation to be capable of posing an unreasonable risk to health, safety, and property when transported in commerce, and which has been so designated. Any material of a suspected hazardous nature, previously characterized as hazardous, or known to be hazardous is considered a restricted article.

In general, the two major concerns in shipping samples are protecting the samples from incidental breakage during shipment and complying with applicable DOT and courier requirements for restricted article shipments.

Protecting the samples from incidental breakage can be achieved using "common sense." All samples should be packed in a manner that will not allow them to freely move about in the cooler or shipping container. Glass surfaces should not be allowed to contact each other. When possible, repack the samples in the same materials that they were originally received in from the laboratory. Each container should be cushioned with plastic bubble wrap, styrofoam, or other nonreactive cushioning material. Shipping hazardous materials should conform to the packaging, marking, labeling, and shipping instructions identified in 49 CFR Parts 172 & 173.

Environmental samples shall be packed for shipment using the following procedures:

- 1. Line the shipping container with a large, heavy-duty plastic garbage bag. Place universal sorbent materials (e.g., sorbent pads) between the cooler and the heavy-duty plastic bag. The amount of sorbent material should be sufficient to absorb the volume of wet ice and aqueous samples. If using a plastic cooler, securely tape the drain plug closed on the outside of the cooler.
- 2. Place 2-4 inches of bubble wrap or other packing material inside the heavy-duty plastic bag in the bottom of the cooler.
- 3. The sample packer should wear latex or nitrile gloves when handling the samples during the packing process.
- 4. Place the bottles in the cooler with sufficient space to allow for the addition of more bubble wrap or other packing material between the bottles. Large or heavy sample containers should be placed on the bottom of the cooler with lighter samples (i.e., VOAs) placed on top to eliminate breakage.
- 5. Place the "wet ice" inside two sealed heavy-duty zipper-style plastic bags and package the bags of ice on top of or between the samples. Pack enough ice in the cooler to chill the samples during transit. If the cooler is shipped on a Friday or Saturday for Monday delivery, double the amount of ice placed in the cooler (Monday delivery should be used only as a last resort). Fill all remaining space with bubble wrap or other packing material. Securely close and seal with tape the top of the heavy-duty plastic bag.
- 6. Place chain-of-custody form (and, if applicable, CLP traffic reports) into a Ziploc® plastic bag and affix to the cooler's inside lid, then close the cooler. Securely fasten the top of the cooler shut with tape. Place two signed and dated chain-of-custody seals on the top and sides of the cooler so that the cooler cannot be opened without breaking the seals.
- 7. Once cooler is sealed, shake test the cooler to make sure that there are no loose sample containers in the cooler. If loose samples are detected, open the cooler and repack the samples.
- 8. Using clear tape, affix a mailing label with ESC Engineering' return address to the top of the cooler.
- 9. Ship samples via priority overnight express to the contracted analytical laboratory for next morning delivery. If applicable, check the appropriate box on the airbill for Saturday delivery.
- 10. Declare value of samples on the shipping form for insurance purposes. The declared value should reflect the cost to recollect the samples.
- 11. Record the tracking numbers from the Federal Express forms in the field notebook and on the chain of custody form. Also, retain the customer's copy of the Federal Express airbill.

Hazardous materials should be packed according to the above procedures with the following additions:

- 1. Place samples in individual Ziploc® plastic bags and secure with a plastic tie or tape.
- 2. Place samples in paint cans in a manner which would prevent bottle breakage (i.e., do not place glass against glass).

- 3. Place vermiculite or other absorbent packing material in the paint can around the samples. The amount of packing material used should be sufficient to absorb the entire contents of the sample if the container is broken during shipment.
- 4. Secure a lid to the paint can with can clips and label the outside of the can with sample numbers and quantity. Mark the paint can with "This End Up" and arrow labels that indicate the proper upward position of the paint can.
- 5. Package the paint cans in DOT-authorized boxes or coolers, with appropriate DOT shipping labels and markings on two adjacent sides of the box or cooler.
- 6. Ship the restricted articles via overnight courier following the courier's documentation requirements. A special airbill must be completed for each shipment. Retain a copy of the airbill for ESC Engineering records and tracking purposes, if necessary.

Standard Operating Procedure – 25

Groundwater Sampling Using Geoprobe® System or Equivalent

Application:

To perform groundwater sampling using hydraulically-driven screen point sampling equipment (GeoProbe® System or Equivalent).

Materials:

Stainless steel probe rods with treads sealed with Teflon® tape or O-rings Stainless steel screen point sampler
Stainless steel mini-bailer
Teflon®-coated stainless steel wire or thin nylon line
Polyethylene tubing (3/8-inch) fitted with a stainless steel check valve
Silicone tubing
0.45-micron filter
Peristaltic pump
Sample bottles, labels, indelible markers, and clear tape
Nitrile or latex gloves

Procedure:

- 1. Decontaminate all down-hole equipment before conducting sampling activities at each location. Ensure that the sampling location has been cleared of all underground utilities.
- 2. Drive the stainless steel point sampler into the subsurface material. The design of the sampler should allow the screen to remain retracted within the probe rods until it is driven to the appropriate sampling depth.
- 3. After reaching the desired depth, pull back on the stainless steel sheath to expose the screen. The point on the probe rods will be displaced and is not recoverable^a.
- 4. Purging is not required for probes that are sealed and opened at the target depth for sample collection. Exposed probes that are driven through the soil to the desired water sample depth must be purged of a minimum of three probe-rod volumes of water before sampling is conducted.
- 5. Groundwater samples can be collected using a mini-bailer lowered on Teflon®-coated stainless steel wire or nylon line inside the probe rods. Another method of sample collection involves the use of a clean section of 3/8-inch polyethylene tubing fitted with a stainless steel bottom check valve. The polyethylene tubing is inserted down the probe rods to the desired sampling depth. Oscillate the polyethylene tubing up and down to drive a column of water to the surface. A peristaltic pump may be attached to the sample tubing and used to pump water to the surface. The peristaltic pump should not be used to collect samples for VOC analysis.
- 6. Immediately collect samples for VOC analysis, if required. Transfer the groundwater directly form the sampling equipment (mini-bailer, polyethylene tubing) to the sample containers. If analyzing for dissolved metals, the sample must be filtered in the field. See note below with regards to field filtering of metal samples.

- 7. Seal and label each sample container and place in a cooler with ice or freezer packs to maintain 4° Celsius for shipment to the analytical laboratory.
- 8. Complete the chain-of-custody form with appropriate sampling information.
 - a) Where samples are collected from depths greater than 15-20 feet below the water table, a water level indicator may be inserted into the rods before exposing the screen to determine whether water is entering through the rod joints or disposable probe point.

Field Filtering of Metal Samples:

- 1. Assemble peristaltic pump per operating manual instructions that accompany the pump. Silicone tubing is generally used though the head of the pump.
- 2. Attach polyethylene tubing to the inflow end of the silicone tubing. The polyethylene tubing should be long enough to extend to the bottom of the screen point. Attach a clean filter to the outflow end of the silicone tubing.
- 3. Turn on the pump and slowly draw the water from the sampling equipment, through the pump and filter, and into the sample container. If sediment is visible in the sample container, filter break-through has occurred and the sampling and filtering process will need to be repeated.
- 4. Disassemble the pump head and discard the tubing and filter.

Appendix C – Boring Logs

Project: Former General Instrument Surface Elevation (feet AMSL*): 1,048.40

Project No.: 148992 **TOC Elevation (feet AMSL*):** 1,050.54

Location: Sherburne, NY **Total Depth (feet):** 20

Completion Date: November 18, 2005 **Borehole Diameter (inches):** 8.25

*AMSL = Above mean sea level

Description	Well Details
Depth Sample Sam	
Silt Dark yellowish-brown (10YR 3/4) silt, trace woody debris; loose; dry.	47 (1997)
Poorly-Graded Sand (SP) Olive brown (2.5Y 4/4) silt, trace fine-grained sand; dense; dry, becoming moist between 3.4 and 3.5 feet.	
Poorly-Graded Sand with Gravel (SP) Olive brown (2.5Y 4/4) fine to medium-grained sand, little to some gravel, trace silt; loose; wet.	
Poorly-Graded Sand (SP) Olive brown (2.5Y 4/4) fine to medium-grained sand, trace fine-grained gravel, trace silt; medium dense to dense; wet; faint solvent-like odor between 5.0 and 6.0 feet.	
Silty Gravel (GM) Olive brown (2.5Y 4/4) gravel, some silt, trace fine to medium-grained sand; dense; wet.	
NA 2 3 25 Silty Sand with Gravel (SM) Olive brown (2.5Y 4/4) fine-grained sand, little to some silt, little to some fine to coarse-grained gravel; loose; wet.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Poorly-Graded Sand (SP) NA NA Poorly-Graded Sand (SP) Olive brown (2.5Y 4/4) fine to medium-grained sand, trace fine-grained gravel, trace silt; loose; wet.	
Poorly-Graded Sand (SP) NA	
Silty Sand with Gravel (SM) Olive brown (2.5Y 4/4) fine to medium-grained sand, some silt, little fine to coarse-grained gravel; medium dense; wet.	

Geologist(s): David P. Bouchard Subcontractor: Parratt Wolff, Inc. Driller/Operator: Ian Grassy Method: Hollow Stem Auger **Environmental Strategies Consulting LLC**

Project: Former General Instrument Surface Elevation (feet AMSL*): 1,048.40

Project No.: 148992 TOC Elevation (feet AMSL*): 1,050.54

Location: Sherburne, NY **Total Depth (feet):** 20

Completion Date: November 18, 2005 **Borehole Diameter (inches):** 8.25

*AMSL = Above mean sea level

	Sa	mple l	Data			Subsurface Profile	
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description	Well Details
22— 24— 24— 26— 30— 33— 33— 34— 36— 38— 40—						Poorly-Graded Sand with Gravel (SP) Olive brown (2.5Y 4/4) silt, little to some gravel; medium dense; wet. Silt (ML) Dark gray (2.5Y 4/1) silt, little clay; dense; wet. Bottom of Boring at 20 feet	

Geologist(s): David P. Bouchard Subcontractor: Parratt Wolff, Inc. Driller/Operator: Ian Grassy Method: Hollow Stem Auger **Environmental Strategies Consulting LLC**

Project: Former General Instrument Surface Elevation (feet AMSL*): 1,047.42

Project No.: 148992 **TOC Elevation (feet AMSL*):** 1,048.92

Location: Sherburne, NY **Total Depth (feet):** 16

Completion Date: November 18, 2005 **Borehole Diameter (inches):** 8.25

*AMSL = Above mean sea level

	Sa	mple	Data			Subsurface Profile					
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface	Well Details				
- - 2-	1	0.0	2 2 3 3	50		Silt (ML) Olive brown (2.5Y 4/4) silt; medium dense to very dense; dry, mottled and iron-oxide stained between 3.0 and 4.0 feet.	27 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				
- - 4-	2	0.0	3 3 5	75							
6-	3	NA	2 2 2 1	50		Gravelly Silt with Sand (ML) Olive brown (2.5Y 4/3) silt, some gravel, little fine to medium-grained sand; medium dense; wet.					
8-	4	NA	1 1 1 5	25		Silty Gravel with Sand (GM) Olive brown (2.5Y 4/3) fine to coarse-grained gravel, some silt, little fine to medium-grained sand; loose; wet.					
10—	5	NA	7 4 4 4	50		Gravelly Silt with Sand (ML) Olive brown (2.5Y 4/3) silt, little fine-grained sand, little fine to coarse-grained gravel; loose; wet.					
12—	6	NA	5 6 6	50		Silty Gravel with Sand (GM) Olive brown (2.5Y 4/3) fine to coarse-grained gravel, little silt, little fine to medium-grained sand; loose; wet.					
- - 14-	7	NA	7 4 3 2	100		Poorly-Graded Sand (SP) Olive brown (2.5Y 4/3) fine to coarse-grained sand, trace gravel; medium dense; wet.					
- - - 16-	8	NA	2 2 2 2	75		Silty Gravel with Sand (GM) Olive brown (2.5Y 4/3) gravel, little silt, little fine to medium-grained sand; loose; wet.					
18—						Very dark gray (2.5Y 3/1) silt, little clay; medium dense; moist. Bottom of Boring at 16 feet					
20-											

Geologist(s): David P. Bouchard Subcontractor: Parratt Wolff, Inc. Driller/Operator: Ian Grassy Method: Hollow Stem Auger **Environmental Strategies Consulting LLC**

Project: Former General Instrument Surface Elevation (feet AMSL*): 1,047.03

Project No.: 148992 **TOC Elevation (feet AMSL*):** 1,049.13

Location: Sherburne, NY **Total Depth (feet):** 16

Completion Date: November 17, 2005 **Borehole Diameter (inches):** 8.25

*AMSL = Above mean sea level

	Sa	mple	Data			Subsurface Profile	
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface	Well Details
2-	1	NR	1 2 2 3	50		Silt (ML) Dark grayish-brown (2.5Y 4/2) silt; medium dense; moist.	4
-	2	NR	3 3 4 4	75		Silt (ML) Light olive brown (2.5Y 5/3) silt, little clay; dense; moist, mottled.	
4	3	NA	3 4 3 4	25		Sandy Silt (ML) Light olive brown (2.5Y 5/3) silt, little to some fine-grained sand; dense; dry, some mottling and iron-oxide staining.	
6	4	NA	3 3 2 3	50		Poorly-Graded Sand with Gravel (SP) Olive brown (2.5Y 4/3) fine to coarse-grained sand, some fine to coarse-grained gravel; loose to medium dense; wet.	
10—	5	NA	1 1 2 1	50		Poorly-Graded Gravel with Sand (GP) Dark olive brown (2.5Y 3/3) fine to coarse-grained gravel, little fine to coarse-grained sand, little silt; loose; wet.	
12—	6	NA	1 1 1	25			
14-	7	NA	0	50		Poorly-Graded Gravel with Silt and Sand (GP-GM) Dark olive brown (2.5Y 3/3) fine to coarse-grained gravel, some medium to coarse-grained sand, trace to little silt; loose; wet.	
16-	8	NA	2 3 3	50		Silt (ML) Very dark gray (2.5Y 3/1) silt, trace fine-grained sand; medium dense; wet, becoming moist between 15.2 and 16.0 feet.	
18-						Bottom of Boring at 16 feet	

Geologist(s): David P. Bouchard Subcontractor: Parratt Wolff, Inc. Driller/Operator: Ian Grassy Method: Hollow Stem Auger **Environmental Strategies Consulting LLC**

Project: Former General Instrument Surface Elevation (feet AMSL*): 1,046.39

Project No.: 148992 **TOC Elevation (feet AMSL*):** 1,048.38

Location: Sherburne, NY **Total Depth (feet):** 16

Completion Date: November 18, 2005 **Borehole Diameter (inches):** 8.25

*AMSL = Above mean sea level

	Sa	mple	Data			Subsurface Profile	
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface	Well Details
- - 2-	1	0.0	0 2 4 4 5	50		Silt (ML) Olive brown (2.5Y 4/4) silt; medium dense; dry.	27 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
4-	2	0.0	5 5 5 2	50		Silt (ML) Olive brown (2.5Y 4/4) silt, little clay; moist, becoming wet at 4.0 feet, mottled between 3.5 and 4.0 feet.	
6-	3	NA	3 2 3	25	-	Gravelly Silt with Sand (ML) Olive brown (2.5Y 4/4) silt, some gravel, little fine to medium-grained sand; loose; wet.	
8-	4	NA	3 5 8 4	50		Silty Gravel with Sand (GM) Olive brown (2.5Y 4/4) gravel, little fine to medium-grained sand, little silt; medium dense; wet; faint solvent-like odor.	
10—	5	NA	5 4 4 3	25		Poorly-Graded Gravel with Sand (GP) Olive brown (2.5Y 4/4)fine to coarse-grained gravel, little to some medium to coarse-grained sand; loose; wet.	
12-	6	NA	3 5 4	75		Poorly-Graded Sand with Gravel (SP) Olive brown (2.5Y 4/3) fine to medium-grained sand and gravel, little silt; loose; wet.	
- - 14-	7	NA	7 11 14 14	75		Poorly-Graded Sand (SP) Dark olive brown (2.5Y 3/3) fine to medium-grained sand trace	
16—	8	NA	- - -	50		Poorly-Graded Gravel with Sand (GP) Olive brown (2.5Y 4/3) fine to coarse-grained gravel, some medium to coarse-grained sand, trace silt; medium dense; wet.	
18-						Silt (ML) Very dark gray (2.5Y 3/1) silt, little clay; very dense; moist. Bottom of Boring at 16 feet	

Geologist(s): David P. Bouchard Subcontractor: Parratt Wolff, Inc. Driller/Operator: Ian Grassy Method: Hollow Stem Auger **Environmental Strategies Consulting LLC**

Project: Former General Instrument Surface Elevation (feet AMSL*): 1,047.32

Project No.: 148992 **TOC Elevation (feet AMSL*):** 1,049.85

Location: Sherburne, NY **Total Depth (feet):** 24

Completion Date: November 21, 2005 **Borehole Diameter (inches):** 8.25

*AMSL = Above mean sea level

	Sa	mple	Data			Subsurface Profile	
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface	Well Details
2-	1	0.0	2 2 4 4	50		Silt (ML) Dark olive brown (2.5Y 3/3) silt, trace gravel; medium dense; dry.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
4-	2	0.0	3 3 3 3	100		Silt with Sand (ML) Dark olive brown (2.5Y 3/3) silt, little fine-grained sand; moist, becoming wet at 4.0 feet, mottled between 3.6 and 4.0 feet.	
6-	3	NA	3 5 5	25		Silty Gravel with Sand (GM) Olive brown (2.5Y 4/4) fine to coarse-grained gravel, little to some	
- -	4	NA	3 5 7 10	25		silt, little fine to coarse-grained sand; loose to medium dense; wet.	
8-	5	NA	5 8 9	50			
10-	6	NA	5 5 6 8	50			
12-	7	NA	6 8 10 11	50			
14	8	NA	3 5 8 10	75			
16-	9	NA	10 12 10 8	100		Poorly-Graded Sand (SP) Dark olive brown (2.5Y 3.3) fine to medium-grained sand; medium dense; wet.	
18—	10	NA	4 7 8 12	0		Silty Gravel with Sand (GM) Olive brown (2.5Y 4/4) gravel, some fine to coarse-grained sand, little silt; loose to dense; wet.	

Geologist(s): David P. Bouchard Subcontractor: Parratt Wolff, Inc. Driller/Operator: Ian Grassy Method: Hollow Stem Auger **Environmental Strategies Consulting LLC**

Project: Former General Instrument Surface Elevation (feet AMSL*): 1,047.32

Project No.: 148992 TOC Elevation (feet AMSL*): 1,049.85

Location: Sherburne, NY **Total Depth (feet):** 24

Completion Date: November 21, 2005 **Borehole Diameter (inches):** 8.25

*AMSL = Above mean sea level

	Sa	mple	Data			Subsurface Profile	
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description	Well Details
22-	11	NA NA	8 10 6 7 10 11 5 6	50 75		Silty Gravel with Sand (GM) Olive brown (2.5Y 4/4) gravel, some fine to coarse-grained sand, little silt; loose to dense; wet.(continued)	
24— 26— 28— 30— 32— 34— 34— 36— 38— 40—						Silt (ML) Very dark gray (2.5Y 3/1) silt, little clay; dense; moist. Bottom of Boring at 24 feet	

Geologist(s): David P. Bouchard Subcontractor: Parratt Wolff, Inc. Driller/Operator: Ian Grassy Method: Hollow Stem Auger **Environmental Strategies Consulting LLC**

Project: Former General Instrument Surface Elevation (feet AMSL*): 1,046.80

Project No.: 148992 **TOC Elevation (feet AMSL*):** 1,048.06

Location: Sherburne, NY **Total Depth (feet):** 22

Completion Date: November 21, 2005 **Borehole Diameter (inches):** 8.25

*AMSL = Above mean sea level

	Sa	mple	Data			Subsurface Profile	
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface	Well Details
2-	1	0.0	5 4 16 4 3	50		Silt (ML) Olive brown (2.5Y 4/3) silt, trace coarse-grained gravel; medium dense; dry.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
4-	2	0.0	3 3 3	50		Silt (ML) Very dark gray (2.5Y 3/1) silt, trace organic material; medium dense; moist.	
6-	3	0.0	1 5 9	25		Silt (ML) Olive brown (2.5Y 4/3) silt, trace gravel, wood debris in cutting shoe; medium dense; moist.	
8-	4	NA	6 9 10	12.5		Silt (ML) Olive brown (2.5Y 4/3) silt, trace gravel and fine-grained sand;	
10-	5	NA	4 6 10 10	100		\langle \langl	
10 -	6	NA	6 8 7 10	75		coarse-grained gravel, gravel increases with depth; loose wet. Silty Gravel with Sand (GM) Olive brown (2.5Y 4/3) gravel, little to some fine to coarse-grained	
-	7	NA	10 14 15 18	75		Sand, little silt; medium dense; wet. Poorly-Graded Sand (SP)	
14-	8	NA	8 12 17 20	75		Silty Gravel with Sand (GM) Olive brown (2.5Y 4/3) gravel, some fine to coarse-grained sand, little silt; medium dense to dense; wet.	
16-	9	NA	11 16 20 10	50		nate shi, mediam dense to dense, wet.	
18-	10	NA	6 7 7 8	25			

Geologist(s): David P. Bouchard Subcontractor: Parratt Wolff, Inc. Driller/Operator: Ian Grassy Method: Hollow Stem Auger **Environmental Strategies Consulting LLC**

Project: Former General Instrument Surface Elevation (feet AMSL*): 1,046.80

Project No.: 148992 **TOC Elevation (feet AMSL*):** 1,048.06

Location: Sherburne, NY **Total Depth (feet):** 22

Completion Date: November 21, 2005 **Borehole Diameter (inches):** 8.25

*AMSL = Above mean sea level

	Sa	mple	Data			Subsurface Profile	
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description	Well Details
22	Samp	D/OIA NA	Blow 4 111 8 6	05 % Re	Lithol Lithol	Silt (ML) Very dark grayish-brown (2.5Y 3/3) silt, little clay; very dense; moist. Bottom of Boring at 22 feet	
38-							

Geologist(s): David P. Bouchard Subcontractor: Parratt Wolff, Inc. Driller/Operator: Ian Grassy

Method: Hollow Stem Auger

Environmental Strategies Consulting LLC

Project: Former General Instrument Surface Elevation (feet AMSL*): 1,047.70

Project No.: 148992 **TOC Elevation (feet AMSL*):** 1,049.50

Location: Sherburne, NY **Total Depth (feet):** 16

Completion Date: November 17, 2005 **Borehole Diameter (inches):** 8.25

*AMSL = Above mean sea level

	Sa	mple	Data		Subsurface Profile					
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface	Well Details			
- - 2-	1	NR	1 2 4 3	50		Silt (ML) Dark olive brown (2.5Y 3/3) silt; medium dense; dry.	2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
4-	2	NR	2 3 5 6	50		Silt (ML) Dark olive brown (2.5Y 3/3) silt; medium dense, trace fine-grained sand and gravel; moist, becoming wet between 3.3 and 3.4 feet.				
6-	3	NA	3 4 4 3	50		Poorly-Graded Gravel with Silt and Sand (GP-GM) Dark olive brown (2.5Y 3/3) fine to coarse-grained gravel, little to some fine to coarse-grained sand, trace to little silt; loose to medium				
8-	4	NA	5 4 6 5	50		dense; wet.				
- 10-	5	NA	8 9 8 8	25						
12-	6	NA	8 6 5 8	50						
_ _ _	7	NA	- - -	100						
14	8	NA	3 2 3 2	100		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
16—						Silt (ML) Very dark gray (2.5Y 3/1) silt, little clay; very dense; moist. Bottom of Boring at 16 feet				
20-										

Geologist(s): David P. Bouchard Subcontractor: Parratt Wolff, Inc. Driller/Operator: Ian Grassy Method: Hollow Stem Auger **Environmental Strategies Consulting LLC**

Project: Former General Instrument Surface Elevation (feet AMSL*): 1,047.50

Project No.: 148992 TOC Elevation (feet AMSL*): 1,049.61

Location: Sherburne, NY **Total Depth (feet):** 14

Completion Date: November 17, 2005 **Borehole Diameter (inches):** 8.25

*AMSL = Above mean sea level

	Sa	mple	Data			Subsurface Profile	
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface	Well Details
2-	1	NR	2 2 3 3	50		Silt (ML) Olive brown (2.5Y 4/3) silt, trace fine-grained sand; medium dense; dry, becoming moist between 2.25 feet and 3.5 feet, becoming wet between 3.5 and 3.8 feet.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
-	2	NA	3 4 5 5	88			
4	3	NA	0 0 2 2	25		Silt with Sand (ML) Olive brown (2.5Y 4/4) silt, some fine to medium-grained sand; medium dense; wet.	
6-	4	NA	3 4 4 5	50		Poorly-Graded Sand with Gravel (SP) Olive brown (2.5Y 4/3) fine to medium-grained sand, some fine gravel; loose; wet.	
8	5	NA	5 5 6 7	25		Poorly-Graded Sand with Silt and Gravel (SP-SM) Olive brown (2.5Y 4/3) fine to coarse-grained sand, some fine to coarse-grained gravel, trace to little silt; loose to medium dense; wet.	
10 -	6	NA	4 5 6 7	50			
- -	7	NA	7 8 5 4	100		STL (MI)	
14— 16— 18— 20—						Silt (ML) Olive brown (2.5Y 4/3) silt, little clay; medium dense; moist. Bottom of Boring at 14 feet	

Geologist(s): David P. Bouchard Subcontractor: Parratt Wolff, Inc. Driller/Operator: Ian Grassy Method: Hollow Stem Auger **Environmental Strategies Consulting LLC**

Project: Former General Instrument Surface Elevation (feet AMSL*): 1,047.36

Project No.: 148992 TOC Elevation (feet AMSL*): 1,049.31

Location: Sherburne, NY **Total Depth (feet):** 12

Completion Date: November 22, 2005 **Borehole Diameter (inches):** 8.25

*AMSL = Above mean sea level

	Sa	mple	Data			Subsurface Profile		
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface	Well Detail	
- - 2-	1	0.0	1 1 2 3	37.5		Silt (ML) Olive brown (2.5Y 4/3) silt, trace gravel; loose to medium dense; moist.	27 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	67.0 67.0
- - - 4-	2	0.0	3 3 3 3	75				
6-	3	NA	1 2 2 4	25		Silty Gravel with Sand (GM) Olive brown (2.5Y 4/3) gravel, little silt and fine-grained sand; loose		
- - 8-	4	NA	5 5 6	25		wet.		
10	5	NA	3 3 5 5	50		Silty Gravel with Sand (GM) Olive brown (2.5Y 4/3) gravel, some coarse-grained sand, little silt; loose; wet.		
12	6	NA	2 2 2	75		Silt (ML) Olive brown (2.5Y 4/3) to gray (2.5Y 5/1) silt; trace to little clay; dense; wet.		
14—						Bottom of Boring at 12 feet		
- - 16-								
18—								
20-								

Geologist(s): Erik S. Reinert Subcontractor: Parratt Wolff, Inc. Driller/Operator: Ian Grassy Method: Hollow Stem Auger **Environmental Strategies Consulting LLC**

Appendix D – Low Flow Groundwater Sampling Monitoring Forms

Groundwater Sampling
Monitoring Form
Page 1 of 1

Well ID	MW-2	Project No. 148992		Sample Date: 12/20/2005				
Well Diameter	2 in	Location (Site/Facility)	Former General Instrument Site					
Depth to Water	5.71 ft	Decon Procedures:	Non-phosphate soap and DI rinse					
Total Depth	16.32 ft	Field Personnel	DTW	Notes:				
Screen Length	10 ft	Weather Conditions	Light Snow	•				
Pump Intake	11 ft	Equipment:	QED Sample Pro (Teflon)	Bladder pumps & MP-15 Controllers driven with compressed CO ₂				

Stabilized: ±10-percent for temperature, turbidity, DO, and ORP; ±0.1 unit for pH; and ± 3-percent for specific conductance

					Inst	rument Calib	ration Infor	mation				
	pH N	leter Calibratio	n				H	loriba U-22 Calik	ration			
H 7.00	Std.	pH 4.01 Std.	SI. (mV/pH)	Notes on calibr	ation:							
	NA	NA	NA	Calibrated to	o manufacture	r's specificatio	ons					
Air temp		12	°F									
Well P	II Purging Information			Start purge @:	1018	End purge @:	1105	Pump Type: B				
Time	DTW	Purge Volume (L)	рН	Conductivity (mS/m)	Turbidity (NTU)	D.O. (mg/l) *	T (°C)	ORP/Eh Flow Rate (mV) (mL/min)		Comments		
1018	5.71	0.0										
1022	5.71	0.5	6.16	65	13.4	0.72	6.8	108	300	silty		
1026	5.71	1.7	6.21	62	39.0	0.00	9.7	67	300			
1030	5.71	2.9	6.49	65	999.0	0.00	9.6	27	300	Black silt, air buble on NTU meter		
1034	5.71	4.1	6.78	67	43.1	0.00	8.8	1	200	bubble off of NTU Meter		
1038	5.71	5.3	6.86	67	17.6	0.00	9.2	-11	100			
1042	5.71	5.5	7.00	73	-3.5	0.00	9.4	-30	100	clear		
1046	5.71	5.9	7.05	74	-5.3	0.00	9.0	-36	100	clear		
1050	5.71	6.3	7.04	75	-5.7	0.00	9.4	-38	100	clear		
1054	5.71	6.7	7.04	77	-10.0	0.00	9.5	-40	100	clear		
1100	Collect Sa	mple MW-2										
1105	Collect MS	S/MSD Sample f	rom MW-2									

Groundwater Sampling
Monitoring Form
Page 1 of 1

Well ID	MW-8	Project No. 148992		Sample Date:	12/20/2005
Well Diameter	2 in	Location (Site/Facility)	Former General Instrume	nt Site	
Depth to Water	3.7 ft	Decon Procedures:	Non-phosphate soap and I	OI rinse	
Total Depth	16.16 ft	Field Personnel	ESR/BAM	Notes:	
Screen Length	10 ft	Weather Conditions	Cold and partly sunny		
Pump Intake	8 ft	Equipment:	QED Sample Pro (Teflon)	Bladder pumps & MP-15 Controllers driven w	ith compressed CO ₂

Stabilized: ±10-percent for temperature, turbidity, DO, and ORP; ±0.1 unit for pH; and ± 3-percent for specific conductance

					Inst	rument Calib	ration Inforn	nation		
	pH N	Meter Calibratio	n				He	oriba U-22 Calil	oration	
H 7.00	Std.	pH 4.01 Std.	SI. (mV/pH)	Notes on calibr	ation:					
	NA	NA	NA	Calibrated to	o manufacture	r's specificatio	ons			
ir temp		10	°F							
Vell P	urging I	nformation		Start purge @:	1340	End purge @:	1420	Pump Type: E		
Time	DTW	Purge Conductivity Turbidity (NITLI) D.O. T		ORP/Eh (mV)	Commente					
1340	3.70	0.5	6.72	0	-10.0	0.00	11.3	-11	80	
1345	3.70	0.7	6.77	0	-10.0	0.00	11.5	-29	80	
1350	3.70	0.9								Recalibrated Horiba
1355	3.70	1.1	6.01	0	35.4	0.00	11.1	-21	80	
1400	3.70	1.3	6.23	0	32.2	0.00	11.6	-44	80	
1405	3.70	1.5	6.31	0	28.6	0.00	11.5	-55	80	
1410	3.70	1.7	6.35	0	27.7	0.00	11.2	-59	80	
1415	3.70	1.9	6.37	0	26.6	0.00	11.5	-65	80	
1420	Sample C	ollected and lab	eled MW-8 (2 V	OAs). Also colle	ected 2 VOAs lable	ed MW-100 for bl	ind duplicate ana	alysis with false	ime of 1900.	

Groundwater Sampling
Monitoring Form

Page 1 of 1

Well ID	MW-17	Project No. 148992		Sample Date: 12/20/2005			
Well Diameter	2 in	Location (Site/Facility)	Former General Instrument Site				
Depth to Water	6.38 ft	Decon Procedures:	Non-phosphate soap and I	OI rinse			
Total Depth	17.21 ft	Field Personnel	DTW	Notes:			
Screen Length	10 ft	Weather Conditions	Snowing				
Pump Intake	12 ft	Equipment:	QED Sample Pro (Teflon)	Bladder pumps & MP-15 Controllers driven with compressed CO ₂			

Stabilize	d: ±10-per	cent for tempera	ture, turbidity, D	OO, and ORP; ±0	0.1 unit for pH; and	d ± 3-percent for	specific conduct	ance					
					Inst	rument Calib	ration Inform	nation					
		Meter Calibratio					Н	oriba U-22 Calib	oration				
pH 7.00		pH 4.01 Std.	SI. (mV/pH)	Notes on calibr									
	NA	NA	NA	Calibrated to	Calibrated to manufacturer's specifications								
Air temp		12	°F										
Well P	urging l	nformation		Start purge @:	1320	End purge @:	1355	Pump Type: B					
Time	DTW	Purge Volume (L)	рН	Conductivity (mS/m)	Turbidity (NTU)	D.O. (mg/l) *	T (°C)	ORP/Eh (mV)	Flow Rate (mL/min)	Comments			
1320	6.38												
1324	6.38	0.5	7.42	52	-10.0	1.22	5.8	102	100	clear			
1328	6.38	0.9	7.37	50	-10.0	0.00	8.1	96	100	clear			
1332	6.38	1.3	7.33	50	-10.0	0.00	8.9	90	100	clear			
1336	6.38	1.7	7.31	50	-10.0	0.00	9.2	88	100	clear			
1340	6.38	2.1	7.28	52	-10.0	0.00	9.4	91	100	clear			
1344	6.38	2.5	7.28	52	-10.0	0.00	9.8	87	100	clear			
1355	Collect Sa	mple MW-17 fo	r VOCs (2 VOAs	s) analysis.									

Groundwater Sampling Monitoring Form Page 1 of 1

148992 Well ID MW-20 Project No. Sample Date: 12/21/2005 Well Diameter 2 in Location (Site/Facility) Former General Instrument Site Depth to Water Decon Procedures: Non-phosphate soap and DI rinse 5.64 ft Total Depth Field Personnel BAM Notes: 17.11 ft Screen Length 10 ft Weather Conditions Cold Pump Intake QED Sample Pro (Teflon) Bladder pumps & MP-15 Controllers driven with compressed CO₂ 12 ft Equipment:

Stabilize	d: ±10-perd	cent for tempera	ture, turbidity, D	O, and ORP; ±0	0.1 unit for pH; and	t ± 3-percent for	specific conduct	ance		
					Inst	rument Calib	ration Inforr	mation		
	pH N	leter Calibratio	n				Н	oriba U-22 Calik	ration	
pH 7.00	Std.	pH 4.01 Std.	SI. (mV/pH)	Notes on calibr	ation:					
	NA	NA	NA	Calibrated to	o manufacture	r's specification	ons			
Air temp	=	15	°F							
Well P	urging li	nformation		Start purge @: 1230		End purge @:	1525	Pump Type: Bladder		
Time	DTW	Purge Volume (L)	рН	Conductivity (mS/m)	Turbidity (NTU)	D.O. (mg/l) *	T (°C)	ORP/Eh Flow Rate (mV) (mL/min)		Comments
1240	5.64	0.0	5.40	1	18.0	2.56	2.0	269	80	pump stopped working
1455	5.64	0.5	5.97	1	48.7	2.35	6.5	306	100	resume purge
1500	5.64	0.7	6.06	1	55.6	1.12	7.1	287	100	
1505	5.64	1.0	6.16	1	32.2	0.89	7.1	267	100	
1510	5.64	1.3	6.10	1	29.9	0.77	7.1	266	100	
1515	5.64	1.6	6.17	1	23.7	0.62	7.2	255	100	
1520	5.64	1.9	6.22	1	21.6	0.59	7.3	246	100	
1525	Sample Co	ollected at MW-	20 for VOCs (2	VOAs).						

Pump Intake

12 ft

ESC Engineering of New York, P.C. 5 Sullivan Street Cazenovia, NY 13035 v. (315) 655-3900 f. (315) 655-3907

Equipment:

Groundwater Sampling
Monitoring Form
Page 1 of 1

QED Sample Pro (Teflon) Bladder pumps & MP-15 Controllers driven with compressed CO₂

148992 Well ID MW-21 Project No. Sample Date: 12/21/2005 Well Diameter 2 in Location (Site/Facility) Former General Instrument Site Depth to Water 6.57 ft Decon Procedures: Non-phosphate soap and DI rinse Total Depth Field Personnel BAM Notes: 16.6 ft Screen Length 10 ft **Weather Conditions** Cloudy and light snow

Stabilize	d: ±10-per	cent for tempera	ture, turbidity, D	OO, and ORP; ±0	0.1 unit for pH; and	d ± 3-percent for	specific conduct	ance					
					Inst	rument Calib	ration Inform	nation					
		Meter Calibratio					Н	oriba U-22 Calib	ration				
pH 7.00		pH 4.01 Std.	SI. (mV/pH)	Notes on calibr									
	NA	NA	NA	Calibrated to	Calibrated to manufacturer's specifications								
Air temp		15	°F			1:	4050						
Well P	urging l	nformation		Start purge @:	1000	End purge @:	1050	Pump Type: B					
Time	DTW	Purge Volume (L)	рН	Conductivity (mS/m)	Turbidity (NTU)	D.O. (mg/l) *	T (°C)	ORP/Eh (mV)	Flow Rate (mL/min)	Comments			
1025	6.57	0.5	5.17	1	9.6	0.44	4.8	180	80				
1030	6.57	0.7	5.15	1	10.6	0.24	5.1	176	80				
1035	6.57	0.9	5.15	1	19.6	0.18	4.9	173	80				
1040	6.57	1.1	5.16	1	8.2	0.06	4.5	169	80				
1045	6.57	1.3	5.17	1	8.3	0.07	4.5	170	80				
1050	Sample C	ollected for MW	-21 (2 VOAs).										
			_										

Groundwater Sampling Monitoring Form

Page 1 of 1

Well ID	MW-22	Project No. 148992		Sample Date: 12/	/21/2005		
Well Diameter	2 in	Location (Site/Facility)	Former General Instrument Site				
Depth to Water	6.61 ft	Decon Procedures:	Non-phosphate soap and DI rinse				
Total Depth	17.51 ft	Field Personnel	ESR	Notes:			
Screen Length	10 ft	Weather Conditions	Cold and Snowing Lightly				
Pump Intake	13 ft	Equipment:	QED Sample Pro (Teflon)	Bladder pumps & MP-15 Controllers driven with compressed	I CO ₂		

Stabilized: ±10-percent for temperature, turbidity, DO, and ORP; ±0.1 unit for pH; and ± 3-percent for specific conductance

					Inst	rument Calib	ration Infor	mation					
	pH N	leter Calibratio	n				ŀ	Horiba U-22 Calik	ration				
H 7.00	Std.	pH 4.01 Std.	SI. (mV/pH)	Notes on calib	ation:								
	NA	NA	NA	Calibrated to	Calibrated to manufacturer's specifications								
Air temp		10	°F										
Nell F	Purging Information			Start purge @:	1555	End purge @:	1703	Pump Type: B					
Time	DTW	Purge Volume (L)	рН	Conductivity (mS/m)	Turbidity (NTU)	D.O. (mg/l) *	T (°C)	ORP/Eh (mV)	Flow Rate (mL/min)	Comments			
1558	6.61	0.0	6.44	54	999.0	2.62	12.8	221	150	silty			
1603	6.61	0.8	6.58	60	999.0	0.30	13.0	219	150	clearing			
1608	6.61	1.8	6.66	65	999.0	0.00	12.7	208	200				
1613	6.61	2.8	6.71	67	945.0	0.00	12.9	198	200				
1618	6.61	3.5	6.72	72	612.0	0.00	12.0	190	150				
1623	6.61	4.3	6.76	73	420.0	0.00	11.9	186	150				
1628	6.61	5.0	6.74	74	505.0	0.00	10.5	182	150				
1638	6.61	5.8	6.76	74	526.0	0.00	10.3	173	150				
1643	6.61	6.5											
1701	6.61	9.5	6.75	75	249.0	0.00	11.3	167	150				
1703	End purge	e. Collected sam	nple before turbi	dity dropped be	low 50 NTU. Othe	r parameters are	stabilized.						
	Collected	2 VOAs labeled	MW-22 and page	cked on ice.									
	Time gap	in final reading i	s due to time sp	ent assisting BA	M with equipment	troubles.							

Groundwater Sampling Monitoring Form

Page 1 of 1

Well ID	MW-23	Project No. 148992		Sample Date: 12/22/2005			
Well Diameter	2 in	Location (Site/Facility)	Former General Instrument Site				
Depth to Water	6.93 ft	Decon Procedures:	Non-phosphate soap and DI rinse				
Total Depth	22.82 ft	Field Personnel	ESR	Notes:			
Screen Length	10 ft	Weather Conditions	Cloudy and Cold				
Pump Intake	18 ft	Equipment:	QED Sample Pro (Teflon)	Bladder pumps & MP-15 Controllers driven with compressed CO ₂			

Stabilized: ±10-percent for temperature, turbidity, DO, and ORP; ±0.1 unit for pH; and ± 3-percent for specific conductance

	- 1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		inst	rument Calib		********************					
	pH M	leter Calibratio	n				H	oriba U-22 Calik	ration				
pH 7.00	Std.	pH 4.01 Std.	SI. (mV/pH)	Notes on calibr	ation:								
	NA	NA	NA	Calibrated to	Calibrated to manufacturer's specifications								
Air temp	Air temp = 15 °F												
Well P	urging Ir	nformation		Start purge @:	1015	End purge @: 1121 Pump Type: Bladder							
Time	DTW	Purge Volume (L)	рН	Conductivity (mS/m)	Turbidity (NTU)	D.O. (mg/l) *	T (°C)	ORP/Eh (mV)	Flow Rate (mL/min)	Comments			
1015	6.93	0.0	7.19	43	370.0	0.00	8.2	214	200	clear			
1020	6.93	1.0	6.82	42	206.0	0.00	9.3	194	200	clear			
1025	6.93	2.0	6.74	43	220.0	0.00	9.5	171	200	clear			
1030	6.93	3.0	6.71	43	207.0	0.00	9.6	143	200	clear			
1035	6.93	4.0	6.69	44	197.0	0.00	9.5	126	200	clear			
1040	6.93	5.0	6.69	45	35.2	0.00	9.3	103	200	clear			
1045	6.93	6.0	6.72	46	26.4	0.00	9.7	83	200	clear			
1050	6.93	7.0	6.73	47	24.5	0.00	9.7	72	200	clear			
1055	6.93	8.0	6.75	48	25.7	0.00	9.5	63	200	clear			
1100	6.93	9.0	6.75	48	24.7	0.00	9.5	57	200	clear			
1105	6.93	10.0	6.75	49	25.6	0.00	9.4	52	200	clear			
1110	6.93	11.0	6.76	50	26.4	0.00	9.3	46	200	clear			
1115	6.93	12.0	6.76	51	25.3	0.00	9.3	44	200	clear			
1120	6.93	13.0	6.77	52	25.3	0.00	9.3	37	200	clear			
1121	End Purge	and Collected	2 VOAs labeled	MW-23 and pac	ked on ice.								

Groundwater Sampling Monitoring Form Page 1 of 1

Well ID	MW-24	Project No. 148992		Sample Date:	12/22/2005
Well Diameter	2 in	Location (Site/Facility)	Former General Instrume	nt Site	
Depth to Water	7.21 ft	Decon Procedures:	Non-phosphate soap and [OI rinse	
Total Depth	21.42 ft	Field Personnel	BAM	Notes:	
Screen Length	10 ft	Weather Conditions	Cloudy with light snow		
Pump Intake	16 ft	Equipment:	QED Sample Pro (Teflon)	Bladder pumps & MP-15 Controllers driven	with compressed CO ₂

Stabilize	d: ±10-perd	cent for tempera	ture, turbidity, D	O, and ORP; ±0	0.1 unit for pH; and	t ± 3-percent for	specific conduc	tance					
					Inst	rument Calib	ration Infor	mation					
	· · · · · · · · · · · · · · · · · · ·	leter Calibratio	n		Horiba U-22 Calibration								
pH 7.00		pH 4.01 Std.	SI. (mV/pH)	4	Notes on calibration:								
	NA	NA	NA	Calibrated to	o manufacture	r's specification	ons						
	Air temp = 15 °F												
Well P	ell Purging Information			Start purge @:	840	End purge @:	0920	Pump Type: B					
Time	DTW	Purge Volume (L)	рН	Conductivity (mS/m)	Turbidity (NTU)	D.O. (mg/l) *	T (°C)	ORP/Eh (mV)	Flow Rate (mL/min)	Comments			
0840	7.21	0.0	6.40	0	239.0	8.66	7.1	219	80				
0845	7.21	0.3	6.07	0	145.0	7.70	8.5	208	80				
0850	7.21	0.6	6.81	0	104.0	7.37	8.5	199	100	seems to be pumping slightly faster			
0855	7.21	1.0	6.88	0	71.8	6.97	8.5	190	100				
0900	7.21	1.3	6.95	0	59.1	6.63	8.5	183	100				
0905	7.21	1.6	6.99	0	33.3	6.29	8.5	175	100				
0910	7.21	1.9	7.04	0	18.4	5.98	8.5	168	100				
0915	7.21	2.2	7.06	0	13.0	5.93	8.5	165	100				
0920	Sample co	llected for MW-	24 for VOCs (2	VOAs). Labeled	the samples and	packed them on	ice.						

Groundwater Sampling Monitoring Form

Page 1 of 1

Well ID	MW-25	Project No. 148992		Sample Date: 12/21/2005			
Well Diameter	2 in	Location (Site/Facility)	Former General Instrument Site				
Depth to Water	7.12 ft	Decon Procedures:	Non-phosphate soap and DI rinse				
Total Depth	22.93 ft	Field Personnel	BAM	Notes:			
Screen Length	10 ft	Weather Conditions	Cold				
Pump Intake	18 ft	Equipment:	QED Sample Pro (Teflor	n) Bladder pumps & MP-15 Controllers driven with compressed CO ₂			

Stabilize	d: ±10-perd	cent for tempera	ture, turbidity, D	O, and ORP; ±0	0.1 unit for pH; and	± 3-percent for	specific conducta	ance				
					Inst	rument Calib	ration Inform	nation				
	pH N	leter Calibratio	n		Horiba U-22 Calibration							
pH 7.00	Std.	pH 4.01 Std.	SI. (mV/pH)	Notes on calibr	lotes on calibration:							
	NA NA NA			Calibrated to manufacturer's specifications								
Air temp	Air temp = 10 °F											
Well P	urging li	nformation		Start purge @:	1700	End purge @:	1725	Pump Type: B	ladder			
Time	DTW	Purge Volume (L)	рН	Conductivity (mS/m)	Turbidity (NTU)	D.O. (mg/l) *	T (°C)	ORP/Eh (mV)	Flow Rate (mL/min)	Comments		
1700	7.12	0.2	6.70	1	328.0	2.76	7.8	128	100			
1705	7.12	0.4	6.53	1	231.0	1.90	7.7	105	100			
1710	7.12	0.6	6.58	1	63.4	1.33	8.8	77	100			
1715	7.12	0.8	6.63	1	21.1	0.94	8.6	65	100			
1720	7.12	1.0	6.66	1	14.1	0.80	8.4	60	100			
1725	Sample co	llected for MW-	25 for VOCs (2	VOAs)								

Groundwater Sampling Monitoring Form

Page 1 of 1

Well ID	MW-26	Project No. 148992		Sample Date:	12/22/2005			
Well Diameter	2 in	Location (Site/Facility)	Former General Instrument Site					
Depth to Water	7.21 ft	Decon Procedures:	Non-phosphate soap and DI rinse					
Total Depth	21.42 ft	Field Personnel	ESR	Notes:				
Screen Length	10 ft	Weather Conditions	Partly sunny and	cold				
Pump Intake	16 ft	Equipment:	QED Sample Pro (Teflon) Bladder pumps & MP-15 Controllers driven with compressed CO ₂					

Stabilize	d: ±10-perd	cent for tempera	ture, turbidity, D	OO, and ORP; ±0).1 unit for pH; and							
					Inst	rument Calib						
	· · · · · · · · · · · · · · · · · · ·	leter Calibratio					Н	loriba U-22 Calib	ration			
pH 7.00		pH 4.01 Std.	SI. (mV/pH)	Notes on calibr								
			NA NA	Calibrated to	o manufacture	r's specification	ons					
Air temp			<u> </u>									
Well P	urging li	nformation		Start purge @:	1300	End purge @:	1351	Pump Type: Bladder				
Time	DTW	Purge Volume (L)	рН	Conductivity (mS/m)	Turbidity (NTU)	D.O. (mg/l) *	T (°C)	ORP/Eh (mV)	Flow Rate (mL/min)	Comments		
1300	7.21	0.0	6.93	23	710.0	0.73	9.2	84	200	clear		
1305	7.21	1.0	6.78	28	795.0	0.00	8.8	6.26	200	clear		
1310	7.21	2.0	6.83	63	124.0	1.19	8.9	11	200	clear		
1315	7.21	3.0	6.83	70	134.0	0.00	9.0	-11	200	clear		
1320	7.18	4.0	6.84	72	13.1	0.00	8.6	-24	200	clear		
1325	7.18	5.0	6.86	75	4.2	0.00	8.9	-35	200	clear		
1330	7.18	6.0	6.88	78	1.1	0.00	9.1	-42	200	clear		
1335	7.18	7.0	6.90	80	-1.5	0.00	8.9	-47	200	clear		
1340	7.18	8.0	6.90	80	-1.6	0.00	9.0	-51	200	clear		
1345	7.18	9.0	6.92	81	-3.5	0.00	9.4	-54	200	clear		
1350	7.18	10.0	6.92	82	-3.5	0.00	9.2	-57	200	clear		
1351	End Purge	e and collected 2	2 VOAs for VOC	analysis. Labe	led the samples M	IW-26 and packe	d them on ice.					

Groundwater Sampling Monitoring Form Page 1 of 1

Well ID	MW-27	Project No. 148992		Sample Date: 12/22/200
Well Diameter	2 in	Location (Site/Facility)	Former General Instrume	ent Site
Depth to Water	6.91 ft	Decon Procedures:	Non-phosphate soap and I	OI rinse
Total Depth	22.95 ft	Field Personnel	BAM	Notes:
Screen Length	10 ft	Weather Conditions	Partly Cloudy and cold	
Pump Intake	18 ft	Equipment:	QED Sample Pro (Teflon)	Bladder pumps & MP-15 Controllers driven with compressed CO ₂

Stabilize	d: ±10-perd	cent for tempera	ture, turbidity, D	OO, and ORP; ±0	0.1 unit for pH; and	± 3-percent for	specific conduct	tance					
					Inst	rument Calib							
	.	leter Calibratio			Horiba U-22 Calibration								
pH 7.00		pH 4.01 Std.	SI. (mV/pH)	Notes on calibr									
			NA	Calibrated to	Calibrated to manufacturer's specifications								
Air temp		20	°F										
Well P	urging lı	nformation		Start purge @:	1030	End purge @:	1120	Pump Type: B					
Time	DTW	Purge Volume (L)	pН	Conductivity (mS/m)	Turbidity (NTU)	D.O. (mg/l) *	T (°C)	ORP/Eh (mV)	Flow Rate (mL/min)	Comments			
1030	7.21	0.0	7.24	1	-0.2	1.77	6.7	235	100				
1035	7.30	0.3	7.37	1	-5.5	0.93	5.4	187	100				
1040	7.34	0.6	7.40	1	-10.0	0.74	6.9	144	80	seems to be pumping slower			
1045	7.51	0.8	7.43	1	-10.0	0.52	7.5	103	80				
1050	7.65	1.0	7.41	1	-10.0	0.42	7.4	78	80				
1055	7.78	1.2	7.39	1	-10.0	0.39	7.4	61	80				
1100	7.83	1.4	7.35	1	-10.0	0.33	7.3	49	80				
1105	7.91	1.6	7.31	1	-10.0	0.29	6.9	44	80				
1110	7.98	1.8	7.29	1	-10.0	0.25	7.0	40	80				
1115	8.04	2.0	7.27	1	-10.0	0.24	7.0	38	80				
1120	Sample co	llected for MW-	27 to be sample	ed for VOCs (2 V	OAs). Labeled th	e samples and p	acked them on i	ice.					

Groundwater Sampling
Monitoring Form
Page 1 of 1

Well ID	MW-29	Project No. 148992		Sample Date:	12/22/2005
Well Diameter	2 in	Location (Site/Facility)	Former General Instrum	ent Site	
Depth to Water	4.97 ft	Decon Procedures:	Non-phosphate soap and	DI rinse	
Total Depth	20.44 ft	Field Personnel	DTW	Notes:	
Screen Length	15 ft	Weather Conditions	Partly Cloudy and cold		
Pump Intake	13 ft	Equipment:	QED Sample Pro (Teflon)	Bladder pumps & MP-15 Controllers driven w	vith compressed CO ₂

Stabilized: ±10-percent for temperature, turbidity, DO, and ORP; ±0.1 unit for pH; and ± 3-percent for specific conductance

					Inst	rument Calib	ration Infor	mation			
	pH N	leter Calibratio	n				ŀ	Horiba U-22 Calib	ration		
H 7.00	Std.	pH 4.01 Std.	SI. (mV/pH)	Notes on calibr	ation:						
	NA	NA	NA	Calibrated to	o manufacture	r's specificatio	ns				
Air temp		15	°F								
Well P	urging l	nformation		Start purge @:	1430	End purge @:	1505	Pump Type: B			
Time	DTW	Purge Volume (L)	рН	Conductivity (mS/m)	Turbidity (NTU)	D.O. (mg/l) *	T (°C)	ORP/Eh (mV)	Flow Rate (mL/min)	Comments	
1430	4.97	0.0									
1434	4.97	0.5	7.30	23	98.9	7.54	8.3	42	300	clear	
1438	4.97	1.7	6.32	22	109.0	0.00	8.9	88	300	clear	
1442	4.97	2.9	5.35	22	161.0	0.00	9.1	156	300	clear	
1446	4.97	4.1	5.29	23	14.6	0.00	9.2	177	300	clear	
1450	4.97	5.3	5.65	23	11.8	0.00	9.3	177	300	clear	
1454	4.97	6.5	5.84	23	8.6	0.00	9.3	169	300	clear	
1458	4.97	7.7	5.76	23	10.7	0.00	9.4	175	300	clear	
1502	4.97	8.9	5.73	24	9.2	0.00	9.5	178	300	clear	
1505	Collect sa	mple for MW-29	for VOCs (2 VC	DAs).							

Groundwater Sampling Monitoring Form Page 1 of 1

Well ID	MW-30	Project No. 148992		Sample Date:	12/22/2005
Well Diameter	2 in	Location (Site/Facility)	Former General Instrume	nt Site	
Depth to Water	5.53 ft	Decon Procedures:	Non-phosphate soap and I	OI rinse	
Total Depth	19.13 ft	Field Personnel	DTW	Notes:	
Screen Length	15 ft	Weather Conditions	Cold with a light snow		
Pump Intake	12 ft	Equipment:	QED Sample Pro (Teflon)	Bladder pumps & MP-15 Controllers driven v	with compressed CO ₂

Stabilize	d: ±10-perd	cent for tempera	ture, turbidity, D	O, and ORP; ±0).1 unit for pH; and	t ± 3-percent for	specific conduct	ance			
					Inst	rument Calib	ration Infori	mation			
	pH N	leter Calibratio	n				Н	oriba U-22 Calib	ration		
pH 7.00	Std.	pH 4.01 Std.	SI. (mV/pH)	Notes on calibr	ation:						
	NA	NA	NA	Calibrated to	o manufacture	r's specification	ns				
Air temp	=	15	°F								
Well P	II Purging Information			Start purge @:	1003	End purge @:	1035	Pump Type: B	ladder		
Time	DTW	Purge Volume (L)	рН	Conductivity (mS/m)	Turbidity (NTU)	D.O. (mg/l) *	T (°C)	ORP/Eh (mV)	Flow Rate (mL/min)	Comments	
1003	5.53	0.0									
1011	5.53	0.5	7.07	47	25.0	0.00	6.5	194	250		
1015	5.53	1.5	6.47	46	4.9	0.00	7.3	190	250		
1019	5.53	2.5	6.17	45	1.3	0.00	7.6	185	250		
1023	5.53	3.5	6.14	45	1.4	0.00	7.6	175	250		
1027	5.53	4.5	6.19	46	-0.4	0.00	7.6	164	250		
1031	5.53	5.5	6.22	45	-0.3	0.00	7.8	161	250		
1035	Collect sai	mple @ MW-30	for VOC analys	is (2 VOAs).							
ļ ————————————————————————————————————											
ļ											

Groundwater Sampling Monitoring Form

Well ID	MW-31	Project No. 148992		Sample Date:	12/21/2005
Well Diameter	2 in	Location (Site/Facility)	Former General Instrume	nt Site	
Depth to Water	6.17 ft	Decon Procedures:	Non-phosphate soap and I	OI rinse	
Total Depth	17.5 ft	Field Personnel	ESR	Notes:	
Screen Length	15 ft	Weather Conditions	Partly Cloudy and cold		
Pump Intake	13 ft	Equipment:	QED Sample Pro (Teflon)	Bladder pumps & MP-15 Controllers driven	with compressed CO ₂

Stabilize	d: ±10-perd	cent for tempera	ture, turbidity, D	O, and ORP; ±0	0.1 unit for pH; and						
					Inst	rument Calib					
	pH N	leter Calibratio	n				Н	oriba U-22 Calib	ration		
pH 7.00	Std.	pH 4.01 Std.	SI. (mV/pH)	Notes on calibr	ation:						
	NA	NA	NA	Calibrated to	o manufacture	r's specification	ons				
Air temp	=	10	°F								
Well P	urging lı	nformation		Start purge @:	935	End purge @:	1025	Pump Type: B	ladder		
Time	DTW	Purge Volume (L)	рН	Conductivity (mS/m)	Turbidity (NTU)	D.O. (mg/l) *	T (°C)	ORP/Eh (mV)	Flow Rate (mL/min)	Comments	
0940	6.17	0.8	6.55	60	133.0	0.00	11.6	47	150	sigihtly cloudy	
0945	6.17	1.5	6.68	89	126.0	0.00	11.9	29	150		
0950	6.17	2.3	6.75	88	143.0	0.00	12.2	13	150		
1000	6.17	3.8	6.78	88	129.0	0.00	12.0	-3	150	clear	
1001	Emptied th	ne flow through	cell								
1005	6.17	4.5	6.84	88	337.0	0.00	10.6	1	150		
1010	6.17	5.3	6.79	85	485.0	0.00	12.3	-1	150	clear	
1015	6.17	6.0	6.81	87	110.0	0.00	11.8	-3	150	clear	
1020	6.17	6.8	6.80	87	113.0	0.00	12.0	-4	150	clear	
1025	End Purge	e. Well was sam	npled despite hig	gh turbidity. Tur	bidity stabilized an	d water appeare	d clear.				
	Collected :	2 VOAs for VOC	analysis. Labe	eled MW-31 and	packed on ice.						
	Also collec	cted 2 additional	samples for ma	atrix spike and m	natrix spike duplica	te. Labeled thes	se samples as M	W-31 MS/MSD a	nd packed on i	ce	

Groundwater Sampling
Monitoring Form
Page 1 of 1

Well ID	MW-32	Project No. 148992		Sample Date: 12/21/2005
Well Diameter	2 in	Location (Site/Facility)	Former General Instrume	ent Site
Depth to Water	4.58 ft	Decon Procedures:	Non-phosphate soap and	DI rinse
Total Depth	13 ft	Field Personnel	ESR	Notes:
Screen Length	10 ft	Weather Conditions	Partly Cloudy and cold	
Pump Intake	11 ft	Equipment:	QED Sample Pro (Teflon)	Bladder pumps & MP-15 Controllers driven with compressed CO ₂

Stabilized: ±10-percent for temperature, turbidity, DO, and ORP; ±0.1 unit for pH; and ± 3-percent for specific conductance

					Inst	rument Calib	ration Infor	mation			
	pH N	leter Calibratio	n				ŀ	loriba U-22 Calik	ration		
H 7.00	Std.	pH 4.01 Std.	SI. (mV/pH)	Notes on calibr	ation:						
	NA	NA	NA	Calibrated to	o manufacture	r's specificatio	ons				
Air temp		10	°F								
Nell P			Start purge @:	1142	End purge @:	1222	Pump Type: B				
Time	DTW	Purge Volume (L)	рН	Conductivity (mS/m)	Turbidity (NTU)	D.O. (mg/l) *	T (°C)	ORP/Eh (mV)	Flow Rate (mL/min)	Comments	
1145	4.58	0.0	5.90	86	132.0	0.00	8.5	104	200	clear	
1150	4.58	1.0	5.52	88	213.0	0.00	9.3	137	200	clear	
1155	4.58	2.0	5.49	89	203.0	0.00	9.3	145	200	clear	
1200	4.58	3.0	5.51	90	365.0	0.00	9.4	150	200	clear	
1205	4.58	4.0	5.47	90	422.0	0.00	8.8	154	200	clear	
1210	4.58	5.0	5.44	90	578.0	0.00	9.0	159	200	clear	
1215	4.58	6.0	5.39	89	530.0	0.00	9.1	164	200	clear	
1220	4.58	7.0	5.40	86	326.0	0.00	9.2	167	200	clear	
1222	Collected	2 VOAs labeled	MW-32 and page	cked them on ice	e. Turbidity would	not drop, but the	other paramete	ers were stabilize	d.		

Groundwater Sampling Monitoring Form

Well ID	MW-33	Project No. 148992		Sample Date: 12/21/200		
Well Diameter	2 in	Location (Site/Facility)	Former General Instrument Site			
Depth to Water	4.9 ft	Decon Procedures:	Non-phosphate soap and DI rinse			
Total Depth	13 ft	Field Personnel	ESR	Notes:		
Screen Length	10 ft	Weather Conditions	Cloudy and cold			
Pump Intake	11 ft	Equipment:	QED Sample Pro (Teflon)	Bladder pumps & MP-15 Controllers driven with compressed CO ₂		

Stabilize	d: ±10-perc	ent for tempera	ture, turbidity, D	O, and ORP; ±0).1 unit for pH; and	± 3-percent for	specific conduct	tance		
					Inst	rument Calib	ration Infori	mation		
	· · · · · · · · · · · · · · · · · · ·	leter Calibratio					Н	loriba U-22 Calil	oration	
pH 7.00		pH 4.01 Std.	SI. (mV/pH)	Notes on calibr						
	NA	NA	NA	Calibrated to	o manufacture	r's specificatio	ns			
Air temp		15	°F							
Well P	urging Ir	nformation		Start purge @:	1410	End purge @:	1444	Pump Type: E		
Time	DTW	Purge Volume (L)	рН	Conductivity (mS/m)	Turbidity (NTU)	D.O. (mg/l) *	T (°C)	ORP/Eh (mV)	Flow Rate (mL/min)	Comments
1414	4.90	0.0	6.00	34	845.0	0.00	9.2	198	200	clear
1419	4.90	1.0	6.01	35	745.0	0.00	8.0	202	200	clear
1424	4.90	1.5	5.99	36	785.0	0.00	7.7	201	100	clear
1429	4.90	2.0	6.02	36	754.0	0.00	7.8	200	100	clear
1438	4.90	4.0	6.08	36	818.0	0.00	7.7	199	100	clear
1443	4.90	5.0	6.10	36	825.0	0.00	7.9	199	100	clear
1444	Collected 2	2 VOAs for VOC	analysis. Labe	eled samples as	MW-33 and packe	ed them on ice.				

Groundwater Sampling Monitoring Form

Well ID	MW-34	Project No. 148992		Sample Date: 12/21/2005
Well Diameter	2 in	Location (Site/Facility)	Former General Instrume	ent Site
Depth to Water	4.21 ft	Decon Procedures:	Non-phosphate soap and I	OI rinse
Total Depth	13 ft	Field Personnel	DTW	Notes:
Screen Length	10 ft	Weather Conditions	Light Snow	
Pump Intake	11 ft	Equipment:	QED Sample Pro (Teflon)	Bladder pumps & MP-15 Controllers driven with compressed CO ₂

Stabilize	d: ±10-perd	cent for tempera	ture, turbidity, D	O, and ORP; ±0	0.1 unit for pH; and					
					Inst	rument Calib	ration Inforn			
	<u> </u>	leter Calibratio					Ho	oriba U-22 Calib	ration	
pH 7.00		pH 4.01 Std.	SI. (mV/pH)	Notes on calibr						
	NA	NA	NA	Calibrated to	o manufacture	r's specification	ons			
Air temp		10	°F							
Well P	urging Ir	nformation		Start purge @:	845	End purge @:	0935	Pump Type: B		
Time	DTW	Purge Volume (L)	рН	Conductivity (mS/m)	Turbidity (NTU)	D.O. (mg/l) *	T (°C)	ORP/Eh (mV)	Flow Rate (mL/min)	Comments
0845	4.21	0.0								
0905	4.21	0.5	5.70	0	72.8	0.00	9.5	254	400	clear
0909	4.21	2.1	6.20	0	36.7	0.00	10.8	225	400	clear
0913	4.21	3.7	6.64	0	-0.7	0.00	11.0	205	400	clear
0917	4.21	5.3	6.82	0	-2.7	0.00	11.1	187	400	clear
0921	4.21	6.9	6.90	0	-3.4	0.00	11.0	170	400	clear
0925	4.21	8.5	6.95	0	-4.0	0.00	11.0	157	400	clear
0929	4.21	10.1	6.98	0	-3.7	0.00	11.1	146	400	clear
0933	4.21	11.7	7.00	0	-5.7	0.00	11.0	142	400	clear
0944	Collected	samples @ MW	'-34 (2 VOAs).							
<u> </u>										

Groundwater Sampling Monitoring Form

Well ID	MW-35	Project No. 148992		Sample Date: 12/21/2005			
Well Diameter	2 in	Location (Site/Facility)	Former General Instrument Site				
Depth to Water	5.75 ft	Decon Procedures:	Non-phosphate soap and DI rinse				
Total Depth	18 ft	Field Personnel	DTW	Notes:			
Screen Length	15 ft	Weather Conditions	Light Snow				
Pump Intake	13.5 ft	Equipment:	QED Sample Pro (Teflon)	Bladder pumps & MP-15 Controllers driven with compressed CO ₂			

Stabilize	d: ±10-perd	cent for tempera	ture, turbidity, D	O, and ORP; ±0	0.1 unit for pH; and							
					Inst	rument Calib						
	pH N	leter Calibratio	n				Н	oriba U-22 Calib	ration			
pH 7.00		pH 4.01 Std.	SI. (mV/pH)	Notes on calibi								
	NA	NA	NA	Calibrated to	o manufacture	r's specificatio	ons					
Air temp		12	°F									
Well P	urging Ir	nformation		Start purge @:	1108	End purge @:	1145	Pump Type: B				
Time	DTW	Purge Volume (L)	pН	Conductivity (mS/m)	Turbidity (NTU)	D.O. (mg/l) *	T (°C)	ORP/Eh (mV)	Flow Rate (mL/min)	Comments		
1108	5.75	0.0										
1116	5.75	0.5	6.58	0	174.0	0.00	10.1	200	400	clear		
1120	5.75	2.1	6.11	0	164.0	0.00	10.0	214	400	clear		
1124	5.75	3.7	6.25	0	9.5	0.00	10.7	211	400	clear		
1128	5.75	5.3	6.60	0	13.7	0.00	10.8	185	400	clear		
1132	5.75	6.9	6.74	0	5.6	0.00	10.6	177	400	clear		
1136	5.75	8.5	6.83	0	16.0	0.00	10.8	167	400	clear		
1140	5.75	10.1	6.90	0	19.4	0.00	10.7	157	400	clear		
1144	5.75	11.7	6.89	0	17.3	0.00	10.8	153	400	clear		
1145	End Purge).										
1150	Collect Sa	mple MW-35 for	r VOC anlaysis	(2 VOAs).								
1200	Collect Du	plicate MW-101	(2 VOAs).									
<u> </u>												

Groundwater Sampling Monitoring Form

Page 1 of 1

Well ID	MW-36	Project No. 148992		Sample Date: 12/21/2005
Well Diameter	2 in	Location (Site/Facility)	Former General Instrum	ent Site
Depth to Water	4.03 ft	Decon Procedures:	Non-phosphate soap and	DI rinse
Total Depth	18 ft	Field Personnel	DTW	Notes:
Screen Length	15 ft	Weather Conditions	Light Snow	
Pump Intake	13.5 ft	Equipment:	QED Sample Pro (Teflon)	Bladder pumps & MP-15 Controllers driven with compressed CO ₂

Stabilized: ±10-percent for temperature, turbidity, DO, and ORP; ±0.1 unit for pH; and ± 3-percent for specific conductance

					Inst	rument Calib	ration Inforr	nation			
	pH N	Neter Calibratio	n				Н	oriba U-22 Calil	oration		
H 7.00	Std.	pH 4.01 Std.	SI. (mV/pH)	Notes on calib	ration:						
	NΑ	NA	NA	Calibrated to	o manufacture	r's specificatio	ons				
Air temp		10	°F								
Nell P	urging l	nformation		Start purge @:	1340	End purge @:	1420	Pump Type: E			
Time	DTW	Purge Volume (L)	рН	Conductivity (mS/m)	Turbidity (NTU)	D.O. (mg/l) *	T (°C)	ORP/Eh (mV)	Flow Rate (mL/min)	Comments	
1340	4.03	0.0									
1342	4.04	0.5	7.12	0	47.5	0.08	9.5	167	300	clear	
1351	4.04	1.7	7.06	0	11.3	3.73	9.9	149	300	clear	
1355	4.04	2.9	7.15	0	12.0	3.98	10.5	125	300	clear	
1359	4.04	4.1	7.27	0	13.7	4.46	10.6	107	300	clear	
1403	4.04	5.3	7.36	0	10.3	4.91	10.7	93	300	clear	
1407	4.04	6.5	7.42	0	12.3	3.63	10.5	84	300	clear	
1411	4.04	7.7	7.47	0	9.5	2.85	10.7	74	300	D.O. jumping between 0.30 and 6.58	
1415	4.04	8.9	7.49	0	7.1	2.35	10.5	69	300	clear	
1419	4.04	10.1	7.50	0	6.0	2.32	10.4	68	300	clear	
1420	Collected	Sample @ MW-	-36 (2 VOAs).								

Groundwater Sampling Monitoring Form

Well ID	MW-37	Project No. 148992		Sample Date: 12/22/200			
Well Diameter	2 in	Location (Site/Facility)	Former General Instrument Site				
Depth to Water	5.86 ft	Decon Procedures:	Non-phosphate soap and DI rinse				
Total Depth	12.5 ft	Field Personnel	ESR	Notes:			
Screen Length	10 ft	Weather Conditions	Cloudy and Cold	· ·			
Pump Intake	10.5 ft	Equipment:	QED Sample Pro (Teflon)	Bladder pumps & MP-15 Controllers driven with compressed CO ₂			

Stabilize	d: ±10-perd	cent for tempera	ture, turbidity, D	O, and ORP; ±0	0.1 unit for pH; and	t ± 3-percent for	specific conduct	ance			
					Inst	rument Calib					
	· .	leter Calibratio	n				Н	loriba U-22 Calib	ration		
pH 7.00		pH 4.01 Std.	SI. (mV/pH)	Notes on calibr							
	NA	NA	NA	Calibrated to	o manufacturei	r's specificatio	ns				
Air temp		15	°F								
Well P	urging lı	nformation				End purge @:	0856	Pump Type: B			
Time	DTW	Purge Volume (L)	рН	Conductivity (mS/m)	Turbidity (NTU)	D.O. (mg/l) *	T (°C)	ORP/Eh Flow Rate (mV) (mL/min)		Comments	
0825	5.86	0.0	6.31	84	65.5	0.00	9.4	215	150	clear	
0830	5.86	0.8	6.59	84	60.6	0.00	9.2	211	150	clear	
0835	5.86	1.5	6.68	84	62.6	0.00	9.2	208	150	clear	
0840	5.86	2.3	6.75	85	58.3	0.00	8.8	201	150	clear	
0845	5.86	3.0	6.79	84	37.0	0.00	8.5	199	150	clear	
0850	5.86	3.8	6.80	84	31.0	0.00	8.4	197	150	clear	
0855	5.86	4.5	6.82	84	23.5	0.00	8.4	195	150	clear	
0856	Collected 2	2 VOAs for VOC	analysis, label	ed as MW-37 ar	nd packed on ice.						

Groundwater Sampling Monitoring Form

Well ID	MW-38	Project No. 148992		Sample Date: 12/22/2	2005			
Well Diameter	2 in	Location (Site/Facility)	Former General Instrument Site					
Depth to Water	5.83 ft	Decon Procedures:	Non-phosphate soap and DI rinse					
Total Depth	12 ft	Field Personnel	DTW	Notes:				
Screen Length	10 ft	Weather Conditions	Light Snow	·				
Pump Intake	10.5 ft	Equipment:	QED Sample Pro (Teflon)	Bladder pumps & MP-15 Controllers driven with compressed CO) 2			

Stabilize	d: ±10-perd	cent for tempera	ture, turbidity, D	OO, and ORP; ±0	0.1 unit for pH; and	d ± 3-percent for	specific conduct	tance			
					Inst	rument Calib	ration Infor	mation			
	pH N	leter Calibratio	n				H	loriba U-22 Calik	ration		
pH 7.00	Std.	pH 4.01 Std.	SI. (mV/pH)	Notes on calibr	ation:						
	NA	NA	NA	Calibrated to	o manufacture	r's specification	ons				
Air temp	=	19	°F								
Well P	Vell Purging Information			Start purge @:	804	End purge @:	0845	Pump Type: B	ladder		
Time	DTW	Purge Volume (L)	рН	Conductivity (mS/m)	Turbidity (NTU)	D.O. (mg/l) *	T (°C)	ORP/Eh Flow Rate (mV) (mL/min)		Comments	
0804	5.83	0.0									
0813	5.83	0.5	5.94	0	85.1	0.00	7.2	248	300		
0817	5.83	1.7	6.33	0	60.7	0.00	7.9	230	300		
0821	5.83	2.9	6.71	0	114.0	0.00	8.7	206	300		
0825	5.83	4.1	6.86	0	144.0	0.00	8.8	191	300	clear	
0829	5.83	5.3	6.97	0	129.0	0.00	8.9	180	200		
0833	5.83	6.3	7.04	0	156.0	0.00	8.9	173	200		
0837	5.83	7.3	7.08	0	145.0	0.00	9.1	165	200		
0841	5.83	8.3	7.12	0	160.0	0.00	9.1	160	200		
0845	Collect Sa	mple @ MW-38	(2 VOAs).								

Groundwater Sampling Monitoring Form

Well ID	MW-39	Project No. 148992		Sample Date: 12/21/2	/2005			
Well Diameter	2 in	Location (Site/Facility)	Former General Instrument Site					
Depth to Water	5.4 ft	Decon Procedures:	Non-phosphate soap and DI rinse					
Total Depth	12 ft	Field Personnel	DTW	Notes:				
Screen Length	10 ft	Weather Conditions	Light Snow					
Pump Intake	10 ft	Equipment:	QED Sample Pro (Teflon) I	Bladder pumps & MP-15 Controllers driven with compressed CO	\mathcal{D}_2			

Stabilize	ed: ±10-pero	cent for tempera	ture, turbidity, D	O, and ORP; ±0	0.1 unit for pH; and					
					Inst	rument Calib	ration Inforr			
	pH N	leter Calibratio	n				Н	oriba U-22 Calib	ration	
pH 7.00		pH 4.01 Std.	SI. (mV/pH)	Notes on calibi						
	NA	NA	NA	Calibrated to	o manufacturei	's specification	ons			
Air temp			°F							
Well P	Vell Purging Information			Start purge @: 1526	1526	End purge @:	1610	Pump Type: B		
Time	DTW	Purge Volume (L)	рН	Conductivity (mS/m)	Turbidity (NTU)	D.O. (mg/l) *	T (°C)	ORP/Eh (mV)	Flow Rate (mL/min)	Comments
1526	5.40	0.0								
1529	5.40	0.5	7.78	0	999.0	3.26	8.7	178	400	silty
1533	5.40	2.1	7.43	0	740.0	0.00	9.3	179	400	water in tube is clearing
1537	5.40	3.7	7.44	0	199.0	0.00	9.4	171	400	water in tube is clearing
1541	5.40	5.3	7.42	0	227.0	0.00	9.4	164	400	
Empty F	loriba to cle	ear silt.							400	
1545	5.40	6.9	7.41	0	61.1	0.00	9.3	158	400	
1549	5.40	8.5	7.30	0	62.1	0.00	9.3	156	400	
1553	5.40	10.1	7.07	0	60.7	0.00	9.3	153	400	
1557	5.40	11.7	6.91	0	62.2	0.00	9.4	155	400	
1601	5.40	13.3	6.89	0	56.1	0.00	9.4	156	400	
1605	5.40	14.9	6.88	0	60.9	0.00	9.1	157	400	
1610	Collect Sa	mple @ MW-39	(2 VOAs).							

Groundwater Sampling
Monitoring Form
Page 1 of 1

Well ID	P-3	Project No. 148992	Sample Date: 12/20/200					
Well Diameter	2 in	Location (Site/Facility)	Former General Instrument Site					
Depth to Water	5.89 ft	Decon Procedures:	Non-phosphate soap and DI rinse					
Total Depth	14.45 ft	Field Personnel	BAM Notes:					
Screen Length	10 ft	Weather Conditions	Cold and Snowing					
Pump Intake	9 ft	Equipment:	QED Sample Pro (Teflon) Bladder pumps & MP-15 Controllers driven with compressed CO ₂					

Stabilized: ±10-percent for temperature, turbidity, DO, and ORP; ±0.1 unit for pH; and ± 3-percent for specific conductance

					Inst	rument Calib	ration Infor	mation		
	pH N	Meter Calibratio	n				F	loriba U-22 Calik	ration	
H 7.00	Std.	pH 4.01 Std.	SI. (mV/pH)	Notes on calibr	ation:					
	NA	NA	NA	Calibrated to	o manufacture	r's specificatio	ns			
ir temp		10	°F							
Vell P	Purging Information			Start purge @:	1515	End purge @:	1555	Pump Type: B		
Time	DTW	Purge Volume (L)	рН	Conductivity (mS/m)	Turbidity (NTU)	D.O. (mg/l) *	T (°C)	ORP/Eh (mV)	Flow Rate (mL/min)	Comments
1520	5.89	100 mL	6.44	51	88.6	0.31	7.7	90	120	
1524	5.89	580 mL	6.65	56	75.3	0.00	8.4	88	120	
1528	5.89	800 mL	6.60	64	61.4	0.00	8.6	83	100	
1532	5.89	1.1	6.54	67	59.3	0.00	8.7	78	100	
1536	5.89	1.4	6.59	70	59.4	0.00	8.8	73	100	
1540	5.89	1.7	6.60	72	58.3	0.00	8.8	68	100	
1544	5.89	2.0	6.61	76	22.4	0.00	8.8	64	100	
1548	5.89	2.3	6.62	77	6.4	0.00	8.9	62	100	
1552	5.89	2.6	6.62	78	4.7	0.00	8.9	59	100	
1555	Sample C	ollected. 2 VOA:	s labeled P-3 fo	r VOC analysis a	and packed on ice					

Groundwater Sampling Monitoring Form

Well ID	P-8	Project No. 148992	Sample Date:	12/20/2005
Well Diameter	2 in	Location (Site/Facility)	Former General Instrument Site	
Depth to Water	6.94 ft	Decon Procedures:	Non-phosphate soap and DI rinse	
Total Depth	15.93 ft	Field Personnel	DTW Notes:	
Screen Length	10 ft	Weather Conditions	Snowing	
Pump Intake	11 ft	Equipment:	QED Sample Pro (Teflon) Bladder pumps & MP-15 Controllers driven wit	h compressed CO ₂

Stabilize	d: ±10-perd	cent for tempera	ture, turbidity, D	OO, and ORP ; ± OO).1 unit for pH; and	t ± 3-percent for	specific conduct	ance		
					Inst	rument Calib	ration Infori	mation		
	pH N	leter Calibratio	n				Н	loriba U-22 Calib	ration	
pH 7.00	Std.	pH 4.01 Std.	SI. (mV/pH)	Notes on calibr	ation:					
	NA	NA	NA	Calibrated to	o manufacturei	r's specificatio	ns			
Air temp	=	12	°F							
Well P	urging li	nformation		Start purge @:	1509	End purge @:	1540	Pump Type: B	ladder	
Time	DTW	Purge Volume (L)	рН	Conductivity (mS/m)	Turbidity (NTU)	D.O. (mg/l) *	T (°C)	ORP/Eh (mV)	Flow Rate (mL/min)	Comments
1509	6.94	0.0	-	-	-	-	-	-	-	
1512	6.94	0.5	7.29	39	86.4	0.00	8.2	133	150	clear
1516	6.95	1.1	6.95	40	23.1	1.01	10.3	135	150	clear
1520	6.95	1.7	6.97	43	18.1	0.00	9.4	131	150	clear
1524	6.95	2.3	6.93	44	19.3	0.00	9.0	131	100	clear
1528	6.95	2.7	6.92	44	6.6	0.00	9.2	128	100	clear
1532	6.95	3.1	6.94	51	4.4	0.00	9.0	127	100	clear
1540	Collect Sa	mple @ P-8 for	VOC's (VOAs)							

Groundwater Sampling Monitoring Form

Page 1 of 1

Well ID	P-10	Project No. 148992		Sample Date: 12/22/2005
Well Diameter	2 in	Location (Site/Facility)	Former General Instrum	ent Site
Depth to Water	5.22 ft	Decon Procedures:	Non-phosphate soap and	DI rinse
Total Depth	20 ft	Field Personnel	DTW	Notes:
Screen Length	10 ft	Weather Conditions	Cold	
Pump Intake	15 ft	Equipment:	QED Sample Pro (Teflon)	Bladder pumps & MP-15 Controllers driven with compressed CO ₂

Stabilized: ±10-percent for temperature, turbidity, DO, and ORP; ±0.1 unit for pH; and ± 3-percent for specific conductance

Gtabilize	a. ±10-perc	ent for tempera	iture, turbialty, b	O, and Orti , it).1 unit for pH; and Inst i		ration Inform			
	рН М	eter Calibratio	n					oriba U-22 Calik	oration	
pH 7.00	Std.	pH 4.01 Std.	SI. (mV/pH)	Notes on calibr	ation:					
	NA	NA	NA	Calibrated to	o manufacturer	's specification	ons			
Air temp		20	°F							
Well P	urging Ir	formation		Start purge @:	1253	End purge @:	1359	Pump Type: B		
Time	DTW	Purge Volume (L)	рН	Conductivity (mS/m)	Turbidity (NTU)	D.O. (mg/l) *	T (°C)	ORP/Eh (mV)	Flow Rate (mL/min)	Comments
1253	5.22	0.0								
1258	5.22	0.5	6.80	61	442.0	1.32	9.9	202	250	
1302	5.22	1.5	6.48	62	296.0	1.36	8.2	213	250	
1306	5.22	2.5	6.44	64	236.0	1.47	9.0	209	250	
1310	5.22	3.5	6.45	68	188.0	1.24	9.7	178	250	
1314	5.22	4.5	6.48	75	188.0	1.21	9.9	120	250	
1318	5.22	5.5	6.47	82	159.0	1.25	10.9	88	250	clear
1322	5.22	6.5	6.62	83	168.0	0.00	10.9	69	250	clear
1326	5.22	7.5								Empty flow through cell
1328	5.22	8.5	6.80	89	17.0	0.00	9.9	62	250	
1332	5.22	9.5	6.95	84	14.4	0.00	10.8	39	250	
1336	5.22	10.5	6.97	85	9.5	0.00	10.8	32	250	
1340	5.22	11.5	6.95	86	6.2	0.00	10.5	31	250	
1359	Collect Sar	mple @ P-10 fo	or VOCs (2 VOA	s)						

Groundwater Sampling
Monitoring Form
Page 1 of 1

Well ID	P-11	Project No. 148992		Sample Date: 12/22/2005
Well Diameter	2 in	Location (Site/Facility)	Former General Instrum	ent Site
Depth to Water	5.64 ft	Decon Procedures:	Non-phosphate soap and	DI rinse
Total Depth	20.22 ft	Field Personnel	BAM	Notes:
Screen Length	10 ft	Weather Conditions	Cold	
Pump Intake	15 ft	Equipment:	QED Sample Pro (Teflon)	Bladder pumps & MP-15 Controllers driven with compressed CO ₂

					Inst	rument Calib	ration Infor	mation		
	pH N	leter Calibratio	n				I	loriba U-22 Calik	ration	
H 7.00	Std.	pH 4.01 Std.	SI. (mV/pH)	Notes on calibr	ation:					
	NA	NA	NA	Calibrated to	o manufacture	r's specificatio	ns			
ir temp		20	°F							
Nell P	urging Ir	nformation		Start purge @:	1300	End purge @:	1415	Pump Type: B		
Time	DTW	Purge Volume (L)	рН	Conductivity (mS/m)	Turbidity (NTU)	D.O. (mg/l) *	T (°C)	ORP/Eh (mV)	Flow Rate (mL/min)	Comments
1305	5.64	0.0	7.25	0	157.0	3.87	8.8	282	80	
1310	5.64	0.2	7.25	0	159.0	1.64	8.4	271	80	
1315	5.64	0.4	7.20	0	105.0	1.03	8.2	258	80	
1320	5.64	0.6	7.19	0	33.6	0.68	8.3	239	80	
1325	5.64	0.8	7.18	0	-1.8	0.52	8.5	210	80	
1330	5.64	1.0	7.16	0	-10.0	0.36	9.2	185	80	
1335	5.64	1.2	7.13	0	-10.0	0.29	9.3	143	80	
1340	5.64	1.4	7.14	0	-10.0	0.28	9.4	95	80	
1345	5.64	1.6	7.16	0	-10.0	0.20	9.2	42	80	
1350	5.64	1.8	7.16	0	-10.0	0.17	8.8	15	80	
1355	5.64	2.0	7.17	0	-10.0	0.33	9.4	-6	80	
1400	5.64	2.2	7.18	0	-10.0	0.14	9.2	-22	80	
1405	5.64	2.4	7.19	0	-10.0	0.12	9.4	-28	80	
1410	5.64	2.6	7.18	0	-10.0	0.13	9.4	-30	80	
1415	Sample Co	ollected for P-11	to be analyzed	for VOCs (2 VC	As). Labeled and	put on ice.				

Appendix E – Laboratory Analytical Reports (including CDs of laboratory report files)

ANALYTICAL REPORT

Job#: <u>A05-E587</u>

STL Project#: NY4A9171

Site Name: Environmental Strategies Corporation

Task: Sherburne

Mr. David Bouchard Environmental Strategies Corp. 5 Sullivan Street Cazenovia, NY 13035

STL Buffalo

Candace L. Fox Project Manager

STL Buffalo Current Certifications

As of 12/28/2005

STATE	Program	Cert # / Lab ID
AFCEE	AFCEE	
Arkansas	SDWA, CWA, RCRA, SOIL	03-054-D/88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	SDWA, CWA, RCRA, CLP	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	Env. Lab Reg.	68-281
South Carolina	RCRA	91013
Tennessee	SDWA	02970
USACE	USACE	
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C254
West Virginia	CWA,RCRA	252
Wisconsin	CWA	998310390

Sample Data Summary Package

SAMPLE SUMMARY

			SAMPI	ED	RECEIV	ED CE
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A5E58709	EB122005	WATER	12/21/2005	08:53	12/23/2005	10:15
A5E58717	EB122105	WATER	12/21/2005	13:11	12/23/2005	10:15
A5E58705	MW-100	WATER	12/20/2005	19:00	12/23/2005	10:15
A5E58714	MW-101	WATER	12/21/2005	19:00	12/23/2005	10:15
A5E58702	MW-17	WATER	12/20/2005	13:55	12/23/2005	10:15
A5E58701	MW-2	WATER			12/23/2005	
A5E58701MS	MW-2	WATER			12/23/2005	
A5E58701SD	MW-2	WATER	12/20/2005	11:00	12/23/2005	10:15
A5E58719	MW-20	WATER			12/23/2005	
A5E58712	MW-21	WATER	12/21/2005	10:50	12/23/2005	10:15
A5E58715	MW-32	WATER			12/23/2005	
A5E58718	MW-33	WATER			12/23/2005	
A5E58710	MW-34	WATER			12/23/2005	
A5E58713	MW-35	WATER			12/23/2005	
A5E58716	MW-36	WATER			12/23/2005	
A5E58720	MW-39	WATER			12/23/2005	
A5E58704	MW-8	WATER			12/23/2005	
A5E58708	P-3	WATER			12/23/2005	
A5E58706	P-8	WATER			12/23/2005	
A5E58703	TB-121505-01	WATER	12/20/2005		12/23/2005	
A5E58707	TB-121505-02	WATER	12/20/2005		12/23/2005	10:15

METHODS SUMMARY

Job#: A05-E587

STL Project#: NY4A9171

Site Name: Environmental Strategies Corporation

SW8463 "Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

NON-CONFORMANCE SUMMARY

Job#: <u>A05-E587</u>

STL Project#: NY4A9171

Site Name: Environmental Strategies Corporation

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A05-E587

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

GC/MS Volatile Data

All samples were preserved to a PH less than 2.

The analytes Total Xylenes were detected in Method Blank VBLK40 (A5B2009802) at a level below the project established reporting limit. No corrective action is necessary for any values in Method Blanks that are below the requested reporting limits.

Initial calibration standard curve A5I0002430-1 exhibited the %RSD of the compounds Bromomethane, Chloroethane, Methylene Chloride and 1,2,4-Trichlorobenzene as greater than 15%. However, the mean RSD of all compounds is 6.44%.

Initial calibration standard curve A5I0002444-1 exhibited the %RSD of several compounds as greater than 15%. However, the mean RSD of all compounds is 10.12%.

Initial calibration standard curve A5I0002442-1 exhibited the %RSD of several compounds as greater than 15%. However, the mean RSD of all compounds is 8.04%.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Date: 01/13/2006 Time: 17:15:53

Dilution Log w/Code Information For Job A05-E587

7/504

Page: 1 Rept: AN1266R

Client Sample ID	Lab Sample ID	Parameter (Inorganic)/Method (Organic)	<u>Dilution</u>	<u>Code</u>
MW-17	A5E58702	8260	4.00	800
P-8	A5E58706	8260	25.00	800
MW-34 DL	A5E58710DL	8260	2.00	800

Dilution Code Definition:

002 - sample matrix effects

003 - excessive foaming

004 - high levels of non-target compounds

005 - sample matrix resulted in method non-compliance for an Internal Standard

 $006\,$ - sample matrix resulted in method non-compliance for Surrogate

007 - nature of the TCLP matrix

008 - high concentration of target analyte(s)

009 - sample turbidity

010 - sample color

011 - insufficient volume for lower dilution

012 - sample viscosity

013 - other

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

- ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.
- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

9/504

Client No.

Lab Name: <u>STL Buffalo</u>	Contract: 4	EB122005

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ___

Matrix: (soil/water) WATER Lab Sample ID: A5E58709

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{G7641.RR}}$

Level: (low/med) $\underline{\text{LOW}}$ Date Samp/Recv: $\underline{12/21/2005}$ $\underline{12/23/2005}$

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

,	boli Aliquot	vorune:	
CAS NO. COMPOUND	CONCENTRATION UNIT (ug/L or ug/kg)	rs: <u>ug/</u> l	Q
67-64-1Acetone			
71-43-2Benzene		3.8	J
75-27-4Bromodichloromethane		1.0	U
75-25-2Bromoform		0.43	J
74-83-9Bromomethane		1.0	U
78-93-32-Butanone		1.0	U
75-15-0Carbon Disulfide		5.0	U
56-23-5Carbon Tetrachloride		1.0	ប
108-90-7Chlorobenzene		1.0	ប
75-00-3Chloroethane		1.0	U
67-66-3Chloroform		1.0	ū
74-87-3Chloromethane		0.60	J
110-82-7Cyclohexane		1.0	U
106-93-41,2-Dibromoethane		1.0	U
124-48-1Dibromochloromethane		1.0	U
96-12-81,2-Dibromo-3-chloropro	nane	1.0	U
95-50-11,2-Dichlorobenzene	pare	1.0	U
541-73-11,3-Dichlorobenzene		1.0	Ū
106-46-71,4-Dichlorobenzene		1.0 1.0	U
75-71-8Dichlorodifluoromethane		1.0	U
75-34-31.1-Dichloroethane		1.0	U
107-06-21,2-Dichloroethane		1.0	U
/5-35-41,1-Dichloroethene		1.0	U
156-59-2cis-1,2-Dichloroethene		1.0	U
156-60-5trans-1,2-Dichloroethene	9	1.0	טו
78-87-51,2-Dichloropropage		1.0	טן
10061-01-5cis-1.3-Dichloropropene		1.0	ט
LUU61-U2-6trans-1.3-Dichlomomorer	ne	1.0	טן
100-41-4Ethylbenzene		1.0	Ū
591-78-62-Hexanone		5.0	U
98-82-8Isopropylbenzene		1.0	lii
/9-20-9Methyl acetate		1.0	ט
108-87-2Methylcyclohexane		1.0	U
75-09-2Methylene chloride		1.0	U
		1.0	

10/504

0.78

1.0

1.0

1.0

1.0

1.0

1.0

1.0

3.0

J

U

U

U

U

U

U

U

U

Client No.

Lab Name: STL Buffalo	Contract: 4		EB12200)5
Lab Code: <u>RECNY</u> Case	No.: SAS No.:	SDG No.:		
Matrix: (soil/water) WAT	ER	Lab Sample ID:	A5E58709	<u>) </u>
Sample wt/vol:5	.00 (g/mL) <u>ML</u>	Lab File ID:	*	
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	12/21/20	05 12/23/2005
% Moisture: not dec	Heated Purge: N	Date Analyzed:	12/28/20	<u>05</u>
GC Column: <u>DB-624</u> II	D: <u>0.25</u> (mm)	Dilution Factor	:1.00	
Soil Extract Volume:	(uL)	Soil Aliquot Vo	lume:	(uL)
CAS NO. CO	DMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg)	: <u>UG/L</u>	Q
1634-04-4Me 91-20-3Na 100-42-5St	1,2,2-Tetrachloroethane trachloroethene		1.0 1.0 1.0	บ บ บ บ

108-88-3----Toluene

120-82-1----1,2,4-Trichlorobenzene

71-55-6----1,1,1-Trichloroethane

79-00-5----1,1,2-Trichloroethane

75-69-4----Trichlorofluoromethane

79-01-6----Trichloroethene

75-01-4-----Vinyl chloride_

1330-20-7----Total Xylenes

76-13-1----1,1,2-Trichloro-1,2,2-trifluoroethane

11/504

Client No.

Lab Name:	STL Buffalo	Contract: 4	 EB122105

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58717

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{Q9552.RR}}$

Level: (low/med) \underline{LOW} Date Samp/Recv: $\underline{12/21/2005}$ $\underline{12/23/2005}$

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

	SOLI ALIQUOE	OTURE:	
CAS NO. COMPOUND	CONCENTRATION UNIT		0
	(ug/11 Of ug/kg)	<u>UG/L</u>	Q
67-64-1Acetone		5.0	U
71-43-2Benzene		1.0	υ
75-27-4Bromodichloromethane		1.0	U
75-25-2Bromoform		1.0	lυ
74-83-9Bromomethane		1.0	U
78-93-32-Butanone		5.0	ט
75-15-0Carbon Disulfide		1.0	שו
56-23-5Carbon Tetrachloride		1.0	Ū
108-90-7Chlorobenzene		1.0	Ū
75-00-3Chloroethane		1.0	U
67-66-3Chloroform		1.0	Ū
74-87-3Chloromethane		1.0	Ū
110-82-7Cyclohexane		1.0	Ū
106-93-41,2-Dibromoethane		1.0	Ü
124-48-1Dibromochloromethane		1.0	lπ
96-12-81,2-Dibromo-3-chloropropane		1.0	Ū
95-50-11,2-Dichlorobenzene		1.0	lΰ
541-73-11,3-Dichlorobenzene		1.0	Ū
106-46-71,4-Dichlorobenzene		1.0	ט
75-71-8Dichlorodifluoromethane		1.0	บี
75-34-31,1-Dichloroethane		1.0	υ
107-06-21,2-Dichloroethane		1.0	υ
75-35-41,1-Dichloroethene		1.0	U
156-59-2cis-1,2-Dichloroethene		1.0	Ü
156-60-5trans-1,2-Dichloroethene		1.0	ט
78-87-51,2-Dichloropropane		1.0	Ü
10061-01-5cis-1,3-Dichloropropene		1.0	ט
10061-02-6trans-1,3-Dichloropropene		1.0	U
100-41-4Ethylbenzene		1.0	U
591-78-62-Hexanone		5.0	
98-82-8Isopropylbenzene		1.0	U
79-20-9Methyl acetate		1.0	U
108-87-2Methylcyclohexane		1.0	u
75-09-2Methylene chloride			U
4		1.0	U

12/504

Client No.

Lab Name: STL Buffalo Contract: 4		EB122105
Lab Code: RECNY Case No.: SAS No.:		
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A5E58717
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID:	09552.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	12/21/2005 12/23/2005
% Moisture: not dec Heated Purge: N	Date Analyzed:	12/28/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Volum	me: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>U</u>	G/L_Q
1634-04-4Methyl-t-Butyl Ether (MTBE) 91-20-3Naphthalene 100-42-5Styrene 79-34-51,1,2,2-Tetrachloroethane 127-18-4Tetrachloroethene 108-88-3Toluene 120-82-11,2,4-Trichloroethane 71-55-61,1,1-Trichloroethane 79-00-51,1,2-Trichloroethane 76-13-11,1,2-Trichloro-1,2,2-trifluoroethane 76-13-11,1,2-Trichloro-1,2,2-trifluoroethane 76-13-11,1,2-Trichloro-1,2,2-trifluoroethane 76-13-11,1,2-Trichloro-1,2,2-trifluoroethane 76-13-11,1,2-Trichloro-1,2,2-trifluoroethane 76-13-11,1,2-Trichloro-1,2,2-trifluoroethane 76-13-11,1,2-Trichloro-1,2,2-trifluoroethane 76-13-11,1,2-Trichloro-1,2,2-trifluoroethane 76-13-1	roethane	5.0 U 1.0 U

13/504

Client No.

Lab Name: STL Buffalo Contract: 4	<u> </u>	MW-100
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A5E58705
Sample wt/vol: $5.00 \text{ (g/mL)} \underline{\text{ML}}$	Lab File ID:	S9673.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	12/20/2005 12/23/2005
% Moisture: not dec Heated Purge: N	Date Analyzed:	12/27/2005
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Volu	(uL)

CAS NO.	COMPOUND	CONCENTRATION UNIT (ug/L or ug/Kg)	rs: <u>ug/l</u>	Q
67-64-1 71-43-2 75-27-4 75-25-2 74-83-9 75-15-0 56-23-5 108-90-7 75-00-3 74-87-3 110-82-7 106-93-4 124-48-1 96-12-8 95-50-1 541-73-1 106-46-7 75-71-8 75-34-3 156-59-2 156-60-5 78-87-5 10061-01-5 10061-02-6	AcetoneBenzeneBromodichloromethaneBromoformBromomethaneBromomethaneCarbon DisulfideCarbon TetrachlorideChlorobenzeneChlorothaneChloromethaneChloromethaneCyclohexane1,2-Dibromoethane1,2-Dibromo-3-chloropropane1,2-Dichlorobenzene1,3-Dichlorobenzene1,4-Dichlorobenzene1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,2-Dichloroethene		UG/L 5.0 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ממחנים ממחמח מחח מחחח מחחח מחחח מחחח מחחח מח
10061-02-6 100-41-4 591-78-6 98-82-8 79-20-9 108-87-2	trans-1,3-Dichloropropene Ethylbenzene		1.0 1.0 5.0 1.0 1.0 1.0	บ บ บ บ บ บ บ

14/504

1.0

1.0

1.0

1.0

1.0

1.0

1.8

1.0

3.0

U

U

U

U

U

U

U

U

Client No.

Lab Name: <u>STL Buffalo</u>	Contract: 4	entralia. <u>Tarihan a</u> n arabahan arabahan	MW-100	0	
Lab Code: <u>RECNY</u> Case No.:					
Matrix: (soil/water) WATER		Lab Sample I	D: <u>A5E587</u> (<u>)5</u>	
Sample wt/vol: $\underline{5.00}$ (g/m	nL) <u>ML</u>	Lab File ID:	<u> S9673.</u> F	R.	•
Level: (low/med) <u>LOW</u>		Date Samp/Re	ecv: <u>12/20/2</u>	2005 <u>12/</u>	23/200
% Moisture: not dec Hea	ated Purge: <u>N</u>	Date Analyze	ed: <u>12/27/2</u>	2005	
GC Column: <u>DB-624</u> ID: <u>0.18</u>	3 (mm)	Dilution Fac	tor:1.0	00	
Soil Extract Volume: (uL)		Soil Aliquot	Volume:	(սL)
CAS NO. COMPOUND		CONCENIRATION UN (ug/L or ug/Kg)		Q	
108-10-14-Methyl- 1634-04-4Methyl-t- 91-20-3Naphthale 100-42-5Styrene 79-34-51,1,2,2-T 127-18-4Tetrachlo	Butyl Ether (MIBE) ne etrachloroethane		5.0 1.7 0.52 1.0 1.0	n n	
100 00 1			1.0	U	Į.

108-88-3----Toluene

120-82-1----1,2,4-Trichlorobenzene

71-55-6----1,1,1-Trichloroethane

79-00-5----1,1,2-Trichloroethane

79-01-6----Trichloroethene

75-01-4-----Vinyl chloride_

1330-20-7----Total Xylenes

75-69-4----Trichlorofluoromethane

76-13-1----1,1,2-Trichloro-1,2,2-trifluoroethane

15/504

Client No.

Lab Name: STL Buffalo Contract: 4	<u> </u>	MW-101
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A5E58714
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID:	Q9549.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	12/21/2005 12/23/2005
% Moisture: not dec Heated Purge: N	Date Analyzed:	12/27/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume: (uL)

CAS NO.	COMPOUND	CONCENTRATION (ug/L or ug/K		UG/L	Q
67-64-1 71-43-2 75-27-4 75-25-2 74-83-9 75-15-0 56-23-5 108-90-7 75-00-3 74-87-3 110-82-7 106-93-4 96-12-8 95-50-1 541-73-1 541-73-1 75-71-8 75-34-3 107-06-2 75-35-4 156-59-2 156-60-5 10061-01-5 10061-02-6 100-41-4 98-82-8 98-82-8	AcetoneBenzeneBromodichloromethaneBromoformBromomethane2-ButanoneCarbon DisulfideCarbon TetrachlorideChlorobenzeneChlorobenzeneChloromethaneChloromethaneCyclohexane1,2-Dibromoethane1,2-Dibromo-3-chloropropane1,2-Dichlorobenzene1,3-Dichlorobenzene1,4-Dichlorobenzene1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,2-Dichloroethene	(ug/L or ug/K	g) <u>1</u>	5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	ממחמחמת מת ממתמחמחמחמחמחחחחח
75-09-2	Methylene chloride			1.0	U U

16/504

U

Client No.

Lab Nam	e: <u>STL Buffalc</u>	2	Contract: 4		_		MW-101		
			SAS No.: _						
	(soil/water)				Lab Sample :		SE5871	4	
Sample v	wt/vol:	<u>5.00</u> (g/mL)	<u>ML</u>		ab File ID				
Level:	(low/med)	LOW			Date Samp/Re				- '23/2005
% Moistu	ure: not dec.	Heated	ł Purge: <u>N</u>		ate Analyze				
GC Colum	m: <u>DB-624</u>	ID: <u>0.25</u> (n	m)		ilution Fac				
Soil Ext	ract Volume:	(uL)		S	oil Aliquot	: Volum	e:	(uL)
	CAS NO.	COMPOUND			NTRATION UN L or ug/Kg)		/ <u>L</u>	Q	
	1634-04-4 91-20-3 100-42-5 79-34-5 127-18-4 108-88-3 71-55-6 79-00-5 76-13-1 75-69-4 79-01-6	Naprichaterie Styrene 1,1,2,2-Tetr -Tetrachloroe -Toluene -1,2,4-Trichloroethor	yl Ether (MTBE achloroethane thene probenzene proethane proethane pro-1,2,2-trif	luoroetha	ane	28 1 1 1 1 2 1 1 1 5	1.0 1.0 1.0 1.0 1.0 1.3 1.0 1.0 1.0 1.6 1.7	ם ממ מממממ	
}		/				3	.0	IU I	

17/504

Lab Sample ID: A5E58702

Client No.

Lab Name: <u>STL Buffalo</u>	Contract: 4	MW-17
Inh Code DECAR		

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ____ Matrix: (soil/water) WATER Lab Sample ID:

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{S9696.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/20/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: DB-624 ID: 0.18 (mm) Dilution Factor: 4.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/L</u> Q 67-64-1-----Acetone 20 U 71-43-2----Benzene 4.0 U 75-27-4----Bromodichloromethane 4.0 U 75-25-2----Bromoform 4.0 U 74-83-9----Bromomethane 4.0 U 78-93-3----2-Butanone 20 U 75-15-0-----Carbon Disulfide 4.0 U 56-23-5-----Carbon Tetrachloride 4.0 IJ 108-90-7----Chlorobenzene 4.0 U 75-00-3-----Chloroethane 4.0 U 67-66-3-----Chloroform 4.0 U 74-87-3-----Chloromethane 4.0 U 110-82-7-----Cyclohexane 4.0 U 106-93-4----1,2-Dibromoethane 4.0 U 124-48-1-----Dibromochloromethane 4.0 U 96-12-8----1,2-Dibromo-3-chloropropane 4.0 U 95-50-1----1,2-Dichlorobenzene 4.0 U 541-73-1----1,3-Dichlorobenzene 4.0 U 106-46-7----1,4-Dichlorobenzene 4.0 U 75-71-8-----Dichlorodifluoromethane 4.0 U 75-34-3----1,1-Dichloroethane 4.0 U 107-06-2----1,2-Dichloroethane 4.0 U 75-35-4----1,1-Dichloroethene 4.0 U 156-59-2----cis-1,2-Dichloroethene 400 156-60-5----trans-1,2-Dichloroethene 4.0 U 78-87-5----1,2-Dichloropropane 4.0 U 10061-01-5---cis-1,3-Dichloropropene 4.0 U 10061-02-6---trans-1,3-Dichloropropene 4.0 U 100-41-4----Ethylbenzene 4.0 U 591-78-6---2-Hexanone 20 U 98-82-8-----Isopropylbenzene 4.0 IJ 79-20-9-----Methyl acetate U 4.0 108-87-2----Methylcyclohexane 4.0 U 75-09-2-----Methylene chloride U 4.0

18/504

Client No.

Lab Name: STL Buffalo Contract: 4	MW-17
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A5E58702</u>
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID: S9696.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>12/20/2005</u> <u>12/23/200</u>
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>12/28/2005</u>
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor: 4.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
108-10-14-Methyl-2-pentanone 1634-04-4Methyl-t-Butyl Ether (MTBE) 91-20-3Naphthalene 100-42-5Styrene	20 U 4.0 U 4.0 U 4.0 U

19/504

Client No.

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u>	
Lab Code: RECNY Case No.: SAS No.: SDG No.:	
Matrix: (soil/water) WATER Lab Sample ID: A5	5E58701
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{G7}}$	7639.RR
Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12</u>	<u>2/20/2005</u> <u>12/23/2005</u>
% Moisture: not dec Heated Purge: N Date Analyzed: 12	2/28/2005
GC Column: DB-624 ID: 0.25 (mm) Dilution Factor:	1.00
Soil Extract Volume: (uL) Soil Aliquot Volume	e: (uL)

CAS NO.	COMPOUND	CONCENTRATION (ug/L or ug/K	 UG/L_	Q	
67-64-1 71-43-2 75-27-4 75-25-2 74-83-9 75-15-0 56-23-5 108-90-7 75-00-3 67-66-3 110-82-7 106-93-4 124-48-1 96-12-8 95-50-1 541-73-1 106-46-7 75-71-8 75-34-3 156-59-2 156-60-5 78-87-5 10061-01-5 10061-02-6 100-41-4 591-78-6	AcetoneBenzeneBromodichloromethaneBromoformBromomethane2-ButanoneCarbon DisulfideCarbon TetrachlorideChlorobenzeneChloroethaneChloromethaneChloromethaneChloromethaneCyclohexane1,2-Dibromoethane1,2-Dibromo-3-chloropropane1,2-Dichlorobenzene1,3-Dichlorobenzene1,4-Dichlorobenzene1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,2-Dichloroethene			ממחממ ממ ממממממממממממממ	
79-20-9 108-87-2	-Isopropylbenzene -Methyl acetate -Methylcyclohexane -Methylene chloride		1.0 1.0 1.0	ת ת ת	

20/504

lυ

U

U

1.0

1.5

1.0

3.0

Client No.

Lab Name	e: STL Buffalo Contract: 4		MW-2		
	e: <u>RECNY</u> Case No.: SAS No.:		· · · · · · · · · · · · · · · · · · ·		
	(soil/water) <u>WATER</u>	Lab Sample ID:		<u>l</u> .	
Sample w	vt/vol: <u>5.00</u> (g/mL) <u>ML</u>	Lab File ID:	<u>G7639.RI</u>	3	-
Level:	(low/med) <u>LOW</u>	Date Samp/Recv:	12/20/20	005 12/	<u>/23/2005</u>
% Moistu	re: not dec Heated Purge: N	Date Analyzed:	12/28/20	005	
GC Colum	n: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor	1.00	<u>)</u>	
Soil Ext	ract Volume: (uL)	Soil Aliquot Vo	olume:	(uL)
	CAS NO. COMPOUND	CONCENIRATION UNITS (ug/L or ug/Kg)		Q	
	108-10-14-Methyl-2-pentanone 1634-04-4Methyl-t-Butyl Ether (MIBE) 91-20-3Naphthalene 100-42-5Styrene 79-34-5Tetrachloroethane 127-18-4Tetrachloroethene 108-88-3Toluene 120-82-11,2,4-Trichloroethane 71-55-61,1,1-Trichloroethane 79-00-51,1,2-Trichloroethane 76-13-11,1,2-Trichloro-1,2,2-trifluc 75-69-4Trichlorofluoromethane		5.0 3.2 1.0 1.0 1.0 1.0 1.0 1.0	ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט	
	1,2-03-4ITTCITTOTOTTOLOMETHANE		1.0	lυ	

79-01-6----Trichloroethene

75-01-4-----Vinyl chloride_ 1330-20-7----Total Xylenes_

21/504

Client No.

		• •	
Lab Name:	STL Buffalo	Contract: 4	MW-20
		Concluce. 4	

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58719

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{Q9554.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q 67-64-1-----Acetone 5.0 U 71-43-2-----Benzene U 1.0 75-27-4----Bromodichloromethane 1.0 IJ 75-25-2----Bromoform 1.0 U 74-83-9-----Bromomethane 1.0 U 78-93-3----2-Butanone 5.0 U 75-15-0-----Carbon Disulfide 1.0 U 56-23-5----Carbon Tetrachloride 1.0 U 108-90-7----Chlorobenzene 1.0 U 75-00-3-----Chloroethane 1.0 IJ 67-66-3-----Chloroform 1.0 U 74-87-3----Chloromethane 1.0 U 110-82-7-----Cyclohexane 1.0 U 106-93-4----1,2-Dibromoethane 1.0 U 124-48-1-----Dibromochloromethane 1.0 U 96-12-8----1,2-Dibromo-3-chloropropane 1.0 U 95-50-1----1,2-Dichlorobenzene 1.0 U 541-73-1----1,3-Dichlorobenzene IJ 1.0 106-46-7----1,4-Dichlorobenzene 1.0 U 75-71-8-----Dichlorodifluoromethane 1.0 U 75-34-3----1,1-Dichloroethane 1.7 107-06-2----1,2-Dichloroethane 1.0 U 75-35-4----1,1-Dichloroethene 1.0 U 156-59-2----cis-1,2-Dichloroethene 5.2 156-60-5----trans-1,2-Dichloroethene U 1.0 78-87-5----1,2-Dichloropropane U 1.0 10061-01-5---cis-1,3-Dichloropropene 1.0 U 10061-02-6---trans-1,3-Dichloropropene 1.0 U 100-41-4----Ethylbenzene U 1.0 591-78-6----2-Hexanone 5.0 U 98-82-8-----Isopropylbenzene IJ 1.0 79-20-9-----Methyl acetate 1.0 U 108-87-2----Methylcyclohexane U 1.0 75-09-2-----Methylene chloride U 1.0

22/504

U

U

U

U

U

J

U

1.0

1.0

2.4

1.0

1.0

1.0

6.4

3.0

0.47

Client No.

Lab Name: STL Buffalo Contract: 4	MW-20
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A5E58719
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: Q9554.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>12/28/2005</u>
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
108-10-14-Methyl-2-pentanone 1634-04-4Methyl-t-Butyl Ether (MTBE) 91-20-3Naphthalene 100-42-5Styrene 79-34-51,1,2,2-Tetrachloroethane 127-18-4Tetrachloroethene	1.0 U

108-88-3----Toluene

120-82-1----1,2,4-Trichlorobenzene

71-55-6-----1,1,1-Trichloroethane

79-00-5-----1,1,2-Trichloroethane

75-69-4----Trichlorofluoromethane

79-01-6----Trichloroethene

75-01-4-----Vinyl chloride_

1330-20-7----Total Xylenes

76-13-1----1,1,2-Trichloro-1,2,2-trifluoroethane

23/504

Lab Name: STL Buffalo Contract: 4	<u> </u>	MW-21
Lab Code: RECNY Case No.: SAS No.:		-
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A5E58712
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID:	S9725.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	12/21/2005 12/23/2005
Moisture: not dec Heated Purge: N	Date Analyzed:	12/28/2005
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume: (uL)

		CONCENTRATION UN	NITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/L</u>	Q
67-64-1			5.0	ש
71-43-2			1.0	ן מ
75-27-4	Bromodichloromethane		1.0	U
75-25-2			1.0	ן ט
	Bromomethane		1.0	U
78-93 - 3	2-Butanone		5.0	ן ט
75-15-0	Carbon Disulfide		1.0	ן ען
56-23-5	Carbon Tetrachloride		1.0	ן ט
	Chlorobenzene		1.0	ען
	Chloroethane		1.0	ן מן
67-66-3			1.0	U
	Chloromethane		1.0	ן ט
110-82-7	Cyclohexane		1.0	ן מן
106-93-4	1,2-Dibromoethane		1.0	ט
124-48-1	Dibromochloromethane		1.0	U
96-12-8	1,2-Dibromo-3-chloropropane		1.0	ן טן
	1,2-Dichlorobenzene		1.0	ט
	1,3-Dichlorobenzene		1.0	ט
106-46-7	1,4-Dichlorobenzene		1.0	ן ט
	Dichlorodifluoromethane		1.0	שו
	1,1-Dichloroethane		0.85	J
107-06-2	-1,2-Dichloroethane		1.0	U
75-35-4	-1,1-Dichloroethene		1.0	U
156-59-2	-cis-1,2-Dichloroethene		18	
156-60-5	-trans-1,2-Dichloroethene		1.0	U
78 - 87-5	-1,2-Dichloropropane		1.0	ע
10061-01-5	-cis-1,3-Dichloropropene		1.0	U
10061-02-6	-trans-1,3-Dichloropropene_		1.0	U
100-41-4	-Ethylbenzene		1.0	ע
591-78-6			5.0	ע
98-82-8	-Isopropylbenzene		1.0	U
79-20-9	-Methyl acetate		1.0	U
108-87-2	-Methylcyclohexane		1.0	U
75-09-2	-Methylene chloride		1.0	U

24/504

1.0

1.0

1.0

3.0

20

U

U

U

U

Client No.

Lab Name: STL Buffalo	Contract: 4		MW-21		
	concrace: 4				
Lab Code: RECNY Case No.:	SAS No.:	SDG No.:	<u> </u>		
Matrix: (soil/water) <u>WATER</u>		Lab Sample ID:	A5E5871	2	
Sample wt/vol: $\underline{5.00}$ (g/mL)	<u>ML</u>	Lab File ID:	<u>S9725.R</u>	R	-
Level: (low/med) <u>LOW</u>		Date Samp/Recv	r: <u>12/21/2</u>	005 <u>12</u> /	²³ /2005
% Moisture: not dec Heate	d Purge: <u>N</u>	Date Analyzed:	12/28/2	<u>005</u>	
GC Column: <u>DB-624</u> ID: <u>0.18</u> (1	nm)	Dilution Facto	r:1.0	<u>0</u>	
Soil Extract Volume: (uL)		Soil Aliquot V	olume:	(uL)
CAS NO. COMPOUND	· 	CONCENTRATION UNIT (ug/L or ug/Kg)		Q	
108-10-14-Methyl-2-1634-04-4Methyl-t-But 91-20-3Naphthalene 100-42-5Styrene 79-34-51,1,2,2-Tetr 127-18-4Tetrachloroe 108-88-3Toluene 120-82-11,2,4-Trichl 71-55-61,1,1-Trichl 79-00-5	rachloroethane ethene orobenzene oroethane		5.0 0.99 1.0 1.0 1.0 1.0 1.0	U U U U U U U U U U U	
79-00-51,1,2-Trichl	.oroetnane	1	1.0	U	l

76-13-1----1,1,2-Trichloro-1,2,2-trifluoroethane

75-69-4-----Trichlorofluoromethane

79-01-6----Trichloroethene

75-01-4-----Vinyl chloride 1330-20-7----Total Xylenes

25/504

Client No.

Lab Name: <u>STL Buffalo</u>	Contract: 4		MW-32
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>		Lab Sample ID:	A5E58715
Sample wt/vol: 5.00	(g/mL) <u>ML</u>	Lab File ID:	Q9550.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	12/21/2005 12/23/2005
% Moisture: not dec.	Heated Purge: N	Date Analyzed:	12/27/2005
GC Column: <u>DB-624</u> ID: <u>C</u>	0.25 (mm)	Dilution Factor:	1.00
Soil Extract Volume:((uL)	Soil Aliquot Volu	.me: (uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L 0 67-64-1-----Acetone 5.0 U 71-43-2----Benzene 1.0 U 75-27-4----Bromodichloromethane U 1.0 75-25-2----Bromoform U 1.0 74-83-9-----Bromomethane 1.0 U 78-93-3----2-Butanone 5.0 U 75-15-0-----Carbon Disulfide U 1.0 56-23-5-----Carbon Tetrachloride 1.0 U 108-90-7-----Chlorobenzene 1.0 U 75-00-3------Chloroethane U 1.0 67-66-3-----Chloroform 1.0 IJ 74-87-3-----Chloromethane 1.0 U 110-82-7-----Cyclohexane U 1.0 106-93-4----1,2-Dibromoethane IJ 1.0 124-48-1----Dibromochloromethane U 1.0 96-12-8----1,2-Dibromo-3-chloropropane 1.0 U 95-50-1----1,2-Dichlorobenzene 1.0 U 541-73-1----1,3-Dichlorobenzene 1.0 U 106-46-7----1,4-Dichlorobenzene 1.0 IJ 75-71-8-----Dichlorodifluoromethane U 1.0 75-34-3----1,1-Dichloroethane U 1.0 107-06-2----1,2-Dichloroethane 1.0 U 75-35-4----1,1-Dichloroethene U 1.0 156-59-2----cis-1,2-Dichloroethene 91 156-60-5----trans-1,2-Dichloroethene 5.7 78-87-5----1,2-Dichloropropane 1.0 U 10061-01-5---cis-1,3-Dichloropropene 1.0 U 10061-02-6---trans-1,3-Dichloropropene U 1.0 100-41-4----Ethylbenzene 1.0 U 591-78-6----2-Hexanone 5.0 U 98-82-8-----Isopropylbenzene U 1.0 79-20-9-----Methyl acetate U 1.0 108-87-2----Methylcyclohexane 1.0 U 75-09-2-----Methylene chloride 1.0 U

26/504

3.0

U U

Lab Name: <u>STL Buffalo</u>	Contract: 4	. 1	MW-32		
Lab Code: <u>RECNY</u> Cas	se No.: SAS No.:	SDG No.:	_		
Matrix: (soil/water) <u></u>	<u>WATER</u>	Lab Sample ID:	A5E5871	5	
Sample wt/vol:	<u>5.00</u> (g/mL) <u>ML</u>	Lab File ID:	<u>Q9550.R</u>	R	-
Level: (low/med) <u>I</u>	LOW	Date Samp/Recv:	12/21/2	005 12/	²³ /2005
% Moisture: not dec	Heated Purge: N	Date Analyzed:	12/27/2	005	
GC Column: <u>DB-624</u>	ID: <u>0.25</u> (mm)	Dilution Factor	:1.00	<u> </u>	
Soil Extract Volume: _	(uL)	Soil Aliquot Vo	olume:	(uL)
CAS NO.	COMPOUND	CONCENIRATION UNITS (ug/L or ug/Kg)		Q	
1634-04-4 91-20-3 100-42-5 79-34-5 127-18-4 108-88-3 71-55-6 79-00-5 76-13-1 75-69-4 75-01-4	-1,1,2,2-Tetrachloroethane -Tetrachloroethene -Toluene -1,2,4-Trichlorobenzene -1,1,1-Trichloroethane -1,1,2-Trichloroethane -1,1,2-Trichloro-1,2,2-triflu	oroethane	5.0 2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ח מממממממ ממממ	

27/504

Soil Aliquot Volume: ____ (uL)

Lab Name: <u>STL Buffalo</u>	Contract: 4		MW-33
Lab Code: RECNY Case No.:	_ SAS No.:	SDG No.:	-
Matrix: (soil/water) WATER		Lab Sample ID:	A5E58718
Sample wt/vol:5.00 (g/mL	a) <u>ML</u>	Lab File ID:	Q9553.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	12/21/2005 12/23/2005
% Moisture: not dec Heat	ed Purge: <u>N</u>	Date Analyzed:	12/28/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u>	(mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)		Soil Aliquot Vol	ume:(uL)

CAS NO. COMPOUND (ug/L or ug/kg) Ug/L Q 67-64-1Acetone 5.0 U 71-43-2			CONCENTRATION UNIT	rs:	
71-43-2	CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/L</u>	Q
71-43-2				5.0	U
75-27-4 Bromodichloromethane 1.0 U 75-25-2 Bromoform 1.0 U 74-83-9 Bromoform 1.0 U 78-93-3 2-Butanone 5.0 U 75-15-0 Carbon Disulfide 1.0 U 75-15-0 Carbon Tetrachloride 1.0 U 75-15-0 Chlorobenzene 1.0 U 75-00-3 Chlorobenzene 1.0 U 75-00-3 Chloromethane 1.0 U 74-87-3 Chloromethane 1.0 U 74-87-3 Cyclohexane 1.0 U 74-87-3 Cyclohexane 1.0 U 74-84-1 Dibromochloromethane 1.0 U 74-48-1 Dibromochloromethane 1.0 U 75-50-1 1,2-Dibromo-3-chloropropane 1.0 U 75-50-1 1,2-Dichlorobenzene 1.0 U 75-71-8 Dichlorobenzene 1.0 U 75-71-8 Dichlorodifluoromethane 1.0 U 75-34-3 1,1-Dichloroethane 1.0 U 75-35-4 1,1-Dichloroethane 1.0 U 75-35-4 1,2-Dichloroethane 1.0 U 75-35-4 1,2-Dichloroethane 1.0 U 75-35-4 1,2-Dichloroethene 1.0 U 75-35-4 1,3-Dichloroethene 1.0 U 75-35-4 1,3-Dichloropopane 1.0 U 75-35-35-4 1,3-Dichloropopane 1.0 U 75-35-35-35-35-35-35-35-35-35-35-35-35-35					I -
75-25-2	75-27-4	Bromodichloromethane			1
74-83-9 Brommethane					
78-93-3 2-Butanone				1.0	I.
75-15-0Carbon Disulfide				5.0	_
1.0 U 108-90-7	75-15-0	Carbon Disulfide		1.0	-
108-90-7Chlorobenzene	56-23-5	Carbon Tetrachloride			1 -
75-00-3Chloroethane 1.0 U 67-66-3Chloromm 1.0 U 74-87-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 541-73-11,4-Dichlorobenzene 1.0 U 75-71-8Dichlorobenzene 1.0 U 75-71-8Dichloroethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-65-21,2-Dichloroethene 1.0 U 75-35-41,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 1061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U 591-78-62-Hexanone 5.0 U 9	108-90-7	Chlorobenzene			1 -
67-66-3Chloroform 1.0 U 74-87-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromoethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U 591-78-62-Hexanone 5.0 U 98-82-8	75-00-3	Chloroethane		-	I -
74-87-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromochloromethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 541-73-11,4-Dichlorobenzene 1.0 U 75-71-8Dichlorobenzene 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U 591-78-62-Hexanone 5.0 U 98-82-8					1 -
110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromoethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 1061-01-5cis-1,3-Dichloropropane 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U 591-78-62-Hexanone 5.0 U 98-82-8	74-87-3	Chloromethane			1 -
106-93-41,2-Dibromoethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 175-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 1061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	110-82-7	Cyclohexane			I -
124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 7.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2	106-93-4	1,2-Dibromoethane			_
96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10041-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2	124-48-1 -	Dibromochloromethane		-	J 1
95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethane 1.0 U 156-59-2cis-1,2-Dichloroethane 1.0 U 156-60-5trans-1,2-Dichloroethane 1.0 U 10061-01-5cis-1,3-Dichloropropane 1.0 U 10061-02-6trans-1,3-Dichloropropane 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 108-87-2Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	96-12-8	1,2-Dibromo-3-chloropropane			1 - 1
541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 75-35-41,1-Dichloroethene 7.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloroethene 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U 591-78-62-Hexanone 5.0 U 98-82-8Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	95-50-1	1,2-Dichlorobenzene		— - -	1 -
106-46-71, 4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31, 1-Dichloroethane 1.0 U 107-06-21, 2-Dichloroethane 1.0 U 75-35-41, 1-Dichloroethene 1.0 U 156-59-2cis-1, 2-Dichloroethene 7.0 U 156-60-5trans-1, 2-Dichloroethene 1.0 U 78-87-51, 2-Dichloropropane 1.0 U 10061-01-5cis-1, 3-Dichloropropene 1.0 U 10041-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	541-73-1	1,3-Dichlorobenzene			1 - 1
75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 7.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	106-46-7	1,4-Dichlorobenzene	1994		1 - 1
75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 7.0 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	75-71-8	Dichlorodifluoromethane			, - ,
107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 7.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	75-34-3	1,1-Dichloroethane			
75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 7.0 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	107-06-2	1,2-Dichloroethane			1 - 1
156-59-2cis-1,2-Dichloroethene 7.0 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	75-35-4	1,1-Dichloroethene			1 - 1
156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	156-59-2	cis-1,2-Dichloroethene			
78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	156-60-5	trans-1,2-Dichloroethene	·		TT
10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	78-87-5	1,2-Dichloropropane			1 - 1
10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	10061-01-5-	cis-1,3-Dichloropropene			1
100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	10061-02-6-	trans-1,3-Dichloropropene			
591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	100-41-4	Ethylbenzene			1 -
98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	591-78-6	2-Hexanone			1 1
79-20-9Methyl acetate 1.0 U 1.0	98-82-8	Isopropylbenzene			1 - 1
1.0 U	79-20-9	Methyl acetate			1 - 1
75 00 0	108-87-2	Methylcyclohexane			1 1
	75-09-2	Methylene chloride			1 - 1

28/504

1.0

3.1

1.0

3.0

U

U

U

Client No.

Lab Name: STL Buffalo Contract: 4		MW-33
Lab Code: <u>RECNY</u> Case No.: SAS No.:	· · · · · · · · · · · · · · · · · · ·	
	_ 5LG 100.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A5E58718
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID:	<u>Q9553.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	12/21/2005 12/23/2005
% Moisture: not dec Heated Purge: N	Date Analyzed:	12/28/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume: (uL)
	CONCENTRATION UNITS: (ug/L or ug/Kg) [JG/L Q
79-34-51,1,2,2-Tetrachloroethane 127-18-4Tetrachloroethene 108-88-3Toluene		5.0 U 1.0 U

79-01-6----Trichloroethene

75-01-4-----Vinyl chloride 1330-20-7----Total Xylenes

29/504

Lab Name: STL Buffalo Contract: 4	MW-34
Lab Code: <u>RECNY</u> Case No.: SAS No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A5E58710
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: S9694.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>12/28/2005</u>
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
	G037G7

CAS NO.	COMPOUND	CONCENTRATION U (ug/L or ug/Kg		Q
67-64-1 71-43-2 75-27-4 75-25-2 74-83-9 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3 75-00-3 110-82-7 106-93-4 124-48-1 96-12-8 95-50-1 75-71-8 75-71-8 75-34-3 107-06-2 75-35-4 156-59-2 156-60-5 10061-01-5 10061-02-6 100-41-4 591-78-6 98-82-8	-Acetone -Benzene -Bromodichloromethane -Bromoform -Bromomethane -2-Butanone -Carbon Disulfide -Carbon Tetrachloride -Chlorobenzene -Chloroethane -Chloromethane -Chloromethane -Cyclohexane -1,2-Dibromoethane -1,2-Dibromoethane -1,2-Dibromo-3-chloropropane -1,2-Dichlorobenzene -1,3-Dichlorobenzene -1,4-Dichlorobenzene -1,1-Dichloroethane -1,1-Dichloroethane -1,1-Dichloroethane -1,1-Dichloroethene -trans-1,2-Dichloroethene -trans-1,2-Dichloropropane -trans-1,3-Dichloropropene -trans-1,3-Dichloropropene	(ug/L or ug/Kg	5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	מממממממממממממ
108-87-2	Methylcyclohexane Methylene chloride		1.0 1.0 1.0	บ บ บ

30/504

Lab Name: <u>STL Buffalo</u>	Contract: 4		MW-34		
Lab Code: <u>RECNY</u> Case No.: _	SAS No.:	SDG No.:			
Matrix: (soil/water) <u>WATER</u>		Lab Sample 1	ID: <u>A5E5871</u> 0	<u>)</u>	
Sample wt/vol: $\underline{5.00}$ (g,	/mL) <u>ML</u>	Lab File ID:	S9694.RI	?	
Level: (low/med) <u>LOW</u>		Date Samp/Re	ecv: <u>12/21/20</u>	005 12/23/	<u>′2005</u>
% Moisture: not dec He	eated Purge: N	Date Analyze	ed: <u>12/28/20</u>	005	
GC Column: <u>DB-624</u> ID: <u>0.1</u>	<u>18</u> (mm)	Dilution Fac	tor: 1.00	<u>)</u>	
Soil Extract Volume: (uI	L)	Soil Aliquot	Volume:	(uL)	
CAS NO. COMPOUND)	CONCENTRATION UN (ug/L or ug/Kg)		Q	
108-10-14-Methyl 1634-04-4Methyl-t	l-2-pentanone -Butyl Ether (MTBE)		5.0	Ū	

31/504

Client No.

		MW-34 DL
Lab Name: <u>STL Buffalo</u>	Contract: 4	

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ___

Matrix: (soil/water) WATER Lab Sample ID: A5E58710DL

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: S9724.RR

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: DB-624 ID: 0.18 (mm) Dilution Factor: 2.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (uq/L or uq/Kq) <u>UG/L</u> 0 67-64-1-----Acetone 10 U 71-43-2----Benzene 2.0 U 75-27-4-----Bromodichloromethane 2.0 U 75-25-2----Bromoform 2.0 U 74-83-9-----Bromomethane 2.0 IJ 78-93-3----2-Butanone 10 U 75-15-0-----Carbon Disulfide U 2.0 56-23-5-----Carbon Tetrachloride 2.0 U 108-90-7-----Chlorobenzene 2.0 IJ 75-00-3-----Chloroethane 2.0 U 67-66-3-----Chloroform U 2.0 74-87-3-----Chloromethane 2.0 U 110-82-7-----Cyclohexane 2.0 U 106-93-4----1,2-Dibromoethane 2.0 U 124-48-1----Dibromochloromethane 2.0 U 96-12-8----1,2-Dibromo-3-chloropropane 2.0 U 95-50-1----1,2-Dichlorobenzene 2.0 U 541-73-1----1,3-Dichlorobenzene 2.0 U 106-46-7----1,4-Dichlorobenzene 2.0 U 75-71-8-----Dichlorodifluoromethane 2.0 U 75-34-3-----1,1-Dichloroethane 2.0 U 107-06-2----1,2-Dichloroethane 2.0 U 75-35-4----1,1-Dichloroethene U 2.0 156-59-2----cis-1,2-Dichloroethene 110 D 156-60-5----trans-1,2-Dichloroethene 2.0 U 78-87-5----1,2-Dichloropropane U 2.0 10061-01-5---cis-1,3-Dichloropropene 2.0 U 10061-02-6----trans-1,3-Dichloropropene 2.0 U 100-41-4----Ethylbenzene 2.0 U 591-78-6----2-Hexanone 10 U 98-82-8-----Isopropylbenzene 2.0 U 79-20-9-----Methyl acetate 2.0 U 108-87-2----Methylcyclohexane 2.0 U 75-09-2-----Methylene chloride U 2.0

32/504

U

U

U

U

U

D

D

U

2.0

2.0

2.0

2.0

2.0

6.0

15

58

Client No.

Lab Name: STL Buffalo Contract: 4	MW-34 DL
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A5E58710DL
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID: S9724.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>12/28/2005</u>
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor: 2.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
108-10-14-Methyl-2-pentanone 1634-04-4Methyl-t-Butyl Ether (MTBE) 91-20-3Naphthalene 100-42-5Styrene 79-34-51,1,2,2-Tetrachloroethane 127-18-4Tetrachloroethene 108-88-3Toluene	2.0

120-82-1----1,2,4-Trichlorobenzene

71-55-6----1,1,1-Trichloroethane

79-00-5----1,1,2-Trichloroethane

75-69-4----Trichlorofluoromethane

79-01-6----Trichloroethene

75-01-4-----Vinyl chloride

1330-20-7----Total Xylenes

76-13-1----1,1,2-Trichloro-1,2,2-trifluoroethane

33/504

Lab Name: STL Buffalo Contract: 4		
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A5E58713
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID:	Q9548.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	12/21/2005 12/23/2005
% Moisture: not dec Heated Purge: N	Date Analyzed:	12/27/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume: (uL)

CAS NO.	COMPOUND	CONCENTRATION (ug/L or ug/K	 UG/L	Q
67-64-1	7 colons	, , , , , , , , , , , , , , , , , , , ,	 	
71-43-2			5.0	U
			1.0	U
75-25-2	Bromodichloromethane		1.0	U
			1.0	שׁ
	Bromomethane		1.0	Ü
78-93-3			5.0	ט
	Carbon Disulfide		1.0	U
56-23-5	Carbon Tetrachloride		1.0	U
	-Chlorobenzene		1.0	U
	-Chloroethane		1.0	U
67-66-3			1.0	U
74-87-3	-Chloromethane		1.0	U
110-82-7			1.0	U
	-1,2-Dibromoethane		1.0	U
124-48-1	-Dibromochloromethane		1.0	U
96-12-8	-1,2-Dibromo-3-chloropropane		1.0	บ
	-1,2-Dichlorobenzene		1.0	U
541-73-1	-1,3-Dichlorobenzene		1.0	ប
106-46-7	-1,4-Dichlorobenzene		1.0	ט
	-Dichlorodifluoromethane		1.0	ט
	-1,1-Dichloroethane		4.4	ļ
107-06-2	-1,2-Dichloroethane		1.0	ן ט
	-1,1-Dichloroethene		1.0	ע ו
	-cis-1,2-Dichloroethene		5.7	
156-60-5	-trans-1,2-Dichloroethene		1.0	ן ט
78-87-5	-1,2-Dichloropropane		1.0	ן ט
10061-01-5	-cis-1,3-Dichloropropene		1.0	U
10061-02-6	-trans-1,3-Dichloropropene		1.0	U
100-41-4	-Ethylbenzene		1.0	Ū
591-78-6	-2-Hexanone		5.0	Ū
98-82-8	-Isopropylbenzene		1.0	U
79-20-9	-Methyl acetate		1.0	lū
	-Methylcyclohexane		1.0	II
	-Methylene chloride		1.0	Ū

34/504

2.4

1.0

1.0

1.0

5.7

2.0

1.1

U

U

U

BJ

Client No.

Lab Name: STL Buffalo Contract: 4		MW-35	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:		
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A5E58713	
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID:	<u>09548.RR</u>	
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	12/21/2005	12/23/2005
% Moisture: not dec Heated Purge: N	Date Analyzed:	12/27/2005	
3C Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00	
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume:	_ (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg)	UG/L	Q
108-10-14-Methyl-2-pentanone		5.0 U	
1634-04-4Methyl-t-Butyl Ether (MTBE)		28	
191-20-3Naphthalene		1.0 U	
		1.0 U	İ
79-34-51,1,2,2-Tetrachloroethane		1.0 U	
12/-18-4Tetrachloroethene		1.0 U	
1100-00-21011606		1.0 U	
120-82-11,2,4-Trichlorobenzene		1.0 ប	
71-55-61,1,1-Trichloroethane		2.4	ļ

79-00-5----1,1,2-Trichloroethane

75-69-4----Trichlorofluoromethane

79-01-6----Trichloroethene

75-01-4-----Vinyl chloride

1330-20-7----Total Xylenes

76-13-1----1,1,2-Trichloro-1,2,2-trifluoroethane

35/504

Lab Name: STL Buffalo	Contract: 4		MW-36
Lab Code: <u>RECNY</u> Case No.	: SAS No.:	SDG No.:	
Matrix: (soil/water) WATER		Lab Sample ID:	A5E58716
Sample wt/vol: $\underline{5.00}$	(g/mL) <u>ML</u>	Lab File ID:	Q9551.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	12/21/2005 12/23/2005
% Moisture: not dec	Heated Purge: N	Date Analyzed:	12/27/2005
GC Column: <u>DB-624</u> ID:	0.25 (mm)	Dilution Factor:	1.00
Soil Extract Volume:	(uL)	Soil Aliquot Vol	ume: (uL)

		CONCENTRATION UNIT	rs:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/L</u>	Q
67-64-1			5.0	U
71-43-2			1.0	Ü
75-27-4	Bromodichloromethane	-	1.0	TI I
75-25-2	Bromoform		1.0	Ü
	Bromomethane		1.0	Ū
78-93-3	2-Butanone		5.0	lu l
75-15-0	Carbon Disulfide		1.0	U
56-23-5	Carbon Tetrachloride		1.0	U I
108-90-7	Chlorobenzene		1.0	ט
75-00-3	Chloroethane		1.0	ט
	Chloroform		1.0	υ
74-87-3	Chloromethane		1.0	U
110-82-7	Cyclohexane	-	1.0	υ
106-93-4	1,2-Dibromoethane		1.0	ט l
124-48-1	Dibromochloromethane		1.0	Ū
96-12-8	1,2-Dibromo-3-chloropropane		1.0	Ū
95-50-1	1,2-Dichlorobenzene		1.0	Ū
541-73-1	1,3-Dichlorobenzene		1.0	U
106-46-7	1,4-Dichlorobenzene		1.0	υ
75-71-8	Dichlorodifluoromethane		1.0	111
75-34-3	1,1-Dichloroethane		3.2	
107-06-2	1,2-Dichloroethane		1.0	ע
75-35-4	1,1-Dichloroethene		1.0	U
156-59-2	cis-1,2-Dichloroethene		6.6	
156-60-5	trans-1,2-Dichloroethene		1.0	U
78-87-5	1,2-Dichloropropane		1.0	Ū
10061-01-5-	cis-1,3-Dichloropropene		1.0	U
10061-02-6	trans-1,3-Dichloropropene		1.0	ltī l
100-41-4	Ethylbenzene		1.0	U
591-78-6	2-Hexanone		5.0	U
98-82-8	Isopropylbenzene		1.0	ŭ
79-20-9	Methyl acetate	-	1.0	ן ט
108-87-2	Methylcyclohexane		1.0	U
75-09-2	Methylene chloride		1.0	Ū
				1 1

36/504

1.0

5.3

1.0

1.0

1.0

1.8

3.0

13

U

U

U

U

U

Client No.

Lab Name: <u>STL Buff</u>	<u>alo</u>	Contract: 4			MW-36		
Lab Code: <u>RECNY</u>	Case No.:	SAS No.:	SDG No.	·:	_		
Matrix: (soil/wate	r) <u>WATER</u>		Lab Samg	ple ID:	<u>A5E5871</u>	5	
Sample wt/vol:	5.00 (g/mL)	<u>ML</u> .	Lab File	e ID:	<u>Q9551.RI</u>	3	
Level: (low/med)	TOM		Date San	np/Recv:	12/21/20	005 12/2	23/2005
% Moisture: not dec	C Heated	Purge: <u>N</u>	Date Ana	alyzed:	12/27/20	005	
GC Column: <u>DB-624</u>	ID: <u>0.25</u> (m	m)	Dilution	Factor:	1.00	2	
Soil Extract Volume	e: (uL)	÷	Soil Ali	.quot Vol	ume:	(ı	正)
CAS NO.	COMPOUND		CONCENTRATIO			Q	
1634-04-4- 91-20-3 100-42-5 79-34-5 127-18-4	4-Methyl-2-pa Methyl-t-Buty Naphthalene Styrene 1,1,2,2-Tetra Tetrachloroet	yl Ether (MIBE)			5.0 26 1.0 1.0 1.0 0.45 1.0	U U U J U	

120-82-1----1,2,4-Trichlorobenzene

71-55-6----1,1,1-Trichloroethane

79-00-5----1,1,2-Trichloroethane

75-69-4----Trichlorofluoromethane

79-01-6----Trichloroethene

75-01-4-----Vinyl chloride_

1330-20-7----Total Xylenes

76-13-1----1,1,2-Trichloro-1,2,2-trifluoroethane

37/504

Client No.

Lab Name:	STL Buffalo	Contract: 4	MW-39
	<u>—</u>		

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ___

Matrix: (soil/water) WATER Lab Sample ID: A5E58720

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{Q9555.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: ____1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (uq/L or uq/Kq) UG/L 0 67-64-1----Acetone 5.0 U 71-43-2----Benzene 1.0 U 75-27-4-----Bromodichloromethane 1.0 U 75-25-2----Bromoform 1.0 IJ 74-83-9----Bromomethane 1.0 U 78-93-3----2-Butanone 5.0 U 75-15-0-----Carbon Disulfide 1.0 U 56-23-5-----Carbon Tetrachloride U 1.0 108-90-7----Chlorobenzene 1.0 U 75-00-3-----Chloroethane 1.0 U 67-66-3-----Chloroform 1.0 Ū 74-87-3-----Chloromethane 1.0 U 110-82-7-----Cyclohexane 1.0 U 106-93-4----1,2-Dibromoethane 1.0 U 124-48-1-----Dibromochloromethane 1.0 U 96-12-8----1,2-Dibromo-3-chloropropane_ 1.0 U 95-50-1----1,2-Dichlorobenzene 1.0 U 541-73-1----1,3-Dichlorobenzene U 1.0 106-46-7----1,4-Dichlorobenzene 1.0 U 75-71-8-----Dichlorodifluoromethane 1.0 U 75-34-3----1,1-Dichloroethane 1.0 U 107-06-2----1,2-Dichloroethane 1.0 U 75-35-4----1,1-Dichloroethene 1.0 U 156-59-2----cis-1,2-Dichloroethene 1.0 U 156-60-5----trans-1,2-Dichloroethene 1.0 U 78-87-5----1,2-Dichloropropane 1.0 U 10061-01-5---cis-1,3-Dichloropropene 1.0 U 10061-02-6---trans-1,3-Dichloropropene 1.0 U 100-41-4----Ethylbenzene 1.0 U 591-78-6----2-Hexanone 5.0 U 98-82-8-----Isopropylbenzene 1.0 U 79-20-9-----Methyl acetate 1.0 U 108-87-2----Methylcyclohexane 1.0 U 75-09-2-----Methylene chloride U 1.0

38/504

Lab Nam	e: <u>STL Buffal</u>	Contract: 4		MM-39
Lab Code	e: <u>RECNY</u> C	ase No.: SAS No.:	SDG No.:	<u> </u>
Matrix:	(soil/water)	WATER	Lab Sample ID:	A5E58720
Sample v	wt/vol:	5.00 (g/mL) <u>ML</u>	Lab File ID:	<u>Q9555.RR</u>
Level:	(low/med)	LOW	Date Samp/Recv:	12/21/2005 12/23/2005
% Moistu	ure: not dec.	Heated Purge: N	Date Analyzed:	12/28/2005
GC Colun	m: <u>DB-624</u>	ID: <u>0.25</u> (mm)	Dilution Factor	:1.00
Soil Ext	ract Volume:	(uL)	Soil Aliquot Vo	lume: (uL)
	CAS NO.	COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg)	
	1634-04-4 91-20-3	4-Methyl-2-pentanone Methyl-t-Butyl Ether (MIBE) Naphthalene		5.0 U 5.4 1.0 U

39/504

Lab Name: STL Buffal	O Contract: 4	and the second	MW-8
	ase No.: SAS No.:		
Matrix: (soil/water)	WATER	Lab Sample ID:	A5E58704
Sample wt/vol:		Lab File ID:	S9672.RR
Level: (low/med)	LOW	Date Samp/Recv:	12/20/2005 12/23/2005
% Moisture: not dec.	Heated Purge: N	Date Analyzed:	12/27/2005
GC Column: <u>DB-624</u>	ID: <u>0.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume:	(uL)	Soil Aliquot Vol	ume: (uL)

CAS NO.	COMPOUND	CONCENTRATION UNI (ug/L or ug/Kg)	TTS: UG/L	Q
75-25-2 74-83-9 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3 74-87-3 110-82-7 106-93-4 96-12-8 95-50-1 541-73-1 106-46-7 75-71-8 75-34-3 156-59-2 156-60-5 78-87-5 10061-01-5 10061-01-5 100-41-4 98-82-8 98-82-8	AcetoneBenzeneBromodichloromethaneBromoformBromomethane2-ButanoneCarbon DisulfideCarbon TetrachlorideChlorobenzeneChloroethaneChloromethaneChloromethaneCyclohexane1,2-Dibromoethane1,2-Dibromo-3-chloropropane1,2-Dichlorobenzene1,3-Dichlorobenzene1,4-Dichlorobenzene1,1-Dichloroethane1,1-Dichloroethane1,2-Dichloroethane1,2-Dichloroethene		5.0 1.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	מממממממממממממממממממממממממממ מ
75-09-2	Methylene chloride		1.0	Ü

40/504

Lab Name: STL Buffalo Contract: 4		MW-8		
Lab Code: RECNY Case No.: SAS No.:	_ SDG No.:	_		
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A5E5870	4	
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID:	<u>S9672.</u> R	R_	
Level: (low/med) <u>low</u>	Date Samp/Recv:			23/2005
Moisture: not dec Heated Purge: ${ t N}$				
3C Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor			
Soil Extract Volume: (uL)	Soil Aliquot Vol			正)
	ONCENTRATION UNITS: (ug/L or ug/Kg)			
91-20-3Naphthalene	pethane	5.0 1.8 0.53 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	מח ממממממממ מ	

41/504

Client No.

Lab Name: <u>STL Buffalo</u>	Contract: 4		P-3
Lab Code: <u>RECNY</u> Case No.:	_ SAS No.:	SDG No.:	
Matrix: (soil/water) WATER		Lab Sample ID:	<u>A5E58708</u>
Sample wt/vol: $\underline{5.00}$ (g/mL) <u>ML</u>	Lab File ID:	G7640.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	12/20/2005 12/23/2005
% Moisture: not dec Heate	ed Purge: <u>N</u>	Date Analyzed:	12/28/2005

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: ____1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L 0 67-64-1-----Acetone 5.0 U 71-43-2----Benzene 1.0 U 75-27-4----Bromodichloromethane 1.0 U 75-25-2----Bromoform U 1.0 74-83-9-----Bromomethane 1.0 U 78-93-3----2-Butanone 5.0 U 75-15-0-----Carbon Disulfide 1.0 U 56-23-5-----Carbon Tetrachloride U 1.0 108-90-7----Chlorobenzene IJ 1.0 75-00-3-----Chloroethane 1.0 U 67-66-3-----Chloroform 1.0 U 74-87-3-----Chloromethane U 1.0 110-82-7-----Cyclohexane 1.0 U 106-93-4----1,2-Dibromoethane 1.0 U 124-48-1----Dibromochloromethane 1.0 U 96-12-8----1,2-Dibromo-3-chloropropane U 1.0 95-50-1----1,2-Dichlorobenzene 1.0 U 541-73-1----1,3-Dichlorobenzene 1.0 U 106-46-7----1,4-Dichlorobenzene 1.0 U 75-71-8-----Dichlorodifluoromethane U 1.0 75-34-3----1,1-Dichloroethane IJ 1.0 107-06-2----1,2-Dichloroethane 1.0 U 75-35-4----1,1-Dichloroethene 1.0 U 156-59-2----cis-1,2-Dichloroethene 13 156-60-5----trans-1,2-Dichloroethene 1.0 U 78-87-5----1,2-Dichloropropane 1.0 U 10061-01-5---cis-1,3-Dichloropropene 1.0 U 10061-02-6---trans-1,3-Dichloropropene 1.0 U 100-41-4----Ethylbenzene U 1.0 591-78-6----2-Hexanone 5.0 U 98-82-8----Isopropylbenzene 1.0 U 79-20-9-----Methyl acetate 1.0 U 108-87-2----Methylcyclohexane U 1.0 75-09-2----Methylene chloride 1.0 IJ

42/504

6.8

3.2

3.0

U

Client No.

		P-3		
Lab Name: STL Buffalo Contract: 4				
Lab Code: RECNY Case No.: SAS No.:	SDG No.:			
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A5E58708	3	
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID:	G7640.RE	2	-
Level: (low/med) <u>LOW</u>	Date Samp/Recv	7: <u>12/20/20</u>	005 <u>12/</u>	²³ /2005
% Moisture: not dec Heated Purge: N	Date Analyzed:	12/28/20	05	
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Facto	r:1.00		
Soil Extract Volume: (uL)	Soil Aliquot V	olume:	(uL)
CAS NO. COMPOUND	CONCENTRATION UNIT (ug/L or ug/Kg)		Q	
79-34-51,1,2,2-Tetrachloroethane 127-18-4Tetrachloroethene 108-88-3Toluene		5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ם מ מ מ מ מ מ מ מ מ מ מ מ מ מ מ מ מ מ מ	

75-01-4-----Vinyl chloride

1330-20-7----Total Xylenes

43/504

Lab Name: STL Buffalo	Contract: 4		P-8
Lab Code: <u>RECNY</u> Case No.	.: SAS No.:	SDG No.:	
Matrix: (soil/water) WATER		Lab Sample ID:	A5E58706
Sample wt/vol: 5.00	<u>)</u> (g/mL) <u>ML</u>	Lab File ID:	S9674.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	12/20/2005 12/23/2005
% Moisture: not dec	Heated Purge: N	Date Analyzed:	12/27/2005
GC Column: <u>DB-624</u> ID:	_0.18 (mm)	Dilution Factor:	25.00
Soil Extract Volume:	(uL)	Soil Aliquot Vol	ume: (uL)

CAS NO. COMPOUND	CONCENTRATION (
CAS NO. COMPOUND	(ug/L or ug/Ko	g) <u>UG/L</u>	Q
67-64-1Acetone		120	U
71-43-2Benzene		25	Ū
75-27-4Bromodichloromethane		25	ן ט
75-25-2Bromoform		25	lti l
74-83-9Bromomethane		25 25	ט
78-93-32-Butanone		120	U
75-15-0Carbon Disulfide		25	<u>ט</u>
56-23-5Carbon Tetrachloride		25	U I
108-90-7Chlorobenzene	 	25	Ū
75-00-3Chloroethane		25	Ū
67-66-3Chloroform		25	Ϊ́υ Ι
74-87-3Chloromethane		25	Ιυ Ι
110-82-7Cyclohexane		25	Ū
106-93-41,2-Dibromoethane		25	U
124-48-1Dibromochloromethane		25	ען ע
96-12-81,2-Dibromo-3-chloropropane		25	U
95-50-11,2-Dichlorobenzene		25	וט
541-73-11,3-Dichlorobenzene		25	ן ט
106-46-71,4-Dichlorobenzene		25	ט
75-71-8Dichlorodifluoromethane		25	ט
75-34-31,1-Dichloroethane		25	U
107-06-21,2-Dichloroethane		25	ן ט
75-35-41,1-Dichloroethene		25	ע
156-59-2cis-1,2-Dichloroethene		1400	1 1
156-60-5trans-1,2-Dichloroethene		25	ע
78-87-51,2-Dichloropropane		25	ן ט
10061-01-5cis-1,3-Dichloropropene		25	ט
10061-02-6trans-1,3-Dichloropropene		25	U
100-41-4Ethylbenzene		25	ע
591-78-62-Hexanone		120	U
98-82-8Isopropylbenzene		25	ע
79-20-9Methyl acetate		25	ע
108-87-2Methylcyclohexane		25	ן ט
75-09-2Methylene chloride		25	U

44/504

U

U

U

J

U

25

25

680

16

75

Client No.

			l		
e: <u>STL Buffalo</u>	Contract: 4	<u> </u>	P-8		
e: <u>RECNY</u> Ca	se No.: SAS No.:	SDG No.:			
(soil/water)	WATER	Lab Sample ID	: <u>A5E587</u>	06	
wt/vol:	<u>5.00</u> (g/mL) <u>ML</u>	Lab File ID:	<u> 89674</u> .	RR	<u>.</u>
(low/med)	LOW	Date Samp/Rec	v: <u>12/20/</u>	2005 <u>12</u> ,	[/] 23/2005
ıre: not dec.	Heated Purge: N	Date Analyzed	: 12/27/2	200 <u>5</u>	
m: <u>DB-624</u>	ID: <u>0.18</u> (mm)	Dilution Facto	or:25.0	<u>00</u>	
ract Volume:	(uL)	Soil Aliquot V	/olume:		(uL)
CAS NO.	COMPOUND			Q	
1634-04-4 91-20-3 100-42-5 79-34-5 127-18-4 108-88-3 120-82-1 71-55-6	Methyl-t-Butyl Ether (MIBE)NaphthaleneStyrene1,1,2,2-TetrachloroethaneTetrachloroetheneToluene1,2,4-Trichlorobenzene1,1,1-Trichloroethane		120 25 25 25 25 25 25 25 25 25	ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט	
	(soil/water) (soil/water) vt/vol: (low/med) ure: not dec. m: DB-624 cract Volume: CAS NO. 108-10-1 1634-04-4 91-20-3 100-42-5 127-18-4 108-88-3 120-82-1 71-55-6	### RECNY Case No.: SAS No.: SAS No.: (soil/water) WATER	Lab Sample ID Izw Lab File ID:	SAS NO.: SDG NO.: SDG NO.:	### STL Buffalo Contract: 4 ### SDG No.: SDG No.:

76-13-1----1,1,2-Trichloro-1,2,2-trifluoroethane

75-69-4-----Trichlorofluoromethane

79-01-6----Trichloroethene

75-01-4----Vinyl chloride

1330-20-7----Total Xylenes

45/504

Soil Aliquot Volume: ____ (uL)

Client No.

Lab Name: STL Buffalo	Contract: 4		TB-121505-01
Lab Code: RECNY Case No.:	SAS No.:	SDG No.:	· · · · · · · · · · · · · · · · · · ·
Matrix: (soil/water) WATER		Lab Sample ID:	A5E58703
Sample wt/vol: $\underline{5.00}$ (g/mL)	<u>ML</u>	Lab File ID:	S9671.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	12/20/2005 12/23/2005
% Moisture: not dec Heate	d Purge: <u>N</u>	Date Analyzed:	12/27/2005
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:	1.00

Soil Extract Volume: ____ (uL)

		-		, ,
67.6		CONCENTRATION UNIT	rs:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L_	Q
	Acetone		5.0	U
	Benzene		1.0	U
75-27-4	Bromodichloromethane		1.0	U
75-25-2	Bromoform		1.0	U
74-83-9	Bromomethane		1.0	U
78-93-3	2-Butanone		5.0	ט
75-15-0	Carbon Disulfide		1.0	ן ע
56-23-5	Carbon Tetrachloride		1.0	U U
108-90-7	Chlorobenzene		1.0	ט
75-00-3	Chloroethane		1.0	ן מ
67-66-3	Chloroform		1.0	U
74-87-3	Chloromethane		1.0	ם ד
110-82-7	Cyclohexane		1.0	ן ט
106-93-4	1,2-Dibromoethane		1.0	ן ט
124-48-1	Dibromochloromethane		1.0	ן ט
96-12-8	1,2-Dibromo-3-chloropropane	2	1.0	U U
95-50-1	·1,2-Dichlorobenzene		1.0	U
541-73-1	1,3-Dichlorobenzene		1.0	U U
106-46-7	1,4-Dichlorobenzene		1.0	ט ט
75-71-8- 	Dichlorodifluoromethane		1.0	Ü
75-34-3	1,1-Dichloroethane		1.0	U
107-06-2	1,2-Dichloroethane		1.0	U
75-35-4	1,1-Dichloroethene	 [1.0	ן ט
156-59-2	cis-1,2-Dichloroethene		1.0	U U
156-60-5	trans-1,2-Dichloroethene		1.0	U
78-87-5	1,2-Dichloropropane		1.0	U
10061-01-5-	cis-1,3-Dichloropropene		1.0	U
10061-02-6-	trans-1,3-Dichloropropene		1.0	TI I
100-41-4	Ethylbenzene		1.0	U
591 - 78-6 -	2-Hexanone		5.0	Ü
98-82-8	Isopropylbenzene		1.0	ָ ਹ
79-20-9	Methyl acetate		1.0	ט
108-87-2	Methylcyclohexane		1.0	ן ט
75-09-2	Methylene chloride		1.0	ן ט
	7		1.0	10

46/504

Lab Name: STL Buffalo Contract: 4	TB-121505-01
Lab Code: RECNY Case No.: SAS No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A5E58703
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID: S9671.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv: 12/20/2005 12/23/2005
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>12/27/2005</u>
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
108-10-14-Methyl-2-pentanone 1634-04-4Methyl-t-Butyl Ether (MIBE) 91-20-3Naphthalene 100-42-5Styrene 79-34-51,1,2,2-Tetrachloroethane 127-18-4Tetrachloroethene 108-88-3Toluene 120-82-11,2,4-Trichloroethane 79-00-51,1,1-Trichloroethane 79-01-51,1,2-Trichloroethane 76-13-11,1,2-Trichloro-1,2,2-trifl 75-69-4Trichlorofluoromethane 79-01-6Trichloroethene 75-01-4Vinyl chloride 1330-20-7Total Xylenes	1.0 U

47/504

Client No.

Lab Name: STL Buffa	<u>lo</u>	Cc	ontract: 4	1		TB-121505-02	_
Lab Code: <u>RECNY</u>	Case No.:			: · : .	•		
Matrix: (soil/water)) <u>WATER</u>				Lab Sample ID:	A5E58707	
Sample wt/vol:	5.00	(g/mL) <u>M</u>	<u>.</u>		Lab File ID:	S9657.RR	
Level: (low/med)	LOW				Date Samp/Recv:	12/20/2005 12/23/200	٦
% Moisture: not dec.		Heated F	urge: <u>N</u>		Date Analyzed:	12/27/2005	

GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm) Dilution Factor: ____1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (uq/L or uq/Kq) UG/L Q 67-64-1-----Acetone 5.0 U 71-43-2----Benzene 1.0 U 75-27-4-----Bromodichloromethane 1.0 U 75-25-2----Bromoform 1.0 U 74-83-9-----Bromomethane 1.0 U 78-93-3----2-Butanone 5.0 U 75-15-0-----Carbon Disulfide U 1.0 56-23-5-----Carbon Tetrachloride U 1.0 108-90-7----Chlorobenzene 1.0 TI 75-00-3-----Chloroethane 1.0 U 67-66-3-----Chloroform U 1.0 74-87-3-----Chloromethane 1.0 U 110-82-7-----Cyclohexane 1.0 U 106-93-4----1,2-Dibromoethane 1.0 U 124-48-1-----Dibromochloromethane 1.0 U 96-12-8----1,2-Dibromo-3-chloropropane 1.0 U 95-50-1----1,2-Dichlorobenzene 1.0 U 541-73-1----1,3-Dichlorobenzene U 1.0 106-46-7----1,4-Dichlorobenzene 1.0 U 75-71-8-----Dichlorodifluoromethane 1.0 U 75-34-3-----1,1-Dichloroethane 1.0 U 107-06-2-----1,2-Dichloroethane 1.0 U 75-35-4-----1,1-Dichloroethene 1.0 U 156-59-2----cis-1,2-Dichloroethene 1.0 U 156-60-5----trans-1,2-Dichloroethene 1.0 U 78-87-5----1,2-Dichloropropane U 1.0 10061-01-5---cis-1,3-Dichloropropene 1.0 U 10061-02-6---trans-1,3-Dichloropropene U 1.0 100-41-4----Ethylbenzene 1.0 U 591-78-6----2-Hexanone 5.0 U 98-82-8-----Isopropylbenzene U 1.0 79-20-9-----Methyl acetate 1.0 U 108-87-2----Methylcyclohexane 1.0 U 75-09-2-----Methylene chloride U 1.0

48/504

U

U

U

U

Ū

U

U

1.0

1.0

1.0

1.0

1.0

1.0

3.0

Client No.

Lab Name: STL Buffalo Contract: 4		TB-12150	5-02
Lab Code: RECNY Case No.: SAS No.:	SDG No.:		
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A5E58707	
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID:	S9657.RR	
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	12/20/200	5 12/23/2009
% Moisture: not dec Heated Purge: N	Date Analyzed:	12/27/200	5
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor	:1.00	
Soil Extract Volume: (uL)	Soil Aliquot Vo	Lume:	(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg)		Q
108-10-14-Methyl-2-pentanone 1634-04-4Methyl-t-Butyl Ether (MTBE) 91-20-3Naphthalene 100-42-5Styrene 79-34-51,1,2,2-Tetrachloroethane 127-18-4Tetrachloroethene 108-88-3Toluene 120-82-11,2,4-Trichlorobenzene		5.0 I 1.0 I 1.0 I 1.0 I 1.0 I 1.0 I 1.0 I]]]]]

71-55-6----1,1,1-Trichloroethane

79-00-5----1,1,2-Trichloroethane

75-69-4-----Trichlorofluoromethane

79-01-6----Trichloroethene

75-01-4-----Vinyl chloride

1330-20-7----Total Xylenes

76-13-1----1,1,2-Trichloro-1,2,2-trifluoroethane

Lab Name: STL Buffalo

Contract: 4____

Lab Code: RECNY

Case No.: ____ SAS No.: ____ SDG No.: __

		r	Γ	· I · · · ·				·	τ				,
	Client Sample ID	Lab Sample ID	BFB	DCE		TOL				ĺ			тот
		}	%REC ;	# %REC	#	%REC	#						OUT
	=======================================	=========	=====	1	===	=====	==	======	======	======	======	======	===
. 1	EB122005	A5E58709	93	92		94							0
2	EB122105	A5E58717	102	97		99		}				İ	0
3	MSB21	A5B2007601	89	99		96							0
4	MSB22	A5B2013701	-88	104		98							0
5	MSB23	A5B2015901	88	96		93							Ō
6	MSB37	A5B2011201	94	92		95	- 1				'		٥
7	MSB40	A5B2009801	102	95		100	- 1						Ō
8	MW-100	A5E58705	80	92		90	- 1						o.
9	MW-101	A5E58714	101	96		100	- 1	**					ŏ
10	(MW-17	A5E58702	85	106		96	ļ		ļ	ļ			ŏ
11	MW-2	A5E58701	94	92		95							ō
12	MW-2	A5E58701MS	79	91		91	- 1				í		0
13	MW-2	A5E58701SD	84	97	ĺ	94							0
14	MW-20	A5E58719	102	96	- 1	98			ł			Į	0
15	MW-21	A5E58712	88	108	1	96]]	j			0
16	MW-32	A5E58715	104	96	Į	100							0
17	MW-33	A5E58718	104	97		100		İ	ĺ	ŀ		1	ŏ
18	MW-34	A5E58710	82	98	ı	91			İ				ŏ
19	MW-34 DL	A5E58710DL	85	103	ſ	93		1	İ	1	1		ő
20	MW-35	A5E58713	103	97	i	99	-	1		ľ			ŏ
21	MW-36	A5E58716	104	96	ļ	100	-			Ì	ĺ	ĺ	ŏ
22	MW-39	A5E58720	104	97		101	ĺ	İ		ŀ	i	j	o l
23	8-WM	A5E58704	84	98	- [93	- 1	1				1	0
24	P-3	A5E58708	94	91	ĺ	95		ŀ		ļ			ŏ
25	P-8	A5E58706	86	102	ı	99		l					ŏ
26	TB-121505-01	A5E58703	85	103		98			J	ĺ	İ		0
27	TB-121505-02	A5E58707	87	98		95	ĺ		į	1	l l	1	0
28	VBLK21	A5B2007602	85	97		92		ĺ	ĺ	}		1	0
							İ_	l					

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W WATER SURROGATE RECOVERY

50/504

Lab Name	STL B	<u>uffalo</u>			Contr	act	: 4					
Lab Code	RECNY		Case No.	:	SAS	No.	:		SI	OG No.:		
Client	Sample	ID	Lab Sample	ID BFB			TOL	#				TC

	Client Sample ID	Lab Sample ID		DCE	TOL	İ	·				TOT	ı
	<u> </u>		%REC #	%REC #	%REC #						OUT	ı
	=======================================	========	======	======	======	======	======	======	======	======	===	i
	VBLK22	A5B2013702	86	105	95	1					n	ı
	VBLK23	A5B2015902	81	98	89						l o	ı
	VBLK37	A5B2011202	92	92	93						ا م	
32	VBLK40	A5B2009802	102	94	100						a	
1			L								لـــا	

QC LIMITS

= p-Bromofluorobenzene = 1,2-Dichloroethane-D4 BFB (73-120) (72-143) (76-122) DCE TOL = Toluene-D8

Lab Name: STL Buffalo

[#] Column to be used to flag recovery values* Values outside of contract required QC limitsD Surrogates diluted out

51/504

Lab Name: STL Buffalo Contract: $\underline{4}$ Lab Samp ID: $\underline{A5B2007602}$

Lab Code: <u>RECNY</u>

Case No.: ____

SAS No.:

SDG No.: ____

Matrix Spike - Client Sample No.: <u>VBLK21</u>

COMPOUND	SPIKE	MSB	MSB	QC
	ADDED	CONCENTRATION	%	LIMITS
	UG/L	UG/L	REC #	REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	25.0	31.9	128	65 - 142
	25.0	28.8	116	71 - 120
	25.0	29.0	116	67 - 126
	25.0	28.2	113	69 - 120
	25.0	27.1	108	73 - 120

[#] Column to be used to flag recovery and RPD values with an asterisk

Spike recove	ery:0	out of _	_5 outside	limits		
Comments: _						· .
-						

^{*} Values outside of QC limits

52/504

Lab Name: STL Buffalo

Contract: <u>4</u> Lab Samp ID: <u>A5B2009802</u>

Lab Code: RECNY

Case No.:

SAS No.: ____

SDG No.: ____

Matrix Spike - Client Sample No.: <u>VBLK40</u>

COMPOUND	SPIKE	MSB	MSB	QC
	ADDED	CONCENTRATION	%	LIMITS
	UG/L	UG/L	REC #	REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	25.0 25.0 25.0 25.0 25.0 25.0	29.1 26.5 27.2 27.2 27.0	117 106 109 109 108	65 - 142 71 - 120 67 - 126 69 - 120 73 - 120

[#] Column to be used to flag recovery and RPD values with an asterisk

Spike reco	covery:0 out of5 outside limits	
Comments:	:	

^{*} Values outside of QC limits

53/504

Lab Name: STL Buffalo

Contract: 4 Lab Samp ID: A5B2011202

Lab Code: <u>RECNY</u>

Case No.: ____

SAS No.: ____ SDG No.: ____

Matrix Spike - Client Sample No.: <u>VBLK37</u>

COMPOUND	SPIKE	MSB	MSB	QC
	ADDED	CONCENTRATION	%	LIMITS
	UG/L	UG/L	REC #	REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	25.0	25.9	104	65 - 142
	25.0	25.3	102	71 - 120
	25.0	25.8	103	67 - 126
	25.0	25.5	102	69 - 120
	25.0	25.7	103	73 - 120

[#] Column to be used to flag recovery and RPD values with an asterisk

Spike reco	overy:0 ou	ıt of <u> </u>	de limits	
Comments:				

^{*} Values outside of QC limits

54/504

Lab Name: STL Buffalo

Contract: 4

Lab Samp ID: <u>A5B2013702</u>

Lab Code: RECNY Case No.: ____

SAS No.: ____

SDG No.: ____

Matrix Spike - Client Sample No.: <u>VBLK22</u>

COMPOUND	SPIKE	MSB	MSB	QC
	ADDED	CONCENTRATION	%	LIMITS
	UG/L	UG/L	REC #	REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	25.0	29.2	117	65 - 142
	25.0	27.3	110	71 - 120
	25.0	27.2	109	67 - 126
	25.0	25.8	103	69 - 120
	25.0	25.0	100	73 - 120

[#] Column to be used to flag recovery and RPD values with an asterisk

Spike red	overy:	<u>0</u> out of	<u>5</u> outside	limits
Comments:				

^{*} Values outside of QC limits

55/504

Lab Name: STL Buffalo

Contract: 4 Lab Samp ID: A5B2015902

Lab Code: <u>RECNY</u>

Case No.: ____

SAS No.: ____

SDG No.:

Matrix Spike - Client Sample No.: <u>VBLK23</u>

COMPOUND	SPIKE	MSB	MSB	QC
	ADDED	CONCENTRATION	%	LIMITS
	UG/L	UG/L	REC #	REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	25.0	29.4	118	65 - 142
	25.0	28.6	115	71 - 120
	25.0	28.1	113	67 - 126
	25.0	26.7	107	69 - 120
	25.0	26.5	106	73 - 120

[#] Column to be used to flag recovery and RPD values with an asterisk

phrve reco	overy: $\underline{}$ out o	of5 outside	limits	
Comments:				

^{*} Values outside of QC limits

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W WATER MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

56/504

Lab Name: STL Buffalo

Contract: 4

Lab Samp ID: <u>A5E58701</u>

Lab Code: <u>RECNY</u>

Y Case No.: ____

SAS No.: ____

SDG No.: ____

Matrix Spike - Client Sample No.: MW-2

COMPOUND	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
	UG/L	UG/L	UG/L	REC #	REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	25.0 25.0 25.0 25.0 25.0	0 1.54 0 0	31.4 30.4 29.0 27.6 27.0	126 116 116 110 108	65 - 142 71 - 120 67 - 126 69 - 120 73 - 120

COMPOUND	SPIKE ADDED UG/L	MSD CONCENTRATION UG/L	MSD % REC #	% RPD #	QX RPD	C LIMITS
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	25.0 25.0 25.0 25.0 25.0	31.9 31.2 29.9 28.4 27.4	128 119 120 114 110	2 2 2 3 4 2	16 16 13 18 19	65 - 142 71 - 120 67 - 126 69 - 120 73 - 120

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD:0 out of5 outside Spike recovery:0 out of	limits 10 outside limits	•
Comments:		

^{*} Values outside of QC limits

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W METHOD BLANK SUMMARY

57/504 Client No.

Lab	Name:	STL Buffa	alo	Contract: 4	VBLK21		·
Lab	Code:	RECNY	Case No.:	SAS No.:	SDG No.:	-	

Lab File ID: S9655.RR

Lab Sample ID: A5B2007602

Date Analyzed: <u>12/27/2005</u>

Time Analyzed: 11:30

GC Column: DB-624 ID: 0.18 (mm) Heated Purge: (Y/N) \underline{N}

Instrument ID:

<u>HP5973S</u>

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED
1 2 3 4 5 6 7	======================================	A5B2007601 A5E58705 A5E58701MS A5E58701SD A5E58704 A5E58706 A5E58703	======================================	11:54 18:48 16:47 17:11 18:24 19:12
8	TB-121505-02	A5E58707	S9657.RR	12:20

Comments:	

58/504

Lab Name: STL Buffalo Contract: 4	VBLK21
rab Nanc. <u>511 Burlato</u> Concract: 4	<u> </u>
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A5B2007602
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID: S9655.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>12/27/2005</u>
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uT)

		CONCENTRATION UNIT	rs:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/L</u>	Q
67-64-1	Acetone		5.0	U
71-43-2	Benzene		1.0	ט
75-27-4	Bromodichloromethane		1.0	ט
	Bromoform		1.0	ט
	Bromomethane		1.0	U
78-93-3	2-Butanone		5.0	ט
	Carbon Disulfide		1.0	U
	Carbon Tetrachloride		1.0	ט'
108-90-7	Chlorobenzene		1.0	Ū
75-00-3	Chloroethane		1.0	Ū
	Chloroform		1.0	Ū
74-87-3	Chloromethane		1.0	Ū
110-82-7	Cyclohexane		1.0	Ū
106-93-4	1,2-Dibromoethane		1.0	Ū
124-48-1	Dibromochloromethane		1.0	Ū
96-12-8	1,2-Dibromo-3-chloropropane		1.0	ט l
95-50-1	1,2-Dichlorobenzene		1.0	Ū
	1,3-Dichlorobenzene		1.0	Ū
106-46-7	1,4-Dichlorobenzene		1.0	וט ו
75-71-8	Dichlorodifluoromethane		1.0	ן ט
75-34-3	1,1-Dichloroethane		1.0	ן ט
107-06-2	1,2-Dichloroethane		1.0	ט ו
75-35-4	1,1-Dichloroethene		1.0	ען ו
156-59-2	cis-1,2-Dichloroethene		1.0	Tu
156-60-5	trans-1,2-Dichloroethene		1.0	U
	1,2-Dichloropropane		1.0	U
10061-01-5-	cis-1,3-Dichloropropene		1.0	Ū
10061-02-6-	trans-1,3-Dichloropropene		1.0	Ū
100-41-4	Ethylbenzene		1.0	ט
591-78-6	2-Hexanone		5.0	Ū
98-82-8	Isopropylbenzene		1.0	Ū
	Methyl acetate		1.0	Ū
	Methylcyclohexane		1.0	Ū
	Methylene chloride		1.0	Ū

59/504

1.0

1.0

1.0

3.0

U

U

U

U

Client No.

Lab Name: STL Buffalo Contract: 4	VBLK21	
Lab Code: RECNY Case No.: SAS No.:	——————————————————————————————————————	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A5B2007602</u>	
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID: <u>S9655.RR</u>	
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>12/27/2005</u>	
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:1.00	
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)	
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q	
127-18-4Tetrachloroethane 108-88-3Toluene 120-82-11,2,4-Trichlorobenzene	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	

75-69-4----Trichlorofluoromethane

79-01-6----Trichloroethene

75-01-4-----Vinyl chloride

1330-20-7----Total Xylenes

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W

METHOD BLANK SUMMARY

Client No.

- 1			VBLK40
Lab Name:	STL Buffalo	Contract: 4	

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Lab File ID: <u>Q9547.RR</u>

Lab Sample ID: <u>A5B2009802</u>

Date Analyzed: <u>12/27/2005</u>

Time Analyzed: 21:45

GC Column: DB-624 ID: 0.25 (mm) Heated Purge: (Y/N) N

Instrument ID: <u>HP59730</u>

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	CLIENT	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
1 2 3 4 5 6 7 8 9	EB122105 MSB40 MW-101 MW-20 MW-32 MW-33 MW-35 MW-36 MW-39	A5E58717 A5B2009801 A5E58714 A5E58719 A5E58715 A5E58718 A5E58713 A5E58716 A5E58720	Q9552.RR Q9546.RR Q9549.RR Q9549.RR Q9554.RR Q9550.RR Q9553.RR Q9548.RR Q9551.RR Q9555.RR	

Comments:			
	 	 · · · · · · · · · · · · · · · · · · ·	

61/504

Lab Name: STL Buffalo	Contract: 4		VBLK4)	
Lab Code: <u>RECNY</u> Case No.: _			<u>. </u>		
Matrix: (soil/water) WATER		Lab Sample ID:		980 <u>2</u>	
Sample wt/vol: 5.00 (g	/mL) <u>ML</u>	Lab File ID:	Q9547.F	₹R	-
Level: (low/med) <u>LOW</u>		Date Samp/Recv:			
% Moisture: not dec H	eated Purge: N	Date Analyzed:	12/27/2	<u>2005</u>	•
GC Column: <u>DB-624</u> ID: <u>0.</u>	<u>25</u> (mm)	Dilution Factor	: <u>1.0</u>	<u>)0</u>	
Soil Extract Volume: (ui	L)	Soil Aliquot Vo	lume:	(uL)
CAS NO. COMPOUNI		CONCENTRATION UNITS (ug/L or ug/Kg)		Q	
67-64-1Acetone 71-43-2Benzene 75-27-4Bromodio 75-25-2Bromofor 74-83-9Bromomet 78-93-3Carbon I	chloromethane cm chane cne Disulfide	ſ	5.0 1.0 1.0 1.0 5.0	ם מ מ מ	

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
67-64-1	Acetone		5.0	U
71-43-2	Benzene		1.0	Ü
75-27-4	Bromodichloromethane		1.0	Ū
75-25-2	Bromoform		1.0	Ū
74-83-9	Bromomethane		1.0	U
78-93-3	2-Butanone		5.0	Ū
75-15-0	Carbon Disulfide		1.0	U
56-23-5	Carbon Tetrachloride		1.0	υ
108-90-7	Chlorobenzene		1.0	Ü
75-00-3	Chloroethane		1.0	U
67-66-3	Chloroform		1.0	Ü
74-87-3	Chloromethane		1.0	υ
110-82-7	Cyclohexane		1.0	U
106-93-4	1,2-Dibromoethane		1.0	ט
124-48-1	Dibromochloromethane		1.0	Ū
96-12-8	1,2-Dibromo-3-chloropropane		1.0	Ū
95-50-1	1,2-Dichlorobenzene		1.0	Ū
541-73-1	1,3-Dichlorobenzene		1.0	ט
106-46-7	1,4-Dichlorobenzene		1.0	ט
75-71-8	Dichlorodifluoromethane		1.0	ט
75-34-3	1,1-Dichloroethane		1.0	ַ ט
107-06-2	1,2-Dichloroethane		1.0	Ū
75-35-4	1,1-Dichloroethene		1.0	บ
156-59-2	cis-1,2-Dichloroethene		1.0	U U
156-60-5	trans-1,2-Dichloroethene		1.0	Ū
78-87-5	1,2-Dichloropropane		1.0	U
10061-01-5-	cis-1.3-Dichloropropene		1.0	ם ט
10061-02-6-	trans-1,3-Dichloropropene		1.0	U
100-41-4	Ethylbenzene		1.0	ט
591-78-6	2-Hexanone		5.0	ט
98-82-8	Isopropylbenzene		1.0	ן ט
79-20-9	Methyl acetate		1.0	ן ט
108-87-2	Methylcyclohexane		1.0	ט ע
75-09-2	Methylene chloride		1.0	ם מ
1			1.0	10

62/504

Lab Name: STL Buffalo Contract: 4		VBLK40	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	_	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:		.02
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID:		
Level: (low/med) <u>LOW</u>	Date Samp/Recv:		
Moisture: not dec Heated Purge: ${ t N}$	Date Analyzed:	12/27/20	<u>05</u>
SC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00	
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume:	(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)	JG/L_	Q
127-18-4Tetrachloroethene 108-88-3Toluene 120-82-11, 2, 4-Trichloroberzone	proethane	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	U U U U U U U U U U U U U U U U U U U

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W METHOD BLANK SUMMARY

63/504 Client No.

Lab Name: STL Buffalo Co	ontract: 4
Lab Code: RECNY Case No.:	SAS No.: SDG No.:
Lab File ID: G7618.RR	Lab Sample ID: <u>A5B2011202</u>
Date Analyzed: <u>12/27/2005</u>	Time Analyzed: 21:51
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm	n) Heated Purge: (Y/N) N

Instrument ID: <u>HP597</u>3G

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	CLIENT	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
1	EB122005		G7641.RR	06:43
2	MSB37		G7617.RR	21:29
3	MW-2		G7639.RR	05:57
4	P-3		G7640.RR	06:20

Comments:		7-7

64/504

Lab Name: STL Buffal	O Contract: 4		VBLK3	37	
	Case No.: SAS No.: _		·		
Matrix: (soil/water)	WATER	Lab Sample ID	: <u>A5B201</u>	1202	
Sample wt/vol:	_ <u>5.00</u> (g/mL) <u>ML</u>	Lab File ID:	<u>G7618.</u>	RR_	-
Level: (low/med)	LOW	Date Samp/Rec	v:		·
% Moisture: not dec.	Heated Purge: N	Date Analyzed	: 12/27/	2005	
GC Column: <u>DB-624</u>	ID: <u>0.25</u> (mm)	Dilution Facto	or:1.	<u>00</u>	
Soil Extract Volume:	(uL)	Soil Aliquot	Volume:	(1	uL)
CAS NO.	COMPOUND	CONCENTRATION UNIT		Q	
73-23-2 74-83-9 78-93-3 75-15-0 56-23-5 108-90-7	BenzeneBromodichloromethaneBromoformBromomethane2-ButanoneCarbon DisulfideCarbon TetrachlorideChlorobenzene		5.0 1.0 1.0 1.0 5.0 1.0 1.0	ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט	
175-00-3	·Chloroethane		1 0	177	i

65/504

VBLK37
SDG No.:
Lab Sample ID: <u>A5B2011202</u>
Lab File ID: <u>G7618.RR</u>
Date Samp/Recv:
Date Analyzed: <u>12/27/2005</u>
Dilution Factor:1.00
Soil Aliquot Volume: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
5.0 U 1.0 U

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W

METHOD BLANK SUMMARY

66/504 Client No.

Lab Name	: STL Buffalo	Contract:	4	VBLK22

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ____

Lab File ID: S9693.RR Lab Sample ID: A5B2013702

Date Analyzed: <u>12/28/2005</u>

Time Analyzed: 09:44

GC Column: DB-624 ID: 0.18 (mm) Heated Purge: (Y/N) N

Instrument ID: <u>HP5973S</u>

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	CLIENT	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
1 2 3	MSB22 MW-17 MW-34			09:19 10:56 10:08

Comments:	

67/504

Lab Name: STL Buffalo Contract: 4	VBLK22
Lab Code: RECNY Case No.: SAS No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A5B2013702</u>
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID: <u>S9693.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv:
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>12/28/2005</u>
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	CONCENTRATION U (ug/L or ug/Kg	 UG/L_	Q
67-64-1	Benzene		5.0 1.0	U U
75-25-2	Bromodichloromethane Bromoform Bromomethane		1.0 1.0 1.0	บ บ
78-93-3	2-Butanone Carbon Disulfide		5.0 1.0	บ บ
108-90-7	Carbon Tetrachloride Chlorobenzene Chloroethane		1.0 1.0 1.0	U U
67-66-3 74-87-3	Chloroform Chloromethane		1.0 1.0 1.0	U U U
110-82-7 106-93-4 124-48-1	Cyclohexane 1,2-Dibromoethane Dibromochloromethane		1.0	U U
96-12-8 95-50-1	1,2-Dibromo-3-chloropropane_ 1,2-Dichlorobenzene		1.0 1.0 1.0	U U
106-46-7	-1,3-Dichlorobenzene -1,4-Dichlorobenzene -Dichlorodifluoromethane		1.0	n n
75-34-3 107-06-2	-1,1-Dichloroethane -1,2-Dichloroethane		1.0 1.0 1.0	ָ ע ע
75-35-4 156-59-2	-1,1-Dichloroethene -cis-1,2-Dichloroethene		1.0	บ
78-87-5	-trans-1,2-Dichloroethene -1,2-Dichloropropane -cis-1,3-Dichloropropene		1.0	ָ ט
10061-02-6 100-41-4	-trans-1,3-Dichloropropene		1.0 1.0 1.0	U U U
591-78-6 98-82-8	-2-Hexanone -Isopropylbenzene		5.0 1.0	U U
108-87-2	-Methyl acetate -Methylcyclohexane -Methylene chloride		1.0 1.0 1.0	U U

68/504

Lab Name: STL Buffalo Contract: 4		VBLK22	
Lab Code: RECNY Case No.: SAS No.:			
Matrix: (soil/water) WATER			
WATER	Lab Sample ID:	A5B2013702	4
Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{ML}	Lab File ID:	S9693.RR	
Level: (low/med) <u>LOW</u>	Date Samp/Recv:		
% Moisture: not dec Heated Purge: N	Date Analyzed:	12/28/2005	<u>;</u>
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:	1.00	
Soil Extract Volume: (uL)	Soil Aliquot Volu	we:	(uL)
CO C 3.70	ONCENIRATION UNITS: (ug/L or ug/Kg) <u>I</u>	G/L	Q
108-10-14-Methyl-2-pentanone 1634-04-4Methyl-t-Butyl Ether (MTBE) 91-20-3Naphthalene 100-42-5Styrene 79-34-51,1,2,2-Tetrachloroethane 127-18-4Tetrachloroethene 108-88-3Toluene 120-82-11,2,4-Trichlorobenzene 71-55-61,1,1-Trichloroethane 79-00-51,1,2-Trichloroethane 76-13-11,1,2-Trichloro-1,2,2-trifluoro 75-69-4Trichlorofluoromethane 79-01-6Trichloroethene 75-01-4Vinyl chloride	pethane	5.0 U 1.0 U	

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W

METHOD BLANK SUMMARY

69/504 Client No.

Lab	Name: <u>STL Buff</u> a	alo Con	tract: 4	VBLK23
Lab	Code: <u>RECNY</u>	Case No.:	SAS No.:	SDG No.:
Tah	Edda ID	G0G01 DD		

Lab File ID: S9721.RR Lab Sample ID: A5B2015902

Date Analyzed: <u>12/28/2005</u>

Time Analyzed: 20:59

GC Column: DB-624 ID: 0.18 (mm) Heated Purge: (Y/N) $\underline{\text{N}}$

Instrument ID: <u>HP5973S</u>

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	CLIENT	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
1 2 3	MSB23 MW-21 MW-34 DL	A5E58712	======================================	20:35 22:42 22:18

Comments:	

70/504

Lab Name: STL Buffalo Contract: 4		VBLK23
Lab Code: RECNY Case No.: SAS No.:	·· ·	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A	15B2015902
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID: <u>S</u>	9721.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv: _	
% Moisture: not dec Heated Purge: N	Date Analyzed: 1	2/28/2005
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor: _	1.00
Soil Extract Volume: (uL)	Soil Aliquot Volum	e: (uL)

CAS NO. COMPOUND		CONCENTRATION 1 (ug/L or ug/K	 : <u>UG</u> /L	Q	
67-64-1Acetone			 5.0		_
71-43-2Benzene			1.0	Ü	
75-27-4Bromodich	oromethane		1.0	υ	
75-25-2Bromoform			1.0	Ü	
74-83-9Bromometh	ane		1.0	ΙIJ	ı
78-93-32-Butanone		* * * * * * * * * * * * * * * * * * * *	5.0	lti	
75-15-0Carbon Dis	sulfide		1.0	Ü	
56-23-5Carbon Tet	rachloride		1.0	ΙIJ	
108-90-7Chlorobenz	ene		 1.0	υ	- 1
75-00-3Chloroetha	ne		1.0	U	
67-66-3Chloroform			1.0	Ü	
74-87-3Chlorometh	ane		1.0	Ü	-
110-82-7Cvclohexar	e		1.0	Ü	ł
106-93-41,2-Dibron	pethane		1.0	บ	
124-48-1Dibromochl	oromethane		1.0	υ	-
96-12-81,2-Dibrom	0-3-chloropropane		1.0	U	1
95-50-11,2-Dichlo	robenzene		1.0	υ	-
541-73-11,3-Dichlo	robenzene		1.0	υ	
106-46-71,4-Dichlo	robenzene		1.0	Ū	1
75-71-8Dichlorodi	fluoromethane		1.0	U	1
75-34-31,1-Dichlo	roethane		1.0	Ü	-
107-06-21,2-Dichlo	roethane		1.0	Ü	1
75-35-41,1-Dichlo	roethene		1.0	U	
156-59-2cis-1,2-Di	chloroethene		1.0	lu lo	
156-60-5trans-1,2-	Dichloroethene		1.0	U	
78-87-51,2-Dichlo	ropropane		1.0	Ū	
10061-01-5cis-1,3-Di	chloropropene		1.0	υ	
10061-02-6trans-1,3-	Dichloropropene		1.0	U	
100-41-4Ethylbenzer	ne		1.0	Ü	
591-78-62-Hexanone			5.0	U	1
98-82-8Isopropylb	enzene		1.0	U	
79-20-9Methyl acet	ate		1.0	U	
108-87-2Methylcyclo	hexane		1.0	U	
75-09-2Methylene (chloride		1.0	Ū	

71/504

Lab Name: STL Buffalo Contract: 4	<u> </u>	VBLK23	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:		
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A5B2015902</u>	
Sample wt/vol:5.00 (g/mL) ML	Lab File ID:		
Level: (low/med) <u>LOW</u>	Date Samp/Recv:		
% Moisture: not dec Heated Purge: N	Date Analyzed:		
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:	1.00	
Soil Extract Volume: (uL)	Soil Aliquot Volu	me:	(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>U</u>	<u>G/L</u> Q	
108-10-14-Methyl-2-pentanone 1634-04-4Methyl-t-Butyl Ether (MTBE) 91-20-3Naphthalene 100-42-5Styrene 79-34-51,1,2,2-Tetrachloroethane 127-18-4Tetrachloroethene 108-88-3Toluene 120-82-11,2,4-Trichlorobenzene 71-55-61,1,1-Trichloroethane 79-00-51,1,2-Trichloroethane 76-13-11,1,2-Trichloro-1,2,2-triflux 75-69-4Trichlorofluoromethane 79-01-6Trichloroethene 75-01-4Vinyl chloride 1330-20-7Total Xylenes	proethane	5.0 U 1.0 U	

 Lab Name:
 STL Buffalo
 Contract:
 4
 Labsampid:
 A5C0006622

 Lab Code:
 RECNY
 Case No.:
 SAS No.:
 SDG No.:

 Lab File ID (Standard):
 G7615.RR
 Date Analyzed:
 12/27/2005

 Instrument ID:
 HP5973G
 Time Analyzed:
 20:41

 GC Column(1):
 DB-624
 ID:
 0.250(mm)
 Heated Purge:
 (Y/N)
 N

		IS1 (CBZ) AREA #	RT #	IS2 (DCB) AREA #	RT #	IS3 (DFB) AREA #	RT #
12 HOUR STD		177567	8.70	170788	11.05	349549	5.80
UPPER LIMIT		355134	9.20	341576	11.55	699098	6.30
LOWER LIMIT		88784	8.20	85394	10.55	174775	5.30
=======================================	=========	=========	======		======	========	======
CLIENT SAMPLE	Lab Sample ID						
	=========	========	======	========	======	=========	======
EB122005	A5E58709	170909	8.70	161752	11.05	338651	5.81
MSB37	A5B2011201	173200	8.70	164553	11.05	344655	5.81
MW-2	A5E58701	169364	8.70	159128	11.06	341239	5.80
P-3	A5E58708	171732	8.70	164785	11.05	348575	5.80
VBLK37	A5B2011202	175393	8.70	165543	11.05	349100	5.81

AREA UNIT RT QC LIMITS QC LIMITS

IS1 (CBZ) = Chlorobenzene-D5 (50-200) -0.50 / +0.50 min IS2 (DCB) = 1,4-Dichlorobenzene-D4 (50-200) -0.50 / +0.50 min IS3 (DFB) = 1,4-Difluorobenzene (50-200) -0.50 / +0.50 min

[#] Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

Lab Name: STL Buffalo Contract: 4 Labsampid: A5C0006629 Lab Code: RECNY SAS No.: ___ Case No.: SDG No.: _ Lab File ID (Standard): Q9545.RR Date Analyzed: 12/27/2005 Instrument ID: HP5973Q Time Analyzed: 20:40 GC Column(1): DB-624

ID: <u>0.250(mm)</u>

=======================================	25========	IS1 (CBZ) AREA #	RT #	IS2 (DCB) AREA #	RT #	IS3 (DFB) AREA #	RT #
12 HOUR STD UPPER LIMIT LOWER LIMIT		252227 504454 126114	8.39 8.89 7.89	126055 252110 63028	10.53 11.03 10.03	288192 576384 144096	5.77 6.27 5.27
CLIENT SAMPLE	Lab Sample ID		======	=======================================	======	=========	
MW-101 MW-20 MW-32 MW-33 MW-35 MW-36	A5E58717 A5E5009801 A5E58714 A5E58719 A5E58715 A5E58718 A5E58713 A5E58716 A5E58720	249415 248417 244192 245891 242307 248704 243816	8.39 8.39 8.39 8.39 8.39 8.39 8.39 8.39	117155 117928 119550 117109 118399 117830 115168 116670 114860	10.53 10.53 10.54 10.53 10.54 10.54 10.54 10.53 10.53	281438 278237	5.77 5.77 5.77 5.77 5.77 5.77 5.77 5.77

AREA UNIT RT QC LIMITS QC LIMITS

Heated Purge: (Y/N) N

IS1 (CBZ) = Chlorobenzene-D5 IS2 (DCB) = 1,4-Dichlorobenzene-D4
IS3 (DFB) = 1,4-Difluorobenzene

(50-200) -0.50 / +0.50 min(50-200) -0.50 / +0.50 min (50-200) -0.50 / +0.50 min

[#] Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

Lab Name: STL Buffalo Contract: 4 Labsampid: A5C0006621 Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: _ Lab File ID (Standard): S9652.RR Date Analyzed: 12/27/2005 Instrument ID: <u>HP5973s</u> Time Analyzed: 10:13 GC Column(1): <u>DB-624</u> ID: <u>0.180</u>(mm) Heated Purge: (Y/N) N

2 M 4 M 5 M 6 P 7 T 8 T	MW-100 MW-2 MW-8 P-8 IB-121505-01 IB-121505-02	Lab Sample ID	573247 573304 545856 559665 540313 564581	RT # 7.30 7.80 6.80 7.30 7.30 7.30 7.30 7.30 7.30 7.30 7.30 7.30 7.30	297459 594918 148730 ====================================	RT # 9.16 9.66 8.66 9.16 9.17 9.16 9.17 9.16 9.17 9.16 9.17	441026 882052 220513 ====================================	RT # ====== 5.09 5.59 4.59 ====== 5.09 5.09 5.09 5.09 5.09 5.09 5.09 5.09	
--	---	---------------	--	--	--	--	--	---	--

AREA UNIT RT QC LIMITS QC LIMITS

IS1 (CBZ) = Chlorobenzene-D5 IS2 (DCB) = 1,4-Dichlorobenzene-D4
IS3 (DFB) = 1,4-Difluorobenzene

-0.50 / +0.50 min -0.50 / +0.50 min -0.50 / +0.50 min (50-200) (50-200) (50-200)

Column to be used to flag recovery values

Lab Name: <u>STL Buffalo</u>	Co	ontract: <u>4</u>	Labsampid	A5C0006632
Lab Code: RECNY	Case No.:	SAS No.:	SDG N	lo.:
Lab File ID (Standard):	<u>\$9691.RR</u>		Date Analyzed:	12/28/2005
Instrument ID: <u>HP5973s</u>			Time Analyzed:	08:52
GC Column(1): <u>DB-624</u>	ID: <u>0.180</u> (mm)		Heated Purge:	(Y/N) <u>N</u>

=======================================		IS1 (CBZ) AREA #	RT #	IS2 (DCB) AREA #	RT #	IS3 (DFB) AREA #	RT #
12 HOUR STD UPPER LIMIT LOWER LIMIT		557609 1115218 278805	7.30 7.80 6.80	290663 581326 145332	9.16 9.66 8.66	392221 784442 196111	5.09 5.59 4.59
CLIENT SAMPLE	Lab Sample ID	=======================================	======	_=========	======	==========	======
MW-17 MW-34	A5B2013701 A5E58702 A5E58710 A5B2013702	545359 530612 541725 535567	7.30 7.30 7.30 7.30 7.30	253813	9.16 9.17 9.17 9.17 9.17	374495 379329	5.09 5.09 5.09 5.09 5.09

AREA UNIT	RT
QC LIMITS	QC LIMITS

IS1 (CBZ) = Chlorobenzene-D5 IS2 (DCB) = 1,4-Dichlorobenzene-D4 IS3 (DFB) = 1,4-Difluorobenzene	(50-200)	-0.50 / +0.50 min -0.50 / +0.50 min -0.50 / +0.50 min
---	-----------	---

[#] Column to be used to flag recovery values* Values outside of contract required QC limits

 Lab Name:
 STL Buffalo
 Contract:
 4
 Labsampid:
 A5C0006643

 Lab Code:
 RECNY
 Case No.:
 SAS No.:
 SDG No.:

 Lab File ID
 (Standard):
 S9718.RR
 Date Analyzed:
 12/28/2005

 Instrument ID:
 HP5973S
 Time Analyzed:
 19:47

 GC Column(1):
 DB-624
 ID:
 0.180(mm)
 Heated Purge:
 (Y/N)
 N

=======================================	· 	IS1 (CBZ) AREA #	RT #	IS2 (DCB) AREA #	RT #	IS3 (DFB) AREA #	RT -
12 HOUR STD UPPER LIMIT LOWER LIMIT		557852 1115704 278926	7.30 7.80 6.80	295373 590746 147687	9.16 9.66 8.66	387682 775364 193841	5.09 5.59 4.59
CLIENT SAMPLE	Lab Sample ID		======	=====================================	======	========	======
MSB23 MW-21 MW-34 DL VBLK23	A5B2015901 A5E58712 A5E58710DL A5B2015902	576889 522948 526940 544736	7.30 7.30 7.30 7.30 7.30	246274 248196	9.17 9.17 9.17 9.17 9.17	357903 368158	5.09 5.09 5.09 5.09 5.09

AREA UNIT	RT
QC LIMITS	QC LIMITS

IS1 (CBZ) = Chlorobenzene-D5 (50-200) -0.50 / +0.50 min IS2 (DCB) = 1,4-Dichlorobenzene-D4 (50-200) -0.50 / +0.50 min IS3 (DFB) = 1,4-Difluorobenzene (50-200) -0.50 / +0.50 min

[#] Column to be used to flag recovery values* Values outside of contract required QC limits

Sample Data Package

SDG Narrative

SAMPLE SUMMARY

			SAMPI	ŒD	RECEIVI	ED
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A5E58709	EB122005	WATER	12/21/2005	08:53	12/23/2005	10:15
A5E58717	EB122105	WATER			12/23/2005	
A5E58705	MW-100	WATER			12/23/2005	
A5E58714	MW-101	WATER			12/23/2005	
A5E58702	MW-17	WATER			12/23/2005	
A5E58701	MW-2	WATER			12/23/2005	
A5E58701MS	MW-2	WATER			12/23/2005	
A5E58701SD	MW-2	WATER			12/23/2005	
A5E58719	MW-20	WATER			12/23/2005	
A5E58712	MW-21	WATER			12/23/2005	
A5E58715	MW-32	WATER			12/23/2005	
A5E58718	MW-33	WATER			12/23/2005	
A5E58710	MW-34	WATER			12/23/2005	
A5E58713	MW-35	WATER			12/23/2005	
A5E58716	MW-36	WATER			12/23/2005	
A5E58720	MW-39	WATER			12/23/2005	
A5E58704	MW-8	WATER			12/23/2005	
A5E58708	P-3	WATER			12/23/2005	
A5E58706	P-8	WATER			12/23/2005	
A5E58703	TB-121505-01	WATER	12/20/2005		12/23/2005	
A5E58707	TB-121505-02	WATER	12/20/2005		12/23/2005	10:15

METHODS SUMMARY

Job#: <u>A05-E587</u>

STL Project#: NY4A9171

Site Name: Environmental Strategies Corporation

PARAMETER ANALYTICAL
PARAMETER METHOD

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W

SW8463 8260

SW8463 "Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

NON-CONFORMANCE SUMMARY

Job#: A05-E587

STL Project#: NY4A9171

Site Name: Environmental Strategies Corporation

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A05-E587

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

GC/MS Volatile Data

All samples were preserved to a PH less than 2.

The analytes Total Xylenes were detected in Method Blank VBLK40 (A5B2009802) at a level below the project established reporting limit. No corrective action is necessary for any values in Method Blanks that are below the requested reporting limits.

Initial calibration standard curve A5I0002430-1 exhibited the %RSD of the compounds Bromomethane, Chloroethane, Methylene Chloride and 1,2,4-Trichlorobenzene as greater than 15%. However, the mean RSD of all compounds is 6.44%.

Initial calibration standard curve A5I0002444-1 exhibited the %RSD of several compounds as greater than 15%. However, the mean RSD of all compounds is 10.12%.

Initial calibration standard curve A5I0002442-1 exhibited the %RSD of several compounds as greater than 15%. However, the mean RSD of all compounds is 8.04%.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Chain Of Custody Documentation

Project Number: Site and Location: 148992 Straward, M - Franco 616 878		Matrices: S = Soil; Aq = Water				Requested Analyses	/ / No.037478
Sampler's Name(s): 1050 Wholop, Beat/Warum, East Remember	- Page		= Bulk;	Containers	enz8		
Sampler's Signature(s): Int Moun the Me	2	OW = Oily Waste; O = Other			50		
Sample Identification:	Date	Time	Matrix	\rightarrow			Remarks
7-MM	12/20/02	00//	AD.	2	2		
MW-2-MS	12/20/05	105	40	7	2		Matrix Spike
MW - 2 - M50	12/20/05	1105	Ð	7	2		Matrix Spite Dulicute
E1-MW	12/2/05	1355	校	2 2	-		-
124 STATE TO 121505-01	20/51/21	í	AO i	2 3			Tro Blank
AW-8	13/20/65	or H	भ	5	2		
714-100	59/02/21	. 00h1	3 t	2 2	2		
p-83	12/20/05	1540.	10	2	2		
13-121505-02	12/15/05		40	,			
	50/08/21	5551	AQ	7	٦		
E13122005	12/21/05	0353		7	2		Equipment Blank
MW-34	12/21/05	0440	já	2	2		
MV-31	12 2105	1025	4,	7	2		
MW-31MS	122105	5701		7	2		Matrix Spike
M2-31 MSD	501221	1025	Ag	1	2		Matrix Spiles Duplicate
16-MM	201661	1050	Ag	C	2		
Relinquished by (Signature): 12/2 2/15 1/43 R	by (Signe	ure):	5191		Laboratory Name:	ò	
Date Time	Descrived W. (Signature)	7 / 7 1 / 7	7383	T	Laboratory Location:		
re): Date Time	received by lockname	(auc)	0)	10 -	Custody Seal Numbers:	10 to . 13	ENVIRONMENTAL STRATEGIES CONSULTING LLC
	Tracking Number: 4525	3 4190		Σ	Method of Shipment:		A QUÁNTA TECHNICAL SERVICES COMPANY
Reston Office: 11911 Freedom Dr, # 900, Reston, VA 20190)r, # 900, Reston,	VA 20190			Denver	Denver Office: 4600 South Ulster, # 930, I Tel· (303) 850-9200. Fax: (303) 850-9214	Denver Office: 4600 South Ulster, # 930, Denver, CO 80237 Tel· (303) 850-9200. Fax: (303) 850-9214
1ei: (703) 709-6200, Fax: (703) 709-8203 ☐ Pittsburgh Office: 300 Corporate Center Dr, # 200, Moon Twp, PA 15108 Tel: (412) 604-1040, Fax: (412) 604-1055	. Center Dr, # 200 604-1055	, Moon Tw	p, PA 15	108	Minnea Tel: (6	Minneapolis Office: 123 North 3rd St, #706 Tel: (612) 343-0510, Fax: (612) 343-0506	Minneapolis Office: 123 North 3rd St, #706, Minneapolis, MN 55401 Tel: (612) 343-0510, Fax: (612) 343-0506
TX Carriera CAGE 53	Sullivan St	13635	3				

ımber: Site and Location:	7	<u>Matrices:</u> S = Soil;			Rec	Requested Analyses	$//_{No.034637}$
Sampler's Name(s): Sampler's Name(s): Sampler's Signature(s): Sampler's Signature(s): Sampler's Company of the many of the sampler's Signature(s):	Nemant	Aq = Water A = Air: Bu = Bulk: W = Wipe Bi = Biota; OW = Oily Waste: O = Other	Right Signal Sig	(2978) 5)((Qq		
Sample Identification:	Date	Time	Matrix	\rightarrow			Remarks
Mw-35	12/2/03	1150	AQ 2				
MW-101	12/21 ox	1900	AC 2	7			
7K-32	12/21/05	2221	A 2	7			
EBIZIE05 EBIZZIOS	20/12/21	1311	A4 2	2			Eguipment blent
MW-36	12/21/08	0241	12 2	7 7			
MW-33	122/105	1.1.1	A. 2	7			
MW-20	SONCKI	5651	Ac 2	K			
MW-329	12/21/05	1610,	XQ 7	2			
72-72	12/21/08	1703	Aly 12	2			
TW-25	50/15/21	1725	A2 2	4			
MW-38	12/22/05	5480	AG 2	2			
45-MH	12/22/09	9580	AQ 2	. 2			
he-MW	29/20/61	aeba	Ad 2	ĸ			
MW-30	12/2/05	1035	* A	2 2			
EB-122205	12/22/05	0111	TA .	2 2			
MW-23	50/22/21	1121	AE 2				
nature): / 12/22/05 1643	Received by (Signature):	ure):	SIDI		Laboratory Name: ftule		
Date Time	Received IN (Signature)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	26205	Laborato	Laboratory Location: NY		
Relinquished by (Dignature). Date Time	The same		8	Custody 14496	Custody Seal Numbers:	Z GIVA	ENVIRONMENTAL STRATECIES CONSULTING LLC
	Tracking Number:	23 4190	0	Method Fe	of Shi	A QU	A QUANTA TECHNICAL SERVICES COMPANY
☐ Reston Office: 11911 Freedom Dr, # 900, Reston, VA 20190	Jr, # 900, Reston,	VA 20190				00 South Ulster, #	Denver Office: 4600 South Ulster, # 930, Denver, CO 80237
Tel: (703) 709-6500, Fax: (703) 709-8505 ☐ Pittsburgh Office: 300 Corporate Center Dr, # 200, Moon 7el: (412) 604-1040, Fax: (412) 604-1055	709-8505 Center Dr, # 200 604-1055), Moon Tw	Twp, PA 15108	80	Tel: (303) 830-920 Minneapolis Offic Tel: (612) 343-05	Tel: (303) 850-9200, Fax: (303) 850-9214 Minneapolis Office: 123 North 3rd St, #706 Tel: (612) 343-0510, Fax: (612) 343-0506	Tel: (303) 820-9200, Fax: (303) 820-9214 ☐ Minneapolis Office: 123 North 3rd St, #706, Minneapolis, MN 55401 Tel: (612) 343-0510, Fax: (612) 343-0506
	7.5	5/1:00	-, 75	1.303	V		

A Capelovia Office

											Г
Project Number: Site and Location:	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Matrices: S = Soil;			\	_	Regue	Requested Analyses	§	NO 03/636	
170712 Sher Burne, 1/1 - Parmer (21/2 Site Ag = Water	100/10/2016 .	Aq = Water	L	Г	_	_	<u>_</u>	_	_		
Sampler's Name(s):		A = Air; Bu = Bulk;			0	_	\	<u></u>	<u></u>		
todd balder Birth Mark They Revent		W = Wipe Bi = Biota;			9E5	<u></u>	_				
oler's Signature(s):	*	OW = Oily Waste; O = Other		ber of C	570	_	\	_			
h	Date	Time	Matrix	\geq	<u></u>	_	_	<u></u>	<u></u>	Remarks	
TE-WM	Sokeki	1120	↓	rs d							
6,10	12/22/25	1350	£ 1	4							
MW-26	12/22/05	~	Ag ?	7							
P-11	sofee/el	1415	\vdash	2 2							
MW - 29	12/22/08	1905	放 2	1 -							
			1								
			<i>[]</i>	1							
		·		/_							_
						\frac{\frac{1}{2}}{2}					
								/			
								/			-
			`\						/		
Relinquished by (Signature); 12/22/65 1643	Received by (Signature):	_	<101 (101)	Labor S.7	Laboratory Name: STL Buttule	e. Frulc					
We K. Date Time	Received by (Rignature)		5187-11	Labor	Laboratory Location:	dion:					
Date Time	3	Q		Custo	Custody Seal Numbers:	/ Seal Numbers:	1. 27	W		Oll outrinoiso outracts in	
	Tracking Number:	15: Y		Method	Method of Shipment:	nent:			A QUANTA TI	ENVIRONMENTAL STRATEGIES CONSOLTING LLC A QUANTA TECHNICAL SERVICES COMPANY	
Reston Office: 11911 Freedom Dr, # 900, Reston, VA 201	Dr, # 900, Reston	VA 20190				Jenver Off	ice: 4600	South Ul	ster, # 930, Do	Denver Office: 4600 South Ulster, # 930, Denver, CO 80237	
Tel: (703) 709-6500, Fax: (703) 709-8505 ☐ Pittsburgh Office: 300 Corporate Center Dr, # 200, Moon Tel: (412) 604-1040, Fax: (412) 604-1055	3) 709-8505 tte Center Dr, # 20(2) 604-1055		Twp, PA 15108	80		el: (303) 8 Ainneapoli el: (612)	\$50-9200, s Office: 343-0510	Fax: (30 123 Nort , Fax: (6	Tel: (303) 850-9200, Fax: (303) 850-9214 Minneapolis Office: 123 North 3rd St, #706 Tel: (612) 343-0510, Fax: (612) 343-0506	Tel: (303) 850-9200, Fax: (303) 830-9214 Minneapolis Office: 123 North 3rd St, #706, Minneapolis, MN 55401 Tel: (612) 343-0510, Fax: (612) 343-0506	
W. Careron, office S	25	164201411	"" NY	13035							1

Page: 1 Rept: AN0383

STL Buffalo Sample Inventory

		, ——-									_								_			_	
	Pres log	PH	\$	%	%	♡	?	ç	?	ç	%	%	%	<u>ې</u>	%	ç	٥,	♡	%	%	♡	~	%
	Pres	Code	0103	0103	0103	0103	0103	0103	0103	0103	0103	0103	0103	0103	0103	0103	0103	0103	0103	0103	0103	0103	0103
		Lab	RECNY	RECNY	RECNY	RECNY	RECNY	RECNY	RECNY	RECNY	RECNY	RECNY	RECNY	RECNY	RECNY	RECNY	RECNY	RECNY	RECNY	RECNY	RECNY	RECNY	RECNY
Cooler Temperature: 2.0°C		Parameters	8260 R	8260		8260	8260 R	8260 R		8260 R								8260 R	8260	8260 R		8260	8260 R
			8	8	8	8	8	8	88	8	8				8	8			8	8	8	8	8
Check: YES Seal: YES stody: YES Tags: NO mbers: NO Forms: NO		Bottles	2-40mlV	2-40m(V	2-40mlV	2-40mlV	2-40mlV	2-40mlV	2-40mlV	2-40mlV	1-40mlV	2-40mlV	2-40m[V	2-40mlV	2-40mlV	2-40mlV	2-40mlV	2-40mlV	2-40mlV	2-40mlV	2-40mlV	2-40m(V	2-40mlV
Radiation Check: Custody Seal: Chain of Custody: Sample Tags: Sample Tag Numbers: SMO Forms: CLSIS:		Condition	Good	Good	Good	Good	Good	Good	Good	Good	Poog	Good	Good	Cood	Good	000d	Good	Poog	Poog	Good	Good	Good	Poo9
		Lab ID	A5E58701	A5E58701MS	A5E58701SD	A5E58702	A5E58703	A5E58704	A5E58705	A5E58706	A5E58707	A5E58708	A5E58709	A5E58710	A5E58712	A5E58713	A5E58714	A5E58715	A5E58716	A5E58717	A5E58718	A5E58719	A5E58720
s Corporation		Client Sample ID	MW-2	MW-2	MW-2	MW-17	TB-121505-01	MW-8	10:15 MW-100	P-8	TB-121505-02	P-3	10:15 EB122005	WM-34	MW-21	MW-35	MW-101	MW-32	MW-36	EB122105	MW-33	MW-20	MM-39
A05-E587 Environmental Strategies Corporation NY4A9171 1		Receive	11:00 12/23/2005 10:15 MW-2	11:00 12/23/2005 10:15 MW-2	11:00 12/23/2005 10:15 MW-2	10:15	10:15	10:15	19:00 12/23/2005 10:15	15:40 12/23/2005 10:15	-		12/23/2005	12/23/2005	12/23/2005	12/23/2005 10:15	12/23/2005 10:15	12/23/2005 10:15	12/23/2005 10:15	12/23/2005 10:15	12/23/2005 10:15	12/23/2005 10:15 MW-20	12/23/2005
Job No: A05-E587 Client: Environm Project: NY4A9171 SDG: Case: SMO No: No. Samps: 1		Sample	12/20/2005 11:00	12/20/2005 11:00		12/20/2005 13:55		14:20				15:55	08:53	12/21/2005 09:40		12/21/2005 11:50	12/21/2005 19:00	12:22	12/21/2005 14:20	13:11	14:44	12/21/2005 15:25	16:10

Analytical Services Coordinator:

Sample Custodian:

Preservation Code References:

Third, Fourth Digits - Preservation Types: 00=Nothing added, 01=HNO3, 02=H2SO4, 03=HCl, 04=Sodium Thiosulfate 05=NaOH, 06=NaOH+Zinc Acetate, 07=Sodium Thiosulfate+HCl, 08=MeOH 09=MCAA (Mono chloroacetic acid) First Digit: Sample Filtration; 1=Filtered, 0=Unfiltered Second Digit: Sample Requires Cooling; (4°) 1=Cooled, 0=Not Cooled

Date: 12/23/2005 Time: 13:55:54

Volatiles

QC Summary

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W WATER SURROGATE RECOVERY

Lab Name: <u>STL Buffalo</u>

Contract: 4

Lab Code: RECNY

Case No.: ____ SAS No.: ____ SDG No.: ___

	Client Sample ID	Lab Sample ID	BFB %REC #	DCE %REC #	TOL %REC #						TOT
	=======================================	=======================================	======	======	======	======	======	======	======	======	===
1	EB122005	A5E58709	93	92	94						lol
2	EB122105	A5E58717	102	97	99						0
3	MSB21	A5B2007601	89	99	96						lol
4	MSB22	A5B2013701	88	104	98			1			0
5	MSB23	A5B2015901	88	96	93						0
6	MSB37	A5B2011201	94	92	95			l			0
7	MSB40	A5B2009801	102	95	100		ĺ				0
8	MW-100	A5E58705	80	92	90						0
9	MW-101	A5E58714	101	96	100						0
10	MW-17	A5E58702	85	106	96			ĺ			0
11	MW-2	A5E58701	94	92	95						0
12	MW-2	A5E58701MS	79	91	91						0
13	MW-2	A5E58701SD	84	97	94						0
14	MW-20	A5E58719	102	96	98						0
15	MW-21	A5E58712	88	108	96						0
16	MW-32	A5E58715	104	96	100						0
17	MW-33	A5E58718	104	97	100						0
18	MW-34	A5E58710	82	98	91						0
19	MW-34 DL	A5E58710DL	85	103	93						0
20	MW-35	A5E58713	103	97	99						0
21	MW-36	A5E58716	104	96	100						0
22	MW-39	A5E58720	104	97	101						0
23	MW-8	A5E58704	84	98	93						0
24	P-3	A5E58708	94	91	95						0
25	P-8	A5E58706	86	102	99						0
26	TB-121505-01	A5E58703	85	103	98						0
27	TB-121505-02	A5E58707	87	98	95						0
28	VBLK21	A5B2007602	85	97	92				_		0

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W WATER SURROGATE RECOVERY

Lab Name: <u>STL Buffalo</u> Contract: 4 Case No.: ____ SAS No.: ____ SDG No.: _ Lab Code: RECNY

	Client Sample ID	Lab Sample ID		DCE %REC #	TOL %REC #				 	TOT OUT
29	VBLK22	A5B2013702	86	105	95				 	0
	VBLK23	A5B2015902	81	98	89	1	}	1		l o
	VBLK37	A5B2011202	92	92	93	İ				0
32	VBLK40	A5B2009802	102	94	100					0

QC LIMITS

(73-120) (72-143) (76-122) BFB = p-Bromofluorobenzene DCE = 1,2-Dichloroethane-D4 TOL = Toluene-D8

[#] Column to be used to flag recovery values* Values outside of contract required QC limitsD Surrogates diluted out

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W WATER MATRIX SPIKE BLANK RECOVERY

Lab Name: STL Buffalo Lab Samp ID: <u>A5B2007602</u> Contract: 4 Lab Code: <u>RECNY</u> Case No.: ____ SAS No.: ____ SDG No.: ____ Matrix Spike - Client Sample No.: <u>VBLK21</u> SPIKE MSB MSB ∞ ADDED CONCENTRATION ે LIMITS COMPOUND UG/L UG/L REC # REC. ======**=** 1,1-Dichloroethene____ 25.0 65 - 14231.9 128 Trichloroethene____ 25.0 28.8 116 71 - 120 Benzene 67 - 126 25.0 29.0 116 69 - 120 Toluene 28.2 113 25.0 Chlorobenzene 73 - 120 25.0 27.1 108 # Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits Spike recovery: ___0 out of ___5 outside limits

Comments:

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W WATER MATRIX SPIKE BLANK RECOVERY

Lab Name: <u>STL Buffalo</u> Contract: 4 Lab Samp ID: <u>A5B2009802</u> Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____ Matrix Spike - Client Sample No.: VBLK40 SPIKE MSB MSB ∞ 왕 ADDED CONCENTRATION LIMITS REC # COMPOUND UG/L UG/L REC. ====== 65 - 142 1,1-Dichloroethene 25.0 29.1 117 Trichloroethene 71 - 120 25.0 26.5 106 Benzene 25.0 27.2 109 67 - 126 Toluene 25.0 69 - 120 27.2 109 Chlorobenzene 25.0 27.0 108 73 - 120 # Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

Spike recovery: $\underline{}$ out of $\underline{}$ outside limits

Comments:

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W WATER MATRIX SPIKE BLANK RECOVERY

Lab Name: STL Buffalo Contract: 4 Lab Samp ID: A5B2011202

Lab Code: RECNY Case No.: SAS No.: SDG No.:

COMPOUND	SPIKE	MSB	MSB	QC
	ADDED	CONCENTRATION	%	LIMITS
	UG/L	UG/L	REC #	REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	25.0	25.9	104	65 - 142
	25.0	25.3	102	71 - 120
	25.0	25.8	103	67 - 126
	25.0	25.5	102	69 - 120
	25.0	25.7	103	73 - 120

Column to be used to flag recovery and RPD values with an asterisk

Spike rec	overy:	0 out of _	5 outsid	de limits			
Comments:	-				 	<u> </u>	

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W WATER MATRIX SPIKE BLANK RECOVERY

 Lab Name: STL Buffalo
 Contract: 4
 Lab Samp ID: A5B2013702

 Lab Code: RECNY
 Case No.: _____
 SAS No.: _____

SDG No.: _____

Matrix Spike - Client Sample No.: <u>VBLK22</u>

COMPOUND	SPIKE	MSB	MSB	QC
	ADDED	CONCENTRATION	%	LIMITS
	UG/L	UG/L	REC #	REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	25.0	29.2	117	65 - 142
	25.0	27.3	110	71 - 120
	25.0	27.2	109	67 - 126
	25.0	25.8	103	69 - 120
	25.0	25.0	100	73 - 120

Column to be used to flag recovery and RPD values with an asterisk

Spike recovery:	0 out of _	5 outside limits		
Comments:			···	····

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W WATER MATRIX SPIKE BLANK RECOVERY

Lab Name: STL Buffalo Lab Samp ID: <u>A5B2015902</u> Contract: 4 Lab Code: <u>RECNY</u> Case No.: ____ SAS No.: _____ SDG No.: ____ Matrix Spike - Client Sample No.: <u>VBLK23</u> MSB $^{\circ}$ SPIKE MSB ADDED CONCENTRATION 왕 LIMITS REC. COMPOUND UG/L UG/L REC # _____ 1,1-Dichloroethene 25.0 65 - 142 29.4 118 Trichloroethene 25.0 28.6 115 71 - 120 Benzene 67 - 126 25.0 28.1 113 69 - 120 Toluene 25.0 26.7 107 Chlorobenzene 73 - 120 25.0 26.5 106 # Column to be used to flag recovery and RPD values with an asterisk

Spike recovery:	0 out of	<u> </u>	its		
Comments:				 	

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W WATER MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

 Lab Name:
 STL Buffalo
 Contract: 4
 Lab Samp ID: A5E58701

 Lab Code:
 RECNY
 Case No.:
 SAS No.:
 SDG No.:

Matrix Spike - Client Sample No.: MW-2

COMPOUND	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
	UG/L	UG/L	UG/L	REC #	REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	25.0 25.0 25.0 25.0 25.0	0 1.54 0 0	31.4 30.4 29.0 27.6 27.0	126 116 116 110 108	65 - 142 71 - 120 67 - 126 69 - 120 73 - 120

COMPOUND	SPIKE ADDED UG/L	MSD CONCENTRATION UG/L	MSD % REC #	% RPD #	QX RPD	C LIMITS REC.
1,1-Dichloroethene	25.0 25.0	31.9 31.2	128 119	2	16 16	65 - 142 71 - 120
Benzene	25.0	29.9	120	3	13	67 - 126
Toluene	25.0	28.4	114	4	18	69 - 120
Chlorobenzene	25.0	27.4	110	2	19	73 - 120

Column to be used to flag recovery and RPD values with an asterisk

RPD: _	0 out of	<u>5</u> outside 1:	limits
Spike	recovery:	0 out of1	10 outside limits
_			
Commer	nts:		

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W METHOD BLANK SUMMARY

97/504

Client No.

			VBLK21
Lab Name: <u>S</u>	TL Buffalo	Contract: 4	L

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Lab File ID: S9655.RR Lab Sample ID: A5B2007602

Date Analyzed: <u>12/27/2005</u>

Time Analyzed: 11:30

GC Column: DB-624 ID: 0.18 (mm) Heated Purge: (Y/N) N

Instrument ID: <u>HP5973S</u>

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED
	=======================================	=======================================	=========	========
1	MSB21	A5B2007601	S9656.RR	11:54
2	MW-100	A5E58705	S9673.RR	18:48
3	MW-2	A5E58701MS	S9668.RR	16:47
4	MW-2	A5E58701SD	S9669.RR	17:11
5	MW-8	A5E58704	S9672.RR	18:24
6	P-8	A5E58706	S9674.RR	19:12
7	TB-121505-01	A5E58703	S9671.RR	17:59
8	TB-121505-02	A5E58707	S9657.RR	12:20

Comments:	:	 			 		

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W METHOD BLANK SUMMARY

98/504

Client No.

				VBLK40
Lab	Name:	STL Buffalo	Contract: 4	

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ____

Lab File ID: Q9547.RR

Lab Sample ID: A5B2009802

Date Analyzed: <u>12/27/2005</u>

Time Analyzed: 21:45

GC Column: DB-624 ID: 0.25 (mm) Heated Purge: (Y/N) N

Instrument ID: <u>HP59730</u>

	CLIENT	LAB	LAB	TIME	
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	
		========	==========	========	
1	EB122105	A5E58717	Q9552.RR	00:08	
2	MSB40	A5B2009801	Q9546.RR	21:17	į
3	MW-101	A5E58714	Q9549.RR	22:43	
4	MW-20	A5E58719	Q9554.RR	01:05	
5	MW-32	A5E58715	Q9550.RR	23:12	
6	MW-33	A5E58718	Q9553.RR	00:37	
7	MW-35	A5E58713	Q9548.RR	22:15	
8	MW-36	A5E58716	Q9551.RR	23:40	
9	MW-39	A5E58720	Q9555.RR	01:33	

Comments:					

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W

METHOD BLANK SUMMARY

99/504

Client No.

Lab Name: <u>STL Buffalo</u>	Contract: 4 VBLK37
Lab Code: <u>RECNY</u> Case No.:	SAS No.: SDG No.:
Lab File ID: <u>G7618.RR</u>	Lab Sample ID: <u>A5B2011202</u>
Date Analyzed: <u>12/27/2005</u>	Time Analyzed: 21:51
GC Column: <u>DB-624</u> ID: <u>0.25</u>	(mm) Heated Purge: (Y/N) <u>N</u>

Instrument ID: <u>HP5973G</u>

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED	
	=======================================	=========	=======================================	========	ı
1	EB122005	A5E58709	G7641.RR	06:43	
2	MSB37	A5B2011201	G7617.RR	21:29	l
3	MW-2	A5E58701	G7639.RR	05:57	
4	P-3	A5E58708	G7640.RR	06:20	
2 3 4	MW - 2	A5E58701	G7639.RR	05:57	

Comments:						

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W

METHOD BLANK SUMMARY

100/504 Client No.

Lah	Namo	STL Buffa	alo		Conti	caat.	. 1	VBLK22
цар	Name:	DID DULLS	110		COIICI	lact:	4	
Lab	Code:	RECNY	Case	No.:		SAS	No.:	SDG No.:

Lab File ID: S9693.RR Lab Sample ID: A5B2013702

Date Analyzed: 12/28/2005 Time Analyzed: 09:44

GC Column: DB-624 ID: 0.18 (mm) Heated Purge: (Y/N) \underline{N}

Instrument ID: <u>HP5973S</u>

	CLIENT	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
1	MSB22	A5B2013701	S9692.RR	09:19
2	MW-17	A5E58702	S9696.RR	10:56
3	MW-34	A5E58710	S9694.RR	10:08

Comments:		

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W

METHOD BLANK SUMMARY

101/504

Client No.

Lab	Name:	STL Buffa	alo	Contract: 4	VBLK23
Lab	Code:	RECNY	Case No.:	SAS No.:	SDG No.:

Lab File ID: S9721.RR Lab Sample ID: A5B2015902

Date Analyzed: <u>12/28/2005</u>

Time Analyzed: 20:59

GC Column: DB-624 ID: 0.18 (mm) Heated Purge: (Y/N) N

Instrument ID: <u>HP5973S</u>

	CLIENT	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
1 2 3	MSB23 MW-21 MW-34 DL	A5E58712	S9725.RR	20:35 22:42 22:18

Comments:				

Lab Name: <u>STL Buffalo</u> Contract: 4 Tune ID: <u>A5T0003577</u>

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Lab File ID: G7402 BFB Injection Date: 12/20/2005

Instrument ID: <u>HP5973G</u> BFB Injection Time: <u>09:53</u>

GC Column: DB-624 ID: 0.25 (mm) Heated Purge: (Y/N): N

m/e	ION Abundance Criteria		lative ndance	
75 95 96 173 174 175	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50 - 120 % of mass 95 5.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	19.3 50.7 100.0 7.1 0.6 71.2 5.1 68.3 4.6	(7.2) (95.9)	1 1 1 2

1-Value is % mass 174

2-Value is % mass 176

	Client	Lab	Lab	Date	Time
	Sample No.	Sample ID	File ID	Analyzed	Analyzed
2 3 4	VSTD050 VSTD100 VSTD025 VSTD010 VSTD001	A5I0002430-1 A5I0002430-1 A5I0002430-1 A5I0002430-1 A5I0002430-1	G7407.RR G7408.RR G7409.RR	12/20/2005 12/20/2005 12/20/2005 12/20/2005 12/20/2005	11:27 11:50 13:18 13:40 14:25

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u> Tune ID: <u>A5T0003643</u>

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Lab File ID: <u>G7614</u> BFB Injection Date: <u>12/27/2005</u>

Instrument ID: <u>HP5973G</u>

BFB Injection Time: <u>20:20</u>

GC Column: DB-624 ID: 0.25 (mm) Heated Purge: (Y/N): N

m/e	ION Abundance Criteria	% Relative Abundance		
75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50 - 120 % of mass 95 5.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 174	19.5 51.8 100.0 6.8 0.3 71.2 5.2 69.8 5.3	(0.4) (7.3) (98.1) (7.6)	1 1 2

1-Value is % mass 174

2-Value is % mass 176

	Client	Lab	Lab	Date	Time
	Sample No.	Sample ID	File ID	Analyzed	Analyzed
2 3 4 5	VSTD025 MSB37 VBLK37 MW-2 P-3 EB122005	A5B2011202	G7615.RR G7617.RR G7618.RR G7639.RR G7640.RR G7641.RR	12/27/2005 12/27/2005 12/27/2005 12/28/2005 12/28/2005 12/28/2005	20:41 21:29 21:51 05:57 06:20 06:43

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u> Tune ID: <u>A5T0003615</u>

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Lab File ID: Q9457 BFB Injection Date: 12/23/2005

Instrument ID: <u>HP59730</u> BFB Injection Time: <u>08:06</u>

GC Column: DB-624 ID: 0.20 (mm) Heated Purge: (Y/N): N

m/e	ION Abundance Criteria	% Relative Abundance		
75	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95	17.5 45.4		
96	Base peak, 100% relative abundance 5.0 - 9.0% of mass 95	100.0		_
1	Less than 2.0% of mass 174 50 - 120 % of mass 95	0.0 82.3	(0.0)	1
	5.0 - 9.0% of mass 174	ľ	(7.1)	1
	95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	5.4	(96.2) (6.8)	2

1-Value is % mass 174

2-Value is % mass 176

	Client	Lab	Lab	Date	Time
	Sample No.	Sample ID	File ID	Analyzed	Analyzed
2 3 4	VSTD025 VSTD100 VSTD050 VSTD010 VSTD001	A5I0002444-1 A5I0002444-1 A5I0002444-1 A5I0002444-1 A5I0002444-1	Q9459.RR Q9460.RR Q9461.RR	12/23/2005 12/23/2005 12/23/2005 12/23/2005 12/23/2005	09:01 09:29 09:57 10:26 11:46

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u> Tune ID: <u>A5T0003648</u>

Lab File ID: 09544 BFB Injection Date: 12/27/2005

Instrument ID: <u>HP5973Q</u> BFB Injection Time: <u>20:18</u>

GC Column: $\underline{DB-624}$ ID: $\underline{0.20}$ (mm) Heated Purge: (Y/N): \underline{N}

m/e	ION Abundance Criteria		lative ndance	
75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50 - 120 % of mass 95 5.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	18.0 45.4 100.0 7.0 0.0 82.9 6.1 80.7 5.5	(7.3) (97.3)	1 1 1 2

1-Value is % mass 174

2-Value is % mass 176

,	Client Sample No.	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
1	VSTD025	A5C0006629-1	Q9545.RR	12/27/2005	20:40
2	MSB40	A5B2009801	Q9546.RR	12/27/2005	21:17
3	VBLK40	A5B2009802	Q9547.RR	12/27/2005	21:45
4	MW-35	A5E58713	Q9548.RR	12/27/2005	22:15
5	MW-101	A5E58714	Q9549.RR	12/27/2005	22:43
6	MW-32	A5E58715	Q9550.RR	12/27/2005	23:12
7	MW-36	A5E58716	Q9551.RR	12/27/2005	23:40
8	EB122105	A5E58717	Q9552.RR	12/28/2005	00:08
9	MW-33	A5E58718	Q9553.RR	12/28/2005	00:37
10	MW-20	A5E58719	Q9554.RR	12/28/2005	01:05
11	MW-39	A5E58720	Q9555.RR	12/28/2005	01:33

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u> Tune ID: <u>A5T0003605</u>

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Lab File ID: S9597 BFB Injection Date: 12/22/2005

Instrument ID: <u>HP5973S</u>

BFB Injection Time: <u>15:36</u>

GC Column: DB-624 ID: 0.18 (mm) Heated Purge: (Y/N): N

m/e	ION Abundance Criteria	% Relative Abundance		
75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50 - 120 % of mass 95 5.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	22.9 49.0 100.0 7.5 0.0 69.8 4.7 67.6 4.7	(0.0) (6.8) (96.8) (7.0)	1 1 2

1-Value is % mass 174

2-Value is % mass 176

	Client	Lab	Lab	Date	Time
	Sample No.	Sample ID	File ID	Analyzed	Analyzed
2 3 4	VSTD100 VSTD050 VSTD025 VSTD010 VSTD001	A5I0002442-1 A5I0002442-1 A5I0002442-1 A5I0002442-1 A5I0002442-1	S9599.RR S9600.RR S9601.RR	12/22/2005 12/22/2005 12/22/2005 12/22/2005 12/22/2005	15:56 16:20 16:44 17:09 17:33

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u> Tune ID: <u>A5T0003642</u>

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Lab File ID: S9651 BFB Injection Date: 12/27/2005

Instrument ID: <u>HP5973S</u>

BFB Injection Time: <u>09:49</u>

GC Column: $\underline{DB-624}$ ID: $\underline{0.18}$ (mm) Heated Purge: (Y/N): \underline{N}

m/e	ION Abundance Criteria	% Relative Abundance		
75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50 - 120 % of mass 95 5.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 174	0	(0.0) (5.6) (97.3) (6.6)	1 1 1 2

1-Value is % mass 174

2-Value is % mass 176

	Client Sample No.	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
1	VSTD025	A5C0006621-1	S9652.RR	12/27/2005	10:13
2	VBLK21	A5B2007602	S9655.RR	12/27/2005	11:30
3	MSB21	A5B2007601	S9656.RR	12/27/2005	11:54
4	TB-121505-02	A5E58707	S9657.RR	12/27/2005	12:20
5	MW-2	A5E58701MS	S9668.RR	12/27/2005	16:47
6	MW-2	A5E58701SD	S9669.RR	12/27/2005	17:11
7	TB-121505-01	A5E58703	S9671.RR	12/27/2005	17:59
8	MW-8,	A5E58704	S9672.RR	12/27/2005	18:24
9	MW-100	A5E58705	S9673.RR	12/27/2005	18:48
10	P-8	A5E58706	S9674.RR	12/27/2005	19:12

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u> Tune ID: <u>A5T0003653</u>

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Lab File ID: <u>S9690</u> BFB Injection Date: <u>12/28/2005</u>

Instrument ID: <u>HP5973S</u>

BFB Injection Time: <u>08:31</u>

GC Column: DB-624 ID: 0.18 (mm) Heated Purge: (Y/N): N

m/e	ION Abundance Criteria	% Relative Abundance		
75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50 - 120 % of mass 95 5.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176		(6.1) (96.9)	1 1 1 2

1-Value is % mass 174

2-Value is % mass 176

	Client Sample No.	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
1	VSTD025	A5C0006632-1	S9691.RR	12/28/2005	08:52
2	MSB22	A5B2013701	S9692.RR	12/28/2005	09:19
3	VBLK22	A5B2013702	S9693.RR	12/28/2005	09:44
4	MW-34	A5E58710	S9694.RR	12/28/2005	10:08
5	MW-17	A5E58702	S9696.RR	12/28/2005	10:56
		ì			

Lab Name: <u>STL Buffalo</u> Contract: 4 Tune ID: <u>A5T0003666</u>

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Lab File ID: <u>S9717</u> BFB Injection Date: <u>12/28/2005</u>

Instrument ID: <u>HP5973S</u>

BFB Injection Time: <u>19:31</u>

GC Column: $\underline{DB-624}$ ID: $\underline{0.18}$ (mm) Heated Purge: (Y/N): \underline{N}

m/e	ION Abundance Criteria	lative ndance	
75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50 - 120 % of mass 95 5.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	(0.0) (7.2) (96.2) (5.0)	1 1 1 2

1-Value is % mass 174

2-Value is % mass 176

Analyzed	Date Analyzed	Lab File I	Lab Sample ID	Client Sample No.	
20:35 20:59 22:18	12/28/2005 12/28/2005 12/28/2005 12/28/2005	S9720.RR S9721.RR S9724.RR	A5B2015902 A5E58710DL	VSTD025 MSB23 VBLK23 MW-34 DL	2 3 4
,	12/28/2005 12/28/2005	S9720.RR S9721.RR	A5B2015901 A5B2015902	MSB23 VBLK23	2 3 4

Lab Name: STL Buffalo		Contract: 4	Labsampid:	A5C0006622
Lab Code: RECNY	Case No.:	SAS No.:	SDG N	o.:
Lab File ID (Standard):	<u>G7615.RR</u>	Date	Analyzed:	12/27/2005
Instrument ID: <u>HP5973G</u>		Time	Analyzed:	<u>20:41</u>
GC Column(1): DB-624	ID: 0.250(mm)) Heat	ted Purge:	(Y/N) N

	12 HOUR STD UPPER LIMIT LOWER LIMIT COURTER LIMIT	======================================	IS1 (CBZ) AREA # 177567 355134 88784	RT # ====== 8.70 9.20 8.20 ======	IS2 (DCB) AREA # 170788 341576 85394	RT # ====== 11.05 11.55 10.55	IS3 (DFB) AREA # ====================================	RT # ====== 5.80 6.30 5.30
2	============= EB122005 MSB37 MW-2 P-3 VBLK37	========== A5E58709 A5B2011201 A5E58701 A5E58708 A5B2011202	170909 173200 169364 171732 175393	8.70 8.70 8.70 8.70 8.70 8.70	161752 164553 159128 164785 165543	11.05 11.05 11.06 11.05 11.05	344655 341239 348575	5.81 5.81 5.80 5.80 5.80 5.81

AREA UNIT QC LIMITS QC LIMITS

IS1 (CBZ) = Chlorobenzene-D5
IS2 (DCB) = 1,4-Dichlorobenzene-D4
IS3 (DFB) = 1,4-Difluorobenzene -0.50 / +0.50 min -0.50 / +0.50 min -0.50 / +0.50 min (50-200) (50-200) (50-200)

[#] Column to be used to flag recovery values* Values outside of contract required QC limits

 Lab Name:
 STL Buffalo
 Contract: 4
 Labsampid:
 A5C0006629

 Lab Code:
 RECNY
 Case No.:
 SAS No.:
 SDG No.:

 Lab File ID (Standard):
 Q9545.RR
 Date Analyzed:
 12/27/2005

 Instrument ID:
 HP5973Q
 Time Analyzed:
 20:40

 GC Column(1):
 DB-624
 ID:
 0.250(mm)
 Heated Purge:
 (Y/N) N

			IS1 (CBZ) AREA #	RT #	IS2 (DCB) AREA #	RT #	IS3 (DFB) AREA #	RT #
	12 HOUR STD UPPER LIMIT LOWER LIMIT		252227 504454 126114	8.39 8.89 7.89	126055 252110 63028	10.53 11.03 10.03	288192 576384 144096	5.77 6.27 5.27
i	CLIENT SAMPLE	Lab Sample ID		======				======
1	EB122105	A5E58717	245180	8.39	117155	10.53	277560	5.77
2	MSB40	A5B2009801	249415	8.39	117928	10.53	285218	5.77
4	MW-101	A5E58714	248417	8.39	119550	10.54	280187	5.77
	MW-20	A5E58719	244192	8.39	117109	10.53	275423	5.77
	MW-32	A5E58715	245891	8.39	118399	10.54	278806	5.77
6	MW-33	A5E58718	242307	8.39	117830	10.54	275616	5.77
	MW-35	A5E58713	248704	8.39	115168	10.53	281438	5.77
	MW-36	A5E58716	243816	8.39	116670	10.53	278237	5.77
	MW-39	A5E58720	237875	8.39	114860	10.53	275219	5.77
	VBLK40	A5B2009802	250720	8.39	120285	10.53	284411	5.77

AREA UNIT RT QC LIMITS QC LIMITS

IS1 (CBZ) = Chlorobenzene-D5
IS2 (DCB) = 1,4-Dichlorobenzene-D4
IS3 (DFB) = 1,4-Difluorobenzene

(50-200) -0.50 / +0.50 min (50-200) -0.50 / +0.50 min (50-200) -0.50 / +0.50 min

[#] Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

 Lab Name:
 STL Buffalo
 Contract:
 4
 Labsampid:
 A5C0006621

 Lab Code:
 RECNY
 Case No.:
 SAS No.:
 SDG No.:

 Lab File ID (Standard):
 S9652.RR
 Date Analyzed:
 12/27/2005

 Instrument ID:
 HP5973S
 Time Analyzed:
 10:13

 GC Column(1):
 DB-624
 ID:
 0.180(mm)
 Heated Purge:
 (Y/N)
 N

			IS1 (CBZ) AREA #	RT #	IS2 (DCB) AREA #	RT #	IS3 (DFB) AREA #	RT #
	42 4045 075	=========	***********	======	207/50	0.46	//402/	======
	12 HOUR STD		600499	7.30	297459	9.16	441026	5.09
	UPPER LIMIT		1200998	7.80	594918	9.66	882052	5.59
	LOWER LIMIT		300250	6.80	148730	8.66	220513	4.59
	=======================================	=======================================	=========	======	=========	======	==========	======
	CLIENT SAMPLE	Lab Sample ID				 		\
	=======================================	==========	=========	======	=========	======	=========	======
1	MSB21	A5B2007601	567286	7.30	268030	9.16	425062	5.09
2	MW-100	A5E58705	582848	7.30	279039	9.17	424238	5.09
3	MW-2	A5E58701MS	573247	7.30	267484	9.16	424442	5.09
4	MW-2	A5E58701SD	573304	7.30	265132	9.16	422149	5.09
5	MW-8	A5E58704	545856	7.30	262800	9.17	390693	5.09
6	P-8	A5E58706	559665	7.30	255277	9.16	410100	5.09
7	TB-121505-01	A5E58703	540313	7.30	245616	9.17	389528	5.09
8	TB-121505-02	A5E58707	564581	7.30	260644	9.16	411945	5.09
9	VBLK21	A5B2007602	556539	7.30	258175	9.16	405816	5.09

AREA UNIT RT
QC LIMITS QC LIMITS

IS1 (CBZ) = Chlorobenzene-D5 (50-200) -0.50 / +0.50 min IS2 (DCB) = 1,4-Dichlorobenzene-D4 (50-200) -0.50 / +0.50 min IS3 (DFB) = 1,4-Difluorobenzene (50-200) -0.50 / +0.50 min

Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

Lab Name: STL Buffalo		Con	tract: <u>4</u>		Labsampid	: <u>A5C000663</u>	2
Lab Code: RECNY	Case No.:		SAS No.:		SDG I	Vo.:	_
Lab File ID (Standard):	<u>\$9691.RR</u>			Date	Analyzed:	12/28/200	5
Instrument ID: <u>HP5973S</u>				Time	Analyzed:	<u>08:52</u>	
GC Column(1): DB-624	ID: 0.1	80(mm)		Heat	ed Purge:	(Y/N) N	

	12 HOUR STD UPPER LIMIT LOWER LIMIT	=======================================	IS1 (CBZ) AREA # ====================================	RT # ====== 7.30 7.80 6.80	IS2 (DCB) AREA # ====================================	RT # ====== 9.16 9.66 8.66	IS3 (DFB) AREA # ====================================	RT # ====== 5.09 5.59 4.59
	CLIENT SAMPLE	Lab Sample ID	==========					
2	MSB22 MW-17 MW-34 VBLK22	A5B2013701 A5E58702 A5E58710 A5B2013702	545359 530612 541725 535567	7.30 7.30 7.30 7.30	242129 253813	9.16 9.17 9.17 9.17	396361 374495 379329 375838	5.09 5.09 5.09 5.09

AREA UNIT RT QC LIMITS

IS1 (CBZ) = Chlorobenzene-D5 (50-200) -0.50 / +0.50 min IS2 (DCB) = 1,4-Dichlorobenzene-D4 (50-200) -0.50 / +0.50 min IS3 (DFB) = 1,4-Difluorobenzene (50-200) -0.50 / +0.50 min

[#] Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

Lab Name: <u>STL Buffal</u>	<u>o</u> Co	ontract: 4	Labsampid: <u>A5C0006643</u>
Lab Code: <u>RECNY</u>	Case No.:	SAS No.:	SDG No.:
Lab File ID (Standa	rd): <u>\$9718.RR</u>	Date	Analyzed: <u>12/28/2005</u>
Instrument ID: HP597	<u>3s</u>	Time	Analyzed: <u>19:47</u>
GC Column(1): DB-624	ID: <u>0.180</u> (mm)	Heat	ed Purge: (Y/N) N

	12 HOUR STD UPPER LIMIT LOWER LIMIT	=======================================	IS1 (CBZ) AREA # ====================================	RT # ====== 7.30 7.80 6.80	IS2 (DCB) AREA # ====================================	RT # ====== 9.16 9.66 8.66	IS3 (DFB) AREA # ====================================	RT # ====== 5.09 5.59 4.59
	CLIENT SAMPLE	Lab Sample ID		======		======		======
2	MSB23 MW-21 MW-34 DL VBLK23	A5B2015901 A5E58712 A5E58710DL A5B2015902	576889 522948 526940 544736	7.30 7.30 7.30 7.30	246274 248196	9.17 9.17 9.17 9.17	410703 357903 368158 382802	5.09 5.09 5.09 5.09

AREA UNIT RT QC LIMITS QC LIMITS

-0.50 / +0.50 min -0.50 / +0.50 min -0.50 / +0.50 min IS1 (CBZ) = Chlorobenzene-D5 IS2 (DCB) = 1,4-Dichlorobenzene-D4 IS3 (DFB) = 1,4-Difluorobenzene (50-200) (50-200) (50-200)

[#] Column to be used to flag recovery values* Values outside of contract required QC limits

Sample Data

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

EB122005	
1	

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58709

Sample wt/vol: __5.00 (g/mL) ML Lab File ID: __G7641.RR

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

		CONCENTRATION U	NITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg	j) <u>UG/L</u>	Q
67-64-1			3.8	J
71-43-2	— -		1.0	U
	Bromodichloromethane		0.43	J
75-25-2			1.0	U
	Bromomethane		1.0	U
	2-Butanone		5.0	U
	Carbon Disulfide		1.0	ע
56-23-5	Carbon Tetrachloride		1.0	U
108-90-7	Chlorobenzene		1.0	U
75-00-3	Chloroethane		1.0	U
67-66-3	Chloroform		0.60	J
74-87-3	Chloromethane		1.0	U
	Cyclohexane		1.0	U
	1,2-Dibromoethane		1.0	U
	Dibromochloromethane		1.0	ע
96-12-8	1,2-Dibromo-3-chloropropane		1.0	ע
95-50-1	1,2-Dichlorobenzene		1.0	U
	1,3-Dichlorobenzene		1.0	U
106-46-7	1,4-Dichlorobenzene		1.0	U
75-71-8	Dichlorodifluoromethane		1.0	U
75-34-3	1,1-Dichloroethane		1.0	ע
107-06-2	1,2-Dichloroethane		1.0	U
75-35-4	1,1-Dichloroethene		1.0	ע
	cis-1,2-Dichloroethene		1.0	ע
156-60-5	trans-1,2-Dichloroethene		1.0	ע
	1,2-Dichloropropane		1.0	U
10061-01-5	cis-1,3-Dichloropropene		1.0	U
10061-02-6	trans-1,3-Dichloropropene		1.0	U
100-41-4	Ethylbenzene		1.0	U
591-78-6	2-Hexanone		5.0	U
98-82-8	Isopropylbenzene		1.0	U
79-20-9	Methyl acetate		1.0	ע
	Methylcyclohexane		1.0	U
	Methylene chloride		1.0	U
L				

117/504

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

	-
LEB122009	`
	,
1	

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58709

Sample wt/vol: __5.00 (g/mL) ML Lab File ID: __G7641.RR____

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

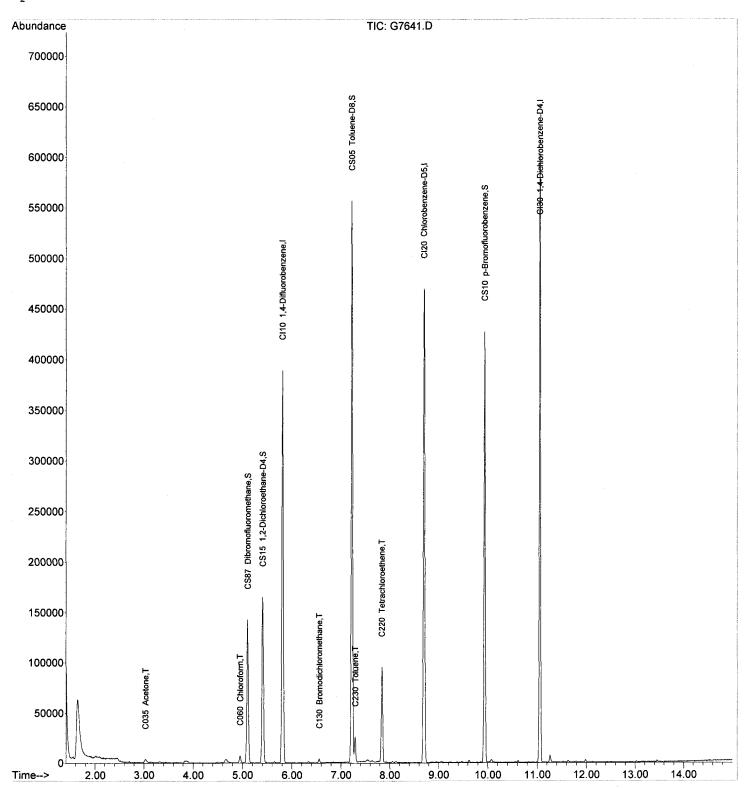
CAS NO.	COMPOUND	(ug/L or ug/Kg)	.s: <u>UG/L</u>	Q
108-10-1	4-Methyl-2-pentanone		5.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)		1.0	ש
91-20-3	Naphthalene		1.0	U
100-42-5	Styrene		1.0	ט
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
127-18-4	Tetrachloroethene		5.1	
108-88-3	Toluene		0.78	J
120-82-1	1,2,4-Trichlorobenzene		1.0	U
	1,1,1-Trichloroethane		1.0	ט
79-00-5	1,1,2-Trichloroethane		1.0	ע
76-13-1	1,1,2-Trichloro-1,2,2 <mark>-trifl</mark> u	orcethane	1.0	שׁ
75-69-4	Trichlorofluoromethane		1.0	ט
	Trichloroethene		1.0	U
	Vinyl chloride		1.0	ש
1330-20-7	Total Xylenes		3.0	U
1				

Data File: C:\MSDCHEM\1\DATA\122705\G7641.D

Quantitation Report

Acq On : 28 Dec 2005 6:43

Sample : A5E58709


Misc :

Integrator: RTE
Quant Time: Dec 28 08:03:40 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 21:28:27 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Operator : TLC

5+E 1113/28/05

Quantitation Report STL Buffalo (Not Reviewed)

R.T. QIon Response Conc Units Dev(Min)

Data File: C:\MSDCHEM\1\DATA\122705\G7641.D

Acq On : 28 Dec 2005 6:43

Sample : A5E58709

Misc

Integrator: RTE Quant Time: Dec 28 08:03:40 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 21:28:27 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Operator : TLC

Internal Standards

				~	<u>-</u>		Rcv(Ar)
1)	CI10	1,4-Difluorobenzene	5.81	. 114	338651	125.00	
							96.88%
43)	CI20	Chlorobenzene-D5	8.70	82	170909	125.00	
621	CTOO	1 4 Diablemeherrers	11 05	1 - 0	161750	105 00	96.25% nq 0.00
63)	C130	1,4-Dichlorobenzene-	11.05	152	161752	125.00	94.71%
							J#. / 1 8
Syst	em Moi	nitoring Compounds					
		Dibromofluoromethane	5.10	111	95787	113.00 N	IG 0.00
Spi	iked Ar			- 130	Recove		90.40%
	CS15					115.54 n	
	iked Ar			- 136			92.43%
		Toluene-D8	7.22			116.93 n	
	iked Ar			' - 122 : 174		ry = 116.42 n	93.54% iq 0.00
	iked Ar	p-Bromofluorobenzene mount 125.000 Ran		: 1/ 4 : - 120	Recove		93.14%
SP.	ikeu Ai	125.000 Rai	.ige /4	: - 120	Recove	ту –	JJ.140
Taro	get Cor	mpounds					Qvalue
		Dichlorodifluorome	0.00	85	0	N.D.	
3)	C010	Chloromethane	1.62	50	1084	N.D.	
		Vinyl chloride	0.00	62	0	N.D.	
		Bromomethane	0.00	94	0	N.D.	
	C025	Chloroethane	0.00	64	0	N.D.	
	C275	Trichlorofluoromet	0.00	101	0	N.D.	
	C045	1,1-Dichloroethene	0.00	96	0	N.D.	
	C030 C040	Methylene chloride Carbon disulfide	3.43 3.14	84 76	59 1265	N.D. N.D.	
	C040	Acrolein	0.00	76 56	0	N.D.	
	C038	Acrylonitrile	0.00	53	0	N.D.	
	-C 035	Acetone	3.03		7041	19.13 n	ıa 88
14)	C300	Acetonitrile	3.32	41	1789	N.D.	·· J
	C276	Iodomethane	0.00	142	0	N.D.	
16)	C291	1,1,2-Trichloro-1,	0.00	101	0	N.D.	
	C962	T-butyl Methyl Eth	0.00	73	0	N.D.	
	C057	trans-1,2-Dichloro	0.00	96	0	N.D.	
	C255	Methyl Acetate	0.00	43	0	N.D.	
	C050	1,1-Dichloroethane	0.00	63	0	N.D.	
	C125 C051	Vinyl Acetate	0.00 4.66	43 77	0 55	N.D. N.D.	
	C051	2,2-Dichloropropan cis-1,2-Dichloroet	0.00	96	0	N.D.	
24)		Tetrahydrofuran	0.00	42	ő	N.D.	
25)	C222	Bromochloromethane	0.00	128	Ö	N.D.	
82712		Chloroform	4.95		6162	3.00 n	ıg 88
	C115	1,1,1-Trichloroeth	0.00	97	0	N.D.	-
29)	C120	Carbon tetrachlori	0.00	117	0	N.D.	
30)		1,1-Dichloropropen	0.00	75	0	N.D.	
32)		Benzene	5.45	78	321	N.D.	
	C065	1,2-Dichloroethane	0.00	62	0	N.D.	
	C110	2-Butanone	4.67	43	2202	N.D.	
35)		Cyclohexane	0.00	56 95	0 153	N.D. N.D.	
36)	C150	Trichloroethene	6.05	95	100	D.	

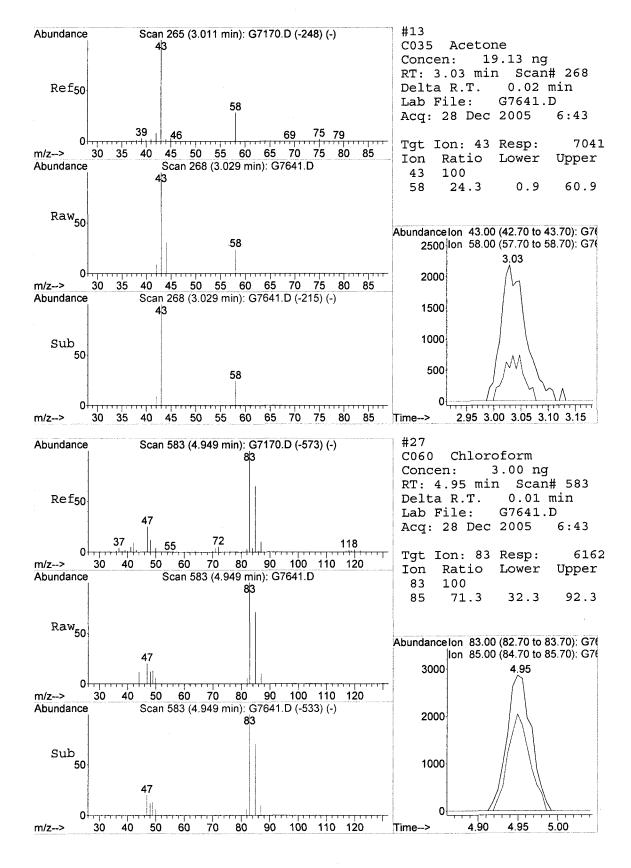
Data File: C:\MSDCHEM\1\DATA\122705\G7641.D

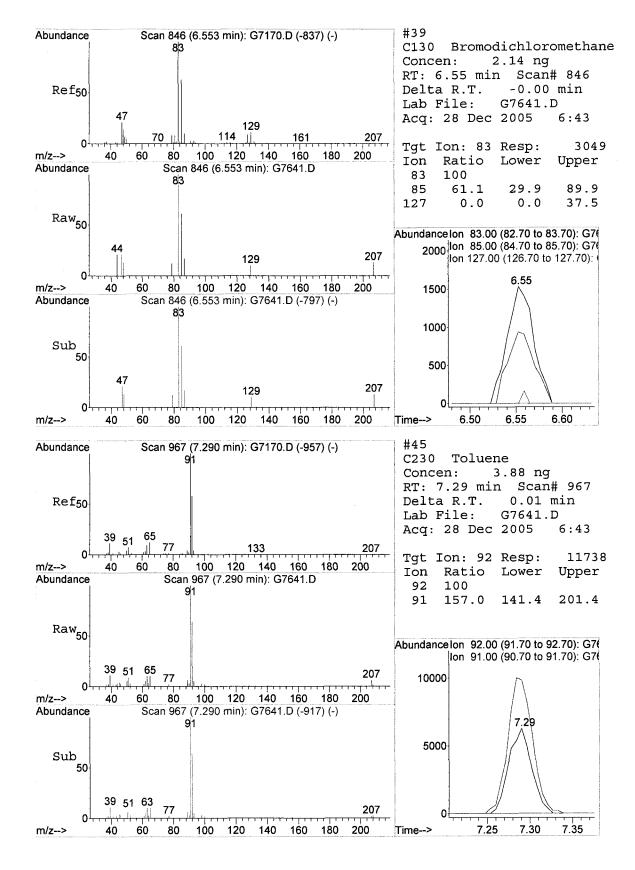
Acq On : 28 Dec 2005 6:43

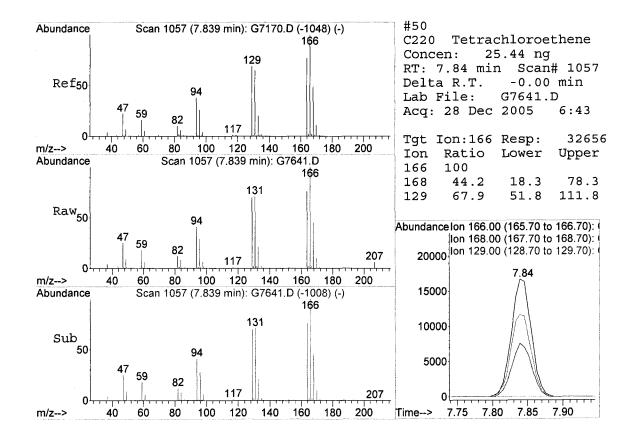
Sample : A5E58709

Misc Integrator: RTE

Quant Time: Dec 28 08:03:40 2005


Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M


Quant Title : 8260 5ML WATER
QLast Update : Tue Dec 27 21:28:27 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\


Operator : TLC

Internal	Standards	R.T	. QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
37) C140	1,2-Dichloropropan	0.00	63	0	N.D.	110 (111)
38) C278		0.00	93	ő	N.D.	
(39) C130				3049	2.14 ng	96
40) C161	2-Chloroethylvinyl	6.85	63	215	N.D.	
41) C012	Methylcyclohexane	0.00	83	0	N.D.	
42) C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
(45) €230	Toluene	7.2		11738	3.88 ng	90
46) C170		0.00	75	0	N.D.	
47) C284	Ethyl Methacrylate	0.00	69	Ō	N.D.	
48) C160	_	7.83	83	440	N.D.	
49) C210		7.22	43	1858	N.D.	
(50), C220		7.8		32656	25.44 ng	88
51) C221	1,3-Dichloropropan	0.00	76	0	N.D.	
52) C155	Dibromochlorometha	8.13	129	839	N.D.	
53) C163	1,2-Dibromoethane	0.00	107	0	N.D.	
54) C215	•	8.05	43	193	N.D.	
55) C235		0.00	112	0	N.D.	
56) C281		0.00	131	Ō	N.D.	
57) C240		8.95	91	797	N.D.	
58) C246	4	8.96	106	183	N.D.	
59) C247		0.00	106	0	N.D.	
60) C245	Styrene	0.00	104	Ö	N.D.	
61) C180		0.00	173	Ō	N.D.	
64) C966	Isopropylbenzene	0.00	105	Ō	N.D.	
65) C301	Bromobenzene	0.00	156	0	N.D.	
66) C225	1,1,2,2-Tetrachlor	0.00	83	Ō	N.D.	
67) C282	1,2,3-Trichloropro	0.00	110	Ö	N.D.	
68) C283		0.00	51	Ō	N.D.	
69) C302		9.94	91	427	N.D.	
70) C303		0.00	126	0	N.D.	
71) C289		0.00	126	0	N.D.	
72) C304		0.00	105	0	N.D.	
73) C306		0.00	134	0	N.D.	
74) C307		10.71	105	72	N.D.	
75) C308	-	10.71	105	72	N.D.	
76) C260		0.00	146	0	N.D.	
77) C309		11.00	119	322	N.D.	
78) C267		0.00	146	0	N.D.	
79) C249		0.00	146	0	N.D.	
80) C310		0.00	91	Ō	N.D.	
81) C286		0.00	75	0	N.D.	
82) C313		0.00	180	0	N.D.	
83) C316		0.00	225	0	N.D.	
84) C314		13.02	128	1127	N.D.	
85) C934		0.00	180	0	N.D.	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

EB122105	
1	

Lab Name: <u>STL Buffalo</u> Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58717

Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{ML} Lab File ID: <u>Q9552.RR</u>

Level: (low/med) LOW Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: ____1.00

Soil Aliquot Volume: ____ (uL) Soil Extract Volume: ____ (uL)

		CONCENTRATION (
CAS NO.	COMPOUND	(ug/L or ug/Kg	g) <u>r</u>	JG/L_	Q
67-64-1	Acetone			5.0	U
71-43-2	Benzene			1.0	ט
75-27-4	Bromodichloromethane			1.0	ן ט
75-25-2	Bromoform			1.0	ט
74-83-9	Bromomethane			1.0	ט
78-93-3	2-Butanone			5.0	ט
75-15-0	Carbon Disulfide			1.0	ט ו
56-23-5	Carbon Tetrachloride			1.0	ן ט
108-90-7	Chlorobenzene			1.0	ן ט
75-00-3	Chloroethane			1.0	ט
67-66-3	Chloroform			1.0	ט
74-87-3	Chloromethane			1.0	ט
110-82-7	Cyclohexane			1.0	ט
106-93-4	1,2-Dibromoethane			1.0	[ט
124-48-1	Dibromochloromethane			1.0	ע
96-12-8	1,2-Dibromo-3-chloropropane			1.0	ן ט
	1,2-Dichlorobenzene			1.0	ן ט
	1,3-Dichlorobenzene			1.0	ן ט
106-46-7	1,4-Dichlorobenzene			1.0	ע
75-71-8	Dichlorodifluoromethane			1.0	U
	1,1-Dichloroethane			1.0	ע
	1,2-Dichloroethane			1.0	ט
	1,1-Dichloroethene			1.0	ן ט
	cis-1,2-Dichloroethene			1.0	ע
	trans-1,2-Dichloroethene			1.0	ע
78-87-5	1,2-Dichloropropane			1.0	U
10061-01-5	cis-1,3-Dichloropropene			1.0	U
	trans-1,3-Dichloropropene			1.0	U
	Ethylbenzene			1.0	ע
591-78-6				5.0	U
	Isopropylbenzene			1.0	ע
	Methyl acetate			1.0	U
	Methylcyclohexane			1.0	U
75-09-2	Methylene chloride			1.0	U
L		1			

125/504

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

EB122105	_	

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ___

Matrix: (soil/water) WATER Lab Sample ID: A5E58717

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{Q9552.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L_	Q
108-10-1	4-Methyl-2-pentanone		5.0	U
	Methyl-t-Butyl Ether (MTBE)		1.0	Ū
91-20-3	Naphthalene		1.0	U
100-42-5	Styrene		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
127-18-4	Tetrachloroethene		1.0	U
108-88-3	Toluene		1.0	U
120-82-1	1,2,4-Trichlorobenzene		1.0	U
71-55-6	1,1,1-Trichloroethane		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	ע
76-13-1	1,1,2-Trichloro-1,2,2-triflu	uoroethane	1.0	U
75-69-4	Trichlorofluoromethane		1.0	U
79-01-6	Trichloroethene		1.0	U
75-01-4	Vinyl chloride		1.0	U
1330-20-7	Total Xylenes		3.0	U
				1

Quantitation Report

Data File : C:\HPCHEM\1\DATA\122705\Q9552.D

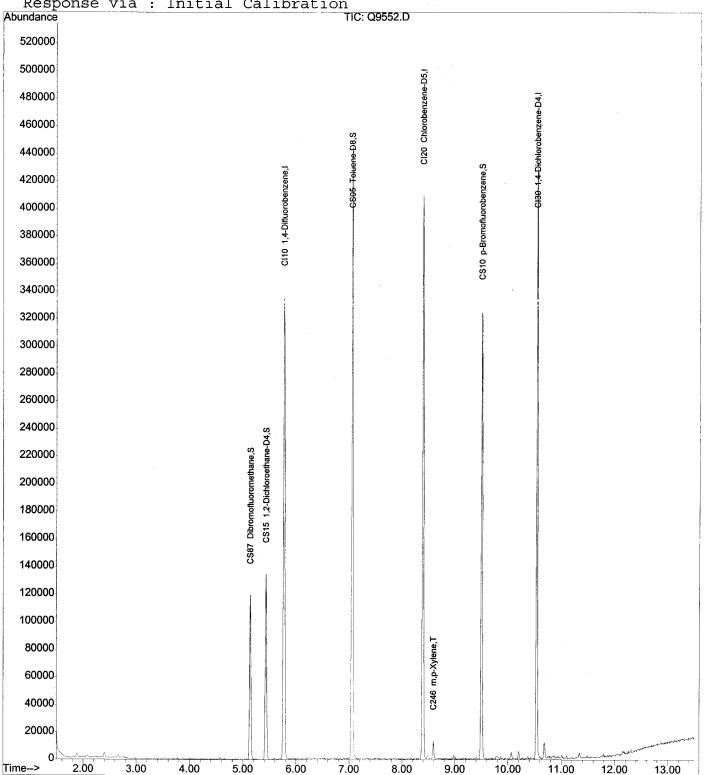
Vial: 35 Acq On : 28 Dec 2005 00:08 Operator: TLC

Sample : A5E58717 Inst : HP5973 Q

Misc

575

Multiplr: 1.00 MS Integration Params: RTEINT.P


Quant Time: Dec 28 8:44 2005 Quant Results File: A5I02444.RES

Method : C:\HPCHEM\1\METHODS\Q8260\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Wed Dec 28 08:38:57 2005

Response via : Initial Calibration

Page 1

Sully 15/5/192

STL Buffalo

Data File : C:\HPCHEM\1\DATA\122705\Q9552.D

Vial: 35 : 28 Dec 2005 00:08 Acq On Operator: TLC

Sample : A5E58717 Inst : HP5973 Q Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A5I02444.RES Quant Time: Dec 28 8:44 2005

Quant Method: C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Wed Dec 28 08:38:57 2005

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : C:\HPCHEM\1\DATA\122705\Q9545.D (27 Dec 2005 20:40)

Internal Standards					D /3 \
1) CI10 1,4-Difluorobenzene					
43) CI20 Chlorobenzene-D5	8.39	117	245180	125.00	ng 0.00 97.21%
62) CI30 1,4-Dichlorobenzene-	10.53	152	117155	125.00	ng 0.00 92.94%
System Monitoring Compounds 30) CS87 Dibromofluoromethane	5.14	111	73836	122.25	ng 0.00
Spiked Amount 125.000 Rang 31) CS15 1,2-Dichloroethane-D	ge 70 5.43	- 130 65	Recove 85299	ry = 121.47	97.80%
Spiked Amount 125.000 Rang	ge 72	- 143	Recove	ry =	97.18%
44) CS05 Toluene-D8 Spiked Amount 125.000 Rang	ge 76	- 116	Recove	ry =	99.13%
61) CS10 p-Bromofluorobenzene Spiked Amount 125.000 Rang					
Target Compounds	0.00	0.5	0	N. D.	Qvalue
2) C290 Dichlorodifluorometh3) C010 Chloromethane			0 0	N.D. N.D.	
4) C020 Vinyl chloride			0 0	N.D.	
5) C015 Bromomethane	0.00	94	0	N.D.	
6) C025 Chloroethane	0.00	64	Ö	N.D.	
7) C275 Trichlorofluorometha			ő	N.D.	
8) C045 1,1-Dichloroethene			Ö	N.D.	
9) C030 Methylene chloride	0.00	84	0	N.D.	
10) C040 Carbon disulfide 11) C036 Acrolein	0.00	76	0	N.D.	
11) C036 Acrolein	0.00	56	0	N.D.	
12) C038 Acrylonitrile	0.00	53	0	N.D.	
12) C038 Acrylonitrile 13) C035 Acetone	3.21	12	134	N.D.	
14) C300 Acetonitrile 15) C276 Iodomethane	0.00	41	0	N.D.	
15) C276 Iodomethane	0.00		0	N.D.	
16) C291 1,1,2 Trichloro-1,2,	0.00	101	0	N.D.	
17) C962 T-butyl Methyl Ether				N.D.	
18) C057 trans-1,2-Dichloroet	0.00	96	0	N.D.	
19) C255 Methyl Acetate	3.53	43	1236	N.D.	
20) C050 1,1-Dichloroethane	0.00	63 43	0	N.D.	3 \
21) C125 Vinyl Acetate 22) C051 2,2-Dichloropropane	0.00	43 77	0 0	N.D.	, ,
(#) = qualifier out of range (m)	 				

(#) = qualifier out of range (m) = manual integration

Quantitation Report STL Buffalo 128/504

Data File : C:\HPCHEM\1\DATA\122705\Q9552.D Acq On : 28 Dec 2005 00:08

Operator: TLC Sample : A5E58717 Inst : HP5973 Q Multiplr: 1.00

Misc

MS Integration Params: RTEINT.P Quant Time: Dec 28 8:44 2005

Quant Results File: A5I02444.RES

Vial: 35

Quant Method: C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Wed Dec 28 08:38:57 2005

Response via : Initial Calibration

DataAcq Meth : VOA

	Compo	and	R.T.	QIon	Response	Conc Unit	Qvalue
23)		cis-1,2-Dichloroethe	0.00	96	0	N.D.	
24)	C272	Tetrahydrofuran	0.00	42	0	N.D.	
25)		Bromochloromethane	0.00	128	0	N.D.	
26)	C060	Chloroform	0.00	83	0	N.D.	
27)	C115	1,1,1-Trichloroethan	0.00	97	0	N.D.	
28)	C120	Carbon tetrachloride	0.00	117	0	N.D.	1
29)	C116	1,1-Dichloropropene	0.00	75	0	N.D.	
32)	C165	Benzene	5.45	78	129	N.D.	
33)	C065	1,2-Dichloroethane	0.00	62	0	N.D.	
34)	C110	2-Butanone	0.00	43	. 0	N.D.	
35)	C256	Cyclohexane	5.15	56	130	N.D.	
36)	C150	Trichloroethene	0.00	95	0	N.D.	
37)	C140	1,2-Dichloropropane	0.00	63	0	N.D.	•
38)	C278	Dibromomethane		93	. 0	N.D.	
39)	C130	Bromodichloromethane		83	0	N.D.	
40)		2-Chloroethylvinyl E	0.00	63	0	N.D.	
41)	C012	Methylcycolhexane	0.00	83	Ó	N.D.	
42)		cis-1,3-Dichloroprop	0.00	75	0	N.D.	
	C230	Toluene	7.11	92	746	N.D.	
46)		trans-1,3-Dichloropr	0.00	75	0	N.D.	
47)			0.00	69	0	N.D.	
48)		1,1,2-Trichloroethan	0.00	83	0	N.D.	
	C210	4-Methyl-2-pentanone		43	1083	N.D.	
	C220	Tetrachloroethene	0.00	166	0	N.D.	
	C221	1,3-Dichloropropane	0.00	76	0	N.D.	
	C155	Dibromochloromethane		129	Ö	N.D.	
	C163	1,2-Dibromoethane	0.00	107	Ö	N.D.	
	C215	2-Hexanone	0.00	43	Ö	N.D.	
55)		Chlorobenzene	0.00	112	Ō	N.D.	
56)		1,1,1,2-Tetrachloroe	0.00	131	Ō	N.D.	
57)	C240	Ethylbenzene	8.49	91	3022	N.D.	
(58)	C246	m,p-Xylene	8.59		4406	3.52 ng	94
(59)	C247	o-Xylene	8.98		1100	N.D.	J- 1
60)	C245	Styrene	0.00	104	0	N.D.	
	C180		0.00	173	0	N.D.	
	C966	Isopropylbenzene	0.00	105	Ö	N.D.	
65)		Bromobenzene	0.00	156	0	N.D.	
66)	C225	1,1,2,2-Tetrachloroe	0.00	83	0	N.D.	
67)		1,2,3-Trichloropropa	0.00	110	0	N.D.	
68)		t-1,4-Dichloro-2-But	0.00	51	0	N.D.	•
	C302	n-Propylbenzene	9.71	91	588	N.D.	~~
			ン・/エ 				

Quantitation Report

4

Data File : C:\HPCHEM\1\DATA\122705\Q9552.D

Vial: 35 Acq On : 28 Dec 2005 00:08

Operator: TLC Sample : A5E58717 Inst : HP5973 Q

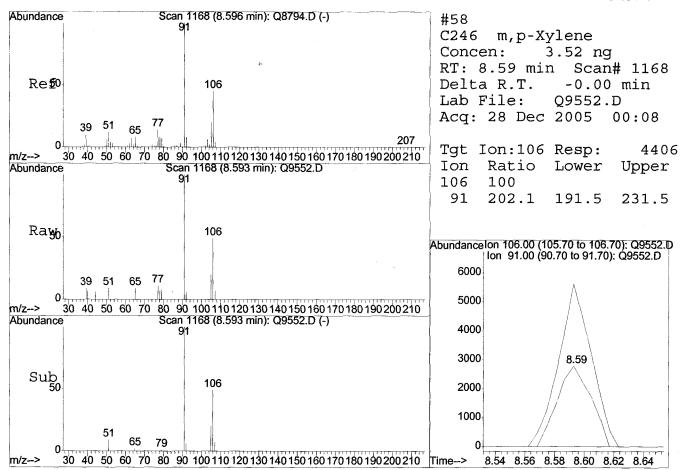
Misc

Multiplr: 1.00 MS Integration Params: RTEINT.P

Quant Time: Dec 28 8:44 2005 Quant Results File: A5I02444.RES

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML


Last Update : Wed Dec 28 08:38:57 2005

Response via : Initial Calibration

DataAcq Meth : VOA

	Compo	und	R.T.	QIon	Response	Conc Unit	Qvalue
70)	C303	2-Chlorotoluene	0.00	126	0	N.D.	
71)	C289	4-Chlorotoluene	0.00	126	0	N.D.	
72)	C304	1,3,5-Trimethylbenze	9.86	105	835	N.D.	
73)	C306	tert-Butylbenzene	0.00	134	0	N.D.	
74)	C307	1,2,4-Trimethylbenze	10.20	105	4183	N.D.	
75)	C308	sec-Butylbenzene	10.20	105	4183	N.D.	
76)	C260	1,3-Dichlorobenzene	0.00	146	0	N.D.	
77)	C309	4-Isopropyltoluene	0.00	119	0	N.D.	
78)	C267	1,4-Dichlorobenzene	0.00	146	0	N.D.	
79)	C249	1,2-Dichlorobenzene	0.00	146	0	N.D.	
80)	C310	n-Butylbenzene	10.80	91	138	N.D.	
81)	C286	1,2-Dibromo-3-Chloro	0.00	75	0	N.D.	
82)	C313	1,2,4-Trichlorobenze	0.00	180	.0	Ñ.D.	
83)	C316	Hexachlorobutadiene	0.00	225	0	N.D.	
84)	C314	Naphthalene	12.30	128	2157	N.D.	
85)	C934	1,2,3-Trichlorobenze	0.00	180	0	N.D.	,

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58705

Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{ML} Lab File ID: $\underline{S9673.RR}$

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	CONCENTRATION (ug/L or ug/K	 UG/L	Q
67-64-1	-Acetone		5.0	U
71-43-2	-Benzene		1.6	
75-27-4	-Bromodichloromethane		1.0	U
75-25-2			1.0	U
74-83-9	-Bromomethane		1.0	U
78-93-3	-2-Butanone		5.0	U
75-15-0	-Carbon Disulfide		1.0	ע
56-23-5	-Carbon Tetrachloride		1.0	U
108-90-7	-Chlorobenzene		1.0	U
75-00-3	-Chloroethane		1.0	U
67-66-3	-Chloroform		1.0	U
74-87-3	-Chloromethane		1.0	ע
110-82-7	-Cyclohexane		1.0	U
106-93-4	-1,2-Dibromoethane		1.0	ע
124-48-1	-Dibromochloromethane		1.0	ן ט
96-12-8	-1,2-Dibromo-3-chloropropane		1.0	ע
95-50-1	-1,2-Dichlorobenzene		1.0	U
541-73-1	-1,3-Dichlorobenzene		1.0	ע
	-1,4-Dichlorobenzene		1.0	ע
75-71-8	-Dichlorodifluoromethane		1.0	ן ט
	-1,1-Dichloroethane		1.0	ן ט
107-06-2	-1,2-Dichloroethane		1.0	U
75-35-4	-1,1-Dichloroethene		1.0	U
156-59-2	-cis-1,2-Dichloroethene		0.78	J
	-trans-1,2-Dichloroethene		1.0	U
78-87-5	-1,2-Dichloropropane		1.0	U
	-cis-1,3-Dichloropropene		1.0	U
	-trans-1,3-Dichloropropene		1.0	ע
100-41-4			1.0	U
591-78-6			5.0	ט
98-82-8	-Isopropylbenzene		1.0	ט
	-Methyl acetate		1.0	ט
	-Methylcyclohexane		1.0	U
	-Methylene chloride		1.0	ש

132/504

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

N/T-7 100	
MW-100	

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58705

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{S9673.RR}}$

Level: (low/med) Low Date Samp/Recv: $\underline{12/20/2005}$ $\underline{12/23/2005}$

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: N Date Analyzed: N

GC Column: DB-624 ID: 0.18 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
108-10-1	4-Methyl-2-pentanone		5.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)		1.7	
91-20-3	Naphthalene		0.52	J
100-42-5	Styrene		1.0	ע
79-34-5	1,1,2,2-Tetrachloroethane		1.0	ע
127-18-4	Tetrachloroethene		1.0	ע
108-88-3	Toluene		1.0	U
120-82-1	1,2,4-Trichlorobenzene		1.0	U
71-55-6	1,1,1-Trichloroethane		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifly	uoroethane	1.0	U
75-69-4	Trichlorofluoromethane		1.0	ט
79-01-6	Trichloroethene		1.8	
75-01-4	Vinyl chloride		1.0	ט
	Total Xylenes		3.0	ט
	-			

Data File : D:\DATA\122705\S9673.D

Acq On : 27 Dec 2005 18:48

Sample : A5E58705

Misc

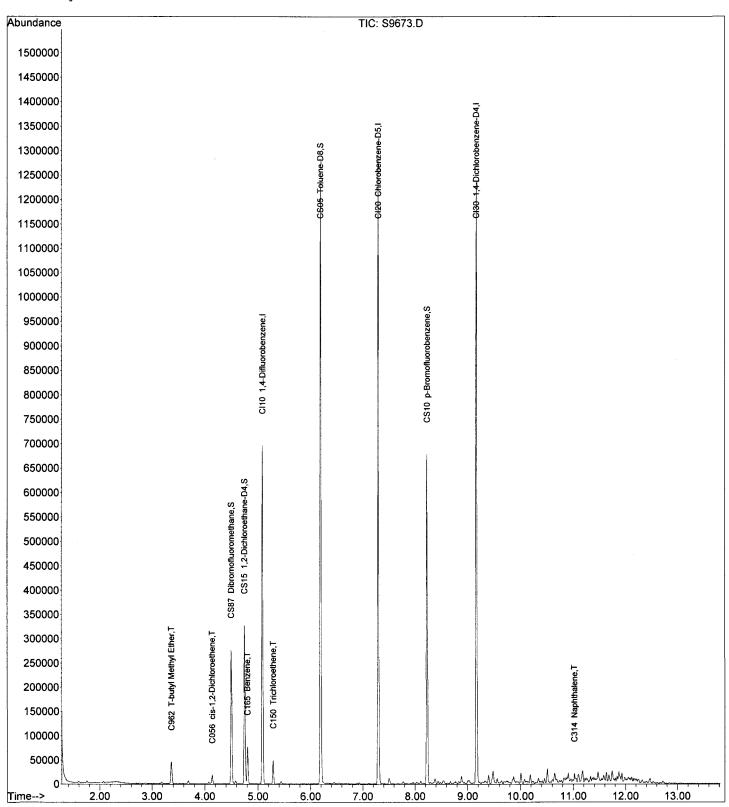
MS Integration Params: RTEINT.P

Vial: 23 Operator: LH

: HP5973S Inst

Multiplr: 1.00

Quant Time: Dec 27 20:50:40 2005 Results File: A5I0002442 E2.RES


Quant Method: C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

Title 8260 5ML WATER

Last Update : Tue Dec 27 11:08:38 2005

Response via : Initial Calibration

DataAcq Meth: VOA

STL Buffalo (Not Reviewed) 134/504 Quantitation Report

Vial: 23

Data File : D:\DATA\122705\S9673.D
Acq On : 27 Dec 2005 18:48
Sample : A5E58705 Operator: LH Inst : HP5973S Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Quant Time: Dec 27 20:50:40 2005 Results File: A5I0002442 E2.RES

Quant Method : C:\MSDCHEM\1...\A5I0002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Tue Dec 27 11:08:38 2005

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\DATA\122705\S9652.D (27 Dec 2005 10:13)

Inte	ernal	Standards			Response		nits		(Min) (Ar)
1)	CI10		5.09			125.00	ng	9	0.00 6.19%
43)	CI20	Chlorobenzene-D5	7.30	117	582848	125.00	ng		0.00
62)	CI30	1,4-Dichlorobenzene-	9.17	152	279039	125.00	ng		0.00
		nitoring Compounds							
-	CS87	Dibromofluoromethane				118.52			0.00
_	iked A		nge 70		Recove:			.82%	0.00
•		1,2-Dichloroethane-D mount 125.000 Rar	4.75 age 73			115.26		.21%	0.00
_	CS05	Toluene-D8		98		ry = 112.00			0.00
-	iked A		nge 77					.60%	0.00
		p-Bromofluorobenzene						. 000	0.00
			nge 74			ry =		.82%	0.00
Targ	get Co	mpounds						Qva	alue
		Dichlorodifluorome	0.00	85	0	N.D.			
•		Chloromethane	0.00	50	0	N.D.			
		Vinyl chloride	1.60	62	1613	N.D.			
	C015	Bromomethane	0.00	94	0	N.D.			
	C025 C275	Chloroethane	0.00	64	0	N.D.			
	C2/5	Trichlorofluoromet 1,1-Dichloroethene	0.00 : 2.70	101 96	0 146	N.D. N.D.			
	C030	Methylene chloride		84	0	N.D.			
	C040	Carbon disulfide	2.88	76	1089	N.D.			
	C036	Acrolein	0.00	56	0	N.D.			
	C038	Acrylonitrile	3.37	53	138	N.D.			
13)	C035	Acetone	2.75	43	589	N.D.			
	C300	Acetonitrile	0.00	41	0	N.D.			
	C276	Iodomethane		142	0	N.D.			
	C291	1,1,2 Trichloro-1,		101	0	N.D.			7.0
	962	T-butyl Methyl Ether			29367	8.48	ng	#	79
	C057	trans-1,2-Dichloro	0.00	96	0	N.D. N.D.			
	C255 C050	Methyl Acetate 1,1-Dichloroethane	0.00 3.68	43 63	0 5496	N.D.			
-	C125	Vinyl Acetate	0.00	43	0	N.D.			
	C051	2,2-Dichloropropan	0.00	77	0	N.D.			
		cis-1,2-Dichloroethe		96	6256	3.92	ng		96
	C272	Tetrahydrofuran	4.38	42	308	N.D.	_		
25)	C222	Bromochloromethane	0.00	128	0	N.D.			
	C060	Chloroform	0.00	83	0	N.D.			
	C115	1,1,1-Trichloroeth	4.52	97	1088	N.D.			
28)	C120	Carbon tetrachlori		117	0	N.D.			
	C116 LØ165	1,1-Dichloropropen	0.00 4.81	75	0 52263	N.D. 8.02	nc		95
	C065	Benzene 1,2-Dichloroethane	4.81	78 62	130	N.D.	119		ى ج
34)	C110	2-Butanone	0.00	43	0	N.D.			
35)	C256	Cyclohexane	4.58	56	2509	N.D.			
	€ 150	Trichloroethene	5.29	95	13487	8.98	ng		97
311	C140	1,2-Dichloropropan	0.00	63	0	N.D.	-		
38)	C278	Dibromomethane	0.00	93	0	N.D.			

Quantitation Report STL Buffalo (Not Reviewed) 135/504

Vial: 23

Data File : D:\DATA\122705\S9673.D
Acq On : 27 Dec 2005 18:48
Sample : A5E58705 Operator: LH Inst : HP5973S Multiplr: 1.00 Misc

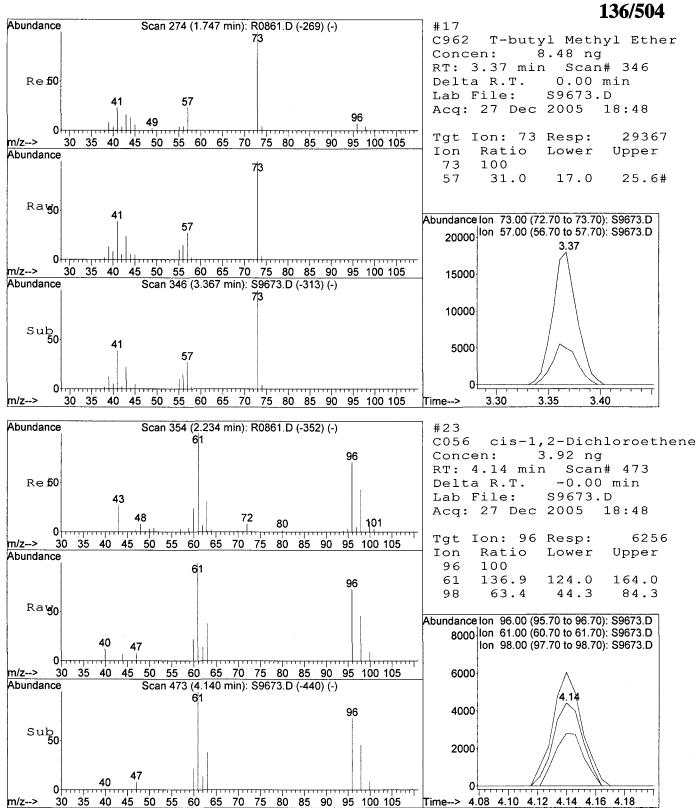
MS Integration Params: RTEINT.P

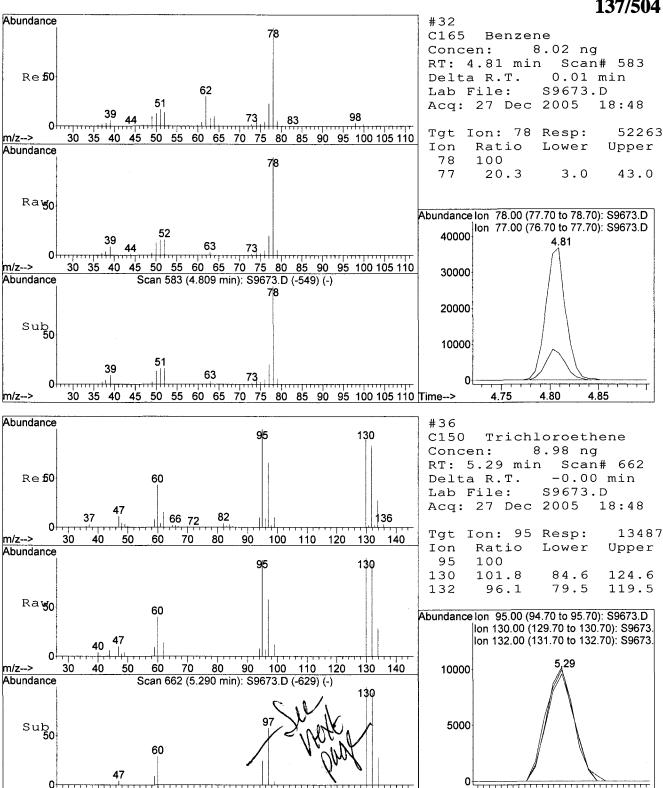
Quant Time: Dec 27 20:50:40 2005 Results File: A5I0002442_E2.RES

Quant Method : C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Tue Dec 27 11:08:38 2005


Response via : Initial Calibration


DataAcq Meth : VOA

IS QA File : D:\DATA\122705\S9652.D (27 Dec 2005 10:13)

Inte	ernal	Standards	R.T	. QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
 39)	 C130	Bromodichlorometha	0.00	83	0	N.D.	
40)	C161	2-Chloroethylvinyl	5.89	63	140	N.D.	
41)	C012	Methylcycolhexane	5.44	83	1822	N.D.	
•	C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
45)	C230	Toluene	6.24	92	489	N.D.	
46)	C170	trans-1,3-Dichloro	0.00	75	0	N.D.	
47)	C284	Ethyl Methacrylate	6.45	69	140	N.D.	
48)	C160	1,1,2-Trichloroeth	0.00	83	0	N.D.	
49)	C210	4-Methyl-2-pentano	6.19	43	2605	N.D.	
50)	C220	Tetrachloroethene	0.00	166	0	N.D.	
	C221	1,3-Dichloropropan	0.00	76	0	N.D.	
52)	C155	Dibromochlorometha	0.00	129	0	N.D.	
53)	C163	1,2-Dibromoethane	0.00	107	0	N.D.	
54)	C215	2-Hexanone	6.69	43	134	N.D.	
55)	C235	Chlorobenzene	7.32	112	2539	N.D.	
56)	C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
57)	C240	Ethylbenzene	7.41	91	357	N.D.	
58)	C246	m,p-Xylene	7.50	106	3624	N.D.	
59)	C247	o-Xylene	0.00	106	0	N.D.	
60)	C245	Styrene	0.00	104	0	N.D.	
63)	C180	Bromoform	0.00	173	0	N.D.	
64)	C966	Isopropylbenzene	8.11	105	4168	N.D.	
65)	C301	Bromobenzene	0.00	156	0	N.D.	
66)	C225	1,1,2,2-Tetrachlor	8.38	83	368	N.D.	
67)	C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
68)	C283	t-1,4-Dichloro-2-B	0.00	53	0	N.D.	
69)	C302	n-Propylbenzene	8.44	91	5392	N.D.	
70)	C303	2-Chlorotoluene	0.00	126	0	N.D.	
71)	C289	4-Chlorotoluene	0.00	126	0	N.D.	
72)	C304	1,3,5-Trimethylben	8.53	105	2885	N.D.	
73)	C306	tert-Butylbenzene	9.00	134	138	N.D.	
74)	C307	1,2,4-Trimethylben	8.88	105	7229	N.D.	
75)	C308	sec-Butylbenzene	9.02	105	3536	N.D.	
76)	C260	1,3-Dichlorobenzen	0.00	146	0	N.D.	
77)	C309	4-Isopropyltoluene	9.15	119	671	N.D.	
78)	C267	1,4-Dichlorobenzen	0.00	146	0	N.D.	
79)	C249	1,2-Dichlorobenzen	0.00	146	0	N.D.	
80)	C310	n-Butylbenzene	9.48	91	1590	N.D.	
81)	C286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
	C313	1,2,4-Trichloroben	0.00	180	0	N.D.	
	C316	Hexachlorobutadien	0.00	225	0	N.D.	
) C314	Naphthalene	11.0	2 128	9814	2.62 ng	100
85)	/ C934	1,2,3-Trichloroben	0.00	180	0	N.D.	

⁽#) = qualifier out of range (m) = manual integration (+) = signals summed

m/z-->

30

40

50

60

70

80

90

100 110

120 130 140

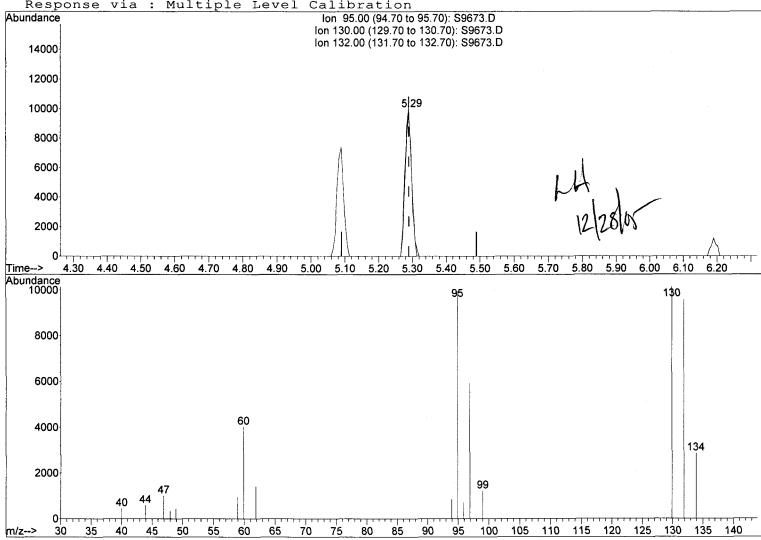
Time--->

5.24 5.26 5.28 5.30 5.32 5.34

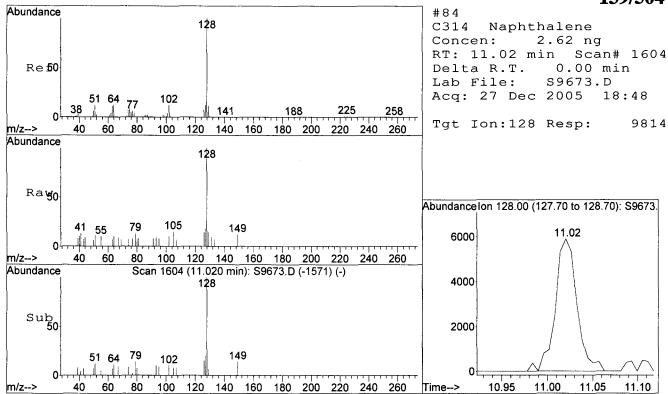
Multiplr: 1.00

Data File : D:\DATA\122705\S9673.D

Vial: 23 Operator: LH Acq On : 27 Dec 2005 18:48 : A5E58705 Sample Inst : HP5973S


MS Integration Params: RTEINT.P Quant Time: Dec 27 20:50:40 2005

Misc


: C:\MSDCHEM\1\MET...\A510002442 E2.M (RTE Integrator) Method

Title : 8260 5ML WATER

Last Update : Wed Dec 28 09:45:03 2005 Response via : Multiple Level Calibration

			TIC: S9673.D	
(36) C150 T	Trichlo	roethene (T)	
5.2	9min (-0.0	000) 8	3.98ng	
res	ponse 1	3487		
lo	n Ex	φ%	Act%	
95	.00 10	00	100	
130	0.00 10	04.60	101.81	
132	2.00 9	9.50	96.06	
0.	00 0.	.00	0.00	

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-101

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58714

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: $\underline{DB-624}$ ID: $\underline{0.25}$ (mm) Dilution Factor: $\underline{1.00}$

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)		Q
67-64-1	-Acetone		5.0	U
71-43-2			1.0	U
75-27-4	-Bromodichloromethane		1.0	U
75-25-2	-Bromoform		1.0	U
74-83-9	-Bromomethane		1.0	U
78-93-3	-2-Butanone		5.0	ע
75-15-0	-Carbon Disulfide		1.0	U
56-23-5	-Carbon Tetrachloride		1.0	ע
108-90-7	-Chlorobenzene		1.0	ע
75-00-3	-Chloroethane		1.0	U
67-66-3	-Chloroform		1.0	ע
74-87-3	-Chloromethane		1.0	U
110-82-7	-Cyclohexane		1.0	U
	-1,2-Dibromoethane		1.0	U
124-48-1	-Dibromochloromethane		1.0	ע
96-12-8	-1,2-Dibromo-3-chloropropane		1.0	U
95-50-1	-1,2-Dichlorobenzene		1.0	ע
541-73-1	-1,3-Dichlorobenzene		1.0	ט
106-46-7	-1,4-Dichlorobenzene		1.0	U
75-71-8	-Dichlorodifluoromethane		1.0	ע
75-34-3	-1,1-Dichloroethane		4.3	
107-06-2	-1,2-Dichloroethane		1.0	U
75-35-4	-1,1-Dichloroethene		1.0	U
	-cis-1,2-Dichloroethene		5.9	
	-trans-1,2-Dichloroethene		1.0	ע
78-87-5	-1,2-Dichloropropane		1.0	U
10061-01-5	-cis-1,3-Dichloropropene	· ·	1.0	U
	-trans-1,3-Dichloropropene		1.0	ט
	-Ethylbenzene		1.0	ע
591-78-6			5.0	U
	-Isopropylbenzene		1.0	บ
	-Methyl acetate		1.0	U
	-Methylcyclohexane		1.0	U
I.	-Methylene chloride		1.0	U

141/504

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-101	

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58714

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{Q9549.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
108-10-1	4-Methyl-2-pentanone		5.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)		28	İ l
91-20-3	Naphthalene		1.0	ע
100-42-5	Styrene		1.0	ע
79-34-5	1,1,2,2-Tetrachloroethane		1.0	ן ט
127-18-4	Tetrachloroethene		1.0	ע
108-88-3	Toluene		1.0	ן ט
120-82-1	1,2,4-Trichlorobenzene		1.0	ן ט
71-55-6	1,1,1-Trichloroethane		2.3	
79-00-5	1,1,2-Trichloroethane		1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-triflu	uoroethane	1.0	ע
75-69-4	Trichlorofluoromethane		1.0	ע
79-01-6	Trichloroethene		5.6	
75-01-4	Vinyl chloride		1.7	
1330-20-7	Total Xylenes		3.0	U
1				1 1

Vial: 32

Multiplr: 1.00

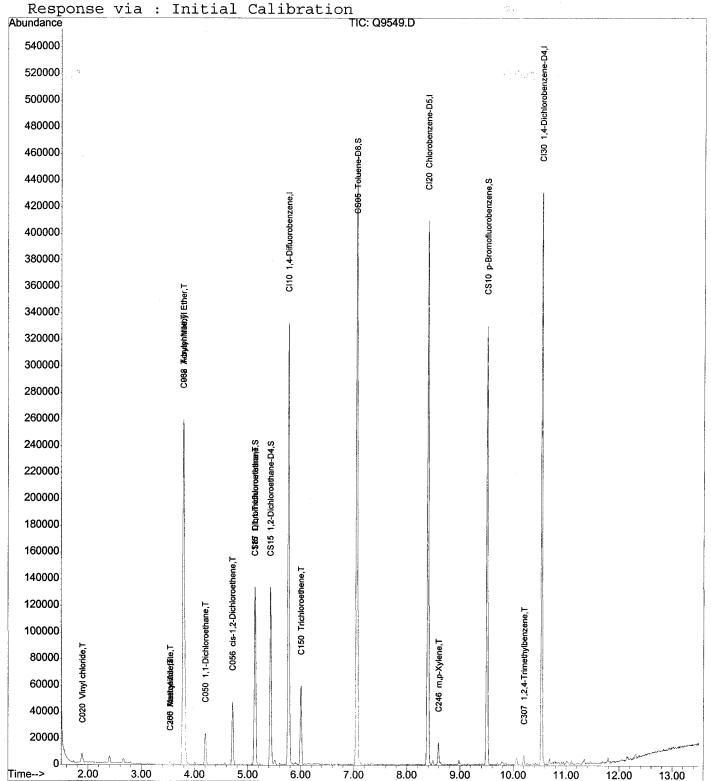
Quantitation Report

Data File: C:\HPCHEM\1\DATA\122705\Q9549.D

Acq On : 27 Dec 2005 22:43

Operator: TLC Sample : A5E58714 Inst : HP5973 Q

Misc


MS Integration Params: RTEINT.P

Quant Time: Dec 28 Quant Results File: A5I02444.RES 8:43 2005

Method : C:\HPCHEM\1\METHODS\Q8260\A5I02444.M (RTE Integrator)

Title : 8260 5ML

: Wed Dec 28 08:38:57 2005 Last Update

Vial: 32

HP5973-Q

Page 1

Data File : C:\HPCHEM\1\DATA\122705\Q9549.D

Acq On : 27 Dec 2005 22:43

Operator: TLC : A5E58714 Sample Inst : HP5973 Q Multiplr: 1.00

Misc

MS Integration Params: RTEINT.P

Quant Results File: A5I02444.RES Quant Time: Dec 28 8:43 2005

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Q9549.D A5I02444.M Wed Dec 28 08:43:58 2005

Title : 8260 5ML

Last Update : Wed Dec 28 08:38:57 2005

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : C:\HPCHEM\1\DATA\122705\Q9545.D (27 Dec 2005 20:40)

Internal S	tandards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
1) CI10	1,4-Difluorobenzene	5.77	114	280187	125.00 ng	0.00 97.22%
43) CI20	Chlorobenzene-D5	8.39	117	248417	125.00 ng	0.00
					_	98.49%
62) CI30	1,4-Dichlorobenzene-	10.54	152	119550	125.00 ng	0.00
						94.84%
	itoring Compounds					
	Dibromofluoromethane					
Spiked A			- 130	Recove		.75%
	1,2-Dichloroethane-D				120.69 ng	
Spiked A			- 143	Recove		
	Toluene-D8	7.06		305597	_	0.00
Spiked A	mount 125.000 Ran	ge 76	- 116	Recove		.62%
	p-Bromofluorobenzene					
Spiked A	mount 125.000 Ran	ge 73	- 117	Recove	ery = 101	.42%
Target Com	pounds					Qvalue
2) C290	Dichlorodifluorometh	0.00	85	- 0	N.D.	
3) C010	Chloromethane	0.00	50	0	N.D.	
(4)9E020	Vinyl chloride	1.89	62	5268	8.69 ng	97
5) CO15	Bromometnane	0.00	94	0	N.D.	
•	Chloroethane	0.00	64	0	N.D.	
7) C275	Trichlorofluorometha	0.00	101	0	N.D.	
8) C045	1,1-Dichloroethene		96	0	N.D.	
9) C030	Methylene chloride		84	0	N.D.	
10) C040	Carbon disulfide	0.00	76	0	N.D.	
11) C036	Acrolein	0.00	56	0	N.D.	
	Acrylonitrile		53	2606	7.59 ng	# 18
13) C035	Acetone	0.00	43	0	N.D.	
•	Acetonitrile	3.53		529	4.23 ng	# 26
· ·	Iodomethane	0.00			N.D.	
16) C291	1,1,2 Trichloro-1,2,		101	0	N.D.	
(17))C962	T-butyl Methyl Ether	3.79	73	307437	142.55 ng	99
18) C057	trans-1,2-Dichloroet	0.00	96	0	N.D.	
	Methyl Acetate	3.54		2578	2.68 ng	# 55
(20) C050	1,1-Dichloroethane	4.20	63	26855	21.69 ng	97
21) C125	Vinyl Acetate	0.00	43	0	N.D.	~
22) C051	2,2-Dichloropropane	0.00	77	0	N.D.	, 'M
(#) = qual	ifier out of range (m)	= manı	ual int	egration		/

Data File : C:\HPCHEM\1\DATA\122705\Q9549.D Vial: 32 Acq On : 27 Dec 2005 22:43 Operator: TLC

Sample : A5E58714 Inst: HP5973 Q Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 28 8:43 2005 Quant Results File: A5I02444.RES

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Wed Dec 28 08:38:57 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Compound			R.T.	QIon	Response	Conc Unit	Qvra	alue
23	C C056	cis-1,2-Dichloroethe	4.71	96	21127	29.32 ng	#	87
(24)	C272	Tetrahydrofuran	0.00	42	0	N.D.		
25)	C222	Bromochloromethane	0.00		0	N.D.		
26)	_ C060	Chloroform	0.00	83	0	N.D.		
(27)	CC115	1,1,1-Trichloroethan	5.13	97	10331	11.39 ng		96
28)	C120	Carbon tetrachloride	0.00	117	0	N.D.		
29)	C116	1,1-Dichloropropene	0.00	75	0	N.D.		
32)	C165	Benzene	5.46	78	795	N.D.		
33)	C065	1,2-Dichloroethane	0.00	62	0	N.D.		
34)	C110	2-Butanone	0.00	43	0	N.D.		
35)	_C256	Cyclohexane	5.15	56	686	N.D.		
	C150	Trichloroethene	6.00	95	19030	28.07 ng	#	72
37)	C140	1,2-Dichloropropane	0.00	63	0 :	N.D.		
38)	C278	Dibromomethane	0.00	93	0	N.D.		
39)	C130	Bromodichloromethane	0.00	83	0	N.D.		
40)	C161	2-Chloroethylvinyl E	0.00	63	0	N.D.		
41)	C012	Methylcycolhexane	6.13	83	359	N.D.		
42)	C145	cis-1,3-Dichloroprop	0.00	75	0	N.D.		
45)	C230	Toluene	7.11	92	1081	N.D.		
46)	C170	trans-1,3-Dichloropr	0.00	75	0	N.D.		•
47)	C284	Ethyl Methacrylate	0.00	69	0	N.D.		
48)	C160	1,1,2-Trichloroethan	0.00	83	0	N.D.		
49)	C210	4-Methyl-2-pentanone	7.05	43	961	N.D.		
50)	C220	Tetrachloroethene	0.00	166	0	N.D.		
51)	C221	1,3-Dichloropropane	0.00	76	0	N.D.		
52)	C155	Dibromochloromethane	0.00	129	0	N.D.		
53)	C163	1,2-Dibromoethane	0.00	107	0	N.D.		
54)	C215	2-Hexanone	0.00	43	0	N.D.		
55)	C235	Chlorobenzene	0.00	112	0	N.D.		
56)	C281	1,1,1,2-Tetrachloroe	0.00	131	0	N.D.		
57)	C240	Ethylbenzene	8.49	91	4244	N.D.		
(58)	C246	m,p-Xylene	8.60	106	5822	4.60 ng		87
59)	C247	o-Xylene	8.98	106	1278	N.D.		
60)	C245	Styrene	0.00	104	0	N.D.		
63)	C180	Bromoform	0.00	173	0	N.D.		
64)	C966	Isopropylbenzene	0.00	105	0	N.D.		
	C301	Bromobenzene	0.00	156	0	N.D.		
66)	C225	1,1,2,2-Tetrachloroe	0.00	83	Ö	N.D.		
67)	C282	1,2,3-Trichloropropa	0.00	110	Ö	N.D.		Λ.
-	C283		0.00	51	Ö	N.D.		Λ, ,
	C302	n-Propylbenzene	9.70	91	1269	N.D.		V
							- -	

Vial: 32

Data File : C:\HPCHEM\1\DATA\122705\Q9549.D

Acq On : 27 Dec 2005 22:43

Operator: TLC Sample : A5E58714 Inst: HP5973 Q Multiplr: 1.00

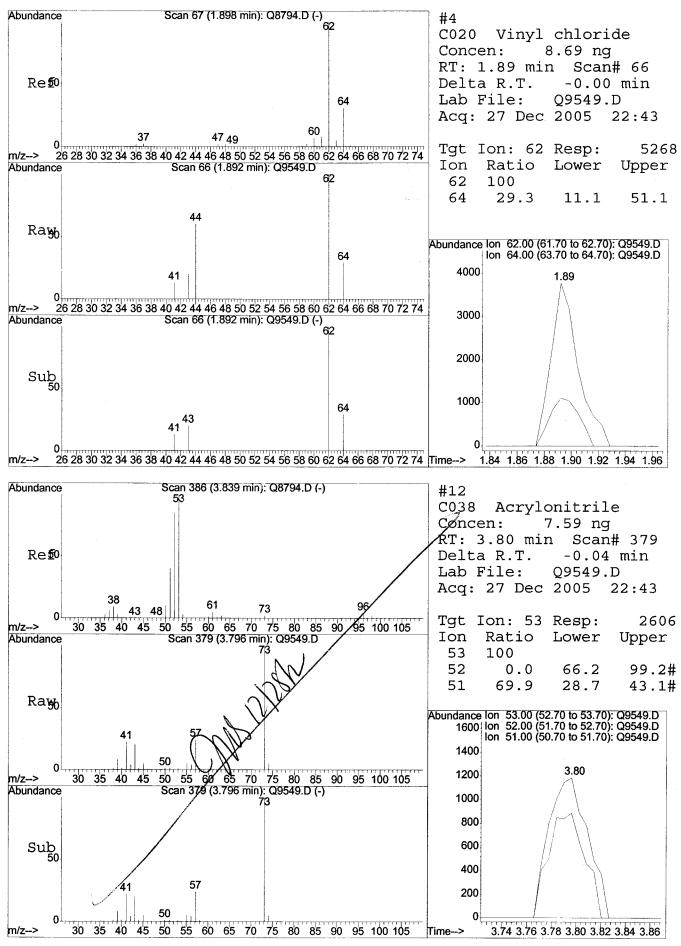
Misc

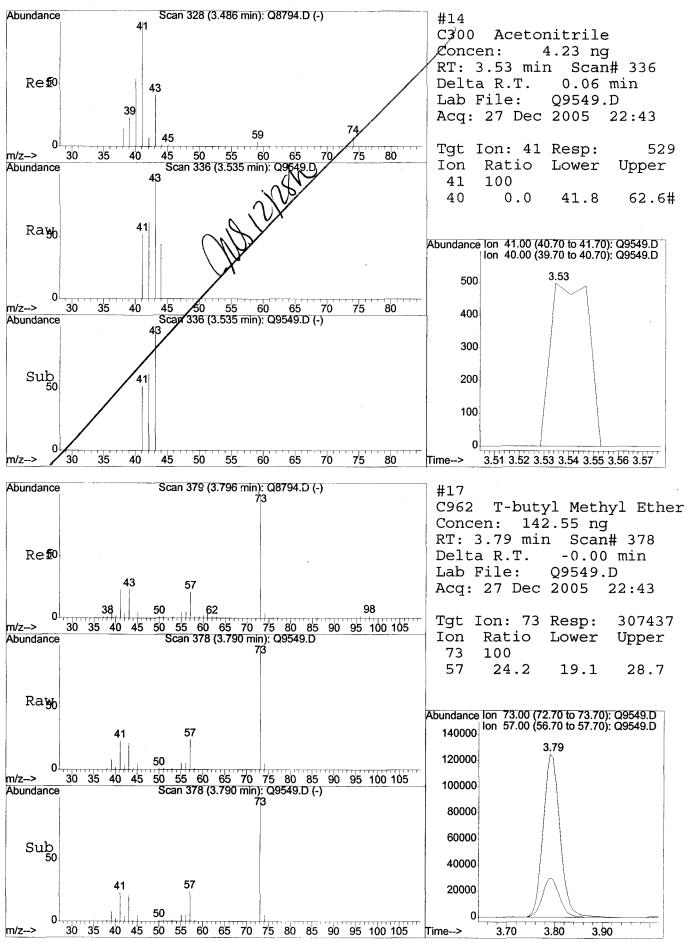
MS Integration Params: RTEINT.P

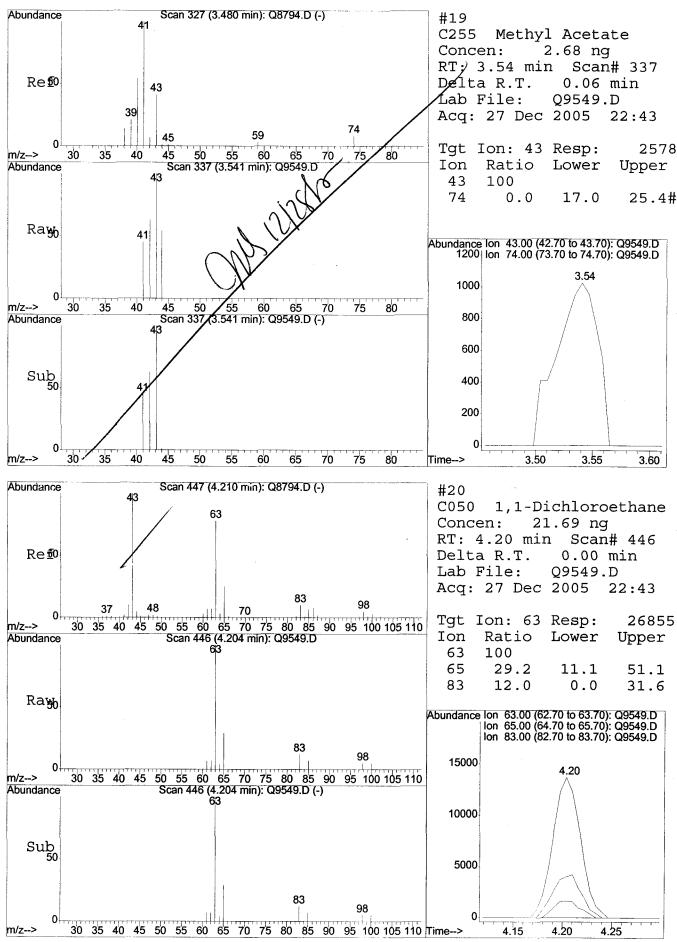
Quant Time: Dec 28 8:43 2005 Quant Results File: A5I02444.RES

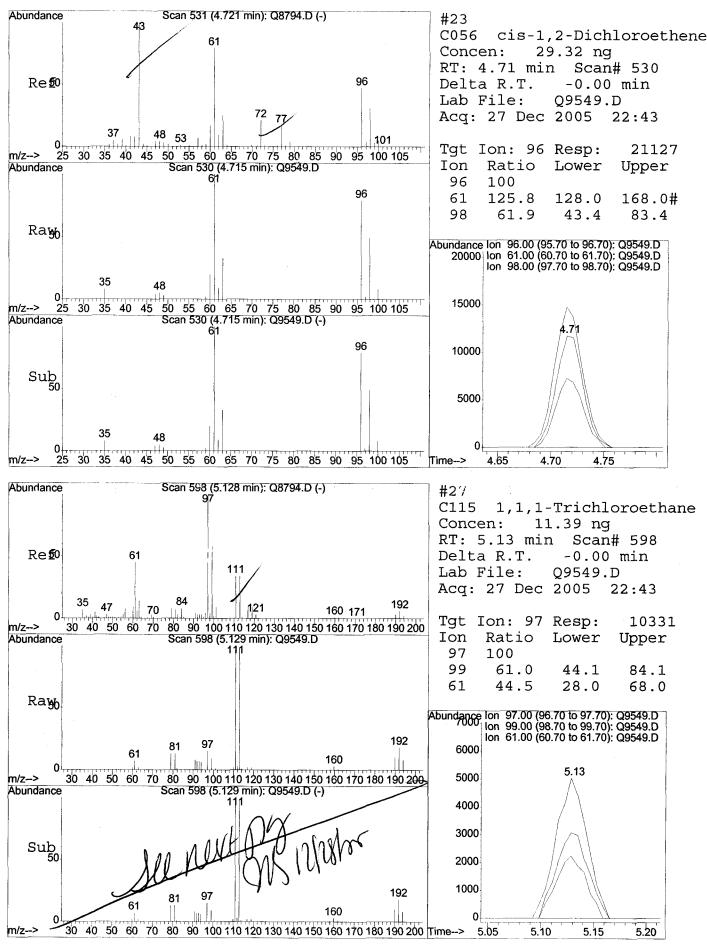
Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML


Last Update : Wed Dec 28 08:38:57 2005


Response via : Initial Calibration


DataAcq Meth : VOA


	Compound		R.T.	QIon	Response	Conc Unit	Qvalue
70)	C303	2-Chlorotoluene	0.00	126	0	N.D.	
71)	C289	4-Chlorotoluene	0.00	126	0	N.D.	
72)	C304	1,3,5-Trimethylbenze	9.86	105	1315	N.D.	
73)	C306	tert-Butylbenzene	0.00	134	0	N.D.	
(74)	C307	1,2,4-Trimethylbenze	10.20	105	6087	2.47 ng	88
75)	C308	sec-Butylbenzene	10.34	105	1057	N.D.	
76)	C260	1,3-Dichlorobenzene	0.00	146	0	N.D.	
77)	C309	4-Isopropyltoluene	10.46	119	575	N.D.	
78)	C267	1,4-Dichlorobenzene	0.00	146	0	N.D.	
79)	C249	1,2-Dichlorobenzene	0.00	146	0	N.D.	
80)	C310	n-Butylbenzene	10.80	91	1229	N.D.	
81)	C286	1,2-Dibromo-3-Chloro	0.00	75	0	N.D.	
82)	C313	1,2,4-Trichlorobenze	0.00	180	0	N.D.	
83)	C316	Hexachlorobutadiene	0.00	225	0	N.D.	
84)	C314	Naphthalene	12.31	128	2896	N.D.	
85)	C934	1,2,3-Trichlorobenze	0.00	180	0	N.D.	

Quantitation Report (Qedit)

Data File : C:\HPCHEM\1\DATA\122705\Q9549.D

Acq On : 27 Dec 2005 22:43

Vial: 32 Operator: TLC

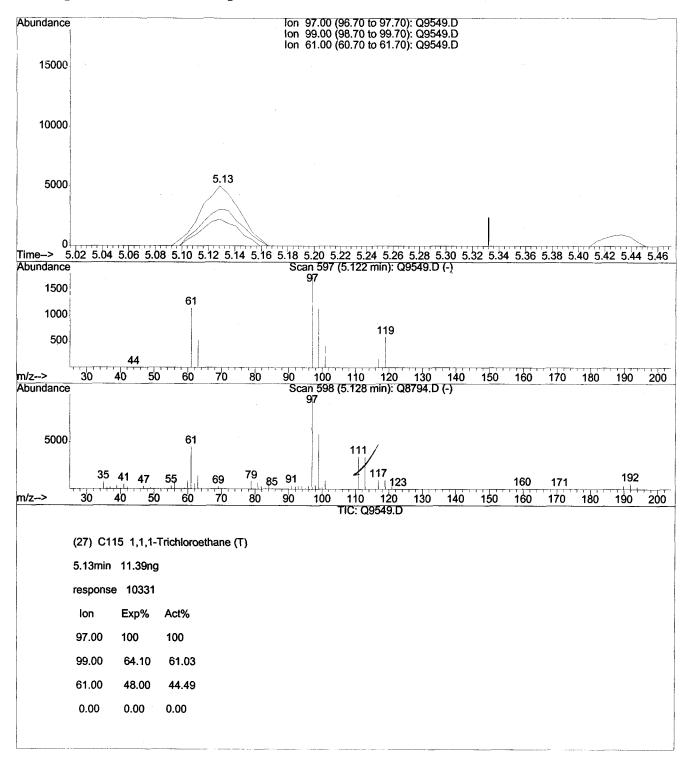
Sample : A5E58714

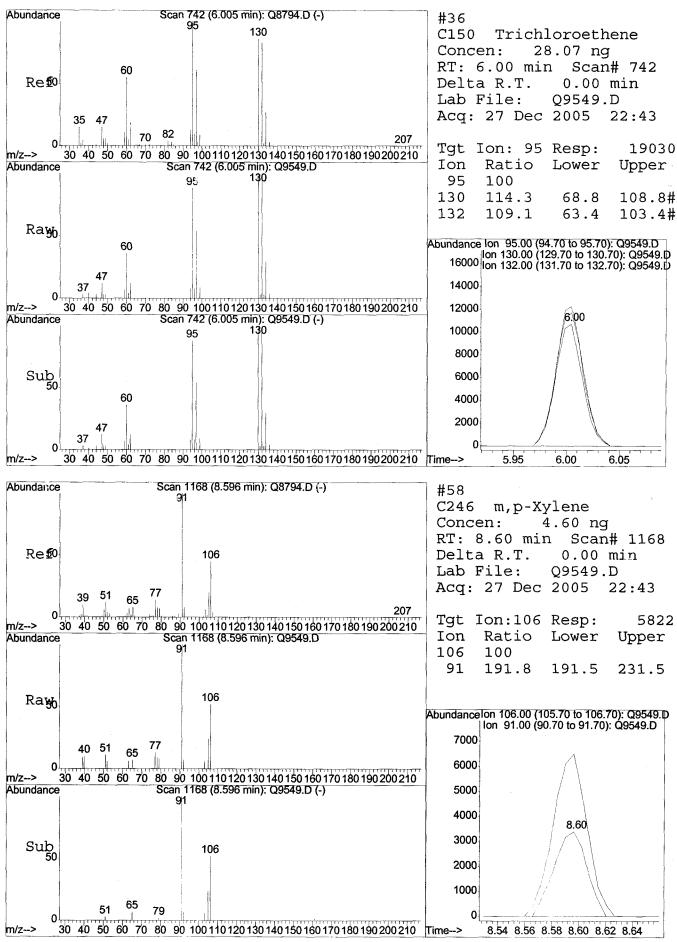
59714

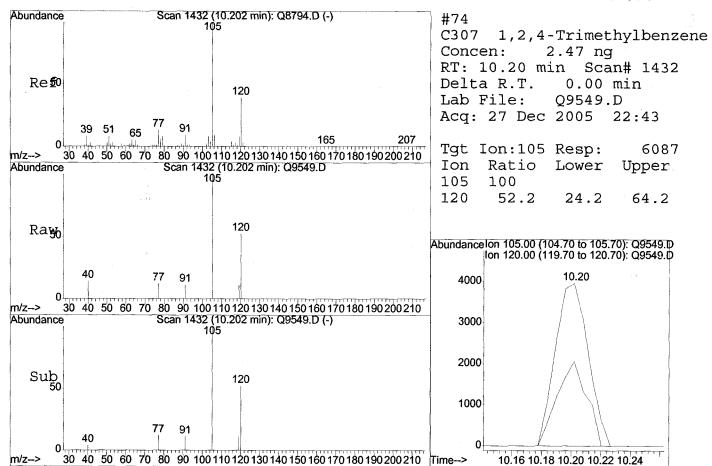
Inst : HP5973 Q

Misc : Multiplr: 1.00

MS Integration Params: RTEINT.P Ouant Time: Dec 28 12:12 2005


Quant Results File: temp.res


Method


: C:\HPCHEM\1\METHODS\Q8260\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Wed Dec 28 08:38:57 2005 Response via : Multiple Level Calibration

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

	17	MW-
--	----	-----

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58702

Sample wt/vol: ____5.00 (g/mL) ML Lab File ID: ____S9696.RR

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/20/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: DB-624 ID: 0.18 (mm) Dilution Factor: 4.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	CONCENTRATION UN (ug/L or ug/Kg)	ITS: UG/L	Q
		(-5, = -= -5, -5,		
67-64-1			20	Ŭ
71-43-2			4.0	บ
	Bromodichloromethane		4.0	U
75-25-2			4.0	U
	Bromomethane		4.0	U
78-93-3			20	U
	Carbon Disulfide		4.0	U
	Carbon Tetrachloride		4.0	U
	Chlorobenzene		4.0	U
75-00-3	Chloroethane		4.0	U
67-66-3			4.0	U
74-87-3	Chloromethane		4.0	U
110-82-7	Cyclohexane		4.0	U
106-93-4	1,2-Dibromoethane		4.0	U
124-48-1	Dibromochloromethane		4.0	ט
96-12-8	1,2-Dibromo-3-chloropropane		4.0	ט
	1,2-Dichlorobenzene		4.0	ע
541-73-1	1,3-Dichlorobenzene		4.0	ע
106-46-7	1,4-Dichlorobenzene		4.0	ע
75-71-8	Dichlorodifluoromethane		4.0	ן ט
75-34-3	1,1-Dichloroethane		4.0	ט
107-06-2	1,2-Dichloroethane		4.0	ע ו
75-35-4	1,1-Dichloroethene		4.0	ן די
156-59-2	cis-1,2-Dichloroethene		400	
156-60-5	trans-1,2-Dichloroethene		4.0	ט
78-87-5	1,2-Dichloropropane		4.0	ט
	cis-1,3-Dichloropropene		4.0	ן ט
	trans-1,3-Dichloropropene		4.0	U
	Ethylbenzene		4.0	ט
591-78-6	<u></u>		20	ן די
	Isopropylbenzene		4.0	Ū
	Methyl acetate		4.0	Ū
	Methylcyclohexane		4.0	U
	Methylene chloride		4.0	Ū

154/504

A5E58702

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

Lah Name	STL Buffa	10	Contract: 4		MW-17
Lab Name.	DIL DULIA	10	Concract: 4	_	
Lab Code:	<u>RECNY</u>	Case No.:	SAS No.:	SDG No.:	

Lab Sample ID:

Sample wt/vol: $\underline{5.00}$ (g/mL) ML Lab File ID: $\underline{S9696.RR}$

Matrix: (soil/water) WATER

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/20/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: DB-624 ID: 0.18 (mm) Dilution Factor: 4.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS: CAS NO. (ug/L or ug/Kg) COMPOUND UG/L Q 108-10-1----4-Methyl-2-pentanone U 20 1634-04-4----Methyl-t-Butyl Ether (MTBE) 4.0 U 91-20-3----Naphthalene U 4.0 100-42-5----Styrene 4.0 U 79-34-5----1,1,2,2-Tetrachloroethane 4.0 U 127-18-4----Tetrachloroethene 4.0 U 108-88-3----Toluene 4.0 U 120-82-1----1,2,4-Trichlorobenzene 4.0 U 71-55-6----1,1,1-Trichloroethane 4.0 U 79-00-5-----1,1,2-Trichloroethane U 4.0 76-13-1----1,1,2-Trichloro-1,2,2-trifluoroethane 4.0 U 75-69-4----Trichlorofluoromethane U 4.0 79-01-6----Trichloroethene 15 75-01-4-----Vinyl chloride 61 1330-20-7----Total Xylenes 12 IJ

(Not Reviewed) **155/504** Quantitation Report STL Buffalo

Vial: 7

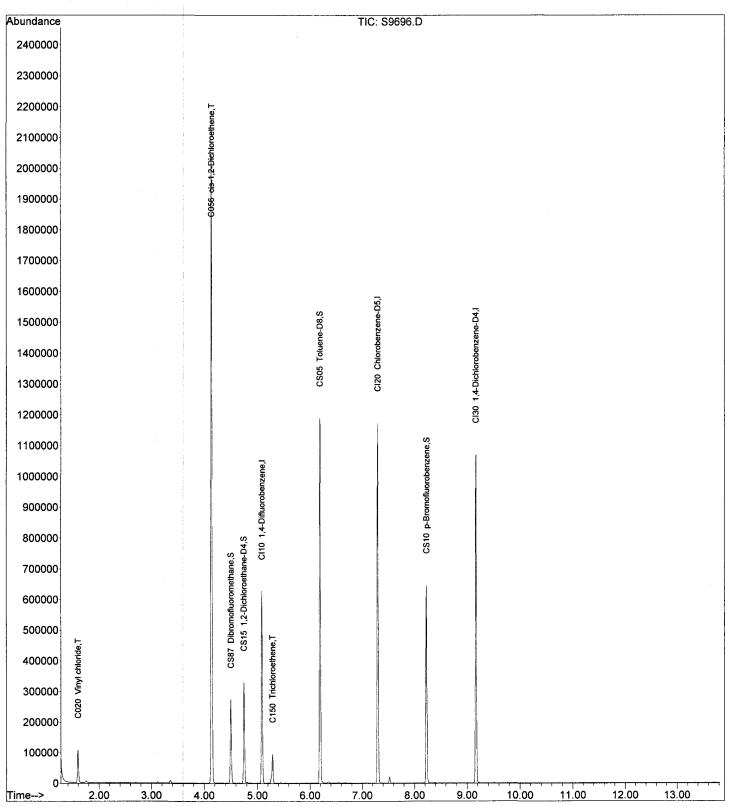
Data File : D:\DATA\122805\S9696.D

: 28 Dec 2005 Acq On 10:56

Operator: LH Inst : HP5973S Sample : A5E58702 DF4 Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Quant Time: Dec 28 12:20:14 2005 Results File: A5I0002442_E2.RES


Quant Method : C:\MSDCHEM\1...\A5I0002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Wed Dec 28 09:45:03 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Vial: 7

Data File : D:\DATA\122805\S9696.D

Acq On : 28 Dec 2005 10:56 Sample : A5E58702 DF4 Operator: LH Inst : HP5973S Multiplr: 1.00

Misc

Quant Time: Dec 28 12:20:14 2005 Results File: A5I0002442 E2.RES

Quant Method : C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

MS Integration Params: RTEINT.P

Title : 8260 5ML WATER

Last Update : Wed Dec 28 09:45:03 2005

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\DATA\122805\S9691.D (28 Dec 2005 8:52)

[nt	ernal	Standards	R.T.	QIon	Response	Conc U		Dev(Mi Rcv(Ar)
1)	CI10	1,4-Difluorobenzene	5.09	114	374495	125.00		0.	00
								95.4	
3)	CI20	Chlorobenzene-D5	7.30	117	530612	125.00	ng	0. 95 1	00
		·						J J . I	0 0
2)	CI30	1,4-Dichlorobenzene-	9.17	7 152	242129	125.00	ng		00
								83.3	0%
		onitoring Compounds	4 5		1 4 1 2 0 5	122 77		0	00
		Dibromofluoromethane				ry =	ng 107	0.	00
5p.	rkea A	amount 125.000 Ra	nge /(7 - 130					00
1)	CSIS	1,2-Dichloroethane-Damount 125.000 Ra	4./5	65	153092	132./1	106	170	00
			nge /3	3 - 136	Recove 629603	110 70	TOP	.1/8 0.	00
.4) C~	(202 Lod 7	Toluene-D8	0.15	7	023003	119./8	11.7	Q 2 9	00
эp.	rkea A	mount 125.000 Ramp-Bromofluorobenzene	ige /	I - 122	126204	105 00	93. ne	. O Z T	00
σ~	CDIU	p-Bromoffuorobenzene Amount 125.000 Ra:	o.23	1 100	120394	103.90	110	722 722	00.
Sp.	ikea A	amount 125.000 Ras	nge /4	1 - 120	Recove	ry =	84	. 126	
		ompounds Dichlorodifluorome	0 00	0.5	0	N.D.		Qvalu	е
		Chloromethane			0	N.D.			
					96373		~~		98
] e 020		1.60	0.4	963/3		ng		90
	C015	Bromomethane Chloroethane	0.00	94	0	N.D.			
	C025		0.00	64	0	N.D.			
	C275			101	0	N.D.			
	C045			96	574 1428	N.D.			
	C030	Methylene chloride	3.12	84	1428				
	C040	Carbon disulfide				N.D.			
	C036		0.00		0	N.D.			
	C038	Acrylonitrile	0.00	53	0	N.D.			
	C035	Acetone	2.75	43	176	N.D.			
	C300	Acetonitrile	0.00	41	0	N.D.			
	C276	Iodomethane 1,1,2 Trichloro-1,	0.00	142	0	N.D.			
	C291	1,1,2 Trichloro-1,	0.00	101	0	N.D.			
	C962	T-butyl Methyl Eth	3.37	73	2464	N.D.			
	C057	trans-1,2-Dichioro	3.35	96	2940	N.D.			
	C255	Methyl Acetate	0.00	43	0 809	N.D.			
-	C050	1,1-Dichloroethane Vinyl Acetate	3.69	63	809	N.D.			
	C125					N.D.			
		2,2-Dichloropropan			0	N.D.			•
3	C056	cis-1,2-Dichloroethe	4.14		704404	499.77	ng		92
(4)	C272	Tetrahydrofuran	0.00	42	0	N.D.			
5)	C222	Bromochloromethane	0.00	128	0	N.D.			
	C060	Chloroform	0.00	83	0	N.D.			
6)	C115	1,1,1-Trichloroeth	4.53	97	682	N.D.			
6) 7)		Carbon tetrachlori	0.00	117	0	N.D.			
6) 7) 8)	C120		0 00	75	0	N.D.			
6) 7) 8) 9)	C116	1,1-Dichloropropen	0.00						
6) 7) 8) 9)	C116 C165	Benzene	4.81	78	2893	N.D.			
6) 7) 8) 9) 2)	C116 C165 C065	Benzene 1,2-Dichloroethane	4.81 0.00	78 62	0	N.D.			
(6) (7) (8) (9) (32) (33)	C116 C165 C065 C110	Benzene 1,2-Dichloroethane 2-Butanone	4.81 0.00 0.00	78 62 43	0 0	N.D.			
(6) (7) (8) (9) (13) (4) (5)	C116 C165 C065 C110 C256	Benzene 1,2-Dichloroethane 2-Butanone Cyclohexane	4.81 0.00 0.00 0.00	78 62 43 56	0 0 0	N.D. N.D. N.D.			
(6) (7) (8) (9) (32) (33)	C116 C165 C065 C110 C256	Benzene 1,2-Dichloroethane 2-Butanone Cyclohexane Trichloroethene	4.81 0.00 0.00 0.00 5.29	78 62 43 56 9 95	0 0 0 24481	N.D. N.D. N.D. 18.47	ng		97
(6) (7) (8) (9) (2) (3) (4) (5)	C116 C165 C065 C110 C256	Benzene 1,2-Dichloroethane 2-Butanone Cyclohexane	4.81 0.00 0.00 0.00	78 62 43 56	0 0 0	N.D. N.D. N.D.	ng		97

Quantitation Report STL Buffalo (Not Reviewed) 157/504

Data File : D:\DATA\122805\S9696.D Vial: 7 Acq On : 28 Dec 2005 10:56 Sample : A5E58702 DF4

Operator: LH Inst : HP5973S Multiplr: 1.00 Misc

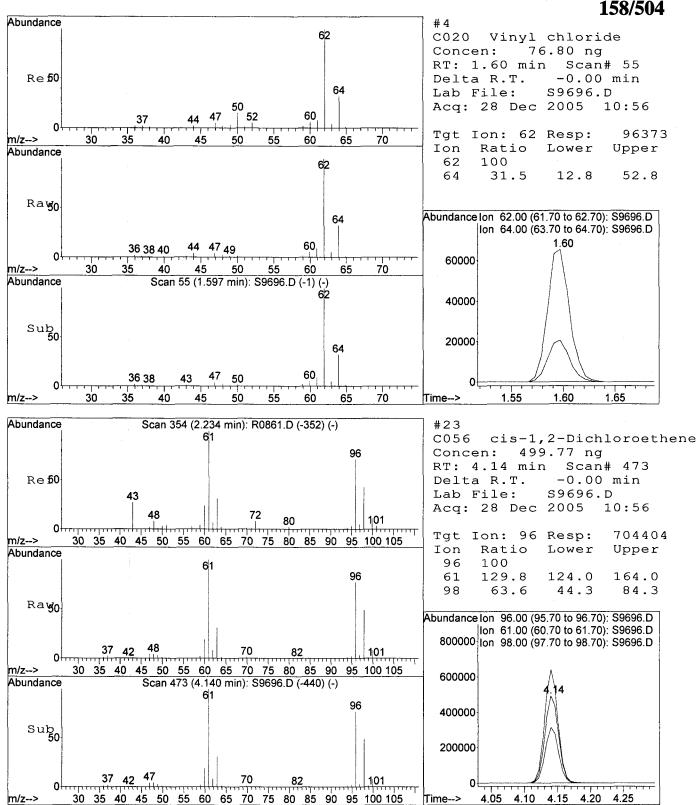
MS Integration Params: RTEINT.P

Quant Time: Dec 28 12:20:14 2005 Results File: A5I0002442_E2.RES

Quant Method : C:\MSDCHEM\1...\A5I0002442_E2.M (RTE Integrator)

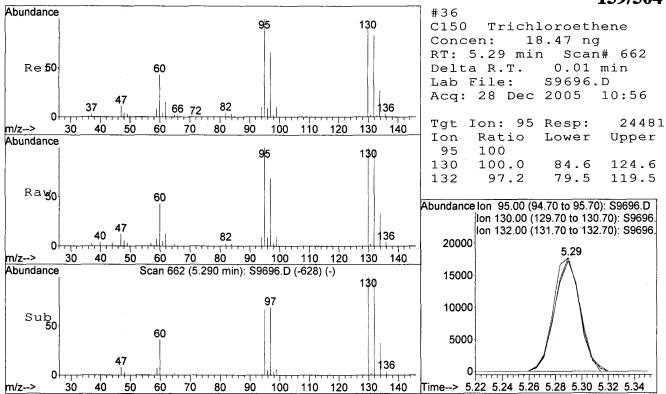
Title : 8260 5ML WATER

Last Update : Wed Dec 28 09:45:03 2005


Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\DATA\122805\S9691.D (28 Dec 2005 8:52)


Section	Int	ernal	Standards	R.T	. QIon	Response	Conc (Units	Dev(Min) Rcv(Ar)
41) C012 Methylcycolhexane	39)	C130	Bromodichlorometha	0.00	83	0	N.D.		
42) C145 cis-1,3-Dichloropr	40)	C161	2-Chloroethylvinyl	0.00	63	0	N.D.		
45) C230 Toluene 6.24 92 459 N.D. 46) C170 trans-1,3-Dichloro 0.00 75 0 N.D. 47) C284 Ethyl Methacrylate 0.00 69 0 N.D. 48) C160 1,1,2-Trichloroeth 0.00 83 0 N.D. 49) C210 4-Methyl-2-pentano 6.19 43 2668 N.D. 50) C220 Tetrachloroethene 0.00 166 0 N.D. 51) C221 1,3-Dichloropropan 0.00 76 0 N.D. 52) C155 Dibromochlorometha 0.00 129 0 N.D. 53) C163 1,2-Dibromoethane 0.00 107 0 N.D. 54) C215 2-Hexanone 0.00 43 0 N.D. 55) C235 Chlorobenzene 7.32 112 655 N.D. 56) C281 1,1,1,2-Tetrachlor 0.00 131 0 N.D. 57) C240 Ethylbenzene 7.29 91 725 N.D. 58) C246 m,p-Xylene 0.00 106 0 N.D. 59) C247 0-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 106 0 N.D. 610 C245 Styrene 0.00 104 0 N.D. 620 C250 1,2,2-Tetrachlor 0.00 133 0 N.D. 63) C180 Bromoform 0.00 173 0 N.D. 64) C966 Isopropylbenzene 0.00 156 0 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 53 0 N.D. 69) C302 n-Propylbenzene 0.00 126 0 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 0.00 126 0 N.D. 73) C306 tetr-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 0.00 126 0 N.D. 75) C308 sec-Butylbenzene 0.00 134 0 N.D. 76) C262 1,4-Dichlorobenzen 9.18 146 144 N.D. 77) C309 4-Isopropyltoluene 0.00 126 0 N.D. 78) C267 1,4-Dichlorobenzen 9.18 146 144 N.D. 79) C269 1,2-Dichlorobenzen 9.18 146 144 N.D. 79) C269 1,2-Dichlorobenzen 9.18 146 144 N.D. 79) C269 1,2-Dichlorobenzen 9.18 146 144 N.D. 79) C261 1,2-Dichlorobenzen 9.18 146 144 N.D. 79) C262 1,2-Dichlorobenzen 9.18 146 144 N.D. 79) C262 1,2-Dichlorobenzen 0.00 140 N.D. 83) C316 Hexachlorobutadien 0.00 125 0 N.D.	41)	C012	Methylcycolhexane	0.00	83	0	N.D.		
46) C170 trans-1,3-Dichloro 0.00 75 0 N.D. 47) C284 Ethyl Methacrylate 0.00 69 0 N.D. 48) C10 1,1,2-Trichloroeth 0.00 83 0 N.D. 49) C210 4-Methyl-2-pentano 6.19 43 2668 N.D. 50) C220 Tetrachloroethene 0.00 166 0 N.D. 51) C221 1,3-Dichloropropan 0.00 76 0 N.D. 52) C155 Dibromochlorometha 0.00 129 0 N.D. 53) C163 1,2-Dibromoethane 0.00 107 0 N.D. 54) C215 2-Hexanone 0.00 107 0 N.D. 55) C223 Chlorobenzene 7.32 112 655 N.D. 56) C281 1,1,1,2-Tetrachlor 0.00 131 0 N.D. 57) C240	42)	C145	cis-1,3-Dichloropr	0.00	75	0	N.D.		
47) C284 Ethyl Methacrylate 0.00 69 0 N.D. 48) C160 1,1,2-Trichloroeth 0.00 83 0 N.D. 49) C210 4-Methyl-2-pentano 6.19 43 2668 N.D. 50) C220 Tetrachloroethene 0.00 166 0 N.D. 51) C221 1,3-Dichloropropan 0.00 76 0 N.D. 52) C155 Dibromochlorometha 0.00 129 0 N.D. 53) C163 1,2-Dibromoethane 0.00 129 0 N.D. 54) C215 2-Hexanone 0.00 107 0 N.D. 54) C215 2-Hexanone 0.00 131 0 N.D. 55) C225 Chlorobenzene 7.32 112 655 N.D. 56) C281 1,1,1,2-Tetachlor 0.00 106 0 N.D. 58) C246 m				6.24	92	459	N.D.		
48) C160 1,1,2-Trichloroeth 0.00 83 0 N.D. 49) C210 4-Methyl-2-pentano 6.19 43 2668 N.D. 50) C220 Tetrachloroethene 0.00 166 0 N.D. 51) C221 1,3-Dichloropropan 0.00 76 0 N.D. 52) C155 Dibromochlorometha 0.00 129 0 N.D. 53) C163 1,2-Dibromochloromethane 0.00 107 0 N.D. 54) C215 Chlorobenzene 7.32 112 655 N.D. 55) C235 Chlorobenzene 7.32 112 655 N.D. 56) C281 1,1,2,2-Tetrachlor 0.00 131 0 N.D. 58) C246 m,p-Xylene 0.00 106 0 N.D. 60) C245 styrene 0.00 106 0 N.D. 610 C245 <t< td=""><td></td><td></td><td></td><td>0.00</td><td>75</td><td></td><td>N.D.</td><td></td><td></td></t<>				0.00	75		N.D.		
49) C210 4-Methyl-2-pentano 6.19 43 2668 N.D. 50) C220 Tetrachloroethene 0.00 166 0 N.D. 51) C221 1,3-Dichloropropan 0.00 76 0 N.D. 52) C155 Dibromochlorometha 0.00 129 0 N.D. 53) C163 1,2-Dibromochlane 0.00 107 0 N.D. 54) C215 2-Hexanone 0.00 13 0 N.D. 55) C235 Chlorobenzene 7.32 112 655 N.D. 56) C281 1,1,2-Tetrachlor 0.00 131 0 N.D. 57) C240 Ethylbenzene 7.29 91 725 N.D. 58) C246 m,p-Xylene 0.00 106 0 N.D. 59) C247 o-Xylene 0.00 104 0 N.D. 60) C245 Styrene							N.D.		
50) C220 Tetrachloroethene 0.00 166 0 N.D. 51) C221 1,3-Dichloropropan 0.00 76 0 N.D. 52) C155 Dibromochlorometha 0.00 129 0 N.D. 53) C163 1,2-Dibromochloromethane 0.00 107 0 N.D. 54) C215 2-Hexanone 0.00 107 0 N.D. 55) C235 Chlorobenzene 7.32 112 655 N.D. 56) C281 1,1,2-Tetrachlor 0.00 131 0 N.D. 57) C240 Ethylbenzene 7.29 91 725 N.D. 58) C246 m,p-Xylene 0.00 106 0 N.D. 60) C247 Styrene 0.00 104 0 N.D. 63) C180 Bromoform 0.00 156 0 N.D. 64) C966 Isopropylbenzene <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
51) C221 1,3-Dichloropropan 0.00 76 0 N.D. 52) C155 Dibromochlorometha 0.00 129 0 N.D. 53) C163 1,2-Dibromoethane 0.00 107 0 N.D. 54) C215 2-Hexanone 0.00 43 0 N.D. 55) C235 Chlorobenzene 7.32 112 655 N.D. 56) C281 1,1,1,2-Tetrachlor 0.00 131 0 N.D. 57) C240 Ethylbenzene 7.29 91 725 N.D. 58) C246 m,p-Xylene 0.00 106 0 N.D. 60) C247 o-Xylene 0.00 106 0 N.D. 63) C180 Bromoform 0.00 106 0 N.D. 64) C966 Isopropylbenzene 0.00 156 0 N.D. 65) C301 Bromobenzen <									
52) C155 Dibromochlorometha 0.00 129 0 N.D. 53) C163 1,2-Dibromochlane 0.00 107 0 N.D. 54) C215 2-Hexanone 0.00 43 0 N.D. 55) C235 Chlorobenzene 7.32 112 655 N.D. 56) C281 1,1,2-Tetrachlor 0.00 131 0 N.D. 57) C240 Ethylbenzene 7.29 91 725 N.D. 58) C246 m,p-Xylene 0.00 106 0 N.D. 59) C247 o-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 104 0 N.D. 63) C180 Bromoform 0.00 156 0 N.D. 64) C966 Isopropylbenzene 0.00 156 0 N.D. 65) C301 Bromobenzene 0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
53) C163 1,2-Dibromoethane 0.00 107 0 N.D. 54) C215 2-Hexanone 0.00 43 0 N.D. 55) C235 Chlorobenzene 7.32 112 655 N.D. 56) C281 1,1,1,2-Tetrachlor 0.00 131 0 N.D. 57) C240 Ethylbenzene 7.29 91 725 N.D. 58) C246 m,p-Xylene 0.00 106 0 N.D. 59) C247 o-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 106 0 N.D. 63) C180 Bromoform 0.00 105 0 N.D. 64) C966 Isopropylbenzene 0.00 105 0 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 67) C282 1,2,2-Tetrachloropenzen 0									
54) C215 2-Hexanone 0.00 43 0 N.D. 55) C235 Chlorobenzene 7.32 112 655 N.D. 56) C281 1,1,1,2-Tetrachlor 0.00 131 0 N.D. 57) C240 Ethylbenzene 7.29 91 725 N.D. 58) C246 m,p-Xylene 0.00 106 0 N.D. 69) C247 o-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 104 0 N.D. 63) C180 Bromoform 0.00 173 0 N.D. 64) C966 Isopropylbenzene 0.00 105 0 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachloro 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropero 0.00									
55) C235 Chlorobenzene 7.32 112 655 N.D. 56) C281 1,1,1,2-Tetrachlor 0.00 131 0 N.D. 57) C240 Ethylbenzene 7.29 91 725 N.D. 58) C246 m,p-Xylene 0.00 106 0 N.D. 59) C247 o-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 104 0 N.D. 63) C180 Bromoform 0.00 105 0 N.D. 64) C966 Isopropylbenzene 0.00 105 0 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 156 0 N.D. 67) C282 1,2,3-Trichloropero 0.00 110 0 N.D. 69) C332 n-Propylbenzene <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
56) C281 1,1,1,2-Tetrachlor 0.00 131 0 N.D. 57) C240 Ethylbenzene 7.29 91 725 N.D. 58) C246 m,p-Xylene 0.00 106 0 N.D. 59) C247 o-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 104 0 N.D. 63) C180 Bromoform 0.00 173 0 N.D. 64) C966 Isopropylbenzene 0.00 156 0 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropen 0.00 10 0 N.D. 69) C302 n-Propylbenzene 0.00									
57) C240 Ethylbenzene 7.29 91 725 N.D. 58) C246 m,p-Xylene 0.00 106 0 N.D. 59) C247 o-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 104 0 N.D. 63) C180 Bromoform 0.00 173 0 N.D. 64) C966 Isopropylbenzene 0.00 105 0 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 53 0 N.D. 69) C302 n-Propylbenzene 0.00 91 0 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 134 0 N.D.	•								
58) C246 m,p-Xylene 0.00 106 0 N.D. 59) C247 o-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 104 0 N.D. 63) C180 Bromoform 0.00 173 0 N.D. 64) C966 Isopropylbenzene 0.00 105 0 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 53 0 N.D. 69) C302 n-Propylbenzene 0.00 91 0 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71 C289 4-Chlorotoluene 0						-			
59) C247 o-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 104 0 N.D. 63) C180 Bromoform 0.00 173 0 N.D. 64) C966 Isopropylbenzene 0.00 105 0 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 10 N.D. 69) C302 n-Propylbenzene 0.00 91 0 N.D. 69) C302 n-Propylbenzene 0.00 126 0 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00	-								
60) C245 Styrene 0.00 104 0 N.D. 63) C180 Bromoform 0.00 173 0 N.D. 64) C966 Isopropylbenzene 0.00 105 0 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 53 0 N.D. 69) C302 n-Propylbenzene 0.00 53 0 N.D. 70) C303 2-Chlorotoluene 0.00 91 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 0.00 134 0 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 75) C308 se									
63) C180 Bromoform 0.00 173 0 N.D. 64) C966 Isopropylbenzene 0.00 105 0 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 53 0 N.D. 69) C302 n-Propylbenzene 0.00 91 0 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 0.00 105 0 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 9.02 105 557 N.D. 75) C308 sec-Butylbenzene 9.02 105 557 N.D. 76) C260 1,3-Dichlorobenzen 9.18 146 144 N.D. 77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 9.18 146 144 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 75 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.									
64) C966 Isopropylbenzene 0.00 105 0 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 53 0 N.D. 69) C302 n-Propylbenzene 0.00 53 0 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 0.00 105 0 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 9.02 105 557 N.D. 75) C308 sec-Butylbenzene 9.18 146 144 N.D. 70) <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			-						
65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 53 0 N.D. 69) C302 n-Propylbenzene 0.00 91 0 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 0.00 105 0 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 9.02 105 557 N.D. 75) C308 sec-Butylbenzene 9.02 105 557 N.D. 76) C260 1,3-Dichlorobenzen 9.18 146 144 N.D. 77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 9.18 146 144 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.	-								
66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 53 0 N.D. 69) C302 n-Propylbenzene 0.00 91 0 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 0.00 105 0 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 9.02 105 557 N.D. 75) C308 sec-Butylbenzene 9.02 105 557 N.D. 76) C260 1,3-Dichlorobenzen 9.18 146 144 N.D. 77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 9.18 146 144 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.	•								
67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 53 0 N.D. 69) C302 n-Propylbenzene 0.00 91 0 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 0.00 105 0 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 9.02 105 557 N.D. 75) C308 sec-Butylbenzene 9.02 105 557 N.D. 76) C260 1,3-Dichlorobenzen 9.18 146 144 N.D. 77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 9.18 146 144 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 146 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.									
68) C283 t-1,4-Dichloro-2-B 0.00 53 0 N.D. 69) C302 n-Propylbenzene 0.00 91 0 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 0.00 105 0 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 9.02 105 557 N.D. 75) C308 sec-Butylbenzene 9.02 105 557 N.D. 76) C260 1,3-Dichlorobenzen 9.18 146 144 N.D. 77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 9.18 146 144 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.	-								
69) C302 n-Propylbenzene 0.00 91 0 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 0.00 105 0 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 9.02 105 557 N.D. 75) C308 sec-Butylbenzene 9.02 105 557 N.D. 76) C260 1,3-Dichlorobenzen 9.18 146 144 N.D. 77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 9.18 146 144 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 0.00 105 0 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 9.02 105 557 N.D. 75) C308 sec-Butylbenzene 9.02 105 557 N.D. 76) C260 1,3-Dichlorobenzen 9.18 146 144 N.D. 77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 9.18 146 144 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 225 0 N.D. 8									
71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 0.00 105 0 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 9.02 105 557 N.D. 75) C308 sec-Butylbenzene 9.02 105 557 N.D. 76) C260 1,3-Dichlorobenzen 9.18 146 144 N.D. 77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 9.18 146 144 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.									
72) C304 1,3,5-Trimethylben 0.00 105 0 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 9.02 105 557 N.D. 75) C308 sec-Butylbenzene 9.02 105 557 N.D. 76) C260 1,3-Dichlorobenzen 9.18 146 144 N.D. 77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 9.18 146 144 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.	-								
73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 9.02 105 557 N.D. 75) C308 sec-Butylbenzene 9.02 105 557 N.D. 76) C260 1,3-Dichlorobenzen 9.18 146 144 N.D. 77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 9.18 146 144 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 128 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.									
74) C307 1,2,4-Trimethylben 9.02 105 557 N.D. 75) C308 sec-Butylbenzene 9.02 105 557 N.D. 76) C260 1,3-Dichlorobenzen 9.18 146 144 N.D. 77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 9.18 146 144 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.			-						
75) C308 sec-Butylbenzene 9.02 105 557 N.D. 76) C260 1,3-Dichlorobenzen 9.18 146 144 N.D. 77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 9.18 146 144 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.			_						
76) C260 1,3-Dichlorobenzen 9.18 146 144 N.D. 77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 9.18 146 144 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.									
77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 9.18 146 144 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.	-								
78) C267 1,4-Dichlorobenzen 9.18 146 144 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.									
79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.	-								
80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.									
81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.			•						
82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.	-					0			
83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.						0	N.D.		
84) C314 Naphthalene 0.00 128 0 N.D.									
						0			
85) C934 1,2,3-Trichloroben 0.00 180 0 N.D.	•			0.00	180	0	N.D.		

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

m/z-->

Time-->

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MIAI_2	 	
MW-2		

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58701

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{G7639.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/20/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

		-		
		CONCENTRATION UNIT	rs:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L_	Q
67-64-1			5.0	U
71-43-2			1.0	U
	Bromodichloromethane		1.0	ע
75-25-2	Bromoform		1.0	ប
74-83-9	Bromomethane		1.0	U
78-93-3	2-Butanone		5.0	ש
75-15-0	Carbon Disulfide		1.0	U
56-23-5	Carbon Tetrachloride		1.0	ַט
108-90-7	Chlorobenzene		1.0	U
75-00-3	Chloroethane		1.0	ט
67-66-3	Chloroform		1.0	ט
74-87-3	Chloromethane		1.0	U
110-82-7	Cyclohexane		1.0	υ
	1,2-Dibromoethane		1.0	ט
	Dibromochloromethane	· · · · · · · · · · · · · · · · · · ·	1.0	ט
	1,2-Dibromo-3-chloropropane		1.0	U
	1,2-Dichlorobenzene		1.0	Ū
1	1,3-Dichlorobenzene		1.0	U
	1,4-Dichlorobenzene		1.0	U
75-71-8	Dichlorodifluoromethane		1.0	ש
	1,1-Dichloroethane		1.5	
107-06-2	1,2-Dichloroethane		1.0	U
	1,1-Dichloroethene		1.0	U
	cis-1,2-Dichloroethene	A CONTRACTOR OF THE CONTRACTOR	3.2	
	trans-1,2-Dichloroethene		1.0	ט
	1,2-Dichloropropane		1.0	ט
	cis-1,3-Dichloropropene		1.0	υ
10061-02-6-	trans-1,3-Dichloropropene		1.0	lυ
	Ethylbenzene		1.0	Ū
	2-Hexanone		5.0	Ū
	Isopropylbenzene		1.0	Ū
79-20-9	Methyl acetate		1.0	Ū
108-87-2	Methylcyclohexane		1.0	Ū
	Methylene chloride		1.0	ϋ
	<u> </u>			

161/504

U

U

U

U

U

1.0

1.0

1.0

1.5

1.0 3.0

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

ab Name CUI Duffelo Contract 4		MW-2	
Lab Name: STL Buffalo Contract: 4	·		
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	-	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A5E58701	
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID:	G7639.RR	
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	12/20/2005	12/23/2005
Moisture: not dec Heated Purge: N	Date Analyzed:	12/28/2005	
3C Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00	
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume:	(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)		Q
108-10-14-Methyl-2-pentanone 1634-04-4Methyl-t-Butyl Ether (MTBE) 91-20-3Naphthalene 100-42-5Styrene 79-34-51,1,2,2-Tetrachloroethane 127-18-4Tetrachloroethene 108-88-3Toluene 120-82-11,2,4-Trichlorobenzene 71-55-61,1,1-Trichloroethane		5.0 U U U U U U U U U U U U U U U U U U U	T T T

79-00-5----1,1,2-Trichloroethane

75-01-4-----Vinyl chloride___ 1330-20-7----Total Xylenes___

76-13-1----1,1,2-Trichloro-1,2,2-trifluoroethane

75-69-4----Trichlorofluoromethane

79-01-6----Trichloroethene

Data File: C:\MSDCHEM\1\DATA\122705\G7639.D

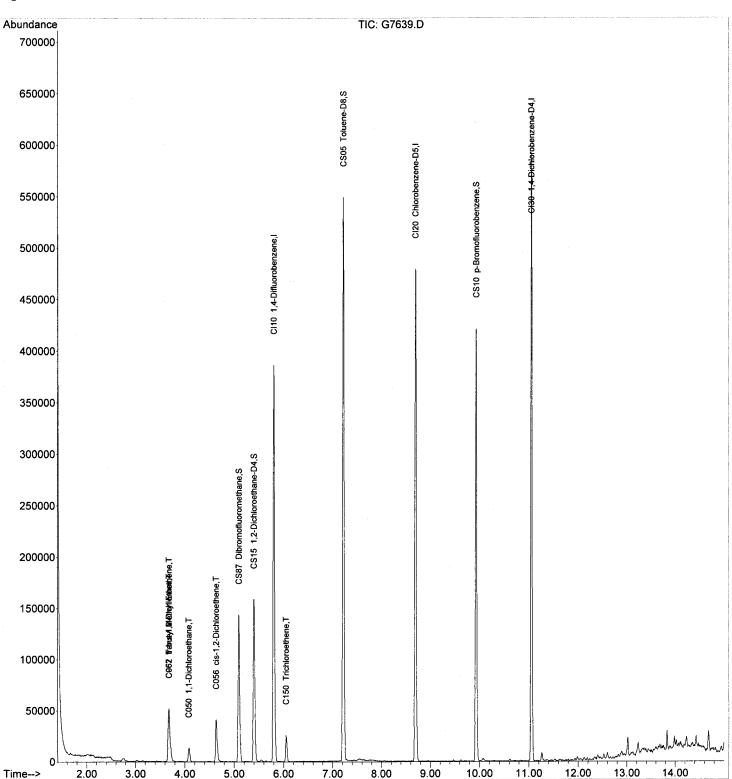
Acq On : 28 Dec 2005 5:57

Sample : A5E58701

Misc

Integrator: RTE

Quant Time: Dec 28 08:03:32 2005


Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quantitation Report

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 21:28:27 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Operator : TLC

R.T. QIon Response Conc Units Dev(Min)

163/504

StE 1113 12/28/05

Data File: C:\MSDCHEM\1\DATA\122705\G7639.D

Acq On : 28 Dec 2005 5:57

: A5E58701 Sample

Misc Integrator: RTE

Quant Time: Dec 28 08:03:32 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 21:28:27 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Operator : TLC

Internal Standards

TIICe	siliai s	standards	K.1.	QIOII	kesponse	COME OF	IICS	Rcv(Ar)
	GT10	1 4 Difluenchemen		114	241220	105 00		0.00
Τ)	CI10	1,4-Difluorobenzene	5.80	114	341239	125.00	ng	0.00 97.62%
43)	CI20	Chlorobenzene-D5	8.70	82	169364	125.00	ng	0.00
								95.38%
63)	CI30	1,4-Dichlorobenzene-	11.06	152	159128	125.00	ng	0.00
								93.17%
Syst	em Mor	nitoring Compounds						
		Dibromofluoromethane	5.10	111	97775	114.47	NG	0.00
	iked Ar			- 130	Recove			.58%
31)	CS15	1,2-Dichloroethane-D	5.40	65	127142	115.74		0.00
Spi	iked Ar	mount 125.000 Ran	nge 73	- 136	Recove	ry =	92.	. 59%
44)	CS05	Toluene-D8	7.22			118.58	ng	0.00
	iked Ar			- 122				. 86%
		p-Bromofluorobenzene				117.87		0.00
Spi	iked Ar	mount 125.000 Ran	nge 74	- 120	Recove	ry =	94.	. 30%
Taro	ret Cor	mpounds						Qvalue
		Dichlorodifluorome	0.00	85	0	N.D.		
		Chloromethane	1.59	50	555	N.D.		
		Vinyl chloride	1.73	62	631	N.D.		
		Bromomethane	0.00	94	0	N.D.		
		Chloroethane	2.16	64	289	N.D.		
		Trichlorofluoromet		101	0	N.D.		
	C045	1,1-Dichloroethene	0.00	96	0	N.D.		
	C030	Methylene chloride	3.43	84	263	N.D.		
	C040	Carbon disulfide	3.14	76	1291	N.D.		
	C036	Acrolein	0.00	56	0	N.D.		
	C038	Acrylonitrile	3.69	53	634	N.D.		
	C035	Acetone	3.03	43	2136	N.D.		
	C300	Acetonitrile	3.32	41	145	N.D.		
		Iodomethane		142	0	N.D.		
	C291	1,1,2-Trichloro-1,		101	0	N.D.		
	- C962	T-butyl Methyl Ether	3.68		58221	16.11	ng	92
18)	C057-	trans-1,2-Dichloroet	3.68	96_	4585	4.07	ng	# 46
19)	C255	Methyl Acetate	0.00	43	0	N.D.		
20	€ 050	1,1-Dichloroethane	4.08	63	16255	7.59	ng	94
	C125	Vinyl Acetate	0.00	43	0	N.D.		
22)	C051	2,2-Dichloropropan	0.00	77	0	N.D.		
23)	℃ 056	cis-1,2-Dichloroethe	4.64	96	20121	16.07	ng	93
24)	C272	Tetrahydrofuran	0.00	42	0	N.D.		
25)	C222	Bromochloromethane	0.00	128	0	N.D.		
27)	C060	Chloroform	0.00	83	0	N.D.		
28)		1,1,1-Trichloroeth	5.11	97	2086	N.D.		
	C120	Carbon tetrachlori	0.00	117	0	N.D.		
30)	C116	1,1-Dichloropropen	0.00	75	0	N.D.		
32)		Benzene	5.44	78	470	N.D.		
33)	C065	1,2-Dichloroethane	5.49	62	137	N.D.		
34)	C110	2-Butanone	4.68	43	627	N.D.		
35)	C256	Cyclohexane	0.00	56	0	N.D.		
	C150	Trichloroethene	6.05	95	9326	7.73	ng	92
	ノ							

Data File: C:\MSDCHEM\1\DATA\122705\G7639.D

Acq On : 28 Dec 2005 5:57

Sample : A5E58701

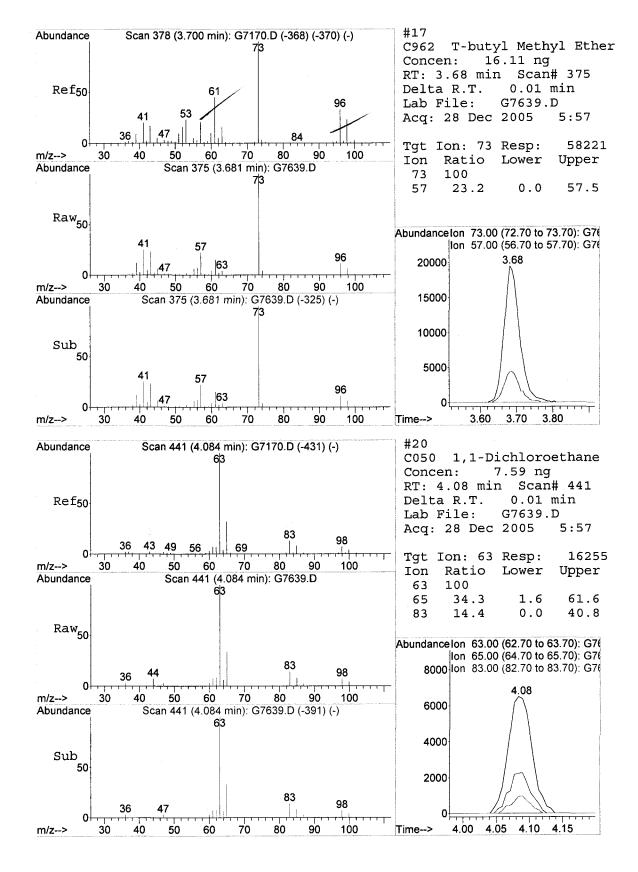
Misc : Integrator: RTE

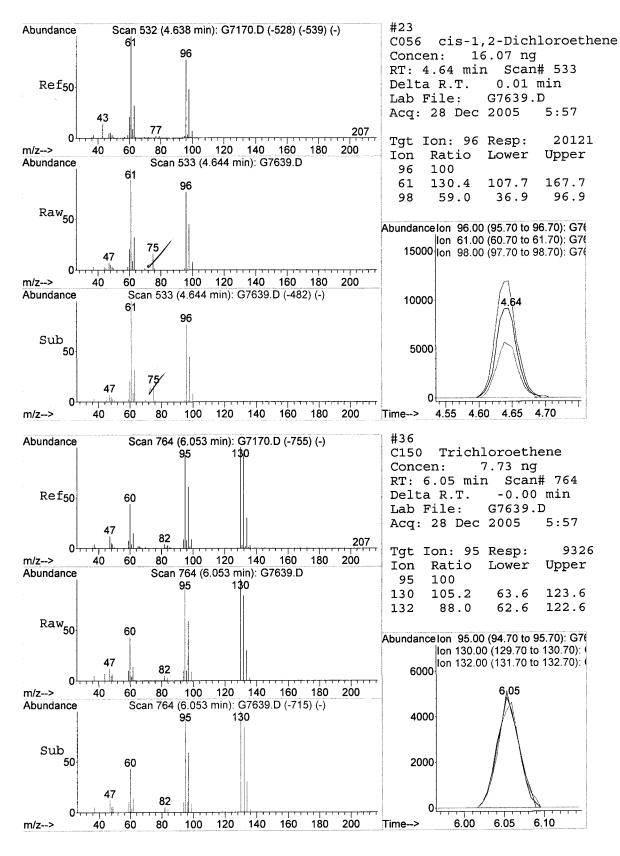
Quant Time: Dec 28 08:03:32 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 21:28:27 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\


Operator : TLC


Internal Standards	R.T	. QIon	Response	Conc Unit	s Dev(Min) Rcv(Ar)
37) C140 1,2-Dichloropropan	0.00	63	0	N.D.	
38) C278 Dibromomethane	0.00	93	0	N.D.	
39) C130 Bromodichlorometha	0.00	83	0	N.D.	
40) C161 2-Chloroethylvinyl	0.00	63	0	N.D.	
41) C012 Methylcyclohexane	0.00	83	0	N.D.	
42) C145 cis-1,3-Dichloropr	0.00	75	0	N.D.	
45) C230 Toluene	7.28	92	384	N.D.	
46) C170 trans-1,3-Dichloro	0.00	75	0	N.D.	
47) C284 Ethyl Methacrylate	0.00	69	0	N.D.	
48) C160 1,1,2-Trichloroeth	0.00	83	0	N.D.	
49) C210 4-Methyl-2-pentano	7.22	43	1810	N.D.	
50) C220 Tetrachloroethene	7.83	166	135	N.D.	
51) C221 1,3-Dichloropropan	0.00	76	0	N.D.	
52) C155 Dibromochlorometha	0.00	129	0	N.D.	
53) C163 1,2-Dibromoethane	0.00	107	0	N.D.	
54) C215 2-Hexanone	0.00	43	0	N.D.	
55) C235 Chlorobenzene	0.00	112	0	N.D.	
56) C281 1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
57) C240 Ethylbenzene	8.84	91	57	N.D.	
58) C246 m,p-Xylene	0.00	106	0	N.D.	
59) C247 o-Xylene	0.00	106	0	N.D.	
60) C245 Styrene	0.00	104	0	N.D.	
61) C180 Bromoform	0.00	173	0	N.D.	
64) C966 Isopropylbenzene	0.00	105	0	N.D.	
65) C301 Bromobenzene	0.00	156	0	N.D.	
66) C225 1,1,2,2- Tetra chlor	0.00	83	0	N.D.	
67) C282 1,2,3-Trichloropro	0.00	110	0	N.D.	
68) C283 t-1,4-Dichloro-2-B	0.00	51	0	N.D.	
69) C302 n-Propylbenzene	9.93	91	459	N.D.	
70) C303 2-Chlorotoluene	0.00	126	0	N.D.	
71) C289 4-Chlorotoluene	0.00	126	0	N.D.	
72) C304 1,3,5-Trimethylben	0.00	105	0	N.D.	
73) C306 tert-Butylbenzene	0.00	134	0	N.D.	
74) C307 1,2,4-Trimethylben	10.72	105	129	N.D.	
75) C308 sec-Butylbenzene	10.72	105	129	N.D.	
76) C260 1,3-Dichlorobenzen	0.00	146	0	N.D.	
77) C309 4-Isopropyltoluene	11.00	119	319	N.D.	
78) C267 1,4-Dichlorobenzen	0.00	146	0	N.D.	
79) C249 1,2-Dichlorobenzen	0.00	146	0	N.D.	
80) C310 n-Butylbenzene	0.00	91	0	N.D.	
81) C286 1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
82) C313 1,2,4-Trichloroben	0.00	180	0	N.D.	
83) C316 Hexachlorobutadien	0.00	225	0	N.D.	
84) C314 Naphthalene	13.02	128	1830	N.D.	
85) C934 1,2,3-Trichloroben	13.45	180	88	N.D.	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

164/504

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

	·
MW-20	

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58719

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{Q9554.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CAS NO.	COMPOUND	(ug/L or ug/Kg)		Q
67-64-1	-Acetone		5.0	U
71-43-2	-Benzene		1.0	ן ט
75-27-4	-Bromodichloromethane		1.0	ט
75-25-2	-Bromoform		1.0	ט
74-83-9	-Bromomethane		1.0	ט
78-93-3	-2-Butanone		5.0	ט
75-15-0	-Carbon Disulfide		1.0	ט
56-23-5	-Carbon Tetrachloride		1.0	ט
108-90-7	-Chlorobenzene		1.0	ן ט
75-00-3	-Chloroethane		1.0	ש
67-66-3	-Chloroform		1.0	ט
74-87-3	-Chloromethane		1.0	ן ט
110-82-7	-Cyclohexane		1.0	ן טן
106-93-4	-1,2-Dibromoethane		1.0	ן ט
124-48-1	-Dibromochloromethane		1.0	ן ט
96-12-8	-1,2-Dibromo-3-chloropropane		1.0	ן ט
	-1,2-Dichlorobenzene		1.0	ן ט
541-73-1	-1,3-Dichlorobenzene		1.0	ט
	-1,4-Dichlorobenzene		1.0	ן טן
75-71-8	-Dichlorodifluoromethane		1.0	U
	-1,1-Dichloroethane		1.7	
107-06-2	-1,2-Dichloroethane		1.0	ע
75-35-4	-1,1-Dichloroethene		1.0	ע
156-59-2	-cis-1,2-Dichloroethene		5.2	
156-60-5	-trans-1,2-Dichloroethene		1.0	ן ט
	-1,2-Dichloropropane		1.0	ן ט
10061-01-5	-cis-1,3-Dichloropropene		1.0	ן טן
10061-02-6	-trans-1,3-Dichloropropene		1.0	ן ט
	-Ethylbenzene		1.0	ן ט
591-78-6	-2-Hexanone		5.0	ע
98-82-8	-Isopropylbenzene_		1.0	บ
79-20-9	-Methyl acetate		1.0	ט
	-Methylcyclohexane		1.0	ט
	-Methylene chloride		1.0	ע

168/504

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-20		
I*184 - \(\cup \)		
1		

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58719

Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{ML} Lab File ID: $\underline{Q9554.RR}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: $\underline{DB-624}$ ID: $\underline{0.25}$ (mm) Dilution Factor: $\underline{1.00}$

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
108-10-1	4-Methyl-2-pentanone		5.0	U
	Methyl-t-Butyl Ether (MTBE)		8.5	
91-20-3	Naphthalene		1.0	U
100-42-5	Styrene		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
127-18-4	Tetrachloroethene		1.0	U
108-88-3	Toluene		1.0	U
120-82-1	1,2,4-Trichlorobenzene		1.0	U
71-55-6	1,1,1-Trichloroethane		2.4	
79-00-5	1,1,2-Trichloroethane		1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-triflu	oroethane	1.0	U
75-69-4	Trichlorofluoromethane		1.0	U
79-01-6	Trichloroethene		6.4	
75-01-4	Vinyl chloride		0.47	J
	Total Xylenes		3.0	U
	-			

Vial: 37

Quantitation Report

Data File : C:\HPCHEM\1\DATA\122705\Q9554.D

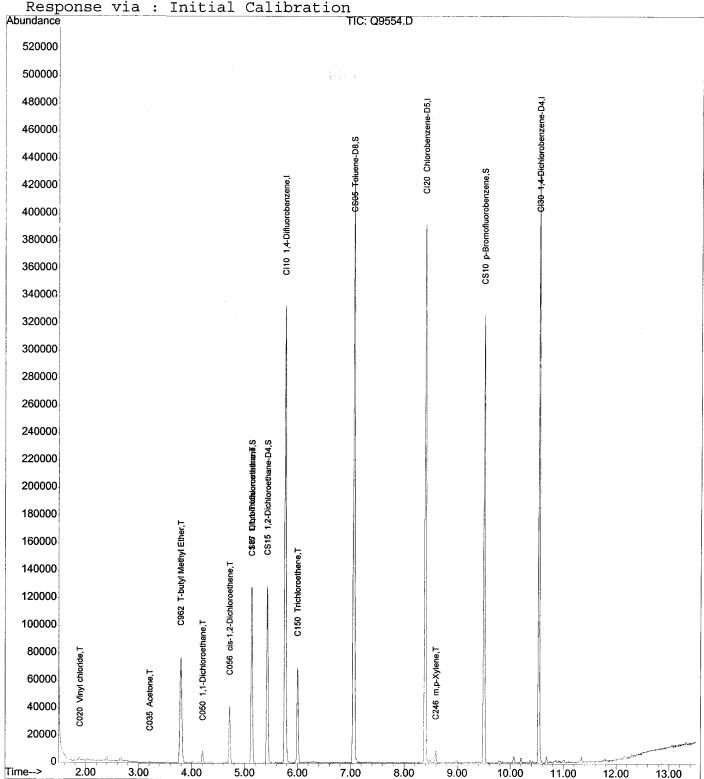
Acq On : 28 Dec 2005 1:05

Operator: TLC Sample : A5E58719 Inst : HP5973 Q

Misc

Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Dec 28 8:44 2005 Quant Results File: A5I02444.RES

Method : C:\HPCHEM\1\METHODS\Q8260\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Wed Dec 28 08:38:57 2005

Response via :

Data File: C:\HPCHEM\1\DATA\122705\Q9554.D

Vial: 37 Acq On : 28 Dec 2005 1:05 Operator: TLC

: A5E58719 Sample Inst: HP5973 Q

Misc

Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Dec 28 8:44 2005

Quant Results File: A5I02444.RES

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Wed Dec 28 08:38:57 2005

Response via : Initial Calibration

DataAcq Meth : VOA

The 2005 20 IS QA File : C:\HPCHEM\1\DATA\122705\Q9545.D (27 Dec 2005 20:40)

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
1) CI10 1,4-Difluorobenzene	5.77	114	275423	125.00 ng	0.00 95.57%
43) CI20 Chlorobenzene-D5	8.39	117	244192	125.00 ng	0.00 96.81%
62) CI30 1,4-Dichlorobenzene-	10.53	152	117109	125.00 ng	0.00
System Monitoring Compounds					
30) CS87 Dibromofluoromethane		111			0.00
Spiked Amount 125.000 Range 31) CS15 1,2-Dichloroethane-D	5 /U	- 130 - 65			0.00
Spiked Amount 125.000 Range		- 143			.90%
44) CS05 Toluene-D8	7.05	98	296623	122.96 ng	0.00
Spiked Amount 125.000 Range	e 76	- 116	Recove	ry = 98	.37%
61) CS10 p-Bromofluorobenzene	9.50	174	99244		0.00
Spiked Amount 125.000 Range	e 73	- 117	Recove	ry = 102	.14%
Target Compounds					Qvalue
2) C290 Dichlorodifluorometh	0.00	85	0	N.D.	Qvarue
3) C010 Chloromethane	0.00	50	0	N.D.	
(4) C020 Vinyl chloride	1.90	62	1402	2.35 ng	89
5) C015 Bromomethane	0.00	94	0	N.D.	
6) C025 Chloroethane	0.00	64	0	N.D.	
7) C275 Trichlorofluorometha	0.00	101	0	N.D.	
8) C045 1,1-Dichloroethene	0.00	96	0	N.D.	
9) C030 Methylene chloride	0.00	84	0	N.D.	
10) C040 Carbon disulfide	0.00	76 5.6	0	N.D.	
11) C036 Acrolein 12) C038 Acrylonitrile	0.00 3.79	56 53	0 562	N.D.	
13) C035 Acetone	$\frac{3.79}{3.21}$		680	N.D. 	# 44
14) C300 Acetonitrile	0.00	41	0	N.D.	11
15) C276 Iodomethane	0.00	142	Ö	N.D.	
16) C291 1,1,2 Trichloro-1,2,		101	Ö	N.D.	
17 C962 T-butyl Methyl Ether	3.79	73	90377	42.63 ng	98
18) C057 trans-1,2-Dichloroet	3.81	96	496	N.D.	
19) C255 Methyl Acetate	3.53	43	960	N.D.	
20 C050 1,1-Dichloroethane	4.20	63	10430	8.57 ng	96
21) C125 Vinyl Acetate	0.00	43	0	N.D.	۸/
22) C051 2,2-Dichloropropane	0.00	77	0	N.D.	M.
(#) = qualifier out of range (m) =	 = manı	al int	egration		

Data File : C:\HPCHEM\1\DATA\122705\Q9554.D

Vial: 37 Acq On : 28 Dec 2005 1:05 Operator: TLC

Sample : A5E58719 Inst : HP5973 Q Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 28 8:44 2005 Quant Results File: A5I02444.RES

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Wed Dec 28 08:38:57 2005

Response via : Initial Calibration

DataAcq Meth: VOA

Compo	ound	R.T.	QIon	Response	Conc Unit	Qva	alue
23) C056	cis-1,2-Dichloroethe	4.72	96	18411	25.99 ng	#	85
(24) C272	Tetrahydrofuran	0.00	42	0	N.D.		
25) C222	Bromochloromethane	0.00	128	0	N.D.		
26) C060	Chloroform	0.00	83	0	N.D.		
(27)XC115	1,1,1-Trichloroethan	5.13	97	10889	12.22 ng		90
28) C120	Carbon tetrachloride	0.00	117	0	N.D.		
29) C116	1,1-Dichloropropene	0.00	75	0	N.D.		
32) C165	Benzene	5.45	78	552	N.D.		
33) C065	1,2-Dichloroethane	0.00	62	0	N.D.		
34) C110	2-Butanone	0.00	43	0	N.D.		
3 5) C256	Cyclohexane	0.00	56	0	N.D.		
(36) (35)	Trichloroethene	6.00	95	21247	31.89 ng	#	72
37) C140	1,2-Dichloropropane	0.00	63	0	N.D.		
38) C278	Dibromomethane	0.00	93	0	N.D.		
39) C130	Bromodichloromethane	0.00	83	0	N.D.		
40) C161	2-Chloroethylvinyl E	0.00	63	. 0	N.D.		
41) C012	Methylcycolhexane	0.00	8.3	0	N.D.		
42) C145	cis-1,3-Dichloroprop	0.00	75	0	N.D.		
45) C230	Toluene	7.12	92	326	N.D.		
46) C170	trans-1,3-Dichloropr	0.00	75	0	N.D.		
47) C284	Ethyl Methacrylate	0.00	69	0	N.D.		
48) C160	1,1,2-Trichloroethan	0.00	83	0	N.D.		
49) C210	4-Methyl-2-pentanone	7.05	43	1120	N.D.		
50) C220	Tetrachloroethene	7.61	166	275	N.D.		
51) C221	1,3-Dichloropropane	0.00	76	0	N.D.		
52) C155	Dibromochloromethane	0.00	129	0	N.D.		
53) C163	1,2-Dibromoethane	0.00	107	0	N.D.		
54) C215	2-Hexanone	0.00	43	0	N.D.		
55) C235	Chlorobenzene	0.00	112	0	N.D.		
56) C281	1,1,1,2-Tetrachloroe	0.00	131	0	N.D.		
57) C240	Ethylbenzene	8.49	91	2431	N.D.		
(58) C246	m,p-Xylene	8.60	106	3347	2.69 ng	#	72
59) C247	o-Xylene	8.98	106	685	N.D.		
60) C245	Styrene	0.00	104	0	N.D.		
63) C180	Bromoform	0.00	173	0	N.D.		
64) C966	Isopropylbenzene	0.00	105	0	N.D.		
65) C301	Bromobenzene	0.00	156	0	N.D.		
66) C225	1,1,2,2-Tetrachloroe	0.00	83	0	N.D.		
67) C282			110	0	N.D.		
	t-1,4-Dichloro-2-But	0.00	51	0	N.D.		.~ ,9
	n-Propylbenzene	9.71	91	600	N.D.		W, (4)
	: fine out of ()						-T- ///

HP5973-Q

Quantitation Report

Data File: C:\HPCHEM\1\DATA\122705\Q9554.D

Vial: 37 Acq On : 28 Dec 2005 1:05 Operator: TLC

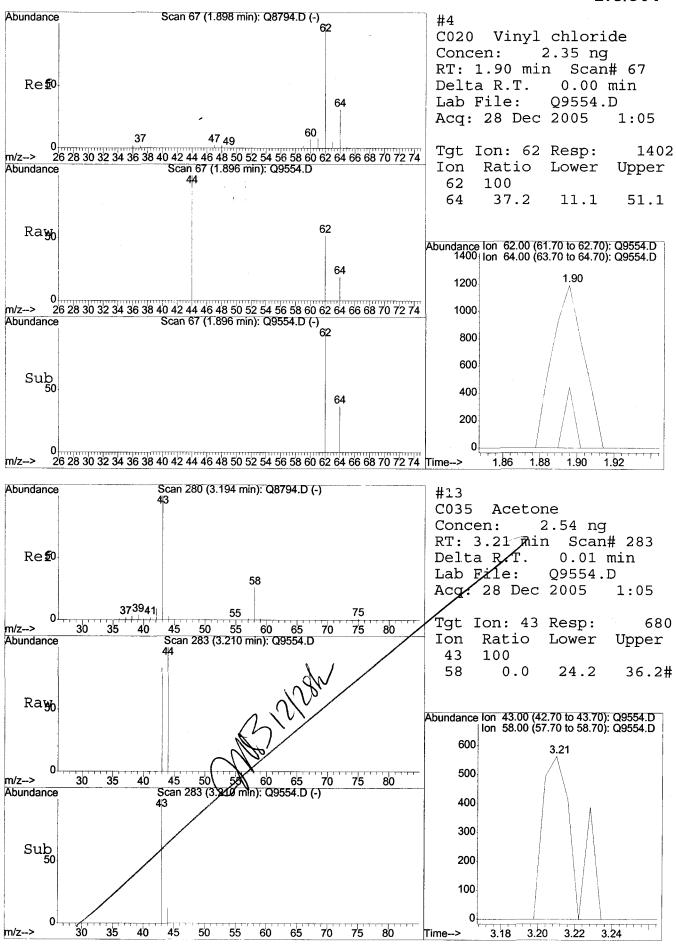
Sample : A5E58719 Inst: HP5973 Q Misc Multiplr: 1.00

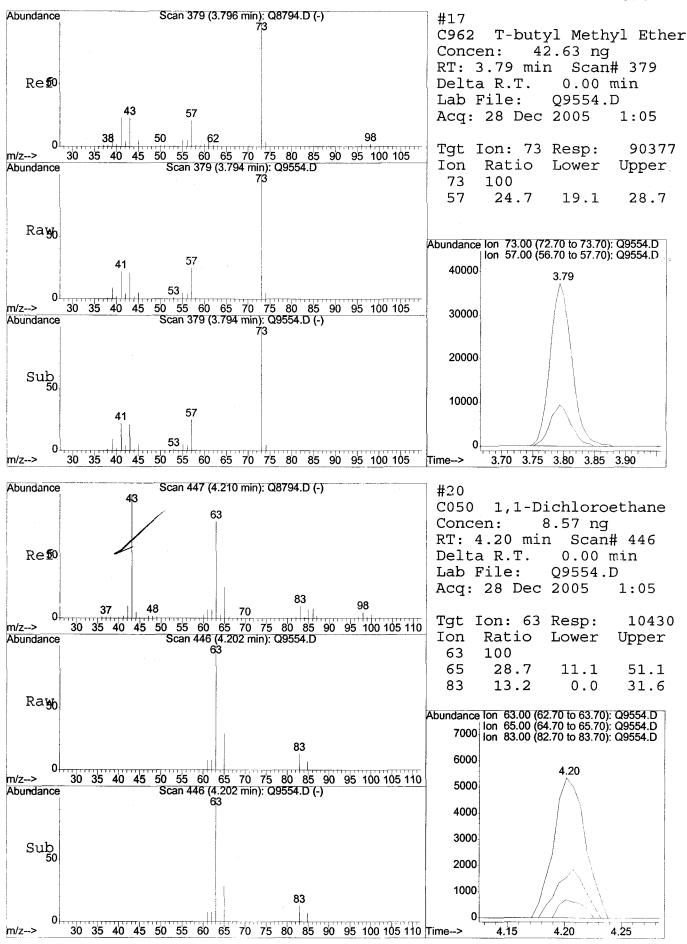
MS Integration Params: RTEINT.P

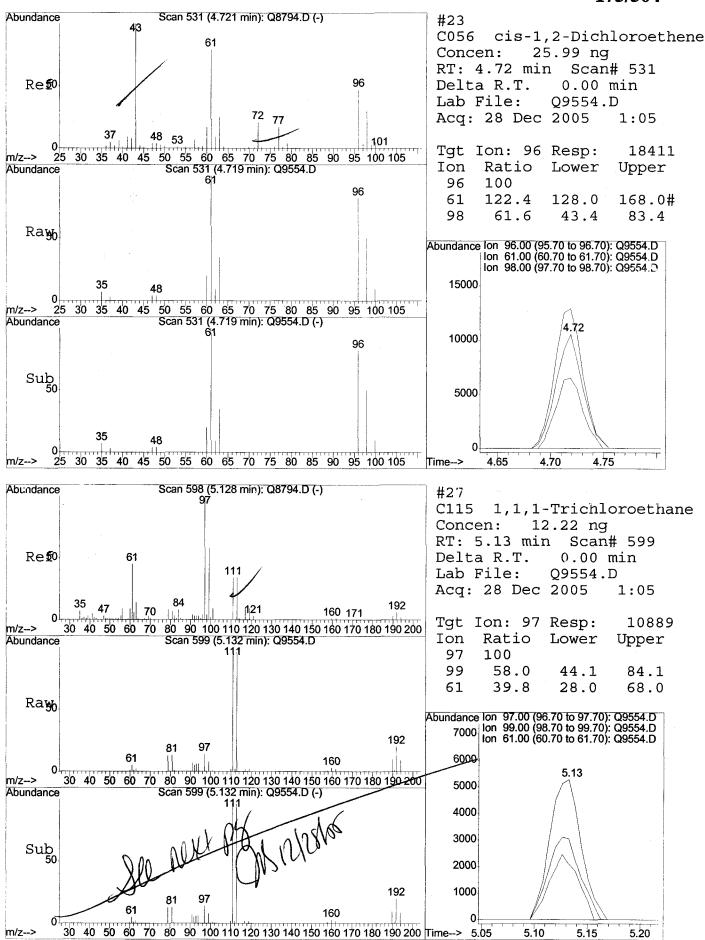
Quant Time: Dec 28 8:44 2005 Quant Results File: A5I02444.RES

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML


Last Update : Wed Dec 28 08:38:57 2005


Response via : Initial Calibration


DataAcq Meth : VOA

	Compo	und	R.T.	QIon	Response	Conc Unit	Qvalue
70)	C303	2-Chlorotoluene	0.00	126	0	N.D.	
71)	C289	4-Chlorotoluene	0.00	126	0	N.D.	
72)	C304	1,3,5-Trimethylbenze	9.86	105	624	N.D.	
73)	C306	tert-Butylbenzene	0.00	134	0	N.D.	
74)	C307	1,2,4-Trimethylbenze	10.20	105	3517	N.D.	
75)	C308	sec-Butylbenzene	10.20	105	3517	N.D.	
76)	C260	1,3-Dichlorobenzene	0.00	146	0	N.D.	
77)	C309	4-Isopropyltoluene	0.00	119	0	N.D.	
78)	C267	1,4-Dichlorobenzene	0.00	146	0	N.D.	
79)	C249	1,2-Dichlorobenzene	0.00	146	0	N.D.	
80)	C310	n-Butylbenzene	0.00	91	0	N.D.	
81)	C286	1,2-Dibromo-3-Chloro	0.00	75	0	N.D.	
82)	C313	1,2,4-Trichlorobenze	0.00	180	O	N.D.	~
83)	C316	Hexachlorobutadiene	0.00	225	0	N.D.	
84)	C314	Naphthalene	12.30	128	1676	N.D.	
85)	C934	1,2,3-Trichlorobenze	0.00	180	0	N.D.	

Quantitation Report (Qedit)

Data File : C:\HPCHEM\1\DATA\122705\Q9554.D

Acq On : 28 Dec 2005 1:05

Operator: TLC

Vial: 37

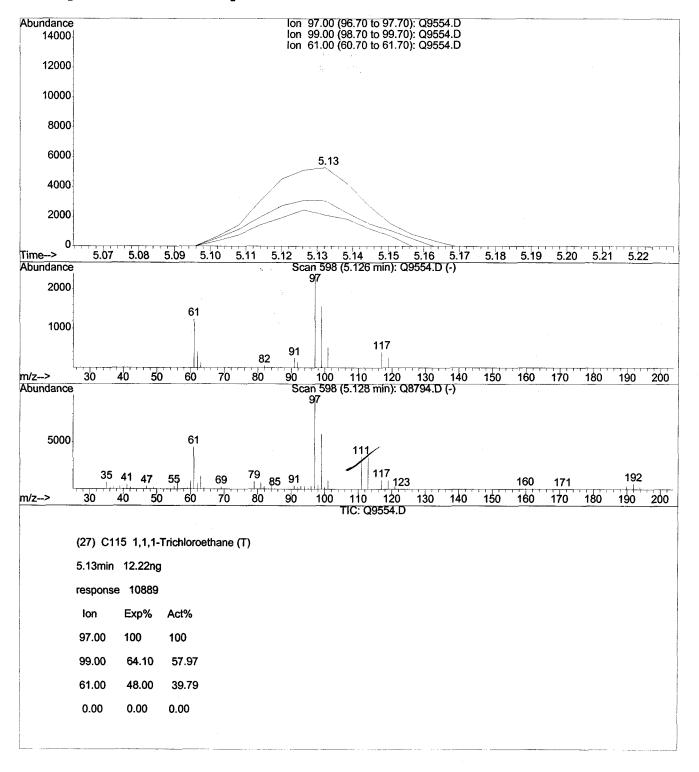
Sample : Misc :

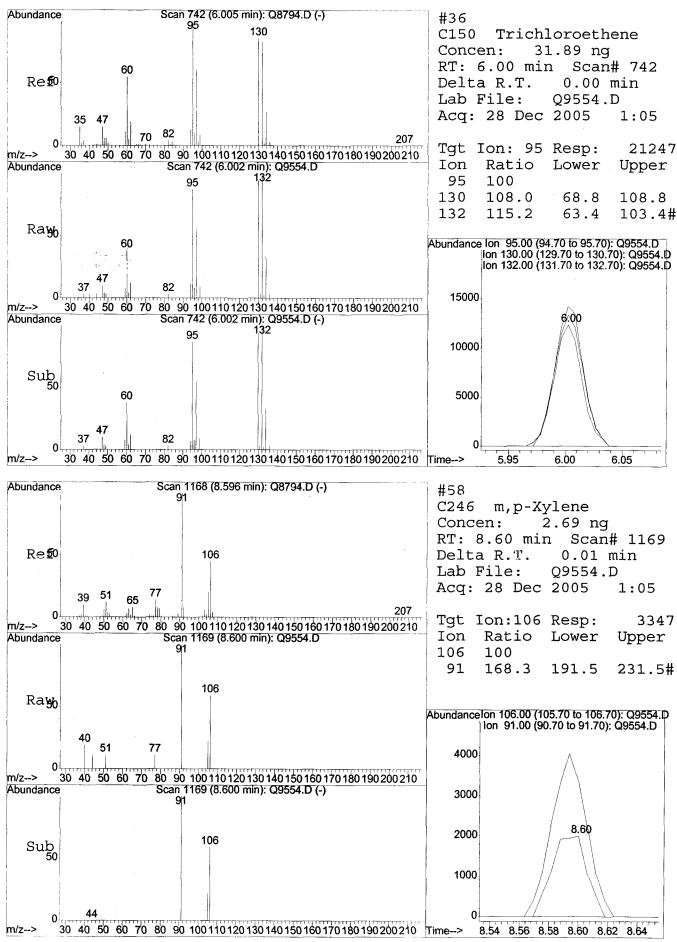
: A5E58719

Inst : HP5973 Q

Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Dec 28 13:45 2005 Quant Results File: temp.res


Method

: C:\HPCHEM\1\METHODS\Q8260\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update: Wed Dec 28 13:19:14 2005 Response via: Multiple Level Calibration

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-21			•
-------	--	--	---

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58712

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{S9725.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: $\underline{DB-624}$ ID: $\underline{0.18}$ (mm) Dilution Factor: $\underline{1.00}$

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

		CONCENTRATION	UNITS	•	
CAS NO.	COMPOUND	(ug/L or ug/K	ig)	<u>UG/L</u>	Q
67-64-1			-	5.0	U
71-43-2				1.0	ן ט
	Bromodichloromethane			1.0	U
75-25-2				1.0	U
1	Bromomethane			1.0	U
78-93-3				5.0	ע
75-15-0	Carbon Disulfide			1.0	U
	Carbon Tetrachloride			1.0	U
108-90-7	Chlorobenzene			1.0	U
75-00-3	Chloroethane			1.0	U
67-66-3	Chloroform			1.0	U
74-87-3	Chloromethane			1.0	U
	Cyclohexane			1.0	U
106-93-4	1,2-Dibromoethane			1.0	U
	Dibromochloromethane			1.0	U
	1,2-Dibromo-3-chloropropane			1.0	U
95-50-1	1,2-Dichlorobenzene			1.0	U
541-73-1	1,3-Dichlorobenzene			1.0	U
	1,4-Dichlorobenzene			1.0	U
75-71-8	Dichlorodifluoromethane			1.0	U
75-34-3	1,1-Dichloroethane			0.85	J
107-06-2	1,2-Dichloroethane			1.0	U
75-35-4	1,1-Dichloroethene			1.0	U
156-59-2	cis-1,2-Dichloroethene			18	
156-60-5	trans-1,2-Dichloroethene			1.0	U
78-87-5	1,2-Dichloropropane			1.0	U
	cis-1,3-Dichloropropene			1.0	U
10061-02-6	trans-1,3-Dichloropropene			1.0	U
100-41-4	Ethylbenzene			1.0	ע
591-78-6				5.0	U
98-82-8	Isopropylbenzene			1.0	U
79-20-9	Methyl acetate			1.0	U
	Methylcyclohexane			1.0	ט
	Methylene chloride			1.0	U

179/504

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-21		
-------	--	--

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58712

Sample wt/vol: 5.00 (g/mL) ML Lab File ID: S9725.RR

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: DB-624 ID: 0.18 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L_	Q
108-10-1	4-Methyl-2-pentanone		5.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)		0.99	J
91-20-3	Naphthalene		1.0	U
100-42-5	Styrene		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
127-18-4	Tetrachloroethene		1.0	ַ ע
108-88-3	Toluene		1.0	U
120-82-1	1,2,4-Trichlorobenzene		1.0	U
71-55-6	1,1,1-Trichloroethane		1.4	
79-00-5	1,1,2-Trichloroethane		1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-triflu	oroethane	1.0	U
75-69-4	Trichlorofluoromethane		1.0	U
79-01-6	Trichloroethene		20	
75-01-4	Vinyl chloride		1.0	U
1330-20-7	Total Xylenes		3.0	U
1				

Data File : D:\DATA\122805\S9725.D

Acq On : 28 Dec 2005 22:42

Sample : 28 Dec 2005 22:

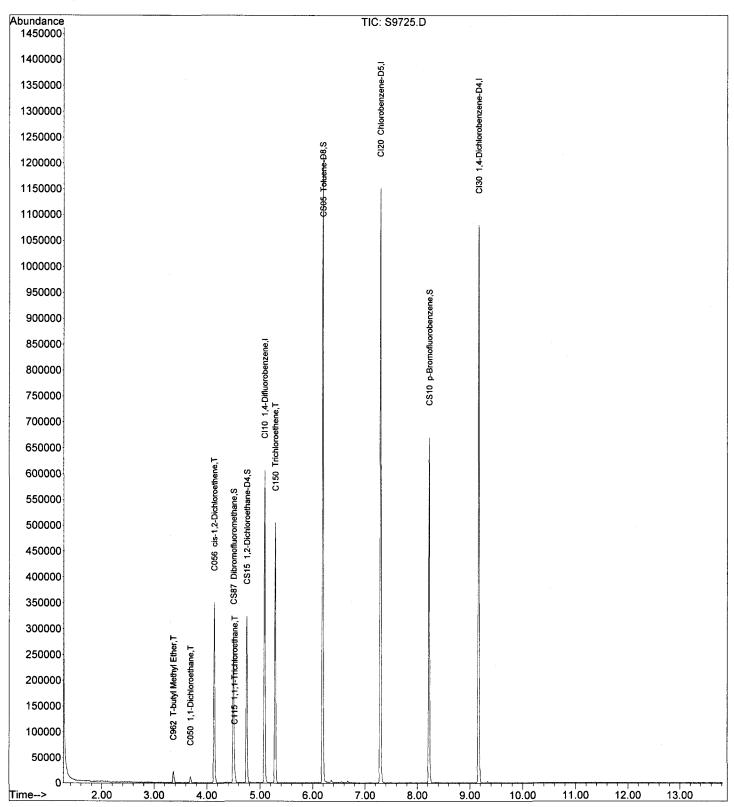
Misc

MS Integration Params: RTEINT.P

Vial: 31
Operator: TLC
Inst : HP5973S

Multiplr: 1.00

Quant Time: Dec 29 09:01:05 2005 Results File: A5I0002442_E2.RES


Quant Method: C:\MSDCHEM\1...\A5I0002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Wed Dec 28 20:05:16 2005

Response via : Initial Calibration

DataAcq Meth: VOA

Quantitation Report STL Buffalo (QT Reviewed) 181/504

Data File : D:\DATA\122805\S9725.D

Vial: 31 Acq On : 28 Dec 2005 22:42 Operator: TLC

: A5E58712 Sample

Inst : HP5973S Multiplr: 1.00

12/29/05

Misc

MS Integration Params: RTEINT.P

Quant Time: Dec 29 09:01:05 2005 Results File: A5I0002442 E2.RES

Quant Method : C:\MSDCHEM\1...\A5I0002442_E2.M (RTE Integrator)

: 8260 5ML WATER Title

Last Update : Wed Dec 28 20:05:16 2005

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\DATA\122805\S9718.D (28 Dec 2005 19:47)

Internal :	Standards	R.T.	OIon	Response	Conc Ur	nits	Dev	(Min)
				L				(Ar)
1) CI10	1,4-Difluorobenzene	5.09	114	357903	125.00	ng		0.00
							92	2.32%
43) CI20	Chlorobenzene-D5	7.30	117	522948	125.00	ng		0.00
60) 0700	1 1 5 1 1 1						93	3.74%
62) CI30	1,4-Dichlorobenzene-	9.17	152	246274	125.00	ng	0.1	0.00
							8.5	3.38%
Systom Mor	nitoring Compounds							
	Dibromofluoromethane	4.50	111	139875	138.47	na		0.00
Spiked Ar			- 130	Recove		110.	788	0.00
31) CS15	1,2-Dichloroethane-D		65		134.54		, 70%	0.00
Spiked Ar			- 136	Recove		107.	638	0.00
44) CS05	Toluene-D8	6.20	98		120.30		. 000	0.00
Spiked Ar			- 122				. 24%	0.00
	p-Bromofluorobenzene		174		110.43			0.00
		nge 74		Recove			. 34%	0.00
					- 1			
Target Cor	mpounds						Qva	alue
2) C290	Dichlorodifluorome	0.00	85	0	N.D.			
3) C010	Chloromethane	0.00	50	0	N.D.			
4) C020	Vinyl chloride	1.60	62	942	N.D.			
5) C015	Bromomethane	0.00	94	0	N.D.			
6) C025	Chloroethane	0.00	64	0	N.D.			
7) C275	Trichlorofluoromet	0.00	101	0	N.D.			
8) C045	1,1-Dichloroethene	0.00	96	0	N.D.			
9) C030	Methylene chloride	0.00	8 4	0	N.D.			
10) C040	Carbon disulfide	2.88	76	887	N.D.			
11) C036	Acrolein	0.00	56	0	N.D.			
12) C038	Acrylonitrile	3.36	53	138	N.D.			
13) C035	Acetone	2.77	43	535	N.D.			
14) C300	Acetonitrile	0.00	41	0	N.D.			
15) C276	Iodomethane		142	0	N.D.			
16) C291	1,1,2 Trichloro-1,		101	0	N.D.			
17) \$962	T-butyl Methyl Ether			14519	4.97	ng	#	8 4
18) C057	trans-1,2-Dichloro	3.36	96	450	N.D.			
19) C255	Methyl Acetate	0.00	43	0	N.D.			0.0
20) <u>C</u> 050	1,1-Dichloroethane	3.69	63	9798	4.23	ng		93
21) C125	Vinyl Acetate	0.00	43	0	N.D.			
22) C051	2,2-Dichloropropan	0.00	77	0	N.D.			0.7
23 C056	cis-1,2-Dichloroethe	4.14	96	123393	91.61	ng		91
24) C272	Tetrahydrofuran	0.00	42	0	N.D.			
25) C222	Bromochloromethane		128	0	N.D.			
26) C060 27) 2115	Chloroform	4.39	83	520	N.D.			0.4
28) C120	1,1,1-Trichloroethan Carbon tetrachlori	4.53	97	10863	6.99	ng		94
			117	0 0	N.D.			
29) C116 32) C165	1,1-Dichloropropen Benzene	0.00 4.82	75 79	1059	N.D.			
33) C065			78	0	N.D.			
34) C110	1,2-Dichloroethane 2-Butanone	0.00	62 43	0	N.D.			
35) C256	Cyclohexane	0.00	43 56	0	N.D. N.D.			
36) C150	Trichloroethene	5.29	95	125467	99.06	næ		97
$\sim 37)$ C140	1,2-Dichloropropan	0.00	63	0	N.D.	119		٠, ر
38) C278	Dibromomethane	0.00	93	0	N.D.			~\\
307 0270	DIDITION CHANGE	5.00))	•	14.0.			M / M

Data File : D:\DATA\122805\S9725.D Acq On : 28 Dec 2005 22:42 Sample : A5E58712

Vial: 31
Operator: TLC
Inst : HP5973S
Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 29 09:01:05 2005 Results File: A5I0002442_E2.RES

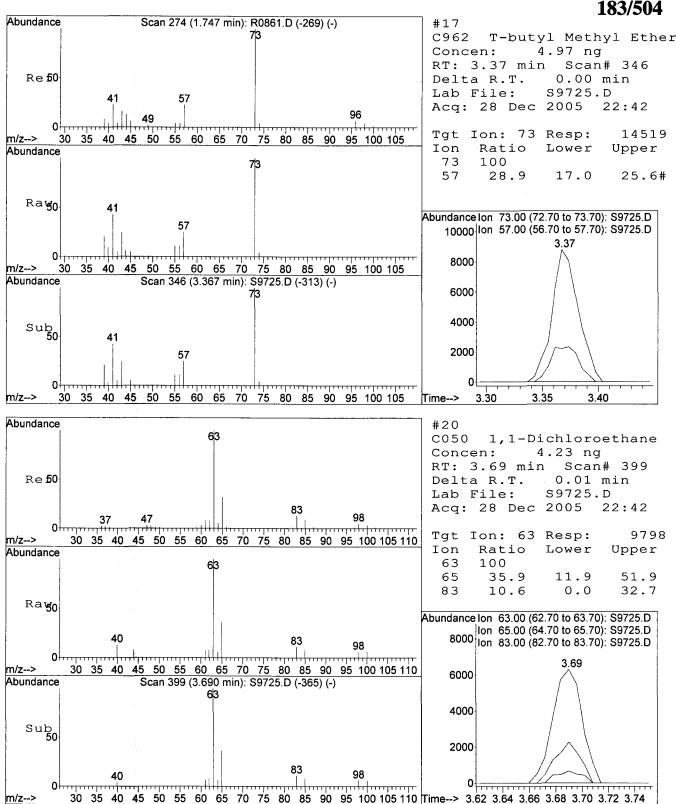
Quant Method : C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

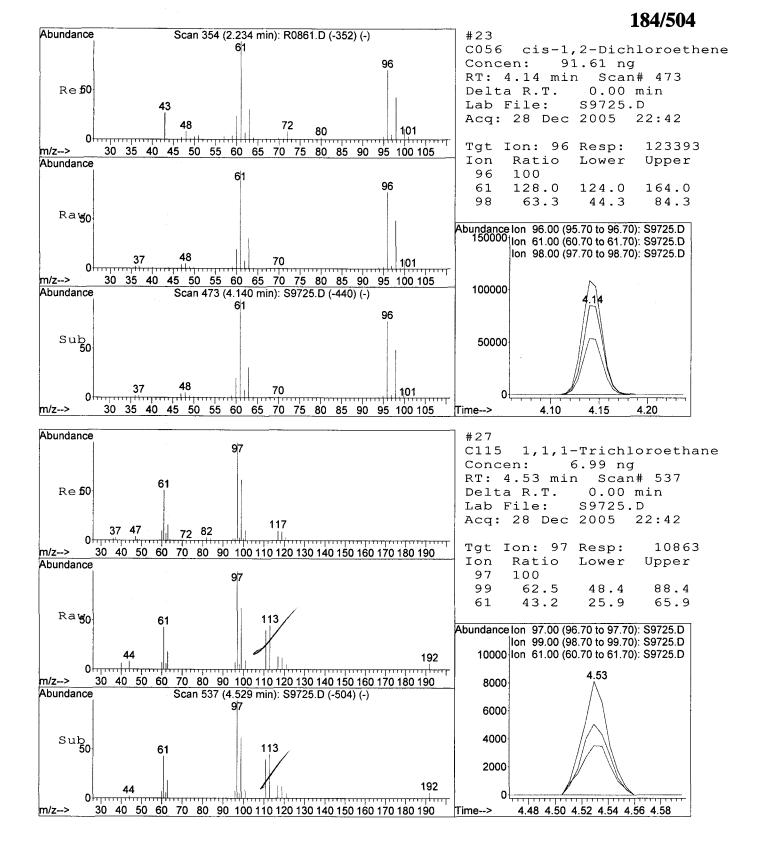
Title : 8260 5ML WATER

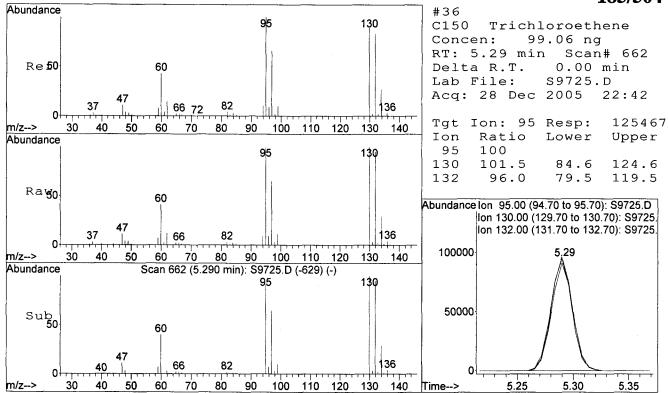
Last Update : Wed Dec 28 20:05:16 2005

Response via : Initial Calibration

DataAcq Meth : VOA


Misc


IS QA File : D:\DATA\122805\S9718.D (28 Dec 2005 19:47)


39) C130 Bromodichlorometha 0.00 83 0 N.D.	Inte	ernal	Standards	R.T	. QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
41) C012 Methylcycolhexane 0.00 83 0 N.D. 42) C145 cis-1,3-Dichloropr 0.00 75 0 N.D. 45) C230 Toluene 6.25 92 195 N.D. 46) C170 trans-1,3-Dichloro 0.00 75 0 N.D. 47) C284 Ethyl Methacrylate 0.00 69 0 N.D. 48) C160 1,1,2-Trichloroeth 0.00 83 0 N.D. 49) C210 4-Methyl-2-pentano 6.19 43 2505 N.D. 50) C220 Tetrachloroethene 6.67 166 630 N.D. 51) C221 1,3-Dichloropropan 0.00 76 0 N.D. 52) C155 Dibromochlorometha 0.00 129 0 N.D. 53) C163 1,2-Dibromoethane 0.00 107 0 N.D. 54) C215 2-Hexanone 0.00 43 0 N.D. 55) C235 Chlorobenzene 7.32 112 160 N.D. 57) C240 Ethylbenzene 7.30 91 782 N.D. 58) C246 m,p-Xylene 0.00 106 0 N.D. 59) C247 o-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 106 0 N.D. 613 C180 Bromoform 0.00 173 0 N.D. 64) C966 Isopropylbenzene 0.00 156 0 N.D. 65) C381 t1,1,2-Tetrachlor 0.00 156 0 N.D. 66) C282 1,1,2,2-Tetrachlor 0.00 156 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 156 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 53 0 N.D. 69) C302 n-Propylbenzene 0.00 126 0 N.D. 69) C302 n-Propylbenzene 0.00 126 0 N.D. 69) C302 n-Propylbenzene 0.00 126 0 N.D. 69) C303 3-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C308 sec-Butylbenzene 0.00 134 0 N.D. 73) C308 1-3,5-Trimethylben 0.00 126 0 N.D. 74) C309 4-Tsinchlorobenzen 0.00 126 0 N.D. 75) C308 sec-Butylbenzene 0.00 165 0 N.D. 76) C249 1,2-Dichlorobenzen 0.00 166 0 N.D. 77) C309 4-Tsinchlorobenzen 0.00 167 0 N.D. 78) C249 1,2-Dichlorobenzen 0.00 167 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 168 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 79) C310 1 N.D. 70) C310 1 N.D. 710 C301 1 N.D. 720 C311 1 N.D. 721 C311 1 N.D. 722 C313 1 1,2 1-Trichloroben 0.00 120 0 N.D. 731 C314 Naphthalene 0.00 1225 0 N.D.	39)	C130	Bromodichlorometha	0.00	83	0	N.D.	
42) C145 cis-1,3-Dichloropr 0.00 75 0 N.D. 45) C230 Toluene 6.25 92 195 N.D. 46) C170 trans-1,3-Dichloro 0.00 69 0 N.D. 47) C284 Ethyl Methacrylate 0.00 69 0 N.D. 48) C160 1,1,2-Trichloroeth 0.00 69 0 N.D. 49) C210 4-Methyl-2-pentano 6.19 43 2505 N.D. 50) C220 Tetrachloroethene 6.67 166 630 N.D. 51) C221 1,3-Dichloroperopan 0.00 76 0 N.D. 53) C163 1,2-Dibromoethane 0.00 107 0 N.D. 54) C215 2-Hexanone 0.00 131 0 N.D. 55) C235 Chlorobenzene 7.32 112 160 N.D. 55) C235 C	40)	C161	2-Chloroethylvinyl	0.00	63	0	N.D.	
45) C230 Toluene 6.25 92 195 N.D. 46) C170 trans-1,3-Dichloro 0.00 75 0 N.D. 47) C284 Ethyl Methacrylate 0.00 69 0 N.D. 48) C160 1,1,2-Trichloroeth 0.00 83 0 N.D. 50 C210 4-Methyl-2-pentano 6.19 43 2505 N.D. 50 C220 Tetrachloroethene 6.67 166 630 N.D. 51 C221 1,3-Dichloropropan 0.00 76 0 N.D. 52 C155 Dibromochlorometha 0.00 129 0 N.D. 53 C163 1,2-Dibromochlorometha 0.00 107 0 N.D. 54 C215 2-Hexanone 0.00 107 0 N.D. 55 C235 Chlorobenzene 7.32 112 160 N.D. 57 C240 Ethy	41)	C012	Methylcycolhexane	0.00	83	0	N.D.	
46) C170 trans-1,3-Dichloro 0.00 75 0 N.D. 47) C284 Ethyl Methacrylate 0.00 69 0 N.D. 48) C160 1,1,2-Trichloroeth 0.00 83 0 N.D. 49) C210 4-Methyl-2-pentano 6.19 43 2505 N.D. 51) C220 Tetrachloroethene 6.67 166 630 N.D. 51) C221 1,3-Dichloropropan 0.00 76 0 N.D. 53) C163 1,2-Dibromochlorometha 0.00 129 0 N.D. 54) C215 2-Hexanone 0.00 107 0 N.D. 55) C235 Chlorobenzene 7.32 112 160 N.D. 56) C281 1,1,1,2-Tetrachlor 0.00 131 0 N.D. 57) C240 Ethylbenzene 7.30 91 782 N.D. 50) C247	42)	C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
47) C284 Ethyl Methacrylate 0.00 69 0 N.D. 48) C160 1,1,2-Trichloroeth 0.00 83 0 N.D. 49) C210 4-Methyl-2-pentano 6.19 43 2505 N.D. 50) C220 Tetrachloroethene 6.67 166 630 N.D. 51) C221 1,3-Dichloropropan 0.00 76 0 N.D. 52) C155 Dibromochloromethane 0.00 129 0 N.D. 53) C163 1,2-Dibromoethane 0.00 107 0 N.D. 54) C215 2-Hexanone 0.00 106 0 N.D. 55) C235 Chlorobenzene 7.32 112 160 N.D. 55) C235 Chlorobenzene 7.30 91 782 N.D. 57) C240 Ethylbenzene 0.00 106 0 N.D. 59) C247 <t< td=""><td>45)</td><td>C230</td><td>Toluene</td><td>6.25</td><td>92</td><td>195</td><td>N.D.</td><td></td></t<>	45)	C230	Toluene	6.25	92	195	N.D.	
48) C160 1,1,2-Trichloroeth 0.00 83 0 N.D. 49) C210 4-Methyl-2-pentano 6.19 43 2505 N.D. 50) C220 Tetrachloroethene 6.67 166 630 N.D. 51) C221 1,3-Dichloropropan 0.00 76 0 N.D. 52) C155 Dibromochlorometha 0.00 129 0 N.D. 53) C163 1,2-Dibromochloromethane 0.00 107 0 N.D. 54) C215 2-Hexanone 0.00 43 0 N.D. 55) C235 Chlorobenzene 7.32 112 160 N.D. 56) C281 1,1,1,2-Tetrachlor 0.00 131 0 N.D. 57) C240 Ethylbenzene 0.00 106 0 N.D. 58) C247 o-Xylene 0.00 106 0 N.D. 60) C245 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>N.D.</td><td></td></td<>							N.D.	
49) C210 4-Methyl-2-pentano 6.19 43 2505 N.D. 50) C220 Tetrachloroethene 6.67 166 630 N.D. 51) C221 1,3-Dichloropropan 0.00 76 0 N.D. 52) C155 Dibromochlorometha 0.00 129 0 N.D. 53) C163 1,2-Dibromochlorometha 0.00 107 0 N.D. 54) C215 2-Hexanone 0.00 107 0 N.D. 55) C235 Chlorobenzene 7.32 112 160 N.D. 56) C281 1,1,1,2-Tetrachlor 0.00 106 0 N.D. 57) C240 Ethylbenzene 7.30 91 782 N.D. 58) C246 m.p-Xylene 0.00 106 0 N.D. 59) C247 o-Xylene 0.00 106 0 N.D. 63) C16 Bromofo								
50) C220 Tetrachloroethene 6.67 166 630 N.D. 51) C221 1,3-Dichloropropan 0.00 76 0 N.D. 52) C155 Dibromochlorometha 0.00 129 0 N.D. 53) C163 1,2-Dibromochloromethane 0.00 107 0 N.D. 54) C215 2-Hexanone 0.00 107 0 N.D. 55) C235 Chlorobenzene 7.32 112 160 N.D. 56) C281 1,1,2-Tetrachlor 0.00 131 0 N.D. 57) C246 m,p-Xylene 0.00 106 0 N.D. 59) C247 o-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 104 0 N.D. 63) C180 Bromoform 0.00 105 0 N.D. 64) C966 Isopropylbenzene	-							
51) C221 1,3-Dichloropropan 0.00 76 0 N.D. 52) C155 Dibromochlorometha 0.00 129 0 N.D. 53) C163 1,2-Dibromochhane 0.00 107 0 N.D. 54) C215 2-Hexanone 0.00 43 0 N.D. 55) C235 Chlorobenzene 7.32 112 160 N.D. 56) C281 1,1,1,2-Tetrachlor 0.00 131 0 N.D. 57) C240 Ethylbenzene 7.30 91 782 N.D. 58) C246 m,p-Xylene 0.00 106 0 N.D. 59) C247 o-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 106 0 N.D. 61 C245 Styrene 0.00 105 0 N.D. 65) C301 Bromobenzene 0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
52) C155 Dibromochlorometha 0.00 129 0 N.D. 53) C163 1,2-Dibromoethane 0.00 107 0 N.D. 54) C215 2-Hexanone 0.00 43 0 N.D. 55) C235 Chlorobenzene 7.32 112 160 N.D. 56) C281 1,1,2-Tetrachlor 0.00 131 0 N.D. 57) C240 Ethylbenzene 7.30 91 782 N.D. 58) C246 m,p-Xylene 0.00 106 0 N.D. 59) C247 o-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 104 0 N.D. 63) C180 Bromoform 0.00 150 0 N.D. 64) C266 Isopropylbenzene 0.00 156 0 N.D. 65) C301 Bromobenzene 0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
53) C163 1,2-Dibromoethane 0.00 107 0 N.D. 54) C215 2-Hexanone 0.00 43 0 N.D. 55) C235 Chlorobenzene 7.32 112 160 N.D. 56) C281 1,1,1,2-Tetrachlor 0.00 131 0 N.D. 57) C240 Ethylbenzene 7.30 91 782 N.D. 58) C246 m.p. Xylene 0.00 106 0 N.D. 59) C247 o-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 104 0 N.D. 63) C180 Bromoform 0.00 105 0 N.D. 64) C966 Isopropylbenzene 0.00 105 0 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 67) C282 1,2,3-Trichloropenzene 0	-							
54) C215 2-Hexanone 0.00 43 0 N.D. 55) C235 Chlorobenzene 7.32 112 160 N.D. 56) C240 Ethylbenzene 7.30 91 782 N.D. 57) C240 m,p-Xylene 0.00 106 0 N.D. 58) C247 m,p-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 106 0 N.D. 63) C180 Bromoform 0.00 173 0 N.D. 63) C180 Bromobenzene 0.00 173 0 N.D. 64) C966 Isopropylbenzene 0.00 156 0 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 67) C282 1,2,2-Tetrachlor 0 0.00 83 0 N.D. 68) C283 t-1,4-Dichlorobenzene 0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
55) C235 Chlorobenzene 7.32 112 160 N.D. 56) C281 1,1,1,2-Tetrachlor 0.00 131 0 N.D. 57) C240 Ethylbenzene 7.30 91 782 N.D. 58) C246 m,p-Xylene 0.00 106 0 N.D. 59) C247 o-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 104 0 N.D. 63) C180 Bromoform 0.00 105 0 N.D. 64) C966 Isopropylbenzene 0.00 105 0 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 67) C282 1,2,2-Tetrachlor 0.00 130 N.D. N.D. 68) C283 t-1,4-Dichloro-2-B 0.00			-					
56) C281 1,1,1,2-Tetrachlor 0.00 131 0 N.D. 57) C240 Ethylbenzene 7.30 91 782 N.D. 58) C246 m,p-Xylene 0.00 106 0 N.D. 59) C247 o-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 104 0 N.D. 63) C180 Bromoform 0.00 173 0 N.D. 64) C966 Isopropylbenzene 0.00 156 0 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloroper 0.00 10 0 N.D. 69) C302 n-Propylbenzene 0.00 91 0 N.D. 70) C303 2-Chlorotoluene 0.								
57) C246 Ethylbenzene 7.30 91 782 N.D. 58) C246 m,p-Xylene 0.00 106 0 N.D. 59) C247 o-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 104 0 N.D. 63) C180 Bromoform 0.00 173 0 N.D. 64) C966 Isopropylbenzene 0.00 105 0 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 53 0 N.D. 69) C302 n-Propylbenzene 0.00 53 0 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
58) C246 m,p-Xylene 0.00 106 0 N.D. 59) C247 o-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 104 0 N.D. 63) C180 Bromoform 0.00 105 0 N.D. 64) C966 Isopropylbenzene 0.00 105 0 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,7-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 53 0 N.D. 69) C302 n-Propylbenzene 0.00 91 0 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben <								
59) C247 o-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 104 0 N.D. 63) C180 Bromoform 0.00 105 0 N.D. 64) C966 Isopropylbenzene 0.00 105 0 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 53 0 N.D. 69) C302 n-Propylbenzene 0.00 91 0 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 0.00 105 0 N.D. 73) C306 tert-Butylbenzene	-							
60) C245 Styrene 0.00 104 0 N.D. 63) C180 Bromoform 0.00 173 0 N.D. 64) C966 Isopropylbenzene 0.00 155 0 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 53 0 N.D. 69) C302 n-Propylbenzene 0.00 53 0 N.D. 70) C303 2-Chlorotoluene 0.00 91 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 0.00 105 0 N.D. 73) C306 tert-Butylbenzene </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
63) C180 Bromoform 0.00 173 0 N.D. 64) C966 Isopropylbenzene 0.00 105 0 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 53 0 N.D. 69) C302 n-Propylbenzene 0.00 91 0 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 0.00 105 0 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 0.00 105 0 N.D. 75) C308 sec-Butylbenzene 0.00 105 0 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 146 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.	•		-					
64) C966 Isopropylbenzene 0.00 105 0 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 53 0 N.D. 69) C302 n-Propylbenzene 0.00 91 0 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 0.00 105 0 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 0.00 105 0 N.D. 75) C308 sec-Butylbenzene 0.00 105 0 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.			<u>=</u>					
65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 53 0 N.D. 69) C302 n-Propylbenzene 0.00 91 0 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 0.00 105 0 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 0.00 105 0 N.D. 75) C308 sec-Butylbenzene 0.00 105 0 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.	-							
66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 53 0 N.D. 69) C302 n-Propylbenzene 0.00 91 0 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 0.00 105 0 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 0.00 105 0 N.D. 75) C308 sec-Butylbenzene 0.00 105 0 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.								
67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 53 0 N.D. 69) C302 n-Propylbenzene 0.00 91 0 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 0.00 105 0 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 0.00 105 0 N.D. 75) C308 sec-Butylbenzene 0.00 105 0 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 81)								
68) C283 t-1,4-Dichloro-2-B 0.00 53 0 N.D. 69) C302 n-Propylbenzene 0.00 91 0 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 0.00 105 0 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 0.00 105 0 N.D. 75) C308 sec-Butylbenzene 0.00 105 0 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 75 0 N.D. 81) <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
69) C302 n-Propylbenzene 0.00 91 0 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 0.00 105 0 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 0.00 105 0 N.D. 75) C308 sec-Butylbenzene 0.00 105 0 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82)	-							
70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 0.00 105 0 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 0.00 105 0 N.D. 75) C308 sec-Butylbenzene 0.00 105 0 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 225 0 N.D. 84)								
72) C304 1,3,5-Trimethylben 0.00 105 0 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 0.00 105 0 N.D. 75) C308 sec-Butylbenzene 0.00 105 0 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.	70)	C303			126	0	N.D.	
73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 0.00 105 0 N.D. 75) C308 sec-Butylbenzene 0.00 105 0 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 128 0 N.D.	71)	C289	4-Chlorotoluene			0		
73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 0.00 105 0 N.D. 75) C308 sec-Butylbenzene 0.00 105 0 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 128 0 N.D.	72)	C304	1,3,5-Trimethylben	0.00	105	0	N.D.	
75) C308 sec-Butylbenzene 0.00 105 0 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.	73)	C306		0.00	134	0	N.D.	
76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.	74)	C307	1,2,4-Trimethylben	0.00	105	0	N.D.	
77) C309 4-Isopropyltoluene 0.00 119 0 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.	75)	C308	sec-Butylbenzene	0.00	105	0	N.D.	
78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.	76)	C260	1,3-Dichlorobenzen	0.00	146	0	N.D.	
79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.	77)	C309	4-Isopropyltoluene	0.00	119	0	N.D.	
80) C310 n-Butylbenzene 0.00 91 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.			1,4-Dichlorobenzen	0.00	146		N.D.	
81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.	-		1,2-Dichlorobenzen	0.00	146	0	N.D.	
82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.	•							
83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 0.00 128 0 N.D.								
84) C314 Naphthalene 0.00 128 0 N.D.								
	-							
85) C934 1,2,3-Trichloroben 0.00 180 0 N.D.								
	85)	C934	1,2,3-Trichloroben	0.00	180	O	N.D.	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Will Noop

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-32	-		
-------	---	--	--

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58715

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{Q9550.RR}}$

Level: (low/med) Low Date Samp/Recv: $\underline{12/21/2005}$ $\underline{12/23/2005}$

% Moisture: not dec. ____ Heated Purge: \underline{N} Date Analyzed: $\underline{12/27/2005}$

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CAS NO. COMPO		CONCENTRATION (ug/L or ug/E	 UG/L	Q
67-64-1Aceto			5.0	U
71-43-2Benze			1.0	U
75-27-4Bromc	dichloromethane		1.0	U
75-25-2Bromc			1.0	U
74-83-9Bromo	methane		1.0	U
78-93-32-But			5.0	U
75-15-0Carbo	on Disulfide		1.0	U
56-23-5Carbo			1.0	U
108-90-7Chlor	robenzene		1.0	U
75-00-3Chlor	coethane		1.0	U
67-66-3Chlor	roform		1.0	U
74-87-3Chlor	romethane		1.0	U
110-82-7Cyclc	hexane		1.0	U
106-93-41,2-)ibromoethane		1.0	U
124-48-1Dibro			1.0	U
96-12-81,2-	ibromo-3-chloropropan	е	1.0	U
95-50-11,2-	oichlorobenzene		1.0	U
541-73-11,3-E	Dichlorobenzene		1.0	U
106-46-71,4-E			1.0	U
75-71-8Dichl	.orodifluoromethane		1.0	U
75-34-31,1-E	oichloroethane		1.0	U
107-06-21,2-E	oichloroethane		1.0	U
75-35-41,1-D			1.0	U
156-59-2cis-1	,2-Dichloroethene		91	
156-60-5trans	:-1,2-Dichloroethene		5.7	
78-87-51,2-E			1.0	ע
10061-01-5cis-1			1.0	U
10061-02-6trans	-1,3-Dichloropropene		1.0	U
100-41-4Ethyl	benzene.		1.0	U
591-78-62-Hex	anone		5.0	ע
98-82-8Isopr	opylbenzene		1.0	U
79-20-9 M ethy			1.0	U
108-87-2Methy			1.0	U
75-09-2 M ethy	lene chloride		1.0	υ

187/504

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

Lab Name: <u>STL Buffalo</u>	Contract: 4	MW-32
		

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58715

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{Q9550.RR}}$

Level: (low/med) $\underline{10W}$ Date Samp/Recv: $\underline{12/21/2005}$ $\underline{12/23/2005}$

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CAS NO.	COMPOUND	CONCENTRATION UNIT (ug/L or ug/Kg)		0
CAD IVO.	CA-FOOLD	(ug/ii or ug/iig/	<u> </u>	<u> </u>
108-10-1	4-Methyl-2-pentanone		5.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)		2.5	
91-20-3	Naphthalene		1.0	U
100-42-5	Styrene		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
127-18-4	Tetrachloroethene		1.0	U
108-88-3	Toluene		1.0	U
120-82-1	1,2,4-Trichlorobenzene		1.0	ע
71-55-6	1,1,1-Trichloroethane		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-triflu	oroethane	1.0	ע
75-69-4	Trichlorofluoromethane		1.0	U
79-01-6	Trichloroethene		75	
75-01-4	Vinyl chloride		1.0	U
1330-20-7	Total Xylenes		3.0	ט

Quantitation Report

Data File : C:\HPCHEM\1\DATA\122705\Q9550.D

Acq On : 27 Dec 2005 23:12

Sample : A5E58715

Misc

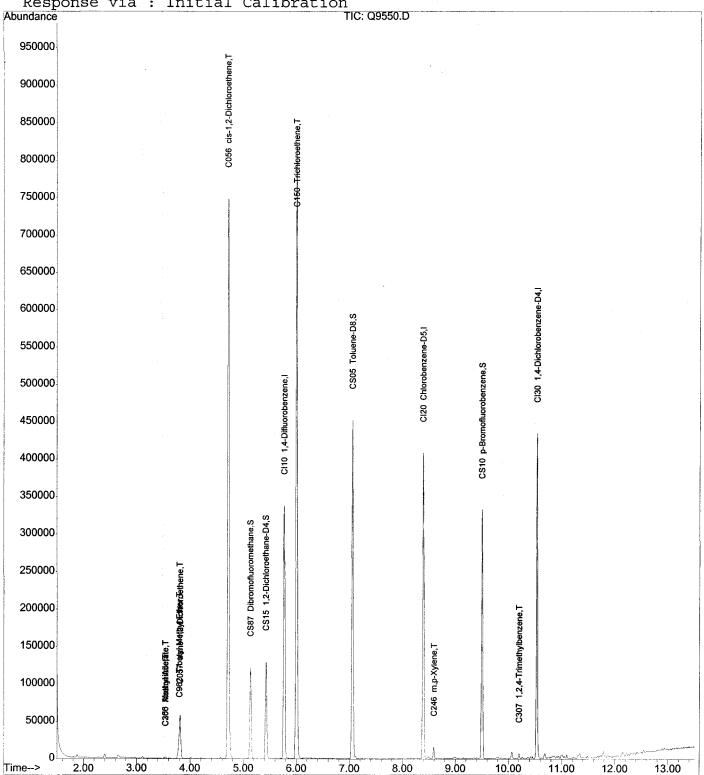
MS Integration Params: RTEINT.P

Vial: 33 Operator: TLC

Inst : HP5973 Q

Multiplr: 1.00

Quant Time: Dec 28 8:44 2005


Quant Results File: A5I02444.RES

Method : C:\HPCHEM\1\METHODS\Q8260\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Wed Dec 28 08:38:57 2005

Response via : Initial Calibration

Data File : C:\HPCHEM\1\DATA\122705\Q9550.D Vial: 33 Acq On : 27 Dec 2005 23:12 Operator: TLC

: A5E58715 Sample Inst: HP5973 Q Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 28 8:44 2005 Quant Results File: A5I02444.RES

Title Last Update Response via DataAcq Meth	d: C:\HPCHEM\1\A51 : 8260 5ML : Wed Dec 28 08:38:5 a: Initial Calibration n: VOA le : C:\HPCHEM\1\DATA	7 2005 n		J	SN	NB 12/18/ ylener 20:40)	os
Internal St				Response		D ~ /	7 \
1) CI10	1,4-Difluorobenzene	5.77	114	278806	125.00	ng	0.00
43) CI20	Chlorobenzene-D5	8.39	117	245891	125.00	ng 97	0.00
62) CI30	1,4-Dichlorobenzene-	10.54	152	118399	125.00	ng	0.00
	itoring Compounds						
	Dibromofluoromethane						0.00
				Recove			
	1,2-Dichloroethane-D				120.73	ng (0.00
	mount 125.000 Rang						
44) CS05	Toluene-D8	7.06	98	303569·	124.97	ng (0.00
Spiked Ar	nount 125.000 Rang	ge 76	- 116	Recove	ry =	99.98%	
	p-Bromofluorobenzene mount 125.000 Rang				129.54	ng	0.00
Spiked A	mount 125.000 Rang	ge /3	- 11/	Recove	ry =	103.638	
Target Comp	oounds					Qva:	lue
	Dichlorodifluorometh	0.00	85	0	N.D.	2	
3) C010		0.00	50		N.D.		
4) C020	Vinyl chloride	1.89	62	332	N.D.		
5) C015	Bromomethane	0.00	94		N.D.		
	Chloroethane	0.00	64		N.D.		
7) C275		0.00			N.D.		
8) C045	1,1-Dichloroethene		96	892	N.D.		
	Methylene chloride			0	N.D.		
10) C040	Carbon disulfide	0.00	76	0	N.D.		
11) C036	Acrolein	0.00	56	0	N.D.		
12) C038 13) C035	Acrylonitrile Acetone	0.00	53 43	0	N.D.		
14) C300	Acetonitrile	3.55	43 41	0 530	N.D. - 4.26 -1	nor # -	26
15) C276	Iodomethane	0.00	142	0	N.D.	+	20
16) C291	1,1,2 Trichloro-1,2,	0.00	101	ő	N.D.		
(17) C962	T-butyl Methyl Ether	3.80	73	27322	12.73 1	na	93
(18)-e057	trans-1,2-Dichloroet	3.82	96	18412	28.64		, 91
19) C255	Methyl Acetate	3.54	43	1913	2.00 1		55
20) C050	1,1-Dichloroethane	4.20	63	1133	N.D.		
21) C125	Vinyl Acetate	0.00	43	0	N.D.		Ç
22) C051	2,2-Dichloropropane	0.00	77 	0	N.D.	·· ·· ·· · · · · · · · · · · · · · · ·	(^N

STL Buffalo

- Ja

Data File : C:\HPCHEM\1\DATA\122705\Q9550.D Vial: 33 Acq On : 27 Dec 2005 23:12 Operator: TLC

Sample : A5E58715 Inst: HP5973 Q Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 28 8:44 2005 Quant Results File: A5I02444.RES

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Wed Dec 28 08:38:57 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Comp	ound	R.T.	QIon	Response	Conc. Unit	Qva	alue
(23) C 056	cis-1,2-Dichloroethe	4.71	96	324826	453.04 ng		93
24) C272	Tetrahydrofuran	0.00	42	0	N.D.		•
25) C222	Bromochloromethane	0.00	128	0	N.D.		
26) C060	Chloroform	0.00	83	0	N.D.		
27) C115	1,1,1-Trichloroethan	0.00	97	0	N.D.		
28) C120	Carbon tetrachloride	0.00	117	0	N.D.		
29) C116	1,1-Dichloropropene	0.00	75	0	N.D.		
32) C165	Benzene	5.45	78	800	N.D.		
33) C065	1,2-Dichloroethane	0.00	62	0	N.D.		
34) C110	2-Butanone	0.00	43	0	N.D.		
35) C256	Cyclohexane	5.15	56	437	N.D.		
(36) C150	Trichloroethene	6.00	95	253531	375.86 ng	#	66
37) C140	1,2-Dichloropropane	0.00	63	0	N.D.		
38) C278	Dibromomethane	0.00	93	0	N.D.		
39) C130	Bromodichloromethane	0.00	83	0	N.D.		
40) C161	2-Chloroethylvinyl E	0.00	63	0	N.D.		٠
41) C012	Methylcycolhexane	6.14	83	147	N.D.		
42) C145	cis-1,3-Dichloroprop	0.00	75	0	N.D.		
45) C230	Toluene	7.12	92	1070	N.D.		
46) C170	trans-1,3-Dichloropr	0.00	75	0	N.D.		
47) C284	Ethyl Methacrylate	0.00	69	0	N.D.		
48) C160	1,1,2-Trichloroethan	0.00	83	0	N.D.		
49) C210	4-Methyl-2-pentanone	7.05	43	957	N.D.		
50) C220	Tetrachloroethene	0.00	166	0	N.D.		
51) C221	1,3-Dichloropropane	0.00	76	0	N.D.		
52) C155	Dibromochloromethane	0.00	129	0	N.D.		
53) C163	1,2-Dibromoethane	0.00	107	0	N.D.		
54) C215	2-Hexanone	0.00	43	0	N.D.		
55) C235	Chlorobenzene	0.00	112	0	N.D.		
56) C281	1,1,1,2-Tetrachloroe	0.00	131	0	N.D.		
(57) C240	Ethylbenzene	8.49	91	3638	N.D.		
(58) C246	m,p-Xylene	8.60	106	5578	4.45 ng	#	72
59) C247	o-Xylene	8.98	106	1173	N.D.		
60) C245	Styrene	0.00	104	0	N.D.		
63) C180	Bromoform	0.00	173	0	N.D.		
64) C966	Isopropylbenzene	0.00	105	0	N.D.		
65) C301	Bromobenzene	0.00	156	0	N.D.		
66) C225	1,1,2,2-Tetrachloroe	0.00	83	0	N.D.		a/
67) C282	1,2,3-Trichloropropa	0.00	110	0	N.D.		7
68) C283 69) C302	•	0.00	51	0	N.D.		۲.
09) C3U2	n-Propylbenzene	9.70 	91	883 	N.D.		

Quantitation Report STL Buffalo 191/504

Data File : C:\HPCHEM\1\DATA\122705\Q9550.D

Vial: 33 Acq On : 27 Dec 2005 23:12 Operator: TLC

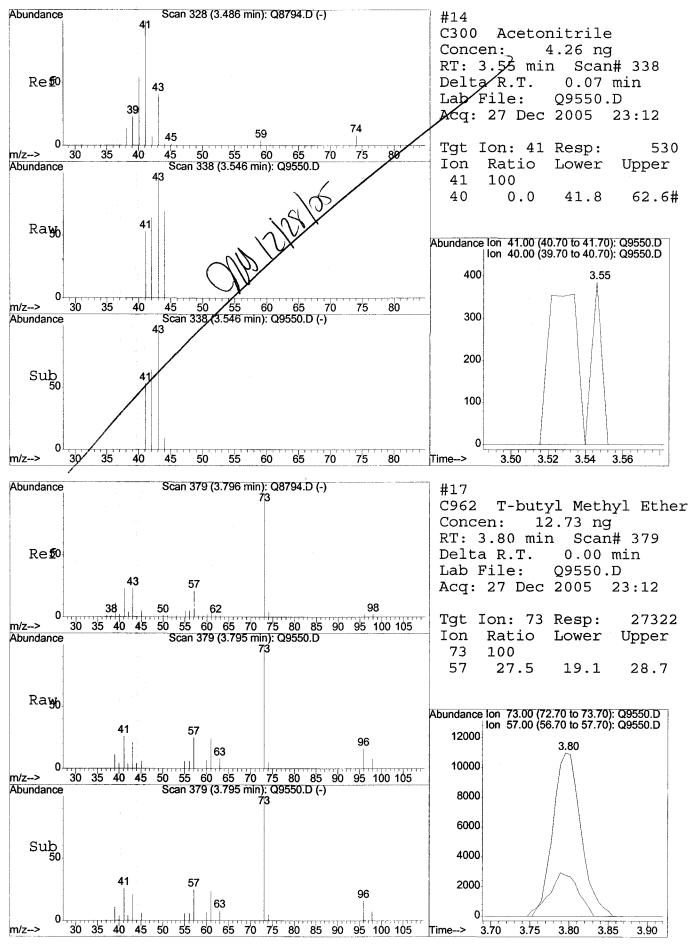
Sample : A5E58715 Inst: HP5973 Q Misc Multiplr: 1.00

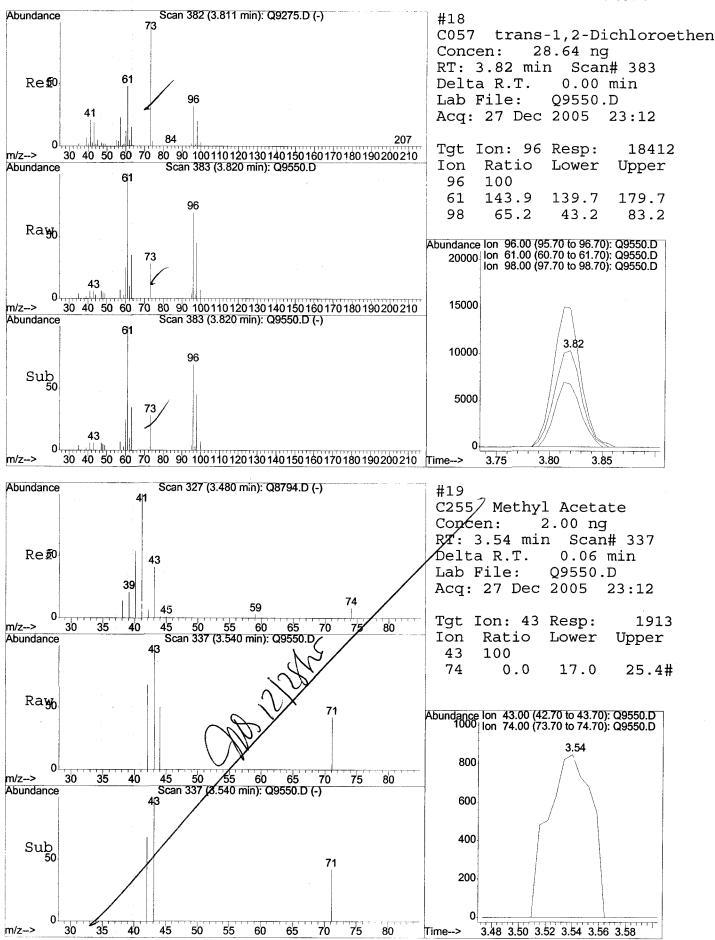
MS Integration Params: RTEINT.P

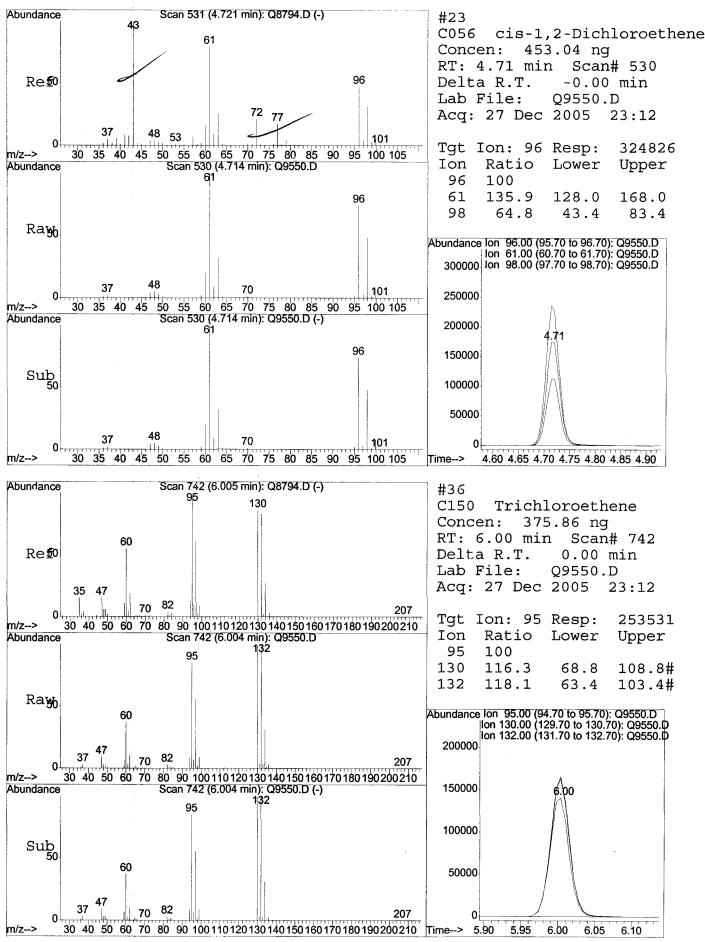
Quant Time: Dec 28 8:44 2005 Quant Results File: A5I02444.RES

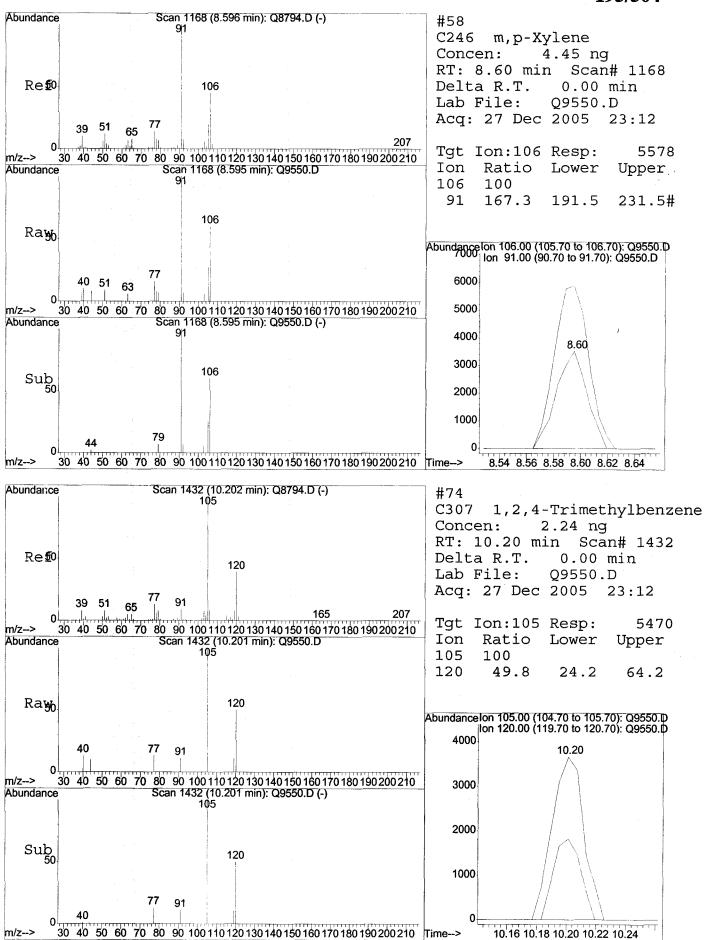
Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML


Last Update : Wed Dec 28 08:38:57 2005


Response via : Initial Calibration


DataAcq Meth: VOA


		Compo	und	R.T.	QIon	Response	Conc Unit	Qvalue
•	70)	C303	2-Chlorotoluene	0.00	126	0	N.D.	
	71)	C289	4-Chlorotoluene	0.00	126	0	N.D.	
	72)	C304	1,3,5-Trimethylbenze	9.86	105	1168	N.D.	
	73)	C306	tert-Butylbenzene	0.00	134	0	N.D.	
	(74) <i>)</i>	C307	1,2,4-Trimethylbenze	10.20	105	5470	2.24 ng	91
	75)	C308	sec-Butylbenzene	10.34	105	457	N.D.	
	76)	C260	1,3-Dichlorobenzene	0.00	146	0	N.D.	
	77)	C309	4-Isopropyltoluene	10.46	119	369	N.D.	
	78)	C267	1,4-Dichlorobenzene	0.00	146	0	N.D.	
	79)	C249	1,2-Dichlorobenzene	0.00	146	0	N.D.	
	80)	C310	n-Butylbenzene	10.80	91	860	N.D.	
	81)	C286	1,2-Dibromo-3-Chloro	0.00	75	0	N.D.	
	82)	C313	1,2,4-Trichlorobenze	0.00	180	0	N.D.	
	83)	C316	Hexachlorobutadiene	0.00	225	0	N.D.	
	84)	C314	Naphthalene	12.31	128	2771	N.D.	
	85)	C934	1,2,3-Trichlorobenze	0.00	180	0	N.D.	
	1							

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MM-33	
MM-22	

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58718

Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{ML} Lab File ID: $\underline{Q9553.RR}$

Level: (low/med) Low Date Samp/Recv: $\underline{12/21/2005}$ $\underline{12/23/2005}$

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CAS NO.	COMPOUND	CONCENTRATION UNIT	IS: UG/L	Q
	<u> </u>			1
67-64-1			5.0	U
71-43-2			1.0	ן ש
	-Bromodichloromethane		1.0	ט
75-25-2			1.0	U
1	-Bromomethane		1.0	U
78-93-3			5.0	U
	-Carbon Disulfide	·	1.0	ע
	-Carbon Tetrachloride		1.0	U
	-Chlorobenzene		1.0	U
75-00-3	-Chloroethane		1.0	U
67-66-3	-Chloroform		1.0	U
74-87-3	-Chloromethane		1.0	U
110-82-7	-Cyclohexane		1.0	U
106-93-4	-1,2-Dibromoethane		1.0	U
124-48-1	-Dibromochloromethane		1.0	ע
96-12-8	-1,2-Dibromo-3-chloropropane		1.0	ע
	-1,2-Dichlorobenzene		1.0	U
	-1,3-Dichlorobenzene		1.0	U
	-1,4-Dichlorobenzene		1.0	ן ט
75-71-8	-Dichlorodifluoromethane		1.0	ן ח
75-34-3	-1,1-Dichloroethane		1.0	ן ט
	-1,2-Dichloroethane		1.0	lu l
1	-1,1-Dichloroethene		1.0	ן מן
,	-cis-1,2-Dichloroethene		7.0	
,	-trans-1,2-Dichloroethene		1.0	ן ט
I .	-1,2-Dichloropropane		1.0	Ū
	-cis-1,3-Dichloropropene		1.0	Ū
	-trans-1,3-Dichloropropene		1.0	lυ
	-Ethylbenzene		1.0	lυ
591-78-6			5.0	lυ
	-Isopropylbenzene		1.0	lū l
1	-Methyl acetate		1.0	Ü
	-Methylcyclohexane		1.0	U
	-Methylene chloride		1.0	U
				لــــــــــــــــــــــــــــــــــــــ

197/504

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

M	W-33	

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58718

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{Q9553.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CAS NO. COMPOUND	(ug/L or ug/Kg)		Q
108-10-14-Methyl-2-pentanone		5.0	U
1634-04-4Methyl-t-Butyl Ether (M)	BE)	1.0	ע
91-20-3Naphthalene		1.0	ע
100-42-5Styrene		1.0	ע
79-34-51,1,2,2-Tetrachloroethar	ne l	1.0	U
127-18-4Tetrachloroethene		1.0	ע
108-88-3Toluene		1.0	U
120-82-11,2,4-Trichlorobenzene		1.0	U
71-55-61,1,1-Trichloroethane		1.0	U
79-00-51,1,2-Trichloroethane		1.0	U
76-13-11,1,2-Trichloro-1,2,2-tr	rifluoroethane	1.0	U
75-69-4Trichlorofluoromethane		1.0	U
79-01-6Trichloroethene		3.1	
75-01-4Vinyl chloride		1.0	U
1330-20-7Total Xylenes		3.0	U

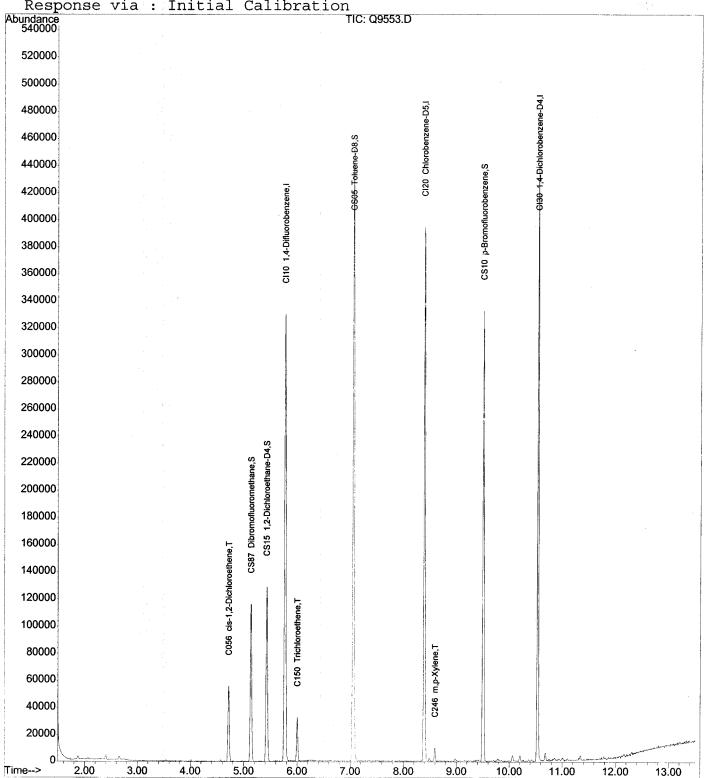
Quantitation Report

Data File : C:\HPCHEM\1\DATA\122705\Q9553.D

Vial: 36 : 28 Dec 2005 Operator: TLC Acq On 00:37

Sample : A5E58718 Inst : HP5973 Q Misc Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Dec 28 8:44 2005 Quant Results File: A5I02444.RES

Method : C:\HPCHEM\1\METHODS\Q8260\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Wed Dec 28 08:38:57 2005

Response via: Initial Calibration

Vial: 36

Quantitation Report STL Buffalo 199/504

Data File : C:\HPCHEM\1\DATA\122705\Q9553.D

Acq On : 28 Dec 2005 00:37

Operator: TLC : A5E58718 Sample Inst: HP5973 Q Multiplr: 1.00

Misc

MS Integration Params: RTEINT.P

Quant Results File: A5I02444.RES Quant Time: Dec 28 8:44 2005

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Wed Dec 28 08:38:57 2005

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : C:\HPCHEM\1\DATA\122705\Q9545.D (27 Dec 2005 20:40)

Internal Standards					$P_{CV}(\Lambda_r)$
1) CI10 1,4-Difluorobenzene					
43) CI20 Chlorobenzene-D5	8.39	117	242307	125.00 n	g 0.00 96.07%
62) CI30 1,4-Dichlorobenzene-	10.54	152	117830	125.00 n	g 0.00 93.48%
System Monitoring Compounds 30) CS87 Dibromofluoromethane Spiked Amount 125.000 Rang 31) CS15 1,2-Dichloroethane-D Spiked Amount 125.000 Rang 44) CS05 Toluene-D8 Spiked Amount 125.000 Rang 61) CS10 p-Bromofluorobenzene	e 70 5.43 e 72 7.06 e 76 9.50	- 130 65 - 143 98 - 116 174	Recove 84943 Recove 299288 Recove 100554	ry = 121.81 n ry = 125.03 n ry = 1 130.37 n	98.10% g 0.00 97.45% g 0.00 00.02% g 0.00
Spiked Amount 125.000 Rang Target Compounds				_	04.30% Qvalue
2) C290 Dichlorodifluorometh				N.D.	
3) C010 Chloromethane	0.00	50	0	N.D.	
4) C020 Vinyl chloride	0.00	62			
5) C015 Bromomethane	0.00	94	0		
6) C025 Chloroethane					
7) C275 Trichlorofluorometha			0		
8) C045 1,1-Dichloroethene	0.00	96	0	N.D.	
9) C030 Methylene chloride	0.00	84	0	N.D.	
10) C040 Carbon disulfide	0.00	76	0	N.D.	
11) C036 Acrolein	0.00	56	0	N.D.	
10) C040 Carbon disulfide 11) C036 Acrolein 12) C038 Acrylonitrile 13) C035 Acetone	0.00	53	0	N.D.	
13) CU35 Acetone	0.00	43	0	N.D.	
14) C300 Acetonitrile 15) C276 Iodomethane	0.00	41	0	N.D.	
16) C291 1,1,2 Trichloro-1,2,	0.00	142		N.D.	
16) C291 1,1,2 Trichioro-1,2,	0.00	101	0	N.D.	
17) C962 T-butyl Methyl Ether				N.D.	
18) C057 trans-1,2-Dichloroet 19) C255 Methyl Acetate	0.00	96 43	0 1177	N.D.	
20) C050 1,1-Dichloroethane	3.53	43 63	1177	N.D.	
21) C125 Vinyl Acetate	0.00	43	0	N.D.	i
22) C051 2,2-Dichloropropane	0.00	77	0 0	N.D. N.D.	

(#) = qualifier out of range (m) = manual integration

Wed Dec 28 08:44:30 2005 Q9553.D A5I02444.M

Data File : C:\HPCHEM\1\DATA\122705\Q9553.D Vial: 36 Acq On : 28 Dec 2005 00:37 Operator: TLC

: A5E58718 Sample Inst : HP5973 Q Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 28 8:44 2005 Quant Results File: A5I02444.RES

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Wed Dec 28 08:38:57 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Comp	ound	R.T.	QIon	Response	Conc Unit	Qva	lue
23) 2056	τ,	4.72	96	24951	35.20 ng	#	85
24) C272		0.00	42	0	N.D.		
25) C222		0.00	128	0	N.D.		
26) C060		0.00	83	0	N.D.		
27) C115		0.00	97	0	N.D.		
28) C120		0.00	117	0	N.D.		
29) C116	1,1-Dichloropropene	0.00	75	0	N.D.		
32) C165		0.00	78	0	N.D.		
33) C065		0.00	62	0	N.D.		
34) C110		0.00	43	0	N.D.		
25) C256		0.00	56	0	N.D.		
(36) C150	Trichloroethene	6.00	95	10248	15.37 ng	#	76
37) C140	1,2-Dichloropropane	0.00	63	0	N.D.	*	
38) C278	Dibromomethane	0.00	93	0	N.D.		
39) C130	Bromodichloromethane	0.00	83	0	N.D.		
40) C161	2-Chloroethylvinyl E	0.00	63	0	N.D.		
41) C012	Methylcycolhexane	0.00	83	0	N.D.		ŷ
42) C145	cis-1,3-Dichloroprop	0.00	75	0	N.D.		
45) C230	Toluene	7.11	92	707	N.D.		
46) C170		0.00	75	0	N.D.		
47) C284	Ethyl Methacrylate	0.00	69	0	N.D.		
48) C160	1,1,2-Trichloroethan	0.00	83	0	N.D.		
49) C210	4-Methyl-2-pentanone	7.05	43	1007	N.D.		
50) C220	Tetrachloroethene	0.00	166	0	N.D.		
51) C221	1,3-Dichloropropane	0.00	76	0	N.D.		
52) C155	Dibromochloromethane	0.00	129	0	N.D.		
53) C163	1,2-Dibromoethane	0.00	107	0	N.D.		
54) C215	2-Hexanone	0.00	43	0	N.D.		
55) C235	Chlorobenzene	0.00	112	0	N.D.		
56) C281	1,1,1,2-Tetrachloroe	0.00	131	. 0	N.D.		
57) C240	Ethylbenzene	8.49	91	2545	N.D.		
(58)) €246	m,p-Xylene	8.60	106	3900	3.16 ng		95
59) C247		8.98	106	835	N.D.		
60) C245		0.00	104	0	N.D.		
63) C180		0.00	173	0	N.D.		
64) C966	Isopropylbenzene	0.00	105	0	N.D.		
65) C301		0.00	156	0	N.D.		
66) C225		0.00	83	0	N.D.		Ŋ
67) C282		0.00	110	0	N.D.		Ñ,
68) C283		0.00	51	0	N.D.		
69) C302		9.70	91	553	N.D.		, ,
						- 	

(#) = qualifier out of range (m) = manual integration

Quantitation Report

Data File : C:\HPCHEM\1\DATA\122705\Q9553.D

Vial: 36 Acq On : 28 Dec 2005 00:37 Operator: TLC

: A5E58718 Sample Inst: HP5973 Q Multiplr: 1.00

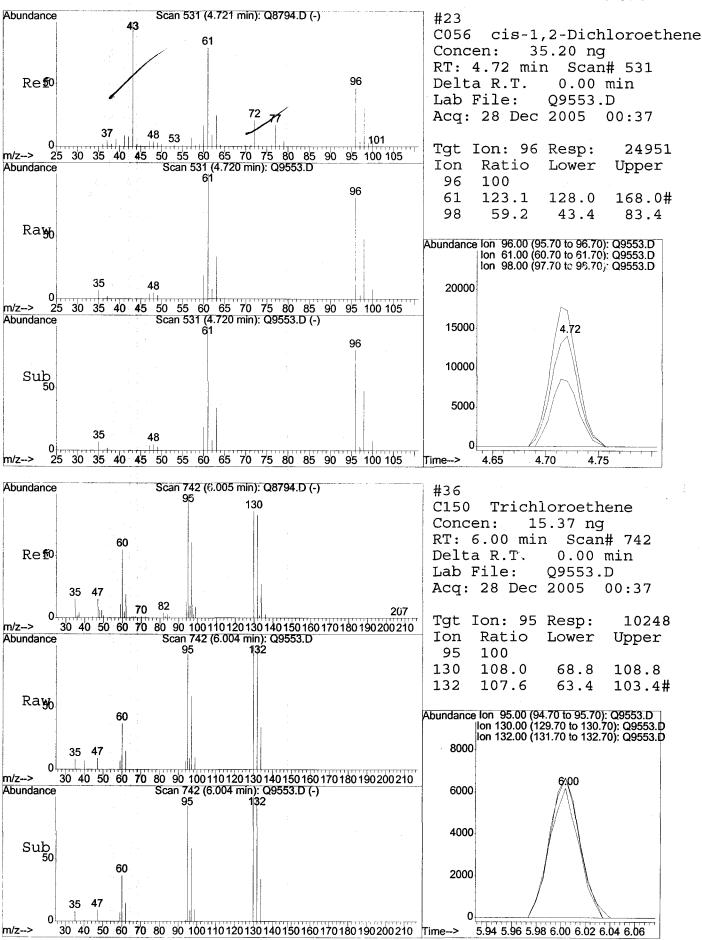
Misc

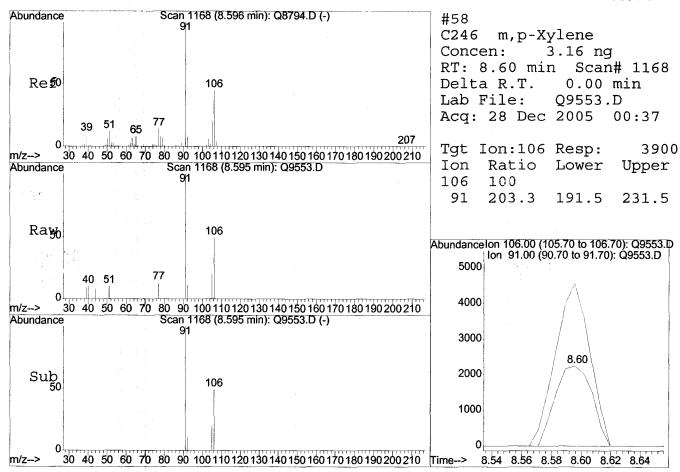
MS Integration Params: RTEINT.P

Quant Time: Dec 28 8:44 2005 Quant Results File: A5I02444.RES

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML


Last Update : Wed Dec 28 08:38:57 2005


Response via : Initial Calibration

DataAcq Meth : VOA

Compound		R.T.	QIon	Response	Conc Unit	Qvalue		
	70)	C303	2-Chlorotoluene	0.00	126	0	N.D.	
	71)	C289	4-Chlorotoluene	0.00	126	0	N.D.	
	72)	C304	1,3,5-Trimethylbenze	9.85	105	808	N.D.	
	73)	C306	tert-Butylbenzene	0.00	134	0	N.D.	
	74)	C307	1,2,4-Trimethylbenze	10.20	105	4146	N.D.	
	75)	C308	sec-Butylbenzene	10.20	105	4146	N.D.	
	76)	C260	1,3-Dichlorobenzene	0.00	146	0	N.D.	
	77)	C309	4-Isopropyltoluene	0.00	119	0	N.D.	
		C267	1,4-Dichlorobenzene	0.00	146	0	N.D.	
	-	C249	1,2-Dichlorobenzene	0.00	146	0	N.D.	
	80)	C310	n-Butylbenzene	10.81	91	145	N.D.	
	81)	C286	1,2-Dibromo-3-Chloro	0.00	75	0	N.D.	÷
	82)	C313	1,2,4-Trichlorobenze	0.00	180	0	N.D.	• *
	83)	C316	Hexachlorobutadiene	0.00	225	0	N.D.	
	84)	C314	Naphthalene	12.30	128	2098	N.D.	
	85)	C934	1,2,3-Trichlorobenze	0.00	180	0	N.D.	

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

N 17 2 4	
MW-34	
1	
1	

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ___

Matrix: (soil/water) WATER Lab Sample ID: A5E58710

Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{ML} Lab File ID: $\underline{S9694.RR}$

Level: (low/med) Low Date Samp/Recv: $\underline{12/21/2005}$ $\underline{12/23/2005}$

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L_	Q
67-64-1	Acetone		5.0	U
71-43-2	Benzene		1.0	U
75-27-4	Bromodichloromethane		1.0	U
75-25-2			1.0	U
74-83-9	Bromomethane		1.0	ע
78-93-3	2-Butanone		5.0	U
75-15-0	Carbon Disulfide		1.0	ע
56-23-5	Carbon Tetrachloride		1.0	ע
108-90-7	Chlorobenzene		1.0	ע ו
75-00-3	Chloroethane		1.0	ן ט
67-66-3	Chloroform		1.0	ע
74-87-3	Chloromethane		1.0	ע ו
110-82-7	Cyclohexane		1.0	ע
106-93-4	-1,2-Dibromoethane		1.0	U
124-48-1	Dibromochloromethane		1.0	ע
96-12-8	-1,2-Dibromo-3-chloropropane		1.0	ע
95-50-1	1,2-Dichlorobenzene		1.0	ע
541-73-1	1,3-Dichlorobenzene		1.0	ע
106-46-7	-1,4-Dichlorobenzene		1.0	ש
75-71-8	Dichlorodifluoromethane		1.0	U
75-34-3	-1,1-Dichloroethane		0.82	J
107-06-2	-1,2-Dichloroethane		1.0	ע
75-35-4	-1,1-Dichloroethene		1.0	U
156-59-2	cis-1,2-Dichloroethene		110	E
	-trans-1,2-Dichloroethene		0.67	J
78-87-5	1,2-Dichloropropane		1.0	U
	cis-1,3-Dichloropropene	,	1.0	ע
	-trans-1,3-Dichloropropene		1.0	ט
	Ethylbenzene		1.0	ע
591-78-6	-2-Hexanone		5.0	U
98-82-8	-Isopropylbenzene		1.0	ע
79-20-9	-Methyl acetate		1.0	U
	-Methylcyclohexane		1.0	ע
	-Methylene chloride		1.0	υ

205/504

1.1

1.0

1.0

1.0

3.0

16

63

U

U

U

U

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

	MW-34
Lab Name: STL Buffalo Contract: 4	·
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A5E58710
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: <u>S9694.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>
Moisture: not dec Heated Purge: N	Date Analyzed: <u>12/28/2005</u>
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
108-10-14-Methyl-2-pentanone 1634-04-4Methyl-t-Butyl Ether (MTBE) 91-20-3Naphthalene 100-42-5Styrene 79-34-51,1,2,2-Tetrachloroethane 127-18-4Tetrachloroethene 108-88-3Toluene 120-82-11,2,4-Trichlorobenzene	1.0 U 1.0 U 1.0 U

71-55-6----1,1,1-Trichloroethane

79-00-5----1,1,2-Trichloroethane

79-01-6----Trichloroethene

76-13-1----1,1,2-Trichloro-1,2,2-trifluoroethane

75-69-4----Trichlorofluoromethane

Data File : D:\DATA\122805\S9694.D

: 28 Dec 2005 Acq On 10:08

Sample : A5E58710

Misc

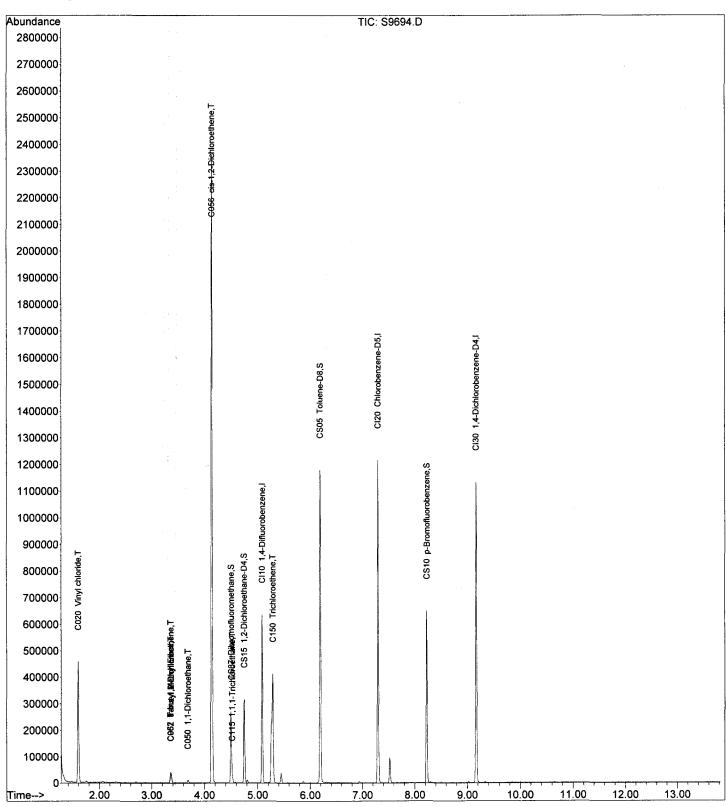
Operator: LH : HP5973S Inst

Multiplr: 1.00

Vial: 5

MS Integration Params: RTEINT.P

Results File: A5I0002442_E2.RES Quant Time: Dec 28 12:20:05 2005


Quant Method : C:\MSDCHEM\1...\A5I0002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Wed Dec 28 09:45:03 2005

Response via : Initial Calibration

DataAcq Meth : VOA

STL Buffalo (Not Reviewed) 207/504Quantitation Report

Vial: 5

Data File : D:\DATA\122805\S9694.D

Acq On : 28 Dec 2005 10:08 Sample : A5E58710 Operator: LH Inst : HP5973S Multiplr: 1.00

Misc

MS Integration Params: RTEINT.P Quant Time: Dec 28 12:20:05 2005

Results File: A5I0002442 E2.RES

Quant Method: C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Wed Dec 28 09:45:03 2005

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\DATA\122805\S9691.D (28 Dec 2005 8:52)

10 211 11		1111 (122003 (5)	0001.0	(20 DC	2000 0	. 52,		•	
Interna	l Standards	:	R.T.	QIon	Response	Conc Ur	nits	Dev	(Min)
									(Ar)
1) C11	0 1,4-Dif1	uorobenzene	5.09	114	379329	125.00	ng		0.00 6.71%
43) CT2	O Chlaraha	nzene-D5	7 20	117	E / 1 7 2 E	125 00	na		
43) C12	o Chiorobe	nzene-D5	7.30	117	541725	123.00	ng	Q.	7 15%
62) CT3	0 1.4-Dich	lorobenzene-	9.17	152					
02, 010	0 1,1 51011		J. • ± ,	102	200010	120,00	9	8	7.32%
	Monitoring								
30) CS8	7 Dibromof	luoromethane	4.50	111	137580	128.50	ng		0.00
Spiked	Amount	125.000 Rar loroethane-D	nge 70	- 130	Recove	ry =	102.	.80%	
31) CS1	5 1,2-Dich	loroethane-D	4.75	65	143661	122.95	ng	2.50	0.00
Spiked	Amount	125.000 Rar	nge 73	- 136	Recove	ry =	98.	, 368	0 00
44) CSU	5 Toluene-	D8 125.000 Rar luorobenzene	6.19	122	613079	114.25	ng a1	108	0.00
Spiked	Amount Amount	luorobenzene	1ge //	171	125171	102 72	na.	. 40%	0 00
Sniked	Amount	125.000 Rar	0.23	- 120	Recove	rv =	82	. 18%	0.00
opinea	rinourie	123.000 Rai	19C , 4	120	Recove	<i>- 1</i>	Ů.	0	
Target	Compounds							Qv	alue
2) C29	0 Dichloro	difluorome	0.00	85	0	N.D.			
3) C01	0 Chlorome	thane	0.00	50	0	N.D.			
(47)C02	0 Vinyl ch	loride	1.60	62	399695	314.44	ng		100
5) C01	5 Bromomet	thane loride hane	0.00	94	0	N.D.			
6) 002	5 Chioroet	nane	0.00	64	U	N.D.			
7) C27 8) C04	5 Trichion	ofluoromet loroethene e chloride	2.70	101	1029	N.D.			
9) C03	O Methylen	e chloride	0.00	81	1028	N D			
10) C04	0 Carbon d	isulfide	2.88	76	1428	N.D.			
11) C03	6 Acrolein		0.00	56	0	N.D.			
12) C03	8 Acryloni	trile	3.32	53	307	N.D.			
13) C03	5 Acetone	trile	2.76	43	539	N.D.			
14) C30	0 Acetonit	rile	0.00	41	0	N.D.			
15) C27	6 Iodometh	ane ichloro-1,	0.00	142	0	N.D.			
16) C29	1 1,1,2 Tr	ichloro-1,	0.00	101	0	N.D.		ш	7.0
(17) C96	2 T-butyl	Methyl Ether	3.37	73	21442	0.92	ng	# #	78 84
(18) C05 19) C25	5 Methyl A	2-Dichloroet cetate	0.00	13	4409 O	N D	119	#	04
(20) 305	0 1 1-Dich	cetate loroethane etate loropropan	3.68	43	10085	4.11	na		95
21) C12	5 Vinvl Ac	etate	0.00	43	0	N.D.	9		
2 <u>2</u>) C05	1 2,2-Dich	loropropan	0.00	77	0	N.D.			
(23) \$05	6 cis-1,2-	Dichloroethe	4.14	96	807135	565.36	ng		91
24) C27		rofuran	0.00	42	0	N.D.			
25) C22		oromethane		128	0	N.D.			
26) C06			0.00	83	0	N.D.			0.0
(27) C11		ichloroethan	4.53	97	9234	5.60	ng		88
28) C12 29) C11		etrachlori loropropen	0.00	117 75	0 0	N.D. N.D.			
32) C16		rotopropen	4.80	78	7385	N.D.			
33) C06		loroethane	0.00	62	0	N.D.			
34) C11			0.00	43	0	N.D.			
35) C25	6 Cyclohex		4.58	56	1091	N.D.			
(36) C15			5.29	95	107247	79.89	ng		98
37) 614		loropropan	0.00	63	0	N.D.			
38) C27	8 Dibromom	ethane	0.00	93	0	N.D.			

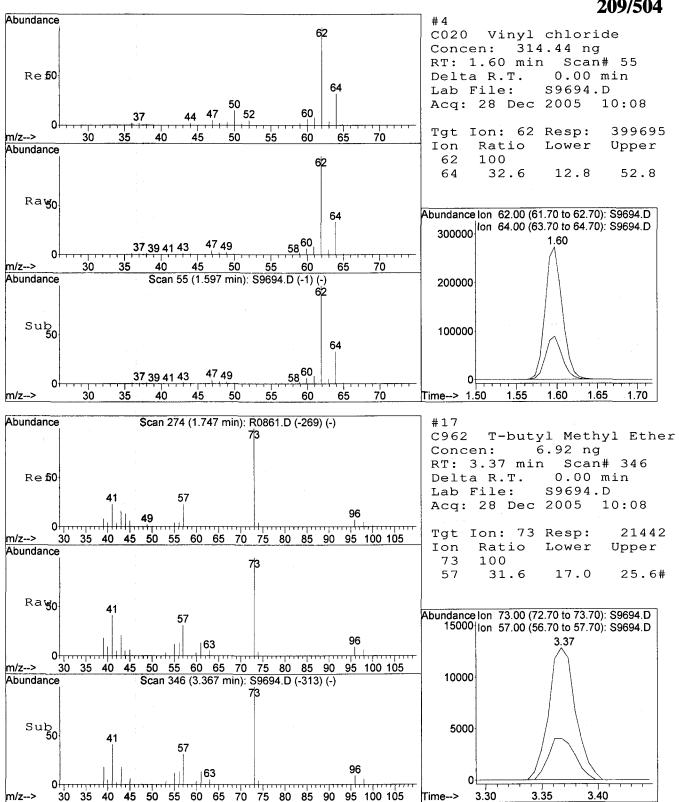
Data File : D:\DATA\122805\S9694.D
Acq On : 28 Dec 2005 10:08 Vial: 5 Operator: LH

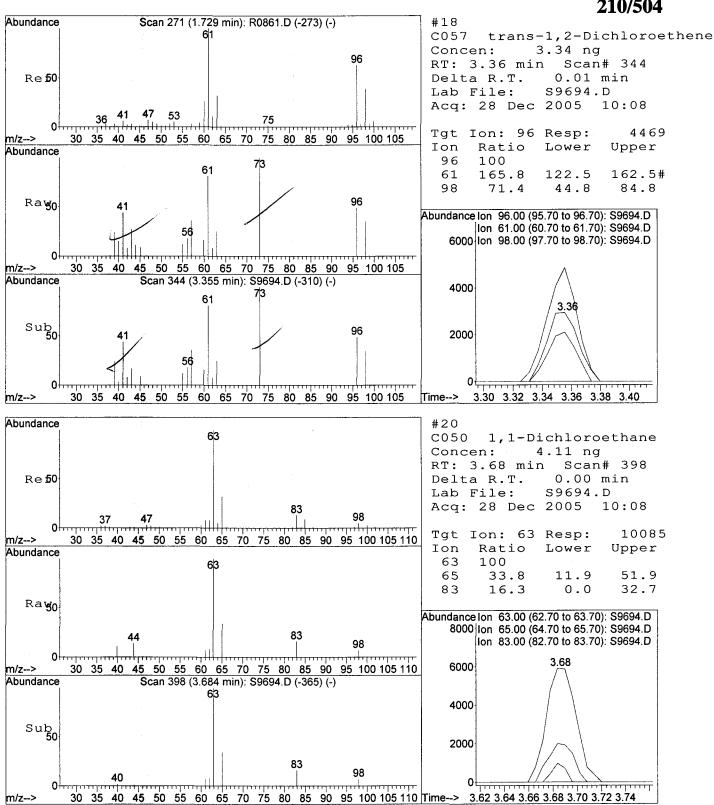
. A5E58710 Sample Inst : HP5973S Multiplr: 1.00 Misc

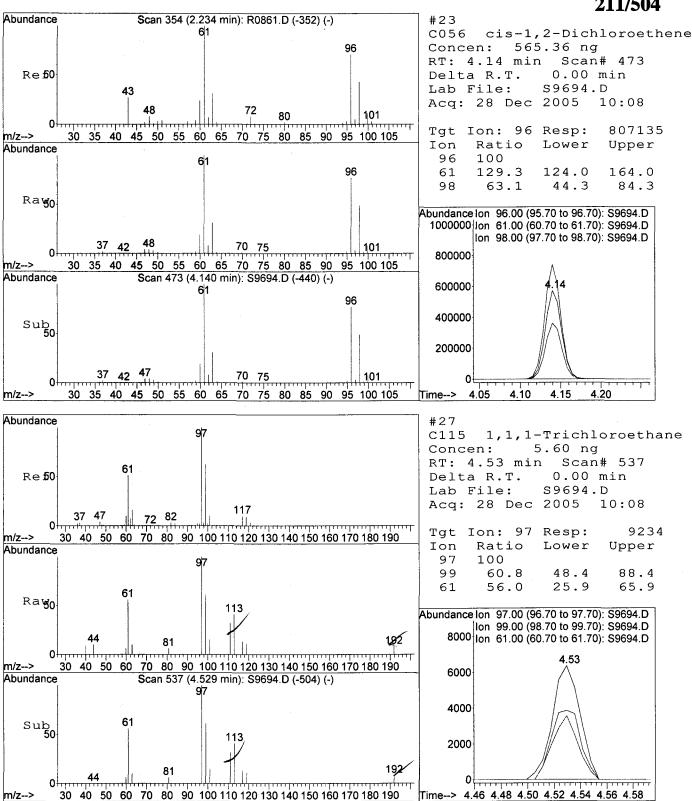
MS Integration Params: RTEINT.P

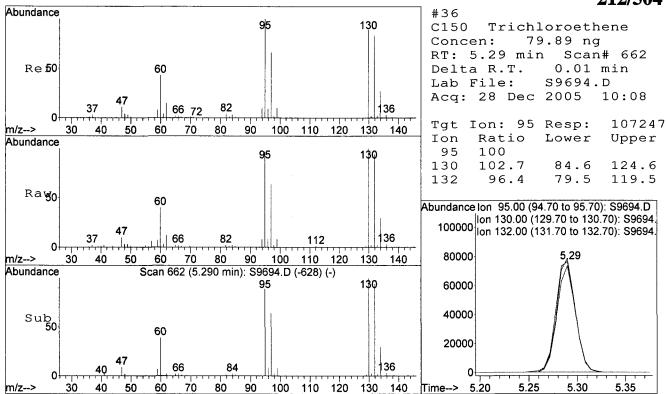
Quant Time: Dec 28 12:20:05 2005 Results File: A5I0002442_E2.RES

Quant Method: C:\MSDCHEM\1...\A510002442 E2.M (RTE Integrator)


Title : 8260 5ML WATER
Last Update : Wed Dec 28 09:45:03 2005
Response via : Initial Calibration


DataAcq Meth : VOA


IS QA File : D:\DATA\122805\S9691.D (28 Dec 2005 8:52)


Inte	ernal	Standards	R.T	. QIon	Response	Conc Unit	s Dev(Min) Rcv(Ar)
					424		
	C130	Bromodichlorometha	5.69	83 63	434 0	N.D. N.D.	
	C161 C012	2-Chloroethylvinyl	0.00	83	0	N.D.	
-	C145	Methylcycolhexane cis-1,3-Dichloropr	0.00	75	0	N.D.	
	C230	Toluene	6.24	92	844	N.D.	
	C170	trans-1,3-Dichloro	0.00	75	0	N.D.	
-	C284	Ethyl Methacrylate	6.31	69	315	N.D.	
-	C160	1,1,2-Trichloroeth	0.00	83	0	N.D.	
•	C210	4-Methyl-2-pentano	6.19	43	2843	N.D.	
	C220	Tetrachloroethene	0.00	166	0	N.D.	
	C221	1,3-Dichloropropan	0.00	76	Ō	N.D.	
	C155	Dibromochlorometha	0.00	129	Ō	N.D.	
	C163	1,2-Dibromoethane	0.00	107	Ō	N.D.	
	C215	2-Hexanone	0.00	43	0	N.D.	
	C235	Chlorobenzene	7.32	112	1120	N.D.	
	C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
	C240	Ethylbenzene	7.50	91	540	N.D.	
	C246	m,p-Xylene	7.50	106	136	N.D.	
	C247	o-Xylene	0.00	106	0	N.D.	
	C245	Styrene	0.00	104	0	N.D.	
	C180	Bromoform	0.00	173	0	N.D.	
	C966	Isopropylbenzene	8.11	105	301	N.D.	
65)	C301	Bromobenzene	8.51	156	151	N.D.	
66)	C225	1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
67)	C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
68)	C283	t-1,4-Dichloro-2-B	0.00	53	0	N.D.	
69)	C302	n-Propylbenzene	8.61	91	174	N.D.	
70)	C303	2-Chlorotoluene	0.00	126	0	N.D.	
71)	C289	4-Chlorotoluene	0.00	126	0	N.D.	
72)	C304	1,3,5-Trimethylben	0.00	105	0	N.D.	
73)	C306	tert-Butylbenzene	9.03	134	491	N.D.	
74)	C307	1,2,4-Trimethylben	9.03	105	3492	N.D.	
75)	C308	sec-Butylbenzene	9.03	105	3492	N.D.	
76)	C260	1,3-Dichlorobenzen	9.12	146	132	N.D.	
77)	C309	4-Isopropyltoluene	9.15	119	320	N.D.	
78)	C267	1,4-Dichlorobenzen	9.19	146	339	N.D.	
	C249	1,2-Dichlorobenzen	9.50	146	664	N.D.	
	C310	n-Butylbenzene	9.48	91	145	N.D.	
	C286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
-	C313	1,2,4-Trichloroben	0.00	180	0	N.D.	
	C316	Hexachlorobutadien	0.00	225	0	N.D.	
	C314		11.03	128	171	N.D.	
85)	C934	1,2,3-Trichloroben	0.00	180	0	N.D.	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-34	DL		
-------	----	--	--

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58710DL

Sample wt/vol: 5.00 (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{S9724.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: DB-624 ID: 0.18 (mm) Dilution Factor: 2.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND		ONCENTRATION (ug/L or ug/K		<u> </u>	Q
67-64-1Acetone			1	.0	U
71-43-2Benzene				2.0	ע
75-27-4Bromodichlo	romethane	,,		2.0	ע
75-25-2Bromoform				2.0	ט
74-83-9Bromomethan	e			2.0	ט
78-93-32-Butanone			1	.0	U
75-15-0Carbon Disu				2.0	ע
56-23-5Carbon Tetr	achloride			2.0	ט
108-90-7Chlorobenze	ne			2.0	ע
75-00-3Chloroethan	e			2.0	ט
67-66-3Chloroform				2.0	[
74-87-3Chlorometha	ne			2.0	ט
110-82-7Cyclohexane				2.0	ן ט
106-93-41,2-Dibromo	ethane			2.0	U
124-48-1Dibromochlo				2.0	ן ט
96-12-81,2-Dibromo	-3-chloropropane			2.0	ע
95-50-11,2-Dichlor	obenzene			2.0	ן ט
541-73-11,3-Dichlon	obenzene			2.0	ע
106-46-71,4-Dichlor	obenzene			2.0	ע
75-71-8Dichlorodif	luoromethane			2.0	ע
75-34-31,1-Dichlon	oethane			2.0	U
107-06-21,2-Dichlor	oethane .			2.0	U
75-35-41,1-Dichlor	oethene			2.0	ט
156-59-2cis-1,2-Dic	nlorœthene		11	.0	D
156-60-5trans-1,2-D	ichloroethene			2.0	ט
78-87-51,2-Dichlon	opropane			2.0	ן ט
10061-01-5cis-1,3-Dic	nloropropene			2.0	ע
10061-02-6trans-1,3-D				2.0	ט
100-41-4Ethylbenzen				2.0	ע
591-78-62-Hexanone			1	0	U
98-82-8Isopropylbe	nzene			2.0	U
79-20-9Methyl acet				2.0	U
108-87-2Methylcyclo	nexane			2.0	ប
75-09-2Methylene c	nloride			2.0	U

214/504

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-34 DL	
----------	--

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58710DL

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{S9724.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: DB-624 ID: 0.18 (mm) Dilution Factor: 2.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

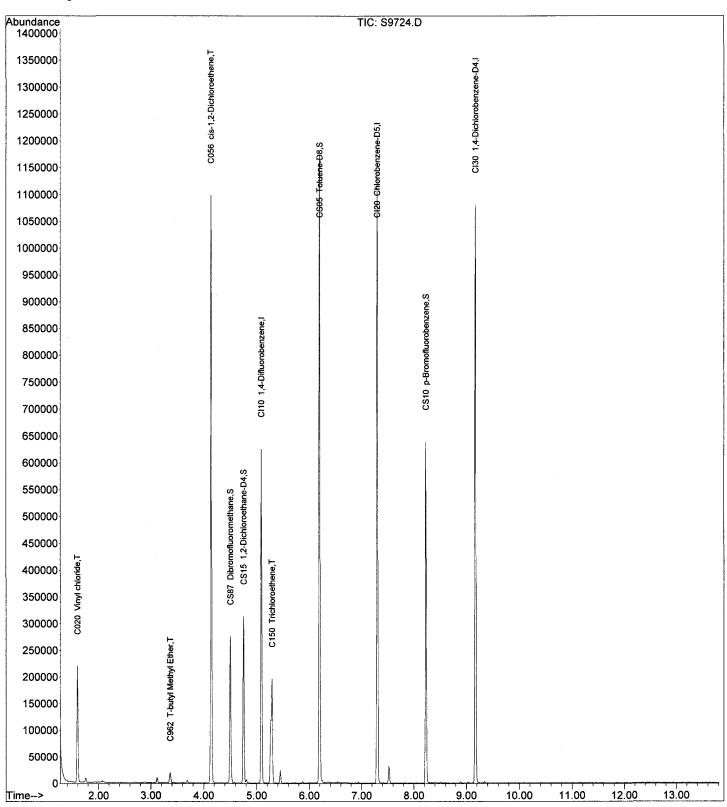
CAS NO.	COMPOUND	(ug/L or ug/Kg		Q
108-10-1	4-Methyl-2-pentanone		10	U
	Methyl-t-Butyl Ether (MTBE)		1.4	M
91-20-3	Naphthalene		2.0	U
100-42-5	Styrene		2.0	U
79-34-5	1,1,2,2-Tetrachloroethane		2.0	U
127-18-4	Tetrachloroethene		2.0	U
108-88-3	Toluene		2.0	U
120-82-1	1,2,4-Trichlorobenzene		2.0	U
71-55-6	1,1,1-Trichloroethane		2.0	U
79-00-5	1,1,2-Trichloroethane		2.0	U
76-13-1	1,1,2-Trichloro-1,2,2-triflu	oroethane	2.0	U
75-69-4	Trichlorofluoromethane		2.0	U
79-01-6	Trichloroethene		15	D
	Vinyl chloride		58	D
1330-20-7	Total Xylenes		6.0	U
				

Vial: 30

Data File : D:\DATA\122805\S9724.D

MS Integration Params: RTEINT.P

Quant Time: Dec 29 09:01:00 2005 Results File: A5I0002442_E2.RES


Quant Method: C:\MSDCHEM\1...\A5I0002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Wed Dec 28 20:05:16 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Quantitation Report STL Buffalo (Not Reviewed) 216/504

R.T. QIon Response Conc Units Dev(Min)

Data File : D:\DATA\122805\S9724.D Acq On : 28 Dec 2005 22:18 Sample : A5E58710DL DF2 Vial: 30 Operator: TLC Inst : HP5973S Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Quant Time: Dec 29 09:01:00 2005 Results File: A5I0002442 E2.RES

Quant Method : C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Wed Dec 28 20:05:16 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Internal Standards

IS QA File : D:\DATA\122805\S9718.D (28 Dec 2005 19:47)

61) CS10 p-Bromofluorobenzene 8.23 174 126336 106.58 ng	
System Monitoring Compounds 30) CS87 Dibromofluoromethane 4.50 111 137049 131.89 ng Spiked Amount 125.000 Range 70 - 130 Recovery = 105 31) CS15 1,2-Dichloroethane-D 4.75 65 146364 129.06 ng Spiked Amount 125.000 Range 73 - 136 Recovery = 103 44) CS05 Toluene-D8 6.20 98 606549 116.20 ng Spiked Amount 125.000 Range 77 - 122 Recovery = 92 61) CS10 p-Bromofluorobenzene 8.23 174 126336 106.58 ng Spiked Amount 125.000 Range 74 - 120 Recovery = 85 Target Compounds 2) C290 Dichlorodifluorome 0.00 85 0 N.D. 3) C010 Chloromethane 0.00 50 0 N.D. 4) CQ120 Vinyl chloride 1.60 62 177508 143.88 ng 5) C015 Bromomethane 0.00 94 0 N.D. 6) C025 Chloroethane 0.00 64 0 N.D. 7) C275 Trichlorofluoromet 0.00 101 0 N.D. 8) C045 1,1-Dichloroethene 2.69 96 288 N.D. 9) C030 Methylene chloride 3.12 84 3414 N.D. 10) C040 Carbon disulfide 2.88 76 1365 N.D. 11) C036 Acrolein 0.00 56 0 N.D. 12) C038 Acylonitrile 3.32 53 287 N.D. 13) C035 Acetone 2.75 43 149 N.D. 14) C300 Acetonitrile 0.00 41 0 N.D. 15) C276 Iodomethane 0.00 142 0 N.D. 16) C291 1,1,2 Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.37 73 10307 3.43 ng 18) C057 trans-1,2-Dichloro 3.35 96 2288 N.D. 20) C050 1,1-Dichloroethane 3.69 63 4369 N.D. 21) C125 Winyl Acetate 0.00 43 0 N.D. 221 C125 Vinyl Acetate 0.00 43 0 N.D. 231 C056 cis-1,2-Dichloroethe 4.14 96 379156 273.64 ng 24 C272 Tetrahydrofuran 0.00 128 0 N.D.	0.00 94.96%
System Monitoring Compounds 30) CS87 Dibromofluoromethane 4.50 111 137049 131.89 ng Spiked Amount 125.000 Range 70 - 130 Recovery = 105 31) CS15 1,2-Dichloroethane-D 4.75 65 146364 129.06 ng Spiked Amount 125.000 Range 73 - 136 Recovery = 103 44) CS05 Toluene-D8 6.20 98 606549 116.20 ng Spiked Amount 125.000 Range 77 - 122 Recovery = 92 61) CS10 p-Bromofluorobenzene 8.23 174 126336 106.58 ng Spiked Amount 125.000 Range 77 - 120 Recovery = 85 Target Compounds 2) C290 Dichlorodifluorome 0.00 85 0 N.D. 3) C010 Chloromethane 0.00 50 0 N.D. 4) C020 Vinyl chloride 1.60 62 177508 143.88 ng 5) C015 Bromomethane 0.00 94 0 N.D. 6) C025 Chloroethane 0.00 64 0 N.D. 7) C275 Trichlorofluoromet 0.00 101 0 N.D. 8) C045 1,1-Dichloroethene 2.69 96 288 N.D. 9) C030 Methylene chloride 3.12 84 3414 N.D. 10) C040 Carbon disulfide 2.88 76 1365 N.D. 11) C036 Acrolein 0.00 56 0 N.D. 12) C038 Acrylonitrile 3.32 53 287 N.D. 13) C035 Acetone 2.75 43 149 N.D. 14) C300 Acetonitrile 0.00 41 0 N.D. 15) C276 Iodomethane 0.00 142 0 N.D. 17) C962 T-butyl Methyl Ether 3.37 73 10307 3.43 ng 18) C057 trans-1,2-Dichloro 3.35 96 2288 N.D. 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 3.69 63 4369 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 224 C55 222 Bromochloromethane 0.00 128 0 N.D.	0.00
System Monitoring Compounds 30) CS87 Dibromofluoromethane	94.46%
30) CS87 Dibromofluoromethane 4.50 111 137049 131.89 ng Spiked Amount 125.000 Range 70 - 130 Recovery = 105 146364 129.06 ng Spiked Amount 125.000 Range 73 - 136 Recovery = 103 44) CS05 Toluene-D8 6.20 98 606549 116.20 ng Spiked Amount 125.000 Range 77 - 122 Recovery = 92 61) CS10 p-Bromofluorobenzene 8.23 174 126336 106.58 ng Spiked Amount 125.000 Range 74 - 120 Recovery = 85 Recovery = 92 Recovery Recovery	0.00
30) CS87 Dibromofluoromethane 4.50 111 137049 131.89 ng Spiked Amount 125.000 Range 70 - 130 Recovery = 105 146364 129.06 ng Spiked Amount 125.000 Range 73 - 136 Recovery = 103 44) CS05 Toluene-D8 6.20 98 606549 116.20 ng Spiked Amount 125.000 Range 77 - 122 Recovery = 92 61) CS10 p-Bromofluorobenzene 8.23 174 126336 106.58 ng Spiked Amount 125.000 Range 74 - 120 Recovery = 85 Recovery = 92 Recovery Recovery	84.03%
Spiked Amount 125.000 Range 70 - 130 Recovery = 105 31) CS15 1,2-Dichloroethane-D 4.75 65 146364 129.06 ng Spiked Amount 125.000 Range 73 - 136 Recovery = 103 44) CS05 Toluene-D8 6.20 98 6.66549 116.20 ng Spiked Amount 125.000 Range 77 - 122 Recovery = 92 61) CS10 p-Bromofluorobenzene 8.23 174 126336 106.58 ng Spiked Amount 125.000 Range 74 - 120 Recovery = 85 Recovery = 85 Range 75 - 122 Recovery = 85 Range 76 - 120 Recovery = 85 Range 76 - 120 Recovery = 85 Range 77 - 122 Recovery = 85 Range 78 - 120 Recovery = 85 Range 78 - 120 Recovery = 85 Range 78 - 120 Recovery = 85 Range 78 - 120 Recovery = 85 Range 78 - 120 Recovery = 85 Range 78 - 120 Recovery = 85 Range 78 - 120 Recovery = 85 Range 78 - 120 Recovery = 85 Range 78 - 120 Recovery = 85 Range 78 - 120 Recovery = 85 Range 78 - 120 Recovery = 85 Range 78 - 120 Recovery = 85 Range 78 - 120 Recovery = 92 Range 78 - 120 Recovery = 92 Range 78 - 120 Recovery = 92 Range 78 - 120 Recovery = 92 Range 78 - 120 Recovery = 92 Range 78 - 120 Recovery = 92 Range 78 - 120 Recovery = 92 Range 78 - 120 Recovery = 92 Range 78 - 120 Recovery = 92 Range 78 - 120 Recovery = 92 Range 78 - 120 Recovery = 92 Range 78 - 120 Recovery = 92 Range 78 - 120	0.00
31) CS15 1,2-Dichloroethane-D 4.75 65 146364 129.06 ng Spiked Amount 125.000 Range 73 - 136 Recovery = 103 60549 116.20 ng Spiked Amount 125.000 Range 77 - 122 Recovery = 92 61) CS10 p-Bromofluorobenzene 8.23 174 Recovery = 92 61) CS10 p-Bromofluorobenzene 8.23 174 Recovery = 92 61) CS10 p-Bromofluorobenzene 8.23 174 Recovery = 95 Recovery = 85 Recovery = 92 Recov	0.00
Spiked Amount 125.000 Range 73 - 136 Recovery = 103 44) CS05 Toluene-D8 6.20 98 606549 116.20 ng Spiked Amount 125.000 Range 77 - 122 Recovery = 92 61) CS10 p-Bromofluorobenzene 8.23 174 126336 106.58 ng Spiked Amount 125.000 Range 74 - 120 Recovery = 85 Target Compounds 2) C290 Dichlorodifluorome 0.00 85 0 N.D. 4) C020 Vinyl chloride 0.00 50 0 N.D. 4) C020 Vinyl chloride 1.60 62 177508 143.88 ng 5) C015 Bromomethane 0.00 94 0 N.D. 6) C025 Chloroethane 0.00 64 0 N.D. 7) C275 Trichlorofluoromet 0.00 64 0 N.D. 8) C045 1,1-Dichloroethene 2.69 96 288 N.D. 9) C030 Methylene chloride 3.12 84 3414 N.D. 10) C040 Carbon disulfide 2.88 76 1365 N.D. 11) C036 Acrolein 0.00 56 0 N.D. 12) C038 Acrylonitrile 3.32 53 287 N.D. 13) C035 Acetone 2.75 43 149 N.D. 14) C300 Acetonitrile 0.00 41 0 N.D. 15) C276 Iodomethane 0.00 101 0 N.D. 15) C276 Iodomethane 0.00 142 0 N.D. 15) C276 Iodomethane 0.00 142 0 N.D. 15) C276 Iodomethane 0.00 41 0 N.D. 15) C276 Iodomethane 0.00 43 0 N.D. 17) C962 T-butyl Methyl Ether 3.37 73 10307 3.43 ng 18) C057 trans-1,2-Dichloro 3.35 96 2288 N.D. 19) C255 Methyl Acetate 0.00 43 0 N.D. 220 C051 2,2-Dichloroptone 3.69 63 4369 N.D. 231 C056 cis-1,2-Dichloroethe 4.14 96 379156 273.64 ng 241 C272 Tetrahydrofuran 0.00 128 0 N.D.	0.00
44) CS05 Toluene-D8 6.20 98 606549 116.20 ng Spiked Amount 125.000 Range 77 - 122 Recovery = 92 61) CS10 p-Bromofluorobenzene 8.23 174 126336 106.58 ng Recovery = 85 Target Compounds 2) C290 Dichlorodifluorome 0.00 85 0 N.D. 3) C010 Chloromethane 0.00 50 0 N.D. 4) C020 Vinyl chloride 1.60 62 177508 143.88 ng 5) C015 Bromomethane 0.00 94 0 N.D. 6) C025 Chloroethane 0.00 64 0 N.D. 7) C275 Trichlorofluoromet 0.00 101 0 N.D. 8) C045 1,1-Dichloroethene 2.69 96 288 N.D. 9) C030 Methylene chloride 3.12 84 3414 N.D. 10) C040 Carbon disulfide 2.88 76 1365 N.D. 11) C036 Acrolein 0.00 56 0 N.D. 12) C038 Acrylonitrile 3.32 53 287 </td <td></td>	
Spiked Amount 125.000 Range 77 - 122 Recovery = 92 61) CS10 p-Bromofluorobenzene 8.23 174 126336 106.58 ng Spiked Amount 125.000 Range 74 - 120 Recovery = 85 Target Compounds 2) C290 Dichlorodifluorome 0.00 85 0 N.D. 3) C010 Chloromethane 0.00 50 0 N.D. 4) C020 Vinyl chloride 1.60 62 177508 143.88 ng 5) C015 Bromomethane 0.00 64 0 N.D. 6) C025 Chloroethane 0.00 64 0 N.D. 7) C275 Trichlorofluoromet 0.00 64 0 N.D. 8) C045 1,1-Dichloroethene 2.69 96 288 N.D. 9) C030 Methylene chloride 3.12 84 3414 N.D. 10) C040 Carbon disulfide 2.88 76 1365 N.D. 11) C036 Acrolein 0.00 56 0 N.D. 12) C038 Acrylonitrile 3.32 53 287 N.D. 13) C035 Acetone 2.75 43 149 N.D. 14) C300 Acetonitrile 0.00 41 0 N.D. 15) C276 Iodomethane 0.00 142 0 N.D. 16) C291 1,1,2 Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.37 73 10307 3.43 ng 18) C057 trans-1,2-Dichloro 3.35 96 2288 N.D. 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 3.69 63 4369 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 0.00 77 0 N.D. 23) C056 cis-1,2-Dichloroethe 4.14 96 379156 273.64 ng 241 C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D.	0.00
61) CS10 p-Bromofluorobenzene 8.23 174 126336 106.58 ng Spiked Amount 125.000 Range 74 - 120 Recovery = 85 Target Compounds 2) C290 Dichlorodifluorome 0.00 85 0 N.D. 3) C010 Chloromethane 0.00 50 0 N.D. 4) C020 Vinyl chloride 1.60 62 177508 143.88 ng 5) C015 Bromomethane 0.00 94 0 N.D. 6) C025 Chloroethane 0.00 64 0 N.D. 7) C275 Trichlorofluoromet 0.00 101 0 N.D. 8) C045 1,1-Dichloroethene 2.69 96 288 N.D. 9) C030 Methylene chloride 3.12 84 3414 N.D. 10) C040 Carbon disulfide 2.88 76 1365 N.D. 11) C036 Acrolein 0.00 56 0 N.D. 12) C038 Acrylonitrile 3.32 53 287 N.D. 13) C035 Acetone 2.75 43 149 N.D. 14) C300 Acetonitrile 0.00 41 0 N.D. 15) C276 Iodomethane 0.00 142 0 N.D. 16) C291 1,1,2 Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.37 73 10307 3.43 ng 18) C057 trans-1,2-Dichloro 3.35 96 2288 N.D. 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 3.69 63 4369 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 0.00 77 0 N.D. 23) C056 cis-1,2-Dichloroethe 4.14 96 379156 273.64 ng 24) C272 Tetrahydrofuran 0.00 42 0 N.D.	.96%
Target Compounds 2) C290 Dichlorodifluorome 0.00 85 0 N.D. 3) C010 Chloromethane 0.00 50 0 N.D. 4) C020 Vinyl chloride 1.60 62 177508 143.88 ng 5) C015 Bromomethane 0.00 94 0 N.D. 6) C025 Chloroethane 0.00 64 0 N.D. 7) C275 Trichlorofluoromet 0.00 101 0 N.D. 8) C045 1,1-Dichloroethene 2.69 96 288 N.D. 9) C030 Methylene chloride 3.12 84 3414 N.D. 10) C040 Carbon disulfide 2.88 76 1365 N.D. 11) C036 Acrolein 0.00 56 0 N.D. 12) C038 Acrylonitrile 3.32 53 287 N.D. 13) C035 Acetone 2.75 43 149 N.D. 14) C300 Acetonitrile 0.00 41 0 N.D. 15) C276 Iodomethane 0.00 142 0 N.D. 16) C291 1,1,2 Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.37 73 10307 3.43 ng 18) C057 trans-1,2-Dichloro 3.35 96 2288 N.D. 19) C255 Methyl Acetate 0.00 43 0 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloroethane 3.69 63 4369 N.D. 23) C056 cis-1,2-Dichloroethe 4.14 96 379156 273.64 ng 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 42 0 N.D.	0.00
2) C290 Dichlorodifluorome 0.00 85 0 N.D. 3) C010 Chloromethane 0.00 50 0 N.D. 4) C020 Vinyl chloride 1.60 62 177508 143.88 ng 5) C015 Bromomethane 0.00 94 0 N.D. 6) C025 Chloroethane 0.00 64 0 N.D. 7) C275 Trichlorofluoromet 0.00 101 0 N.D. 8) C045 1,1-Dichloroethene 2.69 96 288 N.D. 9) C030 Methylene chloride 3.12 84 3414 N.D. 10) C040 Carbon disulfide 2.88 76 1365 N.D. 11) C036 Acrolein 0.00 56 0 N.D. 12) C038 Acrylonitrile 3.32 53 287 N.D. 13) C035 Acetone 2.75 43 149 N.D. 14) C300 Acetonitrile 0.00 41 0 N.D. 15) C276 Iodomethane 0.00 142 0 N.D. 17) C962 T-butyl Methyl Ether 3.37 73 10307 3.43 ng 18) C057 trans-1,2-Dichloro 3.35 96 2288 N.D. 19) C255 Methyl Acetate 0.00 43 0 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C050 1,1-Dichloroethane 3.69 63 4369 N.D. 23) C056 cis-1,2-Dichloroethe 4.14 96 379156 273.64 ng 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D.	.26%
C010	Qvalue
4) C020 Vinyl chloride 1.60 62 177508 143.88 ng 5) C015 Bromomethane 0.00 94 0 N.D. 6) C025 Chloroethane 0.00 64 0 N.D. 7) C275 Trichlorofluoromet 0.00 101 0 N.D. 8) C045 1,1-Dichloroethene 2.69 96 288 N.D. 9) C030 Methylene chloride 3.12 84 3414 N.D. 10) C040 Carbon disulfide 2.88 76 1365 N.D. 11) C036 Acrolein 0.00 56 0 N.D. 12) C038 Acrylonitrile 3.32 53 287 N.D. 13) C035 Acetone 2.75 43 149 N.D. 14) C300 Acetonitrile 0.00 41 0 N.D. 15) C276 Iodomethane 0.00 42 0 N.D. 17) C962 T-butyl Methyl Ether 3.37 73 10307 3.43 ng 18) C057 trans-1,2-Dichloro 3.35 96 2288 N.D. 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 3.69 63 4369 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 0.00 77 0 N.D. 23) C056 cis-1,2-Dichloroethe 4.14 96 379156 273.64 ng 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D.	
5) C015 Bromomethane 0.00 94 0 N.D. 6) C025 Chloroethane 0.00 64 0 N.D. 7) C275 Trichlorofluoromet 0.00 101 0 N.D. 8) C045 1,1-Dichloroethene 2.69 96 288 N.D. 9) C030 Methylene chloride 3.12 84 3414 N.D. 10) C040 Carbon disulfide 2.88 76 1365 N.D. 11) C036 Acrolein 0.00 56 0 N.D. 12) C038 Acrylonitrile 3.32 53 287 N.D. 13) C035 Acetone 2.75 43 149 N.D. 14) C300 Acetonitrile 0.00 41 0 N.D. 15) C276 Iodomethane 0.00 142 0 N.D. 16) C291 1,1,2 Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.37 73 10307 3.43 ng 18) C057 trans-1,2-Dichloro 3.35 96 2288 N.D. 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 3.69 63 4369 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 0.00 77 0 N.D. 23) C056 cis-1,2-Dichloroethe 4.14 96 379156 273.64 ng 24 C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D.	
6) C025 Chloroethane 0.00 64 0 N.D. 7) C275 Trichlorofluoromet 0.00 101 0 N.D. 8) C045 1,1-Dichloroethene 2.69 96 288 N.D. 9) C030 Methylene chloride 3.12 84 3414 N.D. 10) C040 Carbon disulfide 2.88 76 1365 N.D. 11) C036 Acrolein 0.00 56 0 N.D. 12) C038 Acrylonitrile 3.32 53 287 N.D. 13) C035 Acetone 2.75 43 149 N.D. 14) C300 Acetonitrile 0.00 41 0 N.D. 15) C276 Iodomethane 0.00 142 0 N.D. 15) C276 Iodomethane 0.00 142 0 N.D. 17) C962 T-butyl Methyl Ether 3.37 73 10307 3.43 ng 18) C057 trans-1,2-Dichloro 3.35 96 2288 N.D. 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 3.69 63 4369 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 0.00 77 0 N.D. 23) C056 cis-1,2-Dichloroethe 4.14 96 379156 273.64 ng 241 C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D.	99
7) C275 Trichlorofluoromet 0.00 101 0 N.D. 8) C045 1,1-Dichloroethene 2.69 96 288 N.D. 9) C030 Methylene chloride 3.12 84 3414 N.D. 10) C040 Carbon disulfide 2.88 76 1365 N.D. 11) C036 Acrolein 0.00 56 0 N.D. 12) C038 Acrylonitrile 3.32 53 287 N.D. 13) C035 Acetone 2.75 43 149 N.D. 14) C300 Acetonitrile 0.00 41 0 N.D. 15) C276 Iodomethane 0.00 142 0 N.D. 17) C291 1,1,2 Trichloro-1, 0.00 101 0 N.D. 17) C292 T-butyl Methyl Ether 3.37 73 10307 3.43 ng 18) C057 trans-1,2-Dichloro 3.35 96 2288 N.D. 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 3.69 63 4369 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 0.00 77 0 N.D. 23) C056 cis-1,2-Dichloroethe 4.14 96 379156 273.64 ng 24 C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D.	
8) C045 1,1-Dichloroethene 2.69 96 288 N.D. 9) C030 Methylene chloride 3.12 84 3414 N.D. 10) C040 Carbon disulfide 2.88 76 1365 N.D. 11) C036 Acrolein 0.00 56 0 N.D. 12) C038 Acrylonitrile 3.32 53 287 N.D. 13) C035 Acetone 2.75 43 149 N.D. 14) C300 Acetonitrile 0.00 41 0 N.D. 15) C276 Iodomethane 0.00 142 0 N.D. 17) C291 1,1,2 Trichloro-1, 0.00 101 0 N.D. 17) C292 T-butyl Methyl Ether 3.37 73 10307 3.43 ng 18) C057 trans-1,2-Dichloro 3.35 96 2288 N.D. 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 3.69 63 4369 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 0.00 77 0 N.D. 23) C056 cis-1,2-Dichloroethe 4.14 96 379156 273.64 ng 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D.	
9) C030 Methylene chloride 3.12 84 3414 N.D. 10) C040 Carbon disulfide 2.88 76 1365 N.D. 11) C036 Acrolein 0.00 56 0 N.D. 12) C038 Acrylonitrile 3.32 53 287 N.D. 13) C035 Acetone 2.75 43 149 N.D. 14) C300 Acetonitrile 0.00 41 0 N.D. 15) C276 Iodomethane 0.00 142 0 N.D. 16) C291 1,1,2 Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.37 73 10307 3.43 ng 18) C057 trans-1,2-Dichloro 3.35 96 2288 N.D. 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 3.69 63 4369 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 0.00 77 0 N.D. 23) C056 cis-1,2-Dichloroethe 4.14 96 379156 273.64 ng 24 C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D.	
10) C040 Carbon disulfide 2.88 76 1365 N.D. 11) C036 Acrolein 0.00 56 0 N.D. 12) C038 Acrylonitrile 3.32 53 287 N.D. 13) C035 Acetone 2.75 43 149 N.D. 14) C300 Acetonitrile 0.00 41 0 N.D. 15) C276 Iodomethane 0.00 142 0 N.D. 16) C291 1,1,2 Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.37 73 10307 3.43 ng 18) C057 trans-1,2-Dichloro 3.35 96 2288 N.D. 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 3.69 63 4369 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 0.00 77 0 N.D. 23) C056 cis-1,2-Dichloroethe 4.14 96 379156 273.64 ng 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D.	
11) C036 Acrolein 0.00 56 0 N.D. 12) C038 Acrylonitrile 3.32 53 287 N.D. 13) C035 Acetone 2.75 43 149 N.D. 14) C300 Acetonitrile 0.00 41 0 N.D. 15) C276 Iodomethane 0.00 142 0 N.D. 16) C291 1,1,2 Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.37 73 10307 3.43 ng 18) C057 trans-1,2-Dichloro 3.35 96 2288 N.D. 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 3.69 63 4369 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 0.00 77 0 N.D. 23) C056 cis-1,2-Dichloroethe 4.14 96 379156 273.64 ng 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D.	
12) C038 Acrylonitrile 3.32 53 287 N.D. 13) C035 Acetone 2.75 43 149 N.D. 14) C300 Acetonitrile 0.00 41 0 N.D. 15) C276 Iodomethane 0.00 142 0 N.D. 16) C291 1,1,2 Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.37 73 10307 3.43 ng 18) C057 trans-1,2-Dichloro 3.35 96 2288 N.D. 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 3.69 63 4369 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 0.00 77 0 N.D. 23) C056 cis-1,2-Dichloroethe 4.14 96 379156 273.64 ng 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D.	
13) C035 Acetone 2.75 43 149 N.D. 14) C300 Acetonitrile 0.00 41 0 N.D. 15) C276 Iodomethane 0.00 142 0 N.D. 16) C291 1,1,2 Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.37 73 10307 3.43 ng 18) C057 trans-1,2-Dichloro 3.35 96 2288 N.D. 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 3.69 63 4369 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 0.00 77 0 N.D. 23) C056 cis-1,2-Dichloroethe 4.14 96 379156 273.64 ng 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D.	
14) C300 Acetonitrile 0.00 41 0 N.D. 15) C276 Iodomethane 0.00 142 0 N.D. 16) C291 1,1,2 Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.37 73 10307 3.43 ng 18) C057 trans-1,2-Dichloro 3.35 96 2288 N.D. 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 3.69 63 4369 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 0.00 77 0 N.D. 23) C056 cis-1,2-Dichloroethe 4.14 96 379156 273.64 ng 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D.	
15) C276 Iodomethane 0.00 142 0 N.D. 16) C291 1,1,2 Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.37 73 10307 3.43 ng 18) C057 trans-1,2-Dichloro 3.35 96 2288 N.D. 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 3.69 63 4369 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 0.00 77 0 N.D. 23) C056 cis-1,2-Dichloroethe 4.14 96 379156 273.64 ng 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D.	
17) C962 T-butyl Methyl Ether 3.37 73 10307 3.43 ng 18) C057 trans-1,2-Dichloro 3.35 96 2288 N.D. 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 3.69 63 4369 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 0.00 77 0 N.D. 23) C056 cis-1,2-Dichloroethe 4.14 96 379156 273.64 ng 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D.	
18) C057 trans-1,2-Dichloro 3.35 96 2288 N.D. 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 3.69 63 4369 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 0.00 77 0 N.D. 23) C056 cis-1,2-Dichloroethe 4.14 96 379156 273.64 ng 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D.	
19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 3.69 63 4369 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 0.00 77 0 N.D. 23) C056 cis-1,2-Dichloroethe 4.14 96 379156 273.64 ng 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D.	# 82
20) C050 1,1-Dichloroethane 3.69 63 4369 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 0.00 77 0 N.D. 23) C056 cis-1,2-Dichloroethe 4.14 96 379156 273.64 ng 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D.	
21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 0.00 77 0 N.D. 23) C056 cis-1,2-Dichloroethe 4.14 96 379156 273.64 ng 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D.	
22) C051 2,2-Dichloropropan 0.00 77 0 N.D. 23) C056 cis-1,2-Dichloroethe 4.14 96 379156 273.64 ng 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D.	
23) C056 cis-1,2-Dichloroethe 4.14 96 379156 273.64 ng 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D.	
24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D.	91
25) C222 Bromochloromethane 0.00 128 0 N.D.	91
27) C115 1,1,1-Trichloroeth 4.53 97 3749 N.D.	
28) C120 Carbon tetrachlori 0.00 117 0 N.D.	
29) C116 1,1-Dichloropropen 0.00 75 0 N.D.	
32) C165 Benzene 4.81 78 5121 N.D.	
33) C065 1,2-Dichloroethane 0.00 62 0 N.D.	
34) C110 2-Butanone 0.00 43 0 N.D.	
35) C256 Cyclohexane 4.58 56 451 N.D.	
36) C150 Trichloroethene 5.29 95 49346 37.88 ng	96
37) C140 1,2-Dichloropropan 0.00 63 0 N.D.	
38) C278 Dibromomethane 0.00 93 0 N.D.	

Quantitation Report STL Buffalo (Not Reviewed) 217/504

Data File : D:\DATA\122805\S9724.D
Acq On : 28 Dec 2005 22:18
Sample : A5E58710DL DF2
Misc : Multiplr: 1.00
Vial: 30
Operator: TLC
Inst : HP5973S
Multiplr: 1.00

MS Integration Params: RTEINT.P

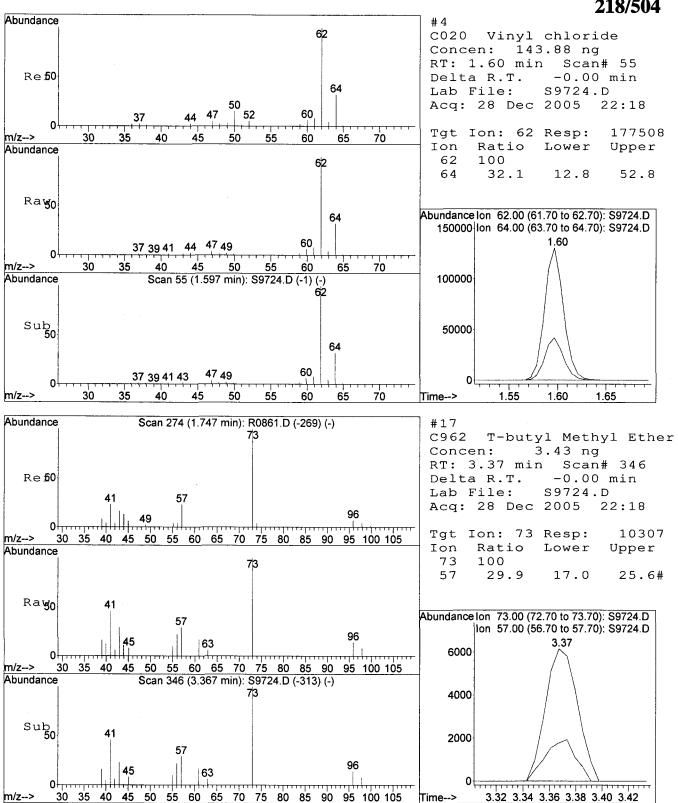
Quant Time: Dec 29 09:01:00 2005 Results File: A5I0002442_E2.RES

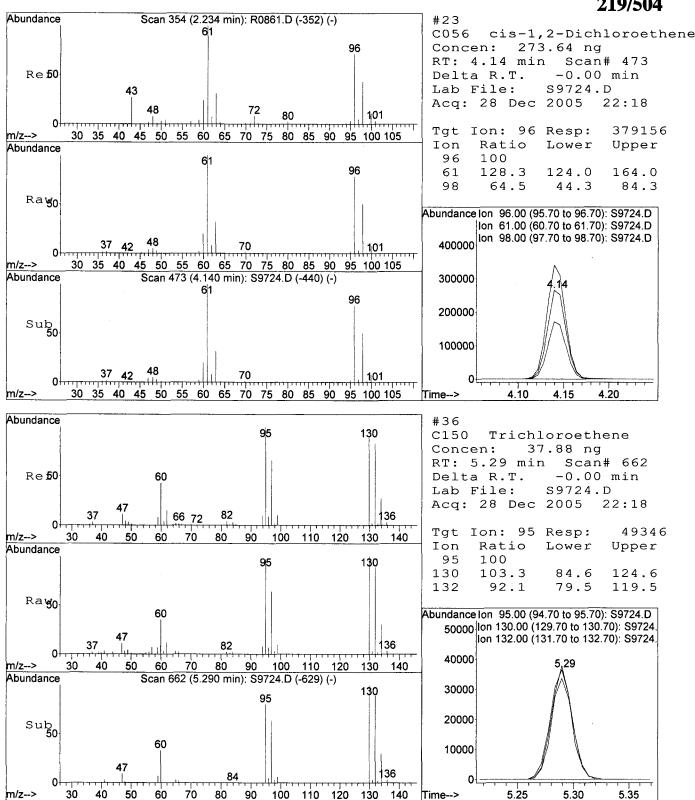
Quant Method: C:\MSDCHEM\1...\A510002442 E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Wed Dec 28 20:05:16 2005

Response via : Initial Calibration


DataAcq Meth : VOA


IS QA File : D:\DATA\122805\S9718.D (28 Dec 2005 19:47)

Inte	ernal	Standards	R.T	. QIon	Response	Conc Unit	s Dev(Min) Rcv(Ar)
39)	C130	Bromodichlorometha	5.70	83	140	N.D.	
40)	C161	2-Chloroethylvinyl	0.00	63	0	N.D.	
41)	C012	Methylcycolhexane	0.00	83	0	N.D.	
42)	C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
45)	C230	Toluene	6.24	92	1276	N.D.	
46)	C170	trans-1,3-Dichloro	0.00	75	0	N.D.	
47)	C284	Ethyl Methacrylate	0.00	69	0	N.D.	
48)	C160	1,1,2-Trichloroeth	0.00	83	0	N.D.	
49)	C210	4-Methyl-2-pentano	6.19	43	2791	N.D.	
	C220	Tetrachloroethene	0.00	166	0	N.D.	
		1,3-Dichloropropan	0.00	76	0	N.D.	
52)	C155	Dibromochlorometha	0.00	129	0	N.D.	
	C163	1,2-Dibromoethane	0.00	107	0	N.D.	
54)	C215	2-Hexanone	0.00	43	0	N.D.	
55)		Chlorobenzene	7.32	112	275	N.D.	
56)	C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
	C240	Ethylbenzene	7.41	91	809	N.D.	
•	C246	m,p-Xylene	7.50	106	883	N.D.	
		o-Xylene	0.00	106	0	N.D.	
	C245	Styrene	0.00	104	0	N.D.	
	C180	Bromoform	0.00	173	0	N.D.	
		Isopropylbenzene	0.00	105	0	N.D.	
65)	C301	Bromobenzene	0.00	156	0	N.D.	
	C225	1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
	C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
	C283	t-1,4-Dichloro-2-B	0.00	53	0	N.D.	
	C302	n-Propylbenzene	8.45	91	376	N.D.	
	C303	2-Chlorotoluene	0.00	126	0	N.D.	
	C289	4-Chlorotoluene	0.00	126	0	N.D.	
	C304	1,3,5-Trimethylben	8.58	105	494	N.D.	
	C306	tert-Butylbenzene	0.00	134	0	N.D.	
	C307	1,2,4-Trimethylben	8.89	105	1971	N.D.	
	C308	sec-Butylbenzene	9.02	105	1746	N.D.	
	C260	1,3-Dichlorobenzen	9.12	146	153	N.D.	
	C309	4-Isopropyltoluene	0.00	119	0	N.D.	
-	C267	1,4-Dichlorobenzen	9.20	146	304	N.D.	
	C249	1,2-Dichlorobenzen	9.50	146	138	N.D.	
•	C310	n-Butylbenzene	0.00	91	0	N.D.	
-	C286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
82)	C313	1,2,4-Trichloroben	0.00	180	0	N.D.	
-	C316	Hexachlorobutadien	0.00	225	0	N.D.	
	C314	Naphthalene	11.02	128	250	N.D.	
85)	C934	1,2,3-Trichloroben	0.00	180	О	N.D.	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

who

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-35		

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ___

Matrix: (soil/water) WATER Lab Sample ID: A5E58713

Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{ML} Lab File ID: $\underline{Q9548.RR}$

Level: (low/med) Low Date Samp/Recv: $\underline{12/21/2005}$ $\underline{12/23/2005}$

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: $\underline{DB-624}$ ID: $\underline{0.25}$ (mm) Dilution Factor: $\underline{1.00}$

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	CONCENTRATION U		0
		(49/1 01 49/19	, <u>55, 5</u>	* T
67-64-1			5.0	U
71-43-2			1.0	U
1	-Bromodichloromethane		1.0	U
75-25-2	-Bromoform		1.0	U
74-83-9	-Bromomethane		1.0	U
78-93-3	-2-Butanone		5.0	U
75-15-0	-Carbon Disulfide		1.0	U
56-23-5	-Carbon Tetrachloride		1.0	U
108-90-7	-Chlorobenzene		1.0	ע
75-00-3	-Chloroethane		1.0	U
67-66-3	-Chloroform		1.0	U
74-87-3	-Chloromethane		1.0	ט
110-82-7	-Cyclohexane		1.0	U
106-93-4	-1,2-Dibromoethane		1.0	ט
124-48-1	-Dibromochloromethane		1.0	ט
96-12-8	-1,2-Dibromo-3-chloropropane		1.0	ט
95-50-1	-1,2-Dichlorobenzene		1.0	ט
541-73-1	-1,3-Dichlorobenzene		1.0	ט
106-46-7	-1,4-Dichlorobenzene		1.0	ט
75-71-8	-Dichlorodifluoromethane		1.0	ע
75-34-3	-1,1-Dichloroethane		4.4	
107-06-2	-1,2-Dichloroethane		1.0	U
75-35-4	-1,1-Dichloroethene		1.0	ע
156-59-2	-cis-1,2-Dichloroethene		5 . 7	
156-60-5	-trans-1,2-Dichloroethene		1.0	ן ט
	-1,2-Dichloropropane		1.0	U
10061-01-5	-cis-1,3-Dichloropropene		1.0	U
10061-02-6	-trans-1,3-Dichloropropene		1.0	ע
	-Ethylbenzene		1.0	U
591-78-6			5.0	ט
98-82-8	-Isopropylbenzene		1.0	ע
i	-Methyl acetate		1.0	U
	-Methylcyclohexane		1.0	ן ט
	-Methylene chloride		1.0	ט

221/504

U

U

U

BJ

1.0

1.0

1.0

5.7

2.0

1.1

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

			0110110 110
ab Nama, CIII Duffala Contract, 4		MW-35	
Lab Name: STL Buffalo Contract: 4			
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	-	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A5E58713	
Sample wt/vol:	Lab File ID:	<u>0</u> 9548.RR	
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	12/21/2005	12/23/2005
% Moisture: not dec Heated Purge: N	Date Analyzed:	12/27/2005	5
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00	
Soil Extract Volume: (uL)	Soil Aliquot Vol	.ume:	(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)		Q
108-10-14-Methyl-2-pentanone 1634-04-4Methyl-t-Butyl Ether (MTBE) 91-20-3Naphthalene 100-42-5Styrene 79-34-51,1,2,2-Tetrachloroethane 127-18-4Tetrachloroethene 108-88-3Toluene 120-82-11,2,4-Trichlorobenzene		5.0 U 28 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	1 1 1 1

79-00-5-----1,1,2-Trichloroethane

79-01-6----Trichloroethene

75-01-4-----Vinyl chloride_ 1330-20-7----Total Xylenes_

76-13-1----1,1,2-Trichloro-1,2,2-trifluoroethane

75-69-4----Trichlorofluoromethane____

Vial: 31

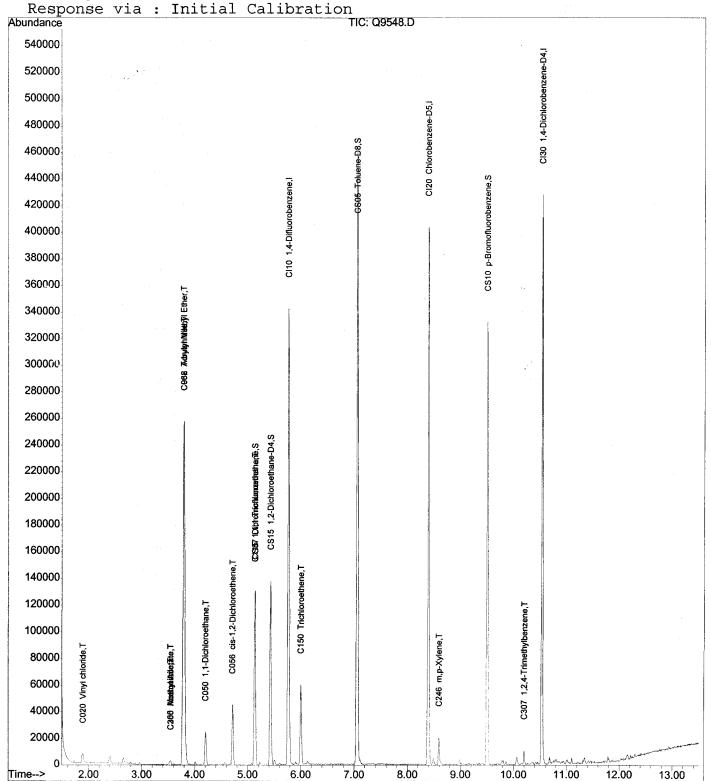
Quantitation Report

Data File: C:\HPCHEM\1\DATA\122705\Q9548.D

Acq On : 27 Dec 2005 22:15

Operator: TLC Sample : A5E58713 Inst : HP5973 Q Multiplr: 1.00

Misc


MS Integration Params: RTEINT.P

Quant Time: Dec 28 Quant Results File: A5I02444.RES 8:43 2005

Method : C:\HPCHEM\1\METHODS\Q8260\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Wed Dec 28 08:38:57 2005

Vial: 31

Data File: C:\HPCHEM\1\DATA\122705\Q9548.D

: 27 Dec 2005 22:15 Acq On Operator: TLC Sample : A5E58713 Inst : HP5973 Q

Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 28 8:43 2005 Quant Results File: A5I02444.RES

Quant Method: C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Wed Dec 28 08:38:57 2005

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : C:\HPCHEM\1\DATA\122705\Q9545.D (27 Dec 2005 20:40)

incernar St	candards	R.T.	QIon	Response		Rcv	(Ar)
1) CI10	1,4-Difluorobenzene	5.77	114	281438		ng	0.00
43) CI20	Chlorobenzene-D5	ध उठ	117	248704	125 00	ng	7.66%
43) CIZU	Chitotobelizene-b5	0.39	11/	240/04	125.00		0.00 3.60%
62) CI30	1,4-Dichlorobenzene-	10.53	152	115168	125.00	ng	0.00
System Mon:	itoring Compounds						
	Dibromofluoromethane	5.14	111	75144	122.70	ng	0.00
	mount 125.000 Ran					98.16%	
	1,2-Dichloroethane-D					ng	
Spiked Ar	mount 125.000 Ran	ge 72	- 143	Recove	ery =	96.80%	
44) CS05	Toluene-D8	7.05	98	304930	124 11	na	
Spiked Ar	mount 125.000 Ran	ge 76	- 116	Recove	ery =	99.29%	
61) CS10	p-Bromofluorobenzene	9.50	174	101890	128.71	ng	0.00
Spiked Ar	mount 125.000 Ran	ge 73	- 117	Recove	ery =	102.97%	
Target Comp	oounds					Ova	alue
	Dichlorodifluorometh	0.00	85	0	N.D.		
3) C010	Chloromethane	0.00	50	0	N.D.		
(4)2C020	Vinyl chloride Bromomethane	1.90	62	5947	9.77	ng	94
5) C015	Bromomethane	0.00	94	0	N.D.	_	
0) 0023	CIIIOIOECIIAIIE	0.00	64	0	N.D.		
7) C275	Trichlorofluorometha		101	0	N.D.		
8) C045	1,1-Dichloroethene	0.00	96	0	N.D.		
9) C030	Methylene chloride	0.00	84	0	N.D.		
10) C040	Carbon disulfide		76	0	N.D.		
11) C036	Acrolein	0.00	56	0	N.D.		
	Acrylonitrile			2472	7.17	_	-21
13) C035	Acetone	0.00	43	0	N.D.		
	Acetonitrile	3.54			8.22	_	26
15) C276	Iodomethane	0.00	142	0	N.D.		
16) C291	1,1,2 Trichloro-1,2,	0.00	101	0	N.D.		
100 0057	T-butyl Methyl Ether	3.79	73	303696	140.19	ng	99
18) C057 1 <u>9) C255</u>	trans-1,2-Dichloroet	0.00	96	0	N.D.		
20) C050	Methyl Acetate 1,1-Dichloroethane	3.54	43	3324	3.45	_	- 55 00
21) C125	Vinyl Acetate	4.20	63 43	27393	22.02	пg	98
21) C125 22) C051	2,2-Dichloropropane	0.00	43 77	0	N.D. N.D.		V
2.2.1 (1) 11	2,2-DICHIOLONIONAILE	0.00	//	U	N.D.		. (V) . (

STL Buffalo 224/504 Quantitation Report

Data File : C:\HPCHEM\1\DATA\122705\Q9548.D

Vial: 31 Acq On : 27 Dec 2005 22:15 Operator: TLC

Sample : A5E58713 Inst: HP5973 Q Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A5I02444.RES Quant Time: Dec 28 8:43 2005

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

: 8260 5ML

Last Update : Wed Dec 28 08:38:57 2005

Response via: Initial Calibration

DataAcq Meth: VOA

(Compou	ınd		R.T.	QIon	Response	Conc Unit	Qva:	lue
2379-6	 2056	cis-1,2-Dich	loroethe	4.71	96	20602	28.47 ng		90
24)	C272	Tetrahydrofu		0.00	42	0	N.D.		
25) (C222	Bromochlorom		0.00	128	0	N.D.		
26)	C060	Chloroform		0.00	83	0	N.D.		
	2115	1,1,1-Trichl	oroethan	5.13	97	10737	11.79 ng		95
	C120	Carbon tetra		0.00	117	0	N.D.		
29) (C116	1,1-Dichloro	propene	0.00	75	0	N.D.		
32) (C165	Benzene		5.45	78	1123	N.D.		
33) (C065	1,2-Dichloro	ethane	0.00	62	0	N.D.		
34) (C110	2-Butanone		0.00	43	0	N.D.		
35) (C256	Cyclohexane		5.15	56	1134	N.D.		
(36)	21 50.	Trichloroeth	ene	6.00	95	19355	28.43 ng	#	68
37) (C140	1,2-Dichloro	propane	0.00	63	0	N.D.		A CONTRACTOR
38) (C278	Dibromometha		0.00	93	0	N.D.		
39) (C130	Bromodichlor	omethane	0.00	83	0	N.D.		
40) (C161	2-Chloroethy	lvinyl E	0.00	63	0	N.D.		
41) (C012	Methylcycolh	exane	6.13	83	1046	N.D.		
42) (C145	cis-1,3-Dich	loroprop	0.00	75	0	N.D.		
45) (C230	Toluene		7.12	92	1284	N.D.		
46) (C170	trans-1,3-Di	chloropr	0.00	75	0	N.D.		
47) (C284	Ethyl Methac	rylate	0.00	69	0	N.D.		
48) (C160	1,1,2-Trichl	oroethan	0.00	83	0	N.D.		
49) (C210	4-Methyl-2-p	entanone	7.05	43	1116	N.D.		
50) (C220	Tetrachloroe	thene	0.00	166	0	N.D.		
51) (C221	1,3-Dichloro	propane	0.00	76	0	N.D.		
52) (C155	Dibromochlor	omethane	0.00	129	0	N.D.		
53) (C163	1,2-Dibromoe	thane	0.00	107	0	N.D.		
54) (C215	2-Hexanone		0.00	43	0	N.D		
55) (C235	Chlorobenzen	.e	0.00	112	0	N.D.		
56) (C281	1,1,1,2-Tetr	achloroe	0.00	131	0	N.D.		
	C240	Ethylbenzene	:	8.49	91	5082	N.D.		
(58)	C246	m,p-Xylene		8.59	106	7124	5.62 ng	#	85
59) (C247	o-Xylene		8.98	106	1761	N.D.		
60) (C245	Styrene		0.00	104	0	N.D.		
63) (C180	Bromoform		0.00	173	0	N.D.		
64) (C966	Isopropylben	zene	9.32	105	277	N.D.		
65) (C301	Bromobenzene		0.00	156	0	N.D.		
66) (C225	1,1,2,2-Tetr	achloroe	0.00	83	0	N.D.		
67) (C282	1,2,3-Trichl	oropropa	0.00	110	0	N.D.		in ~ An
68) (C283	t-1,4-Dichlo		0.00	51	0	N.D.		1 1/2
69) (C302	n-Propylbenz	ene	9.70	91	1785	N.D.		N 1/10.
		- 							1 1/

Data File : C:\HPCHEM\1\DATA\122705\Q9548.D

Vial: 31 Acq On : 27 Dec 2005 22:15 Operator: TLC

Sample : A5E58713 Inst: HP5973 Q

Misc

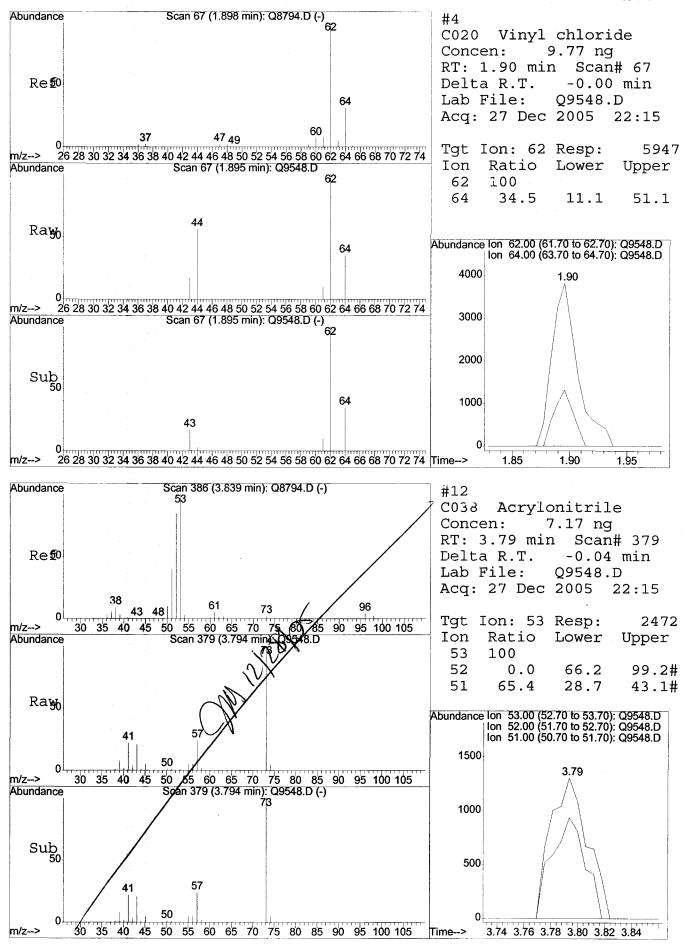
Multiplr: 1.00

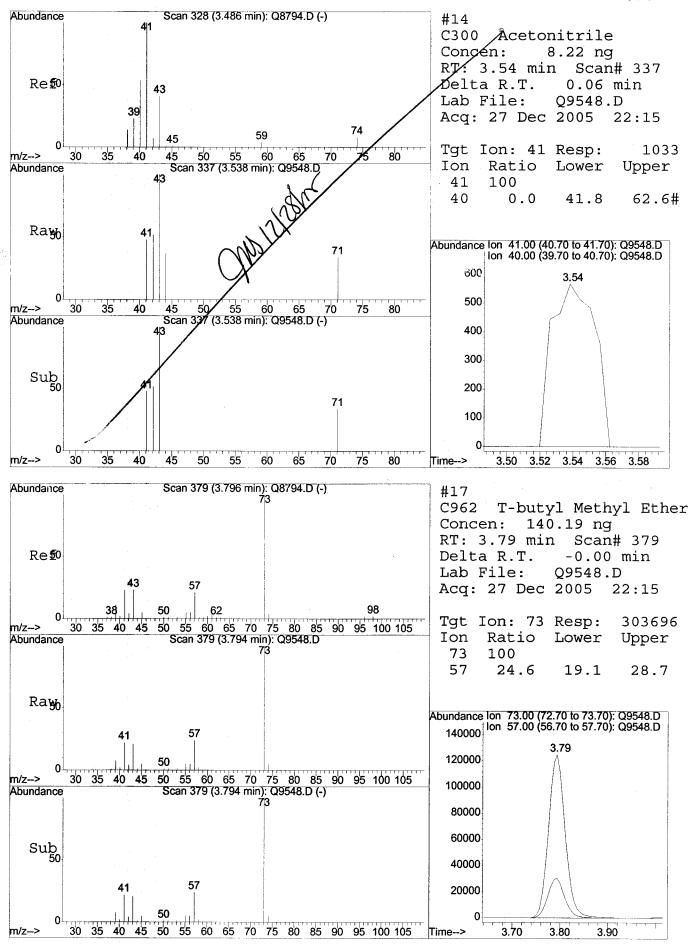
MS Integration Params: RTEINT.P

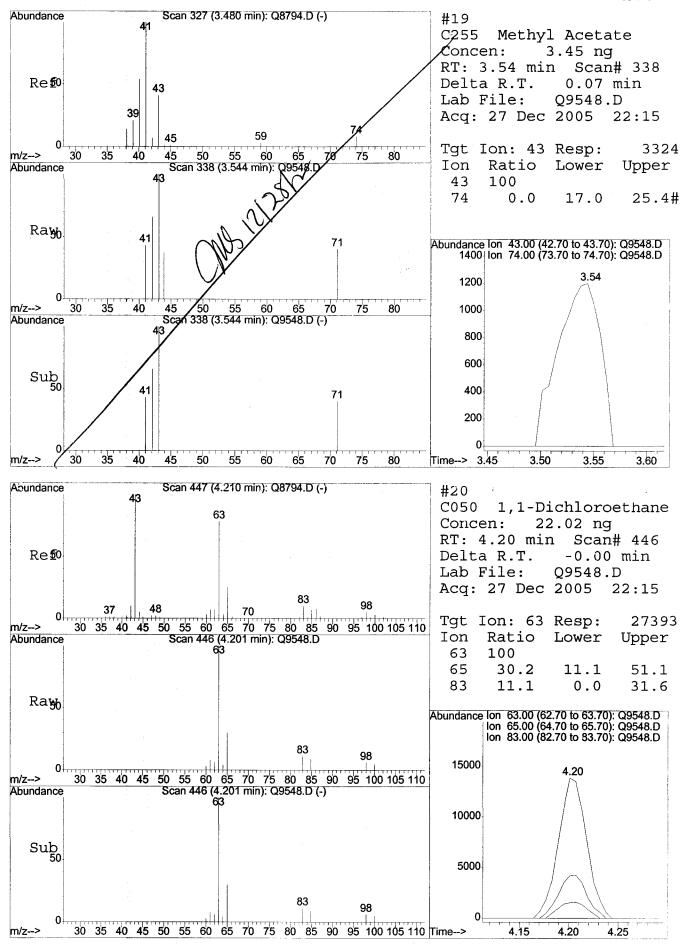
Quant Time: Dec 28 8:43 2005 Quant Results File: A5I02444.RES

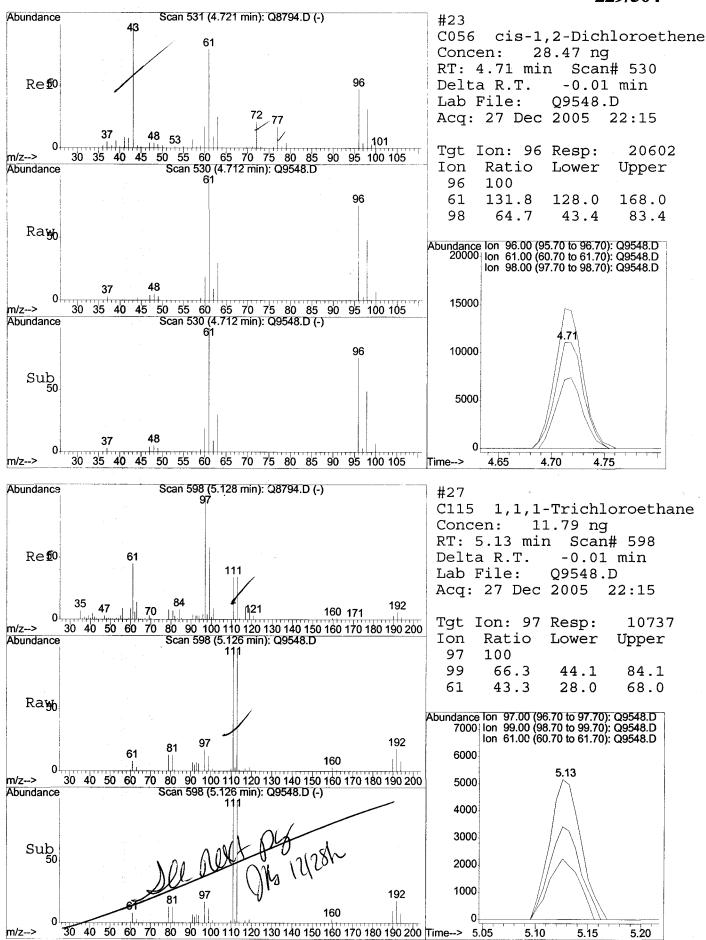
Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML


Last Update : Wed Dec 28 08:38:57 2005


Response via : Initial Calibration


DataAcq Meth : VOA


	Compound			QIon	Response	Conc Unit	Qvalue
70)	C303	2-Chlorotoluene	0.00	126	0	N.D.	
71)	C289	4-Chlorotoluene	0.00	126	0	N.D.	
72)	C304	1,3,5-Trimethylbenze	9.86	105	2034	N.D.	
73)	C306	tert-Butylbenzene	0.00	134	0	N.D.	
(7,4)	C307	1,2,4-Trimethylbenze	10.20	105	7057	2.97 ng	94
75)	C308	sec-Butylbenzene	10.34	105	1762	N.D.	
76)	C260	1,3-Dichlorobenzene	0.00	146	0	N.D.	
77)	C309	4-Isopropyltoluene	10.45	119	1180	N.D.	
78)	C267	1,4-Dichlorobenzene	0.00	146	0	N.D.	
79)	C249	1,2-Dichlorobenzene	0.00	146	0	N.D.	4
80)	C310	n-Butylbenzene	10.81	91	1803	N.D.	
81)	C286	1,2-Dibromo-3-Chloro	0.00	75	0	N.D.	
	C313	1,2,4-Trichlorobenze	12.11	180	294	N.D.	• •
83)	C316	Hexachlorobutadiene	0.00	225	0	N.D.	
84)	C314	Naphthalene	12.30	128	3528	N.D.	
85)	C934	1,2,3-Trichlorobenze	12.48	180	142	N.D.	

Quantitation Report (Qedit)

Data File: C:\HPCHEM\1\DATA\122705\Q9548.D

Acq On : 27 Dec 2005 22:15

Vial: 31 Operator: TLC

Sample

: A5E58713

Inst : HP5973 Q

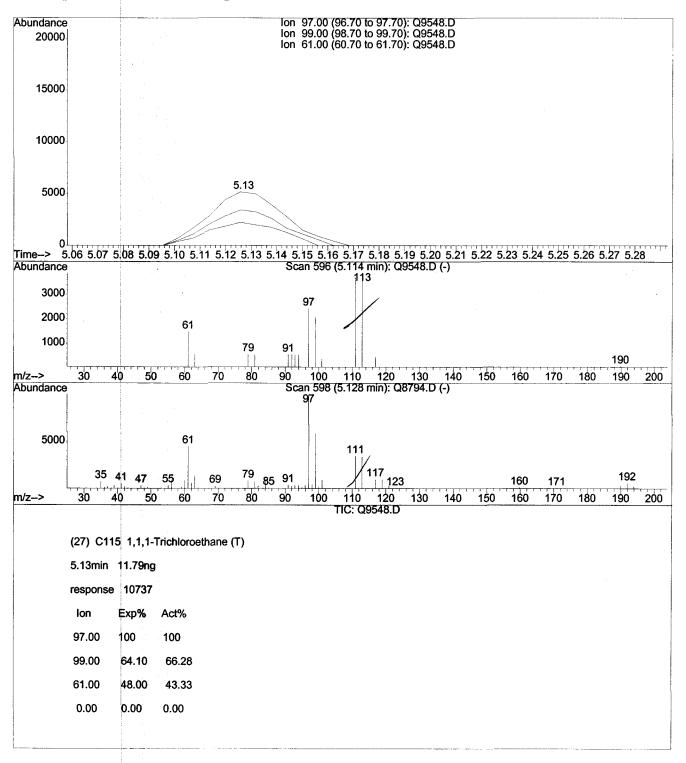
Multiplr: 1.00

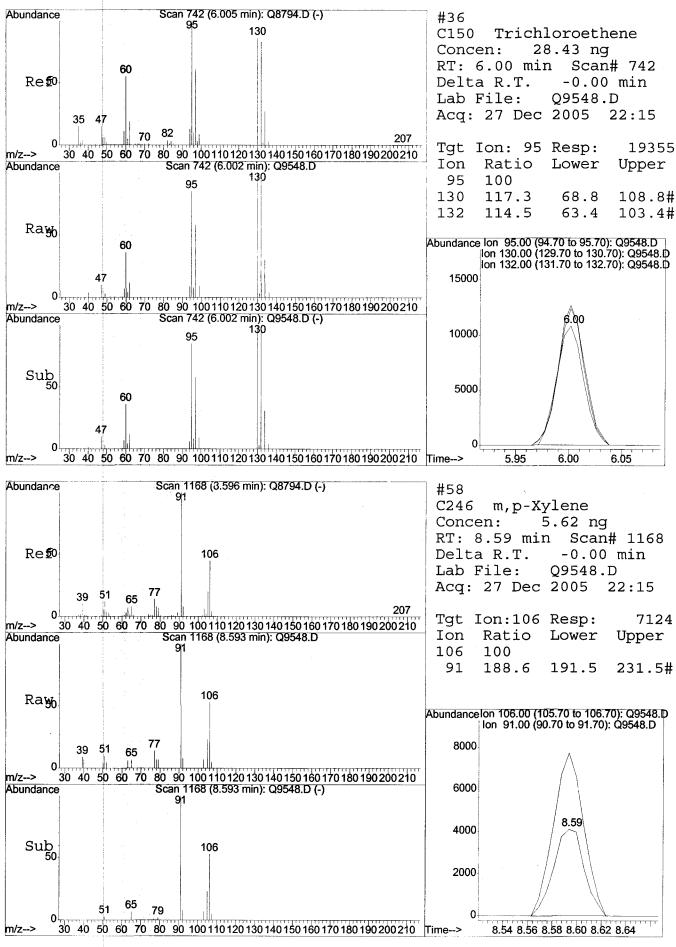
Misc

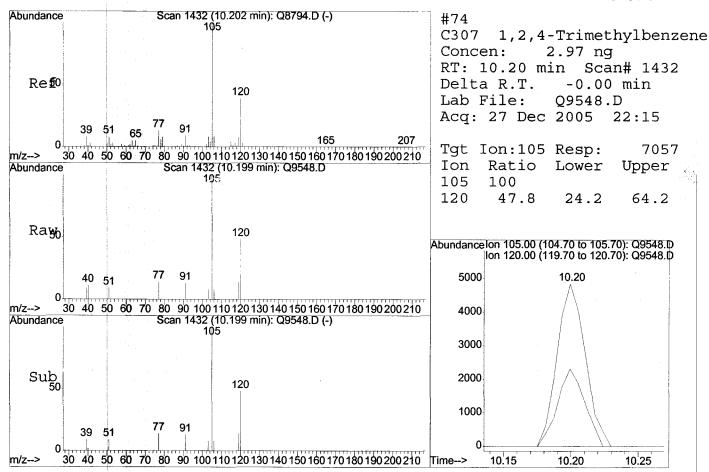
MS Integration Params: RTEINT.P

Quant Time: Dec 28 12:00 2005

Quant Results File: temp.res


Method


: C:\HPCHEM\1\METHODS\Q8260\A5I02444.M (RTE Integrator)


Title

: 8260 5ML

: Wed Dec 28 08:38:57 2005 Last Update Response via : Multiple Level Calibration

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-36	

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58716

Sample wt/vol: 5.00 (g/mL) ML Lab File ID: Q9551.RR

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.00

Soil Extract Volume: _____ (uL) Soil Aliquot Volume: _____ (uL)

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q 67-64-1Acetone 5.0 U 71-43-2Benzene 1.0 U 75-27-4			CONCENTRATION U	NITS:	
71-43-2	CAS NO.	COMPOUND			Q
75-27-4Bromodichloromethane 1.0 U 75-25-2Bromoform 1.0 U 74-83-9Bromomethane 5.0 U 78-93-3	67-64-1	Acetone		5.0	U
75-25-2Bromoform 1.0 U 74-83-9Bromomethane 1.0 U 78-93-3	71-43-2	Benzene		1.0	ע
74-83-9Brommethane 1.0 U 78-93-32-Butanone 5.0 U 75-15-0Carbon Disulfide 1.0 U 56-23-5Carbon Tetrachloride 1.0 U 108-90-7Chlorobenzene 1.0 U 75-00-3Chloroform 1.0 U 74-87-3Chloromethane 1.0 U 110-82-7Chloromethane 1.0 U 110-82-7	75-27-4	Bromodichloromethane		1.0	ט
78-93-32-Butanone 5.0 U 75-15-0Carbon Disulfide 1.0 U 56-23-5Carbon Tetrachloride 1.0 U 108-90-7Chlorobenzene 1.0 U 75-00-3Chlorobenzene 1.0 U 67-66-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromoethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 541-73-11,4-Dichlorobenzene 1.0 U 105-46-71,1-Dichlorobenzene 1.0 U 107-06-21,2-Dichlorobethane 3.2 107-06-21,1-Dichlorobethane 1.0 U 156-59-2cis-1,2-Dichlorobethene 1.0 U 156-60-5trans-1,2-Dichloropropene 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U 98-82-8-				1.0	U
75-15-0Carbon Disulfide 1.0 U 56-23-5Carbon Tetrachloride 1.0 U 108-90-7Chlorobenzene 1.0 U 75-00-3Chloroethane 1.0 U 67-66-3Chloromethane 1.0 U 74-87-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromoethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 55-71-81,4-Dichlorobenzene 1.0 U 75-71-8Dichloroethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 75-35-41,2-Dichloroethene 1.0 U 156-69-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropane 1.0 U 100-41-4Ethylbenzene 5.0 U <tr< td=""><td>74-83-9</td><td>Bromomethane</td><td></td><td>1.0</td><td>ן ט</td></tr<>	74-83-9	Bromomethane		1.0	ן ט
56-23-5Carbon Tetrachloride 1.0 U 108-90-7Chlorobenzene 1.0 U 75-00-3Chlorothane 1.0 U 67-66-3Chloromethane 1.0 U 74-87-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromo-1-chloromethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dichloromethane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 95-131,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 75-35-41,2-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloropropane 1.0 U 10061-02-6trans-1,3-Dichloropropane 1.0 U 10061-02-6trans-1,3-Dichloropropane 1.0 U <	78-93-3	2-Butanone		5.0	ע
108-90-7Chlorobenzene 1.0 U 75-00-3Chlorocethane 1.0 U 67-66-3				1.0	ט
75-00-3Chloroethane 1.0 U 67-66-3Chloroform 1.0 U 74-87-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromoethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 1061-01-5cis-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U 98-82-8Isopropylbenzene 5.0 U 98-82-8				1.0	ש
67-66-3Chloroform 1.0 U 74-87-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromoethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 541-73-11,4-Dichlorobenzene 1.0 U 75-71-8Dichloroethane 1.0 U 75-34-31,1-Dichloroethane 3.2 U 107-6-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 1061-01-5cis-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U 98-82-8				1.0	ע
74-87-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromoethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 3.2 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-69-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 1061-01-5cis-1,3-Dichloropropene 1.0 U 1004-04-4Ethylbenzene 5.0 U 991-78-62-Hexanone 5.0 U 98-82-8Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U				1.0	ט
110-82-7Cyclohexane 1.0 U 106-93-41, 2-Dibromoethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81, 2-Dibromo-3-chloropropane 1.0 U 95-50-11, 2-Dichlorobenzene 1.0 U 541-73-11, 3-Dichlorobenzene 1.0 U 106-46-71, 4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31, 1-Dichloroethane 3.2 107-06-21, 2-Dichloroethane 1.0 U 75-35-41, 1-Dichloroethene 1.0 U 156-69-2cis-1, 2-Dichloroethene 1.0 U 156-60-5trans-1, 2-Dichloroethene 1.0 U 10061-01-5cis-1, 3-Dichloropropene 1.0 U 10061-02-6trans-1, 3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U 98-82-8Isopropylbenzene 1.0 U 99-09Methyl acetate 1.0 U 108-87-2	67-66-3	Chloroform		1.0	ע
106-93-41, 2-Dibromoethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81, 2-Dibromo-3-chloropropane 1.0 U 95-50-11, 2-Dichlorobenzene 1.0 U 541-73-11, 3-Dichlorobenzene 1.0 U 106-46-71, 4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31, 1-Dichloroethane 3.2 107-06-21, 2-Dichloroethane 1.0 U 75-35-41, 1-Dichloroethene 1.0 U 156-69-2cis-1, 2-Dichloroethene 6.6 1.0 U 106-19-5cis-1, 3-Dichloropropane 1.0 U 10061-01-5cis-1, 3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U 98-82-8Isopropylbenzene 5.0 U 98-82-8Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	74-87-3	Chloromethane		1.0	ע
124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 3.2 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 6.6 U 156-60-5trans-1,2-Dichloroethene 1.0 U 10061-01-5cis-1,3-Dichloropropane 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U 591-78-62-Hexanone 5.0 U 98-82-8	110-82-7	Cyclohexane		1.0	ן די
96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 3.2 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 1061-01-5cis-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2	106-93-4	1,2-Dibromoethane		1.0	ע
95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 3.2 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 6.6 U 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2	124-48-1	Dibromochloromethane		1.0	ן די
95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 3.2 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 6.6 U 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2	96-12-8	1,2-Dibromo-3-chloropropane		1.0	ש
106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 3.2 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 6.6 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U 591-78-62-Hexanone 5.0 U 98-82-8Methyl acetate 1.0 U 108-87-2				1.0	ַ
75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 3.2 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 6.6 156-60-5trans-1,2-Dichloropropane 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Methyl acetate 1.0 U 108-87-2	541-73-1	1,3-Dichlorobenzene		1.0	U
75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 3.2 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 6.6 156-60-5trans-1,2-Dichloropropane 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Methyl acetate 1.0 U 108-87-2	106-46-7	1,4-Dichlorobenzene		1.0	U
107-06-21, 2-Dichloroethane 1.0 U 75-35-41, 1-Dichloroethene 1.0 U 156-59-2cis-1, 2-Dichloroethene 6.6 156-60-5trans-1, 2-Dichloropropane 1.0 U 78-87-51, 2-Dichloropropane 1.0 U 10061-01-5cis-1, 3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U				1.0	U
75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 6.6 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	75-34-3	1,1-Dichloroethane		3.2	
156-59-2cis-1,2-Dichloroethene 6.6 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	107-06-2	1,2-Dichloroethane		1.0	U
156-59-2cis-1,2-Dichloroethene 6.6 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	75-35-4	1,1-Dichloroethene		1.0	U
156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U				6.6	
10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U				1.0	U
10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	78-87-5	1,2-Dichloropropane		1.0	U
10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	10061-01-5	cis-1,3-Dichloropropene		1.0	U
591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U				1.0	U
591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	100-41-4	Ethylbenzene		1.0	U
79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U				5.0	U
79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	98-82-8	Isopropylbenzene		1.0	U
108-87-2 M ethylcyclohexane 1.0 U				1.0	U
				1.0	U
				1.0	U

234/504

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-36	

Lab Name: <u>STL Buffalo</u> Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58716

Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{ML} Lab File ID: <u>Q9551.RR</u>

Level: (low/med) LOW Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: <u>12/27/2005</u>

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: ____1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION INTERS.

		CONCENTRATION UNIT	IS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/L</u>	Q
108-10-1	4-Methyl-2-pentanone		5.0	U
	Methyl-t-Butyl Ether (MTBE)		26	
91-20-3	Naphthalene		1.0	ע
100-42-5	Styrene		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
127-18-4	Tetrachloroethene		0.45	J
108-88-3	Toluene		1.0	ע
	1,2,4-Trichlorobenzene		1.0	U
71-55-6	1,1,1-Trichloroethane		5.3	
79-00-5	1,1,2-Trichloroethane		1.0	ע
76-13-1	1,1,2-Trichloro-1,2,2-triflu	oroethane	1.0	ע
75-69-4	Trichlorofluoromethane		1.0	ע
79-01-6	Trichloroethene		13	
	Vinyl chloride		1.8	
1330-20-7-	Total Xylenes		3.0	U

Quantitation Report

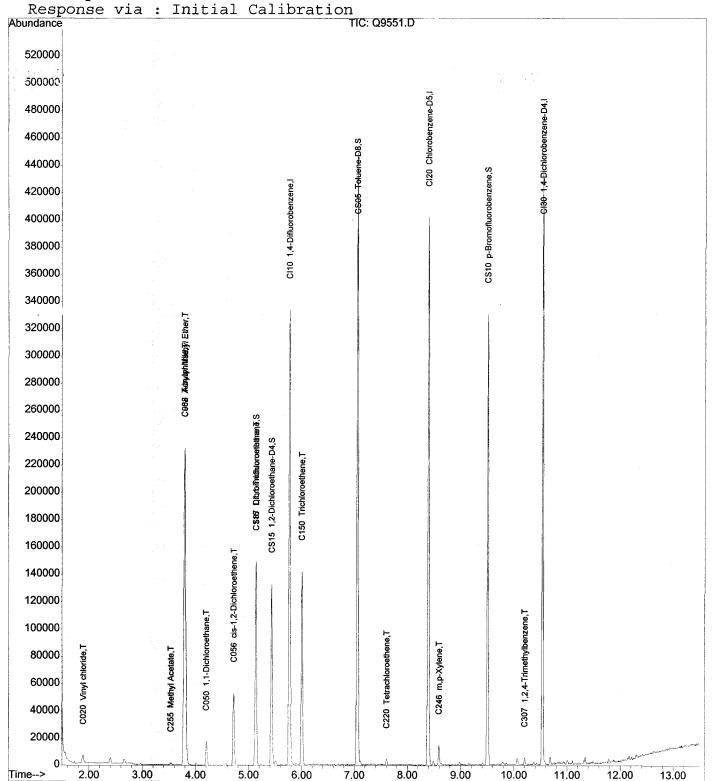
Data File : C:\HPCHEM\1\DATA\122705\Q9551.D

Vial: 34 Acq On : 27 Dec 2005 23:40 Operator: TLC

Sample : A5E58716 Inst : HP5973 Q

Misc

Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Results File: A5I02444.RES Quant Time: Dec 28 8:44 2005

Method : C:\HPCHEM\1\METHODS\Q8260\A5102444.M (RTE Integrator)

Title : 8260 5ML

: Wed Dec 28 08:38:57 2005 Last Update

Data File : C:\HPCHEM\1\DATA\122705\Q9551.D Vial: 34 Acq On : 27 Dec 2005 23:40 Operator: TLC

Sample : A5E58716 Inst : HP5973 Q Multiplr: 1.00

Misc MS Integration Params: RTEINT.P

Quant Time: Dec 28 8:44 2005 Quant Results File: A5I02444.RES

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title

Q9551.D A5I02444.M

Last Update : Wed Dec 28 08:38:57 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Ele : 8260 5ML

St Update : Wed Dec 28 08:38:57 2005

Sponse via : Initial Calibration

CAACQ Meth : VOA

IS QA File : C:\HPCHEM\1\DATA\122705\Q9545.D (27 Dec 2005 20:40)

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
1) CI10 1,4-Difluorobenzene	5.77	114	278237	125.00 ng	0.00 96.55%
43) CI20 Chlorobenzene-D5	8.39	117	243816	125.00 ng	0.00
62) CI30 1,4-Dichlorobenzene-	10.53	152	116670	125.00 ng	96.67% 0.00
				_	92.55%
System Monitoring Compounds					
30) CS87 Dibromofluoromethane Spiked Amount 125.000 Rand			74444 Recove		
31) CS15 1,2-Dichloroethane-D			84815	ry = 98 120.48 ng	
Spiked Amount 125.000 Rang	je 72	- 143	Recove	ry = 96	.38%
44) CS05 Toluene-D8 Spiked Amount 125.000 Rang	7.05	98 - 116	300923	124.93 ng = 99	0.00
61) CS10 p-Bromofluorobenzene	9.51	174	100816		
Spiked Amount 125.000 Rang		- 117			.92%
Target Compounds					Qvalue
2) C290 Dichlorodifluorometh		85	0	N.D.	
3) C010 Chloromethane	0.00		0	N.D.	
4) C020 Vinyl chloride 5) C015 Bromomethane	1.90		5443	9.04 ng	90
6) C025 Chloroethane	0.00		0 0	N.D. N.D.	
7) C275 Trichlorofluorometha	0.00		0	N.D.	
8) C045 1,1-Dichloroethene	0.00	96	0	N.D.	
9) C030 Methylene chloride	0.00	84	Ö	N.D.	* -
10) C040 Carbon disulfide	0.00	76	ő	N.D.	
11) C036 Acrolein	0.00	56	Ö	N.D.	
12) C038 Acrylonitrile	3.79		2315	6.79 ng	#-2 7
13) C035 Acetone	0.00		0	N.D.	
14) C300 Acetonitrile	3.53		138	N.D.	
15) C276 Iodomethane	0.00		0	N.D.	
16) C291 1,1,2 Trichloro-1,2,	0.00	101	0	N.D.	
(17) C962 T-butyl Methyl Ether	3.79	73	277184	129.42 ng	100
18) C057 trans-1,2-Dichloroet	0.00	96	0	N.D.	
19) C255 Methyl Acetate	3.53	43	1954	2.05 ng	# 55
(20) C050 1,1-Dichloroethane	4.20	63	19404	15.78 ng	95
$\overline{2}$ 1) C125 Vinyl Acetate	0.00	43	0	N.D.	\sim
22) C051 2,2-Dichloropropane	0.00	77 - -	0	N.D.	
(#) = qualifier out of range (m)	= manu	ial int	egration	HDEOES C	()

Wed Dec 28 08:44:15 2005

HP5973-0

Page 1

Vial: 34

Multiplr: 1.00

Quantitation Report

Data File : C:\HPCHEM\1\DATA\122705\Q9551.D

Acq On : 27 Dec 2005 23:40

Operator: TLC Sample : A5E58716 Inst: HP5973 Q

Misc

MS Integration Params: RTEINT.P

Quant Time: Dec 28 8:44 2005 Quant Results File: A5I02444.RES

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Wed Dec 28 08:38:57 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Compo	und	R.T.	QIon	Response	Conc Unit	Qva	lue
(23) C056	cis-1,2-Dichloroethe	4.72	96	23610	33.00 ng		91
24) C272	Tetrahydrofuran	0.00	42	0	N.D.		
25) C222	Bromochloromethane	0.00	128	0	N.D.		
26) C060	Chloroform	0.00	83	0	N.D.		
(27)) C 115	1,1,1-Trichloroethan	5.13	97	23863	26.50 ng		9.7
28) C120	Carbon tetrachloride	0.00	117	0	N.D.		
29) C116	1,1-Dichloropropene	0.00	75	0	N.D.		
32) C165	Benzene	5.45	78	841	N.D.		
33) C065	1,2-Dichloroethane	0.00	62	0	N.D.		
34) C110	2-Butanone	0.00	43	0	N.D.		
35) C256	Cyclohexane	5.15	56	425	N.D.		
(36) C150	Trichloroethene	6.00	95	43963	65.31 ng	#	70
97) C140	1,2-Dichloropropane	0.00	63	0 .	N.D.		2
38) C278	Dibromomethane	0.00	93	,0	N.D.		
39) C130	Bromodichloromethane	0.00	83	0	N.D.		
40) C161	2-Chloroethylvinyl E	0.00	63	0	N.D.		
41) C012	Methylcycolhexane	0.00	83	0	N.D.		
42) C145	cis-1,3-Dichloroprop	0.00	75	0	N.D.		
45) C230	Toluene	7.12	92	598	N.D.		
46) C170	trans-1,3-Dichloropr	0.00	75	0	N.D.		
47) C284	Ethyl Methacrylate	0.00	69	0	N.D.		
48) C160	1,1,2-Trichloroethan	0.00	83	0	N.D.		-
49) C210	4-Methyl-2-pentanone	7.05	43	1109	N.D.		
(50) C220	Tetrachloroethene	7.60	166	1579	2.26 ng		85
51) C221	1,3-Dichloropropane	0.00	76	0	N.D.		
52) C155	Dibromochloromethane	0.00	129	0	N.D.		
53) C163	1,2-Dibromoethane	0.00	107	Ö	N.D.		
54) C215	2-Hexanone	0.00	43	- 0	N.D.		
55) C235	Chlorobenzene	0.00	112	0	N.D.		
56) C281	1,1,1,2-Tetrachloroe	0.00	131	0	N.D.		
57) C240	Ethylbenzene	8.49	91	3299	N.D.		
(58) C246	m,p-Xylene	8.59	106	4719	3.80 ng		90
59) C247	o-Xylene	8.98	106	976	N.D.		
60) C245	Styrene	0.00	104	0	N.D.		
63) C180	Bromoform	0.00	173	0	N.D.		
64) C966	Isopropylbenzene	0.00	105	0	N.D.		
65) C301	Bromobenzene	0.00	156	0	N.D.		
66) C225	1,1,2,2-Tetrachloroe	0.00	83	0	N.D.		
67) C282		0.00	110	0	N.D.		
68) C283		0.00	51	0	N.D.		/bap/ 'N.
69) C302	- · · · · · · · · · · · · · · · · · · ·	9.70	91	848	N.D.	^	11/0/
(#) = mual	ifier out of range (m)	 manı	 ual in	tegration		!	

HP5973-0

Data File : C:\HPCHEM\1\DATA\122705\Q9551.D

Vial: 34 Acq On : 27 Dec 2005 23:40 Operator: TLC

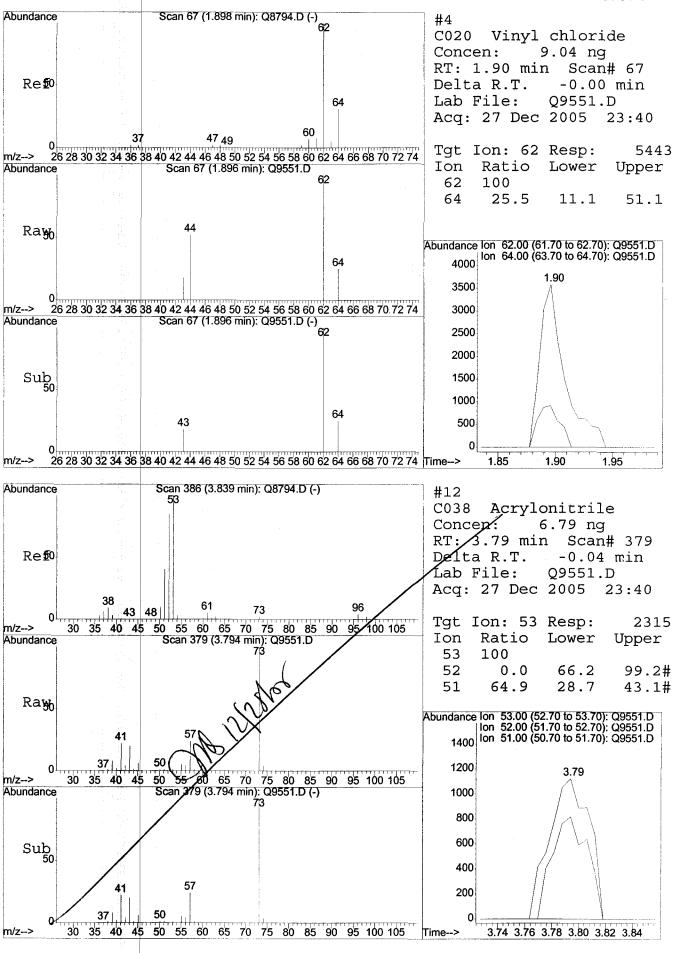
Sample : A5E58716 Inst: HP5973 Q Multiplr: 1.00

Misc

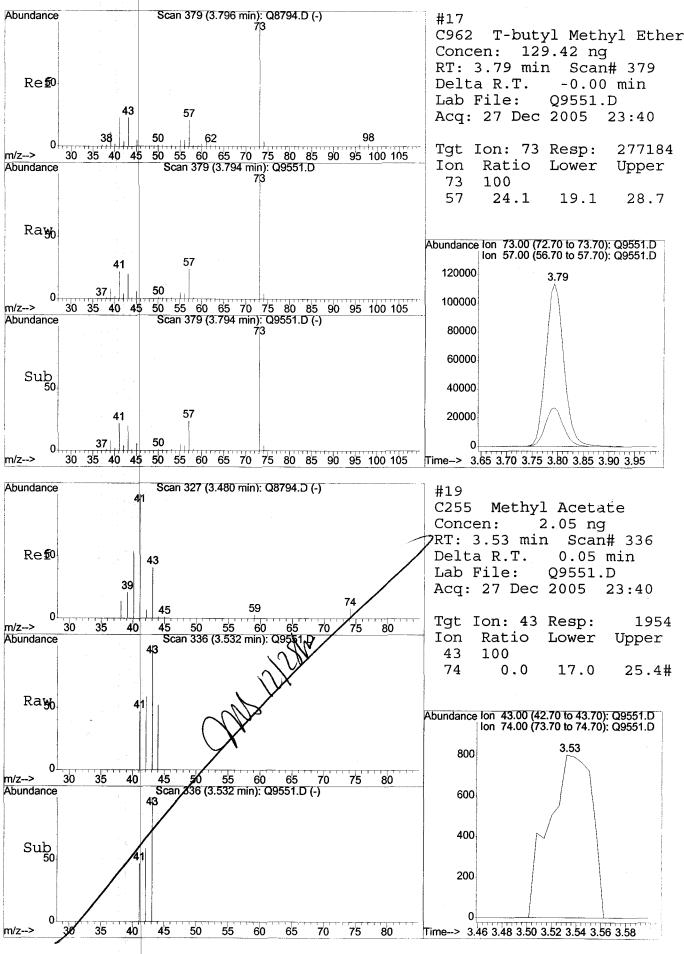
MS Integration Params: RTEINT.P

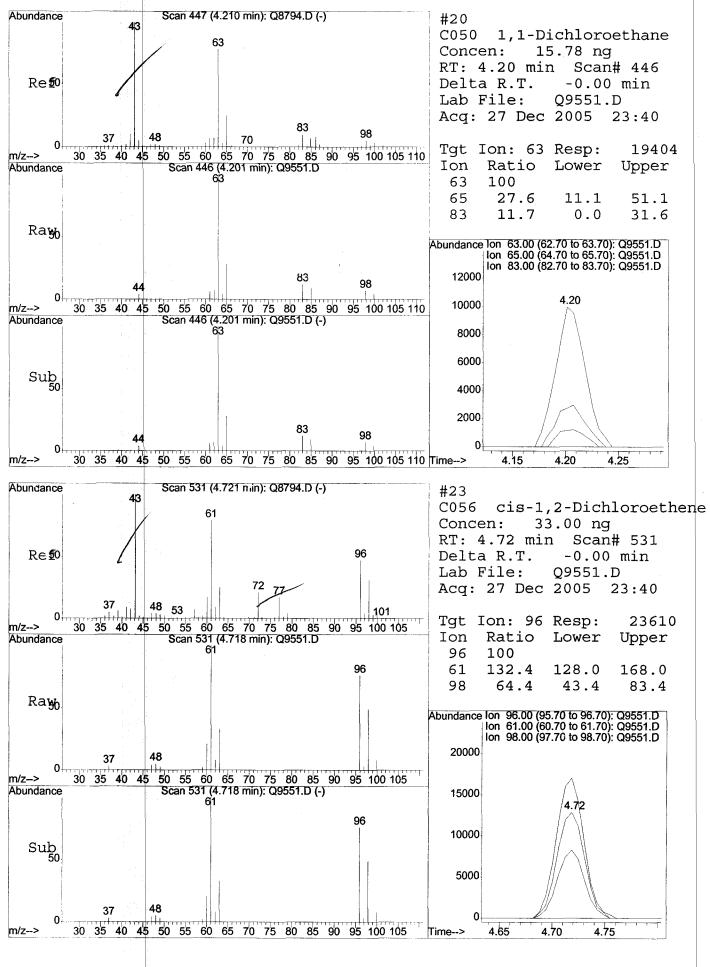
Quant Results File: A5I02444.RES Quant Time: Dec 28 8:44 2005

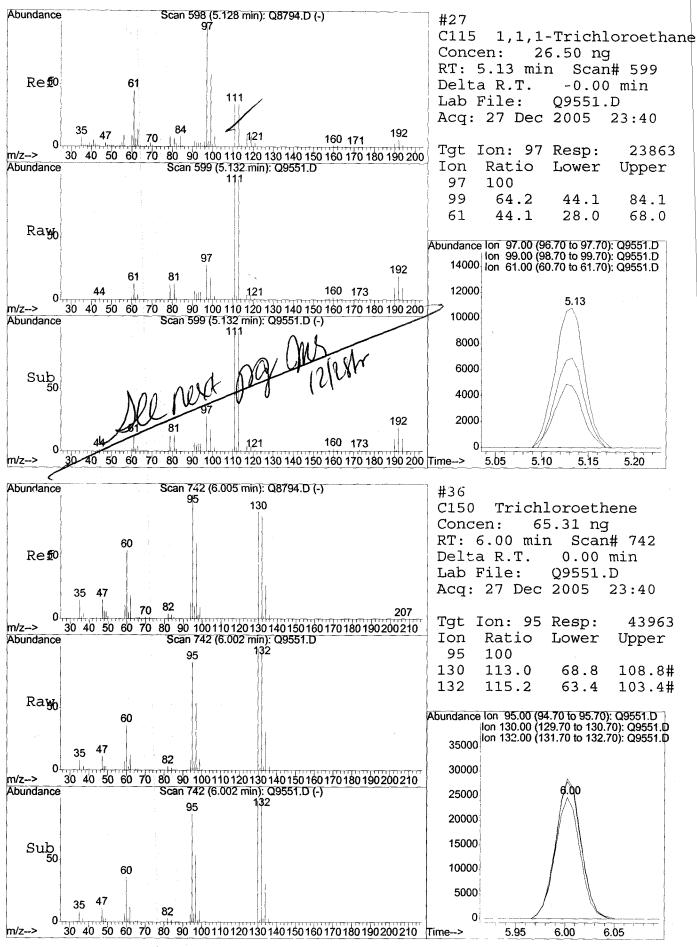
Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)


Title : 8260 5ML

Last Update : Wed Dec 28 08:38:57 2005


Response via : Initial Calibration


DataAcq Meth : VOA

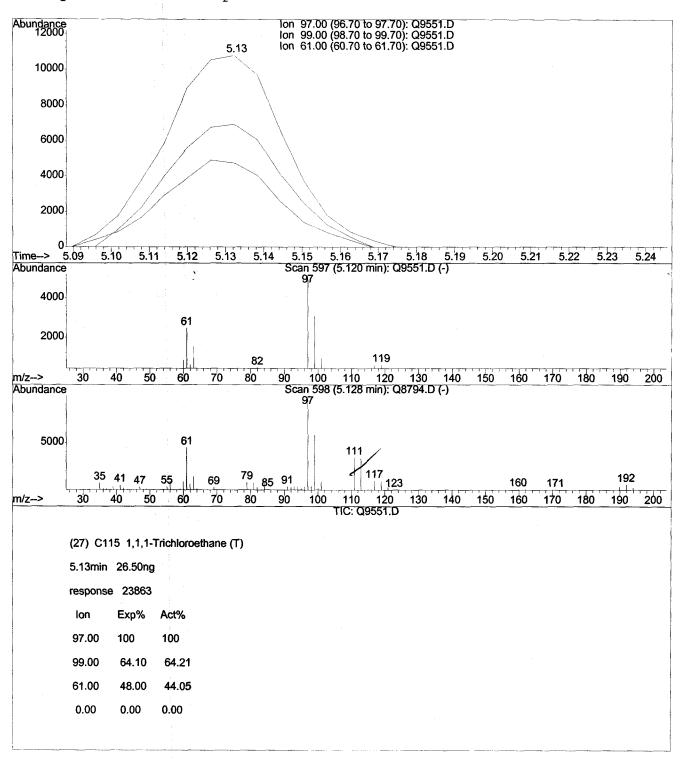

	Compo	und	R.T.	QIon	Response	Conc Unit	Qvalue
70)	C303	2-Chlorotoluene	0.00	126	0	N.D.	
71)	C289	4-Chlorotoluene	0.00	126	0	N.D.	
72)	C304	1,3,5-Trimethylbenze	9.86	105	1223	N.D.	
73)	C306	tert-Butylbenzene	0.00	134	0	N.D.	
(74)	C307	1,2,4-Trimethylbenze	10.20	105	4915	2.04 ng	95
75)	C308	sec-Butylbenzene	10.20	105	4915	N.D.	
76)	C260	1,3-Dichlorobenzene	0.00	146	0	N.D.	
77)	C309	4-Isopropyltoluene	0.00	119	0	N.D.	
78)	C267	1,4-Dichlorobenzene	0.00	146	0	N.D.	
79)	C249	1,2-Dichlorobenzene	0.00	146	0	N.D.	
80)	C310	n-Butylbenzene	10.81	91	457	N.D.	
81)	C286	1,2-Dibromo-3-Chloro	0.00	75	0	N.D.	
82)	C313	1,2,4-Trichlorobenze	0.00	180	0	N.D.	
83)	C316	Hexachlorobutadiene	0.00	225	0	N.D.	
84)	C314	Naphthalene	12.30	128	2528	N.D.	
85)	C934	1,2,3-Trichlorobenze	0.00	180	0	N.D.	

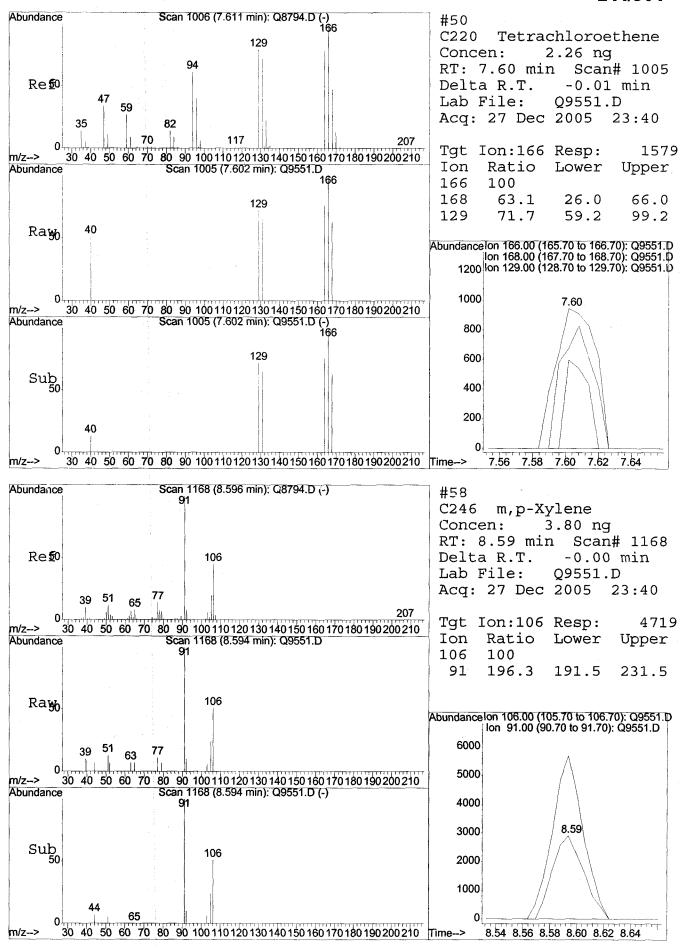
240/504

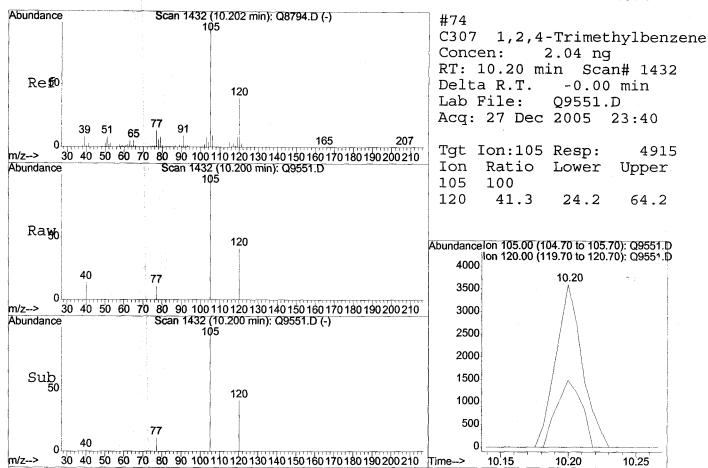
Data File : C:\HPCHEM\1\DATA\122705\09551.D

Vial: 34 : 27 Dec 2005 23:40

Acq On Operator: TLC Sample : A5E58716 Inst : HP5973 Q Misc Multiplr: 1.00


MS Integration Params: RTEINT.P Quant Time: Dec 28 12:16 2005


Quant Results File: temp.res


Method : C:\HPCHEM\1\METHODS\Q8260\A5I02444.M (RTE Integrator)

Title 8260 5ML

Last Update : Wed Dec 28 08:38:57 2005 Response via: Multiple Level Calibration

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-39	

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58720

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{O9555.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/L</u> Q 67-64-1-----Acetone____ 5.0 U 71-43-2----Benzene 1.0 U 75-27-4----Bromodichloromethane 1.0 U 75-25-2----Bromoform 1.0 U 74-83-9----Bromomethane U 1.0 78-93-3----2-Butanone 5.0 U 75-15-0-----Carbon Disulfide U 1.0 56-23-5----Carbon Tetrachloride 1.0 U 108-90-7----Chlorobenzene U 1.0 75-00-3-----Chloroethane 1.0 U 67-66-3-----Chloroform U 1.0 74-87-3-----Chloromethane 1.0 U 110-82-7-----Cyclohexane U 1.0 110-82-7-----Cyclonexane 106-93-4----1,2-Dibromoethane U 1.0 124-48-1----Dibromochloromethane U 1.0 96-12-8----1,2-Dibromo-3-chloropropane U 1.0 95-50-1----1,2-Dichlorobenzene 1.0 U 541-73-1----1,3-Dichlorobenzene 1.0 U 106-46-7----1,4-Dichlorobenzene 1.0 U 75-71-8-----Dichlorodifluoromethane 1.0 U 75-34-3----1,1-Dichloroethane_____ U 1.0 107-06-2----1,2-Dichloroethane U 1.0 75-35-4----1,1-Dichloroethene 1.0 U 156-59-2----cis-1,2-Dichloroethene 1.0 U 156-60-5----trans-1,2-Dichloroethene 1.0 U 78-87-5----1,2-Dichloropropane 1.0 U 10061-01-5---cis-1,3-Dichloropropene U 1.0 10061-02-6---trans-1,3-Dichloropropene____ 1.0 U 100-41-4----Ethylbenzene_____ U 1.0 591-78-6---2-Hexanone 5.0 U 98-82-8----Isopropylbenzene 1.0 U 79-20-9----Methyl acetate 1.0 U 108-87-2----Methylcyclohexane U 1.0 75-09-2----Methylene chloride U 1.0

247/504

U

U

1.0

3.0

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

Tab Name (IIII Diffe)		MW-39
Lab Name: STL Buffalo Contract: 4	<u> </u>	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A5E58720</u>
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID:	Q9555.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	12/21/2005 12/23/2005
% Moisture: not dec Heated Purge: N	Date Analyzed:	12/28/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume: (uL)

CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/L</u>	Q	
108-10-1	4-Methyl-2-pentanone		5.0	U	
1634-04-4	Methyl-t-Butyl Ether (MTBE)		5.4	-	-
91-20-3	Naphthalene		1.0	U	l
100-42-5	Styrene		1.0	U	l
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U	İ
127-18-4	Tetrachloroethene		1.0	U	
108-88-3	Toluene		1.0	ט	Ì
120-82-1	1,2,4-Trichlorobenzene		1.0	ט	
71-55-6	1,1,1-Trichloroethane		2.8		l
79-00-5	1,1,2-Trichloroethane		1.0	U	١
76-13-1	1,1,2-Trichloro-1,2,2-trifluc	roethane	1.0	U	ļ
75-69-4	Trichlorofluoromethane		1.0	ប	
79-01-6	Trichloroethene		4.0		

75-01-4-----Vinyl chloride____

1330-20-7----Total Xylenes

CONCENTRATION UNITS:

Vial: 38

Quantitation Report

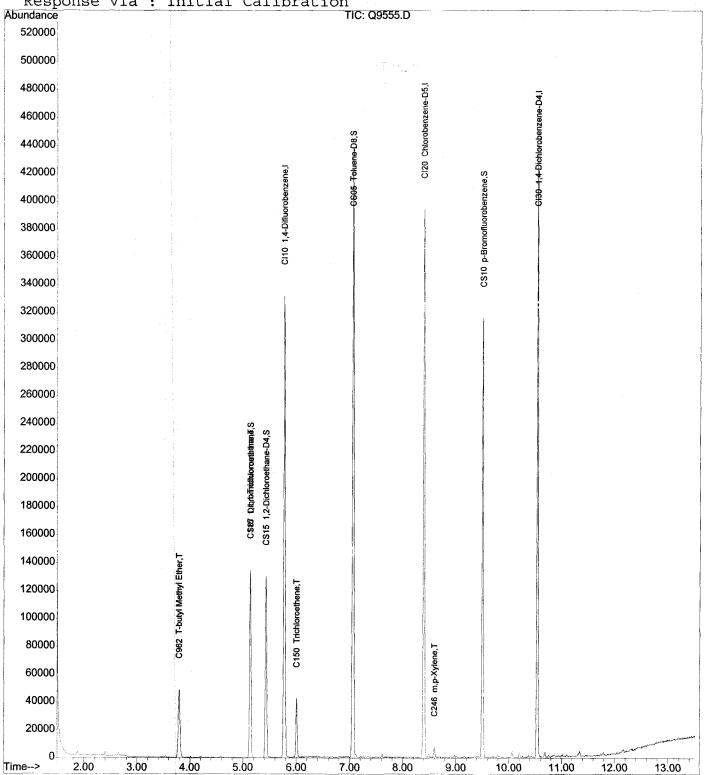
Data File : C:\HPCHEM\1\DATA\122705\Q9555.D

Acq On : 28 Dec 2005 1:33

Operator: TLC Sample : A5E58720 Inst : HP5973 Q

Misc Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Dec 28 8:44 2005 Quant Results File: A5I02444.RES

Method : C:\HPCHEM\1\METHODS\Q8260\A5102444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Wed Dec 28 08:38:57 2005

Response via : Initial Calibration

Data File : C:\HPCHEM\1\DATA\122705\Q9555.D Vial: 38 Acq On : 28 Dec 2005 1:33 Operator: TLC

Sample : A5E58720 Inst: HP5973 Q Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 28 8:44 2005 Quant Results File: A5I02444.RES

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator) 800 MB 12/28/0

Title : 8260 5ML

Last Update : Wed Dec 28 08:38:57 2005

Response via : Initial Calibration

DataAcq Meth: VOA

IS QA File : C:\HPCHEM\1\DATA\122705\Q9545.D (27 Dec 2005 20:40)

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
1) CI10 1,4-Difluorobenzene	5.77	114	275219	125.00 ng	0.00 95.50%
43) CI20 Chlorobenzene-D5	8.39	117	237875	125.00 ng	0.00
62) CI30 1,4-Dichlorobenzene-	10.53	152	114860	125.00 ng	
					91.12%
System Monitoring Compounds					
30) CS87 Dibromofluoromethane	5.14	111	74188	123.87 ng	
Spiked Amount 125.000 Rang 31) CS15 1,2-Dichloroethane-D	ge 70	- 130	Recove	ry = 99	.10%
31) CS15 1,2-Dichloroethane-D	5.43	65	84765	121.73 ng	0.00
Spiked Amount 125.000 Rang	ge /2	- 143	Recove	ry = 97	.38%
44) CS05 Toluene-D8 Spiked Amount 125.000 Rang	7.05	98	296494	126.17 ng	0.00
Spiked Amount 125.000 Rang	ge 76	- 116	Recove: 98803	ry = 100	.94%
61) CS10 p-Bromofluorobenzene	9.51	174	98803	130.49 ng	0.00
Spiked Amount 125.000 Rang	ge /3	- TT/	Recove	ry = 104	.39%
Target Compounds					0 1
Target Compounds 2) C290 Dichlorodifluorometh	0.00	0.5	0	NT TO	Qvalue
3) C010 Chloromethane	0.00	85 50	0	N.D.	
4) C020 Vinyl chloride		62	0 0	N.D. N.D.	
5) C015 Bromomethane	0.00	94	0	N.D.	
6) C025 Chloroethane		64	0	17 D	
7) C275 Trichlorofluorometha		101	0	N.D. N.D.	
8) C045 1,1-Dichloroethene		96	0	N.D.	
9) C030 Methylene chloride		84	0	N.D.	
	0.00	76	0	N.D.	
11) C036 Acrolein	0.00	56	Ö	N.D.	
12) C038 Acrylonitrile		53	Ö	N.D.	
13) C035 Acetone	0.00	43	Ö	N.D.	
14) C300 Acetonitrile	0.00	41	Ö	N.D.	
	0.00	142	0	N.D.	
16) C291 1,1,2 Trichloro-1,2,		101	0	N.D.	
(17) C962 T-butyl Methyl Ether		73	57610	27.19 ng	100
18) C057 trans-1,2-Dichloroet	0.00	96	0	N.D.	
19) C255 Methyl Acetate	3.55	43	1090	N.D.	
20) C050 1,1-Dichloroethane	4.21	63	1231	N.D.	
21) C125 Vinyl Acetate	0.00	43	0	N.D.	<i>(</i>
22) C051 2,2-Dichloropropane	0.00	77	0	N.D.	√,
					/
(#) = qualifier out of range (m)				IIDE 072 O	1

HP5973-0

Page 1

Q9555.D A5I02444.M Wed Dec 28 08:44:44 2005

131.4

Vial: 38

Data File : C:\HPCHEM\1\DATA\122705\Q9555.D

Acq On : 28 Dec 2005 1:33

Operator: TLC Sample : A5E58720

Inst: HP5973 Q Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 28 8:44 2005 Quant Results File: A5I02444.RES

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Wed Dec 28 08:38:57 2005

Response via : Initial Calibration

DataAcq Meth : VOA

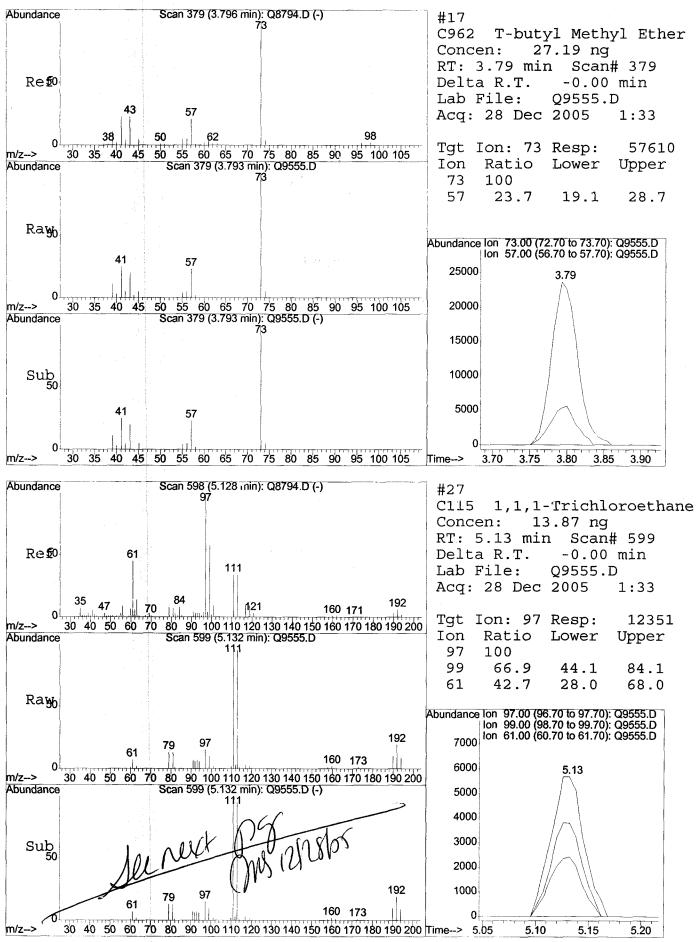
	Compo	und	R.T.	QIon	Response	Conc Unit	Qva	lue
23)	C056	cis-1,2-Dichloroethe	0.00	96	0	N.D.		,
24)		Tetrahydrofuran	0.00	42	0	N.D.		
25)	C222	Bromochloromethane	0.00	128	0	N.D.		
26)		Chloroform	0.00	83	0	N.D.		
(27)	C115	1,1,1-Trichloroethan	5.13	97	12351	13.87 ng		95
28)	C120	Carbon tetrachloride	0.00	117	0	N.D.		
29)	C116	1,1-Dichloropropene	0.00	75	0	N.D.		
32)	C165	Benzene	0.00	78	0	N.D.		
33)	C065	1,2-Dichloroethane	0.00	62	0	N.D.		
34)	C110	2-Butanone	0.00	43	0	N.D.		
	C256	Cyclohexane	0.00	56	0	N.D.		
(36)	₹С1 50	Trichloroethene	6.00	95	13271	19.93 ng	#	73
37)	C140	1,2-Dichloropropane	0.00	63	0	N.D.		
38)	C278	Dibromomethane	0.00	93	0	N.D.		
39)	C130	Bromodichloromethane	0.00	83	0	N.D.		
40)	C161	2-Chloroethylvinyl E	0.00	63	0	N.D.		
41)	C012	Methylcycolhexane	0.00	83	: 0	N.D.		Ş
42)	C145	cis-1,3-Dichloroprop	0.00	75	0	N.D.		
45)	C230	Toluene	7.11	92	581	N.D.		
46)	C170	trans-1,3-Dichloropr	0.00	75	0	N.D.		
47)	C284	Ethyl Methacrylate	0.00	69	0	N.D.		
48)	C160	1,1,2-Trichloroethan	0.00	83	0	N.D.		
49)	C210	4-Methyl-2-pentanone	7.05	43	1034	N.D.		
50)	C220	Tetrachloroethene	7.61	166	1083	N.D.		
51)	C221	1,3-Dichloropropane	0.00	76	0	N.D.		
52)	C155	Dibromochloromethane	0.00	129	0	N.D.		
53)	C163	1,2-Dibromoethane	0.00	107	0	N.D.		
54)	C215	2-Hexanone	0.00	43	0	N.D.		
55)	C235	Chlorobenzene	0.00	112	0	N.D.		
56)	C281	1,1,1,2-Tetrachloroe	0.00	131	0	N.D.		
57)	C240	Ethylbenzene	8.49	91	2165	N.D.		
(58)	C246	m,p-Xylene	8.59	106	3433	2.83 ng	#	63
59)	C247	o-Xylene	8.98	106	512	N.D.		
60)	C245	Styrene	0.00	104	0	N.D.		
63)	C180	Bromoform	0.00	173	0	N.D.		
64)	C966	Isopropylbenzene	0.00	105	0	N.D.		
	C301	Bromobenzene	0.00	156	0	N.D.		
66)	C225	1,1,2,2-Tetrachloroe	0.00	83	0	N.D.		
67)	C282	1,2,3-Trichloropropa	0.00	110	0	N.D.		\sim
68)	C283		0.00	51	0	N.D.		n / (c
69)	C302	n-Propylbenzene	9.71	91	437	N.D.		\ \\Y\
						_ 		M.

MS Integration Params: RTEINT.P

Quant Time: Dec 28 8:44 2005 Quant Results File: A5I02444.RES

Quant Method: C:\HPCHEM\1...\A5102444.M (RTE Integrator)

Title : 8260 5ML


Last Update : Wed Dec 28 08:38:57 2005

Response via : Initial Calibration

DataAcq Meth : VOA

(Compoi	und	R.T.	QIon	Response	Conc Unit	Qvalue
70) (C303	2-Chlorotoluene	0.00	126	0	N.D.	
71) (C289	4-Chlorotoluene	0.00	126	0	N.D.	
72) (C304	1,3,5-Trimethylbenze	9.86	105	560	N.D.	
73) (C306	tert-Butylbenzene	0.00	134	0	N.D.	
74) (C307	1,2,4-Trimethylbenze	10.21	105	3199	N.D.	
75) (C308	sec-Butylbenzene	10.21	105	3199	N.D.	
	C260	1,3-Dichlorobenzene	0.00	146	0	N.D.	
77) (C309	4-Isopropyltoluene	0.00	119	0	N.D.	
78) (C267	1,4-Dichlorobenzene	0.00	146	0	N.D.	
79) (C249	1,2-Dichlorobenzene	0.00	146	0	N.D.	
80) (C310	n-Butylbenzene	0.00	91	0	N.D.	
	C286	1,2-Dibromo-3-Chloro	0.00	75	. 0	N.D.	
	C313	1,2,4-Trichlorobenze	0.00	180	0	N.D.	
83) (C316	H exachloro butadiene	0.00	225	0	N.D.	
84) (C314	Naphthalene	12.30	128	1622	N.D.	
85) (C934	1,2,3-Trichlorobenze	0.00	180	0	N.D.	

HP5973-Q

1:33

Data File : C:\HPCHEM\1\DATA\122705\Q9555.D

Acq On : 28 Dec 2005 1:33

Vial: 38 Operator: TLC Inst : HP5973 Q

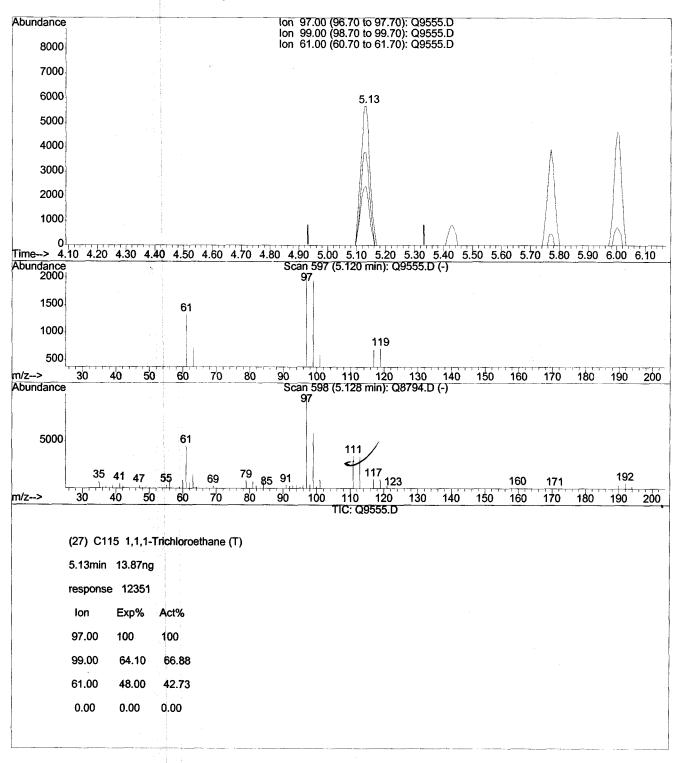
Sample :

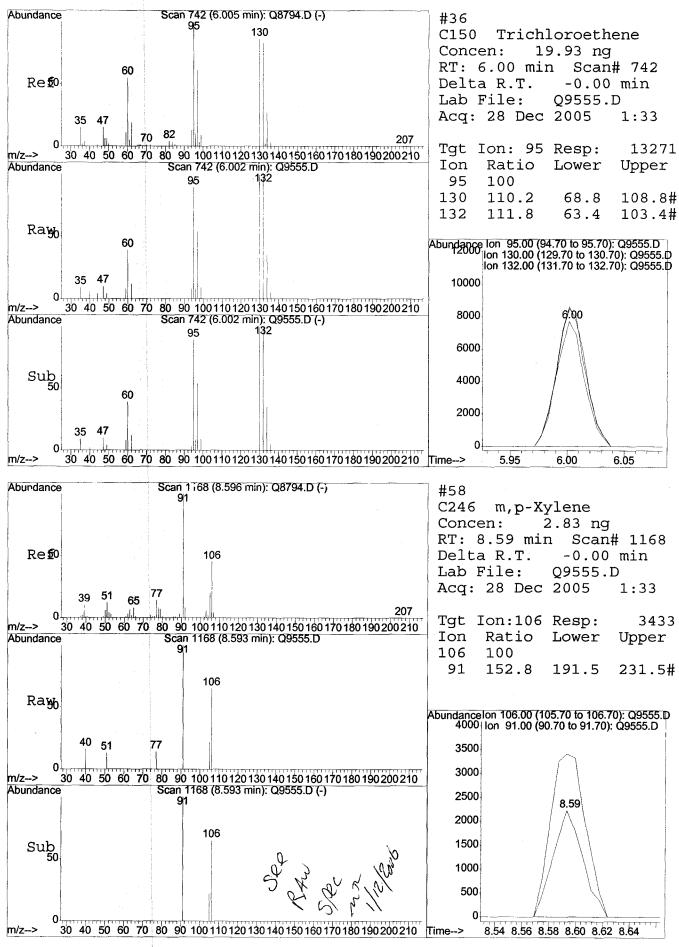
: A5E58720

Multiplr: 1.00

Misc :

MS Integration Params: RTEINT.P Quant Time: Dec 28 8:44 2005


Quant Results File: temp.res


Method

: C:\HPCHEM\1\METHODS\Q8260\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update: Wed Dec 28 13:19:14 2005 Response via: Multiple Level Calibration

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-8	
------	--

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58704

Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{ML} Lab File ID: $\underline{S9672.RR}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/20/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: DB-624 ID: 0.18 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	ug/L	Q
67-64-1			5.0	U
71-43-2			1.8	İ
	Bromodichloromethane		1.0	U
	Bromoform		1.0	ט
	Bromomethane		1.0	ט
	2-Butanone		5.0	ט
	Carbon Disulfide		1.0	U
	Carbon Tetrachloride		1.0	U
	Chlorobenzene		1.0	U
75-00-3	Chloroethane		1.0	U
67-66-3	Chloroform		1.0	ש
74-87-3	Chloromethane		1.0	U
110-82-7	Cyclohexane		1.0	υ
	1,2-Dibromoethane		1.0	ן די
	Dibromochloromethane		1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	9	1.0	U
95-50-1			1.0	U
	1,3-Dichlorobenzene		1.0	U
	1,4-Dichlorobenzene		1.0	ש
75-71-8	Dichlorodifluoromethane		1.0	ט
75-34-3	1,1-Dichloroethane		1.0	บ
	1,2-Dichloroethane		1.0	ט
	1,1-Dichloroethene		1.0	ט
	cis-1,2-Dichloroethene		0.92	J
156-60-5	trans-1,2-Dichloroethene_		1.0	lυ
78-87-5	1,2-Dichloropropane		1.0	Ū
	cis-1,3-Dichloropropene	-	1.0	lŪ
10061-02-6-	trans-1,3-Dichloropropene_		1.0	บี
100-41-4	Ethylbenzene		1.0	Ū
591-78-6	2-Hevanone	ľ	5.0	Ū
	Isopropylbenzene_		1.0	U
79-20-9	Methyl acetate		1.0	lΰ
	Mothyl gral charana	· · · · · · · · · · · · · · · · · · ·	1.0	IJ
	Methylene chloride	1	1.0	11
		<u> </u>		١

256/504

U

U U

1.0

1.9

1.0

3.0

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

		MW-8		
Lab Name: STL Buffalo Contract: 4				
Lab Code: RECNY Case No.: SAS No.:	_ SDG No.:			
Matrix: (soil/water) WATER	Lab Sample II	D: <u>A5E5870</u>	94	
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID:	<u>89672.</u> F	ır.	
Level: (low/med) <u>LOW</u>	Date Samp/Re	ev: <u>12/20/2</u>	005 12/2	23/2005
% Moisture: not dec Heated Purge: N	Date Analyze	d: <u>12/27/2</u>	:005	
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Fac	or:1.0	<u>00</u>	
Soil Extract Volume: (uL)	Soil Aliquot	Volume:	(1	ıL)
	CONCENIRATION UN (ug/L or ug/Kg)	_	Q	
1634-04-4Methyl-t-Butyl Ether (MTBE) 91-20-3Naphthalene 100-42-5Styrene 79-34-51,1,2,2-Tetrachloroethane 127-18-4Tetrachloroethene 108-88-3Toluene 120-82-11,2,4-Trichlorobenzene 71-55-61,1,1-Trichloroethane		5.0 1.8 0.53 1.0 1.0 1.0 1.0	ם ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט	
79-00-51,1,2-Trichloroethane 76-13-11,1,2-Trichloro-1,2,2-trifluo	roethane	1.0 1.0	U U	

75-69-4----Trichlorofluoromethane

79-01-6----Trichloroethene

Quantitation Report STL Buffalo (Not Reviewed) 257/504

Vial: 22

Operator: LH

Data File : D:\DATA\122705\S9672.D

: 27 Dec 2005 18:24

Sample : A5E58704

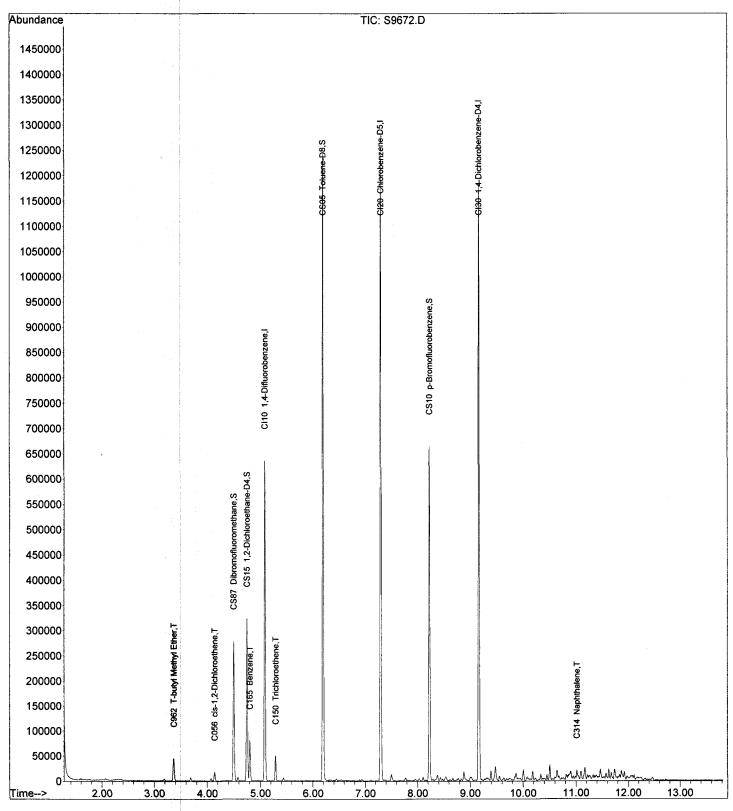
Acq On

Misc

E58704 Inst : HP5973S Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 27 20:50:36 2005 Results File: A5I0002442_E2.RES


Quant Method : C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Tue Dec 27 11:08:38 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Quantitation Report STL Buffalo (Not Reviewed) 258/504

Data File : D:\DATA\122705\S9672.D Acq On : 27 Dec 2005 18:24 Sample : A5E58704

Operator: LH Inst : HP5973S Multiplr: 1.00

Vial: 22

MS Integration Params: RTEINT.P

Quant Time: Dec 27 20:50:36 2005 Results File: A5I0002442 E2.RES

Quant Method: C:\MSDCHEM\1...\A510002442 E2.M (RTE Integrator)

: 8260 5ML WATER Title

Last Update : Tue Dec 27 11:08:38 2005 Response via : Initial Calibration

DataAcq Meth : VOA

Misc

IS QA File : D:\DATA\122705\S9652.D (27 Dec 2005 10:13)

Internal St	andards	R.T.	QIon	Response	Conc Ur	nits	Dev(N	(in)
			_	•			Rcv (F	
					 -			
1) CI10 1	,4-Difluorobenzene	5.09	114	390693	125.00	ng	C	0.00
							88.	59%
43) CI20 C	hlorobenzene-D5	7.30	117	545856	125.00	ng	C	00.0
								90%
62) CI30 1	,4-Dichlorobenzene-	9.17	152	262800	125.00	ng		0.00
							88.	35%
	toring Compounds							
	ibromofluoromethane			139825	126.80	_		0.00
Spiked Amo		,	- 130	Recover		101.		
	,2-Dichloroethane-D	4.75	65		122.53			0.00
Spiked Amo			- 136	Recove	_	98.		
	oluene-D8	6.19	98		115.97			0.00
Spiked Amo			- 122			92.		
	-Bromofluorobenzene				104.47			0.00
Spiked Amo	ount 125.000 Ran	ige 74	- 120	Recover	: y =	83.	58%	
F							0	
Target Comp	ocunas Dichlorodifluorome	0 00	0.5	0	N D		Qva]	Lue
•	Chloromethane	0.00	85 50	0 0	N.D. N.D.			
	invl chloride	1.60	62	1493	N.D.			
	romomethane	0.00	94	0	N.D.			
•	Chloroethane	0.00	64	0	N.D.			
			101	0	N.D.			
	,1-Dichloroethene	0.00	96	Ö	N.D.			
	Methylene chloride	0.00	84	Ö	N.D.			
	Carbon disulfide	2.88	76	817	N.D.			
	crolein	0.00	56	0	N.D.			
	crylonitrile	0.00	53	Ö	N.D.			
· ·	cetone	2.75	43	219	N.D.			
	cetonitrile	0.00	41	0	N.D.			
	odomethane		142	0	N.D.			
16) C291 1	,1,2 Trichloro-1,	0.00	101	0	N.D.			
	-butyl Methyl Ether	3.37	73	29000	9.09	ng	#	80
	rans-1,2-Dichloro	3.35	96	131	N.D.			
19) C255 M	Methyl Acetate	0.00	43	0	N.D.			
20) C050 1	,1-Dichloroethane	3.68	63	5993	N.D.			
	'inyl Acetate	0.00	43	0	N.D.			
22) C051 2	2,2-Dichloropropan	0.00	77	0	N.D.			
	cis-1,2-Dichloroethe	4.14	96	6755	4.59	ng	#	8 4
	'etrah yd rofuran	4.38	42	695	N.D.			
	Bromochloromethane		128	0	N.D.			
•	Chloroform	0.00	83	0	N.D.			
	,1,1-Trichloroeth	4.53	97	689	N.D.			
	Carbon tetrachlori		117	0	N.D.			
	,1-Dichloropropen	0.00	75	0	N.D.			0.0
	Benzene	4.80	78	53605	8.93	ng		99
	,2-Dichloroethane	0.00	62	0	N.D.			
	-Butanone	0.00	43	0	N.D.			
	Cyclohexane	4.58	56	2818	N.D.			0.1
	richloroethene	5.29	95	13224	9.56	пд		91
	,2-Dichloropropan	0.00	63	0 0	N.D. N.D.			.1
38) C278 D	Dibromomethane	0.00	93	U	и. D.			٢

Quantitation Report STL Buffalo (Not Reviewed) 259/504

Data File : D:\DATA\122705\S9672.D

Vial: 22 Operator: LH

Acq On : 27 Dec 2005 18:24 Sample : A5E58704

Operator: LH
Inst : HP5973S

Misc :

Multiplr: 1.00

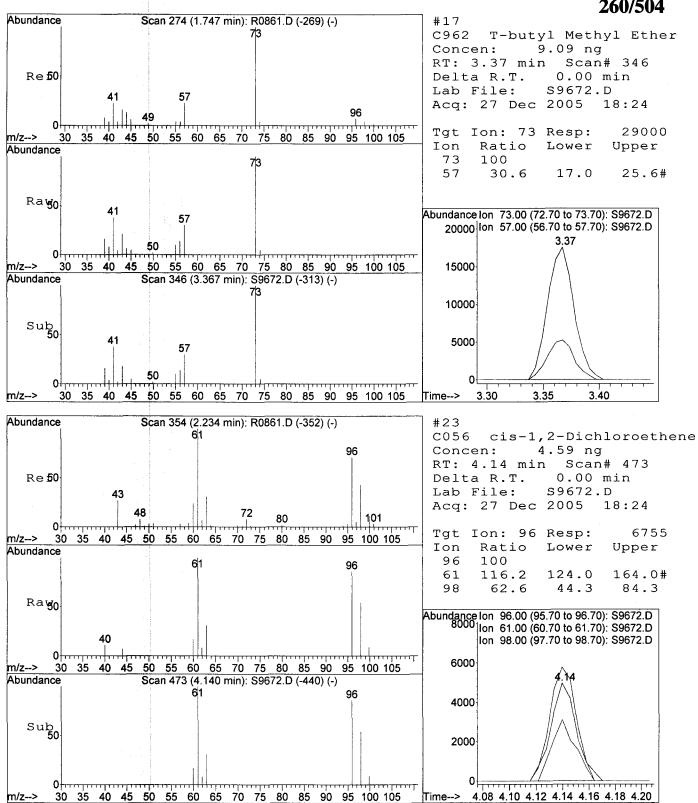
MS Integration Params: RTEINT.P

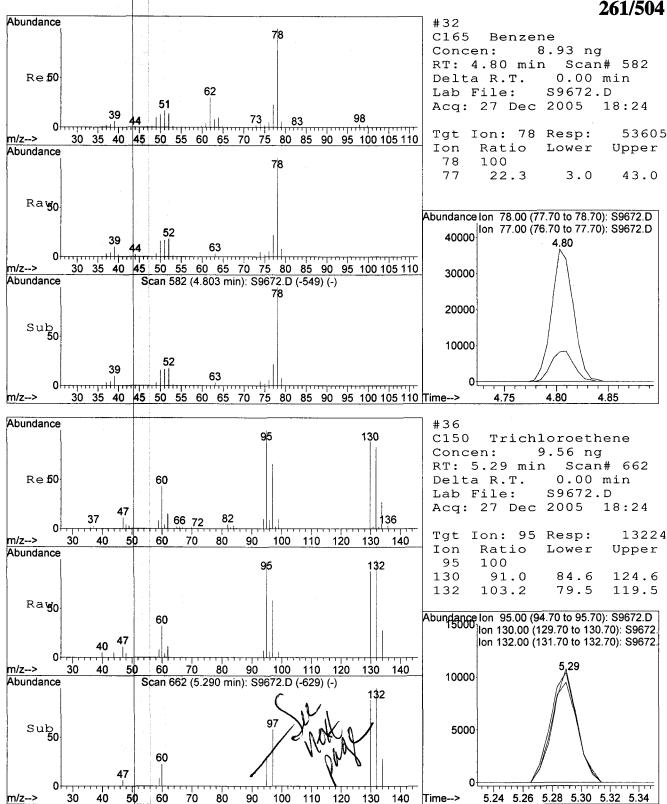
Quant Time: Dec 27 20:50:36 2005 Results File: A5I0002442_E2.RES

Quant Method : C:\MSDCHEM\1...\A5I0002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Tue Dec 27 11:08:38 2005


Response via : Initial Calibration


DataAcq Meth : VOA

IS QA File : D:\DATA\122705\S9652.D (27 Dec 2005 10:13)

Internal St	andards	R.T.	QIon	Response	Conc	Units	Dev(Min) Rcv(Ar)
•		0.00 5.88	83 63	0 399	N.D. N.D.		
		5.44	83	2018	N.D.		
		0.00	75	0	N.D.		
		5.24	92	155	N.D.		
•		0.00	75	0	N.D.		
		5.45	69	131	N.D.		
	-	0.00	83	0	N.D.		
		5.19	43	2351	N.D.		
		0.00	166	0	N.D.		
	i	0.00	76	Ō	N.D.		
		0.00	129	0	N.D.		
		0.00	107	0	N.D.		
		0.00	43	0	N.D.		
•		7.32	112	3461	N.D.		
		0.00	131	0	N.D.		
		7.41	91	298	N.D.		
		7.50	106	3905	N.D.		
		0.00	106	0	N.D.		
		0.00	104	0	N.D.		
	romoform (0.00	173	0	N.D.		
64) C966 I	sopropylbenzene 8	3.11	105	4863	N.D.		
		0.00	156	0	N.D.		
66) C225 1	,1,2,2-Tetrachlor	3.38	83	550	N.D.		
67) C282 1	,2,3-Trichloropro	0.00	110	0	N.D.		
68) C283 t	-1,4-Dichloro-2-B	3.38	53	157	N.D.		
69) C302 n	-Propylbenzene	3.43	91	6118	N.D.		
70) C303 2	-Chlorotoluene (0.00	126	0	N.D.		
71) C289 4	-Chlorotoluene (0.00	126	0	N.D.		
72) C304 1	,3,5-Trimethylben	3.53	105	3257	N.D.		
73) C306 t	ert-Butylbenzene	9.02	134	990	N.D.		
	,2,4-Trimethylben	8.8	105	8774	N.D.		
	ec-Butylbenzene	9.02	105	3381	N.D.		
	·	0.00	146	0	N.D.		
		9.15	119	556	N.D.		
		0.00	146	0	N.D.		
	· ·	0.00	146	0	N.D.		
	_ ·	9.48	91	1803	N.D.		
	· ·	0.00	75	0	N.D.		
		0.00	180	0	N.D.		
		0.00	225	0	N.D.		100
	aphthalene	11.02		9305		3 ng	100
85) C934 1	,2,3-Trichloroben (0.00	180	0	N.D.		

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File : D:\DATA\122705\S9672.D

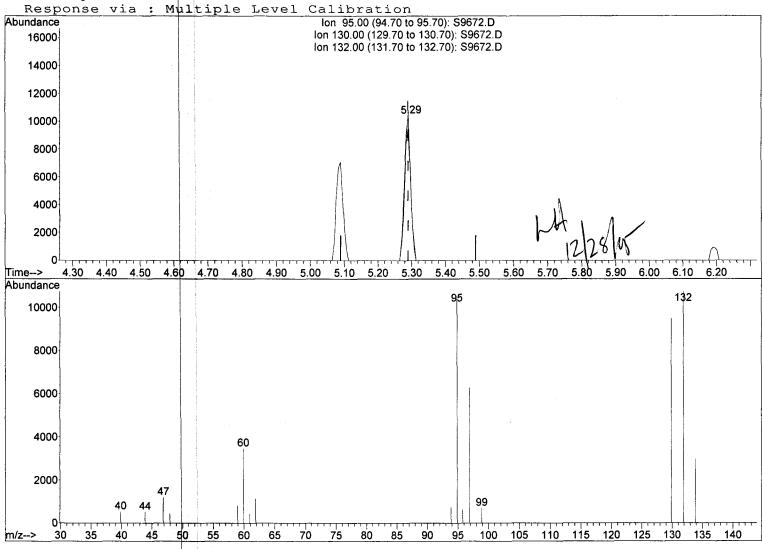
: 27 Dec 2005 18:24

: A5E58704 Sample Misc

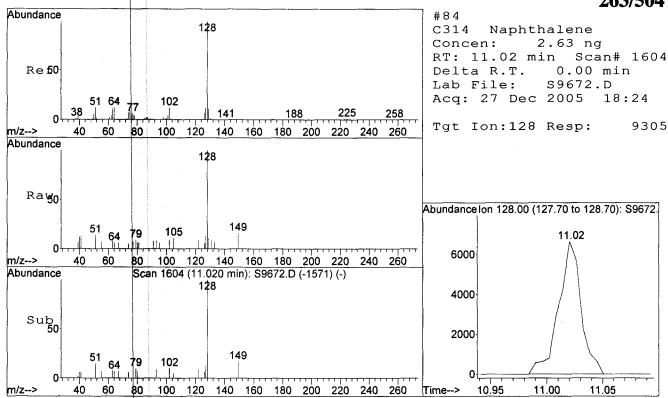
Acq On

Vial: 22 Operator: LH

: HP5973S Inst


Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Dec 27 20:50:36 2005


: C:\MSDCHEM\1\MET...\A510002442_E2.M (RTE Integrator) Method

Title 8260 5ML WATER

Last Update : Wed Dec 28 09:45:03 2005

TIC: S9672.D (36) C150 Trichloroethene (T) 5.29min (+0.000) 9.56ng response 13224 lon Exp% Act% 95.00 100 100 130.00 104.60 90.99 132.00 99.50 103.21 0.00 0.00 0.00

264/504

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

P-3	
-----	--

Lab Name: STL Buffalo

Matrix: (soil/water) WATER

Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ___

Lab File ID: <u>G7640.RR</u> Sample wt/vol: $\underline{ 5.00}$ (g/mL) $\underline{\text{ML}}$

Date Samp/Recv: <u>12/20/2005</u> <u>12/23/2005</u> Level: (low/med) <u>LOW</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: <u>DB-624</u> | ID: <u>0.25</u> (mm) Dilution Factor: 1.00

Soil Aliquot Volume: ____ (uL) Soil Extract Volume: ____ (uL)

Lab Sample ID: A5E58708

		CONCENTRATION U		
CAS NO.	COMPOUND	(ug/L or ug/Kg)) <u>UG/L</u>	Q
67-64-1	-Acetone		5.0	U
71-43-2			1.0	ט
75-27-4	-Bromodichloromethane		1.0	ן ט
75-25-2			1.0	ט
	-Bromomethane		1.0	[U
78-93-3			5.0	U
75-15-0	-Carbon Disulfide		1.0	ט
56-23-5	-Carbon Tetrachloride_		1.0	U
108-90-7	-Chlorobenzene		1.0	U
75-00-3	-Chloroethane		1.0	U
67-66-3			1.0	ט
74-87-3	-Chloromethane		1.0	U
110-82-7	-Cyclohexane		1.0	U
106-93-4	-1,2-Dibromoethane		1.0	ט
	-Dibromochloromethane		1.0	U
96-12-8	-1,2-Dibromo-3-chloropropane		1.0	U
95-50-1	-1,2-Dichlorobenzene		1.0	U
541-73-1	-1,3-Dichlorobenzene		1.0	U
106-46-7	-1,4-Dichlorobenzene		1.0	U
75-71-8	-Dichlorodifluoromethane		1.0	U
75-34-3	-1,1-Dichloroethane		1.0	U
107-06-2	-1,2-Dichloroethane		1.0	U
75-35-4	-1,1-Dichloroethene		1.0	U
156-59-2	-cis-1,2-Dichloroethene		13	
156-60-5	-trans-1,2-Dichloroethene		1.0	U
78-87-5	-1,2-Dichloropropane		1.0	U
10061-01-5	-cis-1,3-Dichloropropene		1.0	U
10061-02-6	-trans-1,3-Dichloropropene		1.0	U
100-41-4	-Ethylbenzene		1.0	U
591-78-6	-2-Hexanone	İ	5.0	U
98-82-8	-Isopropylbenzene_		1.0	U
79-20-9	-Methyl acetate		1.0	U
108-87-2	-Methylcyclohexane		1.0	U
	-Methylene chloride		1.0	U
L	 			

3.2

3.0

U

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

265/504

	_	
		P-3
Lab Name: STL Buffalo	Contract: 4	

Case No.: ____ SAS No.: ____ SDG No.: ____ Lab Code: <u>RECNY</u>

Matrix: (soil/water) WATER Lab Sample ID: A5E58708

Sample wt/vol: 5.00 (g/mL) ML Lab File ID: G7640.RR

Level: (low/med) LOW Date Samp/Recv: <u>12/20/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N 12/28/2005 Date Analyzed:

GC Column: <u>DB-624</u> | ID: <u>0.25</u> (mm) Dilution Factor: _____1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: _____ (uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L_ Q 108-10-1-----**4**-Methyl-2-pentanone 5.0 U 1634-04-4----Methyl-t-Butyl Ether (MIBE) U 1.0 91-20-3-----Naphthalene U 1.0

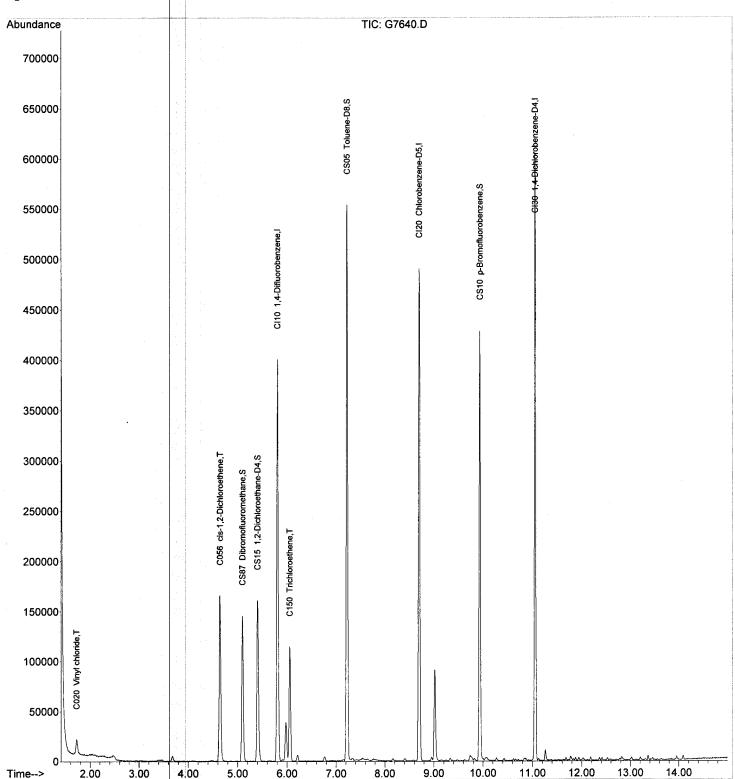
Data File: C:\MSDCHEM\1\DATA\122705\G7640.D

Acq On : 28 Dec 2005 6:20

Sample : A5E58708

Misc

Integrator: RTE


Quant Time: Dec 28 08:03:36 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 | 5ML WATER

QLast Update : Tue Dec 27 21:28:27 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Operator : TLC

266/504

R.T. QIon Response Conc Units Dev(Min)

Data File: C:\MSDCHEM\1\DATA\122705\G7640.D

Acq On : 28 Dec 2005 6:20

Sample : A5E58708

Misc

. AJEJ070

Integrator: RTE Quant Time: Dec 28 08:03:36 2005

Quant Method : $C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M$

Quant Title : 8260 5ML WATER

Internal Standards

QLast Update: Tue Dec 27 21:28:27 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122705\

Operator : TLC

1110	STIIGT	Scandards		к.т.	QIOII	кевропве	00110 01		Rcv (Ar)
1)	CI10	1,4-Difluor	obenzene	5.80	114	348575	125.00	ng		0.00
									99	.72%
43)	CI20	Chlorobenze	ne-D5	8.70	82	171732	125.00) ng	0.6	0.00 .71왕
621	CT20	1,4-Dichlor	changene	11 05	152	164785	125.00	na	90	0.00
03)	C130	1,4-DICHIOL	obelizene-	11.05	132	104/05	125.00	, 119	96	.49%
Syst	tem Mo	nitoring Com	pounds							
26)	CS87	Dibromofluo			111	96549	110.65	NG		0.00
				ange 70					. 52%	
		1,2-Dichlor					113.94			0.00
-				inge 73					.15%	
	CS05			7.22			118.75			0.00
Sp:	ikea <i>F</i>		.000 Ra						.00%	0.00
		p-Bromofluo Mount 125		nge 74					.52%	0.00
Sp.	ikeu r	mount 125	.000 100	inge /4	140	RCCOVC		22	. 52 0	
Tar	get Co	mpounds							Qva	lue
2)	C290	Dichlorodif	luorome	0.00	85	0	N.D.			
		Chlorometha		0.00	50	0	N.D.			
		Vinyl chlor		1.72		23365	16.28	ng		96
	C015	Bromomethan		0.00	94	0	N.D.			
	C025			0.00	64	0	N.D.			
	C275				101	0	N.D.			
	C045 C030	1,1-Dichlor Methylene c			96 84	275 61	N.D. N.D.			
	C040	Carbon disu		3.14	76	375	N.D.			
	C036	Acrolein	TTTUC	0.00	76 56	0	N.D.			
	C038	Acrylonitri	le	0.00	53	Ö	N.D.			
	C035	Acetone		3.02	43	1370	N.D.			
14)	C300	Acetonitril	e	3.32	41	126	N.D.			
	C276				142	147	N.D.			
	C291	1,1,2-Trich			101	0	N.D.			
	C962	T-butyl Met			73	1924	N.D.			
	C057	trans-1,2-D		3.68	96 43	1914	N.D.			
	C255 C050	Methyl Acet 1,1-Dichlor		3.35 4.09	43 63	57 916	N.D. N.D.			
-	C125	Vinyl Aceta		0.00	43	0	N.D.			
	C051	2,2-Dichlor			77	Ö	N.D.			
	€056	cis-1,2-Dic				82951	64.86	ng		97
	C272	Tetrahydrof		0.00	42	0	N.D.			
25)	C222	Bromochloro	methane	0.00	128	0	N.D.			
27)	C060	Chloroform		0.00	83	0	N.D.			
28)		1,1,1-Trich		5.10	97	714	N.D.			
29)		Carbon tetr	i c		117	0	N.D.			
30)	C116	1,1-Dichlor	opropen	0.00	75 70	0 6212	N.D.			
32) 33)	C165 C065	Benzene 1,2-Dichlor	oethane	5.44 0.00	78 62	6212 0	N.D. N.D.			
34)	C110	2-Butanone	Cecnane	4.68	43	288	N.D.			
35)		Cyclohexane		5.14	56	337	N.D.			
) C150	Trichloroet		6.05		42003	34.07	ng		90
	,									

Page: 1

267/504

StE 103,2/28/05 Data File: C:\MSDCHEM\1\DATA\122705\G7640.D

Acq On : 28 Dec 2005 6:20

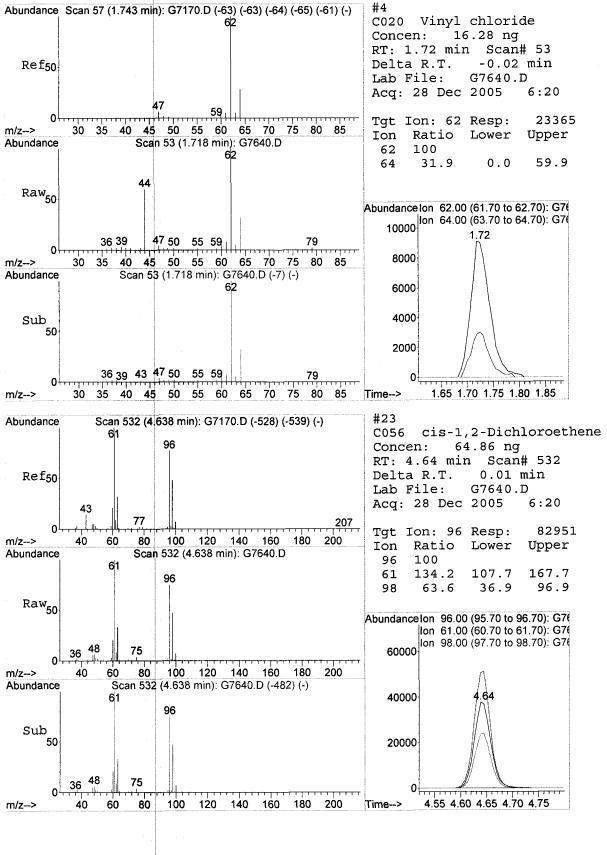
Sample : A5E58708

Misc

Integrator: RTE

Quant Time: Dec 28 08:03:36 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M


Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 21:28:27 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\


Operator : TLC

Internal Standards	R.T	. QIon	Response	Conc Unit	ts Dev(Min) Rcv(Ar)
37) C140 1,2-Dichloropropan	0.00	63	0	N.D.	
38) C278 Dibromomethane	0.00	93	0	N.D.	
39) C130 Bromodichlorometha	6.53	83	60	N.D.	
40) C161 2-Chloroethylvinyl	0.00	63	0	N.D.	
41) C012 Methylcyclohexane	0.00	83	0	N.D.	
42) C145 cis-1,3-Dichloropr	0.00	75	0	N.D.	
45) C230 Toluene	7.29	92	172	N.D.	
46) C170 trans-1,3-Dichloro	0.00	75	0	N.D.	
47) C284 Ethyl Methacrylate	0.00	69	0	N.D.	
48) C160 1,1,2-Trichloroeth	0.00	83	0	N.D.	
49) C210 4-Methyl-2-pentano	7.14	43	67	N.D.	
50) C220 Tetrachloroethene	0.00	166	0	N.D.	
51) C221 1,3-Dichloropropan	0.00	76	0	N.D.	
52) C155 Dibromochlorometha	0.00	129	0	N.D.	
53) C163 1,2-Dibromoethane	0.00	107	0	N.D.	
54) C215 2-Hexanone	7.76	43	683	N.D.	
55) C235 Chlorobenzene	0.00	112	0	N.D.	
56) C281 1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
57) C240 Ethylbenzene	8.71	91	632	N.D.	
58) C246 m,p-Xylene	0.00	106	0	N.D.	
59) C247 o-Xylene	0.00	106	0	N.D.	
60) C245 Styrene	0.00	104	Ō	N.D.	
61) C180 Bromoform	0.00	173	Ō	N.D.	
64) C966 Isopropylbenzene	9.92	105	60	N.D.	
65) C301 Bromobenzene	10.27	156	335	N.D.	
66) C225 1,1,2,2-Tetrachlor	9.98	83	55	N.D.	
67) C282 1,2,3-Trichloropro	0.00	110	0	N.D.	
68) C283 t-1,4-Dichloro-2-B	10.25	51	60	N.D.	
69) C302 n-Propylbenzene	9.93	91	421	N.D.	
70) C303 2-Chlorotoluene	0.00	126	0	N.D.	
71) C289 4-Chlorotoluene	0.00	126	Ō	N.D.	
72) C304 1,3,5-Trimethylben	0.00	105	Ō	N.D.	
73) C306 tert-Butylbenzene	10.87	134	272	N.D.	
74) C307 1,2,4-Trimethylben	10.70	105	125	N.D.	
75) C308 sec-Butylbenzene	10.87	105	1860	N.D.	
76) C260 1,3-Dichlorobenzen	0.00	146	0	N.D.	
77) C309 4-Isopropyltoluene	11.00	119	677	N.D.	
78) C267 1,4-Dichlorobenzen	0.00	146	0	N.D.	
79) C249 1,2-Dichlorobenzen	0.00	146	Ō	N.D.	
80) C310 n-Butylbenzene	0.00	91	Ō	N.D.	
81) C286 1,2-Dibromo-3-Chlo	0.00	75	Ö	N.D.	
82) C313 1,2,4-Trichloroben	0.00	180	ő	N.D.	
83) C316 Hexachlorobutadien	0.00	225	Ö	N.D.	
84) C314 Naphthalene	13.03	128	1415	N.D.	
85) C934 1,2,3-Trichloroben	0.00	180	0	N.D.	
55, 5551 1,2,5 1110111010DCII					

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

6:20

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

P-8		_

Lab Name: STL Buffalo

Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Matrix: (soil/water) WATER

Lab Sample ID: A5E58706

Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{ML}

Lab File ID: S9674.RR

Level: (low/med) LOW

CONCENTRATION UNITS:

Date Samp/Recv: <u>12/20/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N

Date Analyzed: <u>12/27/2005</u>

GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)

Dilution Factor: <u>25.00</u>

Soil Extract Volume: ____ (uL)

Soil Aliquot Volume: ____ (uL)

CAS NO. COMPOU	ND (ug/L or	(ug/L or ug/Kg) <u>UG/L</u>		
67-64-1Aceton	e		120	υ

_	·			
67-64-1	Acetone		120	U
71-43-2			25	U
	Bromodichloromethane		25	U
75-25-2			25	U
	Bromomethane		25	U
78-93-3	2-Butanone		120	υ
	Carbon Disulfide		25	U
56-23-5	Carbon Tetrachloride		25	U
108-90-7	Chlorobenzene		25	U
75-00-3	Chloroethane		25	U
67-66-3 	Chloroform		25	U
	Chloromethane		25	U
	Cyclohexane		25	U
106-93-4	1,2-Dibromoethane		2 5	U
	Dibromochloromethane		25	ע
96-12-8	1,2-Dibromo-3-chloropropane		25	U
95-50-1	1,2-Dichlorobenzene	·	25	U
	1,3-Dichlorobenzene		25	U
	1,4-Dichlorobenzene		25	U
	Dichlorodifluoromethane		25	U
	1,1-Dichloroethane		25	U
	1,2-Dichloroethane		25	U
	1,1-Dichloroethene		25	U
	cis-1,2-Dichloroethene		1400	
156-60-5	trans-1,2-Dichloroethene		25	U
	1,2-Dichloropropane		25	U
10061-01-5	cis-1,3-Dichloropropene		25	U
10061-02-6	trans-1,3-Dichloropropene		25	U
100-41-4	Ethylbenzene		25	U
	2-Hexanone_		120	U
	Isopropylbenzene_		25	U
	Methyl acetate		25	U
	Methylcyclohexane		25	U
75-09-2	Methylene chloride		25	U
	1 -			I

272/504

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

I ah Nama	CTT Diffolo	Contract A		F)-8	
LaD Name:	SIL BULLATO	Contract: 4				
Lab Code:	: <u>RECNY</u> Case	No.: SAS No.:	SDG No.:			
Matrix:	(soil/water) <u>WA</u>	TER	Lab Sample	iD: <u>A5</u>	E58706	
Sample wt	:/vol:	5.00 (g/mL) <u>ML</u>	Lab File I	D: <u>S9</u>	674.RR	
Level:	(low/med) <u>LO</u>	W W	Date Samp/	'Recv: <u>12</u>	/20/2005	12/23/2005
% Moistur	re: not dec	Heated Purge: N	Date Analy	zed: <u>12</u>	/27/2005	
GC Column	n: <u>DB-624</u>	ID: <u>0.18</u> (mm)	Dilution F	actor: _	25.00	
Soil Extr	ract Volume:	(uL)	Soil Aliqu	ot Volume	:	(uL)
	CAS NO.	COMPOUND	CONCENTRATION (ug/L or ug/K		<u>L</u>	Q
	108-10-1	4-Methyl-2-pentanone		120	U	
	1634-04-4	Methyl-t-Butyl Ether (MTBE)		25	; U	
	91-20-3 - -	Naphthalene		25	; บ	
	100-42-5	Styrene		25	: [บ	
	79-34-5	1,1,2,2-Tetrachloroethane		25	; U	
l	127-18-4	Tetrachloroethene		25	; U	
	108-88-3	Toluene	1	25	; U	
	120-82-1	1,2,4-Trichlorobenzene		25	; U	l
	71-55-6	1,1,1-Trichloroethane		25	; U	
	79-00-5	1,1,2-Trichloroethane		25	: ប	
	76-13-1	1,1,2-Trichloro-1,2,2-triflu	oroethane	25		
	75-69-4	Trichlorofluoromethane		25		
	79-01-6	Trichloroethene		680	li i	
	75-01-4	Vinyl chloride		16	•	
	1330-20-7	Total Xylenes		75	I	
	,			, 5	10	ı

(Not Reviewed) **273/504** Quantitation Report STL Buffalo

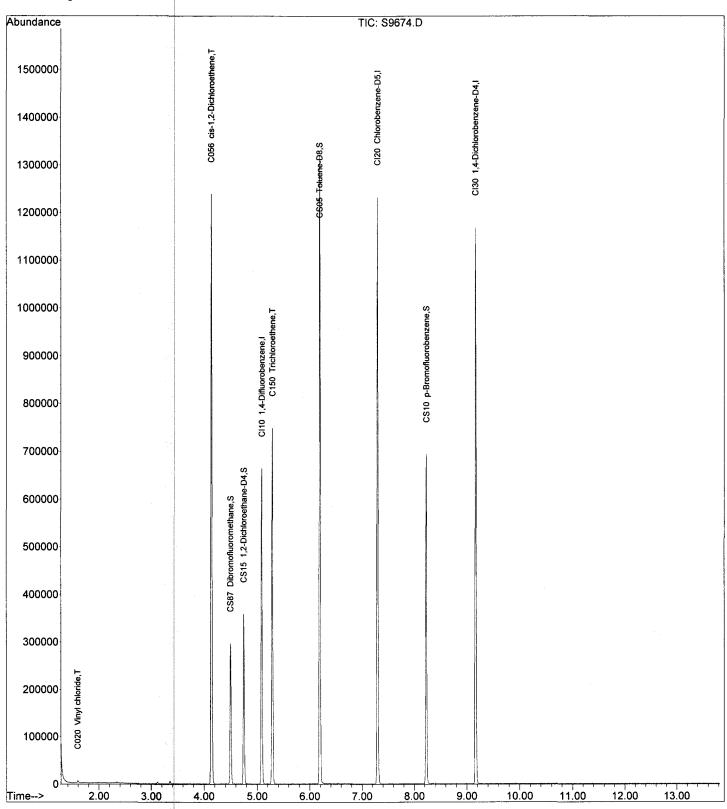
Data File : D:\DATA\122705\S9674.D

Vial: 24 : 27 Dec 2005 19:12 Operator: LH

Acq On : A5E58706 DF25 Inst : HP5973S Sample Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 27 20:50:45 2005 Results File: A5I0002442_E2.RES


Quant Method : C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Tue Dec 27 11:08:38 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Quantitation Report STL Buffalo (Not Reviewed) 274/504

Vial: 24

Data File : D:\DATA\122705\S9674.D

Acq On : 27 Dec 2005 19:12 Sample : A5E58706 DF25 Operator: LH Inst : HP5973S Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Quant Time: Dec 27 20:50:45 2005 Results File: A5I0002442_E2.RES

Quant Method : C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

: 8260 5ML WATER Title

Last Update : Tue Dec 27 11:08:38 2005

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\DATA\122705\S9652.D (27 Dec 2005 10:13)

	Internal	Standards		יים בו	QIon	Response	Conc III	nits D	ev(Min)
									cv(Ar)
	1) CI10	1,4-Dif]	uorobenzene	5.09	114	410100	125.00	ng	0.00 92.99%
	43) CI20	Chlorobe	nzene-D5	7.30	117	559665	125.00	ng	0.00
	60) GT20	1 4 5 1	3 1	0 10	150	055077	105 00		93.20%
	62) CI30	1,4-Dicr	lorobenzene-	9.16	152	255277	125.00	ng	0.00 85.82%
									03.020
	System M	onitoring							
	30) CS87		luoromethane					_	0.00
	Spiked			inge 70				104.3	
			loroethane-D				127.14	-	0.00
	_			inge 73			-	101.7	
	•	Toluene-					123.65 rv =	_	0.00
	Spiked		125.000 Ra luorobenzene						0.00
		Amount		nge 74				_	
	Spinou	ıouric	123.000 10	inge /4	120	1100010	- J	00.0	
	Target C	ompounds							Qvalue
	2) C290		difluorome	0.00	85	0	N.D.		
		Chlorome		0.00	50	0	N.D.		
•	4) 020		lloride	1.59	62	4518	3.29	ng	96
	5) C015			0.00	94	0	N.D.		
	6) C025			0.00	64	0	N.D.		
	7) C275		ofluoromet		101	0	N.D.		
	8) C045 9) C030		loroethene	0.00	96	0	N.D.		
	10) C040	-	ie chloride iisulfide	3.12 2.88	84 76	1245 470	N.D. N.D.		
	11) C036			0.00	56	0	N.D.		
	12) C038			0.00	53	Ö	N.D.		
	13) C035		i	2.76	43	147	N.D.		
	14) C300		į	0.00	41	0	N.D.		
	15) C276				142	0	N.D.		
	16) C291		ichloro-1,	0.00	101	0	N.D.		
	17) C962		Methyl Eth	0.00	73	0	N.D.		
	18) C057	trans-1,	2-Dichloro	3.35	96	1761	N.D.		
	19) C255		cetate	0.00	43	0	N.D.		
	20) C050	•	loroethane		63	0	N.D.		
	21) C125	-	İ	0.00	43	0	N.D.		
_	22) C051		lloropropan	0.00	77	0	N.D.		0.0
- (Dichloroethe			418811	271.35	ng	8 9
	24) C272		irofuran	0.00	42	0	N.D.		
	25) C222		oromethane		128	0	N.D.		
	26) C060			0.00	83	0	N.D.		
	27) C115 28) C120	·	ichloroeth etrachlori	0.00	97 117	0	N.D. N.D.		
	29) C116		loropropen	0.00	75	0	N.D.		
	32) C165		rorobroben	4.81	73 78	979	N.D.		
	33) C065		loroethane	0.00	62	0	N.D.		
	34) C110			0.00	43	Ö	N.D.		
	35) C256			0.00	56	Ö	N.D.		
	36) C150	Trichlo	oethene	5.29	95	198563	136.82	ng	98 (
_	37) C140		loropropan	0.00	63	0	N.D.		N
	38) C278			0.00	93	0	N.D.		/*
			1						

Data File : D:\DATA\122705\S9674.D
Acq On : 27 Dec 2005 19:12
Sample : A5E58706 DF25

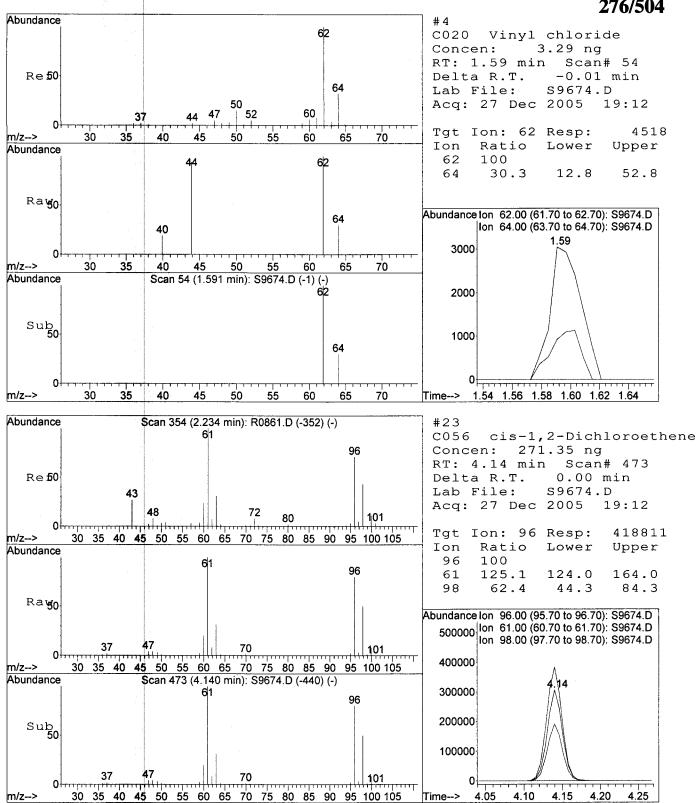
Misc

Operator: LH Inst : HP5973S Multiplr: 1.00

Vial: 24

MS Integration Params: RTEINT.P

Quant Time: Dec 27 20:50:45 2005 Results File: A5I0002442 E2.RES


Quant Method : C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER
Last Update : Tue Dec 27 11:08:38 2005
Response via : Initial Calibration
DataAcq Meth : VOA

IS QA File : D:\DATA\122705\S9652.D (27 Dec 2005 10:13)

Int	ernal	Standards	R.T	. QIon	Response	Conc Unit	s Dev(Min) Rcv(Ar)
39)	C130	Bromodichlorometha	0.00	83	0	N.D.	
40)	C161	2-Chloroethylvinyl	0.00	63	Ö	N.D.	
41)	C012	Methylcycolhexane	0.00	83	Ö	N.D.	
	C145	cis-1,3-Dichloropr	0.00	75	Ō	N.D.	
45)	C230	Toluene	6.24	92	170	N.D.	
46)		trans-1,3-Dichloro	0.00	75	0	N.D.	
47)	C284	Ethyl Methacrylate	0.00	69	0	N.D.	
48)		1,1,2-Trichloroeth	0.00	83	0	N.D.	
	C210	4-Methyl-2-pentano	6.19	43	2523	N.D.	
50)	C220	Tetrachloroethene	0.00	166	0	N.D.	
51)	C221	1,3-Dichloropropan	0.00	76	0	N.D.	
52)	C155	Dibromochlorometha	6.67	129	148	N.D.	
53)	C163	1,2-Dibromoethane	0.00	107	0	N.D.	
54)	C215	2-Hexanone	0.00	43	0	N.D.	
55)	C235	Chlorobenzene	7.32	112	1729	N.D.	
56)	C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
57)	C240	Ethylbenzene	7.30	91	1120	N.D.	
58)	C246	m,p-Xylene	0.00	106	0	N.D.	
59)	C247	o-Xylene	0.00	106	0	N.D.	
60)	C245	Styrene	0.00	104	0	N.D.	
63)	C180	Bromoform	0.00	173	0	N.D.	
64)	C966	Isopropylbenzene	0.00	105	0	N.D.	
65)	C301	Bromobenzene	0.00	156	0	N.D.	
66)	C225	1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
67)	C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
68)	C283	t-1,4-Dichloro-2-B	0.00	53	0	N.D.	
69)	C302	n-Propylbenzene	0.00	91	0	N.D.	
70)	C303	2-Chlorotoluene	0.00	126	0	N.D.	
71)	C289	4-Chlorotoluene	0.00	126	0	N.D.	
72)	C304	1,3,5-Trimethylben	0.00	105	0	N.D.	
73)	C306	tert-Butylbenzene	0.00	134	0	N.D.	
74)	C307	1,2,4-Trimethylben	0.00	105	0	N.D.	
75)	C308	sec-Butylbenzene	0.00	105	0	N.D.	
76)	C260	1,3-Dichlorobenzen	0.00	146	0	N.D.	
77)	C309	4-Isopropyltoluene	0.00	119	0	N.D.	
	C267	1,4-Dichlorobenzen	0.00	146	0	N.D.	
	C249	1,2-Dichlorobenzen	0.00	146	0	N.D.	
	C310	n-But ylb enzene	0.00	91	0	N.D.	
	C286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
82)		1,2,4-Trichloroben	0.00	180	0	N.D.	
	C316	Hexachlorobutadien	0.00	225	0	N.D.	
84)	C314	Naphthalene	0.00	128	0	N.D.	
85)	C934	1,2,3-Trichloroben	0.00	180	0	N.D.	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

TB-121505-01

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

Lab Name: <u>STL Buffalo</u> Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58703

Sample wt/vol: 5.00 (g/mL) MLLab File ID: S9671.RR

Level: (low/med) LOW Date Samp/Recv: <u>12/20/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: <u>12/27/2005</u>

GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm) Dilution Factor: ____1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CAS NO. COMPOUND (ug/L or ug/Kg) US/L Q 67-64-1Acetone 5.0 U 71-43-2Benzene 1.0 U 75-27-4Bromodichloromethane 1.0 U 75-25-2		CONCENTRATION UNITS:					
71-43-2Benzene 1.0 U 75-27-4Bromodichloromethane 1.0 U 75-27-4Bromoform 1.0 U 74-83-9Bromomethane 1.0 U 78-93-32-Butanone 1.0 U 78-93-32-Butanone 5.0 U 75-15-0	CAS NO.	COMPOUND	(ug/L or ug/K	g)	<u>UG/L</u>	Q	
71-43-2Benzene 1.0 U 75-27-4Bromodichloromethane 1.0 U 75-27-4Bromoform 1.0 U 74-83-9Bromomethane 1.0 U 78-93-32-Butanone 1.0 U 78-93-32-Butanone 5.0 U 75-15-0	67-64-1	-Acetone			5.0	TT	
75-27-4							
75-25-2						1 -	
74-83-9							
78-93-32-Butanone							
75-15-0	I .						
56-23-5Carbon Tetrachloride 1.0 U 108-90-7Chlorobenzene 1.0 U 75-00-3Chlorothane 1.0 U 67-66-3Chloromethane 1.0 U 74-87-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromoethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 541-73-11,4-Dichlorobenzene 1.0 U 75-71-8Dichlorobenzene 1.0 U 75-74-31,1-Dichlorobethane 1.0 U 107-06-21,2-Dichlorobethane 1.0 U 156-59-2cis-1,2-Dichlorobethene 1.0 U 156-60-5						_	
108-90-7Chlorobenzene 1.0 U 75-00-3Chlorocethane 1.0 U 67-66-3Chloroform 1.0 U 74-87-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromoethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichloroethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 106-10-5cis-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U 59-82-8							
75-00-3Chloroethane 1.0 U 67-66-3Chloroform 1.0 U 74-87-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromochloromethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 156-59-21,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 1061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 10041-4Ethylbenzene 5.0 U 98-82-8							
67-66-3Chloroform 1.0 U 74-87-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromoethane 1.0 U 124-48-1Dibromoethlane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 541-73-11,4-Dichlorobenzene 1.0 U 75-71-8Dichlorobenzene 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloropropene 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U 98-82-8							
74-87-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromoethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 75-71-8Dichlorobenzene 1.0 U 75-71-8Dichlorobenzene 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 1061-01-5cis-1,3-Dichloropropane 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U 591-78-62-Hexanone 5.0 U 98-82-8	,						
110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromoethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 1061-01-5cis-1,3-Dichloropropane 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U 98-82-8Isopropylbenzene 1.0 U 99-20-9							
106-93-41,2-Dibromoethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorobenzene 1.0 U 75-34-31,1-Dichlorobethane 1.0 U 107-06-21,2-Dichlorobethane 1.0 U 156-59-2cis-1,2-Dichlorobethene 1.0 U 156-59-2cis-1,2-Dichlorobethene 1.0 U 156-60-5trans-1,2-Dichlorobethene 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U 591-78-62-Hexanone 5.0 U 98-82-8	110 00 7	-Chioromethane					
124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 1061-01-5cis-1,3-Dichloropropane 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U 591-78-62-Hexanone 5.0 U 98-82-8							
96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U						1 1	
95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U 591-78-62-Hexanone 5.0 U 98-82-8Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U							
541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U							
106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U							
75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U							
75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U					— · •	1 -	
107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U						1 -	
75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U							
156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U						1	
156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U						1	
78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U						1	
10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U							
10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	78-87-5	-1,2-Dichloropropane				1 '	
100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	10061-01-5	-cis-1,3-Dichloropropene			1.0		
100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	10061-02-6	-trans-1,3-Dichloropropene					
591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	100-41-4	-Ethylbenzene				1 '	
79-20-9Methyl acetate	591-78-6	-2-Hexanone			5.0	ע	
79-20-9Methyl acetate	98-82-8	-Isopropylbenzene			1.0	ע	
	79-20-9	-Methyl acetate			1.0	ע	
75-09-2Methylene chloride					1.0	ן ט	
	75-09-2	-Methylene chloride			1.0	U	

279/504

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

TB-121505-01

Lab Name: STL Buffalo

Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58703

Lab File ID: S9671.RR Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{ML}

Date Samp/Recv: <u>12/20/2005</u> <u>12/23/2005</u> Level: (low/med) LOW

Date Analyzed: <u>12/27/2005</u> % Moisture: not dec. ____ Heated Purge: N

GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm) Dilution Factor: ____1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: _____ (uL)

		CONCENTRATION UNI	TS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q	
108-10-1	-4-Methyl-2-pentanone		5.0	U	
1634-04-4	-Methyl-t-Butyl Ether (MTBE)		1.0	U	
91-20-3	-Naphthalene		1.0	ט	
100-42-5	-Styrene		1.0	ט	
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U	
	-Tetrachloroethene		1.0	ט	
108-88-3	-Toluene		1.0	U	
120-82-1	-1,2,4-Trichlorobenzene		1.0	U	
71-55-6	-1,1,1-Trichloroethane		1.0	U	
79-00-5	1,1,2-Trichloroethane		1.0	U	
76-13-1	-1,1,2-Trichloro-1,2,2-triflu	oroethane	1.0	U	
75-69-4	-Trichlorofluoromethane		1.0	U	
79-01-6	-Trichloroethene		1.0	U	
75-01-4	Vinyl chloride		1.0	U	
1330-20-7	Total Xylenes		3.0	U	

(Not Reviewed) 280/504Quantitation Report STL Buffalo

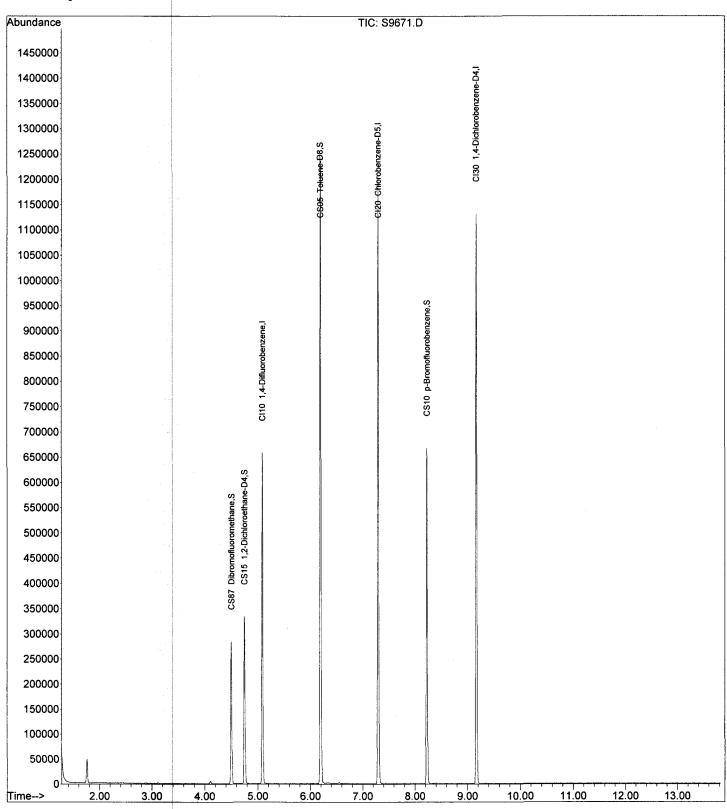
Data File : D:\DATA\122705\S9671.D

Vial: 21 : 27 Dec 2005 Operator: LH Acq On 17:59

Inst: HP5973S : A5E58703 Sample Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Quant Time: Dec 27 18:31:05 2005 Results File: A5I0002442_E2.RES


Quant Method : C:\MSDCHEM\1...\A5I0002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Tue Dec 27 11:08:38 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Quantitation Report STL Buffalo (Not Reviewed) 281/504

Data File : D:\DATA\122705\S9671.D Acq On : 27 Dec 2005 17:59 Sample : A5E58703 Vial: 21 Operator: LH
Inst : HP5973S
Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 27 18:31:05 2005 Results File: A5I0002442_E2.RES

Quant Method : C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Tue Dec 27 11:08:38 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Misc

IS QA File : D:\DATA\122705\S9652.D (27 Dec 2005 10:13)

									("	·
Inte	ernal	Standards	5	R.T	. QIon	Response	e Conc Ur	nits	Dev(Min Rcv(Ar	1)
1)	CI10	1,4-Dif:	luorobenzen	e 5.0	9 114	389528	125.00	ng	0.0 88.32	
43)	CI20	Chlorobe	enzene-D5	7.3	0 117	540313	125.00	ng	0.0	0
62)	CI30	1,4-Dick	nlorobenzen	e- 9.1	7 152	245616	125.00	ng	0.0	0
									82.57	7 %
	cem Mo		Compounds fluorometha:	ne 4.5	0 111	144402	131.34	na	0.0	١.0
		Amount		Range 7				105.		, 0
_	CS15		nloroethane				128.70		0.0	0 0
					3 - 136			102.		
44)	CS05	Toluene-							0.0	0 (
			125.000		7 - 122		very =		77%	
61)	CS10		fluorobenze						0.0	0 (
Spi	iked <i>P</i>	Amount	125.000	Range 7	4 - 120) Recov	very =	84.	70%	
		mpounds							Qvalue)
			difluorome		85	0	N.D.			
		Chlorome		0.00	50	0	N.D.			
			nloride	0.00	62	0	N.D.			
		Bromome: Chloroet	i	0.00	94 64	0 0	N.D.			
	C275		rofluoromet	0.00	101	0	N.D. N.D.			
	C045		nloroethene		96	0	N.D.			
	C030		ne chloride		84	692	N.D.			
	C040		disulfide	2.89	76	932	N.D.			
	C036	Acroleir		0.00	56	0	N.D.			
	C038	Acrylon:	itrile	0.00	53	0	N.D.			
13)	C035	Acetone		2.76	43	141	N.D.			
14)	C300	Acetonit	trile	0.00	41	0	N.D.			
	C276	Iodometh	hane	0.00	142	0	N.D.			
	C291		richloro-1,		101	0	N.D.			
	C962		Methyl Eth		73	0	N.D.			
	C057		2-Dichloro		96	0	N.D.			
	C255	Methyl A		0.00	43	0	N.D.			
	C050 C125		nloroethane		63 43	0 0	N.D.			
•	C123	Vinyl Ac	nloropropan	0.00	77	0	N.D. N.D.			
	C056		-Dichloroet	0.00	96	0	N.D.			
24)	C272		drofuran	0.00	42	ő	N.D.			
25)	C222		loromethane	0.00	128	Ō	N.D.			
26)	C060	Chlorofo		0.00	83	0	N.D.			
27)	C115		richloroeth	0.00	97	0	N.D.			
28)	C120		tetrachlori	0.00	117	0	N.D.			
29)	C116		nloropropen	0.00	75	0	N.D.			
32)	C165	Benzene		4.81	78	847	N.D.			
33)	C065		nloroethane	0.00	62	0	N.D.			
34)	C110	2-Butano		0.00	43	0	N.D.			
35)	C256	Cyclohe		0.00	56	0	N.D.			
36)	C150		roethene	0.00	95	0	N.D.			
37)	C140	I,Z-Dick	nloropropan	0.00	63	0	N.D.			

0.00

93

38) C278 Dibromomethane

N.D.

Ω

STL Buffalo (Not Reviewed) 282/504Quantitation Report

Vial: 21 Operator: LH

Data File : D:\DATA\122705\S9671.D Acq On : 27 Dec 2005 17:59 Sample : A5E58703 Inst : HP5973S Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Quant Time: Dec 27 18:31:05 2005 Results File: A5I0002442_E2.RES

Quant Method: C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Tue Dec 27 11:08:38 2005

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\DATA\122705\S9652.D (27 Dec 2005 10:13)

Int	ernal	Standards	R.T	. QIon	Response	Conc Units	s Dev(Min) Rcv(Ar)
39)	C130	Bromodichlorometha	0.00	83	0	N.D.	
	C161	2-Chloroethylvinyl	0.00	63	0	N.D.	
	C012	Methylcycolhexane	0.00	83	Ö	N.D.	
-	C145	cis-1,3-Dichloropr	Q.00	75	Ö	N.D.	
45)		Toluene	6.24	92	190	N.D.	
46)		trans-1,3-Dichloro	0.00	75	0	N.D.	
	C284	Ethyl Methacrylate	0.00	69	0	N.D.	
	C160	1,1,2-Trichloroeth	0.00	83	0	N.D.	
49)	C210	4-Methyl-2-pentano	6.19	43	2856	N.D.	
	C220	Tetrachloroethene	0.00	166	0	N.D.	
51)	C221	1,3-Dichloropropan	0.00	76	0	N.D.	
52)	C155	Dibromochlorometha	0.00	129	0	N.D.	
53)	C163	1,2-Dibromoethane	0.00	107	0	N.D.	
54)	C215	2-Hexanone	0.00	43	0	N.D.	
55)	C235	Chlorobenzene	7.32	112	4376	N.D.	
56)	C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
57)	C240	Ethylbenzene	7.30	91	917	N.D.	
58)	C246	m,p-Xylene	0.00	106	0	N.D.	
59)	C247	o-Xylene	0.00	106	0	N.D.	
60)	C245	Styrene	0.00	104	0	N.D.	
63)	C180	Bromoform	0.00	173	0	N.D.	
64)	C966	Isopropylbenzene	0.00	105	0	N.D.	
	C301	Bromobenzene	0.00	156	0	N.D.	
	C225	1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
	C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
68)	C283	t-1,4-Dichloro-2-B	0.00	53	0	N.D.	
69)	C302	n-Pro pyl benzene	0.00	91	0	N.D.	
	C303	2-Chlorotoluene	0.00	126	0	N.D.	
71)	C289	4-Chlorotoluene	0.00	126	0	N.D.	
72)	C304	1,3,5-Trimethylben	0.00	105	0	N.D.	
73)	C306	tert-Butylbenzene	0.00	134	0	N.D.	
74)		1,2,4-Trimethylben	0.00	105	0	N.D.	
-	C308	sec-Butylbenzene	0.00	105	0	N.D.	
	C260	1,3-Dichlorobenzen	0.00	146	0	N.D.	
-	C309	4-Isopropyltoluene	0.00	119	0	N.D.	
	C267	1,4-Dichlorobenzen	0.00	146	0	N.D.	
	C249	1,2-Dichlorobenzen	0.00	146	0	N.D.	
	C310	n-Butylbenzene	0.00	91	0	N.D.	
	C286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
	C313	1,2,4-Trichloroben	0.00	180	0	N.D.	
	C316	Hexachlorobutadien	0.00	225	0	N.D.	
	C314	Naphthalene	0.00	128	0	N.D.	
	C934	1,2,3-Trichloroben	0.00	180	0	N.D.	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

TB-121505-02

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58707

Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{ML} Lab File ID: $\underline{S9657.RR}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/20/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

		CONCENTRATION UNI				
CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/L</u>	Q		
67-64-1	-Acetone		5.0	U		
71-43-2	-Benzene		1.0	ן ט		
75-27-4	-Bromodichloromethane		1.0	ן ט		
75-25-2	-Bromoform		1.0	ן ט		
74-83-9	-Bromomethane		1.0	ן ט		
78-93-3	-2-Butanone		5.0	ן ט		
75-15-0	-Carbon Disulfide		1.0	ן ט		
56-23-5	-Carbon Tetrachloride		1.0	ן טן		
108-90-7	-Chlorobenzene		1.0	ן ט		
75-00-3	-Chloroethane		1.0	ט		
67-66-3			1.0	ט		
	-Chloromethane		1.0	ט		
110-82-7			1.0	ט		
	-1,2-Dibromoethane		1.0	ט [
	-Dibromochloromethane		1.0	ן ט		
	-1,2-Dibromo-3-chloropropane		1.0	ע		
	-1,2-Dichlorobenzene		1.0	ן ט		
	-1,3-Dichlorobenzene	····	1.0	ប		
	-1,4-Dichlorobenzene		1.0	ן ט		
75-71-8	-Dichlorodifluoromethane		1.0	ן ט		
75-34-3	-1,1-Dichloroethane		1.0	ן ט		
107-06-2	-1,2-Dichloroethane	· · · · · · · · · · · · · · · · · · ·	1.0	ע		
75-35-4	-1,1-Dichloroethene		1.0	ן ט		
156-59-2	-cis-1,2-Dichloroethene		1.0	ט		
156-60-5	-trans-1,2-Dichloroethene		1.0	U		
78-87-5	-1,2-Dichloropropane		1.0	ט		
	-cis-1,3-Dichloropropene		1.0	U		
	trans-1,3-Dichloropropene		1.0	U		
	-Ethylbenzene		1.0	ע		
591-78-6			5.0	U		
98-82-8	-Isopropylbenzene		1.0	U		
	-Methyl acetate		1.0	U		
	-Methylcyclohexane		1.0	U		
	-Methylene chloride		1.0	U		
L						

284/504

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

Lab Name: <u>STL Buffalo</u>

Contract: 4

TB-121505-02

Matrix: (soil/water) WATER

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Lab Sample ID: A5E58707

Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{ML}

Lab File ID: S9657.RR

Level: (low/med) LOW

Date Samp/Recv: <u>12/20/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N

Date Analyzed: <u>12/27/2005</u>

GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)

Dilution Factor: ____1.00

Soil Extract Volume: ____ (uL)

Soil Aliquot Volume: ____ (uL)

CONCENTRATION	UNITS:
---------------	--------

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
108-10-1	4-Methyl-2-pentanone		5.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)		1.0	U
91-20-3	Naphthalene		1.0	U
100-42-5	Styrene		1.0	ע
79-34-5	1,1,2,2-Tetrachloroethane		1.0	ע
127-18-4	Tetrachloroethene		1.0	U
108-88-3	Toluene		1.0	U
120-82-1	1,2,4-Trichlorobenzene		1.0	ע
71-55-6	1,1,1-Trichloroethane		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	roethane	1.0	ט
75-69-4	Trichlorofluoromethane		1.0	ט
79-01-6	Trichloroethene		1.0	ע
75-01-4	Vinyl chloride		1.0	ט
1330-20-7	Total Xylenes		3.0	ָּט

Vial: 7

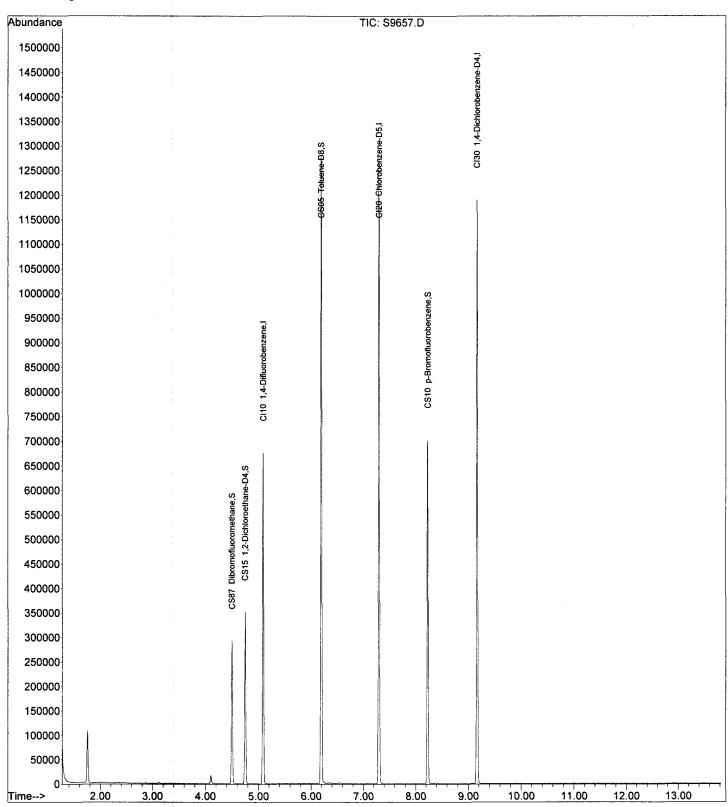
Data File : D:\DATA\122705\S9657.D

: 27 Dec 2005 Acq On Operator: LH

Sample : A5E58707 Inst : HP5973S Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 27 15:10:26 2005 Results File: A5I0002442_E2.RES


Quant Method : C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

WATER Title 8260 5ML

: Tue Dec 27 11:08:38 2005 Last Update

Response via : Initial Calibration

DataAcq Meth : VOA

Quantitation Report STL Buffalo (Not Reviewed) 286/504

Vial: 7 Operator: LH Inst : HP5973S Multiplr: 1.00

Data File : D:\DATA\122705\S9657.D Acq On : 27 Dec 2005 12:20 Sample : A5E58707

Misc

MS Integration Params: RTEINT.P Quant Time: Dec 27 15:10:26 2005

Results File: A5I0002442 E2.RES

Quant Method : C:\MSDCHEM\1...\A510002442 E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Tue Dec 27 11:08:38 2005

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\DATA\122705\S9652.D (27 Dec 2005 10:13)

Internal Standards	к.т.	QIon	Response	Conc U	nits Dev(Min) Rcv(Ar)
1) CI10 1,4-Difluorobenzene	5.09	114	411945	125.00	ng 0.00 93.41%
43) CI20 Chlorobenzene-D5	7.30	117	564581	125.00	
62) CI30 1,4-Dichlorobenzene-	9.16	152	260644	125.00	
					07.020
System Monitoring Compounds					
30) CS87 Dibromofluoromethane	4.50	111	147484	126.85	ng 0.00
Spiked Amount 125.000 Ra	nge 70	- 130	Recove	ry =	101.48%
31) CS15 1,2-Dichloroethane-D					ng 0.00
Spiked Amount 125.000 Ra					98.46%
44) CS05 Toluene-D8 Spiked Amount 125.000 Ra	6.19	98	667110		
Spiked Amount 125.000 Ra	nge 77	- 122	Recove	ry =	95.42%
61) CS10 p-Bromofluorobenzene					
Spiked Amount 125.000 Ra	nge 74	- 120	Recove	ry =	86.65%
Target Compounds					Qvalue
2) C290 Dichlorodifluorome	0.00	85	0	N.D.	Qvarue
	0.00	50	Ŏ	N.D.	
3) C010 Chloromethane 4) C020 Vinyl chloride	0.00	62	Ö	N.D.	
5) C015 Bromomethane	0.00	94	ő	N.D.	
6) C025 Chloroethane	0.00	64	Ö	N.D.	
7) C275 Trichlorofluoromet		101	Ō	N.D.	
8) C045 1,1-Dichloroethene	0.00	96	0	N.D.	
9) C030 Methylene chloride		84	723	N.D.	
10) C040 Carbon disulfide	2.88	76	1303	N.D.	
11) C036 Acrolein	0.00	56	0	N.D.	
12) C038 Acrylonitrile	3.31	53	129	N.D.	
13) C035 Acetone	2.76	43	815	N.D.	
14) C300 Acetonitrile	0.00	41	0	N.D.	
15) C276 Iodomethane	0.00	142	0	N.D.	
16) C291 1,1,2 Trichloro-1,	0.00	101	0	N.D.	
17) C962 T-butyl Methyl Eth	0.00	73	0	N.D.	
18) C057 trans-1,2-Dichloro	0.00	96	0	N.D.	
19) C255 Methyl Acetate	0.00	43	0	N.D.	
20) C050 1,1-Dichloroethane		63	0	N.D.	
21) C125 Vinyl Acetate	0.00	43	0	N.D.	
,	4.10	77	287	N.D.	
23) C056 cis-1,2-Dichloroet		96	0	N.D.	
24) C272 Tetrahydrofuran	0.00	42	0	N.D.	
25) C222 Bromochloromethane	0.00	128	0	N.D.	
26) C060 Chloroform	0.00	83	. 0	N.D.	
27) C115 1,1,1-Trichloroeth	0.00	97 117	0 0	N.D. N.D.	
28) C120 Carbon tetrachlori 29) C116 1,1-Dichloropropen	0.00	75	0	N.D.	
32) C165 Benzene	4.80	78	988	N.D.	
33) C065 1,2-Dichloroethane	0.00	62	0	N.D.	
34) C110 2-Butanone	4.10	43	312	N.D.	
35) C256 Cyclohexane	0.00	56	0	N.D.	
36) C150 Trichloroethene	0.00	95	0	N.D.	
37) C140 1,2-Dichloropropan	0.00	63	Ŏ	N.D.	
20) C270 Dibnementhans	0.00	0.3	0	N D	

0.00

93

0

N.D.

38) C278 Dibromomethane

Data File : D:\DATA\122705\S9657.D

Vial: 7 Acq On : 27 Dec 2005 12:20 Operator: LH

Inst : HP5973S Sample : A5E58707 Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 27 15:10:26 2005 Results File: A5I0002442 E2.RES

Quant Method : C:\MSDCHEM\1...\A510002442 E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Tue Dec 27 11:08:38 2005

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\DATA\122705\S9652.D (27 Dec 2005 10:13)

Int	ernal	Standards	R.T	. QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
 39)	C130	Bromodichlorometha	0.00	83	0	N.D.	
40)	C161	2-Chloroethylvinyl	0.00	63	0	N.D.	
41)	C012	Methylcycolhexane	0.00	83	0	N.D.	
42)	C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
	C230	Toluene	6.24	92	926	N.D.	
46)	C170	trans-1,3-Dichloro	0.00	75	0	N.D.	
47)	C284	Ethyl Methacrylate	0.00	69	0	N.D.	
48)	C160	1,1,2-Trichloroeth	0.00	83	0	N.D.	
49)	C210	4-Methyl-2-pentano	6.19	43	2927	N.D.	
	C220	Tetrachloroethene	0.00	166	0	N.D.	
51)	C221	1,3-Dichloropropan	0.00	76	0	N.D.	
52)	C155	Dibromochlorometha	0.00	129	0	N.D.	
53)	C163	1,2-Dibromoethane	0.00	107	0	N.D.	
54)	C215	2-Hexanone	0.00	43	0	N.D.	
55)	C235	Chlorobenzene	7.32	112	2262	N.D.	
56)	C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
57)		Ethylbenzene	7.29	91	881	N.D.	
•	C246	m,p-Xylene	0.00	106	0	N.D.	
	C247	o-Xylene	0.00	106	0	N.D.	
	C245	Styrene	0.00	104	0	N.D.	
	C180	Bromoform	0.00	173	0	N.D.	
-	C966	Isopropylbenzene	0.00	105	0	N.D.	
•	C301	Bromobenzene	0.00	156	0	N.D.	
-	C225	1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
	C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
	C283	t-1,4-Dichloro-2-B	0.00	53	0	N.D.	
69)		n-Propylbenzene	8.44	91	143	N.D.	
	C303	2-Chlorotoluene	0.00	126	0	N.D.	
71)		4-Chlorotoluene	0.00	126	0	N.D.	
	C304	1,3,5-Trimethylben	0.00	105	0	N.D.	
	C306	tert-Butylbenzene	0.00	134	0	N.D.	
	C307	1,2,4-Trimethylben	0.00	105	0	N.D.	
-	C308	sec-Butylbenzene	0.00	105	0	N.D.	
	C260	1,3-Dichlorobenzen	9.12	146	301	N.D.	
	C309	4-Isopropyltoluene	0.00	119	0	N.D.	
	C267	1,4-Dichlorobenzen	9.19	146	366	N.D.	
	C249	1,2-Dichlorobenzen	0.00	146	0 0	N.D. N.D.	
	C310	n-Butylbenzene	0.00	91 75	0	N.D.	
•	C286 C313	1,2-Dibromo-3-Chlo	0.00	180		N.D.	
-		1,2,4-Trichloroben		225	0 0	N.D.	
83) 84)	C316	Hexachlorobutadien Naphthalene	0.00	128	. 0	N.D.	
-	C934	1,2,3-Trichloroben	0.00	180	. 0	N.D.	
				+			

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Standards

METHOD 8260 - AQUEOUS (30% RSD/ 20% D) INITIAL CALIBRATION DATA

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u> Lab Sample ID: <u>A510002430-1</u>

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No: ____

Intrument ID: <u>HP5973G</u> Calibration Dates(s): <u>12/20/2005</u> <u>12/20/2005</u>

Heated Purge (Y/N): N Calibration Times: 11:27 14:25

GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)

Lab File ID:	RRF1	= <u>G7411.RR</u>	RRF10	= G7409.RR	
$RRF25 = \underline{G7408.RR}$	RRF50	$= \underline{G7406.RR}$	RRF100	$= \underline{G7407.RR}$	

$RRF25 = \underline{G7408.RR} \qquad RRI$	F50 =	G7406.I	RR I	RRF100	$= \underline{G740}$	7.RR	
COMPOUND	RRF1	RRF10	RRF25	RRF50	RRF100	AVG RRF	% RSD
Chloromethane	0.659	0.529	0.490	0.505	0.492	0.5350	13.300
Bromomethane	0.343	0.234	0.214				23.100
Vinyl chloride	0.593	0.518					9.000
Chloroethane	0.363	0.254	0.254	0.258	0.262	0.2780	17.100
Methylene chloride	0.774	0.472	0.438	0.421	0.414	0.5040	30.300
Acetone	0.151	0.135	0.131		0.129	0.1360	6.600
Carbon Disulfide	1.203	1.103	1.022	1.034	1.019	1.0760	7.300
1,1-Dichloroethene	0.404	0.380	0.360	0.349	0.344	0.3670	6.700
1,1-Dichloroethane	0.833	0.808	0.778	0.757	0.748	0.7850	4.600
cis-1,2-Dichloroethene	0.495	0.475	0.457	0.439	0.427	0.4590	5.900
trans-1,2-Dichloroethene	0.450	0.434	0.410	0.393	0.375	0.4120	7.400
Chloroform	0.813	0.775	0.752	0.733	0.718	0.7580	5.000
1,2-Dichloroethane	0.651	0.648	0.635	0.628	0.619	0.6360	2.100
2-Butanone	0.233	0.222	0.211	0.212	0.205	0.2170	5.000
1,1,1-Trichloroethane	0.671	0.673	0.653	0.635	0.625	0.6510	3.300
Carbon Tetrachloride	0.548	0.563	0.548	0.539	0.540	0.5470	1.700
Bromodichloromethane	0.523	0.525	0.526	0.527	0.531	0.5260	0.600
1,2-Dichloropropane	0.488	0.460	0.445	0.446	0.443	0.4560	4.100
cis-1,3-Dichloropropene	0.659	0.693	0.681	0.674	0.683	0.6780	1.800
Trichloroethene	0.466	0.459	0.438	0.425	0.422	0.4420	4.500
Dibromochloromethane	0.702	0.720	0.741	0.758	0.780	0.7400	4.100
1,1,2-Trichloroethane	0.658	0.640	0.623		0.610	0.6290	3.200
Benzene	1.857	1.772	1.703	1.657	1.614	1.7200	5.600
trans-1,3-Dichloropropene	1.132	1.272	1.280			1.2540	5.500
Bromoform	0.351	0.423	0.442	0.468	0.490	0.4350	12.200
4-Methyl-2-pentanone	0.928	0.968	0.937	0.927	0.893	0.9310	2.900
2-Hexanone	0.670	0.689	0.664	0.659	0.639		2.700
Tetrachloroethene	0.994	0.970	0.956	0.897	0.878	0.9390	5.200
1,1,2,2-Tetrachloroethane	1.021	1.046	1.021	1.013	1.026	1.0250	1.200
Toluene	2.370	2.257	2.229	2.128	2.091	2.2150	5.000
Chlorobenzene	2.677	2.558	2.508	2.391	2.357	2.4980	5.200
Ethylbenzene	4.407	4.382	4.271	4.075	3.962	4.2190	4.600
Styrene	2.517	2.628	2.637	2.555	2.517	2.5710	2.300
Total Xylenes	1.687	1.686	1.626	1.555		1.6170	4.500
1,1,2-Trichloro-1,2,2-trifl	0.359	0.401	0.379	0.402	0.382	0.3840	4.600
1,2,4-Trichlorobenzene	2.123	1.626	1.392	1.363	1.345	1.5700	21.000
1,2-Dibromo-3-chloropropane	0.164	0.180	0.182	0.191	0.203	0.1840	7.800

METHOD 8260 - AQUEOUS (30% RSD/ 20% D) INITIAL CALIBRATION DATA

Lab Name: STL Buffalo Contract: 4 Lab Sample ID: A510002430-1

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No: ____

Intrument ID: <u>HP5973G</u> Calibration Dates(s): <u>12/20/2005</u> <u>12/20/2005</u>

Heated Purge (Y/N): N Calibration Times: 11:27 14:25

GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)

Lab File ID: RRI RRF25 = G7408.RR RRI	_	G7411.I G7406.I		RRF10 RRF100	= <u>G7409</u> = <u>G740</u>		
COMPOUND	RRF1	RRF10	RRF25	RRF50	RRF100	AVG RRF	% RSD
1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Cyclohexane Dichlorodifluoromethane Methyl acetate Naphthalene Trichlorofluoromethane Methyl-t-Butyl Ether (MTBE)	0.766 2.272 2.288 2.378 0.753 0.472 0.736 3.964 0.645 1.354	0.758 2.127 2.197 2.243 0.786 0.426 0.605 3.499 0.589 1.375	2.158 0.754 0.395 0.587 2.866 0.540	2.004 2.083 0.776 0.425 0.550 2.974 0.574	1.966 2.082 0.741 0.399 0.539 2.978 0.548	2.1120 2.1890 0.7620 0.4230 0.6030	1.000 5.800 6.300 5.700 2.400 7.300 13.100 14.300 7.200 3.300
Isopropylbenzene Methylcyclohexane	4.499	4.656	4.458	4.245	4.281	4.4280	3.800
Toluene-D8	2.368	2.705	2.415	2.434	2.681	2.5210	6.300

0.828

0.427

0.743

0.375

0.743

0.392

0.820

0.440

0.7740

0.4020

5.800

7.300

0.739

0.378

Comments:

p-Bromofluorobenzene

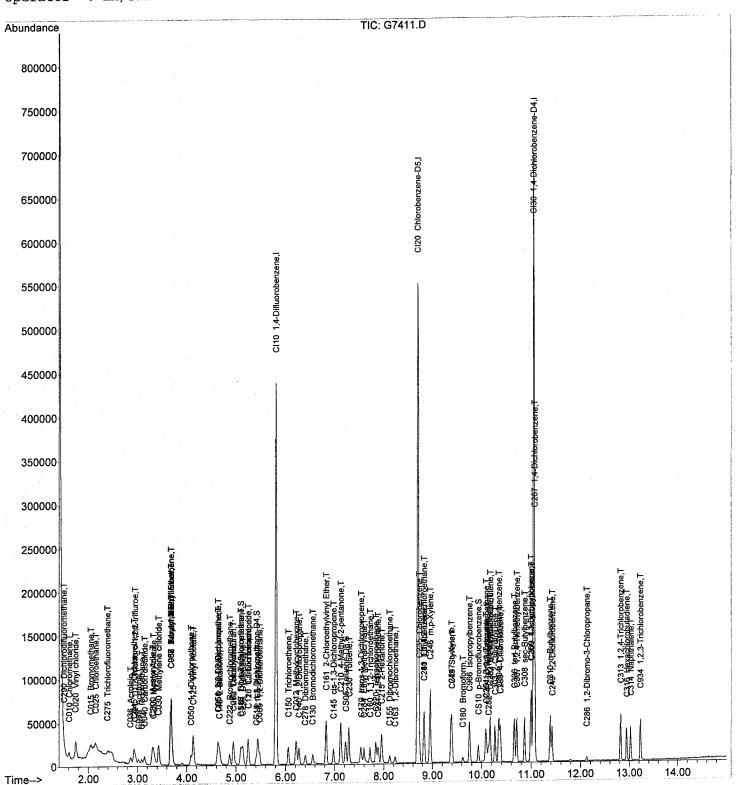
1,2-Dichloroethane-D4

: 20 Dec 2005 14:25 Acq On

: VSTD001 Sample

Misc

Integrator: RTE


Quant Time: Dec 20 14:58:13 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

: 8260 5ML WATER Quant Title

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

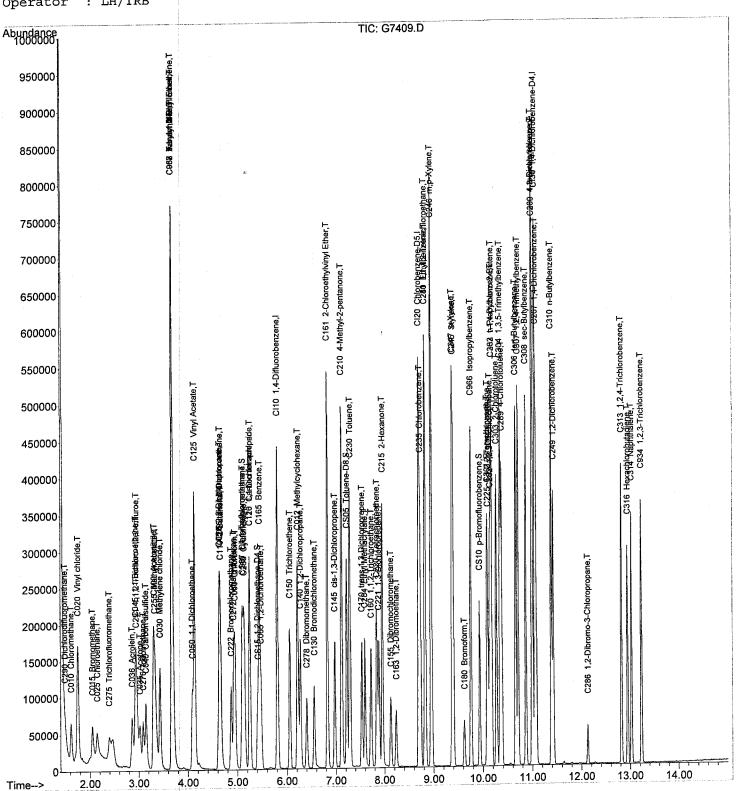
: LH/TRB

: 20 Dec 2005 13:40 Acq On

Sample : VSTD010

Misc

Integrator: RTE


Quant Time: Dec 20 15:02:57 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

5ML WATER Quant Title : 8260

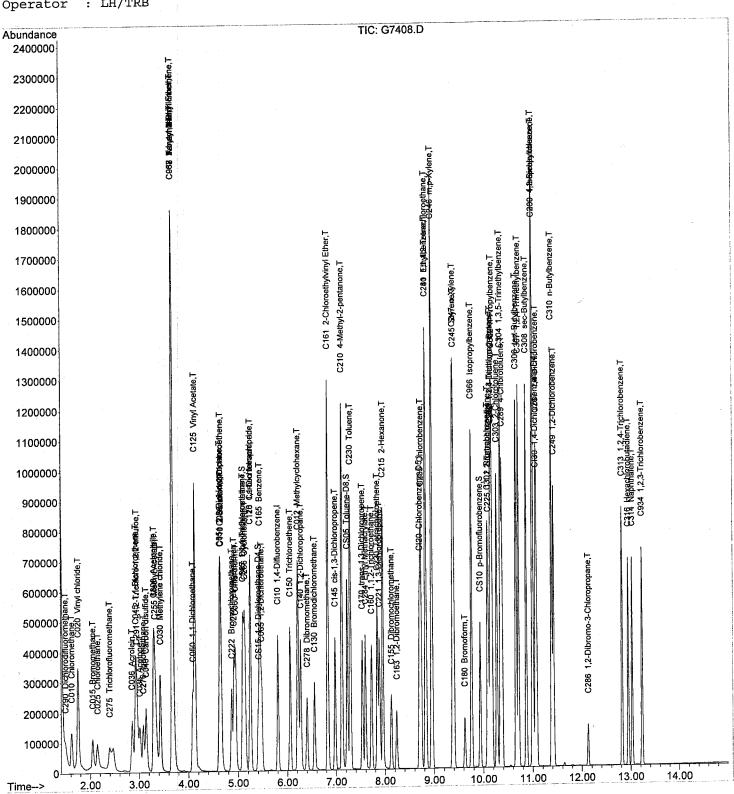
QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

: LH/TRB Operator

: 20 Dec 2005 Acq On Sample : VSTD025

Misc

Integrator: RTE


Quant Time: Dec 20 15:01:38 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

5ML WATER : 8260 Quant Title

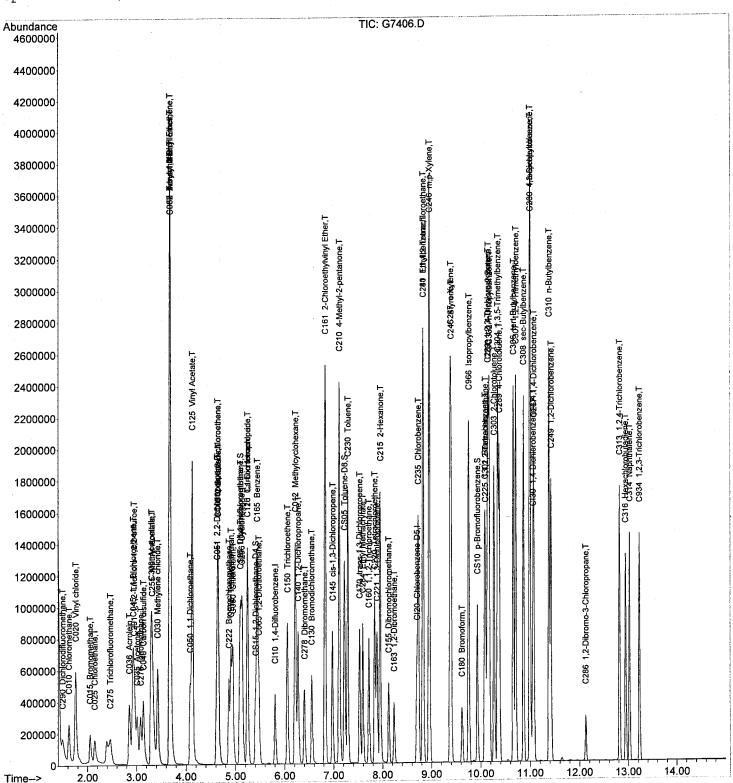
QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

: LH/TRB Operator

Acq On : 20 Dec 2005 11:27

Sample : VSTD050

Misc :


Integrator: RTE

Quant Time: Dec 20 14:58:37 2005

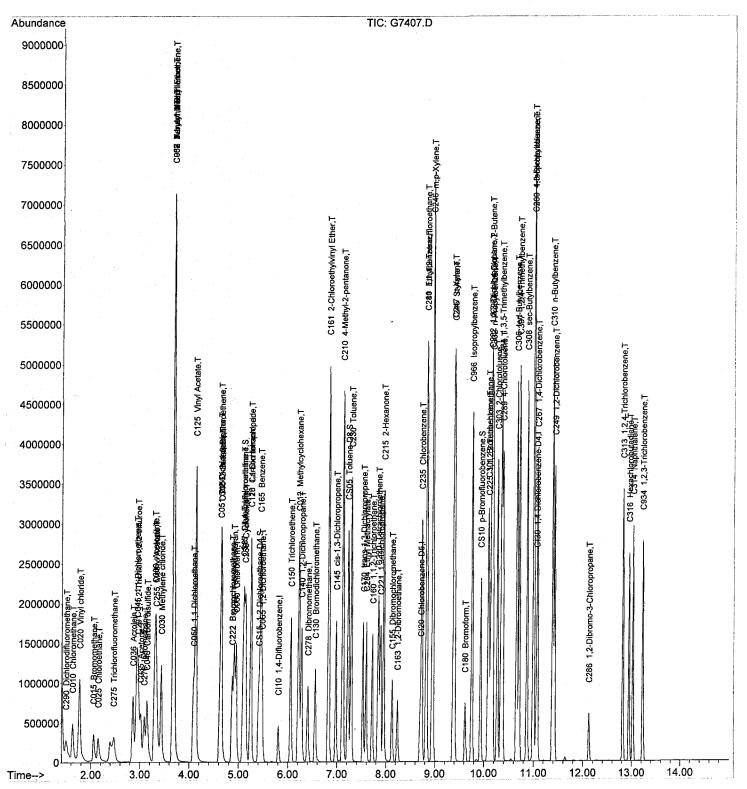
Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Acq On : 20 Dec 2005 11:50

Sample : VSTD100


Misc

Integrator: RTE
Quant Time: Dec 20 15:00:09 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Method Path : C:\MSDCHEM\1\METHODS\8260-5MLLOW\

Method File : A5I0002430.M Title : 8260 5ML WATER

Last Update : Tue Dec 20 15:05:36 2005

Response Via : Initial Calibration

8240 (ASI., 2430) 8240 GE (ASI., 2430 GE)

Calibration Files

1 =G7411.D 2 =G7409.D 3 =G7408.D

4 =G7406.D 5 =G7407.D

		Compo	und	1	2	3	4	5	Avg	%RSD
										· ·
1)		CI10	1,4-Difluoroben			I	STD			
2)	T	C290	Dichlorodifluor	0.472	0.426	0.395	0.425	0.399	0.423	7.30
3)	${f T}$	C010	Chloromethane	0.659	0.529	0.490	0.505	0.492	0.535	13.30
4)	${f T}$	C020	Vinyl chloride	0.593	0.517	0.481	0.500	0.483	0.515	8.95
5)	T	C015	Bromomethane					0.212		23.13
6)	T	C025	Chloroethane	0.363	0.254	0.254	0.258	0.262	0.278	17.10
7)	T	C275	Trichlorofluoro	0.645	0.589	0.540	0.574	0.548	0.579	7.23
8)	T	C045	1,1-Dichloroeth	0.404	0.380	0.360	0.349	0.344	0.367	6.69
9)	T	C030	Methylene chlor	0.774	0.472	0.438	0.421	0.414	0.504	30.33
10)	T	C040	Carbon disulfid	1.203	1.103	1.022	1.033	1.019	1.076	7.34
11)	${f T}$	C036	Acrolein	0.041				0.034		11.92
12)	\mathbf{T}	C038	Acrylonitrile	0.161				0.149		3.75
13)	\mathbf{T}	C035	110000110	·				0.129		6.56
14)	T	C300	Acetonitrile	0.064				0.056		5.51
15)	${f T}$	C276	Iodomethane	0.589	0.617	0.596	0.593	0.568	0.593	2.91
16)	T	C291	1,1,2-Trichloro		0.401	0.379	0.402	0.382	0.384	4.58
17)	${f T}$	C962	T-butyl Methyl	1.354	1.375	1.314	1.314	1.262	1.324	3.28
18)	T	C057	trans-1,2-Dichl	0.450	0.434	0.410	0.393	0.375	0.412	7.39
19)	\mathbf{T}	C255	Methyl Acetate	0.736	0.604	0.587	0.550	0.539	0.603	13.08
20)	${f T}$	C050	1,1-Dichloroeth		0.808	0.778	0.757	0.748	0.785	4.55
21)	Т	C125	Vinyl Acetate	0.792	0.863	0.838	0.869	0.824	0.837	3.72
22)	T	C051	2,2-Dichloropro	0.691	0.701	0.681	0.642	0.633	0.670	4.53
23)	T	C056	cis-1,2-Dichlor	0.495	0.475	0.457	0.439	0.427	0.459	5.95
24)	T	C272	Tetrahydrofuran	0.150	0.144	0.139	0.141	0.137	0.142	3.70
25)	T	C222	Bromochlorometh	0.238	0.229	0.219	0.217	0.212	0.223	4.62
26)	S	CS87	Dibromofluorome	0.290	0.337	0.294	0.305	0.339	0.313	7.50
27)	T	C060	Chloroform					0.718		4.95
28)	\mathbf{T}	C115	1,1,1-Trichloro	0.671	0.673	0.653	0.635	0.625	0.651	3.28
29)	Т	C120	Carbon tetrachl	0.548	0.563	0.548	0.539	0.540	0.54/	1.74
30)	T	C116	1,1-Dichloropro	0.590	0.614	0.599	0.574	0.567	0.589	3.21 7.28
31)	S	CS15	1,2-Dichloroeth	0.378	0.427	0.375	0.392	0.440	1 720	
32)	${f T}$	C165	Benzene					1.614		5.59 2.09
33)	\mathbf{T}	C065	1,2-Dichloroeth	0.651	0.648	0.635	0.628	0.619	0.636	5.02
34)	T	C110	2-Butanone	0.233	0.222	0.211	0.212	0.205	0.217	2.44
35)	T	C256	Cyclohexane	0.753	0.786	0.754	0.776	0.740	0.762	4.52
36)	T	C150	Trichloroethene	0.466	0.459	0.438	0.425	0.422	0.442	4.07
37)	T	C140	1,2-Dichloropro		0.460	0.445	0.440	0.253	0.430	2.54
38)	Т	C278	Dibromomethane Bromodichlorome							0.58
39)		C130	2-Chloroethylvi	0.523	0.525	0.320	0.327	0.331	0.320	3.17
40)		C161	Methylcyclohexa	0.292	0.314	0.307	0.303	0.293	0.302	2.97
41)		C012	cis-1,3-Dichlor	0.792	0.044	0.024	0.674	0.603	0.623	1.83
42)	Т	C145	CIS-1,3-DICHIOL	0.659	0.093	0.001	0.074	0.005	0.070	
43)	I	CI20	Chlorobenzene-D		. .	IS	STD			
44)		CS05	Toluene-D8	2.368	2.705	2.415	2.434	2.681	2.521	6.32
		C230	Toluene	2.370	2.257	2.229	2.128	2.091	2.215	5.00
	T	C170	trans-1,3-Dichl	1.132	1.272	1.280	1.288	1.301	1.254	5.53
		C284	Ethyl Methacryl	1.112	1.207	1.215	1.222	1.210	1.193	3.81
48)	T	C160	1,1,2-Trichloro	0.658	0.639	0.623	0.614	0.609	0.629	3.18
49)		C210	4-Methyl-2-pent	0.928	0.968	0.937	0.927	0.893	0.931	2.87
50)	T	C220	Tetrachloroethe	0.994	0.970	0.956	0.897	0.878	0.939	5.24
51)	T	C221	1,3-Dichloropro	1.432	1.419	1.396	1.375	1.353	1.395	2.29
52)	T	C155	Dibromochlorome	0.702	0.720	0.741	0.758	0.780	0.740	4.13
53)	T	C163	1,2-Dibromoetha	0.766	0.758	0.761	0.753	0.745	0.757	1.06

```
Method Path : C:\MSDCHEM\1\METHODS\8260-5MLLOW\
 Method File: A5I0002430.M
          : 8260 5ML WATER
 Title
 Last Update : Tue Dec 20 15:05:36 2005
 Response Via: Initial Calibration
                             0.670 0.689 0.664 0.659 0.639 0.664
                                                                 2.73
54) T
       C215 2-Hexanone
                             2.677 2.558 2.508 2.391 2.356 2.498
                                                                 5.19
55) T
        C235 Chlorobenzene
        C281 1,1,1,2-Tetrach 0.812 0.832 0.831 0.815 0.801 0.818
                                                                 1.60
56) T
        C240 Ethylbenzene 4.407 4.382 4.271 4.075 3.962 4.219
                                                                 4.61
57) T
                           1.751 1.708 1.657 1.569 1.531 1.643
                                                                 5.64
58) T
        C246 m,p-Xylene
       C247 o-Xylene
                           1.687 1.686 1.626 1.555 1.528 1.616
59) T
       C245 Styrene 2.517 2.628 2.637 2.555 2.517 2.571 2.27 C180 Bromoform 0.351 0.423 0.442 0.468 0.490 0.435 12.24
60) T
61) T
       CS10 p-Bromofluorobe 0.739 0.828 0.743 0.743 0.820 0.774
62) S
                                                                 5.81
             1,4-Dichloroben ------ISTD------
63) I
       CI30
             Isopropylbenzen 4.499 4.656 4.458 4.245 4.280 4.428
                                                                 3.80
64) T
       C966
                                                                 6.42
65) T
       C301 Bromobenzene
                            1.197 1.124 1.086 1.030 1.029 1.093
                                                                 1.21
66) T
             1,1,2,2-Tetrach 1.020 1.046 1.021 1.013 1.026 1.025
       C225
             1,2,3-Trichloro 0.365 0.338 0.326 0.311 0.315 0.331
                                                                 6.56
67) T
       C282
68) T
       C283
             t-1,4-Dichloro- 0.089 0.117 0.127 0.140 0.152 0.125
                                                                19.24
69) T
       C302 n-Propylbenzene 5.523 5.714 5.603 5.342 5.338 5.504
                                                                 2.98
70) T
       C3 03
            2-Chlorotoluene 1.150 1.088 1.060 1.011 1.019 1.065
                                                                 5.31
       C289 4-Chlorotoluene 1.181 1.146 1.106 1.052 1.055 1.108
71) T
                                                                 5.08
             1,3,5-Trimethyl 3.859 3.889 3.778 3.644 3.634 3.761
                                                                 3.15
72) T
       C304
            tert-Butylbenze 0.862 0.876 0.845 0.810 0.806 0.840
                                                                 3.71
73) T
       C306
             1,2,4-Trimethyl 3.877 3.936 3.845 3.689 3.731 3.816
                                                                 2.69
74) T
       C307
75) T
       C308 sec-Butylbenzen 4.759 4.818 4.699 4.498 4.517 4.658
                                                                 3.09
             1,3-Dichloroben 2.288 2.197 2.104 2.004 1.965 2.112
                                                                 6.32
76) T
       C260
            4-Isopropyltolu 4.205 4.411 4.290 4.085 4.064 4.211
77) T
       C309
             1,4-Dichloroben 2.378 2.243 2.158 2.083 2.082 2.189
                                                                 5.70
78) T
       C267
                                                                 5.78
79) T
       C249 1,2-Dichloroben 2.272 2.127 2.053 1.989 1.980 2.084
80) T
       C310 n-Butylbenzene 4.039 4.013 3.909 3.762 3.781 3.901
81) T
       C286
             1,2-Dibromo-3-C 0.164 0.180 0.182 0.191 0.203 0.184
       C313
82) T
             1,2,4-Trichloro 2.123 1.626 1.392 1.363 1.344 1.570 21.00
       C316 Hexachlorobutad 0.900 0.719 0.642 0.616 0.601 0.696
83) T
       C314 Naphthalene 3.964 3.499 2.866 2.974 2.978 3.256 14.32 C934 1,2,3-Trichloro 1.948 1.469 1.178 1.147 1.133 1.375 25.37
84) T
85) T
______
                                             Total Average %RSD 6.44
```

L = Linear LO = Linear+Origin Q = Quad QO = Quad+Origin R = Corr. Coef (#) = Out of Range

A5I0002430.M Tue Dec 20 15:06:54 2005 HP5973G

Date: 12/21/2005

ICC Profile

Time: 16:18:58

ICC Profile Code: A00263 METHOD 8260 low 5ML PURGE (30% RSD/ 20% D)

Fraction: MV

No of Points: 5

Default Min. RRF: 0.3000

CCC Conc: 125.00

QC Approver: JRS

QC Date: 11/08/2005

Page:

Rept: AN0287R

Comments:

		ng On Column				
Seq	Parameter	Point 1	Point 2	Point 3	Point 4	Point 5
2 123-91-1	1,4-Dioxane	200.0000	2000.0000	5000.0000	10000.0000	20000.0000
7 77-73-6	Dicyclopentadiene	5.0000	50.0000	125.0000	250.0000	500.0000
8 526-73-8	1,2,3-Trimethylbenzene	5.0000	50.0000	125.0000	250.0000	500.0000
15 994-05-8	tert-Amyl Methyl Ether (TAME)	5.0000	50.0000	125.0000	250.0000	500.0000
18 67-64-1	Acetone	25.0000	250.0000	625.0000	1250.0000	2500.0000
20 71-43-2	Benzene	5.0000	50.0000	125.0000	250.0000	500.0000
25 637-92-3	Ethyl-t-butyl ether (ETBE)	5.0000	50.0000	125.0000	250.0000	500.0000
30 108-86-1	Bromobenzene	5.0000	50.0000	125.0000	250.0000	500.0000
40 74-97-5	Bromochloromethane	5.0000	50.0000	125.0000	250.0000	500.0000
50 75-27-4	Bromodichloromethane	5.0000	50.0000	125.0000	250.0000	500.0000
51 108-70-3	1,3,5-Trichlorobenzene	5.0000	50.0000	125.0000	250.0000	500.0000
60 75-25-2	Bromoform	5.0000	50.0000	125.0000	250.0000	500.0000
70 74-83-9	Bromomethane	5.0000	50.0000	125.0000	250.0000	500.0000
88 78-93-3	2-Butanone	25.0000	250.0000	625.0000	1250.0000	2500.0000
90 104-51-8	n-Butyl benzene	5.0000	50.0000	125.0000	250.0000	500.0000
91 107-12-0	Propionitrile	50.0000	500.0000	1250.0000	2500.0000	5000.0000
92 126-98-7	Methacrylonitrile 🖟	5.0000	50.0000	125.0000	250.0000	500.0000
93 108-20-3	Isopropyl Ether (DIPE)	5.0000	50.0000	125.0000	250.0000	500.0000
94 78-83-1	Isobutanol	200.0000	2000.0000		10000.0000	
95 71-36-3	n-Butyl alcohol	200.0000	2000.0000	5000.0000	10000.0000	20000.0000
96 108-41-8	m-Chlorotoluene	5.0000	50.0000	125.0000	250.0000	500.0000
97 108-94-1	Cyclohexanone	50.0000	500.0000	1250.0000	2500.0000	5000.0000
98 76-01-7	Pentachloroethane	5.0000	50.0000	125.0000	250.0000	500.0000
99 75-65-0	tert-Butyl Alcohol (TBA)	100.0000	1000.0000	2500.0000		10000.0000
100 135-98-8	sec-Butylbenzene	5.0000	50.0000	125.0000	250.0000	500.0000
101 79-20-9	Methyl acetate	5.0000	50.0000	125.0000	250.0000	500.0000
102 110-82-7	Cyclohexane	5.0000	50.0000	125.0000	250.0000	500.0000
103 108-87-2	Methylcyclohexane	5.0000	50.0000	125.0000	250.0000	500.0000
104 98-56-6	p-Monochlorobenzotrifluoride	5.0000	50.0000	125.0000	250.0000	500.0000
105 98-15-7	m-Monochlorobenzotrifluoride	5.0000	50.0000	125.0000	250.0000	500.0000
106 88-16-4	o-Monochlorobenzotrifluoride	5.0000	50.0000	125.0000	250.0000	500.0000
110 98-06-6	tert-Butylbenzene	5.0000	50.0000	125.0000	250.0000	500.0000
111 106-89-8	Epichlorohydrin	100.0000	1000.0000	2500.0000	5000.0000	
112 79-46-9	2-Nitropropane	25.0000	250.0000	625.0000	1250.0000	2500.0000
114 TOTALVOA	Total Volatile Organic Compoun	5.0000	50.0000	125.0000	250.0000	500.0000
120 554-14-3	2-Methyl Thiophene	5.0000	50.0000	125.0000	250.0000	500.0000
121 616-44-4	3-Methyl Thiophene	5.0000	50.0000	125.0000	250.0000	500.0000
128 75-15-0	Carbon Disulfide	5.0000	50.0000	125.0000	250.0000	500.0000
130 56-23-5	Carbon Tetrachloride	5.0000	50.0000	125.0000	250.0000	500.0000
140 108-90-7	Chlorobenzene	5.0000	50.0000	125.0000	250.0000	500.0000
145 104-76-7	2-Ethyl-1-hexanol	50.0000	500.0000	1250.0000	2500.0000	5000.0000
150 75-00-3	Chloroethane	5.0000	50.0000	125.0000	250.0000	500.0000
160 67-66-3	Chloroform	5.0000	50.0000	125.0000	250.0000	500.0000 500.0000
170 74-87-3	Chloromethane	5.0000	50.0000	125.0000	250.0000 250.0000	500.0000
180 95-49-8	o-Chlorotoluene	5.0000	50.0000	125.0000	250.0000	500.0000
190 106-43-4	p-Chlorotoluene	5.0000 5.0000	50.0000 50.0000	125.0000 125.0000	250.0000	500.0000
200 124-48-1	Dibromochloromethane	2.0000	50.0000	123.0000	250,0000	200,0000

4.5

 $\mathcal{F} = \mathcal{J}$

ICC Profile

Date: 12/21/2005 Time: 16:18:58 Page: 2 Rept: AN0287R

ICC Profile Code: A00263 METHOD 8260 low 5ML PURGE (30% RSD/ 20% D) (continued)

		ng On Column —				
Seq	Parameter	Point 1	Point 2_	Point 3	Point 4	Point 5
201 110-54-3	Hexane	5.0000	50.0000	125.0000	250.0000	500.0000
202 142-82-5	Heptane	5.0000	50.0000	125.0000	250.0000	500.0000
203 534-15-6	1,1-Dimethoxyethane	25.0000	250.0000	625.0000	1250.0000	2500.0000
204 75-56-9	Propylene Oxide	25.0000	250.0000	625.0000	1250.0000	2500.0000
210 96-12-8	1,2-Dibromo-3-chloropropane	5.0000	50.0000	125.0000	250.0000	500.0000
220 106-93-4	1,2-Dibromoethane	5.0000	50.0000	125.0000	250.0000	500.0000
230 74-95-3	Dibromomathane	5.0000	50.0000	125.0000	250.0000	500.0000
240 95-50-1	1,2-Dichlorobenzene	5.0000	50.0000	125.0000	250.0000	500.0000
250 541-73-1	1.3-Dichlorobenzene	5.0000	50.0000	125.0000	250.0000	500.0000
260 106-46-7	1,4-Dichlorobenzene	5.0000	50.0000	125.0000	250.0000	500.0000
270 75-71-8	Dichlorodifluoromethane	5.0000	50.0000	125.0000	250.0000	500.0000
280 75-34-3	1.1-Dichloroethane	5.0000	50.0000	125.0000	250.0000	500.0000
290 107-06-2	1,2-Dichloroethane	5.0000	50.0000	125.0000	250.0000	500.0000
300 75-35-4	1,1-Dichloroethene	5.0000	50.0000	125.0000	250.0000	500.0000
307 109-99-9	Tetrahydrofuran	25.0000	250.0000	625.0000	1250.0000	2500.0000
310 156-59-2	cis-1,2-Dichloroethene	5.0000	50.0000	125.0000	250.0000	500.0000
320 156-60-5	trans-1,2-Dichloroethene	5.0000	50.0000	125.0000	250.0000	500.0000
330 78-87-5	1,2-Dichloropropane	5.0000	50.0000	125.0000	250.0000	500.0000
340 142-28-9	1,3-Dichloropropane	5.0000	50.0000	125.0000	250.0000	500.0000
350 594-20-7	2,2-Dichloropropane	5.0000	50.0000	125.0000	250.0000	500.0000
360 563-58-6	1,1-Dichloropropene	5.0000	50.0000	125.0000	250.0000	500.0000
370 10061-01-5	cis-1,3-Dichloropropene	5.0000	50.0000	125.0000	250.0000	500.0000
380 10061-02-6	trans-1,3-Dichloropropene	5.0000	50.0000	125.0000	250.0000	500.0000
390 100-41-4	Ethylbenzene	5.0000	50.0000	125.0000	250.0000	500.0000
410 87-68-3	Hexachlorobutadiene	5.0000	50.0000	125.0000	250.0000	500.0000
418 591-78-6	2-Hexanone	25.0000	250.0000	625.0000	1250.0000	2500.0000
420 98-82-8	Isopropylbenzene	5.0000	50.0000	125.0000	250.0000	500.0000
430 99-87-6	p-Cymene	5.0000	50.0000	125.0000	250.0000	500.0000
440 75-09-2	Methylene chloride	5.0000	50.0000	125.0000	250.0000	500.0000
458 108-10-1	4-Methyl-2-pentanone	25.0000	250.0000	625.0000	1250.0000	2500.0000
460 91-20-3	Naphthalene	5.0000	50.0000	125.0000	250.0000	500.0000
470 103-65-1	n-Propylbenzene	5.0000	50.0000	125.0000	250.0000	500.0000
480 100-42-5	Styrene	5.0000	50.0000	125.0000	250.0000	500.0000
490 630-20-6	1,1,2~Tetrachloroethane	5.0000	50.0000	125.0000	250.0000	500.0000
500 79-34-5	1,1,2,2-Tetrachloroethane	5.0000	50.0000	125.0000	250.0000	500.0000
510 127-18-4	Tetrachloroethene	5.0000	50.0000	125.0000	250.0000	500.0000
520 108-88-3	Toluene	5.0000	50.0000	125.0000	250.0000	500.0000
530 87-61-6	1,2,3-Trichlorobenzene	5.0000	50.0000	125.0000	250.0000	500.0000
540 120-82-1	1,2,4-Trichlorobenzene	5.0000	50.0000	125.0000	250.0000	500.0000
550 71-55-6	1,1,1-Trichloroethane	5.0000	50.0000	125.0000	250.0000	500.0000
560 79-00-5	1,1,2-Trichloroethane	5.0000	50.0000	125.0000	250.0000	500.0000
570 79-01-6	Trichloroethene	5.0000	50.0000	125.0000	250.0000	500.0000
580 75-69-4	Trichlorofluoromethane	5.0000	50.0000	125.0000	250.0000	500.0000
590 96-18-4	1,2,3-Trichloropropane	5.0000	50.0000	125.0000	250.0000	500.0000
600 95-63-6	1,2,4-Trimethylbenzene	5.0000	50.0000	125.0000	250.0000	500.0000
610 108-67-8	1,3,5-Trimethylbenzene	5.0000	50.0000	125.0000	250.0000	500.0000
620 75-01-4	Vinyl chloride	5.0000	50.0000	125.0000	250.0000	500.0000
630 1330-20-7	Total Xylenes	15.0000	150.0000	375.0000	750.0000	1500.0000
646 SU107-06-2	1,2-Dichloroethane-D4	5.0000	50.0000	125.0000	250.0000	500.0000
648 2037-26-5	Toluene-D8	5.0000	50.0000	125.0000	250.0000	500.0000
650 460-00-4	p-Bromofluorobenzene	5.0000	50.0000	125.0000	250.0000	500.0000
660 SU95-50-1	1,2-Dichlorobenzene-d4	5.0000	50.0000	125.0000	250.0000	500.0000

ICC Profile

Date: 12/21/2005 Time: 16:18:58

ICC Profile Code: A00263 METHOD 8260 low 5ML PURGE (30% RSD/ 20% D) (continued)

Page: 3 Rept: AN0287R

			n	g On Columr	1		
Seq	Parameter	Point 1	Point 2	Point 3	Point 4	Point 5	
670 SU106-46-7	1,4-Dichlorobenzene-D4	0.0000	0.0000	0.0000	0.0000	0.0000	
680 3114-55-4	Chlorobenzene-D5	0.0000	0.0000	0.0000	0.0000	0.0000	
690 540-36-3	1,4-Difluorobenzene	0.0000	0.0000	0.0000	0.0000	0.0000	
700 462-06-6	Fluorobenzene	0.0000	0.0000	0.0000	0.0000	0.0000	
800 1634-04-4	Methyl-t-Butyl Ether (MTBE)	5.0000	50.0000	125.0000	250.0000	500.0000	
805 75-43-4	Dichlorofluoromethane	5.0000	50.0000	125.0000	250.0000	500.0000	
810 594-18-3	· Dibromodichtoromethane	5.0000	50.0000	125.0000	250.0000	500.0000	3 C C C
815 107-02-8	Acrolein	100.0000	1250.0000	2500.0000	5000.0000	10000.0000	
820 76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0000	50.0000	125.0000	250.0000	500.0000	
825 107-13-1	Acrylonitrile	100.0000	1250.0000	2500.0000	5000.0000	10000.0000	
830 80-62-6	Methyl methacrylate	5.0000	50.0000	125.0000	250.0000	500.0000	
840 540-59-0	1,2-Dichloroethene (Total)	10.0000	100.0000	250.0000	500.0000	1000.0000	
850 M/P XYLENE	m/p-Xylenes	10.0000	100.0000	250.0000	500.0000	1000.0000	
860 95-47-6	o-Xylene	5.0000	50.0000	125.0000	250.0000	500.0000	
870 108-05-4	Vinyl acetate	25.0000	250.0000	625.0000	1250.0000	2500.0000	
880 110-75-8	2-Chloroethylvinyl ether	25.0000	250.0000	625.0000	1250.0000	2500.0000	
890 110-57-6	trans-1,4-Dichloro-2-butene	25.0000	250.0000	625.0000	1250.0000	2500.0000	
900 74-88-4	Iodomethane	5.0000	50.0000	125.0000	250.0000	500.0000	
910 97-63-2	Ethyl methacrylate	5.0000	50.0000	125.0000	250.0000	500.0000	
920 75-45-6	Chlorodifluoromethane	5.0000	50.0000	125.0000	250.0000	500.0000	
930 544-10-5	1-Chiorohexane	5.0000	50.0000	125.0000	250.0000	500.0000	
940 75-05-8	Acetonitrile	200.0000	2000.0000	5000.0000	10000.0000	20000.0000	
950 60-29-7	Ethyl ether	5.0000	50.0000	125.0000	250.0000	500.0000	
951 108-38-3	m-Xylene	10.0000	100.0000	250.0000	500.0000	1000.0000	
952 106-42-3	p-Xylene	10.0000	100.0000	250.0000	500.0000	1000.0000	
962 542-75-6	1,3-Dichloropropene (Total)	10.0000	100.0000	250.0000	500.0000	1000.0000	
972 64-17-5	Ethanol	100.0000	1000.0000	2500.0000	5000.0000	10000.0000	
982 141-78-6	Ethyl acetate	5.0000	50.0000	125.0000	250.0000	500.0000	
992 107-05-1	3-Chloropropene (Allyl Chlor.)	5.0000	50.0000	125.0000	250.0000	500.0000	
993 126-99-8	2-Chloro-1,3-butadiene	5.0000	50.0000	125.0000	250.0000	500.0000	
994 54-28-81TIC	Bis(chloromethyl) ether (VOA T	5.0000	50.0000	125.0000	250.0000	500.0000	

Acq On : 20 Dec 2005 14:25

: VSTD001 Sample

Misc

Integrator: RTE

Quant Time: Dec 20 14:58:13 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

1 CI10		Standards			Response			Date.	/n~ \
A									0.00
System Monitoring Compounds 26 CS87 Dibromofluoromethane 5.10 111 A506 A63 NG 0.00 Spiked Amount 125.000 Range 70 - 130 Recovery = 3.76%# 3.10 CS15 1.2-Dichloroethane-D 5.41 65 5885 4.70 ng 0.00 Spiked Amount 125.000 Range 73 - 136 Recovery = 3.76%# 3.00 Range 73 - 136 Recovery = 3.76%# 3.00 Range 73 - 136 Recovery = 3.76%# 3.00 Range 73 - 136 Recovery = 3.76%# 3.00 Range 73 - 136 Recovery = 3.76%# 3.00 Range 74 - 120 Recovery = 3.76%# 3.00 Range 74 - 120 Recovery = 3.76%# 3.00 Range 75 - 122 Recovery = 3.76%# 3.00 Range 75 - 122 Recovery = 3.76%# 3.00 Range 75 - 122 Recovery = 3.76%# 3.00 Range 75 - 122 Recovery = 3.82%# 3.00 Range 75 - 122 Recovery = 3.82%# 3.00 Range 75 - 122 Recovery = 3.82%# 3.00 Range 75 - 122 Recovery = 3.82%# 3.00 Range 75 - 122 Recovery = 3.82%# 3.00 Range 75 - 122 Recovery = 3.76%# 3.00 Range 75 - 122 Recovery = 3.82%# 3.00 Range 75 - 122 Recovery = 3.76%# 3.00 Range 75 - 122 Recovery = 3.76%# 3.00 Range 75 - 122 Recovery = 3.76%# 3.00 Range 75 - 122 Recovery = 3.76%# 3.00 Range 75 - 122 Recovery = 3.76%# 3.00 Range 75 - 122 Recovery = 3.76%# 3.00 Range 75 - 122 Recovery = 3.76%# 3.00 Range 75 - 122 Recovery = 3.76%# 3.00 Range 75 - 122 Recovery = 3.76%# 3.00 Range 75 - 122 Recovery = 3.76%# 3.00 Range 75 - 122 Recovery = 3.76%# 3.00 Range 75 - 122 Recovery = 3.76%# 3.00 Range 75 - 122 Recovery = 3.76%# 3.00 Range 75 - 122 Recovery = 3.76%# 3.00 Range 75 - 122 Recovery = 3.76%# 3.00 Range 75 - 122 Recovery = 3.76%# 3.00 Range 75 - 122 Recovery = 3.76%# 3.00 Recovery = 3.76%# 3.00 Recovery = 3.76%# 3.00 Recovery = 3.76%# 3.00 Recovery = 3.76%# 3.00 Recovery 3.00 Recovery	43) CI20	Chlorobenzene-D5	8.70	82	197830	125.0	0 ng		0.00
26) CS87 Dibromofluoromethane 5.10 111 4506 4.63 NG 0.00	63) CI30	1,4-Dichlorobenzene-	11.05	152	185577	125.0	0 ng		0.00
2) C290 Dichlorodifluorometh 1.50 85 7347 5.58 ng 100 3) C010 Chloromethane 1.60 50 10253 6.16 ng 89 4) C020 Vinyl chloride 1.73 62 9222 5.76 ng 96 5) C015 Bromomethane 2.04 94 5328 7.04 ng 83 6) C025 Chloroethane 2.15 64 5647 6.53 ng 100 7) C275 Trichlorofluorometha 2.39 101 10035 8.84 ng 95 8) C045 1,1-Dichloroethene 2.93 96 6277 5.49 ng 84 9) C030 Methylene chloride 3.43 84 12040 7.68 ng 93 10) C040 Carbon disulfide 3.14 76 18721 5.59 ng 93 11) C036 Acrolein 2.86 56 12618 119.80 ng 96 12) C038 Acrylonitrile 3.68 53 50196 102.09 ng 97 13) C035 Acetone 3.02 43 11768 27.82 ng 95 14) C300 Acetonitrile 3.31 41 40095 216.82 ng 97 15) C276 Iodomethane 3.09 142 9160 4.97 ng 97 16) C291 1,1,2-Trichloro-1,2, 2.96 101 5586 4.67 ng 91 17, C962 T-butyl Methyl Ether 3.69 73 21058 5.11 ng 90 18) C057 trans-1,2-Dichloroet 3.69 96 7004 5.46 ng 48 19) C255 Methyl Acetate 3.33 41 1448 6.10 ng 93 20) C050 1,1-Dichloroethane 4.08 63 12961 5.31 ng 95 21) C125 Vinyl Acetate 4.13 43 61612 23.65 ng 97 22) C051 2,2-Dichloropane 4.63 77 10753 5.16 ng 98 23) C056 cis-1,2-Dichloroethane 4.94 42 11672 26.39 ng 97 22) C051 2,2-Dichloropane 4.63 77 10753 5.16 ng 98 23) C050 Cis-1,2-Dichloroethane 4.88 128 3697 5.33 ng # 78 27) C060 Chloroform 4.95 83 12654 5.36 ng 95 29) C120 Carbon tetrachloride 5.25 117 8520 5.00 ng 98 30) C116 1,1-Dichloroethane 5.10 97 10432 5.15 ng 95 29) C120 Carbon tetrachloride 5.25 117 8520 5.00 ng 98 30) C16 1,1-Dichloroethane 5.48 62 10128 5.12 ng 93 34) C105 2-Butanone 4.67 43 18087 26.85 ng 98 35) C256 Cyclohexane 5.14 67 43 18087 26.85 ng 98 35) C256 Cyclohexane 5.13 56 11721 4.94 ng # 86	26) CS87 Spiked F 31) CS15 Spiked F 44) CS05 Spiked F 62) CS10	Dibromofluoromethane Amount 125.000 Ran 1,2-Dichloroethane-D Amount 125.000 Ran Toluene-D8 Amount 125.000 Ran p-Bromofluorobenzene	1ge 70 5.41 1ge 73 7.22 1ge 77 9.94	- 130 65 - 136 98 - 122 174	Recove 5885 Recove 18741 Recove 5845	ery = 4.70 ery = 4.70 ery = 4.77	3. ng 3. ng 3.	768# 768#	0.00 0.00 0.00
3) C010 Chloromethane 1.60 50 10253 6.16 ng 89 4) C020 Vinyl Chloride 1.73 62 9222 5.76 ng 96 5) C015 Bromomethane 2.04 94 5328 7.04 ng 83 6) C025 Chloroethane 2.15 64 5647 6.53 ng 100 7) C275 Trichlorofluorometha 2.39 101 10035 8.84 ng 95 8) C045 1,1-Dichloroethene 2.93 96 6277 5.49 ng 84 9) C030 Methylene chloride 3.43 84 12040 7.68 ng 93 10) C040 Carbon disulfide 3.14 76 18721 5.59 ng 93 11) C036 Acrolein 2.86 56 12618 119.80 ng 96 12) C038 Acrylonitrile 3.68 53 50196 102.09 ng 97 13) C035 Acetone 3.02 43 11768 27.82 ng 95 14) C300 Acetonitrile 3.31 41 40095 216.82 ng 97 15) C276 Todomethane 3.09 142 9160 4.97 ng 97 16) C291 1,1,2-Trichloro-1,2, 2.96 101 5586 4.67 ng 91 17) C962 T-butyl Methyl Ether 3.69 73 21058 5.11 ng 90 18) C057 trans-1,2-Dichloroet 3.69 96 7004 5.46 ng 48 19) C255 Methyl Acetate 3.33 43 11448 6.10 ng 93 20) C050 1,1-Dichloroethane 4.08 63 12961 5.31 ng 95 21) C125 Vinyl Acetate 4.13 43 61612 23.65 ng 97 22) C051 2,2-Dichloropropane 4.63 77 10753 5.16 ng 98 23) C056 cis-1,2-Dichloroethane 4.88 128 3697 5.33 ng 97 25) C222 Bromochloromethane 4.88 128 3697 5.33 ng 97 25) C222 Bromochloromethane 4.88 128 3697 5.33 ng 97 26) C100 Chloroform 4.95 83 12654 5.36 ng 95 28) C115 1,1,1-Trichloroethane 5.25 17 8520 5.00 ng 98 30) C165 Benzene 5.44 78 28886 5.40 ng 98 33) C065 1,2-Dichloroethane 5.46 743 18087 26.85 ng 98 34) C100 2-Butanone 4.67 43 18087 26.85 ng 98 35) C256 Cyclohexane 5.13 56 11721 4.94 ng 86	Target Co	ompounds						Qva	ılue
4) C020 Vinyl chloride	•						_		
5) CO15 Bromomethane 2.04 94 5328 7.04 ng 83 6) CO25 Chloroethane 2.15 64 5647 6.53 ng 100 7) C275 Trichlorofluorometha 2.39 101 10035 8.84 ng 95 8) CO45 1,1-Dichloroethene 2.93 96 6277 5.49 ng 84 9) CO30 Methylene chloride 3.43 84 12040 7.68 ng 93 10) CO40 Carbon disulfide 3.14 76 18721 5.59 ng 93 11) CO36 Acrolein 2.86 56 12618 119.80 ng 96 12) CO38 Acrylonitrile 3.68 53 50196 102.09 ng 97 13) CO35 Acetone 3.02 43 11768 27.82 ng 95 14) C300 Acetonitrile 3.31 41 40095 216.82 ng 97 15) C276 Iodomethane 3.09 142 9160 4.97 ng 97 16) C291 1,1,2-Trichloro-1,2, 2.96 101 5586 4.67 ng 91 17) C962 T-butyl Methyl Ether 3.69 73 21058 5.11 ng 90 18) CO57 trans-1,2-Dichloroet 3.69 96 7004 5.46 ng # 48 19) C255 Methyl Acetate 3.33 43 11448 6.10 ng 93 20) C050 1,1-Dichloroethane 4.08 63 12961 5.31 ng 95 21) C125 Vinyl Acetate 4.13 43 61612 23.65 ng 97 22) CO51 2,2-Dichloropropane 4.63 77 10753 5.16 ng 98 23) CO56 cis-1,2-Dichloroethane 4.94 42 11672 26.39 ng 91 25) C222 Bromochloromethane 4.94 42 11672 26.39 ng 91 25) C222 Bromochloromethane 4.95 83 12654 5.36 ng 95 28) C115 1,1,1-Trichloroethan 5.10 97 10432 5.15 ng 95 29) C120 Carbon tetrachloride 5.25 117 8520 5.00 ng 98 30) C116 1,1-Dichloropropene 5.25 75 9172 5.01 ng 87 32) C165 Benzene 5.44 78 28886 5.40 ng 98 33) C065 Cyclohexane 5.48 62 10128 5.12 ng 93 34) C110 2-Butanone 4.67 43 18087 26.85 ng 98 35) C256 Cyclohexane 5.13 56 11721 4.94 ng # 86	3) C010	Chloromethane					_		
6) C025 Chloroethane 2.15 64 5647 6.53 ng 100 7) C275 Trichlorofluorometha 2.39 101 10035 8.84 ng 95 8) C045 1,1-Dichloroethene 2.93 96 6277 5.49 ng 84 9) C030 Methylene chloride 3.43 84 12040 7.68 ng 93 10) C040 Carbon disulfide 3.14 76 18721 5.59 ng 93 11) C036 Acrolein 2.86 56 12618 119.80 ng 96 12) C038 Acrylonitrile 3.68 53 50196 102.09 ng 97 13) C035 Acetone 3.02 43 11768 27.82 ng 95 14) C300 Acetonitrile 3.31 41 40095 216.82 ng 97 15) C276 Iodomethane 3.09 142 9160 4.97 ng 97 16) C291 1,1,2-Trichloro-1,2, 2.96 101 5586 4.67 ng 91 17) C962 T-butyl Methyl Ether 3.69 73 21058 5.11 ng 90 18) C057 trans-1,2-Dichloroet 3.69 96 7004 5.46 ng # 48 19) C255 Methyl Acetate 3.33 43 11448 6.10 ng 93 20) C050 1,1-Dichloroethane 4.08 63 12961 5.31 ng 95 21) C125 Vinyl Acetate 4.13 43 61612 23.65 ng 97 22) C051 2,2-Dichloropropane 4.63 77 10753 5.16 ng 98 23) C056 cis-1,2-Dichloroethe 4.64 96 7699 5.40 ng 88 24) C272 Tetrahydrofuran 4.94 42 11672 26.39 ng 91 25) C222 Bromochloromethane 4.08 63 12654 5.36 ng 95 28) C115 1,1,1-Trichloroethan 5.10 97 10432 5.15 ng 95 28) C115 1,1,1-Trichloroethan 5.10 97 10432 5.15 ng 95 29) C120 Carbon tetrachloride 5.25 117 8520 5.00 ng 98 30) C166 1,1-Dichloropropene 5.25 75 9172 5.01 ng 87 32) C165 Benzene 5.44 78 28886 5.40 ng 98 33) C065 Cyclohexane 5.48 62 10128 5.12 ng 93 34) C110 2-Butanone 4.67 43 18087 26.85 ng 98 35) C256 Cyclohexane 5.13 56 11721 4.94 ng # 86	4) C020	Vinyl chloride							
7) C275 Trichlorofluorometha 2.39 101 10035 8.84 ng 95 8) C045 1,1-Dichloroethene 2.93 96 6277 5.49 ng 84 9) C030 Methylene chloride 3.43 84 12040 7.68 ng 93 10) C040 Carbon disulfide 3.14 76 18721 5.59 ng 93 11) C036 Acrolein 2.86 56 12618 119.80 ng 96 12) C038 Acrylonitrile 3.68 53 50196 102.09 ng 97 13) C035 Acetone 3.02 43 11768 27.82 ng 95 14) C300 Acetonitrile 3.31 41 40095 216.82 ng 95 14) C300 Acetonitrile 3.09 142 9160 4.97 ng 97 15) C276 Iodomethane 3.09 142 9160 4.97 ng 97 16) C291 1,1,2-Trichloro-1,2, 2.96 101 5586 4.67 ng 91 17) C962 T-butyl Methyl Ether 3.69 73 21058 5.11 ng 90 18) C057 trans-1,2-Dichloroet 3.69 96 7004 5.46 ng # 48 19) C255 Methyl Acetate 3.33 43 11448 6.10 ng 93 20) C050 1,1-Dichloroethane 4.08 63 12961 5.31 ng 95 21) C125 Vinyl Acetate 4.13 43 61612 23.65 ng 97 22) C051 2,2-Dichloroethe 4.64 96 7699 5.40 ng 88 24) C272 Tetrahydrofuran 4.94 42 11672 26.39 ng 91 25) C222 Bromochloromethane 4.08 63 12654 5.36 ng 95 28) C120 Carbon tetrachloride 5.25 117 8520 5.00 ng 98 30) C116 1,1-Dichloroethan 5.10 97 10432 5.15 ng 95 29) C120 Carbon tetrachloride 5.25 117 8520 5.00 ng 98 30) C116 1,1-Dichloroethane 5.48 62 10128 5.12 ng 93 34) C110 2-Butanone 4.67 43 18087 26.85 ng 98 33) C056 Cyclohexane 5.13 56 11721 4.94 ng # 86	•				5328	7.04			
8) C045 1,1-Dichloroethene 2.93 96 6277 5.49 ng 84 9) C030 Methylene chloride 3.43 84 12040 7.68 ng 93 10) C040 Carbon disulfide 3.14 76 18721 5.59 ng 93 11) C036 Acrolein 2.86 56 12618 119.80 ng 96 12) C038 Acrylonitrile 3.68 53 50196 102.09 ng 97 13) C035 Acetone 3.02 43 11768 27.82 ng 95 14) C300 Acetonitrile 3.31 41 40095 216.82 ng 97 15) C276 Todomethane 3.09 142 9160 4.97 ng 97 16) C291 1,1,2-Trichloro-1,2, 2.96 101 5586 4.67 ng 91 17) C962 T-butyl Methyl Ether 3.69 73 21058 5.11 ng 90 18) C057 trans-1,2-Dichloroet 3.69 96 7004 5.46 ng # 48 19) C255 Methyl Acetate 3.33 43 11448 6.10 ng 93 20) C050 1,1-Dichloroethane 4.08 63 12961 5.31 ng 95 21) C125 Vinyl Acetate 4.13 43 61612 23.65 ng 97 22) C051 2,2-Dichloropropane 4.63 77 10753 5.16 ng 98 23) C056 cis-1,2-Dichloroethe 4.64 96 7699 5.40 ng 88 24) C272 Tetrahydrofuran 4.94 42 11672 26.39 ng 91 25) C222 Bromochloromethane 4.88 128 3697 5.33 ng # 78 27) C060 Chloroform 4.95 83 12654 5.36 ng 95 28) C115 1,1,1-Trichloroethan 5.10 97 10432 5.15 ng 95 29) C120 Carbon tetrachloride 5.25 117 8520 5.00 ng 98 30) C116 1,1-Dichloropropene 5.25 75 9172 5.01 ng 97 33) C056 Benzene 5.44 78 28886 5.40 ng 98 33) C056 Cyclohexane 5.48 62 10128 5.12 ng 93 34) C110 2-Butanone 4.67 43 18087 26.85 ng 98 35) C256 Cyclohexane 5.13 56 11721 4.94 ng # 86									
9) C030 Methylene chloride 3.43 84 12040 7.68 ng 93 10) C040 Carbon disulfide 3.14 76 18721 5.59 ng 93 11) C036 Acrolein 2.86 56 12618 119.80 ng 96 12) C038 Acrylonitrile 3.68 53 50196 102.09 ng 97 13) C035 Acetone 3.02 43 11768 27.82 ng 95 14) C300 Acetonitrile 3.31 41 40095 216.82 ng 97 15) C276 Todomethane 3.09 142 9160 4.97 ng 97 16) C291 1,1,2-Trichloro-1,2, 2.96 101 5586 4.67 ng 91 17) C962 T-butyl Methyl Ether 3.69 73 21058 5.11 ng 90 18) C057 trans-1,2-Dichloroet 3.69 96 7004 5.46 ng # 48 19) C255 Methyl Acetate 3.33 43 11448 6.10 ng 93 20) C050 1,1-Dichloroethane 4.08 63 12961 5.31 ng 95 21) C125 Vinyl Acetate 4.13 43 61612 23.65 ng 97 22) C051 2,2-Dichloropropane 4.63 77 10753 5.16 ng 98 23) C056 cis-1,2-Dichloroethe 4.64 96 7699 5.40 ng 88 24) C272 Tetrahydrofuran 4.94 42 11672 26.39 ng 91 25) C222 Bromochloromethane 4.98 128 3697 5.33 ng # 78 27) C060 Chloroform 4.95 83 12654 5.36 ng 95 28) C115 1,1,1-Trichloroethan 5.10 97 10432 5.15 ng 95 29) C120 Carbon tetrachloride 5.25 117 8520 5.00 ng 98 30) C116 1,1-Dichloropropene 5.25 75 9172 5.01 ng 87 32) C165 Benzene 5.44 78 28886 5.40 ng 98 33) C056 Cyclohexane 5.13 56 11721 4.94 ng # 86							_		
10) C040 Carbon disulfide 3.14 76 18721 5.59 ng 93 11) C036 Acrolein 2.86 56 12618 119.80 ng 96 12) C038 Acrylonitrile 3.68 53 50196 102.09 ng 97 13) C035 Acetone 3.02 43 11768 27.82 ng 95 14) C300 Acetonitrile 3.31 41 40095 216.82 ng 97 15) C276 Iodomethane 3.09 142 9160 4.97 ng 97 16) C291 1,1,2-Trichloro-1,2, 2.96 101 5586 4.67 ng 91 17) C962 T-butyl Methyl Ether 3.69 73 21058 5.11 ng 90 18) C057 trans-1,2-Dichloroet 3.69 96 7004 5.46 ng # 48 19) C255 Methyl Acetate 3.33 43 11448 6.10 ng 93 20) C050 1,1-Dichloroethane 4.08 63 12961 5.31 ng 95 21) C125 Vinyl Acetate 4.13 43 61612 23.65 ng 97 22) C051 2,2-Dichloropropane 4.63 77 10753 5.16 ng 98 23) C056 cis-1,2-Dichloroethe 4.64 96 7699 5.40 ng 88 24) C272 Tetrahydrofuran 4.94 42 11672 26.39 ng 91 25) C222 Bromochloromethane 4.88 128 3697 5.33 ng # 78 27) C060 Chloroform 4.95 83 12654 5.36 ng 95 28) C115 1,1,1-Trichloroethan 5.10 97 10432 5.15 ng 95 29) C120 Carbon tetrachloride 5.25 117 8520 5.00 ng 98 30) C116 1,1-Dichloropropene 5.25 75 9172 5.01 ng 87 32) C165 Benzene 5.44 78 28886 5.40 ng 98 33) C065 1,2-Dichloroethane 4.67 43 18087 26.85 ng 98 33) C056 Cyclohexane 5.13 56 11721 4.94 ng # 86	-	1,1-Dichloroethene					_		
11) C036 Acrolein		Methylene chloride							
12) C038 Acrylonitrile									
13) C035 Acetone 3.02 43 11768 27.82 ng 95 14) C300 Acetonitrile 3.31 41 40095 216.82 ng 97 15) C276 Iodomethane 3.09 142 9160 4.97 ng 97 16) C291 1,1,2-Trichloro-1,2, 2.96 101 5586 4.67 ng 91 17) C962 T-butyl Methyl Ether 3.69 73 21058 5.11 ng 90 18) C057 trans-1,2-Dichloroet 3.69 96 7004 5.46 ng # 48 19) C255 Methyl Acetate 3.33 43 11448 6.10 ng 93 20) C050 1,1-Dichloroethane 4.08 63 12961 5.31 ng 95 21) C125 Vinyl Acetate 4.13 43 61612 23.65 ng 97 22) C051 2,2-Dichloropropane 4.63 77 10753 5.16 ng 98 23) C056 cis-1,2-Dichloroethe 4.64 96 7699 5.40 ng 88 24) C272 Tetrahydrofuran 4.94 42 11672 26.39 ng 91 25) C222 Bromochloromethane 4.88 128 3697 5.33 ng # 78 27) C060 Chloroform 4.95 83 12654 5.36 ng 95 28) C115 1,1,1-Trichloroethan 5.10 97 10432 5.15 ng 95 29) C120 Carbon tetrachloride 5.25 117 8520 5.00 ng 98 30) C165 Benzene 5.44 78 28886 5.40 ng 98 33) C065 1,2-Dichloroethane 5.48 62 10128 5.12 ng 93 34) C110 2-Butanone 4.67 43 18087 26.85 ng 98 35) C256 Cyclohexane 5.13 56 11721 4.94 ng # 86	•						_		
14) C300 Acetonitrile 3.31 41 40095 216.82 ng 97 15) C276 Iodomethane 3.09 142 9160 4.97 ng 97 16) C291 1,1,2-Trichloro-1,2, 2.96 101 5586 4.67 ng 91 17) C962 T-butyl Methyl Ether 3.69 73 21058 5.11 ng 90 18) C057 trans-1,2-Dichloroet 3.69 96 7004 5.46 ng # 48 19) C255 Methyl Acetate 3.33 43 11448 6.10 ng 93 20) C050 1,1-Dichloroethane 4.08 63 12961 5.31 ng 95 21) C125 Vinyl Acetate 4.13 43 61612 23.65 ng 97 22) C051 2,2-Dichloropropane 4.63 77 10753 5.16 ng 98 23) C056 cis-1,2-Dichloroethe 4.64 96 7699 5.40 ng 88 24) C272 Tetrahydrofuran 4.94 42 11672 26.39 ng 91 25) C222 Bromochloromethane 4.88 128 3697 5.33 ng # 78 27) C060 Chloroform 4.95 83 12654 5.36 ng 95 28) C115 1,1,1-Trichloroethan 5.10 97 10432 5.15 ng 95 29) C120 Carbon tetrachloride 5.25 117 8520 5.00 ng 98 30) C166 Benzene 5.44 78 28886 5.40 ng 98 31) C065 1,2-Dichloroethane 5.48 62 10128 5.12 ng 93 34) C110 2-Butanone 4.67 43 18087 26.85 ng 98 35) C256 Cyclohexane 5.13 56 11721 4.94 ng # 86							_		
15) C276 Iodomethane 3.09 142 9160 4.97 ng 97 16) C291 1,1,2-Trichloro-1,2, 2.96 101 5586 4.67 ng 91 17) C962 T-butyl Methyl Ether 3.69 73 21058 5.11 ng 90 18) C057 trans-1,2-Dichloroet 3.69 96 7004 5.46 ng # 48 19) C255 Methyl Acetate 3.33 43 11448 6.10 ng 93 20) C050 1,1-Dichloroethane 4.08 63 12961 5.31 ng 95 21) C125 Vinyl Acetate 4.13 43 61612 23.65 ng 97 22) C051 2,2-Dichloropropane 4.63 77 10753 5.16 ng 98 23) C056 cis-1,2-Dichloroethe 4.64 96 7699 5.40 ng 88 24) C272 Tetrahydrofuran 4.94 42 11672 26.39 ng 91 25) C222 Bromochloromethane 4.88 128 3697 5.33 ng # 78 27) C060 Chloroform 4.95 83 12654 5.36 ng 95 28) C115 1,1,1-Trichloroethan 5.10 97 10432 5.15 ng 95 29) C120 Carbon tetrachloride 5.25 117 8520 5.00 ng 98 30) C116 1,1-Dichloropropene 5.25 75 9172 5.01 ng 87 32) C165 Benzene 5.44 78 28886 5.40 ng 98 33) C065 1,2-Dichloroethane 5.48 62 10128 5.12 ng 93 34) C110 2-Butanone 4.67 43 18087 26.85 ng 98 35) C256 Cyclohexane 5.13 56 11721 4.94 ng # 86									
16) C291 1,1,2-Trichloro-1,2, 2.96 101 5586 4.67 ng 91 17) C962 T-butyl Methyl Ether 3.69 73 21058 5.11 ng 90 18) C057 trans-1,2-Dichloroet 3.69 96 7004 5.46 ng # 48 19) C255 Methyl Acetate 3.33 43 11448 6.10 ng 93 20) C050 1,1-Dichloroethane 4.08 63 12961 5.31 ng 95 21) C125 Vinyl Acetate 4.13 43 61612 23.65 ng 97 22) C051 2,2-Dichloropropane 4.63 77 10753 5.16 ng 98 23) C056 cis-1,2-Dichloroethe 4.64 96 7699 5.40 ng 88 24) C272 Tetrahydrofuran 4.94 42 11672 26.39 ng 91 25) C222 Bromochloromethane 4.88 128 3697 5.33 ng # 78 27) C060 Chloroform 4.95 83 12654 5.36 ng 95 28) C115 1,1,1-Trichloroethan 5.10 97 10432 5.15 ng 95 29) C120 Carbon tetrachloride 5.25 117 8520 5.00 ng 98 30) C116 1,1-Dichloropropene 5.25 75 9172 5.01 ng 87 32) C165 Benzene 5.44 78 28886 5.40 ng 98 33) C065 1,2-Dichloroethane 5.48 62 10128 5.12 ng 93 34) C110 2-Butanone 4.67 43 18087 26.85 ng 98 35) C256 Cyclohexane 5.13 56 11721 4.94 ng # 86									
17) C962 T-butyl Methyl Ether 3.69 73 21058 5.11 ng 90 18) C057 trans-1,2-Dichloroet 3.69 96 7004 5.46 ng # 48 19) C255 Methyl Acetate 3.33 43 11448 6.10 ng 93 20) C050 1,1-Dichloroethane 4.08 63 12961 5.31 ng 95 21) C125 Vinyl Acetate 4.13 43 61612 23.65 ng 97 22) C051 2,2-Dichloropropane 4.63 77 10753 5.16 ng 98 23) C056 cis-1,2-Dichloroethe 4.64 96 7699 5.40 ng 88 24) C272 Tetrahydrofuran 4.94 42 11672 26.39 ng 91 25) C222 Bromochloromethane 4.88 128 3697 5.33 ng # 78 27) C060 Chloroform 4.95 83 12654 5.36 ng 95 28) C115 1,1,1-Trichloroethan 5.10 97 10432 5.15 ng 95 29) C120 Carbon tetrachloride 5.25 117 8520 5.00 ng 98 30) C116 1,1-Dichloropropene 5.25 75 9172 5.01 ng 87 32) C165 Benzene 5.44 78 28886 5.40 ng 98 33) C065 1,2-Dichloroethane 5.48 62 10128 5.12 ng 93 34) C110 2-Butanone 4.67 43 18087 26.85 ng 98 35) C256 Cyclohexane 5.13 56 11721 4.94 ng # 86							_		
18) C057 trans-1,2-Dichloroet 3.69 96 7004 5.46 ng # 48 19) C255 Methyl Acetate 3.33 43 11448 6.10 ng 93 20) C050 1,1-Dichloroethane 4.08 63 12961 5.31 ng 95 21) C125 Vinyl Acetate 4.13 43 61612 23.65 ng 97 22) C051 2,2-Dichloropropane 4.63 77 10753 5.16 ng 98 23) C056 cis-1,2-Dichloroethe 4.64 96 7699 5.40 ng 88 24) C272 Tetrahydrofuran 4.94 42 11672 26.39 ng 91 25) C222 Bromochloromethane 4.88 128 3697 5.33 ng # 78 27) C060 Chloroform 4.95 83 12654 5.36 ng 95 28) C115 1,1,1-Trichloroethan 5.10 97 10432 5.15 ng 95 29) C120 Carbon tetrachloride 5.25 117 8520 5.00 ng 98 30) C16 1,1-Dichloroethane 5.44 78 28866 5.40 ng 98 33) C065 1,2-Dichloroethane 5.48 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
19) C255 Methyl Acetate 3.33 43 11448 6.10 ng 93 20) C050 1,1-Dichloroethane 4.08 63 12961 5.31 ng 95 21) C125 Vinyl Acetate 4.13 43 61612 23.65 ng 97 22) C051 2,2-Dichloropropane 4.63 77 10753 5.16 ng 98 23) C056 cis-1,2-Dichloroethe 4.64 96 7699 5.40 ng 88 24) C272 Tetrahydrofuran 4.94 42 11672 26.39 ng 91 25) C222 Bromochloromethane 4.88 128 3697 5.33 ng # 78 27) C060 Chloroform 4.95 83 12654 5.36 ng 95 28) C115 1,1,1-Trichloroethan 5.10 97 10432 5.15 ng 95 29) C120 Carbon tetrachloride 5.25 117 8520 5.00 ng 98 30) C116 1,1-Dichloropropene 5.25 75 9172 5.01 ng 87 32) C165 Benzene 5.44 78 28886 5.40 ng 98 33) C065 1,2-Dichloroethane 5.48 62 10128 5.12 ng 93 34) C110 2-Butanone 4.67 43 18087 26.85 ng 98 35) C256 Cyclohexane 5.13 56 11721 4.94 ng # 86								14	
20) C050 1,1-Dichloroethane 4.08 63 12961 5.31 ng 95 21) C125 Vinyl Acetate 4.13 43 61612 23.65 ng 97 22) C051 2,2-Dichloropropane 4.63 77 10753 5.16 ng 98 23) C056 cis-1,2-Dichloroethe 4.64 96 7699 5.40 ng 88 24) C272 Tetrahydrofuran 4.94 42 11672 26.39 ng 91 25) C222 Bromochloromethane 4.88 128 3697 5.33 ng # 78 27) C060 Chloroform 4.95 83 12654 5.36 ng 95 28) C115 1,1,1-Trichloroethan 5.10 97 10432 5.15 ng 95 29) C120 Carbon tetrachloride 5.25 117 8520 5.00 ng 98 30) C116 1,1-Dichloropropene 5.25 75 9172 5.01 ng 87 32) C165 Benzene 5.44 78 28886 5.40 ng 98 33) C065 1,2-Dichloroethane 5.48 62		•					_	Ŧ	
21) C125 Vinyl Acetate 4.13 43 61612 23.65 ng 97 22) C051 2,2-Dichloropropane 4.63 77 10753 5.16 ng 98 23) C056 cis-1,2-Dichloroethe 4.64 96 7699 5.40 ng 88 24) C272 Tetrahydrofuran 4.94 42 11672 26.39 ng 91 25) C222 Bromochloromethane 4.88 128 3697 5.33 ng # 78 27) C060 Chloroform 4.95 83 12654 5.36 ng 95 28) C115 1,1,1-Trichloroethan 5.10 97 10432 5.15 ng 95 29) C120 Carbon tetrachloride 5.25 117 8520 5.00 ng 98 30) C116 1,1-Dichloropropene 5.25 75 9172 5.01 ng 87 32) C165 Benzene 5.44 78 28886 5.40 ng 98 33) C065 1,2-Dichloroethane 5.48 62 10128 5.12 ng 93 34) C110 2-Butanone 4.67 43 18087 26.85 ng 98 35) C256 Cyclohexane 5.13 56 11721 4.94 ng # 86							_		
22) C051 2,2-Dichloropropane 4.63 77 10753 5.16 ng 98 23) C056 cis-1,2-Dichloroethe 4.64 96 7699 5.40 ng 88 24) C272 Tetrahydrofuran 4.94 42 11672 26.39 ng 91 25) C222 Bromochloromethane 4.88 128 3697 5.33 ng # 78 27) C060 Chloroform 4.95 83 12654 5.36 ng 95 28) C115 1,1,1-Trichloroethan 5.10 97 10432 5.15 ng 95 29) C120 Carbon tetrachloride 5.25 117 8520 5.00 ng 98 30) C116 1,1-Dichloropropene 5.25 75 9172 5.01 ng 87 32) C165 Benzene 5.44 78 28886 5.40 ng 98 33) C065 1,2-Dichloroethane 5.48 62 10128 5.12 ng 93 34) C110 2-Butanone 4.67 43 18087 26.85 ng 98 35) C256 Cyclohexane 5.13 56 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td></td<>							_		
23) C056 cis-1,2-Dichloroethe 4.64 96 7699 5.40 ng 88 24) C272 Tetrahydrofuran 4.94 42 11672 26.39 ng 91 25) C222 Bromochloromethane 4.88 128 3697 5.33 ng # 78 27) C060 Chloroform 4.95 83 12654 5.36 ng 95 28) C115 1,1,1-Trichloroethan 5.10 97 10432 5.15 ng 95 29) C120 Carbon tetrachloride 5.25 117 8520 5.00 ng 98 30) C116 1,1-Dichloropropene 5.25 75 9172 5.01 ng 87 32) C165 Benzene 5.44 78 28886 5.40 ng 98 33) C065 1,2-Dichloroethane 5.48 62 10128 5.12 ng 93 34) C110 2-Butanone 4.67 43 18087 26.85 ng 98 35) C256 Cyclohexane 5.13 56 11721 4.94 ng # 86		Vinyi Acetate							
24) C272 Tetrahydrofuran 4.94 42 11672 26.39 ng 91 25) C222 Bromochloromethane 4.88 128 3697 5.33 ng # 78 27) C060 Chloroform 4.95 83 12654 5.36 ng 95 28) C115 1,1,1-Trichloroethan 5.10 97 10432 5.15 ng 95 29) C120 Carbon tetrachloride 5.25 117 8520 5.00 ng 98 30) C116 1,1-Dichloropropene 5.25 75 9172 5.01 ng 87 32) C165 Benzene 5.44 78 28886 5.40 ng 98 33) C065 1,2-Dichloroethane 5.48 62 10128 5.12 ng 93 34) C110 2-Butanone 4.67 43 18087 26.85 ng 98 35) C256 Cyclohexane 5.13 56 11721 4.94 ng #									
25) C222 Bromochloromethane 4.88 128 3697 5.33 ng # 78 27) C060 Chloroform 4.95 83 12654 5.36 ng 95 28) C115 1,1,1-Trichloroethan 5.10 97 10432 5.15 ng 95 29) C120 Carbon tetrachloride 5.25 117 8520 5.00 ng 98 30) C116 1,1-Dichloropropene 5.25 75 9172 5.01 ng 87 32) C165 Benzene 5.44 78 28886 5.40 ng 98 33) C065 1,2-Dichloroethane 5.48 62 10128 5.12 ng 93 34) C110 2-Butanone 4.67 43 18087 26.85 ng 98 35) C256 Cyclohexane 5.13 56 11721 4.94 ng # 86									
27) C060 Chloroform 4.95 83 12654 5.36 ng 95 28) C115 1,1,1-Trichloroethan 5.10 97 10432 5.15 ng 95 29) C120 Carbon tetrachloride 5.25 117 8520 5.00 ng 98 30) C116 1,1-Dichloropropene 5.25 75 9172 5.01 ng 87 32) C165 Benzene 5.44 78 28886 5.40 ng 98 33) C065 1,2-Dichloroethane 5.48 62 10128 5.12 ng 93 34) C110 2-Butanone 4.67 43 18087 26.85 ng 98 35) C256 Cyclohexane 5.13 56 11721 4.94 ng #							-	#	
28) C115 1,1,1-Trichloroethan 5.10 97 10432 5.15 ng 95 29) C120 Carbon tetrachloride 5.25 117 8520 5.00 ng 98 30) C116 1,1-Dichloropropene 5.25 75 9172 5.01 ng 87 32) C165 Benzene 5.44 78 28886 5.40 ng 98 33) C065 1,2-Dichloroethane 5.48 62 10128 5.12 ng 93 34) C110 2-Butanone 4.67 43 18087 26.85 ng 98 35) C256 Cyclohexane 5.13 56 11721 4.94 ng # 86							_	11	
29) C120 Carbon tetrachloride 5.25 117 8520 5.00 ng 98 30) C116 1,1-Dichloropropene 5.25 75 9172 5.01 ng 87 32) C165 Benzene 5.44 78 28886 5.40 ng 98 33) C065 1,2-Dichloroethane 5.48 62 10128 5.12 ng 93 34) C110 2-Butanone 4.67 43 18087 26.85 ng 98 35) C256 Cyclohexane 5.13 56 11721 4.94 ng # 86							_		
30) C116 1,1-Dichloropropene 5.25 75 9172 5.01 ng 87 32) C165 Benzene 5.44 78 28886 5.40 ng 98 33) C065 1,2-Dichloroethane 5.48 62 10128 5.12 ng 93 34) C110 2-Butanone 4.67 43 18087 26.85 ng 98 35) C256 Cyclohexane 5.13 56 11721 4.94 ng # 86	-								
32) C165 Benzene 5.44 78 28886 5.40 ng 98 33) C065 1,2-Dichloroethane 5.48 62 10128 5.12 ng 93 34) C110 2-Butanone 4.67 43 18087 26.85 ng 98 35) C256 Cyclohexane 5.13 56 11721 4.94 ng # 86	-								
33) C065 1,2-Dichloroethane 5.48 62 10128 5.12 ng 93 34) C110 2-Butanone 4.67 43 18087 26.85 ng 98 35) C256 Cyclohexane 5.13 56 11721 4.94 ng # 86									
34) C110 2-Butanone 4.67 43 18087 26.85 ng 98 35) C256 Cyclohexane 5.13 56 11721 4.94 ng # 86									
35) C256 Cyclohexane 5.13 56 11721 4.94 ng # 86							_		
· · · · · · · · · · · · · · · · · · ·							_	#	
					7253				83

Acq On : 20 Dec 2005 14:25

Sample : VSTD001

Misc :

Integrator: RTE

Quant Time: Dec 20 14:58:13 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Inte	rnal	Standards	R.T.	QIon	Response	Conc Units		(Min) (Ar)
37)	C140	1,2-Dichloropropane	6.27	63	7584	5.34 ng		95
38)		Dibromomethane	6.40	93	4190	5.21 ng		92
•	C130	Bromodichloromethane	6.55	83	8139	4.97 ng		97
40)		2-Chloroethylvinyl E	6.83	63	22691	24.13 ng		96
•	C012	Methylcyclohexane	6.21	83	12324	4.81 ng		90
42)		cis-1,3-Dichloroprop	6.97	75	10257	4.86 ng		92
•	C230	Toluene	7.29	92	18754	5.35 ng		94
46)		trans-1,3-Dichloropr	7.53	75	8955	4.51 ng		94
	C284	Ethyl Methacrylate	7.60	69	8803	4.66 ng		94
-	C160	1,1,2-Trichloroethan	7.72	83	5205	5.23 ng		93
49)	C210	4-Methyl-2-pentanone	7.12	43	36699	24.92 ng		98
50)	C220	Tetrachloroethene	7.84	166	7863	5.29 ng		89
	C221	1,3-Dichloropropane	7.89	76	11331	5.13 ng		97
52)	C155	Dibromochloromethane	8.12	129	5558	4.74 ng		91
53)	C163	1,2-Dibromoethane	8.24	107	6063	5.06 ng		96
54)	C215	2-Hexanone	7.95	43	26502	25.22 ng		96
55)	C235	Chlorobenzene	8.74	112	21181	5.36 ng		96
56)	C281	1,1,1,2-Tetrachloroe	8.82	131	6428	4.96 ng		85
57)	C240	Ethylbenzene	8.83	91	34873	5.22 ng		99
58)	C246	m,p-Xylene	8.95	106	27717	10.66 ng		98
59)	C247	o-Xylene	9.38	106	13351	5.22 ng		98
60)	C245	Styrene	9.40	104	19918	4.90 ng		93
61)	C180	Bromoform	9.62	173	2777	4.04 ng		99
64)	C966	Isopropylbenzene	9.76	105	33395	5.08 ng		98
65)	C301	Bromobenzene	10.09	156	8882	5.47 ng		85
66) (C225	1,1,2,2-Tetrachloroe	10.10	83	7575	4.98 ng		94
	C282	1,2,3-Trichloropropa	10.14	110	2709	5.51 ng		100
68) (t-1,4-Dichloro-2-But	10.17	51	3304	17.80 ng	#	23
69) (n-Propylbenzene	10.17	91	40994	5.02 ng		100
70) (2-Chlorotoluene	10.27	126	8533	5.40 ng		100
•	C289	4-Chlorotoluene	10.38	126	8763	5.33 ng		100
72) (1,3,5-Trimethylbenze	10.34	105	28647	5.13 ng	11.	96
73) (tert-Butylbenzene	10.66	134	6399	5.13 ng	#	92
74) (1,2,4-Trimethylbenze	10.71	105	28777	5.08 ng		100
75) (sec-Butylbenzene	10.87	105	35328	5.11 ng		98 95
76) (1,3-Dichlorobenzene	10.99	146	16984	5.42 ng		93 94
77) (4-Isopropyltoluene	11.00	119	31215	4.99 ng		95
78) (1,4-Dichlorobenzene	11.08	146	17651	5.43 ng		88
79) (1,2-Dichlorobenzene	11.42	146	16866	5.45 ng		100
80) (n-Butylbenzene	11.38	91	29979	5.18 ng 4.47 ng		81
81) (1,2-Dibromo-3-Chloro	12.12	75 100	1220 15761	6.76 ng		90
82) (1,2,4-Trichlorobenze	12.82	180 225	6681	6.47 ng		98
83) (Hexachlorobutadiene	12.95 13.03	225 128	29427	6.47 ng		99
84) (Naphthalene 1,2,3-Trichlorobenze	13.03	180	14460	7.08 ng		99
85) (1,2,3-111CHIOLODEHZE						

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Acq On : 20 Dec 2005 13:40

Sample : VSTD010

Misc :

Integrator: RTE

Quant Time: Dec 20 15:02:57 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 20 14:56:38 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122005\

Operacor	. 111/110							
Interna	l Standards	R.T.	QIon	Response	Conc Un	its	Dev(Min) Ar)
1) CI1	0 1,4-Difluorobenzene				125.00	ng		0.00 .18%
43) CI2	0 Chlorobenzene-D5	8.70	82	194933	125.00	ng		0.00 .25%
63) CI3	0 1,4-Dichlorobenzene-	11.06	152	183829	125.00	ng		0.00 .00%
26) CS8 Spiked 31) CS1	Monitoring Compounds 7 Dibromofluoromethane Amount 125.000 Rar 5 1,2-Dichloroethane-D Amount 125.000 Rar	nge 70 5.41 nge 73	- 130 65 - 136	51984 Recove 65923 Recove	53.05 ery =	43 ng 42	.04%#	0.00
Spired	F Teluene De	7 22	98	210932	53.66	nq		0.00
44) CSU	5 Toluene-D8 Amount 125.000 Rar	7.22	- 122	Recove	erv =	42	. 93%#	
Spiked	Amount 125.000 kar	196 //	17/	64542	53 44	na		0.00
62) CS1	0 p-Bromofluorobenzene	9.94	1/4	64542	JJ. 44	42	752#	0.00
Spiked	Amount 125.000 Rar	1ge 74	- 120	Recove	ery =	42	. /5%#	
Target	Compounds						Ova	lue
21 029	n Dichlorodifluorometh	1.49	85	65838 81644 79897	50.39	ng		97
3) C01	0 Chloromethane	1.61	50	81644	49.41	ng		95
4) C02	0 Chloromethane 0 Vinyl chloride 5 Bromomethane	1.75	62	79897	50.24	ng		96
E) C02	E Promomethane	2.05	0.4	26150	49 13	nα		9/
5) COI	5 Chloroethane	2 15	64	39237 90889m 58725	45.68	ng		99
6) C02	5 Chloroethane	2.13	101	90889m	80 66	na		97
7) C27	5 Trichtoroffuorometha	2.39	707	50005III	51.77	na		87
8) C04	5 1,1-Dichloroethene	2.93	90	72861	16 05	ກອ		89
9) C03	0 Methylene chloride	3.44	84	72861	40.00	226		98
10) C04	O Carbon disulfide	3.14	76	170231	51.23	ng		100
11) C03	6 Acrolein	2.86	56	170231 99475 509341	951.57	ng		T00
12) C03	8 Acrylonitrile	3.68	53	509341	1043.72	ng		99
13) CO3	5 Trichlorofluorometha 5 1,1-Dichloroethene 6 Methylene chloride 7 Carbon disulfide 8 Acrolein 8 Acrylonitrile 9 Acetone	3.02	43	104538	249.02	ng		98
14) C30	5 Acetone 0 Acetonitrile				2048.16	ng		100
15) C27		3.09	142	95190 61873 212311	52.03	ng		95
		2 96	101	61873	52.14			92
16) C29	1 1,1,2-lilcilolo 1,2,	3 69	73	212311	51.94			91
17) C96		3.69	96	67034	52.65		#	50
18) C05	7 trans-1,2-Dichloroet	3.00	40	07034	50 12	na	••	97
19) C25		3.33	43	93331 124783 666566	50.12	na		96
20) C05		4.09	63	124 / 03	257.00	na		97
21) C12	5 Vinyl Acetate			666566	257.03	11g		93
22) C05	1 2,2-Dichloropropane	4.63	77	108158	52.32			96
23) C05	6 cis-1,2-Dichloroethe	4.64		73342	51.79			92
24) C27	2 Tetrahydrofuran	4.92	42	111502	253.99			
25) C22		4.87	128	35345	51.33			88
27) C06		4.95	83	119719	51.12	_		96
28) C11		5.10	97	103955	51.68			94
29) C12		5.25	117	86868	51.40			98
30) C11		5.25		94835	52.16	ng		92
30) C11		5.44		273516	51.49	ng		100
	_	5.48		100012	50.90	_		96
33) C06	•	4.66		171370	256.34			96
34) C11				121404	51.59		#	86
35) C25		5.14			51.94		"	95
36) C15	0 Trichloroethene	6.06	95	70911	J1.74	119		

: 20 Dec 2005 13:40 Acq On

Sample : VSTD010

Misc Integrator: RTE

Quant Time: Dec 20 15:02:57 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Zaamoroactom moporc

DIT DUTTUTO

Quant Title : 8260 5ML WATER
QLast Update : Tue Dec 20 14:56:38 2005
Response via : Initial Calibration
Data Path : C:\MSDCHEM\1\DATA\122005\

Internal	Standards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
37) C140	1,2-Dichloropropane	6.27	63	71010	50.38 ng	96
38) C278	Dibromomethane	6.40	93	40181	50.31 ng	83
39) C130	Bromodichloromethane	6.56	83	81060	49.87 ng	95
40) C161	2-Chloroethylvinyl E	6.83	63	242414	259.73 ng	94
41) C012	Methylcyclohexane	6.22	83	130341	51.30 ng	88
42) C145	cis-1,3-Dichloroprop	6.97	75	106968	51.10 ng	97
45) C230	Toluene	7.29	92	175971	50.95 ng	97
46) C170	trans-1,3-Dichloropr	7.53	75	99172	50.70 ng	97
47) C284	Ethyl Methacrylate	7.60	69	94096	50.57 ng	98
48) C160	1,1,2-Trichloroethan	7.72	83	49861	50.87 ng	99
49) C210	4-Methyl-2-pentanone	7.11	43	377308	260.01 ng	99
50) C220	Tetrachloroethene	7.84	166	75657	51.67 ng	92
51) C221	1,3-Dichloropropane	7.89	76	110608	50.84 ng	98
52) C155	Dibromochloromethane	8.13	129	56135	48.63 ng	98
53) C163	1,2-Dibromoethane	8.24	107	59107	50.10 ng	99
54) C215	2-Hexanone	7.95	43	268464	259.32 ng	100
55) C235	Chlorobenzene	8.73	112	199431	51.20 ng	100
56) C281	1,1,1,2-Tetrachloroe	8.82	131	64884	50.84 ng	94
57) C240	Ethylbenzene	8.83	91	341694	51.93 ng	98
58) C246	m,p-Xylene	8.95	106	266432	103.97 ng	95
59) C247	o-Xylene	9.38	106	131493	52.16 ng	96
60) C245	Styrene	9.40	104	204875	51.10 ng	99
61) C180	Bromoform	9.62	173	32961	48.64 ng	97
64) C966	Isopropylbenzene	9.76	105	342372	52.58 ng	97
65) C301	Bromobenzene	10.09	156	82623	51.40 ng	# 86
66) C225	1,1,2,2-Tetrachloroe	10.10	83	76901	51.01 ng	99
67) C282	1,2,3-Trichloropropa	10.14	110	24873	51.09 ng	100
68) C283	t-1,4-Dichloro-2-But	10.17	51	42938	233.51 ng	# 52
69) C302	n-Propylbenzene	10.17	91	420132	51.91 ng	97
70) C303	2-Chlorotoluene	10.27	126	79971	51.05 ng	100
71) C289	4-Chlorotoluene	10.38	126	84257	51.72 ng	100
72) C304	1,3,5-Trimethylbenze	10.34	105	285954	51.70 ng	96 96
73) C306	tert-Butylbenzene	10.66	134	64427	52.17 ng	96 97
74) C307	1,2,4-Trimethylbenze	10.71	105	289418	51.58 ng	98
75) C308	sec-Butylbenzene	10.87	105	354302	51.72 ng	99
76) C260	1,3-Dichlorobenzene	10.99	146	161549	52.02 ng	98
77) C309	4-Isopropyltoluene	11.00	119	324372	52.38 ng	96
78) C267	1,4-Dichlorobenzene	11.08	146	164964	51.25 ng	87
79) C249	1,2-Dichlorobenzene	11.42	146	156420	51.03 ng	98
80) C310	n-Butylbenzene	11.38	91 75	295070	51.44 ng 48.81 ng	91
81) C286	1,2-Dibromo-3-Chloro	12.12	75 180	13203 119561	51.80 ng	99
82) C313	1,2,4-Trichlorobenze	12.82 12.95	180 225	52857	51.60 ng	99
83) C316 84) C314	Hexachlorobutadiene Naphthalene	13.03	128	257257	53.73 ng	99
84) C314 85) C934	1,2,3-Trichlorobenze	13.03	180	107993	53.75 ng	99
					_	

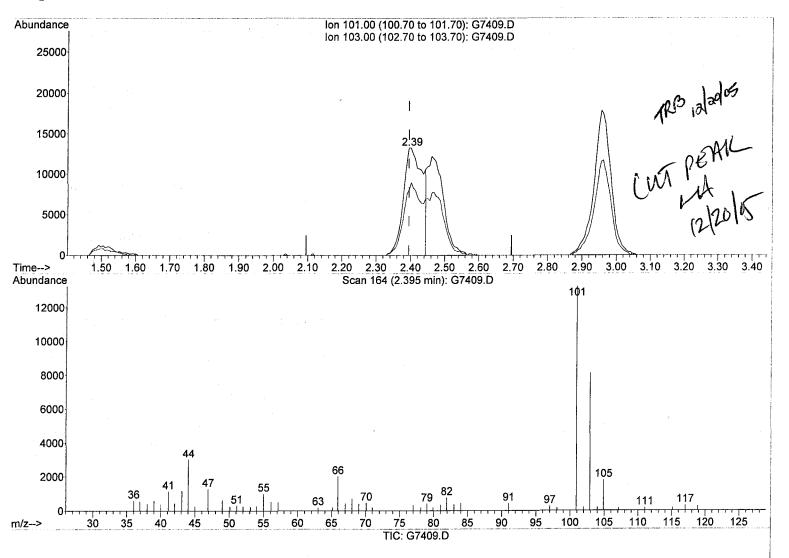
^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Acq On : 20 Dec 2005 13:40

Sample : VSTD010

Misc :

Integrator: RTE


Quant Time: Dec 20 14:58:07 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Operator : LH/TRB

(7) C275 Trichlorofluoromethane (T)

2.39min (+0.000) 45.98ng

response 51810

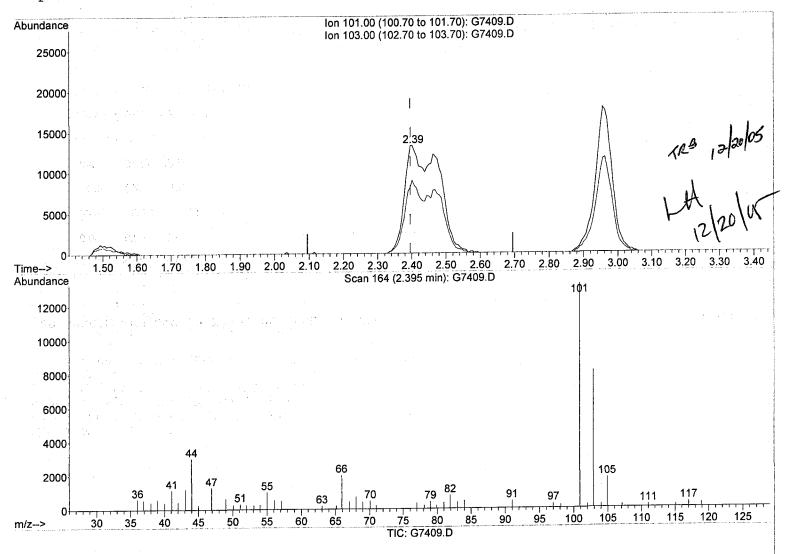
Ion	Exp%	Act%
101.00	100	100
103.00	63.20	61.12
0.00	0.00	0.00
0.00	0.00	0.00

Acq On : 20 Dec 2005 13:40

Sample : VSTD010

Misc

Integrator: RTE


Quant Time: Dec 20 14:58:07 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 20 14:56:38 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122005\

Operator : LH/TRB

(7) C275 Trichlorofluoromethane (T)

2.39min (+0.000) 80.66ng m

response 90889

 Ion
 Exp%
 Act%

 101.00
 100
 100

 103.00
 63.20
 61.12

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

Acq On : 20 Dec 2005 13:18

: VSTD025 Sample

Misc Integrator: RTE

Quant Time: Dec 20 15:01:38 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER
QLast Update : Tue Dec 20 14:56:38 2005
Response via : Initial Calibration
Data Path : C:\MSDCHEM\1\DATA\122005\

Internal Standards	R.T.	QIon	Response	Conc Unit	s Dev Rcv	(Min) (Ar)
1) CI10 1,4-Difluorobenzer	ne 5.80	114	390432	125.00 n		0.00 1.68%
43) CI20 Chlorobenzene-D5	8.70	82	194855	125.00 n		0.00 4.19%
63) CI30 1,4-Dichlorobenzer	ne- 11.05	152	187204	125.00 n	g	0.00 7.11%
System Monitoring Compounds			114760	117.42 NG	ı	0.00
26) CS87 Dibromofluorometha Spiked Amount 125.000		111 - 130			3.94%	
31) CS15 1,2-Dichloroethane	e-D 5.41	65	146429	116.50 ng		
	Range 73				3.20%	0.00
44) CS05 Toluene-D8	7.22	98 - 122		119.75 ng erv = 9	5.80%	
Spiked Amount 125.000 62) CS10 p-Bromofluorobenze				119.95 ng		0.00
Spiked Amount 125.000	Range 74	- 120			5.96%	
Target Compounds					Qv	alue
2) C290 Dichlorodifluorome	eth 1.49	85	154033			99
3) C010 Chloromethane	1.61		191261			99
4) C020 Vinyl chloride	1.74	62	187658			99
5) C015 Bromomethane	2.05		83627			99 95
6) C025 Chloroethane			99025	113.98 ng 184.89 ng		95
7) C275 Trichlorofluoromet	ha 2.40		210740m 140531	_		85
8) C045 1,1-Dichloroethene	2.93		170905			91
9) C030 Methylene chloride 10) C040 Carbon disulfide	3.43	76	398994	118.71 ng		97
11) C036 Acrolein	2.85	56	234028	2213.19 ng		98
12) C038 Acrylonitrile	3.68		1228931	2489.58 ng		100
13) C035 Acetone	3.02	43	256036	602.95 ng		98
14) C300 Acetonitrile	3.30	41	894442	4817.89 ng		100
15) C276 Iodomethane	3.08	142	232825	125.80 ng		97
16) C291 1,1,2-Trichloro-1,			147838	123.16 ng		92
17) C962 T-butyl Methyl Eth		73	513096	124.09 ng		92
18) C057 trans-1,2-Dichloro		96	159976			50 98
19) C255 Methyl Acetate	3.33		229025			98
20) C050 1,1-Dichloroethane	4.08 4.13	63 43	303571 1636425	625.75 ng		96
21) C125 Vinyl Acetate			265924	127.17 ng		92
22) C051 2,2-Dichloropropar 23) C056 cis-1,2-Dichloroet		96	178503	124.61 ng		93
24) C272 Tetrahydrofuran	4.91	42	270446	609.03 ng		92
25) C222 Bromochloromethane		128	85671	123.00 ng		88
27) C060 Chloroform	4.95	83	293639	123.96 ng		98
28) C115 1,1,1-Trichloroeth	nan 5.10	97	255121	125.38 ng		93
29) C120 Carbon tetrachlori	lde 5.25	117	213776	125.05 ng		98
30) C116 1,1-Dichloroproper		75	233773	127.11 ng		87 99
32) C165 Benzene	5.44	78	664965	123.74 ng 124.81 ng		97
33) C065 1,2-Dichloroethane		62 43	248081 412783	610.41 ng		94
34) C110 2-Butanone	4.66 5.13	56	294492	123.72 ng		86
35) C256 Cyclohexane 36) C150 Trichloroethene	6.05	95	171137	123.72 ng		93

Acq On : 20 Dec 2005 13:18

Sample : VSTD025

Misc :

Integrator: RTE

Quant Time: Dec 20 15:01:38 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

	,						
Int	ernal	Standards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
37)	C140	1,2-Dichloropropane	6.27	63	173873	121.96 ng	97
38)	C278	Dibromomethane	6.40	93	99651	123.34 ng	87
39)		Bromodichloromethane	6.55	83	205226	124.83 ng	95
-	C161	2-Chloroethylvinyl E	6.83	63	600107	635.65 ng	93
	C012	Methylcyclohexane	6.21	83	321652	125.16 ng	89
	C145	cis-1,3-Dichloroprop	6.97	75	265869	125.56 ng	99
	C230	Toluene	7.29	92	434269	125.79 ng	98
	C170	trans-1,3-Dichloropr	7.53	75	249336	127.52 ng	93
	C284	Ethyl Methacrylate	7.60	69	236709	127.26 ng	99
	C160	1,1,2-Trichloroethan	7.72	83	121318	123.82 ng	99
	C210	4-Methyl-2-pentanone	7.11	43	913028	629.44 ng	99
50)		Tetrachloroethene	7.84	166	186217	127.22 ng	91
	C221	1,3-Dichloropropane	7.88	76	272115		99
•						125.13 ng	98
	C155	Dibromochloromethane	8.13	129	144350	125.11 ng	100
•	C163	1,2-Dibromoethane	8.24	107	148224	125.68 ng	
	C215	2-Hexanone	7.95	43	646861	625.08 ng	99
•	C235	Chlorobenzene	8.73	112	488753	125.52 ng	98
	C281	1,1,1,2-Tetrachloroe	8.82	131	161955	126.95 ng	93
	C240	Ethylbenzene	8.83	91	832141	126.52 ng	99
	C246	m,p-Xylene	8.95	106	645558	252.03 ng	95
	C247	o-Xylene	9.38	106	316758	125.70 ng	99
	C245	Styrene	9.40	104	513886	128.24 ng	99
61)	C180	Bromoform	9.62	173	86100	127.10 ng	98
64)	C966	Isopropylbenzene	9.75	105	834612	125.86 ng	97
65)	C301	Bromobenzene	10.08	156	203232	124.15 ng	93
66)	C225	1,1,2,2-Tetrachloroe	10.10	83	191055	124.45 ng	100
67)	C282	1,2,3-Trichloropropa	10.14	110	61013	123.06 ng	100
68)	C283	t-1,4-Dichloro-2-But	10.15	51	119118	636.12 ng	# 63
69)	C302	n-Propylbenzene	10.17	91	1048935	127,25 ng	97
70)	C303	2-Chlorotoluene	10.27	126	198367	124.35 ng	100
71)	C289	4-Chlorotoluene	10.38	126	207032	124.78 ng	100
72)	C304	1,3,5-Trimethylbenze	10.34	105	707332	125.58 ng	95
-	C306	tert-Butylbenzene	10.66	134	158192	125.78 ng	95
	C307	1,2,4-Trimethylbenze	10.71	105	719790	125.96 ng	96
	C308	sec-Butylbenzene	10.87	105	879746	126.10 ng	96
	C260	1,3-Dichlorobenzene	10.99	146	393940	124.56 ng	98
	C309	4-Isopropyltoluene	11.00	119	803085	127.34 ng	98
	C267	1,4-Dichlorobenzene	11.08	146	404003	123.24 ng	97
	C249	1,2-Dichlorobenzene	11.42	146	384241	123.10 ng	89
	C310	n-Butylbenzene	11.38	91	731820	125.27 ng	98
	C286	1,2-Dibromo-3-Chloro	12.12	75	34009	123.46 ng	90
		•			260502	110.82 ng	97
	C313	1,2,4-Trichlorobenze	12.82 12.95	180		110.82 ng	98
•	C316	Hexachlorobutadiene		225	120266	_	99
	C314	Naphthalene	13.03	128	536501	110.02 ng	96
00)	C934	1,2,3-Trichlorobenze	13.23	180	220456	107.07 ng	JO
	- -			-			

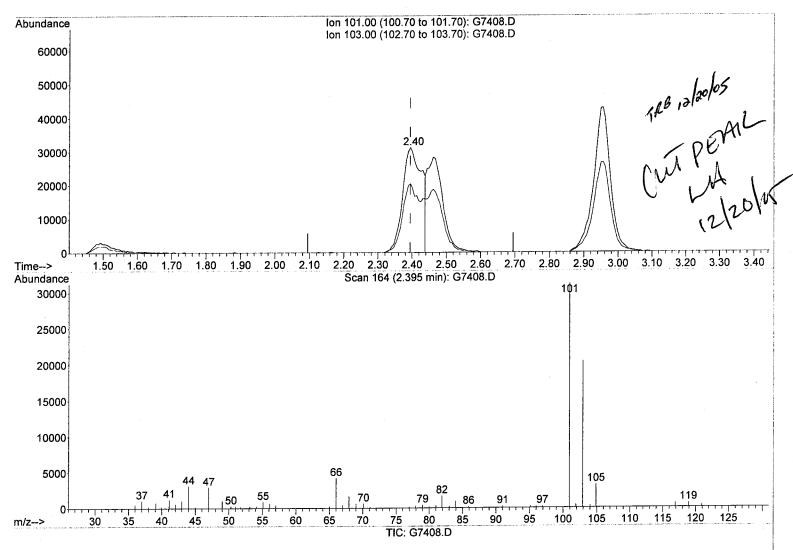
^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

: 20 Dec 2005 13:18 Acq On

Sample : VSTD025

Misc

Integrator: RTE


Quant Time: Dec 20 14:58:01 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Operator : LH/TRB

(7) C275 Trichlorofluoromethane (T)

2.40min (+0.000) 106.75ng

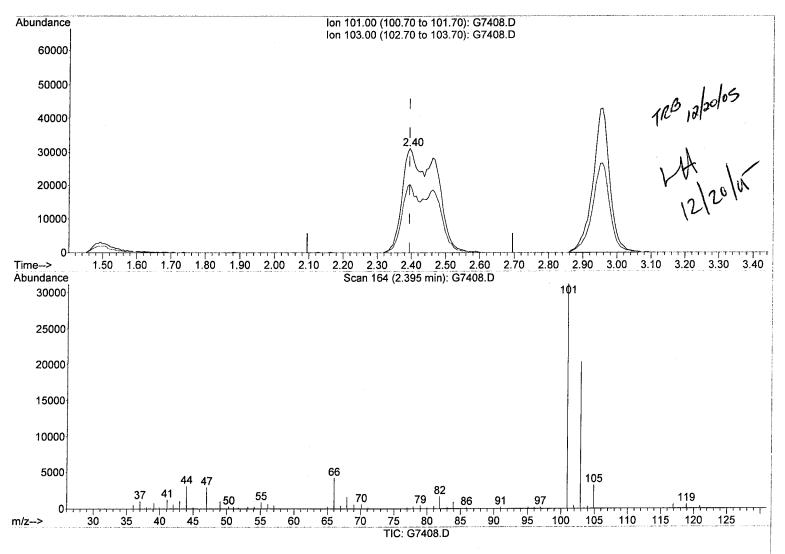
lon	Exp%	Act%
101.00	100	100
103.00	63.20	65.32
0.00	0.00	0.00
0.00	0.00	0.00

Acq On : 20 Dec 2005 13:18

Sample : VSTD025

Misc :

Integrator: RTE


Quant Time: Dec 20 14:58:01 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Operator : LH/TRB

(7) C275 Trichlorofluoromethane (T)

2.40min (+0.000) 184.89ng m

lon	Exp%	Act%
101.00	100	100
103.00	63.20	65.32
0.00	0.00	0.00
0.00	0.00	0.00

Acq On : 20 Dec 2005 11:27

: VSTD050 Sample

Misc Integrator: RTE

Quant Time: Dec 20 14:58:37 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Operator : LH/TRB

Internal Standards		R.T.	QIon	Response	Conc U	nits	Dev ((Min) (Ar)
1) CI10 1,4-Difl	uorobenzene	5.81	114	383133	125.0	ng ng		0.00 9.21%
43) CI20 Chlorobe	nzene-D5	8.70	82	193571	125.0	0 ng	133	0.00 3.31%
63) CI30 1,4-Dich	lorobenzene-	11.06	152	186771	125.0	0 ng		0.00 5.84%
System Monitoring	Compounds	F 10	777	233872	243.86	NG		0.00
26) CS87 Dibromof Spiked Amount	125.000 Ran	5.10 ge 70					.09%‡	‡
31) CS15 1,2-Dich	loroethane-D	5.41	65	300407	243.56			0.00
Spiked Amount		ge 73	- 136				.85%‡	
44) CS05 Toluene-	D8	7.22	98		241.41			0.00
Spiked Amount	125.000 Ran	ge 77	- 122	Recove			.13%‡	
62) CS10 p-Bromof	luorobenzene	9.94	174		239.91 ery =			
Spiked Amount	125.000 Ran	ge 74	- 120	Recove	erA =	191	. 9371	r
Target Compounds							Qva	alue
2) C290 Dichloro	difluorometh	1.49	85	325575	251.03	ng		97
3) C010 Chlorome		1.63	50	386652	235.75			97
4) C020 Vinyl ch		1.77	62	383253				99
5) C015 Bromomet		2.05	94	163783				100
6) C025 Chloroet		2.15	64	197635				100
	ofluorometha	2.47			393.18			96
8) C045 1,1-Dich	loroethene	2.93	96	267253		_		88 90
	e chloride	3.44	84	322227		_		90 97
10) C040 Carbon d		3.14		791928				100
11) C036 Acrolein		2.86	56	495382 2414042	4983.55			100
12) C038 Acryloni	trile	3.68 3.02	53 43	507027	1216.77	_		98
13) C035 Acetone 14) C300 Acetonit	rilo	3.30	41	1787691	9812.80			100
14) C300 Acetonit 15) C276 Iodometh		3.09		454069	250.01			95
	ichloro-1,2,	2.96		307657	261.18	ng		93
	Methyl Ether	3.69	73	1007005				92
	2-Dichloroet	3.68	96	300905	238.09	ng	#	52
19) C255 Methyl A		3.33	43	421558 580043	228.09	ng		97
	loroethane	4.09			241.17	ng		98
21) C125 Vinyl Ac		4.13	43	3327739	1296.74			96
22) C051 2,2-Dich	loropropane	4.63		491649	239.59			92
	Dichloroethe	4.64	96	336305	239.25			92 92
24) C272 Tetrahyd		4.91	42	540123	1239.49 243.65			91
— – • ·	oromethane	4.87	128	166526 562016	243.03			96
27) C060 Chlorofo	rm ichloroethan	4.95 5.10	83 97	486229	241.70			95
28) C115 1,1,1-Tr 29) C120 Carbon t	etrachloride	5.25	117	412825	246.09			99
	loropropene	5.25	75	440178	243.91			88
32) C165 Benzene	TOTOPTOPOLIC	5.44	78	1269683	240.78	_		98
	loroethane	5.48	62	481425	246.83	ng		95
34) C110 2-Butano		4.66	43	811302	1222.58			93
35) C256 Cyclohex	ane	5.14	56	594565	254.54			86
36) C150 Trichlor	roethene	6.06	95	325692	240.34	ng		93

Acq On : 20 Dec 2005 11:27

Sample : VSTD050

Misc :

Integrator: RTE

Quant Time: Dec 20 14:58:37 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 20 14:56:38 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122005\

Operator : LH/TRB

Int	ernal	Standards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
37)	C140	1,2-Dichloropropane	6.27	63	341935	244.42 ng	98
-	C278	Dibromomethane	6.40	93	196138	247.39 ng	88
	C130	Bromodichloromethane	6.55	83	403510	250.11 ng	94
•	C161	2-Chloroethylvinyl E	6.83	63	1168499	1261.29 ng	94
•	C012	Methylcyclohexane	6.22	83	650316	257.87 ng	90
	C145	cis-1,3-Dichloroprop	6.98	75	516191	248.43 ng	97
-	C230	Toluene	7.29	92	823728	240.17 ng	100
	C170	trans-1,3-Dichloropr	7.53	75	498481	256.64 ng	94
47)	C284	Ethyl Methacrylate	7.60	69	472931	255.95 ng	99
48)	C160	1,1,2-Trichloroethan	7.72	83	237517	244.01 ng	99
49)	C210	4-Methyl-2-pentanone	7.11	43	1794392	1245.26 ng	100
50)	C220	Tetrachloroethene	7.84	166	347432	238.93 ng	92
51)	C221	1,3-Dichloropropane	7.89	76	532272	246.39 ng	98
52)	C155	Dibromochloromethane	8.13	129	293292	255.88 ng	99
53)	C163	1,2-Dibromoethane	8.24	107	291390	248.71 ng	98
54)	C215	2-Hexanone	7.95	43	1275141	1240.38 ng	100
55)	C235	Chlorobenzene	8.73	112	925582	239.27 ng	98
56)	C281	1,1,1,2-Tetrachloroe	8.82	131	315566	248.99 ng	93
•	C240	Ethylbenzene	8.83	91	1577680	241.46 ng	99
	C246	m,p-Xylene	8.95	106	1214835	477.42 ng	96
	C247	o-Xylene	9.38	106	601962	240.47 ng	96
60)	C245	Styrene	9.40	104	988966	248.43 ng	99
61)	C180	Bromoform	9.63	173	180997	268.97 ng	97
	C966	Isopropylbenzene	9.76	105	1585612	239.67 ng	98
65)	C301	Bromobenzene	10.08	156	384892	235.67 ng	95
	C225	1,1,2,2-Tetrachloroe	10.10	83	378412	247.06 ng	100
	C282	1,2,3-Trichloropropa	10.14	110	116094	234.71 ng	100
	C283	t-1,4-Dichloro-2-But	10.15	51	261462	1399.51 ng	# 66
-	C302	n-Propylbenzene	10.17	91	1995604	242.66 ng	98
	C3 03	2-Chlorotoluene	10.27	126	377502	237.19 ng	100
	C289	4-Chlorotoluene	10.38	126	392823	237.31 ng	100
•	C304	1,3,5-Trimethylbenze	10.34	105	1361035	242.21 ng	98
•	C306	tert-Butylbenzene	10.66	134	302576	241.13 ng	95 97
-	C307 C308	1,2,4-Trimethylbenze sec-Butylbenzene	10.71	105	1378112	241.72 ng 241.40 ng	97 97
	C260	1,3-Dichlorobenzene	10.87 10.99	105 146	1680286 748633	237.26 ng	96
-	C309	4-Isopropyltoluene	11.00	119	1526068	242.54 ng	98
	C267	1,4-Dichlorobenzene	11.00	146	778115	237.91 ng	97
	C249	1,2-Dichlorobenzene	11.42	146	742937	238.57 ng	90
	C310	n-Butylbenzene	11.38	91	1405287	241.11 ng	98
	C286	1,2-Dibromo-3-Chloro	12.12	75	71294	259.41 ng	94
•	C313	1,2,4-Trichlorobenze	12.82	180	509093	217.07 ng	98
	C316	Hexachlorobutadiene	12.95	225	229997	221.29 ng	98
	C314	Naphthalene	13.03	128	1110728	228.31 ng	99
-	C934	1,2,3-Trichlorobenze	13.23	180	428606	208.64 ng	100
						_	

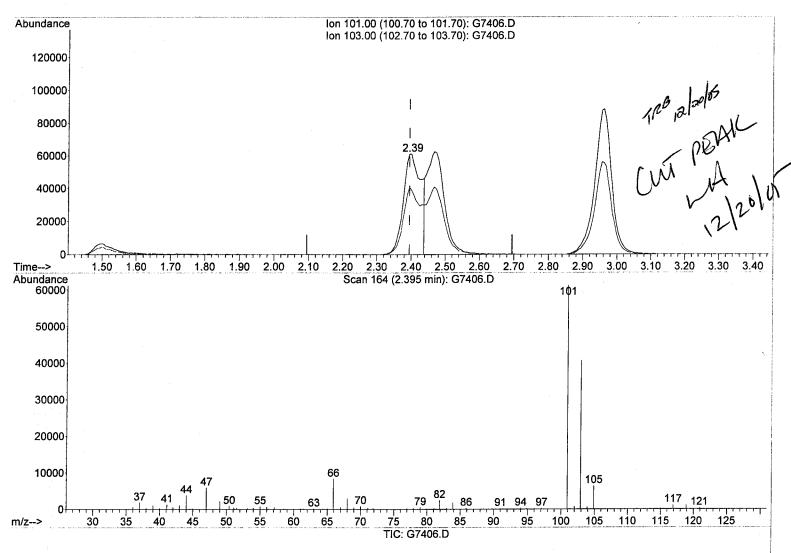
^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Acq On : 20 Dec 2005 11:27

Sample : VSTD050

Misc :

Integrator: RTE


Quant Time: Dec 20 14:57:55 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Operator : LH/TRB

(7) C275 Trichlorofluoromethane (T)

2.39min (+0.000) 196.96ng

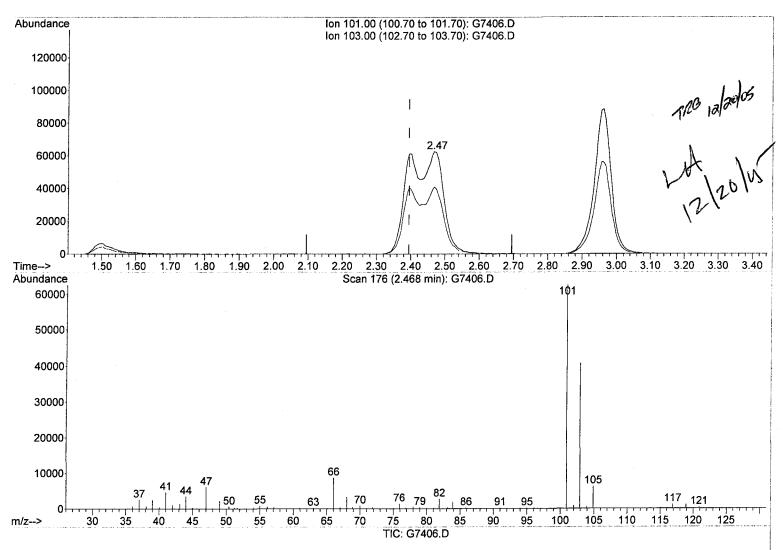
lon	Exp%	Act%
101.00	100	100
103.00	63.20	66.44
0.00	0.00	0.00
0.00	0.00	0.00

Acq On : 20 Dec 2005 11:27

Sample : VSTD050

Misc :

Integrator: RTE


Quant Time: Dec 20 14:57:55 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Operator : LH/TRB

(7) C275 Trichlorofluoromethane (T)

2.47min (+0.073) 393.18ng m

response 439761

 Ion
 Exp%
 Act%

 101.00
 100
 100

 103.00
 63.20
 65.23

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

Acq On : 20 Dec 2005 11:50

Sample : VSTD100

Misc Integrator: RTE

Quant Time: Dec 20 15:00:09 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Operator : LH/TRB

-	•							
Internal				Response				
							Rcv ((Ar)
1) CI10	1,4-Difluorobenzene	5.81	114	396488	125.0	0 ng		
						_		3.72%
43) CI20	Chlorobenzene-D5	8.70	82	198746	125.0	0 ng		0.00
						_		5.87%
63) CI30	1,4-Dichlorobenzene-	11.06	152	186826	125.0	0 ng		
							116	5.88%
	_							
System Mo	nitoring Compounds							0 00
26) CS87	Dibromofluoromethane mount 125.000 Ran 1,2-Dichloroethane-D	5.10	111	537599	541.68	NG	349.4	0.00
Spiked A	mount 125.000 Ran	ge 70	- 130	Recove	ery =	433	.34₹#	F 00
31) CS15	1,2-Dichloroethane-D	5.41	65	697344	546.33	ng	0.00.11	0.00
	mount 125.000 Ran	.ge 73	- 136	Recove	ery =	43/	.006#	h 0 00
44) CS05	Toluene-D8	7.22		2131211	531./8	119	1284	10.00
Spiked A	mount 125.000 Ran p-Bromofluorobenzene	.ge 77	- 122	Recove	ery =	425	. 4∠o#	r 0 00
62) CS10	p-Bromofluorobenzene	9.94	174	65151/	529.10	119	2084	10.00
Spiked A	mount 125.000 Ran	.ge 74	- 120	Recove	ery =	423	.∠05H	•
							0373	lue
Target Co	mpounds	1 50	0.5	622020	471.65	na		
2) C290	Dichlorodifluorometh	1.50	85 50	700422	459.82	ng		95
3) C010	Chloromethane Vinyl chloride Bromomethane	1.03	50		468.73			0
4) C020	Vinyi chioride	2.70	0.4	225/77	434 85	ng		99
5) C015	Bromomethane	2.06	64	335471 415711 868471m	471 16	na		100
6) C025	Chloroethane Trichlorofluorometha	2.10	101	968471m	750.32	na		99
7) C275	1,1-Dichloroethene	2.94	96	545884	468.48	na		88
9). C030	Mothylene chloride	3 44	84	656833	411.15	na		89
10) C040	Methylene chloride Carbon disulfide Acrolein	3 14	76	1616177	473.50	ng		97
10) C040 11) C036	Acrolein	2 86	56	1088815	10139.5	8 ng		99
12) C038	Acrolein Acrylonitrile	3.68	53	4726473	9428.68	ng		100
13) C035	Acetone	3.02	43	1024127	2374.93			97
14) C300	Acetonitrile	3.31	41	3570604	18939.20	o ng		100
15) C276	Acetonitrile Iodomethane	3.09	142	3570604 901481	479.65	ng		95
16) C291	1,1,2-Trichloro-1,2,	2.97	101	605137	496.42	ng		92
17) C962	T-butyl Methyl Ether	3.69	73	2001349	476.62	nq		92
18) C057	trans-1.2-Dichloroet	3.69	96	594421	454.49	ng	#	92 53 97
19) C255	trans-1,2-Dichloroet Methyl Acetate 1,1-Dichloroethane	3.33	43	854052	446.53	ng		97
20) C050	1.1-Dichloroethane	4.09	63	1185654	476.36	ng		98
21) C125	Vinyl Acetate	4.13	43	6533023	2460.01	ng		
22) C051	2,2-Dichloropropane	4.63	77	1003945	472.76	ng		94
23) C056	cis-1,2-Dichloroethe	4.64	96	677223	465.55			91
24) C272	Tetrahydrofuran	4.91	42	1085107	2406.26	ng		93
25) C222	Bromochloromethane	4.87	128	335592	474.47	_		93
27) C060	Chloroform	4.95	83	1138060	473.10	_		96
28) C115	1,1,1-Trichloroethan	5.10	97	991605	479.90			95
29) C120	Carbon tetrachloride	5.25	117	856312	493.26	_		100
30) C116	1,1-Dichloropropene	5.25	75	899152	481.44	-		87
32) C165	Benzene	5.44	78	2559170	468.96	_		98
33) C065	1,2-Dichloroethane	5.48	62	982104	486.56			96
34) C110	2-Butanone	4.66	43	1623914	2364.70			94
35) C256	Cyclohexane	5.14	56	1174359	485.82			87
36) C150	Trichloroethene	6.06	95	668779	476.90	ng		94

Acq On : 20 Dec 2005 11:50

Sample : VSTD100

Misc

Integrator: RTE

Quant Time: Dec 20 15:00:09 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Operator : LH/TRB

·		Chandonda	יים כד	QIon	Response	Conc Units	Dev(Min)
Int	ernaı	Standards	к.т.	QIOII	Response	COIIC OIIICB	Rcv(Ar)
37)	C140	1,2-Dichloropropane	6.27	63	702747	485.41 ng	98
38)	C278	Dibromomethane	6.41	93	400507	488.15 ng	83
	C130	Bromodichloromethane	6.56	83	842621	504.70 ng	93
	C161	2-Chloroethylvinyl E	6.83	63	2324498	2424.57 ng	94
41)	C012	Methylcyclohexane	6.22	83	1276538	489.14 ng	90
42)	C145	cis-1,3-Dichloroprop	6.98	75	1082827	503.58 ng	98
45)	C230	Toluene	7.29	92	1662008	471.97 ng	99
46)	C170	trans-1,3-Dichloropr	7.53	75	1034056	518.51 ng	95
47)	C284	Ethyl Methacrylate	7.60	69	962147	507.16 ng	99
48)	C160	1,1,2-Trichloroethan	7.72	83	484522	484.81 ng	98
49)	C210	4-Methyl-2-pentanone	7.11	43	3550249	2399.62 ng	99
50)	C220	Tetrachloroethene	7.84	166	697984	467.51 ng	95
51)	C221	1,3-Dichloropropane	7.89	76	1075789	485.02 ng	100
52)	C155	Dibromochloromethane	8.13	129	620264	527.05 ng	99
53)	C163	1,2-Dibromoethane	8.24	107	592450	492.51 ng	99
54)	C215	2-Hexanone	7.95	43	2538424	2404.93 ng	100
	C235	Chlorobenzene	8.74	112	1873356	471.67 ng	98
56)	C281	1,1,1,2-Tetrachloroe	8.82	131	637081	489.59 ng	95
57)	C240	Ethylbenzene	8.83	91	3149411	469.46 ng	100
	C246		8.95	106	2433541	931.47 ng	97
	C247	o-Xylene	9.38	106	1215062	472.75 ng	95
60)	C245	Styrene	9.40	104	2001130	489.59 ng	98
61)	C180	Bromoform	9.63	173	389309	563.46 ng	97
64)	C966	Isopropylbenzene	9.76	105	3198827	483.38 ng	98
	C301	Bromobenzene	10.08	156	769003	470.72 ng	98
	C225	1,1,2,2-Tetrachloroe	10.10	83	766437	500.25 ng	99
67)	C282	1,2,3-Trichloropropa	10.14	110	235634	476.24 ng	100
68)	C283	t-1,4-Dichloro-2-But	10.15	51	567445	3036.44 ng	# 69
69)	C302	n-Propylbenzene	10.17	91	3988953	484.91 ng	97
70)	C3 03	2-Chlorotoluene	10.27	126	761241	478.15 ng	100
71)	C289	4-Chlorotoluene	10.38	126	788660	476.30 ng	100
72)	C304	1,3,5-Trimethylbenze	10.34	105	2715747	483.15 ng	97
73)	C306	tert-Butylbenzene	10.66	134	602139	479.72 ng	97
74)	C307	1,2,4-Trimethylbenze	10.71	105	2788349	488.94 ng	98
75)	C308	sec-Butylbenzene	10.87	105	3375647	484.83 ng	98
76)	C260	1,3-Dichlorobenzene	11.00	146	1468805	465.36 ng	97
77)	C309	4-Isopropyltoluene	11.00	119	3036689	482.48 ng	99
78)	C267	1,4-Dichlorobenzene	11.08	146	1556031	475.62 ng	96
79)	C249	1,2-Dichlorobenzene	11.42	146	1479885	475.07 ng	90
80)	C310	n-Butylbenzene	11.38	91	2825802	484.69 ng	99
81)	C286	1,2-Dibromo-3-Chloro	12.12	75	151898	552.52 ng	94
82)	C313	1,2,4-Trichlorobenze	12.82	180	1004748	428.29 ng	99
83)	C316	Hexachlorobutadiene	12.95	225	449179	432.04 ng	98
84)	C314	Naphthalene	13.03	128	2225133	457.25 ng	98
-	C934	1,2,3-Trichlorobenze	13.23	180	846463	411.93 ng	97

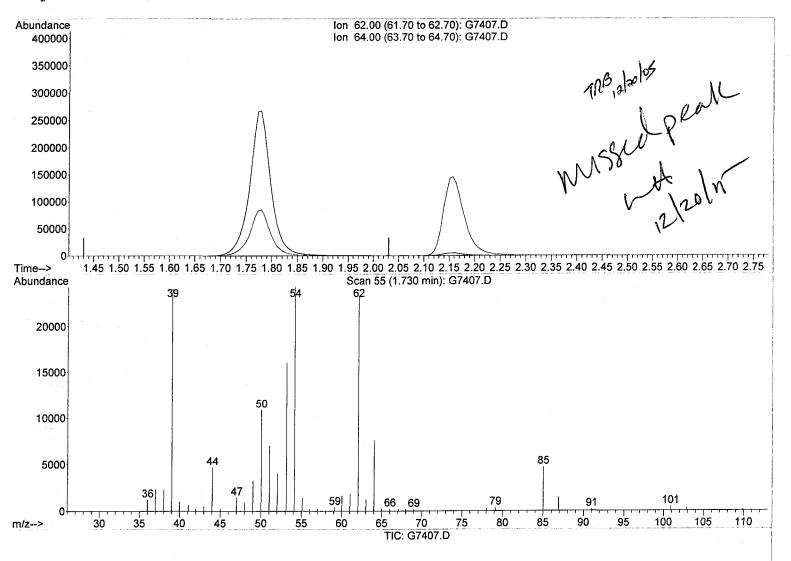
^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Acq On : 20 Dec 2005 11:50

Sample : VSTD100

Misc

Integrator: RTE


Quant Time: Dec 20 14:57:46 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Operator : LH/TRB

(4) C020 Vinyl chloride (T)

1.73min (-1.730) 0.00ng

lon	Exp%	Act%
62.00	100	0.00
64.00	29.90	0.00
0.00	0.00	0.00
0.00	0.00	0.00

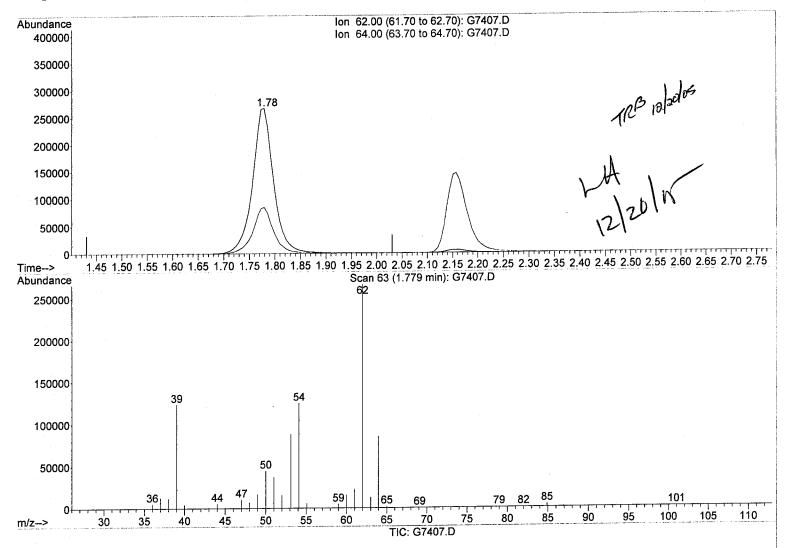
Acq On : 20 Dec 2005 11:50

Sample : VSTD100

Misc :

• • •

Integrator: RTE


Quant Time: Dec 20 14:57:46 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 20 14:56:38 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122005\

Operator : LH/TRB

(4) C020 Vinyl chloride (T)

1.78min (+0.049) 468.73ng m

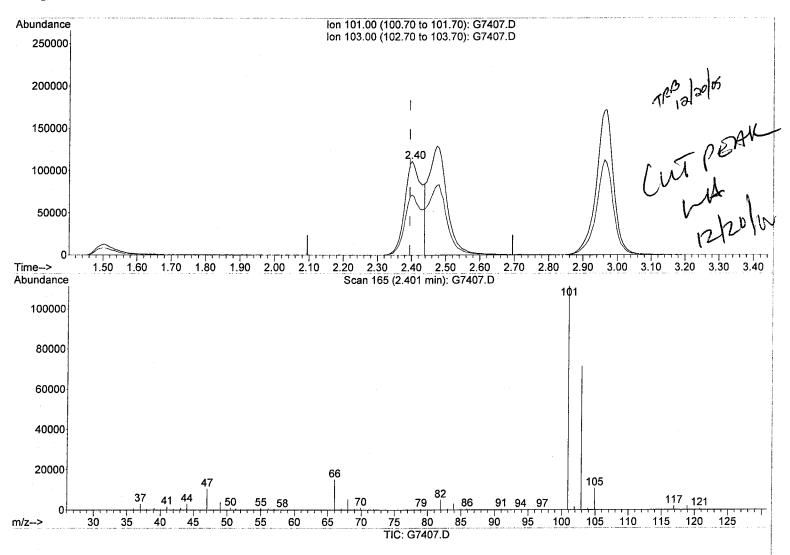
Ion	Exp%	Act%
62.00	100	100
64.00	29.90	31.86
0.00	0.00	0.00
0.00	0.00	0.00

Acq On : 20 Dec 2005 11:50

Sample : VSTD100

Misc :

Integrator: RTE


Quant Time: Dec 20 14:57:46 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Operator : LH/TRB

(7) C275 Trichlorofluoromethane (T)

2.40min (+0.006) 335.38ng

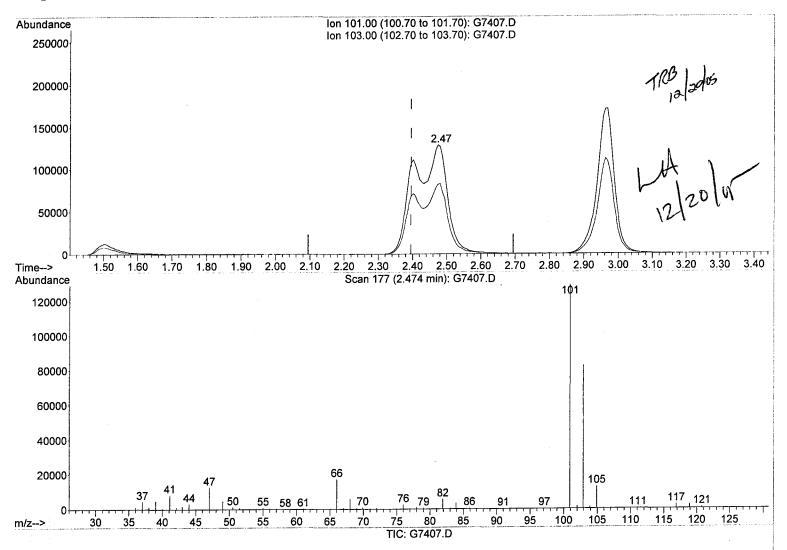
lon	Exp%	Act%
101.00	100	100
103.00	63.20	64.06
0.00	0.00	0.00
0.00	0.00	0.00

Acq On : 20 Dec 2005 11:50

Sample : VSTD100

Misc :

Integrator: RTE


Quant Time: Dec 20 14:57:46 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Operator : LH/TRB

(7) C275 Trichlorofluoromethane (T)

2.47min (+0.079) 750.32ng m

Ion	Exp%	Act%
101.00	100	100
103.00	63.20	63.70
0.00	0.00	0.00
0.00	0.00	0.00

METHOD 8260 - AQUEOUS (30% RSD/ 20% D) INITIAL CALIBRATION DATA

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u> Lab Sample ID: <u>A510002444-1</u>

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No: ____

Intrument ID: <u>HP5973Q</u> Calibration Dates(s): <u>12/23/2005</u> <u>12/23/2005</u>

Heated Purge (Y/N): N Calibration Times: 09:01 11:46

GC Column: <u>DB624</u> ID: <u>0.25</u> (mm)

Lab File ID:		<u>Q9463.RR</u>	RRF10	= <u>Q9461.RR</u>
RRF25 = <u>Q9458.RR</u>		<u>Q9460.RR</u>	RRF100	= <u>Q9459.RR</u>
COMPOUND	RRF1	RRF10 RRF25	RRF50	RRF100 AVG RRF

0.324

0.3160

2.400

METHOD 8260 - AQUEOUS (30% RSD/ 20% D) INITIAL CALIBRATION DATA

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u> Lab Sample ID: <u>A510002444-1</u>

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No: ____

Intrument ID: <u>HP5973Q</u> Calibration Dates(s): <u>12/23/2005</u> <u>12/23/2005</u>

Heated Purge (Y/N): N Calibration Times: 09:01 11:46

GC Column: <u>DB624</u> ID: <u>0.25</u> (mm)

protestation							•
Lab File ID: RRI RRF25 = <u>Q9458.RR</u> RRI		Q9463.1 Q9460.1		RRF10 RRF100	= <u>Q9463</u> = <u>Q9459</u>		
COMPOUND	RRF1	RRF10	RRF25	RRF50	RRF100	AVG RRF	% RSD
1,2-Dibromoethane	0.331	0.342	0.359		0.354	0.3490	3.600
1,2-Dichlorobenzene	1.751	1.604	1.526	1.570	1.498	1.5900	6.200
1,3-Dichlorobenzene	1.761	1.636	1.522	1.584	1.486	1.5980	6.700
1,4-Dichlorobenzene	1.849	1.662	1.591	1.629	1.540	1.6540	7.100
Cyclohexane	0.386	0.395	0.407	0.435	0.421	0.4090	4.800
Dichlorodifluoromethane	0.109	0.206	0.253	0.264	0.272	0.2210	30.500
Methyl acetate	0.483	0.413	0.421	0.413	0.412	0.4280	7.200
Naphthalene	3.206	3.016	2.526	2.695	2.500	2.7890	11.200
Trichlorofluoromethane	0.222	0.281	0.334	0.341	0.347	0.3050	17.400
Methyl-t-Butyl Ether (MTBE)	0.932	0.959	0.970	0.973	0.977	0.9620	1.900
Isopropylbenzene	3.438	3.150	2.964	3.073	2.874	3.1000	7.000
Methylcyclohexane	0.630	0.367	0.318	0.353	0.330	0.4000	32.600
Toluene-D8	1.201	======= 1.227	 1.254	====== 1.263	1.229	1.2350	2.000
p-Bromofluorobenzene	0.409	0.387	0.402	0.404	0.388	0.3980	2.500

0.319

0.316

0.319

0.304

Comments:

1,2-Dichloroethane-D4

Data File : C:\HPCHEM\1\DATA\122305\Q9463.D

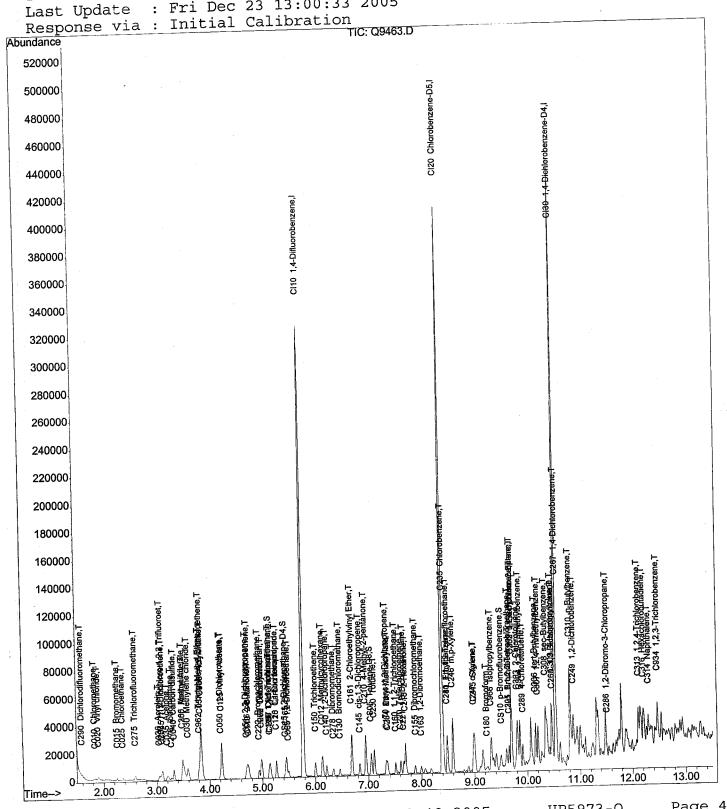
11:46 : 23 Dec 2005 Acq On

VSTD001 Sample

Misc MS Integration Params: RTEINT.P

Quant Time: Dec 23 12:59 2005

Vial: 8 Operator: JMB : HP5973 Q Inst


Multiplr: 1.00

Quant Results File: A5I02444.RES

: C:\HPCHEM\1\METHODS\Q8260\A5I02444.M (RTE Integrator) Method

8260 5ML Title

Fri Dec 23 13:00:33 2005 Last Update

Data File : C:\HPCHEM\1\DATA\122305\Q9461.D

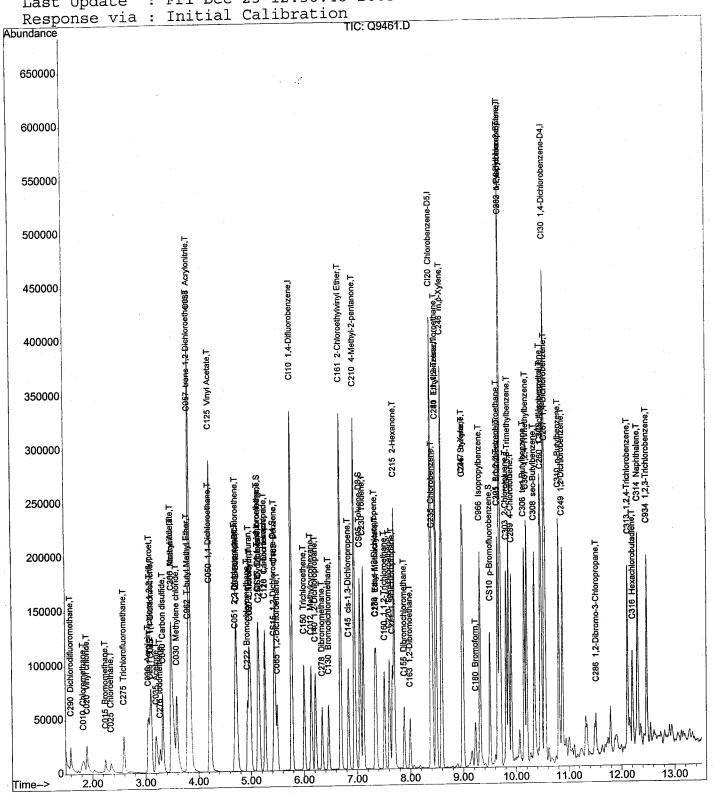
: 23 Dec 2005 10:26 Acq On

VSTD010 Sample

Misc

MS Integration Params: RTEINT.P Quant Time: Dec 23 12:58 2005

Vial: 6 Operator: JMB : HP5973 Q Inst


Multiplr: 1.00

Quant Results File: A5I02444.RES

C:\HPCHEM\1\METHODS\Q8260\A5I02444.M (RTE Integrator) Method

8260 5ML Title

: Fri Dec 23 12:56:48 2005 Last Update

Data File : C:\HPCHEM\1\DATA\122305\Q9458.D

: 23 Dec 2005 Acq On

: VSTD025 Sample

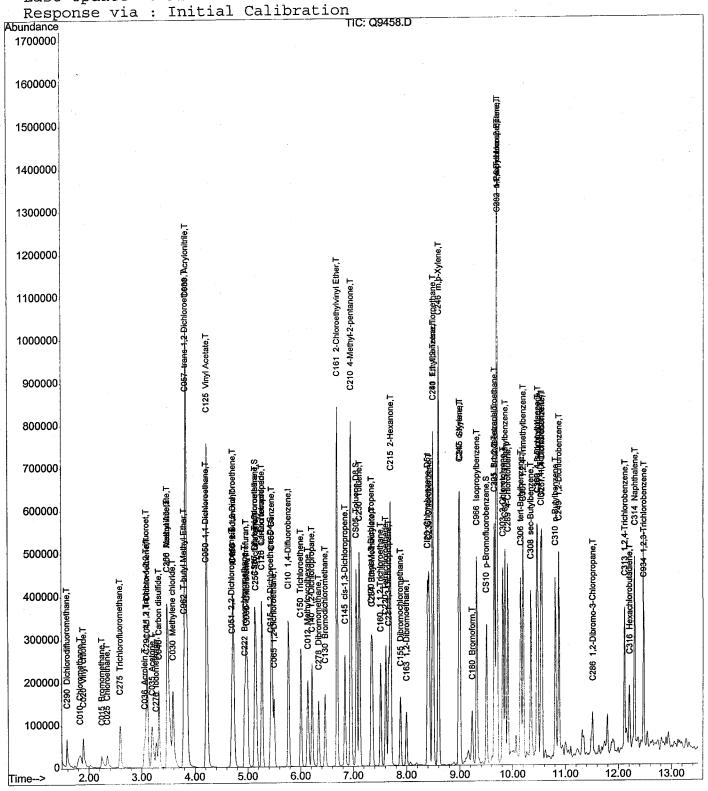
Misc

Method

MS Integration Params: RTEINT.P

Operator: JMB : HP5973 Q Inst

Multiplr: 1.00


Vial: 3

Quant Results File: A5I02444.RES

Quant Time: Dec 23 12:55 2005 : C:\HPCHEM\1\METHODS\Q8260\A5I02444.M (RTE Integrator)

8260 5ML Title

: Fri Dec 23 12:48:52 2005 Last Update

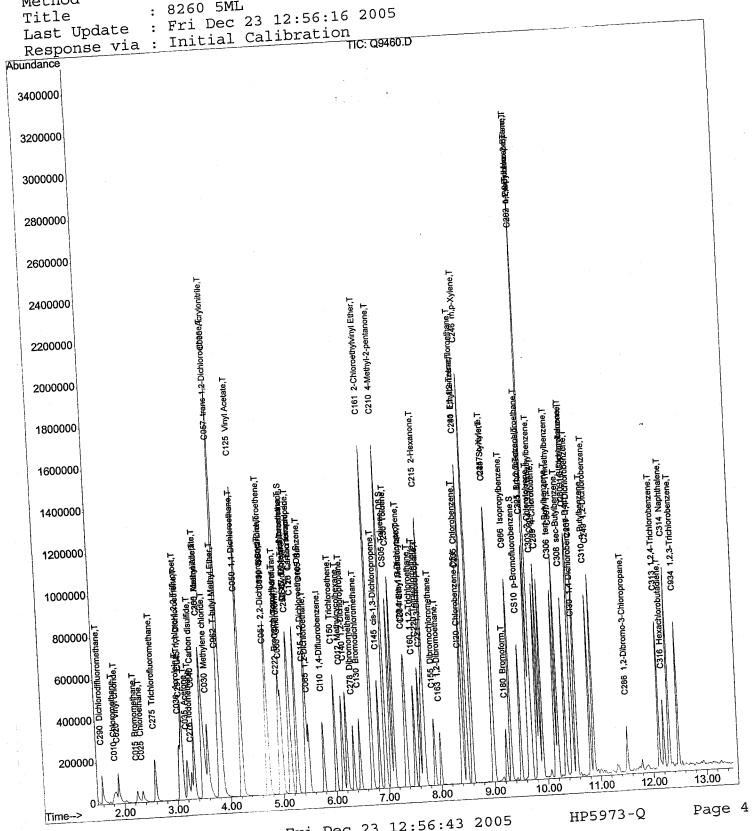
: HP5973 Q

Vial: 5

Operator: JMB

Inst

Data File : C:\HPCHEM\1\DATA\122305\Q9460.D


23 Dec 2005

Acq On VSTD050

1.00 Multiplr: Sample Quant Results File: A5I02444.RES MS Integration Params: RTEINT.P Quant Time: Dec 23 12:03 2005

C:\HPCHEM\1\METHODS\Q8260\A5102444.M (RTE Integrator) Method

8260 5ML

: HP5973 Q

Data File : C:\HPCHEM\1\DATA\122305\Q9459.D

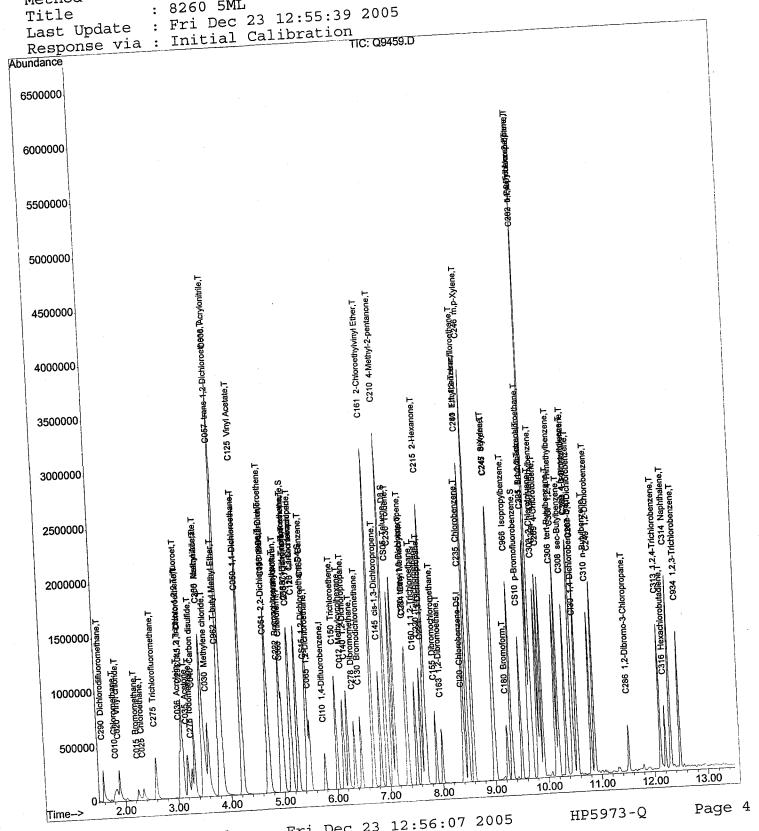
23 Dec 2005 Acq On

VSTD100 Sample

MS Integration Params: RTEINT.P

Quant Time: Dec 23 12:03 2005

Multiplr: 1.00


Vial: 4

Operator: JMB

Inst

Quant Results File: A5I02444.RES : C:\HPCHEM\1\METHODS\Q8260\A5102444.M (RTE Integrator)

Method 8260 5ML

Response Factor Report HP5973 Q

: C:\HPCHEM\1\METHODS\Q8260\A5I02444.M (RTE Integrator) Method

: 8260 5ML Title

Last Update : Fri Dec 23 12:59:12 2005

Response via : Initial Calibration

AST 2444

44 8260 Sul

Calibration Files

=Q9458.D 3 2 =Q9461.D =Q9463.D

=Q9459.D 5 =Q9460.D

	(~ Compou	ınd	1	2	3	4	5	Avg	%RSD
1) I		CI10	1,4-Difluoroben			IS	TD	0 070	0 221	30.49
2) T		C290	Dichlorodifluor	0.109	0.206	0.253	0.264	0.272	(0.221	11.33
3) T		C010	Chloromethane	0 236	0.261	0.296	0.305	0.310	0.202	16.40
4) T		C020	Vinyl chloride	0.196	0.264	0.292	0.300	0.300	0.270	15.76
5) T		C015	Bromomethane		0.104	0.113	0.105	0.102	0.103	29.95
6) T		C025	Chloroethane	0.049	0.107	0.118	0.121	0.122		17.40
7) T		C275	Trichlorofluoro	0.222	0.281	0.334	0.341	0.34/	0.305	_
8) I		C045	1,1-Dichloroeth	0 231	0.225	0.259	0.262	0.254	0.246<	4.42
9) I		C030	Methylene chlor	0 325	0.291	0.304	0.299	0.294	0.303	3.36
10) I		C040	Carbon disulfid	ስ ይጋይ	0.801	0.861	0.872	0.852	0.843	29.30
11) I		C036	Acrolein	0 018	0.024	0.010	0.024	0.019	0.019	
12) I		C038	Acrylonitrile	0 159	0 153	0.155	0.152	0.146	0.153	2.95
13) I		C035	Acetone	0 129	0 116	0.121	0.119	0.122	0.121	3.95
14) T		C300	Acetonitrile	0.058	0 054	0.056	0.055	0.055	0.056	2.74
15) I		C276	- 1	0 420	0 362	0 312	0.383	0.359	0.367	10.75
16) T		C291	1,1,2 Trichloro	0.167	0.195	0.224	0.231	0.228	0.209	13.18
		C962	T-hutvl Methvl	0.932	0.959	0.970	0.973	0.511	0.202	1.90
		C057	trans-1,2-Dichl	0 281	0 276	0.300	0.298	0.286	0.288	3.63
18) T		C255	14. 1-1 7 motato	ስ // ወን	0 412	0.421	0.413	0.412	0.428	7.23
		C050	1,1-Dichloroeth	0 561	0 530	0.564	0.563	0.545	0.552	2.69
20) 7		C125	7741 7 actata	n 732	0 770	0.790	0.//4	0./41	0.702	3.18
21) 7		C125	o o Diableronro	0 420	0 386	0.454	0.443	0.438	0.428	6.21
22) 7		C051	1 a Diahlar	V 338	0 302	() 3 . 3 . 1.	0.320	0.510	0.521	3.64
,	[m. b bradmofuscan	A 125	ก 139	() L43	U.143	U.143	0.141	2.66
	Γ	C272	Bromochlorometh	ก 136	0.161	0.1/3	0.109	0.103	0.101	9.04
,	Γ	C222	Chloroform	0.509	0.477	0.516	0.510	0.433	0.502	3.06
,	Γ	C060	1 1 1 Emighloro	0 386	0 368	0.423	0.427	0.418	0.404	6.46
	Г	C115	a	A 21A	0 304	0.372	0.380	0.3/4	0.348	10.80
	Γ	C120	1 1 Diablarance	ለ 378	0 354	0.409	0.411	0.404	0.391	6.25
,	r ~	C116	Dibromofluorome	0.376	0.277	0.280	0.280	0.278	0.272	5.27
,	S	CS87	1,2-Dichloroeth	0.210	0.319	0.316	0.319	0.324	0.316	2.35
	S	CS15		1 271	1.176	1.266	1.253	1.440	1.237	3.19
,	Γ	C165	Benzene 1,2-Dichloroeth	0 390	0 401	0.432	0.430	0.425	0.416	4.55
	T	C065		0.320	0.101	0.208	0.208	0.209	0.205	1.88
	T	C110	2-Butanone	0.201	0.201	0.407	0.435	0.421	0.409	4.81
	T	C256	Cyclohexane Trichloroethene	0.300	0.375	0.303	0.301	0.296	0.302	7.61
	T	C150	1,2-Dichloropro	0.333	0.275	0.337	0.335	0.325	0.329	(2.16)
	T	C140	1,2-Dichioropro	0.320	0.317	0.337	0.330	0.187	0.183	4.93
-	T	C278	Dibromomethane Bromodichlorome	0.1/0	0.10	0.1JI	0.175	0.375	0.361	6.64
	\mathbf{T}	C130	Bromodichiorome	0.324	0.347	0.301	0.373	0.239	0.244	2.61
40)	\mathbf{T}	C161	2-Chloroethylvi	0.236	0.246	0.434	0.240	0.233	0.400	32.58
41)	T	C012	Methylcycolhexa	0.630	0.36/	0.270	0.333	0.505	0.510	4.52
	Т	C145	cis-1,3-Dichlor	0.485	0.486	0.532	0.524	0.52.	, 0.510	,
						т	CTD			

Method : C:\HPCHEM\1\METHODS\Q8260\A5102444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Dec 23 12:59:12 2005

Response via : Initial Calibration

Calibration Files

1 =Q9463.D 2 =Q9461.D 3 =Q9458.D

 $\frac{1}{4}$ = Q9460.D 5 = Q9459.D

_	-	~								
		Compou	und	1	2	3	4	5 	Avg	%RSD
		CCOE	Toluene-D8	1 201	1.227	1.254	1.263	1.229	1.235	2.00
-	S	CS05 C230	Toluene Toluene	0 895	0.854	0.905	0.911	0.879	0.889	(2.58)
45)	T		trans-1,3-Dichl	0.516	0.530	0.564	0.571	0.556	0.547	4.32
46)	T	C170	Ethyl Methacryl	0.310	0.522	0.537	0.553	0.547	0.529	5.17
47)	T	C284	1,1,2-Trichloro	0.103	0.322	0.272	0.272	0.264	0.267	1.71
48)	T	C160	4-Methyl-2-pent	0.203	0.203	0.482	0.486	0.469	0.478	1.54
49)	T	C210	Tetrachloroethe	0.472	0.100	0.359	0.369	0.352	0.359	3.82
50)	T	C220	1,3-Dichloropro	0.574	0.510	0.594	0.601	0.582	0.590	1.37
51)	T·	C221	Dibromochlorome	0.303	0.334	0.360	0.371	0.367	0.344	9.65
52)	T	C155	1,2-Dibromoetha	0.231	0.331	0.359	0.361	0.354	0.349	3.62
53)	T	C163		0.331	0.312	0.348	0.354	0.345	0.346	1.60
54)	T	C215	2-Hexanone	1 058	0.312	1.036	1.040	1.001	1.023	3.03
55)	T	C235	Chlorobenzene 1,1,1,2-Tetrach	0.321	0.302	0 353	0.366	0.352	0.346	4.87
56)	$\frac{\mathbf{T}}{\mathbf{T}}$	C281	I,I,I,Z-TECTACH	1 576	1 478	1.527	1 548	1.456	1.517	(3.26)
57)	T	C240	Ethylbenzene	0.657	0 623	0.644	0.649	0.614	0.637	2.84
58)	T	C246	m,p-Xylene	0.637	0.025	0.637	0.640	0.608	0.628	2.33
59)	T	C247	1	0.050	0.010	1.037	1 043	1.018	1.010	3.52
60)	T	C245	Styrene p-Bromofluorobe	0.955	0.227	0 402	0 404	0.388	0.398	2.48
61)	S	CS10								
62)	I	CI30	1,4-Dichloroben			IS	STD- <i></i> -			
63)	${f T}$	C180	Bromoform	0.421	0.475	0.516	0.552	0.556	0.504	11.26
64)	${f T}$	C966	Isopropylbenzen	3.438	3.150	2.964	3.073	2.874	3.100	6.97
65)	Т	C301	Dromohenzene	0 944	0 905	0.904	0.921	0.875	0.910	2.78
66)	\mathbf{T}	C225	1,1,2,2-Tetrach	0.966	0.945	0.993	0.966	0.921	0.958	2 <u>.8</u> 3
67)	T	C282	1 2 3-Trichloro	0.340	0.312	0.320	0.316	0.294	0.310	5.19
68)	\mathbf{T}	C283	+_1 /_Dichloro-	0 163	0.148	0.145	0.141	0.135	0.147	7.26
69)	Т	C302	n_Dronwlhenzene	4.292	3.810	3.420	3.580	3.214	3.663	11.30
70)	T	C303	2-Chlorotoluene	0.825	0.796	0.770	0.789	0.752	0.787	3.50
71)	T	C289	4-Chlorotoluene	0.893	0.800	0.806	0.829	0.792	0.824	4.98
72)	T	C304	1 3 5-Trimethyl	3.029	2.626	2.286	2.438	2.265	2.529	12.45
73)	T	C306	tart_Butylhenze	0 848	0.597	0.497	0.538	0.490	0.594	24.99
74)	Т	C307	1 2 4-Trimethyl	3 006	2.685	2.376	2.487	2.339	2.5/8	10.64
75)	T	C308	gec-Butylhenzen	5.154	2.987	2.306	2.515	2.2/1	3.04/	39.78
76)		C260	1 3-Dichloroben	1.761	1.636	1.522	1.584	1.486	1.598	6.74
77)	T	C309	4-Isopropyltolu	4.636	2.760	2.141	2.327	2.0/4	2.700	38.29
78)		C267	1.4-Dichloroben	1.849	1.662	1.591	1.629	1.539	1.054	7.14
79)		C249	1 2-Dichloroben	1.751	1.603	1.526	1.570	1.498	1.590	6.21
80)		C310	n-Butvlbenzene	4.397	2.124	1.602	1.725	1.549	2.280	52.87
81)	$ar{ extbf{T}}$	C286	1.2-Dibromo-3-C	0.148	0.176	0.187	0.192	0.192	0.179	10.31
82)	T	C313	1 2.4-Trichloro	1.677	1.045	0.774	0.845	0.759	1.020	37.72
83)		C316	Hexachlorobutad	0.820	0.329	0.205	0.235	0.196	0.357	74.00
84)	T	C314	Naphthalene	3.206	3.016	2.526	2.695	2.500	2.789	11.16
85)		C934	1,2,3-Trichloro	1.477	1.001	0.732	0.814	0.732	0.951	32.99
05)	-	C) 3 1	-/-/ <u>-</u>				_		0.5.05	10 10000

Total Average %RSD 10.12

L = Linear LO = Linear+Origin Q = Quad QO = Quad+Origin R = Corr. Coef

· ICC Profile

ate: 12/23/2005 ime: 17:02:20

CC Profile Code: A00263 METHOD 8260 low 5ML PURGE (30% RSD/ 20% D)

Fraction: MV

lo of Points: 5

CCC Conc:

125.00

Default Min. RRF: 0.3000

comments:

			ng	On Column		
	tara da la companya da la companya da la companya da la companya da la companya da la companya da la companya	Point 1	Point 2	Point 3	Point 4	Point 5
<u>Seq</u>	Parameter		2000.0000	5000.0000	10000.0000 2	0000.0000
2 123-91-1	1,4-Dioxane	5.0000	50.0000	125 0000	250.0000	500.0000
7 77-73-6	Dicyclopentadiene	5.0000	50.0000	125.0000	250.0000	500.0000
8 526-73-8	1,2,3-Trimethylbenzene	5.0000	50.0000	125.0000	250.0000	500.0000
15 994-05-8	tert-Amyl Methyl Ether (TAME)	25.0000	250.0000	625.0000	1250.0000	2500.0000
18 67-64-1	Acetone	5.0000	50.0000	125.0000	250.0000	500.0000
20 71-43-2	Benzene	5.0000	50.0000	125.0000	250.0000	500.0000
25 637-92-3	Ethyl-t-butyl ether (ETBE)	5.0000	50.0000	125.0000	250.0000	500.0000
30 108-86-1	Bromobenzene	5.0000	50.0000	125.0000	250.0000	500.0000
40 74-97-5	Bromochloromethane	5.0000	50.0000	125.0000	250.0000	500.0000
50 75-27-4	Bromodichloromethane	5.0000	50.0000	125.0000	250.0000	500.0000
51 108-70-3	1,3,5-Trichlorobenzene	5.0000	50.0000	125.0000	250.0000	500.0000
60 75-25-2	Bromoform	5.0000	50.0000	125.0000	250.0000	500.0000
70 74-83-9	Bromomethane	25.0000	250.0000	625.0000	1250.0000	2500.0000
88 78-93-3	2-Butanone	5.0000	50.0000	125.0000	250.0000	500.0000
90 104-51-8	n-Butylbenzene	50.0000	500.0000	1250.0000	2500.0000	5000.0000
91 107-12-0	Propionitrile	5.0000	50.0000	125.0000	250.0000	500.0000
92 126-98-7	Methacrylonitrile	5.0000	50.0000	125.0000	250.0000	500.0000
93 108-20-3	Isopropyl Ether (DIPE)	200.0000	2000.0000	5000.0000	10000.0000	20000.0000
94 78-83-1	Isobutanol	200.0000	2000.0000	5000.0000	10000.0000	
95 71-36-3	n-Butyl alcohol	5.0000	50.0000	125.0000		500.0000
96 108-41-8	m-Chlorotoluene	50.0000	500.0000	1250.0000		5000.0000
97 108-94-1	Cyclohexanone	5.0000	50.0000	125.0000	250.0000	500.0000
98 76-01-7	Pentachloroethane	100.0000	1000.0000	2500.0000		10000.0000
99 75-65-0	tert-Butyl Alcohol (TBA)	5.0000	50.0000	125.0000		500.0000
100 135-98-8	sec-Butylbenzene	5.0000	50.0000	125.0000		500.0000
101 79-20-9	Methyl acetate	5.0000	50.0000	125.0000		500.0000
102 110-82-7	Cyclohexane	5.0000		125.0000		
103 108-87-2	Methylcyclohexane p-Monochlorobenzotrifluoride	5.0000		125.0000		
104 98-56-6	m-Monochlorobenzotrifluoride	5.0000	50.0000	125.0000		
105 98-15-7	o-Monochlorobenzotrifluoride	5.0000	50.0000	125.0000		
106 88-16-4	tert-Butylbenzene	5.0000	50.0000	125.0000	250.0000	
110 98-06-6		100.0000		2500.000		10000.0000
111 106-89-8	Epichlorohydrin	25.0000		625.000		
112 79-46-9	2-Nitropropane Total Volatile Organic Compoun	5.0000	50.0000			
114 TOTALVOA	2-Methyl Thiophene	5.0000		125.000		
120 554-14-3	3-Methyl Thiophene	5.000				
121 616-44-4	Carbon Disulfide	5.000		125.000		
128 75-15-0	Carbon Tetrachloride	5.000		125.000		
130 56-23-5		5.000	0 50.000			
140 108-90-7	2-Ethyl-1-hexanol	50.000				
145 104-76-7	Chloroethane	5.000				
150 75-00-3		5.000	0 50.000			
160 67-66-3	Chloroform Chloromethane	5.000				
170 74-87-3	o-Chlorotoluene	5.000				
180 95-49-8	-t t tulings	5.000	50.000			
190 106-43-4	Dibromochloromethane	5.000	00.000	0 125.000	00 250.000	0 500.0000
200 124-48-1	D I DI ORIOGIA OI ORICETTATIO				100	

Page: Rept: AN0287R

QC Approver: JRS

QC Date: 11/08/2005

Rept: AN0287R

Page:

ICC Profile

e: 12/23/2005 e: 17:02:20

Profile Code: A00263 METHOD 8260 low 5ML PURGE (30% RSD/ 20% D) (continued)

7,0,							
				ng On Colu	imn		
		Point 1	Point 2	Point 3	<u>Point</u>		<u>int 5</u> 00.0000
1	Parameter	5.000		00 125.00		0000	0000 0000
1 110-54-3	Hexane	5.000	00	00 125.00			00.000
2 142-82-5	Heptane	25.000		00 625.00			00.0000
3 534-15-6	1,1-Dimethoxyethane	25.000		00 625.00		7	00.0000
4 75-56-9	Propylene Oxide	5.000		000 125.00			00.0000
0 96-12-8	1,2-Dibromo-3-chloropropane	5.000		000 125.00			00.0000
20 106-93-4	1,2-Dibromoethane	5.000		000 125.0	:	•	00.0000
30:74-95-3	Dibromomethane	5.000		000 125.0			00.0000
40 95-50-1	1,2-Dichlorobenzene	5.00		000 125.0			00.0000
50 541-73-1	1,3-Dichlorobenzene	5.00		000 125.0			500.0000
60 106-46-7	1,4-Dichlorobenzene	5.00		000 125.0		-	500.0000
70 75-71-8	Dichlorodifluoromethane	5.00		000 125.0			500.0000
80 75-34-3	1,1-Dichloroethane	5.00	·	0000 125.0		,	500.0000
90 107-06-2	1,2-Dichloroethane	5.00		0000 125.0			500.0000
;00 75-35-4	1,1-Dichloroethene	25.00		0000 625			500.0000
307 109-99-9	Tetrahydrofuran	5.00	000 50.0	0000 125		•	500.0000
310 156-59-2	cis-1,2-Dichloroethene	5.00		0000 125.		0.000	500.0000
320 156-60-5	trans-1,2-Dichloroethene	5.0			•	0.0000	500.0000
330 78-87-5	1,2-Dichloropropane	5.0				0.0000	500.0000
340 142-28-9	1,3-Dichloropropane		000 50.	-		0.000	500.0000
350 594-20-7	2,2-Dichloropropane		000 50.			0.0000	500.0000
360 563-58-6	1,1-Dichloropropene	5.0				0.000	500.0000
370 10061-01-	5 cis-1,3-Dichloropropene	5.0	0000 50.			50.0000	500.0000
380 10061-02-	6 trans-1,3-Dichloropropene		0000 50.			50.0000	500.0000
390 100-41-4	Ethylbenzene	5.0			•	50.0000	2500.0000
410 87-68-3	Hexachlorobutadiene		0000 250				500.0000
418 591-78-6	2-Hexanone		0000 50			50.0000	500.0000
420 98-82-8	Isopropylbenzene		0000 50			50.0000	500.0000
430 99-87-6	p-Cymene		0000 50			50.0000	2500.0000
440 75-09-2	Methylene chloride	25.				50.0000	500.0000
458 108-10-1	4-Methyl-2-pentanone		0000 50			250.0000	500.0000
460 91-20-3	Naphthalene	5.	.0000 50			250.0000	500.0000
470 103-65-1		5.	.000			250.0000	500.0000
480 100-42-5		5				250.0000 250.0000	500.0000
490 630-20-6	1,1,1,2-Tetrachloroethane	5		•.••		250.0000	500.0000
500 79-34-5	1,1,2,2-Tetrachloroethane	. 5	.0000 5			250.0000	500.0000
510 127-18-4		5				250.0000	500.0000
520 108-88-3		5				250.0000	500.0000
530 87-61-6		5			25.0000	250.0000	
540 120-82 <i>-</i>		. 5	.0000 5		25.0000	250.0000	
550 71-55-6	this month and	. 5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		25.0000	250.0000	
560 79-00-5	i elema		5.0000	,	25.0000	250.0000	
570 79-01-6		ļ			25.0000	250.0000	
580 7 5-69-4	blanconcone	1	J.0000		25.0000	250.0000	
590 96-18-4	- · - ·+hul honzene				25.0000	250.0000	
600 95-63-6	Luibonzone				25.0000	250.0000	
610 108-67			5.0000		25 0000	750.000	
620 75-01-		1	5 0000 1		375.0000	250.000	0000
630 1330-2			5.0000	• • • •	125.0000	250.000	
646 SU107-			5.0000		125.0000	250.000	0000
648 2037-2			5.0000		125.0000	250.000	
650 460-00	Id/		5.0000	50.0000	125.0000	250.000	-
660 SU95-5	0U-1 1,2-D10H10H00H12H1						

Rept: AN0287R

Page:

ICC Profile

12/23/2005 17:02:20

Profile Code: A00263 METHOD 8260 low 5ML PURGE (30% RSD/ 20% D) (continued)

-ng On Column -Point 5 Point 4 Point 3 Point 2 Point 1 0.0000 0.0000 0.0000 **Parameter** 0.0000 0.0000 0.0000 1,4-Dichlorobenzene-D4 0.0000 0.0000 0.0000 su106-46-7 0.0000 0.0000 0.0000 Chlorobenzene-D5 0.0000 0.0000 3114-55-4 0.0000 0.0000 0.0000 1,4-Difluorobenzene 0.0000 0.0000 540-36-3 0.0000 500.0000 250.0000 125.0000 Fluorobenzene 50.0000 462-06-6 5.0000 500.0000 Methyl-t-Butyl Ether (MTBE) 250.0000 125.0000 50.0000 1634-04-4 5.0000 500.0000 250.0000 Dichlorofluoromethane 125.0000 50.0000 5.0000 75-43-4 5000.0000 10000.0000 Dibromodichloromethane 2500.0000 1250.0000 100.0000 1 594-18-3 500.0000 250.0000 125.0000 Acrolein 50.0000 107-02-8 1,1,2-Trichloro-1,2,2-trifluor 5.0000 0000.0000 5000.0000 2500.0000 1250.0000 76-13-1 100.0000 500.0000 250.0000 Acrylonitrile 125.0000 50.0000 1000.0000 5 107-13-1 5,0000 500.0000 Methyl methacrylate 250.0000 10.0000 100.0000 0 80-62-6 1000.0000 1,2-Dichloroethene (Total) 500.0000 250.0000 100.0000 0 540-59-0 10.0000 500.0000 250.0000 m/p-Xylenes 125.0000 50.0000 0 M/P XYLENE 5.0000 2500.0000 1250.0000 625.0000 o-Xylene 250.0000 ,0 95-47-6 25.0000 2500.0000 1250.0000 Vinyl acetate 625.0000 250.0000 2500.0000 0 108-05-4 25,0000 2-Chloroethylvinyl ether 1250.0000 625.0000 250.0000 30 110-75-8 25.0000 trans-1,4-Dichloro-2-butene 500.0000 250.0000 125.0000 50.0000 20 110-57-6 5.0000 500.0000 250.0000 Iodomethane 125.0000 50.0000 00 74-88-4 5.0000 500.0000 250,0000 125.0000 Ethyl methacrylate 50.0000 10 97-63-2 5.0000 500.0000 Chlorodifluoromethane 250,0000 125.0000 50.0000 0000.0000 20000.0000 20 75-45-6 5.0000 5000.0000 1-Chlorohexane 2000.0000 30 544-10-5 200.0000 500.0000 250.0000 125.0000 Acetonitrile 50.0000 140 75-05-8 5.0000 1000.0000 500.0000 Ethyl ether 250.0000 100.0000 250 60-29-7 10.0000 1000.0000 500.0000 250.0000 m-Xylene 100.0000 951 108-38-3 10.0000 1000.0000 500.0000 250.0000 p-Xylene 100.0000 952 106-42-3 10.0000 10000.0000 1,3-Dichloropropene (Total) 5000.0000 2500.0000 1000.0000 962 542-75-6 100.0000 500.0000 250.0000 125.0000 Ethanol 50.0000 972 64-17-5 5.0000 500.0000 250.0000 Ethyl acetate 125.0000 50.0000 982 141-78-6 3-Chloropropene (Allyl Chlor.) 5.0000 500.0000 250.0000 125.0000 50.0000 992 107-05-1 5.0000 500.0000 2-Chloro-1,3-butadiene 250.0000 125.0000 50.0000 993 126-99-8 5.0000 Bis(chloromethyl) ether (VOA T 994 54-28-81TIC

Data File : C:\HPCHEM\1\DATA\122305\Q9463.D
Acq On : 23 Dec 2005 11:46

Sample : VSTD001

Misc

MS Integration Params: RTEINT.P Ouant Time: Dec 23 12:59 2005

Vial: 8 Operator: JMB Inst : HP5973 Q

Multiplr: 1.00

Quant Results File: A5I02444.RES

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Dec 23 12:02:41 2005 Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : C:\HPCHEM\1\DATA\122305\Q9458.D (23 Dec 2005 9:01)

Internal Standards	R.T.	QIon	Response		its De Ro	V(AL)
1) CI10 1,4-Difluorobenzene	5.77	114	277052		ng	
43) CI20 Chlorobenzene-D5	8.39	117	242356	125.00	5	0.00 99.03%
62) CI30 1,4-Dichlorobenzene-	10.53	152	112708	125.00	ng	0.00 96.06%
System Monitoring Compounds 30) CS87 Dibromofluoromethane Spiked Amount 125.000 Rand 31) CS15 1,2-Dichloroethane-D Spiked Amount 125.000 Rand 44) CS05 Toluene-D8 Spiked Amount 125.000 Rand 61) CS10 p-Bromofluorobenzene	ge 70 5.43 ge 72 7.05 ge 76	- 130 - 65 - 143 - 98 - 116	Recove 3369 Recove 11644 Recove	4.53 ry = 4.81 ry = 4.86 ry = 5.13	3.62 ng 3.85 ng 3.89	0.00 5%# 0.00 9%#
Spiked Amount 125.000 Ran	ge 73	- 117		ry =	4.10)%# Ovalue
4) 6020 11112	1.59 1.83 1.89 2.25	50 62	1212 2613 2169 803	4.19 3.62	ng ‡	43 442 95 89
5) C015 Bromomethane 6) C025 Chloroethane 7) C275 Trichlorofluorometha 8) C045 1,1-Dichloroethene	2.35 2.59 3.11	64 101 96	543 2465 2557 3601	2.37 3.65 4.69	ng ‡ ng ng	‡ 44 94 85 97
12) C038 Acrylonitrile	3.59 3.32 3.04 3.84	76 56 53	9178 4065 35145 7148	4.91 95.93 103.58	ng ng	97 95 98 98
13) C035 Acetone 14) C300 Acetonitrile 15) C276 Iodomethane 16) C291 1,1,2 Trichloro-1,2,	3.20 3.49 3.27 3.08	41 142 101	25773 4660m 1851	208.38 6.40 3.99	ng ng	91 # 56 # 70
17) C962 T-butyl Methyl Ether 18) C057 trans-1,2-Dichloroet 19) C255 Methyl Acetate 20) C050 1,1-Dichloroethane 21) C125 Vinyl Acetate	3.80 3.82 3.49 4.21 4.23	96 43 63 43	10325 3116 5357 6212 40556 4650	4.84 4.88 5.64 5.07 24.03 4.90	ng ng ng ng	95 100 81 100 98 98
22) C051 2,2-Dichloropropane (#) = qualifier out of range (m) Q9463.D A5I02444.M Fri Dec	4.69 = mar : 23 13	ual in	tegration	НР5973		Page 1

Data File : C:\HPCHEM\1\DATA\122305\Q9463.D

Acq On : 23 Dec 2005 11:46

: VSTD001 Sample

Misc

MS Integration Params: RTEINT.P Quant Time: Dec 23 12:59 2005

Inst : HP5973 Q Multiplr: 1.00

Vial: 8 Operator: JMB

Quant Results File: A5I02444.RES

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Dec 23 12:02:41 2005 Response via : Initial Calibration

DataAcq Meth : VOA

	Compou	ınd	R.T.	QIon	Response	Conc Unit	Qva	lue
	 C056	cis-1,2-Dichloroethe	4.72	- 96	3637	5.10 ng		98
23)	C272	Tetrahydrofuran	4.98	42	7471	23.95 ng		94
24)	C272	Bromochloromethane	4.94	128	1509	4.24 ng	#	74
25)	C060	Chloroform	4.99	83	5645	5.07 ng		98
26) 27)	C115	1,1,1-Trichloroethan	5.13	97	4280	4.77 ng		91
28)	C120	Carbon tetrachloride	5.27	117	3436	4.46 ng		95
29)	C116	1,1-Dichloropropene	5.27	75	4184	4.83 ng	#	79
32)	C1165	Benzene	5.45	78	14084	5.14 ng		99
33)	C165	1,2-Dichloroethane	5.50	62	4324	4.70 ng		93
34)	C110	2-Butanone	4.74	43	11137	24.47 ng		98
35)	C256	Cyclohexane	5.15	56	4275	4.72 ng	#	90
36)	C150	Trichloroethene	6.00	95	3752	5.60 ng	#	73
37)	C140	1,2-Dichloropropane	6.21	63	3640	4.99 ng		91
38)	C278	Dibromomethane	6.34		1883	4.64 ng	#	73
39)	C130	Bromodichloromethane	6.46	83	3595	4.49 ng		81
40)	C161	2-Chloroethylvinyl E	6.69	63	13102	24.19 ng	#	88
41)	C012	Methylcycolhexane	6.14	83	6982	7.88 ng	#	83
42)	C145	cis-1,3-Dichloroprop	6.83	75	5370	4.75 ng		89
45)	C230	Toluene	7.11	92	8674	5.03 ng		91
46)	C170	trans-1,3-Dichloropr	7.34	75	4999	4.71 ng		96
47)	C284	Ethyl Methacrylate	7.36	69	4701	4.58 ng	#	71
48)	C160	1,1,2-Trichloroethan	7.52	83	2550	4.92 ng		98
49)		4-Methyl-2-pentanone	6.95	43	22882	24.67 ng	#	85
50)		Tetrachloroethene	7.61	166	3623	5.21 ng		92
51)	C221	1,3-Dichloropropane	7.66	76	5651	4.94 ng		100
52)	C155	Dibromochloromethane	7.89		2817	4.22 ng		88
53)		1,2-Dibromoethane	8.00	107	3209	4.74 ng		93
54)	C215	2-Hexanone	7.70	43	16472	24.55 ng		98
55)		Chlorobenzene	8.42	112	10252	5.17 ng		95
56)		1,1,1,2-Tetrachloroe	8.50		3116	4.64 ng		90
57)		Ethylbenzene	8.49	91	15276	5.19 ng	11	97
58)		m,p-Xylene	8.59		12733	10.31 ng	#	85
59)		o-Xylene	8.98		6185	5.08 ng	#	78
60)		Styrene	9.00		9259	4.73 ng		98
	C180	Bromoform	9.23	173	1897	4.18 ng		96
	C966		9.32		15500	5.55 ng	· ·	9.0
	C301	Bromobenzene	9.66		4257	5.19 ng	#	71
66)		1,1,2,2-Tetrachloroe	9.65		4354	5.04 ng		95
67)	C282	1,2,3-Trichloropropa	9.70		1531	5.37 ng	11	100
68)	C283	t-1,4-Dichloro-2-But	9.69		3682	27.85 ng	#	76 81
	C302		9.71	91	19351	5.86 ng		от
		ifier out of range (m)	 = mar	nual i	 ntegration			_ · -

5111 BULLATO 335/504 Quantitation keport

Data File : C:\HPCHEM\1\DATA\122305\Q9463.D

Acq On : 23 Dec 2005 11:46

Sample : VSTD001

Misc MS Integration Params: RTEINT.P

Vial: 8 Operator: JMB

Inst : HP5973 Q

Multiplr: 1.00

Quant Results File: A5I02444.RES Quant Time: Dec 23 12:59 2005

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Dec 23 12:02:41 2005 Response via : Initial Calibration

DataAcq Meth : VOA

	Compo	und	R.T.	QIon	Response	Conc Unit	Qva	alue
71) 72) 73) 74) 75) 76) 77) 78) 79) 80)	C303 C289 C304 C306 C307 C308 C260 C309 C267 C249 C310	2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenze tert-Butylbenzene 1,2,4-Trimethylbenze sec-Butylbenzene 1,3-Dichlorobenzene 4-Isopropyltoluene 1,4-Dichlorobenzene 1,2-Dichlorobenzene n-Butylbenzene	9.82 9.91 9.86 10.16 10.20 10.34 10.48 10.46 10.56 10.87	QION 126 126 105 134 105 105 146 119 146 146 91 75	Response 3719 4025 13657 3825 13552 23234 7938 20900 8336 7895 19824 668	Conc Unit 5.24 ng 5.42 ng 5.99 ng 7.14 ng 5.83 ng 8.46 ng 5.51 ng 8.32 ng 5.59 ng 5.51 ng 9.65 ng 4.14 ng	#	100 100 50 100 100 91 93 95 93 96 77 67
82)	C313	1,2,4-Trichlorobenze	12.12	180 225	7562 3696	8.22 ng 11.49 ng		96 97
75) 76)	C308 C260	sec-Butylbenzene 1,3-Dichlorobenzene	10.34 10.48	105 146	23234 7938	8.46 ng 5.51 ng		91 93
79) 80) 81) 82)	C249 C310 C286 C313	1,2-Dichlorobenzene n-Butylbenzene 1,2-Dibromo-3-Chloro	10.87 10.81 11.51	91 75	19824 668	9.65 ng 4.14 ng	#	77 67 96
83) 84) 85)	C316 C314 C934	Naphthalene 1,2,3-Trichlorobenze	12.30 12.48	128 180	14454 6659	5.75 ng 7.76 ng		100 91

Data File : C:\HPCHEM\1\DATA\122305\Q9463.D

: 23 Dec 2005 Acq On

Operator: JMB

: VSTD001 Sample

: HP5973 Q Inst

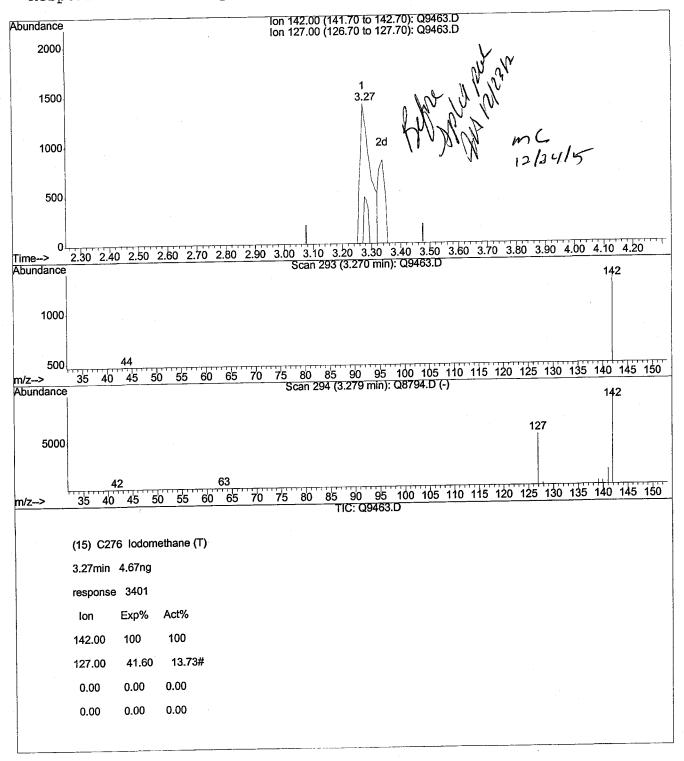
Vial: 8

Multiplr: 1.00

Misc MS Integration Params: RTEINT.P

Quant Time: Dec 23 12:03 2005

Quant Results File: temp.res


Method

: C:\HPCHEM\1\METHODS\Q8260\A5I02444.M (RTE Integrator)

Title

: 8260 5ML

: Fri Dec 23 12:58:42 2005 Last Update Response via : Multiple Level Calibration

Quantitation Report (Qedit)

Data File : C:\HPCHEM\1\DATA\122305\Q9463.D

Acq On : 23 Dec 2005 11:46

Vial: 8
Operator: JMB

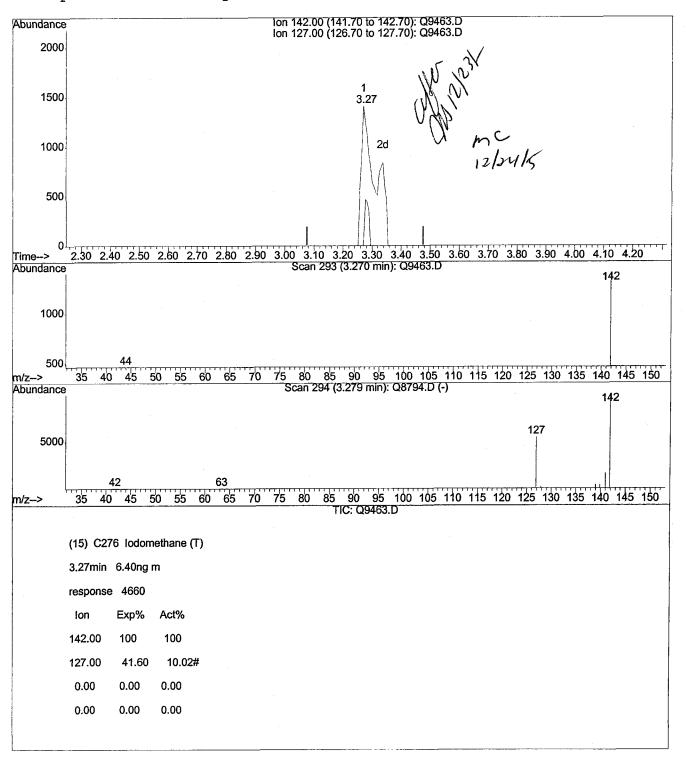
Sample : VSTD001

Inst : HP5973 Q Multiplr: 1.00

Misc :

: APIDOOI

MS Integration Params: RTEINT.P Quant Time: Dec 23 12:59 2005


Quant Results File: temp.res

Method

: C:\HPCHEM\1\METHODS\Q8260\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Dec 23 12:58:42 2005 Response via : Multiple Level Calibration

Quantitation Report SIL Bullato 338/504

Data File : C:\HPCHEM\1\DATA\122305\Q9461.D

Acq On : 23 Dec 2005 10:26 : VSTD010

Sample Misc

MS Integration Params: RTEINT.P Quant Time: Dec 23 12:58 2005

Vial: 6 Operator: JMB

Quant Results File: A5I02444.RES

Inst : HP5973 Q

Multiplr: 1.00

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Dec 23 12:02:41 2005

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : C:\HPCHEM\1\DATA\122305\Q9458.D (23 Dec 2005 9:01)

Internal Standards	R.T.	QIon	Response	Conc Ur	nits	Dev(Min) Rcv(Ar)
1) CI10 1,4-Difluorobenzene 43) CI20 Chlorobenzene-D5	5.77	114	278960	125.00	ng	0.00 100.60%
43) CI20 Chlorobenzene-D5	8.39	117	240792	125.00	ng	0.00 98.40%
62) CI30 1,4-Dichlorobenzene-	10.53	152	113851	125.00	ng	0.00 97.04%
System Monitoring Compounds 30) CS87 Dibromofluoromethane	5.14	111	30884	50.88	ng 40	0.00
Spiked Amount 125.000 Rang 31) CS15 1,2-Dichloroethane-D Spiked Amount 125.000 Rang	5.43	65 142	35614 Pecove	50.46	ng 40	37%#
44) CS05 Toluene-D8	7.05	98 116	TT8T2/	49.07	39	.74%#
Spiked Amount 125.000 Rang 61) CS10 p-Bromofluorobenzene Spiked Amount 125.000 Rang						
Target Compounds						
ol coon Dichlorodifluorometh	1.59 1.83	85 50	22945 29150	46.60	ng ng	Qvalue 95 96 95 96 97 96 99
3) C010 Chloromethane 4) C020 Vinyl chloride 5) C015 Bromomethane	1.90	62 94	29428 11561	54.32	ng	95 95
6) C025 Chloroethane 7) C275 Trichlorofluorometha	∠.59	64 101	31370	46.08	ng	97 96
8) C045 1,1-Dichloroethene 9) C030 Methylene chloride	2 50	96 84	32484	48.09	ng	96 99
10) C040 Carbon disulfide 11) C036 Acrolein 12) C038 Acrylonitrile 13) C035 Acetone 14) C300 Acetonitrile	3.33	56 53	53354	1250.49	ng	95 98
12) C038 Acrylonitrile 13) C035 Acetone	3.84	43 41	64710	238.75	ng	94 100
15) C276 Iodomethane	3.28	142	40400m 21782	JJ. IJ	119	π Ο,
16) C291 1,1,2 Trichloro-1,2, 17) C962 T-butyl Methyl Ether	3.79 3.82	73	107028 30801	49.84 47.89	ng	
18) C057 trans-1,2-Dichloroet 19) C255 Methyl Acetate 20) C050 1,1-Dichloroethane	3.48 4.21	43	46027	48.14 47.95	ng	98° 99
20) C050 1,1-Dichloroethane 21) C125 Vinyl Acetate 22) C051 2,2-Dichloropropane	4.23	43		252.72	ng	100 92
(#) = qualifier out of range (m)	 = man	ual in	tegration	HP5973	- -	Page 1
Q9461.D A5I02444.M Fri Dec	43 14 4		_2005	112 00 , 0	~	

Data File : C:\HPCHEM\1\DATA\122305\Q9461.D

Acq On : 23 Dec 2005 10:26

: VSTD010 Sample

Misc

MS Integration Params: RTEINT.P Quant Time: Dec 23 12:58 2005

Inst: HP5973 Q Multiplr: 1.00

Quant Results File: A5I02444.RES

Vial: 6 Operator: JMB

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

: 8260 5ML Title

Last Update : Fri Dec 23 12:02:41 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Comp	oound	R.T.	QIon	Response	Conc Uni	.t . 	Qva	lue
	cis-1,2-Dichloroethe	4.72	96	33729	47.02 r	ıg		96
23) C056		4.97	42	77645		ıg		95
24) C272	i = 11	4.94	128	17910	49.93 r		#	78
25) C222		4.99	83	53200	47.47 r	ıg		98
26) C060		5.13	97	41042		ng		96
27) C11!		5.27		33896	43.66 r			98
28) C12		5.27		39511	45.32 r	ng		93
29) C11		5.45		131226	47.53 r			100
32) C16	_ , , , , , , , , , , , , , , , , , , ,	5.50		44699	48.20 r			96
33) C06	•	4.74		112342	245.10 r			98
34) C11		5.16		44109	48.35 r			99
35) C25		6.00		30658	45.42	ng	#	69
36) C15		6.22		35638	48.54	ng		96
37) C14		6.34		19880	48.61	ng	#	75
38) C27	, Li-,	6.46		38901	48.30	ng		99
39) C13	0 Bromodichiolomechane	6.69		137218	251.60 1	ng	#	85
40) C16	1 2-Chloroethylvinyl E	6.14		40934	45.90	ng	#	81
41) C01	2 Methylcycolhexane	6.84		54180	47.60	ng		89
42) C14		7.12		82236	48.03	ng		98
45) C23		7.33		51045	48.41	ng		92
46) C17		7.36		50295	49.36	ng	#	76
47) C28	4 Ethyl Methacrylate	7.52		25483	49.50	ng		83
48) C16		6.95		232386	252.16	ng	#	87
49) C21		7.61		32713	47.34	ng		91
50) C22		7.66		56820	49.99	ng		97
51) C22		7.88		32203	48.54	ng		99
52) C15		8.00		32950	48.95	ng		96
53) C16		7.70		164857	247.35	ng		100
54) C21	<u></u>	8.42		94564	47.98	ng		88
55) C23	5 Chlorobenzene	8.50		32584	48.88	ng		94
56) C28		8.49		142331	48.71	ng		89
57) C24	0 Ethylbenzene	8.59		120051	97.79	ng	#	85
58) C24		8.98		59330	49.06	ng	#	77
59) C24		9.00		95922	49.32	ng		,95
60) C24	5 Styrene	9.23		21623	47.12	_		94
63) C18		9.32			50.81			92
64) C96	•	9.66			49.72		#	. 66
65) C3(1 Bromobenzene	9.65		_	49.33			97
66) C22	25 1,1,2,2-Tetrachloroe	9.69			49.29			100
67) C28	1,2,3-Trichloropropa				253.08	_		86
68) C28		9.69			52.01			85
69) C3(02 n-Propylbenzene	9.7	ノエ 				-	
(#) = a	lalifier out of range (m)	= mai	nual i	ntegration		_	ъ	-~- 2

Quantitation Report STL BUILIALO 340/504

Data File : C:\HPCHEM\1\DATA\122305\Q9461.D

Acq On : 23 Dec 2005

Sample : VSTD010

Misc

MS Integration Params: RTEINT.P

Quant Time: Dec 23 12:58 2005

Vial: 6 Operator: JMB

Inst : HP5973 Q

Multiplr: 1.00

Quant Results File: A5I02444.RES

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

: 8260 5ML

Last Update : Fri Dec 23 12:02:41 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Compo	ound	R.T.	QIon	Response	Conc Unit	Qva	lue
70) C303 71) C289 72) C304 73) C306 74) C307 75) C308 76) C260 77) C309 78) C267 79) C249 80) C310 81) C286 82) C313 83) C316 84) C314 85) C934	2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenze tert-Butylbenzene 1,2,4-Trimethylbenze sec-Butylbenzene 1,3-Dichlorobenzene 4-Isopropyltoluene 1,4-Dichlorobenzene 1,2-Dichlorobenzene n-Butylbenzene 1,2-Dibromo-3-Chloro 1,2,4-Trichlorobenze Hexachlorobutadiene Naphthalene 1,2,3-Trichlorobenze	9.82 9.91 9.86 10.15 10.20 10.35 10.46 10.56 10.88 10.81 11.51 12.12 12.21 12.30 12.47		36257 36412 119583 27176 122263 136046 74519 125704 75692 73022 96742 7993 47599 14973 137363 45593	50.61 ng 48.53 ng 51.92 ng 50.23 ng 52.06 ng 49.03 ng 51.21 ng 49.51 ng 50.24 ng 50.43 ng 46.60 ng 49.05 ng 51.24 ng 46.06 ng 54.08 ng 52.62 ng	#	100 100 40 100 95 90 98 95 96 94 85 52 99 96 100

341/504

Data File : C:\HPCHEM\1\DATA\122305\Q9461.D

: 23 Dec 2005 10:26

: VSTD010

Sample

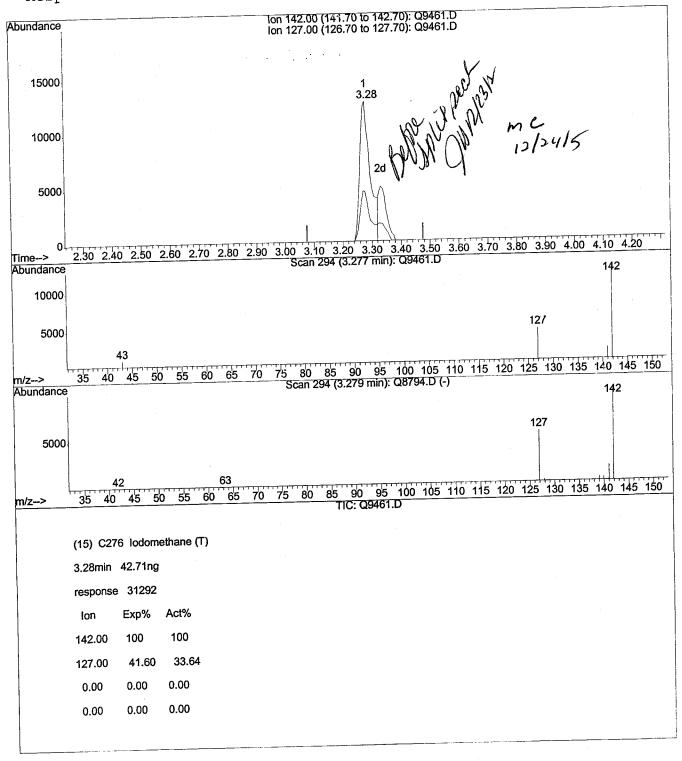
Misc

MS Integration Params: RTEINT.P

Vial: 6 Operator: JMB

: HP5973 Q Inst

Multiplr: 1.00


Quant Time: Dec 23 12:03 2005

Quant Results File: temp.res

: C:\HPCHEM\1\METHODS\Q8260\A5I02444.M (RTE Integrator)

Method : 8260 5ML Title

Last Update : Fri Dec 23 12:56:48 2005 Response via: Multiple Level Calibration

Data File : C:\HPCHEM\1\DATA\122305\Q9461.D

: 23 Dec 2005 10:26 Acq On

: VSTD010 Sample

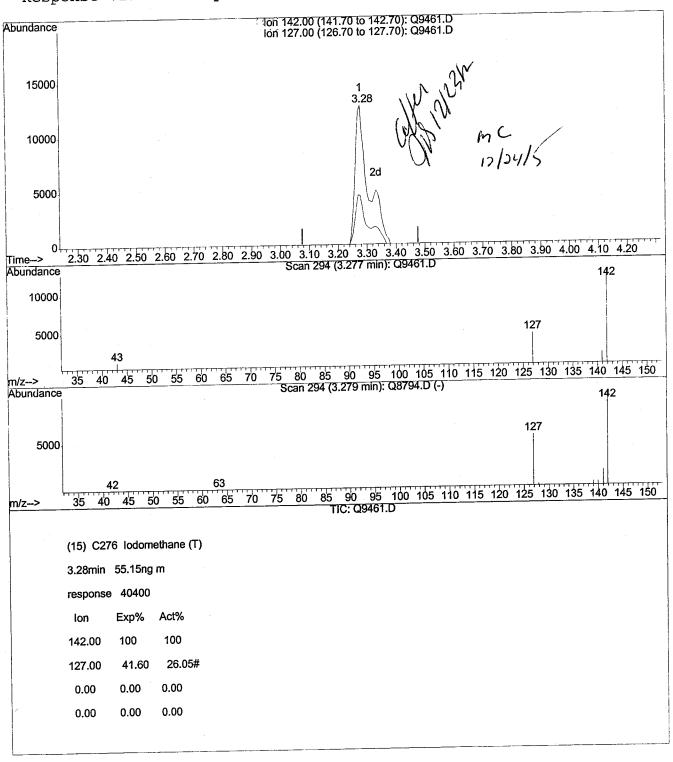
Misc

MS Integration Params: RTEINT.P Quant Time: Dec 23 12:58 2005

Vial: 6 Operator: JMB : HP5973 Q Inst

Multiplr: 1.00

Quant Results File: temp.res


Method

: C:\HPCHEM\1\METHODS\Q8260\A5I02444.M (RTE Integrator)

Title

: 8260 5ML

Last Update : Fri Dec 23 12:56:48 2005 Response via : Multiple Level Calibration

Vial: 3

Data File : C:\HPCHEM\1\DATA\122305\Q9458.D

Operator: JMB Acq On : 23 Dec 2005 9:01

Inst : HP5973 Q : VSTD025 Sample Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P Ouant Results File: A5I02444.RES Quant Time: Dec 23 12:55 2005

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Dec 23 12:02:41 2005

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : C:\HPCHEM\1\DATA\122305\Q9458.D (23 Dec 2005 9:01)

I	nte	rnal S	tandards				Conc Ur	nits	Dev Rcv	(Min) (Ar)
-	1)	CI10	1,4-Difluorobenzene	5.77	114	277292	125.00	ng	100	0.00
	43)	CI20	Chlorobenzene-D5	8.39	117	244718	125.00			
									100	0.00%
	62)	CI30	1,4-Dichlorobenzene-	10.53	152	117329	125.00	ng	100	0.00
									100	0.00%
	Parat.	em Mon	itoring Compounds							
i.	3U) Sabri	CG87	Dibromofluoromethane mount 125.000 Ran 1,2-Dichloroethane-D mount 125.000 Ran Toluene-D8	5.14	111	77520	128.47	ng		0.00
	30) Cn	ikad A	mount 125,000 Ran	ge 70	- 130	Recove	ery =	102	.78%	
	21)	7.00 A	1 2-Dichloroethane-D	5.43	65	87512	124.74	ng		0.00
	21/	iked A	mount 125.000 Ran	ge 72	- 143	Recove	ery =	99	.79%	
	44)	CGUE	Toluene-D8 mount 125.000 Ran mount 125.000 Ran p-Bromofluorobenzene	7.05	98	306947	126.97	ng		0.00
	##/	ikad A	mount 125,000 Ran	ae 76	- 116	Recove	ery =	101	.58%	
	61)	7.60 Y	n-Bromofluorobenzene	9.51	174	98332	126.24	ng		0.00
	aS	iked A	mount 125.000 Ran	ge 73	- 117	Recove	ery =	100	.99%	
	Target Compounds Qvalue									
7				1 50	85	70173	143.36	na	~	100
	2)	C290	Dichlorodifluorometh	1.83		82085	143.36 131.41 135.17 148.53	na		99
			Chloromethane	1.00		81079	135 17	na		96
		C020	Vinyl chloride	2.30	94	31491m	148.53	na		96 95
		C015	Bromomethane	2.24	64	32653	142.39	na		96
		C025	Chloroethane	2.33	101	92605	136.84	na		99
	-	C275	Trichlorofluorometha	2.59		71879	131.71			96
		C045	1,1-Dichloroethene	3.11	90	84377				99
		C030	Methylene chloride	3.59	76	238660				99
		C040	Carbon disulfide Acrolein	3.34	56			_		95
		C036	Acrolein	3.05	50	960430	2533 57	na		98
		C038	Acrylonitrile	2.04	42	167712	622 50	na		95
		C035	Acrolein Acrylonitrile Acetone Acetonitrile Iodomethane 1 1 2 Trichloro-1,2,	3.40	43 41	625321	5051 46	na		99
		C300	Acetonitrile	3.40	140	96501	118 78	na		89
		C276	Iodomethane	3.28	101	62244	134 15	na	#	81
		C291				262233	125.98	na	"	99
		C962	T-butyl Methyl Ether	3.79		83088	129.97			92
		C057	trans-1,2-Dichloroet	3.82		116790	122.90	_		98
		C255	Methyl Acetate	3.48		156401		_		99
		C050		4.21		1095856	648 71			100
			Vinyl Acetate	4.23 4.69		126010	132.62			96
	22)	C051	2,2-Dichloropropane	4.09 				 		
	(#)	= qual	lifier out of range (m)	= man	ual in	tegration		•	-	1
	~~ /	-	VETODAAA M Eri Dec	7 22 12	.55.30	2005	HP5973	-Q	Pa	age 1

Q9458.D A5I02444.M Fri Dec 23 12:55:30 2005 HP5973-Q

Vial: 3 Data File : C:\HPCHEM\1\DATA\122305\Q9458.D Operator: JMB Acq On : 23 Dec 2005 9:01

Inst : HP5973 Q Sample : VSTD025 Multiplr: 1.00

Misc

MS Integration Params: RTEINT.P Quant Results File: A5I02444.RES Quant Time: Dec 23 12:55 2005

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Dec 23 12:02:41 2005

Response via : Initial Calibration

DataAcq Meth : VOA

	Compound		R.T.	QIon	Response	Conc Unit	Qva	lue
			4.72	96	 91648	128.52 ng		94
23	C056	cis-1,2-Dichloroethe	4.72	42	198561	636.03 ng		95
24) C272	Tetrahydrofuran	4.94	128	48091	134.88 ng	#	79
25) C222	Bromochloromethane	4.99	83	142948	128.33 ng		98
26) C060	Chloroform	5.13	97	117297	130.73 ng		97
27		1,1,1-Trichloroethan	5.27	117	103076	133.58 ng		100
28		Carbon tetrachloride	5.27	75	113466	130.92 ng		92
29) C116	1,1-Dichloropropene	5.45	78	351045	127.91 ng		99
32		Benzene	5.50		119718	129.88 ng		95
33		1,2-Dichloroethane	4.73		288991	634.30 ng		99
34) C110	2-Butanone	5.16		112940	124.54 ng		99
35		Cyclohexane	6.00		83888	125.04 ng	#	70
36) C150	Trichloroethene	6.21		93469	128.08 ng		97
37		1,2-Dichloropropane	6.34		53025	130.45 ng	#	79
38		Dibromomethane	6.46		105640	131.96 ng		97
39		Bromodichloromethane	6.69		349626	644.92 ng	#	85
40		2-Chloroethylvinyl E	6.14		88273	99.58 ng	#	79
41		Methylcycolhexane	6.84		147460	130.33 ng		88
42		cis-1,3-Dichloroprop	7.11		221542	127.32 ng		95
45		Toluene	7.33		138055	128.83 ng		96
46		trans-1,3-Dichloropr	7.36		131301	126.80 ng	#	75
47		Ethyl Methacrylate	7.51		66622	127.33 ng		91
48	3) C160	1,1,2-Trichloroethan	6.95		589789	629.70 ng	#	87
4.9		4-Methyl-2-pentanone	7.61		87813	125.05 ng		93
50		Tetrachloroethene	7.66		145458	125.93 ng		98
5:	L) C221	1,3-Dichloropropane	7.88		88002	130.52 ng		98
52		Dibromochloromethane	8.00		87738	128.26 ng		96
53		1,2-Dibromoethane	7.70		426110	629.07 ng	•	99
5		2-Hexanone	8.42		253463	126.53 ng		89
5	5) C235	Chlorobenzene	8.50		86364	127.47 ng		93
5	6) C281	1,1,1,2-Tetrachloroe	8.49		373598	125.80 ng		89
5	7) C240	Ethylbenzene	8.59		315224	252.66 ng	#	83
5	8) C246	m,p-Xylene	8.98	_	155788	126.76 ng	#	81
. 5	9) C247	o-Xylene	9.00		253676	128.33 ng		96
6	0) C245	Styrene			60571	128.08 ng		97
6	3) C180	Bromoform	9.23 9.33			119.53 ng		91
6	4) C966	Isopropylbenzene	9.6			124.17 ng	#	68
6	5) C301	Bromobenzene	9.6			129.60 ng		9.6
	6) C225		9.7			126.32 ng		100
6	7) C282	1,2,3-Trichloropropa				619.59 ng		82
6	8) C283	t-1,4-Dichloro-2-Buc	9.6 9.7			116.69 ng		85
6	9) C302	n-Propylbenzene	J. /					
(#) = qualifier out of range (m) = manual integration							Ę	Page 2

Quantitation Report STL Buffalo 345/504

Data File : C:\HPCHEM\1\DATA\122305\Q9458.D

Acq On : 23 Dec 2005 9:01

: VSTD025 Sample

Misc

MS Integration Params: RTEINT.P Quant Time: Dec 23 12:55 2005

Vial: 3

Operator: JMB

Inst : HP5973 Q

Multiplr: 1.00

Quant Results File: A5I02444.RES

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Dec 23 12:02:41 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Compound	R.T.	QIon	Response	Conc Unit	Qvalue
70) C303 2-Chlorotoluene 71) C289 4-Chlorotoluene 72) C304 1,3,5-Trimethylbenze 73) C306 tert-Butylbenzene 74) C307 1,2,4-Trimethylbenze 75) C308 sec-Butylbenzene 76) C260 1,3-Dichlorobenzene 77) C309 4-Isopropyltoluene 78) C267 1,4-Dichlorobenzene 79) C249 1,2-Dichlorobenzene 80) C310 n-Butylbenzene 81) C286 1,2-Dibromo-3-Chloro 82) C313 1,2,4-Trichlorobenze 83) C316 Hexachlorobutadiene 84) C314 Naphthalene 85) C934 1,2,3-Trichlorobenze	9.82 9.91 9.86 10.16 10.35 10.48 10.46 10.56 10.87 10.81 11.51 12.12 12.21 12.30 12.48	126 126 105 134 105 105 146 119 146 146 91 75 180 225 128 180	90386 94535 268232 58297 278724 270606 178604 251161 186703 179081 187991 21939 90780 24037 296341 85898	122.43 ng 122.25 ng 113.00 ng 104.55 ng 115.17 ng 94.63 ng 119.09 ng 95.99 ng 120.25 ng 120.01 ng 87.86 ng 130.65 ng 94.82 ng 71.76 ng 113.21 ng 96.20 ng	100 100 39 100 93 89 95 94 94 95 82 # 61 97 95 100 99

: HP5973 Q

Vial: 3

Operator: JMB

Multiplr: 1.00

Inst

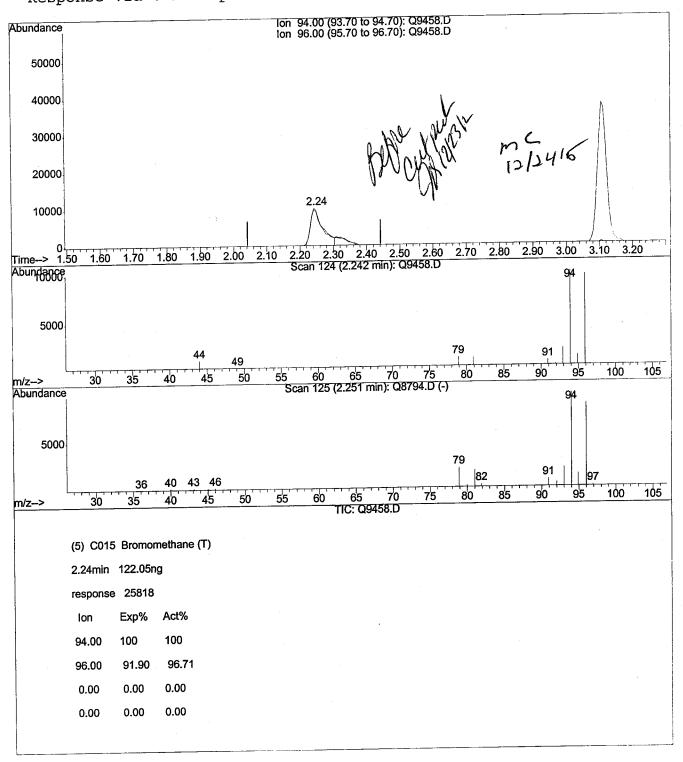
Data File : C:\HPCHEM\1\DATA\122305\Q9458.D

: 23 Dec 2005 Acq On

: VSTD025 Sample

Misc

Method


MS Integration Params: RTEINT.P

Quant Results File: temp.res Quant Time: Dec 23 12:02 2005

: C:\HPCHEM\1\METHODS\Q8260\A5I02444.M (RTE Integrator)

: 8260 5ML Title

: Fri Dec 23 12:48:52 2005 Last Update Response via : Multiple Level Calibration

: HP5973 Q

Vial: 3

Operator: JMB

Multiplr: 1.00

Inst

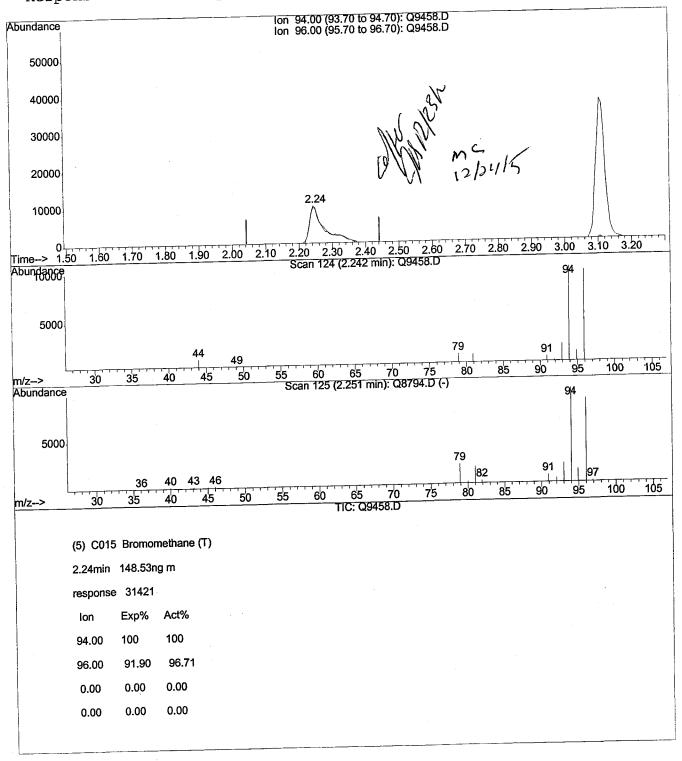
Data File : C:\HPCHEM\1\DATA\122305\Q9458.D

: 23 Dec 2005 Acq On

: VSTD025 Sample

Misc

MS Integration Params: RTEINT.P


Quant Results File: temp.res Quant Time: Dec 23 12:55 2005

Method

: C:\HPCHEM\1\METHODS\Q8260\A5I02444.M (RTE Integrator)

: 8260 5ML Title

: Fri Dec 23 12:48:52 2005 Last Update Response via : Multiple Level Calibration

Vial: 5 Data File : C:\HPCHEM\1\DATA\122305\Q9460.D Operator: JMB

Acq On : 23 Dec 2005 9:57 Inst : HP5973 Q : VSTD050 Sample Multiplr: 1.00

Misc

MS Integration Params: RTEINT.P Quant Results File: A5I02444.RES Quant Time: Dec 23 12:03 2005

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

: 8260 5ML Title

Last Update : Fri Dec 23 12:02:41 2005

Response via : Initial Calibration

DataAcq Meth : VOA IS QA File : C:\HPCHEM\1\DATA\122305\Q9458.D (23 Dec 2005 9:01)

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
1) CI10 1,4-Difluorobenzene	5.77	114	283024		
43) CI20 Chlorobenzene-D5	8.39	117	245365	125.00 ng	100.26%
62) CI30 1,4-Dichlorobenzene-	10.53	152	117940	125.00 ng	0.00 100.52%
System Monitoring Compounds 30) CS87 Dibromofluoromethane Spiked Amount 125.000 Rang 31) CS15 1,2-Dichloroethane-D Spiked Amount 125.000 Rang 44) CS05 Toluene-D8 Spiked Amount 125.000 Rang 61) CS10 p-Bromofluorobenzene Spiked Amount 125.000 Rang	ge 70 5.43 ge 72 7.06 ge 76 9.51	65 - 143 98 - 116	Recove 180482 Recove 620001 Recove 198340	252.05 ng ery = 20 255.78 ng ery = 20 253.95 ng	0.00 1.64%# 0.00 4.62%#
bpiked imoust					Ovalue
5) C015 Bromomethane 6) C025 Chloroethane 7) C275 Trichlorofluorometha 8) C045 1,1-Dichloroethene 9) C030 Methylene chloride 10) C040 Carbon disulfide 11) C036 Acrolein 12) C038 Acrylonitrile	3.11 3.59 3.32 3.05 3.84 3.20 3.48	50 62 94 64 101 96 84 76 53 41 142 101 73 96 83 43 43 43 43 43	216749 130607 550856 168865 233853 318718 2190849	270.41 ng 277.65 ng 276.39 ng 292.95 ng 279.56 ng 266.01 ng	99 100 99 98 98 95 98 99 96 99 89 89 100 91 100 99 99
(#) = qualifier out of range (m)	= mai	nual i	ntegration	ı нр5973-0	Page 1

Data File : C:\HPCHEM\1\DATA\122305\Q9460.D

Operator: JMB Inst : HP5973 Q cq On : 23 Dec 2005 9:57 Multiplr: 1.00 : VSTD050 Bample

1isc

Quant Results File: A5I02444.RES 4S Integration Params: RTEINT.P Quant Time: Dec 23 12:03 2005

Quant Method: C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Fri Dec 23 12:02:41 2005

Response via : Initial Calibration

DataAcq Meth : VOA

QION 96 42 128 83 97 175 62 43 69 44 13 69 44 13 69 43 69 44 13 69 43 69 44 13 69 43 69 44 166 83	701577 199597 296422 446999 5 280368 271613 3 133583 1193163 6 18127	255.13 ng 1270.47 ng 262.34 ng 253.81 ng 254.17 ng 262.92 ng 253.15 ng 258.84 ng 1263.56 ng 248.46 ng 259.38 ng 259.	# # # # # # # # # # # # # # # # # # #	94 95 79 98 96 100 95 77 97 98 88 89
96 42 128 83 97 117 78 62 43 59 69 44 13 69 44 13 69 43 43 69 44 13 69 43 43 44 43 44 43 44 43 44 44 43 44 44	404827 95473 288561 241933 214819 232578 709141 243523 587586 246268 170135 189389 107613 212426 701577 199597 296422 446999 280368 271613 133583 1193163 18127 29499	1270.47 ng 262.34 ng 253.81 ng 253.81 ng 264.17 ng 262.92 ng 253.15 ng 258.84 ng 1263.56 ng 248.46 ng 254.26 ng 259.38 ng 259.38 ng 259.97 ng 256.67 ng 256.	# # # # # # # # # # # # # # # # # # #	95 79 98 96 100 95 77 97 98 88 99 78 88
42 128 83 97 117 78 62 43 55 69 44 69 44 13 66 62 63 63 63 63 63 63 63 63 63 63 63 63 63	404827 95473 288561 241933 214819 232578 709141 243523 587586 246268 170135 189389 107613 212426 701577 199597 296422 446999 280368 271613 133583 1193163 18127 29499	1270.47 ng 262.34 ng 253.81 ng 253.81 ng 264.17 ng 262.92 ng 253.15 ng 258.84 ng 1263.56 ng 248.46 ng 254.26 ng 259.38 ng 259.38 ng 259.97 ng 256.67 ng 256.	# # # # # # # # # # # # # # # # # # #	79 98 96 100 94 100 95 77 98 88 89 97 88
128 83 97 117 78 62 43 56 62 63 63 63 63 63 63 63 63 63 63	95473 288561 241933 214819 232578 709141 243523 587586 246268 170135 189389 107613 212426 701577 199597 296422 446999 280368 271613 133583 1193163 18127 29499	262.34 ng 253.81 ng 264.17 ng 272.74 ng 262.92 ng 253.15 ng 258.84 ng 1263.56 ng 266.06 ng 248.46 ng 259.38 ng 259.97 ng 220.60 ng 256.67 ng 256.67 ng 256.21 ng 260.95 ng 261.61 ng 261.63 ng 261.64 ng	# # # # # # # # # # # # # # # # # # #	79 98 96 100 94 100 99 73 99 73 88 89 97 88
83 97 117 75 62 43 56 94 43 69 44 13 69 44 13 69 44 13 69 83 44 13 69 83 83 83 83 83 84 84 84 84 84 84 84 84 84 84 84 84 84	288561 241933 214819 232578 709141 243523 587586 246268 170135 189389 107613 212426 701577 199597 296422 446999 280368 271613 133583 1193163 18127 29499	253.81 ng 264.17 ng 272.74 ng 262.92 ng 253.15 ng 258.84 ng 1263.56 ng 266.06 ng 248.46 ng 259.38 ng 259.97 ng 220.60 ng 226.67 ng 256.67 ng 256.21 ng 260.95 ng 261.61 ng 261.61 ng 261.63 ng 261.63 ng 261.63 ng 261.63 ng 261.64 ng 261.65 ng 261.65 ng 261.65 ng 261.65 ng 261.66 ng 261.6	# # ## ## ## ## ## ## ## ## ## ## ## ##	96 100 94 100 95 77 9 8 8 8 8 9 9 7 8 8
83 97 117 75 60 61 60 61 61 62 62 63 63 64 64 64 64 64 64 64 64 64 64 64 64 64	241933 214819 232578 709141 243523 587586 246268 170135 189389 107613 212426 701577 199597 296422 446999 280368 271613 133583 1193163 181276	264.17 ng 272.74 ng 262.92 ng 253.15 ng 258.84 ng 1263.56 ng 266.06 ng 248.46 ng 259.38 ng 259.97 ng 220.60 ng 220.60 ng 256.67 ng 256.6	# # ## ## ## ## ## ## ## ## ## ## ## ##	100 94 100 95 77 97 98 88 88 99 78 88
97 117 75 6 62 8 55 1 43 6 95 1 4 75 1 75 8 63 8 75 9 63 8 75 8 63 8 75 8 63 8 75 8 75 8 75 8 75 8 75 8 75 8 75 8 75	214819 232578 709141 243523 587586 246268 170135 189389 107613 212426 701577 199597 296422 446999 280368 271613 133583 1193163 18127 29499	272.74 ng 262.92 ng 253.15 ng 258.84 ng 1263.56 ng 266.06 ng 248.46 ng 259.38 ng 259.97 ng 220.60 ng 220.60 ng 256.67 ng 256.6	m m g g g g g g g g g g g g g g g g g g	100 94 100 95 77 9 7 9 8 8 8 8
117 75 78 62 43 56 95 14 66 97 83 67 83 67 83 67 83 67 83 83 83 83 83 83 83 83 83 83 83 83 83	214819 232578 709141 243523 587586 246268 170135 189389 107613 212426 701577 199597 296422 446999 280368 271613 133583 1193163 18127 29499	262.92 ng 253.15 ng 258.84 ng 1263.56 ng 266.06 ng 248.46 ng 254.26 ng 259.38 ng 259.97 ng 220.60 ng 226.67 ng 256.67 ng 256.21 ng 256.21 ng 256.67 ng 256.21 ng 256.67 ng 256.21 ng 256.67 ng 256.21 ng 256.67 ng 256.6	# # ## ## ## # # # # # # # # # # # # #	94 100 95 99 7 9 7 9 8 8 8 9
75 78 62 43 56 95 14 66 93 63 63 63 63 63 63 63 63 63 63 63 63 63	232578 709141 243523 587586 246268 170135 189389 107613 212426 701577 199597 296422 446999 280368 271613 133583 1193163 18127 29499	253.15 m 258.84 m 1263.56 m 266.06 m 248.46 m 254.26 m 259.38 m 259.97 m 1267.93 m 220.60 m 256.67 m 256.67 m 256.21 m 256.21 m 256.67 m 256.21 m 256.67 m 256.21 m 256.67 m 256.67 m 256.67 m 256.67 m 256.67 m 256.67 m 256.67 m 256.67 m 256.67 m 256.67 m 256.67 m 256.67 m 256.67 m 256.67 m	g g g g g g g g g g g g g g g g g g g	100 95 95 77 97 88 89 97 88
78 62 3 43 56 95 14 66 93 44 83 44 92 75 63 44 92 75 63 44 92 44 93 64 94 44 95 44 95 44 95 44 95 44 95 44 95 44 95 45 46 46 46 46 46 46 46 46 46 46 46 46 46	709141 243523 587586 246268 170135 189389 107613 212426 701577 199597 296422 446999 280368 271613 133583 1193163 18127 29499	258.84 m 1263.56 m 266.06 m 248.46 m 254.26 m 259.38 m 259.97 m 1267.93 m 220.60 m 256.67 m 256.21 m 260.95 m 261.61 m 254.63 m 254.63 m 257.46	g g g g g g g g g g g g g g g g g g g g	95 95 77 9 8 8 8 9 9 7 8 8 8 9 9 7 8 8 8 9 9 7 8 8 8 9 9 7 8 8 8 9 9 7 8 8 8 9 9 7 8 8 8 9 9 7 8 8 8 9 9 7 8 8 8 9 9 7 8 8 8 9 9 9 7 8 8 9 9 9 7 8 8 9 9 9 7 8 8 9 9 9 7 8 8 9 9 9 7 8 8 9 9 9 7 8 8 9 9 9 7 8 8 9 9 9 7 8 8 9 9 9 7 8 8 9 9 9 7 8 8 9 9 9 7 8 9 9 9 7 8 9 9 9 7 8 9 9 9 7 8 9 9 9 7 8 9 9 9 7 8 9 9 9 7 8 9 9 9 7 8 9 9 9 7 8 9 9 9 7 8 9 9 9 7 8 9 9 9 7 8 9 9 9 7 8 9 9 9 7 8 9 9 9 7 8 9 9 9 7 8 9 9 9 7 8 9 9 9 7 9 9 9 9
62 43 56 95 1 63 63 63 63 63 63 63 63 63 63	243523 587586 246268 170135 189389 107613 212426 701577 199597 296422 446999 280368 271613 3 133583 1193163 18127 29499	258.84 m 1263.56 m 266.06 m 248.46 m 254.26 m 259.38 m 259.97 m 1267.93 m 220.60 m 256.67 m 256.21 m 260.95 m 261.61 m 254.63 m 254.63 m 257.46	g g g g g g g g g g g g g g g g g g g g	99 73 7 9 8 8 8 9 9 7 8 8
43 56 95 1 4 93 6 93 83 94 83 4 75 1 75 69 83 4 92 83 83 83 4 92 83 83 83 83 84 83 84 83 84 84 85 85 86 86 86 86 86 86 86 86 86 86 86 86 86	587586 246268 170135 189389 107613 212426 701577 199597 296422 446999 280368 271613 133583 1193163 181276	1263.56 n 266.06 n 248.46 n 254.26 n 259.38 n 259.97 n 1267.93 n 220.60 n 256.67 n 256.21 n 260.95 n 261.61 n 254.63 n 254.63 n 254.63 n	g # # # # # # # ng ng ng ng ng ng ng ng ng ng	99 70 90 70 9 8 8 8 8 9 9 7 8
56 95 1 4 93 6 93 83 94 75 75 69 83 49 44 92 36 83 44 92 36 83 44 92 83 83 83 83 83 84 84 85 85 86 86 86 86 86 86 86 86 86 86 86 86 86	246268 170135 189389 107613 212426 701577 199597 296422 446999 280368 271613 133583 1193163 181276	266.06 n 248.46 n 254.26 n 259.38 n 259.97 n 1267.93 n 220.60 n 256.67 n 256.21 n 256.21 n 260.95 n 261.61 n 254.63 n 254.63 n 254.63 n 254.63 n	g # # # # # # ng mg mg mg mg mg mg mg mg mg mg mg mg mg	73 96 7 9 8 8 8 9 7 8
95 1 63 4 93 6 83 9 63 4 75 1 92 3 69 63 64 83 4 75 69 83 69 83	170135 189389 107613 212426 701577 199597 296422 446999 280368 271613 133583 1193163 18127 29499	248.46 n 254.26 n 259.38 n 259.97 n 1267.93 n 220.60 n 256.67 n 256.21 n 260.95 n 261.61 n 254.63 n 254.63 n 254.63 n	.g # .g # .g # .g # .g # .ng # .ng # .ng # .ng .ng # .ng .ng .ng	90 7 9 8 8 8 9 9 7 8 8
95 1 93 4 93 6 83 9 83 4 75 1 92 75 69 83 43	189389 107613 212426 701577 199597 296422 446999 280368 271613 133583 1193163 18127 6 29499	254.26 n 259.38 n 259.97 n 1267.93 n 220.60 n 256.67 n 256.21 n 260.95 n 261.61 n 254.63 n 254.63 n 254.63 n	ng # ng # ng # ng mg ng # ng ng ng ng	7' 9 8 8 8 9 7 8
1 63 4 93 6 83 9 63 4 83 4 75 1 92 3 69 62 83	107613 212426 701577 199597 296422 446999 280368 271613 133583 1193163 18127 6 29499	259.38 m 259.97 m 1267.93 m 220.60 m 256.67 m 256.21 m 260.95 m 261.61 m 254.63 m 254.63 m 257.46	ng # ng # ng # ng # ng # ng # ng # ng #	9 8 8 8 9 9 7 8 8 9
4 93 6 83 9 63 4 75 1 92 3 75 66 69 52 83	212426 701577 199597 296422 446999 280368 271613 3 133583 1193163 181276	259.97 r 1267.93 r 220.60 r 256.67 r 256.21 r 260.95 r 261.61 r 254.63 r 254.63 r 257.46	ng # ng # ng # ng # ng # ng # ng # ng #	8 8 8 9 7 8
6 83 9 63 4 83 4 75 1 92 3 75 66 69 52 83	701577 199597 296422 446999 5 280368 271613 133583 1193163 181276	1267.93 r 220.60 r 256.67 r 256.21 r 260.95 r 261.61 r 254.63 r 254.63 r 254.63 r 254.63 r	ng # ng # ng ng ng # ng ng # ng ng # ng ng	8 9 7 8
9 63 4 83 4 75 1 92 3 75 66 69 52 83	701577 199597 296422 446999 5 280368 271613 3 133583 1193163 6 18127	220.60 r 256.67 r 256.21 r 8 260.95 r 1 254.63 r 1 254.63 r 257.46	ng # ng ng ng # ng ng # ng ng # ng ng	8 9 7 8
4 83 4 75 1 92 3 75 6 69 52 83	199597 296422 446999 280368 271613 133583 1193163 18127 6 29499	220.60 I 2 256.67 I 2 256.21 I 8 260.95 I 1 254.63 I 1 270.54 I 257.46	ng ng ng # ng # ng # ng	8 9 7 8
4 75 1 92 3 75 66 69 52 83 95 43	296422 446999 280368 271613 3 133583 1193163 18127 6 29499	2 256.67 F 2 256.21 F 8 260.95 F 1 261.61 F 1 254.63 F 3 1270.54 F 6 257.46	ng ng # ng # ng # ng	9 7 8 8
1 92 3 75 66 69 52 83 95 43	446999 280368 271613 133583 1193163 18127 6 29499	256.21 I 8 260.95 I 1 261.61 I 254.63 I 3 1270.54 I 6 257.46	ng # ng # ng # ng # ng	9 7 8 8
3 75 6 69 52 83 95 43	280368 271613 3 133583 3 1193163 6 18127 6 29499	260.95 1 261.61 1 254.63 1 3 1270.54 5 6 257.46	ng # ng # ng # ng # ng	7 8 8
66 69 52 83 95 43	271613 3 133583 3 1193163 6 18127 6 29499	1 261.61 1 1 254.63 1 3 1270.54 3 6 257.46	ng # ng ng # ng ng	9 9
52 83 95 43	133583 1193163 18127 6 29499	1 254.63 3 1270.54 6 257.46	ng ng # ng ng	9
5 43	119316 18127 29499	3 1270.54 6 257.46	ng # ng ng	9
	6 18127 6 29499	6 257.46	ng ng	
	6 29499		ng	(
	₅ 29499	5 7.54 • 7 +	***9	:
56 76	=		na	10
89 129	9 18190		219	9
00 107	7 17732	4 258.54		,
		1/ 2/2/-	ng	
, -	0 - 0	254.18	ng	
		59 264.19	ng	
		52 255.19	ng	
49 9			ng #	
59 10	405	, O =	ng #	
98 10	16 3140		ng	
00 10	5116		na	
.23 17	73 1301		ng	
)5 7247 ¹		ng #	
	56 2172		J	
	83 2277	91 251.97	119	
66 X		250.12	ng "	
• • •			·	Ţ
.70 11		37 7707.40	na	‡ .
.70 11 .69 5				‡
	.32 10 .66 15	.32 105 7247 .66 156 2172 .66 83 2277 .70 110 746	.32 105 724761 247.80 .66 156 217272 253.09 .66 83 227791 251.97 .70 110 74625 250.12 .69 51 166331 1202.46	32 105 724761 247.80 ng .66 156 217272 253.09 ng # .66 83 227791 251.97 ng .66 83 74625 250.12 ng

ata File : C:\HPCHEM\1\DATA\122305\Q9460.D

eq On : 23 Dec 2005 9:57 : VSTD050

ample

S Integration Params: RTEINT.P Quant Time: Dec 23 12:03 2005

Operator: JMB Inst : HP5973 Q Multiplr: 1.00

Quant Results File: A5I02444.RES

nuant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

: 8260 5ML

last Update : Fri Dec 23 12:02:41 2005

Response via : Initial Calibration

DataAcq Meth : VOA

ataAcq Meth : VOA	- 0	Ton	Response	Conc Unit	Qva]	Lue
Compound 70) C303 2-Chlorotoluene 71) C289 4-Chlorotoluene 72) C304 1,3,5-Trimethylbenze 73) C306 tert-Butylbenzene 74) C307 1,2,4-Trimethylbenze 75) C308 sec-Butylbenzene 76) C260 1,3-Dichlorobenzene 77) C309 4-Isopropyltoluene 78) C267 1,4-Dichlorobenzene 79) C249 1,2-Dichlorobenzene 80) C310 n-Butylbenzene 81) C286 1,2-Dibromo-3-Chloro 82) C313 1,2,4-Trichlorobenze 83) C316 Hexachlorobutadiene 84) C314 Naphthalene 85) C934 1,2,3-Trichlorobenze	R.T. Q 9.82 9.91 9.86 10.16 10.20 10.35 10.48 10.46 10.56 10.87 10.81 11.51 12.12 12.21 12.30 12.48	126 126 105 134 105 146 146 146 91 75 180 225 180	186158 195603 575070 126975 586624 593319 373516 549008 384136 370280 406899 45359 199226 55397 635741	250.85 ng 251.64 ng 241.01 ng 226.54 ng 241.14 ng 206.40 ng 247.76 ng 208.73 ng 246.14 ng 246.85 ng 189.19 ng 268.71 ng 207.01 ng 164.52 ng 241.62 ng 214.00 ng	#	100 100 41 100 95 89 95 94 95 94 80 63 99 96 100 98

Data File : C:\HPCHEM\1\DATA\122305\Q9459.D

Vial: 4 Operator: JMB

Acq On : 23 Dec 2005 9:29 Sample : VSTD100 Inst : HP5973 Q Multiplr: 1.00

Misc

MS Integration Params: RTEINT.P Quant Results File: A5I02444.RES Quant Time: Dec 23 12:03 2005

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

: 8260 5ML Title

Last Update : Fri Dec 23 12:02:41 2005

Response via : Initial Calibration

DataAcq Meth : VOA IS QA File : C:\HPCHEM\1\DATA\122305\Q9458.D (23 Dec 2005 9:01)

_						Dev(Min) Rcv(Ar)	
1) CI10 1,4-Difluorobenzene 5	 .77	114	281507			TOT. JZ 0	
43) CI20 Chlorobenzene-D5 8		117	249003			0.00 101.75%	
62) CI30 1,4-Dichlorobenzene- 10	.54	152	119066	125.00	ng	0.00 101.48%	
System Monitoring Compounds 30) CS87 Dibromofluoromethane 5 Spiked Amount 125.000 Range 31) CS15 1,2-Dichloroethane-D 5 Spiked Amount 125.000 Range 44) CS05 Toluene-D8 7 Spiked Amount 125.000 Range 61) CS10 p-Bromofluorobenzene 9 Spiked Amount 125.000 Range	7.06 7.06 7.06	65 - 143 98 - 116	364461 Recove: 1223845 Recove:	ry = 511.72 ry = 497.52 ry = 487.85	408. ng 409. ng 398.	0.00 45%# 0.00 38%# 0.00 .02%# 0.00 .28%#	
Target Compounds 2) C290 Dichlorodifluorometh 3) C010 Chloromethane 4) C020 Vinyl chloride 5) C015 Bromomethane 6) C025 Chloroethane 7) C275 Trichlorofluorometha 8) C045 1,1-Dichloroethene 9) C030 Methylene chloride 10) C040 Carbon disulfide 11) C036 Acrolein 12) C038 Acrylonitrile 13) C035 Acetone 14) C300 Acetonitrile 15) C276 Iodomethane 16) C291 1,1,2 Trichloro-1,2, 17) C962 T-butyl Methyl Ether 18) C057 trans-1,2-Dichloroet 19) C255 Methyl Acetate 20) C050 1,1-Dichloroethane	1.59 1.83 1.89 2.24 2.34 2.59 3.11 3.59 3.32 3.32 3.32 3.49 3.79 3.82 4.21 4.23	85 50 62 94 64 101 96 84 76 53 41 142 101 73 8 8 63 43 77	305800 349397 337607 115075 137167 390365 285650 331602 959486 427484 3294609 687118 2497276 404446 257179 1100374 321758 463606 613368 4173940 493211	615.39 550.98 554.42 535.84 589.17 568.19 515.57 486.46 505.54 9928.53 9555.85 2512.18 19871.4 547.07 545.96 507.81 495.77 480.55 493.03 2433.83 511.30	ng ng ng ng ng ng ng ng ng ng ng ng ng n	95 99 96 99	

Inst : HP5973 Q

Operator: JMB

Multiplr: 1.00

Data File : C:\HPCHEM\1\DATA\122305\Q9459.D

Acq On : 23 Dec 2005 9:29

Sample : VSTD100

Misc

MS Integration Params: RTEINT.P Quant Results File: A5I02444.RES Quant Time: Dec 23 12:03 2005

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML Last Update : Fri Dec 23 12:02:41 2005

Response via : Initial Calibration

DataAcq Meth : VOA

		Compor	ınd	R.T.	QIon	Response	Conc Un	it 	Qva	lue
-	·			4.72	96	358365	495.02	ng		94
	23)	C056	cis-1,2-Dichloroethe	4.96	42	807416	2547.57	ng		96
	24)	C272	Tetrahydrofuran	4.94	128	185674	512.94	ng	#	78
	25)	C222	Bromochloromethane	5.00	83	562158	497.11	ng		100
	26)	C060	Chloroform	5.13	97	470649		ng		97
	27)	C115	1,1,1-Trichloroethan	5.26	117	421411	537.93	ng		99
	28)	C120	Carbon tetrachloride	5.26	75.	452351	514.12	ng		93
	29)	C116	1,1-Dichloropropene	5.45		1374230		ng		99
	32)	C165	Benzene	5.50	62	478448	511.28	ng		95
	33)	C065	1,2-Dichloroethane	4.73		1173946		ng		99
	34)	C110	2-Butanone	5.15	56	473634		ng		99
	35)	C256	Cyclohexane	6.00		332984		ng	. #	73
	36)	C150	Trichloroethene	6.21		366392		ng		97
	37)	C140	1,2-Dichloropropane	6.34		210321	509.67	_	#	79
	38)	C278	Dibromomethane	6.46		422441	_	ng		96
	39)	C130	Bromodichloromethane	6.69		1348139	2449.55	_	#	85
	40)	C161	2-Chloroethylvinyl E			371814	413.16	_	#	79
	41)	C012	Methylcycolhexane	6.13		590835	514.36			88
	42)	C145	cis-1,3-Dichloroprop	6.84		875752	494.63			94
	45)	C230	Toluene	7.12		553469	507.61			96
	46)	C170	trans-1,3-Dichloropr	7.33		545311	517.55		#	76
	47)	C284	Ethyl Methacrylate	7.36		263162	494.31			85
	48)	C160	1,1,2-Trichloroethan	7.52		2336535	2451.71		#	85
	49)	C210	4-Methyl-2-pentanone	6.95		350515				94
	50)	C220	Tetrachloroethene	7.61		579369	492.95			97
	51)	C221	1,3-Dichloropropane	7.67			532.44	_		99
	52)	C155	Dibromochloromethane	7.89		365269	506.64			95
	53)	C163	1,2-Dibromoethane	8.00		352636	2495.87			97
	54)	C215	2-Hexanone	7.70		1720213	488.98			89
	55)		Chlorobenzene	8.42		996672	508.59			96
	56)		1,1,1,2-Tetrachloroe	8.49		350622	479.95	_		88
	57)		Ethylbenzene	8.49	_	1450302	963.00	-	#	82
	58)		m,p-Xylene	8.60	_	1222508	484.39		#	82
	59)		o-Xylene	8.98		605723	504.21		π	95
	60)		Styrene	9.00		1014146	551.38			100
		C180	Bromoform	9.23		264621				92
		C966	Isopropylbenzene	9.32			463.63		#	69
		C301	Bromobenzene	9.66					11	99
		C225	1,1,2,2-Tetrachloroe	9.66						100
		C282	1,2,3-Trichloropropa	9.70					#	78
) C283		9.70			2300.53		#	90
) C302	- •	9.73	L 91	1530621	438.67	119		
			lifier out of range (m)	 = mai	 nual i	ntegration	 1			

Quantitation Report

STL Buffalo

353/504

ata File : $C:\HPCHEM\1\DATA\122305\Q9459.D$

cq On : 23 Dec 2005 9:29 ample : VSTD100

S Integration Params: RTEINT.P

Quant Time: Dec 23 12:03 2005

Multiplr: 1.00 Quant Results File: A5I02444.RES

Vial: 4

Inst : HP5973 Q

Operator: JMB

Juant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

ritle : 8260 5ML

Last Update : Fri Dec 23 12:02:41 2005

Response via : Initial Calibration

DataAcq Meth : VOA

ataAcq Meth : VOA	* •		Response	Conc Unit	Qvalu	.e
Compound 70) C303 2-Chlorotoluene 71) C289 4-Chlorotoluene 72) C304 1,3,5-Trimethylbenzene 73) C306 tert-Butylbenzene 74) C307 1,2,4-Trimethylbenzene 75) C308 sec-Butylbenzene 76) C260 1,3-Dichlorobenzene 77) C309 4-Isopropyltoluene 78) C267 1,4-Dichlorobenzene 79) C249 1,2-Dichlorobenzene 80) C310 n-Butylbenzene 81) C286 1,2-Dibromo-3-Chlorobenzene 82) C313 1,2,4-Trichlorobenzene 83) C316 Hexachlorobutadiene 84) C314 Naphthalene 85) C934 1,2,3-Trichlorobene	ze 10.20 10.34 e 10.48 10.46 e 10.56 e 10.88 10.81 11.51 12.21 12.21 12.30	126 126 105 134 105 105 146 146 146 225 128	358160 377160 1078965 233307 1113752 1081477 707829 987751 733193 713633 713633 737620 91234 361538 93370 1190663	478.06 ng 480.62 ng 447.91 ng 412.32 ng 453.49 ng 372.66 ng 465.08 ng 371.99 ng 465.36 ng 471.24 ng 339.71 ng 535.37 ng 372.11 ng 274.67 ng 448.25 ng 384.65 ng	1 #	-00 41 100 95 95 95 97 97 98 100 98

METHOD 8260 - AQUEOUS (30% RSD/ 20% D) 354/504 INITIAL CALIBRATION DATA

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u> Lab Sample ID: <u>A5I0002442-1</u>

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No: ____

Intrument ID: <u>HP5973S</u> Calibration Dates(s): <u>12/22/2005</u> <u>12/22/2005</u>

Heated Purge (Y/N): N Calibration Times: 15:56 17:33

GC Column: DB-624 ID: 0.18 (mm)

Lab File ID: RRI RRF25 = $\underline{S9600.RR}$ RRI		S9602.I S9599.I		RRF10 RRF100	= <u>S9603</u> = <u>S9598</u>		
COMPOUND	RRF1	RRF10	RRF25	RRF50	RRF100	AVG RRF	% RSD
Chloromethane	0.657	0.582	0.532	0.509	0.495	0.5550	11.900
Bromomethane	0.086	0.071	0.067	0.063	0.057	0.0690	16.200
Vinyl chloride	0.444	0.453	0.408	0.393	0.397	0.4190	6.600
Chloroethane	0.093	0.132	0.080	0.079	0.086	0.0940	23.500
Methylene chloride	0.725	0.498	0.476	0.445	0.438	0.5160	23.100
Acetone	0.153	0.123	0.141	0.131	0.123	0.1340	9.600
Carbon Disulfide	1.431	1.218	1.181	1.148	1.217	1.2390	9.000
1,1-Dichloroethene	0.372	0.421	0.389	0.381	0.383	0.3890	4.700
1,1-Dichloroethane	0.823	0.846	0.821	0.783	0.771	0.8090	3.800
cis-1,2-Dichloroethene	0.489	0.494	0.481	0.454	0.435	0.4700	5.400
trans-1,2-Dichloroethene	0.453	0.474	0.440	0.425	0.412	0.4410	5.400
Chloroform	0.709	0.717	0.714	0.671	0.668	0.6960	3.500
1,2-Dichloroethane	0.554	0.503	0.510	0.476	0.464	0.5010	7.000
2-Butanone	0.236	0.205	0.238	0.215	0.199	0.2180	8.100
1,1,1-Trichloroethane	0.511	0.575	0.547		0.542	0.5430	4.200
Carbon Tetrachloride	0.377	0.451	0.425	0.429	0.436	0.4240	6.600
Bromodichloromethane	0.401	0.473	0.485	0.478	0.481	0.4640	7.600
1,2-Dichloropropane	0.476	0.510	0.489		0.430	0.4720	
cis-1,3-Dichloropropene	0.560	0.634	0.660	0.647	0.652	0.6310	6.400
Trichloroethene	0.460	0.461	0.440	0.427	0.424	0.4420	4.000
Dibromochloromethane	0.193	0.234	0.248	0.251	0.245	0.2340	10.200
1,1,2-Trichloroethane	0.231	0.239	0.241	0.230	0.219	0.2320	3.800
Benzene	2.007	2.048	1.944	1.834	1.774	1.9210	6.000
trans-1,3-Dichloropropene	0.321	0.390	0.415	0.424	0.408	0.3910	10.600
Bromoform	0.177	0.224	0.271	0.270		0.2430	17.300
4-Methyl-2-pentanone	0.334	0.318	0.363	0.335	0.309	0.3320	6.200
2-Hexanone	0.219	0.214	0.255	0.237	0.221	0.2290	7.300
Tetrachloroethene	0.298	0.320	0.288	0.283	0.262	0.2900	7.200
1,1,2,2-Tetrachloroethane	0.737	0.741	0.773	0.736	0.687	0.7340	4.200
Toluene	0.943	0.982	0.918	0.905	0.847	0.9190	5.400
Chlorobenzene	1.015	1.001	0.954	0.923	0.877	0.9540	5.900
Ethylbenzene	1.664	1.809	1.701	1.674	1.575	1.6840	5.000
Styrene	0.919	1.014	0.998	0.946	0.856	0.9470	6.700
Total Xylenes	0.647	0.653	0.633	0.598	0.539	0.6140	7.700
1,1,2-Trichloro-1,2,2-trifl	0.426	0.389	0.364	0.352	0.369	0.3800	7.700
1,2,4-Trichlorobenzene	0.615	0.614	0.635	0.626	0.594	0.6170	2.500
1,2-Dibromo-3-chloropropane	0.067	0.083	0.104	0.106	0.099	0.0920	17.900

METHOD 8260 - AQUEOUS (30% RSD/ 20% D) INITIAL CALIBRATION DATA

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u> Lab Sample ID: <u>A510002442-1</u>

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No: ____

Intrument ID: <u>HP5973S</u> Calibration Dates(s): <u>12/22/2005</u> <u>12/22/2005</u>

Heated Purge (Y/N): N Calibration Times: 15:56 17:33

GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)

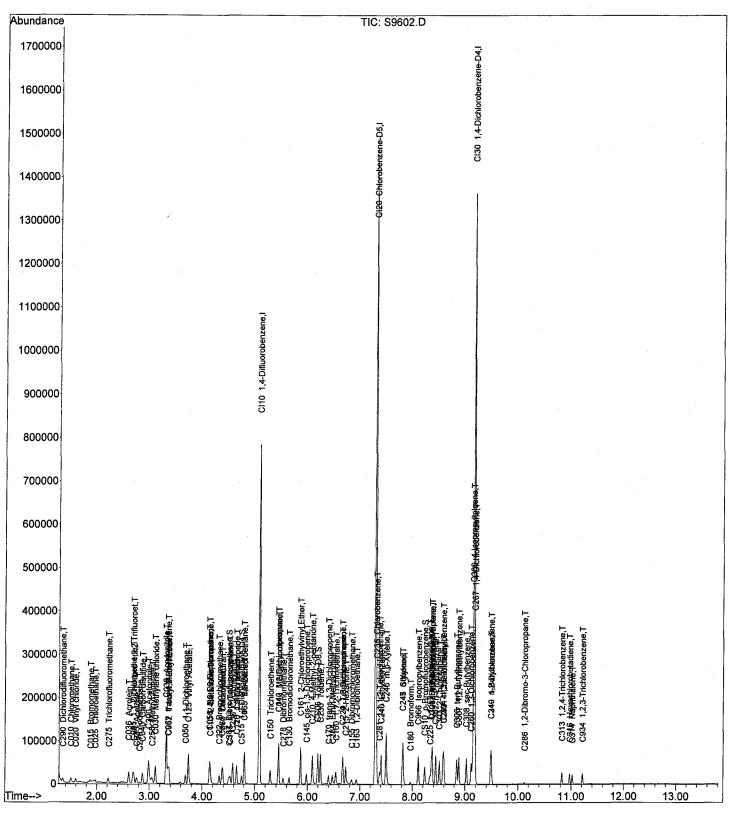
	<u> </u>						•
Lab File ID: RRI RRF25 = <u>S9600.RR</u> RRI		<u>S9602.</u> S9599.		RRF10 RRF100	= <u>S9603</u> = <u>S9598</u>		
COMPOUND	RRF1	RRF10	RRF25	RRF50	RRF100	AVG RRF	% RSD
1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Cyclohexane Dichlorodifluoromethane Methyl acetate Naphthalene Trichlorofluoromethane Methyl-t-Butyl Ether (MTBE) Isopropylbenzene Methylcyclohexane	0.278 1.377 1.448 1.600 0.948 0.389 0.643 1.292 0.456 1.083 3.197 0.878	İ	1.343 1.323 0.890 0.369 0.606 1.934 0.435 1.063 3.359	1.167 1.279 1.255 0.870 0.366 0.556 1.860 0.435 0.994 3.245	1.065 1.204 1.192 0.900 0.355 0.535 1.734 0.451 0.973 3.066	1.2290 1.3360 1.3470 0.9100 0.3800 0.5750 1.6800 0.4520 1.0200 3.2900	7.300 11.600 3.700 6.700 8.300 15.200 4.300 4.800
Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	1.450 0.326 0.455	1.317 0.283 0.391	1.120 0.264 0.355	0.271	1.136 0.263 0.365	1.2380 0.2810 0.3850	11.400 9.300 10.800

Comments:

(Not Reviewed) **356/504** Quantitation Report STL Buffalo

Data File : D:\DATA\122205\S9602.D

Vial: 6 Acq On : 22 Dec 2005 17:33 Operator: TLC Sample : VSTD001 Inst : HP5973S Misc Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Dec 22 18:39:03 2005 Results File: A5I0002442 E2.RES

Quant Method : C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update: Thu Dec 22 18:38:56 2005
Response via: Initial Calibration
DataAcq Meth: VOA

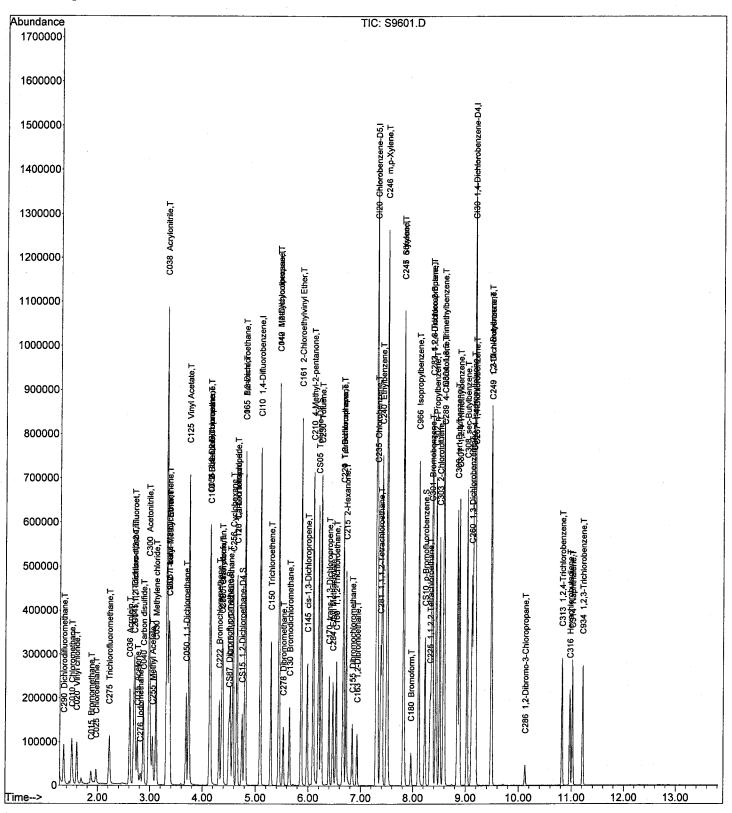
Quantitation Report STL Buffalo (Not Reviewed) 357/504

Vial: 5

Data File : D:\DATA\122205\S9601.D

MS Integration Params: RTEINT.P

Quant Time: Dec 22 18:38:48 2005 Results File: A5I0002442_E2.RES


Quant Method: C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Thu Dec 22 18:38:32 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Quantitation Report STL Buffalo (Not Reviewed) **358/504**

Data File : D:\DATA\122205\S9600.D

: 22 Dec 2005

Acq On Sample : VSTD025

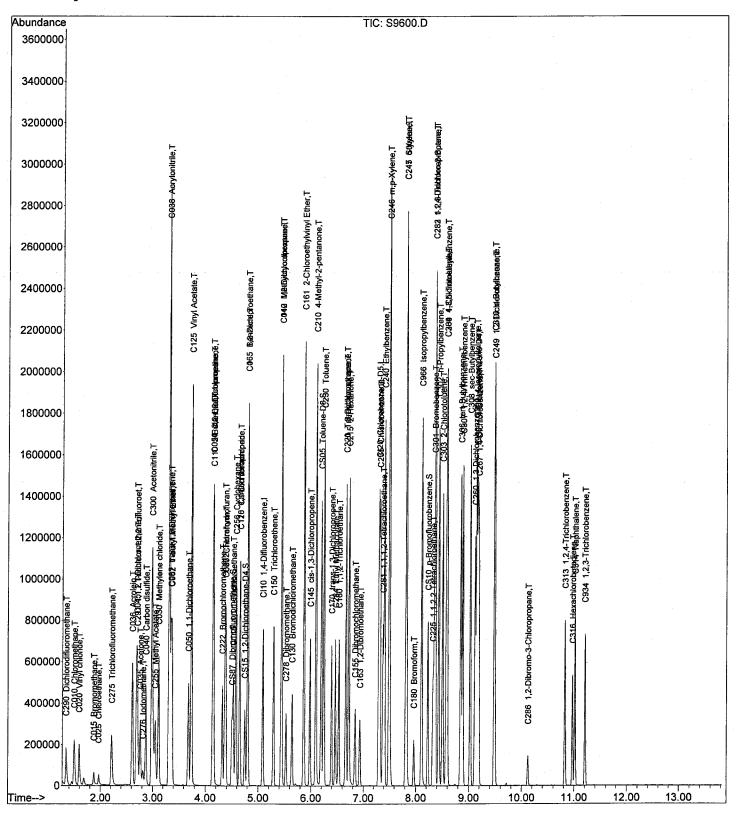
Misc

Operator: TLC Inst : HP5973S Multiplr: 1.00

Vial: 4

MS Integration Params: RTEINT.P

Quant Time: Dec 22 18:37:33 2005 Results File: A5I0002442 E2.RES


Quant Method : C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Thu Dec 22 18:37:29 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Quantitation Report STL Buffalo (Not Reviewed) 359/504

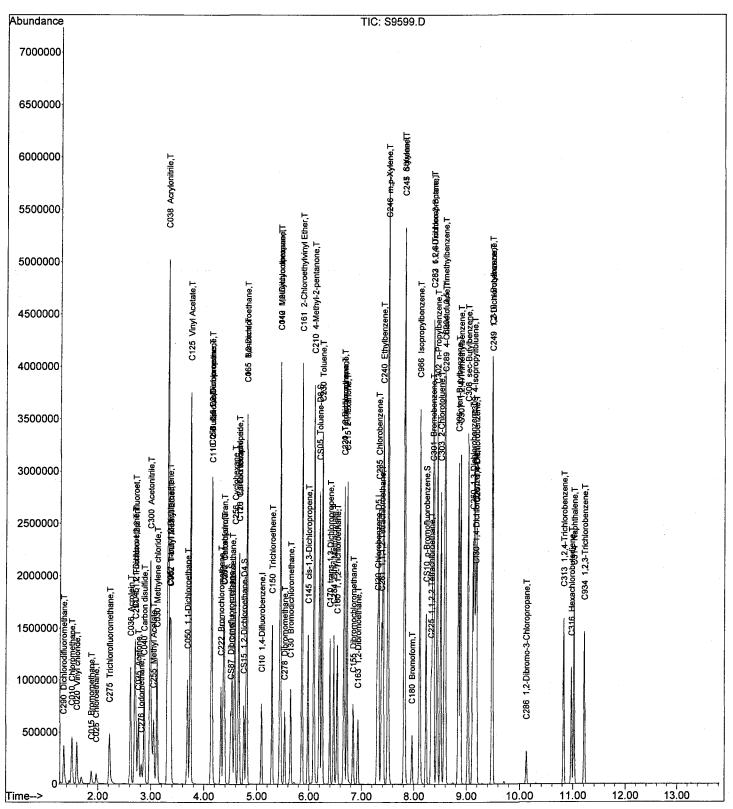
Vial: 3

: 22 Dec 2005 16:20 Operator: TLC : VSTD050 Inst : HP5973S : Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 22 18:38:22 2005 Results File: A5I0002442_E2.RES

Quant Method: C:\MSDCHEM\1...\A5I0002442_E2.M (RTE Integrator)


Title : 8260 5ML WATER

Last Update : Thu Dec 22 18:38:11 2005

Response via : Initial Calibration

DataAcq Meth: VOA

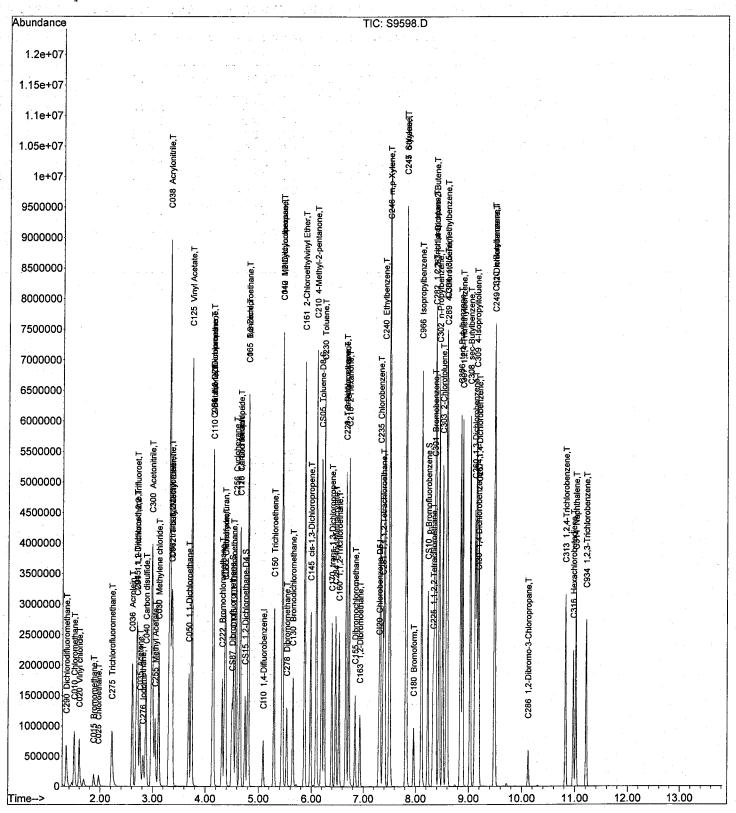
Misc

Data File : D:\DATA\122205\S9598.D

Vial: 2 Acq On : 22 Dec 2005 Operator: TLC Sample : VSTD100 Inst : HP5973S Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 22 18:37:57 2005 Results File: A5I0002442 E2.RES


Quant Method : C:\MSDCHEM\1...\A5I0002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Thu Dec 22 18:37:48 2005

Response via : Initial Calibration

DataAcq Meth: VOA

260 PST 2043

Method Path : C:\MSDCHEM\1\METHODS\82605MLLOW\

5

Method File: A5I0002442 E2.M Title : 8260 5ML WATER

=S9599.D

4

Last Update : Thu Dec 22 18:39:09 2005

Response Via : Initial Calibration

Calibration Files =S9602.D 2 =S9600.D 1 =S9601.D 3

=S9598.D

· <u> </u>		Compo	und	. 1	2	3	4	5	Avg	%RSD
1)	I	CI10	1,4-Difluoroben							
2)	T	C290	Dichlorodifluor							6.72
3)	T	C010	Chloromethane				0.509			11.92
4)	T	C020	Vinyl chloride				0.393			6.60
5)	T	C015	Bromomethane				0.063			16.26
6) 7)	T T	C025	Chloroethane				0.079			23.47 4.35
8)	T	C275 C045	Trichlorofluoro 1,1-Dichloroeth							4.74
9)	T	C045	Methylene chlor							23.09
10)	T	C040	Carbon disulfid							8.97
11)	T	C036	Acrolein				0.046			9.83
12)	T	C038	Acrylonitrile							11.83
13)	${f T}$	C035	Acetone				0.131			9.58
14)	${f T}$	C300	Acetonitrile	0.085	0.068	0.076	0.069	0.067	0.073	10.50
15)	T	C276	Iodomethane	0.194	0.182	0.206	0.261	0.343	0.237	27.90
16)	${f T}$	C291	1,1,2 Trichloro							7.70
17)	T	C962	T-butyl Methyl				0.994			4.83
18)	T	C057	trans-1,2-Dichl							5.40
19)	T	C255	Methyl Acetate				0.556			8.30
20) 21)	T T	C050 C125	1,1-Dichloroeth							3.85 5.41
22)	T	C123	Vinyl Acetate 2,2-Dichloropro				0.876			9.47
23)	T .	C056	cis-1,2-Dichlor							5.39
24)	Т	C272	Tetrahydrofuran							6.84
25)	T	C222	Bromochlorometh							7.67
26)	T	C060	Chloroform				0.671			3.48
27)	${f T}$	C115	1,1,1-Trichloro							4.18
28)	T	C120	Carbon tetrachl	0.377	0.451	0.425	0.429	0.436	0.424	6.56
29)	${f T}$	C116	1,1-Dichloropro							4.56
30)	S	CS87	Dibromofluorome							7.87
31)	S	CS15	1,2-Dichloroeth							10.77
32)	T	C165	Benzene				1.833			6.01
33)	T	C065	1,2-Dichloroeth							6.98 8.11
34) 35)	T T	C110 C256	2-Butanone Cyclohexane				0.215			3.71
36)	T	C150	Trichloroethene							3.98
37)	T	C140	1,2-Dichloropro							6.41
38)	T	C278	Dibromomethane				0.222			4.89
39)	T	C130	Bromodichlorome					0.481		7.56
40)	Т	C161						0.239	0.262	6.66
41)	${f T}$	C012	Methylcycolhexa							5.22
42)	T	C145	cis-1,3-Dichlor	0.560	0.634	0.660	0.647	0.652	0.631	6.45
43)	I	CI20	Chlorobenzene-D			IS	STD			
44)	S	CS05	Toluene-D8	1.450	1.317	1.120	1.169	1.136	1.238	11.43
45)	T	C230	Toluene	0.942	0.982	0.918	0.905	0.847	0.919	5.42
46)	T	C170	trans-1,3-Dichl							10.57
-	T	C284	Ethyl Methacryl							9.45
48)	T	C160	1,1,2-Trichloro							3.82
49)	T	C210	4-Methyl-2-pent							6.20
50)	T	C220	Tetrachloroethe							7.25 6.75
51) 52)	T T	C221	1,3-Dichloropro Dibromochlorome							10.25
53)	T	C155 C163	1,2-Dibromoetha							3.33
-54)	T	C215					0.237			7.28
55)	_	C235	Chlorobenzene							5.92
•										

```
Method Path : C:\MSDCHEM\1\METHODS\82605MLLOW\
 Method File: A5I0002442 E2.M
 Title : 8260 5ML WATER
 Last Update : Thu Dec 22 18:39:09 2005
 Response Via : Initial Calibration
56) T
       C281 1,1,1,2-Tetrach 0.234 0.281 0.273 0.274 0.264 0.265
                                                                             7.04
        C240 Ethylbenzene 1.663 1.809 1.701 1.674 1.575 1.684 5.00 C246 m,p-Xylene 0.647 0.697 0.656 0.622 0.550 0.634 8.55 C247 o-Xylene 0.605 0.653 0.633 0.598 0.539 0.606 7.11 C245 Styrene 0.919 1.014 0.998 0.946 0.856 0.947 6.71
57) T
58) T
59) T
60) T
61) S
        CS10
               p-Bromofluorobe 0.326 0.283 0.263 0.271 0.263 0.281
62) I
63) T
64) T
65) T
        CI30
               1,4-Dichloroben ------ISTD-----
              Bromoform 0.177 0.224 0.271 0.270 0.272 0.243 17.26 Isopropylbenzen 3.197 3.582 3.359 3.245 3.066 3.290 5.91 Bromobenzene 0.758 0.706 0.668 0.638 0.589 0.672 9.56
        C180
        C966
        C301
66) T
        C225
               1,1,2,2-Tetrach 0.736 0.741 0.773 0.736 0.687 0.734
67) T
        C282
               1,2,3-Trichloro 0.197 0.213 0.213 0.197 0.174 0.199
                                                                             7.95
        C283 t-1,4-Dichloro- 0.244 0.223 0.246 0.228 0.214 0.231 C302 n-Propylbenzene 3.968 4.327 4.038 3.929 3.739 4.000 C303 2-Chlorotoluene 0.807 0.823 0.774 0.740 0.695 0.768
68) T
69) T
70) T
71) T
               4-Chlorotoluene 0.821 0.821 0.777 0.726 0.674 0.764
        C289
                                                                             8.34
72) T
        C304 1,3,5-Trimethyl 2.397 2.742 2.595 2.474 2.315 2.505
                                                                             6.71
73) T
        C306 tert-Butylbenze 0.484 0.593 0.552 0.538 0.514 0.536
                                                                             7.63
74) T
        C307 1,2,4-Trimethyl 2.394 2.668 2.509 2.416 2.334 2.464
                                                                           5.28
75) T
               sec-Butylbenzen 3.066 3.451 3.259 3.193 3.091 3.212
        C308
                                                                             4.82
76) T
               1,3-Dichloroben 1.448 1.405 1.343 1.279 1.204 1.336
        C260
                                                                            7.32
77) T
        C309
               4-Isopropyltolu 2.415 2.744 2.619 2.543 2.471 2.558
                                                                             5.05
78) T
               1,4-Dichloroben 1.600 1.367 1.323 1.255 1.192 1.347
       C267
                                                                            11.59
79) T
       C249
              1,2-Dichloroben 1.377 1.275 1.261 1.167 1.065 1.229
                                                                            9.61
80) T
       C310 n-Butylbenzene 2.395 2.546 2.376 2.299 2.185 2.360
                                                                             5.63
81) T
       C286 1,2-Dibromo-3-C 0.067 0.083 0.104 0.106 0.099 0.092 17.90
82) T
       C313 1,2,4-Trichloro 0.615 0.614 0.635 0.626 0.594 0.617
83) T C316 Hexachlorobutad 0.293 0.283 0.254 0.251 0.245 0.265
84) T C314 Naphthalene 1.292 1.581 1.933 1.860 1.734 1.680 15.17
85) T
       C934 1,2,3-Trichloro 0.593 0.533 0.593 0.563 0.524 0.561 5.78
------
                                                    Total Average %RSD 8.04
```

______ L = Linear LO = Linear+Origin Q = Quad QO = Quad+Origin R = Corr. Coef (#) = Out of Range

A5I0002442 E2.M Thu Dec 22 18:39:17 2005 HP5973S

ICC Profile

Date: 12/23/2005 Time: 19:01:29

ICC Profile Code: A00263 METHOD 8260 low 5ML PURGE (30% RSD/ 20% D)

Fraction: MV

No of Points: 5

Default Min. RRF: 0.3000

CCC Conc: 125.00

Comments:

			n	g On Column	.,	
Seq	Parameter	Point 1	Point 2	Point 3	Point 4	Point 5
2 123-91-1	1,4-Dioxane	200,0000	2000.0000			20000.0000
7 77-73-6	Dicyclopentadiene	5.0000	50.0000	125.0000	250.0000	500.0000
8 526-73-8	1,2,3-Trimethylbenzene	5.0000	50.0000	125.0000	250.0000	500.0000
15 994-05-8	tert-Amyl Methyl Ether (TAME)	5.0000	50.0000	125.0000	250.0000	500.0000
18 67-64-1	Acetone	25.0000	250.0000	625.0000	1250.0000	2500.0000
20 71-43-2	Benzene	5.0000	50.0000	125.0000	250.0000	500.0000
25 637-92-3	Ethyl-t-butyl ether (ETBE)	5.0000	50.0000	125.0000	250.0000	500.0000
30 108-86-1	Bromobenzene	5.0000	50.0000	125.0000	250.0000	500.0000
40 74-97-5	Bromochloromethane	5.0000	50.0000	125.0000	250.0000	500.0000
50 75-27-4	Bromodichloromethane	5.0000	50.0000	125.0000	250.0000	500.0000
51 108-70-3	1,3,5-Trichlorobenzene	5.0000	50.0000	125.0000	250.0000	500.0000
60 75-25-2	Bromoform	5.0000	50.0000	125.0000	250.0000	500.0000
70 74-83-9	Bromomethane	5.0000	50.0000	125.0000	250.0000	500.0000
88 78-93-3	2-Butanone	25.0000	250.0000	625.0000	1250.0000	2500.0000
90 104-51-8	n-Butylbenzene	5.0000	50.0000	125.0000	250.0000	500.0000
91 107-12-0	Propionitrile	50.0000	500.0000	1250.0000	2500.0000	5000.0000
92 126-98-7	Methacrylonitrile	5.0000	50.0000	125.0000	250.0000	500.0000
93 108-20-3	Isopropyl Ether (DIPE)	5.0000	50.0000	125.0000	250.0000	500.0000
94 78-83-1	Isobutanol	200.0000	2000.0000	5000.0000	10000.0000	20000.0000
95 71-36-3	n-Butyl alcohol	200.0000	2000.0000	5000.0000	10000.0000	20000.0000
96 108-41-8	m-Chlorotoluene	5.0000	50.0000	125.0000	250.0000	500.0000
97 108-94-1	Cyclohexanone	50.0000	500.0000	1250.0000	2500.0000	5000.0000
98 76-01-7	Pentachloroethane	5.0000	50.0000	125.0000	250.0000	500.0000
99 75-65-0	tert-Butyl Alcohol (TBA)	100.0000	1000.0000	2500.0000	5000.0000	10000.0000
100 135-98-8	sec-Butylbenzene	5.0000	50.0000	125.0000	250.0000	500.0000
101 79-20-9	Methyl acetate	5.0000	50.0000	125.0000	250.0000	500.0000
102 110-82-7	Cyclohexane	5.0000	50.0000	125.0000	250.0000	500.0000
103 108-87-2	Methylcyclohexane	5.0000	50.0000	125.0000	250.0000	500.0000
104 98-56-6	p-Monochlorobenzotrifluoride	5.0000	50.0000	125.0000	250.0000	500.0000
105 98-15-7	m-Monochlorobenzotrifluoride	5.0000	50.0000	125.0000	250.0000	500.0000
106 88-16-4	o-Monochlorobenzotrifluoride	5.0000	50.0000	125.0000	250.0000	500.0000
110 98-06-6	tert-Butylbenzene	5.0000	50.0000	125.0000	250.0000	500.0000
111 106-89-8	Epichlorohydrin	100.0000	1000.0000	2500.0000	5000.0000	10000.0000
112 79-46-9	2-Nitropropane	25.0000	250.0000	625.0000	1250.0000	2500.0000
114 TOTALVOA	Total Volatile Organic Compoun	5.0000	50.0000	125.0000	250.0000	500.0000
120 554-14-3	2-Methyl Thiophene	5.0000	50.0000	125.0000	250.0000	500.0000
121 616-44-4	3-Methyl Thiophene	5.0000	50.0000	125.0000	250.0000	500.0000
128 75-15-0	Carbon Disulfide	5.0000	50.0000	125.0000	250.0000	500.0000
130 56-23-5	Carbon Tetrachloride	5.0000	50.0000	125.0000	250.0000	500.0000
140 108-90-7	Chlorobenzene	5.0000	50.0000	125.0000	250.0000	500.0000
145 104-76-7	2-Ethyl-1-hexanol	50.0000	500.0000	1250.0000	2500.0000	5000.0000
150 75-00-3	Chloroethane	5.0000	50.0000	125.0000	250.0000	500.0000
160 67-66-3	Chloroform	5.0000	50.0000	125.0000	250.0000	500.0000
170 74-87-3	Chloromethane	5.0000	50.0000	125.0000	250.0000	500.0000
180 95-49-8	o-Chlorotoluene	5.0000	50.0000	125.0000	250.0000	500.0000
190 106-43-4	p-Chlorotoluene	5.0000	50.0000	125.0000	250.0000	500.0000
200 124-48-1	Dibromochloromethane	5.0000	50.0000	125.0000	250.0000	500.0000

Page:

Rept: AN0287R

QC Approver: JRS

QC Date: 11/08/2005

ICC Profile

Date: 12/23/2005

Time: 19:01:29

ICC Profile Code: A00263 METHOD 8260 low 5ML PURGE (30% RSD/ 20% D) (continued)

-ng On Column Point 1 Point 2 Point 3 Point 4 Point 5 Seq 201 110-54-3 Hexane 5.0000 50,0000 125.0000 250.0000 500.0000 202 142-82-5 Heptane 5.0000 50,0000 125.0000 250,0000 500.0000 203 534-15-6 1,1-Dimethoxyethane 25.0000 250.0000 625.0000 1250.0000 2500,0000 204 75-56-9 Propylene Oxide 1250.0000 25.0000 250.0000 625.0000 2500.0000 1,2-Dibromo-3-chloropropane 210 96-12-8 5.0000 50.0000 125.0000 250,0000 500,0000 1,2-Dibromoethane 220 106-93-4 5.0000 50.0000 125.0000 250.0000 500.0000 230 74-95-3 Dibromomethane 5.0000 5010000.4 125.0000 250.0000 500.0000 240 95-50-1 1,2-Dichlorobenzene 250.0000 5.0000 50.0000 125,0000 500.0000 250 541-73-1 1,3-Dichlorobenzene 5.0000 50.0000 125.0000 250.0000 500.0000 250.0000 260 106-46-7 1,4-Dichlorobenzene 5.0000/ 50.0000 125.0000 500.0000 270 75-71-8 Dichlorodifluoromethane 5.0000 50.0000 125.0000 250.0000 500.0000 280 75-34-3 1,1-Dichloroethane 50.0000 125.0000 250.0000 500.0000 5.0000 290 107-06-2 1,2-Dichloroethane 5.0000 50.0000 125.0000 250.0000 500.0000 300 75-35-4 1,1-Dichloroethene 5.0000 50,0000 125.0000 250,0000 500.0000 307 109-99-9 Tetrahydrofuran 25.0000 250.0000 625.0000 1250.0000 2500.0000 310 156-59-2 cis-1,2-Dichloroethene 5.0000 50.0000 125.0000 250.0000 500.0000 320 156-60-5 trans-1,2-Dichloroethene 5.0000 50.0000 125.0000 250.0000 500.0000 500.0000 330 78-87-5 1,2-Dichloropropane 50,0000 125.0000 5.0000 250,0000 340 142-28-9 1,3-Dichloropropane 5.0000 50.0000 125.0000 250.0000 500.0000 350 594-20-7 2,2-Dichloropropane 5.0000 50.0000 125.0000 250.0000 500.0000 360 563-58-6 1,1-Dichloropropene 5.0000 50.0000 125.0000 250.0000 500.0000 370 10061-01-5 cis-1,3-Dichloropropene 5.0000 50.0000 125.0000 250.0000 500.0000 trans-1,3-Dichloropropene 380 10061-02-6 5.0000 50.0000 125.0000 250.0000 500.0000 390 100-41-4 Ethylbenzene 5.0000 50.0000 125.0000 250.0000 500.0000 410 87-68-3 Hexach lorobutadiene 5.0000 50.0000 125.0000 250.0000 500.0000 418 591-78-6 2-Hexanone 25.0000 250.0000 625.0000 1250.0000 2500.0000 420 98-82-8 Isopropylbenzene 5.0000 50.0000 125.0000 250.0000 500.0000 430 99-87-6 5.0000 p-Cymene 50.0000 125.0000 250,0000 500,0000 440 75-09-2 Methylene chloride 50.0000 125.0000 250.0000 500.0000 5.0000 458 108-10-1 4-Methyl-2-pentanone 25.0000 250.0000 625.0000 1250.0000 2500.0000 460 91-20-3 Naphthalene 5.0000 50.0000 125.0000 250.0000 500.0000 470 103-65-1 n-Propylbenzene 5.0000 50.0000 125.0000 250,0000 500.0000 480 100-42-5 Styrene 5.0000 50.0000 125.0000 250.0000 500.0000 490 630-20-6 1,1,1,2-Tetrachloroethane 5.0000 50.0000 125.0000 250.0000 500.0000 500 79-34-5 1,1,2,2-Tetrachloroethane 5.0000 50.0000 125.0000 250.0000 500.0000 510 127-18-4 Tetrachloroethene 125.0000 250.0000 500.0000 5.0000 50.0000 520 108-88-3 Toluene 50.0000 125.0000 250.0000 500.0000 5.0000 530 87-61-6 1,2,3-Trichlorobenzene 50.0000 250.0000 500.0000 5.0000 125.0000 540 120-82-1 1,2,4-Trichlorobenzene 5.0000 50.0000 125.0000 250.0000 500.0000 550 71-55-6 1,1,1-Trichloroethane 5.0000 50.0000 125.0000 250.0000 500.0000 560 79-00-5 1,1,2-Trichloroethane 5.0000 50.0000 125.0000 250.0000 500,0000 570 79-01-6 Trichloroethene 5.0000 50.0000 125,0000 250,0000 500,0000 580 75-69-4 Trichloroflubromethane 5.0000 50.0000 125.0000 250,0000 500.0000 590 96-18-4 1,2,3-Trichloropropane 50.0000 125.0000 250.0000 500.0000 5.0000 500 95-63-6 1,2,4-Trimethylbenzene 5.0000 50.0000 125.0000 250,0000 500.0000 510 108-67-8 1,3,5-Trimethylbenzene 5.0000 50.0000 125.0000 250.0000 500.0000 520 75-01-4 Vinyl chloride 5.0000 50.0000 125.0000 250.0000 500.0000 530 1330-20-7 Total Xylenes 15.0000 150.0000 375.0000 750.0000 1500.0000 546 SU107-06-2 1,2-Dichloroethane-D4 250.0000 500.0000 5.0000 50.0000 125.0000 548 2037-26-5 Toluene-D8 250.0000 5.0000 50.0000 125.0000 500.0000 550 460-00-4 p-Bromofluorobenzene 5.0000 50.0000 125,0000 250.0000 500,0000 560 SU95-50-1 1,2-Dichlorobenzene-d4 5.0000 50.0000 125.0000 250.0000 500,0000

2 Page: Rept: AN0287R Date: 12/23/2005

Time: 19:01:29

ICC Profile

Page: 3 Rept: ANO287R

ICC Profile Code: A00263 METHOD 8260 low 5ML PURGE (30% RSD/ 20% D) (continued)

Seq	Parameter	Point 1	Point 2	Point 3	Point 4	Point 5	
670 SU106-46-7	1,4-Dichlorobenzene-D4	0.0000	0.0000	0.0000	0.0000	0.0000	
680 3114-55-4	Chlorobenzene-D5	0.0000	0.0000	0.0000	0.0000	0.0000	
690 540-36-3	1,4-Difluorobenzene	0.0000	0.0000	0.0000	0.0000	0.0000	
700 462-06-6	Fluorobenzene	0.0000	0.0000	0.0000	0.0000	0.0000	
800 1634-04-4	Methyl-t-Butyl Ether (MTBE)	5.0000	50.0000	125.0000	250.0000	500.0000	
805 75-43-4	Dichlorofluoromethane	5.0000	50.0000	125.0000	250.0000	500.0000	
810 594-18-3	Dibromodichloromethane	5.0000	50.0000	125.0000	250.0000	500.0000	
815 107-02-8	Acrolein	100.0000	1250.0000	2500.0000	5000.0000	10000.0000	
820 76-13-1	1,1,2-Trichloro-1,2,2-trifluor	5.0000	50.0000	125.0000	250.0000	500.0000	
825 107-13-1	Acrylonitrile	100.0000	1250.0000	2500.0000	5000.0000	10000.0000	
830 80-62-6	Methyl methacrylate	5.0000	50.0000	125.0000	250.0000	500.0000	
840 540-59-0	1,2-Dichloroethene (Total)	10.0000	100.0000	250.0000	500.0000	1000.0000	
850 M/P XYLENE	m/p-Xylenes	10.0000	100.0000	250.0000	500.0000	1000.0000	
860 95-47-6	o-Xylene	5.0000	50.0000	125.0000	250.0000	500.0000	
870 108-05-4	Vinyl acetate	25.0000	250.0000	625.0000	1250.0000	2500.0000	
880 110-75-8	2-Chloroethylvinyl ether	25.0000	250.0000	625.0000	1250.0000	2500.0000	
890 110-57-6	trans-1,4-Dichloro-2-butene	25.0000	250.0000	625.0000	1250.0000	2500.0000	
900 74-88-4	Iodomethane	5.0000	50.0000	125.0000	250.0000	500.0000	
910 97-63-2	Ethyl methacrylate	5.0000	50.0000	125.0000	250.0000	500.0000	
920 75-45-6	Chlorodifluoromethane	5.0000	50.0000	125.0000	250.0000	500.0000	
930 544-10-5	1-Chlorohexane	5.0000	50.0000	125.0000	250.0000	500.0000	
940 75-05-8	Acetonitrile	200.0000	2000.0000	5000.0000	10000.0000	20000.0000	
950 60-29-7	Ethyl ether	5.0000	50.0000	125.0000	250.0000	500.0000	
951 108-38-3	m-Xylene	10.0000	100.0000	250.0000	500.0000	1000.0000	
952 106-42-3	p-Xylene	10.0000	100.0000	250.0000	500.0000	1000.0000	
962 542-75-6	1,3-Dichloropropene (Total)	10.0000	100.0000	250.0000	500.0000	1000.0000	
972 64-17-5	Ethanol	100.0000	1000.0000	2500.0000	5000.0000	10000.0000	
982 141-78-6	Ethyl acetate	5.0000	50.0000	125.0000	250.0000	500.0000	
992 107-05-1	3-Chloropropene (Allyl Chlor.)	5.0000	50.0000	125.0000	250.0000	500.0000	
993 126-99-8	2-Chloro-1,3-butadiene	5.0000	50.0000	125.0000	250.0000	500.0000	
994 54-28-81TIC	Bis(chloromethyl) ether (VOA T	5.0000	50.0000	125.0000	250.0000	500.0000	

Data File : D:\DATA\122205\S9602.D

Acq On : 22 Dec 2005 17:33

Operator: TLC : VSTD001 Sample Inst : HP5973S Multiplr: 1.00

Misc

MS Integration Params: RTEINT.P Quant Time: Dec 22 18:39:03 2005 Results File: A5I0002442_E2.RES

Quant Method : C:\MSDCHEM\1...\A5I0002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Thu Dec 22 18:38:56 2005

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\DATA\122205\S9598.D (22 Dec 2005 15:56)

Inter	rnal S	Standards	R.T.	QIon	Response	Conc U	nits	Dev(Min) Rcv(Ar)
1) (CI10	1,4-Difluorobenzene	5.09	114	491881	125.00	ng	0.00 104.55%
43) (CI20	Chlorobenzene-D5	7.30	117	651537	125.00	ng	0.00 101.18%
62) (CI30	1,4-Dichlorobenzene-	9.17	152	304534	125.00	ng	0.00
					•			95.69%
_		nitoring Compounds						
•	CS87				7761	5,59	ng	0.00
_		nount 125.000 Range	e 70	- 130	Recove			. 478#
31) C	CS15	1,2-Dichloroethane-D	4.75	65	8947	5.90		0.00
Spik	ced An		e 73	- 136	Recove			.72%#
44) C	CS05	Toluene-D8	6.19	98	37784	5.85	ng	0.00
Spik	ced An			- 122	Recove	ry =	4 .	.68%#
61) C	CS10	p-Bromofluorobenzene	8.23	174	8487	5.79	ng	0.00
Spik	ced Am	nount 125.000 Range		- 120	Recove	- -	4 .	.63%#
Targe		npounds						Qvalue
2) C	290	Dichlorodifluorometh	1.35	85	7659	5.13	ng	96
3) C	010	Chloromethane	1.50	50	12930	5.92	ng	99
4) C	020	Vinyl chloride	1.59	62	8742	5.30	ng	94
5) C	015	Bromomethane	1.88	94	1698	6.28	ng	93
6) C	025	Chloroethane	1.97	64	1831	4.94		70
7) C		Trichlorofluorometha	2.22	101	8971	5.04	_	91
8) 0		1,1-Dichloroethene	2.69	96	7324			95
9) C		Methylene chloride	3.12	84	14269	7.02		94
10) C		Carbon disulfide	2.87	76	28147	5.77		99
11) C		Acrolein	2.61	56	21815	114.56		99
12) C		Acrylonitrile	3.31	53	85325	117.26		. 97
13) C		Acetone	2.76	43	15061	28.53		# 88
14) C		Acetonitrile	2.98	41	67238	233.53		95
15) C		Iodomethane	2.81	142	3820	4.09		# 61
16) C		1,1,2 Trichloro-1,2,	2.71	101	8388	5.61		# 83
17) C		T-butyl Methyl Ether	3.37	73	21304	5.31		# 90
18) C		trans-1,2-Dichloroet	3.35	96	8904	5.13		91
19) C		Methyl Acetate	3.05	43	12651	5.59		# 83
20) C		1,1-Dichloroethane	3.68	63	16193	5.09		# 96
21) C		Vinyl Acetate	3.74	43	81488			94
21) C		2,2-Dichloropropane	1 1 1	77		4.16		89
		z,z-bichioropropane	4.14		7729			
	056	cis-1,2-Dichloroethe	4.14	. 96	9618	5.20		95 # 1
	272	Tetrahydrofuran	4.37	42	14858	26.05		
25) C		Bromochloromethane	4.32	128	4446	5.59	_	# 81
	:060	Chloroform	4.38	83	13955	5.10	_	95
	115	1,1,1-Trichloroethan	4.53	97	10055	4.70		. 87
	120	Carbon tetrachloride	4.66	117	7419	4.45		98
	116	1,1-Dichloropropene	4.65	75	11396	5.14		96
		Benzene	4.80	78	39479	5.22		98
	065	1,2-Dichloroethane	4.81	62	10897	5.52		86
	110	2-Butanone	4.16	43	23187	26.97		94
	256	Cyclohexane	4.58	56	18659	5.21	-	# 82
-		Trichloroethene	5.29	95	9053	5.20		88
		1,2-Dichloropropane	5.44	63	9358	5.03		82
38) C	278	Dibromomethane	5.53	93	4853	5.37	ng	# 7.8

Data File : D:\DATA\122205\S9602.D

Vial: 6 Acq On : 22 Dec 2005 17:33 Operator: TLC

Sample : VSTD001 Inst : HP5973S

Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 22 18:39:03 2005 Results File: A5I0002442 E2.RES

Quant Method: C:\MSDCHEM\1...\A510002442 E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Thu Dec 22 18:38:56 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Int	ernal	Standards	R.T.	QIon	Response	Conc Units		(Min) (Ar)
	 C130	Bromodichloromethane	5.65	 83	7896	4.33 ng		92
40)		2-Chloroethylvinyl E	5.87	63	25810	25.03 ng		96
41)	C012	Methylcycolhexane	5.44	83	17268	5.22 ng		94
42)	C145	cis-1,3-Dichloroprop	5.98	75	11015	4.44 ng		73
45)	C230	Toluene	6.24	92	24562	5.13 ng		92
46)		trans-1,3-Dichloropr	6.40	75	8360	4.10 ng		99
	C284	Ethyl Methacrylate	6.47	69	8953	4.34 ng	#	66
	C160	1,1,2-Trichloroethan	6.54	83	6008	4.97 ng		96
	C210	4-Methyl-2-pentanone	6.09	43	43498	25.15 ng		99
50)		Tetrachloroethene	6.67	166	7768	5.14 ng		86
•	C221	1,3-Dichloropropane	6.66	76	13238	5.22 ng		85
52)	C155	Dibromochloromethane	6.84	129	5030	4.12 ng		85
53)		1,2-Dibromoethane	6.93	107	7254	5.13 ng		95
54)	C215	2-Hexanone	6.73	43	28531	23.90 ng		91
55)	C235	Chlorobenzene	7.32	112	26445	5.32 ng		96
56)	C281	1,1,1,2-Tetrachloroe	7.38	131	6087	4.41 ng		91
57)	C240	Ethylbenzene	7.41	91	43353	4.94 ng		, 99
58)	C246	m,p-Xylene	7.50	106	33724	10.20 ng		95
59)	C247	o-Xylene	7.81	106	15757	4.99 ng	#	87
60)	C245	Styrene	7.82	104	23940	4.85 ng		96
63)	C180	Bromoform	7.96	173	2157	3.65 ng		88
64)	C966	Isopropylbenzene	8.11	105	38942	4.86 ng		95
65)	C301	Bromobenzene	8.36	156	9229	5.64 ng	#	78
66)	C225	1,1,2,2-Tetrachloroe	8.33	83	8971	5.01 ng		97
67)	C282	1,2,3-Trichloropropa	8.36	110	2404	4.96 ng		100
68)	C283	t-1,4-Dichloro-2-But	8.37	53	14860	26.42 ng	#	71
69)	C302	n-Propylbenzene	8.43	91	48339	4.96 ng		94
70)	C303	2-Chlorotoluene	8.51	126	9825	5.25 ng		100
71)	C289	4-Chlorotoluene	8.60	126	10006	5.38 ng		100
-	C304	1,3,5-Trimethylbenze	8.58	105	29203	4.79 ng		97
73)	C306	tert-Butylbenzene	8.85	134	5893	4.51 ng		100
74)	C307	1,2,4-Trimethylbenze	8.89	105	29164	4.86 ng		93
75)	C308	sec-Butylbenzene	9.02	105	37348	4.77 ng		100
76)	C260	1,3-Dichlorobenzene	9.12	146	17643	5.42 ng		91
77)	C309	4-Isopropyltoluene	9.15	119	29414	4.72 ng		99
78)	C267	1,4-Dichlorobenzene	9.19	146	19492	5.94 ng		93
79)	C249	1,2-Dichlorobenzene	9.49	146	16774	5.60 ng		94
80)	C310	n-Butylbenzene	9.48	91	29173	5.07 ng	ji.	98
81)	C286	1,2-Dibromo-3-Chloro	10.13	75	815	3.65 ng	#	73
82)	C313	1,2,4-Trichlorobenze	10.83	180	7487	4.98 ng		81
83)	C316	Hexachlorobutadiene	10.97	225	3565	5.52 ng		95 100
84)	C314	Naphthalene	11.02	128	15738	3.84 ng		100 99
85)	C934	1,2,3-Trichlorobenze	11.22	180	7226 	5.29 ng		99

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : D:\DATA\122205\S9601.D

Acq On : 22 Dec 2005 17:09

Vial: 5 Operator: TLC Inst: HP5973S Multiplr: 1.00

: VSTD010 Misc

Sample

MS Integration Params: RTEINT.P

Quant Time: Dec 22 18:38:48 2005 Results File: A5I0002442 E2.RES

Quant Method: C:\MSDCHEM\1...\A510002442 E2.M (RTE Integrator)

Title : 8260 5ML WATER
Last Update : Thu Dec 22 18:38:32 2005
Response via : Initial Calibration

DataAcq Meth : VOA

Int	ernal	Standards	R.T.	QIon	Response	Conc U	nits	Dev(M Rcv(A	
1)	CI10	1,4-Difluorobenzene	5.09	114	478638	125.00	ng).00 .74%
43)	CI20	Chlorobenzene-D5	7.30	117	625851	125.00	ng	C	.19%
62)	CI30	1,4-Dichlorobenzene-	9.16	152	297624	125.00	ng	C).00 .52%
Sys	tem Mo	onitoring Compounds				,			
		Dibromofluoromethane				51.97	_		0.00
		Amount 125.000 Rang		- 130	Recove			.58%#	
•	CS15	1,2-Dichloroethane-D	4.75	65	74935	50.82			0.00
		Amount 125.000 Rang		- 136	Recove			.66%#	
	CS05	Toluene-D8	6.19			53.16			0.00
_	iked A			- 122	Recove			.53%#	
		p-Bromofluorobenzene	8.23		70838	50.32			0.00
Sp.	ikea A	amount 125.000 Rang	re 74	- 120	Recove	ery =	40.	.26%#	
		mpounds						Qval	.ue
		Dichlorodifluorometh	1.35	85	80325	55.25	ng		99
3)	C010	Chloromethane	1.50	50	111457	52.46			94
•	C020	Vinyl chloride	1.59	62	86638	54.02	ng		99
	C015	Bromomethane	1.87	94	13627	51.77			92
	C025	Chloroethane	1.97	64	25345	70.31	ng		95
	C275	Trichlorofluorometha	2.22	101	92423	53.41			96
	C045	1,1-Dichloroethene	2.69	96	80498	54.02	ng		94
9)	C030	Methylene chloride	3.11	8 4	95355	48.23	ng	#	84
10)	C040	Carbon disulfide	2.87	76	233088	49.14	ng		98
	C036	Acrolein	2.61	56	174632	942.47	ng		97
	C038	Acrylonitrile	3.31	53	686576	969.62	ng		98
	C035	Acetone	2.76	43	118057	229.81	ng	# .	86
	C300	Acetonitrile	2.98	41	518133	1849.35	ng		99
	C276	Iodomethane	2.81	142	34927	38.45	ng		88
	C291	1,1,2 Trichloro-1,2,	2.71	101	74464	51.19			89
	C962	T-butyl Methyl Ether	3.37	73	189149	48.41		#	88
	C057	trans-1,2-Dichloroet	3.35	96	90650	53.71	ng		99
	C255	Methyl Acetate	3.04	43	102434	46.51	ng		90
	C050	1,1-Dichloroethane	3.68	63	162025	52.32	_		98
	C125	Vinyl Acetate	3.74	43	802581	241.34			95
	C051	2,2-Dichloropropane	4.14	77	94892	52.49			88
	C056	cis-1,2-Dichloroethe	4.14	96	94539	52.48	ng		99
	C272	Tetrahydrofuran	4.36	42	128296	231.17		#	1
	C222	Bromochloromethane	4.32	128	38868	50.23		#	81
26)	C060	Chloroform	4.38	83	137176	51.49	_		99
27)	C115	1,1,1-Trichloroethan	4.53	97	110089	52.94			94
	C120	Carbon tetrachloride	4.66	117	86297	53.20	-		94
29)	C116	1,1-Dichloropropene	4.65	75	114759	53.19	-		96
32)	C165	Benzene	4.80	78	392009	53.29	_		98
33)	C065	1,2-Dichloroethane	4.81	62	96359	50.19	_		87
	C110	2-Butanone	4.15	43	196450	234.83			93
	C256	Cyclohexane	4.58	56	180163	51.72	-	#	85
	C150	Trichloroethene	5.28	95	88261	52.11			91
	C140	1,2-Dichloropropane	5.44	63	97604	53.96			93
38)	C278	Dibromomethane	5.53	93	42967	48.83	ng	#	84

STL Buffalo (Not Reviewed) 369/504 Quantitation Report

Data File : D:\DATA\122205\S9601.D Vial: 5 Acq On : 22 Dec 2005 17:09 Operator: TLC Sample : VSTD010 Inst : HP5973S Misc Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Dec 22 18:38:48 2005 Results File: A5I0002442_E2.RES

Quant Method : C:\MSDCHEM\1...\A5I0002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER
Last Update : Thu Dec 22 18:38:32 2005
Response via : Initial Calibration
DataAcq Meth : VOA

Int	ernal	Standards	R.T.	QIon	Response	Conc Units		(Min) (Ar)
39)	C130	Bromodichloromethane	5.65	83	90574	51.03 ng		93
40)	C161	2-Chloroethylvinyl E	5.87	63	255128	254.27 ng		96
41)	C012	Methylcycolhexane	5.44	83	171427	53.30 ng		94
42)	C145	cis-1,3-Dichloroprop	5.98	75	121343	50.26 ng		80
45)	C230	Toluene	6.24	92	245737	53.42 ng		97
46)	C170	trans-1,3-Dichloropr	6.39	75	97540	49.79 ng		97
47)		Ethyl Methacrylate	6.46	69	93041	46.92 ng	#	69
48)		1,1,2-Trichloroethan	6.53	83	59787	51.50 ng		98
49)	C210	4-Methyl-2-pentanone	6.09	43	398518	239.89 ng		97
50)		Tetrachloroethene	6.67	166	80046	55.09 ng		90
51)	C221	1,3-Dichloropropane	6.66	76	127241	52.20 ng		87
52)	C155	Dibromochloromethane	6.84	129	58678	49.99 ng		97
•	C163	1,2-Dibromoethane	6.93	107	67920	50.01 ng		99
54)	C215	2-Hexanone	6.72	43	267742	233.52 ng		96
	C235	Chlorobenzene	7.32	112	250531	52.46 ng		98
56)	C281	1,1,1,2-Tetrachloroe	7.38	131	70319	52.99 ng		93
57)	C240	Ethylbenzene	7.41	91	452836	53.70 ng		100
58)	C246	m,p-Xylene	7.50	106	348960	109.86 ng		99
59)	C247	o-Xylene	7.81	106	163403	53.90 ng		94
60)		Styrene	7.82	104	253811	53.56 ng		94
63)	C180	Bromoform	7.96	173	26694	46.18 ng		87
64)	C966	Isopropylbenzene	8.11	105	426439	54.45 ng		97
65)	C301	Bromobenzene	8.35	156	83993	52.51 ng	#	8 4
66)	C225	1,1,2,2-Tetrachloroe	8.33	83	88167	50.42 ng		97
67)	C282	1,2,3-Trichloropropa	8.36	110	25372	53.58 ng		100
68)	C283	t-1,4-Dichloro-2-But	8.37	53	132785	241.54 ng	#	95
69)	C302	n-Propylbenzene	8.43	91	515107	54.08 ng		98
70)	C303	2-Chlorotoluene	8.51	126	98000	53.60 ng		100
71)	C289	4-Chlorotoluene	8.60	126	97744	53.74 ng		100
72)	C304	1,3,5-Trimethylbenze	8.58	105	326432	54.73 ng		99
73)	C306	tert-Butylbenzene	8.85	134	70548	55.29 ng		100
74)	C307	1,2,4-Trimethylbenze	8.89	105	317665	54.14 ng		98
75)	C308	sec-Butylbenzene	9.02	105	410860	53.72 ng		95
76)	C260	1,3-Dichlorobenzene	9.12	146	167282	52.60 ng		96
77)	C309	4-Isopropyltoluene	9.14	119	326678	53.63 ng		99
78)	C267	1,4-Dichlorobenzene	9.19	146	162729	50.73 ng		97
79)	C249	1,2-Dichlorobenzene	9.49	146	151784	51.87 ng		97
80)	C310	n-Butylbenzene	9.48	91	303152	53.95 ng		97
81)	C286	1,2-Dibromo-3-Chloro	10.13	75	9889	45.36 ng		94
82)	C313	1,2,4-Trichlorobenze	10.83	180	73078	49.77 ng		95
83)	C316	Hexachlorobutadiene	10.97	225	33633	53.30 ng		96
84)	C314	Naphthalene	11.02	128	188268	47.06 ng		100
85)	C934	1,2,3-Trichlorobenze	11.22	180	63418	47.47 ng		98
								

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File : D:\DATA\122205\S9600.D

Vial: 4 Acq On : 22 Dec 2005 16:44 Operator: TLC : VSTD025 Sample Inst : HP5973S Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 22 18:37:33 2005 Results File: A5I0002442 E2.RES

Quant Method: C:\MSDCHEM\1...\A510002442 E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Thu Dec 22 18:37:29 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Misc

IS QA File : D:\DATA\122205\S9600.D (22 Dec 2005 16:44)

Inte	rnal	Standards	R.T.	QIon	Response	Conc U	nits		(Min) (Ar)
1)	CI10	1,4-Difluorobenzene	5.09	114	468745	125.00	ng	100	0.00
43)	CI20	Chlorobenzene~D5	7.30	117	624095	125.00	ng		0.00 %00.0
62)	CI30	1,4-Dichlorobenzene-	9.16	152	302518	125.00	ng		0.00
		nitoring Compounds							
		Dibromofluoromethane						440	0.00
		mount 125.000 Ran		- 130		ery = 115.13		. 44%	0.00
		1,2-Dichloroethane-D mount 125.000 Ran						.10%	0.00
_	CS05	Toluene-D8	6.19			113.03		. 10%	0.00
		amount 125.000 Ran		- 122			_	. 42%	0.00
		p-Bromofluorobenzene	8.23			117.13			0.00
		mount 125.000 Ran			Recov			.70%	
_		_						_	
		mpounds	1 24	0.5	170057	101 47		Qva	alue
	C290	Dichlorodifluorometh		85	172957	121.47 119.74			100 95
	C010	Chloromethane Vinyl chloride	1.50 1.60	50 62	249146 191030		_		93 97
	C015	Bromomethane	1.87	94	31195	121.02			99
	C025	Chloroethane	1.96	64	37603				99
	C275	Trichlorofluorometha	2.22		203794				100
	C045	1,1-Dichloroethene	2.69	96	182134				94
9) (C030	Methylene chloride	3.11	84	222891	115.11		#	85
10) (C040	Carbon disulfide	2.87	76	553389	119.13	ng		98
11) (Acrolein	2.61	56	477656		_		96
12) (Acrylonitrile	3.31	53	1829027	2637.56	_		98
13) (Acetone	2.76	43	330038				94
14) (Acetonitrile	2.98	41	1423517	5188.14	_		99
15) (16) (<pre>Iodomethane 1,1,2 Trichloro-1,2,</pre>	2.81 2.71	142 101	96451 170402	108.41 119.61	_		87 89
17)		T-butyl Methyl Ether	3.37	73	498485			#	87
18)		trans-1,2-Dichloroet	3.35	96	206419	124.89	_	"	97
19)		Methyl Acetate	3.04	43	284182		_		91
20) (1,1-Dichloroethane	3.68	63	384939				98
21) (C125	Vinyl Acetate	3.74	43	2217730	680.97	ng		95
22) (2,2-Dichloropropane	4.14	77	225968	127.63			90
23) (cis-1,2-Dichloroethe	4.14	96	225637	127.90	-		99
24) (Tetrahydrofuran	4.36	42	371721	683.92		#	1
	C222	Bromochloromethane	4.32	128	95996	126.66		#	80
	C060 C115	Chloroform	4.38 4.53	83	334785 256211	128.31 125.80	_		96 97
	C120	1,1,1-Trichloroethan Carbon tetrachloride	4.55	97 117	199407	125.50			97
	C116	1,1-Dichloropropene	4.65	75	261369	123.70	-		96
	C165	Benzene	4.80	78	911225	126.49			99
	C065	1,2-Dichloroethane	4.81	62	239200	127.22	_		88
34) (C110	2-Butanone	4.15	43	557834	680.88	ng		94
	C256	Cyclohexane	4.58	56	417152	122.28	_	#	86
	C150	Trichloroethene	5.28	95	206018	124.19			92
	C140	1,2-Dichloropropane	5.44	63	229082	129.32		ш	94
38) (C278	Dibromomethane	5.53	93	110565	128.29	ug.	#	80

Data File : D:\DATA\122205\S9600.D Acq On : 22 Dec 2005 16:44 Sample

Vial: 4 Operator: TLC : VSTD025 Inst : HP5973S Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 22 18:37:33 2005 Results File: A5I0002442 E2.RES

Quant Method: C:\MSDCHEM\1...\A510002442 E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Thu Dec 22 18:37:29 2005

Response via : Initial Calibration

DataAcq Meth: VOA

Misc

IS QA File : D:\DATA\122205\S9600.D (22 Dec 2005 16:44)

Int	ernal	Standards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
39)	C130	Bromodichloromethane	5.64	83	227221	130.72 ng	96
40)	C161	2-Chloroethylvinyl E	5.87	63	672183	684.05 ng	96
41)	C012	Methylcycolhexane	5.44	83	385681	122.44 ng	93
42)	C145	cis-1,3-Dichloroprop	5.98	75	309577	130.92 ng	83
45)	C230	Toluene	6.24	92	573137	124.94 ng	97
	C170	trans-1,3-Dichloropr	6.39	75	258900	132.53 ng	94
47)	C284	Ethyl Methacrylate	6.46	69	271287	137.19 ng	# 69
48)	C160	1,1,2-Trichloroethan	6.53	83	150449	129.95 ng	98
49)	C210	4-Methyl-2-pentanone	6.09	43	1133107	684.00 ng	97
50)	C220	Tetrachloroethene	6.66	166	179946	124.19 ng	89
	C221	1,3-Dichloropropane	6.66	76	316243	130.09 ng	87
52)	C155	Dibromochloromethane	6.84	129	154762	132.22 ng	94
53)	C163	1,2-Dibromoethane	6.93	107	174285	128.69 ng	98
54)	C215	2-Hexanone	6.72	43	794024	694.49 ng	97
55)	C235	Chlorobenzene	7.32	112	595080	124.96 ng	97
	C281	1,1,1,2-Tetrachloroe	7.38	131	170421	128.77 ng	96
57)	C240	Ethylbenzene	7.41	91	1061677	126.25 ng	99
58)	C246	m,p-Xylene	7.50	106	818851	258.52 ng	99
	C247	o-Xylene	7.81	106	395048	130.67 ng	90
60)	C245	Styrene	7.82	104	623013	131.83 ng	97
63)	C180	Bromoform	7.96	173	81848	139.31 ng	92
64)	C966	Isopropylbenzene	8.11	105	1016029	127.62 ng	97
65)	C301	Bromobenzene	8.35	156	202218	124.38 ng	# 85
66)	C225	1,1,2,2-Tetrachloroe	8.33	83	233746	131.52 ng	96
67)	C282	1,2,3-Trichloropropa	8.36	110	64365	133.73 ng	100
68)	C283	t-1,4-Dichloro-2-But	8.37	53	371843	665.45 ng	94
69)	C302	n-Propylbenzene	8.43	91	1221438	126.17 ng	97
70)	C303	2-Chlorotoluene	8.51	126	234082	125.97 ng	100
71)	C289	4-Chlorotoluene	8.59	126	235032	127.13 ng	100
72)	C304	1,3,5-Trimethylbenze	8.58	105	785109	129.51 ng	100
73)	C306	tert-Butylbenzene	8.85	134	166983	128.74 ng	100
74)	C307	1,2,4-Trimethylbenze	8.88	105	759157	127.28 ng	98
75)	C308	sec-Butylbenzene	9.02	105	985973	126.83 ng	95
76)	C260	1,3-Dichlorobenzene	9.12	146	406254	125.67 ng	98
77)	C309	4-Isopropyltoluene	9.14	119	792215	127.95 ng	99 96
78)	C267	1,4-Dichlorobenzene	9.19	146	400115	122.71 ng	
79)	C249	1,2-Dichlorobenzene	9.49	146	381451	128.24 ng	96
80)	C310	n-Butylbenzene	9.48	91	718784	125.84 ng	100
81)	C286	1,2-Dibromo-3-Chloro	10.12	75	31390	141.64 ng	83
82)	C313	1,2,4-Trichlorobenze	10.83	180	192080	128.69 ng	98
83)	C316	Hexachlorobutadiene	10.97	225	76806	119.75 ng	96
84)	C314	Naphthalene	11.02	128	584916	143.84 ng 131.99 ng	100 96
03)	C934	1,2,3-Trichlorobenze	11.21	180	179253		<i></i>

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File : D:\DATA\122205\S9599.D
Acg On : 22 Dec 2005 16:20

 Acq On
 : 22 Dec 2005 16:20
 Operator: TLC

 Sample
 : VSTD050
 Inst : HP5973S

 Misc
 : Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 22 18:38:22 2005 Results File: A5I0002442_E2.RES

Quant Method: C:\MSDCHEM\1...\A5I0002442 E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Thu Dec 22 18:38:11 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Intern	nal	Standards	R.T.	QIon	Response	Conc Ui	nits	Dev(N Rcv(A	
1) CI	10	1,4-Difluorobenzene	5.09	114	486649	125.00	ng		0.00
43) CI	20	Chlorobenzene-D5	7.30	117	638420	125.00	ng	(0.00 .14%
62) CI	30	1,4-Dichlorobenzene-	9.16	152	316108	125.00	ng	C	32%
		onitoring Compounds						,	
		Dibromofluoromethane				237.08	_		0.00
-		mount 125.000 Rar						.66%#	
		1,2-Dichloroethane-D				233.60			0.00
		amount 125.000 Rar						.88%#	
44) CS			6.19	98	1492797	236.05			0.00
_		amount 125.000 Rar	ige //	- 122	Recov	ery =		.84%#	
61) CS				174	346214	241.08		068#	J. 00°
Spike	a A	amount 125.000 Rar	ige /4	- 120	Recov	ery =	192	.005#	
		mpounds						Qval	Lue
2) C2	90	Dichlorodifluorometh		85	356121				99
3) C0		Chloromethane Vinyl chloride Bromomethane	1.50	50	495156	229.22			97
4) CO		Vinyl chloride	1.60	62	382753	234.71			100
5) C0			1.87	94	61414				97
6) C0		Chloroethane	1.96	64	76887	209.79			97
7) C2		Trichlorofluorometha	2.22	101	423432	240.66			98
8) CO		1,1-Dichloroethene		96	371163				94
9) C0		Methylene chloride		84	432689				87
10) C0		Carbon disulfide	2.87	76	1117220				99
11) CO		Acrolein	2.61	56	900404	4779.40	_		97
12) C0		Acrylonitrile	3.31	53	3379857	4694.64	_		98
13) C0		Acetone	2.76		636374	1218.39			92
14) C3			2.98		2705273	9496.87			99
15) C2		Iodomethane	2.81		254353				88
16) C2		1,1,2 Trichloro-1,2,						11	90
17) C9		T-butyl Methyl Ether		73	967679	243.60	ng	#	88
18) C0		trans-1,2-Dichloroet	3.35	96	413616	243.60 241.05 241.82	ng		99
19) C2		Methyl Acetate	3.04		541521	241.82	ng		91
20) C0		1,1-Dichloroethane			761630				98 95
21) C1		Vinyl Acetate 2,2-Dichloropropane	3.74		4261158	1260.28			93
22) C0 23) C0		z,z-Dichleropthe	4.14		483184				99
24) C2		cis-1,2-Dichloroethe			441591	1232.21		#	1
25) C2		Tetrahydrofuran Bromochloromethane	4.37 4.32	42 128	695305 185221	235.40		#	80
26) C0		Chloroform	4.38	83	652941	241.05		π	98
27) C1		1,1,1-Trichloroethan	4.53	97	526443	248.98			97
28) C1:		Carbon tetrachloride	4.66	117	417637	253.21	_		97
29) C1		1,1-Dichloropropene	4.65	75	528971	241.14			97
32) C1		Benzene	4.80	7.8 7.8	1784496	238.60			100
33) CO		1,2-Dichloroethane	4.81	62	463161	237.26	_		88
34) C1:		2-Butanone	4.15	43	1044863	1228.42	_		94
35) C2		Cyclohexane	4.58	56	846526	239.01		#	84
36) C1		Trichloroethene	5.29	95	415385	241.20			95
37) C1		1,2-Dichloropropane	5.44	63	445147	242.05			94
38) C2		Dibromomethane	5.53	93	216400	241.86	_	#	82

Data File : D:\DATA\122205\S9599.D

Acq On : 22 Dec 2005 16:20 Operator: TLC : VSTD050 Inst : HP5973S Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 22 18:38:22 2005 Results File: A5I0002442_E2.RES

Quant Method: C:\MSDCHEM\1...\A5I0002442_E2.M (RTE Integrator)

: 8260 5ML WATER Title

Last Update : Thu Dec 22 18:38:11 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Sample

Misc

Int	ernal	Standards	R.T.	QIon	Response	Conc Unit		(Min)
39)	C130	Bromodichloromethane	5.65	83	465264	257.82 ng		98
	C161	2-Chloroethylvinyl E	5.87	63	1245308	1220.67 ng		95
41)	C012	Methylcycolhexane	5.44	83	784298	239.84 ng		93
42)	C145	cis-1,3-Dichloroprop	5.98	75	629691	256.51 ng		82
45)	C230	Toluene	6.24	92	1155330	246.21 ng		94
46)	C170	trans-1,3-Dichloropr	6.39	75	540953	270.69 ng		94
47)	C284	Ethyl Methacrylate	6.46	69	534135	264.05 ng	#	69
48)	C160	1,1,2-Trichloroethan	6.53	83	294235	248.44 ng		98
49)	C210	4-Methyl-2-pentanone	6.09	43	2136371	1260.69 ng		98
50)	C220	Tetrachloroethene	6.67	166	360825	243.43 ng		92
51)	C221	1,3-Dichloropropane	6.66	76	611725	246.00 ng		86
52)	C155	Dibromochloromethane	6.84	129	320984	268.08 ng		97
53)	C163	1,2-Dibromoethane	6.93	107	345528	249.42 ng		99
54)	C215	2-Hexanone	6.72	43	1513412	1294.00 ng		- 97
55)	C235	Chlorobenzene	7.32	112	1178975	242.01 ng		. 98
56)	C281	1,1,1,2-Tetrachloroe	7.38	131	350018	258.55 ng		96
57)	C240	Ethylbenzene	7.41	91	2136984	248.41 ng		99
58)	C246	m,p-Xylene	7.50	106	1587666	490.00 ng		93
59)	C247	o-Xylene	7.81	106	763420	246.85 ng		91
60)	C245	Styrene	7.82	104	1207657	249.81 ng		98
63)	C180	Bromoform	7.96	173	170858	278.31 ng		96
64)	C966	Isopropylbenzene	8.11	105	2051265	246.58 ng		98
65)	C301	Bromobenzene	8.35	156	403432	237.48 ng	#	85
66)	C225	1,1,2,2-Tetrachloroe	8.33	83	465051	250.41 ng		98
67)	C282	1,2,3-Trichloropropa	8.36	110	124328	247.22 ng		100
68)	C283	t-1,4-Dichloro-2-But	8.37	53	719520	1232.29 ng		93
69)	C302	n-Propylbenzene	8.44	91	2484127	245.56 ng		99
70)	C303	2-Chlorotoluene	8.51	126	467995	241.01 ng		100
71)	C289	4-Chlorotoluene	8.60	126	458944	237.57 ng		100
72)	C304	1,3,5-Trimethylbenze	8.58	105	1564344	246.96 ng		100
73)	C306	tert-Butylbenzene	8.85	134	339943	250.83 ng		100
74)	C307	1,2,4-Trimethylbenze	8.89	105	1527474	245.09 ng		99
75)	C308	sec-Butylbenzene	9.03	105	2018927	248.54 ng		96
76)	C260	1,3-Dichlorobenzene	9.12	146	808488	239.34 ng		96
77)	C309	4-Isopropyltoluene	9.15	119	1607779	248.51 ng		98
78)	C267	1,4-Dichlorobenzene	9.19	146	793515	232.89 ng		96
79)	C249	1,2-Dichlorobenzene	9.49	146	738047	237.46 ng		96
•	C310	n-Butylbenzene	9.48	91	1453292	243.49 ng		99
81)	C286	1,2-Dibromo-3-Chloro	10.12	75	66750	288.25 ng	#	84
82)	C313	1,2,4-Trichlorobenze	10.83	180	395824	253.80 ng		99
83)	C316	Hexachlorobutadiene	10.97	225	158505	236.50 ng		97
84)	C314	Naphthalene	11.02	128	1176022	276.77 ng		100
•	C934	1,2,3-Trichlorobenze	11.22	180	356150	250.97 ng		99
/								

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Multiplr: 1.00

Data File : D:\DATA\122205\S9598.D

Acq On : 22 Dec 2005 15:56

Operator: TLC Sample : VSTD100 Inst : HP5973S

Misc MS Integration Params: RTEINT.P

Quant Time: Dec 22 18:37:57 2005 Results File: A5I0002442 E2.RES

Quant Method: C:\MSDCHEM\1...\A510002442 E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Thu Dec 22 18:37:48 2005

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\DATA\122205\S9600.D (22 Dec 2005 16:44)

Internal	Standards	R.T.	QIon	Response	Conc U		Dev(Min) Rcv(Ar)
1) CI10	1,4-Difluorobenzene	5.09	114	470471	125.00	ng	0.00 100.37%
43) CI20	Chlorobenzene-D5	7.30	117	643950	125.00	ng	
62) CI30	1,4-Dichlorobenzene-	9.17	152	318257	125.00	ng	
	onitoring Compounds	4 50	111	643000	404.00		0.00
	Dibromofluoromethane Amount 125.000 Ran						92%#
	1,2-Dichloroethane-D				473.55		
	Amount 125.000 Ran						84%#
44) CS05	Toluene-D8 Amount 125.000 Ran	6.19	98	2926152	458.72	ng	0.00
							98%#
	p-Bromofluorobenzene						0.00
Spiked	Amount 125.000 Ran	ge 74	- 120	Recove	ery =	373.	63%#
Target C	ompounds						Qvalue
	Dichlorodifluorometh	1.35	85	667780	467.26	na	100
3) C010	Chloromethane	1.50	50	931063	445.83		96
4) C020	Chloromethane Vinyl chloride	1.60	62	746647	473.59	ng	98
5) C015		1.87	94	106431			96
6) C025		1.96	64	161913	456.97	ng	98
7) C275	Trichlorofluorometha	2.22	101	849050	499.15	nq	97
8) C045		2.69	96	721279	492.42	ng	96
9) C030	Methylene chloride	3.11		824975			# 86
10) C040	Carbon disulfide	2.87		2290354			98 97
11) C036 12) C038	Acrolein Acrylonitrile	2.61 3.32	56	1644824 6012557	9031.05 8638.65		97
13) C035	Acetone	2.76	53 43	1155362			91
14) C300	Acetone	2.78		5069187	18407.33		99
15) C276	Iodomethane	2.81		644726			88
16) C291	1,1,2 Trichloro-1,2,			694931			89
17) C962	T-butyl Methyl Ether		73	1831663			# 88
18) C057	trans-1,2-Dichloroet	3.35		776060	467.82	ng	98
19) C255	Methyl Acetate	3.04	43	1007342			91
20) C050	1,1-Dichloroethane	3.68	63	1450759			97
21) C125	1,1-Dichloroethane Vinyl Acetate 2,2-Dichloropropane	3.74	43	8033340			95
22) C051	2,2-Dichloropropane	4.14	77	928976			94
	cis-1,2-Dichloroethe			817773			
24) C272 25) C222	Tetrahydrofuran Bromochloromethane	4.36 4.32	42 128	1300016 350852	2383.09 461.24		# 1 # 82
26) C060	Chloroform	4.32	83	1257175	480.07		π 02 97
27) C115	1,1,1-Trichloroethan	4.53	97	1019960	498.97		96
28) C120	Carbon tetrachloride	4.66	117	820417	514.52	_	94
29) C116	1,1-Dichloropropene	4.65	75	1011641	477.03		98
32) C165	Benzene	4.80	78	3337710	461.63	_	99
33) C065	1,2-Dichloroethane	4.81	62	872738	462.45	_	8 9
34) C110	2-Butanone	4.15	43	1870174	2274.32	_	93
35) C256	Cyclohexane	4.58	56	1693062	494.46		# 83
36) C150	Trichloroethene	5.28	95	798638	479.68	_	91
37) C140	1,2-Dichloropropane	5.44	63	809891	455.53		94
38) C278	Dibromomethane	5.53	93	413694	478.26	11 g :	# 8.0

Quantitation Report STL Buffalo (Not Reviewed) 375/504

Data File : D:\DATA\122205\S9598.D

Vial: 2 Operator: TLC

Acq On : 22 Dec 2005 15:56
Sample : VSTD100
Misc : 22 Dec 2005 25:56 Sample Inst : HP5973S Multiplr: 1.00

MS Integration Params: RTEINT.P

Fix Quant Time: Dec 22 18:37:57 2005 A Secults File: A5I0002442_E2.RES File: A5I0002442_E2.RES

Quant Method: C:\MSDCHEM\1...\A5I0002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Thu Dec 22 18:37:48 2005

Response via: Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\DATA\122205\S9600.D (22 Dec 2005) 16:44) A COMMON AND

Int	ernal	Standards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
39)	C130	Bromodichloromethane	5.64		904262	518.31 ng	97
	C161	2-Chloroethylvinyl E	5.87	63	2245550	2276.80 ng	94
41)	C012	Methylcycolhexane	5.44	8.3	1502081	475.13 ng	92.
42)	C145	cis-1,3-Dichloroprop	5,98	75	1226450	516.78 ng	82
	C230	Toluene	6.24	92	2180561	460.70 ng	95
46)	C170	trans-1,3-Dichloropr	6.39	75	1049629	520.72 ng	95
47)	C284	Ethyl Methacrylate	6.46	69	1061526	520.26 ng	# 69
48)	C160	1,1,2-Trichloroethan	6.53	83	563001	471.29 ng	98
	C210	4-Methyl-2-pentanone	6.09	43	3980133	2328.53 ng	98
50)	C220	Tetrachloroethene	6.67	166	675720	451.97 ng	91
51)		1,3-Dichloropropane	6.66	76	1113762	444.04 ng	86
52)	C155	Dibromochloromethane	6.84	129	632177	523.44 ng	93
53)	C163	1,2-Dibromoethane	6.93	107	661185	473.18 ng	98
	C215	2-Hexanone	6.72	43	2841286	2408.49 ng	98
55)	C235	Chlorobenzene	7.32	112	2258482	459.63 ng	
56)	C281	1,1,1,2-Tetrachloroe	7.38	131	679169	497.37 ng	96
57)	C240	Ethylbenzene	7.41	91	4055858	467.42 ng	99
58)	C246	m,p-Xylene	7.50	106	2834959	867.43 ng	91
59)	C247	o-Xylene	7.81	106	1389542	445.44 ng	98
60)	C245	Styrene	7.82	104	2205322	452.26 ng	97
•	C180	Bromoform	7.96	173	345869	559.59 ng	95
64)	C966	Isopropylbenzene	8.11	105	3902823	465.99 ng	99
65)	C301	Bromobenzene	8.35	156	749966	438.48 ng	# 84
-	C225	1,1,2,2-Tetrachloroe	8.33	83	874022	467.45 ng	.97
	C282	1,2,3-Trichloropropa	8.36	110	222076	438.60 ng	100
	C283	t-1,4-Dichloro-2-But	8.37	53	1361803	2316.54 ng	96
69)	C302	n-Propylbenzene	8.44	91	4760243	467.38 ng	98
	C303	2-Chlorotoluene	8.51	126	885362	452.87 ng	100
71)	C289	4-Chlorotoluene	8.60	126	858241	441.27 ng	100
72)	C304	1,3,5-Trimethylbenze	8.58	105	2947342	462.15 ng	98
73)	C306	tert-Butylbenzene	8.85	134	653818	479.16 ng	100
74)	C307	1,2,4-Trimethylbenze	8.88	105	2971519	473.58 ng	100
75)	C308	sec-Butylbenzene	9.02	105	3934784	481.13 ng	95
76)	C260	1,3-Dichlorobenzene	9.12	146	1532275	450.54 ng	96
77)	C309	4-Isopropyltoluene	9.15	119	3145665	482.94 ng	99
78)	C267	1,4-Dichlorobenzene	9.19	146	1517375	442.33 ng	97
79)	C249	1,2-Dichlorobenzene	9.49	146	1355561	433.20 ng	9.5
80)	C310	n-Butylbenzene	9.48	91	2781526	462.88 ng	97
81)	C286	1,2-Dibromo-3-Chloro	10.12	75	125436	538.02 ng	90
82)	C313	1,2,4-Trichlorobenze	10.83	180	756342	481.68 ng	98
83)	C316	Hexachlorobutadiene	10.97	225	312305	462.84 ng	100
84)	C314	Naphthalene	11.02	128	2207421	516.01 ng	100
85)	C934	1,2,3-Trichlorobenze	11.22	180	667028	466.87 ng	97
							

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

METHOD 8260 - AQUEOUS (30% RSD/ 20% D) CONTINUING CALIBRATION CHECK

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u> Lab Samp ID: <u>A5C0006622-1</u>

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No: ____

Lab File Id: $\underline{G7615.RR}$ Calibration Date: $\underline{12/27/2005}$ Time: $\underline{20:41}$

Intrument ID: <u>HP5973G</u> Init. Calib. Date(s): <u>12/20/2005</u> <u>12/20/2005</u>

Heated Purge (Y/N): N Init. Calib. Times: 11:27 14:25

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)

COMPOUND	AVG RRF	RRF25	MIN RRF	% D	MAX % D
Chloromethane	0.5350	0.4807	0.1000	10.100	100.00
Bromomethane	0.2430	0.2271	0.0100	6.500	100.00
Vinyl chloride	0.5150	0.4801	0.0100	6.800	20.00
Chloroethane	0.2780	0.2863	0.0100	-3.000	100.00
Methylene chloride	0.5040	0.4267	0.0100	15.300	100.00
Acetone	0.1360	0.1378	0.0100	-1.300	100.00
Carbon Disulfide	1.0760		0.0100		100.00
1,1-Dichloroethene	0.3670		0.0100	2.500	20.00
1,1-Dichloroethane	0.7850	i i	0.1000	3.900	100.00
cis-1,2-Dichloroethene	0.4590	1	0.0100		100.00
trans-1,2-Dichloroethene	0.4120	0.4066	0.0100		100.00
Chloroform	0.7580	0.7293	0.0100		20.00
1,2-Dichloroethane	0.6360	l i	0.0100		100.00
2-Butanone	0.2170		0.0100		100.00
1,1,1-Trichloroethane	0.6510		0.0100		100.00
Carbon Tetrachloride	0.5470		0.0100		100.00
Bromodichloromethane	0.5260	1 :	0.0100		100.00
1,2-Dichloropropane	0.4560		0.0100		20.00
cis-1,3-Dichloropropene	0.6780	1	0.0100		100.00
Trichloroethene	0.4420				100.00
Dibromochloromethane	0.7400			and the second s	100.00
1,1,2-Trichloroethane	0.6290	1 :			100.00
Benzene	1.7200				100.00
trans-1,3-Dichloropropene	1.2540				100.00
Bromoform	0.4350				100.00
4-Methyl-2-pentanone	0.9310		0.0100		100.00
2-Hexanone	0.6640	0.6748	0.0100		100.00
Tetrachloroethene	0.9390		0.0100		100.00
1,1,2,2-Tetrachloroethane	1.0250		0.3000		100.00
Toluene	2.2150		0.0100		
Chlorobenzene	2.4980				100.00
Ethylbenzene	4.2190	4.1350	0.0100		
Styrene	2.5710				100.00
Total Xylenes	1.6170	1.5615	0.0100		100.00
1,1,2-Trichloro-1,2,2-trifluoro	0.3840	0.4013	0.0100	-4.500	
1,2,4-Trichlorobenzene	1.5700	1.2886	0.0100		100.00
1,2-Dibromo-3-chloropropane	0.1840	0.1722	0.0100		100.00
1,2-Dibromoethane	0.7570	0.7395	0.0100		100.00
1,2-Dichlorobenzene	2.0840	1.9914	0.0100	4.400	100.00

377/504

METHOD 8260 - AQUEOUS (30% RSD/ 20% D) CONTINUING CALIBRATION CHECK

Lab Name: \underline{STL} Buffalo Contract: $\underline{4}$ Lab Samp ID: $\underline{A5C0006622-1}$

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No: ____

Lab File Id: $\underline{G7615.RR}$ Calibration Date: $\underline{12/27/2005}$ Time: $\underline{20:41}$

Heated Purge (Y/N): N Init. Calib. Times: 11:27 14:25

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)

COMPOUND	AVG RRF	RRF25	MIN RRF	% D	MAX % D
1,3-Dichlorobenzene 1,4-Dichlorobenzene Cyclohexane Dichlorodifluoromethane Methyl acetate Naphthalene Trichlorofluoromethane Methyl-t-Butyl Ether (MTBE) Isopropylbenzene Methylcyclohexane	2.1120 2.1890 0.7620 0.4230 0.6030 3.2560 0.5790 1.3240 4.4280 0.8230	2.0952 0.7753 0.3486 0.5515 2.6952 0.5910 1.3102 4.3262	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	4.300 -1.700 17.600 8.500 17.200 -2.100 1.000 2.300	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	2.5210 0.7740 0.4020	0.7215	0.0100 0.0100 0.0100	6.800	100.00

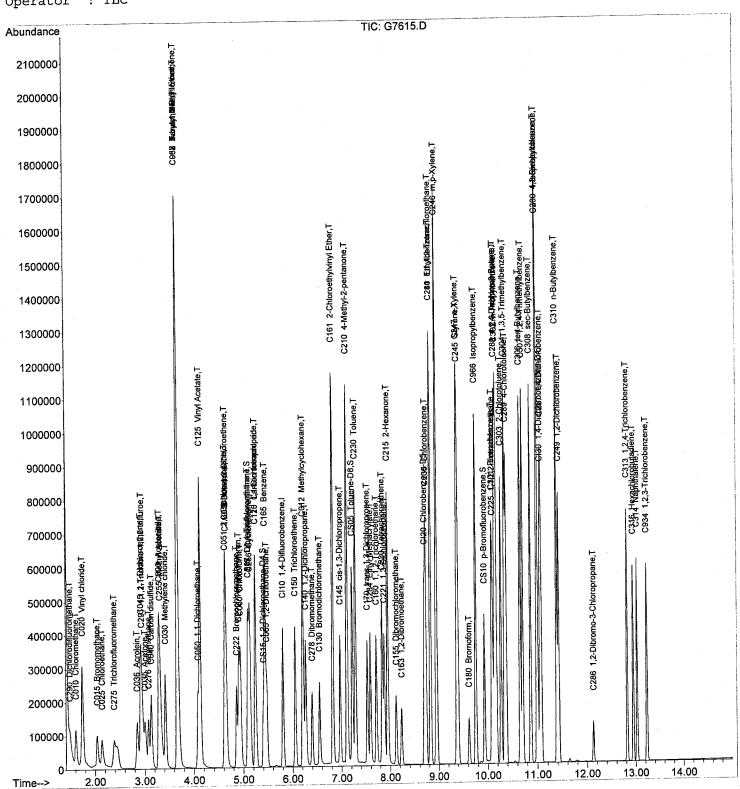
Data File: C:\MSDCHEM\1\DATA\122705\G7615.D

: 27 Dec 2005 20:41

VSTD025 Sample

Misc

Integrator: RTE


Quant Time: Dec 27 21:05:31 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

5ML WATER : 8260 Quant Title

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration
Data Path : C:\MSDCHEM\1\DATA\122705\

Operator : TLC

Data File: C:\MSDCHEM\1\DATA\122705\G7615.D

Acq On : 27 Dec 2005 20:41

Sample : VSTD025 Misc :

Integrator: RTE

Quant Time: Dec 27 21:05:31 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Operator : TLC

Internal Standards	R.T.	QIon	Response	Conc Un		Dev(Rcv((Ar)
1) CI10 1,4-Difluorobenzene	5.80	114	349549	125.00			0.00 3.39%
43) CI20 Chlorobenzene-D5	8.70	82	177567	125.00	ng	92	0.00 2.48%
63) CI30 1,4-Dichlorobenzene-	11.05	152	170788	125.00	ng	93	0.00 3.19%
System Monitoring Compounds 26) CS87 Dibromofluoromethane Spiked Amount 125.000 Ran 31) CS15 1,2-Dichloroethane-D Spiked Amount 125.000 Ran 44) CS05 Toluene-D8 Spiked Amount 125.000 Ran	ge 70 5.40 ge 73	- 130 65 - 136	Recove 131858 Recove	117.18 ery =	93 ng 93 ng	.51%	0.00
62) CG10 n-Bromofluorobenzene	9.93	174	$T \subset \Omega T T T$	110.43	ng		0.00
Spiked Amount 125.000 Ran	ge 74	- 120	Recove	ery =	93	.16%	
							alue
Target Compounds 2) C290 Dichlorodifluorometh	1.49	85	121839	102.89	nq		99
3) C010 Chloromethane	1.61		1.50001	110 24			
4) C020 Vinyl chloride		62	167805	116.57	ng		99
5) C015 Bromomethane		94	168034 167805 79374	116.70	ng		100
5) C015 Bromomethane 6) C025 Chloroethane	2.14	64	100082	128 66	na		91
7) C275 Trichlorofluorometha	2.39	101	206466m	127.52	ng		0
8) C045 1,1-Dichloroethene	2.93	96	125044	121.72	ng		83
où dono Mathrilana ablaride	3 43	84	125044 149146	105.90	ng		88
10) C040 Carbon disulfide 11) C036 Acrolein 12) C038 Acrylonitrile 13) C035 Acetone 14) C300 Acetonitrile 15) C276 Iodomethane	3.43 3.13	76	382563	127.13	ng		97
11) C036 Acrolein	2.85	56	193798	2045.63	ng		99
12) C038 Acrylonitrile	3.67	53	1144298	2589.26	ng		99
13) C035 Acetone	3.00	43	240795	633.76	ng		97
14) C300 Acetonitrile	3.29	41	833370	5013.95	ng		100
15) C276 Iodomethane	3.08	142		124.68			95
16) C291 1,1,2-Trichloro-1,2,	2.94	101					92
17) C962 T-butyl Methyl Ether	3.68	73	457965	123.71 123.26	ng	ш	92 51
18) C057 trans-1,2-Dichloroet	3.68	96	142129 192779	123.26		#	100
19) C255 Methyl Acetate	3.32	43	192779	114.30	ng		
20) C050 1,1-Dichloroethane	4.08	63	263725 1467366 229974	626 73	na		96
21) C125 Vinyl Acetate	4.12 4.62	43	220274	122 84	na		93
22) C051 2,2-Dichloropropane	4.62		154491	120.47	na		91
23) C056 cis-1,2-Dichloroethe	4.91		250135	629.17		* .	93
24) C272 Tetrahydrofuran	4.86		74598	119.63			91
25) C222 Bromochloromethane 27) C060 Chloroform	4.94		254924	120.20			95
	5.09		223392	122.63			94
28) C115 1,1,1-Trichloroethan 29) C120 Carbon tetrachloride	5.24		188050	122.87			99
30) C116 1,1-Dichloropropene	5.24		204070	123.94	ng		87
32) C165 Benzene	5.44		583926	121.37	_		98
33) C065 1,2-Dichloroethane	5.47		217412	122.18			97
34) C110 2-Butanone	4.65	43	383704	633.77			96
35) C256 Cyclohexane	5.13		271012	127.17	_		87
36) C150 Trichloroethene	6.05	95	148645	120.23	ng		90

Acq On : 27 Dec 2005 20:41

: VSTD025 Sample

Misc

Integrator: RTE

Quant Time: Dec 27 21:05:31 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER
QLast Update : Tue Dec 27 08:55:23 2005
Response via : Initial Calibration Data Path : $C:\MSDCHEM\1\DATA\122705\$

Operator : TLC

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
	- 6 27	63	155822	122.08 ng	98
37) C140 1,2-Dichloropropand		93	88343	122.13 ng	# 81
38) C278 Dibromomethane	6.40 ne 6.55	83	173713	118.02 ng	 96
39) C130 Bromodichlorometha		63	536807	635.11 ng	94
40) C161 2-Chloroethylvinyl	6.21	83	296421	128.83 ng	89
41) C012 Methylcyclohexane		75	225733	119.08 ng	98
42) C145 cis-1,3-Dichloropro		92	378821	120.41 ng	98
45) C230 Toluene	7.28	75	209489	117.57 ng	93
46) C170 trans-1,3-Dichloro		69	211920	125.03 ng	98
47) C284 Ethyl Methacrylate		83	108083	121.05 ng	99
48) C160 1,1,2-Trichloroeth			846801	640.62 ng	99
49) C210 4-Methyl-2-pentano			160741	120.51 ng	93
50) C220 Tetrachloroethene	7.84		243084	122.67 ng	98
51) C221 1,3-Dichloropropan			120653	114.75 ng	99
52) C155 Dibromochlorometha			131312	122.18 ng	98
53) C163 1,2-Dibromoethane	8.24		599073	635.18 ng	99
54) C215 2-Hexanone	7.95		429708	121.10 ng	99
55) C235 Chlorobenzene	8.73		142137	122.26 ng	94
56) C281 1,1,1,2-Tetrachlor			734238	122.50 ng	99
57) C240 Ethylbenzene	8.83		568024	243.35 ng	. 96
58) C246 m,p-Xylene	8.95		277278	120.75 ng	94
59) C247 o-Xylene	9.38		448725	122.88 ng	98
60) C245 Styrene	9.40		68841	111.52 ng	99
61) C180 Bromoform	9.62		738859	122.13 ng	98
64) C966 Isopropylbenzene	9.75		176475	118.17 ng	94
65) C301 Bromobenzene	10.08		175456	125.27 ng	99
66) C225 1,1,2,2-Tetrachlor	oe 10.10		54257	119.96 ng	100
67) C282 1,2,3-Trichloropro	pa 10.14		124461	728.84 ng	# 65
68) C283 t-1,4-Dichloro-2-B			931075	123.81 ng	97
69) C302 n-Propylbenzene	10.17		176199	121.07 ng	100
70) C303 2-Chlorotoluene	10.27		179606	118.66 ng	100
71) C289 4-Chlorotoluene	10.38		627266	122.07 ng	97
72) C304 1,3,5-Trimethylben				122.82 ng	96
73) C306 tert-Butylbenzene	10.66		140925 635306	121.86 ng	97
74) C307 1,2,4-Trimethylben	ze 10.71		779137	122.41 ng	97
75) C308 sec-Butylbenzene	10.87		348198	120.68 ng	98
76) C260 1,3-Dichlorobenzen	ne 10.99		712974	123.92 ng	98
77) C309 4-Isopropyltoluene	11.00		357827	119.64 ng	96
78) C267 1,4-Dichlorobenzen	ne 11.08	_	340099	119.43 ng	89
79) C249 1,2-Dichlorobenzer				120.68 ng	97
80) C310 n-Butylbenzene	11.38		643207 29418	117.06 ng	97
81) C286 1,2-Dibromo-3-Chlo	ro 12.12		29418	102.62 ng	100
82) C313 1,2,4-Trichlorober	nze 12.82			111.22 ng	96
83) C316 Hexachlorobutadier			105704	103.47 ng	99
84) C314 Naphthalene	13.03		460306	96.03 ng	98
85) C934 1,2,3-Trichlorober	ize 13.23	180	180395		

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

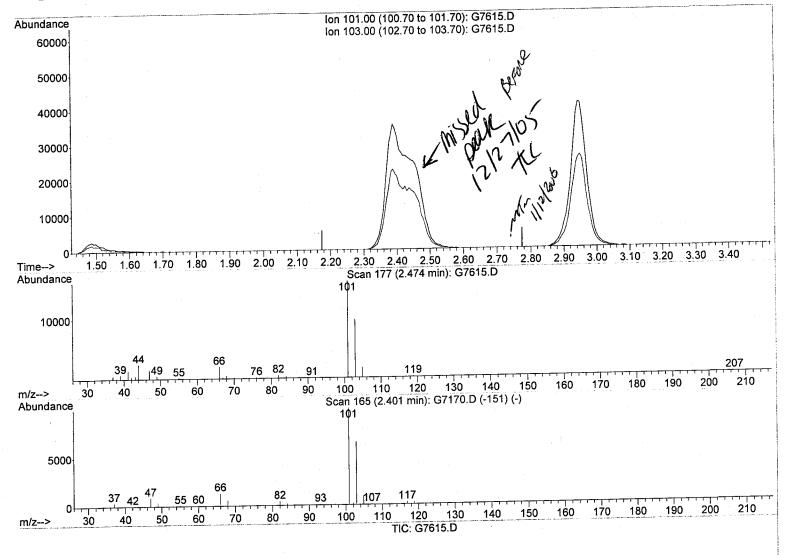
Data File: C:\MSDCHEM\1\DATA\122705\G7615.D

Acg On : 27 Dec 2005 20:41

Sample : VSTD025

Misc :

Integrator: RTE


Quant Time: Dec 27 21:00:04 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 27 08:55:23 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122705\

Operator : TLC

(7) C275 Trichlorofluoromethane (T)

2.47min (-2.474) 0.00ng

response 0

 Ion
 Exp%
 Act%

 101.00
 100
 0.00

 103.00
 63.20
 0.00#

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

Quantitation Report (Qedit)

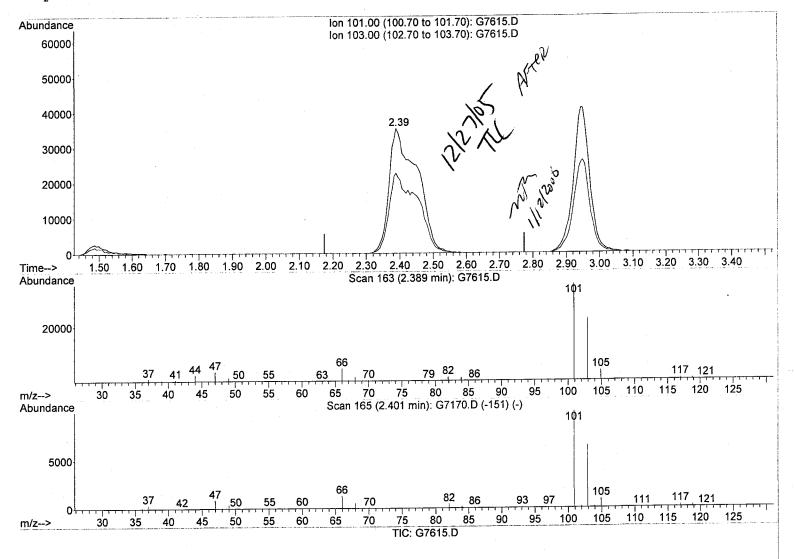
Data File: C:\MSDCHEM\1\DATA\122705\G7615.D

Acq On : 27 Dec 2005 20:41

Sample : VSTD025

Misc :

Integrator: RTE


Quant Time: Dec 27 21:00:04 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Operator : TLC

(7) C275 Trichlorofluoromethane (T)

2.39min (-0.085) 127.52ng m

response 206466

 Ion
 Exp%
 Act%

 101.00
 100
 100

 103.00
 63.20
 64.03

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

METHOD 8260 - AQUEOUS (30% RSD/ 20% D) 383/504 CONTINUING CALIBRATION CHECK

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u> Lab Samp ID: <u>A5C0006629-1</u>

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No: ____

Lab File Id: <u>Q9545.RR</u> Calibration Date: <u>12/27/2005</u> Time: <u>20:40</u>

Intrument ID: <u>HP5973Q</u> Init. Calib. Date(s): <u>12/23/2005</u> <u>12/23/2005</u>

Heated Purge (Y/N): \underline{N} Init. Calib. Times: $\underline{09:01}$ $\underline{11:46}$

GC Column: $\underline{DB624}$ ID: $\underline{0.25}$ (mm)

COMPOUND	AVG RRF	RRF25	MIN RRF	% D	MAX % D
Chloromethane	0.2820	0.3006	0.1000	-6.600	100.00
Bromomethane	0.0990		0.0100		1
Vinyl chloride	0.2700	<i>t</i>	0.0100	-5.600	1
Chloroethane	0.1030	•	0.0100		
Methylene chloride	0.3030		0.0100		1
Acetone	0.1210	1	0.0100		
Carbon Disulfide	0.8430	1	0.0100		100.00
1,1-Dichloroethene	0.2460		0.0100		20.00
1,1-Dichloroethane	0.5520	1	0.1000		100.00
cis-1,2-Dichloroethene	0.3210	l I	0.0100		100.00
trans-1,2-Dichloroethene	0.2880	i i	0.0100		100.00
Chloroform	0.5020		0.0100		20.00
1,2-Dichloroethane	0.4160	1	0.0100		100.00
2-Butanone	0.2050	0.1684	0.0100	17.800	100.00
1,1,1-Trichloroethane	0.4040	0.3893	0.0100	3.600	100.00
Carbon Tetrachloride	0.3480	0.3344	0.0100	3.900	100.00
Bromodichloromethane	0.3610	0.3523	0.0100	2.400	100.00
1,2-Dichloropropane	0.3290	0.3139	0.0100	4.600	20.00
cis-1,3-Dichloropropene	0.5100	0.4938	0.0100	3.200	100.00
Trichloroethene	0.3020	0.2783	0.0100	7.800	100.00
Dibromochloromethane	0.3440	0.3321	0.0100	3.400	100.00
1,1,2-Trichloroethane	0.2670		0.0100	6.000	100.00
Benzene	1.2370		0.0100	4.100	100.00
trans-1,3-Dichloropropene	0.5470		0.0100	4.800	100.00
Bromoform	0.5040		0.1000	15.000	100.00
4-Methyl-2-pentanone	0.4780		0.0100	14.900	100.00
2-Hexanone	0.3460		0.0100	18.300	100.00
Tetrachloroethene	0.3590		0.0100	4.200	100.00
1,1,2,2-Tetrachloroethane	0.9580		0.3000	14.600	100.00
Toluene	0.8890	0.8631	0.0100	2.900	20.00
Chlorobenzene	1.0230		0.3000	4.400	100.00
Ethylbenzene	1.5170		0.0100	1.200	20.00
Styrene	1.0100	0.9755	0.0100		100.00
Total Xylenes	0.6280	0.6120	0.0100	2.500	100.00
1,1,2-Trichloro-1,2,2-trifluoro	0.2090	0.2247	0.0100	-7.500	100.00
1,2,4-Trichlorobenzene	1.0200	0.7299	0.0100	28.400	100.00
1,2-Dibromo-3-chloropropane	0.1790	0.1462	0.0100	18.300	100.00
1,2-Dibromoethane	0.3490	0.3270	0.0100	6.300	100.00
1,2-Dichlorobenzene	1.5900	1.4284	0.0100	10.200	100.00

384/504

METHOD 8260 - AQUEOUS (30% RSD/ 20% D) CONTINUING CALIBRATION CHECK

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u> Lab Samp ID: <u>A5C0006629-1</u>

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No: ____

Lab File Id: <u>Q9545.RR</u> Calibration Date: <u>12/27/2005</u> Time: <u>20:40</u>

Intrument ID: <u>HP5973Q</u> Init. Calib. Date(s): <u>12/23/2005</u> <u>12/23/2005</u>

Heated Purge (Y/N): \underline{N} Init. Calib. Times: $\underline{09:01}$ $\underline{11:46}$

GC Column: <u>DB624</u> ID: <u>0.25</u> (mm)

COMPOUND	AVG RRF	RRF25	MIN RRF	% D	MAX % D
1,3-Dichlorobenzene 1,4-Dichlorobenzene Cyclohexane Dichlorodifluoromethane Methyl acetate Naphthalene Trichlorofluoromethane Methyl-t-Butyl Ether (MTBE) Isopropylbenzene Methylcyclohexane	1.5980 1.6540 0.4090 0.2210 0.4280 2.7890 0.3050 0.9620 3.1000 0.4000	1.4840 0.4247 0.2193 0.4620 1.9183 0.3518 0.9264 2.7283	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	10.300 -3.800 0.800 -7.900 31.200 -15.300 3.700 12.000	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	1.2350 0.3980 0.3160	0.4152	0.0100	-4.300	100.00

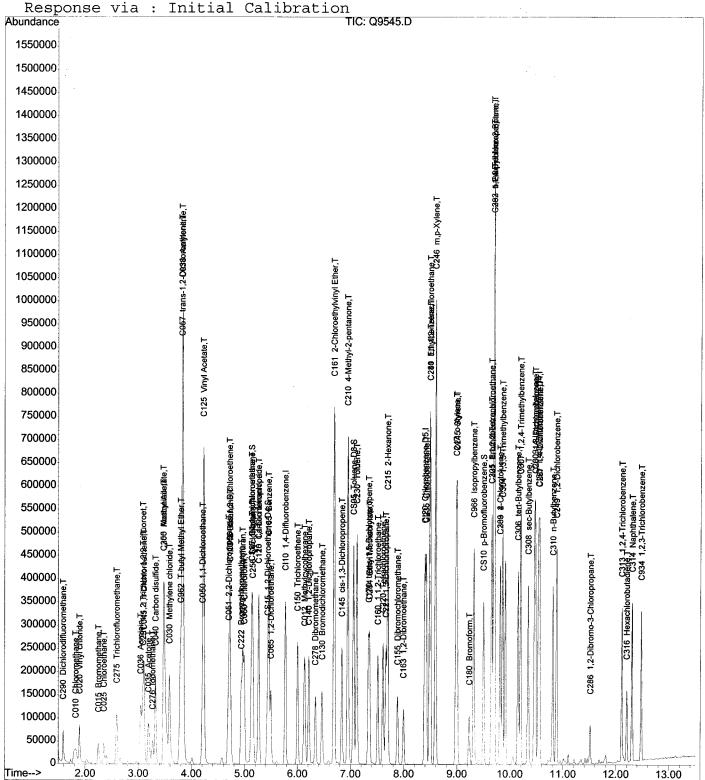
Data File : C:\HPCHEM\1\DATA\122705\Q9545.D

Vial: 28 Acq On : 27 Dec 2005 20:40 Operator: TLC

Sample VSTD025 Inst : HP5973 Q

Misc

Multiplr: 1.00


MS Integration Params: RTEINT.P Quant Time: Dec 27 20:55 2005

Quant Results File: A5I02444.RES

Method : C:\HPCHEM\1\METHODS\Q8260\A5I02444.M (RTE Integrator)

Title 8260 5ML

Last Update : Tue Dec 27 12:10:39 2005

Quantitation Report STL Buffalo 386/504

Data File : C:\HPCHEM\1\DATA\122705\Q9545.D Vial: 28 Acq On : 27 Dec 2005 20:40 Operator: TLC

: VSTD025 Sample Inst : HP5973 Q Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 27 20:55 2005 Quant Results File: A5I02444.RES

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Tue Dec 27 12:10:39 2005

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : C:\HPCHEM\1\DATA\122605\Q9520.D (27 Dec 2005 9:01)

Internal Standards		R.T.	QIon	Response	Conc U	nits		(Min) (Ar)
1) CI10 1,4-Difluorob	enzene	5.77	114	288192	125.00	ng		0.00 L.26%
43) CI20 Chlorobenzene	-D5	8.39	117	252227	125.00	ng		0.00
62) CI30 1,4-Dichlorob	enzene.	10 53	152	126055	125.00	na		0.00
02) C130 1,4 DICHIOLOG	CIIZCIIC	10.55	132	120055	123.00	119		0.00
31) CS15 1,2-Dichloroe	methane 00 Ran thane-D	ge 70 5.43	- 130 65	Recov 85785	rery = 117.65	98 ng	.33%	0.00
Spiked Amount 125.0 44) CS05 Toluene-D8	00 Ran	ge 72 7.05	- 143 98	Recov	ery = 126.51	94		0.00
Spiked Amount 125.0	00 Ran	ge 76	- 116	Recov	ery =	101	.21%	0.00
61) CS10 p-Bromofluoro	benzene	9.50	174	104723	130.44	ng		0.00
Spiked Amount 125.0	00 Ran	ge 73	- 117	Recov	ery =	104	.35%	
Target Compounds 2) C290 Dichlorodiflum 3) C010 Chloromethane 4) C020 Vinyl chlorid 5) C015 Bromomethane 6) C025 Chloroethane 7) C275 Trichloroflum 8) C045 1,1-Dichloroe 9) C030 Methylene chl 10) C040 Carbon disulf 11) C036 Acrolein 12) C038 Acrylonitrile 13) C035 Acetone 14) C300 Acetonitrile 15) C276 Iodomethane 16) C291 1,1,2 Trichlor 17) C962 T-butyl Methy 18) C057 trans-1,2-Dicklory	e rometha thene oride ide ro-1,2, l Ether hloroet	1.82 1.90 2.25 2.35 2.60 3.11 3.59 3.33 3.05 3.84 3.20 3.48 3.27 3.09 3.79 3.82	50 62 94 64 101 96 84 76 53 43 41 142 101 73 96	75855 64743 266980 80231	133.44 131.81 141.97 193.60 144.14 119.98 120.61 122.61 2861.03 2186.67 508.33 4334.16 89.57 134.25 120.35 120.75	ng ng ng ng ng ng ng ng ng ng ng ng ng n	###	95 98 96 98
19) C255 Methyl Acetat 20) C050 1,1-Dichloroe 21) C125 Vinyl Acetate 22) C051 2,2-Dichlorop	thane	4.20 4.23	63 43	960258	119.32 546.94	ng ng		97 100 100 96
	(#) = qualifier out of range (m) = manual integration							
Q9545.D A5I02444.M	Tue Dec				HP5973-	Q	Pa	ige 1

Data File : C:\HPCHEM\1\DATA\122705\Q9545.D

Vial: 28 Acq On : 27 Dec 2005 20:40 Operator: TLC

: VSTD025 Sample Inst: HP5973 Q Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 27 20:55 2005 Quant Results File: A5I02444.RES

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Tue Dec 27 12:10:39 2005

Response via : Initial Calibration

DataAcq Meth : VOA

	Compo	und	R.T.	QIon	Response	Conc Unit	Qч	alue
23)	C056	cis-1,2-Dichloroethe	4.72	96	89841	121.22 ng		92
24)	C272	Tetrahydrofuran	4.96	42	165467	509.97 ng		96
25)	C222	Bromochloromethane	4.94	128	46731	126.10 ng	#	74
26)	C060	Chloroform	4.99	83	140991	121.79 ng		99
27)	C115	1,1,1-Trichloroethan	5.13	97	112203	120.32 ng		96
28)	C120	Carbon tetrachloride	5.27	117	96363	120.15 ng		99
29)	C116	1,1-Dichloropropene	5.27	75	107935	119.83 ng		94
32)	C165	Benzene	5.45	78	341779	119.82 ng		100
33)	C065	1,2-Dichloroethane	5.50	62	116612	121.72 ng		96
34)	C110	2-Butanone	4.73	43	242613	512.37 ng		100
35)	C256	Cyclohexane	5.16	56	122396	129.86 ng		99
36)	C150	Trichloroethene	6.00	95	80215	115.04 ng	#	68
37)	C140	1,2-Dichloropropane	6.22	63	90473	119.28 ng		96
38)	C278	Dibromomethane	6.34	93	50774	120.19 ng	#	80
39)	C130	Bromodichloromethane	6.46	83	101539	122.04 ng		97
40)	C161	2-Chloroethylvinyl E	6.69	63	323306	573.82 ng	#	84
41)	C012	Methylcycolhexane	6.14	83	100351	108.92 ng	#	80
42)	C145	cis-1,3-Dichloroprop	6.84	75	142309	121.02 ng		87
45)	C230	Toluene	7.12	92	217700	121.39 ng		93
46)	C170	trans-1,3-Dichloropr	7.33	75	131282	118.86 ng		94
47)	C284	Ethyl Methacrylate	7.36	69	123138	115.38 ng	#	75
48)	C160	1,1,2-Trichloroethan	7.51	83	63344	117.46 ng		86
49)	C210	4-Methyl-2-pentanone	6.95	43	512977	531.38 ng	#	87
50)	C220	Tetrachloroethene	7.61	166	86762	119.87 ng		92
51)	C221	1,3-Dichloropropane	7.66	76	140308	117.85 ng		98
52)	C155	Dibromochloromethane	7.88	129	83760	120.53 ng		99
53)	C163	1,2-Dibromoethane	7.99	107	82468	116.97 ng		91
54)	C215	2-Hexanone	7.69	43	356540	510.69 ng		98
55)	C235	Chlorobenzene	8.42	112	246697	119.49 ng		89
56)	C281	1,1,1,2-Tetrachloroe	8.49	131	85940	123.07 ng		95
57)	C240	Ethylbenzene	8.49	91	378013	123.50 ng		88
58)	C246	m,p-Xylene	8.59	106	325904	253.44 ng	#	82
59)	C247	o-Xylene	8.98	106	154375	121.87 ng	#	83
60)	C245	Styrene	9.00	104	246052	120.77 ng		92
63)	C180	Bromoform	9.23	173	53995	106.27 ng		98
64)	C966		9.32	105	343918	110.02 ng		91
	C301		9.65		105615	115.11 ng	#	71
	C225					106.76 ng		94
	C282				33294			100
		t-1,4-Dichloro-2-But		51	78291			83
	C302		9.70	91	404941	109.62 ng		89
		ifier out of range (m)		 121 in	togration			

Data File : C:\HPCHEM\1\DATA\122705\Q9545.D

Vial: 28 Acq On : 27 Dec 2005 20:40 Operator: TLC

: VSTD025 Sample Inst: HP5973 Q

Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 27 20:55 2005 Quant Results File: A5I02444.RES

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Tue Dec 27 12:10:39 2005

Response via : Initial Calibration

DataAcq Meth : VOA

	Compo	und	R.T.	QIon	Response	Conc Unit	. Q	value
70)	C303	2-Chlorotoluene	9.82	126	88727	111.86 ng	. J	100
71)	C289	4-Chlorotoluene	9.82	126	88727	106.80 ng	ı	100
72)	C304	1,3,5-Trimethylbenze	9.86	105	276143	108.28 ng	, #	41
73)	C306	tert-Butylbenzene	10.15	134	60339	100.72 ng	ſ	100
74)	C307	1,2,4-Trimethylbenze	10.20	105	302182	116.22 ng	J	94
75)	C308	sec-Butylbenzene	10.35	105	281203	91.53 ng	J	88
76)	C260	1,3-Dichlorobenzene	10.48	146	181865	112.87 ng	I	95
77)	C309	4-Isopropyltoluene	10.46	119	261346	92.97 ng	ſ	94
78)	C267	1,4-Dichlorobenzene	10.55	146	187062	112.15 ng	ſ	96
79)	C249	1,2-Dichlorobenzene	10.87	146	180056	112.31 ng	S	94
80)	C310	n-Butylbenzene	10.81	91	193071	83.99 ng	ſ	79
81)	C286	1,2-Dibromo-3-Chloro	11.51	75	18428	102.14 ng	r #	78
82)	C313	1,2,4-Trichlorobenze	12.11	180	92012	89.45 ng	ſ	100
83)	C316	Hexachlorobutadiene	12.20	225	26246	72.93 ng	ſ	95
,	C314	Naphthalene	12.30	128	241817	85.99 ng	ſ	100
85)	C934	1,2,3-Trichlorobenze	12.47	180	87653	91.37 ng	ſ	100

METHOD 8260 - AQUEOUS (30% RSD/ 20% D) CONTINUING CALIBRATION CHECK

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u> Lab Samp ID: <u>A5C0006621-1</u>

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No: ____

Lab File Id: <u>S9652.RR</u> Calibration Date: <u>12/27/2005</u> Time: <u>10:13</u>

Intrument ID: $\underline{HP5973S}$ Init. Calib. Date(s): $\underline{12/22/2005}$ $\underline{12/22/2005}$

Heated Purge (Y/N): N Init. Calib. Times: 15:56 17:33

GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)

COMPOUND	AVG RRF	RRF25	MIN RRF	% D	MAX % D
Chloromethane	0.5550	0.4163	0.1000	25.000	100.00
Bromomethane	0.0690	0.0551	0.0100	20.100	100.00
Vinyl chloride	0.4190	0.3513	0.0100	16.200	20.00
Chloroethane	0.0940	0.1345	0.0100	-43.100	100.00
Methylene chloride	0.5160	0.4625	0.0100	10.400	100.00
Acetone	0.1340	0.1297	0.0100		100.00
Carbon Disulfide	1.2390	1.2027	0.0100	2.900	100.00
1,1-Dichloroethene	0.3890	0.4057	0.0100	-4.300	20.00
1,1-Dichloroethane	0.8090	0.8166	0.1000	-0.900	100.00
cis-1,2-Dichloroethene	0.4700	1	0.0100	-3.700	
trans-1,2-Dichloroethene	0.4410	0.4588	0.0100	-4.000	100.00
Chloroform	0.6960	1 1	0.0100	-1.200	20.00
1,2-Dichloroethane	0.5010	1	0.0100	0.700	100.00
2-Butanone	0.2180	0.2118	0.0100	2.800	100.00
1,1,1-Trichloroethane	0.5430	1	0.0100	-5.500	100.00
Carbon Tetrachloride	0.4240	0.4598	0.0100	-8.400	100.00
Bromodichloromethane	0.4640	0.4919	0.0100	-6.000	100.00
1,2-Dichloropropane	0.4720	1	0.0100		
cis-1,3-Dichloropropene	0.6310	1	0.0100		100.00
Trichloroethene	0.4420	0.4495	0.0100		100.00
Dibromochloromethane	0.2340	1	0.0100		100.00
1,1,2-Trichloroethane	0.2320	0.2315	0.0100	0.200	100.00
Benzene	1.9210	1.9746	0.0100	-2.800	100.00
trans-1,3-Dichloropropene	0.3910	0.4133	0.0100	-5.700	100.00
Bromoform	0.2430	0.2369	0.1000	2.500	100.00
4-Methyl-2-pentanone	0.3320	0.3251	0.0100	2.100	100.00
2-Hexanone	0.2290	0.2222	0.0100	3.000	100.00
Tetrachloroethene	0.2900	0.2780	0.0100	4.100	100.00
1,1,2,2-Tetrachloroethane	0.7340	0.7027	0.3000	4.300	100.00
Toluene	0.9190	0.9122	0.0100	0.700	20.00
Chlorobenzene	0.9540	0.9229	0.3000	3.200	100.00
Ethylbenzene	1.6840	1.6848	0.0100	0.000	20.00
Styrene	0.9470	0.9671	0.0100	-2.100	100.00
Total Xylenes	0.6140	0.6086	0.0100	0.900	100.00
1,1,2-Trichloro-1,2,2-trifluoro	0.3800	0.3880	0.0100		100.00
1,2,4-Trichlorobenzene	0.6170	0.5592	0.0100		100.00
1,2-Dibromo-3-chloropropane	0.0920	0.0925	0.0100		100.00
1,2-Dibromoethane	0.2710	0.2676	0.0100	1.200	100.00
1,2-Dichlorobenzene	1.2290	1.2146	0.0100	1.200	100.00

390/504

METHOD 8260 - AQUEOUS (30% RSD/ 20% D) CONTINUING CALIBRATION CHECK

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u> Lab Samp ID: <u>A5C0006621-1</u>

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No: ____

Lab File Id: <u>S9652.RR</u> Calibration Date: <u>12/27/2005</u> Time: <u>10:13</u>

Heated Purge (Y/N): N Init. Calib. Times: 15:56 17:33

GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)

COMPOUND	AVG RRF	RRF25	MIN RRF	% D	MAX % D
1,3-Dichlorobenzene 1,4-Dichlorobenzene Cyclohexane Dichlorodifluoromethane Methyl acetate Naphthalene Trichlorofluoromethane Methyl-t-Butyl Ether (MTBE) Isopropylbenzene Methylcyclohexane	1.3360 1.3470 0.9100 0.3800 0.5750 1.6800 0.4520 1.0200 3.2900 0.8400	1.7070 0.4646 1.0351 3.2464	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	6.200 -3.300 44.000 3.000 -1.600 -2.800 -1.500 1.300	100.00 100.00 100.00 100.00 100.00
Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	1.2380 0.2810 0.3850	0.2518	0.0100 0.0100 0.0100	10.400	100.00 100.00 100.00

STL Buffalo

(Not Reviewed) **391/504**

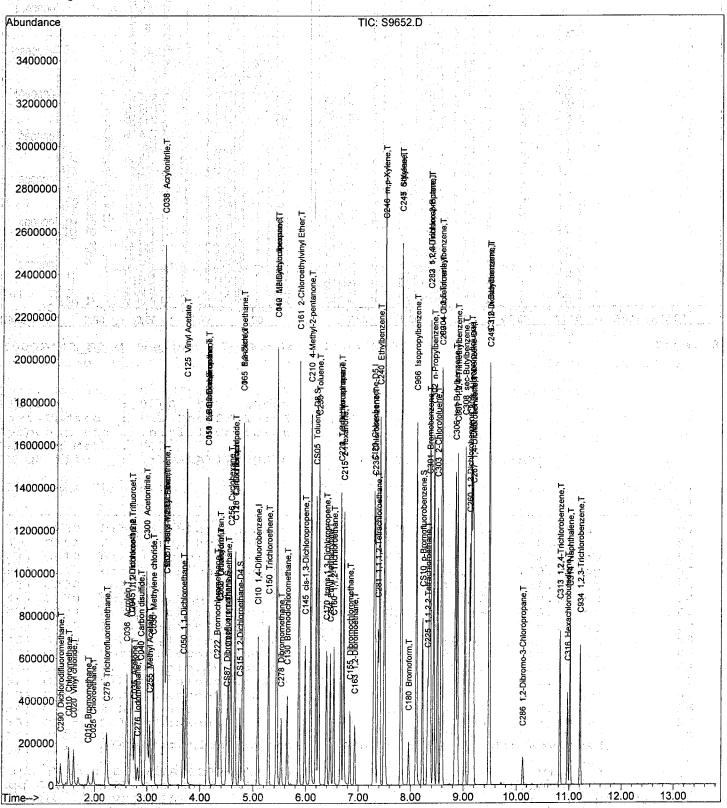
Data File : D:\DATA\122705\S9652.D

Vial: 2 Operator: LH

Acq On : 27 Dec 2005 10:13
Sample : VSTD025 Misc

Inst: HP5973S Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Dec 27 11:08:29 2005 Results File: A5I0002442_E2.RES

Quant Method : C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Fri Dec 23 13:06:43 2005 Response via : Initial Calibration

DataAcq Meth : VOA

·福州中国 建铁矿 医二甲基甲酚 医高温度 (1996年) 第二年

Data File : D:\DATA\122705\S9652.D

Acq On : 27 Dec 2005 10:13 Sample : VSTD025 Misc

Operator: LH Inst : HP5973S Multiplr: 1.00

Vial: 2

MS Integration Params: RTEINT.P

Results File: A5I0002442_E2.RES Quant Time: Dec 27 11:08:29 2005

Quant Method : C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER
Last Update : Fri Dec 23 13:06:43 2005
Response via : Initial Calibration
DataAcq Meth : VOA
IS QA File : D:\DATA\122305\S9627.D (23 Dec 2005 10:53)

Internal Standards	R.T.	QIon	Response	Conc Ur		ev(Min) ev(Ar)
1) CI10 1,4-Difluorobenzer	ne 5.09	1,14	441026	125.00	ng	0.00
43) CI20 Chlorobenzene-D5	7.30	117	600499	125.00	ng	0.00 95.42%
62) CI30 1,4-Dichlorobenzer	ne- 9.16	152	297459	125.00	ng	0.00 92.30%
System Monitoring Compounds				100 50		0 00
30) CS87 Dibromofluorometha		111				0.00
Spiked Amount 125.000		- 130		ery = 119.27	98.00	0.00
31) CS15 1,2-Dichloroethane		65 136	162025		95.42	
Spiked Amount 125.000	Range 73 6.19		Recove 692783	116.46		0.00
44) CS05 Toluene-D8 Spiked Amount 125.000		- 122			93.17	
61) CS10 p-Bromofluorobenze		174		111.96		0.00
Spiked Amount 125.000		- 120			89.57	
Spinod imodiid				- · · · .		
Target Compounds					_	value
2) C290 Dichlorodifluorome	th 1.35	8.5	93794	70.01		99
3) C010 Chloromethane	1.50	50	183583	93.78		100
4) C020 Vinyl chloride	1.60	62	154927	104.83		100
5) C015 Bromomethane	1.88	94	24322	100.29		95
6) C025 Chloroethane	1.97	64	59308	178.56	_	99
7) C275 Trichlorofluoromet		101	204886	128.49		99
8) C045 1,1-Dichloroethene		96	178909			97
9) C030 Methylene chloride		8 4	203965	111.96		: 86 99
10) C040 Carbon disulfide	2.87	76	530400	121.36	_	99
11) C036 Acrolein	2.61	56 53	419259	2455.67	-	98
12) C038 Acrylonitrile	3.31	53	1628774	2496.41 604.06	-	92
13) C035 Acetone	2.75	43	285926 1238190	4796.32		100
14) C300 Acetonitrile	2.98	41 142	97881	116.93		
15) C276 Iodomethane 16) C291 1,1,2 Trichloro-1,		101	171099	127.65		91
16) C291 1,1,2 Trichloro-1, 17) C962 T-butyl Methyl Eth	•	73	456493	126.80		
18) C057 trans-1,2-Dichloro		96	202345	130.12		99
19) C255 Methyl Acetate	3.04	43	245986	121.21		91
20) C050 1,1-Dichloroethane		63	360149	126.21		98
21) C125 Vinyl Acetate	3.73	43	2004628	654.22		95
22) C051 2,2-Dichloropropan		77	234385	140.71		90
23) C056 cis-1,2-Dichloroet			214997	129.53	ng	99
24) C272 Tetrahydrofuran	4.36	42	316413	618.75		1
25) C222 Bromochloromethane	4.32	128	87899	123.27		
26) C060 Chloroform	4.38	83	310672	126.56		97
27) C115 1,1,1-Trichloroeth	an 4.53	97	252744	131.90		98
28) C120 Carbon tetrachlori	de 4.66	117	202770	135.66		94
29) C116 1,1-Dichloroproper		75	261312	131.45	_	96
32) C165 Benzene	4.80	78	870841	128.49	_	99
33) C065 1,2-Dichloroethane		62	219369	124.00		86
34) C110 2-Butanone	4.15	43	467086	605.95	_	92
35) C256 Cyclohexane	4.58	56	414589	129.16		8 4 9 8
36) C150 Trichloroethene	5.29	95 63	198246 214113	127.02 128.47	_	94
37) C140 1,2-Dichloropropan	e 5.44 5.53	63 93	101155	124.75		
38) C278 Dibromomethane	5.53	23	TO T T J J	124.10	-1-9 π	0.0

Data File : D:\DATA\122705\S9652.D

Vial: 2 Acq On : 27 Dec 2005 10:13 Operator: LH Sample : VSTD025 Inst : HP5973S

Misc Multiplr: 1.00 MS Integration Params: RTEINT.P

Quant Time: Dec 27 11:08:29 2005 Results File: A5I0002442_E2.RES

Quant Method: C:\MSDCHEM\1...\A5I0002442_E2.M (RTE Integrator)
Title:: 8260 5ML WATER
Last Update: Fri Dec 23 13:06:43 2005
Response via: Initial Calibration
DataAcq Meth: VOA
IS QA File:: D:\DATA\122305\S9627.D (23 Dec 2005 10:53)

			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, OZ / . D	(23)	2000 10	3.33,	
Inte	rnal	Standa	March and Americal and Lare rds	RП	QIon	Response	Conc Units	Dev(Min)
	7-110-	5501144		***	Q1011	Response	cone chirco	Rcv(Ar)
39)	C130	Bromo	dichloromethane	5.64	83	216935	132.65 ng	97
4.4	C161		oroethylvinyl E	5.87	63	610292	660.10 ng	9.6
17.17	C012	1 1 1 1 1	1cycolhexane	5.44	83	391854	132.22 ng	94
4 4 17	C145		,3-Dichloroprop	5.98	75	289360	130.07 ng	82
	C230	Tolue		6.24	92	547800	124.11 ng	94
	C170		-1,3+Dichloropr	6.39	75	248213	132.05 ng	94
4.1	C284	1	Methacrylate	6.46	69	234779	123.39 ng	# 68
	C160		Trichloroethan	6.53	83	138990	123.39 ng 124.77 ng	98
1 1 1 1 1 1	C210		hyl-2-pentanone	6.09	43	976003	612.32 ng	98
	C210					A second control of the control of t	119.76 ng	88
		1.11	chloroethene	6.67	166	166962	_	
421.15	C221		ichloropropane	6.66	76	290942	124.39 ng	8.4
	C155		mochloromethane	6.84	129	147820	131.25 ng	91
	C163	1 1	ibromoethane	6.93	107	160697	123.32 ng	97
	C215	1.7	anone	6.72	43	667024	606.33 ng	96
	C235	1.13	benzene	7.32	112	554195	120.95 ng	99
	C281	. 10	,2-Tetrachloroe	7.38	131	163792	128.63 ng	95
	C240		enzene	7.41	91	1011692	125.03 ng	99
	C246	m,p-X		7.50	106	781427	256.40 ng	99
	C247	o-Xyl		7.81	106	365478	125.64 ng	94
	C245	Styrer		7.82	104	580722	127.71 ng	95
	C180	Bromo	form	7.96	173	70464	121.98 ng	97
	C966	Isopro	pylbenzene	8.11	105	965682	123.36 ng	98
65)	C301		enzene	8.35	156	187214	117.11 ng	# 85
66)	C225		,2-Tetrachloroe	8.33	83	209028	119.61 ng	97
67)	C282		Trichloropropa	8.36	110	57973	122.50 ng	100
68)	C283		Dichloro-2-But	8.37	53	333048	606.16 ng	91
69)	C302	n-Prop	ylbenzene	8.43	91	1182635	124.24 ng	96
70)	C303	2-Ch1	rotoluene	8.51	126	221640	121.30 ng	100
71)	C289	4-Ch1	rotoluene	8.59	126	218651	120.28 ng	100
72)	C304	1,3,5	Trimethylbenze	8.58	105	754851	126.64 ng	9.9
73)	C306		Butylbenzene	8.85	134	160713	126.02 ng	100
74)	C307	1,2,4	Trimethylbenze	8.88	105	742767	126.65 ng	100
75)	Ċ308		itylbenzene	9.02	105	962212	125.88 ng	94
76)	C260	1,3-Di	ichlorobenzene	9.12	146	381848	120.13 ng	96
77)	C309		propyltoluene	9.15	119	777231	127.67 ng	98
۴.	C267		chlorobenzene	9.19	146	375772	117.20 ng	97
	C249		chlorobenzene	9.49	146	361280	123.53 ng	98
	C310		lbenzene	9.48	91	704916	125.51 ng	100
	C286	H-	bromo-3-Chloro	10.12	75	27505	126.22 ng	8 4
	C313	1 1 1	Trichlorobenze	10.83	180	166334	113.34 ng	96
T .	C316		lorobutadiene	10.97	225	51851	82.22 ng	98
	C314	Naphth		11.02	128	507777	127.00 ng	100
	C934	1	Trichlorobenze	11.21	180	146158	109.45 ng	95
~~ (_,_,						

⁼ qualifier out of range (m) = manual integration (+) = signals summed

METHOD 8260 - AQUEOUS (30% RSD/ 20% D) 394/504 CONTINUING CALIBRATION CHECK

Lab Name: STL Buffalo Contract: 4 Lab Samp ID: A5C0006632-1

Lab Code: RECNY | Case No.: ____ SAS No.: ____ SDG No: ____

Lab File Id: <u>S9691.RR</u> Calibration Date: <u>12/28/2005</u> Time: <u>08:52</u>

Intrument ID: <u>HP5973S</u> Init. Calib. Date(s): <u>12/22/2005</u> <u>12/22/2005</u>

Heated Purge (Y/N): N Init. Calib. Times: 15:56 17:33

GC Column: <u>DB-624</u> ID: <u>0.18</u>(mm)

		T		·	1
in the second se	AVG		MIN		MAX
COMPOUND	RRF	RRF25	RRF	% D	% D
Chloromethane	0.5550	0.6032			100.00
Bromomethane	0.0690	0.0560	0.0100	18.800	100.00
Vinyl chloride	0.4190	0.4712	0.0100	-12.400	20.00
Chloroethane	0.0940	0.1636	0.0100	-74.000	100.00
Methylene chloride	0.5160	0.5243	0.0100	-1.600	100.00
Acetone	0.1340	0.1422	0.0100	-6.100	100.00
Carbon Disulfide	1.2390	1.2548	0.0100	-1.300	100.00
1,1-Dichloroethene	0.3890	0.4487	0.0100	-15.300	20.00
1,1-Dichloroethane	0.8090	1	0.1000	-11.200	100.00
cis-1,2-Dichloroethene	0.4700	0.5445	0.0100	-15.800	100.00
trans-1,2-Dichloroethene	0.4410	0.5131	0.0100	-16.300	100.00
Chloroform	0.6960	0.7998	0.0100	i .	20.00
1,2-Dichloroethane	0.5010	0.5514	0.0100	-10.000	100.00
2-Butanone	0.2180	0.2362	0.0100	-8.300	100.00
1,1,1-Trichloroethane	0.5430	0.6303	0.0100	-16.100	100.00
Carbon Tetrachloride	0.4240	0.5087			
Bromodichloromethane	0.4640			-16.400	100.00
1,2-Dichloropropane	0.4720				20.00
cis-1,3-Dichloropropene	0.6310				1
Trichloroethene	0.4420				
Dibromochloromethane	0.2340	1			1
1,1,2-Trichloroethane	0.2320			-9.100	100.00
Benzene	1.9210	2.2487	0.0100	-17.000	100.00
trans-1,3-Dichloropropene	0.3910			-9.000	100.00
Bromoform	0.2430	0.2353	0.1000		
4-Methyl-2-pentanone	0.3320	1		-3.400	100.00
2-Hexanone	0.2290	0.2376	0.0100	-3.800	100.00
Tetrachloroethene	0.2900	0.3042	0.0100	-4.900	100.00
1,1,2,2-Tetrachloroethane	0.7340	0.7388	0.3000	-0.700	100.00
Toluene	0.9190	0.9991	0.0100	-8.700	20.00
Chlorobenzene	0.9540			-7.200	100.00
Ethylbenzene	1.6840	1.8428	0.0100	-9.400	20.00
Styrene	0.9470				
Total Xylenes	0.6140	0.6644	0.0100		100.00
1,1,2-Trichloro-1,2,2-trifluoro	0.3800	0.3990	0.0100		100.00
1,2,4-Trichlorobenzene	0.6170	0.5661	0.0100		100.00
1,2-Dibromo-3-chloropropane	0.0920	0.0920	0.0100		100.00
1,2-Dibromoethane	0.2710	0.2812	0.0100	-3.800	l
1,2-Dichlorobenzene	1.2290	1.2542	0.0100	-2.000	100.00

METHOD 8260 - AQUEOUS (30% RSD/ 20% D) 395/504 CONTINUING CALIBRATION CHECK

Lab Name: STL Buffalo Contract: 4 Lab Samp ID: A5C0006632-1

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No: ____

Lab File Id: <u>S9691.RR</u> Calibration Date: <u>12/28/2005</u> Time: <u>08:52</u>

Heated Purge (Y/N): N Init. Calib. Times: 15:56 17:33

GC Column: <u>DB-624</u> ID: <u>0.18</u>(mm)

COMPOUND	AVG RRF	RRF25	MIN RRF	% D	MAX % D
1,3-Dichlorobenzene 1,4-Dichlorobenzene Cyclohexane Dichlorodifluoromethane Methyl acetate Naphthalene Trichlorofluoromethane Methyl-t-Butyl Ether (MTBE) Isopropylbenzene Methylcyclohexane	1.3360 1.3470 0.9100 0.3800 0.5750 1.6800 0.4520 1.0200 3.2900 0.8400	1.3278 0.9675 0.3776 0.5344 1.7088 0.5456 1.0808 3.3752	0.0100 0.0100 0.0100	1.400 -6.300 0.600 7.100 -1.700 -20.700 -6.000	100.00 100.00 100.00 100.00
Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	1.2380 0.2810 0.3850	0.2620	0.0100 0.0100 0.0100	6.800	100.00 100.00 100.00

Quantitation Report

STL Buffalo

(Not Reviewed) 396/504

Data File : D:\DATA\122805\S9691.D

: 28 Dec 2005 Acq On 8:52 : VSTD025 Sample

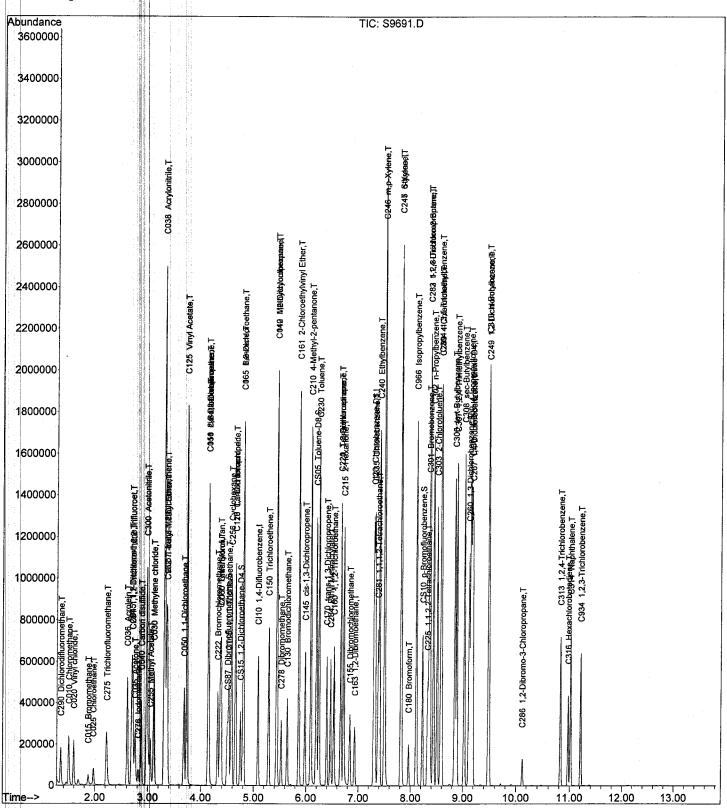
: HP5973S Multiplr: 1.00

Operator: LH

Vial: 2

MS Integration Params: RTEINT.P

Quant Time: Dec 28 09:44:53 2005 Results File: A5I0002442_E2.RES


Quant Method : C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

5ML WATER

Last Update Tue Dec 27 11:08:38 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Data File : D:\DATA\122805\S9691.D Acq On

Vial: 2 : 28 Dec 2005 8:52 Operator: LH

Sample : VSTD025 Inst : HP5973S Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 28 09:44:53 2005 Results File: A5I0002442_E2.RES

Quant Method: C:\MSDCHEM\1...\A510002442 E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Tue Dec 27 11:08:38 2005

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\DATA\122705\S9652.D (27 Dec 2005 10:13)

Internal	Standards	R.T.	QIon	Response	Conc Ui	nits		(Min) (Ar)
1) CI10	1,4-Difluorobenzene	5.09	114	392221	125.00	ng	88	0.00
43) CI20	Chlorobenzene-D5	7.30	117	557609	125.00	ng		0.00
62) CI30	1,4-Dichlorobenzene-	9.16	152	290663	125.00	ng		2.86% 0.00
							97	7.72%
System Mo	nitoring Compounds							
30) CS87		4.50	111	148118	133.80	ng		0.00
Spiked A		ige 70	- 130	Recov		107.	04%	
31) CS15	1,2-Dichloroethane-D	4.75			127.47			0.00
	mount 125.000 Rar		- 136		_	101.	98%	
44) CS05	Toluene-D8				122.33			0.00
Spiked A	mount 125.000 Ran	ige 77	- 122	Recove			86%	
					116.46			0.00
Spiked A	mount 125.000 Ran	ige 74	- 120	Recove	ery =	93.	17%	
Target Co	mpounds						Qva	lue
	Dichlorodifluorometh	1.35	85	148091	124.30	ng		98
3) C010	Chloromethane	1.50	50	236604	135.90			96
4) C020	Vinyl chloride	1.60	62	184795	140.60	ng		100
(5) C015	Bromomethane	1.87	94	21971	101.87	ng		86
6) C025	Chlorpethane	1.97	64	64165	217.22	ng		99
(7) C275	Trichlorofluorometha		101	214004	150.91	ng		98
8) C045	1,1-Dichloroethene		96	175991	144.12			93
9) C030	Methylene chloride	3.11	84	205655	126.93			87
10) C040	Carbon disulfide	2.87	76	205655 492160	126.62			99
11) C036	Acrolein	2.61	56	403966	2660.51			96
12) C038	Acrylonitrile	3.31	53	1597965	2753.95			98
13) C035	Acetone	2.75	43		662.53			90
14) C300	Acetonitrile .	2.98	41	1224224	5332.31	_		99
15) C276	Iodomethane	2.81		82484	110.80	_		88
16) C291 17) C962	1,1,2 Trichloro-1,2, T-butyl Methyl Ether	2.71 3.37	101 73	156492	131.28 132.41		#	89 88
18) C057	trans-1,2-Dichloroet	3.35	73 96	423930 201251	145.52		#	98
19) C255	Methyl Acetate	3.04		201231	116.14	_	#	90
20) C050	1,1-Dichloroethane			353014		_	17	98
21) C125	Vinyl Acetate	3.68		2018678				95
22) C051	2,2-Dichloropropane	4.14	77	220843	149.08	_		90
23) C056	cis-1,2-Dichloroethe	4.14	96	213561	144.67			96
24) C272	Tetrahydrofuran	4.36	42	304296	669.10		#	1
25) C222	Bromochloromethane	4.32	128	89749	141.53	ng	#	84
26) C060	Chloroform	4.38	83	313685	143.68			95
27) C115	1,1,1-Trichloroethan	4.53	97	247233	145.08	ng		97
28) C120	Carbon tetrachloride	4.66	117	199525	150.09	ng		96
29) C116	1,1-Dichloropropene	4.65	75	258634	146.29			96
32) C165	Benzene	4.80	78	881998	146.32	_		99
33) C065	1,2-Dichloroethane	4.80	62	216268	137.46			85
34) C110	2-Butanone	4.15	43	463189	675.66			93
35) C256	Cyclohexane	4.58	56	379468	132.93		#	83
36) C150	Trichloroethene	5.28	95	201636	145.27			92
37) C140	1,2-Dichloropropane	5.44	63	215458	145.36	_	44	94
38) C278	Dibromomethane	5.53	93	103014	142.85	119	#	80

Data File : D:\DATA\122805\S9691.D Acq On : 28 Dec 2005 8:52

Vial: 2 Operator: LH

Misc MS Integration Farams: RTEINT.P

: VSTD025

Inst : HP5973S Multiplr: 1.00

Quant Time: Ded 28 09:44:53 2005 Results File: A5I0002442 E2.RES

Quant Method: C:\MSDCHEM\1...\A510002442 E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Tue Dec 27 11:08:38 2005

Response via : Initial Calibration DataAcq Meth : VOA

Sample

IS QA File : D:\DATA\122705\S9652.D (27 Dec 2005 10:13)

Int	ernal	Standards	R.T.	QIon	Response	Conc Units		(Min) (Ar)
39)	C130	Bromodichloromethane	5.64	83	211858	145.66 ng		95
40)	C161	2-Chloroethylvinyl E	5.87	63	598113	727.43 ng		97
41)	C012	Methylcycolhexane	5.44	83	371294	140.88 ng		95
42)	C145	cis-1,3-Dichloroprop	5.98	75	284348	143.72 ng		83
45)	C230	Toluene	6.24	92	557126	135.93 ng		96
46)	C170	trans-1,3-Dichloropr	6.39	75	237527	136.08 ng		93
47)	C284	Ethyl Methacrylate	6.46	69	228180	129.15 ng	#	69
48)	C160	1,1,2-Trichloroethan	6.53	83	141157	136.46 ng		99
49)	C210	4-Methyl-2-pentanone	6.09	43	957096	646.64 ng		98
50)		Tetrachloroethene	6.66	166	169647	131.04 ng		86
51)		1,3-Dichloropropane	6.66	76	288189	132.69 ng		85
52)		Dibromochloromethane	6.84	129	147696	141.23 ng		94
53)		1,2-Dibromoethane	6.93	107	156817	129.60 ng		99
54)		2-Hexanone	6.72	43	662330	648.38 ng		97
55)		Chlorobenzene	7.32	112	570348	134.04 ng		99
1.5	C281	1,1,1,2-Tetrachloroe	7.38	131	160434	135.68 ng		96
57)		Ethylbenzene	7.41	91	1027574	136.76 ng		100
58)		m,p-Xylene	7.50	106	796053	281.29 ng		100
59)		o-Xylene	7.81	106	370471	137.15 ng		92
60)		Styrene	7.82	104	587581	139.16 ng		94
	C180	Bromoform	7.96	173	68384	121.14 ng		95
64)		Isopropylbenzene	8.11	105	981056	128.26 ng		99
65)		Bromobenzene	8.35	156	192190	123.04 ng	#	83
66)		1,1,2,2-Tetrachloroe	8.33	83	214744	125.75 ng		99
67)		1,2,3-Trichloropropa	8.36	110	59503	128.68 ng		100
68)		t-1,4-Dichloro-2-But	8.37	53	331218	616.92 ng		93
69)	C302	n-Propylbenzene	8.43	91	1184014	127.29 ng		98
70)		2-Chlorotoluene	8.51	126	222293	124.50 ng		100
71)	C289	4-Chlorotoluene	8.59	126	225392	126.89 ng		100
72)	C304	1,3,5-Trimethylbenze	8.58	105	754057	129.46 ng		100
73)		tert+Butylbenzene	8.85	134	164546	132.04 ng		100
74)	C307	1,2,4-Trimethylbenze	8.89	105	736674	128.55 ng		98
75)	C308	sec-Butylbenzene	9.03	105	957173	128.15 ng		96
76)	C260	1,3-Dichlorobenzene	9.12	146	384570	123.81 ng		97
77)	C309	4-Isopropyltoluene	9.14	119	774101	130.13 ng		99
78)	C267	1,4-Dichlorobenzene	9.19	146	385947	123.19 ng		97
79)	C249	1,2-Dichlorobenzene	9.49	146	364558	127.56 ng		97
80)	C310	n-Butylbenzene	9.48	91	705677	128.58 ng	u	97
81)	C286	1,2-Dibromo-3-Chloro	10.12	75	26737	125.57 ng	#	83
82)	C313	1,2,4-Trichlorobenze	10.83	180	164558	114.75 ng		97
83)	C316	Hexachlorobutadiene	10.97	225	49781	80.78 ng		96
84) 85)	C314 C934	Naphthalene	11.02	128	496681	127.13 ng		100
03)		1,2,3-Trichlorobenze	11.22	180	146445	112.23 ng		100

^{(#) =} qualified out of range (m) = manual integration (+) = signals summed

METHOD 8260 - AQUEOUS (30% RSD/ 20% D) 399/504 CONTINUING CALIBRATION CHECK

Lab Name: STL Buffalo Contract: 4 Lab Samp ID: A5C0006643-1

Lab Code: RECNY | Case No.: ____ SAS No.: ___ SDG No: ____

Calibration Date: <u>12/28/2005</u> Time: <u>19:47</u> Lab File Id: <u>S9718.RR</u>

Heated Purge (Y/N): N Init. Calib. Times: 15:56 17:33

GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)

	 	Γ		·	
1	AVG		MIN		MAX
COMPOUND	RRF	RRF25	RRF	% D	% D
Chloromethane	0.5550				100.00
Bromomethane	0.0690				100.00
Vinyl chloride	0.4190		0.0100		
Chloroethane	0.0940		0.0100		100.00
Methylene chloride	0.5160				100.00
Acetone	0.1340		0.0100	-5.300	
Carbon Disulfide	1.2390		0.0100		100.00
1,1-Dichloroethene	0.3890			-9.600	
1,1-Dichloroethane	0.8090				100.00
cis-1,2-Dichloroethene	0.4700			-8.000	
trans-1,2-Dichloroethene	0.4410			-10.400	
Chloroform	0.6960			-9.000	20.00
1,2-Dichloroethane	0.5010			-3.500	
2-Butanone	0.2180		0.0100	-9.400	
1,1,1-Trichloroethane	0.5430			-7.800	100.00
Carbon Tetrachloride	0.4240			-9.800	100.00
Bromodichloromethane	0.4640				100.00
1,2-Dichloropropane	0.4720			-9.600	20.00
cis-1,3-Dichloropropene	0.6310				100.00
Trichloroethene	0.4420			-6.700	
Dibromochloromethane	0.2340			-4.000	
1,1,2-Trichloroethane	0.2320			-3.500	
Benzene	1.9210			-11.600	
trans-1,3-Dichloropropene	0.3910		0.0100	0.600	
Bromoform	0.2430				1 1
4-Methyl-2-pentanone	0.3320	1			
2-Hexanone	0.2290	1 1	0.0100		
Tetrachlorethene	0.2900	1	0.0100		I I
1,1,2,2-Tetrachloroethane	0.7340				
Toluene	0.9190		0.0100		I I
Chlorobenzene	0.9540				100.00
Ethylbenzene	1.6840	l i		-2.700	
Styrene	0.9470	l :			I I
Total Xylenes	0.6140	0.6374	0.0100		100.00
1,1,2-Trichloro-1,2,2-trifluoro	0.3800	0.3890	0.0100		100.00
1,2,4-Trichlorobenzene	0.6170	0.5260	0.0100		100.00
1,2-Dibromo-3-chloropropane	0.0920	0.0862	0.0100		100.00
1,2-Dibromoethane	0.2710	0.2681	0.0100	1.100	I I
1,2-Dichlorobenzene	1.2290	1.1912	0.0100	3.100	100.00

METHOD 8260 - AQUEOUS (30% RSD/ 20% D) 400/504 CONTINUING CALIBRATION CHECK

Lab Name: STL Buffalo Contract: 4 Lab Samp ID: A5C0006643-1

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No: ____

Lab File Id: <u>S9718.RR</u> Calibration Date: <u>12/28/2005</u> Time: <u>19:47</u>

Intrument ID: <u>HP5973S</u> Init. Calib. Date(s): <u>12/22/2005</u> <u>12/22/2005</u>

Heated Purge (Y/N): N Init. Calib. Times: 15:56 17:33

GC Column: <u>DB-624</u> ID: <u>0.18</u>(mm)

COMPOUND	AVG RRF	RRF25	MIN RRF	% D	MAX % D
1,3-Dichlorobenzene 1,4-Dichlorobenzene Cyclohexane Dichlorodifluoromethane Methyl acetate Naphthalene Trichlorofluoromethane Methyl-t-Butyl Ether (MTBE) Isopropylbenzene Methylcyclohexane	1.3360 1.3470 0.9100 0.3800 0.5750 1.6800 0.4520 1.0200 3.2900 0.8400	1.2595 0.9370 0.3618 0.7111 1.6340 0.5192 1.0429 3.1555	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	6.500 -3.000 4.800 -23.700 2.700 -14.900 -2.200 4.100	100.00
Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	1.2380 0.2810 0.3850	0.2558	0.0100 0.0100 0.0100	9.000	100.00 100.00 100.00

Quantitation Report

STL Buffalo

(QT Reviewed)

401/504

Data File : D: DATA 122805\S9718.D Acq On

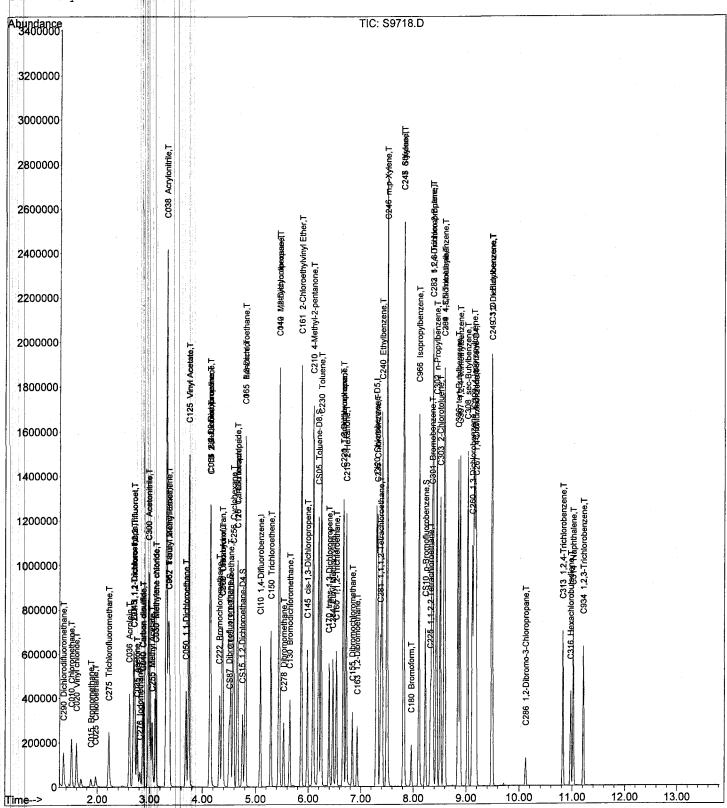
: 28 Dec 2005 19:47 : VSTD025

Vial: 2 Operator: TLC : HP5973S Inst Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 28 20:04:04 2005 Results File: A5I000244 Quant Method: C:\MSDCHEM\1...\A5I0002442_E2.M (RTE Integrator) Results File: A5I0002442_E2.RES

Title 8260 5ML WATER


: Wed Dec 28 09:45:03 2005 Last Update

Response via : Initial Calibration

DataAcq Meth : VOA

Sample

Misc

Vial: 2

Inst : HP5973S

Operator: TLC

Multiplr: 1.00

Data File : D:\DATA\122805\S9718.D

Acq On : 28 Dec 2005 19:47

: VST 0 25 Sample

Misc MS Integration Params: RTEINT.P Quant Time: Dec 28 20:04:04 2005

Results File: A5I0002442_E2.RES

Quant Method: C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)
Title: 8260 5ML WATER

Last Update: Wed Dec 28 09:45:03 2005
Response via: Initial Calibration
DataAcq Meth: VOA

IS QA File : D:\DATA\122805\S9691.D (28 Dec 2005 8:52)

Internal	Standards	R.T	. QIon	Response	e Conc U	nits	Dev(Min)
							Rcv(Ar)
1) CI10	1,4-Difluoroben	zene 5.0	9 114	387682	125.00	ng		0,00
							98	.84%
43) CI20	Chlorobenzene-D	7.3	0 117	557852	125.00	nα		0.00
13, 0120		,	J,	00,002		5		.04%
62) CI30	1,4-Dichloroben	zene- 9.1	6 152	295373	125.00	na		0.00
02) 0130	1,4-Dichiolopen	2ene 9.1	5 152	233373	123.00	***9		.62%
							101	. 02 0
		.a						
	onitoring Compoun			120000	107 00	~ ~		0.00
30) CS87								0.00
	Amount 125.000	_	0 - 130			102.		0 00
31) CS15					124.35			0.00
	Amount 125.000		3 - 136				. 48%	
44) CS05					115.85			0.00
Spiked	Amount 125.000		7 - 122				. 68%	
61) CS10	p-Bromofluorobe	nzene 8.2	3 174	142715	113.73			0.00
Spiked	Amount 125.000	Range 7	4 - 120	Recov	ery =	90.	988	
Target C	ompounds						Qva	lue
2) C290	Dichlorodifluor	ometh 1.3	5 85	140250				100
3) C010	Chloromethane	1.5	50	218245	126.82	ng		98
4) C020	Vinyl chloride	1.6	62	173301	133.40	ng		98
5) C015		1.8	7 94	15932	133.40 74.73 125.94	ng		95
6) C025	1 H + F = F = F = F = F = F = F = F = F = F	1.9		36771	125.94	ng		95
7) C275				201279		ng		98
8) C045	* II + 181 .			165310	136.96	_		93
9) C030				190268	118.81	_		92
10) C040					118.09			99
11) C036		2.6		327407	2181.54			97
12) C038	Acrylonitrile	3.3			2711.94			99
13) C035		2.7		273515	657.35			89
	Acetone	2.98			5334.44			99
14) C300		2.8		71738	97.49			87
15) C276				150792	127.98			91
16) C291	1,1,2 Trichloro						#	87
17) C962	T-butyl Methyl			404326			11	95
18) C057	trans-1,2+Dichl			188842				91
19) C255	Methyl Acetate	3.0		275663	154.53	ng		
20) C050	1,1-Dichloroeth			335077		ng		97
21) C125	Vinyl Acetate	3.7		1622930				96
22) C051	2,2-Dichloropro			193870	132.40	-		89
23) C056	cis-1,2-Dichlor			196718	134.82			99
24) C272	Tetrahydrofuran			301827	671.44		#	1
25) C222	Bromochlorometh	ane 4.32	2 128	83127	132.62			94
26) C060	Chloroform	4.38	8 8 3	294009	136.25			96
27) C115	1,1,1-Trichloro	ethan 4.53	3 97	226963	134.74			95
28) C120	Carbon tetrachl	oride 4.60	5 117	180526	137.39	ng		95
29) C116	1,1-Dichloropro	pene 4.6	75	236586	135.38			96
32) C165	Benzene	4.80	78	831089	139.49	ng		99
33) C065	1,2-Dichloroeth			201046	129.28	ng		85
34) C110	2-Butanone	4.15		462375	682.37			93
35) C256	Cyclohexane	4.58		363253	128.74		#	83
36) C150	Trichloroethene			182832	133.26			96
37) C140	1,2-Dichloropro			200465	136.83			93
38) C278	Dibromomethane	5.53		95929	134.58		#	79
15, 52,6	21219	3.33			• - •	_		

Vial: 2 Operator: TLC

Data File : D:\DATA\122805\S9718.D

Acq On : 28 Dec 2005 19:47

Sample : VSTD025 Misc

Inst: HP5973S Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 28 20:04:04 2005 Results File: A5I0002442_E2.RES

Quant Method: C:\MSDCHEM\1...\A510002442 E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Wed Dec 28 09:45:03 2005

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\DATA\122805\S9691.D (28 Dec 2005 8:52)

Int	ernal	Standards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
39)	C130	Bromodichloromethane	5.65	83	195567	136.03 ng	96
40)		2-Chloroethylvinyl E	5.87	63	566410	696.93 ng	97
41)		Methylcycolhexane	5.44	83	355882	136.61 ng	95
42)		cis-1,3-Dichloroprop	5.98	75	260112	133.01 ng	83
45)		Toluene	6.24	92	518396	126.43 ng	95
46)		trans 1,3 Dichloropr	6.39	75	216880	124.20 ng	94
47)	C284	Ethyl Methacrylate	6.46	69	220699	124.86 ng	# 69
48)	C160	1,1,2-Trichloroethan	6.53	83	133974	129.46 ng	99
49)	C210	4-Methyl-2-pentanone	6.09	43	928446	627.01 ng	97
50)	C220	Tetrachloroethene	6.67	166	157194	121.37 ng	8.8
51)	C221	1,3-Dichloropropane	6.66	76	274996	126.56 ng	83
52)	C155	Dibromochloromethane	6.84	129	135845	129.84 ng	93
53)	C163	1,2-Dibromoethane	6.93	107	149552	123.54 ng	99
54)		2-Hexanone	6.72	43	645016	631.15 ng	95 ्
55)		Chlorobenzene	7.32	112	530897	124.72 ng	98
56)	C281	1,1,1,2-Tetrachloroe	7.38	131	152285	128.73 ng	95
57)	C240	Ethylbenzene	7.41	91	964759	128.34 ng	100
58)	C246	m,p-Xylene	7.50	106	754493	266.49 ng	99
59)		o-Xylene	7.81	106	355601	131.59 ng	91
60)		Styrene	7.82	104	555322	131.46 ng	95
63)		Bromoform	7.96	173	65116	113.51 ng	97
64)		Isopropylbenzene	8.11	105	932043	119.91 ng	98
65)		Bromobenzene	8.35	156	181627	114.42 ng	# 88
66)		1,1,2,2-Tetrachloroe	8.33	83	205139	118.21 ng	98
67)	C282	1,2,3-Trichloropropa	8.36	110	56670	120.59 ng	100
68)		t-1,4-Dichloro-2-But	8.37	53	318780	584.28 ng	94
69)		n-Propylbenzene	8.44	91	1138239	120.42 ng	100
70)	C303	2-Chlorotoluene	8.51	126	210713	116.13 ng	100
71)		4-Chlorotoluene	8.59	126	213477	118.27 ng	100
72)	C304	1,3,5-Trimethylbenze	8.58	105	727575	122.92 ng	99
73)		tert-Butylbenzene	8.85	134	156782	123.80 ng	100
74)		1,2,4-Trimethylbenze	8.88	105	716027	122.96 ng	97
75)	C308	sec-Butylbenzene	9.02	105	928929	122.38 ng	97 97
76)		1,3-Dichlorobenzene	9.12	146	371321	117.64 ng	98
77)	C309	4-Isopropyltoluene	9.15	119	751424	124.30 ng	97
78)		1,4-Dichlorobenzene	9.19	146	372029	116.85 ng	97
79)	C249	1,2-Dichlorobenzene	9.49	146	351861	121.16 ng	99
80)	C310	n-Butylbenzene	9.48	91	678322	121.63 ng 117.63 ng	93
81)	C286	1,2-Dibromo-3-Chloro	10.13	75 100	25453	106.60 ng	99
82)	C313	1,2,4-Trichlorobenze	10.83	180	155356	79.34 ng	99
83)	C316	Hexachlorobutadiene	10.97	225 128	49685 482653	121.57 ng	100
84) 85)	C314 C934	Naphthalene	11.02 11.21	128	142624	107.56 ng	98
35)	C934	1,2,3-Trichlorobenze	11.21		142024		

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Raw QC Data

BFB Tune Evaluation

Vial: 1

Multiplr: 1.00

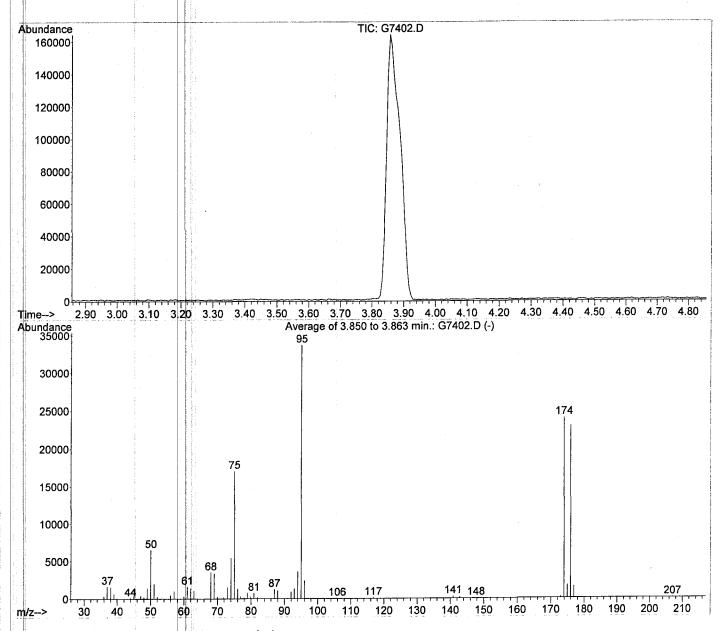
Inst

Operator: LH/TRB

: HP5973G

Data File : C:\MSDChem\1\DATA\122005\G7402.D 9:53

Acq On : 20 Dec 2005


: 1220BFBG1 Sample

Misc

MS Integration Params: RTEINT.P

: C:\MSDCHEM\1\MET...LOW\A510002394.M (RTE Integrator)

: 8260 5ML WATER Title

Apex is scan: 401 (3.86 min)

- 4	eak apex	is scan:						
P	verage o	f 3 scans:	400,	401,40	2 minus	background	scan 381 (3	3.73 min)
١	Target	Rel. to	Lo	wer	Upper	Rel.	Raw	Result
	Mass	Mass	Lim	it,%	Limit,%	Abn,%	Abn	Pass/Fail
ŀ								
	50	95		15	40	19.3	6483	PASS
ŀ	75	95		30	60	50.7	17057	PASS
ı	95	95	1	00 İ	100	100.0	33674	PASS
	96	95		5	9	7.1	2379	PASS
1	173	174		0	2	0.9	205	PASS
	174	95		50	100	71.2	23978	PASS
	175	174		5	9	7.2	1723	PASS
- 1	176	174		95	101	95.9	23000	PASS
	177	176		5	9	6.8	1575	PASS

d.	ified:su	btracted						
	m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
	35.95	327	55.95	484	74.00	5459	94.00	3591
	37.00	1650	57.00	1003	75.00	17057	95.00	33674
	38.00	1536	60.00	304	76.00	1367	96.00	2379
i	39.00	643	61.00	1634	76.95	268	140.85	284
-	45.00	356	62.00	1437	78.90	739	142.90	209
	47.00	376	62.95	1070	79.90	259	172.85	205
	48.00	181	68.00	3530	80.90	753	173.90	. 23978
- 1	49.00	1427	69.00	3407	86.95	1239	174.90	1723
	50.00	6483	69 95	270	87.95	1071	175.90	23000
- 1	51.00	1981	71 90	194	91.95	869	176.90	1575
	52 .05	245	73.00	1550	92.95	1325		

Vial: 1 Operator: TLC

Multiplr: 1.00

Inst: HP5973G

BFB Tune Evaluation

Data File : C:\MSDCHEM\1\DATA\122705\G7614.D

Acq On : 27 Dec 2005 20:20

Sample : 1227BFBG2

Misc

MS Integration Params: RTEINT.P

: C:\MSDCHEM\1\MET...LOW\A510002430.M (RTE Integrator)

: 8260 5ML WATER

is scan: 404 (3.87 min)

I F.	ak Apex	is scan:	± 01	(3.07)	((III)			
A	verage of	E 3 scans:	4 (3,404,40	05 minus ba	ackground	scan 384 (3.75 min)
1	Target	Rel. to		Lower	Upper	Rel.	Raw	Result
	Mass	Mass	1	Limit,%	Limit,%	Abn,%	Abn	Pass/Fail
4.	ļ			- -				
	50	95		15	40	19.5	7137	PASS
	75	95		30	60	51.8	18970	PASS
	95	95		100	100	100.0	36650	PASS
	96	95		5	. 9	6.8	2484	PASS
	173	174		0	2	0.4	110	PASS
	174	95		50	100	71.2	26096	PASS
	175	174		5	9	7.3	1909	PASS
	176	174		95	101	98.1	25613	PASS
	177	176		5	9	7.6	1955	PASS
E		1	1	Haran Taran	1	'		

408	3/504	1
-----	-------	---

1776	rage of	3.869 to	3 881	min ·	G7614 D				_
	7BFBG2	3.005 60	3.00		0,011.5				
:	1: 3 1!	btracted							
100	m/z	abund.	m	7.	abund.	m/z	abund.	m/z	abund.
:	36.00	411	56.	11.	548	75.00	18970	95.00	36650
	37.05	1936	56		1093	76.00	1611	96.00	2484
i	38.05	1681	60.	1. "	390	78.90	970	116.90	269
	39.00	587	61.	11:	1787	79.95	312	118.85	330
:	43.95	202	62	1.	1782	80.90	919	140.85	363
	45.00	404	63.	100	1360	81.85	261	142.85	391
	47.00	528	1.7	00	3517	86.95	1358	173.90	26096
	48.05	200	69.	00	3890	87.95	1380	174.90	1909
	49.00	1679	70.	.05	275	91.95	985	175.90	25613
	50.00	7137	73	.00	1769	93.00	1501	176.90	1955
	51.00	2163	74.	.00	6485	94.00	4308	281.00	1725
lve	rage of	3.869 to	3.881	min.:	G7614.D	•			
	7BFBG2								
ľod	ified:su	btracted							
	m/z	abund.	m	z	abund.	m/z	abund.	m/z	abund.
	282.00	458							
	283.00	284							

Inst

409/504

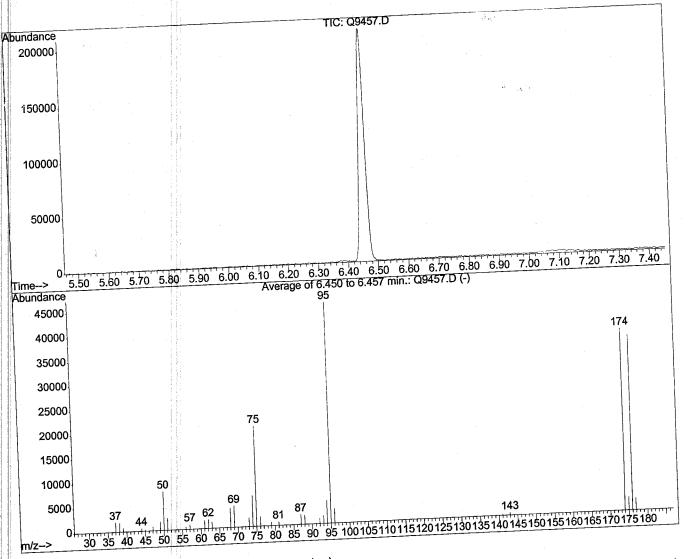
: HP5973 Q

Vial: 1

Operator: JMB

Multiplr: 1.00

Data File : C:\HPCHEM\1\DATA\122305\Q9457.D


8:06 : 23 Dec 2005 Acq On

: 1223BFBQ1 Sample

Misc

MS Integration Params: RTEINT.P : C:\HPCHEM\1\METHODS\Q8260\A5I02414.M (RTE Integrator) Method

: 8260 5ML Title

I	Target	is scan: 1 3 scans: Rel. to Mass	048 (6.45 1047,1048, Lower Limit,%	opper	backgrou Rel. Abn,%	nnd scan 102 Raw Abn	28 (6.39 min) Result Pass/Fail
	Mass	95 95 95 95 174 95 174 174 176	15 30 100 5 0 50 5 95	40 60 100 9 2 100 9 101	17.5 45.4 100.0 6.6 0.0 82.3 7.1 96.2 6.8	7919 20515 45211 2997 0 37208 2642 35781 2433	PASS PASS PASS PASS PASS PASS PASS PASS

abund. 35781 2433

rage of 6.450 to 6.457 min.: Q9457.D 1223BFBQ1

ified:sub m/z 37.05 38.10 39.05 44.00 45.05 47.05 49.05 50.05 51.05 57.05	1223BF tracted abund. 1958 1779 755 540 294 819 1791 7919 2495 526 974	m/z 61.00 62.05 63.00 68.00 69.00 73.00 74.00 75.00 76.05 78.90 80.95	abund. 1661 1807 1312 3935 4348 1839 6305 20515 1929 686 733	m/z 86.95 88.00 91.95 93.00 94.00 95.00 96.00 140.90 142.95 173.90 174.90	abund. 2016 1882 1079 1699 4713 45211 2997 254 525 37208 2642	m/z 175.90 176.90
--	--	---	---	--	---	-------------------------

: HP5973 Q

Vial: 27

Operator: TLC

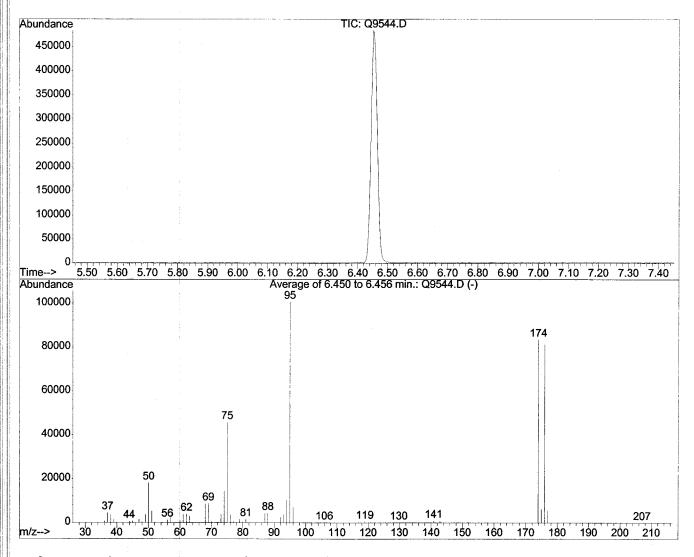
Multiplr: 1.00

Inst

BFB Tune Evaluation

Data File: C:\HPCHEM\1\DATA\122705\Q9544.D

: 27 Dec 2005 20:18


Sample : 1227BFBQ2

Misc

MS Integration Params: RTEINT.P

: C:\HPCHEM\1\METHODS\Q8260\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Peak Apex	is scan:	1048 (6.45	mın)			
Average of	3 scans:	1047,1048,	.1049 minus	s backgrou	nd scan 102	28 (6.39 min)
Target	Rel. to	Lower	Upper	Rel.	Raw	Result
Mass	Mass	Limit,%	Limit,%	Abn,%	Abn	Pass/Fail
50	95	15	40	18.0	18091	PASS
75	95	30	60	45.4	45752	PASS
95	95	100	100	100.0	100739	PASS
96	95	5	9	7.0	7046	PASS
173	174	0	2	0.0	0	PASS
174	95	50	100	82.9	83493	PASS
175	174	5	9	7.3	6098	PASS
176	174	95	101	97.3	81237	PASS
177	176	5	9	6.8	5514	PASS
	Average of Target Mass 50 75 95 96 173 174 175 176	Average of 3 scans: Target Rel. to Mass Mass 50 95 75 95 95 95 96 95 173 174 174 95 175 174 176 174	Average of 3 scans: 1047,1048, Target Rel. to Lower Mass Mass Limit,% 50 95 15 75 95 30 95 95 100 96 95 5 173 174 0 174 95 50 175 174 5 176 174 95	Target Rel. to Lower Upper Mass Limit,% Limit,% 50 95 15 40 75 95 30 60 95 95 100 100 96 95 5 9 173 174 0 2 174 95 50 100 175 174 5 9 176 174 95 101	Average of 3 scans: 1047,1048,1049 minus backgroud Target Rel. to Lower Upper Rel. Abn,% Mass Mass Limit,% Limit,% Abn,% 50	Average of 3 scans: 1047,1048,1049 minus background scan 102 Target

412/504

Average of 6.450 to 6.456 min.: Q9544.D 1227BFBQ2 Modified:subtracted

-	rrrea:su	biracted						
	m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
	36.05	771	57.05	2369	76.05	3847	96.00	7046
ŀ	37.10	4445	60.00	720	77.00	610	140.90	885
	38.10	3689	61.00	3822	78.90	1593	142.90	822
	39.05	1473	62.05	3881	79.90	533	173.90	83493
i	44.00	654	63.00	2955	80.95	1548	174.90	6098
	45.05	790	68.00	8645	87.00	4267	175.90	81237
	47.05	1545	69.00	8651	87.95	4363	176.90	5514
	49.05	3680	70.05	751	92.00	2380		
	50.10	18091	73.00	3783	93.00	3797		
	51.10	5327	74.00	14422	94.00	10471		
	56.00	1211	75.00	45752	95.00	100739		
1	1							

: HP5973S

Vial: 1 Operator: TLC

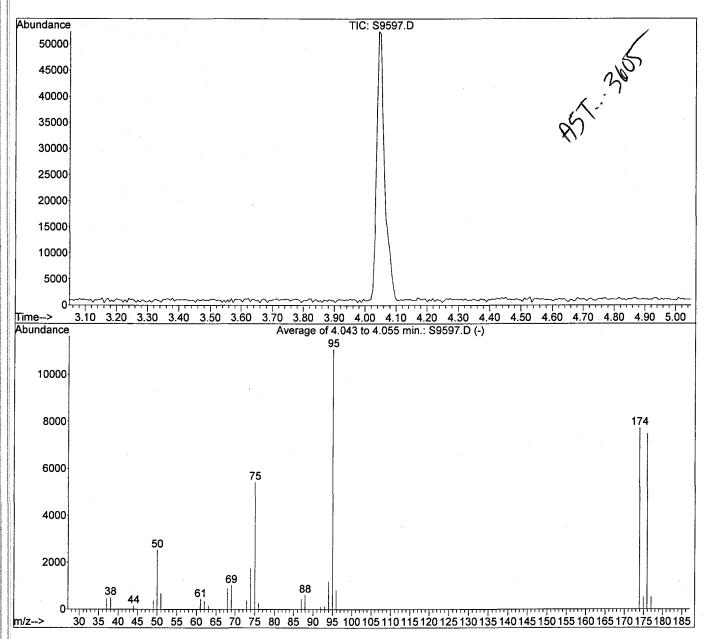
Multiplr: 1.00

Inst

BFB Tune Evaluation

Data File: D:\DATA\122205\S9597.D

Acq On : 22 Dec 2005 15:36


: 1222BFBS2 Sample

Misc

MS Integration Params: RTEINT.P

: C:\MSDCHEM\1\MET...\A510002395 E2.M (RTE Integrator)

Title : 8260 5ML WATER

Peak Apex is scan: 406 (4.05 min)

Average of 3 scans: 405,406,407 minus background scan 386 (3.93 min)

	Target Mass	1	Rel. to Mass	 			Upper Limit,%		Rel. Abn,%		Raw Abn	` 	Result Pass/Fail	
	50	1	95		15		40	 	22.9	 	2540		PASS	1
	75	-	95	-	30	ł	60	1	49.0	l	5430	- 1	PASS	1
	95		95		100	1	100	H	100.0	Ī	11089	- 1	PASS	١
l	96	1	95	i	5	ı	9	ļ	7.5	-	831	1	PASS	1
	173	1	174	1	0	1	2	İ	0.0	1	. 0	- 1	PASS	1
	174	1	95	-	50	ļ	100	1	69.8	İ	7737		PASS	1
1	175	1	174	1	5		9	-	6.8	1	529	- 1	PASS	i
1	176	l	174	1	95	1	101	1	96.8	1	7486	- 1	PASS	1
	177	ļ	176	1	5	İ	9	١	7.0	ı	527	l	PASS	1

i	fied:sul	otracted						
	m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
	37.05	461	69.00	1030	95.90	831		
	38.05	509	72.95	380	173.90	7737		
	44.00	157	73.90	1766	174.95	529		
	49.05	375	75.00	5430	175.90	7486		
	50.00	2540	75.95	260	176.95	527		
	50.95	683	86.95	437				
	60.90	144	87.95	618				
	61.05	433	92.00	118				
	62.00	360	93.00	135				
	63.00	147	94.00	1199				
	67.95	928	95.00	11089				

Data File : D:\DATA\122705\S9651.D

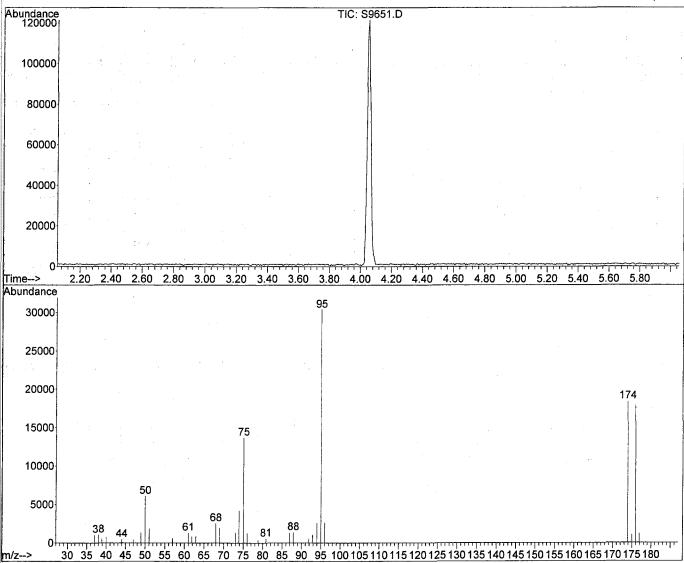
Acq On : 27 Dec 2005

Sample : 1227BFBS1

Misc MS Integration Params: NA

Vial: 1 Operator: LH

Inst : HP5973S


Multiplr: 1.00

Method : C:\MSDCHEM\1\MET...\A510002442 E2.M (RTE Integrator)

: 8260 5ML WATER Title

Last Update : Fri Dec 23 13:06:43 2005

Response via : Initial Calibration

Spectrum Information: Scan 407

Target Mass	.	Rel. to	 	Lower Limit%	1	Upper Limit%	1	Rel. Abn%		Raw Abn	 	Result Pass/Fail	
50	 	95	 _	15	1	40	1	19.9		6061	1	PASS	ı
75	Ĺ	95	1	30	Ì	60	i	45.0	- 1	13682	}	PASS	- 1
95	i	95	1	100	Ì	100	i	100.0	- 1	30432	1	PASS	1
96	i	9.5	i	5	i	9	ĺ	8.8	1	2691	-	PASS	1
173	i	174	i	0.00	Ĺ	2	1	0.0	Ì	0	1	PASS	- 1
174	i	95	i	50	i	100	i	60.3	į	18360	İ	PASS	- 1
175	i	174	į	5	ĺ	: 9	Ĺ	5.6	ĺ	1029	Ì	PASS	-
176	i	174	i	95	i	101	i	97.3	İ	17864	İ	PASS	-
177	i	176	ĺ	5	į	9	ĺ	6.6	Ì	1176	1	PASS	1
	Mass 50 75 95 96 173 174 175	Mass 50 75 95 173 174 175 176	Mass Mass 50 95 75 95 95 95 96 95 173 174 174 95 175 174 176 174	Mass Mass 50 95 75 95 95 95 96 95 173 174 174 95 175 174 176 174	Mass Mass Limit% 50 95 15 75 95 30 95 95 100 96 95 5 173 174 0.00 174 95 50 175 174 5 176 174 95	Mass Mass Limit% 50 95 15 75 95 30 95 95 100 96 95 5 173 174 0.00 174 95 50 175 174 95	Mass Mass Limit% Limit% 50 95 15 40 75 95 30 60 95 95 100 100 96 95 5 9 173 174 0.00 2 174 95 50 100 175 174 95 50 101	Mass Mass Limit% Limit% 50 95 15 40 75 95 30 60 95 95 100 100 96 95 5 9 173 174 0.00 2 174 95 50 100 175 174 5 9 176 174 95 101	Mass Mass Limit% Limit% Abn% 50 95 15 40 19.9 75 95 30 60 45.0 95 95 100 100 100.0 96 95 5 9 8.8 173 174 0.00 2 0.0 174 95 50 100 60.3 175 174 95 9 5.6 176 174 95 101 97.3	Mass Mass Limit% Limit% Abn% 50 95 15 40 19.9 75 95 30 60 45.0 95 95 100 100 100.0 96 95 5 9 8.8 173 174 0.00 2 0.0 174 95 50 100 60.3 175 174 95 9 5.6 176 174 95 101 97.3	Mass Mass Limit% Limit% Abn% Abn 50 95 15 40 19.9 6061 75 95 30 60 45.0 13682 95 95 100 100 100.0 30432 96 95 5 9 8.8 2691 173 174 0.00 2 0.0 0 174 95 50 100 60.3 18360 175 174 95 101 97.3 17864	Mass Mass Limit% Limit% Abn% Abn 50 95 15 40 19.9 6061 75 95 30 60 45.0 13682 95 95 100 100 100.0 30432 96 95 5 9 8.8 2691 173 174 0.00 2 0.0 0 174 95 50 100 60.3 18360 175 174 95 101 97.3 17864	Mass Mass Limit% Limit% Abn% Abn Pass/Fail 50 95 15 40 19.9 6061 PASS 75 95 30 60 45.0 13682 PASS 95 95 100 100 100.0 30432 PASS 96 95 5 9 8.8 2691 PASS 173 174 0.00 2 0.0 0 PASS 174 95 50 100 60.3 18360 PASS 175 174 5 9 5.6 1029 PASS 176 174 95 101 97.3 17864 PASS

Description of the second of th

11							
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
37.00	1010	61.90	824	87.90	1375		
38.00	1034	62.90	905	91.90	566		
38.90	547	68.00	2533	92.90	1088		
40.00	775	68.90	1957	94.00	2599		
44.00	464	73.00	1319	95.00	30432		
47.00	439	73.90	4171	96.00	2691		•
48.90	1348	75.00	13682	173.90	18360		
50.00	6061	76.00	1242	175.00	1029		
5 1.00	1846	78.80	361	175.90	17864		
 57.00	613	80.80	532	176.90	1176		
61.00	1298	86.90	1311				

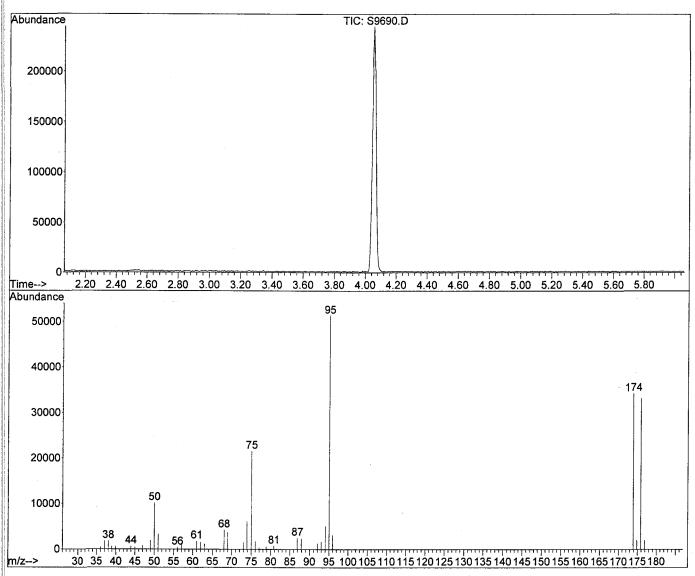
Data File : D:\DATA\122805\S9690.D

Acq On : 28 Dec 2005 8:31

Sample : 1228BFBS1

Misc :
MS Integration Params: NA

Vial: 1 Operator: LH Inst : HP5973S


Multiplr: 1.00

Method : C:\MSDCHEM\1\MET...\A510002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Tue Dec 27 11:08:38 2005

Response via : Initial Calibration

Spectrum Information: Scan 408

-	Target Mass		Rel. to	 	Lower Limit%	1	Upper Limit%	1	Rel. Abn%	!	Raw Abn	1	Result Pass/Fail	1
1	50	1	95		15		40	1	19.8		10182		PASS	
	75		95		30	- [60	1	42.0	ı	21592	-	PASS	1
II.	95	1	95	-	100	- [100	İ	100.0	İ	51456	-	PASS	1
1	96	1	95	-	5		9	-	6.2	1	3167	1	PASS	ı
H	173	- 1	174	1	0.00	1	2	Ī	0.0	1	0	1	PASS	1
1	174	1	95	1	50	1	100	1	66.7	- 1	34296	ļ	PASS	1
H	175	i	174	-	5	1	9	Ì	6.1	Ì	2081	1	PASS	1
1	176	1	174	ł	95		101	Ì	96.9	İ	33216	Ì	PASS	-
	177	ı	176	ĺ	5	1	9	İ	6.2	İ	2059	Ì	PASS	ł

Scan 408 (4.061 min): S9690.D 1228BFBS1

418/504

m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
36.00	501	56.00	442	77.00	356	174.90	2081
37.00	1809	57.00	1060	78.80	595	175.90	33216
38.00	1819	61.00	1791	80.80	749	176.90	2059
38.90	628	62.00	1583	86.90	2527		
39.90	648	63.00	1203	87.90	2357		
44.00	657	68.00	4238	92.00	1299		
45.00	432	68.90	3724	93.00	1692		
47.00	780	73.00	1605	94.00	5092		
49.00	1916	73.90	6158	95.00	51456		
50.00	10182	75.00	21592	96.00	3167		
51.00	3334	76.00	1760	173.90	34296		

Data File : D:\DATA\122805\S9717.D

Acq On : 28 Dec 2005 19:31

Sample Misc

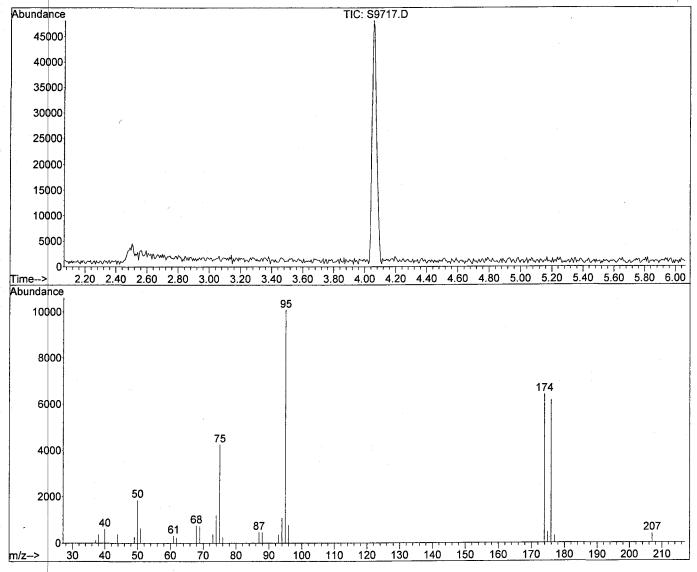
: 1228BFBS2

Operator: TLC Inst

: HP5973S Multiplr: 1.00

Vial: 1

MS Integration Params: NA


: C:\MSDCHEM\1\MET...\A5I0002442_E2.M (RTE Integrator) Method

Title : 8260 5ML WATER

Last Update : Wed Dec 28 09:45:03 2005

Response via : Initial Calibration

Spectrum Information: Average of 4.055 to 4.073 min.

1	Target Mass	1	Rel. to Mass	1	Lower Limit%	1	Upper Limit%	i i	Rel. Abn%	·	Raw Abn	 	Result Pass/Fail	
 	50	 I	95	 I	 15	 I	40	 I	18.4		1857	1	PASS	1
i	75	i	95	i	30	i	60	ĺ	42.0	1	4244		PASS	- 1
i	95	İ	95	i	100	Ĺ	100	Ì	100.0	- 1	10104		PASS	- 1
i	96	1	95	i	5	i	9	i	7.7	- 1	777		PASS	.1
i	173	1	174	i	0.00	Ĺ	2	i	0.0	- 1	0	1	PASS	- 1
i	174	i	95	i	50	i	100	ĺ	63.5	- 1	6413	1	PASS	1
Ì	175	Ĺ	174	İ	5	1	9	1	7.2		464	1	PASS	I
i	176	İ	174	İ	95	1	101	1	96.2	- 1	6172	1	PASS	1
i	177	İ	176	j	5	1	9	١	5.0	İ	310	1	PASS	

m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
37.10	126	72.95	377	174.85	464		
38.00	379	73.95	1194	175.90	6172		
39.95	607	75.00	4244	176.95	310		
43.85	380	76.00	256	207.00	402		
49.05	264	86.95	477				
49.95	1857	87.95	466				
50.95	636	92.90	363				
61.00	317	93.95	1084				
61.90	241	95.00	10104				
67.90	754	95.95	777				
68.95	735	173.90	6413				

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

			VBLK21	<u>-</u>
Lab Name: <u>STL Buffalo</u> Contract	t: <u>4</u>			
Lab Code: <u>RECNY</u> Case No.: SAS I	No.:	SDG No.:		
Matrix: (soil/water) <u>WATER</u>		Lab Sample ID:	A5B2007602	
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$		Lab File ID:	S9655.RR	
Level: (low/med) <u>LOW</u>		Date Samp/Recv:		
Moisture: not dec Heated Purge:	\underline{N}	Date Analyzed:	12/27/2005	
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)		Dilution Factor:	1.00	
Soil Extract Volume: (uL)		Soil Aliquot Volu	ıme•	(11T.)

CONCENTRATION UNITS: CAS NO. (ug/L or ug/Kg) UG/L_ COMPOUND Q 67-64-1-----Acetone 5.0 U 71-43-2----Benzene 1.0 U 75-27-4-----Bromodichloromethane U 1.0 75-25-2----Bromoform U 1.0 74-83-9-----Bromomethane U 1.0 78-93-3----2-Butanone U 5.0 75-15-0-----Carbon Disulfide 1.0 U 56-23-5-----Carbon Tetrachloride 1.0 U 108-90-7-----Chlorobenzene 1.0 U U 75-00-3-----Chloroethane 1.0 67-66-3-----Chloroform U 1.0 74-87-3-----Chloromethane 1.0 U 110-82-7-----Cyclohexane U 1.0 106-93-4----1,2-Dibromoethane U 1.0 124-48-1----Dibromochloromethane U 1.0 96-12-8----1,2-Dibromo-3-chloropropane U 1.0 95-50-1----1,2-Dichlorobenzene 1.0 IJ 541-73-1----1,3-Dichlorobenzene U 1.0 106-46-7----1,4-Dichlorobenzene U 1.0 75-71-8-----Dichlorodifluoromethane 1.0 U U 75-34-3----1,1-Dichloroethane 1.0 107-06-2----1,2-Dichloroethane U 1.0 75-35-4----1,1-Dichloroethene 1.0 U 156-59-2----cis-1,2-Dichloroethene 1.0 U 156-60-5----trans-1,2-Dichloroethene 1.0 IJ 78-87-5----1,2-Dichloropropane 1.0 U 10061-01-5---cis-1,3-Dichloropropene U 1.0 10061-02-6---trans-1,3-Dichloropropene 1.0 U U 100-41-4----Ethylbenzene 1.0 IJ 591-78-6----2-Hexanone 5.0 98-82-8----Isopropylbenzene 1.0 U 79-20-9-----Methyl acetate U 1.0 108-87-2----Methylcyclohexane U 1.0 U 75-09-2----Methylene chloride 1.0

U

U

U

U

U

1.0

1.0

1.0

1.0

3.0

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

Tab Name (IIII Duffel)		VBLK21		
Lab Name: <u>STL Buffalo</u> Contract: <u>4</u>	·	<u> </u>		
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	_		
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A5B2007</u>	602	
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID:	<u>S9655.R</u>	R	_
Level: (low/med) <u>LOW</u>	Date Samp/Recv:			· · · · · ·
% Moisture: not dec Heated Purge: N	Date Analyzed:	12/27/2	005	
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor	:1.0	<u>o</u>	
Soil Extract Volume: (uL)	Soil Aliquot Vo	lume:	· ·	(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg)		Q	
108-10-14-Methyl-2-pentanone		5.0	U	
1624 04 4 Mothy + Duty Ethon (MTDE)		1.0	บ	
191-20-3Narhthalene		1.0	υ	
91-20-3Naphthalene		1.0	υ	
79-34-51,1,2,2-Tetrachloroethane		1.0	Ϊ́υ	
127-18-4Tetrachloroethene		1.0	Ū	
1108-88-3Toluene		1.0	บ	
120-82-11,2,4-Trichlorobenzene		1.0	Ū	
71-55-61,1,1-Trichloroethane		1.0	ប	
79-00-51,1,2-Trichloroethane		1.0	lυ	1

76-13-1----1,1,2-Trichloro-1,2,2-trifluoroethane_75-69-4----Trichlorofluoromethane_

79-01-6----Trichloroethene

75-01-4-----Vinyl chloride

1330-20-7----Total Xylenes

STL Buffalo

(Not Revlewed)

423/504

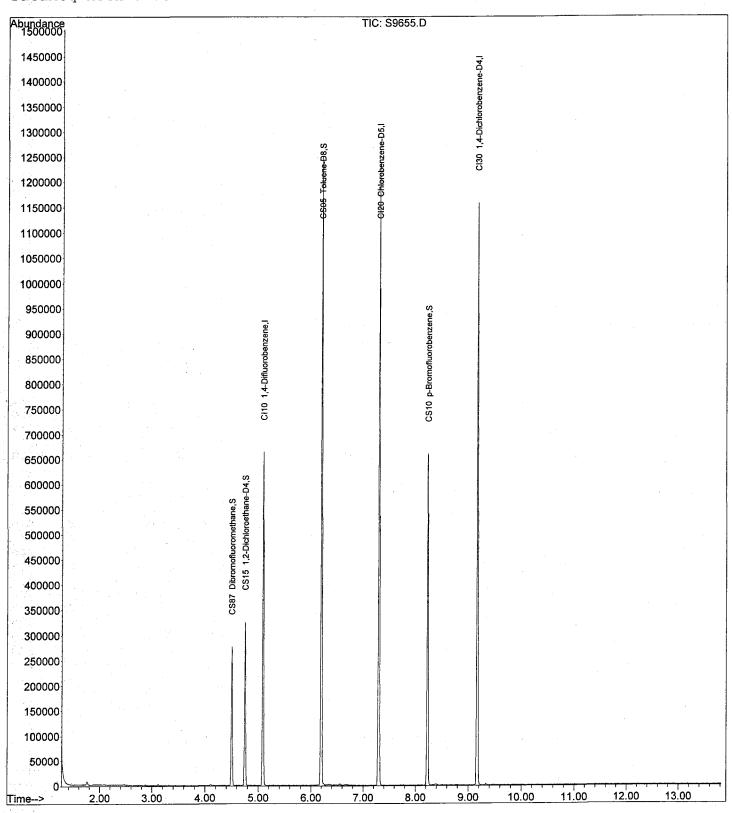
Data File : D:\DATA\122705\S9655.D Acq On : 27 Dec 2005 11:30 Vial: 5 Operator: LH

Acq On : 27 Dec 200 Sample : VBLK21

Inst : HP5973S Multiplr: 1.00

Misc : MS Integration Params: RTEINT.P

Quant Time: Dec 27 11:49:09 2005 Results File: A5I0002442_E2.RES


Quant Method: C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Tue Dec 27 11:08:38 2005

Response via : Initial Calibration

DataAcq Meth: VOA

Vial: 5

Inst : HP5973S Multiplr: 1.00

Operator: LH

Data File : D:\DATA\122705\S9655.D

Acq On : 27 Dec 2005 11:30 Sample : VBLK21 Misc :

MS Integration Params: RTEINT.P

Quant Time: Dec 27 11:49:09 2005 Results File: A5I0002442_E2.RES

Quant Method: C:\MSDCHEM\1...\A510002442 E2.M (RTE Integrator)

Title : 8260 5ML WATER
Last Update : Tue Dec 27 11:08:38 2005
Response via : Initial Calibration

DataAcq Meth: VOA

IS QA File : D:\DATA\122705\S9652.D (27 Dec 2005 10:13)

Internal	Standards	R.T	. QIon	Response	Conc Ui		ev(Min) cv(Ar)
1) CI10	1,4-Difluorobenzene	5.0	9 114	405816	125.00	ng	0.00 92.02%
43) CI20	Chlorobenzene-D5	7.3	0 117	556539	125.00	ng	0.00
62) CI30	1,4-Dichlorobenzene-	9.1	6 152	258175	125.00	ng	0.00
	and the second of the second						00.,50
System Mo	nitoring Compounds						
30) CS87	Dibromofluoromethane	4.5	0 111	142594	124.49	ng	0.00
Spiked A			0 - 130		ry =	99.59	9 응
31) CS15		4.7		151163	120.92	ng	0.00
Spiked A		ge 7	3 - 136	Recove	ry =	96.74	! 용
	Toluene-D8	6.1	9 98	633407	114.89		0.00
Spiked A		ge 7	7 - 122	Recove	ry =	91.91	_ 8
61) CS10	p-Bromofluorobenzene	8.2		132668	105.97	ng	0.00
Spiked A	mount 125.000 Ran	ge 7	4 - 120	Recove	ry =	84.78	3 %
Target Co	mpounds.						value
2) C290		0.00	85	0	N.D.	•	S S S
A STATE OF THE STA		0.00	50.	Ö	N.D.		
4) C020		0.00	62	0	N.D.		
5) C015	-	0.00	94	0	N.D.		
6) C025		0.00	64	Ö	N.D.		
7) C275		0.00	101	0	N.D.		
	and the control of th	0.00	9.6	- 0	N.D.		
9) C030		3,12	84	635	N.D.		
		2.87	76	1679	N.D.		
11) C036		2.61	56	128	N.D.		
12) C038		3.32	53	521	N.D.		
13) C035		2.76	43	297	N.D.		
14) C300		0.00	41	0	N.D.		
15) C276		0.00	142	0	N.D.		
16) C291		0.00	101	0 ,	N.D.		
17) C962		0.00	73	0	N.D.		
18) C057		0.00	96	0	N.D.		
19) C255	Methyl Acetate	3.04	43	139	N.D.		
20) C050	1,1-Dichloroethane	0.00	63	0	N.D.		
21) C125	Vinyl Acetate	0.00	43	0	N.D.		
22) C051		0.00	77	0	N.D.		
23) C056		0.00	96	0	N.D.		
24) C272		0.00	42	0	N.D.		
25) C222		0.00	128	0	N.D.		
26) C060		0.00	83	0 -	N.D.		
27) C115	· · ·	0.00	97	0	N.D.		
28) C120		0.00	117	0	N.D.		
29) C116		0.00	75	0	N.D.		
32) C165		4.80	78	568	N.D.		
33) C065	•	0.00	62	0	N.D.		
34) C110		0.00	43	0	N.D.		
35) C256		0.00	56	0	N.D.		
36) C150		0.00	95	0	N.D.		
37) C140		0.00	63	0	N.D.		
38) C278	Dibromomethane	0.00	93	.0	N.D.		v

Data File : D:\DATA\122705\S9655.D

Vial: 5 Operator: LH Acq On : 27 Dec 2005 11:30

Inst : HP5973S Sample : VBLK21 Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Quant Time: Dec 27 11:49:09 2005 Results File: A5I0002442_E2.RES

Quant Method: C:\MSDCHEM\1...\A510002442 E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Tue Dec 27 11:08:38 2005

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\DATA\122705\S9652.D (27 Dec 2005 10:13)

Int	ernal	Standards	R.T	. QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
1	<u> </u>						
39)	C130	Bromodichlorometha	0.00	83	0	N.D.	
40)		2-Chloroethylvinyl	0.00	63	0	N.D.	
41)	The second secon	Methylcycolhexane	0.00	83	0	N.D.	
42)		cis-1,3-Dichloropr	0.00	75	0	N.D.	
45)	C230	Toluene	6.24	92	725	N.D.	
46)	C170	trans-1,3-Dichloro	0.00	75	0	N.D.	
47)	C284	Ethyl Methacrylate	0.00	69	0	N.D.	
48)	C160	1,1,2-Trichloroeth	0.00	83	0	N.D.	
49)	C210	4-Methyl-2-pentano	6.19	43	2812	N.D.	
50)	C220	Tetrachloroethene	0.00	166	0	N.D.	
51)		1,3-Dichloropropan	0.00	76	0	N.D.	
52)	C155	Dibromochlorometha	0,00	129	0	N.D.	
53)		1,2-Dibromoethane	0.00	107	0	N.D.	
54)	C215	2-Hexanone	0.00	43	0	N.D.	
55)	C235	Chlorobenzene	7.32	112	1932	N.D.	
56).	C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
57)	C240	Ethylbenzene	7.50	91	344	N.D.	
58)	C246	m,p-Xylene	0.00	106	0	N.D.	
59)	C247	o-Xylene	0.00	106	0	N.D.	
60)	C245	Styrene	0.00	104	. 0	N.D.	
63)	C180	Bromoform	0.00	173	0	N.D.	
64)	C966	Isopropylbenzene	0.00	105	0	N.D.	
65)	C301	Bromobenzene	0.00	156	. 0 .	N.D.	
66)		1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
67)	C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
(68)	C283	t-1,4-Dichloro-2-B	8.37	53	169	N.D.	
69)	The state of the s	n-Propylbenzene	8.60	91	307	и. D.	
70)		2-Chlorotoluene	0.00	126	0	N.D.	
71)		4-Chlorotoluene	0.00	126	0	N.D.	
72)	C304	1,3,5-Trimethylben	0.00	105	0	N.D.	
73)	C306	tert-Butylbenzene	0.00	134	0	N.D.	•
74)	C307	1,2,4-Trimethylben	8.88	105	309	N.D.	
75)	and the second second	sec-Butylbenzene	8.88	105	309	N.D.	
76)	C260	1,3-Dichlorobenzen	9.12	146	310	N.D.	*
77)	C309	4-Isopropyltoluene	9.14	119	133	N.D.	
78)	C267	1,4-Dichlorobenzen	9.19	146	748	N.D.	
79)		1,2-Dichlorobenzen	9.49	146	384	N.D.	
80)	C310	n-Butylbenzene	9.48	91	142	N.D.	
81)	C286	1,2-Dibromo-3-Chlo	0.00	75 100	0	N.D.	
82)	C313	1,2,4-Trichloroben	0.00	180	0 0	N.D. N.D.	
83)		Hexachlorobutadien	0.00	225	130	N.D.	
84)	C314	Naphthalene	11,01	128	0	N.D.	
85)	C934	1,2,3-Trichloroben	0.00	180	· · · · · · · · · · · · · · · · · · ·	N.D.	

⁼ qualifier out of range (m) = manual integration (+) = signals summed

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

VBLK40
SDG No.:
Lab Sample ID: <u>A5B2009802</u>
Lab File ID: <u>Q9547.RR</u>
Date Samp/Recv:
Date Analyzed: <u>12/27/2005</u>
Dilution Factor:1.00
Soil Aliquot Volume: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
5.0 U
1.0 U
1.0 U
1.0 U
1.0 U

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

		VBLK40
Lab Name: STL Buffalo Contract: 4		
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: \underline{A}	5B2009802
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID: Q	9547.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv: _	
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>1</u>	2/27/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: _	1.00
Soil Extract Volume: (uL)	Soil Aliquot Volum	e: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG</u>	<u>/L</u> Q
79-34-51,1,2,2-Tetrachloroethane_ 127-18-4Tetrachloroethene_	uoroethane	5.0 U 1.0 U

Quantitation Report

Data File: C:\HPCHEM\1\DATA\122705\Q9547.D

: 27 Dec 2005 Acq On 21:45

Sample : VBLK40

Misc MS Integration Params: RTEINT.P

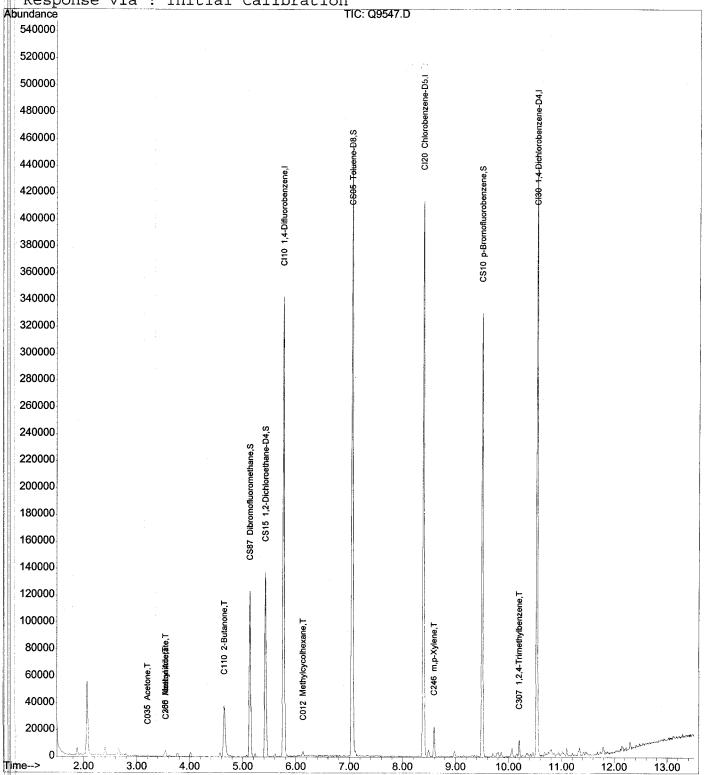
Vial: 30 Operator: TLC

Inst : HP5973 Q

Multiplr: 1.00

Quant Results File: A5I02444.RES

Quant Time: Dec 27 21:59 2005


Method

: C:\HPCHEM\1\METHODS\Q8260\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Tue Dec 27 20:57:50 2005

Response via : Initial Calibration

Vial: 30

Multiplr: 1.00

Data File: C:\HPCHEM\1\DATA\122705\Q9547.D

Acq On : 27 Dec 2005 21:45

Operator: TLC Sample : VBLK40 Inst : HP5973 Q

Misc

M\$ Integration Params: RTEINT.P

Quant Time: Dec 27 21:59 2005 Quant Results File: A5I02444.RES

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Tue Dec 27 20:57:50 2005

Response via : Initial Calibration

DataAcq Meth: VOA

IS QA File : C:\HPCHEM\1\DATA\122705\Q9545.D (27 Dec 2005

	Inter	nal Si	cand	ards			Response			Ravi	'Ar)
	1) (CI10	1,4	-Difluorobenzene							0.00
	43)	CT20	Chl	orobenzene-D5	0 30	117	250720	125.00	na		3.69%
	3)	CIZU	CILL	orobenzene-bo	0.33	TT /	230720	125.00	119		0.00
	62)	CI30	1,4	-Dichlorobenzene	- 10.53	152	120285	125.00	na		
			•							95	5.42%
	Syste	m Mon:	itor	ing Compounds							
	30) (CS87	מנט	romofluoromethan	e 5.14	111	74565	120.48	ng		0.00
	Spi.	Ked Ai	noun	t 125.000 R	ange 70	- 130	Recov	ery =	96.	38%	0 00
	Spi	rog yr	1,2	-Dichloroethane-	27.43	1/2	85058	118.21	ng	- 7 %	0.00
	44)	REU AI CCNS	Tol	t 125.000 R	ange /2	- 143	200007	ery =	94.	D/6	0.00
	Spi	ked Ar	noun	uene-D8 t 125.000 R	7.05	- 11 <i>6</i>	Pecor	124.39	99	E 1 2	0.00
	61)	CS10	n-R	romofluorobenzen	ange 70	174	101360	127 O1	ອອເສ ກຕ) T 2	0.00
1	Spi	ked Ar	ກວນກ	t 125.000 R	ange 73	- 117	Recov	erv =	119 101 <i>i</i>	۲1 <u>۶</u>	0.00
					ange 75		ILCCOV.	CIY -	TOT .	J I 0	
5	Ta rge	t Comp	ooun	ds						Ova	lue
				hlorodifluoromet	h 0.00	85	0	N.D.		~	
	3) (C010	Chl	oromethane	0.00	50	0	N.D.			
	4) (C020	Vin	yl chloride	0.00	62	0	N.D.			
	11 1				0.00		0	N.D.			
	11 1			oroethane			0	N.D.			
i	11 1			chlorofluorometh			0	N.D.			
-!	11 3 3	C045		-Dichloroethene			0	N.D.			
- 1	11 1	C030		hylene chloride			0	N.D.			
	10) (bon disulfide	0.00	76	0	N.D.			
	11) (olein	0.00	56	0	N.D.			
	12) (C038	Acr	ylonitrile tone _	0.00	53	0	N.D.			
	13) (C035	Ace	cone _			1474	5.33		#	44
	15)	C300	ACE	tonitrile omethane	-3.54	4 L	1824		ng	#	26
		C276 C291	1 1	,2 Trichloro-1,2	0.00	142	0	N.D.			
	17)	C231	エ, エ で- b	,2 irichioro-1,2 utyl Methyl Ethe	, 0.00 ~ 0.00	101 73	0	N.D.			
		C962 C057		ns-1,2-Dichloroe			0	N.D.			
		C255		hyl Acetate	- 3.54	43 _	4622	N.D. 4.74	na	#	55
	1 1	C050		-Dichloroethane	0.00		0	N.D.	119	#	55
		C125		yl Acetate	0.00		0	N.D.			W 19
	11 1	C051		-Dichloropropane			1857	N.D.			W, 113/
	 										/ //
	<i>i</i> 111 /		L	/	`						

Vial: 30

Data File : $C:\HPCHEM\1\DATA\122705\Q9547.D$

Acq On : 27 Dec 2005 21:45

Operator: TLC

Sample : VBLK40 Inst : HP5973 Q Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 27 21:59 2005 Quant Results File: A5I02444.RES

Quant Method: C:\HPCHEM\1...\A5I02444.M (RTE Integrator)
Title: 8260 5ML

Last Update : Tue Dec 27 20:57:50 2005

Response via : Initial Calibration DataAcq Meth : VOA

		Compo	und	R.T.	QIon	Response	Conc Unit	Qva	alue
	23)	C056	cis-1,2-Dichloroethe	0.00	96	0	N.D.		
	24)	C272	Tetrahydrofuran	0.00	42	0	N.D.		
	25)	C222	Bromochloromethane	0.00	128	0	N.D.		
	26)	C060	Chloroform	0.00	83	0	N.D.		
	27)	C115	1,1,1-Trichloroethan	0.00	97	0	N.D.		
	28)	C120	Carbon tetrachloride	0.00	117	0	N.D.		
	29)	C116	1,1-Dichloropropene	0.00	75	0	N.D.		
	32)	C165	Benzene	5.45	78	1373	N.D.		
	33)	C065	1,2-Dichloroethane	0.00	62	0	N.D.		
		C110	2-Butanone	-4.65	43 -	1286	2.75 ng	-#-	-5 1
		C256	Cyclohexane	5.16	56	1481	N.D.		
		C150	Trichloroethene	0.00	95	0	N.D.		
		C140	1,2-Dichloropropane	0.00	63	0	N.D.	-X.	
		C278	Dibromomethane	0.00	93	0	N.D.	$\tilde{\mathcal{O}}_{A}$	
	39)	C130	Bromodichloromethane	0.00	83	0	N.D. 1	ノ*	
	40)	C161	2-Chloroethylvinyl E	0.00	63	0	N.D.		
	A 1)	C012	Methylcycolhexane	6.14	83	1853	2.04 ng	#	80
	42)		cis-1,3-Dichloroprop	0.00	75	0	N.D.		
	45)	C230	Toluene	7.11	92	1638	N.D.		
	46)	C170	trans-1,3-Dichloropr	0.00	75	0	N.D.		
	47)		Ethyl Methacrylate	0.00	69	0	N.D.		
	48)		1,1,2-Trichloroethan	0.00	83	0	N.D.		
	49)		4-Methyl-2-pentanone	7.05	43	1094	N.D.		
	50)	C220	Tetrachloroethene	0.00	166	0	N.D.		
	51)	C221	1,3-Dichloropropane	0.00	76	0	N.D.		
	52)	C155	Dibromochloromethane	0.00	129	0	N.D.		
	53)	C163	1,2-Dibromoethane	0.00	107	0	N.D.		
	54)	C215	2-Hexanone	0.00	43	0	N.D.		
-	55)	C235	Chlorobenzene	8.42	112	131	N.D.	a A	
	56)	C281	1,1,1,2-Tetrachloroe	0.00	131	0	N.D.,	M	
-	57)		Ethylbenzene	8.49	91	5380	N.D.		
-	(28)	C246	m,p-Xylene	8.60	106	7660	5.99 ng	#	74
	59)	C247	o-Xylene	8.98	106	1684	N.D.		
	60)	C245	Styrene	0.00	104	0	N.D.		
	63)	C180	Bromoform	0.00	173	0	N.D.		
	64)	C966	Isopropylbenzene	9.32	105	1222	N.D.		
	65)		Bromobenzene	0.00	156	0	N.D.		
	66)		1,1,2,2-Tetrachloroe	0.00	83	0	N.D.		
	67)	C282	1,2,3-Trichloropropa	0.00	110	0	N.D.		
	68)	C283	t-1,4-Dichloro-2-But	0.00	51	0	N.D.		\sim
i	69)	C302	n-Propylbenzene	9.71	91	2979	N.D.		ا لم
									· (° (

Quantitation Report STL Buffalo 431/504

Data File : C:\HPCHEM\1\DATA\122705\Q9547.D

Acq On : 27 Dec 2005 21:45

Sample

Misc

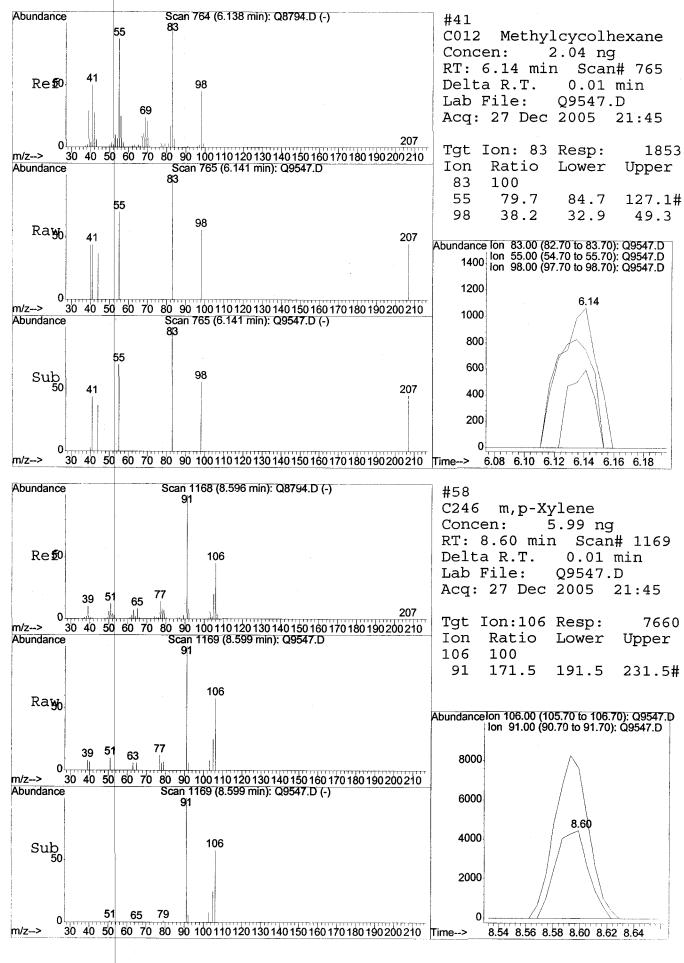
: VBLK40

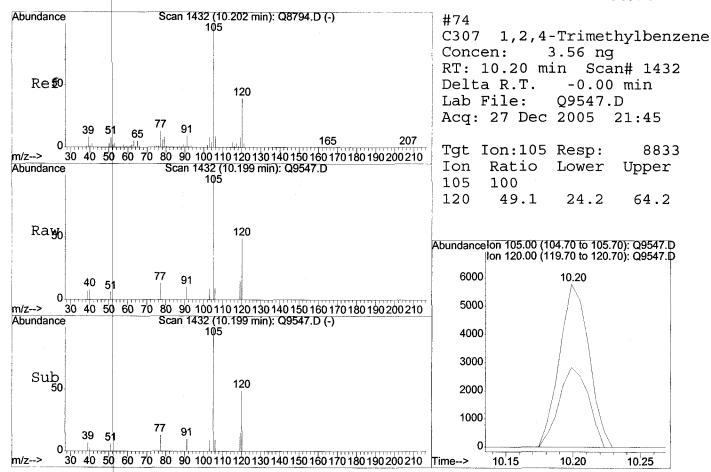
MS Integration Params: RTEINT.P

Vial: 30

Operator: TLC Inst: HP5973 Q

Multiplr: 1.00


Quant Time: Dec 27 21:59 2005 Quant Results File: A5I02444.RES


Quant Method : C:\HPCHEM\1...\A5102444.M (RTE Integrator) Title : 8260 5ML

Last Update : Tue Dec 27 20:57:50 2005

Response via : Initial Calibration DataAcq Meth : VOA

ill	-							
		Compo	und	R.T.	QIon	Response	Conc Unit	Qvalue
	70)	C303	2-Chlorotoluene	0.00	126	0	N.D.	
	71)	C289	4-¢hlorotoluene	0.00	126	0	N.D.	6
	72)	C304	1,3,5-Trimethylbenze	9.86	105	3009	N.D.	
	73)	C306	tert-Butylbenzene	0.00	134	0	N.D.	\mathcal{M}
	74)	C307	1,2,4-Trimethylbenze	10.20	105	8833	3.56 nq	92
	75)	C308	sec-Butylbenzene	10.34	105	3263	N.D.	
	76)	C260	1,3-Dichlorobenzene	0.00	146	0	N.D.	
	77)	C309	4-İsopropyltoluene	10.46	119	2609	N.D.	
	78)	C267	1,4-Dichlorobenzene	0.00	146	0	N.D.	
	79)	C249	1,2-Dichlorobenzene	0.00	146	0	N.D.	
	80)	C310	n-Butylbenzene	10.81	91	3521	N.D.	
	81)	C286	1,2-Dibromo-3-Chloro	0.00	75	0	N.D.	
	82)	C313	1,2,4-Trichlorobenze	12.11	180	881	N.D.	
	83)	C316	Hexachlorobutadiene	12.21	225	366	N.D.	
	84)	C314	Naphthalene	12.30	128	5198	N.D.	
	85)	C934	1,2,3-Trichlorobenze	12.47	180	921	N.D.	
- 1	1							

1.0

1.0

1.0 1.0

1.0

1.0

1.0

1.0

1.0

5.0

1.0

1.0

1.0

1.0

U

U

U

U

U

U

U

U

U

U U

U

U

U

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

Lab Name: STL Buffal	o Contract: 4		VBLK37	·	
Lab Code: <u>RECNY</u> C	ase No.: SAS No.:	SDG NO.:			
Matrix: (soil/water)	WATER	Lab Sample ID:	A5B20112	202	
Sample wt/vol:	<u>5.00</u> (g/mL) <u>ML</u>	Lab File ID:	<u>G7618.RI</u>	₹	
Level: (low/med)	LOW	Date Samp/Recv	:		
% Moisture: not dec.	Heated Purge: N	Date Analyzed:	12/27/20	<u>005</u>	
GC Column: DB-624	ID: <u>0.25</u> (mm)	Dilution Facto	r:1.00	<u> </u>	
Soil Extract Volume:	(uL)	Soil Aliquot V	olume:	(uL)
CAS NO.	COMPOUND	CONCENTRATION UNIT (ug/L or ug/Kg)		Q	
75-25-2 74-83-9 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3 67-66-3 110-82-7 110-93-4 124-48-1 96-12-8	BenzeneBromodichloromethaneBromoformBromomethane2-ButanoneCarbon DisulfideCarbon TetrachlorideChlorobenzeneChloroethaneChloroformChloromethaneCyclohexane1,2-Dibromoethane1,2-Dibromoethane		5.0 1.0 1.0 1.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0	מ ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט	
95-50-1 541-73-1 106-46-7	1,2-Dichlorobenzene		1.0 1.0 1.0	บ บ บ	

75-34-3----1,1-Dichloroethane

78-87-5----1,2-Dichloropropane

10061-02-6----trans-1,3-Dichlorop 100-41-4-----Ethylbenzene 591-78-6-----2-Hexanone 98-82-8------Isopropylbenzene 79-20-9------Methyl acetate 108-87-2------Methylcyclohexane 75-09-2------Methylene chloride

107-06-2----1,2-Dichloroethane 75-35-4----1,1-Dichloroethene 156-59-2----cis-1,2-Dichloroethene

156-60-5---trans-1,2-Dichloroethene

10061-01-5---cis-1,3-Dichloropropene

10061-02-6---trans-1,3-Dichloropropene

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

11202	
11202	
11202	
11202	
.RR	
/2005	
.00	
(uL)
Q	
]
]
U	
U	
U U U	
n n n	
n n n	
U U U U U U	
U U U U U	
0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0	
ם ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה	
ם ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה	
ם ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה	
	 2005 00

(Not Reviewed) STL Buffalo

Quantitation Report

436/504

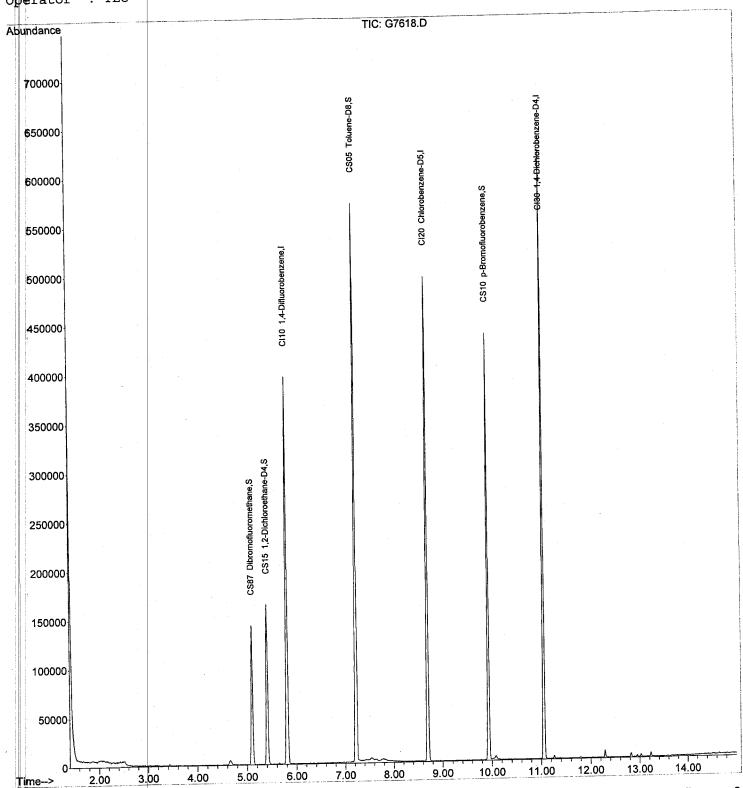
Data File: C:\MSDCHEM\1\DATA\122705\G7618.D

: 27 Dec 2005 21:51

: VBLK37 Sample

Misc

Integrator: RTE


Quant Time: Dec 27 22:08:42 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

Qlast Update : Tue Dec 27 21:28:27 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Operator : TLC

(Not Reviewed) 437/504

Modeld) Clear 12/28/05

Quantitation Report

STL Buffalo

Data File: C:\MSDCHEM\1\DATA\122705\G7618.D

: 27 Dec 2005 21:51 Acq On

: VBLK37 Sample

Misc

Integrator: RTE

Quant Time: Dec 27 22:08:42 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 21:28:27 2005

Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Operator : TLC

Oper	ator	: 1110								
Int	ernal	Standard				Response	Conc Un	its I	Dev(Mir Rcv(Ar	1))
 1)	CI10	1,4-Dif	luorobenzene					ng	99.87	7%
43)	CI20	Chlorob	enzene-D5	8.70	82	175393	125.00	ng	0. 98.78	.00 B%
63)	CI30	1,4-Dic	hlorobenzene-	11.05	152	165543	125.00	ng	0 96.93	.00 3%
راساً لم		Dibacama	Compounds fluoromethane 125.000 Ra hloroethane-I	e 5.10	111 - 130	98616 Recov	112.85 ery =	NG 90.	0.0 28%	00
S	piked A	amount	125.000 Re	11196 70	65	129886	115.57	nq	0.	00
3 L) CS15	1,2-D10	nioroethane-i	J J. 41	_ 136	Recov	erv =	92.	46%	
S	piked <i>l</i>	Amount	125.000 Ra	inge /3	- 120	412984	116.77	ng	0.	00
44) CS05	Toluene	125.000 Response	7.22	_ 100	Recov	erv =	93.	42%	
S	piked A	Amount	125.000 Rd	21196 77	174	125482	115.47	ng	0.	00
62) CS10	p-Bromo	125.000 Ra	3.3 1	_ 120	Recov	erv =	92.	38%	
S	piked <i>l</i>	Amount	125.000 R	ange 14	- 120	ncco.	0 -1			
	_	a .							Qvalu	e
Ta	rget C	ompounds	odifluorome	0 00	85	0	N.D.			
2) C290	Dicuror	odiliuolome	1 59	50		N.D.			
3) COIO	CHIOLOG	methane hloride thane	0.00	62	0	N.D.			
4) C020	Vinyi C	mioriae	0.00	94	0	N.D.			
5) C015	Bromome	thane	0.00	64	0	N.D.			
6) C025	Chloro	rofluoromet		101	0	N.D.			
		Triente	hlorosthere	0.00	96		N.D.			
) C045	T, I-DIC	hloroethene ne chloride	3 44	84	635	N.D.			
9) C030	Methyle	disulfide	3.44	76	1227	N.D.			
10) C040	Acrole:	uisuillue	2.89	56	324	N.D.			
) C036	ACTOIE.		0.00	53	0	N.D.			
) C038	ACLYIO	nitrile e	3.03	43	1152	N.D.			
) C035		trile	3.35		143	N.D.			
14) C300	Iodome	thane	0.00	142		N.D.			
15	0 02/0	1 1 2-	Trichloro-1,	0.00	101	0	N.D.			
	() C291 () C962	T, I, Z	1 Methyl Eth	0.00	73	0	N.D.			
1,) C962	trang-	1,2-Dichloro		96	0	N.D.			
1 9) C255	Methyl	Acetate		43		N.D.			
	() C255 () C050		chloroethane		63	0	N.D.			
	.) C125		Acetate	0.00	43	0	N.D.			
22			chloropropan	0.00	77	0	N.D.			
23			2-Dichloroet	0.00	96	0	N.D.			
24	-		ydrofuran	0.00	42	0	N.D.			
25			hloromethane	0.00	128	0	N.D.			
27	•			0.00	83	0	N.D.			
28			Trichloroeth	0.00	97	0	N.D.			
) C120		tetrachlori	0.00	117	0	N.D.			
3 (chloropropen	0.00	75	0	N.D.			
32		Benzen	e	5.45	78	57	N.D.			
3	3) C065		chloroethane	0.00	62	0	N.D.			
3 4	3) C065	2-Buta		4.69	43	447	N.D.			
3.5	5) C256	CACTON	exane	0.00	56	0	N.D.			
3 6	5) C150		oroethene	0.00	95	0	N.D.			

Data File: C:\MSDCHEM\1\DATA\122705\G7618.D

Acd On : 27 Dec 2005 21:51

Sample : VBLK37

Misc :

Integrator: RTE

Quant Time: Dec 27 22:08:42 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 27 21:28:27 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122705\

Operator : TLC

-	րո ւ	ernal	Standard	s	R.T.	QIon	Response	Conc U	nits	Dev(Min)	
-		011141	:					NT 173		Rcv(Ar)	
:	37)	C140	1,2-Dic	hloropropan	0.00	63	0	N.D.			
:	3 B)	C278	Dibromo	methane	0.00	93	0	N.D.			
		C130	Bromodi	chlorometha	0.00	83	0	N.D.			
		C161	2-Chlor	oethylvinyl	6.85	63	295	N.D.			
		C012	Methylc	yclohexane	0.00	83	0	N.D.			
	42)		cis-1,3	-Dichloropr	0.00	75	0	N.D.			
		C230	Toluene	•	7.28	92	306	N.D.		,	
	46)	C170	trans-1	,3-Dichloro	0.00	75	0	N.D.			
	47)		Ethyl M	ethacrylate	0.00	69	0	N.D.			
	48)		1,1,2-T	richloroeth	0.00	83	0	N.D.			
	49)		4-Methy	1-2-pentano	7.22	43	2126	N.D.			
	50)		_	loroethene	0.00	166	0	N.D.			
	51)		1,3-Dic	hloropropan	0.00	76	0	N.D.			
	52)		Dibromo	chlorometha	0.00	129	0	N.D.			
	53)			romoethane	0.00	107	0	N.D.			
	54)		2-Hexan	one	0.00	43	0	N.D.			
	55)		Chlorob		8.74	112	374	N.D.			
	56)		1,1,1,2	-Tetrachlor	0.00	131	0	N.D.			
	57)				8.95	91	135	N.D.			
	58)		m, p-Xy1	ene	0.00	106	0	N.D.			
	59)			ie	0.00	106	0	N.D.			
	60)		Styrene		0.00	104	0	N.D.			
	61)				0.00	173	0	N.D.			
	64)		Isoprop	ylbenzene	0.00	105	0	N.D.			
	65)		Bromobe	nzene	0.00	156	0 .	N.D.			
	66)		1,1,2,2	-Tetrachlor	0.00	83	0	N.D.			
	67)		1,2,3-7	richloropro	0.00	110	0	N.D.			
	68)		t-1,4-I	ichloro-2-B	0.00	51	0	N.D.			
	69)			lbenzene	10.33	91	260	N.D.			
	70)		2-Chloi	otoluene	0.00	126	0	N.D.			
	71)		4-Chlor	otoluene	0.00	126	0	N.D.			
	72)		1,3,5-7	rimethylben	0.00	105	0	N.D.			
	73)		tert-Bu	itylbenzene	0.00	134	0	N.D.			
	74)		1,2,4-7	rimethylben	10.70	105	206	N.D.			
	75)		sec-But	ylbenzene	10.86	105	63	N.D.			
	76		1,3-Di	hlorobenzen	0.00	146	0	N.D.			
	77		4-Isop	ropyltoluene	11.00	119	143	N.D.			
	78		7 1,4-Di	hlorobenzen	0.00	146	0	N.D.			
	79		1,2-Di	hlorobenzen	0.00	146	0	N.D.			
	80		n-Buty	lbenzene	11.39	91	459	N.D.			
	81		1,2-Dil	romo-3-Chlo	12.29	75	387	N.D.			
	82		1,2,4-	richloroben	12.82	180	1554	N.D.			
	83		Hexach.	lorobutadien	12.95	225	418	N.D.			
	84		1 Naphtha	alene	13.03	128	2793	N.D.			
	85		1,2,3-	rrichloroben	13.23	180	1586	N.D.			_
	THE			L				<i></i> -			

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

W. (1/1/2/2)

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Lab Name CIII Deficie	Charles at 1		VBLK22	
Lab Name: <u>STL Buffalo</u>	Contract: 4			
Lab Code: RECNY Case No.:	SAS No.:	SDG No.:		
Matrix: (soil/water) WATER		Lab Sample ID:	A5B2013702	
Sample wt/vol:5.00 (g/mL)	ML	Lab File ID:	S9693.RR	
Level: (low/med) <u>LOW</u>		Date Samp/Recv:		
% Moisture: not dec Heate	ed Purge: <u>N</u>	Date Analyzed:	12/28/2005	
GC Column: <u>DB-624</u> ID: <u>0.18</u> ((mm)	Dilution Factor:	1.00	
Soil Extract Volume: (u.)		Soil Aliquot Vol	ı ime•	(11T.)

4		CONCENTRATION UNI	TQ.	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
67-64-1	Acetone		5.0	U
71-43-2	Benzene		1.0	ע
75-27-4	Bromodichloromethane		1.0	ט
75-25-2	Bromoform		1.0	ע
74-83-9	Bromomethane		1.0	ַ ע
78-93-3	2-Butanone		5.0	U
75-15-0	Carbon Disulfide		1.0	ע
56-23-5	Carbon Tetrachloride		1.0	U
108-90-7	Chlorobenzene		1.0	U
75-00-3	Chloroethane		1.0	U
67-66-3	Chloroform		1.0	ט
74-87-3	Chloromethane		1.0	ן ט
110-82-7	Cyclohexane		1.0	ט
106-93-4	1,2-Dibromoethane		1.0	ן ט
124-48-1	Dibromochloromethane		1.0	ן ט
96-12-8	1,2-Dibromo-3-chloropropane		1.0	U
	1,2-Dichlorobenzene		1.0	ן ט
541-73-1	1,3-Dichlorobenzene		1.0	ן ט
	1,4-Dichlorobenzene		1.0	ן ט
75-71-8	Dichlorodifluoromethane		1.0	ן ט
75-34-3	1,1-Dichloroethane		1.0	U
107-06-2	1,2-Dichloroethane		1.0	ן ט
75-35-4	1,1-Dichloroethene		1.0	ע
156-59-2	cis-1,2-Dichloroethene		1.0	U
156-60-5	trans-1,2-Dichloroethene		1.0	U
78-87-5	1,2-Dichloropropane		1.0	U
10061-01-5	cis-1,3-Dichloropropene		1.0	ן ט
10061-02-6	trans-1,3-Dichloropropene		1.0	ן ט
	Ethylbenzene		1.0	U .
591-78-6	2-Hexanone		5.0	U
98-82-8	Isopropylbenzene		1.0	U
	Methyl acetate		1.0	U
	Methylcyclohexane		1.0	U
	Methylene chloride		1.0	U
1.1	-			

1.0

1.0

3.0

U

U U

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

Sala Nama Citti Duffela	VBLK22	
Lab Name: <u>STL Buffalo</u> Contract: <u>4</u>		
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A5B2013702	
Sample wt/vol: <u>5.00</u> (g/mL) <u>ML</u>	Lab File ID: <u>S9693.RR</u>	
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>12/28/2005</u>	
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.00	
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)	
C'AS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q	
1634-04-4Methyl-t-Butyl Ether (MIBE) 91-20-3Naphthalene 100-42-5Styrene 79-34-51,1,2,2-Tetrachloroethane 127-18-4Tetrachloroethene	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	
75-69-4Trichlorofluoromethane		

79-01-6-----Trichloroethene_
75-01-4-----Vinyl chloride_
1330-20-7----Total Xylenes_

(Not Reviewed) **441/504** Quantitation Report STL Buffalo

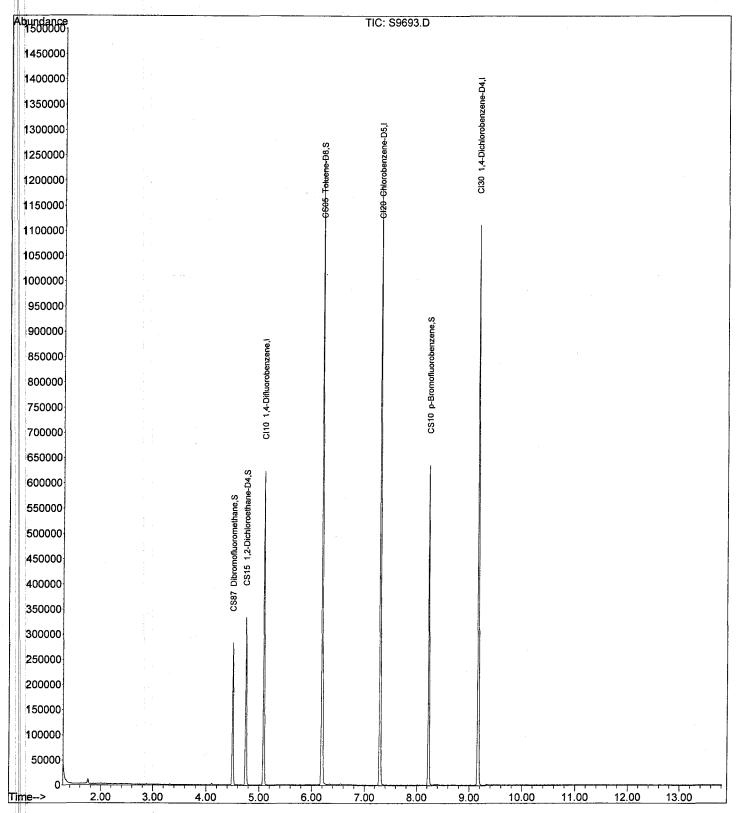
Data File : D:\DATA\122805\S9693.D

Vial: 4 : 28 Dec 2005 Acq On Operator: LH

Sample : VBLK22 Inst : HP5973S Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 28 09:58:28 2005 Results File: A5I0002442 E2.RES


Quant Method : C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Wed Dec 28 09:45:03 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Quantitation Report STL Buffalo (Not Reviewed)

442/504

Data File : D:\DATA\122805\S9693.D

Acq On : 28 Dec 2005 9:44

: VBLK22

Operator: LH

Inst : HP5973S Multiplr: 1.00

Vial: 4

M\$ Integration Params: RTEINT.P

Quant Time: Dec 28 09:58:28 2005 Results File: A5I0002442_E2.RES

Quant Method: C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Wed Dec 28 09:45:03 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Sample

Misc

I\$ QA File : D:\DATA\122805\S9691.D (28 Dec 2005

TO ON TITE	. D. (DATA (122005)	39091.0	(20 De	C 2005. 0	. 32)	_	60
Internal S	Standards			Response	Conc U		Dev(Min) Rcv(Ar)
1) CI10	1,4-Difluorobenzene		114				
43) CI20	Chlorobenzene-D5	7.30	117	535567	125.00	ng	95.82% 0.00 96.05%
62) CI30	1,4-Dichlorobenzene	9.16					0.00
							84.07%
	nitoring Compounds Dibromofluoromethan	0 4 50	111	1 / 2 2 5 0	12/ 11	na	0.00
Spiked Am	nount 125.000 R	ange 70	- 130	Recove	134.11 rv =	107.	29%
31) CS15	nount 125.000 R 1,2-Dichloroethane-	D 4.75	65	152339	131.59	ng .	0.00
Spiked Am	nount 125.000 R	ange 73	- 136	Recove	ry =	105.	27%
44) CS05		6.19	98	632972	119.31	ng	0.00
\$piked Am	nount 125.000 R p-Bromofluorobenzen	ange 77	- 122	Recove	ry =	95.	45%
61) CS10	p-Bromofluorobenzen	e 8.23	174	129693	107.65	ng.	0.00
spiked Am	nount 125.000 R	ange /4	- 120	Recove	ry =	86.	128
Target Com	pounds						Qvalue
	Dichlorodifluorome	0.00	85	0	N.D.		2
	Chloromethane		50	0	N.D.		
4) C020	Vinyl chloride	0.00	62	0	N.D.		
5) C015	Bromomethane Chloroethane	1.90	94	143	N.D.		
				0	N.D.		
7) C275 8) C045	Trichlorofluoromet	0.00	L01 96	0 0	N.D. N.D.		
9) C030	1,1-Dichloroethene Methylene chloride Carbon disulfide	3.12	9 O 8 4	290	N.D.		
10) C040	Carbon disulfide	2.87	76		N.D.		
11) C036	Acrolein	0.00	56	0	N.D.		
12) C038	Acrylonitrile Acetone	3.33	53	870	N.D.		
13) C035	Acetone	2.76		439	N.D.		
	Acetonitrile		41	0	N.D.		
15) C276	Iodomethane	0.00	142	. 0	N.D.		
16) C291 17) C962	<pre>Iodomethane 1,1,2 Trichloro-1, T-butyl Methyl Eth</pre>	0.00	101 73	0 0	N.D. N.D.		
18) C057	trans-1,2-Dichloro	0.00		0	N.D.		
19) C255	Methyl Acetate	0.00	43	0	N.D.		
20) C050	1,1-Dichloroethane	0.00	63	Ō	N.D.		
21) C125	Methyl Acetate 1,1-Dichloroethane Vinyl Acetate	0.00	43	0	N.D.		
22) C051	2,2-Dichloropropan	0.00	77	0	N.D.		
23) C056	cis-1,2-Dichloroet	0.00	96	0	N.D.		
	Tetrahydrofuran	0.00	42	0	N.D.		
	Bromochloromethane Chloroform	0.00 1 0.00	.28 83	0	N.D. N.D.		
	1,1,1-Trichloroeth	0.00	97	Ö	N.D.		
	Carbon tetrachlori		.17	. 0	N.D.		
	1,1-Dichloropropen	0.00	75	0	N.D.		
: III i.	Benzene	4.80	78	152	N.D.		
	1,2-Dichloroethane	0.00	62	0	N.D.		
	2-Butanone	0.00	43	0	N.D.		
	Cyclohexane Trichloroethene	0.00 0.00	56 95	0	N.D.		
111 1	1,2-Dichloropropan	0.00	95 63	0	N.D. N.D.		
	Dibromomothane	0.00	03	0	N.D.		

0.00

93

38) C278 Dibromomethane

N.D.

Quantitation Report STL Buffalo (Not Reviewed) 443/504

Data File : D:\DATA\122805\S9693.D Acq On : 28 Dec 2005 9:44

D Vial: 4 Operator: LF

Sample : VBLK22

Operator: LH
Inst : HP5973S
Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 28 09:58:28 2005 Results File: A5I0002442_E2.RES

Quant Method: C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Wed Dec 28 09:45:03 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Misc

I\$ QA File : D:\DATA\122805\S9691.D (28 Dec 2005 8:52)

Int	ernal	Standards	R.I	. QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
39)	C130	Bromodichlorometha	0.00	83	0	N.D.	
40)	C161	2-Chloroethylvinyl	0.00	63	0	N.D.	
41)	C012	Methylcycolhexane	0.00	83	0	N.D.	
42)	C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
45)	C230	Toluene	6.24	92	931	N.D.	
46)	C170	trans-1,3-Dichloro	0.00	75	0	N.D.	
47)	C284	Ethyl Methacrylate	0.00	69	0	N.D.	
48)	C160	1,1,2-Trichloroeth	0.00	83	0	N.D.	
49) 50)	C210	4-Methyl-2-pentano	6.19	43	2423	N.D.	
5P)	C220	Tetrachloroethene	0.00	166	0	N.D.	
51)	C221	1,3-Dichloropropan	0.00	76	0	N.D.	
52)	C155	Dibromochlorometha	0.00	129	0	N.D.	
53)	C163	1,2-Dibromoethane	0.00	107	0	N.D.	
54) 55)	C215	2-Hexanone	0.00	43	0	N.D.	
95)	C235	Chlorobenzene	7.32	112	2315	N.D.	
56)	C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
57)	C240	Ethylbenzene	7.41	91	289	N.D.	
58)	C246	m,p-Xylene	0.00	106	0	N.D.	
59)	C247	o-Xylene	0.00	106	0	N.D.	
60) 63)	C245	Styrene	0.00	104	0	N.D.	
64)	C180 C966	Bromoform	0.00	173	0	N.D.	
65)	C301	Isopropylbenzene Bromobenzene	0.00	105	0	N.D.	
66)	C225	1,1,2,2-Tetrachlor	0.00	156 83	0	N.D.	
67)	C282	1,2,3-Trichloropro	0.00	110	0	N.D. N.D.	
68)	C283	t-1,4-Dichloro-2-B	0.00	53	0	N.D.	
69)	C302	n-Propylbenzene	8.43	91	154	N.D.	
70)	C303	2-Chlorotoluene	0.00	126	0	N.D.	
71)	C289	4-Chlorotoluene	0.00	126	0	N.D.	
72)	C304	1,3,5-Trimethylben	0.00	105	0	N.D.	
73)	C306	tert-Butylbenzene	0.00	134	Ö	N.D.	
74)	C307	1,2,4-Trimethylben	9.03	105	200	N.D.	
75)	C308	sec-Butylbenzene	9.03	105	200	N.D.	
76)	C260	1,3-Dichlorobenzen	9.12	146	350	N.D.	
77)	C309	4-Isopropyltoluene	9.14	119	129	N.D.	
78)	C267	1,4-Dichlorobenzen	9.19	146	683	N.D.	
79)	C249	1,2-Dichlorobenzen	0.00	146	0	N.D.	
80)	C310	n-Butylbenzene	0.00	91	0	N.D.	
81)	C286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
82)	C313	1,2,4-Trichloroben	0.00	180	0	N.D.	
83)	C316	Hexachlorobutadien	0.00	225	0	N.D.	
84)	C314	Naphthalene	11.01	128	133	N.D.	
1 11 22 **	C934	1,2,3-Trichloroben	0.00	180	0	N.D.	
4							

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Lab Name: <u>STL Buffalo</u> Co	ontract. 4		VBLK23
dan Marie: Sin Burraro	Officiact: 4		
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>		Lab Sample ID:	A5B2015902
Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{M}	Ŀ	Lab File ID:	S9721.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	
% Moisture: not dec Heated	Purge: <u>N</u>	Date Analyzed:	12/28/2005
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)		Soil Aliquot Vol	ume: (uL)
CAS NO. COMPOUND	C	ONCENTRATION UNITS: (ug/L or ug/Kg)	

		CONCENTRATION UNIT	rs:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
67-64-1			5.0	U
71-43-2	Benzene		1.0	U
75-27-4	Bromodichloromethane		1.0	U
	Bromoform		1.0	U
74-83-9	Bromomethane		1.0	U
78-93-3	2-Butanone		5.0	שׁ
75-15-0	Carbon Disulfide		1.0	ַ
56-23-5	Carbon Tetrachloride		1.0	U
108-90-7	Chlorobenzene		1.0	ע
75-00-3	Chloroethane		1.0	U
67-66-3	Chloroform		1.0	U
74-87-3	Chloromethane		1.0	U
110-82-7	Cyclohexane		1.0	ט
106-93-4	1,2-Dibromoethane		1.0	ប
124-48-1	Dibromochloromethane		1.0	U
	1,2-Dibromo-3-chloropropar	ne	1.0	U
	1,2-Dichlorobenzene		1.0	U
541-73-1	1,3-Dichlorobenzene		1.0	U
	1,4-Dichlorobenzene		1.0	U
	Dichlorodifluoromethane		1.0	U
75-34-3	1,1-Dichloroethane		1.0	U
	1,2-Dichloroethane		1.0	U
75-35-4	1,1-Dichloroethene		1.0	U
156-59-2	cis-1,2-Dichloroethene		1.0	U
	trans-1,2-Dichloroethene		1.0	U
	1,2-Dichloropropane		1.0	lυ
	cis-1,3-Dichloropropene		1.0	υ
	trans-1,3-Dichloropropene		1.0	U
100-41-4	Ethylbenzene		1.0	U
	2-Hexanone		5.0	Ū
	Isopropylbenzene		1.0	Ū
	Methyl acetate		1.0	Ū
	Methylcyclohexane		1.0	Ū
	Methylene chloride		1.0	Ū
	<u> </u>			ŀ

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

	VBLK23
Lab Name: <u>STL Buffalo</u> Contract: <u>4</u>	
Lab Code: <u>RECNY</u>	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A5B2015902</u>
Sample wt/vol:5.00 (g/mL) ML	Lab File ID: S9721.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:
Moisture: not dec Heated Purge: N	Date Analyzed: <u>12/28/2005</u>
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)

CAS NO. COMPOUND	CONCENTRATION UN (ug/L or ug/Kg)		Q
108-10-14-Methyl-2-pentanone		5.0	U
1634-04-4Methyl-t-Butyl Ether (MTBE)	1.0	U
91-20-3Naphthalene		1.0	ע
100-42-5Styrene		1.0	U
79-34-51,1,2,2-Tetrachloroeth	ane	1.0	U
127-18-4Tetrachloroethene		1.0	U
108-88-3Toluene		1.0	U
120-82-11,2,4-Trichlorobenzene		1.0	U
71-55-61,1,1-Trichloroethane		1.0	U
79-00-51,1,2-Trichloroethane		1.0	U
76-13-11,1,2-Trichloro-1,2,2-	trifluoroethane	1.0	U
75-69-4Trichlorofluoromethane		1.0	U
79-01-6Trichloroethene		1.0	U
75-01-4Vinyl chloride		1.0	U
1330-20-7Total Xylenes		3.0	U
			i l

Data File : D:\DATA\122805\S9721.D Acq On

: 28 Dec 2005 20:59

: VBLK23

Misc

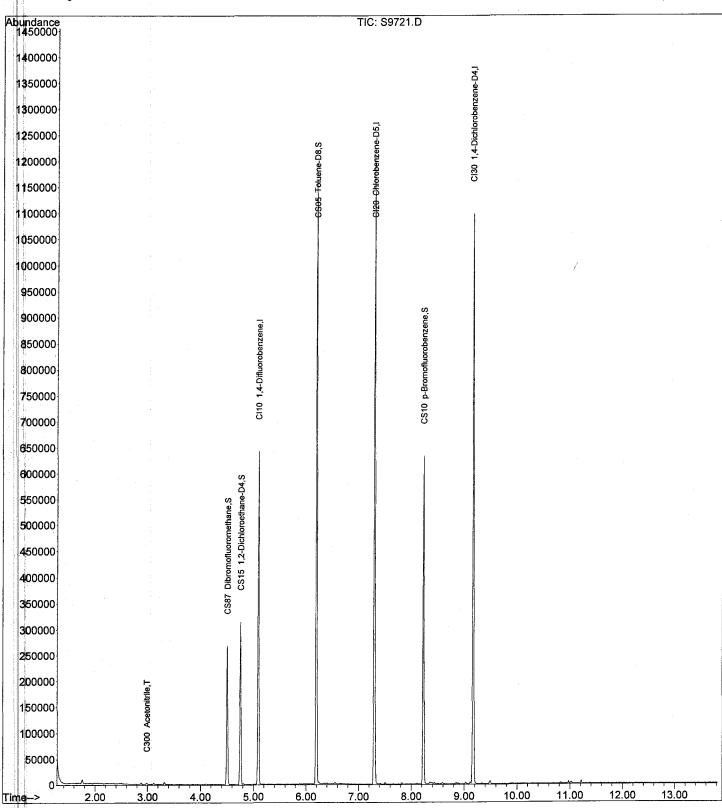
Vial: 27

Operator: TLC Inst : HP5973S Multiplr: 1.00

MS Integration Params: RTEINT.P

Results File: A5I0002442_E2.RES Quant Time: Dec 28 21:14:31 2005

Quant Method: C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)


Title : 8260 5ML WATER

Last Update : Wed Dec 28 20:05:16 2005

Response via: Initial Calibration

DataAcq Meth: VOA

Sample

Multiplr: 1.00

Data File : D:\DATA\122805\S9721.D Acq On

Vial: 27 Operator: TLC : 28 Dec 2005 20:59 Inst : HP5973S : VBLK23

Misc MS Integration Params: RTEINT.P

Results File: A5I0002442_E2.RES Quant Time: Dec 28 21:14:31 2005

Quant Method: C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Wed Dec 28 20:05:16 2005

Response via : Initial Calibration DataAcq Meth : VOA

Sample

IS QA File : D:\DATA\122805\S9718.D (28 Dec 20

Response Conc Units Dev(Min)

				. /			
Internal	Standards	R.T	. QIon	Response	Conc U		(Min) (Ar)
1) CI10	1,4-Difluorobenzene	5.0	9 114	382802	125.00		0.00
							3.74%
43) CI20	Chlorobenzene-D5	7.3	0 117	544736	125.00		0.00
				050000	105 00		7.65%
62) CI30	1,4-Dichlorobenzene	- 9.1	7 152	253992	125.00		0.00
						0.	J. JJ7
Cratam Ma	onitoring Compounds						
System Mc 30) CS87	Dibromofluoromethan	e 4.5	0 111	135114	125.05	ng -	0.00
Spiked A			0 - 130			100.04%	
31) CS15		-		145205	123.14	ng	0.00
Spiked A			3 - 136			98.51%	
44) CS05	Toluene-D8	6.2			111.80	ng	0.00
Spiked A	Amount 125.000 R	ange 7	7 - 122	Recove	ery =	89.44%	
	p-Bromofluorobenzen		3 174	123641	100.90	ng	0.00
			4 - 120	Recove	ry =	80.72%	
							_
Target Co						Qva	alue
111 ::	Dichlorodifluorome	0.00	85	0	N.D.		
	Chloromethane	1.49	50	142	N.D.		
4) C020	Vinyl chloride	0.00	62	0	N.D.		
5) C015	Bromomethane	0.00	94	0	N.D.		
6) C025	Chloroethane	0.00	64	0	N.D.		
7) C275	Trichlorofluoromet	0.00	101	0	N.D.		
8) C045	1,1-Dichloroethene	0.00	96	0	N.D.		
9) C030	Methylene chloride	3.11	84	1034	N.D.		
10) C040	Carbon disulfide	2.88	76 5.6	3408 324	N.D. N.D.		
11) C036	Acrolein	2.61	56	2807	N.D.		
12) C038	Acrylonitrile	3.32 2.76	53 43	513	N.D.		
13) C035 14) C300	Acetone Acetonitrile	2.76		2787	12 44	na #_	61
15) C276	Iodomethane	2.83	142	136	N.D.		0.2
16) C291	1,1,2 Trichloro-1,	0.00	101	0	N.D.		
17) C962	T-butyl Methyl Eth	0.00	73	Ö	N.D.		
18) C057	trans-1,2-Dichloro	0.00	96	Ō	N.D.		
19) C255	Methyl Acetate	3.06	43	169	N.D.		
20) C050	1,1-Dichloroethane	0.00	63	0	N.D.		
21) C125	Vinyl Acetate	3.76	43	760	N.D.		
22) C051	2,2-Dichloropropan	0.00	77	0	N.D.		
	cis-1,2-Dichloroet	0.00	96	0	N.D.		
2 4) C272	Tetrahydrofuran	0.00	42	0	N.D.		
25) C222	Bromochloromethane	0.00	128	0	N.D.		
2 6) C060	Chloroform	4.38	83	259	N.D.		
27) C115	1,1,1-Trichloroeth	0.00	97	0	N.D.		
2 8) C120	Carbon tetrachlori	0.00	117	0	N.D.		
29) C116	1,1-Dichloropropen	0.00	75	0	N.D.		
32) C165	Benzene	4.81	78	1845	N.D.		
3 3) C065	1,2-Dichloroethane	0.00	62	0	N.D.		
34) C110	2-Butanone	4.17	43	131	N.D.		
35) C256	Cyclohexane	0.00	56	0	N.D.		
3 6) C150	Trichloroethene	0.00	95	0	N.D.		
37) C140	1,2-Dichloropropan	0.00	63	0	N.D.		
38) C278	Dibromomethane	0.00	93	0	N.D.		
CH 1-							

Data File : D:\DATA\122805\S9721.D Acq On

Vial: 27 : 28 Dec 2005 20:59 Operator: TLC Inst : HP5973S

: VBLK23 Sample Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 28 21:14:31 2005 Results File: A5I0002442_E2.RES

Quant Method: C:\MSDCHEM\1...\A510002442 E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Wed Dec 28 20:05:16 2005

Response via : Initial Calibration

DataAcq Meth: VOA

IS QA File : D:\DATA\122805\S9718.D (28 Dec 2005 19:47)

Internal	Standards	R.T	. QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
39) C130	Bromodichlorometha	0.00	83	0	N.D.	
40) C161	2-Chloroethylvinyl	5.89	63	565	N.D.	
41) C012	Methylcycolhexane	0.00	83	0	N.D.	
42) C145	cis-1,3-Dichloropr	5.98	75	512	N.D.	
45) C230	Toluene	6.24	92	382	N.D.	
46) C170	trans-1,3-Dichloro	6.40	75	507	N.D.	
47) C284	Ethyl Methacrylate	0.00	69	.0	N.D.	
48) C160	1,1,2-Trichloroeth	0.00	83	0	N.D.	
49) C210	4-Methyl-2-pentano	6.10	43	289	N.D.	
50) C220	Tetrachloroethene	0.00	166	0	N.D.	
51) C221	1,3-Dichloropropan	6.67	76	146	N.D.	
52) C155	Dibromochlorometha	0.00	129	0	N.D.	
53) C163	1,2-Dibromoethane	6.93	107	160	N.D.	
54) C215	2-Hexanone	0.00	43	0	N.D.	
55) C235	Chlorobenzene	7.32	112	1825	N.D.	
56) C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
57) C240	Ethylbenzene	7.41	91	1149	N.D.	
58) C246	m,p-Xylene	7.51	106	830	N.D.	
59) C247	o-Xylene	7.81	106	283	N.D.	
60) C245	Styrene	7.83	104	1002	N.D.	
63) C180	Bromoform	0.00	173	0	N.D.	
64) C966	Isopropylbenzene	8.11	105	1409	N.D.	
65) C301	Bromobenzene	8.36	156	634	N.D.	
66) C225	1,1,2,2-Tetrachlor	8.33	83	136	N.D.	
67) C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
68) C283	t-1,4-Dichloro-2-B	8.37	53	313	N.D.	•
69) C302	n-Propylbenzene	8.44	91	2442	N.D.	
70) C303	2-Chlorotoluene	8.51	126	297	N.D.	
71) C289	4-Chlorotoluene	8.61	126	647	N.D.	
72) C304	1,3,5-Trimethylben	8.59	105	1191	N.D.	*
7 3) C306	tert-Butylbenzene	8.85	134	326	N.D.	
74) C307	1,2,4-Trimethylben	8.89	105	1385	N.D.	
7 5) C308	sec-Butylbenzene	9.02	105	2872	N.D.	. :
7 6) C260	1,3-Dichlorobenzen	9.12	146	1907	N.D.	
77) C309	4-Isopropyltoluene	9.15	119	2237	N.D.	
78) C267	1,4-Dichlorobenzen	9.19	146	2537	N.D.	
7 9) C249	1,2-Dichlorobenzen	9.50	146	1665	N.D.	
8 0) C310	n-Butylbenzene	9.48	91	2743	N.D.	
81) C286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
8 2) C313	1,2,4-Trichloroben	10.83	180	1145	N.D.	
8 3) C316	Hexachlorobutadien	10.97	225	770	N.D.	•
84) C314	Naphthalene	11.02	128	4120	N.D.	
8 5) C934	1,2,3-Trichloroben	11.21	180	1582	N.D.	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

T-1 17 CTT D-55-1-	Caral caral A		MSB21
Lab Name: <u>STL Buffalo</u>	Contract: 4		
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>		Lab Sample ID:	A5B2007601
Sample wt/vol: $\underline{5.00}$ (g/mL)	ML	Lab File ID:	S9656.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	
% Moisture: not dec Heate	ed Purge: <u>N</u>	Date Analyzed:	12/27/2005
GC C olumn: <u>DB-624</u> ID: <u>0.18</u>	(mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)		Soil Aliquot Vol	.ume: (uL)

CONCENTRATION UNITS: CAS NO. (ug/L or ug/Kg) COMPOUND UG/L_ Q 67-64-1-----Acetone 5.0 U 71-43-2----Benzene 29 75-27-4-----Bromodichloromethane 1.0 U 75-25-2----Bromoform U 1.0 74-83-9-----Bromomethane U 1.0 78-93-3----2-Butanone U 5.0 75-15-0-----Carbon Disulfide U 1.0 56-23-5-----Carbon Tetrachloride 1.0 U 108-90-7----Chlorobenzene 27 75-00-3----Chloroethane 1.0 U 67-66-3-----Chloroform U 1.0 74-87-3-----Chloromethane 1.0 IJ 110-82-7-----Cyclohexane U 1.0 106-93-4----1,2-Dibromoethane U 1.0 124-48-1----Dibromochloromethane U 1.0 96-12-8----1,2-Dibromo-3-chloropropane U 1.0 95-50-1----1,2-Dichlorobenzene 1.0 U 541-73-1----1,3-Dichlorobenzene U 1.0 106-46-7----1,4-Dichlorobenzene U 1.0 75-71-8-----Dichlorodifluoromethane 1.0 U 75-34-3----1,1-Dichloroethane U 1.0 107-06-2----1,2-Dichloroethane 1.0 U 75-35-4----1,1-Dichloroethene 32 156-59-2----cis-1,2-Dichloroethene 1.0 U 156-60-5----trans-1,2-Dichloroethene 1.0 IJ 78-87-5----1,2-Dichloropropane 1.0 U 10061-01-5---cis-1,3-Dichloropropene U 1.0 10061-02-6---trans-1,3-Dichloropropene 1.0 U 100-41-4----Ethylbenzene U 1.0 591-78-6----2-Hexanone 5.0 IJ 98-82-8-----Isopropylbenzene 1.0 U 79-20-9-----Methyl acetate U 1.0 108-87-2----Methylcyclohexane U 1.0 75-09-2----Methylene chloride J 0.56

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

r _1_	No. COTT D. S.	1 - a			MSB21
Lab	Name: <u>SIL Buffa</u>	<u>lo</u> Co	ontract: 4		
Lab	Code: <u>RECNY</u>	Case No.:	SAS No.:	SDG No.:	<u>.</u>
Mati	ix: (soil/water) <u>WATER</u>		Lab Sample ID:	A5B2007601
Sam	ole wt/vol:	5.00 (g/mL) <u>MI</u>	į	Lab File ID:	S9656.RR
Leve	l: (low/med)	LOW		Date Samp/Recv:	· .
ક Mc	isture: not dec	Heated F	Purge: <u>N</u>	Date Analyzed:	12/27/2005
GC (Dolumn: <u>DB-624</u>	ID: <u>0.18</u> (mm)		Dilution Factor	:1.00
Soi	Extract Volume	: (uL)		Soil Aliquot Vo	olume: (uL)
	CAS NO.	COMPOUND		CONCENTRATION UNITS (ug/L or ug/Kg)	

CAS NO.	COMPOUND	(ug/L or ug/Kg)		Q
108-10-1	4-Methyl-2-pentanone		5.0	U
	Methyl-t-Butyl Ether (MIBE)		1.0	ט
	Naphthalene		1.0	ប
100-42-5			1.0	ש
	1,1,2,2-Tetrachloroethane		1.0	ប
	Tetrachloroethene		1.0	υ
108-88-3	Toluene		28	
120-82-1	1,2,4-Trichlorobenzene		1.0	U
71-55-6	1,1,1-Trichloroethane		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-triflu	oroethane	1.0	ַט
75-69-4	Trichlorofluoromethane		1.0	ַט
79-01-6	Trichloroethene		29	
	Vinyl chloride		1.0	U
1330-20-7	Total Xylenes		3.0	U
1				

(Not Reviewed) Quantitation Report STL Buffalo 451/504

Vial: 6

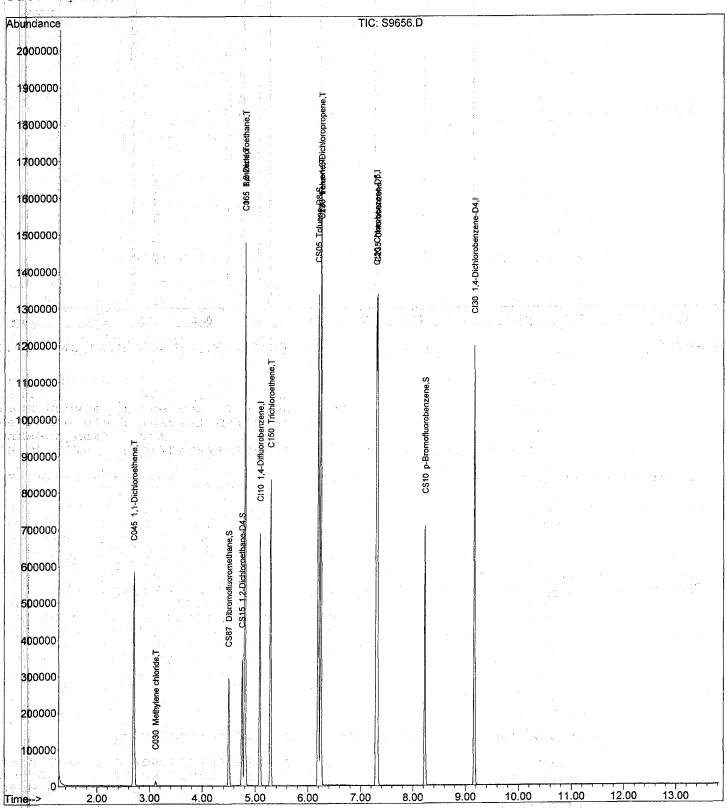
Data File : D:\DATA\122705\S9656.D

: 27 Dec 2005 11:54

Operator: LH Acq On : HP5973S Inst Sample : MSB Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Results File: A5I0002442_E2.RES Quant Time: Dec 27 12:25:04 2005


Quant Method: C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

: Tue Dec 27 11:08:38 2005 Last Update

Response via : Initial Calibration

DataAcq Meth: VOA

Data File : D:\DATA\122705\S9656.D

: 27 Dec 2005 11:54

Acq On Sample : MSB

Misc MS Integration Params: RTEINT.P Quant Time: Dec 27 12:25:04 2005

Inst : HP5973S Multiplr: 1.00

Operator: LH

Vial: 6

Results File: A5I0002442 E2.RES

Quant Method: C:\MSDCHEM\1...\A5I0002442_E2.M (RTE Integrator)
Title: 8260 5ML WATER

Last Update: Tue Dec 27 11:08:38 2005

Response via: Initial Calibration

DataAcq Meth: VOA

IS QA File: D:\DATA\122705\S9652.D (27 Dec 2005 10:13)

I n	ternal	Standards	R.T.	QIon	Response	Conc U	nits		(Min) (Ar)
1) CI10	1,4-Difluorobenzene	5.09	114	425062	125.00	ng	9	0.00 6.38%
43) CI20	Chlorobenzene-D5	7.30	117	567286	125.00	ng	9	0.00 4.47%
62) CI30	1,4-Dichlorobenzene	9.16	152	268030	125.00	ng		0.00 0.11%
•									0.110
THE	CS87	nitoring Compounds Dibromofluoromethar	. 4 50	111	150868	125.75	200		0.00
- 1:18	oiked A		ne 4.50 Range 70	111				.60%	0.00
		1,2-Dichloroethane-			161652	123.46		. 00%	0.00
	oiked A			- 136			_	.77%	0.00
1.19	CS05	Toluene-D8	6.19			120.62		. , , ,	0.00
	oiked A	· · · · · · · · · · · · · · · · · · ·		- 122				.50%	0.00
1.6		p-Bromofluorobenzer	_			111.38		. 500	0.00
				- 120				.10%	0.00
1	JIRCU II	123.000	ange 14	120	100000	- Y	05		
та	raet Co	mpounds						Ov	alue
		Dichlorodifluorome	0.00	85	0	N.D.			
3	C010	Chloromethane	0.00	50	0	N.D.			
4	C020	Vinyl chloride	0.00	62	0	N.D.			
5	C015	Bromomethane	0.00	94	Ō	N.D.			
2 3 4 5 6	C025	Chloroethane	0.00	64	Ö	N.D.			
71	C275	Trichlorofluoromet		101	0	N.D.			
<u>Sa</u>	C045	1,1-Dichloroethene	2.70	96	211412	159.75	ng	#	88
لو		Methylene chloride	3.12	8 4	4957	2.82	_	#	74
10)		Carbon disulfide	2.88	76	1686	N.D.	-		
11)	C036	Acrolein	0.00	56	0	N.D.			
12)	C038	Acrylonitrile	3.33	53	320	N.D.			
13)	C035	Acetone	2.75	43	537	N.D.			
14)	C300	Acetonitrile	2.98	41	277	N.D.			
15)	C276	Iodomethane	0.00	142	0	N.D.			
16)	C291	1,1,2 Trichloro-1,	2.70	101	132	N.D.			
17)		T-butyl Methyl Eth	0.00	73	0	N.D.			
18)	C057	trans-1,2-Dichloro	0.00	96	0	N.D.			
19)		Methyl Acetate	0.00	43	0 ,	N.D.			
20)		1,1-Dichloroethane	0.00	63	0	N.D.			
21)	C125	Vinyl Acetate	0.00	43	0	N.D.			
22	C051	2,2-Dichloropropan	0.00	77	0	N.D.			
23		cis-1,2-Dichloroet		96	0	N.D.			
24)	C272	Tetrahydrofuran	0.00	42	0	N.D.			
25)	C222	Bromochloromethane		L28	0	и.р.			
26	C060	Chloroform	0.00	83	0	N.D.			
27	C115	1,1,1-Trichloroeth	0.00	97	0	N.D.			
28) 29)	C120	Carbon tetrachlori 1,1-Dichloropropen		L17	0 0	N.D. N.D.			
	C116		0.00	75			na		100
32	C165 C065	Benzene	4.80	78	950299 	145.47		#	1
33) 34)	C110	1,2-Dichloroethane 2-Butanone	0.00	62 43	0	N.D.			
ر 35 (35	C256	Cyclohexane	0.00	56	0	N.D.			
33	/ C150	Trichloroethene	5.29	95	217261	144.43	na		97
37	C140	1,2-Dichloropropan	0.00	63	0	N.D.	9		<i>-</i> '
38)	C278	Dibromomethane	0.00	93	Ŏ	N.D.			
	02,0		0.00		-				

Data File : D:\DATA\122705\S9656.D

Vial: 6

Acc On : 27 Dec 2005 11:54 Sample : MSB

Operator: LH Inst: HP5973S

Multiplr: 1.00

Misc MS Integration Params: RTEINT.P

Quant Time: Dec 27 12:25:04 2005

Results File: A5I0002442_E2.RES

Quant Method: C:\MSDCHEM\1...\A510002442 E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Tue Dec 27 11:08:38 2005

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\DATA\122705\S9652.D (27 Dec 2005 10:13)

In	ternal	Standards	R.T	. QIon	Response	Conc (Jnits	Dev(Min	
_		<u> 1 saar Africa oo saasaa </u>						Rcv(Ar)
3.9) C130	Bromodichlorometha	0.00	83	Ö	N.D.			
40	•	2-Chloroethylvinyl	0.00	63	0	N.D.			
41) C012	Methylcycolhexane	0.00	8.3	. O	N.D.			
4.2) C145	cis-1,3-Dichloropr	0.00	75	- O	N.D.			
Q 5	C230	Toluene	6.2	4 92	588622	141.17	ng ng	9	4
46) C170	trans-1,3-Dichlorop	r 6.2	4 75	4803	2.70	<u>ng</u>	-# 5	I
47		Ethyl Methacrylate	0.00	69	0	N.D.			
4.8		1,1,2-Trichloroeth	0.00	83	. 0	N.D.			
49		4-Methyl-2-pentano	6.19	43	3011	N.D.			
5 0		Tetrachloroethene	0.00	166	0	N.D.			
51		1,3-Dichloropropan	0.00	76	0	N.D.		· · · · · · · · · · · · · · · · · · ·	
52	C155	Dibromochlorometha	0.00	129	. 0	N.D.			
53		1,2-Dibromoethane	0.00	107	0	N.D.			
5.4	C215	2-Hexanone	0.00	43	0	N.D.			
Q 55	. C235	Chlorobenzene	7.3	2 112	586741	135.55	ng	9	9
56	C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.			
57	C240	Ethylbenzene	7.41	91	189	N.D.			
58	1	m,p-Xylene	7.50	106	166	N.D.			
59		o-Xylene	0.00	106	0	N.D.			
60		Styrene	0.00	104	0	N.D.			
63		Bromoform	0.00	173	0	N.D.			
64	I	Isopropylbenzene	0.00	105	0	N.D.			
65		Bromobenzene	0.00	156	0	N.D.			
66		1,1,2,2-Tetrachlor	0.00	83	. 0	N.D.			
67	C282	1,2,3-Trichloropro	0.00	110	0	N.D.			
68	C283	t-1,4-Dichloro-2-B	0.00	53	0	N.D.			
69		n-Propylbenzene	8.60	91	276	N.D.			
70		2-Chlorotoluene	0.00	126	0	N.D.			
71	C289	4-Chlorotoluene	0.00	126	0.	N.D.			
72	C304	1,3,5-Trimethylben	0.00	105	0	N.D.			
73	C306	tert-Butylbenzene	0.00	134	0	N.D.			
74	C307	1,2,4-Trimethylben	0.00	105	0	N.D.			
75	1	sec-Butylbenzene	0.00	105	0	N.D.			
76		1,3-Dichlorobenzen	9.12	146	132	N.D.			
77		4-Isopropyltoluene	0.00	119	0	N.D.			
78		1,4-Dichlorobenzen	9.18	146	388	N.D.			
79	H	1,2-Dichlorobenzen	9.49	146	142	N.D.			
80	1	n-Butylbenzene	0.00	91	0	N.D.			
81		1,2-Dibromo-3-Chlo	0.00	75	0	N.D.			
82		1,2,4-Trichloroben		180	0	N.D.			
83	ll .	Hexachlorobutadien	0.00	225	0	N.D.			*
8 4	C314	Naphthalene	0.00	128	0	N.D.			
85	C934	1,2,3-Trichloroben	0.00	180	0	N.D.			

⁼ qualifier out of range (m) = manual integration (+) = signals summed

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

	MSB40	
	_	
:	A5B2009801	

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A55

Sample wt/vol: 5.00 (g/mL) ML Lab File ID: <u>Q9546.RR</u>

Level: (low/med) Low Date Samp/Recv: _____

% Maisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: _____1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

		CONTOUR TERM TERMS	T-0	
C73 C7 3 7C	COMPOUNT	CONCENTRATION UNIT		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/L</u>	Q
67-64-1			5.0	U
71-43-2	Benzene		27	
75-27-4	Bromodichloromethane		1.0	U
75-25-2	Bromoform		1.0	U
74-83-9	Bromomethane		1.0	U
78-93-3	2-Butanone		5.0	U
75-15-0	Carbon Disulfide		1.0	U
56-23-5	Carbon Tetrachloride		1.0	U
108-90-7	Chlorobenzene		27	
75-00-3	Chloroethane		1.0	. U
67-66-3	Chloroform		1.0	U
	Chloromethane		1.0	U
110-82-7	Cyclohexane		1.0	U
106-93-4	+-1,2-Dibromoethane		1.0	lυ
	Dibromochloromethane		1.0	U
96-12-8	1,2-Dibromo-3-chloropropane		1.0	ប
	+-1,2-Dichlorobenzene		1.0	שן
541-73-1	1,3-Dichlorobenzene		1.0	ט
106-46-7	+-1,4-Dichlorobenzene		1.0	ש
75-71-8	Dichlorodifluoromethane		1.0	U
75-34-3	1,1-Dichloroethane		1.0	ט
107-06-2	1,2-Dichloroethane		1.0	שן
	1,1-Dichloroethene		29	
	cis-1,2-Dichloroethene		1.0	lυ
	-trans-1,2-Dichloroethene		1.0	ט
	+-1,2-Dichloropropane		1.0	U
	cis-1,3-Dichloropropene		1.0	ט
10061-02-6	trans-1,3-Dichloropropene		1.0	Ū
	+-Ethylbenzene		0.60	J
	2-Hexanone		5.0	Ū
	Isopropylbenzene		0.42	J
	Methyl acetate		1.0	โบ
	Methylcyclohexane		1.1	
75-09-2	Methylene chloride		1.0	U
L				

455/504

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

_ ,			MSB40
Lab	Name: <u>STL Buffalo</u> Contract: <u>4</u>		
Lab	Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	
Mati	ix: (soil/water) <u>WATER</u>	Lab Sample ID:	A5B2009801
Samp	le wt/vol: <u>5.00</u> (g/mL) <u>ML</u>	Lab File ID:	Q9546.RR
Leve	l: (low/med) <u>LOW</u>	Date Samp/Recv:	
용 Mc	isture: not dec Heated Purge: N	Date Analyzed:	12/27/2005
GC C	olumn: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil	Extract Volume: (uL)	Soil Aliquot Volum	me: (uL)

CAS NO.	COMPOUND	CONCENTRATION UNIT (ug/L or ug/Kg)	S: <u>UG/L</u>	Q	
108-10-1	4-Methyl-2-pentanone		5.0	U	l
1634-04-4	Methyl-t-Butyl Ether (MIBE)		1.0	U	l
91-20-3	Naphthalene		0.93	J	l
100-42-5	Styrene		1.0	U	l
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U	ĺ
127-18-4	Tetrachloroethene		1.0	U	
108-88-3	Toluene		27		l
120-82-1	1,2,4-Trichlorobenzene		0.77	J	l
71-55-6	1,1,1-Trichloroethane		1.0	U	l
79-00-5	1,1,2-Trichloroethane		1.0	U	ŀ
76-13-1	1,1,2-Trichloro-1,2,2-triflu	oroethane	1.0	U	
75-69-4	Trichlorofluoromethane		1.0	U	ŀ
79-01-6	Trichloroethene		26		l
	Vinyl chloride		1.0	U	l
1330-20-7	Total Xylenes		2.2	BJ	l

Quantitation Report

Data File: C:\HPCHEM\1\DATA\122705\Q9546.D

Acq On : 27 Dec 2005 21:17

Sample : MSB Misc

Vial: 29 Operator: TLC

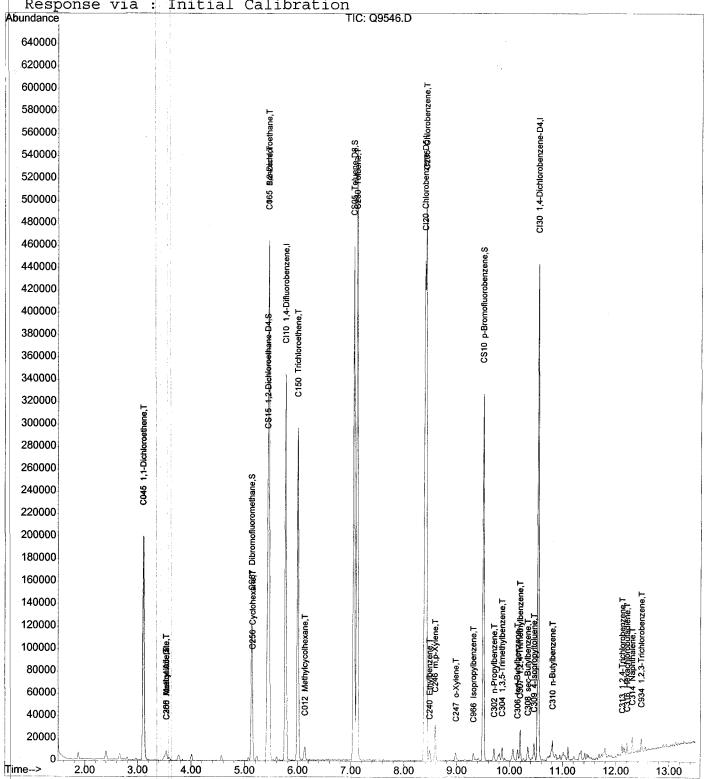
Inst : HP5973 Q

Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 27 21:32 2005

Quant Results File: A5I02444.RES


Method

C:\HPCHEM\1\METHODS\Q8260\A5I02444.M (RTE Integrator)

Title 8260 5ML

Last Update Tue Dec 27 20:57:50 2005

Response via : Initial Calibration

EMMS 12/28/or

Multiplr: 1.00

Data File: C:\HPCHEM\1\DATA\122705\Q9546.D

Vial: 29 Acq On : 27 Dec 2005 21:17 Operator: TLC

Sample : MSB Inst : HP5973 Q

Misc

MS Integration Params: RTEINT.P Quant Time: Dec 27 21:32 2005 Quant Results File: A5I02444.RES

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Tue Dec 27 20:57:50 2005

Response via: Initial Calibration

DataAcq Meth : VOA

IS QA File : C:\HPCHEM\1\DATA\122705\Q9545.D (27 Dec 2005

nter	nal S	tandards	R.T.	QIon	Response	Conc Un	its	Dev Rcv	(Min) (Ar)
1)	 CI10	1,4-Difluorobenzene	5.77	114	285218	125.00	ng		0.00
121	CI20	Chlarabangana DE	0 20	117	040415	105 00			8.97%
13)	C120	Chlorobenzene-D5	8.39	T T /	249415	125.00	ng	0.	0.00 8.89%
52)	CT30	1,4-Dichlorobenzene-	10 53	152	117928	125.00	na		
, ,	C130	1,1 Diditolobelizelle	10.55	102	11/520	123.00	119	9.	3.558
								٠,	3.33
		itoring Compounds							
0)	CS87	Dibromofluoromethane	5.14	111	74884	120.65	ng		0.00
Spi.	ked A	mount 125.000 Ran	ige 70	- 130	Recove	ry =	96.	52%	
1)	CS15	1,2-Dichloroethane-D	5.43	65	85461	118.43	ng		0.00
Spi	ked A	mount 125.000 Ran	ige 72	- 143	Recove	ry =	94.	74%	
4)	CS05	Toluene-D8	7.05	98	308084	125.04	ng		0.00
Spi	ked A	mount 125.000 Ran p-Bromofluorobenzene	ige 76	- 116	Recove	ry =	100.	03%	
1)	CS10	p-Bromofluorobenzene	9.50	174	101801	128.23	ng		0.00
Spi	ked A	mount 125.000 Ran	ge 73	- 117	Recove	ry =	102.	58%	
rae	t Com	pounds						037	alue
		Dichlorodifluorometh	0.00	85	0	N.D		QV	arue
		Chloromethane		50	ő	N.D.			
4)	C020	Vinyl chloride	0.00	62	Ö				
5)	C015	Bromomethane	0.00	94	0				
6)	C025	Chloroethane	0.00	64	0	N.D.			
7)	C275	Chloroethane Trichlorofluorometha	0.00	101	0				
(ر 8	<i>ስ</i> 'ሰ45	1 1-Dichloroethene	2 11	96	81883	145 87	ná		92
97	C030	Methylene chloride Carbon disulfide Acrolein	3.59	84	1112	N.D.			
0) (C040	Carbon disulfide	3.32	76	497	N.D.			
1) (C036	Acrolein	0.00	56	0	N.D.			
2) (C038	Acrylonitrile	3.84	53	450	N.D.			
3) (C035	Acetone	3.21	43	422	N.D.			
4) 1	C300	Acrolein Acrylonitrile Acetone Acetonitrile	- 3.54	41	6088	47.81	ng	_#	29
5) (C276	Lodomethane	0 00	142	0	N.D.			
	C291		0.00	101	0	N.D.			
	C962	T-butyl Methyl Ether	0.00	73	0	N.D.			
	C057	trans-1,2-Dichloroet	0.00	96	0	N.D.			
	C255	Methyl Acetate	3.54	- 43 -	8395	8.59	ng	#	55
	C050	1,1-Dichloroethane	0.00	63	0	N.D.			
-	C125	Vinyl Acetate	0.00	43	0	N.D.			
2) (C051	2,2-Dichloropropane	0.00	77	0	N.D.			

|(#) = qualifier out of range (m) = manual integration

Tue Dec 27 21:32:37 2005 Q9546.D A5I02444.M

HP5973-Q Page 1

Vial: 29

HP5973-0

Data File : C:\HPCHEM\1\DATA\122705\Q9546.D

: 27 Dec 2005 21:17 Acq On

Operator: TLC Sample : MSB

Inst: HP5973 Q Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 27 21:32 2005 Quant Results File: A5I02444.RES

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Tue Dec 27 20:57:50 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Q9546.D A5I02444.M

	Compo	und	R.T.	QIon	Response	Conc Unit	Qva	alue
23)	C056	cis-1,2-Dichloroethe	0.00	96	0	N.D.		
24)	C272	Tetrahydrofuran	5.07	42	431	N.D.		
25)	C222	Bromochloromethane	0.00	128	0	N.D.		
26)	C060	Chloroform	0.00	83	0	N.D.		
27)	C115	1,1,1-Trichloroethan	0.00	97	0	N.D.		
28)	C120	Carbon tetrachloride	0.00	117	0	N.D.		
29)	C116	1,1-Dichloropropene	0.00	75	0	N.D.		
(32)	C165	Benzene	5.45	78	384176	136.09 ng		100
33)	C065	-1,2-Dichloroethane	5.45	62 -	2734	2.88 ng	#	1
34)	C110	2-Butanone	0.00	43	0	N.D.		
35)	C256	Cyclohexane	5.15	56	3854	4.13 ng	#	60
(36)		Trichloroethene	6.00	95	91768	132.99 ng	#	70
37)	C140	1,2-Dichloropropane	0.00	63	0	N.D.		
38)	C278	Dibromomethane	0.00	93	0	N.D.		
39)	C130	Bromodichloromethane	0.00	83	0	N.D.		
40)	C161	2-Chloroethylvinyl E	0.00	63	0	N.D.		
(41)	C012	Methylcycolhexane	6.13	83	5075	5.57 ng		90
42)	C145	cis-1,3-Dichloroprop	0.00	75	0	N.D.		
45)	C230	Toluene	7.11	92	241704	136.29 ng		95
46)	C170	trans-1,3-Dichloropr	0.00	75	0	N.D.		
47)	C284	Ethyl Methacrylate	0.00	69	0	N.D.		
48)	C160	1,1,2-Trichloroethan	0.00	83	0	N.D.		
49)	C210	4-Methyl-2-pentanone	7.05	43	1136	N.D.		
50)	C220	Tetrachloroethene	7.61	166	285	N.D.		
51)	C221	1,3-Dichloropropane	0.00	76	0	N.D.		
52)	C155	Dibromochloromethane	0.00	129	0	N.D.		
53)	C163	1,2-Dibromoethane	0.00	107	0	N.D.		
54)	C215	2-Hexanone	0.00	43	0	N.D.		
55)	C235	Chlorobenzene	8.42	112	276497	135.43 ng		91
56)	C281	1,1,1,2-Tetrachloroe	0.00	131	0	N.D.		
7	C240	Ethylbenzene	8.48	91	9085	3.00 ng		95
<u>58</u> 3	C246	m,p-Xylene	8.59	106	11353	8.93 ng	#	79
(59)	C247	o-Xylene	8.98	106	2802	2.24 ng	#	81
60)	C245	Styrene	0.00	104	0	N.D.		
63)	C180	Bromoform	0.00	173	0	N.D.		
(64)	C966	Isopropylbenzene	9.32	105	6197	2.12 ng		93
65)	C301	Bromobenzene	0.00	156	0	N.D.		
66)	C225	1,1,2,2-Tetrachloroe	0.00	83	0	N.D.		
67)	C282	1,2,3-Trichloropropa	0.00	110	0	N.D.		
68)	C283		9.71	51	130	N.D.		
(69)	C302	n-Propylbenzene	9.71	91	10289	2.98 ng		77

Tue Dec 27 21:32:38 2005

Data File : C:\HPCHEM\1\DATA\122705\Q9546.D

Vial: 29 Acq On : 27 Dec 2005 21:17 Operator: TLC

: MSB Sample Inst : HP5973 Q Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 27 21:32 2005 Quant Results File: A5I02444.RES

Quant Method : C:\HPCHEM\1...\A5I02444.M (RTE Integrator)

Title : 8260 5ML

Last Update : Tue Dec 27 20:57:50 2005 Response via : Initial Calibration

DataAcq Meth: VOA

	Compo	und	R.T.	QIon	Response	Conc Unit	Qva	alue
70)	C303	2-Chlorotoluene	9.81	126	570	N.D.		. – – –
71)	C289	4-Chlorotoluene	9.81	126	570	N.D.		
(72)	C304	1,3,5-Trimethylbenze	9.86	105	8914	3.74 ng	#	48
(73)	C306	tert-Butylbenzene	10.15	134	1830	3.27 ng		100
(74)	C307	1,2,4-Trimethylbenze	10.20	105	16948	6.97 ng		96
75)	C308	sec-Butylbenzene	10.34	105	10769	3.75 ng		96
76)	C260	1,3-Dichlorobenzene	10.48	146	2247	N.D.		
(77)	C309	4-Isopropyltoluene	10.46	119	9271	3.53 ng		100
78)	C267	1,4-Dichlorobenzene	10.56	146	2025	N.D.		
79)	C249	1,2-Dichlorobenzene	10.87	146	1739	N.D.		
(80)	C310	n-Butylbenzene	10.81	91	9727	4.52 ng		74
81)	C286	1,2-Dibromo-3-Chloro	0.00	75	0	N.D.		
(82)	C313	1,2,4-Trichlorobenze	12.11	180	3718	3.86 ng		93
(83)	C316	Hexachlorobutadiene	12.20	225	2244	6.67 ng		99
8 4	C314	Naphthalene	12.30	128	12290	4.67 ng		100
(85)	C934	1,2,3-Trichlorobenze	12.47	180	3944	4.39 ng		91

Soil Aliquot Volume: ____ (uL)

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

			MSB37
Lab Name: <u>STL Buffalo</u>	Contract: 4	_	
Lab Code: <u>RECNY</u> Ca	se No.:	SDG No.:	
Matrix: (soil/water)	WATER	Lab Sample ID:	<u>A5B2011201</u>
Sample wt/vol:	5.00 (g/mL) <u>ML</u>	Lab File ID:	G7617.RR
Level: (low/med)	LOW	Date Samp/Recv:	-
% Moisture: not dec.	Heated Purge: N	Date Analyzed:	12/27/2005
GC Column: DB-624	ID: <u>0.25</u> (mm)	Dilution Factor:	1.00

Soil Extract Volume:

		CONCENTRATION (UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/K	g) <u>UG</u>	<u>/L</u>	Q
67-64-1	Acetone			5.0	U
71-43-2	Benzene		2	6	
75-27-4	Bromodichloromethane			1.0	ן ט
75-25-2				1.0	U
74-83-9	Bromomethane			1.0	ע
78-93-3	2-Butanone			5.0	ע
75-15-0	Carbon Disulfide			1.0	U
56-23-5	Carbon Tetrachloride			1.0	ט
108-90-7	Chlorobenzene		2	6	1 1
75-00-3	Chloroethane			1.0	ן טן
67-66-3	Chloroform			1.0	ן טן
	Chloromethane			1.0	ן ט
110-82-7	Cyclohexane			1.0	ן ען
	1,2-Dibromoethane			1.0	ן ען
124-48-1	Dibromochloromethane			1.0	ן דו
96-12-8	1,2-Dibromo-3-chloropropane			1.0	ן ט
	1,2-Dichlorobenzene			1.0	ן ט
541-73-1	1,3-Dichlorobenzene			1.0	ן ט
106-46-7	1,4-Dichlorobenzene			1.0	ן מן
75-71-8	Dichlorodifluoromethane			1.0	ן ט
75-34-3	-1,1-Dichloroethane			1.0	ן ט
107-06-2	1,2-Dichloroethane			1.0	ן ט
75-35-4	-1,1-Dichloroethene		2	6	İ
156-59-2	cis-1,2-Dichloroethene			1.0	ע
156-60-5	trans-1,2-Dichloroethene			1.0	ן ט
78-87-5	1,2-Dichloropropane			1.0	ע
10061-01-5	-cis-1,3-Dichloropropene			1.0	ן ט
10061-02-6	-trans-1,3-Dichloropropene			1.0	ע
100-41-4	-Ethylbenzene			1.0	ן ט
591-78-6				5.0	U
	-Isopropylbenzene			1.0	U
79-20-9	-Methyl acetate			1.0	U
108-87-2	-Methylcyclohexane			1.0	ט
75-09-2	-Methylene chloride			1.0	U

461/504

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

			MSB37	
Lab Name: <u>STL Buffalo</u>	Contract: 4			•
Lab Code: <u>RECNY</u> Ca	se No.:	SDG No.:		
Matrix: (soil/water)	WATER	Lab Sample ID:	A5B2011201	
Sample wt/vol:	5.00 (g/mL) <u>M</u> L	Lab File ID:	<u>G7617.RR</u>	
Level: (low/med)	LOW	Date Samp/Recv:		
% Moisture: not dec.	Heated Purge: N	Date Analyzed:	12/27/2005	
GC Column: <u>DB-624</u>	ID: <u>0.25</u> (mm)	Dilution Factor:	1.00	
Soil Extract Volume:	(uL)	Soil Aliquot Vol	ume: (uL)	

CAS NO.	COMPOUND	CONCENTRATION UNIT (ug/L or ug/Kg)	S: <u>UG/L</u>	Q
108-10-1	-4-Methyl-2-pentanone		5.0	U
1634-04-4	Methyl-t-Butyl Ether (MIBE)		1.0	U
91-20-3	Naphthalene		1.0	U
100-42-5	Styrene		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
127-18-4	Tetrachloroethene		1.0	U
108-88-3	Toluene		26	
120-82-1	1,2,4-Trichlorobenzene		1.0	U
	1,1,1-Trichloroethane		1.0	U
79-00-5	-1,1,2-Trichloroethane		1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluo	roethane	1.0	U
75-69-4	-Trichlorofluoromethane		1.0	U
79-01-6	-Trichloroethene		25	
	Vinyl chloride		1.0	U
1330-20-7	-Total Xylenes_		3.0	U
				1 1

462/504

Quantitation Report

STL Buffalo

(Not Reviewed)

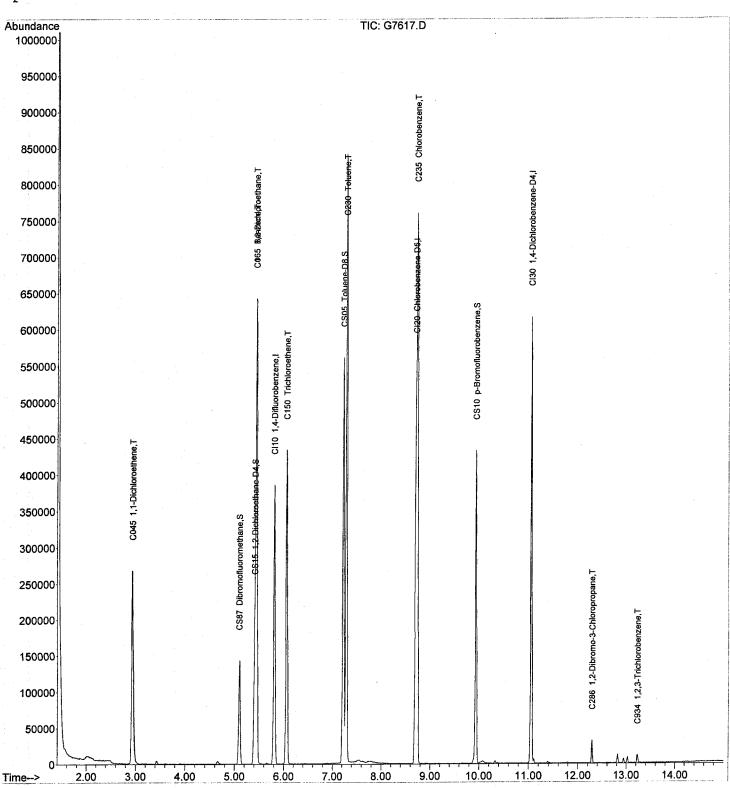
Data File: C:\MSDCHEM\1\DATA\122705\G7617.D

Acq On : 27 Dec 2005 21:29

Sample : MSB

Misc :

Integrator: RTE


Quant Time: Dec 27 21:48:15 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 27 21:28:27 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122705\

Operator : TLC

(Not Reviewed)

Data File: C:\MSDCHEM\1\DATA\122705\G7617.D

Acq On : 27 Dec 2005 21:29

Sample : MSB Misc

Integrator: RTE

Quant Time: Dec 27 21:48:15 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 21:28:27 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Operator : TLC

Internal S	tandards	R.T.	QIon	Response			Dev(Min) Rcv(Ar)
1) CI10	1,4-Difluorobenzene	5.81	114	344655	125.00	ng	0.00 98.60%
43) CI20	Chlorobenzene-D5	8.70	82	173200	125.00	ng	0.00 97.54%
63) CI30	1,4-Dichlorobenzene-	11.05	152	164553	125.00	ng	0.00 96.35%
26) CS87 Spiked Am 31) CS15 Spiked Am 44) CS05 Spiked Am 62) CS10 Spiked Am	1,2-Dichloroethane-D nount 125.000 Ra Toluene-D8 nount 125.000 Ra p-Bromofluorobenzene nount 125.000 Ra	nge 70 5.41 nge 73 7.22 nge 77 9.94	- 130 65 - 136 98 - 122 174	Recove 127885 Recove 415402 Recove 125439	ry = 115.26 property = 118.94 property = 116.89 property = 116.80	90. ng 92. ng 95. ng	38% 0.00 21% 0.00 15% 0.00 51%
Target Com	pounds		0.5	0	M D		Qvalue
2) C290	Dichlorodifluorome	0.00 1.61		0 63	N.D. N.D.		
	Chloromethane			0	N.D.		
4) C020	Vinyl chloride	0.00		ő	N.D.		
5) C015	Bromomethane Chloroethane	0.00	64	Ö	N.D.		
(7) C275	Trichlorofluoromet	0.00	101	Ō	N.D.		
	1,1-Dichloroethene			131295	129.62	ng	85
C030	Methylene chloride		84	2283	N.D.		
10) C040	Carbon disulfide	3.14	76	1776	N.D.		
	Acrolein	2.91	56	2115	N.D.		
12) C038	Acrylonitrile	0.00		0	N.D.		
		2 22	43	2064	N.D.		
14) C300	Acetone Acetonitrile Iodomethane	3.35	41	129	N.D.		
15) C276	Iodomethane	0.00	142		N.D.		
	1,1,2-Trichloro-1,		101		N.D.		
	T-butyl Methyl Eth	0.00	73	0	N.D.		
	trans-1,2-Dichloro	0.00 3.25	96	0.	N.D. N.D.		
19) C255	Methyl Acetate	3.25	43	59 0	N.D.		
	1,1-Dichloroethane	0.00	43	0	N.D.		
	Vinyl Acetate 2,2-Dichloropropan	0.00	43 77	0	N.D.		
22) C051 23) C056	cis-1,2-Dichloroet	0.00	96	ő	N.D.		
	Tetrahydrofuran	0.00	42	ō	N.D.		
	Bromochloromethane		128	0	N.D.		
27) C060	Chloroform	0.00	83	0	N.D.		
28) C115	1,1,1-Trichloroeth	0.00	97	0	N.D.		
29) C120	Carbon tetrachlori		117	0	N.D.		
30) C116	1,1-Dichloropropen	0.00	75	0	N.D.		
(25) C165	Benzene	5.44		612721	129.17	_	98
3 3) C065	1,2-Dichloroethane	5.44	 62	5330	3.04-	ng	- # - 1 -
34) C110	2-Butanone	4.67	43	527	N.D.		
35) C256	Cyclohexane	0.00	56	0 154783	N.D. 126.97	na	93
36) C150	Trichloroethene	6.05	95	154/65	120.97	9	

Data File: C:\MSDCHEM\1\DATA\122705\G7617.D

Acq On : 27 Dec 2005 21:29

: MSB Sample

Misc

Integrator: RTE Quant Time: Dec 27 21:48:15 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 21:28:27 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Operator : TLC

Inte	rnal	Standards	R.T	. QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
0 77 1	G1 4 0	1 2 Diablerenrenan	0.00	63	0	N.D.	,
37)		1,2-Dichloropropan Dibromomethane	0.00	93	0	N.D.	
38)		Bromodichlorometha	0.00	83	Ö	N.D.	
39)		2-Chloroethylvinyl	0.00	63	Ö	N.D.	
40)		Methylcyclohexane	0.00	83	. 0	N.D.	
41)		cis-1,3-Dichloropr	0.00	. 75	0	N.D.	
42)	C145		7.2		392646	127.95 ng	99
4 5)		Toluene trans-1,3-Dichloro	0.00	75	0	N.D.	
	C170	Ethyl Methacrylate	0.00	69	0	N.D.	
	C284	1,1,2-Trichloroeth	0.00	83	0	N.D.	
	C160	4-Methyl-2-pentano	7.22	43	1899	N.D.	
	C210	Tetrachloroethene	7.84	166	59	N.D.	
	C220	1,3-Dichloropropan	0.00	76	0	N.D.	
	C221	Dibromochlorometha	0.00	129	Ö	N.D.	
	C155	1,2-Dibromoethane	0.00	107	0	N.D.	**
53)		•	0.00	43	Ö	N.D.	
	C215	2-Hexanone Chlorobenzene	8.7		445917	128.83 ng	99
X Company	C235	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
	C281		8.83	91	244	N.D.	
	C240	Ethylbenzene m,p-Xylene	8.95	106	66	N.D.	
	C246		0.00	106	0	N.D.	
	C247	o-Xylene	0.00	104	Ö	N.D.	
	C245	Styrene Bromoform	0.00	173	0	N.D.	
•	C180		9.76	105	63	N.D.	
	C966	Isopropylbenzene Bromobenzene	0.00	156	0	N.D.	
	C301	1,1,2,2-Tetrachlor	9.89	83	60	N.D.	
	C225	1,2,3-Trichloropro	0.00	110	0	N.D.	
	C282	t-1,4-Dichloro-2-B	0.00	51	Ö	N.D.	
	C283		10.17	91	66	N.D.	
•	C302	n-Propylbenzene	10.33	126	727	N.D.	
•	C3 03	2-Chlorotoluene	10.33	126	727	N.D.	
•	C289	4-Chlorotoluene	10.33	105	314	N.D.	*
-	C304	1,3,5-Trimethylben	0.00	134	0	N.D.	
	C306	tert-Butylbenzene	10.71	105	434	N.D.	
	C307		10.71	105	526	N.D.	
	C308	sec-Butylbenzene 1,3-Dichlorobenzen	11.00	146	340	N.D.	
	C260		11.00	119	509	N.D.	
	C309	4-Isopropyltoluene	11.08	146	416	N.D.	
	C267	1,4-Dichlorobenzen	11.42	146	509	N.D.	
	C249	1,2-Dichlorobenzen	11.42	91	1569	N.D.	
	C310	n-Butylbenzene 1,2-Dibromo-3-Chlor				6.36 ng	_ # _ 1
	C286	2, 2-Dibromo-3-Chior			3786	N.D.	,,
	C313	1,2,4-Trichloroben	12.82	180 225	1399	N.D.	
	C316		12.95 13.03	128	7263	N.D.	
	C314	Naphthalene			4009	2.22 ng	98
(85)	₹934	1,2,3-Trichlorobenz	e 13.2	2 TOO	4009		
*	· <i>」</i>						

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

		MSB22
Lab Name: STL Buffalo Contract: 4	<u> </u>	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A5B2013701</u>
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID:	S9692.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	
% Moisture: not dec Heated Purge: N	Date Analyzed:	12/28/2005
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:	1.00

Soil Extract Volume: ____ (uL)

CONCENTRATION IN	rmc.

Soil Aliquot Volume: ____ (uL)

		CONCENTRATION UN	NITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/L</u>	Q
67-64-1	Acetone		5.0	U
71-43-2	Benzene		27	
75-27-4	Bromodichloromethane		1.0	U
75-25-2			1.0	ן ט
74-83-9	Bromomethane		1.0	U
78-93-3	2-Butanone		5.0	U
75-15-0	Carbon Disulfide		1.0	ע
56-23-5	Carbon Tetrachloride		1.0	ע
108-90-7	Chlorobenzene		25	
75-00-3	Chloroethane		1.0	ן ט
67-66-3	Chloroform		1.0	ן ט
74-87-3	Chloromethane		1.0	U
	Cyclohexane		1.0	U
106-93-4	1,2-Dibromoethane		1.0	ן ט
124-48-1	Dibromochloromethane		1.0	U
96-12-8	1,2-Dibromo-3-chloropropane		1.0	ן ט
	1,2-Dichlorobenzene		1.0	ן ט
541-73-1	1,3-Dichlorobenzene		1.0	ע
	1,4-Dichlorobenzene		1.0	ט [
75-71-8	Dichlorodifluoromethane		1.0	U
75-34-3	1,1-Dichloroethane		1.0	U
107-06-2	1,2-Dichloroethane		1.0	U
75-35-4	1,1-Dichloroethene		29	
156-59-2	cis-1,2-Dichloroethene		1.0	U
	trans-1,2-Dichloroethene		1.0	ע
78-87-5	1,2-Dichloropropane		1.0	U
	cis-1,3-Dichloropropene		1.0	U
10061-02-6	trans-1,3-Dichloropropene		1.0	Ū
	Ethylbenzene		1.0	lu l
	2-Hexanone		5.0	Ū
	Isopropylbenzene		1.0	U
	Methyl acetate		1.0	Ū
	Methylcyclohexane		1.0	U
	Methylene chloride		1.0	Ū
	<u>-</u>			1

466/504

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

			MSB22	
Lab Name: <u>STL Buffalo</u>	Contract: 4	<u> </u>	L	
Lab Code: RECNY Case No.:	SAS No.:	SDG No.:		
Matrix: (soil/water) <u>WATER</u>		Lab Sample ID:	<u>A5B2013701</u>	
Sample wt/vol: $\underline{5.00}$ (g/mL)	ML	Lab File ID:	S9692.RR	
Level: (low/med) <u>LOW</u>		Date Samp/Recv:		
% Moisture: not dec Heate	d Purge: <u>N</u>	Date Analyzed:	12/28/2005	
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:	1.00	
Soil Extract Volume: (uL)		Soil Aliquot Volu	ume:	(11T ₁)

CONCENTRATION UNITS: CAS NO. COMPOUND UG/L Q (ug/L or ug/Kg) 108-10-1----4-Methyl-2-pentanone 5.0 U 1634-04-4----Methyl-t-Butyl Ether (MTBE) 1.0 U 91-20-3-----Naphthalene U 1.0 100-42-5----Styrene 1.0 U 79-34-5----1,1,2,2-Tetrachloroethane 1.0 U 127-18-4----Tetrachloroethene U 1.0 108-88-3----Toluene 26 120-82-1----1,2,4-Trichlorobenzene 1.0 U 71-55-6----1,1,1-Trichloroethane U 1.0 79-00-5-----1,1,2-Trichloroethane U 1.0 76-13-1----1,1,2-Trichloro-1,2,2-trifluoroethane U 1.0 75-69-4----Trichlorofluoromethane 1.0 U 79-01-6----Trichloroethene 27 75-01-4-----Vinyl chloride_ U 1.0 1330-20-7----Total Xylenes U 3.0

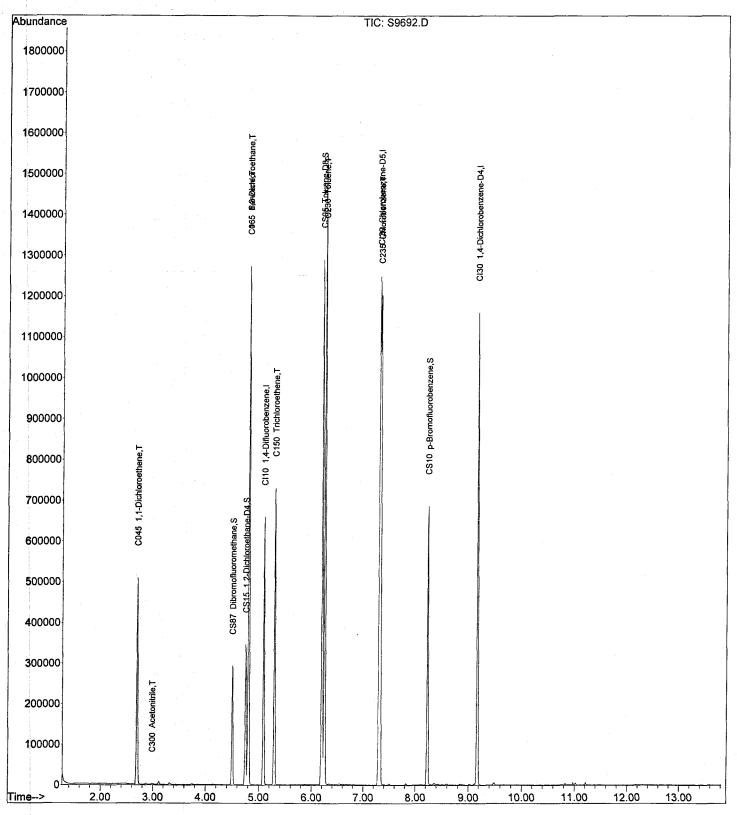
Data File : D:\DATA\122805\S9692.D

Vial: 3 : 28 Dec 2005 Acq On 9:19 Operator: LH

Sample : MSB : HP5973S Inst Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 28 09:45:12 2005 Results File: A5I0002442_E2.RES


Quant Method : C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

Title. : 8260 5ML WATER

Last Update : Wed Dec 28 09:45:03 2005

Response via : Initial Calibration

DataAcq Meth: VOA

Data File : D:\DATA\122805\S9692.D

Acq On : 28 Dec 2005 9:19 : MSB Sample

Operator: LH Inst : HP5973S Multiplr: 1.00

Vial: 3

MS Integration Params: RTEINT.P

Quant Time: Dec 28 09:45:12 2005 Results File: A5I0002442_E2.RES

Quant Method : C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Wed Dec 28 09:45:03 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Misc

IS QA File : D:\DATA\122805\S9691.D (28 Dec 2005 8:52)

IS QA Fi	le : D:\DATA\122805\	S9691.D (28	Dec 2005	8:52)	VV V
Interna	l Standards	R.T. QI	on Respons	e Conc Ur	nits Dev(Min) Rcv(Ar)
1) CI1	0 1,4-Difluorobenzene	5.09 1	14 396361	125.00	_
43) CI2	O Chlorobenzene-D5	7.30 1	17 545359	125.00	
6 2) CI3	0 1,4-Dichlorobenzene	9.16 1	52 253524	125.00	97.80% ng 0.00 87.22%
	Monitoring Compounds				
31) CS1 Spiked	Amount 125.000 F 5 1,2-Dichloroethane- Amount 125.000 F	Range 70 - 1 D 4.75 (Range 73 - 1	65 158764 136 Reco	very = 130.03 very =	106.56% ng 0.00 104.02%
		6.19 9 Range 77 - 3	98 662063 122 Reco		ng 0.00 98.04%
	0 p-Bromofluorobenzen		74 135052	110.09	ng 0.00 88.07%
	Compounds				Qvalue
	O Dichlorodifluorome	0.00 85	0	N.D.	
3) C01 4) C02		0.00 50	0	N.D.	
5) C01		0.00 62 0.00 94	0 0	N.D.	
6) C02				N.D.	
7) C27		0.00 64	0	N.D.	
		0.00 101	0	N.D.	2.5
(87)C04	•		180223	146.04	ng 95
9) C03	-	3.12 84	2366	N.D.	
10) C040		2.88 76	3242	N.D.	
11) C03		2.61 56	1098	N.D.	
12) C03	-	3.31 53	3547	N.D.	
13) C03		2.75 43	140	N.D.	
14) C300		-2.99 4	11 3308	14.26	ng # 65
15) C27		0.00 142	0	N.D.	
16) C29	•	0.00 101	0	N.D.	
17) C962		0.00 73	. 0	N.D.	
18) C05		0.00 96	0	N.D.	
19) C255		0.00 43	0	N.D.	
20) C050		0.00 63	0	N.D.	
21) C125	-	3.74 43	1635	N.D.	
22) C05		0.00 77	0	N.D.	
23) C056		4.13 96	600	N.D.	
24) C272		0.00 42	0	N.D.	
25) C222		0.00 128	0	N.D.	
26) C060		0.00 83	0	N.D.	
27) C115		0.00 97	0	N.D.	
28) C120		0.00 117	0	N.D.	
29) C116		0.00 75	0	N.D.	
(32)) C165			8 830741	136.38	
33) C065			52 5998	3.77	ng # 1
34) C110		4.16 43	169	N.D.	
35) C256		0.00 56	0	N.D.	
(36) 0150			5 192132	136.98	ng. 89
37) C14(0.00 63	0	N.D.	
201 0270	Dibromomethano	0 00 03	^	NT IN	

38) C278 Dibromomethane 0.00 93

N.D.

Quantitation Report STL Buffalo (Not Reviewed) 469/504

Data File : D:\DATA\122805\S9692.D

Vial: 3 Acq On : 28 Dec 2005 9:19 Operator: LH

Inst : HP5973S : MSB Sample Misc Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Dec 28 09:45:12 2005 Results File: A5I0002442_E2.RES

Quant Method: C:\MSDCHEM\1...\A5I0002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Wed Dec 28 09:45:03 2005

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\DATA\122805\S9691.D (28 Dec 2005 8:52)

Internal	Standards	R.T	. QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
39) C130	Bromodichlorometha	0.00	83	0	N.D.	
40) C161	2-Chloroethylvinyl	5.87	63	158	N.D.	· ·
41) C012	Methylcycolhexane	5.45	83	128	N.D.	
42) C145	cis-1,3-Dichloropr	5.98	75	593	N.D.	
(45) C230	Toluene	6.2		517526	129.11 ng	96
46) C170	trans-1,3-Dichloro	6.40	75	514	N.D.	
47) C284	Ethyl Methacrylate	0.00	69	0	N.D.	
48) C160	1,1,2-Trichloroeth	0.00	83	Ō	N.D.	
49) C210	4-Methyl-2-pentano	6.09	43	288	N.D.	
50) C220	Tetrachloroethene	0.00	166	. 0	N.D.	
51) C221	1,3-Dichloropropan	6.67	76	159	N.D.	
52) C155	Dibromochlorometha	0.00	129	0	N.D.	
53) C163	1,2-Dibromoethane	6.93	107	159	N.D.	
54) C215	2-Hexanone	6.73	43	281	N.D.	
(55) C235	Chlorobenzene		2 112	521701	125.37 ng	98
56) C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
57) C240	Ethylbenzene	7.41	91	1414	N.D.	
58) C246	m,p-Xylene	7.49	106	1029	N.D.	
5 9) C247	o-Xylene	7.81	106	605	N.D.	
60) C245	Styrene	7.83	104	1168	N.D.	
63) C180	Bromoform	0.00	173	0	N.D.	
64) C966	Isopropylbenzene	8.11	105	1347	N.D.	
65) C301	Bromobenzene	8.35	156	627	N.D.	
66) C225	1,1,2,2-Tetrachlor	8.33	83	138	N.D.	
6 7) C282	1,2,3-Trichloropro	0.00	110	0 4	N.D.	
68) C283	t-1,4-Dichloro-2-B	8.37	53	744	N.D.	
69) C302	n-Propylbenzene	8.44	91	2684	N.D.	
70) C303	2-Chlorotoluene	8.52	126	169	N.D.	
71) C289	4-Chlorotoluene	8.59	126	512	N.D.	
72) C304	1,3,5-Trimethylben	8.58	105	1042	и. D.	
73) C306	tert-Butylbenzene	8.85	134	269	N.D.	
74) C307	1,2,4-Trimethylben	8.88	105	1097	N.D.	
75) C308	sec-Butylbenzene	9.03	105	2583	N.D.	
76) C260	1,3-Dichlorobenzen	9.12	146	1710	N.D.	
77) C309	4-Isopropyltoluene	9.15	119	1819	N.D.	
78) C267	1,4-Dichlorobenzen	9.19	146	2385	N.D.	
79) C249	1,2-Dichlorobenzen	9.49	146	1275	N.D.	
80) C310	n-Butylbenzene	9.48	91	2901	N.D.	
81) C286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
82) C313	1,2,4-Trichloroben	10.83	180	1171	N.D.	
83) C316	Hexachlorobutadien	10.97	225	771	N.D.	
84) C314 85) C934	Naphthalene	11.02	128	4472	N.D.	
	1,2,3-Trichloroben	11.21	180	1871 	N.D.	

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

	MSB23
Lab Name: STL Buffalo Contract: 4	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A5B2015901</u>
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID: <u>S9720.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv:
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>12/28/2005</u>
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
67-64-1Acetone 71-43-2Benzene 75-27-4Bromodichloromethane 75-25-2Bromoform	130 28 28 28 26
74-83-9Bromomethane	18

471/504

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

		MSB23
Lab Name: STL Buffalo Contract: 4	<u> </u>	
Lab Code: RECNY Case No.: SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A5B2015901
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID:	<u>S9720.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	
% Moisture: not dec Heated Purge: N	Date Analyzed:	12/28/2005
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume: (uL)
	ONCENTRATION UNITS: (ug/L or ug/Kg)	UG/L Q
1634-04-4Methyl-t-Butyl Ether (MTBE) 91-20-3Naphthalene	oethane	120 27 26 30 25 26 27 23 28 28 28 28 29 26 83

Data File : D:\DATA\122805\S9720.D Acq On

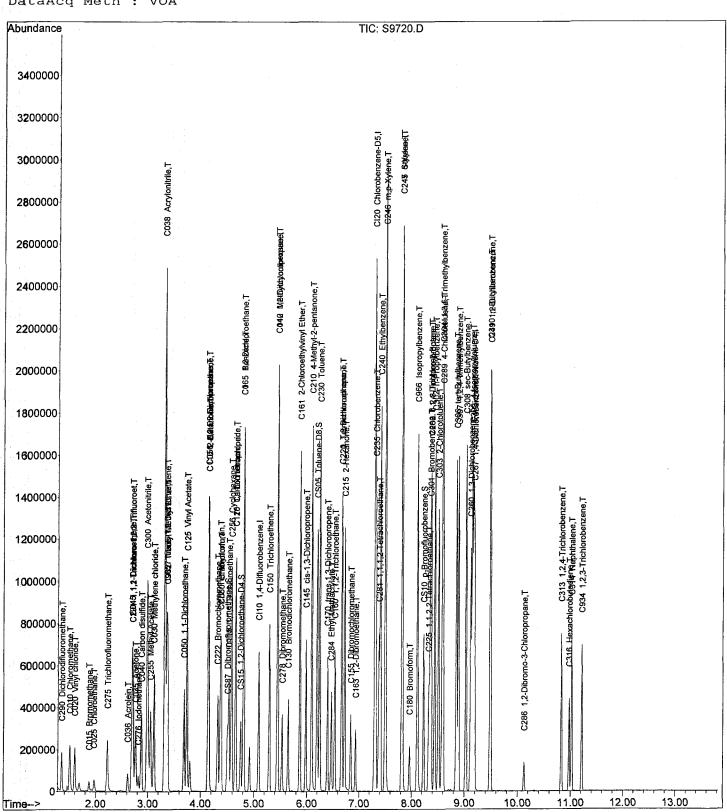
Vial: 4 : 28 Dec 2005 20:35 Operator: TLC : HP5973S : MSB (FULL) Inst Multiplr: 1.00

MS Integration Params: RTEINT.P

Results File: A5I0002442_E2.RES Quant Time: Dec 28 20:57:42 2005

Quant Method: C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER


Last Update : Wed Dec 28 20:05:16 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Sample

Misc

Multiplr: 1.00

Data File : D:\DATA\122805\S9720.D

Vial: 4 Acq On : 28 Dec 2005 20:35 Operator: TLC Inst : HP5973S : MSB (FULL)

MS Integration Params: RTEINT.P

Quant Time: Dec 28 20:57:42 2005 Results File: A5I0002442_E2.RES

Quant Method: C:\MSDCHEM\1...\A510002442 E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Wed Dec 28 20:05:16 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Sample

Misc

IS QA File : D:\DATA\122805\S9718.D (28 Dec 2005 19:47)

Internal Standards	R.T.	QIon	Response	Conc Ur			(Min) (Ar)
1) CI10 1,4-Difluorobenzene	5.09	114	410703	125.00	ng	105	0.00 5.94%
43) CI20 Chlorobenzene-D5	7.30	117	576889	125.00	ng		0.00 3.41%
62) CI30 1,4-Dichlorobenzene-	9.17	152	298932	125.00	ng		0.00 1.20%
System Monitoring Compounds	4 50	4 1 1	145440	125.47	na		0.00
30) CS87 Dibromofluoromethane Spiked Amount 125.000 Ra		111 - 130			100.	38%	0.00
31) CS15 1,2-Dichloroethane-D	-			119.60			0.00
		- 136				68%	
44) CS05 Toluene-D8	6.20			116.02	ng		0.00
Spiked Amount 125.000 Ra		- 122		_		82%	
61) CS10 p-Bromofluorobenzene				110.39	_		0.00
Spiked Amount 125.000 Ra	nge 74	- 120	Recov	ery =	88.	31%	
Target Compounds						Qva	alue
2) C290 Dichlorodifluorometh	1.35	8.5	155854	124.93	ng	. ~	99
3) C010 Chloromethane	1.50	50	220028	120.69			97
4) C020 Vinyl chloride	1.60	62	179767	130.62	ng		100
5) C015 Bromomethane	1.87	94	20062	88.83	_		95
6) C025 Chloroethane	1.96		44136	142.69			98
7) C275 Trichlorofluorometha			207542	139.77	_		99
8) C045 1,1-Dichloroethene	2.69		188128	147.13	-		90
9) C030 Methylene chloride	3.12		211668	124.77	_		90 98
10) C040 Carbon disulfide	2.87	76 56	447781 67222	110.02 422.80			98
11) C036 Acrolein 12) C038 Acrylonitrile	2.61 3.31	56 53	1604895		_		98
12) C038 Acrylonitrile 13) C035 Acetone	2.76	43	279670	634.47			90
14) C300 Acetonitrile	2.78	41	1205924	5016.23			100
15) C276 Iodomethane	2.81		80753	103.59		#	86
16) C291 1,1,2 Trichloro-1,2,		101	165910	132.91			91
17) C962 T-butyl Methyl Ether		73	453507	135.28	ng	#	88
18) C057 trans-1,2-Dichloroet	3.35	96	207919	143.58			99
19) C255 Methyl Acetate	3.04		364654	192.95	_		92
20) C050 1,1-Dichloroethane			367599				99 96
21) C125 Vinyl Acetate	3.74 4.14	43 77	1061169 222303	371.89 143.31			92
22) C051 2,2-Dichloropropane 23) C056 cis-1,2-Dichloroethe			217149	140.48			100
24) C272 Tetrahydrofuran	4.36	42	294961	619.39		#	1
25) C222 Bromochloromethane	4.32	128	92646	139.52		.,	91
26) C060 Chloroform	4.38	83	316210	138.32	-		95
27) C115 1,1,1-Trichloroethan		97	254177	142.44	ng		97
28) C120 Carbon tetrachloride		117	203123	145.92			91
29) C116 1,1-Dichloropropene	4.65	75	261043	141.01	_		97
32) C165 Benzene	4.80	78	888466	140.76			100
33) C065 1,2-Dichloroethane	4.81	62	222388	134.99			87
34) C110 2-Butanone	4.15	43	461740	643.24 136.92		#	93 82
35) C256 Cyclohexane	4.58 5.29	56 95	409253 208554	143.49		π'	96
36) C150 Trichloroethene 37) C140 1,2-Dichloropropane	5.44	63	218458	140.76			94
38) C278 Dibromomethane	5.53	93	105347	139.51	_	#	76

STL Buffalo (Not Reviewed) Quantitation Report 474/504

Vial: 4

Data File : D:\DATA\122805\S9720.D Acq On : 28 Dec 2005 20:35 Sample

Operator: TLC Inst : HP5973S : MSB (FULL) Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 28 20:57:42 2005 Results File: A5I0002442_E2.RES

Quant Method: C:\MSDCHEM\1...\A510002442 E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Wed Dec 28 20:05:16 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Misc

IS QA File : D:\DATA\122805\S9718.D (28 Dec 2005 19:47)

39) C130 Bromodichloromethane 5.65 83 214955 141.14 ng 40) C161 2-Chloroethylvinyl E 5.87 63 489646 568.71 ng 41) C012 Methylcycolhexane 5.44 83 370429 134.22 ng 42) C145 cis-1,3-Dichloroprop 5.98 75 297743 143.72 ng 45) C230 Toluene 6.24 92 568168 134.00 ng 46) C170 trans-1,3-Dichloropr 6.39 75 248669 137.70 ng 47) C284 Ethyl Methacrylate 6.46 69 187607 102.64 ng # 48) C160 1,1,2-Trichloroethan 6.53 83 147468 137.80 ng 49) C210 4-Methyl-2-pentanone 6.09 43 933402 609.56 ng 50) C220 Tetrachloroethene 6.67 166 172833 129.04 ng 51) C221 1,3-Dichloropropane 6.66 76 296941 132.15 ng	95 97 95 84 95 99 97 88 95 97
41) C012 Methylcycolhexane 5.44 83 370429 134.22 ng 42) C145 cis-1,3-Dichloroprop 5.98 75 297743 143.72 ng 45) C230 Toluene 6.24 92 568168 134.00 ng 46) C170 trans-1,3-Dichloropr 6.39 75 248669 137.70 ng 47) C284 Ethyl Methacrylate 6.46 69 187607 102.64 ng # 48) C160 1,1,2-Trichloroethan 6.53 83 147468 137.80 ng 49) C210 4-Methyl-2-pentanone 6.09 43 933402 609.56 ng 50) C220 Tetrachloroethene 6.67 166 172833 129.04 ng	95 84 95 99 99 97 88 95 97
42) C145 cis-1,3-Dichloroprop 5.98 75 297743 143.72 ng 45) C230 Toluene 6.24 92 568168 134.00 ng 46) C170 trans-1,3-Dichloropr 6.39 75 248669 137.70 ng 47) C284 Ethyl Methacrylate 6.46 69 187607 102.64 ng # 48) C160 1,1,2-Trichloroethan 6.53 83 147468 137.80 ng 49) C210 4-Methyl-2-pentanone 6.09 43 933402 609.56 ng 50) C220 Tetrachloroethene 6.67 166 172833 129.04 ng	84 95 92 69 97 88 86 95
45) C230 Toluene 6.24 92 568168 134.00 ng 46) C170 trans-1,3-Dichloropr 6.39 75 248669 137.70 ng 47) C284 Ethyl Methacrylate 6.46 69 187607 102.64 ng # 48) C160 1,1,2-Trichloroethan 6.53 83 147468 137.80 ng 49) C210 4-Methyl-2-pentanone 6.09 43 933402 609.56 ng 50) C220 Tetrachloroethene 6.67 166 172833 129.04 ng	95 92 69 97 88 86 95
46) C170 trans-1,3-Dichloropr 6.39 75 248669 137.70 ng 47) C284 Ethyl Methacrylate 6.46 69 187607 102.64 ng # 48) C160 1,1,2-Trichloroethan 6.53 83 147468 137.80 ng 49) C210 4-Methyl-2-pentanone 6.09 43 933402 609.56 ng 50) C220 Tetrachloroethene 6.67 166 172833 129.04 ng	92 69 97 88 85 97
47) C284 Ethyl Methacrylate 6.46 69 187607 102.64 ng # 48) C160 1,1,2-Trichloroethan 6.53 83 147468 137.80 ng 49) C210 4-Methyl-2-pentanone 6.09 43 933402 609.56 ng 50) C220 Tetrachloroethene 6.67 166 172833 129.04 ng	69 99 97 88 86 95
48) C160 1,1,2-Trichloroethan 6.53 83 147468 137.80 ng 49) C210 4-Methyl-2-pentanone 6.09 43 933402 609.56 ng 50) C220 Tetrachloroethene 6.67 166 172833 129.04 ng	99 97 88 86 95 97
49) C2104-Methyl-2-pentanone6.0943933402609.56 ng50) C220Tetrachloroethene6.67166172833129.04 ng	97 88 86 95 97
50) C220 Tetrachloroethene 6.67 166 172833 129.04 ng	88 86 95 97
	86 95 97
511 C221 1 2-Dichloropropage 6 66 76 2969/1 132 15 pc	95 97
	97
52) C155 Dibromochloromethane 6.84 129 151318 139.86 ng	
53) C163 1,2-Dibromoethane 6.93 107 164760 131.62 ng	97
54) C215 2-Hexanone 6.72 43 655320 620.07 ng	
55) C235 Chlorobenzene 7.32 112 584158 132.70 ng	99
56) C281 1,1,1,2-Tetrachloroe 7.38 131 168537 137.77 ng	97
57) C240 Ethylbenzene 7.41 91 1061246 136.52 ng	100
58) C246 m,p-Xylene 7.50 106 814442 278.17 ng	99
59) C247 o-Xylene 7.81 106 384798 137.69 ng #	88
60) C245 Styrene 7.82 104 646708 148.04 ng	96
63) C180 Bromoform 7.96 173 74583 128.47 ng	99
64) C966 Isopropylbenzene 8.11 105 926473 117.77 ng	97
65) C301 Bromobenzene 8.35 156 201713 125.56 ng #	84
66) C225 1,1,2,2-Tetrachloroe 8.33 83 223014 126.99 ng	95
67) C282 1,2,3-Trichloropropa 8.37 110 60494 127.20 ng	100
68) C283 t-1,4-Dichloro-2-But 8.37 53 198916 360.25 ng #	68
69) C302 n-Propylbenzene 8.44 91 1193007 124.71 ng	99
70) C303 2-Chlorotoluene 8.51 126 229603 125.04 ng	100
71) C289 4-Chlorotoluene 8.60 126 230996 126.45 ng	100
72) C304 1,3,5-Trimethylbenze 8.58 105 774222 129.25 ng	99
73) C306 tert-Butylbenzene 8.85 134 168290 131.31 ng	100
74) C307 1,2,4-Trimethylbenze 8.88 105 761951 129.28 ng	96
75) C308 sec-Butylbenzene 9.02 105 1033863 134.59 ng	95
76) C260 1,3-Dichlorobenzene 9.12 146 398130 124.63 ng	98
77) C309 4-Isopropyltoluene 9.15 119 766881 125.35 ng	98
78) C267 1,4-Dichlorobenzene 9.19 146 398452 123.66 ng	96
79) C249 1,2-Dichlorobenzene 9.49 146 372207 126.64 ng	97
80) C310 n-Butylbenzene 9.48 91 715639 126.79 ng	97 79
81) C286 1,2-Dibromo-3-Chloro 10.12 75 27602 126.05 ng #	
82) C313 1,2,4-Trichlorobenze 10.83 180 169973 115.25 ng	95 97
83) C316 Hexachlorobutadiene 10.97 225 52514 82.86 ng	100
84) C314 Naphthalene 11.02 128 513301 127.75 ng	97
85) C934 1,2,3-Trichlorobenze 11.21 180 150434 112.10 ng	<i>J</i> /

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

U

U

IJ

1.0

1.0

1.0

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ___

Matrix: (soil/water) WATER Lab Sample ID: A5E58701MS

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{S9668.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/20/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/L</u> Q 67-64-1-----Acetone 5.0 U 71-43-2-----Benzene 29 75-27-4----Bromodichloromethane U 1.0 75-25-2----Bromoform 1.0 U 74-83-9----Bromomethane 1.0 U 75-15-0-----Carbon Disulfide____ U 5.0 1.0 U 56-23-5-----Carbon Tetrachloride 1.0 U 108-90-7----Chlorobenzene 27 75-00-3-----Chloroethane 1.0 U 67-66-3-----Chloroform 1.0 U 74-87-3-----Chloromethane 1.0 U 1.0 U U 1.0 124-48-1----Dibromochloromethane 1.0 U 96-12-8----1,2-Dibromo-3-chloropropane U 1.0 95-50-1----1,2-Dichlorobenzene 1.0 U 541-73-1----1,3-Dichlorobenzene U 1.0 106-46-7----1,4-Dichlorobenzene 1.0 U 75-71-8-----Dichlorodifluoromethane U 1.0 75-34-3-----1,1-Dichloroethane 1.6 107-06-2----1,2-Dichloroethane U 1.0 75-35-4-----1,1-Dichloroethene 31 156-59-2----cis-1,2-Dichloroethene 3.2 156-60-5----trans-1,2-Dichloroethene 0.73 J 78-87-5----1,2-Dichloropropane 1.0 U 10061-01-5---cis-1,3-Dichloropropene U 1.0 10061-02-6---trans-1,3-Dichloropropene U 1.0 100-41-4----Ethylbenzene _____ U 1.0 591-78-6----2-Hexanone 5.0 U 98-82-8----Isopropylbenzene U 1.0

79-20-9-----Methyl acetate

108-87-2----Methylcyclohexane

75-09-2-----Methylene chloride

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

			MW-2
Lab Name: <u>STL Buffalo</u> Co	ontract: 4		
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.:	
Matrix: (soil/water) WATER		Lab Sample ID:	A5E58701MS
Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{MI}	٠	Lab File ID:	S9668.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	12/20/2005 12/23/2005
% Moisture: not dec Heated F	Purge: <u>N</u>	Date Analyzed:	12/27/2005
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)		Dilution Factor:	1.00
Soil Extract Volume: (uL)		Soil Aliquot Volu	me: (uL)

CAS NO. COMPOUND CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L Q

108-10-1----4-Methyl-2-pentanone 5.0 U

108-10-14-Methyl-2-pentanone	5.0	U
1634-04-4Methyl-t-Butyl Ether (MTBE)	2.8	
91-20-3Naphthalene	1.0	U
100-42-5Styrene	1.0	U
79-34-51,1,2,2-Tetrachloroethane	1.0	U
127-18-4Tetrachloroethene	1.0	ប
108-88-3Toluene	28	
120-82-11,2,4-Trichlorobenzene	1.0	ַ
71-55-61,1,1-Trichloroethane	1.0	U
79-00-51,1,2-Trichloroethane	1.0	U
76-13-11,1,2-Trichloro-1,2,2-trifluoroethane	1.0	ט
75-69-4Trichlorofluoromethane	1.0	ש
79-01-6Trichloroethene	30	
75-01-4Vinyl chloride	1.0	ש
1330-20-7Total Xylenes	3.0	U

Quantitation Report STL Buffalo (Not Reviewed) 477/504

Data File : D:\DATA\122705\S9668.D

: 27 Dec 2005 16:47 Vid1: 16

Sample : A5E58701MS

Misc :

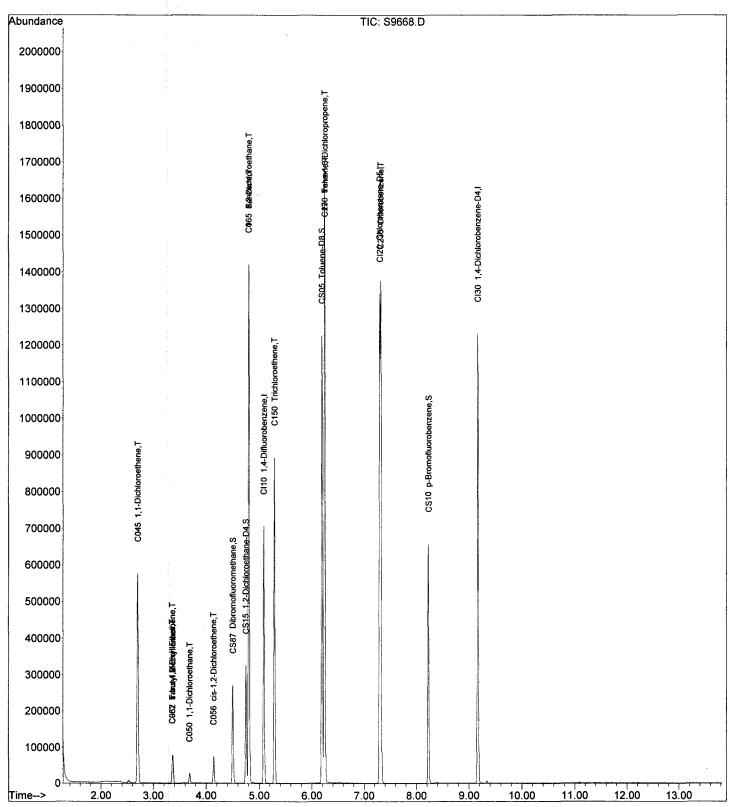
Acq On

Inst : HP5973S Multiplr: 1.00

Vial: 18

MS Integration Params: RTEINT.P

Quant Time: Dec 27 17:01:14 2005 Results File: A5I0002442_E2.RES


Quant Method : C:\MSDCHEM\1...\A5I0002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Tue Dec 27 11:08:38 2005

Response via : Initial Calibration

DataAcq Meth : VOA

Vial: 18

Data File : D:\DATA\122705\S9668.D Acq On : 27 Dec 2005 16:47 Sample : A5E58701MS Operator: LH Inst : HP5973S Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Quant Time: Dec 27 17:01:14 2005 Results File: A5I0002442 E2.RES

Quant Method : C:\MSDCHEM\1...\A5I0002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Tue Dec 27 11:08:38 2005

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\DATA\122705\S9652.D (27 Dec 2005 10:13)

Internal	Standards	R.T.	QIon	Response	Conc Ur	nits	Dev()	
1) CI10	1,4-Difluorobenzene	5.09	114	424442	125.00	ng		0.00 .24%
43) CI20	Chlorobenzene-D5	7.30	117	573247	125.00	ng		.24° 0.00 .46%
62) CI30	1,4-Dichlorobenzene-	9.16	152	267484	125.00	ng		0.00 .92%
	nitoring Compounds							
	Dibromofluoromethane mount 125.000 Rar						.29%	0.00
	mount 125.000 Rar 1,2-Dichloroethane-D				ry = 113.49			0.00
	mount 125.000 Ran					_	.79%	0.00
44) CS05								0.00
Spiked A		nge 77	- 122				.33%	
	p-Bromofluorobenzene		174		98.36	ng		0.00
Spiked A	mount 125.000 Ran	nge 74	- 120	Recove	ry =	78	.69%	
m	•						0	7
Target Co 2) C290	<u>-</u>	0.00	85	0	N.D.		Qva	ıue
3) C010	17.7	0.00	50	0	N.D.			
4) C020		1.59	62	701	N.D.			
5) C015	_	0.00	94	0	N.D.			
6) C025	Chloroethane	0.00	64	Ō	N.D.			
7) C275	Trichlorofluoromet		101	0	N.D.			
8) C045	1,1-Dichloroethene	2.70	96	208039	157.43	ng		93
9) C030	Methylene chloride	0.00	8 4	0	N.D.			
10) C040		2.88	76	1043	N.D.			
11) C036	Acrolein	0.00	56	0	N.D.			
12) C038	-	3.36	53	682	N.D.			
13) C035 14) C300		2.75	43 41	656 0	N.D. N.D.			
15) C276			142	0	N.D.			
16) C291	1,1,2 Trichloro-1,		101	193	N.D.			
(17) C962	T-butyl Methyl Ether	3.37		48047	13.87	ng	#	88
(18) C057	trans-1,2-Dichloroet			5455	3.64			91
191 C255	Methyl Acetate	0.00	43	0	N.D.			
20) 050	1,1-Dichloroethane			22247	8.10	ng		91
21) C125	Vinyl Acetate 2,2-Dichloropropan	0.00	43	0	N.D.			
22) C051 (23) C056			77	0 25395	N.D.			90
23) C272	cis-1,2-Dichloroethe Tetrahydrofuran	0.00	96 42	25395	15.90 N.D.	ng		90
25) C222	Bromochloromethane		128	0	N.D.			
26) C060	Chloroform	0.00	83	Ö	N.D.			
27) C115	1,1,1-Trichloroeth	4.53	97	2083	N.D.			
28) C120	Carbon tetrachlori		117	0	N.D.			
29) C116	1,1-Dichloropropen	0.00	75	0	N.D.			
(232) C165	Benzene	4.80	78	946179	145.06	_		100
33) C065	1,2-Dichloroethane	4.80		6521	3.83	ng_	#	1
34) C110	2-Butanone	0.00	43 56	0 0	N.D. N.D.			
35) C256 367 C150	Cyclohexane Trichloroethene	0.00 5.29	95	228966	152.44	na		97
37) C140	1,2-Dichloropropan	0.00	63	0	N.D.	*** 9		٠.
38) C278	Dibromomethane	0.00	93	Ö	N.D.			

Quantitation Report STL Buffalo (Not Reviewed) 479/504

Data File : D:\DATA\122705\S9668.D Acq On : 27 Dec 2005 16:47 Sample : A5E58701MS

D:\DATA\122705\S9668.D Vial: 18 27 Dec 2005 16:47 Operator: LH

Sample : A5E58701MS
Misc :

Operator: LH
Inst : HP5973S
Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 27 17:01:14 2005 Results File: A5I0002442 E2.RES

Quant Method: C:\MSDCHEM\1...\A510002442 E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Tue Dec 27 11:08:38 2005

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\DATA\122705\S9652.D (27 Dec 2005 10:13)

Internal	Standards	R.T	. QIon	Response	Conc Units	Dev(N Rcv(A	
 39) C130	Bromodichlorometha	0.00	 83	0	N.D.		
40) C161	2-Chloroethylvinyl	0.00	63	0	N.D.		
41) C012	Methylcycolhexane	0.00	83	Ö	N.D.		
42) C145	cis-1,3-Dichloropr	0.00	75	Ő	N.D.		
< 45) c230	Toluene	6.2		581909	138.11 ng		96
46) C170	trans-1,3-Dichloropr	6.2		- 5536	3.09 ng	#	51
47) C284	Ethyl Methacrylate	0.00	69	0	N.D.		
48) C160	1,1,2-Trichloroeth	0.00	83	0	N.D.		
49) C210	4-Methyl-2-pentano	6.19	43	2982	N.D.		
50) C220	Tetrachloroethene	0.00	166	0	N.D.		
51) C221	1,3-Dichloropropan	0.00	76	0	N.D.		
52) C155	Dibromochlorometha	0.00	129	0	N.D.		
53) C163	1,2-Dibromoethane	0.00	107	0	N.D.		
54) C215	2-Hexanone	0.00	43	0	N.D.		
(55) C235	Chlorobenzene	7.3	2 112	591076	135.13 ng		98
56) C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.		
57) C240	Ethylbenzene	7.30	91	1140	N.D.		
58) C246	m,p-Xylene	0.00	106	0	N.D.		
59) C247	o-Xylene	0.00	106	0	N.D.		
60) C245	Styrene	0.00	104	0	N.D.		
63) C180	Bromoform	0.00	173	0	N.D.		
64) C966	Isopropylbenzene	0.00	105	0	N.D.		
65) C301	Bromobenzene	0.00	156	0	N.D.		
66) C225	1,1,2,2-Tetrachlor	0.00	83	0	N.D.		
67) C282	1,2,3-Trichloropro	0.00	110	0	N.D.		
68) C283	t-1,4-Dichloro-2-B	0.00	53	0	N.D.		
69) C302	n-Propylbenzene	0.00	91	0	N.D.		
70) C303	2-Chlorotoluene	0.00	126	0	N.D.		
71) C289	4-Chlorotoluene	0.00	126	0	N.D.		
72) C304 73) C306	1,3,5-Trimethylben	0.00	105 134	0 0	N.D. N.D.		
74) C307	tert-Butylbenzene 1,2,4-Trimethylben	0.00		0	N.D.		
75) C308	sec-Butylbenzene	0.00	105 105	0	N.D.		
76) C260	1,3-Dichlorobenzen	0.00	146	0	N.D.		
77) C309	4-Isopropyltoluene	0.00	119	0	N.D.		
78) C267	1,4-Dichlorobenzen	0.00	146	0	N.D.		
79) C249	1,2-Dichlorobenzen	0.00	146	Ö	N.D.		
80) C310	n-Butylbenzene	0.00	91	Ö	N.D.		
81) C286	1,2-Dibromo-3-Chlo	0.00	75	Ö	N.D.		
82) C313	1,2,4-Trichloroben	0.00	180	Ö	N.D.		
83) C316	Hexachlorobutadien	0.00	225	Ö	N.D.		
84) C314	Naphthalene	0.00	128	0	N.D.		
85) C934	1,2,3-Trichloroben	0.00	180	0	N.D.		

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-2		
------	--	--

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58701SD

Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{ML} Lab File ID: $\underline{S9669.RR}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/20/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: DB-624 ID: 0.18 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/K	JG/L_	Q
67-64-1	-Acetone		5.0	U
71-43-2	-Benzene		30	
75-27-4	-Bromodichloromethane		1.0	U
75-25-2			1.0	ע
74-83-9	-Bromomethane		1.0	U
78-93-3	,		5.0	U
	-Carbon Disulfide		1.0	U
	-Carbon Tetrachloride		1.0	ע
	-Chlorobenzene		27	
	-Chloroethane		1.0	U
67-66-3	-Chloroform		1.0	ע
	-Chloromethane		1.0	U
110-82-7	-Cyclohexane		1.0	ט
	-1,2-Dibromoethane		1.0	ע
124-48-1	-Dibromochloromethane		1.0	U
	-1,2-Dibromo-3-chloropropane		1.0	U
95-50-1	-1,2-Dichlorobenzene		1.0	U
541-73-1	-1,3-Dichlorobenzene		1.0	ן די
	-1,4-Dichlorobenzene		1.0	U
75-71-8	-Dichlorodifluoromethane		1.0	U
	-1,1-Dichloroethane		1.7	1
107-06-2	-1,2-Dichloroethane		1.0	U
	-1,1-Dichloroethene		32	<u> </u> .
156-59-2	-cis-1,2-Dichloroethene		3.4	
156-60-5	-trans-1,2-Dichloroethene		0.84	J
	-1,2-Dichloropropane		1.0	U
	-cis-1,3-Dichloropropene		1.0	U
10061-02-6	-trans-1,3-Dichloropropene		1.0	U
	-Ethylbenzene		1.0	U
591-78-6			5.0	ע
	-Isopropylbenzene		1.0	U
79-20-9	-Methyl acetate		1.0	U
	-Methylcyclohexane		1.0	U
75-09-2	-Methylene chloride		1.0	ប

481/504

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

	 _
	- 1
IMW-2	- 1

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: A5E58701SD

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{S9669.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/20/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: DB-624 ID: 0.18 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
108-10-1	4-Methyl-2-pentanone		5.0	ט
	Methyl-t-Butyl Ether (MTBE)		2.9	
91-20-3	Naphthalene		1.0	U
100-42-5	Styrene		1.0	ש
	1,1,2,2-Tetrachloroethane		1.0	U
127-18-4	Tetrachloroethene		1.0	บ
108-88-3	Toluene		28	
120-82-1	1,2,4-Trichlorobenzene		1.0	U
71-55-6	1,1,1-Trichloroethane		1.0	ע
79-00-5	1,1,2-Trichloroethane		1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-triflu	oroethane	1.0	U
	Trichlorofluoromethane		1.0	U
79-01-6	Trichloroethene		31	
	Vinyl chloride		1.0	U
1330-20-7	Total Xylenes		3.0	U
1		=		

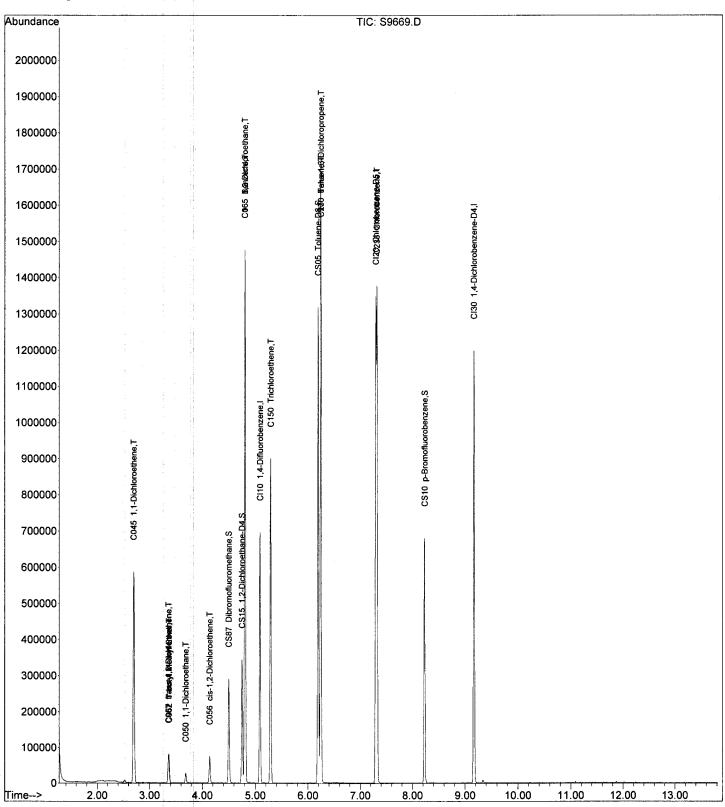
(Not Reviewed) **482/504** Quantitation Report STL Buffalo

Data File : D:\DATA\122705\S9669.D Acq On : 27 Dec 2005 17:11 Vial: 19 Operator: LH

: HP5973S Sample : A5E58701SD Inst Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 27 17:30:48 2005 Results File: A5I0002442_E2.RES


Quant Method: C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

Title : 8260 WATER 5ML

Last Update : Tue Dec 27 11:08:38 2005

Response via : Initial Calibration

DataAcq Meth: VOA

Quantitation Report STL Buffalo (Not Reviewed) 483/504

Vial: 19

Data File : D:\DATA\122705\S9669.D

Acq On : 27 Dec 2005 17:11 Sample : A5E58701SD Operator: LH Inst : HP5973S

Misc

Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 27 17:30:48 2005 Results File: A5I0002442 E2.RES

Quant Method : C:\MSDCHEM\1...\A510002442_E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Tue Dec 27 11:08:38 2005

Response via : Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\DATA\122705\S9652.D (27 Dec 2005 10:13)

					•			
Internal	Standards	R.T.	QIon	Response	Conc Ur	nits		(Min) (Ar)
1) CI10	1,4-Difluorobenzene	5.09	114	422149	125.00	ng		0.00 5.72%
43) CI20	Chlorobenzene-D5	7.30	117	573304	125.00	ng		0.00
62) CI30	1,4-Dichlorobenzene-	9.16	152	265132	125.00	ng		0.00
Custom Ma							0.5	,.150
	nitoring Compounds Dibromofluoromethane	4 50	111	1 47 607	122 00	~~		0.00
							.12%	0.00
	mount 125.000 Ra						.128	0 00
31) CS15	1,2-Dichloroethane-D		65 136		120.81			0.00
Spiked A	mount 125.000 Ra	nge /3	- 136	Recove	ry =	96	. 65%	0 00
44) CS05	Toluene-D8 mount 125.000 Ra	6.19	98	668695	11/./5			0.00
Spiked A	mount 125.000 Ra	nge 77	- 122	Recove	ry =		.20%	0 00
	p-Bromofluorobenzene							0.00
Spiked A	mount 125.000 Ra	nge 74	- 120	Recove	ry =	83	. 73%	
Target Co	mpounds						Qve	lue
2) C290	Dichlorodifluorome	0.00	85	0	N.D.			
3) C010	Chloromethane	0.00	50	0	N.D.			
4) C020	Vinyl chloride	1.60	62	737	N.D.			
5) C015	Bromomethane	0.00	94	0	N.D.			
6) C025	Chloroethane Trichlorofluoromet	0.00	64	0	N.D.			
7) C275	Trichlorofluoromet	0.00	101	0	N.D.			
8) C045	1,1-Dichloroethene	2.70	96	209851	159.67	ng		93
9) C030	Methylene chloride	0.00	8 4	0	N.D.			
10) C040	Carbon disulfide	2.88	76	1156	N.D.			
11) C036	Acrolein	0.00	56	0	N.D.			
12) C038	Acrylonitrile	3.36	53	454	N.D.			
13) C035	Acetone		43	922	N.D.			
14) C300	Acetonitrile	0.00	41	0	N.D.			
15) C276	Acetonitrile Iodomethane	0.00	142	Ō	N.D.			
16) C291	1,1,2 Trichloro-1,	0.00	101	0	N.D.			
17DC962	T-butyl Methyl Ether				14.61	na	#	86
(18) C057	trans-1,2-Dichloroet	3.35	96	6221	4.18			83
19) C255		0.00	43	0	N.D.		•	
20) e050	1,1-Dichloroethane				8.34	na		97
21) C125	Vinvl Acetate	0.00	43	0	N.D.	5		
22) C051	Vinyl Acetate 2,2-Dichloropropan	0.00	77	Ö	N.D.			
23) C056	cis-1,2-Dichloroethe	4.14	96	26729	16.82	na		90
24) C272	Tetrahydrofuran	0.00	42	0	N.D.	5		
25) C222	Bromochloromethane		128	Ö	N.D.			
26) C060	Chloroform	0.00	83	Ö	N.D.			
27) C115	1,1,1-Trichloroeth	4.52	97	2363	N.D.			
28) C120	Carbon tetrachlori		117	0	N.D.			
29) C116	1,1-Dichloropropen	0.00	75	Ö	N.D.			
(32) c 165	Benzene	4.80	78	971782	149.79	nα		100
33) C065	1,2-Dichloroethane	4.80		6218	3.67		#	1
34) C110	2-Butanone	0.00	43	0	N.D.		. "	-
35) C256	Cyclohexane	0.00	56	Ö	N.D.			
36) c150	Trichloroethene	5.29	95	233587	156.36	na		98
377 C140	1,2-Dichloropropan	0.00	63	0	N.D.	9		<i>y</i> 0
38) C278	Dibromomethane	0.00	93	0	N.D.			
30, 02,10	DIDIOMO CHAILE	0.00	<i>)</i>	0				

Quantitation Report STL Buffalo (Not Reviewed) 484/504

Vial: 19 Operator: LH

Inst : HP5973S Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 27 17:30:48 2005 Results File: A5I0002442 E2.RES

Quant Method: C:\MSDCHEM\1...\A510002442 E2.M (RTE Integrator)

Title : 8260 5ML WATER

Last Update : Tue Dec 27 11:08:38 2005

Response via: Initial Calibration

DataAcq Meth : VOA

IS QA File : D:\DATA\122705\S9652.D (27 Dec 2005 10:13)

Int	ernal	Standards		R.T.	QIon	Response	Conc	Units		(Min) (Ar)
	C130	Bromodichlorometha	0.	00	83	0	N.D.	- -		
	C161	2-Chloroethylvinyl	Ο.	00	63	0	N.D.	•		
	C012	Methylcycolhexane	Ο.	00	83	0	N.D.	•		
	C145	cis-1,3-Dichloropr	Ο.	00	75	0	N.D.			
_	C230	Toluene		6.24		598631	142.0			96
	C170	trans-1,3-Dichloropr		6.24		5148		37 ng	#	51
47)		Ethyl Methacrylate		00	69	0	N.D.			
48)		1,1,2-Trichloroeth		00	83	0	N.D.			
	C210	4-Methyl-2-pentano		19	43	2682	N.D.			
50)		Tetrachloroethene		00	166	0	N.D.			
51)		1,3-Dichloropropan		00	76	0	N.D.			
52)		Dibromochlorometha			129	0	N.D.			
53)		1,2-Dibromoethane			107	0	N.D.			
	C215	2-Hexanone		00	43	0	N.D.			
)e 235	Chlorobenzene		7.32		600352		23 ng		98
	C281	1,1,1,2-Tetrachlor			131	0	N.D.			
57)		Ethylbenzene		49	91	142	N.D.			
58)		m,p-Xylene		00	106	0	N.D.			
59)		o-Xylene			106	0	N.D.			
- 60)		Styrene			104	0	N.D.			
63)		Bromoform			173	0	N.D.			
•	C966	Isopropylbenzene			105	0	N.D.			
65)		Bromobenzene			156	0	N.D.			
	C225	1,1,2,2-Tetrachlor		00	83	0	N.D.			
67)		1,2,3-Trichloropro			110	0	N.D.			
68)		t-1,4-Dichloro-2-B		00	53	0	N.D.			
69)		n-Propylbenzene		00	91	0	N.D.			
70)		2-Chlorotoluene		00	126	0	N.D.			
•	C289	4-Chlorotoluene			126	0	N.D.			
72)		1,3,5-Trimethylben			105	0	N.D.			
73)		tert-Butylbenzene			134	0	N.D.			
74)		1,2,4-Trimethylben			105	0	N.D.			
75)		sec-Butylbenzene		00	105	0	N.D.			
76)		1,3-Dichlorobenzen			146	0	N.D.			
77)		4-Isopropyltoluene		15	119	150	N.D.			
78)		1,4-Dichlorobenzen		00	146	0	N.D.			
79)		1,2-Dichlorobenzen			146	0	N.D.			
80)		n-Butylbenzene		00	91	0	N.D.			
81)		1,2-Dibromo-3-Chlo		00	75	0	N.D.			
82)		1,2,4-Trichloroben		00	180	0	N.D.			
83)		Hexachlorobutadien		00	225	0	N.D.			
84)		Naphthalene			128	0	N.D.			
85)	C934	1,2,3-Trichloroben	0.	00	180	0	N.D.			

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

	I.S. / SS MIX	155/0 ((//	I.S. Much							r Prisis	P SAL		7 (1)		Year		i de se	g symile	(a) (a)	Acianini.			-2	15 C MONTON			120,000			>
	STANDARD MIX #																					WS 1967-2 WS19 BU-6	-1	h-213-4	WSBBNS WSIZBV-4 WSISFC-7					1
	D.F.	(7	7	30	30	00/	7		1	30	1								30	7		1	F						>
/R	EXT. WHT.	(-																						<u></u>						⇒
TION LOG	INJ. VOL.) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-																				7	Soul						
TILE INJEC	# 90F	1	17/52			-1	Eall	17/2	E349	4	£350	4	E342						-4	9hE3	-	E167	4)-						ş
GCMS VOLATILE INJECTION LOG	SAMPLEID	VBLK39	E192-09 DL	70 01	الا ها		E316 01DL		E349 01		E350 01	69	F342 01	40	6-3	ho	0.5	90		E346 01	60	E167 05 MS	05 SD	57	100 UZSA	0	025	32	1200	VS 18 62 5
	FILE #	G 7380	G 7381	c 7383	G-7383	h 36(-5)	67385	9861-9	67387	88625	G7389	67390	67391	67342	67393	49865	67398	61396	67397	673%	G1399	97,190	lancs,	6 7402°	67403	4046	S-7485	6779	04/50	80W 8
	ANALYST	LH/118				-																	7	LH/YOU						
	TIME		1331	1853	1316	1339	140	May	147	1509	1530	1555	61.9	1640	1303	2	0)	(8)	5.25	90	5	160	200	09.53	1			1.6%	05 11	210
	DATE	12/19/05													·				1		1		7	13/30/06	1			1	1	

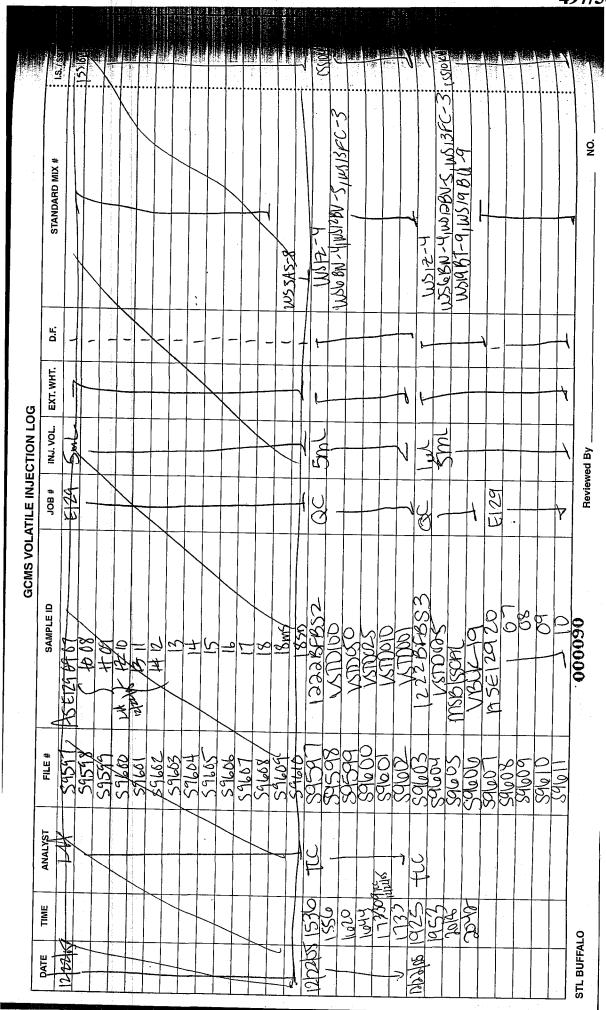
COMMENTS	The state of the s			apt NEWO	Leshort SF 40					Sux 0=									SAMS				MFS		0960 C. L. F. F.	3460 つめししかか		(HSI 2430)	NO. Page 2
pH<2	1	/	\	/	>	1	\	, \ <u>`</u>	,	>		>	>	>		>	م	>	7 734	>	>	7	¥	1				1	 000033
REANALYSIS?				٦-	7-																							1	0
S.S. #4 % REC.	00/	101	66	28	00/	66	80	88	99	28	101	00	84	86	23	62	00/	28	101	8	101	001							
<u></u>	83	89	6.8	&	90								88								8	89							
S.S. #2 % REC.	88	68	16	89	89	20	88	88														88							
S.S. #1 % REC.	80	98	90	20	90	16	88	90	68	83	18	88	89	88	88	89	0	8	68	88	92	92							
I.S. #3 % REC.	74 100	744 103	48.99	10178	99100	St 66	13 to 3	100 pg	-66 0a/	140 99	15 66	85 66	3 4F	65 001	00/	66	82	65	36	86	100	101			1				
I.S. #2 % REC.	F8 102	400 lo3	10186	20175	\$ 101	47	45			1 Streo!	6 35 001		4	11 86 801		101	80	26	6	66	100	101							
I.S. #1 % REC.	707103	100 ×01	101,007	to tot	103 tot		124	102 tot	_			80	49	tet	101	001	86	100	88	001	101	101							
# OTUA			di constanti di co											``										1			+	-	 Date

1.S. / SS MIX # 155/0/2564 HOXXIAISSI Š. LUSTRA - LUSTRA - LUSTRA - LUSTRS - LUS STANDARD MIX # 0000048 \$ D.F. EXT. WHT. GCMS VOLATILE INJECTION LOG INJ. VOL. 150 5mh Reviewed By 198h 3 £503 E465 E5834 E534 E504 1697 E593 E619 4507 10B# ASES9401 DL ASES9401 DL ASES04071 900 AS EUSLOSE SAMPLE ID প্রত 7 70507 © 4 F507 76101F 01960 57607 67611 G7612 G-76 B 80963 60965 # 3714 ANALYST 6833 22000 3131 255% 2039 N. 344 0000 1305 100 100 STL BUFFALO DATE

490/504

					<u> </u>	1									ų) ···-								 1			1		1		رروح
	COMMENTS										NIT PIEM	> 110 hr. TC 12127107	İ	2240	1 420 (XIII) SMC/38W	AST. GOO (ADD) SML)						DF100	15 800 Sur out-	0/ /0							000049 NO. Page 2/8
	pH<2	>	>	\	1	\ <u>'</u>	1	/	/	>							(\	5		\	.`	>	>	7	\	,\>	>	>	>	õ
	REANALYSIS?																					·	<u>۲</u>	٧٠							
N LOG	S.S. #4 % REC.	95	- 5	95	93	26	93	26	93,	90							hb	92	93	16	63	25	\mathcal{Q}	83	92	16	92	63	Pa	કુ	
GCMS VOLATILE INJECTION LOG	S.S. #3 % REC.	9 3	93	<u>ე</u>	ナび	93	50	92	94	95							98	93	95	93	95	26	95	95	95	93	92	95	90	93	
GCMS VOLA	S.S. #2 % REC.	26	93	93	93	アロ	プ の	סע	5	gd							76	92	13	16	93	56	0,40	116	hb	92	92	93	Ир	95	
	S.S. #1 % REC.	و	90	Q	92	26	0	70	90	2 b							Ø.O.	90	15	8	16	90	16	92	8	89	88	06	93	89	
	I.S. #3 % REC.	76	26	7.6	9,5	ō	90	96	ō	alo							0/0	0,0	62	86	96	95	86	97	99	86	66	(00)	99	95	
	I.S. #2.% REC.	93	0 0	7,6	R	9	0,0	9	000	9							N K	qá	76	00/	86	67	86	97	86		101	00/	99	66	
	1.S. #1 % REC.	9 5) did	ी की	93.	476	0	93	9	92							0.0	<u> </u>	66	10)	66	97	66	97	99	100 g (6)		0.01	00	22.5	
	# ошу	1		\			1																-								Date

						ir L						_								<u> </u>	 			 	· - 1	 N	
	COMMENTS			Control of the state of the sta																						NO. Page 2	
		FOAMS							DF1																	₹*	a-Ba
	pH<2	\	10	/	1	`\	>	5		>		/								1						0000C4	
	REANALYSIS?			The second secon		5-			بد								,						,				•
N LOG	S.S. #4 % REC.	23	16	2	28	83	83	83	73	hb	48	83															
SCMS VOLATILE INJECTION LOG	S.S. #3 % REC.	95	44	98	88	25	hb	hb	46	58	56	68															
GCMS VOLA	S.S. #2 % REC.	95	92	44	93	83	23	83	82	63	16	68			-							,					
	S.S. #1 % REC.	16	90		6/	16	92	63	20	92	88	90						•									
	LS. #3 % REC.	45	6	63	66	66	96	96	%	83	98	25			-			•	:							· · · · · · · · · · · · · · · · · · ·	
	I.S. #2 % REC.	95	96	hb	105	66	62	96	47	95	67	96													-		
	I.S. #1 % REC.	96	97	9,6	97	86	86	86	66	98	00/	65				and or										-	
Biograph &	# OTUA		1									-	-													Date	


			TOA SWOO	ATILE INJE	VOLATILE INJECTION LOG					
DATE TIME	ANALYST	FILE #	SAMPLEID	# BOF	INJ. VOL.	EXT. WHT.	D.F.	STANDARD MIX #	: 1.S.	1.S. / SS MD
1212/2 1613	C Nive	(39462)	h0 15455A	1545	SET O	5mg	5		B	[SS()///
(02)		(1845)	- 03							-
bil.		0,9450	20	<u> </u>		-	5			
2		(65453		A 6		7	_ .			
9).4.(9)		(2002)	MSS367 01 MC-K	1224	1 .	1,0,7	<u> </u>			
ATA 1.	-	(15/15)	0.5 101 17		7 7	1 d d d d d d d d d d d d d d d d d d d	_ \			
17172 OK131 0	200	8000 8000	1223.88501		1.0) 	1	カーカース・ファー		17.70
	12	85hbV	VS(1040 BS On) 12310) -				WS-04,WS1284-10,145/2EC-8		<u> </u>
1 Coff	7 Crah	Q9459	V510100							
12NO /		Oghla	V5(1)05U							
10016		(ग्रेथपावा	V/ST(2011 C)							
	_	109462	VSTOCOI - NOC	~	-\-					
	Total months	(09463	1510001			~		-1		
125 Sept 1250		たのからり	1405154242	ر ج-	2 KX	<u> </u>	\ 	WS12-1		
70.7.		(1) dy(1)	NAS-Gul			!	 	10 5/6/5/17/10/5/12/3/1/10/10/13/EC-3/10/5/9/3/1/10/5/9/4/1/10/5/9/4/1/10/5/9/4/1	SEC-3	a Sauce Anthropy on
		19460	Annws -No						1	
		(ýdd løš	- 0)							
591		Contrad	<u>[</u>	4			_ - -			
100 i	+	0775	10000000000000000000000000000000000000	0,000						17 in 1
D()(1281					•••	4
Z1-91		75/00/1	WINDS SAIL BILLING	io Spill			- (_			193
0161		1	500	5775			-			15 (
1339		Cogurk		2500			_			04
1807		0000	7 02	~			_			
9831		1247 1247 136	N5552301	2523		+	_			1
1904		(34478	20 7	\ -\ -\	*	1	_			
STL BUFFALO				Revit	Reviewed Bv			ONITAE NO.		Pa

GCMS VOLATILE INJECTION LOG

									14 24 3								, 191 	tweet	×		-						· ·			Page 2
	COMMENTS	FORM CLAD		Frank 400		מא עד	ar at		San	The second second measure and according to the second seco	013 6118	1m1/C 1X	L127	つ	Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan	HHH2-18X1 CO)(3)		HON IN SILVE AST NOTU	MIX WOLD 10. WONNEST											000017 NO.
	pH<2	\$	۲	רא	47	1	1	1		-							{	1												Š
*	REANALYSIS?																						·							
N LOG	S.S. #4 % REC.																103			(0 (/cc	10/	102	103	600	102	(05	lez	107	
GCMS VOLATILE INJECTION LOG	S.S. #3 % REC.	107	103	101	E	/56 D	(24)	1/1									102)	ાઉડ	103	102	103	107	103	102	501	107	103	
GCMS VOLA	S.S. #2 % REC.	172	107	101	8	101	100	å									<u>)</u>			001	700	001	001	101	101	001	001	001	<i>۲07</i>	
	S.S. #1 % REC.	hol	101	104	(o)	[o]	50)	101		The second section of the second section of the second section							757			101	101	101	103	ا0 ب	103	r01	101	602	607	
	I.S. #3 % REC.	47	97	8	96	8	2	נא		College (1974) and the College of College (1974) and the College (19						,	(2)			46	ts	95	96	95	88	96	56	七6	96	
	I.S. #2 % REC.	4,5	41	F	5,	lmo	[0]	100		1111							101			200	29	86	とり	£ 5	86	to	96	96	95	
)# I.S. #1 % REC.	6	97	F	5	5	5	1.00		The second control of the second control of							(0()			99	55	8 8	86	4 6	95	46		6 6	9 6	

12 17 17 17 17 17 17 17	12.7.86682 12.7.86682 12.7.86682 181065 18	100 mar 100 ma	Starl Ext. wht.	D.F.	(WS) RR - 1 (WS) RE- 1 (WS) RE- 1	SS MX SS MX
1705 CMW 1705 CMW 1705 CMW 1705 CMW 2205 2205 2205 2205 2205 2205 2205 2205	2000 00 00 00 00 00 00 00 00 00 00 00 00		9 7 1			TSSING (SSING)
1925 1925 1925 1925 1925 1925 1925 1925	28 1 28 2 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					O) Anissi
2018 11.C 2018 11.C 2018 11.C 2018 11.C 2018 11.C 2018 11.C 2019 11.C 2010 1	200000000000000000000000000000000000000					1 No. 12
1858 1858 1855 1908 1908 12340 12340 1008 1008 1008 1008 1008	86888					COD/Moissi
1858 1957 / 1908 1914 2316 2316 2316 0105 0105 0105 0105	6200					TO THE STATE OF TH
2018 11 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3000			3		COAMO
2018 11.2 2018 11.2 2019 23.15 23.15 23.15 23.10 20 20 20 20 20 20 20 20 20 20 20 20 20	20 8E			3		ODHOISSI
2018 11C 2019 2212 2212 2212 2212 2212 2212 2212 22	82 85 1			3		00//401551
2017 2212 2242 2252 2254 2254 2254 2254 2254 2254 2254 2254 2254 2254 2254 225	MSB			3		183104/CO
2117 2215 2245 2254 2254 01055 01055 0105 0105	MSE 40 VBCK 40 ASE 58 113	183		,	(3 1	
2145 2245 2540 12540 1008 1008 10155 10155	ASES8 113 ASES8 113 15	£ (8)		-		
2215 2242 2212 2240 2008 2008 2008 2015 20105	ASES8 113	1853				
3242 2312 2240 01008 0103 0105 0105	7 4 9					
22.12 22.40 01.05 01.05 01.05 01.05 01.05	V 9					•••
2340 0008 0003 0003 0105 0103	9					
0008 0037 0105 0105 0101					-	
	8		-			
	(g)					
	7 30	7		~		
	1002 1152 JX	I LESZI		25		
	(9.0)			25		
	1805			2		
0756 a9559	707			04	¥ .	••••
		-			V	
						••••
	0					
	C					
	(0)			-	-	
7	7 ON	``	Y	7	\	8

	COMMENTS	0.0.7	C.0.)	07.20	17 CO 2	6000), o, o, t, a		e e e e e e e e e e e e e e e e e e e	(A)	1 100 201 11111 11111	(ALLC 000) PPP +CH				•							(h)		000	OF81)							023 NO. Page 2						
	PH<2	7	7	7	7	,	7	7	7	1		1	1	\ .	75	7	7	7	7	1	7	1	J	7	J	J	7)	7	7	1)	000023	A Short See See	i i				
	REANALYSIS?	>	>	7	>	>	X		The state of the s														>	7	7	>	1								Stranger - The second	100 B			
ON LOG	S.S. #4 % REC.	So	(63	2	50)(Y	3((0.2		and the parameters of the same	163	3	104	(03) (၁)	<u>3</u>	105	102	1/37	100	127) <u>-</u>	B	(03)	100	104	ĺψ	143	3	(63	(02				344			
GCMS VOLATILE INJECTION LOG	S.S. #3 % REC.	90	99	001	100		000	2.6	٥٥			11	200		27	201	CO	8	99	(7)	200	101	(3)	91	55	3	(00)	<i>1</i> 00	3	<i>d</i> &	(CS)	49							
GCMS VOL.	S.S. #2 % REC.	9	95	9	, - -	200	Th	8	93	•		20	200	2/2	+	th	<u>た</u> 6	9/6	1-6	1.6	9/6	4.6	36	× 6	die	44	910	200	78	99	95	19							
	S.S. #1 % REC.	4	90	20	93	0.0	500	<u>\</u>	d٦		The Control of the second control of the sec	7		9,	٦٤	(b)	86	86.	36	\$ 5 ×	90	99	98	ge de	th	86	95	9,5	6	1. 1.	(10)	98							
	1.S. #3 % REC.	(03	8	991	801	2	36		5		The second control of the second control of	20	5	2 (V	7	95	hb	93	4	92	92	0/5	25	95	Hb	95	44	44	34	Ť	910	45	is.						
	I.S. #2 % REC.	8	(03	1	105	17	5	62	101			00	5	5 9	2	ک	4-6	t.b	4	960	42	20	4.6	86	86	18	98	3,8	42	66	18	人力	E. C. S. C. S.						
	I.S. #1 % REC.	8	155	()		7	3	ta	١٥			80	250	5 6	88	46	46	44	9,60	910	96,	910	9(0	4,6	tb	4	98	4.3	\$ \\{\tau}	sie	£b	Ne							The second of the second of the second
	AUTO #									ļ			202 (147		2HATIN-	Principal Princi	77 Paige of 3	nata are	La regio parrel	1 12 10 10 10 10 10 10 10 10 10 10 10 10 10	voit a.c.		inagener	1994							31.64		Page Date	PRO 1					The second second
	1.S. / SS MIX #	SINGS							7		CI-4/14/1 3/ 1/26/2	٠,١,٠												- relia								6	VO.						

	COMMENTS			And the second of the second o		H)	(0/2/10)					- CAK		一方のトンダ	SOCIASP SML	i	AS T. 0440A	2000	113) TC12/22/07	HS TO THE SECTION SMI						Care	NO. Fage 2
	pH<2	-:		Ave de comberne de con-		\						1	(-	\ \ \			1	+		F ,		1					7	-
	REANALYSIS?																						-				POUUU	
IN LOG	S.S. #4 % REC.			State of the second sec																	102	200						
GCMS VOLATILE INJECTION LOG	S.S. #3 % REC.			A company of the common of the company of																	501	(0))					
GCMS VOLA	S.S. #2 % REC.			Water Charles and Charles and Charles																	0	50)						
-	S.S. #1 % REC.			contract to the second of the second transfer of the second of the secon	100 mm (100 mm (100 mm)) (100 mm) (10					/)										163	13						
	I.S. #3 % REC.		/	The second secon																	96	28			-			
	I.S. #2 % REC.			the second of the second of the second		-				\											95	\$ \$						
	J. S. REC.								The state of the s				the first of the f				And the second s				Lb w	90		A CONTROL OF THE PROPERTY OF T				

			-	-	1		1	ı	. 4	-			- I	- - -	با -	: : _1	i	.		1	1	ı	.	1	14		ı -	-	1	1	ı	5	00	/504
	COMMENTS					Application of the control of the co	LOWTINIS LAZIT						-1.1.c S84Q	177/	117	(+SI 2299)				Q	overws Mary				Carried volume		<u> </u>	Frans Lor 0/40	, O.O.			ON		
	PH<2	7	1	7	7	7	7		, ا	5	7	۷				$\ \ $			<u> </u>	\ \ \ \	4 >	\ \ \	4	×	Y	-7	Κ	У	У	٧	Y	260000		
•	REANALYSIS?	6					イント	1/1/2/				/													7			Y	7			00		
ON LOG	S.S. #4 % REC.	18 30	10	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	71/2 23	100 170	% % % % % % % % % % % % % % % % % % %	2007	1000	1	98 86	18 04				0,0) 00	70%	L &	0	7.8	82	22	18	2	82	08	96	\$8	79	≥∞			
GCMS VOLATILE INJECTION LOG	S.S. #3 % REC.	7% 201	16790	70 00+	1	7.5	98 02			000	134.05	フタアあ				σ	92	02	9,	> ×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	92	93	(U)		dd	дr	(05	98	-6	dd			
GCMS VOLA	S.S. #2 % REC.	Ob tray	140 95	1.	11 82	88 01	900	1		1000	100 tel	30 65				20	70	00	9	93	90	46	96	98	102	9,0	9,0	25	102	٦	00			
	S.S. #1 % REC.	10492	TT 99	105 00	Tota da	141-97	0% 40°	70	0000	1000	راب	10 1				95	100	101	101	97	ō	86	101	(00	90	O	200)_6	50	તત	00			
	I.S. #3 % REC.	64	56	80	80	90	4.5	47	77.0	7 0 7	X (S	24				76	2	96	. 28	93	95	89	96	88	9.8	٧,	550	24	85	90	2		A SAN SAN SAN SAN SAN SAN SAN SAN SAN SA	
	I.S. #2 % REC.	23	88	£8	27	0	٥	40	20		9 (5		, remain		86	23	مهدا		86		94	96	مه	92	8	ς, 5	83	۵۱	95	ر ح			
	I.S. #1 % REC.	89	9.0	58	8	¢9	93	טקר	70	C 70	100	1 15				99	92	9	93	6)	96	95	95	6	6	5	3,00	45	0	9	95			
	AUTO #											All the second s			t			192		, lei	1	e de la la la la		91.5		100		A STATE OF THE STA			N	Date		

	COMMENTS				A CONTRACTOR OF THE PROPERTY O															8	EL (AST., 2442)				,				NO. Page 2
	pH<2	X DF	X	Y	X		<u> </u>	¥	<u> </u>	7	\ \ \ \	У.	X 12hr.	در	-	((7/88	82601		1	ノなく	7	7,	2/2	2	
•	REANALYSIS?	<u>\</u>											>											>	7,				260000
ION LOG	S.S. #4 % REC.	08	\$	Z	08	L 20	97	S 8	8	>~ >~	20	V.							/			XX	Q.	286	200			2)
GCMS VOLATILE INJECTION LOG	S.S	92	% 5	95	90	0	D	0	93		dx	<u>ه</u> 5	88									XX	2.0	5	7	3 5	×××		
GCMS VO	S.S. #2 % REC.	9	163	26	70	70)	7 0	000	00	707	701.	70)	9.5									5		5		9 (2	0,0)	
	S.S	bb b	501	0	(4.5)	3	9 5	50	5	20	60)	J (0.0										2	0	2		20		
	l.S	98	82	88	לבו	9¢	2	50	, %	82	76	S X .	9%									XC	200		(20)	000	000		
	C. I.S. #2 % REC.	95	00	9	+6	7	- 3	ک ک ر	05	0/0	200	32	2								90	ρ, 5 (δ) O'(20	70	100		
	FIS #1 % REC.	102	8	08	S S S S S S S S S S S S S S S S S S S		8/b: 10/18			\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		9)	QΩ										50					Date	

LS. / SS MIX #	1451N/PLD	DINK!																	KINDIN MI	2011	S1240-5			PIMEP 19.05				4
STANDARD MIX #							W5345-10												1 / DA 12/11	WSLB1-14, 141-19, 11, 5 1, 18, 1 3FG-2	WSAAL-U, WSSAM-Y	WSI9 BT-6, WS19 BU-7	+					
EXT. WHT. D.F.	7				- -					_	100	707	00 S	8 -		- P	3 -	(3)	1+		•				7		2 7	
JOB # INJ. VOL.	E475 SmL	<u> </u>								1 2	7000			1	100			1	0C 1nc	5m/			2837	55.52	E587	700	75.55	7,000
SAMPLE ID	ASE475620	ASE 623 61	82	29	Jily		SA-SA	रिस्ट,	\$0	45 C LAS A12.	ıl .	0.11 c	05/8	7.0	ASELOS OF	03m	62	012	1228 BK BS 2	VSIDUSS	HAJUCS Vac 0 (21)	TOO TOO	K5655102	A SC 57802	A5658710	7) L	ASES 3201	
FILE #	2969	39760	59701	54702	24762	297KIL	12750	57.70)	V1/06 C97/7	20110	59769	59710	59111	29712	59713	59714	59715	59716	7			5072	celbs	San 23		200	50102	
ANALYST	I.																	-	길-								7	
DATE TIME	1071 6877	177	(258	1322		1,41	2	005	2027	1549	C1011	869	130/	1736	1750	1815	820	1	(2/18/05 193)	7		308	2129	7512	1218	7247	12331	CT. DITERAL O

0 40 %
I.S. #3 % REC. S.S. #1 % REC.
XX
1 68
88
2
7
30
0
9
200
200
20
X5 154
801 80
200
- 2
IN IN
001 9×
86 103
84 106
83
701 105

ANALYTICAL REPORT

Job#: <u>A05-E592</u>

STL Project#: NY4A9171

SDG#: 1205GW

Site Name: Environmental Strategies Corporation

Task: Sherburne

Mr. David Bouchard Environmental Strategies Corp. 5 Sullivan Street Cazenovia, NY 13035

STL Buffalo

Candace L. Fox Project Manager

STL Buffalo Current Certifications

As of 12/28/2005

STATE	Program	Cert # / Lab ID
AFCEE	AFCEE	
Arkansas	SDWA, CWA, RCRA, SOIL	03-054-D/88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	SDWA, CWA, RCRA, CLP	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	Env. Lab Reg.	68-281
South Carolina	RCRA	91013
Tennessee	SDWA	02970
USACE	USACE	
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C254
West Virginia	CWA,RCRA	252
Wisconsin	CWA	998310390

Sample Data Summary Package

SAMPLE SUMMARY

			SAMPI	ŒD	RECEIVE	I D
LAB SAMPLE ID	CLIENT SAMPLE ID	<u>MATRIX</u>	DATE	TIME	DATE	TIME_
A5E59208	EB-122205	WATER	12/22/2005	11:10	12/23/2005	10:15
A5E59202	MW-22	WATER			12/23/2005	
A5E59209	MW-23	WATER			12/23/2005	
A5E59206	MW-24	WATER			12/23/2005	
A5E59203	MW-25	WATER	12/21/2005	17:25	12/23/2005	10:15
A5E59212	MW-26	WATER			12/23/2005	
A5E59210	MW-27	WATER	12/22/2005	11:20	12/23/2005	10:15
A5E59214	MW-29	WATER			12/23/2005	
A5E59207	MW-30	WATER			12/23/2005	
A5E59201	MW-31	WATER			12/23/2005	
A5E59201MS	MW-31	WATER			12/23/2005	
A5E59201SD	MW-31	WATER			12/23/2005	
A5E59205	MW-37	WATER			12/23/2005	
A5E59204	MW-38	WATER			12/23/2005	
A5E59211	P-10	WATER			12/23/2005	
A5E59213	P-11	WATER	12/22/2005	14:15	12/23/2005	10:15

METHODS SUMMARY

Job#: <u>A05-E592</u>

STL Project#: NY4A9171

SDG#: <u>1205GW</u>

Site Name: Environmental Strategies Corporation

ANALYTICAL METHOD

PARAMETER

METHOD 8260 - TCL VOLATTLE ORGANICS + NAPH - W

SW8463 8260

SW8463

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

NON-CONFORMANCE SUMMARY

Job#: <u>A05-E592</u>

STL Project#: NY4A9171

SDG#: 1205GW

Site Name: Environmental Strategies Corporation

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A05-E592

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

GC/MS Volatile Data

Based on historical data sample MW-22 was originally analyzed at a dilution factor 2.0. Data review revealed that this sample was over-diluted. As a result sample MW-22 was reanalyzed undiluted. However,

sample MW-22 RI was analyzed from a vial containing headspace. Both sets of data were reported. The volatile organic results for sample MW-22 RI may be biased low.

All samples were preserved to a PH less than 2.

The spike recovery of the analyte 1,1-Dichloroethene in the Matrix Spike of sample MW-31 fell below quality control limits. The Relative Percent Difference (RPD) between the Matrix Spike and the Matrix Spike Duplicate of sample MW-31 exceeded quality control limits for the analytes 1,1-Dichloroethene, Trichloroethene, Benzene, Toluene and Chlorobenzene. The Matrix Spike Blank recoveries were compliant, so no corrective action is required.

Initial calibration standard curve A5I0002430-1 exhibited the %RSD of the compounds Bromomethane, Chloroethane, Methylene Chloride and 1,2,4-Trichlorobenzene as greater than 15%. However, the mean RSD of all compounds is 6.44%.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Date: 01/11/2006 Time: 16:15:11

Dilution Log w/Code Information For Job A05-E592

8/304

Code 013

Page:

Rept: AN1266R

Client Sample ID	<u>Lab Sample ID</u>	Parameter (Inorganic)/Method (Organic)	<u>Dilution</u>
MW-22	A5E59202	8260	2.00

Dilution Code Definition:

002 - sample matrix effects

003 - excessive foaming

004 - high levels of non-target compounds

005 - sample matrix resulted in method non-compliance for an Internal Standard

 $006\,$ - sample matrix resulted in method non-compliance for Surrogate

007 - nature of the TCLP matrix

008 - high concentration of target analyte(s)

009 - sample turbidity

010 - sample color

011 - insufficient volume for lower dilution

012 - sample viscosity

013 - other

13061

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

- ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.
- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

TT 100005	
EB-122205	

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: SAS No.: SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59208

Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{ML} Lab File ID: $\underline{G7604.RR}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/22/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS: COMPOUND CAS NO. (ug/L or ug/Kg) <u>UG/L</u> Ō 67-64-1-----Acetone____ 5.0 U 71-43-2----Benzene 1.0 U 75-27-4----Bromodichloromethane 1.0 U 75-25-2----Bromoform 1.0 IJ 74-83-9----Bromomethane 1.0 U 78-93-3----2-Butanone U 5.0 75-15-0-----Carbon Disulfide U 1.0 56-23-5-----Carbon Tetrachloride U 1.0 108-90-7----Chlorobenzene____ 1.0 U 75-00-3-----Chloroethane U 1.0 67-66-3-----Chloroform 1.0 U 74-87-3----Chloromethane 1.0 U 110-82-7-----Cyclohexane 1.0 U 106-93-4----1,2-Dibromoethane U 1.0 124-48-1----Dibromochloromethane U 1.0 96-12-8----1,2-Dibromo-3-chloropropane U 1.0 95-50-1----1,2-Dichlorobenzene 1.0 U 541-73-1----1,3-Dichlorobenzene U 1.0 106-46-7----1,4-Dichlorobenzene 1.0 IJ 75-71-8-----Dichlorodifluoromethane U 1.0 75-34-3----1,1-Dichloroethane 1.0 U 107-06-2----1,2-Dichloroethane 1.0 U 75-35-4----1,1-Dichloroethene U 1.0 156-59-2----cis-1,2-Dichloroethene 1.0 U 156-60-5----trans-1;2-Dichloroethene 1.0 U 78-87-5----1,2-Dichloropropane 1.0 U 10061-01-5---cis-1,3-Dichloropropene 1.0 IJ 10061-02-6---trans-1,3-Dichloropropene IJ 1.0 100-41-4----Ethylbenzene____ 1.0 U 591-78-6----2-Hexanone 5.0 U 98-82-8----Isopropylbenzene U 1.0 79-20-9-----Methyl acetate 1.0 IJ 108-87-2----Methylcyclohexane 1.0 U 75-09-2-----Methylene chloride U 1.0

11/304

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

		EB-122205
Lab Name: STL Buffalo Contract: 4	···	Mon. Wa.
Lab Code: RECNY Case No.: SAS No.:	SDG No.: <u>1205GW</u>	I
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A5E59208
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID:	G7604.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	12/22/2005 12/23/2005
% Moisture: not dec Heated Purge: N	Date Analyzed:	12/27/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Vol	ume: (uL)

CAS NO.	CVA/IICI BID	CONCENTRATION U		0
CAS IVO.	COMPOUND	(ug/L or ug/Kg) <u>UG/L</u>	V
108-10-1	4-Methyl-2-pentanone		5.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)		1.0	U
91-20-3	Naphthalene		1.0	U
100-42-5	Styrene		1.0	ט
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
127-18-4	Tetrachloroethene		1.0	U
108-88-3	Toluene		1.0	ט
120-82-1	1,2,4-Trichlorobenzene		1.0	U
	1,1,1-Trichloroethane		1.0	U
	1,1,2-Trichloroethane		1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-triflu	oroethane	1.0	U
75-69-4	Trichlorofluoromethane		1.0	U
79-01-6	Trichloroethene		1.0	U
	Vinyl chloride		1.0	U
1330-20-7	Total Xylenes		3.0	U
				1

ANALYSIS DATA SHEET

12/304

Lab Name: <u>STL Buffalo</u> Co	ontract: 4	<u> </u>	MW-22
Lab Code: RECNY Case No.:	SAS No.:	SDG No.: <u>1205GW</u>	
Matrix: (soil/water) <u>WATER</u>		Lab Sample ID:	A5E59202
Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{MI}	! .	Lab File ID:	G7638.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	12/21/2005 12/23/2005
% Moisture: not dec Heated F	Purge: <u>N</u>	Date Analyzed:	12/28/2005
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)		Dilution Factor:	2.00
Soil Extract Volume: (uL)		Soil Aliquot Volu	me: (uL)
·	CON	CENTRATION UNITS:	

CAS NO.	COMPOUND	CONCENIRATION UNI (ug/L or ug/Kg)	TS: <u>UG/L</u>	Q
67-64-1			10	U
	Bromodichloromethane		2.0	U U
75-25-2	Bromoform		2.0	U
74-83-9	Bromomethane		2.0	ק ק
78-93-3	2-Butanone		10	U U
75-15-0	Carbon Disulfide		2.0	υ
56-23-5	Carbon Tetrachloride		2.0	TU
108-90-7	Chlorobenzene		2.0	ן מ
75-00-3	Chloroethane		2.0	ן מ
67-66-3			2.0	บ
74-87-3	-Chloromethane		2.0	U
110-82-7	-Cyclohexane		2.0	Ū
106-93-4	-1,2-Dibromoethane		2.0	Ū
124-48-1	-Dibromochloromethane		2.0	Ū
96-12-8	-1,2-Dibromo-3-chloropropane		2.0	Ū
95-50-1	-1,2-Dichlorobenzene		2.0	U
541-73-1	-1,3-Dichlorobenzene		2.0	U
106-46-7	-1,4-Dichlorobenzene		2.0	U
75-71-8	-Dichlorodifluoromethane	·	2.0	U
75-34-3	-1,1-Dichloroethane		2.0	U
107-06-2	-1,2-Dichloroethane		2.0	U
75-35-4	-1,1-Dichloroethene		2.0	U
156-59-2	-cis-1,2-Dichloroethene		36	
156-60-5	-trans-1,2-Dichloroethene_		1.8	J
/8-87-5	-1,2-Dichloropropane		2.0	ע
10061-01-5	-cis-1,3-Dichloropropene		2.0	U
10061-02-6	-trans-1,3-Dichloropropene_		2.0	U
100-41-4	-Ethylbenzene		2.0	U
591-78-6			10	U
70 20 0	-Isopropylbenzene		2.0	U
100 07 0	-Methyl acetate		2.0	U
75 00 2	-Methylcyclohexane		2.0	U
10-03-2	-Methylene chloride		2.0	U

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

13/304

Lah Name: CTT. Ruffalo Contract. 4		MW-22	
Lab Name: STL Buffalo Contract: 4			
Lab Code: RECNY Case No.: SAS No.:	SDG No.: <u>1205G</u>	<u>M</u>	
Matrix: (soil/water) WATER	Lab Sample ID:	A5E59202	-
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID:	G7638.RR	
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	12/21/200	5 <u>12/23/2005</u>
% Moisture: not dec Heated Purge: N	Date Analyzed:	12/28/200	<u>5</u>
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Factor	:2.00	
Soil Extract Volume: (uL)	Soil Aliquot Vo	lume:	(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg)		Q
108-10-14-Methyl-2-pentanone 1634-04-4Methyl-t-Butyl Ether (MTBE) 91-20-3Naphthalene 100-42-5Styrene 79-34-51,1,2,2-Tetrachloroethane 127-18-4Tetrachloroethene 108-88-3Toluene 120-82-11,2,4-Trichlorobenzene 71-55-61,1,1-Trichloroethane 79-00-51,1,2-Trichloroethane 76-13-11,1,2-Trichloro-1,2,2-triflu 75-69-4Trichlorofluoromethane 79-01-6Trichloroethene 75-01-4Vinyl chloride 1330-20-7Total Xylenes	ioroethane	2.0 IV 2.	l l

METHOD 8500 - JCP ANTITE OKCAVICS + VALH - M ANALYSIS DATA SHEET

14/304

Client No.

Lab Name:	STL Buffalo	Contract: 4	MW-22 RI	
Lab Code:			SDG No.: 1205GW	

L

Matrix: (soil/water) WATER Lab Sample ID: A5E59202RI

Sample wt/vol: ___5.00 (g/mL) ML Lab File ID: G7650.RR

Level: (low/med) LOW Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. _____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: _____ (uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (uq/L or uq/Kq) UG/L Q 67-64-1-----Acetone U 5.0 71-43-2----Benzene 1.0 U 75-27-4----Bromodichloromethane 1.0 U 75-25-2----Bromoform 1.0 U 74-83-9-----Bromomethane 1.0 IJ 78-93-3----2-Butanone 5.0 U 75-15-0-----Carbon Disulfide U 1.0 56-23-5-----Carbon Tetrachloride 1.0 IJ 108-90-7----Chlorobenzene 1.0 U 75-00-3-----Chloroethane U 1.0 67-66-3-----Chloroform U 1.0 74-87-3-----Chloromethane 1.0 U 110-82-7-----Cyclohexane 1.0 U 106-93-4----1,2-Dibromoethane 1.0 U 124-48-1-----Dibromochloromethane U 1.0 96-12-8----1,2-Dibromo-3-chloropropane 1.0 U 95-50-1----1,2-Dichlorobenzene U 1.0 541-73-1----1,3-Dichlorobenzene U 1.0 106-46-7----1,4-Dichlorobenzene 1.0 U 75-71-8-----Dichlorodifluoromethane U 1.0 75-34-3----1,1-Dichloroethane 1.0 U 107-06-2----1,2-Dichloroethane 1.0 U 75-35-4----1,1-Dichloroethene U 1.0 156-59-2----cis-1,2-Dichloroethene 30 156-60-5----trans-1,2-Dichloroethene 1.4 78-87-5----1,2-Dichloropropane 1.0 U 10061-01-5---cis-1,3-Dichloropropene 1.0 U 10061-02-6---trans-1,3-Dichloropropene U 1.0 100-41-4----Ethylbenzene 1.0 U 591-78-6----2-Hexanone U 5.0 98-82-8-----Isopropylbenzene U 1.0 79-20-9-----Methyl acetate 1.0 Ū 108-87-2----Methylcyclohexane 1.0 U 75-09-2----Methylene chloride U 1.0

ANALYSIS DATA SHEET

15/304

Case No.: SAS No.: SDG No.: 1205GW Matrix: (soil/water) WATER	Lab Name: STL Buffalo Contract: 4	MW-22 RI
Lab Sample ID: A5E59202RI Sample wt/vol:5.00 (g/mL) ML		- SDG No.: <u>1205GW</u>
Date Samp/Recv: 12/21/2005 12/23/2008 Moisture: not dec Heated Purge: N		
Moisture: not dec.	Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID: <u>G7650.RR</u>
DB-624 ID: 0.25 (mm) Dilution Factor: 1.00	Level: (low/med) <u>Low</u>	Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>
CONCENTRATION UNITS: CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q 108-10-14-Methyl-2-pentanone 1634-04-4Methyl-t-Butyl Ether (MTBE) 91-20-3Naphthalene 100-42-5Styrene 100-42-5Styrene 100-42-5Styrene 100-42-51,1,2,2-Tetrachloroethane 127-18-4Tetrachloroethene 120-82-11,2,4-Trichloroethane 120-82-11,1,1-Trichloroethane 120-82-11,1,2-Trichloroethane 100 U 127-55-61,1,2-Trichloroethane 100 U 127-50-51,1,2-Trichloroethane 100 U	Moisture: not dec Heated Purge: N	Date Analyzed: <u>12/28/2005</u>
CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q 108-10-14-Methyl-2-pentanone	C Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.00
CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q 108-10-14-Methyl-2-pentanone 5.0 U 1634-04-4Methyl-t-Butyl Ether (MTBE) 1.0 U 91-20-3Naphthalene 0.45 J 100-42-5Styrene 1.0 U 79-34-51,1,2,2-Tetrachloroethane 1.0 U 127-18-4Tetrachloroethene 1.0 U 108-88-3Toluene 1.0 U 120-82-11,2,4-Trichloroethane 1.0 U 79-00-51,1,2-Trichloroethane 1.0 U 76-13-11,1,2-Trichloroethane 1.0 U 75-69-4Trichlorofluoromethane 1.0 U 75-01-4Vinyl chloride 9.6 1.0 U	Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
1634-04-4Methyl-t-Butyl Ether (MTBE) 1.0 U 91-20-3Naphthalene 0.45 J 100-42-5Styrene 1.0 U 79-34-51,1,2,2-Tetrachloroethane 1.0 U 127-18-4Tetrachloroethene 1.0 U 108-88-3Toluene 1.0 U 120-82-11,2,4-Trichloroethane 1.0 U 79-00-51,1,2-Trichloroethane 1.0 U 76-13-11,1,2-Trichloroethane 1.0 U 75-69-4Trichloroethane 1.0 U 75-01-4Vinyl chloride 1.0 U		
1330-20-710tal Xylenes3.0 U	1634-04-4Methyl-t-Butyl Ether (MTBE) 91-20-3Naphthalene 100-42-5Styrene 79-34-51,1,2,2-Tetrachloroethane 127-18-4Tetrachloroethene 108-88-3Toluene 120-82-11,2,4-Trichlorobenzene 71-55-61,1,1-Trichloroethane 79-00-51,1,2-Trichloroethane 76-13-11,1,2-Trichloro-1,2,2-trifluoroeth 75-69-4Trichlorofluoromethane 79-01-6Trichloroethene	1.0 U 0.45 J 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 9.6 1.0 U

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

			MW-23
Lab Name: <u>STL Buffalo</u>	Contract: 4		
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.: <u>1205GW</u>	•
Matrix: (soil/water) WATER		Lab Sample ID:	A5E59209
Sample wt/vol: 5.00	(g/mL) <u>ML</u>	Lab File ID:	G7605.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	12/22/2005 12/23/2005
Moisture: not dec	Heated Purge: N	Date Analyzed:	12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)

Soil Aliquot Volume: ____ (uL) Soil Extract Volume: ____ (uL)

Dilution Factor: ____1.00

		CONCENTRATION (
CAS NO.	COMPOUND	(ug/L or ug/K@	g)	UG/L_	Q
67-64-1				5.0	U
71-43-2				1.0	U
75-27-4	-Bromodichloromethane			1.0	U
75-25-2	-Bromoform			1.0	U
74-83-9	-Bromomethane			1.0	U [
78-93-3	-2-Butanone			5.0	U
75-15-0	-Carbon Disulfide			1.0	ע
56-23-5	-Carbon Tetrachloride			1.0	ע
108-90-7	-Chlorobenzene			1.0	U
75-00-3	-Chloroethane			1.0	U
67-66-3	-Chloroform	-		1.0	U
74-87-3	-Chloromethane			1.0	U
110-82-7	-Cyclohexane			1.0	U
106-93-4	-1,2-Dibromoethane			1.0	ן ט
124-48-1	-Dibromochloromethane			1.0	U
96-12-8	-1,2-Dibromo-3-chloropropane			1.0	U
95-50-1	-1,2-Dichlorobenzene			1.0	U
541-73-1	-1,3-Dichlorobenzene			1.0	U
106-46-7	-1,4-Dichlorobenzene			1.0	U
75-71-8	-Dichlorodifluoromethane			1.0	U
75-34-3	-1,1-Dichloroethane			1.0	ע
107-06-2	-1,2-Dichloroethane			1.0	U
75-35-4	-1,1-Dichloroethene			1.0	U
156-59-2	-cis-1,2-Dichloroethene			8.0	
156-60-5	-trans-1,2-Dichloroethene			1.0	U
78-87-5	-1,2-Dichloropropane			1.0	ָן ט
	-cis-1,3-Dichloropropene			1.0	ע
10061-02-6	-trans-1,3-Dichloropropene			1.0	U
100-41-4				1.0	U
591-78-6				5.0	U
98-82-8	-Isopropylbenzene			1.0	U
79-20-9	-Methyl acetate			1.0	U
108-87-2	-Methylcyclohexane			1.0	U
	-Methylene chloride			1.0	U

17/304

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

	MW-23
Lab Name: STL Buffalo Contract: 4	
Lab Code: RECNY Case No.: SAS No.:	SDG No.: <u>1205GW</u>
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A5E59209
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID: <u>G7605.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>12/22/2005</u> <u>12/23/2005</u>
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>12/27/2005</u>
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)

CONCENTRA CAS NO. COMPOUND (ug/L or	TION UNITS: ug/Kg) <u>UG/L</u>	Q _
108-10-14-Methyl-2-pentanone 1634-04-4Methyl-t-Butyl Ether (MTBE)	5.0 1.0	U U
91-20-3Naphthalene	1.0	ע
100-42-5Styrene	1.0	U
79-34-51,1,2,2-Tetrachloroethane	1.0	U
127-18-4Tetrachloroethene	1.0	ן ט
108-88-3Toluene	1.0	U
120-82-11,2,4-Trichlorobenzene	1.0	U
71-55-61,1,1-Trichloroethane		[U
79-00-51,1,2-Trichloroethane		U
76-13-11,1,2-Trichloro-1,2,2-trifluoroethane		U
75-69-4Trichlorofluoromethane		U
79-01-6Trichloroethene	0.86	J
75-01-4Vinyl chloride	0.77	J
1330-20-7Total Xylenes	3.0	U

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0 1.0

1.0

1.0

U

U

U

U

U

U

U

U

U

U

U

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

		MW-24
Lab Name: STL Buffalo	Contract: 4	

Lab Code: RECNY Case No.: SAS No.: SDG No.: 1205GW

106-93-4-----1,2-Dibromoethane

96-12-8----1,2-Dibromo-3-chloropropane

95-50-1----1,2-Dichlorobenzene

541-73-1----1,3-Dichlorobenzene

75-71-8----Dichlorodifluoromethane

75-34-3-----1,1-Dichloroethane

110-82-7-----Cyclohexane

124-48-1----Dibromochloromethane

106-46-7----1,4-Dichlorobenzene

108-87-2----Methylcyclohexane

75-09-2----Methylene chloride

Lab Sample ID: A5E59206__ Matrix: (soil/water) WATER

Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{ML} Lab File ID: G7602.RR

Date Samp/Recv: 12/22/2005 12/23/2005 Level: (low/med) LOW

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

Dilution Factor: 1.00 GC Column: DB-624 ID: 0.25 (mm)

Soil Aliquot Volume: ____ (uL) Soil Extract Volume: ____ (uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q 5.0 U 67-64-1-----Acetone U 1.0 71-43-2----Benzene U 75-27-4----Bromodichloromethane 1.0 U 75-25-2----Bromoform 1.0 U 74-83-9----Bromomethane 1.0 U 5.0 78-93-3----2-Butanone U 75-15-0-----Carbon Disulfide 1.0 U 56-23-5-----Carbon Tetrachloride 1.0 108-90-7----Chlorobenzene_____ 1.0 U 75-00-3-----Chloroethane_____ U 1.0 U 1.0 67-66-3-----Chloroform 74-87-3-----Chloromethane 1.0 U U

19/304

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

	MW-24
Lab Name: STL Buffalo Contract: 4	
Lab Code: RECNY Case No.: SAS No.:	SDG No.: <u>1205GW</u>
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A5E59206</u>
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID: <u>G7602.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>12/22/2005</u> <u>12/23/2005</u>
Moisture: not dec Heated Purge: N	Date Analyzed: <u>12/27/2005</u>
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume:(uL)

·	NTRATION UNITS: L or ug/Kg) <u>UG/L</u>	Q
108-10-14-Methyl-2-pentanone 1634-04-4Methyl-t-Butyl Ether (MTBE) 91-20-3Naphthalene 100-42-5Styrene 79-34-51,1,2,2-Tetrachloroethane 127-18-4Tetrachloroethene 108-88-3Toluene 120-82-11,2,4-Trichloroethane 71-55-61,1,1-Trichloroethane 79-00-51,1,2-Trichloroethane 76-13-11,1,2-Trichloro-1,2,2-trifluoroethane 75-69-4Trichlorofluoromethane	5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	Q ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט
79-01-6Trichloroethene 75-01-4Vinyl chloride 1330-20-7Total Xylenes	0.77 0.62 3.0	J J U

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-25			

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: SAS No.: SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59203

Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{ML} Lab File ID: $\underline{G7599.RR}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/L</u> 0 5.0 U 67-64-1-----Acetone 1.0 U 71-43-2----Benzene 1.0 U 75-27-4----Bromodichloromethane U 75-25-2----Bromoform 1.0 74-83-9----Bromomethane_____ U 1.0 U 5.0 78-93-3----2-Butanone 75-15-0-----Carbon Disulfide 1.0 U 56-23-5-----Carbon Tetrachloride 1.0 U 108-90-7----Chlorobenzene U 1.0 75-00-3-----Chloroethane U 1.0 67-66-3-----Chloroform U 1.0 74-87-3-----Chloromethane 1.0 U U 110-82-7-----Cyclohexane 1.0 U 106-93-4----1,2-Dibromoethane 1.0 U 124-48-1----Dibromochloromethane 1.0 1.0 U 96-12-8----1,2-Dibromo-3-chloropropane 95-50-1----1,2-Dichlorobenzene_____ 1.0 U 541-73-1----1,3-Dichlorobenzene U 1.0 1.0 U 106-46-7----1,4-Dichlorobenzene 106-46-7----1,4-Dichlorobenzene 75-71-8-----Dichlorodifluoromethane 1.0 IJ U 75-34-3-----1,1-Dichloroethane 1.0 U 107-06-2----1,2-Dichloroethane 1.0 U 1.0 75-35-4----1,1-Dichloroethene 156-59-2----cis-1,2-Dichloroethene 29 0.98 J 156-60-5----trans-1,2-Dichloroethene 1.0 U 78-87-5----1,2-Dichloropropane 10061-01-5---cis-1,3-Dichloropropene_ U 1.0 10061-02-6---trans-1,3-Dichloropropene 1.0 U 100-41-4----Ethylbenzene____ J 0.50 5.0 U 591-78-6----2-Hexanone 98-82-8-----Isopropylbenzene 0.64 J 79-20-9----Methyl acetate 108-87-2----Methylcyclohexane U 1.0 U 1.0 U 1.0 75-09-2----Methylene chloride

			MW-25
Lab Name: <u>STL Buffalo</u>	Contract: 4	<u> </u>	
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.: <u>1205GW</u>	
Matrix: (soil/water) WATER		Lab Sample ID:	A5E59203
Sample wt/vol: 5.00	(g/mL) <u>ML</u>	Lab File ID:	G7599.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	12/21/2005 12/23/2005
% Moisture: not dec	Heated Purge: N	Date Analyzed:	12/27/2005
GC Column: <u>DB-624</u> ID: <u>C</u>).25 (mm)	Dilution Factor:	1.00
Soil Extract Volume:	(uL)	Soil Aliquot Volu	me: (uL)

CAS NO.	COMPOUND	CONCENTRATION UNIT (ug/L or ug/Kg)	TS: <u>UG/L</u>	Q
108-10-1	4-Methyl-2-pentanone		5.0	υ
	Methyl-t-Butyl Ether (MTBE)		1.0	ט
	Naphthalene		1.0	ט
100-42-5	-		1.0	U
	1,1,2,2-Tetrachloroethane		1.0	U
127-18-4	Tetrachloroethene		1.0	U
108-88-3	Toluene		1.0	U
120-82-1	1,2,4-Trichlorobenzene		1.0	ע
71-55-6	1,1,1-Trichloroethane		1.0	ע
79-00-5	1,1,2-Trichloroethane		1.0	ט
76-13-1	1,1,2-Trichloro-1,2,2-triflu	oroethane	1.0	U
75-69-4	Trichlorofluoromethane		1.0	U
79-01-6	Trichloroethene		0.58	J
75-01-4	Vinyl chloride		14	
1330-20-7	Total Xylenes		3.0	ע
1				1 1

Soil Aliquot Volume: ____ (uL)

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

		MW-26
ab Name: STL Buffalo Contract: 4		
ab Code: RECNY Case No.: SAS No.:	SDG No.: <u>1205GW</u>	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A5E59212
Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{ML}	Lab File ID:	G7608.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	12/22/2005 12/23/2005
Moisture: not dec Heated Purge: N	Date Analyzed:	12/27/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00

Soil Extract Volume: ____ (uL)

		CONCENTRATION UNI	TS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/L</u>	Q
67-64-1	Acetone	`	5.0	U
71-43-2			1.0	U
75-27-4	Bromodichloromethane		1.0	U
75-25-2	Bromoform		1.0	U
74-83-9	Bromomethane		1.0	U
78-93-3	2-Butanone		5.0	U
	Carbon Disulfide		1.0	U
56-23-5	Carbon Tetrachloride		1.0	U
108-90-7	Chlorobenzene		1.0	U
75-00-3	Chloroethane		1.0	U
67-66-3	Chloroform		1.0	U
74-87-3	Chloromethane		1.0	U
110-82-7	Cyclohexane		1.0	U
106-93-4	1,2-Dibromoethane		1.0	[U
124-48-1	Dibromochloromethane		1.0	U
96-12-8	1,2-Dibromo-3-chloropropane		1.0	ע
95-50-1	1,2-Dichlorobenzene		1.0	ן ט
541-73-1	1,3-Dichlorobenzene		1.0	ע
106-46-7	1,4-Dichlorobenzene		1.0	U
75-71-8	Dichlorodifluoromethane		1.0	U
75-34-3	1,1-Dichloroethane		1.0	U
107-06-2	1,2-Dichloroethane		1.0	. U
75-35-4	1,1-Dichloroethene		1.0	U
156-59-2	cis-1,2-Dichloroethene		43	
156-60-5	trans-1,2-Dichloroethene		3.2	
78-87-5	1,2-Dichloropropane	1 1	1.0	U.
I.	cis-1,3-Dichloropropene		1.0	U
	trans-1,3-Dichloropropene		1.0	U
100-41-4	Ethylbenzene		1.0	- U
591-78-6			5.0	U
	Isopropylbenzene		1.0	U
1	Methyl acetate		1.0	U
	Methylcyclohexane		1.0	U
	Methylene chloride		1.0	ប

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

	MW-26
Lab Name: STL Buffalo Contract: 4	<u> </u>
Lab Code: RECNY Case No.: SAS No.:	SDG No.: <u>1205GW</u>
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A5E59212
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: <u>G7608.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>12/22/2005</u> <u>12/23/2005</u>
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>12/27/2005</u>
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
108-10-14-Methyl-2-pentanone	5.0 U

Client No.

MW	I-27	

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: SAS No.: SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59210

Sample wt/vol: 5.00 (g/mL) ML Lab File ID: $\underline{G7606.RR}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/22/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: DB-624 ___ ID: 0.25 (mm) Dilution Factor: ____1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q 67-64-1-----Acetone 5.0 U 71-43-2-----Benzene 1.0 U 75-27-4------Bromodichloromethane 1.0 U

U

U U

J

U

1.0

1.0

1.0

0.59

1.0

3.0

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-27
SDG No.: <u>1205GW</u>
Lab Sample ID: A5E59210_
Lab File ID: <u>G7606.RR</u>
Date Samp/Recv: <u>12/22/2005</u> <u>12/23/200</u>
Date Analyzed: <u>12/27/2005</u>
Dilution Factor:1.00
Soil Aliquot Volume: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
5.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U

79-00-5-----1,1,2-Trichloroethane

75-69-4----Trichlorofluoromethane

79-01-6-----Trichloroethene_ 75-01-4-----Vinyl chloride_

1330-20-7----Total Xylenes

76-13-1----1,1,2-Trichloro-1,2,2-trifluoroethane

Client No.

MW-29	

1.0

U

U

U

U

U

U

U

1.0

1.0

5.0

1.0

1.0

1.0

1.0

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 1205GW

108-90-7-----Chlorobenzene

10061-02-6---trans-1,3-Dichloropropene

100-41-4----Ethylbenzene_____

79-20-9-----Methyl acetate _____

98-82-8-----Isopropylbenzene

591-78-6----2-Hexanone

108-87-2----Methylcyclohexane

75-09-2-----Methylene chloride

Matrix: (soil/water) WATER Lab Sample ID: A5E59214

Sample wt/vol: 5.00 (g/mL) ML Lab File ID: G7610.RR

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/22/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L_ 67-64-1-----Acetone____ 5.0 U U 1.0 71-43-2----Benzene U 75-27-4----Bromodichloromethane 1.0 1.0 U 75-25-2----Bromoform 74-83-9----Bromomethane U 1.0 U 5.0 78-93-3----2-Butanone 75-15-0-----Carbon Disulfide U 1.0 U 56-23-5-----Carbon Tetrachloride 1.0

			MW-29
Lab Name: <u>STL Buffalo</u>	Contract: 4		
Lab Code: RECNY Case No.:	SAS No.:	SDG No.: 1205GW	i e e
Matrix: (soil/water) WATER		Lab Sample ID:	A5E59214
Sample wt/vol: $\underline{5.00}$ (g/mL)	<u>ML</u>	Lab File ID:	G7610.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	12/22/2005 12/23/2005
Moisture: not dec Heate	d Purge: <u>N</u>	Date Analyzed:	12/27/2005
3C Column: <u>DB-624</u> ID: <u>0.25</u> (1	mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)		Soil Aliquot Vol	ume: (uL)

CAS NO. COMPOUND	CONCENTRATION UNI (ug/L or ug/Kg)	IS: <u>UG</u> /L_	Q
108-10-14-Methyl-2-pentanone 1634-04-4Methyl-t-Butyl Ether (MTBE)		5.0 1.0	U U
91-20-3Naphthalene		1.0	U
100-42-5Styrene		1.0	U
79-34-51,1,2,2-Tetrachloroethane		1.0	U
127-18-4Tetrachloroethene		1.0	U
108-88-3Toluene		1.0	U
120-82-11,2,4-Trichlorobenzene		1.0	U
71-55-61,1,1-Trichloroethane		1.0	U
79-00-51,1,2-Trichloroethane		1.0	U
76-13-11,1,2-Trichloro-1,2,2-trifl	uoroethane	1.0	U
75-69-4Trichlorofluoromethane		1.0	U
79-01-6Trichloroethene		0.90	J
75-01-4Vinyl chloride		1.0	U
1330-20-7Total Xylenes		3.0	U

Soil Aliquot Volume: ____ (uL)

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

		MW-30
Lab Name: STL Buffalo Contract: 4		
Lab Code: RECNY Case No.: SAS No.:	SDG No.: <u>1205GW</u>	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A5E59207
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID:	G7603.RR
Level: (low/med) <u>LOW</u>	Date Samp/Recv:	12/22/2005 12/23/2005
% Moisture: not dec Heated Purge: N	Date Analyzed:	12/27/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00

Soil Extract Volume: ____ (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q CAS NO. COMPOUND 5.0 U 67-64-1-----Acetone IJ 1.0 71-43-2----Benzene U 1.0 75-27-4----Bromodichloromethane U 75-25-2----Bromoform 1.0 U 1.0 74-83-9-----Bromomethane U 5.0 78-93-3----2-Butanone IJ 1.0 75-15-0-----Carbon Disulfide U 56-23-5-----Carbon Tetrachloride 1.0 1.0 U 108-90-7-----Chlorobenzene Ü 1.0 75-00-3-----Chloroethane IJ 1.0 67-66-3-----Chloroform 1.0 U 74-87-3-----Chloromethane U 1.0 110-82-7-----Cyclohexane 1.0 U 106-93-4----1,2-Dibromoethane 1.0 U 124-48-1----Dibromochloromethane 1.0 U 96-12-8----1,2-Dibromo-3-chloropropane 1.0 U 95-50-1----1,2-Dichlorobenzene U 1.0 541-73-1----1,3-Dichlorobenzene U 1.0 106-46-7----1,4-Dichlorobenzene U 1.0 75-71-8-----Dichlorodifluoromethane 1.0 U 75-34-3----1,1-Dichloroethane 1.0 U 107-06-2----1,2-Dichloroethane U 1.0 75-35-4----1,1-Dichloroethene J 0.44 156-59-2----cis-1,2-Dichloroethene U 1.0 156-60-5----trans-1,2-Dichloroethene 1.0 U 78-87-5----1,2-Dichloropropane 1.0 IJ 10061-01-5---cis-1,3-Dichloropropene U 10061-02-6---trans-1,3-Dichloropropene 1.0 U 1.0 100-41-4----Ethylbenzene U 5.0 591-78-6----2-Hexanone U 1.0 98-82-8----Isopropylbenzene IJ 1.0 79-20-9-----Methyl acetate 1.0 U 108-87-2----Methylcyclohexane U 1.0 75-09-2-----Methylene chloride

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

		MW-30
Lab Name: STL Buffalo Contract: 4		
Lab Code: RECNY Case No.: SAS No.:	SDG No.: <u>1205GW</u>	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A5E59207
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID:	G7603.RR
Level: (low/med) <u>LÒW</u>	Date Samp/Recv:	12/22/2005 12/23/2005
% Moisture: not dec Heated Purge: N	Date Analyzed:	12/27/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)	Soil Aliquot Volu	me: (uL)

		CONCENTRATION UN		
CAS NO.	COMPOUND	(ug/L or ug/Kg)) <u>UG/L</u>	Q
108-10-1	4-Methyl-2-pentanone		5.0	U
	Methyl-t-Butyl Ether (MIBE)		1.0	U
	Naphthalene		1.0	ប
100-42-5	Styrene		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
127-18-4	Tetrachloroethene		1.0	U
108-88-3	Toluene		1.0	U
120-82-1	1,2,4-Trichlorobenzene		1.0	ע
71-55-6	1,1,1-Trichloroethane		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-triflu	oroethane	1.0	U
75-69-4	Trichlorofluoromethane		1.0	U
79-01-6	Trichloroethene		0.42	J
75-01-4	Vinyl chloride		1.0	U
1330-20-7	Total Xylenes		3.0	U
1				1

Client No.

М	W-31		•	

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59201

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{G7595.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

67-64-1Acetone 5.0 U 71-43-2Benzene 1.0 U 75-27-4Bromodichloromethane 1.0 U 75-25-2	CAS NO.	COMPOUND	(ug/L or ug/Kg)		Q
75-27-4	67-64-1	-Acetone		5.0	1 1
75-25-2Bromoform 74-83-9Bromomethane 75-93-32-Butanone 75-15-0					
74-83-9Bromomethane 1.0 U 78-93-32-Butanone 5.0 U 75-15-0Carbon Disulfide 1.0 U 56-23-5Carbon Tetrachloride 1.0 U 108-90-7Chlorobenzene 1.0 U 75-00-3Chloropethane 1.0 U 67-66-3	75-27-4	-Bromodichloromethane			1 - 1
78-93-32-Butanone 5.0 U 75-15-0Carbon Disulfide 1.0 U 56-23-5Carbon Tetrachloride 1.0 U 108-90-7Chlorobenzene 1.0 U 75-00-3Chloroethane 1.0 U 67-66-3	75-25-2	Bromoform			ł I
75-15-0Carbon Disulfide 56-23-5Carbon Tetrachloride 1.0 U 108-90-7Chlorobenzene 1.0 U 75-00-3Chloroethane 1.0 U 67-66-3Chloroethane 1.0 U 110-82-7	74-83-9	-Bromomethane			1
56-23-5Carbon Tetrachloride 1.0 U 108-90-7Chlorobenzene 1.0 U 75-00-3Chlorotethane 1.0 U 67-66-3Chloromethane 1.0 U 74-87-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromo-d-loromethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 96-12-81,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 541-73-11,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichlorocethane 1.0 U 75-34-31,2-Dichlorocethene 1.0 U 107-06-21,2-Dichlorocethene 99 1.0 U 156-60-5trans-1,2-Dichlorocethene 8.2 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropane 1.0 U 10061-02-6trans-1,3-Dich					1 .
108-90-7Chlorobenzene 1.0 U 75-00-3Chloroethane 1.0 U 67-66-3Chloroform 1.0 U 74-87-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromochloromethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichlorocethane 1.0 U 107-06-21,2-Dichlorocethane 1.0 U 156-59-2cis-1,2-Dichlorocethene 99 8.2 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropane 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U 98-82-8	75-15-0	-Carbon Disulfide		1.0	U
75-00-3	56-23-5	-Carbon Tetrachloride		1.0	U
67-66-3Chloroform 1.0 U 74-87-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromoethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 156-59-2cis-1,2-Dichloroethene 99 1.0 U 156-60-5trans-1,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U 99-82-8	108-90-7	-Chlorobenzene		1.0	U
74-87-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromoethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 96-12-81,2-Dichlorobenzene 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 156-59-2cis-1,2-Dichloroethene 99 1.0 U 156-60-5trans-1,2-Dichloroethene 8.2 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 108-87-2Methyl cyclohexane 1.0 U	75-00-3	-Chloroethane			U
110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromoethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-34-31,2-Dichloroethane 1.0 U 107-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 99 1.0 U 156-60-5trans-1,2-Dichloroethene 8.2 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U U 100-41-4Ethylbenzene 5.0 U 591-78-62-Hexanone 5.0 U 98-82-8Methyl acetate 1.0 U 108-87-2	67-66-3	-Chloroform		1.0	U
106-93-41,2-Dibromoethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 156-59-2cis-1,2-Dichloroethene 99 1.0 156-60-5trans-1,2-Dichloroethene 8.2 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U U U 0001-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U 0 0 0 0 591-78-6Methyl acetate 1.0 U 0	74-87-3	-Chloromethane		1.0	U
106-93-41, 2-Dibromoethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81, 2-Dibromo-3-chloropropane 1.0 U 95-50-11, 2-Dichlorobenzene 1.0 U 541-73-11, 3-Dichlorobenzene 1.0 U 106-46-71, 4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31, 1-Dichloroethane 1.0 U 107-6-21, 2-Dichloroethane 1.0 U 107-35-41, 1-Dichloroethene 1.0 U 156-59-2cis-1, 2-Dichloroethene 99 1.0 156-60-5trans-1, 2-Dichloroethene 8.2 78-87-51, 2-Dichloropropane 1.0 U 10061-01-5cis-1, 3-Dichloropropene 1.0 U U U 100-41-4Ethylbenzene 5.0 U 591-78-62-Hexanone 5.0 U 98-82-8Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	110-82-7	-Cyclohexane		1.0	U
96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 156-59-2cis-1,2-Dichloroethene 99 1.0 U 156-60-5trans-1,2-Dichloroethene 8.2 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Bethyl acetate 1.0 U 108-87-2Methyl cyclohexane 1.0 U				1.0	U
1.0 U 1.0	124-48-1	-Dibromochloromethane		1.0	U
541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 99 1.0 156-60-5trans-1,2-Dichloroethene 8.2 1.0 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	96-12-8	-1,2-Dibromo-3-chloropropane		1.0	ן ט
106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 99 156-60-5trans-1,2-Dichloroethene 8.2 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	95-50-1	-1,2-Dichlorobenzene		1.0	U
75-71-8Dichlorodifluoromethane 75-34-31,1-Dichloroethane 1.0 107-06-21,2-Dichloroethane 1.0 156-59-2cis-1,2-Dichloroethene 156-60-5trans-1,2-Dichloroethene 156-60-51,2-Dichloroethene 156-60-51,2-Dichloropropane 156-60-51,3-Dichloropropane 150 150 150 150 150 150 150 150 150 150	541-73-1	-1,3-Dichlorobenzene		1.0	U
75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 99 156-60-5trans-1,2-Dichloroethene 8.2 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Bethyl acetate 1.0 U 108-87-2Methyl cyclohexane 1.0 U	106-46-7	-1,4-Dichlorobenzene		1.0	U
107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 99 156-60-5trans-1,2-Dichloroptopene 8.2 78-87-51,2-Dichloroptopene 1.0 U 10061-01-5cis-1,3-Dichloroptopene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	75-71-8	-Dichlorodifluoromethane		1.0	U
75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 99 156-60-5trans-1,2-Dichloroethene 8.2 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 108-87-2Methyl acetate 1.0 U	75-34-3	-1,1-Dichloroethane		1.0	U
156-59-2cis-1,2-Dichloroethene 99 156-60-5trans-1,2-Dichloroethene 8.2 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 100-41-4Ethylbenzene 5.0 U 98-82-8Isopropylbenzene 1.0 U 108-87-2Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U 108-87-2Methylcyclohexane 1.0 U	107-06-2	-1,2-Dichloroethane		1.0	U
156-60-5trans-1,2-Dichloroethene 8.2 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	75-35-4	-1,1-Dichloroethene		1.0	U
78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	156-59-2	-cis-1,2-Dichloroethene		99	
10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	156-60-5	-trans-1,2-Dichloroethene		8.2	
10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	78-87-5	-1,2-Dichloropropane		1.0	U
10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U				1.0	U
100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U				1.0	U
591-78-62-Hexanone 5.0 U 98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	100-41-4	-Ethylbenzene		1.0	U
98-82-8Isopropylbenzene 1.0 U 79-20-9Methyl acetate 1.0 U 108-87-2Methylcyclohexane 1.0 U	591-78-6	-2-Hexanone		5.0	U
79-20-9Methyl acetate				1.0	U
1.0 U				1.0	ע
				1.0	U
				1.0	ט

U

U

U

U

U

1.0

1.0

1.0

1.0

3.0

48

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

	MW-31
Lab Name: STL Buffalo Contract: 4	
Lab Code: RECNY Case No.: SAS No.:	SDG No.: <u>1205GW</u>
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A5E59201
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID: <u>G7595.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>
Moisture: not dec Heated Purge: N	Date Analyzed: <u>12/27/2005</u>
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
79-34-51,1,2,2-Tetrachloroethane	1.0 U U U U U U U U U U U U U U U U U U U

79-00-5-----1,1,2-Trichloroethane

79-01-6----Trichloroethene

75-01-4-----Vinyl chloride

1330-20-7----Total Xylenes

75-69-4-----Trichlorofluoromethane

76-13-1----1,1,2-Trichloro-1,2,2-trifluoroethane

Client No.

	MW-37	
1		

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: SAS No.: SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59205

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{G7601.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/22/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: N Date Analyzed: N

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS: COMPOUND CAS NO. (ug/L or ug/Kg) <u>UG/L</u> Q 67-64-1-----Acetone____ 5.0 U 71-43-2----Benzene 1.0 U 75-27-4----Bromodichloromethane 1.0 U U 75-25-2----Bromoform 1.0 74-83-9-----Bromomethane 1.0 U 75-15-0-----Carbon Disulfide 5.0 U 1.0 U 56-23-5-----Carbon Tetrachloride 1.0 U 108-90-7----Chlorobenzene 1.0 U 75-00-3-----Chloroethane 1.0 U U 1.0 67-66-3-----Chloroform 74-87-3----Chloromethane 1.0 U 1.0 U 110-82-7-----Cyclohexane 106-93-4----1,2-Dibromoethane 1.0 U U 1.0 124-48-1----Dibromochloromethane U 96-12-8----1,2-Dibromo-3-chloropropane 1.0 95-50-1----1,2-Dichlorobenzene_____ 1.0 U U 1.0 541-73-1----1,3-Dichlorobenzene 1.0 U 106-46-7----1,4-Dichlorobenzene 75-71-8-----Dichlorodifluoromethane 1.0 U 75-34-3----1,1-Dichloroethane 1.0 U 107-06-2----1,2-Dichloroethane 1.0 IJ U 75-35-4----1,1-Dichloroethene 1.0 156-59-2----cis-1,2-Dichloroethene 50 156-60-5----trans-1,2-Dichloroethene 2.4 78-87-5----1,2-Dichloropropane 1.0 U 1.0 U 10061-01-5---cis-1,3-Dichloropropene 10061-02-6---trans-1,3-Dichloropropene U 1.0 100-41-4-----Ethylbenzene____ U 1.0 IJ 591-78-6----2-Hexanone 5.0 98-82-8----Isopropylbenzene____ 1.0 U U 79-20-9-----Methyl acetate 1.0 108-87-2----Methylcyclohexane 1.0 U U 1.0 75-09-2-----Methylene chloride

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

					N	∕W-37		
Lab Name:	STL Buffalo		Contract: 4	·	L			
Lab Code:	<u>RECNY</u> Cas	se No.:	SAS No.:	SDG No.: <u>12</u>	05GW			
Matrix: (soil/water) <u>[</u>	WATER		Lab Sample I	D: <u>A'</u>	5E59205	-	
Sample wt	/vol:	5.00 (g/mL)	ML	Lab File ID:	<u>G</u>	7601.RR	· ·	
Level:	(low/med)]	LOW		Date Samp/Re	ecv: <u>12</u>	<u>2/22/200</u> !	5 12/2	3/2005
% Moistur	e: not dec.	Heate	d Purge: <u>N</u>	Date Analyze	ed: <u>12</u>	<u>2/27/200</u> !	5	
GC Column	: DB-624	ID: <u>0.25</u> (mm)	Dilution Fac	tor: _	1.00		
Soil Extra	act Volume:	(uL)		Soil Aliquot	Volume	e:	(u	L)
. (CAS NO.	COMPOUND		CONCENTRATION UN (ug/L or ug/Kg)		<u>/L</u>	Q	

Client No.

- 1		
	157 00	l
	MW-38	l
1	1	i

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: SAS No.: SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59204

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{G7600.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/22/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS: COMPOUND (ug/L or ug/Kg) UG/L CAS NO. U 67-64-1---**--**Acetone 5.0 U 1.0 71-43-2----Benzene U 1.0 75-27-4-----Bromodichloromethane 75-25-2----Bromoform 1.0 U 74-83-9----Bromomethane U 1.0 5.0 U 78-93-3----2-Butanone U 75-15-0-----Carbon Disulfide 1.0 1.0 U 56-23-5-----Carbon Tetrachloride 108-90-7----Chlorobenzene____ U 1.0 75-00-3-----Chloroethane_____ U 1.0 U 67-66-3-----Chloroform 1.0 74-87-3-----Chloromethane____ U 1.0 1.0 U 1.0 U U 1.0 124-48-1----Dibromochloromethane 96-12-8----1,2-Dibromo-3-chloropropane U 1.0 95-50-1----1,2-Dichlorobenzene____ 1.0 U 1.0 U 541-73-1----1,3-Dichlorobenzene U 106-46-7----1,4-Dichlorobenzene 1.0 U 75-71-8----Dichlorodifluoromethane 1.0 75-34-3-----1,1-Dichloroethane 1.2 U 107-06-2----1,2-Dichloroethane 1.0 U 1.0 75-35-4----1,1-Dichloroethene J 156-59-2----cis-1,2-Dichloroethene 0.54 156-60-5----trans-1,2-Dichloroethene 1.0 U U 1.0 78-87-5----1,2-Dichloropropane U 10061-01-5---cis-1,3-Dichloropropene 1.0 U 1.0 10061-02-6---trans-1,3-Dichloropropene U. 100-41-4----Ethylbenzene 1.0 U 5.0 591-78-6---2-Hexanone U 1.0 98-82-8----Isopropylbenzene 79-20-9----Methyl acetate_____ U 1.0 U 108-87-2----Methylcyclohexane 1.0 75-09-2----Methylene chloride 1.0 U

U

บ

U

1.0

1.0

3.0

19

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

-l- NT			Clause and A				MW-38		· · · ·
Lad Name	: SIL BULLAIC	2	Contract: 4	 					·
Lab Code	: <u>RECNY</u> Ca	ase No.:	SAS No.:		SDG No.:	1205GW			
Matrix:	(soil/water)	WATER			Lab Sample	≥ ID:	A5E59204	<u> </u>	
Sample w	t/vol:		<u>ML</u>		Lab File	D:	G7600.RE	2	-
Level:	(low/med)	LOW			Date Samp,	Recv:	12/22/20	005 12	/23/2005
k Moistu	re: not dec.	Heated	d Purge: <u>N</u>		Date Analy	zed:	12/27/20	005	
3C Colum	n: <u>DB-624</u>	ID: <u>0.25</u> (r	m)		Dilution I	actor:	1.00	2	
Soil Ext	ract Volume:	(uL)			Soil Aliq	ot Vol	ume:	· ————	(uL)
	CAS NO.	COMPOUND			CENTRATION g/L or ug/I		_	Q	
	1634-04-4 91-20-3 100-42-5 79-34-5 127-18-4 108-88-3 120-82-1 71-55-6	Naphthalene Styrene 1,1,2,2-Tetrachloros Toluene 1,2,4-Trichl 1,1,1-Trichl	rachloroethane ethene lorobenzene loroethane				5.0 35 1.0 1.0 0.61 1.0 6.0 1.0	מ מ מ מ מ מ מ מ	-

75-69-4----Trichlorofluoromethane

79-01-6----Trichloroethene

Client No.

P-10	
L	

1.0

1.0

U

U

Lab Name: STL Buffalo Contract: 4

108-87-2----Methylcyclohexane

75-09-2-----Methylene chloride

Lab Code: RECNY Case No.: SAS No.: SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59211

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{G7607.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/22/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS: COMPOUND (ug/L or ug/Kg) UG/L Q CAS NO. 5.0 U 67-64-1-----Acetone 1.0 U 71-43-2----Benzene U 75-27-4-----Bromodichloromethane 1.0 1.0 U 75-25-2-----Bromoform U 1.0 74-83-9----Bromomethane U 5.0 78-93-3----2-Butanone U 75-15-0-----Carbon Disulfide 1.0 U 56-23-5-----Carbon Tetrachloride 1.0 108-90-7----Chlorobenzene 1.0 U 75-00-3-----Chloroethane____ U 1.0 U 67-66-3-----Chloroform 1.0 74-87-3-----Chloromethane 1.0 U 1.0 U 110-82-7-----Cyclohexane U 1.0 106-93-4----1,2-Dibromoethane U 1.0 124-48-1----Dibromochloromethane U 1.0 96-12-8----1,2-Dibromo-3-chloropropane 95-50-1----1,2-Dichlorobenzene 1.0 U 1.0 U 541-73-1----1,3-Dichlorobenzene U 1.0 106-46-7----1,4-Dichlorobenzene U 75-71-8-----Dichlorodifluoromethane 1.0 1.0 U 75-34-3-----1,1-Dichloroethane 1.0 U 107-06-2----1,2-Dichloroethane U 1.0 75-35-4----1,1-Dichloroethene 156-59-2----cis-1,2-Dichloroethene 16 U 1.0 156-60-5----trans-1,2-Dichloroethene U 78-87-5----1,2-Dichloropropane 1.0 1.0 U 10061-01-5---cis-1,3-Dichloropropene U 10061-02-6---trans-1,3-Dichloropropene 1.0 1.0 U 100-41-4----Ethylbenzene 591-78-6----2-Hexanone_ 5.0 U 1.0 U 98-82-8----Isopropylbenzene U 1.0 79-20-9-----Methyl acetate

U

1.0 3.0

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

	P-10
Lab Name: STL Buffalo Contract: 4	
Lab Code: RECNY Case No.: SAS No.:	SDG No.: <u>1205GW</u>
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A5E59211
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: <u>G7607.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>12/22/2005</u> <u>12/23/200</u>
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>12/27/2005</u>
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
100 00 1 1 0 4 Mai alal accelerations	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U

75-01-4-----Vinyl chloride 1330-20-7----Total Xylenes_

Client No.

1		
1 - 33		
10-11		
1		
ı		

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59213

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{G7609.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/22/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: N Date Analyzed: N

GC Column: $\underline{DB-624}$ ID: $\underline{0.25}$ (mm) Dilution Factor: $\underline{1.00}$

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

		CONCENTRATION UNIT		_
CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/L</u>	Q
67-64-1	Acetone		5.0	บ
71-43-2	Benzene		1.0	ש
75-27-4	Bromodichloromethane		1.0	U
75-25-2	Bromoform		1.0	U
74-83-9	Bromomethane		1.0	U
78-93-3	2-Butanone		5.0	U
75-15-0	Carbon Disulfide		1.0	U
56-23-5	Carbon Tetrachloride		1.0	U
108-90-7	Chlorobenzene		1,.0	U
	Chloroethane		1.0	U
67-66-3	Chloroform		1.0	U
74-87-3	Chloromethane		1.0	U
110-82-7	Cyclohexane		1.0	U
	1,2-Dibromoethane		1.0	U
	Dibromochloromethane		1.0	U
96-12-8	1,2-Dibromo-3-chloropropane		1.0	U
	1,2-Dichlorobenzene		1.0	U
	1,3-Dichlorobenzene		1.0	U
106-46-7	1,4-Dichlorobenzene		1.0	U
75-71-8	Dichlorodifluoromethane		1.0	U
75-34-3	1,1-Dichloroethane		1.0	U
107-06-2	1,2-Dichloroethane		1.0	U
75-35-4	1,1-Dichloroethene		1.0	U
156-59-2	cis-1,2-Dichloroethene		12	
156-60-5	trans-1,2-Dichloroethene		1.3	
78-87-5	1,2-Dichloropropane		1.0	U
10061-01-5	cis-1,3-Dichloropropene		1.0	U
1	trans-1,3-Dichloropropene		1.0	ַ
ł .	Ethylbenzene		1.0	U
!	2-Hexanone		5.0	U
I	Isopropylbenzene		1.0	U
	Methyl acetate		1.0	U
	Methylcyclohexane		1.0	U
	Methylene chloride		1.0	ע

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

						P-11	
Lab Name:	: STL Buffalo	2	Contract: 4				· · · · ·
Lab Code:	: <u>RECNY</u> Ca	ase No.:	_ SAS No.:	ř	SDG No.: 12050	M	
Matrix:	(soil/water)	WATER		I	ab Sample ID:	A5E59213	
Sample wt	:/vol:) <u>ML</u>	L	ab File ID:	G7609.RR	
Level:	(low/med)	LOW		D	ate Samp/Recv:	12/22/2005	12/23/2005
% Moistur	re: not dec.	Heat	ed Purge: N	D	ate Analyzed:	12/27/2005	
3C Column	n: <u>DB-624</u>	ID: <u>0.25</u>	(mm)	D	ilution Factor	1.00	
Soil Extr	cact Volume:	(uL)		S	soil Aliquot Vo	olume:	(uL)
	CAS NO.	COMPOUND			NIRATION UNITS 'L or ug/Kg)		Q
						1	i

Lab Name: STL Buffalo

Contract: 4

Lab Code: RECNY

Case No.:

SAS No.: ____ SDG No.: 1205GW

			_								
	Client Sample ID	Lab Sample ID	BFB %REC #	DCE %REC	TOL # %REC #	#					TOT OUT
4	ED 422205	=======================================	======	======	======	- ======	2=====	======	======	======	===
	EB-122205	A5E59208	92	92	94	1	ĺ		i i	}	0
2	MSB36	A5B2007001	93	92	95	1		İ	ł	{	0
-	MSB37	A5E59216	94	92	95	1	1	l	ļ		0
4	MSB38	A5B2013901	93	91	94	İ		ļ	1	İ	0
5	MW-22	A5E59202	93	92	94	1	i				0
6	MW-22 RI	A5E59202R1	95	92	95						0
7	MW-23	A5E59209	92	92	93	l	ļ		[0
8	MW-24	A5E59206	92	93	94			i i			o l
9	MW-25	A5E59203	92	93	92	1					ň
10	MW-26	A5E59212	93	93	94	1					ŏ
11	MW-27	A5E59210	91	93	93	1		·			ō l
12	MW-29	A5E59214	93	94	95						0
13	MW-30	A5E59207	92	92	94	i	·				o l
14	MW-31	A5E59201	93	94	94						ŏ
15	MW-31	A5E59201MS	92	93	92	}			*		ň
16	MW-31	A5E59201SD	91	92	93						ŏ
17	MW-37	A5E59205	92	95	95	(ŏ
18	MW-38	A5E59204	94	94	95	1		,			ŏ
19	P-10	A5E59211	92	93	94					İ	ŏ
20	P-11	A5E59213	92	94	93			i			ă l
21	VBLK36	A5B2007002	94	93	94	1 1		1	-		0
22	VBLK37	A5E59215	92	92	93	1			į	ļ	0
23	VBLK38	A5B2013902	93	91	94				İ		0
i				<i>7</i> I	_ ′						١

QC LIMITS

BFB = p-Bromofluorobenzene = 1,2-Dichloroethane-D4 DCE

(73-120)

TOL = Toluene-D8 (72-143) (76-122)

- # Column to be used to flag recovery values* Values outside of contract required QC limits
- D Surrogates diluted out

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W WATER MATRIX SPIKE BLANK RECOVERY

41/304

Lab Name: STL Buffalo

Contract: 4

Lab Samp ID: <u>A5B2007002</u>

Lab Code: <u>RECNY</u>

Case No.: ____

SAS No.: ____

SDG No.: <u>1205GW</u>

Matrix Spike - Client Sample No.: <u>VBLK36</u>

COMPOUND	SPIKE	MSB	MSB	QC
	ADDED	CONCENTRATION	%	LIMITS
	UG/L	UG/L	REC #	REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	25.0	26.7	107	65 - 142
	25.0	25.8	103	71 - 120
	25.0	26.1	105	67 - 126
	25.0	25.5	102	69 - 120
	25.0	25.7	103	73 - 120

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

Spike recovery:	0 out of	5 outside limits	
Comments:	·	···	

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W WATER MATRIX SPIKE BLANK RECOVERY

42/304

Lab Name: STL Buffalo

Contract: 4 Lab Samp ID: A5E59215

Lab Code: RECNY

Case No.: ____

SAS No.: _____ SDG No.: <u>1205GW</u>

Matrix Spike - Client Sample No.: $\underline{\text{VBLK37}}$

COMPOUND	SPIKE	MSB	MSB	QC
	ADDED	CONCENTRATION	%	LIMITS
	UG/L	UG/L	REC #	REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	25.0	25.9	104	65 - 142
	25.0	25.3	102	71 - 120
	25.0	25.8	103	67 - 126
	25.0	25.5	102	69 - 120
	25.0	25.7	103	73 - 120

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

Spike recovery: _	0 out of	<u>5</u> outside limits		
Comments:			~~	

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W WATER MATRIX SPIKE BLANK RECOVERY

43/304

Lab Name: STL Buffalo

Contract: 4 Lab Samp ID: A5B2013902

Lab Code: <u>RECNY</u>

Case No.: ____

SAS No.: _____ SDG No.: <u>1205GW</u>

Matrix Spike - Client Sample No.: <u>VBLK38</u>

COMPOUND	SPIKE	MSB	MSB	QC
	ADDED	CONCENTRATION	%	LIMITS
	UG/L	UG/L	REC #	REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	25.0 25.0 25.0 25.0 25.0	25.5 25.4 25.5 25.2 25.5	102 102 102 102 101 102	65 - 142 71 - 120 67 - 126 69 - 120 73 - 120

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

Spike reco	very:0	out of	<u>5</u> outside	limits		
Comments:					 ·	
_						

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W WATER MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: STL Buffalo

Contract: 4 Lab Samp ID: A5E59201

Lab Code: <u>RECNY</u>

Case No.: ____

SAS No.: ____ SDG No.: 1205GW

Matrix Spike - Client Sample No.: $\underline{MW-31}$

COMPOUND	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
	UG/L	UG/L	UG/L	REC #	REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	25.0 25.0 25.0 25.0 25.0	0 47.8 0 0	13.4 67.3 18.6 18.7 19.2	54 * 78 75 75 77	65 - 142 71 - 120 67 - 126 69 - 120 73 - 120

COMPOUND	SPIKE ADDED UG/L	MSD CONCENTRATION UG/L	MSD % REC #	% RPD #	RPD	C LIMITS REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	25.0 25.0 25.0 25.0 25.0	17.0 72.5 23.3 24.1 24.5	68 99 93 96 98	23 * 24 * 21 * 24 * 24 *	16	65 - 142 71 - 120 67 - 126 69 - 120 73 - 120

[#] Column to be used to flag recovery and RPD values with an asterisk

Spike recovery:1 out of10 outside limits	
Comments:	_

^{*} Values outside of QC limits

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W
METHOD BLANK SUMMARY

45/304 No.

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 1205GW

Lab File ID: G7593.RR Lab Sample ID: A5B2007002

Date Analyzed: 12/27/2005 Time Analyzed: 09:44

GC Column: DB-624 ID: 0.25 (mm) Heated Purge: (Y/N) \underline{N}

Instrument ID: <u>HP5973G</u>

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	CLIENT	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
٠ .	TD 10000F	========	===========	========
1	EB-122205	A5E59208	G7604.RR	16:39
2	MSB36	A5B2007001	G7594.RR	10:26
3	MW-23	A5E59209	G7605.RR	17:02
4	MW-24	A5E59206	G7602.RR	15:53
5	MW-25	A5E59203	G7599.RR	14:46
6	MW-26	A5E59212	G7608.RR	18:09
7	MW-27	A5E59210	G7606.RR	17:24
8	MW-29	A5E59214	G7610.RR	18:53
9	MW-30	A5E59207	G7603.RR	16:16
10	MW-31	A5E59201	G7595.RR	10:48
11	MW-31	A5E59201MS	G7596.RR	13:39
12	MW-31	A5E59201SD	G7597.RR	14:01
13	MW-37	A5E59205	G7601.RR	15:31
14	MW-38	A5E59204	G7600.RR	15:08
15	P-10	A5E59211	G7607.RR	17:46
16	P-11	A5E59213	G7609.RR	18:31
_ [HOUS /ZIS	G/003.RR	10:21

Comments:	

Client No.

	VBLK36
Lab Name: STL Buffalo Contract: 4	
Lab Code: RECNY Case No.: SAS No.:	SDG No.: <u>1205GW</u>
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A5B2007002
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID: <u>G7593.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv:
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>12/27/2005</u>
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

67-64-1Acetone 5.0 U 71-43-2Benzene 1.0 U 75-27-4	CAS NO.	COMPOUND	(ug/L or ug/k	(g) <u>L</u>	G/L	Q
75-27-4 Bromodichloromethane 1.0 U 75-25-2 Bromoform 1.0 U 74-83-9 Bromomethane 1.0 U 78-93-3 Bromomethane 5.0 U 75-15-0 Carbon Disulfide 1.0 U 56-23-5 Carbon Tetrachloride 1.0 U 108-90-7 Chlorobenzene 1.0 U 75-00-3 Chloromethane 1.0 U 76-66-3 Chloromethane 1.0 U 74-87-3 Chloromethane 1.0 U 106-93-4 1, 2-Dibromoethane 1.0 U 124-48-1 Dibromochloromethane 1.0 U 96-12-8 1, 2-Dichlorobenzene 1.0 U 95-50-1 1, 3-Dichlorobenzene 1.0 U 106-46-7 1, 4-Dichlorobenzene 1.0 U 75-71-8 Dichlorodifluoromethane 1.0 U 75-34-3 1, 1-Dichloroethane 1.0 U 156-59-2 cis-1, 2-Dichloroethene 1.0 U 156-60-5 trans-1, 2-Dichloroethene 1.0 U 106-101-5 cis-1, 3-Dichloroptopene 1.0 U 10061-01-5 cis-1, 3-Dichloroptopene 1.0 U 10061-01-5 cis-1, 3-Dichloroptopene 1.0 U 10061-02-6 trans-1, 3-Dichloroptopene 1.0 U 10061-02-6 trans-1, 3-Dichloroptopene 1.0 U 10061-02-6 trans-1, 3-Dichloroptopene 1.0 U 10061-02-6 trans-1, 3-Dichloroptopene 1.0 U 10061-02-6 trans-1, 3-Dichloroptopene 1.0 U 10061-02-6 trans-1, 3-Dichloroptopene 1.0 U 10061-02-6 trans-1, 3-Dichloroptopene 1.0 U 10061-02-6 trans-1, 3-Dichloroptopene 1.0 U 100-41-4 Ethylbenzene 5.0 U	67-64-1	Acetone			5.0	1
75-25-2Bromoform 1.0 U 74-83-9Bromomethane 1.0 U 78-93-3	71-43-2	Benzene			1.0	1 -
74-83-9Brommethane 1.0 U 78-93-32-Butanone 5.0 U 75-15-0Carbon Disulfide 1.0 U 108-90-7Chlorobenzene 1.0 U 75-00-3Chlorobethane 1.0 U 67-66-3Chloroform 1.0 U 74-87-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 110-82-7	75-27-4	Bromodichloromethane			1.0	U
78-93-32-Butanone 5.0 U 75-15-0Carbon Disulfide 1.0 U 56-23-5Carbon Tetrachloride 1.0 U 108-90-7Chlorobenzene 1.0 U 75-00-3Chloroethane 1.0 U 67-66-3Chloromethane 1.0 U 74-87-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 106-93-4						U
75-15-0Carbon Disulfide 1.0 U 56-23-5Carbon Tetrachloride 1.0 U 108-90-7Chlorobenzene 1.0 U 75-00-3Chloroform 1.0 U 67-66-3Chloroform 1.0 U 74-87-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromoethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloropropane 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U						U
56-23-5Carbon Tetrachloride 1.0 U 108-90-7Chlorobenzene 1.0 U 75-00-3Chlorofemm 1.0 U 67-66-3Chloromethane 1.0 U 74-87-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromoethane 1.0 U 106-93-41,2-Dibromoethane 1.0 U 96-12-81,2-Dibromoethane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 75-71-81,4-Dichlorobenzene 1.0 U 75-71-81,1-Dichlorobenzene 1.0 U 75-34-31,1-Dichlorobenzene 1.0 U 75-35-41,2-Dichlorobenzene 1.0 U 75-35-41,1-Dichlorobenzene 1.0 U 75-35-41,2-Dichlorobenzene 1.0 U 75-8-51,2-Dichlorobenzene 1.0 U 156-60-5trans-1,2-Dichlorobenzene 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U	78-93-3	2-Butanone			5.0	1 1
108-90-7Chlorobenzene 1.0 U 75-00-3Chlorocethane 1.0 U 67-66-3Chloromethane 1.0 U 74-87-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 106-93-41, 2-Dibromoethane 1.0 U 106-93-41, 2-Dibromoethane 1.0 U 124-48-1Dibromoethane 1.0 U 96-12-81, 2-Dibromo-3-chloropropane 1.0 U 95-50-11, 2-Dichlorobenzene 1.0 U 541-73-11, 3-Dichlorobenzene 1.0 U 106-46-71, 4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31, 1-Dichloroethane 1.0 U 107-06-21, 2-Dichloroethene 1.0 U 156-59-2cis-1, 2-Dichloroethene 1.0 U 156-60-5trans-1, 2-Dichloroethene 1.0 U 1061-01-5cis-1, 3-Dichloropropene 1.0 U 10061-02-6trans-1, 3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>1 1</td></td<>						1 1
75-00-3Chloroethane 1.0 U 67-66-3Chloroform 1.0 U 74-87-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromoethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U					1.0	1 1
67-66-3Chloroform 1.0 U 74-87-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromoethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 156-59-21,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 178-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U						1 1
74-87-3Chloromethane 1.0 U 110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromoethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 1061-01-5cis-1,3-Dichloropropane 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U	75-00-3	Chloroethane			1.0	1 - 1
110-82-7Cyclohexane 1.0 U 106-93-41,2-Dibromoethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 1061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U	67-66-3	Chloroform			1.0	U
106-93-41, 2-Dibromoethane 1.0 U 124-48-1Dibromochloromethane 1.0 U 96-12-81, 2-Dibromo-3-chloropropane 1.0 U 95-50-11, 2-Dichlorobenzene 1.0 U 541-73-11, 3-Dichlorobenzene 1.0 U 106-46-71, 4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31, 1-Dichloroethane 1.0 U 107-06-21, 2-Dichloroethane 1.0 U 75-35-41, 1-Dichloroethene 1.0 U 156-60-5trans-1, 2-Dichloroethene 1.0 U 156-60-5trans-1, 2-Dichloropropane 1.0 U 10061-01-5cis-1, 3-Dichloropropene 1.0 U 10061-02-6trans-1, 3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U					1.0	1 - 1
124-48-1Dibromochloromethane 1.0 U 96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorobenzene 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 5.0 U	110-82-7	Cyclohexane			1.0	U
96-12-81,2-Dibromo-3-chloropropane 1.0 U 95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U	106-93-4	1,2-Dibromoethane			1.0	U
95-50-11,2-Dichlorobenzene 1.0 U 541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U					1.0	F - I
541-73-11,3-Dichlorobenzene 1.0 U 106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U					1.0	U
106-46-71,4-Dichlorobenzene 1.0 U 75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U	95-50-1	1,2-Dichlorobenzene			1.0	U
75-71-8Dichlorodifluoromethane 1.0 U 75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U	541-73-1	1,3-Dichlorobenzene			1.0	U
75-34-31,1-Dichloroethane 1.0 U 107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U	106-46-7	1,4-Dichlorobenzene			1.0	U
107-06-21,2-Dichloroethane 1.0 U 75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U	75-71-8	Dichlorodifluoromethane			1.0	U
75-35-41,1-Dichloroethene 1.0 U 156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U	75-34-3	1,1-Dichloroethane			1.0	U
156-59-2cis-1,2-Dichloroethene 1.0 U 156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U					1.0	U
156-60-5trans-1,2-Dichloroethene 1.0 U 78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U	75-35-4	1,1-Dichloroethene			1.0	U
78-87-51,2-Dichloropropane 1.0 U 10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U	156-59-2	cis-1,2-Dichloroethene			1.0	U
10061-01-5cis-1,3-Dichloropropene 1.0 U 10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U	156-60-5	trans-1,2-Dichloroethene			1.0	U
10061-02-6trans-1,3-Dichloropropene 1.0 U 100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U	78-87-5	1,2-Dichloropropane			1.0	U
100-41-4Ethylbenzene 1.0 U 591-78-62-Hexanone 5.0 U					1.0	U
591-78-62-Hexanone 5.0 U	10061-02-6	trans-1,3-Dichloropropene			1.0	U
	100-41-4	Ethylbenzene			1.0	I - I
00_02_0Tgopropy.] hopgopo	591-78-6	2-Hexanone			5.0	U
190-02-0Isopropythetizete	98-82-8	Isopropylbenzene			1.0	U
79-20-9Methyl acetate 1.0 U	79-20-9	Methyl acetate			1.0	U
1.0 U	108-87-2	Methylcyclohexane			1.0	U
75-09-2Methylene chloride 1.0 U	75-09-2	Methylene chloride			1.0	U

e de la companya del companya de la companya del companya de la co		and the second second second second			
			VBLK3	6	
Lab Name: <u>STL Buffa</u>	<u>lo</u> Contract:	4	The state of the s		
Lab Code: <u>RECNY</u>	Case No.: SAS No.	: SDG No.	: 1205GW		
Matrix: (soil/water) <u>WATER</u>	Lab Sampl	le ID: <u>A5B200</u>	7002	
Sample wt/vol:		Lab File	ID: <u>G7593.</u>]	RR	_ + + + + + + + + + + + + + + + + + + +
Level: (low/med)	LOW	Date Sam	o/Recv:		
% Moisture: not dec	Heated Purge: N	Date Anal	lyzed: <u>12/27/</u>	2005	
GC Column: <u>DB-624</u>	ID: <u>0.25</u> (mm)	Dilution	Factor: 1.	<u>00</u>	
Soil Extract Volume	: (uL)	Soil Alic	quot Volume:	((uL)
CAS NO.	COMPOUND	CONCENTRATION (ug/L or ug/		Q	
1634-04-4- 91-20-3 100-42-5 79-34-5 127-18-4 108-88-3 120-82-1 71-55-6 79-00-5 76-13-1 75-69-4 75-01-4	4-Methyl-2-pentanoneMethyl-t-Butyl EtherNaphthaleneStyrene1,1,2,2-TetrachloroethTetrachloroethene1,2,4-Trichlorobenzene1,1,1-Trichloroethane1,1,2-Trichloroethane1,1,2-TrichloromethaneTrichlorofluoromethaneTrichloroetheneVinyl chlorideTotal Xylenes	trifluoroethane	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ממממממממממממ	

METHOD BLANK SUMMARY

48/304ent No.

Lab Name: STL Buffalo	Contract: 4	VBLK37
Zaz name. <u>Bill Ballalo</u>	Concrace.	
Lab Code: RECNY Case No.:	SAS No.:	SDG No.: <u>1205GW</u>
Lab File ID: <u>G7618.RR</u>	_ Lab Sample ID: 1	<u>45E59215</u>
Date Analyzed: <u>12/27/2005</u>	Time Analyzed: 2	21:51
GC Column: <u>DB-624</u> ID: <u>0.25</u> ((mm) Heated Purge: (//N) <u>N</u>
Instrument ID: <u>HP5973G</u>	-	
THIS METHOD BLANK APPLIE	ES TO THE FOLLOWING SAMPI	LES, MS AND MSD:

	CLIENT	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
1 2	MSB37 MW-22		G7617.RR G7638.RR	21:29 05:34

Comments:					
	_				

49/304

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

5.0

1.0

1.0

1.0

1.0

Client No.

Lab Name: STL Buffalo Contract: 4	VBLK37
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.: <u>1205GW</u>
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A5E59215
Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{ML}	Lab File ID: <u>G7618.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv:
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>12/27/2005</u>
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
67-64-1	1.0 U U 1.0 U U 1.0 U U 1.0 U U U U U U U U U U U U U U U U U U U
1 100 00 / CITOLODE IZELE	1.0 U

75-00-3-----Chloroethane

74-87-3-----Chloromethane

106-93-4----1, 2-Dibromoethane

124-48-1----Dibromochloromethane

95-50-1----1,2-Dichlorobenzene

541-73-1----1,3-Dichlorobenzene

106-46-7----1,4-Dichlorobenzene

75-34-3----1,1-Dichloroethane

107-06-2----1,2-Dichloroethane

75-35-4-----1,1-Dichloroethene

78-87-5----1,2-Dichloropropane

100-41-4----Ethylbenzene

98-82-8-----Isopropylbenzene

108-87-2----Methylcyclohexane

75-09-2-----Methylene chloride

79-20-9-----Methyl acetate

591-78-6----2-Hexanone

75-71-8-----Dichlorodifluoromethane

156-59-2----cis-1,2-Dichloroethene

156-60-5----trans-1,2-Dichloroethene

10061-01-5---cis-1,3-Dichloropropene

10061-02-6---trans-1,3-Dichloropropene

96-12-8----1,2-Dibromo-3-chloropropane

67-66-3-----Chloroform

110-82-7----Cyclohexane

50/304

Lab Name: <u>STL Buffalo</u>	Contract: 4		VBLK3	7	
	No.: SAS No.:		5GW		
	<u>TER</u>			<u> </u>	
Sample wt/vol:	5.00 (g/mL) <u>ML</u>	Lab File ID:	<u>G7618.</u> F	R.	
Level: (low/med) <u>LO</u>	<u>N</u>	Date Samp/Recv	<i>r</i> :		
% Moisture: not dec	Heated Purge: N	Date Analyzed:	12/27/2	005	
GC Column: <u>DB-624</u>	ID: <u>0.25</u> (mm)	Dilution Facto	or:1.0	<u>0</u> 0 , .	
Soil Extract Volume:	(uL)	Soil Aliquot V	olume:	(1	ىلد)
CAS NO.	COMPOUND	CONCENIRATION UNIT (ug/L or ug/Kg)		Q	
1634-04-4N 91-20-3N 100-42-5S 79-34-5	.,1,2,2-Tetrachloroethane etrachloroethene	oroethane	5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	מטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט	

PIETUOD 0200 - TCL VOLATILE ORGANICS + NAPH - W

METHOD BLANK SUMMARY

51/304 No.

-			VBLK38
Lab Name	STL Buffalo	Contract: 4	<u> </u>

Lab Code: <u>RECNY</u> Case No.: _____ SAS No.: ____ SDG No.: <u>1205GW</u>

Lab File ID: <u>G7646.RR</u>

Lab Sample ID: <u>A5B2013902</u>

Date Analyzed: 12/28/2005 Time Analyzed: 10:29

GC Column: DB-624 ID: 0.18 (mm) Heated Purge: (Y/N) N

Instrument ID: <u>HP5973G</u>

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

·	CLIENT	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
1	MSB38	A5B2013901		10:06
2	MW-22 RI	A5E59202RI		12:10

Comments:	

		VBLK38
Lab Name: <u>STL Buffalo</u> Contra		
Lab Code: RECNY Case No.: SAS	No.:SDG No.	: <u>1205GW</u>
Matrix: (soil/water) <u>WATER</u>	Lab Samp	ole ID: <u>A5B2013902</u>
Sample wt/vol: 5.00 (g/mL) ML	Lab File	e ID: <u>G7646.RR</u>
Level: (low/med) <u>LOW</u>	Date San	np/Recv:
% Moisture: not dec Heated Purge	:: <u>N</u> Date Ana	alyzed: <u>12/28/2005</u>
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution	n Factor:1.00
Soil Extract Volume: (uL)	Soil Ali	quot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATIO (ug/L or ug	ON UNITS: g/Kg) <u>UG/L</u> Q

		CONCENTRATION UNI		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L_	Q
67-64-1	Acetone		5.0	U
71-43-2	Benzene		1.0	U
75-27-4	Bromodichloromethane		1.0	U
75-25-2	Bromoform		1.0	U
74-83-9	Bromomethane		1.0	U
78-93-3	2-Butanone		5.0	ַט
	Carbon Disulfide		1.0	U
56-23-5	Carbon Tetrachloride		1.0	U
108-90-7	Chlorobenzene	-	1.0	U
75-00-3	Chloroethane		1.0	U
67-66-3	Chloroform		1.0	U
	Chloromethane		1.0	U
110-82-7	Cyclohexane		1.0	U
	1,2-Dibromoethane		1.0	U
124-48-1	Dibromochloromethane		1.0	ש
	1,2-Dibromo-3-chloropropar	ne	1.0	U
	1,2-Dichlorobenzene		1.0	U
541-73-1	1,3-Dichlorobenzene		1.0	U
	1,4-Dichlorobenzene		1.0	υ
75-71-8	Dichlorodifluoromethane		1.0	U
75-34-3	1,1-Dichloroethane		1.0	U
	1,2-Dichloroethane		1.0	U
75-35-4	1,1-Dichloroethene		1.0	U
	cis-1,2-Dichloroethene		1.0	U
156-60-5	trans-1,2-Dichloroethene		1.0	U
	1,2-Dichloropropane		1.0	U
10061-01-5-	cis-1,3-Dichloropropene		1.0	U
10061-02-6-	trans-1,3-Dichloropropene		1.0	U
100-41-4	Ethylbenzene		1.0	U
	2-Hexanone		5.0	U
98-82-8	Isopropylbenzene		1.0	U
	Methyl acetate		1.0	U
	Methylcyclohexane		1.0	U
	Methylene chloride		1.0	U
	4			

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

T - 1 NT CUTT D - 6.5. 1			VBLK38	
Lab Name: SIL Buffalo	Contract: 4		**************************************	
Lab Code: <u>RECNY</u> Cas	se No.: SAS No.:	SDG No.: 1205GW	1	
Matrix: (soil/water) <u>V</u>	<u>VATER</u>	Lab Sample ID:	A5B201390	02
Sample wt/vol:	5.00 (g/mL) <u>ML</u>	Lab File ID:	G7646.RR	
Level: (low/med) <u>I</u>	<u>LOW</u>	Date Samp/Recv:	· · · · · · · · · · · · · · · · · · ·	
% Moisture: not dec	Heated Purge: N	Date Analyzed:	12/28/200	<u>05</u>
GC Column: <u>DB-624</u>	ID: <u>0.18</u> (mm)	Dilution Factor:	1.00	
Soil Extract Volume: _	(uL)	Soil Aliquot Vol	.ume:	(uL)
CAS NO.	COMPOUND	CONCENIRATION UNITS: (ug/L or ug/Kg)		Q
1634-04-4 91-20-3 100-42-5 79-34-5 127-18-4 108-88-3 120-82-1 71-55-6 79-00-5 75-69-4 75-01-4	1,1,2,2-TetrachloroethaneTetrachloroetheneToluene1,2,4-Trichlorobenzene1,1,1-Trichloroethane1,1,2-Trichloroethane1,1,2-Trichloro-1,2,2-triflu	oroethane	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ם מ מ מ מ מ מ מ מ מ מ מ מ מ מ מ מ מ מ מ

Lab Name: STL Buffalo Contract: 4 Labsampid: A5C0006619

Lab Code: RECNY Case No.: __ SAS No.: ___ SDG No.: 1205GW

Lab File ID (Standard): G7591.RR Date Analyzed: 12/27/2005

Instrument ID: HP5973G Time Analyzed: 08:35

GC Column(1): <u>DB-624</u> ID: <u>0.250(mm)</u> Heated Purge: (Y/N) N

			IS1 (CBZ) AREA #	RT #	IS2 (DCB) AREA #	RT #	IS3 (DFB) AREA #	RT #
	12 HOUR STD UPPER LIMIT LOWER LIMIT		192006 384012 96003	8.70 9.20 8.20	183265 366530 91633	11.05 11.55 10.55	374276 748552 187138	5.80 6.30 5.30
	CLIENT SAMPLE	Lab Sample ID		======	32425222222	======		=====
1 2 3	EB-122205 MSB36 MW-23	A5E59208 A5B2007001 A5E59209	181469 190265 178256	8.70 8.70 8.70	171054 179924 169454	11.06 11.05 11.05	360982 374730 354680	5.80 5.80 5.81
4 5 6	MW-24 MW-25 MW-26	A5E59206 A5E59203 A5E59212	180713 182818 174145	8.70 8.70 8.70	171907	11.06 11.06 11.05	358518 357381 347889	5.81 5.80 5.80
7 8 9	I	A5E59210 A5E59214 A5E59207		8.70 8.70 8.70	169222 165829	11.05 11.05 11.06	351221 340867 362257	5.80 5.80 5.81
10 11 12	MW-31	A5E59201 A5E59201MS A5E59201SD	186717 189889	8.70 8.70 8.70	179262 179742	11.05 11.05 11.05	370403 372272	5.81 5.80 5.80
13 14 15	MW-38	A5E59205 A5E59204 A5E59211	176794 178004	8.70 8.70 8.70	167419 167860	11.05 11.05 11.05	347622	5.81 5.80 5.80
	P-11	A5E59213 A5B2007002	173809	8.70 8.70	167063	11.06	345155 374123	5.80 5.80 5.81

AREA UNIT RT QC LIMITS QC LIMITS

(50-200)

IS1 (CBZ) = Chlorobenzene-D5 IS2 (DCB) = 1,4-Dichlorobenzene-D4 IS3 (DFB) = 1,4-Difluorobenzene (50-200) -0.50 / +0.50 min (50-200) -0.50 / +0.50 min -0.50 / +0.50 min

Column to be used to flag recovery values* Values outside of contract required QC limits

Lab Name: STL Buffalo Contract: 4 Labsampid: A5C0006622 Lab Code: RECNY Case No.: SAS No.: _____ SDG No.: 1205GW Lab File ID (Standard): G7615.RR Date Analyzed: 12/27/2005 Instrument ID: HP5973G Time Analyzed: 20:41 GC Column(1): <u>DB-624</u> ID: 0.250(mm) Heated Purge: (Y/N) N

		IS1 (CBZ) AREA #	RT #	IS2 (DCB) AREA #	RT #	IS3 (DFB) AREA #	RT #
12 HOUR STD UPPER LIMIT LOWER LIMIT	=======================================	177567 355134 88784	8.70 9.20 8.20	170788 341576 85394	11.05 11.55 10.55	349549 699098 174775	5.80 6.30 5.30
MSB37 MW-22	Lab Sample ID ====================================	172069	8.70 8.70 8.70	164553 163576 165543	====== 11.05 11.05 11.05		5.81 5.81 5.81

AREA UNIT QC LIMITS QC LIMITS

-0.50 / +0.50 min -0.50 / +0.50 min -0.50 / +0.50 min IS1 (CBZ) = Chlorobenzene-D5 (50-200) IS2 (DCB) = 1,4-Dichlorobenzene-D4 (50-200) IS3 (DFB) = 1,4-Difluorobenzene (50-200)

1 2 3

[#] Column to be used to flag recovery values

 Lab Name:
 STL Buffalo
 Contract:
 4
 Labsampid:
 A5C0006633

 Lab Code:
 RECNY
 Case No.:
 SAS No.:
 SDG No.:
 1205GW

 Lab File ID (Standard):
 G7643.RR
 Date Analyzed:
 12/28/2005

 Instrument ID:
 HP5973G
 Time Analyzed:
 08:50

 GC Column(1):
 DB-624
 ID:
 0.180(mm)
 Heated Purge:
 (Y/N)
 N

	=======================================	=======================================	IS1 (CBZ) AREA #	RT #	IS2 (DCB) AREA #	RT #	IS3 (DFB) AREA #	RT #
-	12 HOUR STD UPPER LIMIT LOWER LIMIT		175597 351194 87799	8.70 9.20 8.20	168435 336870 84218	11.05 11.55 10.55	350953 701906 175477	5.80 6.30 5.30
	CLIENT SAMPLE	Lab Sample ID	=======================================	======	=======================================	======	=======================================	======
2	MW-22 RI	A5B2013901 A5E59202RI A5B2013902	168565	8.70 8.70 8.70	165886 160884 164259	11.05 11.05 11.05	341641	5.80 5.81 5.81

AREA UNIT RT
QC LIMITS QC LIMITS

IS1 (CBZ) = Chlorobenzene-D5

IS2 (DCB) = 1,4-Dichlorobenzene-D4
IS3 (DFB) = 1,4-Difluorobenzene

(50-200) -0.50 / +0.50 min (50-200) -0.50 / +0.50 min (50-200) -0.50 / +0.50 min

[#] Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

Sample Data Package

SDG Narrative

SAMPLE SUMMARY

			SAMPI	FD	RECEIVI	I
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A5E59208	EB-122205	WATER	12/22/2005	11:10	12/23/2005	10:15
A5E59202	MW-22	WATER	12/21/2005	17:03	12/23/2005	10:15
A5E59209	MW-23	WATER			12/23/2005	
A5E59206	MW-24	WATER			12/23/2005	
A5E59203	MW-25	WATER			12/23/2005	
A5E59212	MW-26	WATER			12/23/2005	
A5E59210	MW-27	WATER			12/23/2005	
A5E59214	MW-29	WATER			12/23/2005	
A5E59207	MW-30	WATER			12/23/2005	
A5E59201	MW-31	WATER			12/23/2005	
A5E59201MS	MW-31	WATER			12/23/2005	
A5E59201SD	MW-31	WATER			12/23/2005	
A5E59205	MW-37	WATER			12/23/2005	
A5E59204	MW-38	WATER	12/22/2005	08:45	12/23/2005	10:15
A5E59211	P-10	WATER			12/23/2005	
A5E59213	P-11	WATER	12/22/2005	14:15	12/23/2005	10:15

METHODS SUMMARY

Job#: <u>A05-E592</u>

STL Project#: NY4A9171

SDG#: <u>1205GW</u>

Site Name: Environmental Strategies Corporation

SW8463 "Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

NON-CONFORMANCE SUMMARY

Job#: A05-E592

STL Project#: NY4A9171

SDG#: 1205GW

Site Name: Environmental Strategies Corporation

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A05-E592

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

GC/MS Volatile Data

Based on historical data sample MW-22 was originally analyzed at a dilution factor 2.0. Data review revealed that this sample was over-diluted. As a result sample MW-22 was reanalyzed undiluted. However,

sample MW-22 RI was analyzed from a vial containing headspace. Both sets of data were reported. The volatile organic results for sample MW-22 RI may be biased low.

All samples were preserved to a PH less than 2.

The spike recovery of the analyte 1,1-Dichloroethene in the Matrix Spike of sample MW-31 fell below quality control limits. The Relative Percent Difference (RPD) between the Matrix Spike and the Matrix Spike Duplicate of sample MW-31 exceeded quality control limits for the analytes 1,1-Dichloroethene, Trichloroethene, Benzene, Toluene and Chlorobenzene. The Matrix Spike Blank recoveries were compliant, so no corrective action is required.

Initial calibration standard curve A5I0002430-1 exhibited the %RSD of the compounds Bromomethane, Chloroethane, Methylene Chloride and 1,2,4-Trichlorobenzene as greater than 15%. However, the mean RSD of all compounds is 6.44%.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Chain Of Custody Documentation

_	
	1
~	•
7	
	,
RECORD)
Ξ	,
÷	1
~	4
	•
>	4
	١.
Ξ	7
C	,
H	•
'n	5
=	1
<u>-</u>	•
L)
_	
Ξ	•
C	١.
ことのこと しょうしょう	
Z	
	4
4	4
÷	7
1	4
۲)
-	-

Page / of 5

Pariot Mumbon City and I contion:		Motrices.				/ Requested Analyses	nalyses / / /	
	1. S. /;	S = Soil;			_		\ \ \	/ No.037478
ne(s):	200	Aq = water A = Air; Bu = Bulk;		riera	00	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
TOSS WANDOR, BROTHMENN, CRIF KEINERS	725	W = Wipe Bi = Biota;		IBIUO.	28		\ \ \	
Sampler's Signature(s); fully the factor of	R	OW = Oily Waste; O = Other	4	Der of C	200			
Sample Identification:	Date	Time	Matrix	$\overline{}$		/ / /	/ / /	Remarks
MW-2	12/20/8	00//	JOH OF	2 2	-			
MW-2-MS	12/20/05	ااه کی	A8.	2 2			M.	Matrix Spike
1 - 2 - m	12/20/02	1105	\$	7 7	7		Mat	Matrix Spike Doblicate
K1-NW	12/2/05	1383	R 2	2				
1410 Chor TB-121505-01	12/15/05	i	AO 3	1 A			7	no Blank
MW-8	59/00/e1	och!	40	2 2				
MW-100	59/08/81	Oobi	AB 2	7				
8-1	12/20/05	0251	A0 2	2 2				
73-121505-02	12/15/05	~	40	1 1				
2-3	12/20/05	1555	4 Q	E				
EB122005	50/12/21	2580	A2 2	7			19	Equipment Blank
MW-34	12/21/05	0440	Aa :	2 2				
MV-31	12 2105	1025	4, 2	7 2				
MW-31MS	122105	5701	A, 2	2 2			M	Matrix Spike
95M12-VM	501221	5701	Ag 2	2 2			Mati	Matrix Spike Doplicate
MW-DI	123105	10 50		2 2				À
Relinquished by (Signature): 12/12/05 1843 Received	by (Signa		5191		Laboratory Name:	alo		
Date Time	7	7	73.85	Lah Lah	Laboratory Location:	" シ		
Keinquished by (Signature): Date Time	Neceived by (Signature).	(Same)	9	S.Z.	Custody Seal Numbers: 148992. 1004. 1	7.10 to .13	FNVIRONMENTA	ENVIRONMENTAL STRATEGIES CONSULTING LLC
	Tracking Number: 4190	3 4190		Me	Method of Shipment:	ıt:	AQUAN	A QUANTA TECHNICAL SERVICES COMPANY
☐ Reston Office: 11911 Freedom Dr, # 900, Reston, VA 20190	900, Reston,	VA 20190			Den Tel:	Denver Office: 4600 South Ulster, # 930, Denver, CO 80237 Tel: (303) 850-9200, Fax: (303) 850-9214	h Ulster, # 930, De (303) 850-9214	enver, CO 80237
☐ Pittsburgh Office: 300 Corporate Center Dr, # 200, Moon Twp, PA 15108 Tel: (412) 604-1040, Fax: (412) 604-1055	ter Dr, # 200 1055), Moon Tw	p, PA 15	801	☐ Min Tel:	ineapolis Office: 123.] (612) 343-0510, Fax	North 3rd St, #706, (612) 343-0506	Minneapolis Office: 123 North 3rd St, #706, Minneapolis, MN 55401 Tel: (612) 343-0510, Fax: (612) 343-0506
A Comment of the of the	V.2 St.	13035	4					

TS Cazerwia Office 530 lluga St, 13035

Page 2 of 3

Project Number: Site and Location:	Matrices		/ / Regu	Requested Analyses / / /
14892 SHERBARNE, M-FORMERGICSIO	S = Soil; $S \neq SC$ So $D = Aq = Water$			// / No.034637
Sampler's Name(s):		= Bulk;		
1099 WADER, BEST MASIN, ESTE KENERAL	W = Wipe $W = Wipe$ $W = Wipe$		29	
1	OW = Oily Waste;	waste;	28) 55	
Identification	Date Time	Matrix	/ / /05/	/ / / Remarks
SE-9W	12/21/05 1150	A2 2	7	
MW-(0)	12/21/05/1900	M 2	7	
25-MW	2221 50/12/21	A, 2	2	
50122183 50212183	115/21/05 7311	14 2	2	Equipment blank
MW-36	12/21/05 1420		7	
MW-33	122105 1444	4 A. Z	2	
MW-20	sesi spirki		2	
MW-39	0171 /02/12/21	2 DH	2	
-22-11W	071 sol12/21	3 Ay 2	2	
MW-25	2 × 1/0/12/El	5 12 2	7	
MW-38	12/20 Sol2/51	- Ad 2	2	
MW-37	12/22/09 0856	AQ 2	2	
hで-Mind	appo state	1 Ad 2	3	
MW-30	12/2 Joy 1035	- AB 2	2	
EB-122205	नियान ॥१०	太 2		
MW-23	12/22/05 1121	Ag 2	2	
	Received by (Signature):	500	Laboratory Name: Ftal	
Relinquished by (Signature): Date Time A	Received by (Signature):	1612	Laboratory Location: NY	
Date Time		10)	Custody Seal Numbers:	ENVIRONMENTAL STRATECIES CONSULTING LLC
Turn-Around Time: 2-week	Tracking Number: 8523 41	4190	Method of Shipment:	A QUANTA TECHNICAL SERVICES COMPANY
Reston Office: 11911 Freedom Dr. # 900, Reston, VA 20190	900, Reston, VA 201	06		Denver Office: 4600 South Ulster, # 930, Denver, CO 80237
161: (703) 709-6500, Fax: (703) 709-8505 ☐ Pittsburgh Office: 300 Corporate Center Dr, # 200, Moon Tel: (412) 604-1040, Fax: (412) 604-1055	8303 ter Dr, # 200, Moon 7 1055	Twp, PA 15108		Tet. (303) 630-3200, Fax. (303) 630-3214 Minneapolis Office: 123 North 3rd St, #706, Minneapolis, MN 55401 Tel: (612) 343-0510, Fax: (612) 343-0506
	11 / 1	74 47	しんじ いいりい	

A Cazerovia Office - I Sullian Still 3035

CHAIN OF CUSTODY RECORD

D Page 5 of 5

ACARCHOUN OFFICE STONING STICARCHOUN NY 13035

Page: 1 Rept: AN0383

STL Buffalo Sample Inventory

Date: 12/23/2005 Time: 13:56:12

A5E59204	10:15 MW-22
A5E59205	10:15 MW-25
A5E59205	10:15 MW-38
A5E59206	10:15 MW-37
A5E59207	10:15 MW-24
ASES9208 ASES9208 ASES9209 ASES9210 ASES9212 ASES9213 ASES9213	10:15 FB-12205 10:15 FB-12205 10:15 MW-23 10:15 P-10 10:15 MW-26 10:15 P-11

Analytical Services Coordinator:

Sample Custodian:

/ /20

Preservation Code References:

First Digit: Sample Filtration; 1=Filtered, 0=Unfiltered Second Digit: Sample Requires Cooling; (4°) 1=Cooled, 0=Not Cooled

Third, Fourth Digits - Preservation Types:
00=Nothing added, 01=HNO3, 02=H2SO4, 03=HCl, 04=Sodium Thiosulfate
05=NaOH, 06=NaOH+Zinc Acetate, 07=Sodium Thiosulfate+HCl, 08=MeOH
09=MCAA (Mono chloroacetic acid)

Volatiles

QC Summary

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W WATER SURROGATE RECOVERY

Lab Name: STL Buffalo Contract: 4 Case No.: ____ SDG No.: 1205GW Lab Code: RECNY SAS No.: _____

	Client Sample ID	Lab Sample ID	BFB %REC #	DCE %REC #	TOL %REC #						TOT OUT
		=======================================	======	======	======	======	=====	======	=====	======	===
1	EB-122205	A5E59208	92	92	94						0
2	MSB36	A5B2007001	93	92	95						0
3	MSB37	A5E59216	94	92	95						0
4	MSB38	A5B2013901	93	91	94						0
5	MW-22	A5E59202	93	92	94						0
6	MW-22 RI	A5E59202RI	95	92	95						0
7	MW-23	A5E59209	92	92	93					'	0
	MW-24	A5E59206	92	93	94						0
9	MW-25	A5E59203	92	93	92						0
10	MW-26	A5E59212	93	93	94						0
11	MW-27	A5E59210	91	93	93						0
12	MW-29	A5E59214	93	94	95						0
13	MW-30	A5E59207	92	92	94				·		0
14	MW-31	A5E59201	93	94	94						0
15	MW-31	A5E59201MS	92	93	92						0
16	MW-31	A5E59201SD	91	92	93						0
17	MW-37	A5E59205	92	95	95						0
18	MW-38	A5E59204	94	94	95] 0
19	P-10	A5E59211	92	93	94				1		0
20	P-11	A5E59213	92	94	93						0
21	VBLK36	A5B2007002	94	93	94				v :	1	0
22	VBLK37	A5E59215	92	92	93					P N	0
23	VBLK38	A5B2013902	93	91	94						0

QC LIMITS

= p-Bromofluorobenzene
= 1,2-Dichloroethane-D4 (73-120) (72-143) BFB DCE = Toluene-D8 (76-122) TOL

[#] Column to be used to flag recovery values* Values outside of contract required QC limits

D Surrogates diluted out

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W WATER MATRIX SPIKE BLANK RECOVERY

 Lab Name:
 STL Buffalo
 Contract: 4
 Lab Samp ID: A5B2007002

 Lab Code:
 RECNY
 Case No.: _____
 SAS No.: _____
 SDG No.: 1205GW

Matrix Spike - Client Sample No.: VBLK36

COMPOUND	SPIKE	MSB	MSB	QC
	ADDED	CONCENTRATION	%	LIMITS
	UG/L	UG/L	REC #	REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	25.0	26.7	107	65 - 142
	25.0	25.8	103	71 - 120
	25.0	26.1	105	67 - 126
	25.0	25.5	102	69 - 120
	25.0	25.7	103	73 - 120

Column to be used to flag recovery and RPD values with an asterisk

Spike recovery:	0 out of	<u>5</u> outside limits	
Comments:			

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W WATER MATRIX SPIKE BLANK RECOVERY

 Lab Name:
 STL Buffalo
 Contract: 4
 Lab Samp ID: A5E59215

 Lab Code:
 RECNY
 Case No.:
 SAS No.:
 SDG No.: 1205GW

Matrix Spike - Client Sample No.: VBLK37

COMPOUND	SPIKE	MSB	MSB	QC
	ADDED	CONCENTRATION	%	LIMITS
	UG/L	UG/L	REC #	REC.
1,1-DichloroetheneTrichloroethene	25.0	25.9	104	65 - 142
	25.0	25.3	102	71 - 120
Benzene Toluene Chlorobenzene	25.0	25.8	103	67 - 126
	25.0	25.5	102	69 - 120
	25.0	25.7	103	73 - 120

Column to be used to flag recovery and RPD values with an asterisk

Spike reco	overy: <u>0</u> out of	<u>5</u> outside limits	
Comments:			

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W WATER MATRIX SPIKE BLANK RECOVERY

 Lab Name:
 STL Buffalo
 Contract: 4
 Lab Samp ID: A5B2013902

 Lab Code:
 RECNY
 Case No.: _____
 SAS No.: _____
 SDG No.: 1205GW

Matrix Spike - Client Sample No.: <u>VBLK38</u>

COMPOUND	SPIKE	MSB	MSB	QC
	ADDED	CONCENTRATION	%	LIMITS
	UG/L	UG/L	REC #	REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	25.0	25.5	102	65 - 142
	25.0	25.4	102	71 - 120
	25.0	25.5	102	67 - 126
	25.0	25.2	101	69 - 120
	25.0	25.5	102	73 - 120

Column to be used to flag recovery and RPD values with an asterisk

Spike reco	very:0 o	ut of5	outside	limits		
Comments: _					<u> </u>	
_						

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W WATER MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: STL Buffalo

Contract: 4

Lab Samp ID: <u>A5E59201</u>

Lab Code: <u>RECNY</u> Case No.: ____

SAS No.: ____

SDG No.: <u>1205GW</u>

Matrix Spike - Client Sample No.: MW-31

COMPOUND	SPIKE ADDED UG/L	SAMPLE CONCENTRATION UG/L	MS CONCENTRATION UG/L	MS % REC #	QC LIMITS REC.
1,1-Dichloroethene	25.0	0	13.4	54 *	65 - 142
Trichloroethene	25.0	47.8	67.3	78	71 - 120
Benzene	25.0	0	18.6	75	67 - 126
Toluene	25.0	0 .	18.7	75	69 - 120
Chlorobenzene	25.0	0	19.2	77	73 - 120

COMPOUND	SPIKE ADDED UG/L	MSD CONCENTRATION UG/L	MSD % REC #	% RPD #	_	C LIMITS REC.
CAMPOOND	03/11	03/11	NEC #	KED #	KPD	REC.
				======	=====	========
1,1-Dichloroethene	25.0	17.0	68	23 *	16	65 - 142
Trichloroethene	25.0	72.5	99	24 *	16	71 - 120
Benzene	25.0	23.3	93	21 *	13	67 - 126
Toluene	25.0	24.1	96	24 *	18	69 - 120
Chlorobenzene	25.0	24.5	98	24 *	19	73 - 120

Column to be used to flag recovery and RPD values with an asterisk

RPD:5 out of Spike recovery:1	<u>5</u> outside limits out of <u>10</u> outside limits	
Comments:		

75/304

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W METHOD BLANK SUMMARY

Client No.

VBLK36

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u>

Lab Code: RECNY Case No.: SAS No.: SDG No.: 1205GW

Lab File ID: <u>G7593.RR</u>

Lab Sample ID: A5B2007002

Date Analyzed: <u>12/27/2005</u>

Time Analyzed: 09:44

GC Column: DB-624 ID: $\underline{0.25}$ (mm) Heated Purge: (Y/N) \underline{N}

Instrument ID: <u>HP5973G</u>

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	CLIENT	LAB	LAB	TIME
•	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	=======================================	=========	==========	========
1	EB-122205	A5E59208	G7604.RR	16:39
2	MSB36	A5B2007001	G7594.RR	10:26
3	MW-23	A5E59209	G7605.RR	17:02
4	MW-24	A5E59206	G7602.RR	15:53
5	MW-25	A5E59203	G7599.RR	14:46
6	MW-26	A5E59212	G7608.RR	18:09
7	MW-27	A5E59210	G7606.RR	17:24
8	MW-29	A5E59214	G7610.RR	18:53
9	MW-30	A5E59207	G7603.RR	16:16
10	MW-31	A5E59201	G7595.RR	10:48
11	MW-31	A5E59201MS	G7596.RR	13:39
12	MW-31	A5E59201SD	G7597.RR	14:01
13	MW-37	A5E59205	G7601.RR	15:31
14	MW-38	A5E59204	G7600.RR	15:08
15	P-10	A5E59211	G7607.RR	17:46
16	P-11	A5E59213	G7609.RR	18:31

Comments:			

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W

METHOD BLANK SUMMARY

76/304 Client No.

Lab Name: <u>STL Buffalo</u>	Contract: 4	·
Lab Code: RECNY Case No.:	SAS No.:	SDG No.: <u>1205GW</u>
Lab File ID: <u>G7618.RR</u>	Lab Sample ID:	<u>A5E59215</u>
Date Analyzed: <u>12/27/2005</u>	Time Analyzed:	<u>21:51</u>
GC Column: <u>DB-624</u> ID: <u>0.25</u>	(mm) Heated Purge:	(Y/N) <u>N</u>
Instrument ID: <u>HP5973G</u>	<u> </u>	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED
	=======================================	=========	=========	========
1	MSB37	A5E59216	G7617.RR	21:29
2	MW-22	A5E59202	G7638.RR	05:34

Comments:		
	· · · · · · · · · · · · · · · · · · ·	

CS + NAPH - W 77/304

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W METHOD BLANK SUMMARY

Client No.

	VBLK38	
Lab Name: <u>STL Buffalo</u>	Contract: 4	
Lab Code: RECNY Case No.:	SAS No.: SDG No.:	1205GW
Lab File ID: <u>G7646.RR</u>	Lab Sample ID: A5B2013902	<u>2</u>
Date Analyzed: <u>12/28/2005</u>	Time Analyzed: 10:29	
GC Column: <u>DB-624</u> ID: <u>0.18</u>	(mm) Heated Purge: (Y/N) N	
Instrument ID: <u>HP5973G</u>	_	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	CLIENT	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
1 2	MSB38 MW-22 RI	A5B2013901 A5E59202RI	0.0200	10:06 12:10

Comments:		· · · · · · · · · · · · · · · · · · ·	

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u> Tune ID: <u>A5T0003577</u>

Lab File ID: G7402 BFB Injection Date: 12/20/2005

Instrument ID: <u>HP5973G</u>

BFB Injection Time: <u>09:53</u>

GC Column: $\underline{DB-624}$ ID: $\underline{0.25}$ (mm) Heated Purge: (Y/N): \underline{N}

m/e	ION Abundance Criteria	% Relative Abundance	
75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50 - 120 % of mass 95 5.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	71.2 5.1	(0.9) 1 (7.2) 1 (95.9) 1 (6.8) 2

1-Value is % mass 174

2-Value is % mass 176

	Client	Lab	Lab	Date	Time
	Sample No.	Sample ID	File ID	Analyzed	Analyzed
2 3 4	VSTD100 VSTD025 VSTD010	A5I0002430-1 A5I0002430-1 A5I0002430-1 A5I0002430-1 A5I0002430-1	G7407.RR G7408.RR G7409.RR	12/20/2005 12/20/2005 12/20/2005 12/20/2005 12/20/2005	11:27 11:50 13:18 13:40 14:25

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u> Tune ID: <u>A5T0003640</u>

Lab Code: <u>RECNY</u> Case No.: _____ SAS No.: ____ SDG No.: <u>1205GW</u>

Lab File ID: G7590 BFB Injection Date: 12/27/2005

Instrument ID: <u>HP5973G</u> BFB Injection Time: <u>08:11</u>

GC Column: DB-624 ID: 0.25 (mm) Heated Purge: (Y/N): N

m/e ION Abundance Criteria	% Relative Abundance
50 15.0 - 40.0% of mass 95	19.4
75 30.0 - 60.0% of mass 95	49.6
95 Base peak, 100% relative abundance	100.0
96 5.0 - 9.0% of mass 95	6.6
173 Less than 2.0% of mass 174	0.3 (0.4) 1
174 50 - 120 % of mass 95	72.2
175 5.0 - 9.0% of mass 174	5.4 (7.5) 1
176 95.0 - 101.0% of mass 174	71.3 (98.8) 1
177 5.0 - 9.0% of mass 176	4.9 (6.9) 2

1-Value is % mass 174

2-Value is % mass 176

	Client Lab Sample No. Sample ID		Lab File ID	Date Analyzed	Time Analyzed
9 10 11	VSTD025 VBLK36 MSB36 MW-31	A5C0006619-1 A5B2007002 A5B2007001 A5E59201 A5E59201SD A5E59203 A5E59204 A5E59205 A5E59206 A5E59207 A5E59208 A5E59209 A5E59210	G7591.RR G7593.RR G7594.RR G7594.RR G7595.RR G7596.RR G7597.RR G7599.RR G7600.RR G7601.RR G7602.RR G7603.RR G7604.RR G7604.RR G7605.RR	12/27/2005 12/27/2005 12/27/2005 12/27/2005 12/27/2005 12/27/2005 12/27/2005 12/27/2005 12/27/2005 12/27/2005 12/27/2005 12/27/2005 12/27/2005 12/27/2005 12/27/2005	08:35 09:44 10:26 10:48 13:39 14:01 14:46 15:08 15:31 15:53 16:16 16:39 17:02
15 16 17	i i i	A5E59211 A5E59212 A5E59213 A5E59214	G7607.RR G7608.RR G7609.RR G7610.RR	12/27/2005 12/27/2005 12/27/2005 12/27/2005	17:46 18:09

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u> Tune ID: <u>A5T0003643</u>

Lab File ID: G7614 BFB Injection Date: 12/27/2005

Instrument ID: <u>HP5973G</u>

BFB Injection Time: <u>20:20</u>

GC Column: DB-624 ID: 0.25 (mm) Heated Purge: (Y/N): N

m/e	ION Abundance Criteria	% Relative Abundance
75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50 - 120 % of mass 95 5.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 174	19.5 51.8 100.0 6.8 0.3 (0.4) 1 71.2 5.2 (7.3) 1 69.8 (98.1) 1 5.3 (7.6) 2

1-Value is % mass 174

2-Value is % mass 176

-	Client	Lab	Lab	Date	Time
	Sample No.	Sample ID	File ID	Analyzed	Analyzed
2	MSB37 VBLK37	A5E59215	G7615.RR G7617.RR G7618.RR G7638.RR	12/27/2005 12/27/2005 12/27/2005 12/28/2005	20:41 21:29 21:51 05:34

Lab Name: <u>STL Buffalo</u> Contract: 4 Tune ID: <u>A5T0003654</u>

Lab Code: <u>RECNY</u> Case No.: _____ SAS No.: ____ SDG No.: <u>1205GW</u>

Lab File ID: <u>G7642</u> BFB Injection Date: <u>12/28/2005</u>

Instrument ID: <u>HP5973G</u>

BFB Injection Time: <u>08:09</u>

GC Column: DB-624 ID: 0.25 (mm) Heated Purge: (Y/N): N

m/e	ION Abundance Criteria		lative ndance	
75 95 96 173 174 175	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50 - 120 % of mass 95 5.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	19.7 51.6 100.0 6.3 0.4 72.6 5.4 71.7 4.6	(0.5) (7.4) (98.8) (6.4)	1 1

1-Value is % mass 174

2-Value is % mass 176

	Client	Lab	Lab	Date	Time
	Sample No.	Sample ID	File ID	Analyzed	Analyzed
2	VSTD025 MSB38 VBLK38 MW-22 RI	A5B2013902	G7643.RR G7645.RR G7646.RR G7650.RR	12/28/2005 12/28/2005 12/28/2005 12/28/2005	08:50 10:06 10:29 12:10

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: STL Buffalo Contract: 4 Labsampid: A5C0006619 Case No.: ____ SAS No.: ____ Lab Code: RECNY SDG No.: 1205GW Lab File ID (Standard): G7591.RR Date Analyzed: <u>12/27/2005</u> Instrument ID: <u>HP5973G</u> Time Analyzed: 08:35 GC Column(1): <u>DB-624</u> ID: <u>0.250(mm)</u> Heated Purge: (Y/N) N

			IS1 (CBZ) AREA #	RT #	IS2 (DCB) AREA #	RT #	IS3 (DFB) AREA #	RT #
				======	4070/5			======
	12 HOUR STD		192006	8.70	183265	11.05	374276	5.80
	UPPER LIMIT		384012	9.20	366530	11.55	748552	6.30
	LOWER LIMIT		96003	8.20	91633	10.55	187138	5.30
		=======================================	=======================================	======	=========	222223	========	======
	CLIENT SAMPLE	Lab Sample ID	*					
		========	=========	======	===========	======	===========	======
1	EB-122205	A5E59208		8.70	171054	11.06	360982	5.80
2	MSB36	A5B2007001		8.70	179924	11.05	374730	5.80
3	MW-23	A5E59209	178256	8.70	169454	11.05	354680	5.81
4	MW-24	A5E59206	180713	8.70	171268	11.06	358518	5.81
5	MW-25	A5E59203	182818	8.70	171907	11.06	357381	5.80
6	MW-26	A5E59212	174145	8.70	167871	11.05	347889	5.80
7	MW-27	A5E59210	177773	8.70	169222	11.05	351221	5.80
8	MW-29	A5E59214	170613	8.70	165829	11.05	340867	5.80
9	MW-30	A5E59207	181923	8.70	171991	11.06	362257	5.81
10	MW-31	A5E59201	186717	8.70	179262	11.05	370403	5.81
11	MW-31	A5E59201MS	189889	8.70	179742	11.05	372272	5.80
12	MW-31	A5E59201SD	185846	8.70	176742	11.05	370238	5.80
13	MW-37	A5E59205	176794	8.70	167419	11.05	347622	5.81
14	MW-38	A5E59204	178004	8.70	167860	11.05	351242	5.80
15	P-10	A5E59211	175844	8.70	168240	11.05	350837	5.80
16	P-11	A5E59213	173809	8.70	167063	11.06	345155	5.80
17	VBLK36	A5B2007002	188568	8.70	179068	11.05	374123	5.81

AREA UNIT RT QC LIMITS QC LIMITS

(50-200) -0.50 / +0.50 min IS1 (CBZ) = Chlorobenzene-D5 -0.50 / +0.50 min -0.50 / +0.50 min IS2 (DCB) = 1,4-Dichlorobenzene-D4 (50-200) IS3 (DFB) = 1,4-Difluorobenzene (50-200)

[#] Column to be used to flag recovery values* Values outside of contract required QC limits

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: <u>STL Buffalo</u>		Contract: 4	Labsampid: <u>A5C0006622</u>
Lab Code: RECNY	Case No.:	_ SAS No.:	SDG No.: 1205GW
Lab File ID (Standard):	<u>G7615.RR</u>	Date	Analyzed: <u>12/27/2005</u>
Instrument ID: <u>HP5973G</u>		Time	Analyzed: <u>20:41</u>
GC Column(1): <u>DB-624</u>	ID: <u>0.250</u> (mm)) Heate	ed Purge: (Y/N) N

	12 HOUR STD UPPER LIMIT LOWER LIMIT	=========	IS1 (CBZ) AREA # ====================================	RT # ====== 8.70 9.20 8.20	IS2 (DCB) AREA #	RT # ====== 11.05 11.55 10.55	IS3 (DFB) AREA # ====================================	RT # ====== 5.80 6.30 5.30
2	CLIENT SAMPLE MSB37 MW-22 VBLK37	Lab Sample ID 	173200 172069 175393	====== 8.70 8.70 8.70 8.70	163576	====== 11.05 11.05 11.05	346703	 5.81 5.81 5.81

AREA UNIT		RT
QC LIMITS	QC	LIMITS

IS1 (CBZ) = Chlorobenzene-D5		(50-200)	-0.50 / +0.50 min
IS2 (DCB) = 1,4-Dichlorobenzene-D4	1. 1. 1.	(50-200)	-0.50 / +0.50 min
IS3 (DFB) = 1,4-Difluorobenzene	South Section 1	(50-200)	-0.50 / +0.50 min

[#] Column to be used to flag recovery values* Values outside of contract required QC limits

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

 Lab Name:
 STL Buffalo
 Contract: 4
 Labsampid:
 A5C0006633

 Lab Code:
 RECNY
 Case No.:
 SAS No.:
 SDG No.:
 1205GW

 Lab File ID (Standard):
 G7643.RR
 Date Analyzed:
 12/28/2005

 Instrument ID:
 HP5973G
 Time Analyzed:
 08:50

 GC Column(1):
 DB-624
 ID:
 0.180(mm)
 Heated Purge:
 (Y/N)
 N

	12 HOUR STD UPPER LIMIT LOWER LIMIT	====	IS1 (CBZ) AREA # ====================================	RT # ====== 8.70 9.20 8.20	IS2 (DCB) AREA # ====================================	RT # ====== 11.05 11.55 10.55	IS3 (DFB) AREA # ====================================	RT # ====== 5.80 6.30 5.30
	CLIENT SAMPLE	Lab Sample ID		BREETE				======
2	MSB38 MW-22 RI VBLK38	A5B2013901 A5E59202RI A5B2013902	176749 168565 170365	8.70 8.70 8.70 8.70	160884	11.05 11.05 11.05		5.80 5.81 5.81

AREA UNIT	RT
QC LIMITS	QC LIMITS

IS1 (CBZ) = Chlorobenzene-D5 (50-200) -0.50 / +0.50 min IS2 (DCB) = 1,4-Dichlorobenzene-D4 (50-200) -0.50 / +0.50 min IS3 (DFB) = 1,4-Difluorobenzene (50-200) -0.50 / +0.50 min

[#] Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

Sample Data

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

EB-122205	
-----------	--

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59208

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{G7604.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/22/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: _____ (uL) Soil Aliquot Volume: _____ (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)		Q
67-64-1	-Acetone	·	5.0	U
71-43-2	-Benzene		1.0	ע
75-27-4	-Bromodichloromethane		1.0	ប
75-25-2	-Bromoform		1.0	U
74-83-9	-Bromomethane		1.0	υ
78-93-3	-2-Butanone		5.0	U
75-15-0	-Carbon Disulfide		1.0	ן ט
56-23-5	-Carbon Tetrachloride		1.0	U
108-90-7	-Chlorobenzene		1.0	U
75-00-3	-Chloroethane		1.0	ע
67-66-3	-Chloroform		1.0	ט
74-87-3	-Chloromethane		1.0	ע
110-82-7	-Cyclohexane		1.0	U
	-1,2-Dibromoethane		1.0	U
124-48-1	-Dibromochloromethane		1.0	ן ט
96-12-8	-1,2-Dibromo-3-chloropropane		1.0	ן ט
	-1,2-Dichlorobenzene		1.0	ע
541-73-1	-1,3-Dichlorobenzene		1.0	ן ט
106-46-7	-1,4-Dichlorobenzene		1.0	ן ט
75-71-8	-Dichlorodifluoromethane		1.0	U
75-34-3	-1,1-Dichloroethane		1.0	U
107-06-2	-1,2-Dichloroethane		1.0	U
75-35-4	-1,1-Dichloroethene		1.0	ן ט
156-59-2	-cis-1,2-Dichloroethene		1.0	ן ט
156-60-5	-trans-1,2-Dichloroethene		1.0	[U
78-87-5	-1,2-Dichloropropane		1.0	U
10061-01-5	-cis-1,3-Dichloropropene		1.0	U
	-trans-1,3-Dichloropropene		1.0	ע
	-Ethylbenzene		1.0	ש
591-78-6	-2-Hexanone		5.0	ש
98-82-8	-Isopropylbenzene		1.0	ע
79-20-9	-Methyl acetate		1.0	ט
	-Methylcyclohexane		1.0	ן ט
	-Methylene chloride		1.0	U

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

			EB-122205
Lab Name: <u>STL Buffalo</u>	Contract: 4		
Lab Code: RECNY Case No.:	_ SAS No.:	SDG No.: <u>1205GW</u>	
Matrix: (soil/water) WATER		Lab Sample ID:	A5E59208
Sample wt/vol:) <u>ML</u>	Lab File ID:	G7604.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	12/22/2005 12/23/2005
% Moisture: not dec Heat	ed Purge: <u>N</u>	Date Analyzed:	12/27/2005
 GC Column: <u>DB-624</u> ID: <u>0.25</u>	(mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)		Soil Aliquot Volu	ume: (uL)

CAS NO. COMPOUND	CONCENTRATION UNIT (ug/L or ug/Kg)	IS: <u>UG/L</u>	Q
108-10-14-Methyl-2-pentanone		5.0	U
1634-04-4Methyl-t-Butyl Ether (MIBE	E)	1.0	ע
91-20-3Naphthalene		1.0	U
100-42-5Styrene		1.0	ט
79-34-51,1,2,2-Tetrachloroethane		1.0	ט
127-18-4Tetrachloroethene		1.0	ט
108-88-3Toluene		1.0	ט
120-82-11,2,4-Trichlorobenzene		1.0	U
71-55-61,1,1-Trichloroethane		1.0	U
79-00-51,1,2-Trichloroethane		1.0	U
76-13-11,1,2-Trichloro-1,2,2-trif	luoroethane	1.0	. บ
75-69-4Trichlorofluoromethane		1.0	U
79-01-6Trichloroethene		1.0	U
75-01-4Vinyl chloride		1.0	U
1330-20-7Total Xylenes		3.0	U

Data File: C:\MSDCHEM\1\DATA\122705\G7604.D

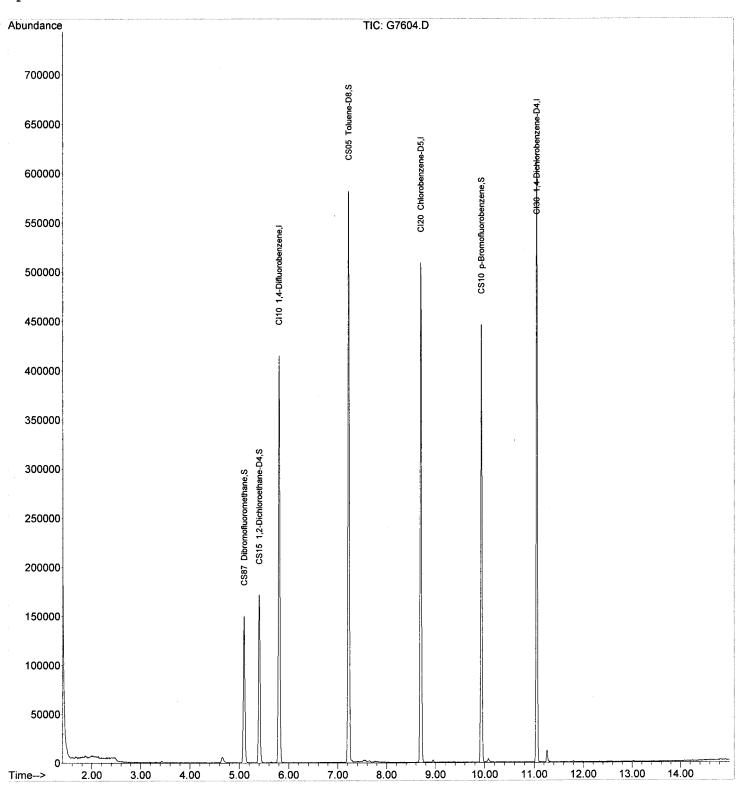
: 27 Dec 2005 16:39 Acq On

Sample : A5E59208

Misc

Integrator: RTE

Quant Time: Dec 27 18:07:53 2005


Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quantitation Report

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Operator : TLC

STL Buffalo (Not Reviewed)

Data File: C:\MSDCHEM\1\DATA\122705\G7604.D

Acq On : 27 Dec 2005 16:39

Sample : A5E59208

Misc

Integrator: RTE

Quant Time: Dec 27 18:07:53 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Operator : TLC

Internal Standards					its Dev(Min) Rcv(Ar)
1) CI10 1,4-Difluorobenzene					ng 0.00 96.45%
43) CI20 Chlorobenzene-D5	8.70	82	181469	125.00	
63) CI30 1,4-Dichlorobenzene	- 11.06	5 152	171054	125.00	
31) CS15 1,2-Dichloroethane-I Spiked Amount 125.000 Ra 44) CS05 Toluene-D8 Spiked Amount 125.000 Ra 62) CS10 p-Bromofluorobenzena	ange 70 D 5.40 ange 73 7.22 ange 77	0 - 130 0 65 3 - 136 2 98 7 - 122 4 174	Recove 133979 Recove 429678 Recove 129453	ery = 115.29 ery = 117.42	89.72% ng 0.00 92.23% ng 0.00 93.94% ng 0.00
Target Compounds 2) C290 Dichlorodifluorome 3) C010 Chloromethane 4) C020 Vinyl chloride 5) C015 Bromomethane 6) C025 Chloroethane 7) C275 Trichlorofluoromet 8) C045 1,1-Dichloroethene 9) C030 Methylene chloride	0.00 0.00 3.43	85 50 62 94 64 101 96 84	0 228 0 57 0 0 0	N.D. N.D. N.D. N.D. N.D. N.D.	Qvalue
10) C040 Carbon disulfide 11) C036 Acrolein 12) C038 Acrylonitrile 13) C035 Acetone 14) C300 Acetonitrile 15) C276 Iodomethane 16) C291 1,1,2-Trichloro-1, 17) C962 T-butyl Methyl Eth	2.83 0.00 3.02 3.30 0.00	76 56 53 43 41 142 101 73	1131 59 0 1275 197 0 0	N.D. N.D. N.D. N.D. N.D. N.D. N.D.	
18) C057 trans-1,2-Dichloro 19) C255 Methyl Acetate 20) C050 1,1-Dichloroethane 21) C125 Vinyl Acetate 22) C051 2,2-Dichloropropan 23) C056 cis-1,2-Dichloroet 24) C272 Tetrahydrofuran 25) C222 Bromochloromethane	0.00 0.00 0.00 0.00	96 43 63 43	0 0 0 0 205 0	N.D. N.D. N.D. N.D. N.D. N.D. N.D.	
27) C060 Chloroform 28) C115 1,1,1-Trichloroeth 29) C120 Carbon tetrachlori 30) C116 1,1-Dichloropropen 32) C165 Benzene 33) C065 1,2-Dichloroethane 34) C110 2-Butanone 35) C256 Cyclohexane 36) C150 Trichloroethene	4.95 0.00 0.00 0.00 5.43 0.00 4.65 0.00	83 97 117 75 78 62 43 56 95	55 0 0 0 290 0 297 0	N.D. N.D. N.D. N.D. N.D. N.D. N.D.	

Data File: C:\MSDCHEM\1\DATA\122705\G7604.D

Acq On : 27 Dec 2005 16:39

Sample : A5E59208

Misc :

Integrator: RTE

Quant Time: Dec 27 18:07:53 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Operator : TLC

Internal Standards	R.T	. QIon	Response	Conc Uni	ts Dev(Min) Rcv(Ar)
37) C140 1,2-Dichloropropan	0.00	63	0	N.D.	
38) C278 Dibromomethane	0.00	93	0	N.D.	
39) C130 Bromodichlorometha	0.00	83	0	N.D.	
40) C161 2-Chloroethylvinyl	6.84	63	218	N.D.	
41) C012 Methylcyclohexane	0.00	83	0	N.D.	
42) C145 cis-1,3-Dichloropr	0.00	75	0	N.D.	
45) C230 Toluene	7.28	92	946	N.D.	
46) C170 trans-1,3-Dichloro	0.00	75	0	N.D.	
47) C284 Ethyl Methacrylate	0.00	69	Ō	N.D.	
48) C160 1,1,2-Trichloroeth	0.00	83	Ö	N.D.	
49) C210 4-Methyl-2-pentano	7.22	43	2091	N.D.	
50) C220 Tetrachloroethene	0.00	166	0	N.D.	
51) C221 1,3-Dichloropropan	0.00	76	Ō	N.D.	
52) C155 Dibromochlorometha	0.00	129	Ō	N.D.	
53) C163 1,2-Dibromoethane	0.00	107	Ö	N.D.	
54) C215 2-Hexanone	0.00	43	Ö	N.D.	
55) C235 Chlorobenzene	0.00	112	Ö	N.D.	
56) C281 1,1,1,2-Tetrachlor	0.00	131	Ö	N.D.	
57) C240 Ethylbenzene	8.83	91	704	N.D.	
58) C246 m,p-Xylene	8.95	106	785	N.D.	
59) C247 o-Xylene	9.38	106	191	N.D.	
60) C245 Styrene	0.00	104	0	N.D.	
61) C180 Bromoform	0.00	173	ŏ	N.D.	
64) C966 Isopropylbenzene	0.00	105	Ö	N.D.	
65) C301 Bromobenzene	0.00	156	Ö	N.D.	
66) C225 1,1,2,2-Tetrachlor	0.00	83	ő	N.D.	
67) C282 1,2,3-Trichloropro	0.00	110	Ö	N.D.	
68) C283 t-1,4-Dichloro-2-B	0.00	51	Ö	N.D.	
69) C302 n-Propylbenzene	9.94	91	492	N.D.	
70) C303 2-Chlorotoluene	0.00	126	0	N.D.	
71) C289 4-Chlorotoluene	0.00	126	ő	N.D.	
72) C304 1,3,5-Trimethylben	0.00	105	Ö	N.D.	
73) C306 tert-Butylbenzene	0.00	134	Ö	N.D.	
74) C307 1,2,4-Trimethylben	10.71	105	147	N.D.	
75) C308 sec-Butylbenzene	10.71	105	147	N.D.	
76) C260 1,3-Dichlorobenzen	0.00	146	0	N.D.	
77) C309 4-Isopropyltoluene	11.00	119	161	N.D.	
78) C267 1,4-Dichlorobenzen	0.00	146	0	N.D.	
79) C249 1,2-Dichlorobenzen	0.00	146	Ö	N.D.	
80) C310 n-Butylbenzene	0.00	91	0	N.D.	
81) C286 1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
82) C313 1,2,4-Trichloroben	0.00	180	0	N.D.	
83) C316 Hexachlorobutadien	0.00	225	0	N.D.	
84) C314 Naphthalene	13.03	128	1251	N.D.	
85) C934 1,2,3-Trichloroben	0.00	180	0	N.D.	
65) C534 1,2,3-111CIIIOIODEII					

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

90/304

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-22		
-------	--	--

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59202

Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{ML} Lab File ID: $\underline{G7638.RR}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: DB-624 ID: 0.18 (mm) Dilution Factor: 2.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

		CONCENTRATION (·	_
CAS NO.	COMPOUND	(ug/L or ug/Ko	g) <u>UG/</u>	<u>L</u>	Q
67-64-1	Acetone		10		U
71-43-2			2	.0	U
75-27-4	Bromodichloromethane		2	.0	U
75-25-2	Bromoform		2	.0	U
74-83-9	Bromomethane		2	.0	U
78-93-3	2-Butanone		10		ט
75-15-0	Carbon Disulfide		2	.0	U
56-23-5	Carbon Tetrachloride	,	2	.0	U
108-90-7	Chlorobenzene		2	.0	U
75-00-3	Chloroethane		2	.0	U
67-66-3	Chloroform		2	.0	υ
74-87-3	Chloromethane		2	.0	υ
110-82-7	Cyclohexane		2	.0	U
	1,2-Dibromoethane		2	.0	υ
124-48-1	Dibromochloromethane		2	.0	U
96-12-8	1,2-Dibromo-3-chloropropane		2	.0	U
	1,2-Dichlorobenzene		2	.0	U
541-73-1	1,3-Dichlorobenzene		2	.0	U
106-46-7	1,4-Dichlorobenzene		2	.0	U
75-71-8	Dichlorodifluoromethane		2	2.0	U
	1,1-Dichloroethane		2	2.0	U
107-06-2	1,2-Dichloroethane		2	2.0	U
75-35-4	1,1-Dichloroethene		2	2.0	ט
156-59-2	cis-1,2-Dichloroethene		36	;	
156-60-5	trans-1,2-Dichloroethene		1	8	J
78-87-5	1,2-Dichloropropane		2	2.0	U
10061-01-5	cis-1,3-Dichloropropene		2	2.0	U
10061-02-6	trans-1,3-Dichloropropene		2	2.0	U
100-41-4	Ethylbenzene		2	2.0	U
591-78-6	2-Hexanone		10)	U
98-82-8	Isopropylbenzene		2	2.0	U
	Methyl acetate		2	2.0	U
	Methylcyclohexane		2	2.0	ប
75-09-2	Methylene chloride		2	2.0	U
	-				

92/304

13

2.0

U

U

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

		MW-22		
Lab Name: STL Buffalo Contract: 4		<u> </u>		
Lab Code: RECNY Case No.: SAS No.:	_ SDG No.: <u>12</u>	05GW		
Matrix: (soil/water) <u>WATER</u>	Lab Sample I	D: <u>A5E5920</u>	02	
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID:	<u>G7638.</u> F	<u>r</u>	
Level: (low/med) <u>LOW</u>	Date Samp/Re	cv: <u>12/21/2</u>	:005 <u>12/</u>	<u>′23/2005</u>
% Moisture: not dec Heated Purge: N	Date Analyze	d: <u>12/28/2</u>	2005	
GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)	Dilution Fac	tor:2.0	<u>00</u>	
Soil Extract Volume: (uL) Soil Alique		Volume:	((uL)
CAS NO. COMPOUND	CONCENTRATION UN (ug/L or ug/Kg)		Q	
108-10-14-Methyl-2-pentanone		10 2.0	U U	
1634-04-4Methyl-t-Butyl Ether (MTBE) 91-20-3Naphthalene		2.0	บ	
1100-42-5Styrene	i	2.0	บ	
79-34-51,1,2,2-Tetrachloroethane		2.0	υ	
127-18-4Tetrachloroethene		2.0	U	
108-88-3Toluene		2.0	U	
120-82-11,2,4-Trichlorobenzene		2.0	U	
[/1-55-61,1,1-Trichloroethane		2.0	U	
79-00-51,1,2-Trichloroethane		2.0	ש	
76-13-11,1,2-Trichloro-1,2,2-trifluor	roethane	2.0	ש	
75-69-4Trichlorofluoromethane		2.0	U	

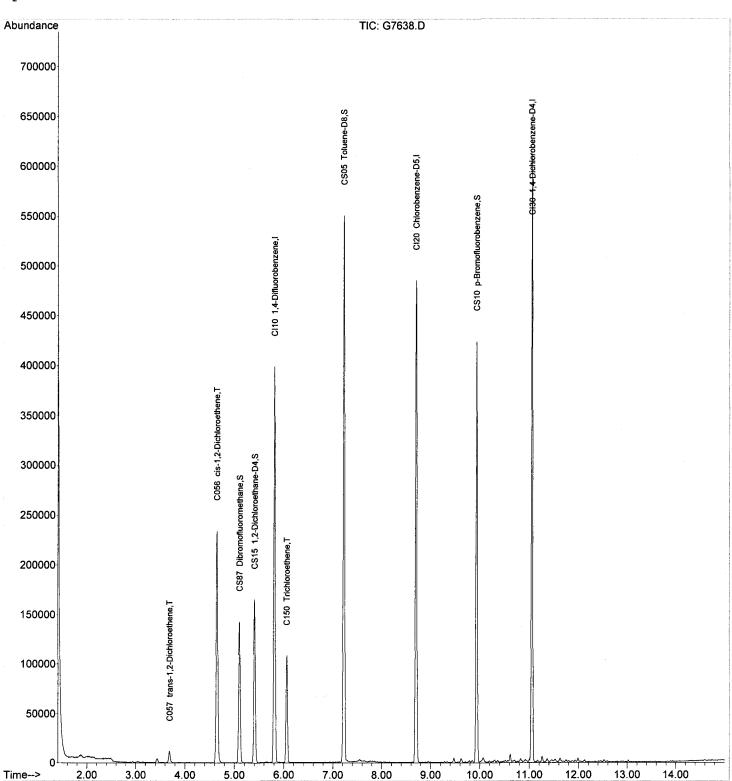
79-01-6-----Trichloroethene
75-01-4-----Vinyl chloride
1330-20-7----Total Xylenes

Data File: C:\MSDChem\1\DATA\122705\G7638.D

: 28 Dec 2005 Acq On 5:34

Sample : A5E59202 DF2

Misc


Integrator: RTE

Quant Time: Dec 28 08:03:27 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 21:28:27 2005 Response via : Initial Calibration Data Path : C:\MSDChem\1\DATA\122705\

Data File: C:\MSDChem\1\DATA\122705\G7638.D

Acq On : 28 Dec 2005

: A5E59202 DF2 Sample

Misc

Integrator: RTE Quant Time: Dec 28 08:03:27 2005

Quant Method : $C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M$

Quant Title : 8260 5ML WATER QLast Update : Tue Dec 27 21:28:27 2005 Response via : Initial Calibration Data Path : C:\MSDChem\1\DATA\122705\

Inte	ernal	Standards	R.T.	QIon	Response	Conc Ur	nits		(Min) (Ar)
1)	CI10	1,4-Difluorobenzene	5.81	. 114			ng ng		0.00 9.19%
43)	CI20	Chlorobenzene-D5	8.70	82	172069	125.00	ng ng		0.00 5.90%
63)	CI30	1,4-Dichlorobenzene-	11.05	152	163576				
Syst	cem Mo:	nitoring Compounds							
		Dibromofluoromethane mount 125.000 Ran			97666 Recove				0.00
31)	CS15	1,2-Dichloroethane-D	5.41	. 65	127664		ng		0.00
Sp:	iked A	mount 125.000 Rai	nge 73	- 136	Recove	ry =		.50%	0 00
44)	CS05	Toluene-D8	7.22	98	407645				0.00
5p.	CC10	mount 125.000 Rar p-Bromofluorobenzene	11ge //	174	124494	ry =	ກຕ		0.00
02) Sp:	iked A	mount 125.000 Rai	nge 74	- 120	Recove	rv =	93	.42%	0.00
-1-			-5-			- 1			
		mpounds						Qva	alue
		Dichlorodifluorome	0.00		0	N.D.			
3)	C010	Chloromethane	1.60		61	N.D.			
4)	C020	Vinyl chloride	1.72		722	N.D.			
5)	C015	Bromomethane	0.00	94	0	N.D.			
6)	C025	Chloroethane Trichlorofluoromet	0.00	64	0 0	N.D. N.D.			
/) 01	C2/5	1,1-Dichloroethene	2.93	101 96	121	N.D.			
9)	C045	Methylene chloride	2.93	90	2423	N.D.			
		Carbon disulfide	2 15	76	600	N.D.			
11)	CU36	Acrolein	0.00	56	0	N.D.			
	C038	Acrylonitrile	0.00	53	0	N.D.			
	C035	Acetone	3.04	43	1637				
14)	C300	Acetonitrile	3.30	41	61	N.D.			
15)	C276	Iodomethane	3.09	142	184	N.D.			
16)	C291	1,1,2-Trichloro- $1,$	0.00	101	0	N.D.			
17)	C962	Iodomethane 1,1,2-Trichloro-1, T-butyl Methyl Eth	3.71	73	2148	N.D.			
(±9/N	J-U5/	trans-1,2-Dichioroet	3.69			4.48	ng	#	40
19)	C255	Methyl Acetate	0.00	43	0	N.D.			
20)	C050	Methyl Acetate 1,1-Dichloroethane Vinyl Acetate	4.08	63 43	274	N.D.			
		Vinyl Acetate 2,2-Dichloropropan			0 125	N.D. N.D.			
	~C056	cis-1,2-Dichloroethe	4.64		113458	89.20	nσ		98
	C272	Tetrahydrofuran	0.00	42	0	N.D.	**9		,,,
	C222	Bromochloromethane	0.00	128	Ö	N.D.			
	C060	Chloroform	0.00	83	Ō	N.D.			
	C115	1,1,1-Trichloroeth	0.00	97	0	N.D.			
	C120	Carbon tetrachlori	0.00	117	0	N.D.			
	C116	1,1-Dichloropropen	0.00	75	0	N.D.			
32)	C165	Benzene	5.44	78	368	N.D.			
33)	C065	1,2-Dichloroethane	0.00	62	0	N.D.			
34)	C110	2-Butanone	4.69	43	477	N.D.			
35)	C256 C150	Cyclohexane Trichloroethene	0.00 6.05	56 5 95	0 38751	N.D. 31.60	na		93
C 00	-CTOU	TITCHIOLOGCHENE	0.05	70	20121	31.00	119		,,

Data File: C:\MSDChem\1\DATA\122705\G7638.D

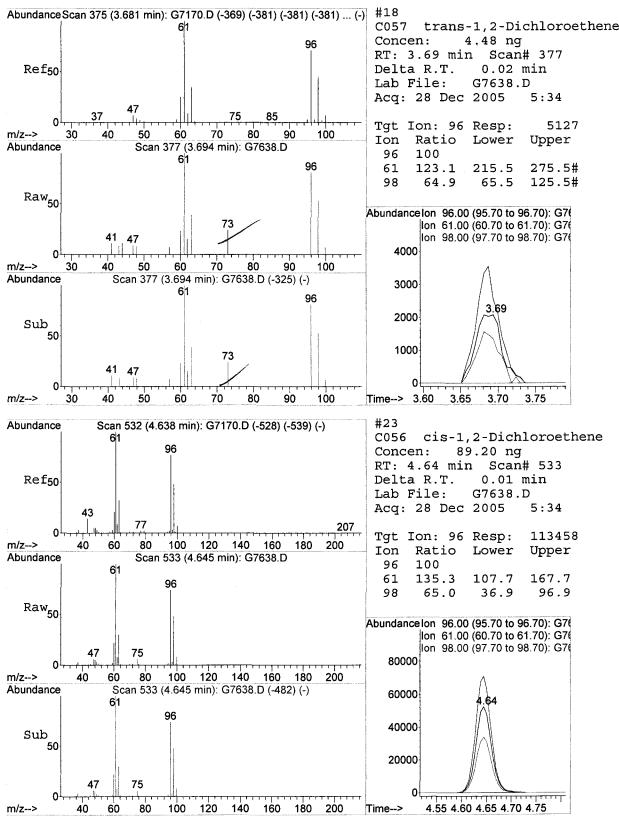
Acq On : 28 Dec 2005

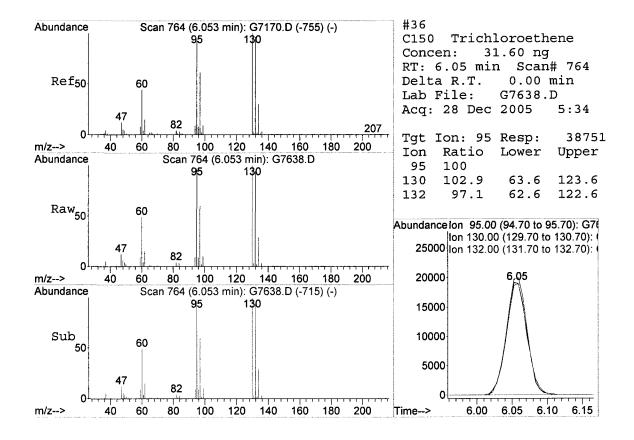
: A5E59202 DF2 Sample

Misc Integrator: RTE

Quant Time: Dec 28 08:03:27 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M


Quant Title : 8260 5ML WATER QLast Update : Tue Dec 27 21:28:27 2005 Response via : Initial Calibration Data Path : C:\MSDChem\1\DATA\122705\


Operator : TLC

Internal Standards	R.T	. QIon	Response	Conc Units Dev	(Min) (Ar)
37) C140 1,2-Dichloropropan	0.00	63	0	N.D.	
38) C278 Dibromomethane	0.00	93	0	N.D.	
39) C130 Bromodichlorometha	0.00	83	0	N.D.	
40) C161 2-Chloroethylvinyl	0.00	63	0	N.D.	
41) C012 Methylcyclohexane	0.00	83	0	N.D.	
42) C145 cis-1,3-Dichloropr	0.00	75	Ö	N.D.	
45) C230 Toluene	7.28	92	729	N.D.	
46) C170 trans-1,3-Dichloro	0.00	75	0	N.D.	
47) C284 Ethyl Methacrylate	0.00	69	Ö	N.D.	
48) C160 1,1,2-Trichloroeth	0.00	83	Ö	N.D.	
49) C210 4-Methyl-2-pentano	7.22	43	1910	N.D.	
50) C220 Tetrachloroethene	0.00	166	0	N.D.	
51) C221 1,3-Dichloropropan	0.00	76	0	N.D.	
52) C155 Dibromochlorometha	0.00	129	0	N.D.	
			0		
	0.00 7.85	107		N.D.	
•		43	222	N.D.	
1	8.72	112	668	N.D.	
56) C281 1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
57) C240 Ethylbenzene	8.83	91	61	N.D.	
58) C246 m,p-Xylene	0.00	106	0	N.D.	
59) C247 o-Xylene	0.00	106	0	N.D.	
60) C245 Styrene	0.00	104	0	N.D.	
61) C180 Bromoform	0.00	173	0	N.D.	
64) C966 Isopropylbenzene	9.93	105	64	N.D.	
65) C301 Bromobenzene	0.00	156	0	N.D.	
66) C225 1,1,2,2-Tetrachlor	10.30	83	263	N.D.	
67) C282 1,2,3-Trichloropro	0.00	110	0	N.D.	
68) C283 t-1,4-Dichloro-2-B	0.00	51	0	N.D.	
69) C302 n-Propylbenzene	9.94	91	545	N.D.	
70) C303 2-Chlorotoluene	0.00	126	0	N.D.	
71) C289 4-Chlorotoluene	0.00	126	0	N.D.	
72) C304 1,3,5-Trimethylben	0.00	105	0	N.D.	
73) C306 tert-Butylbenzene	0.00	134	0	N.D.	
74) C307 1,2,4-Trimethylben	10.71	105	338	N.D.	
75) C308 sec-Butylbenzene	10.71	105	338	N.D.	
76) C260 1,3-Dichlorobenzen	0.00	146	0	N.D.	
77) C309 4-Isopropyltoluene	0.00	119	0	N.D.	
78) C267 1,4-Dichlorobenzen	0.00	146	0	N.D.	
79) C249 1,2-Dichlorobenzen	0.00	146	0	N.D.	
80) C310 n-Butylbenzene	11.39	91	57	N.D.	
81) C286 1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
82) C313 1,2,4-Trichloroben	0.00	180	0	N.D.	
83) C316 Hexachlorobutadien	0.00	225	0	N.D.	
84) C314 Naphthalene	13.03	128	1264	N.D.	
85) C934 1,2,3-Trichloroben	0.00	180	0	N.D.	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: SAS No.: SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59202RI

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{G7650.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CTA CLATC		CONCENTRATION UN.		0
CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/L</u>	Q
67-64-1	Acetone		5.0	U
71-43-2			1.0	U
75-27-4	Bromodichloromethane		1.0	U
75-25-2	Bromoform		1.0	U
74-83-9	Bromomethane		1.0	U
78-93-3	2-Butanone		5.0	U
75-15-0	Carbon Disulfide		1.0	U
56-23-5	Carbon Tetrachloride		1.0	ע
108-90-7	Chlorobenzene		1.0	U .
75-00-3	Chloroethane		1.0	U
67-66-3	Chloroform		1.0	U
74-87-3	Chloromethane		1.0	U
110-82-7	Cyclohexane		1.0	U
	1,2-Dibromoethane		1.0	U
124-48-1	Dibromochloromethane		1.0	U
96-12-8	1,2-Dibromo-3-chloropropane		1.0	U
95-50-1	1,2-Dichlorobenzene		1.0	U
541-73-1	1,3-Dichlorobenzene		1.0	U
106-46-7	1,4-Dichlorobenzene		1.0	ע
75-71-8	Dichlorodifluoromethane		1.0	U
75-34-3	1,1-Dichloroethane		1.0	U
107-06-2	1,2-Dichloroethane		1.0	Ū
75-35-4	1,1-Dichloroethene		1.0	U
156-59-2	cis-1,2-Dichloroethene		30	
	trans-1,2-Dichloroethene		1.4	
78-87-5	1,2-Dichloropropane		1.0	U
10061-01-5	cis-1,3-Dichloropropene		1.0	U
10061-02-6	trans-1,3-Dichloropropene		1.0	U
100-41-4	Ethylbenzene		1.0	U
591-78-6	2-Hexanone		5.0	U
98-82-8	Isopropylbenzene		1.0	U
	Methyl acetate		1.0	U
	Methylcyclohexane		1.0	U
	Methylene chloride		1.0	U
				

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-22	RI	
l		

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59202RI

Sample wt/vol: 5.00 (g/mL) ML Lab File ID: $\underline{G7650.RR}$

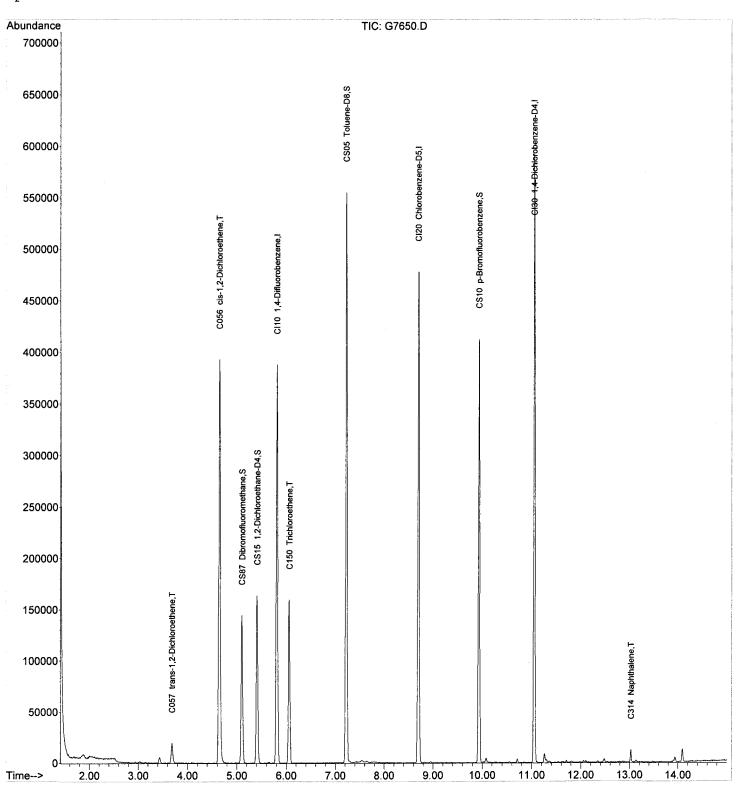
Level: (low/med) Low Date Samp/Recv: $\underline{12/21/2005}$ $\underline{12/23/2005}$

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
108-10-1	4-Methyl-2-pentanone		5.0	U
	Methyl-t-Butyl Ether (MTBE)		1.0	U
91-20-3	Naphthalene		0.45	J
100-42-5	Styrene		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
	Tetrachloroethene		1.0	U
108-88-3	Toluene		1.0	U
120-82-1	1,2,4-Trichlorobenzene		1.0	U
71-55-6	1,1,1-Trichloroethane		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-triflu	oroethane	1.0	U
75-69-4	Trichlorofluoromethane		1.0	U
79-01-6	Trichloroethene		9.6	
75-01-4	Vinyl chloride		1.0	U
1330-20-7	Total Xylenes		3.0	U
1				1


Data File: C:\MSDCHEM\1\DATA\122805\G7650.D

Acq On : 28 Dec 2005 12:10 Sample : A5E59202/HEADSPACE Misc Integrator: RTE Quant Time: Dec 28 15:32:07 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Wed Dec 28 09:16:02 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122805\

R.T. QIon Response Conc Units Dev(Min)

Data File: C:\MSDCHEM\1\DATA\122805\G7650.D

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update: Wed Dec 28 09:16:02 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122805\

Operator : TLC

Internal Standards

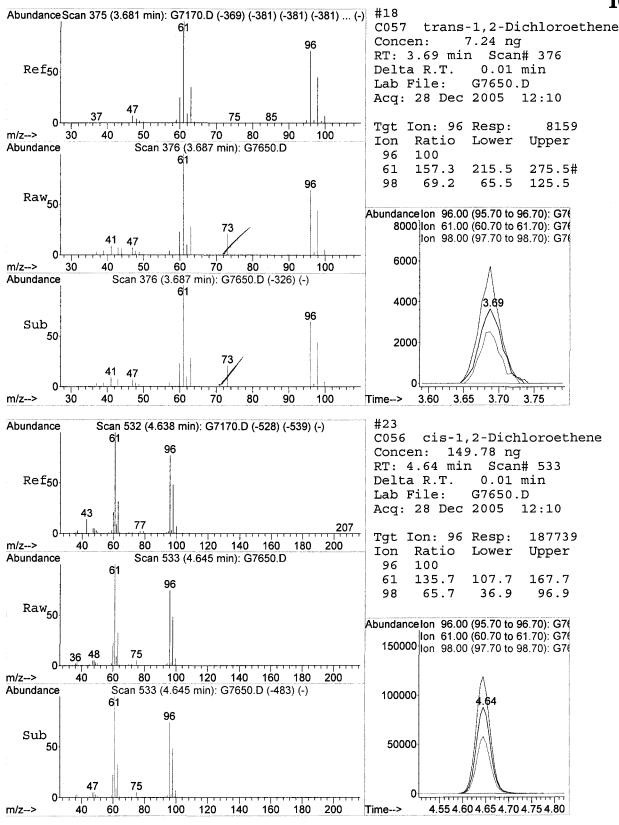
1110	ornar i	Jeanachas	10.1	. Q1011	кевропве	cone or	1105		(Ar)
1)	CT10	1,4-Difluorobenzene	 5.8	1 114	341641	125.00) na		0.00
						123.00	,		7.35%
43)	CI20	Chlorobenzene-D5	8.7	0 82	168565	125.00) ng		0.00 6.00%
63)	CI30	1,4-Dichlorobenzene-	11.0	5 152	160884	125.00	ng		0.00
		•						9!	5.52%
Svst	tem Mor	nitoring Compounds							
		Dibromofluoromethane				113.60	NG		0.00
	iked Ar			0 - 130	Recove			.88%	
		1,2-Dichloroethane-D				114.94	ng		0.00
	iked Ar	mount 125.000 Rai	nge 7	3 - 136	Recove			.95%	
	CS05	Toluene-D8	7.2			118.37	ng		0.00
	iked Ar			7 - 122				.70%	
		p-Bromofluorobenzene	9.9	4 174	123757	118.50	ng		0.00
Sp:	iked Ar	mount 125.000 Rai	nge 7	4 - 120	Recove	ry =	94	.80%	
Taro	get Cor	mpounds						Qva	alue
		Dichlorodifluorome	0.00	85	0	N.D.			
3)	C010	Chloromethane	1.62	50	65	N.D.			
4)	C020	Vinyl chloride	1.72	62	880	N.D.			
5)	C015	Bromomethane	0.00	94	0	N.D.			
6)	C025	Chloroethane	2.18	64	63	N.D.			
7)	C275	Trichlorofluoromet	0.00	101	0	N.D.			
8)	C045	1,1-Dichloroethene	2.94	96	436	N.D.			
9)	C030	Methylene chloride	3.43	84	2728	N.D.			
	C040	Carbon disulfide	3.14	76	775	N.D.			
	C036	Acrolein	0.00	56	0	N.D.			
	C038	Acrylonitrile	0.00	53	0	N.D.			
	C035	Acetone	3.05	43	2501	N.D.			
	C3 ₀ 00	Acetonitrile	3.32	41	138	N.D.			
	C276	Iodomethane	3.07		303	N.D.			
	C291	1,1,2-Trichloro-1,	0.00	101	0	N.D.			
	C962	T-butyl Methyl Eth	3.69	73	4158	N.D.			
	2 057	trans-1,2-Dichloroet		9 96	8159	7.24	nq	#	56
(19)	C255	Methyl Acetate	3.41	43	62	N.D.	_		
	C050	1,1-Dichloroethane	4.09		657	N.D.			
	C125	Vinyl Acetate	0.00	43	0	N.D.			
	€ 051	2,2-Dichloropropan	4.65	77	346	N.D.			
	2 056	cis-1,2-Dichloroethe			187739	149.78	nq		98
	C272	Tetrahydrofuran	0.00	42	0	N.D.	,		
	C222	Bromochloromethane	0.00	128	0	N.D.			
	C060	Chloroform	0.00	83	0	N.D.			
	C115	1,1,1-Trichloroeth	0.00	97	Ō	N.D.			
	C120	Carbon tetrachlori	0.00	117	Ö	N.D.			
	C116	1,1-Dichloropropen	0.00	75	0	N.D.			
32)		Benzene	5.44	78	429	N.D.			
33)	C065	1,2-Dichloroethane	0.00	62	. 0	N.D.			
34)	C110	2-Butanone	4.68	43	657	N.D.			
35)_	C256	Cyclohexane	0.00	56	0	N.D.			
(36)	C150	Trichloroethene	6.0		57763	47.80	na		97
الروس	~~	111CH1OLOCCHCHC	5.0		3,,03	17.00	3		٠.

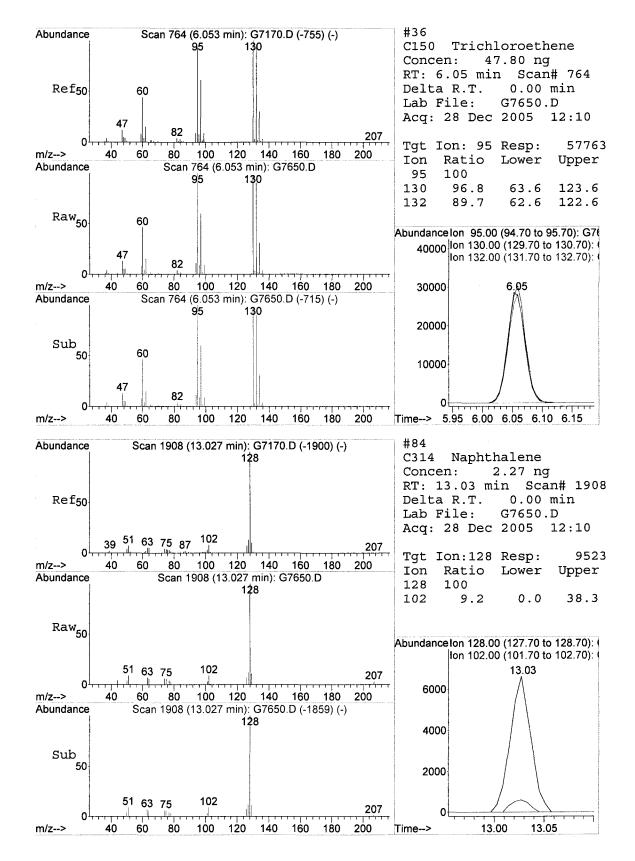
Ly //ge

Data File: C:\MSDCHEM\1\DATA\122805\G7650.D

Acq On : 28 Dec 2005 12:10 Sample : A5E59202 HEADSPACE Misc : Integrator: RTE Quant Time: Dec 28 15:32:07 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M


Quant Title : 8260 5ML WATER
QLast Update : Wed Dec 28 09:16:02 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122805\


Operator : TLC

38 C278 Dibromomethane 0.00 63 0 N.D.	Internal Standards	R.T. QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
38) C278 Dibromomethane	37) C140 1,2-Dichloropropar	0.00 63	0	N.D.	
40 C161	_		0	N.D.	
41) C012 Methylcyclohexane	39) C130 Bromodichlorometha	. 0.00 83	0	N.D.	
41) C012 Methylcyclohexane	40) C161 2-Chloroethylvinyl	0.00 63	0	N.D.	
42) C145 cis-1,3-Dichloropr			0		
45) C230 Toluene 7.28 92 768 N.D. 46) C170 trans-1,3-Dichloro 0.00 75 0 N.D. 47) C284 Ethyl Methacrylate 0.00 69 0 N.D. 48) C160 1,1,2-Trichloroeth 0.00 83 0 N.D. 49) C210 4-Methyl-2-pentano 7.22 43 1792 N.D. 50) C220 Tetrachloroethene 0.00 166 0 N.D. 51) C221 1,3-Dichloropropan 0.00 76 0 N.D. 52) C155 Dibromochlorometha 0.00 129 0 N.D. 53) C163 1,2-Dibromoethane 0.00 107 0 N.D. 53) C163 1,2-Dibromoethane 0.00 107 0 N.D. 55) C235 Chlorobenzene 0.00 131 0 N.D. 56) C281 1,1,1,2-Tetrachlor 0.00 131 0 N.D. 57) C240 Ethylbenzene 8.95 91 1317 N.D. 58) C246 m,p-Xylene 8.95 106 349 N.D. 59) C247 0-Xylene 0.00 104 0 N.D. 60) C245 Styrene 0.00 104 0 N.D. 61) C180 Bromoform 0.00 173 0 N.D. 621 C180 Bromobenzene 9.94 105 84 N.D. 631 C25 1,1,2,2-Tetrachlor 0.00 136 0 N.D. 640 C25 1,1,2,2-Tetrachlor 0.00 156 0 N.D. 650 C281 1,1,2,2-Tetrachlor 0.00 183 0 N.D. 661 C283 1-1,4-Dichloro-2-B 0.00 156 0 N.D. 670 C282 1,2,3-Trichloropro 0.00 110 0 N.D. 680 C283 t-1,4-Dichloro-2-B 0.00 156 0 N.D. 690 C302 n-Propylbenzene 10.18 91 443 N.D. 700 C303 2-Chlorotoluene 0.00 126 0 N.D. 710 C309 4-Chlorotoluene 0.00 126 0 N.D. 721 C309 4-Chlorotoluene 0.00 126 0 N.D. 732 C304 1,3,5-Trimethylben 10.35 105 245 N.D. 741 C307 1,2,4-Trimethylben 10.71 105 2311 N.D. 752 C308 sec-Butylbenzene 10.71 105 2311 N.D. 753 C309 4-Isopropyltoluene 10.071 105 2311 N.D. 754 C309 1,2-Dichlorobenzen 0.00 146 0 N.D. 755 C308 sec-Butylbenzene 10.71 105 2311 N.D. 756 C309 1,2-Dichlorobenzen 0.00 146 0 N.D. 757 C309 4-Isopropyltoluene 11.01 119 65 N.D. 758 C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 759 C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 750 C301 1,2-Dichlorobenzen 0.00 146 0 N.D. 751 C302 1,2-Dichlorobenzen 0.00 146 0 N.D. 752 C303 1,2-Dichlorobenzen 0.00 146 0 N.D. 750 C303 1,2-Dichlorobenzen 0.00 146 0 N.D. 751 C304 1,3-Dichlorobenzen 0.00 146 0 N.D. 752 C305 1,4-Dichlorobenzen 0.00 146 0 N.D. 750 C307 1,4-Dichlorobenzen 0.00 146 0 N.D. 751 C309 1,2-Dichlorobenzen 0.00 146 0 N.D. 752 C301 1,4-Dichlorobenzen 0.00 146 0 N.D. 751 C303 1,2-Dichlorobenzen 0.00 146		0.00 75	0	N.D.	
46) C170 trans-1,3-Dichloro 0.00 75 0 N.D. 47) C284 Ethyl Methacrylate 0.00 69 0 N.D. 48) C160 1,1,2-Trichloroeth 0.00 83 0 N.D. 49) C210 4-Methyl-2-pentano 7.22 43 1792 N.D. 50) C220 Tetrachloroethene 0.00 166 0 N.D. 51) C221 1,3-Dichloropropan 0.00 76 0 N.D. 52) C155 Dibromochlorometha 0.00 129 0 N.D. 53) C163 1,2-Dibromoethane 0.00 107 0 N.D. 54) C215 2-Hexanone 0.00 43 0 N.D. 55) C235 Chlorobenzene 0.00 112 0 N.D. 56) C230 Ethylbenzene 8.95 91 1317 N.D. 57) C240 Ethylbenzene 8.95 91 1317 N.D. 58) C246 m,p-Xylene 8.95 106 349 N.D. 59) C247 0-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 104 0 N.D. 61) C180 Bromoform 0.00 173 0 N.D. 62) C301 Bromobenzene 0.00 173 0 N.D. 63) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C302 n-Propylbenzene 10.18 91 443 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 10.35 105 245 N.D. 73) C306 tett-Butylbenzene 0.00 146 0 N.D. 74) C307 1,2,4-Trimethylben 10.71 105 2311 N.D. 75) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 10.01 19 0 N.D. 78) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 180 0 N.D. 710 C303 C3-Dichlorobenzen 0.00 146 0 N.D. 711 C303 C3-Dichlorobenzen 0.00 146 0 N.D. 712 C314 Naphthalene 11.01 119 65 N.D. 720 C314 Naphthalene 11.01 119 67 N.D.			768	N.D.	
47) C284 Ethyl Methacrylate 0.00 69 0 N.D. 48) C160 1,1,2-Trichloroeth 0.00 83 0 N.D. 49) C210 4-Methyl-2-pentano 7.22 43 1792 N.D. 50) C220 Tetrachloroethene 0.00 166 0 N.D. 51) C221 1,3-Dichloropropan 0.00 76 0 N.D. 52) C155 Dibromochlorometha 0.00 107 0 N.D. 53) C163 1,2-Dibromoethane 0.00 107 0 N.D. 54) C215 2-Bexanone 0.00 131 0 N.D. 55) C235 Chlorobenzene 0.00 131 0 N.D. 56) C281 1,1,2,2-Tetrachlor 0.00 131 0 N.D. 57) C240 Ethylbenzene 8.95 91 1317 N.D. 58) C247 <t< td=""><td></td><td>0.00 75</td><td>0</td><td>N.D.</td><td></td></t<>		0.00 75	0	N.D.	
48) C160 1,1,2-Trichloroeth 0.00 83 0 N.D. 49) C210 4-Methyl-2-pentano 7.22 43 1792 N.D. 50) C220 Tetrachloroethene 0.00 166 0 N.D. 51) C221 1,3-Dichloropropan 0.00 76 0 N.D. 52) C155 Dibromochlorometha 0.00 129 0 N.D. 53) C163 1,2-Dibromochlorometha 0.00 107 0 N.D. 54) C215 2-Hexanone 0.00 107 0 N.D. 55) C235 Chlorobenzene 0.00 112 0 N.D. 56) C246 Btylbenzene 8.95 91 1317 N.D. 58) C246 m,p-Xylene 8.95 91 3117 N.D. 60) C245 Styrene 0.00 106 0 N.D. 61) C180 Bromoform<	47) C284 Ethyl Methacrylate	0.00 69	0	N.D.	
49) C210 4-Methyl-2-pentano 7.22 43 1792 N.D. 50) C220 Tetrachloroethene 0.00 166 0 N.D. 51) C221 1,3-Dichloropropan 0.00 76 0 N.D. 52) C155 Dibromochlorometha 0.00 129 0 N.D. 53) C163 1,2-Dibromoethane 0.00 107 0 N.D. 54) C215 2-Hexanone 0.00 43 0 N.D. 55) C235 Chlorobenzene 0.00 112 0 N.D. 56) C281 1,1,1,2-Tetrachlor 0.00 131 0 N.D. 57) C240 Ethylbenzene 8.95 91 1317 N.D. 58) C246 m,-Xylene 8.95 106 349 N.D. 59) C247 o-Xylene 0.00 106 0 N.D. 61) C245 styrene			0	N.D.	
Sol C220 Tetrachloroethene O.00 166 O N.D.			1792	N.D.	
S1 C221			0	N.D.	
52) C155 Dibromochlorometha 0.00 129 0 N.D. 53) C163 1,2-Dibromoethane 0.00 107 0 N.D. 54) C215 2-Hexanone 0.00 43 0 N.D. 55) C235 Chlorobenzene 0.00 112 0 N.D. 56) C281 1,1,1,2-Tetrachlor 0.00 131 0 N.D. 57) C240 Ethylbenzene 8.95 91 1317 N.D. 58) C246 m,p-Xylene 8.95 106 349 N.D. 59) C247 o-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 106 0 N.D. 61) C180 Bromoform 0.00 104 0 N.D. 62) C301 Bromobenzene 0.00 156 0 N.D. 63) C225 1,2,2-Tetrachlor 0.00 84 N.D. 66) C225 1,2,2-Tetrachlor 0.00 10 0 N.D.<			0	N.D.	
53) C163 1,2-Dibromoethane 0.00 107 0 N.D. 54) C215 2-Hexanone 0.00 43 0 N.D. 55) C235 Chlorobenzene 0.00 112 0 N.D. 56) C281 1,1,1,2-Tetrachlor 0.00 131 0 N.D. 57) C240 Ethylbenzene 8.95 91 1317 N.D. 58) C246 m,p-Xylene 8.95 106 349 N.D. 59) C247 o-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 104 0 N.D. 61) C180 Bromoform 0.00 173 0 N.D. 61) C180 Bromobenzene 0.00 156 0 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropen 0.00 51 0			0	N.D.	
54) C215 2-Hexanone 0.00 43 0 N.D. 55) C235 Chlorobenzene 0.00 112 0 N.D. 56) C281 1,1,2-Tetrachlor 0.00 131 0 N.D. 57) C240 Ethylbenzene 8.95 91 1317 N.D. 58) C246 m,p-Xylene 8.95 106 349 N.D. 59) C247 o-Xylene 0.00 106 0 N.D. 600 C245 Styrene 0.00 104 0 N.D. 61) C180 Bromoform 0.00 173 0 N.D. 64) C966 Isopropylbenzene 9.94 105 84 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 69) C302 n-Propylbenzene 10.18 91 443 N.D. 70) C303 2-Chlorotoluene 0.00 126 <		0.00 107	0	N.D.	
55 C235 Chlorobenzene 0.00 112 0 N.D.	•		0	N.D.	
56) C281 1,1,1,2-Tetrachlor 0.00 131 0 N.D. 57) C240 Ethylbenzene 8.95 91 1317 N.D. 58) C246 m,p-Xylene 8.95 106 349 N.D. 59) C247 o-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 104 0 N.D. 61) C180 Bromoform 0.00 173 0 N.D. 64) C966 Isopropylbenzene 9.94 105 84 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 51 0 N.D. 69) C302 n-Propylbenzene 10.18 91 443 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 10.35 105 245 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 10.71 105 2311 N.D. 75) C308 sec-Butylbenzene 10.71 105 2311 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 11.01 119 65 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 11.29 91 214 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 13.03 128 9523 2.27 ng 98	-		0	N.D.	
57) C240 Ethylbenzene 8.95 91 1317 N.D. 58) C246 m,p-Xylene 8.95 106 349 N.D. 59) C247 o-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 104 0 N.D. 61) C180 Bromoform 0.00 173 0 N.D. 61) C180 Bromoform 0.00 173 0 N.D. 62) C301 Bromobenzene 0.00 156 0 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 51 0 N.D. 69) C302 n-Propylbenzene 10.18 91 443 N.D. 70 C2303 2-Chlorotoluene			0		
58) C246 m,p-Xylene 8.95 106 349 N.D. 59) C247 o-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 104 0 N.D. 61) C180 Bromoform 0.00 173 0 N.D. 64) C966 Isopropylbenzene 9.94 105 84 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 51 0 N.D. 69) C302 n-Propylbenzene 10.18 91 443 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene			1317		
59) C247 o-Xylene 0.00 106 0 N.D. 60) C245 Styrene 0.00 104 0 N.D. 61) C180 Bromoform 0.00 173 0 N.D. 64) C966 Isopropylbenzene 9.94 105 84 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 51 0 N.D. 0 N.D. 69) C302 n-Propylbenzene 10.18 91 443 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 10.35 105 245 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 10.71 105 2311 N.D. 75) C308 sec-Butylbenzene 10.71 105 2311 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 11.01 119 65 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 11.29 91 214 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 N.2,4-Trichloroben 0.00 180 0 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C314 Naphthalene 13.03 128 9523 2.27 ng				N.D.	
60) C245 Styrene 0.00 104 0 N.D. 61) C180 Bromoform 0.00 173 0 N.D. 64) C966 Isopropylbenzene 9.94 105 84 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 51 0 N.D. 69) C302 n-Propylbenzene 10.18 91 443 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 10.35 105 245 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 10.71 105 2311 N.D. 75) C308 sec-Butylbenzene 10.71 105 2311 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 11.01 119 65 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 11.29 91 214 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D.	· · · · · · · · · · · · · · · · · · ·				
61) C180 Bromoform 0.00 173 0 N.D. 64) C966 Isopropylbenzene 9.94 105 84 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 51 0 N.D. 69) C302 n-Propylbenzene 10.18 91 443 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 10.35 105 245 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 10.71 105 2311 N.D. 75) C308 sec-Butylbenzene 10.71 105 2311 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 11.01 119 65 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 11.29 91 214 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 13.03 128 9523 2.27 ng 98	•		0	N.D.	
64) C966 Isopropylbenzene 9.94 105 84 N.D. 65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 51 0 N.D. 69) C302 n-Propylbenzene 10.18 91 443 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 10.35 105 245 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 10.71 105 2311 N.D. 75) C308 sec-Butylbenzene 10.71 105 2311 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 11.01 119 65 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 11.29 91 214 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 </td <td>•</td> <td></td> <td></td> <td></td> <td></td>	•				
65) C301 Bromobenzene 0.00 156 0 N.D. 66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 51 0 N.D. 69) C302 n-Propylbenzene 10.18 91 443 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 10.35 105 245 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 10.71 105 2311 N.D. 75) C308 sec-Butylbenzene 10.71 105 2311 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 11.01 119 65 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 11.29 91 214 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84+ C314 Naphthalene 13.03 128 9523 2.27 ng 98			84		
66) C225 1,1,2,2-Tetrachlor 0.00 83 0 N.D. 67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 51 0 N.D. 69) C302 n-Propylbenzene 10.18 91 443 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 10.35 105 245 N.D. 73) C306 tetr-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 10.71 105 2311 N.D. 75) C308 sec-Butylbenzene 10.71 105 2311 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 11.01 119 65 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 11.29 91 214 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 841 C314 Naphthalene 13.03 128 9523 2.27 ng 98	· • • • • • • • • • • • • • • • • • • •	0.00 156	0	N.D.	
67) C282 1,2,3-Trichloropro 0.00 110 0 N.D. 68) C283 t-1,4-Dichloro-2-B 0.00 51 0 N.D. 69) C302 n-Propylbenzene 10.18 91 443 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 10.35 105 245 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 10.71 105 2311 N.D. 75) C308 sec-Butylbenzene 10.71 105 2311 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 11.01 119 65 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 11.29 91 214 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84+ C314 Naphthalene 13.03 128 9523 2.27 ng 98			0		
68) C283 t-1,4-Dichloro-2-B 0.00 51 0 N.D. 69) C302 n-Propylbenzene 10.18 91 443 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 10.35 105 245 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 10.71 105 2311 N.D. 75) C308 sec-Butylbenzene 10.71 105 2311 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 11.01 119 65 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 11.29 91 214 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84+ C314 Naphthalene 13.03 128 9523 2.27 ng 98			0	N.D.	
69) C302 n-Propylbenzene 10.18 91 443 N.D. 70) C303 2-Chlorotoluene 0.00 126 0 N.D. 71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 10.35 105 245 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 10.71 105 2311 N.D. 75) C308 sec-Butylbenzene 10.71 105 2311 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 11.01 119 65 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 11.29 91 214 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 13.03 128 9523 2.27 ng 98			0	N.D.	
71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 10.35 105 245 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 10.71 105 2311 N.D. 75) C308 sec-Butylbenzene 10.71 105 2311 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 11.01 119 65 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 11.29 91 214 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84+ C314 Naphthalene 13.03 128 9523 2.27 ng 98			443	N.D.	
71) C289 4-Chlorotoluene 0.00 126 0 N.D. 72) C304 1,3,5-Trimethylben 10.35 105 245 N.D. 73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 10.71 105 2311 N.D. 75) C308 sec-Butylbenzene 10.71 105 2311 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 11.01 119 65 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 11.29 91 214 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84+ C314 Naphthalene 13.03 128 9523 2.27 ng 98		0.00 126	0	N.D.	
73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 10.71 105 2311 N.D. 75) C308 sec-Butylbenzene 10.71 105 2311 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 11.01 119 65 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 11.29 91 214 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84+ C314 Naphthalene 13.03 128 9523 2.27 ng 98			0	N.D.	
73) C306 tert-Butylbenzene 0.00 134 0 N.D. 74) C307 1,2,4-Trimethylben 10.71 105 2311 N.D. 75) C308 sec-Butylbenzene 10.71 105 2311 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 11.01 119 65 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 11.29 91 214 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84+ C314 Naphthalene 13.03 128 9523 2.27 ng 98	72) C304 1,3,5-Trimethylber	10.35 105	245	N.D.	
74) C307 1,2,4-Trimethylben 10.71 105 2311 N.D. 75) C308 sec-Butylbenzene 10.71 105 2311 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 11.01 119 65 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 11.29 91 214 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 841 C314 Naphthalene 13.03 128 9523 2.27 ng 98			0	N.D.	
75) C308 sec-Butylbenzene 10.71 105 2311 N.D. 76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 11.01 119 65 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 11.29 91 214 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 13.03 128 9523 2.27 ng 98		10.71 105	2311	N.D.	
76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D. 77) C309 4-Isopropyltoluene 11.01 119 65 N.D. 78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 11.29 91 214 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 13.03 128 9523 2.27 ng 98			2311	N.D.	
78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 11.29 91 214 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 13.03 128 9523 2.27 ng 98	. · · · · · · · · · · · · · · · · · · ·		0	N.D.	
78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D. 79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 11.29 91 214 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 13.03 128 9523 2.27 ng 98	77) C309 4-Isopropyltoluene	11.01 119	65	N.D.	
79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D. 80) C310 n-Butylbenzene 11.29 91 214 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 13.03 128 9523 2.27 ng 98			0	N.D.	
80) C310 n-Butylbenzene 11.29 91 214 N.D. 81) C286 1,2-Dibromo-3-Chlo 0.00 75 0 N.D. 82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 13.03 128 9523 2.27 ng 98		0.00 146	0	N.D.	
82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 13.03 128 9523 2.27 ng 98		11.29 91	214		
82) C313 1,2,4-Trichloroben 0.00 180 0 N.D. 83) C316 Hexachlorobutadien 0.00 225 0 N.D. 84) C314 Naphthalene 13.03 128 9523 2.27 ng 98		0.00 75	0	N.D.	
84 C314 Naphthalene 13.03 128 9523 2.27 ng 98			0	N.D.	
(84) C314 Naphthalene 13.03 128 9523 2.27 ng 98	· · · · · · · · · · · · · · · · · · ·		0	N.D.	
85) C934 1,2,3-Trichloroben 13.22 180 187 N.D.			9523	2.27 ng	98
	85) C934 1,2,3-Trichlorober	13.22 180	187	N.D.	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-23			
-------	--	--	--

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59209

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{G7605.RR}}$

Level: (low/med) Low Date Samp/Recv: $\underline{12/22/2005}$ $\underline{12/23/2005}$

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CAS NO.	COMPOUND	(ug/L or ug/Kg	UG/L_	Q
67-64-1			5.0	บ
71-43-2	Benzene		1.0	U
75-27-4	Bromodichloromethane		1.0	ע
75-25-2			1.0	ע
	Bromomethane	.1	1.0	U
78-93-3	2-Butanone		5.0	[U
75-15-0	Carbon Disulfide		1.0	U
56-23-5	Carbon Tetrachloride		1.0	U
108-90-7	Chlorobenzene		1.0	ע
75-00-3	Chloroethane		1.0	U
67-66-3	Chloroform		1.0	U
74-87-3	Chloromethane		1.0	U
110-82-7	Cyclohexane		1.0	ע
106-93-4	1,2-Dibromoethane		1.0	U
124-48-1	Dibromochloromethane		1.0	U
96-12-8	1,2-Dibromo-3-chloropropane		1.0	U
95-50-1	1,2-Dichlorobenzene		1.0	U
541-73-1	1,3-Dichlorobenzene		1.0	U
106-46-7	1,4-Dichlorobenzene		1.0	U
75-71-8	Dichlorodifluoromethane		1.0	U
75-34-3	1,1-Dichloroethane		1.0	Ū
107-06-2	1,2-Dichloroethane		1.0	U
75-35-4	1,1-Dichloroethene		1.0	U
	cis-1,2-Dichloroethene	,	8.0	
156-60-5	-trans-1,2-Dichloroethene		1.0	U
	1,2-Dichloropropane		1.0	U
	cis-1,3-Dichloropropene		1.0	ע
10061-02-6	trans-1,3-Dichloropropene_		1.0	U
100-41-4	Ethylbenzene		1.0	ט
591-78-6	2-Hexanone		5.0	U
98-82-8	Isopropylbenzene		1.0	U
79-20-9	Methyl acetate		1.0	U
	Methylcyclohexane		1.0	ט
	Methylene chloride		1.0	ש

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-23	
1.114-52	

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: SAS No.: SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59209

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/22/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

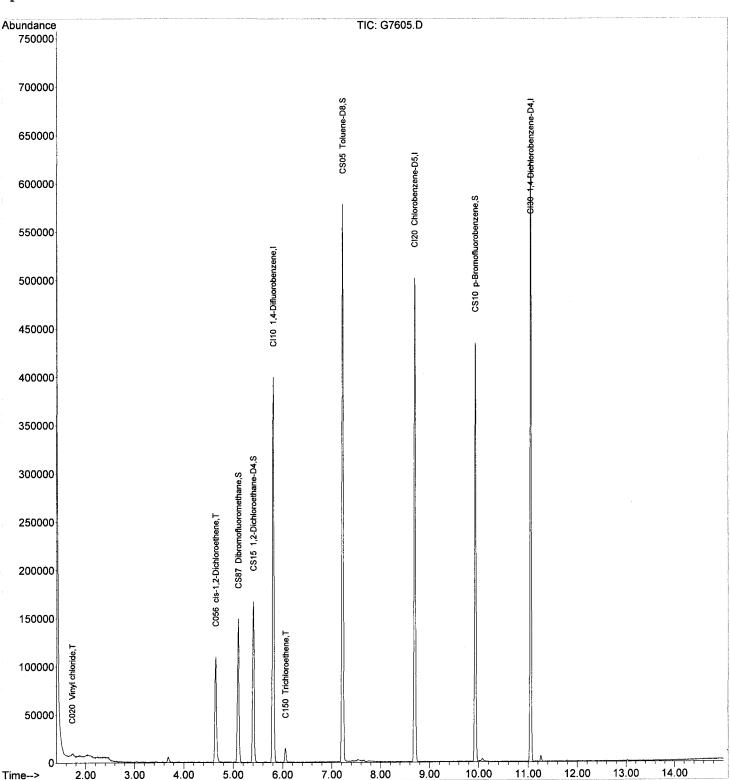
CAS NO.	COMPOUND	(ug/L or ug/Kg		Q
108-10-1	-4-Methyl-2-pentanone		5.0	ט
	-Methyl-t-Butyl Ether (MIBE)		1.0	ע
91-20-3	-Naphthalene		1.0	ע
100-42-5	-Styrene		1.0	ע
79-34-5	-1,1,2,2-Tetrachloroethane		1.0	U
127-18-4	-Tetrachloroethene		1.0	ט
108-88-3	-Toluene		1.0	U
120-82-1	-1,2,4-Trichlorobenzene		1.0	ע
71-55-6	-1,1,1-Trichloroethane		1.0	U
79-00-5	-1,1,2-Trichloroethane		1.0	ע
76-13-1	-1,1,2-Trichloro-1,2,2-trifluo	proethane	1.0	ע
75-69-4	-Trichlorofluoromethane		1.0	ט
79-01-6	-Trichloroethene		0.86	J
75-01-4	-Vinyl chloride		0.77	J
1330-20-7			3.0	ט

Data File: C:\MSDCHEM\1\DATA\122705\G7605.D

Acq On : 27 Dec 2005

Sample : A5E59209

Misc


Integrator: RTE

Quant Time: Dec 27 18:07:57 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Data File: C:\MSDCHEM\1\DATA\122705\G7605.D

Acq On : 27 Dec 2005 17:02

Sample : A5E59209

Misc :

Integrator: RTE

Quant Time: Dec 27 18:07:57 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Operator : TLC

Inte	ernal :	Standards	R.T.	QIon	Response	Conc Ur		Dev(Min) Rcv(Ar)
1)	CI10	1,4-Difluorobenzene	5.81	114	354680	125.00		
43)	CI20	Chlorobenzene-D5	8.70	82	178256	125.00) ng	
63)	CI30	1,4-Dichlorobenzene-	11.05	152	169454	125.00	ng	
		nitoring Compounds Dibromofluoromethane	5.10) 111	101199	113.99	NG	
		mount 125.000 Rar 1,2-Dichloroethane-D	nge 70	- 130	Recove			.19% 0.00
Sp:	iked A	mount 125.000 Rar	nge 73	3 - 136	Recove	ry =	91	.79%
44) Sp:	CS05 iked Ar	Toluene-D8 mount 125.000 Rar	7.22 nge 77	98 7 - 122	418492 Recove		_	0.00 .14%
62)	CS10	mount 125.000 Rar p-Bromofluorobenzene	9.94	174	127587	115.52	ng	0.00
sp.	rked Ai	mount 125.000 Rar	ige /4	: - 120	Recove	ry =	92	.426
		mpounds Dichlorodifluorome	0 00	٥٦	0	N.D.		Qvalue
		Chloromethane	0.00 1.63	85 50	0 70	N.D. N.D.		
(4)X	C020		1.72			3.84	na	100
		Bromomethane	2.10	94	68	N.D.		
					0	N.D.		
7)	C275	Chloroethane Trichlorofluoromet	0.00	101	Ö	N.D.		
8)	C045	1,1-Dichloroethene	0.00		0	N.D.		
	C030		3.44		129	N.D.		
		Carbon disulfide			529	N.D.		
11)		Acrolein	0.00		0	N.D.		
12)	C038	Acrylonitrile	0.00	53	0	N.D.		
13)	C035	Acetone	3.04	43	981	N.D.		
14)	C300	Acetonitrile	3.34	41	127	N.D.		
15)	C276	<pre>Iodomethane 1,1,2-Trichloro-1,</pre>	0.00	142	0	N.D.		
		1,1,2-Trichloro-1,	0.00	101	0	N.D.		
	C962			73	1544	N.D.		
		trans-1,2-Dichloro	3.69	96	2225	N.D.		
		Methyl Acetate	0.00	43	0	N.D.		
		1,1-Dichloroethane			203	N.D.		
		Vinyl Acetate		43	0	N.D.		
-		2,2-Dichloropropan cis-1,2-Dichloroethe	4.66 4.64	77	306 51963	N.D.	~~	97
(23)	℃ 056 C272	Tetrahydrofuran	0.00	96 42	0	39.93 N.D.	119	91
⁷ 24) 25)	C272	Bromochloromethane	0.00	128	0	N.D.		
27)	C060	Chloroform	0.00	83	0	N.D.		
28)	C115	1,1,1-Trichloroeth	0.00	97	Ö	N.D.		
	C120	Carbon tetrachlori	0.00	117	o .	N.D.		
	C116	1,1-Dichloropropen	0.00	75	0	N.D.		
32)	C165	Benzene	5.45	78	294	N.D.		
33)	C065	1,2-Dichloroethane	0.00	62	0	N.D.		
34)	C110	2-Butanone	4.67	43	93	N.D.		
35)	C256	Cyclohexane	0.00	56	0	N.D.		
(36)	C 150	Trichloroethene	6.06	95	5421	4.32	ng	97

108/304

Data File: C:\MSDCHEM\1\DATA\122705\G7605.D

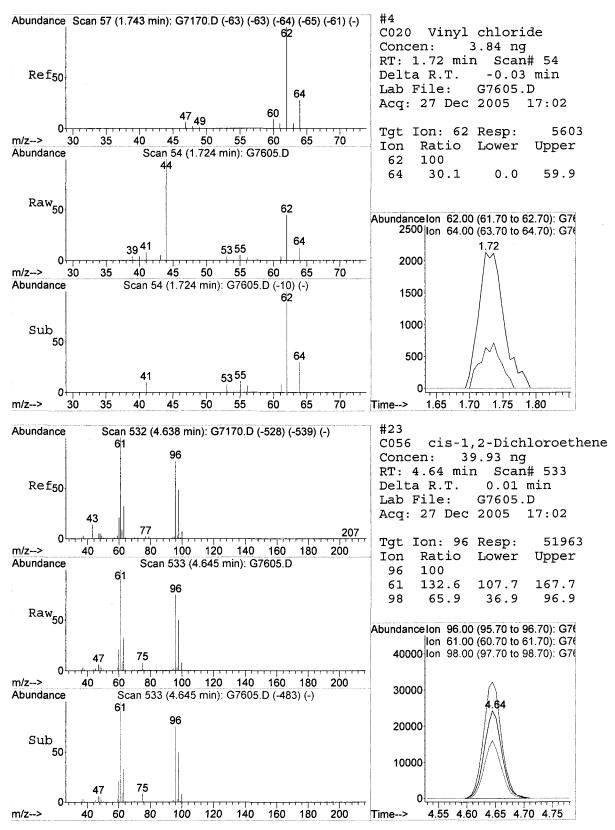
Acq On : 27 Dec 2005 17:02 Sample : A5E59209

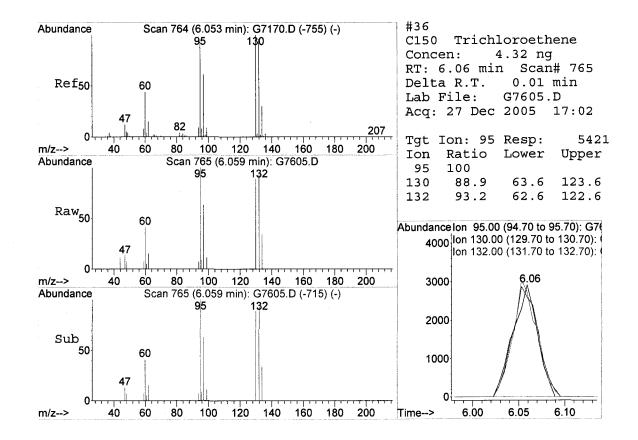
Misc

Integrator: RTE

Quant Time: Dec 27 18:07:57 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M


Quant Title : 8260 5ML WATER QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\


Operator : TLC

Internal Standards	R.T	. QIon	Response	Conc Units Dev(Min) Rcv(Ar)	
37) C140 1,2-Dichloropropan	0.00	63	0	N.D.	
38) C278 Dibromomethane	0.00	93	0	N.D.	
39) C130 Bromodichlorometha	0.00	83	0	N.D.	
40) C161 2-Chloroethylvinyl	0.00	63	0	N.D.	
41) C012 Methylcyclohexane	0.00	83	0	N.D.	
42) C145 cis-1,3-Dichloropr	0.00	75	0	N.D.	
45) C230 Toluene	7.28	92	189	N.D.	
46) C170 trans-1,3-Dichloro	0.00	75	0	N.D.	
47) C284 Ethyl Methacrylate	0.00	69	0	N.D.	
48) C160 1,1,2-Trichloroeth	0.00	83	0	N.D.	
49) C210 4-Methyl-2-pentano	7.22	43	2050	N.D.	
50) C220 Tetrachloroethene	0.00	166	0	N.D.	
51) C221 1,3-Dichloropropan	0.00	76	0	N.D.	
52) C155 Dibromochlorometha	0.00	129	0	N.D.	
53) C163 1,2-Dibromoethane	0.00	107	0	N.D.	
54) C215 2-Hexanone	0.00	43	0	N.D.	
55) C235 Chlorobenzene	0.00	112	0	N.D.	
56) C281 1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
57) C240 Ethylbenzene	8.95	91	58	N.D.	
58) C246 m,p-Xylene	0.00	106	0	N.D.	
59) C247 o-Xylene	0.00	106	0	N.D.	
60) C245 Styrene	0.00	104	0	N.D.	
61) C180 Bromoform	0.00	173	0	N.D.	
64) C966 Isopropylbenzene	0.00	105	0	N.D.	
65) C301 Bromobenzene	0.00	156	0	N.D.	
66) C225 1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
67) C282 1,2,3-Trichloropro	0.00	110	0	N.D.	
68) C283 t-1,4-Dichloro-2-B	0.00	51	0	N.D.	
69) C302 n-Propylbenzene	9.93	91	317	N.D.	
70) C303 2-Chlorotoluene	0.00	126	0	N.D.	
71) C289 4-Chlorotoluene	0.00	126	0	N.D.	
72) C304 1,3,5-Trimethylben	0.00	105	0	N.D.	
73) C306 tert-Butylbenzene	0.00	134	0	N.D.	
74) C307 1,2,4-Trimethylben	0.00	105	0	N.D.	
75) C308 sec-Butylbenzene	0.00	105	0	N.D.	
76) C260 1,3-Dichlorobenzen	0.00	146	0	N.D.	
77) C309 4-Isopropyltoluene	0.00	119	0	N.D.	
78) C267 1,4-Dichlorobenzen	0.00	146	0	N.D.	
79) C249 1,2-Dichlorobenzen	0.00	146	0	N.D.	
80) C310 n-Butylbenzene	0.00	91	0	N.D.	
81) C286 1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
82) C313 1,2,4-Trichloroben	0.00	180	0	N.D.	
83) C316 Hexachlorobutadien	0.00	225	0	N.D.	
84) C314 Naphthalene	13.03	128	1027	N.D.	
85) C934 1,2,3-Trichloroben	0.00	180	0	N.D.	
			 ~ ~		

(#) = qualifier out of range (m) = manual integration (+) = signals summed

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-24		

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59206

Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{ML} Lab File ID: $\underline{G7602.RR}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/22/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CAS NO.	COMPOUND	CONCENTRATION UNI	TS: UG/L	0
		3, 3,		T
67-64-1			5.0	U
71-43-2			1.0	U
	-Bromodichloromethane	:	1.0	U
75-25-2			1.0	U
	-Bromomethane		1.0	ט
78-93-3			5.0	ע
	-Carbon Disulfide_		1.0	U
56-23-5	-Carbon Tetrachloride		1.0	U
	-Chlorobenzene		1.0	U
75-00-3	-Chloroethane		1.0	U
67-66-3	-Chloroform		1.0	ַ ט
74-87-3	-Chloromethane		1.0	ט
110-82-7	-Cyclohexane		1.0	ן ט
	-1,2-Dibromoethane		1.0	ע
124-48-1	-Dibromochloromethane		1.0	U
96-12-8	-1,2-Dibromo-3-chloropropane		1.0	ט
	-1,2-Dichlorobenzene		1.0	ט
541-73-1	-1,3-Dichlorobenzene		1.0	U
106-46-7	-1,4-Dichlorobenzene		1.0	U
75-71-8	-Dichlorodifluoromethane		1.0	ט
75-34-3	-1,1-Dichloroethane		1.0	ן ט
	-1,2-Dichloroethane		1.0	ן ט
	-1,1-Dichloroethene		1.0	ן ט
	-cis-1,2-Dichloroethene		1.8	
	-trans-1,2-Dichloroethene		1.0	ן ט
	-1,2-Dichloropropane		1.0	ט
	-cis-1,3-Dichloropropene		1.0	ן ט
	-trans-1,3-Dichloropropene		1.0	ן ט
	-Ethylbenzene		1.0	Ū
591-78-6			5.0	Ū
I .	-Isopropylbenzene		1.0	Ū
	-Methyl acetate		1.0	ען
	-Methylcyclohexane		1.0	ט
1	-Methylene chloride		1.0	lu l

1.0

1.0

1.0

1.0

1.0

0.77

0.62

3.0

U

U

U

U

U

J

J U

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

	MW-24
Lab Name: STL Buffalo Contract: 4	
Lab Code: RECNY Case No.: SAS No.:	SDG No.: <u>1205GW</u>
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A5E59206
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID: <u>G7602.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv: 12/22/2005 12/23/2005
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>12/27/2005</u>
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
108-10-14-Methyl-2-pentanone 1634-04-4Methyl-t-Butyl Ether (MTBE) 91-20-3Naphthalene 100-42-5Styrene 79-34-51,1,2,2-Tetrachloroethane 127-18-4Tetrachloroethene 108-88-3Toluene	1.0 U 1.0 U 1.0 U

120-82-1----1,2,4-Trichlorobenzene

71-55-6-----1,1,1-Trichloroethane

79-00-5----1,1,2-Trichloroethane

75-69-4----Trichlorofluoromethane

79-01-6----Trichloroethene

75-01-4-----Vinyl chloride 1330-20-7----Total Xylenes

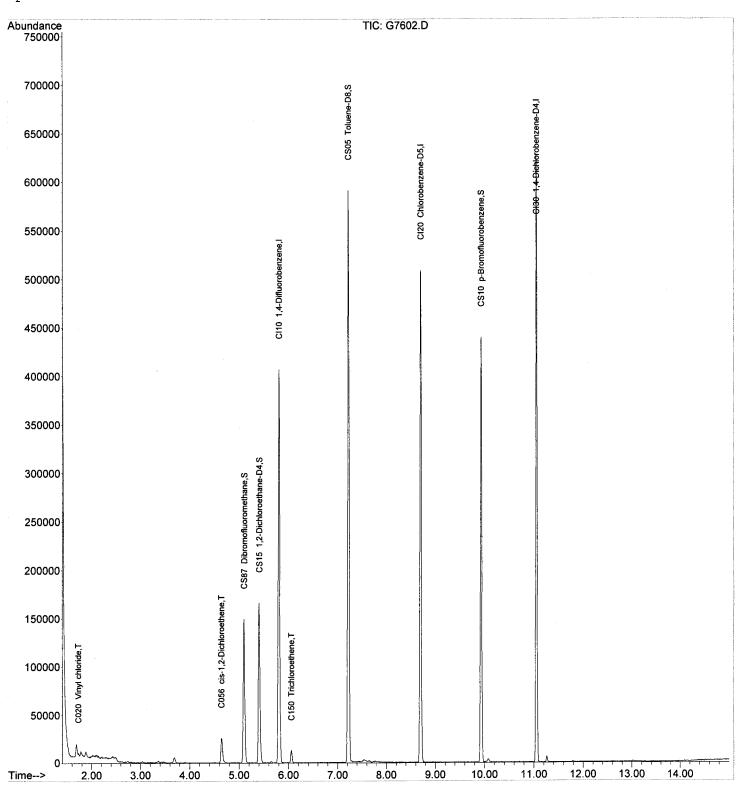
76-13-1----1,1,2-Trichloro-1,2,2-trifluoroethane

Data File: C:\MSDCHEM\1\DATA\122705\G7602.D

: 27 Dec 2005 15:53 Acq On

Sample : A5E59206

Misc


Integrator: RTE

Quant Time: Dec 27 18:07:42 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Data File: C:\MSDCHEM\1\DATA\122705\G7602.D

Acq On : 27 Dec 2005 15:53

Sample : A5E59206

Misc Integrator: RTE

Quant Time: Dec 27 18:07:42 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER
QLast Update : Tue Dec 27 08:55:23 2005
Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Inte	ernal	Standards			Response		nits	Dev(Min) Rcv(Ar)
1)	CI10	1,4-Difluorobenzene) ng	0.00 95.79%
43)	CI20	Chlorobenzene-D5	8.70	82	180713	125.00	ng	
63)	CI30	1,4-Dichlorobenzene-	11.06	152	171268	125.00	ng	
Svst	em Mo	nitoring Compounds						
26)	CS87	Dibromofluoromethane				113.71		
	iked A			- 130				.97%
		1,2-Dichloroethane-D				116.08		0.00 .86%
-		mount 125.000 Rar Toluene-D8						
		mount 125.000 Rar						.41%
		p-Bromofluorobenzene						
		mount 125.000 Rar				ry =		
1-			J		•	4		
Targ	get Co	mpounds						Qvalue
		Dichlorodifluorome	0.00	85	0	N.D.		
	-Ç010	Chloromethane	1.61	50	420	N.D.		
	X 020	Vinyl chloride		62	4545	3.08	ng	91
		Bromomethane	0.00	94	0	N.D.		
		Chloroethane	0.00		0	N.D.		
•		Trichlorofluoromet		101	0	N.D.		
	C045	1,1-Dichloroethene	0.00	96	0	N.D.		
	C030	Methylene chloride	3.44		94 743	N.D. N.D.		
	C040 C036	Carbon disulfide Acrolein	3.15 0.00	76 56	743	N.D.		
	C038	Acrylonitrile	0.00	53	0	N.D.		
	C035	Acetone	3.04	43	2898	N.D.		
	C300	Acetonitrile	3.27		145	N.D.		
	C276	Iodomethane		142	0	N.D.		
	C291	1,1,2-Trichloro-1,		101	0	N.D.		
17)	C962	T-butyl Methyl Eth	3.71	73	1866	N.D.		
	C057	trans-1,2-Dichloro	3.69		2351	N.D.		
	C255	Methyl Acetate	3.32		97	N.D.		
	C050	1,1-Dichloroethane	0.00	63	0	N.D.		
	C125	Vinyl Acetate	0.00	43	0	N.D.		
	C051	2,2-Dichloropropan	4.66	77	129	N.D.	20	97
	₹ 056	cis-1,2-Dichloroethe	4.64	96 4 2	11685 0	8.88 N.D.	ng	91
	C272 C222	Tetrahydrofuran Bromochloromethane	0.00	128	0	N.D.		
	C060	Chloroform	0.00	83	Ö	N.D.		
	C115	1,1,1-Trichloroeth	0.00	97	Ö	N.D.		
	C120	Carbon tetrachlori		117	Ö	N.D.		
	C116	1,1-Dichloropropen	0.00	75	Ō	N.D.		
32)		Benzene	5.44	78	4104	N.D.		
33)		1,2-Dichloroethane	0.00	62	0	N.D.		
34)	C110	2-Butanone	4.68	43	937	N.D.		
/_	C256	Cyclohexane	0.00	56	0	N.D.		
(36)	<u>C1</u> 50	Trichloroethene	6.05	95	4866	3.84	ng	91

Data File: C:\MSDCHEM\1\DATA\122705\G7602.D

Acq On : 27 Dec 2005 15:53

Sample : A5E59206

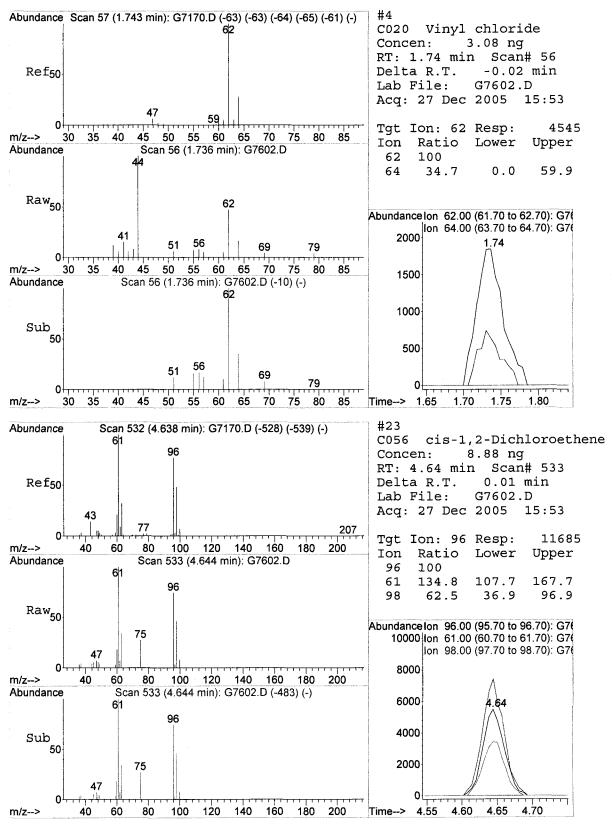
Misc :

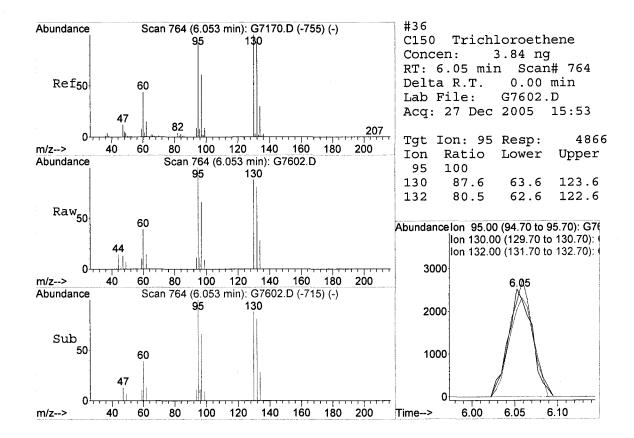
Integrator: RTE

Quant Time: Dec 27 18:07:42 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER


QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\


Operator : TLC

Internal Standards	R.T	. QIon	Response	Conc Unit	s Dev(Min) Rcv(Ar)
37) C140 1,2-Dichloropropan	0.00	63	0	N.D.	
38) C278 Dibromomethane	0.00	93	0	N.D.	
39) C130 Bromodichlorometha	0.00	83	0	N.D.	
40) C161 2-Chloroethylvinyl	6.86	63	218	N.D.	
41) C012 Methylcyclohexane	0.00	83	0	N.D.	
42) C145 cis-1,3-Dichloropr	0.00	75	0	N.D.	
45) C230 Toluene	7.29	92	345	N.D.	
46) C170 trans-1,3-Dichloro	0.00	75	0	N.D.	
47) C284 Ethyl Methacrylate	0.00	69	0	N.D.	
48) C160 1,1,2-Trichloroeth	0.00	83	0	N.D.	
49) C210 4-Methyl-2-pentano	7.13	43	58	N.D.	
50) C220 Tetrachloroethene	0.00	166	0	N.D.	
51) C221 1,3-Dichloropropan	0.00	76	0	N.D.	
52) C155 Dibromochlorometha	0.00	129	0	N.D.	
53) C163 1,2-Dibromoethane	0.00	107	0	N.D.	
54) C215 2-Hexanone	7.77	43	595	N.D.	
55) C235 Chlorobenzene	0.00	112	0	N.D.	
56) C281 1,1,1,2-Tetrachlor	0.00	131	Ö	N.D.	
57) C240 Ethylbenzene	8.94	91	80	N.D.	
58) C246 m,p-Xylene	8.95	106	60	N.D.	
59) C247 o-Xylene	0.00	106	0	N.D.	
60) C245 Styrene	0.00	104	Ö	N.D.	
61) C180 Bromoform	0.00	173	Ö	N.D.	
64) C966 Isopropylbenzene	0.00	105	Ö	N.D.	
65) C301 Bromobenzene	0.00	156	Ö	N.D.	
66) C225 1,1,2,2-Tetrachlor	0.00	83	Ö	N.D.	
67) C282 1,2,3-Trichloropro	0.00	110	Ö	N.D.	
68) C283 t-1,4-Dichloro-2-B	0.00	51	Ö	N.D.	
69) C302 n-Propylbenzene	0.00	91	Ö	N.D.	
70) C303 2-Chlorotoluene	0.00	126	Ö	N.D.	
71) C289 4-Chlorotoluene	0.00	126	Ö	N.D.	
72) C304 1,3,5-Trimethylben	0.00	105	Ö	N.D.	
73) C306 tert-Butylbenzene	0.00	134	Ö	N.D.	
74) C307 1,2,4-Trimethylben	10.72	105	259	N.D.	
75) C308 sec-Butylbenzene	10.72	105	259	N.D.	
76) C260 1,3-Dichlorobenzen	0.00	146	0	N.D.	
77) C309 4-Isopropyltoluene	11.00	119	163	N.D.	
78) C267 1,4-Dichlorobenzen	0.00	146	0	N.D.	
79) C249 1,2-Dichlorobenzen	0.00	146	Ö	N.D.	
80) C310 n-Butylbenzene	0.00	91	0	N.D.	
81) C286 1,2-Dibromo-3-Chlo	0.00	75	Ö	N.D.	
82) C313 1,2,4-Trichloroben	0.00	180	0	N.D.	
83) C316 Hexachlorobutadien	0.00	225	0	N.D.	
84) C314 Naphthalene	13.03	128	1423	N.D.	
85) C934 1,2,3-Trichloroben	0.00	180	0	N.D.	
65/ C934 1,2,3-111ch1010beh					

(#) = qualifier out of range (m) = manual integration (+) = signals summed

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-25

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: SAS No.: SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59203

Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{ML} Lab File ID: $\underline{G7599.RR}$

Level: (low/med) Level: Date Samp/Recv: $\underline{12/21/2005}$ $\underline{12/23/2005}$

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

		CONCENTRATION UN	NITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/L</u>	Q
67-64-1	Acetone		5.0	บ
71-43-2			1.0	ע
75-27-4	Bromodichloromethane		1.0	ע
75-25-2	Bromoform		1.0	ט
74-83-9	Bromomethane		1.0	ן ט
	2-Butanone		5.0	U
75-15-0	Carbon Disulfide		1.0	ע
56-23-5	Carbon Tetrachloride		1.0	ע
108-90-7	Chlorobenzene		1.0	ט
75-00-3	Chloroethane		1.0	ט
67-66-3	Chloroform		1.0	ט
74-87-3	Chloromethane		1.0	ע
110-82-7	Cyclohexane		1.0	ע
	1,2-Dibromoethane		1.0	U
124-48-1	Dibromochloromethane		1.0	ע
	1,2-Dibromo-3-chloropropane		1.0	U
	1,2-Dichlorobenzene		1.0	ע
541-73-1	1,3-Dichlorobenzene		1.0	U
106-46-7	1,4-Dichlorobenzene		1.0	U
75-71-8	Dichlorodifluoromethane		1.0	U
75-34-3	1,1-Dichloroethane		1.0	ע
	1,2-Dichloroethane		1.0	U
75-35-4	1,1-Dichloroethene		1.0	U
	cis-1,2-Dichloroethene		29	
156-60-5	trans-1,2-Dichloroethene		0.98	J
	1,2-Dichloropropane		1.0	ע
	cis-1,3-Dichloropropene		1.0	ן ט
	trans-1,3-Dichloropropene		1.0	ע
100-41-4	Ethylbenzene		0.50	J
	2-Hexanone		5.0	ט
	Isopropylbenzene		0.64	J
	Methyl acetate		1.0	U
	Methylcyclohexane		1.0	Ū
	Methylene chloride		1.0	ט
L				

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-25	
-------	--

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59203

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{G7599.RR}}$

Level: (low/med) Low Date Samp/Recv: $\underline{12/21/2005}$ $\underline{12/23/2005}$

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

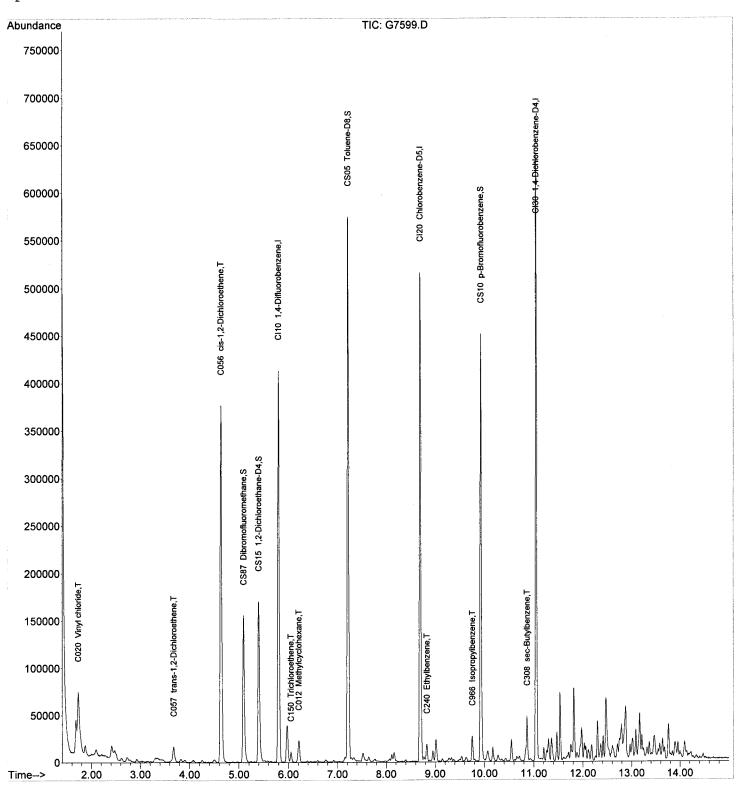
CAS NO.	COMPOUND	(ug/L or ug/Kg		Q
108-10-1	4-Methyl-2-pentanone		5.0	U
	Methyl-t-Butyl Ether (MIBE)		1.0	U
91-20-3	Naphthalene		1.0	U
100-42-5	Styrene		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
127-18-4	Tetrachloroethene		1.0	U
108-88-3	Toluene		1.0	ט
120-82-1	1,2,4-Trichlorobenzene		1.0	ע
71-55-6	1,1,1-Trichloroethane		1.0	ט
79-00-5	1,1,2-Trichloroethane		1.0	ע
76-13-1	1,1,2-Trichloro-1,2,2-triflu	oroethane	1.0	ע
75-69-4	Trichlorofluoromethane		1.0	ע
79-01-6	Trichloroethene		0.58	J
75-01-4	Vinyl chloride		14	
1330-20-7	Total Xylenes		3.0	ט
I				1

Data File: C:\MSDCHEM\1\DATA\122705\G7599.D

Acq On : 27 Dec 2005 14:46

Sample : A5E59203

Misc :


Integrator: RTE

Quant Time: Dec 27 18:07:16 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 27 08:55:23 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122705\

Data File: C:\MSDCHEM\1\DATA\122705\G7599.D

Acq On : 27 Dec 2005 14:46

Sample : A5E59203

Misc

Integrator: RTE

Quant Time: Dec 27 18:07:16 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Inter	nal :	Standards	R.T.	QIon	Response	Conc Ur	nits		(Min) (Ar)
1) C	110	1,4-Difluorobenzene	5.80) 114	357381	125.00	ng		0.00 5.49%
43) C	120	Chlorobenzene-D5	8.70	82	182818	125.00	ng ng		
63) C	!130	1,4-Dichlorobenzene-	11.06	152	171907	125.00	ng ng		0.00
26) C Spik 31) C Spik 44) C Spik 62) C	S87 ed Ai S15 ed Ai S05 ed Ai	nitoring Compounds Dibromofluoromethane mount 125.000 Rar 1,2-Dichloroethane-D mount 125.000 Rar Toluene-D8 mount 125.000 Rar p-Bromofluorobenzene mount 125.000 Rar	nge 70 5.40 nge 73 7.22 nge 77	0 - 130 0 65 3 - 136 2 98 7 - 122 4 174	Recove 133923 Recove 424297 Recove 130645	116.40 ery = 115.10 ery =	92 ng 93 ng 92 ng	.44% .12% .08%	0.00 0.00 0.00 0.00
Targe	t Coi	mpounds						Ova	alue
2) C	290 010	Dichlorodifluorome Chloromethane	0.00	50	0 870	N.D.		Qva	
4) C 5) C 6) C	015	Vinyl chloride Bromomethane Chloroethane	1.73 2.05 2.16	94	106465 69 308	72.34 N.D. N.D.	ng		97
7) C 8) C	275	Trichlorofluoromet 1,1-Dichloroethene		101	0 1347	N.D.			
9) C		Methylene chloride	3.44	84	515	N.D.			
10) C 11) C		Carbon disulfide Acrolein	3.14 2.92		1550 62	N.D. N.D.			
12) C		Acrylonitrile	0.00	53	0	N.D.			
13) C		Acetone	3.02	43	2436	N.D.			
14) C		Acetonitrile	3.39		896	N.D.			
15) C		<pre>Iodomethane 1,1,2-Trichloro-1,</pre>	3.07	142	59	N.D.			
16) C		T-butyl Methyl Eth	0.00 3.69	101 73	0 5738	N.D. N.D.			
287C		trans-1,2-Dichloroet			5809	4.93	nα	#	55
19) C		Methyl Acetate	3.30	43	1781	N.D.			-
20) C		1,1-Dichloroethane			2550	N.D.			
21) C		Vinyl Acetate	4.05	43	59	N.D.			
22) C		2,2-Dichloropropan		77	0	N.D.			
(23) C		cis-1,2-Dichloroethe	4.64		189313	144.38	ng		98
24) C		Tetrahydrofuran	0.00	42	0	N.D. N.D.			
25) C 27) C		Bromochloromethane Chloroform	0.00	128 83	0 0	N.D.			
28) C		1,1,1-Trichloroeth	5.08	97	63	N.D.			
29) C		Carbon tetrachlori	0.00	117	0	N.D.			
30) C		1,1-Dichloropropen	0.00	75	Ō	N.D.			
32) C		Benzene	5.44	78	7507	N.D.			
	065	1,2-Dichloroethane	0.00	62	0	N.D.			
	110	2-Butanone	4.68	43	851	N.D.			
	256	Cyclohexane	5.14	56	3781	N.D.	~~		0.6
(39) C	150	Trichloroethene	6.05	95	3695	2.92	119		96

Quantitation Report

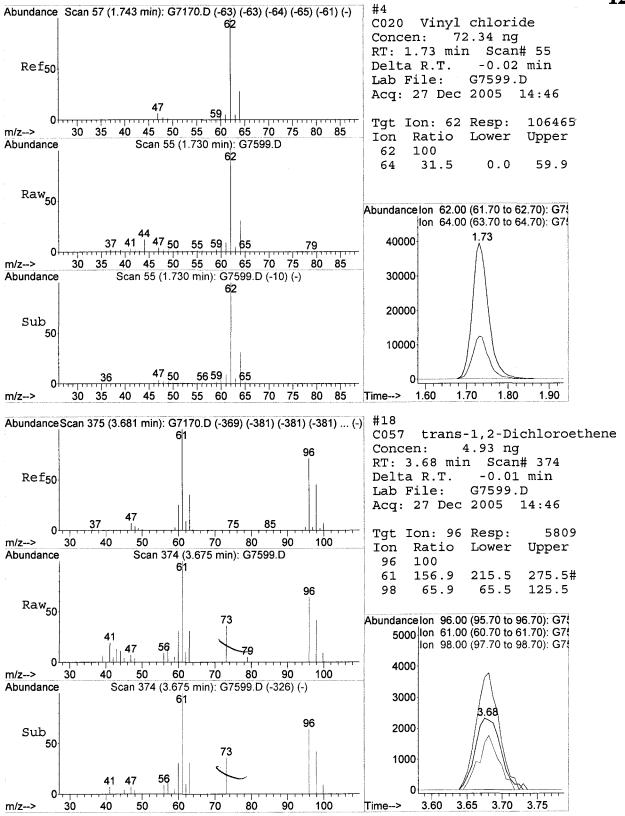
Data File: C:\MSDCHEM\1\DATA\122705\G7599.D Acq On : 27 Dec 2005 14:46

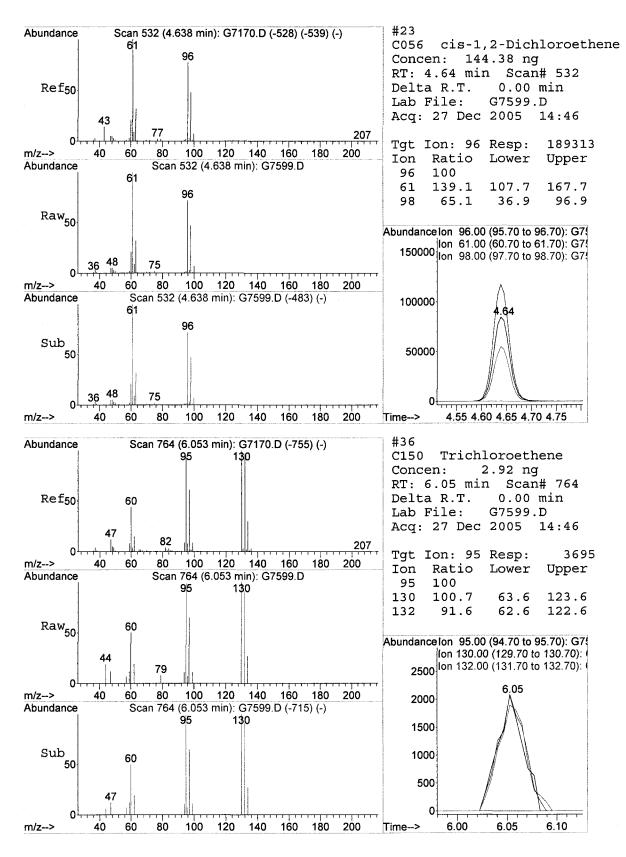
: A5E59203

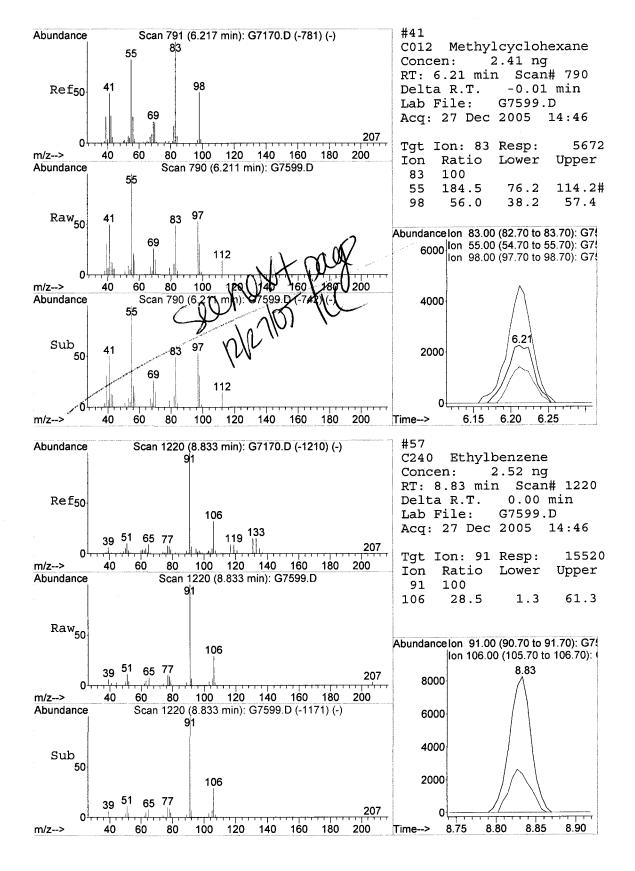
Sample

Misc Integrator: RTE

Quant Time: Dec 27 18:07:16 2005


Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M


Quant Title : 8260 5ML WATER
QLast Update : Tue Dec 27 08:55:23 2005
Response via : Initial Calibration
Data Path : C:\MSDCHEM\1\DATA\122705\


Rcv(Ar 37) C140 1,2-Dichloropropan 0.00 63 0 N.D. 38) C278 Dibromomethane 0.00 93 0 N.D. 39) C130 Bromodichlorometha 6.55 83 70 N.D. 40) C161 2-Chloroethylvinyl 0.00 63 0 N.D. 41) C012 Methylcyclohexane 6.21 83 5672 2.41 ng # 42) C145 cis-1,3-Dichloropr 0.00 75 0 N.D.	35
38) C278 Dibromomethane 0.00 93 0 N.D. 39) C130 Bromodichlorometha 6.55 83 70 N.D. 40) C161 2-Chloroethylvinyl 0.00 63 0 N.D. 41) C012 Methylcyclohexane 6.21 83 5672 2.41 ng #	35
39) C130 Bromodichlorometha 6.55 83 70 N.D. 40) C161 2-Chloroethylvinyl 0.00 63 0 N.D. 41) C012 Methylcyclohexane 6.21 83 5672 2.41 ng #	35
(40) C161 2-Chloroethylvinyl 0.00 63 0 N.D. (41) C012 Methylcyclohexane 6.21 83 5672 2.41 ng #	35
(41) C012 Methylcyclohexane 6.21 83 5672 2.41 ng #	35
42) C145 C15-1,3-DICHIOLOPE 0.00 /5 0 N.D.	
45) C230 Toluene 7.28 92 1830 N.D.	
,	
47) C284 Ethyl Methacrylate 7.64 69 299 N.D.	
48) C160 1,1,2-Trichloroeth 7.53 83 241 N.D.	
49) C210 4-Methyl-2-pentano 7.13 43 673 N.D.	
50) C220 Tetrachloroethene 0.00 166 0 N.D.	
51) C221 1,3-Dichloropropan 0.00 76 0 N.D.	
52) C155 Dibromochlorometha 0.00 129 0 N.D.	
53) C163 1,2-Dibromoethane 0.00 107 0 N.D.	
54) C215 2-Hexanone 7.77 43 1839 N.D.	
55) C235 Chlorobenzene 0.00 112 0 N.D.	
56) C281 1,1,1,2-Tetrachlor 0.00 131 0 N.D.	
(57) C240 Ethylbenzene 8.83 91 15520 2.52 ng	95
58) C246 m,p-Xylene 8.95 106 795 N.D.	
59) C247 o-Xylene 9.38 106 124 N.D.	
60) C245 Styrene 0.00 104 0 N.D.	
61) C180 Bromoform 0.00 173 0 N.D.	
64) C966 Isopropylbenzene 9.76 105 19382 3.18 ng	99
65) C301 Bromobenzene 0.00 156 0 N.D.	
66) C225 1,1,2,2-Tetrachlor 10.07 83 513 N.D.	
67) C282 1,2,3-Trichloropro 0.00 110 0 N.D.	
68) C283 t-1,4-Dichloro-2-B 10.17 51 717 N.D.	
69) C302 n-Propylbenzene 10.17 91 11805 N.D.	
70) C303 2-Chlorotoluene 10.06 126 57 N.D.	
71) C289 4-Chlorotoluene 0.00 126 0 N.D.	
72) C304 1,3,5-Trimethylben 10.28 105 2234 N.D.	
73) C306 tert-Butylbenzene 10.66 134 552 N.D.	
74) C307 1,2,4-Trimethylben 10.71 105 1334 N.D.	
	L00
76) C260 1,3-Dichlorobenzen 0.00 146 0 N.D.	
77) C309 4-Isopropyltoluene 11.00 119 334 N.D.	
78) C267 1,4-Dichlorobenzen 0.00 146 0 N.D.	
79) C249 1,2-Dichlorobenzen 0.00 146 0 N.D.	
80) C310 n-Butylbenzene 11.38 91 5150 N.D.	
81) C286 1,2-Dibromo-3-Chlo 11.97 75 83 N.D.	
82) C313 1,2,4-Trichloroben 12.82 180 60 N.D.	
83) C316 Hexachlorobutadien 0.00 225 0 N.D.	
84) C314 Naphthalene 13.03 128 4265 N.D.	
85) C934 1,2,3-Trichloroben 0.00 180 0 N.D.	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

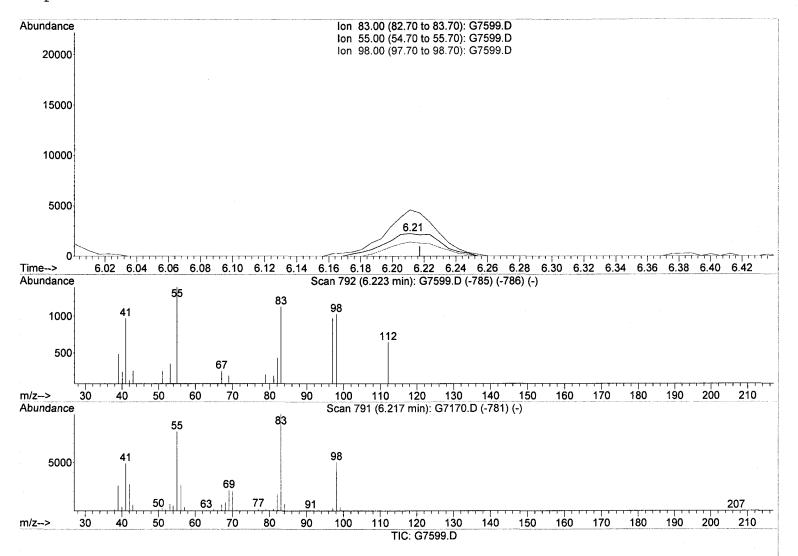
Data File: C:\MSDCHEM\1\DATA\122705\G7599.D

Acq On : 27 Dec 2005 14:46

Sample : A5E59203

Misc :

Integrator: RTE


Quant Time: Dec 27 18:07:16 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

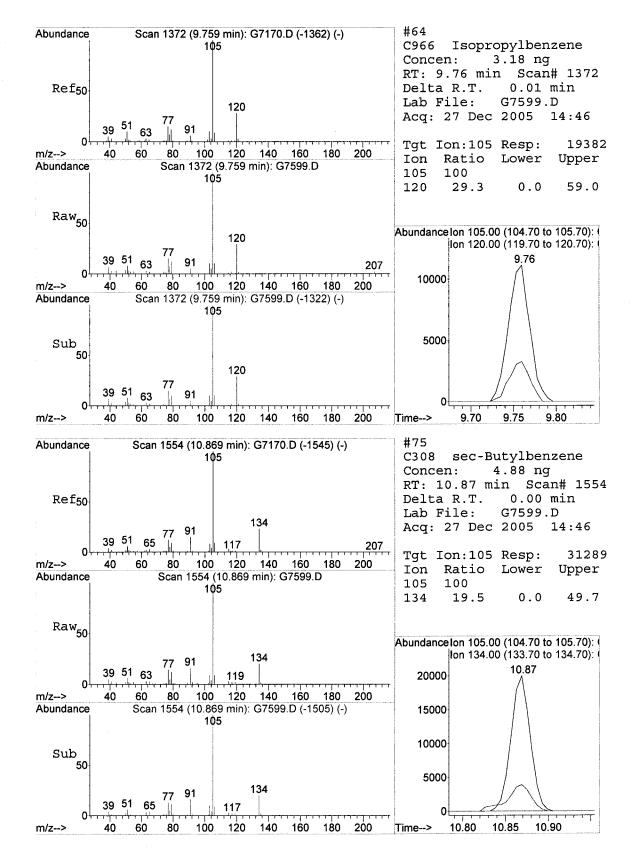
QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Operator : TLC

(41) C012 Methylcyclohexane (T)

6.21min (-0.006) 2.41ng

response 5672


 Ion
 Exp%
 Act%

 83.00
 100
 100

 55.00
 95.20
 184.47#

 98.00
 47.80
 55.98

 0.00
 0.00
 0.00

Client No.

MW-26	

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: SAS No.: SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59212

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{G7608.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/22/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
67-64-1	-Acetone		5.0	U
71-43-2	-Benzene		1.0	U
75-27-4	-Bromodichloromethane		1.0	U
75-25-2	-Bromoform		1.0	ט
74-83-9	-Bromomethane		1.0	U
78-93-3	-2-Butanone		5.0	U
75-15-0	-Carbon Disulfide		1.0	U
56-23-5	-Carbon Tetrachloride		1.0	U
108-90-7	-Chlorobenzene		1.0	ע
75-00-3	-Chloroethane		1.0	U
67-66-3	-Chloroform		1.0	U
74-87-3	-Chloromethane		1.0	ט
110-82-7	-Cyclohexane		1.0	ע
	-1,2-Dibromoethane		1.0	ט
124-48-1	-Dibromochloromethane		1.0	ט
96-12-8	-1,2-Dibromo-3-chloropropane		1.0	ט
95-50-1	-1,2-Dichlorobenzene		1.0	U
541-73-1	-1,3-Dichlorobenzene		1.0	U
106-46-7	-1,4-Dichlorobenzene		1.0	U
75-71-8	-Dichlorodifluoromethane		1.0	U
75-34-3	-1,1-Dichloroethane		1.0	[U
107-06-2	-1,2-Dichloroethane		1.0	ע
75-35-4	-1,1-Dichloroethene		1.0	ט
156-59-2	-cis-1,2-Dichloroethene		43	
156-60-5	-trans-1,2-Dichloroethene		3.2	
78-87-5	-1,2-Dichloropropane		1.0	U
10061-01-5	-cis-1,3-Dichloropropene		1.0	ן ט
10061-02-6	-trans-1,3-Dichloropropene		1.0	U
100-41-4	-Ethylbenzene		1.0	ע
591-78-6	-2-Hexanone		5.0	ט
98-82-8	-Isopropylbenzene		1.0	U
79-20-9	-Methyl acetate		1.0	U
	-Methylcyclohexane		1.0	ט
75-09-2	-Methylene chloride		1.0	U

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

			MW-26
Lab Name: <u>STL Buffalo</u>	Contract: 4	_	
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.: <u>1205GW</u>	
Matrix: (soil/water) <u>WATER</u>		Lab Sample ID:	A5E59212
Sample wt/vol: $\underline{5.00}$ (g/	/mL) <u>ML</u>	Lab File ID:	G7608.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	12/22/2005 12/23/2005
% Moisture: not dec He	eated Purge: <u>N</u>	Date Analyzed:	12/27/2005
GC Column: <u>DB-624</u> ID: <u>0.2</u>	<u>25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uI	<u>်</u>)	Soil Aliquot Volu	me: (uL)

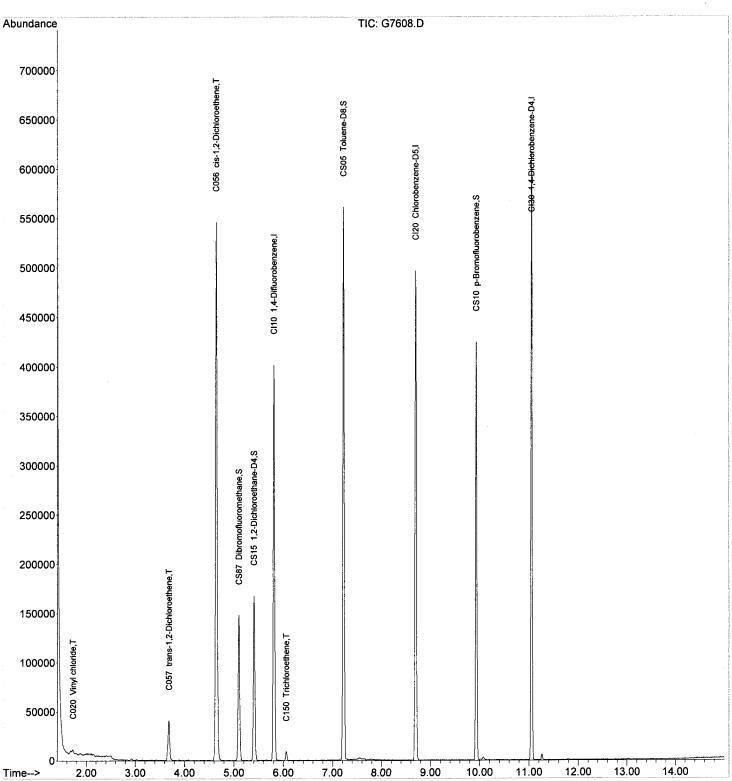
CAS NO.	COMPOUND	CONCENTRATION UNIT (ug/L or ug/Kg)	rs: <u>ug/l</u>	<u>:/L</u> Q	
· ·	4-Methyl-2-pentanone	יבי	5.0	U	

108-10-14-Methyl-2-pentanone	5.0	U
1634-04-4Methyl-t-Butyl Ether (MTBE)	1.0	U
91-20-3Naphthalene	1.0	U
100-42-5Styrene	1.0	ט
79-34-51,1,2,2-Tetrachloroethane	1.0	บ
127-18-4Tetrachloroethene	1.0	ט
108-88-3Toluene	1.0	U
120-82-11,2,4-Trichlorobenzene	1.0	บ
71-55-61,1,1-Trichloroethane	1.0	U
79-00-51,1,2-Trichloroethane	1.0	U
76-13-11,1,2-Trichloro-1,2,2-trifluoroethane	1.0	υ
75-69-4Trichlorofluoromethane	1.0	ט
79-01-6Trichloroethene	0.54	J
75-01-4Vinyl chloride	1.0	
1330-20-7Total Xylenes	3.0	ט

Acq On : 27 Dec 2005 18:09

Sample : A5E59212

Misc :


Integrator: RTE

Quant Time: Dec 27 18:25:59 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

R.T. QIon Response Conc Units Dev(Min)

Data File: C:\MSDCHEM\1\DATA\122705\G7608.D

Acq On : 27 Dec 2005 18:09

Sample : A5E59212

Misc :

Integrator: RTE

Quant Time: Dec 27 18:25:59 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Operator : TLC

Internal Standards

				~				Rcv ((Ar)
1)	CI10	1,4-Difluorobenzene	5.8	0 114	347889	125.00	ng		0.00
43)	CI20	Chlorobenzene-D5	8.7	0 82	174145	125.00	ng	92	2.95% 0.00
								90).70%
63)	CI30	1,4-Dichlorobenzene-	11.0	5 152	167871	125.00	ng	0.1	0.00 L.60%
								21	1,00%
Syst	cem Moi	nitoring Compounds							
26)	CS87	Dibromofluoromethane	5.1	0 111	99652	114.43	NG		0.00
_	iked Ar			0 - 130	Recove			.54%	
	CS15	1,2-Dichloroethane-D			129896	115.98			0.00
	iked Ar			3 - 136	Recove			. 78%	0 00
	CS05		7.2	2 98 7 - 122	413976 Recove	117.89 ery =		.31%	0.00
	iked Ar	nount 125.000 Ra: p-Bromofluorobenzene			125029	115.88		. 51.0	0.00
	iked Ar			4 - 120	Recove			. 70%	
op.			50			2			
		mpounds						Qva	alue
		Dichlorodifluorome	0.00	85	0	N.D.			
		Chloromethane	1.60	50	220	N.D.			0.1
		Vinyl chloride	1.7		7167	5.00	ng		91
		Bromomethane Chloroethane	0.00	94 64	0	N.D. N.D.			
	C275	Trichlorofluoromet	0.00	101	0	N.D.			
	C045	1,1-Dichloroethene	2.93	96	732	N.D.			
	C030	Methylene chloride	3.43	84	138	N.D.			
	C040	Carbon disulfide	3.14	76	528	N.D.			
11)	C036	Acrolein	2.93	56	63	N.D.			
	C038	Acrylonitrile	0.00	53	0	N.D.			
	C035	Acetone	3.03	43	1280	N.D.			
	C300	Acetonitrile	3.33	41	308	N.D.			
	C276	Iodomethane	0.00	142	0	N.D.			
	C291 C962	1,1,2-Trichloro-1,	0.00 3.69	101 73	0 6075	N.D. N.D.			
	C962	T-butyl Methyl Eth trans-1,2-Dichloroet	3.69		18154	15.82	nα	#	47
	C255	Methyl Acetate	3.32	43	59	N.D.	**3	"	- '
	C050	1,1-Dichloroethane	4.08	63	775	N.D.			
	C125	Vinyl Acetate	0.00	43	0	N.D.			
22)	-Ç051	2,2-Dichloropropan	4.68	77	63	N.D.			
(23)	√2 056	cis-1,2-Dichloroethe			272143	213.22	ng		99
	C272	Tetrahydrofuran	0.00	42	0	N.D.			
25)		Bromochloromethane	0.00	128	0	N.D.			
	C060 C115	Chloroform 1,1,1-Trichloroeth	0.00	83 97	0 0	N.D. N.D.			
	C115	Carbon tetrachlori	0.00	117	0	N.D.			
	C120	1,1-Dichloropropen	0.00	75	0	N.D.			
	C165	Benzene	5.44	78	1219	N.D.			
	C065	1,2-Dichloroethane	0.00	62	0	N.D.			
34)	C110	2-Butanone	4.68	43	281	N.D.			
	C256	Cyclohexane	0.00	56	0	N.D.			
736)	LC150	Trichloroethene	6.0	5 95	3353	2.72	ng		84

Acq On : 27 Dec 2005 18:09

Sample : A5E59212

Misc :

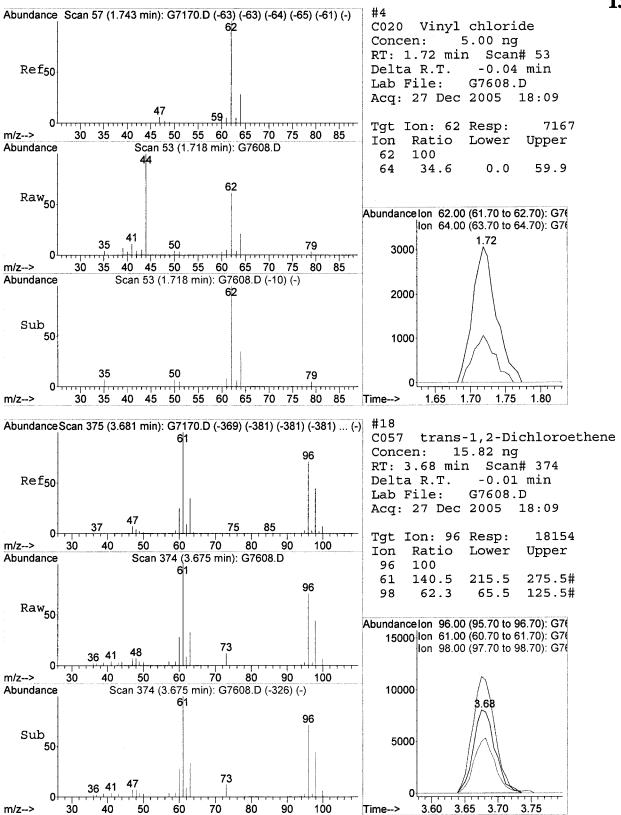
Integrator: RTE

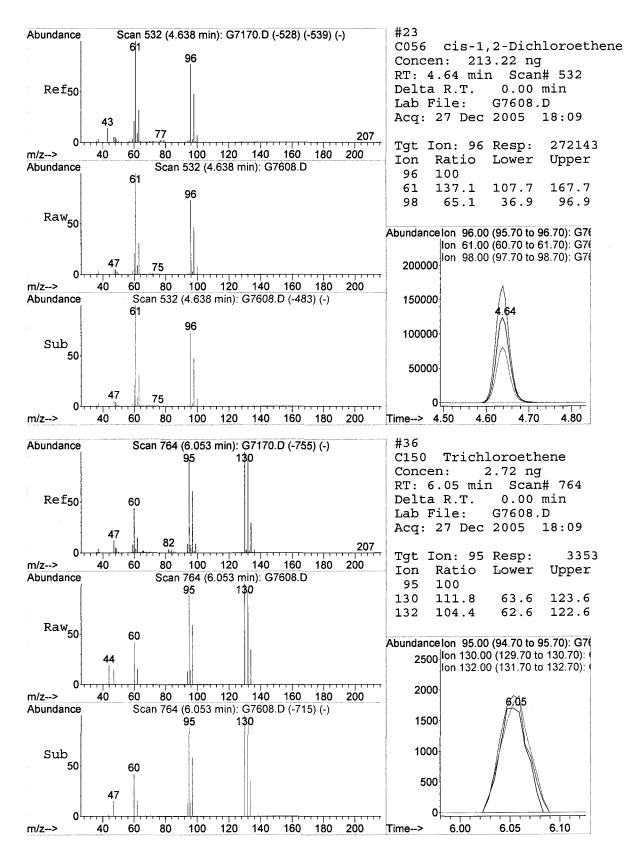
Quant Time: Dec 27 18:25:59 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 27 08:55:23 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122705\


Operator : TLC


Internal Standards	R.T	. QIon	Response	Conc Unit	s Dev(Min) Rcv(Ar)
37) C140 1,2-Dichloropropan	0.00	63	0	N.D.	
38) C278 Dibromomethane	0.00	93	0	N.D.	
39) C130 Bromodichlorometha	0.00	83	0	N.D.	
40) C161 2-Chloroethylvinyl	0.00	63	0	N.D.	
41) C012 Methylcyclohexane	0.00	83	0	N.D.	
42) C145 cis-1,3-Dichloropr	0.00	75	0	N.D.	
45) C230 Toluene	7.28	92	74	N.D.	
46) C170 trans-1,3-Dichloro	0.00	75	0	N.D.	
47) C284 Ethyl Methacrylate	0.00	69	0	N.D.	
48) C160 1,1,2-Trichloroeth	0.00	83	0	N.D.	
49) C210 4-Methyl-2-pentano	7.22	43	1981	N.D.	
50) C220 Tetrachloroethene	0.00	166	0	N.D.	
51) C221 1,3-Dichloropropan	0.00	76	0	N.D.	
52) C155 Dibromochlorometha	0.00	129	0	N.D.	
53) C163 1,2-Dibromoethane	0.00	107	0	N.D.	
54) C215 2-Hexanone	8.06	43	56	N.D.	
55) C235 Chlorobenzene	0.00	112	0	N.D.	
56) C281 1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
57) C240 Ethylbenzene	8.95	91	180	N.D.	
58) C246 m,p-Xylene	0.00	106	0	N.D.	
59) C247 o-Xylene	0.00	106	Ō	N.D.	
60) C245 Styrene	0.00	104	Ö	N.D.	
61) C180 Bromoform	0.00	173	Ō	N.D.	
64) C966 Isopropylbenzene	0.00	105	Ö	N.D.	
65) C301 Bromobenzene	0.00	156	Ō	N.D.	
66) C225 1,1,2,2-Tetrachlor	0.00	83	Ö	N.D.	
67) C282 1,2,3-Trichloropro	0.00	110	Ö	N.D.	
68) C283 t-1,4-Dichloro-2-B	0.00	51	Ö	N.D.	
69) C302 n-Propylbenzene	9.93	91	516	N.D.	
70) C303 2-Chlorotoluene	0.00	126	0	N.D.	
71) C289 4-Chlorotoluene	0.00	126	Ö	N.D.	
72) C304 1,3,5-Trimethylben	0.00	105	Ö	N.D.	
73) C306 tert-Butylbenzene	0.00	134	Ö	N.D.	
74) C307 1,2,4-Trimethylben	10.70	105	58	N.D.	
75) C308 sec-Butylbenzene	10.70	105	58	N.D.	
76) C260 1,3-Dichlorobenzen	0.00	146	0	N.D.	
77) C309 4-Isopropyltoluene	11.00	119	203	N.D.	
78) C267 1,4-Dichlorobenzen	0.00	146	0	N.D.	
79) C249 1,2-Dichlorobenzen	0.00	146	Ö	N.D.	
80) C310 n-Butylbenzene	0.00	91	Ö	N.D.	
81) C286 1,2-Dibromo-3-Chlo	0.00	75	ő	N.D.	
82) C313 1,2,4-Trichloroben	0.00	180	Ö	N.D.	
83) C316 Hexachlorobutadien	0.00	225	0	N.D.	
84) C314 Naphthalene	13.03	128	954	N.D.	
85) C934 1,2,3-Trichloroben	0.00	180	0	N.D.	
55, 6554 1,2,5-1110H1010Dell					

(#) = qualifier out of range (m) = manual integration (+) = signals summed

133/304

Client No.

MW-27

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59210

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{G7606.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/22/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

		CONCENTRATION UNI		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q Q
67-64-1			5.0	U
71-43-2			1.0	ע
	Bromodichloromethane		1.0	U
	Bromoform		1.0	U
74-83-9	Bromomethane		1.0	ן ט
78-93-3	2-Butanone		5.0	ן ט
75-15-0	Carbon Disulfide		1.0	ן ט
56-23-5	Carbon Tetrachloride		1.0	ט
108-90-7	Chlorobenzene		1.0	ט
	Chloroethane		1.0	ן ט
67-66-3	Chloroform		1.0	ט
	Chloromethane		1.0	ע
110-82-7	Cyclohexane		1.0	ע
106-93-4	1,2-Dibromoethane		1.0	U
124-48-1	Dibromochloromethane		1.0	U
96-12-8	1,2-Dibromo-3-chloropropan	e	1.0	ע
95-50-1	1,2-Dichlorobenzene		1.0	ן ט
541-73-1	1,3-Dichlorobenzene		1.0	U
	1,4-Dichlorobenzene		1.0	U
75-71-8	Dichlorodifluoromethane		1.0	U
75-34-3	1,1-Dichloroethane		1.0	U
107-06-2	1,2-Dichloroethane		1.0	U
	1,1-Dichloroethene		1.0	U
156-59-2	cis-1,2-Dichloroethene		1.4	
	trans-1,2-Dichloroethene		1.0	U
78-87-5	1,2-Dichloropropane		1.0	U
10061-01-5-	cis-1,3-Dichloropropene		1.0	U
	trans-1,3-Dichloropropene		1.0	U
100-41-4	Ethylbenzene		1.0	U
	2-Hexanone		5.0	U
98-82-8	Isopropylbenzene		1.0	U
79-20-9	Methyl acetate		1.0	U
108-87-2	Methylcyclohexane		1.0	U
75-09-2	Methylene chloride		1.0	U
i				1

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

		MW-27
Lab Name: STL Buffalo	Contract: 4	, , , , , , , , , , , , , , , , , , ,

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59210

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{G7606.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/22/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
108-10-1	4-Methyl-2-pentanone		5.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)		1.0	ע
91-20-3	Naphthalene		1.0	ע
100-42-5	Styrene		1.0	ע
79-34-5	1,1,2,2-Tetrachloroethane	·	1.0	ע
127-18-4	Tetrachloroethene		1.0	[ט
108-88-3	Toluene		1.0	ַ ט
120-82-1	1,2,4-Trichlorobenzene		1.0	ט
71-55-6	1,1,1-Trichloroethane		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	ע
76-13-1	1,1,2-Trichloro-1,2,2-triflu	uoroethane	1.0	U
75-69-4	Trichlorofluoromethane		1.0	ע
79-01-6	Trichloroethene		0.59	J
	Vinyl chloride		1.0	
1330-20-7	Total Xylenes		3.0	ט
ŀ				I

Quantitation Report

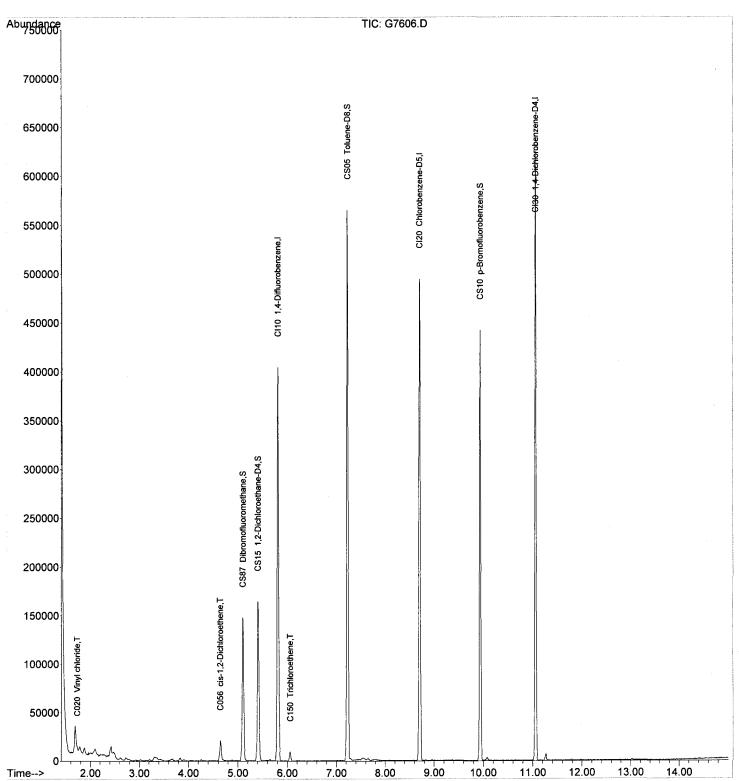
STL Buffalo

Data File: C:\MSDCHEM\1\DATA\122705\G7606.D

Acq On : 27 Dec 2005 17:24

Sample : A5E59210

Misc :


Integrator: RTE

Quant Time: Dec 27 18:08:03 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Acq On : 27 Dec 2005 17:24

Sample : A5E59210

Misc

Integrator: RTE

Quant Time: Dec 27 18:08:03 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Internal	Standards	R.T.	QIon	Response	Conc Ur		Dev(Min) Rcv(Ar)
1) CI10	1,4-Difluorobenzene	5.80	114	351221	125.00		
43) CI20	Chlorobenzene-D5	8.70	82	177773	125.00	ng	0.00 92.59%
63) CI30	1,4-Dichlorobenzene-	11.05	152	169222	125.00	ng ng	0.00 92.34%
26) CS87 Spiked 31) CS15 Spiked 44) CS05 Spiked 62) CS10	onitoring Compounds Dibromofluoromethane Amount 125.000 Ra 1,2-Dichloroethane-D Amount 125.000 Ra Toluene-D8 Amount 125.000 Ra p-Bromofluorobenzene Amount 125.000 Ra	5.40 nge 73 7.22 nge 77 9.93	65 - 136 98 - 122 174	130901 Recove 416361 Recove 125908	115.77 ry = 116.15 ry = 114.31	ng 92 ng 92 ng	0.00 .62% 0.00 .92%
Target C		1190 / 1	120	Recove	- <i>y</i>		Qvalue
2) C290 3) C010	Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane	1.58	50	0 493 7308	N.D. N.D. 5.05		
7) C275 8) C045 9) C030 10) C040 11) C036 12) C038 13) C035	Trichlorofluoromet 1,1-Dichloroethene Methylene chloride Carbon disulfide Acrolein Acrylonitrile Acetone	0.00 3 2.93 3.44 3.14 2.82 0.00	101 96 84 76 56 53	0 361 324 1120 67 0	N.D. N.D. N.D. N.D. N.D. N.D.		
16) C291 17) C962 18) C057 19) C255 20) C050 21) C125 22) C051	Iodomethane 1,1,2-Trichloro-1, T-butyl Methyl Eth trans-1,2-Dichloro Methyl Acetate 1,1-Dichloroethane Vinyl Acetate 2,2-Dichloropropan	0.00 0.00 3.69 3.68 3.31 0.00 4.07 0.00	142 101 73 96 43 63 43	0 0 157 472 1326 0 59	N.D. N.D. N.D. N.D. N.D. N.D. N.D.		
23) C056 24) C272 25) C222 27) C060 28) C115 29) C120 30) C116 32) C165 33) C065 34) C110	cis-1,2-Dichloroethe Tetrahydrofuran Bromochloromethane Chloroform 1,1,1-Trichloroeth Carbon tetrachlori 1,1-Dichloropropen Benzene 1,2-Dichloroethane 2-Butanone	0.00 0.00 0.00 0.00 0.00 0.00 5.44 0.00 4.68	96 42 128 83 97 117 75 78 62 43	9183 0 0 0 0 0 0 3829 0 867	7.13 N.D. N.D. N.D. N.D. N.D. N.D. N.D.	ng	97
35) C256 36) C150	-	5.14 6.05	56 95	305 3681	N.D. 2.96	ng	84

Acq On : 27 Dec 2005 17:24

Sample : A5E59210

Misc :

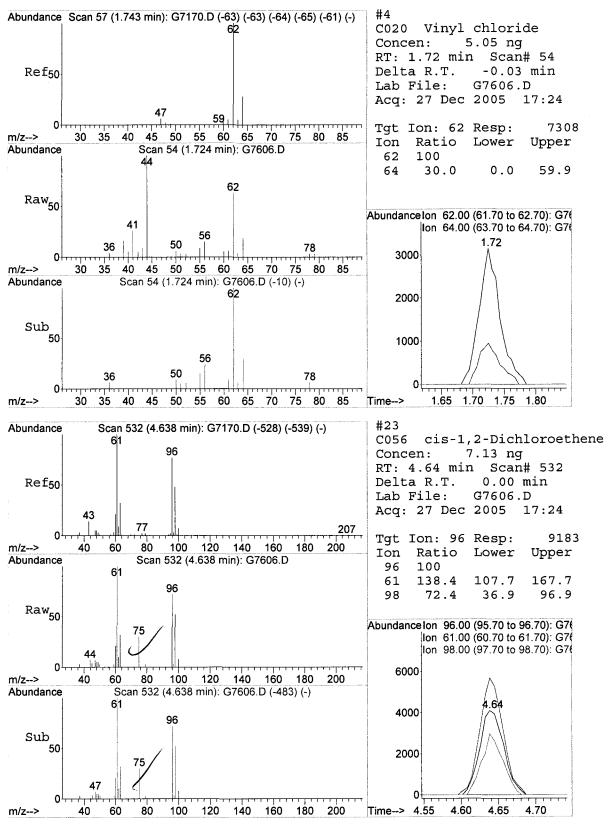
Integrator: RTE

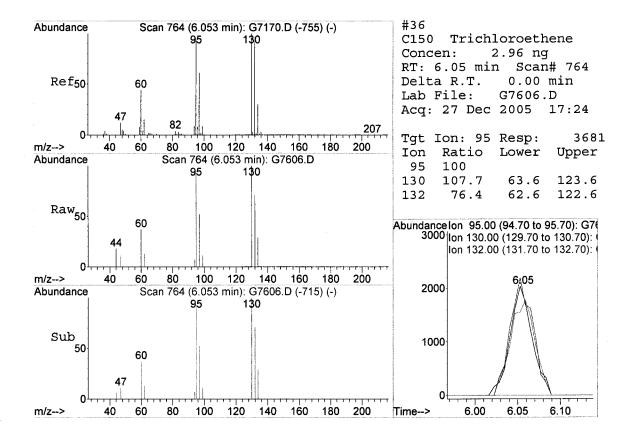
Quant Time: Dec 27 18:08:03 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 27 08:55:23 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122705\


Operator : TLC


Internal Standards	R.T	. QIon	Response	Conc Unit	s Dev(Min) Rcv(Ar)
37) C140 1,2-Dichloropropan	0.00	63	0	N.D.	
38) C278 Dibromomethane	0.00	93	0	N.D.	
39) C130 Bromodichlorometha	0.00	83	0	N.D.	
40) C161 2-Chloroethylvinyl	0.00	63	0	N.D.	
41) C012 Methylcyclohexane	0.00	83	0	N.D.	
42) C145 cis-1,3-Dichloropr	0.00	75	0	N.D.	
45) C230 Toluene	7.28	92	1042	N.D.	
46) C170 trans-1,3-Dichloro	0.00	75	0	N.D.	
47) C284 Ethyl Methacrylate	0.00	69	0	N.D.	
48) C160 1,1,2-Trichloroeth	0.00	83	0	N.D.	
49) C210 4-Methyl-2-pentano	7.22	43	1916	N.D.	
50) C220 Tetrachloroethene	0.00	166	0	N.D.	
51) C221 1,3-Dichloropropan	0.00	76	0	N.D.	
52) C155 Dibromochlorometha	0.00	129	0	N.D.	
53) C163 1,2-Dibromoethane	0.00	107	0	N.D.	
54) C215 2-Hexanone	7.79	43	56	N.D.	
55) C235 Chlorobenzene	0.00	112	0	N.D.	
56) C281 1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
57) C240 Ethylbenzene	8.95	91	634	N.D.	
58) C246 m,p-Xylene	8.95	106	184	N.D.	
59) C247 o-Xylene	9.38	106	60	N.D.	
60) C245 Styrene	0.00	104	0	N.D.	
61) C180 Bromoform	0.00	173	0	N.D.	
64) C966 Isopropylbenzene	9.93	105	64	N.D.	
65) C301 Bromobenzene	0.00	156	0	N.D.	
66) C225 1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
67) C282 1,2,3-Trichloropro	0.00	110	0	N.D.	
68) C283 t-1,4-Dichloro-2-B	0.00	51	0	N.D.	
69) C302 n-Propylbenzene	10.17	91	63	N.D.	
70) C303 2-Chlorotoluene	0.00	126	0	N.D.	
71) C289 4-Chlorotoluene	0.00	126	0	N.D.	
72) C304 1,3,5-Trimethylben	10.26	105	252	N.D.	
73) C306 tert-Butylbenzene	0.00	134	0	N.D.	
74) C307 1,2,4-Trimethylben	10.72	105	259	N.D.	
75) C308 sec-Butylbenzene	10.72	105	259	N.D.	
76) C260 1,3-Dichlorobenzen	0.00	146	0	N.D.	
77) C309 4-Isopropyltoluene	11.00	119	291	N.D.	
78) C267 1,4-Dichlorobenzen	0.00	146	0	N.D.	
79) C249 1,2-Dichlorobenzen	0.00	146	0	N.D.	
80) C310 n-Butylbenzene	0.00	91	0	N.D.	
81) C286 1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
82) C313 1,2,4-Trichloroben	0.00	180	0	N.D.	
83) C316 Hexachlorobutadien	0.00	225	0	N.D.	
84) C314 Naphthalene	13.03	128	1173	N.D.	
85) C934 1,2,3-Trichloroben	0.00	180	0	N.D.	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Page 4

Client No.

MW-29		

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u>

Lab Code: RECNY Case No.: SAS No.: SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59214

Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{ML} Lab File ID: $\underline{G7610.RR}$

Level: (low/med) Low Date Samp/Recv: $\underline{12/22/2005}$ $\underline{12/23/2005}$

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CAS NO.	COMPOUND	(ug/L or ug/Kg	<u>3/L</u>	Q
67-64-1	Acetone		5.0	U
71-43-2	Benzene		1.0	ע
75-27-4	Bromodichloromethane		1.0	ט
75-25-2	Bromoform		1.0	ן ט
74-83-9	Bromomethane		1.0	ע
78-93-3	2-Butanone		5.0	ט
75-15-0	Carbon Disulfide		1.0	ע
56-23-5	Carbon Tetrachloride		1.0	U
108-90-7	Chlorobenzene		1.0	ן ט
75-00-3	Chloroethane		1.0	ן ט
67-66-3	Chloroform		1.0	ט
74-87-3	Chloromethane		1.0	ט
110-82-7	Cyclohexane		1.0	ע
106-93-4	1,2-Dibromoethane		1.0	ט
124-48-1	Dibromochloromethane		1.0	ט
96-12-8	1,2-Dibromo-3-chloropropane		1.0	ן ט
95-50-1	1,2-Dichlorobenzene		1.0	ע
541-73-1	1,3-Dichlorobenzene		1.0	ע
106-46-7	1,4-Dichlorobenzene		1.0	ע
75-71-8	Dichlorodifluoromethane		1.0	ן ט
75-34-3	1,1-Dichloroethane		1.0	U
107-06-2	1,2-Dichloroethane		1.0	ប
75-35-4	1,1-Dichloroethene		1.0	ט
156-59-2	cis-1,2-Dichloroethene		1.0	U
156-60-5	trans-1,2-Dichloroethene		1.0	ע
78-87-5	1,2-Dichloropropane		1.0	ט
10061-01-5	cis-1,3-Dichloropropene		1.0	ן ט
10061-02-6	trans-1,3-Dichloropropene		1.0	ע
100-41-4	Ethylbenzene		1.0	U
591-78-6	2-Hexanone		5.0	ט
98-82-8	Isopropylbenzene		1.0	U
I .	Methyl acetate		1.0	ט
	Methylcyclohexane		1.0	ט
	Methylene chloride		 1.0	U

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-2	a
1.144 2	<i></i>

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59214

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/22/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

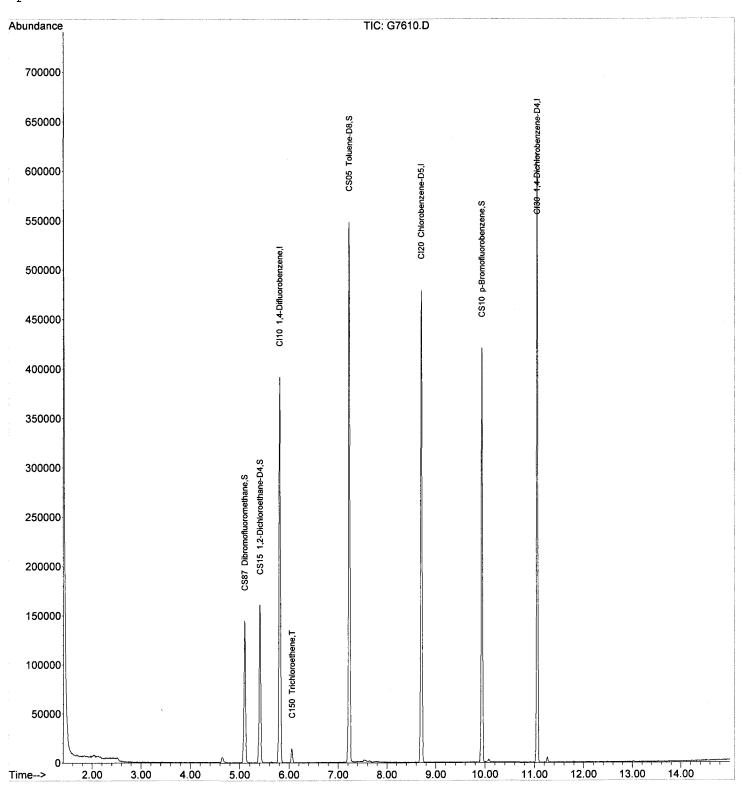
Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CAS NO.	COMPOUND	(ug/L or ug/Kg)	IS: <u>UG/L</u>	Q
108-10-1	4-Methyl-2-pentanone		5.0	U
1634-04-4	Methyl-t-Butyl Ether (MIBE)		1.0	U
91-20-3	Naphthalene		1.0	ש
100-42-5	Styrene		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
127-18-4	Tetrachloroethene		1.0	U
108-88-3	Toluene		1.0	U
120-82-1	1,2,4-Trichlorobenzene		1.0	U
71-55-6	1,1,1-Trichloroethane		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-triflu	oroethane	1.0	U
75-69-4	Trichlorofluoromethane		1.0	U
79-01-6	Trichloroethene		0.90	J
	Vinyl chloride		1.0	U
1330-20-7	Total Xylenes		3.0	U
1				1

Acq On : 27 Dec 2005 18:53

Sample : A5E59214

Misc


Integrator: RTE

Quant Time: Dec 27 19:24:56 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Acq On : 27 Dec 2005 18:53

Sample : A5E59214

Misc

Integrator: RTE

Quant Time: Dec 27 19:24:56 2005

Quaire	- IIIIIC	. Dec 27 19.24.30 200	.5					
Quant QLast Respo	t Titl t Upda onse v Path	nod : C:\MSDCHEM\1\MET ne : 8260					SIEV	2/20
		Standards					Rcv(Ar)	
1)	CI10						0.00 91.07%	
43)	CI20	Chlorobenzene-D5	8.70	82	170613	125.00 ng	0.00	
63)	CI30	1,4-Difluorobenzene Chlorobenzene-D5 1,4-Dichlorobenzene-	11.05	152	165829	125.00 ng	0.00 90.49%	
Syst	tem Mo	nitoring Compounds						
26)	CS87	Dibromofluoromethane	5.10	111	97080	113.78 NG	0.00	
Sp	iked A	mount 125.000 Ra 1,2-Dichloroethane-D	inge 70	- 130	Recove	ery = 91	.02%	
31)	CS15	1,2-Dichloroethane-D	5.41	65	128742	117.32 ng	0.00	
Spi	iked A	mount 125.000 Ra	inge 73	- 136	Recove	ery = 93	.86%	
44)	CS05	Toluene-D8 mount 125.000 Ra p-Bromofluorobenzene	7.22	98	408748	118.81 ng	0.00	
Sp	iked A	mount 125.000 Ra	inge 77	- 122	Recove	ery = 95	.05%	
62)	CS10	p-Bromofluorobenzene	9.94	174	122853	116.22 ng	0.00	
Sp	iked A	amount 125.000 Ra	inge 74	- 120	Recove	ery = 92	.98%	
Targ	get Co	mpounds					Qvalue	
2)	C290	Dichlorodifluorome	0.00	85	0	N.D.		
3)	C010	Chloromethane	1.61	50	373	N.D.		
4)	C020	Vinyl chloride	0.00	62	0	N.D.		
5)	C015	Bromomethane	0.00	94	0	N.D.		
6)	C025	Chloroethane	0.00	64	0	N.D.		
7)	C275	Trichlorofluoromet	0.00	101	0	N.D.		
8)	C045	1,1-Dichloroethene	0.00	96	0	N.D.		
9)	C030	Methylene chloride	3.43	84	148	N.D.		
10)	C040	Carbon disulfide	3.14	76	620	N.D.		
11)	C036	mpounds Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet 1,1-Dichloroethene Methylene chloride Carbon disulfide Acrolein Acrylonitrile Acetone Acetonitrile Iodomethane	0.00	56	0	N.D.		
12)	C038	Acrylonitrile	0.00	53	0	N.D.		
13)	C035	Acetone	3.04	43	909	N.D.		
14)	C300	Acetonitrile	3.30	41	56	N.D.		
15)	C276				0	N.D.		
	C291	1,1,2-Trichloro-1,	0.00	101	0	N.D.		
	C962	T-butyl Methyl Eth	0.00	73	0	N.D.		
	C057	trans-1,2-Dichloro	0.00	96	0	N.D.		
	C255	Methyl Acetate	3.25	43	59	N.D.		
	C050	1,1-Dichloroethane	0.00	63	0	N.D.		
21)	C125	Vinyl Acetate	0.00	43	0	N.D.		
	C051	2,2-Dichloropropan	0.00	77	0	N.D.		
	C056	cis-1,2-Dichloroet	4.64	96	1989	N.D.		
		Tetrahydrofuran	0.00	42	0	N.D.		
25)	C222	Bromochloromethane		128	0	N.D.		
27)		Chloroform	0.00	83	0	N.D.		
	C115	1,1,1-Trichloroeth	0.00	97	0	N.D.		
	C120	Carbon tetrachlori	0.00	117	0	N.D.		
30)	C116	1,1-Dichloropropen	0.00	75	0	N.D.		
32)	C165	Benzene	5.44	78	56	N.D.		
33)	C065	1,2-Dichloroethane	0.00	62	0	N.D.		^
34)	C110	2-Butanone	4.68	43	60	N.D.		1
35)	C256	Cyclohexane	0.00	56	0	N.D.		,
(36)	C 150	Trichloroethene	6.05	95	5448	4.52 ng	95	

Acq On : 27 Dec 2005 18:53

Sample : A5E59214

Misc :

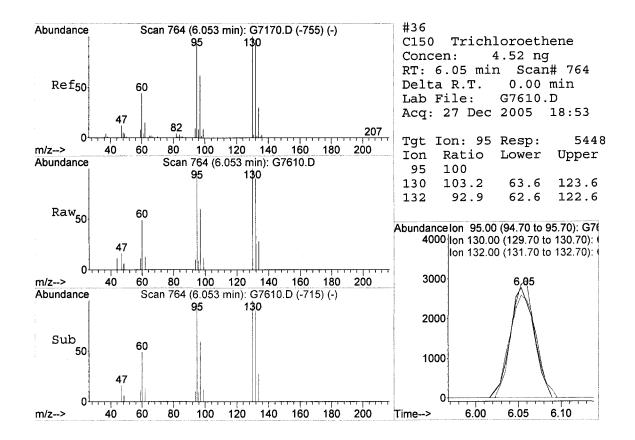
Integrator: RTE

Quant Time: Dec 27 19:24:56 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\


Operator : TLC

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
37) C140 1,2-Dichloropropan	0.00	63	0	N.D.	
38) C278 Dibromomethane	0.00	93	0	N.D.	
39) C130 Bromodichlorometha	0.00	83	0	N.D.	
40) C161 2-Chloroethylvinyl	6.84	63	60	N.D.	
41) C012 Methylcyclohexane	0.00	83	0	N.D.	
42) C145 cis-1,3-Dichloropr	0.00	75	0	N.D.	
45) C230 Toluene	0.00	92	0	N.D.	
46) C170 trans-1,3-Dichloro	0.00	75	0	N.D.	
47) C284 Ethyl Methacrylate	0.00	69	0	N.D.	
48) C160 1,1,2-Trichloroeth	0.00	83	0	N.D.	
49) C210 4-Methyl-2-pentano	7.22	43	1944	N.D.	
50) C220 Tetrachloroethene	0.00	166	0	N.D.	
51) C221 1,3-Dichloropropan	0.00	76	0	N.D.	
52) C155 Dibromochlorometha	0.00	129	0	N.D.	
53) C163 1,2-Dibromoethane	0.00	107	0	N.D.	
54) C215 2-Hexanone	0.00	43	0	N.D.	
55) C235 Chlorobenzene	0.00	112	0	N.D.	
56) C281 1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
57) C240 Ethylbenzene	8.95	91	71	N.D.	
58) C246 m,p-Xylene	0.00	106	0	N.D.	
59) C247 o-Xylene	0.00	106	0	N.D.	
60) C245 Styrene	0.00	104	0	N.D.	
61) C180 Bromoform	0.00	173	0	N.D.	
64) C966 Isopropylbenzene	0.00	105	0	N.D.	
65) C301 Bromobenzene	0.00	156	0	N.D.	
66) C225 1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
67) C282 1,2,3-Trichloropro	0.00	110	0	N.D.	
68) C283 t-1,4-Dichloro-2-B	0.00	51	0	N.D.	
69) C302 n-Propylbenzene	9.93	91	402	N.D.	
70) C303 2-Chlorotoluene	0.00	126	0	N.D.	
71) C289 4-Chlorotoluene	0.00	126	0	N.D.	
72) C304 1,3,5-Trimethylben	0.00	105	0	N.D.	
73) C306 tert-Butylbenzene	0.00	134	0	N.D.	
74) C307 1,2,4-Trimethylben	0.00	105	0	N.D.	
75) C308 sec-Butylbenzene	0.00	105	0	N.D.	
76) C260 1,3-Dichlorobenzen	0.00	146	0	N.D.	
77) C309 4-Isopropyltoluene	0.00	119	0	N.D.	
78) C267 1,4-Dichlorobenzen	0.00	146	0	N.D.	
79) C249 1,2-Dichlorobenzen	0.00	146	0	N.D.	
80) C310 n-Butylbenzene	0.00	91	0	N.D.	
81) C286 1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
82) C313 1,2,4-Trichloroben	0.00	180	0	N.D. N.D.	
83) C316 Hexachlorobutadien	0.00	225 128	1067	N.D.	
84) C314 Naphthalene 85) C934 1,2,3-Trichloroben	13.03	180	0	N.D.	
85) C934 1,2,3-Trichloroben	0.00	T00		N.D.	.

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

147/304

Client No.

NATUT OF O	
MW-30	

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59207

Lab File ID: G7603.RR Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$

Level: (low/med) LOW Date Samp/Recv: <u>12/22/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: <u>12/27/2005</u>

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: 1.00

Soil Aliquot Volume: ____ (uL) Soil Extract Volume: ____ (uL)

		CONCENTRATION U		
CAS NO.	COMPOUND	(ug/L or ug/Kg)) <u>UG/L</u>	Q
67-64-1	Acetone		5.0	U
71-43-2			1.0	U
75-27-4	Bromodichloromethane		1.0	U
75-25-2	Bromoform		1.0	U
74-83-9	Bromomethane		1.0	U
78-93-3	2-Butanone		5.0	ט
75-15-0	Carbon Disulfide		1.0	ן ש
56-23-5	Carbon Tetrachloride		1.0	U
108-90-7	Chlorobenzene		1.0	ע
75-00-3	Chloroethane		1.0	U
67-66-3	Chloroform		1.0	ע
74-87-3	Chloromethane		1.0	ע
110-82-7	Cyclohexane		1.0	ע
	1,2-Dibromoethane		1.0	ע
124-48-1	Dibromochloromethane		1.0	U
96-12-8	1,2-Dibromo-3-chloropropane		1.0	ע
	1,2-Dichlorobenzene		1.0	ן ט
541-73-1	1,3-Dichlorobenzene		1.0	U
106-46-7	1,4-Dichlorobenzene		1.0	U
75-71-8	Dichlorodifluoromethane		1.0	U
75-34-3	1,1-Dichloroethane		1.0	U
107-06-2	1,2-Dichloroethane		1.0	U
75-35-4	1,1-Dichloroethene		1.0	U
156-59-2	cis-1,2-Dichloroethene		0.44	J
	trans-1,2-Dichloroethene		1.0	U
78-87-5	1,2-Dichloropropane		1.0	U
	cis-1,3-Dichloropropene		1.0	U
10061-02-6	trans-1,3-Dichloropropene		1.0	U
100-41-4	Ethylbenzene		1.0	U
591-78-6			5.0	U
98-82-8	Isopropylbenzene		1.0	ប
79-20-9	Methyl acetate		1.0	U
108-87-2	Methylcyclohexane		1.0	U
75-09-2	Methylene chloride		1.0	U
L .				L

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

			MW-30
Lab Name:	STL Buffalo	Contract: 4	

Lab Code: RECNY Case No.: SAS No.: SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59207

Sample wt/vol: 5.00 (g/mL) ML Lab File ID: G7603.RR

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/22/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

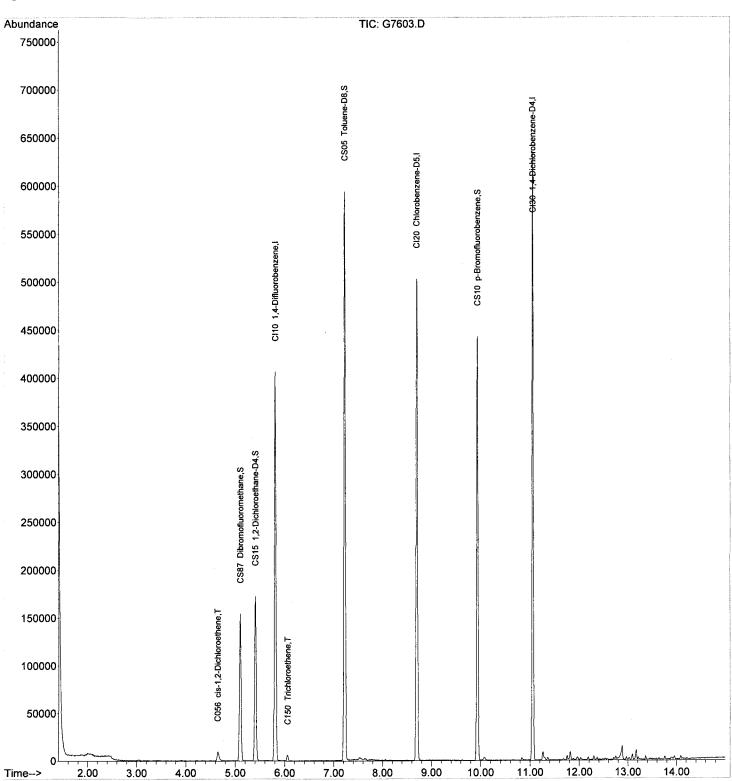
Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CAS NO.	COMPOUND	(ug/L or ug/Kg)	.s: <u>UG/L</u>	Q
108-10-1	4-Methyl-2-pentanone		5.0	Ū
1634-04-4	Methyl-t-Butyl Ether (MTBE)		1.0	U
91-20-3	Naphthalene		1.0	U
100-42-5	Styrene		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
127-18-4	Tetrachloroethene		1.0	U
108-88-3	Toluene		1.0	U
120-82-1	1,2,4-Trichlorobenzene		1.0	U
71-55-6	1,1,1-Trichloroethane		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	ប
76-13-1	1,1,2-Trichloro-1,2,2-triflu	ıoroethane	1.0	ט
75-69-4	Trichlorofluoromethane		1.0	U
79-01-6	Trichloroethene		0.42	J
	Vinyl chloride		1.0	ש
1330-20-7	Total Xylenes		3.0	U
1				1

: 27 Dec 2005 16:16 Acq On

Sample : A5E59207

Misc


Integrator: RTE

Quant Time: Dec 27 18:07:48 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Acq On : 27 Dec 2005 16:16

Sample : A5E59207

Misc

Integrator: RTE

Quant Time: Dec 27 18:07:48 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER
QLast Update : Tue Dec 27 08:55:23 2005
Response via : Initial Calibration
Data Path : C:\MSDCHEM\1\DATA\122705\

Inte	ernal	Standards	R.T	. QIon	Response	Conc Ur		Rcv ((Ar)
1)	CI10	1,4-Difluorobenzene	5.8	1 114	362257	125.00			0.00 5.79%
43)	CI20	Chlorobenzene-D5	8.70	82	181923	125.00) ng		
63)	CI30	1,4-Dichlorobenzene-	11.06	5 152	171991	125.00) ng		0.00 .85%
26) Sp: 31) Sp: 44) Sp: 62)	CS87 iked A CS15 iked A CS05 iked A CS10	onitoring Compounds Dibromofluoromethane mount 125.000 Ran 1,2-Dichloroethane-D mount 125.000 Ran Toluene-D8 mount 125.000 Ran p-Bromofluorobenzene mount 125.000 Ran	nge 70 5.45 nge 73 7.22 nge 7	0 - 130 1 65 3 - 136 2 98 7 - 122 4 174	Recove 134446 Recove 433337 Recove 129390	ry = 115.28 rv =	90 ng 92 ng 94 ng	.93% .22% .50%	0.00
Tare	get Co	mpounds						Qva	ılue
		Dichlorodifluorome	0.00	85	0	N.D.			
		Chloromethane	1.60	50	234	N.D.			
		Vinyl chloride	0.00	62	0	N.D.			
5)	C015	Bromomethane	2.07	94	55	N.D.			
6)	C025	Chloroethane Trichlorofluoromet	0.00	64	0	N.D.			
7)	C275	Trichlorofluoromet	0.00	101	0	N.D.			
8)	C045	1,1-Dichloroethene	0.00	96	0	N.D.			
	C030	Methylene chloride	3.44	84	114	N.D.			
10)	C040	Carbon disulfide Acrolein	3.16	76	565	N.D.			
11)	C036	Acrolein	0.00	76 56	0	N.D.			
12)	C038	Acrylonitrile	0.00		0	N.D.			
13)	C035	Acetone	3.03	43	1961	N.D.			
14)	C300	Acetonitrile	3.31	41	69	N.D.			
15)	C276	Acetonitrile Iodomethane	0.00	142	0	N.D.			
16)	C291	1,1,2-Trichloro-1,	0.00	101	0	N.D.			
17)	C962	T-butyl Methyl Eth	0.00	73	0	N.D.			
18)	C057	trans-1,2-Dichloro	3.69	96	56	N.D.			
19)	C255	Methyl Acetate	3.41	43	57	N.D.			
20)	C050	trans-1,2-Dichloro Methyl Acetate 1,1-Dichloroethane	0.00	63	0	N.D.			
	C125	Vinyl Acetate	0.00	43	0	N.D.			
22)	C051	2,2-Dichloropropan	4.66	77	126	N.D.			
(23)	√ 056	cis-1,2-Dichloroethe	4.64	4 96	2912	2.19	ng	#	73
	C272	Tetrahydrofuran	0.00	42	0	N.D.			
	C222	Bromochloromethane	0.00	128	0	N.D.			
	C060	Chloroform	0.00	83	0	N.D.			
	C115	1,1,1-Trichloroeth	0.00	97	0	N.D.			
	C120	Carbon tetrachlori	0.00	117	0	N.D.			
30)		1,1-Dichloropropen	0.00	75	0	N.D.			
32)	C165	Benzene	5.44	78	121	N.D.			
33)	C065	1,2-Dichloroethane	0.00	62	0	N.D.			
34)	C110	2-Butanone	4.67	43	328	N.D.			
35)		Cyclohexane	0.00	56	0	N.D.			
3/8)-	C150	Trichloroethene	6.09	5 95	2723	2.13	ng		98

Acq On : 27 Dec 2005 16:16

Sample : A5E59207

Misc :

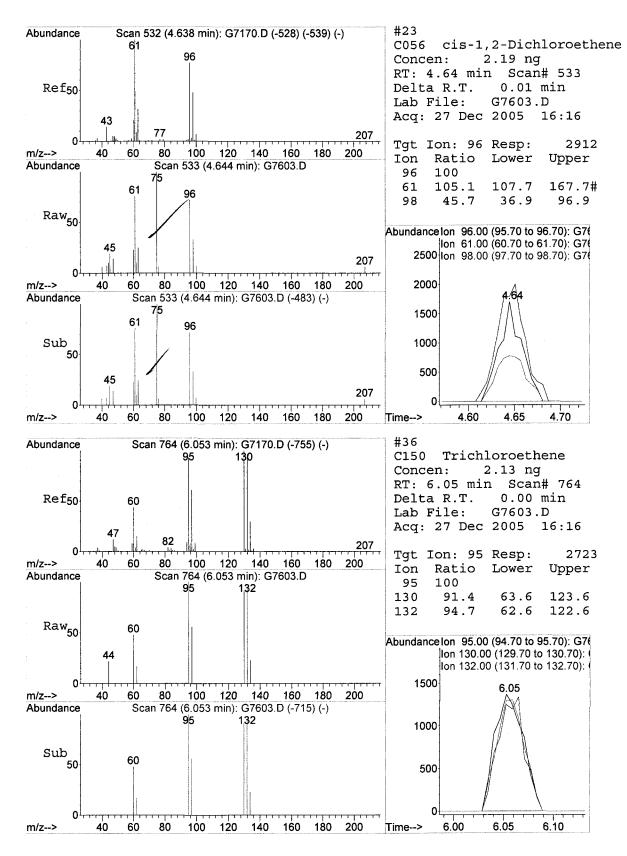
Integrator: RTE

Quant Time: Dec 27 18:07:48 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 27 08:55:23 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122705\


Operator : TLC

Internal Standards	R.T	. QIon	Response	Conc Uni	ts Dev(Min) Rcv(Ar)
37) C140 1,2-Dichloropropan	0.00	63	0	N.D.	
38) C278 Dibromomethane	0.00	93	0	N.D.	
39) C130 Bromodichlorometha	0.00	83	0	N.D.	
40) C161 2-Chloroethylvinyl	6.85	63	119	N.D.	
41) C012 Methylcyclohexane	0.00	83	0	N.D.	
42) C145 cis-1,3-Dichloropr	0.00	75	0	N.D.	
45) C230 Toluene	7.28	92	136	N.D.	
46) C170 trans-1,3-Dichloro	0.00	75	0	N.D.	
47) C284 Ethyl Methacrylate	0.00	69	0	N.D.	
48) C160 1,1,2-Trichloroeth	0.00	83	0	N.D.	
49) C210 4-Methyl-2-pentano	7.22	43	2096	N.D.	
50) C220 Tetrachloroethene	0.00	166	0	N.D.	
51) C221 1,3-Dichloropropan	0.00	76	0	N.D.	
52) C155 Dibromochlorometha	0.00	129	0	N.D.	
53) C163 1,2-Dibromoethane	0.00	107	0	N.D.	
54) C215 2-Hexanone	0.00	43	0	N.D.	
55) C235 Chlorobenzene	0.00	112	0	N.D.	
56) C281 1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
57) C240 Ethylbenzene	8.95	91	193	N.D.	
58) C246 m,p-Xylene	0.00	106	0	N.D.	
59) C247 o-Xylene	0.00	106	0	N.D.	
60) C245 Styrene	0.00	104	0	N.D.	
61) C180 Bromoform	0.00	173	0	N.D.	
64) C966 Isopropylbenzene	0.00	105	0	N.D.	
65) C301 Bromobenzene	0.00	156	0	N.D.	
66) C225 1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
67) C282 1,2,3-Trichloropro	0.00	110	0	N.D.	
68) C283 t-1,4-Dichloro-2-B	0.00	51	0	N.D.	
69) C302 n-Propylbenzene	9.93	91	544	N.D.	
70) C303 2-Chlorotoluene	0.00	126	0	N.D.	
71) C289 4-Chlorotoluene	0.00	126	0	N.D.	
72) C304 1,3,5-Trimethylben	10.26	105	55	N.D.	
73) C306 tert-Butylbenzene	10.84	134	434	N.D.	
74) C307 1,2,4-Trimethylben	10.71	105	76	N.D.	
75) C308 sec-Butylbenzene	10.87	105	628	N.D.	
76) C260 1,3-Dichlorobenzen	0.00	146	0	N.D.	
77) C309 4-Isopropyltoluene	11.01	119	98	N.D.	
78) C267 1,4-Dichlorobenzen	0.00	146	0	N.D.	
79) C249 1,2-Dichlorobenzen	0.00	146	0	N.D.	
80) C310 n-Butylbenzene	11.37	91 75	183	N.D.	
81) C286 1,2-Dibromo-3-Chlo	0.00	75 180	0 0	N.D. N.D.	
82) C313 1,2,4-Trichloroben 83) C316 Hexachlorobutadien	0.00	180 225	0	N.D.	
84) C314 Naphthalene	0.00 13.02	128	1559	N.D.	
85) C934 1,2,3-Trichloroben	0.00	180	0	N.D.	
03, C334 1,2,3-111CIIIOCODEII	0.00			11.0.	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

153/304

Client No.

MW-31	

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59201

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{G7595.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

		CONCENTRATION UN	NITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L_	Q
67-64-1			5.0	บ
71-43-2			1.0	ע
	Bromodichloromethane		1.0	ע
75-25-2			1.0	U
1	Bromomethane		1.0	U
	2-Butanone		5.0	U
	Carbon Disulfide		1.0	U
	Carbon Tetrachloride		1.0	U
108-90-7	Chlorobenzene		1.0	U
75-00-3	Chloroethane		1.0	ע
67-66-3	Chloroform		1.0	U
74-87-3	Chloromethane		1.0	U
110-82-7	Cyclohexane		1.0	ע
106-93-4	1,2-Dibromoethane		1.0	ע
124-48-1	Dibromochloromethane		1.0	ן ט
96-12-8	1,2-Dibromo-3-chloropropane		1.0	U
95-50-1	1,2-Dichlorobenzene		1.0	ן ט
541-73-1	1,3-Dichlorobenzene		1.0	U
106-46-7	1,4-Dichlorobenzene		1.0	U
75-71-8	Dichlorodifluoromethane		1.0	[U]
75-34-3	1,1-Dichloroethane		1.0	ע
107-06-2	1,2-Dichloroethane		1.0	ן ט
75-35-4	1,1-Dichloroethene		1.0	ט
156-59-2	cis-1,2-Dichloroethene		99	
156-60-5	trans-1,2-Dichloroethene		8.2	
78-87-5	1,2-Dichloropropane		1.0	ן ט
10061-01-5	cis-1,3-Dichloropropene		1.0	ע
10061-02-6	trans-1,3-Dichloropropene		1.0	ט
	Ethylbenzene		1.0	ע
591-78-6			5.0	ַ ט
98-82-8	Isopropylbenzene		1.0	U
	Methyl acetate		1.0	U
	Methylcyclohexane		1.0	U
	Methylene chloride		1.0	ט
L			·	

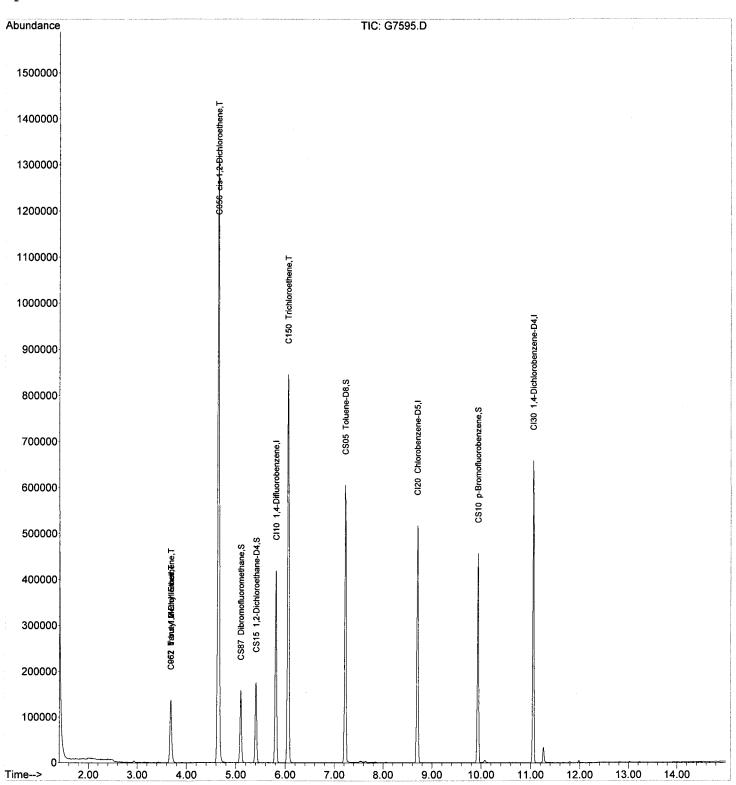
METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

	MW-31
Lab Name: STL Buffalo Contract: 4	
Lab Code: RECNY Case No.: SAS No.:	SDG No.: <u>1205GW</u>
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A5E59201
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$	Lab File ID: <u>G7595.RR</u>
Level: (low/med) <u>LOW</u>	Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>
% Moisture: not dec Heated Purge: N	Date Analyzed: <u>12/27/2005</u>
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.00
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
108-10-14-Methyl-2-pentanone 1634-04-4Methyl-t-Butyl Ether (MTBE) 91-20-3Naphthalene 100-42-5Styrene 79-34-51,1,2,2-Tetrachloroethane	1.0 U 1.0 U

Acq On : 27 Dec 2005 10:48

Sample : A5E59201


Misc

Integrator: RTE Quant Time: Dec 27 18:06:41 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Acq On : 27 Dec 2005 10:48

: A5E59201 Sample

Misc Integrator: RTE

Quant Time: Dec 27 18:06:41 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Internal	Standards	R.T. QIO	_	Conc Unit		(Min) (Ar)
1) CI10	1,4-Difluorobenzene	5.81 11		125.00 n	9:	3 97%
43) CI20	Chlorobenzene-D5	8.70 8	2 186717	125.00 n	ıg 9'	0.00 7.25%
63) CI30	1,4-Dichlorobenzene-	11.05 15	2 179262		ıg	0.00 7.82%
26) CS87	onitoring Compounds Dibromofluoromethane Amount 125.000 Ram 1,2-Dichloroethane-D	5.10 11 nge 70 - 1	1 107504 30 Recov	115.95 NG ery = 9	; 2.76%	0.00
Spiked A	Amount 125.000 Rai	nge 73 - 1	36 Recov	ery = 9	3.68%	
Spiked A 62) CS10 Spiked A	Toluene-D8 Amount 125.000 Ram p-Bromofluorobenzene Amount 125.000 Ram	nge 77 - 1 9.94 17 nge 74 - 1	22 Recov 4 134352 20 Recov	ery = 9 116.14 ng ery = 9	4.24% 2.91%	0.00
Target Co					Qva	alue
2) C290 3) C010 4) C020 5) C015 6) C025 7) C275 8) C045 9) C030 10) C040 11) C036 12) C038 13) C035 14) C300 15) C276 16) C291 17) C962 18) C057	Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet 1,1-Dichloroethene Methylene chloride Carbon disulfide Acrolein Acrylonitrile Acetone Acetonitrile Iodomethane 1,1,2-Trichloro-1, T-butyl Methyl Ether	1.62 50 1.74 62 0.00 94 0.00 64 0.00 101 2.94 96 3.43 84 3.14 76 2.85 56 3.69 53 3.03 43 3.35 41 0.00 142 0.00 101 3.69 7 3.69 9	278 1604 0 0 0 1645 421 2019 55 374 2319 187 0 0 3 47011 49936	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.		93
21) C125 22) C051 23) C056 24) C272 25) C222 27) C060 28) C115 29) C120 30) C116 32) C165 33) C065 34) C110 25) C256 (36) C150	2,2-Dichloropropan cis-1,2-Dichloroethe Tetrahydrofuran Bromochloromethane Chloroform 1,1,1-Trichloroeth Carbon tetrachlori 1,1-Dichloropropen Benzene 1,2-Dichloroethane 2-Butanone Cyclohexane Trichloroethene	4.14 43 4.66 77 4.64 9 0.00 42 0.00 128 0.00 83 0.00 97 0.00 117 0.00 75 5.44 78 5.48 62 4.69 43 0.00 56 6.05 9	381 670629 0 0 0 0 0 0 1021 57 1154	N.D. N.D. 493.49 ng N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D		98 95

Acq On : 27 Dec 2005 10:48

Sample : A5E59201

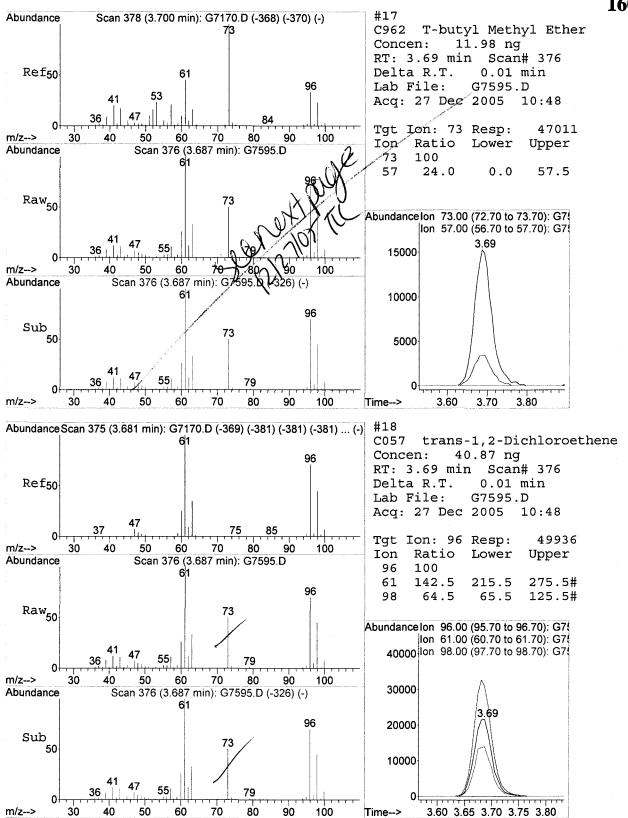
Misc : Integrator: RTE

Quant Time: Dec 27 18:06:41 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 27 08:55:23 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122705\


Operator : TLC

Internal Standards	R.T	. QIon	Response	Conc Uni	ts Dev(Min) Rcv(Ar)
37) C140 1,2-Dichloropropan	0.00	63	0	N.D.	
38) C278 Dibromomethane	0.00	93	0	N.D.	
39) C130 Bromodichlorometha	0.00	83	0	N.D.	
40) C161 2-Chloroethylvinyl	0.00	63	0	N.D.	
41) C012 Methylcyclohexane	0.00	83	0	N.D.	
42) C145 cis-1,3-Dichloropr	0.00	75	0	N.D.	
45) C230 Toluene	7.28	92	774	N.D.	
46) C170 trans-1,3-Dichloro	0.00	75	0	N.D.	
47) C284 Ethyl Methacrylate	0.00	69	0	N.D.	
48) C160 1,1,2-Trichloroeth	0.00	83	0	N.D.	
49) C210 4-Methyl-2-pentano	7.05	43	59	N.D.	
50) C220 Tetrachloroethene	7.84	166	155	N.D.	
51) C221 1,3-Dichloropropan	0.00	76	0	N.D.	
52) C155 Dibromochlorometha	0.00	129	0	N.D.	
53) C163 1,2-Dibromoethane	0.00	107	0	N.D.	
54) C215 2-Hexanone	8.05	43	372	N.D.	
55) C235 Chlorobenzene	8.74	112	232	N.D.	
56) C281 1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
57) C240 Ethylbenzene	8.96	91	458	N.D.	
58) C246 m,p-Xylene	0.00	106	0	N.D.	
59) C247 o-Xylene	0.00	106	0	N.D.	
60) C245 Styrene	0.00	104	0	N.D.	
61) C180 Bromoform	0.00	173	0	N.D.	
64) C966 Isopropylbenzene	0.00	105	0	N.D.	
65) C301 Bromobenzene	0.00	156	0	N.D.	
66) C225 1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
67) C282 1,2,3-Trichloropro	0.00	110	0	N.D.	
68) C283 t-1,4-Dichloro-2-B	0.00	51	0	N.D.	
69) C302 n-Propylbenzene	9.92	91	539	N.D.	
70) C303 2-Chlorotoluene	0.00	126	0	N.D.	
71) C289 4-Chlorotoluene	0.00	126	0	N.D.	
72) C304 1,3,5-Trimethylben	0.00	105	0	N.D.	
73) C306 tert-Butylbenzene	0.00	134	0	N.D.	
74) C307 1,2,4-Trimethylben	10.70	105	241	N.D.	
75) C308 sec-Butylbenzene	10.70	105	241	N.D.	
76) C260 1,3-Dichlorobenzen	0.00	146	0	N.D.	
77) C309 4-Isopropyltoluene	11.00	119	369	N.D.	
78) C267 1,4-Dichlorobenzen	0.00	146	0	N.D.	
79) C249 1,2-Dichlorobenzen	0.00	146	0	N.D.	
80) C310 n-Butylbenzene	11.38	91	121	N.D.	
81) C286 1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
82) C313 1,2,4-Trichloroben	12.83	180	702	N.D.	
83) C316 Hexachlorobutadien	12.95	225	145	N.D.	
84) C314 Naphthalene	13.03	128	2181	N.D.	
85) C934 1,2,3-Trichloroben	13.23	180	794	N.D.	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

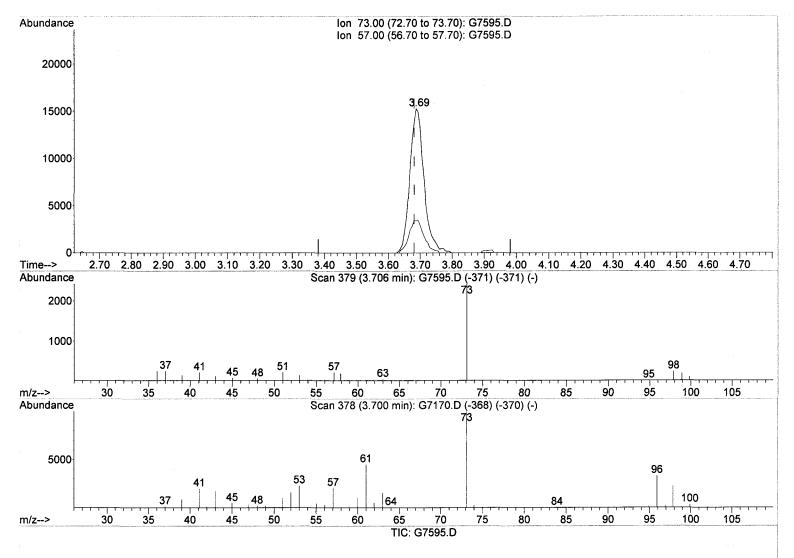
159/304

Acq On : 27 Dec 2005 10:48

Sample : A5E59201

Misc :

Integrator: RTE


Quant Time: Dec 27 18:06:41 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

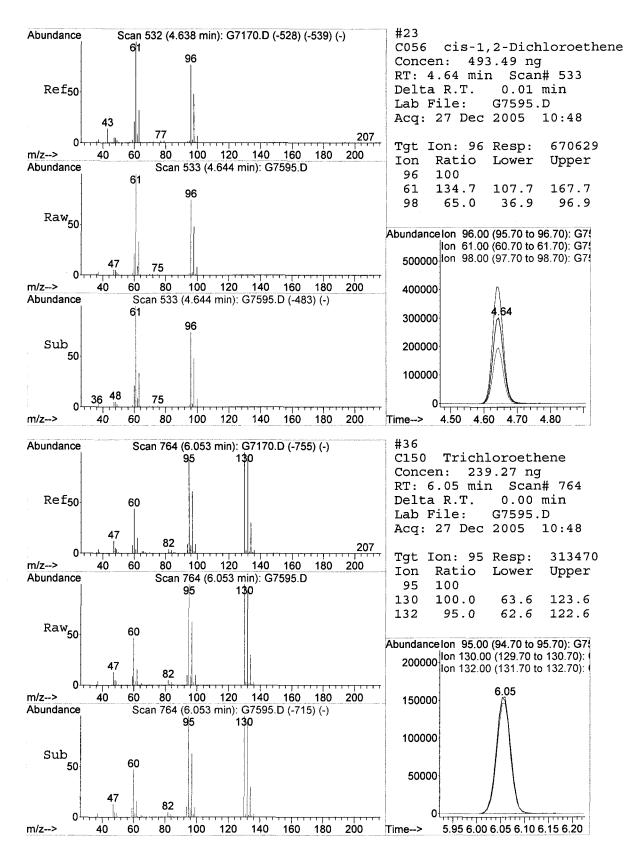
QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Operator : TLC

(17) C962 T-butyl Methyl Ether (T)

3.69min (+0.006) 11.98ng

response 47011


 Ion
 Exp%
 Act%

 73.00
 100
 100

 57.00
 27.50
 23.98

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

Client No.

MW-37	

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59205

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/22/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CAS NO.	COMPOUND	CONCENTRATION UNIT	ug/L_	Q
67-64-1	-Acetone		5.0	U
71-43-2		-	1.0	Ū
	Bromodichloromethane	:	1.0	υ
75-25-2			1.0	lu l
	Bromomethane		1.0	ָ ^U
78-93-3	** · · · · · · · · · · · · · · · · · ·		5.0	Ū
	-Carbon Disulfide		1.0	Ū
1	Carbon Tetrachloride		1.0	Ū
4	Chlorobenzene		1.0	Ū
1	Chloroethane		1.0	Ū
67-66-3			1.0	Ū
	Chloromethane		1.0	Ū
110-82-7			1.0	Ū
	-1,2-Dibromoethane		1.0	Ū
	-Dibromochloromethane		1.0	U
	-1,2-Dibromo-3-chloropropane		1.0	Ū
	-1,2-Dichlorobenzene		1.0	ן מן
1	-1,3-Dichlorobenzene		1.0	ט
	-1,4-Dichlorobenzene		1.0	U
75-71-8	-Dichlorodifluoromethane		1.0	U
75-34-3	-1,1-Dichloroethane		1.0	U
	-1,2-Dichloroethane		1.0	U
	-1,1-Dichloroethene		1.0	U
156-59-2	-cis-1,2-Dichloroethene		50	
156-60-5	-trans-1,2-Dichloroethene		2.4	
78-87-5	-1,2-Dichloropropane		1.0	ט
10061-01-5	-cis-1,3-Dichloropropene		1.0	ט
10061-02-6	-trans-1,3-Dichloropropene		1.0	U
100-41-4	-Ethylbenzene		1.0	U
591-78-6	-2-Hexanone		5.0	ט
98-82-8	-Isopropylbenzene		1.0	U
	Methyl acetate		1.0	U
108-87-2	-Methylcyclohexane		1.0	ט
75-09-2	-Methylene chloride		1.0	U

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-37	
1	

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: SAS No.: SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59205

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{G7601.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/22/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

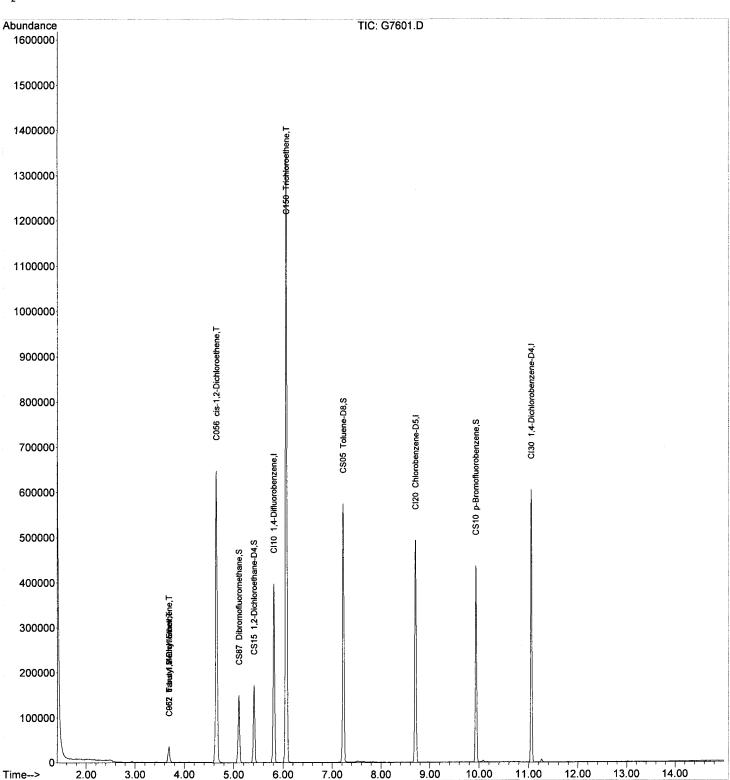
Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
108-10-1	4-Methyl-2-pentanone		5.0	บ
	Methyl-t-Butyl Ether (MIBE)		0.51	J
91-20-3	Naphthalene		1.0	ប
100-42-5			1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
127-18-4	Tetrachloroethene		1.0	Ū
108-88-3	Toluene		1.0	ָ ט
120-82-1	1,2,4-Trichlorobenzene		1.0	U
71-55-6	1,1,1-Trichloroethane		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluc	proethane	1.0	ש
75-69-4	Trichlorofluoromethane		1.0	ן ט
79-01-6	Trichloroethene		81	
	Vinyl chloride		1.0	U
1330-20-7	Total Xylenes		3.0	U
İ				1

Acq On : 27 Dec 2005 15:31

Sample : A5E59205

Misc :


Integrator: RTE

Quant Time: Dec 27 18:07:35 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 27 08:55:23 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122705\

Acq On : 27 Dec 2005 15:31

: A5E59205 Sample

Misc

Integrator: RTE

Quant Time: Dec 27 18:07:35 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

1) CI10 1,4-Difluorobenzene 5.81 114 347622 125.00 ng 92.88% 43) CI20 Chlorobenzene-D5 8.70 82 176794 125.00 ng 0.00 63) CI30 1,4-Dichlorobenzene- 11.05 152 167419 125.00 ng 0.00 82.08% System Monitoring Compounds 26) CS87 Dibromofluoromethane 5.10 111 100330 115.30 NG 0.00 8piked Amount 125.000 Range 70 - 130 8piked Amount 125.000 Range 70 - 130 8piked Amount 125.000 Range 73 - 136 41) CS05 Toluene-D8 7.22 98 8piked Amount 125.000 Range 77 - 122 62) CS10 p-Bromofluorobenzene 9.94 174 8piked Amount 125.000 Range 77 - 122 62) CS10 p-Bromofluorobenzene 9.94 174 8piked Amount 125.000 Range 77 - 122 62) CS10 p-Bromofluorobenzene 9.94 174 8piked Amount 125.000 Range 77 - 122 62) CS10 p-Bromofluorobenzene 9.94 174 8piked Amount 125.000 Range 77 - 122 62) CS10 p-Bromofluorobenzene 9.94 174 8piked Amount 125.000 Range 77 - 122 62) CS10 p-Bromofluorobenzene 9.94 174 8piked Amount 125.000 Range 77 - 122 62) CS10 p-Bromofluorobenzene 9.94 174 8piked Amount 125.000 Range 77 - 122 62) CS10 p-Bromofluorobenzene 9.94 174 8piked Amount 125.000 Range 77 - 122 62) CS10 p-Bromofluorobenzene 9.94 174 8piked Amount 125.000 Range 77 - 122 8piked Amount 125.000 R	Inte	ernal	Standards	R.T.		Response			Rcv	(Min) (Ar)
43) CI20 Chlorobenzene-D5	1)	CI10	1,4-Difluorobenzene	5.81			125.00) ng	92	0.00
System Monitoring Compounds 26 CS87 Dibromofluoromethane 5.10 111 100330 115.30 NG 0.00	43)	CI20	Chlorobenzene-D5	8.70	82	176794	125.00) ng	92	0.00
26) CS87 Dibromofluoromethane 5.10 111 100330 115.30 NG 0.00	63)	CI30	1,4-Dichlorobenzene-	11.05	152	167419	125.00) ng		0.00
26) CS87 Dibromofluoromethane 5.10 111 100330 115.30 NG 0.00	Syst	cem Mo	nitoring Compounds							
Spiked Amount 125.000 Range 73 - 136 Recovery = 95.11% 44) CS05 Toluene-D8 7.22 98 421888 118.34 ng 0.00 Spiked Amount 125.000 Range 77 - 122 Recovery = 94.67% 62) CS10 p-Bromofluorobenzene 9.94 174 126232 115.24 ng 0.00 Spiked Amount 125.000 Range 74 - 120 Recovery = 92.19%	26)	CS87	Dibromofluoromethane	5.10 nge 70	111 - 130	100330 Recove	115.30 ry =	NG 92	.24%	0.00
A4) CSOS Toluene-D8	31)	CS15	1,2-Dichloroethane-D	5.41	65	133049	118.89	ng		0.00
Target Compounds 2) C290 Dichlorodifluorome 0.00 85 0 N.D. 3) C010 Chloromethane 1.63 50 81 N.D. 4) C020 Vinyl chloride 1.72 62 776 N.D. 5) C015 Bromomethane 0.00 94 0 N.D. 6) C025 Chloroethane 0.00 94 0 N.D. 7) C275 Trichlorofluoromet 0.00 101 0 N.D. 8) C045 1,1-Dichloroethene 2.93 96 1072 N.D. 9) C030 Methylene chloride 3.43 84 481 N.D. 10) C040 Carbon disulfide 3.14 76 1208 N.D. 11) C036 Acrolein 2.83 56 64 N.D. 12) C038 Acrylonitrile 0.00 53 0 N.D. 13) C035 Acetone 3.04 43 1338 N.D. 14) C300 Acetonitrile 3.26 41 179 N.D. 15) C276 Iodomethane 3.08 142 139 N.D. 16) C291 1,1,2-Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.69 73 9454 2.57 ng 95 18) C057 trans-1,2-Dichloroet 3.69 96 14018 12.22 ng # 46 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 4.10 63 840 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropan 4.65 77 334 N.D. 23) C056 cis-1,2-Dichloroethane 4.64 96 318178 249.48 ng 98 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 42 0 N.D. 26) C120 Carbon tetrachlori 0.00 17 0 N.D. 27) C060 Chloroform 0.00 83 0 N.D. 28) C155 1,1,1-Trichloroeth 5.10 97 212 N.D. 29) C120 Carbon tetrachlori 0.00 17 0 N.D. 31) C165 Benzene 5.43 78 1097 N.D. 33) C065 1,2-Dichloropropen 0.00 75 0 N.D. 34) C110 2-Butanone 4.69 43 341 N.D. 34) C110 2-Butanone 5.14 56 57 N.D.	Spi	iked A	mount 125.000 Rar	1ge 73	- 136	Recove	ry =	95	.11%	
Target Compounds 2) C290 Dichlorodifluorome 0.00 85 0 N.D. 3) C010 Chloromethane 1.63 50 81 N.D. 4) C020 Vinyl chloride 1.72 62 776 N.D. 5) C015 Bromomethane 0.00 94 0 N.D. 6) C025 Chloroethane 0.00 94 0 N.D. 7) C275 Trichlorofluoromet 0.00 101 0 N.D. 8) C045 1,1-Dichloroethene 2.93 96 1072 N.D. 9) C030 Methylene chloride 3.43 84 481 N.D. 10) C040 Carbon disulfide 3.14 76 1208 N.D. 11) C036 Acrolein 2.83 56 64 N.D. 12) C038 Acrylonitrile 0.00 53 0 N.D. 13) C035 Acetone 3.04 43 1338 N.D. 14) C300 Acetonitrile 3.26 41 179 N.D. 15) C276 Iodomethane 3.08 142 139 N.D. 16) C291 1,1,2-Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.69 73 9454 2.57 ng 95 18) C057 trans-1,2-Dichloroet 3.69 96 14018 12.22 ng # 46 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 4.10 63 840 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropan 4.65 77 334 N.D. 23) C056 cis-1,2-Dichloroethane 4.64 96 318178 249.48 ng 98 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 42 0 N.D. 26) C120 Carbon tetrachlori 0.00 17 0 N.D. 27) C060 Chloroform 0.00 83 0 N.D. 28) C155 1,1,1-Trichloroeth 5.10 97 212 N.D. 29) C120 Carbon tetrachlori 0.00 17 0 N.D. 31) C165 Benzene 5.43 78 1097 N.D. 33) C065 1,2-Dichloropropen 0.00 75 0 N.D. 34) C110 2-Butanone 4.69 43 341 N.D. 34) C110 2-Butanone 5.14 56 57 N.D.	44)	CS05	Toluene-D8	7.22	98	421888	118.34	ng	C 17 0.	0.00
Target Compounds 2) C290 Dichlorodifluorome 0.00 85 0 N.D. 3) C010 Chloromethane 1.63 50 81 N.D. 4) C020 Vinyl chloride 1.72 62 776 N.D. 5) C015 Bromomethane 0.00 94 0 N.D. 6) C025 Chloroethane 0.00 94 0 N.D. 7) C275 Trichlorofluoromet 0.00 101 0 N.D. 8) C045 1,1-Dichloroethene 2.93 96 1072 N.D. 9) C030 Methylene chloride 3.43 84 481 N.D. 10) C040 Carbon disulfide 3.14 76 1208 N.D. 11) C036 Acrolein 2.83 56 64 N.D. 12) C038 Acrylonitrile 0.00 53 0 N.D. 13) C035 Acetone 3.04 43 1338 N.D. 14) C300 Acetonitrile 3.26 41 179 N.D. 15) C276 Iodomethane 3.08 142 139 N.D. 16) C291 1,1,2-Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.69 73 9454 2.57 ng 95 18) C057 trans-1,2-Dichloroet 3.69 96 14018 12.22 ng # 46 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 4.10 63 840 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropan 4.65 77 334 N.D. 23) C056 cis-1,2-Dichloroethane 4.64 96 318178 249.48 ng 98 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 42 0 N.D. 26) C120 Carbon tetrachlori 0.00 17 0 N.D. 27) C060 Chloroform 0.00 83 0 N.D. 28) C155 1,1,1-Trichloroeth 5.10 97 212 N.D. 29) C120 Carbon tetrachlori 0.00 17 0 N.D. 31) C165 Benzene 5.43 78 1097 N.D. 33) C065 1,2-Dichloropropen 0.00 75 0 N.D. 34) C110 2-Butanone 4.69 43 341 N.D. 34) C110 2-Butanone 5.14 56 57 N.D.	Spi	rked A	mount 125.000 Rar	1ge 77	- 122	Recove	ry =	24	.6/8	0 00
Target Compounds 2) C290 Dichlorodifluorome 1.63 50 81 N.D. 3) C010 Chloromethane 1.63 50 81 N.D. 4) C020 Vinyl chloride 1.72 62 776 N.D. 5) C015 Bromomethane 0.00 94 0 N.D. 6) C025 Chloroethane 0.00 64 0 N.D. 7) C275 Trichlorofluoromet 0.00 101 0 N.D. 8) C045 1,1-Dichloroethene 2.93 96 1072 N.D. 9) C030 Methylene chloride 3.43 84 481 N.D. 10) C040 Carbon disulfide 3.14 76 1208 N.D. 11) C036 Acrolein 2.83 56 64 N.D. 12) C038 Acrylonitrile 0.00 53 0 N.D. 13) C035 Acetone 3.04 43 1338 N.D. 14) C300 Acetonitrile 3.26 41 179 N.D. 15) C276 Iodomethane 3.08 142 139 N.D. 16) C291 1,1,2-Trichloro-1, 17) C962 T-butyl Methyl Ether 3.69 73 9454 2.57 ng 95 18) C057 trans-1,2-Dichloroet 3.69 96 14018 12.22 ng # 46 191 C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 4.10 63 840 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloroethane 4.10 63 840 N.D. 22) C051 2,2-Dichloroethane 4.10 63 840 N.D. 22) C051 2,2-Dichloroethane 4.10 63 840 N.D. 23) C056 cis-1,2-Dichloroethane 4.10 63 840 N.D. 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 43 0 N.D. 26) C15 1,1-1-Trichloroethane 0.00 128 0 N.D. 27) C060 Chloroform 0.00 83 0 N.D. 28) C115 1,1,1-Trichloroeth 0.00 128 0 N.D. 29) C120 Carbon tetrachlori 0.00 117 0 N.D. 30) C116 1,1-Dichloroethane 5.43 78 1097 N.D. 31) C055 Cyclohexane 5.44 78 1097 N.D. 31) C256 Cyclohexane 5.14 56 57 N.D.	62) Sni	CSIU	p-Bromoriuorobenzene	9.94 10e 74	1/4 - 120	120232 Recove	113.24 rv =	92	19%	0.00
2) C290 Dichlorodifluorome 0.00 85 0 N.D. 3) C010 Chloromethane 1.63 50 81 N.D. 4) C020 Vinyl chloride 1.72 62 776 N.D. 5) C015 Bromomethane 0.00 94 0 N.D. 6) C025 Chloroethane 0.00 64 0 N.D. 7) C275 Trichlorofluoromet 0.00 101 0 N.D. 8) C045 1,1-Dichloroethene 2.93 96 1072 N.D. 9) C030 Methylene chloride 3.43 84 481 N.D. 10) C040 Carbon disulfide 3.14 76 1208 N.D. 11) C036 Acrolein 2.83 56 64 N.D. 12) C038 Acrylonitrile 0.00 53 0 N.D. 13) C035 Acetone 3.04 43 1338 N.D. 14) C300 Acetonitrile 3.26 41 179 N.D. 15) C276 Iodomethane 3.08 142 139 N.D. 16) C291 1,1,2-Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.69 73 9454 2.57 ng 95 (15) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 4.10 63 840 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloroethane 4.10 63 840 N.D. 22) C051 2,2-Dichloroethane 4.64 96 318178 249.48 ng 98 (15) C222 Bromochloromethane 0.00 42 0 N.D. 23) C056 cis-1,2-Dichloroethe 4.64 96 318178 249.48 ng 98 (15) C222 Bromochloromethane 0.00 42 0 N.D. 24) C222 Bromochloromethane 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D. 26) C150 Carbon tetrachlori 0.00 117 0 N.D. 27) C060 Chloroform 0.00 83 0 N.D. 28) C150 Benzene 5.43 78 1097 N.D. 30) C166 1,1-Dichloroethane 0.00 62 0 N.D. 31) C165 Cyclohexane 5.14 56 57 N.D.	sp.	rved H	illouite 125.000 Rai	190 /4	- 120	Recove	т у –	22	. 1) 6	
2) C290 Dichlorodifluorome 0.00 85 0 N.D. 3) C010 Chloromethane 1.63 50 81 N.D. 4) C020 Vinyl chloride 1.72 62 776 N.D. 5) C015 Bromomethane 0.00 94 0 N.D. 6) C025 Chloroethane 0.00 64 0 N.D. 7) C275 Trichlorofluoromet 0.00 101 0 N.D. 8) C045 1,1-Dichloroethene 2.93 96 1072 N.D. 9) C030 Methylene chloride 3.43 84 481 N.D. 10) C040 Carbon disulfide 3.14 76 1208 N.D. 11) C036 Acrolein 2.83 56 64 N.D. 12) C038 Acrylonitrile 0.00 53 0 N.D. 13) C035 Acetone 3.04 43 1338 N.D. 14) C300 Acetonitrile 3.26 41 179 N.D. 15) C276 Iodomethane 3.08 142 139 N.D. 16) C291 1,1,2-Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.69 96 14018 12.22 ng # 46 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 4.10 63 840 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloroethe 4.64 96 318178 249.48 ng 98 120.20 Expression 1.1-Dichloroethane 0.00 42 0 N.D. 23) C056 cis-1,2-Dichloroethe 4.64 96 318178 249.48 ng 98 120.20 Expression 1.1-Dichloroethane 0.00 42 0 N.D. 22) C050 Chloroform 0.00 42 0 N.D. 23) C056 Cis-1,2-Dichloroethe 4.64 96 318178 249.48 ng 98 120.20 Expression 1.1-Dichloroethane 0.00 128 0 N.D. 24) C120 Carbon tetrachlori 0.00 117 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D. 26) C150 Carbon tetrachlori 0.00 117 0 N.D. 27) C060 Chloroform 0.00 83 0 N.D. 28) C150 Benzene 5.43 78 1097 N.D. 31) C165 Benzene 5.43 78 1097 N.D. 32) C165 Benzene 5.43 78 1097 N.D. 33) C065 1,2-Dichloroethane 0.00 62 0 N.D. 34) C110 2-Butanone 4.69 43 341 N.D. 35) C256 Cyclohexane 5.14 56 57 N.D.	Taro	get Co	mpounds						Qva	lue
4) C020 Vinyl chloride 1.72 62 776 N.D. 5) C015 Bromomethane 0.00 94 0 N.D. 6) C025 Chloroethane 0.00 64 0 N.D. 7) C275 Trichlorofluoromet 0.00 101 0 N.D. 8) C045 1,1-Dichloroethene 2.93 96 1072 N.D. 9) C030 Methylene chloride 3.43 84 481 N.D. 10) C040 Carbon disulfide 3.14 76 1208 N.D. 11) C036 Acrolein 2.83 56 64 N.D. 12) C038 Acrylonitrile 0.00 53 0 N.D. 13) C035 Acetone 3.04 43 1338 N.D. 14) C300 Acetonitrile 3.26 41 179 N.D. 15) C276 Iodomethane 3.08 142 139 N.D. 16) C291 1,1,2-Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.69 73 9454 2.57 ng 95 18) C057 trans-1,2-Dichloroet 3.69 96 14018 12.22 ng # 46 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 4.10 63 840 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 4.65 77 334 N.D. 23) C056 cis-1,2-Dichloroethane 4.00 42 0 N.D. 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 42 0 N.D. 27) C060 Chloroform 0.00 83 0 N.D. 28) C115 1,1,1-Trichloroeth 5.10 97 212 N.D. 29) C120 Carbon tetrachlori 0.00 117 0 N.D. 210 C150 Benzene 5.43 78 1097 N.D. 310 C165 Benzene 5.43 78 1097 N.D. 310 C165 Cyclohexane 5.14 56 57 N.D.	2)	C290	Dichlorodifluorome	0.00	85	0	N.D.			
5) C015 Bromomethane	3)	C010	Chloromethane	1.63	50	81				
6) C025 Chloroethane										
8) C045 1,1-Dichloroethene 2.93 96 1072 N.D. 9) C030 Methylene chloride 3.43 84 481 N.D. 10) C040 Carbon disulfide 3.14 76 1208 N.D. 11) C036 Acrolein 2.83 56 64 N.D. 12) C038 Acrylonitrile 0.00 53 0 N.D. 13) C035 Acetone 3.04 43 1338 N.D. 14) C300 Acetonitrile 3.26 41 179 N.D. 15) C276 Iodomethane 3.08 142 139 N.D. 16) C291 1,1,2-Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.69 73 9454 2.57 ng 95 18) C057 trans-1,2-Dichloroet 3.69 96 14018 12.22 ng # 46 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 4.10 63 840 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 4.65 77 334 N.D. 23) C056 cis-1,2-Dichloroethe 4.64 96 318178 249.48 ng 98 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D. 27) C060 Chloroform 0.00 83 0 N.D. 28) C115 1,1,1-Trichloroeth 5.10 97 212 N.D. 29) C120 Carbon tetrachlori 0.00 117 0 N.D. 30) C116 1,1-Dichloropropen 0.00 75 0 N.D. 31) C056 Cyclohexane 5.43 78 1097 N.D. 33) C056 Cyclohexane 4.69 43 341 N.D. 35) C256 Cyclohexane 5.14 56 57 N.D.	5)	C015	Bromomethane	0.00	94	0				
8) C045 1,1-Dichloroethene 2.93 96 1072 N.D. 9) C030 Methylene chloride 3.43 84 481 N.D. 10) C040 Carbon disulfide 3.14 76 1208 N.D. 11) C036 Acrolein 2.83 56 64 N.D. 12) C038 Acrylonitrile 0.00 53 0 N.D. 13) C035 Acetone 3.04 43 1338 N.D. 14) C300 Acetonitrile 3.26 41 179 N.D. 15) C276 Iodomethane 3.08 142 139 N.D. 16) C291 1,1,2-Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.69 73 9454 2.57 ng 95 18) C057 trans-1,2-Dichloroet 3.69 96 14018 12.22 ng # 46 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 4.10 63 840 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 4.65 77 334 N.D. 23) C056 cis-1,2-Dichloroethe 4.64 96 318178 249.48 ng 98 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D. 27) C060 Chloroform 0.00 83 0 N.D. 28) C115 1,1,1-Trichloroeth 5.10 97 212 N.D. 29) C120 Carbon tetrachlori 0.00 117 0 N.D. 30) C116 1,1-Dichloropropen 0.00 75 0 N.D. 31) C056 Cyclohexane 5.43 78 1097 N.D. 33) C056 Cyclohexane 4.69 43 341 N.D. 35) C256 Cyclohexane 5.14 56 57 N.D.	6)	C025	Chloroethane	0.00	64	0				
9) C030 Methylene chloride 3.43 84 481 N.D. 10) C040 Carbon disulfide 3.14 76 1208 N.D. 11) C036 Acrolein 2.83 56 64 N.D. 12) C038 Acrylonitrile 0.00 53 0 N.D. 13) C035 Acetone 3.04 43 1338 N.D. 14) C300 Acetonitrile 3.26 41 179 N.D. 15) C276 Iodomethane 3.08 142 139 N.D. 16) C291 1,1,2-Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.69 73 9454 2.57 ng 95 18) C057 trans-1,2-Dichloroet 3.69 96 14018 12.22 ng # 46 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 4.10 63 840 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 4.65 77 334 N.D. 23) C056 cis-1,2-Dichloroethe 4.64 96 318178 249.48 ng 98 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D. 28) C115 1,1,1-Trichloroeth 5.10 97 212 N.D. 29) C120 Carbon tetrachlori 0.00 117 0 N.D. 30) C116 1,1-Dichloropropen 0.00 75 0 N.D. 31) C056 Cyclohexane 4.69 43 341 N.D. 35) C256 Cyclohexane 5.14 56 57 N.D.	7)	C275	Trichlorofluoromet	0.00	TOT	1072	N.D.			
10) C040 Carbon disulfide 3.14 76 1208 N.D. 11) C036 Acrolein 2.83 56 64 N.D. 12) C038 Acrylonitrile 0.00 53 0 N.D. 13) C035 Acetone 3.04 43 1338 N.D. 14) C300 Acetonitrile 3.26 41 179 N.D. 15) C276 Iodomethane 3.08 142 139 N.D. 16) C291 1,1,2-Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.69 73 9454 2.57 ng 95 18) C057 trans-1,2-Dichloroet 3.69 96 14018 12.22 ng # 46 19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 4.10 63 840 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 4.65 77 334 N.D. 23) C056 cis-1,2-Dichloroethe 4.64 96 318178 249.48 ng 98 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D. 27) C060 Chloroform 0.00 83 0 N.D. 28) C115 1,1,1-Trichloroeth 5.10 97 212 N.D. 29) C120 Carbon tetrachlori 0.00 117 0 N.D. 30) C166 Benzene 5.43 78 1097 N.D. 31) C056 Cyclohexane 5.14 56 57 N.D.										
14) C300 Acetonitrile 3.26 41 179 N.D. 15) C276 Iodomethane 3.08 142 139 N.D. 16) C291 1,1,2-Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.69 73 9454 2.57 ng 95 18) C255 Methyl Acetate 0.00 43 0 N.D. 46 191 C255 Methyl Acetate 0.00 43 0 N.D. 0			Carbon disulfide	3 14	76	1208	N.D.			
14) C300 Acetonitrile 3.26 41 179 N.D. 15) C276 Iodomethane 3.08 142 139 N.D. 16) C291 1,1,2-Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.69 73 9454 2.57 ng 95 18) C255 Methyl Acetate 0.00 43 0 N.D. 46 191 C255 Methyl Acetate 0.00 43 0 N.D. 0			Acrolein	2.83	56	64	N.D.			
14) C300 Acetonitrile 3.26 41 179 N.D. 15) C276 Iodomethane 3.08 142 139 N.D. 16) C291 1,1,2-Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.69 73 9454 2.57 ng 95 18) C255 Methyl Acetate 0.00 43 0 N.D. 46 191 C255 Methyl Acetate 0.00 43 0 N.D. 0			Acrylonitrile	0.00	53	0	N.D.			
14) C300 Acetonitrile 3.26 41 179 N.D. 15) C276 Iodomethane 3.08 142 139 N.D. 16) C291 1,1,2-Trichloro-1, 0.00 101 0 N.D. 17) C962 T-butyl Methyl Ether 3.69 73 9454 2.57 ng 95 18) C255 Methyl Acetate 0.00 43 0 N.D. 46 191 C255 Methyl Acetate 0.00 43 0 N.D. 0			Acetone	3.04	43	1338	N.D.			
15) C276			Acetonitrile	3.26	41	179	N.D.			
17 C962 T-butyl Methyl Ether 3.69 73 9454 2.57 ng 95 (18) C057 trans-1,2-Dichloroet 3.69 96 14018 12.22 ng # 46 (19) C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 4.10 63 840 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 4.65 77 334 N.D. 23) C056 cis-1,2-Dichloroethe 4.64 96 318178 249.48 ng 98 (24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D. 27) C060 Chloroform 0.00 83 0 N.D. 28) C115 1,1,1-Trichloroeth 5.10 97 212 N.D. 29) C120 Carbon tetrachlori 0.00 117 0 N.D. 30) C116 1,1-Dichloropropen 0.00 75 0 N.D. 32) C165 Benzene 5.43 78 1097 N.D. 33) C065 1,2-Dichloroethane 0.00 62 0 N.D. 34) C110 2-Butanone 4.69 43 341 N.D. 35) C256 Cyclohexane 5.14 56 57 N.D.		C276	Iodomethane	3.08	142	139	N.D.			
18 C057 trans-1,2-Dichloroet 3.69 96 14018 12.22 ng # 46 19 C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 4.10 63 840 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 4.65 77 334 N.D. 23) C056 cis-1,2-Dichloroethe 4.64 96 318178 249.48 ng 98 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D. 27) C060 Chloroform 0.00 83 0 N.D. 28) C115 1,1,1-Trichloroeth 5.10 97 212 N.D. 29) C120 Carbon tetrachlori 0.00 17 0 N.D. 30) C165 Benzene 5.43 78 1097 <t< td=""><td></td><td>C291</td><td>1,1,2-Trichloro-1,</td><td>0.00</td><td>101</td><td>0</td><td>N.D.</td><td></td><td></td><td></td></t<>		C291	1,1,2-Trichloro-1,	0.00	101	0	N.D.			
199 C255 Methyl Acetate 0.00 43 0 N.D. 20) C050 1,1-Dichloroethane 4.10 63 840 N.D. 21) C125 Vinyl Acetate 0.00 43 0 N.D. 22) C051 2,2-Dichloropropan 4.65 77 334 N.D. 23) C056 cis-1,2-Dichloroethe 4.64 96 318178 249.48 ng 98 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D. 27) C060 Chloroform 0.00 83 0 N.D. 28) C115 1,1,1-Trichloroeth 5.10 97 212 N.D. 29) C120 Carbon tetrachlori 0.00 117 0 N.D. 30) C116 1,1-Dichloropropen 0.00 75 0 N.D. 31) C15 Benzene 5.43 78 1097 N.D. 32) C165 Benzene 5.43 78 1097 N.D. 33) C065 1,2-Dichloroethane 0.00 62 0 N.D. 34) C110 2-Butanone 4.69 43 341 N.D. 35) C256 Cyclohexane 5.14 56 57 N.D.			T-butyl Methyl Ether	3.69	73	9454	2.57	ng	.,	95
22) C051 2,2-Dichloropropan 4.65 77 334 N.D. (23) C056 cis-1,2-Dichloroethe 4.64 96 318178 249.48 ng 98 (24) C272 Tetrahydrofuran 0.00 42 0 N.D. (25) C222 Bromochloromethane 0.00 128 0 N.D. (27) C060 Chloroform 0.00 83 0 N.D. (28) C115 1,1,1-Trichloroeth 5.10 97 212 N.D. (29) C120 Carbon tetrachlori 0.00 117 0 N.D. (30) C116 1,1-Dichloropropen 0.00 75 0 N.D. (32) C165 Benzene 5.43 78 1097 N.D. (33) C065 1,2-Dichloroethane 0.00 62 0 N.D. (34) C110 2-Butanone 4.69 43 341 N.D. (35) C256 Cyclohexane 5.14 56 57 N.D.		C057	trans-1,2-Dichloroet	3.69	96	14018	12.22	ng	#	46
22) C051 2,2-Dichloropropan 4.65 77 334 N.D. (23) C056 cis-1,2-Dichloroethe 4.64 96 318178 249.48 ng 98 (24) C272 Tetrahydrofuran 0.00 42 0 N.D. (25) C222 Bromochloromethane 0.00 128 0 N.D. (27) C060 Chloroform 0.00 83 0 N.D. (28) C115 1,1,1-Trichloroeth 5.10 97 212 N.D. (29) C120 Carbon tetrachlori 0.00 117 0 N.D. (30) C116 1,1-Dichloropropen 0.00 75 0 N.D. (32) C165 Benzene 5.43 78 1097 N.D. (33) C065 1,2-Dichloroethane 0.00 62 0 N.D. (34) C110 2-Butanone 4.69 43 341 N.D. (35) C256 Cyclohexane 5.14 56 57 N.D.		C255	Methyl Acetate	4 10	43 63	940	N.D.			
22) C051 2,2-Dichloropropan 4.65 77 334 N.D. (23) C056 cis-1,2-Dichloroethe 4.64 96 318178 249.48 ng 98 (24) C272 Tetrahydrofuran 0.00 42 0 N.D. (25) C222 Bromochloromethane 0.00 128 0 N.D. (27) C060 Chloroform 0.00 83 0 N.D. (28) C115 1,1,1-Trichloroeth 5.10 97 212 N.D. (29) C120 Carbon tetrachlori 0.00 117 0 N.D. (30) C116 1,1-Dichloropropen 0.00 75 0 N.D. (32) C165 Benzene 5.43 78 1097 N.D. (33) C065 1,2-Dichloroethane 0.00 62 0 N.D. (34) C110 2-Butanone 4.69 43 341 N.D. (35) C256 Cyclohexane 5.14 56 57 N.D.		C125	Vinyl Acetate	0.00	43	040	N.D.			
(23) C056 cis-1,2-Dichloroethe 4.64 96 318178 249.48 ng 98 24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D. 27) C060 Chloroform 0.00 83 0 N.D. 28) C115 1,1,1-Trichloroeth 5.10 97 212 N.D. 29) C120 Carbon tetrachlori 0.00 117 0 N.D. 30) C116 1,1-Dichloropropen 0.00 75 0 N.D. 32) C165 Benzene 5.43 78 1097 N.D. 33) C065 1,2-Dichloroethane 0.00 62 0 N.D. 34) C110 2-Butanone 4.69 43 341 N.D. 35) C256 Cyclohexane 5.14 56 57 N.D.		C051	2.2-Dichloropropan	4.65	77	334	N.D.			
24) C272 Tetrahydrofuran 0.00 42 0 N.D. 25) C222 Bromochloromethane 0.00 128 0 N.D. 27) C060 Chloroform 0.00 83 0 N.D. 28) C115 1,1,1-Trichloroeth 5.10 97 212 N.D. 29) C120 Carbon tetrachlori 0.00 117 0 N.D. 30) C116 1,1-Dichloropropen 0.00 75 0 N.D. 32) C165 Benzene 5.43 78 1097 N.D. 33) C065 1,2-Dichloroethane 0.00 62 0 N.D. 34) C110 2-Butanone 4.69 43 341 N.D. 35) C256 Cyclohexane 5.14 56 57 N.D.								ng		98
27) C060 Chloroform 0.00 83 0 N.D. 28) C115 1,1,1-Trichloroeth 5.10 97 212 N.D. 29) C120 Carbon tetrachlori 0.00 117 0 N.D. 30) C116 1,1-Dichloropropen 0.00 75 0 N.D. 32) C165 Benzene 5.43 78 1097 N.D. 33) C065 1,2-Dichloroethane 0.00 62 0 N.D. 34) C110 2-Butanone 4.69 43 341 N.D. 35) C256 Cyclohexane 5.14 56 57 N.D.	- W							_		
28) C115 1,1,1-Trichloroeth 5.10 97 212 N.D. 29) C120 Carbon tetrachlori 0.00 117 0 N.D. 30) C116 1,1-Dichloropropen 0.00 75 0 N.D. 32) C165 Benzene 5.43 78 1097 N.D. 33) C065 1,2-Dichloroethane 0.00 62 0 N.D. 34) C110 2-Butanone 4.69 43 341 N.D. 35) C256 Cyclohexane 5.14 56 57 N.D.	25)	C222	Bromochloromethane	0.00	128	0	N.D.			
29) C120 Carbon tetrachlori 0.00 117 0 N.D. 30) C116 1,1-Dichloropropen 0.00 75 0 N.D. 32) C165 Benzene 5.43 78 1097 N.D. 33) C065 1,2-Dichloroethane 0.00 62 0 N.D. 34) C110 2-Butanone 4.69 43 341 N.D. 35) C256 Cyclohexane 5.14 56 57 N.D.				0.00		0				
30) C116 1,1-Dichloropropen 0.00 75 0 N.D. 32) C165 Benzene 5.43 78 1097 N.D. 33) C065 1,2-Dichloroethane 0.00 62 0 N.D. 34) C110 2-Butanone 4.69 43 341 N.D. 35) C256 Cyclohexane 5.14 56 57 N.D.										
32) C165 Benzene 5.43 78 1097 N.D. 33) C065 1,2-Dichloroethane 0.00 62 0 N.D. 34) C110 2-Butanone 4.69 43 341 N.D. 35) C256 Cyclohexane 5.14 56 57 N.D.	-									
33) C065 1,2-Dichloroethane 0.00 62 0 N.D. 34) C110 2-Butanone 4.69 43 341 N.D. 35) C256 Cyclohexane 5.14 56 57 N.D.										
34) C110 2-Butanone 4.69 43 341 N.D. 35) C256 Cyclohexane 5.14 56 57 N.D.										
35) C256 Cyclohexane 5.14 56 57 N.D.										
							404.38	ng		96

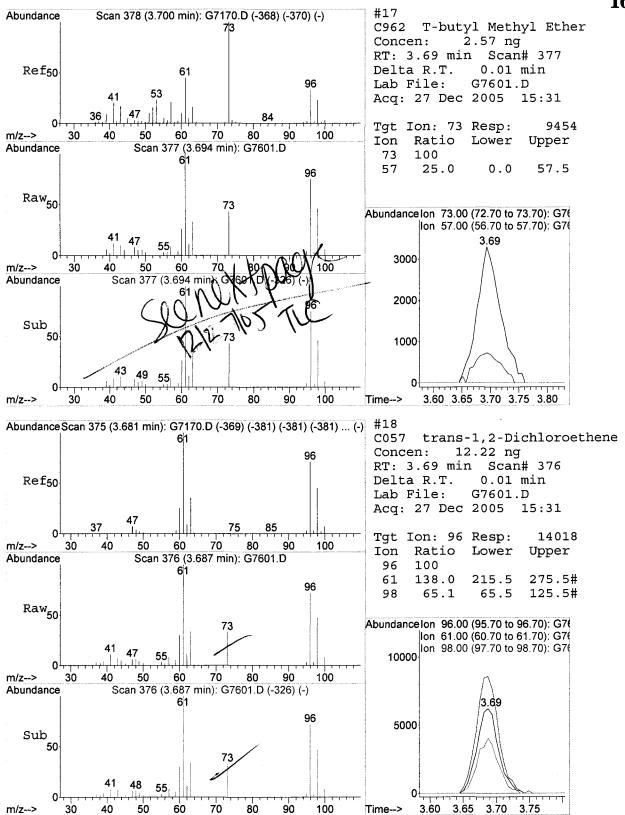
Acq On : 27 Dec 2005 15:31

Sample : A5E59205

Misc

Integrator: RTE Quant Time: Dec 27 18:07:35 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M


Quant Title : 8260 5ML WATER QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Operator : TLC

Internal Standards	R.T	. QIon	Response	Conc Unit	s Dev(Min) Rcv(Ar)
37) C140 1,2-Dichloropropan	0.00	63	0	N.D.	
38) C278 Dibromomethane	0.00	93	0	N.D.	
39) C130 Bromodichlorometha	0.00	83	0	N.D.	
40) C161 2-Chloroethylvinyl	6.86	63	142	N.D.	
41) C012 Methylcyclohexane	0.00	83	0	N.D.	
42) C145 cis-1,3-Dichloropr	0.00	75	0	N.D.	
45) C230 Toluene	7.28	92	566	N.D.	
46) C170 trans-1,3-Dichloro	0.00	75	0	N.D.	
47) C284 Ethyl Methacrylate	0.00	69	0	N.D.	
48) C160 1,1,2-Trichloroeth	0.00	83	0	N.D.	
49) C210 4-Methyl-2-pentano	7.22	43	1914	N.D.	
50) C220 Tetrachloroethene	7.85	166	339	N.D.	
51) C221 1,3-Dichloropropan	0.00	76	0	N.D.	
52) C155 Dibromochlorometha	0.00	129	0	N.D.	
53) C163 1,2-Dibromoethane	0.00	107	0	N.D.	
54) C215 2-Hexanone	0.00	43	0	N.D.	
55) C235 Chlorobenzene	0.00	112	0	N.D.	
56) C281 1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
57) C240 Ethylbenzene	8.95	91	203	N.D.	
58) C246 m,p-Xylene	0.00	106	0	N.D.	
59) C247 o-Xylene	0.00	106	0	N.D.	
60) C245 Styrene	0.00	104	0	N.D.	
61) C180 Bromoform	0.00	173	0	N.D.	
64) C966 Isopropylbenzene	9.93	105	59	N.D.	
65) C301 Bromobenzene	0.00	156	0	N.D.	
66) C225 1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
67) C282 1,2,3-Trichloropro	0.00	110	0	N.D.	
68) C283 t-1,4-Dichloro-2-B	0.00	51	0	N.D.	
69) C302 n-Propylbenzene	9.92	91	508	N.D.	
70) C303 2-Chlorotoluene	0.00	126	0	N.D.	
71) C289 4-Chlorotoluene	0.00	126	0	N.D.	
72) C304 1,3,5-Trimethylben	0.00	105	0	N.D.	
73) C306 tert-Butylbenzene	0.00	134	0	N.D.	
74) C307 1,2,4-Trimethylben	10.70	105	60	N.D.	
75) C308 sec-Butylbenzene	10.70	105	60	N.D.	
76) C260 1,3-Dichlorobenzen	0.00	146	0	N.D.	
77) C309 4-Isopropyltoluene	0.00	119	0	N.D.	
78) C267 1,4-Dichlorobenzen	0.00	146	0	N.D.	
79) C249 1,2-Dichlorobenzen	0.00	146	0	N.D.	
80) C310 n-Butylbenzene	0.00	91	0	N.D.	
81) C286 1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
82) C313 1,2,4-Trichloroben	0.00	180	0	N.D.	
83) C316 Hexachlorobutadien	0.00	225	0	N.D.	
84) C314 Naphthalene	13.02	128	1229	N.D.	
85) C934 1,2,3-Trichloroben	0.00	180	0	N.D.	
					

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

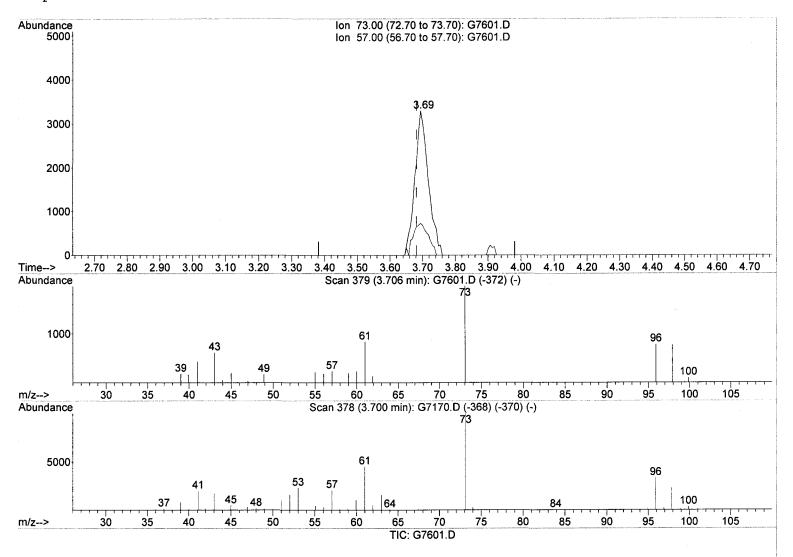
167/304

Acq On : 27 Dec 2005 15:31

Sample : A5E59205

Misc :

Integrator: RTE


Quant Time: Dec 27 18:07:35 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

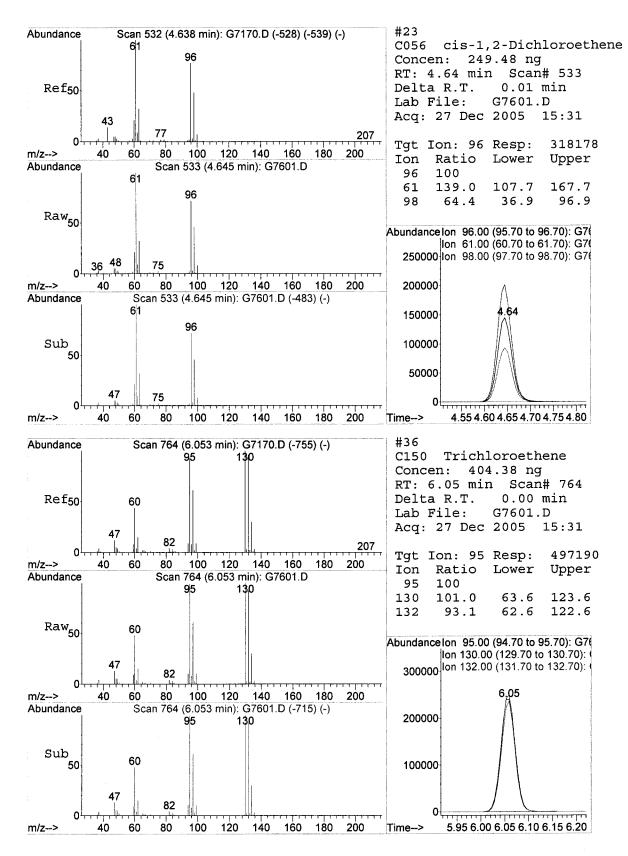
QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Operator : TLC

(17) C962 T-butyl Methyl Ether (T)

3.69min (+0.012) 2.57ng

response 9454


 Ion
 Exp%
 Act%

 73.00
 100
 100

 57.00
 27.50
 25.05

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-38	
1111 30	

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59204

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{G7600.RR}}$

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/22/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
67-64-1			5.0	ט
71-43-2	Benzene		1.0	U
75-27-4	Bromodichloromethane		1.0	U
75-25-2	Bromoform		1.0	U
74-83-9	Bromomethane		1.0	U
78-93-3	2-Butanone		5.0	U
75-15-0	Carbon Disulfide		1.0	U
56-23-5	Carbon Tetrachloride		1.0	U
108-90-7	Chlorobenzene		1.0	ט
75-00-3	Chloroethane		1.0	ע
67-66-3	Chloroform		1.0	ט
74-87-3	Chloromethane		1.0	ט
110-82-7	Cyclohexane		1.0	ע
	1,2-Dibromoethane		1.0	U
124-48-1	Dibromochloromethane		1.0	ט
96-12-8	1,2-Dibromo-3-chloropropane		1.0	U
	1,2-Dichlorobenzene		1.0	U
541-73-1	1,3-Dichlorobenzene		1.0	ט
	1,4-Dichlorobenzene		1.0	ט ו
75-71-8	Dichlorodifluoromethane		1.0	ט
75-34-3	1,1-Dichloroethane		1.2	
107-06-2	1,2-Dichloroethane		1.0	ט
75-35-4	1,1-Dichloroethene		1.0	U
156-59-2	cis-1,2-Dichloroethene		0.54	J
156-60-5	trans-1,2-Dichloroethene		1.0	U
78-87-5	1,2-Dichloropropane		1.0	ע
10061-01-5	cis-1,3-Dichloropropene		1.0	ע
	-trans-1,3-Dichloropropene		1.0	ע
	Ethylbenzene		1.0	ן ט
591-78-6			5.0	U
1	Isopropylbenzene		1.0	ע
	Methyl acetate		1.0	ן מן
	Methylcyclohexane		1.0	ע
1	Methylene chloride		1.0	U

172/304

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59204

Sample wt/vol: 5.00 (g/mL) ML Lab File ID: G7600.RR

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/22/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

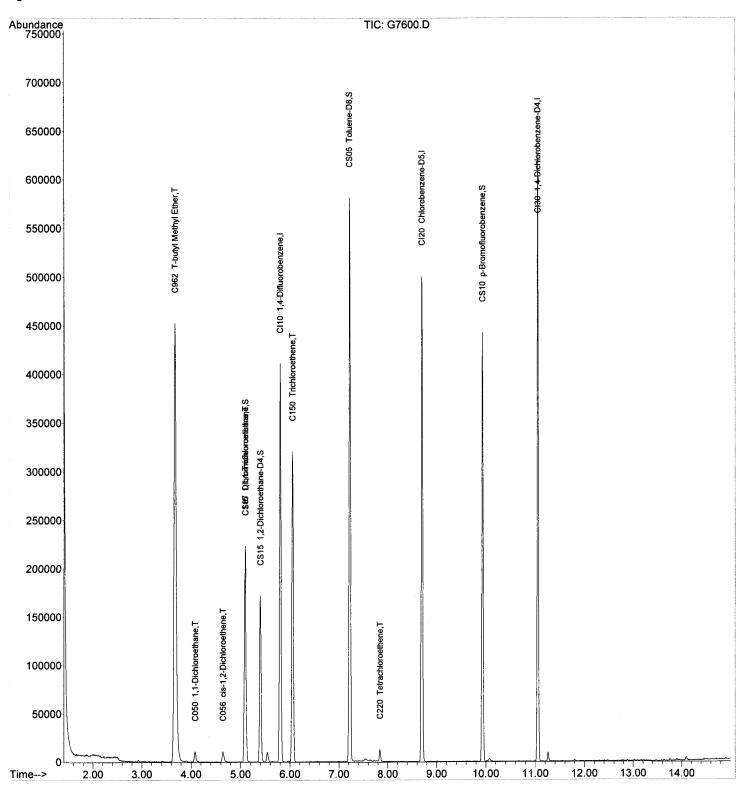
CAS NO.	COMPOUND	(ug/L or ug/Kg)		Q
108-10-1	4-Methyl-2-pentanone		5.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)		35	
91-20-3	Naphthalene		1.0	U
100-42-5	Styrene		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
127-18-4	Tetrachloroethene		0.61	J
108-88-3	Toluene		1.0	U
120-82-1	1,2,4-Trichlorobenzene		1.0	U
	1,1,1-Trichloroethane		6.0	
79-00-5	1,1,2-Trichloroethane		1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-triflu	uoroethane	1.0	U
75-69-4	Trichlorofluoromethane		1.0	U
	Trichloroethene		19	
	Vinyl chloride		1.0	U
1330-20-7	Total Xylenes		3.0	U
				1

Acq On : 27 Dec 2005 15:08

Sample : A5E59204

Misc

Integrator: RTE


Quant Time: Dec 27 18:07:26 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

: TLC Operator

Acq On : 27 Dec 2005 15:08

Sample : A5E59204

Misc :

Integrator: RTE

Quant Time: Dec 27 18:07:26 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

		Standards			Response		nits	Dev(Min) Rcv(Ar)
		1,4-Difluorobenzene		114				0.00
Τ,	CIIO	1,4-Dilidolopenzene	5.00	114	331242	123.00	, 119	93.85%
43)	CT20	Chlorobenzene-D5	8.70	82	178004	125.00) na	
13,	0120		0.,0	Ü.	2,0001		3	92.71%
63)	CI30	1,4-Dichlorobenzene-	11.05	152	167860	125.00) ng	
•		,					_	91.59%
Syst	em Mor	nitoring Compounds						
•		Dibromofluoromethane						
-	iked An		nge 70					. 88%
	CS15	1,2-Dichloroethane-D				118.00		0.00
		nount 125.000 Rar						.40% 0.00
		Toluene-D8						.41%
		nount 125.000 Rar p-Bromofluorobenzene						
		nount 125.000 Rar						.58%
sp.	ikea Ai	iount 125.000 Rai	19e /4	- 120	Recove	ry –	93.	. 50%
Taro	ret Com	npounds						Qvalue
		Dichlorodifluorome	0.00	85	0	N.D.		~
2)	C010	Chloromethano	1.60	50	193	N.D.		
4)	C020	Vinyl chloride	1.72	62	565	N.D.		
5)	C015	Bromomethane	0.00	94	0	N.D.		
		Chloroethane	0.00	64	0	N.D.		
7)	C275	Trichlorofluoromet	0.00	101	0	N.D.		
8)	C045	1,1-Dichloroethene	2.93	96	774	N.D.		
9)	C030	1,1-Dichloroethene Methylene chloride	3.43		460	N.D.		
10)	C040	Carbon disulfide	3.13	76	825	N.D.		
	C036	Acrolein	2.81		56	N.D.		
	C038	Acrylonitrile	3.68	53	7250	N.D.		
		Acetone	3.02		1147	N.D.		
		Acetonitrile	3.25		121	N.D.		
	C276	Iodomethane		142	0	N.D.		
	C291	1,1,2-Trichloro-1,		101	0	N.D.		0.0
	S 962	T-butyl Methyl Ether			657139	176.66	ng	92
		trans-1,2-Dichloro		96	0	N.D.		
	C255 C050	Methyl Acetate 1,1-Dichloroethane	3.38 4.08	43 63	59 13790	N.D. 6.25	na	99
-	C125	Vinyl Acetate	4.13	43	386	N.D.	119	99
	C051	2,2-Dichloropropan			191	N.D.		
	€051 €056	cis-1,2-Dichloroethe	4.64	96	3503	2.72		99
	C272	Tetrahydrofuran	0.00	42	0	N.D.	5	
	C222	Bromochloromethane		128	Ö	N.D.		
	C060	Chloroform	0.00	83	Ō	N.D.		
_	C115	1,1,1-Trichloroethan	5.10	97	54505	29.78	ng	92
	C120	Carbon tetrachlori		117	0	N.D.	-	
	C116	1,1-Dichloropropen	0.00	75	0	N.D.		
	C165	Benzene	5.44	78	265	N.D.		
33)		1,2-Dichloroethane	0.00	62	0	N.D.		
34)	C110	2-Butanone	4.66	43	214	N.D.		
35)	C256	Cyclohexane	0.00	56	0	N.D.		
(36)	C150	Trichloroethene	6.05	95	118191	95.14	ng	97

Acq On : 27 Dec 2005 15:08

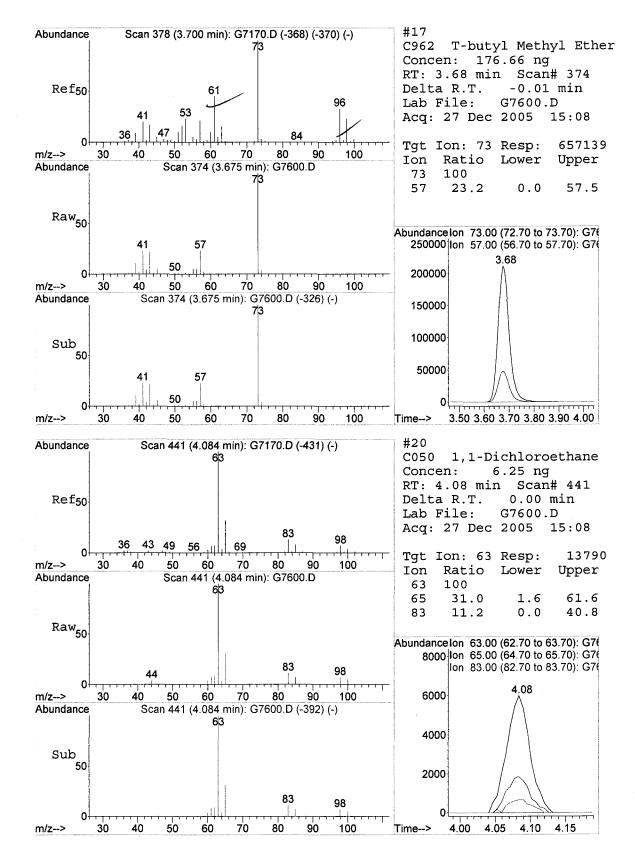
Sample : A5E59204

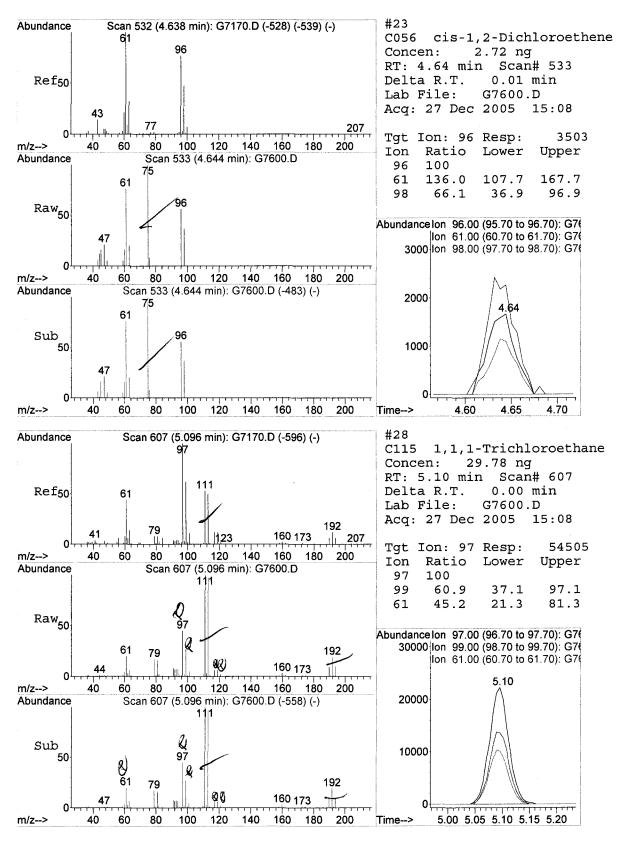
Misc

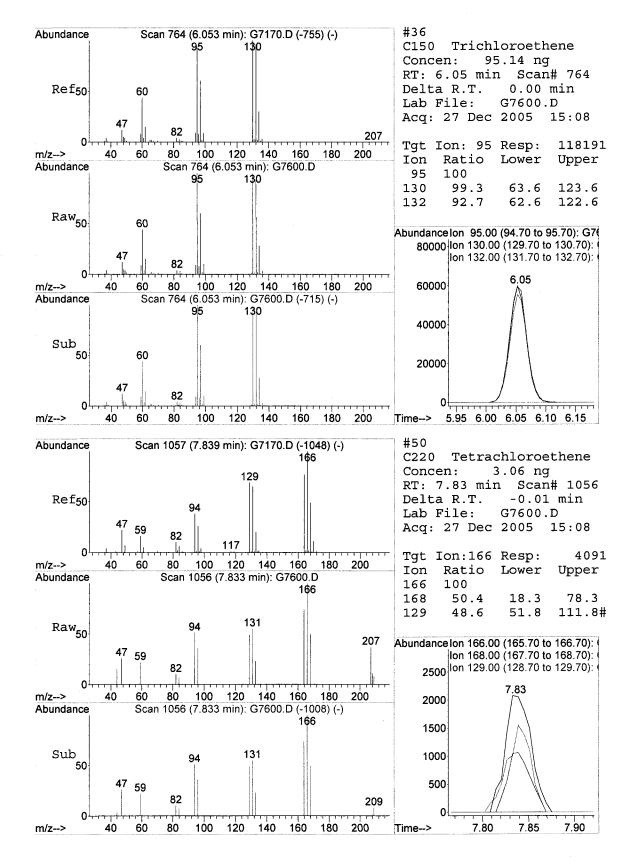
Integrator: RTE Quant Time: Dec 27 18:07:26 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER


QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\


Operator : TLC


Inte	ernal	Standards	R.T	. QIon	Response	Conc Units		(Min) (Ar)
37)	C140	1,2-Dichloropropan	0.00	63	0	N.D.		
	C278	Dibromomethane	0.00	93	0	N.D.		
	C130	Bromodichlorometha	0.00	83	0	N.D.		
	C161	2-Chloroethylvinyl	6.85	63	226	N.D.		
	C012	Methylcyclohexane	0.00	83	0	N.D.		
	C145	cis-1,3-Dichloropr	0.00	75	Ö	N.D.		
	C230	Toluene	7.28	92	272	N.D.		
	C170	trans-1,3-Dichloro	0.00	75	0	N.D.		
	C284	Ethyl Methacrylate	0.00	69	Ö	N.D.		
	C160	1,1,2-Trichloroeth	7.72	83	406	N.D.		
	C210	4-Methyl-2-pentano	7.22	43	2016	N.D.		
	C220	Tetrachloroethene	7.8		4091	3.06 ng	#	75
	C221	1,3-Dichloropropan	0.00	76	0	N.D.	"	, ,
	C155	Dibromochlorometha	0.00	129	Ö	N.D.		
	C163	1,2-Dibromoethane	0.00	107	Ö	N.D.		
	C215	2-Hexanone	0.00	43	0	N.D.		
	C235	Chlorobenzene	0.00	112	0	N.D.		
	C233	1,1,1,2-Tetrachlor	0.00	131	0	N.D.		
	C240		8.94	91	60	N.D.		
		Ethylbenzene	0.00	106	0	N.D.		
	C246	m,p-Xylene			0	N.D.		
	C247	o-Xylene	0.00	106		N.D.		
	C245	Styrene	0.00	104	0			
	C180	Bromoform	0.00	173	0	N.D. N.D.		
	C966	Isopropylbenzene	0.00	105	0			
	C301	Bromobenzene	0.00	156	0	N.D.		
	C225	1,1,2,2-Tetrachlor	0.00	83	0	N.D.		
	C282	1,2,3-Trichloropro	0.00	110	0	N.D.		
	C283	t-1,4-Dichloro-2-B	0.00	51	0	N.D.		
	C302	n-Propylbenzene	9.93	91	408	N.D.		
	C3 0 3	2-Chlorotoluene	0.00	126	0	N.D.		
	C289	4-Chlorotoluene	0.00	126	0	N.D.		
	C304	1,3,5-Trimethylben	0.00	105	0	N.D.		
	C306	tert-Butylbenzene	0.00	134	0	N.D.		
	C307	1,2,4-Trimethylben	10.70	105	168	N.D.		
	C308	sec-Butylbenzene	10.87	105	57	N.D.		
	C260	1,3-Dichlorobenzen	0.00	146	0	N.D.		
	C309	4-Isopropyltoluene	10.99	119	55	N.D.		
-	C267	1,4-Dichlorobenzen	0.00	146	0	N.D.		
	C249	1,2-Dichlorobenzen	11.42	146	119	N.D.		
	C310	n-Butylbenzene	11.39	91	119	N.D.		
	C286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.		
	C313	1,2,4-Trichloroben	0.00	180	0	N.D.		
	C316	Hexachlorobutadien	0.00	225	0	N.D.		
	C314	Naphthalene	13.03	128	1554	N.D.		
85)	C934		13.23	180	123	N.D.		
	 -						-	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

P-10

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59211

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/22/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
67-64-1	-Acetone		5.0	U
71-43-2	-Benzene		1.0	U
75-27-4	-Bromodichloromethane		1.0	U
75-25-2	-Bromoform		1.0	U
74-83-9	-Bromomethane		1.0	ט
78-93-3	-2-Butanone		5.0	U
75-15-0	-Carbon Disulfide		1.0	ע
56-23-5	-Carbon Tetrachloride		1.0	U
108-90-7	-Chlorobenzene		1.0	U
75-00-3	-Chloroethane		1.0	U
67-66-3	-Chloroform		1.0	ע
74-87-3	-Chloromethane		1.0	ט
110-82-7	-Cyclohexane		1.0	ן ט
	-1,2-Dibromoethane		1.0	U
124-48-1	-Dibromochloromethane		1.0	U
96-12-8	-1,2-Dibromo-3-chloropropane		1.0	์ บ
	-1,2-Dichlorobenzene		1.0	U
541-73-1	-1,3-Dichlorobenzene		1.0	U
106-46-7	-1,4-Dichlorobenzene		1.0	ע
75-71-8	-Dichlorodifluoromethane		1.0	ע
75-34-3	-1,1-Dichloroethane		1.0	ן ט
107-06-2	-1,2-Dichloroethane		1.0	U
75-35-4	-1,1-Dichloroethene		1.0	U
156-59-2	-cis-1,2-Dichloroethene		16	
156-60-5	-trans-1,2-Dichloroethene		1.0	ע
78-87-5	-1,2-Dichloropropane		1.0	ע
	-cis-1,3-Dichloropropene		1.0	ן ט
10061-02-6	-trans-1,3-Dichloropropene		1.0	ן ט
	-Ethylbenzene		1.0	U
591-78-6	-2-Hexanone		5.0	U
98-82-8	-Isopropylbenzene		1.0	ע
1	-Methyl acetate		1.0	U
	-Methylcyclohexane		1.0	ע
1	-Methylene chloride		1.0	υ

180/304

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

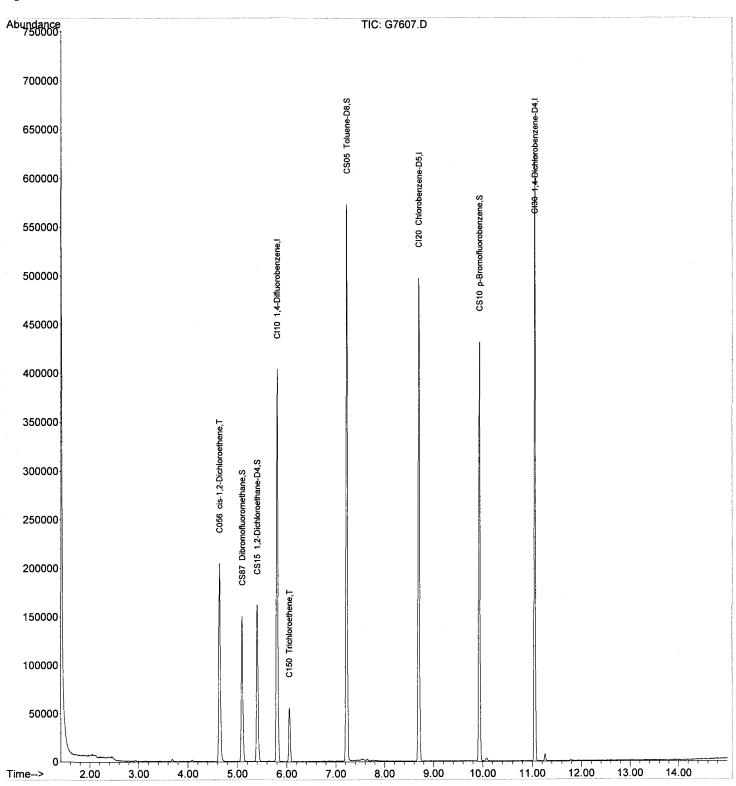
Client No.

- 1		.		P-10
Lab Name:	STL Buffalo	Contract: 4		
Lab Code:	RECNY Case No	.: SAS No.:	SDG No.: <u>1205</u> G	W
Matrix: (s	soil/water) <u>WATER</u>		Lab Sample ID:	A5E59211
Sample wt/	/vol: <u>5.0</u>	<u>0</u> (g/mL) <u>ML</u>	Lab File ID:	G7607.RR
Level: ((low/med) <u>LOW</u>		Date Samp/Recv:	12/22/2005 12/23/2005
% Moisture	e: not dec	_ Heated Purge: N	Date Analyzed:	12/27/2005
GC Column:	<u>DB-624</u> ID:	<u>0.25</u> (mm)	Dilution Factor	: <u>1.00</u>
Soil Extra	act Volume:	_ (uL)	Soil Aliquot Vo	olume: (uL)
C	CAS NO. COM	POUND	CONCENTRATION UNITS (ug/L or ug/Kg)	
1		ethyl-2-pentanone hyl-t-Butyl Ether (MTBE) hthalene		5.0 U 1.0 U 1.0 U

Acq On : 27 Dec 2005 17:46

: A5E59211 Sample

Misc


Integrator: RTE

Quant Time: Dec 27 18:08:09 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Acq On : 27 Dec 2005 17:46

Sample : A5E59211

Misc

Integrator: RTE

Quant Time: Dec 27 18:08:09 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Internal	Standards	R.T.	QIon	Response		Rcv(Ar)
1) CI10	1,4-Difluorobenzene	5.80	114	350837		ng 0.00 93.74%
43) CI20	Chlorobenzene-D5	8.70	82	175844	125.00	
63) CI30	1,4-Dichlorobenzene-	11.05	152	168240		34.500
26) CS87 Spiked A 31) CS15 Spiked A 44) CS05 Spiked A 62) CS10	nitoring Compounds Dibromofluoromethane mount 125.000 Ran 1,2-Dichloroethane-D mount 125.000 Ran Toluene-D8 mount 125.000 Ran p-Bromofluorobenzene mount 125.000 Ran	nge 70 5.40 nge 73 7.22 nge 77 9.94	- 130 65 - 136 98 - 122 174	Recove 131073 Recove 418724 Recove 125737	ry = 116.05 n ry = 118.09 n ry = 115.41 n	90.32% g 0.00 92.84% g 0.00 94.47% g 0.00
Target Co	mpounds					Qvalue
	Dichlorodifluorome	0.00	85	0	N.D.	~
	Chloromethane	1 60	50	209	N.D.	
4) C020	Vinyl chloride	1.72 2.11 0.00	62	1549	N.D.	
5) C015	Bromomethane	2.11	94	56	N.D.	
6) C025	Bromomethane Chloroethane	0.00	64	0	N.D.	
7) C275	Trichlorofluoromet	0.00	101	0	N.D.	
	1,1-Dichloroethene			504	N.D.	
9) 0030	Methylene chloride	3.43	84	68	N.D.	
10) C040	Methylene chloride Carbon disulfide	3.43 3.14	76	68 469	N.D.	
11) C036	Acrolein	0.00	56	0	N.D.	
12) C038	Acrylonitrile			Ö	N.D.	
13) C035	Acetone	3.04	43	1091	N.D.	
14) C300	Acetone Acetonitrile Todomethane	3.36		140	N.D.	
15) C276	Iodomethane	3.50	142	56	N.D.	
16) C291	±0d0mccmanc		101	0	N.D.	
17) C962	T-butyl Methyl Eth	3 70	73	1073	N.D.	
18) C057	trans-1 2-Dichloro	3.70	96	941	N.D.	
19) C255	T-butyl Methyl Eth trans-1,2-Dichloro Methyl Acetate	3 38	43	57	N.D.	
20) C050	1,1-Dichloroethane	4 09	63	2192	N.D.	
21) C125	Vinyl Acetate	4 13	43	55	N.D.	
22) C051	2,2-Dichloropropan	4.66	77	5 <i>7</i>	N.D.	
(23) C056	cis-1,2-Dichloroethe	4.64		100774	78.29 n	g 97
24) C272	Tetrahydrofuran	4.99	42	61	N.D.	· J
25) C222	Bromochloromethane		128	0	N.D.	
27) C060	Chloroform	0.00	83	Ö	N.D.	
28) C115	1,1,1-Trichloroeth	5.10	97	2457	N.D.	
29) C120	Carbon tetrachlori		117	0	N.D.	
30) C116	1,1-Dichloropropen	0.00	75	Ö	N.D.	
32) C165	Benzene	5.44	78	1537	N.D.	
33) C065	1,2-Dichloroethane	0.00	62	0	N.D.	
34) C110	2-Butanone	4.69	43	574	N.D.	
35 C256	Cyclohexane	0.00	56	0	N.D.	
36) C150	Trichloroethene	6.05		20290	16.35 n	g 87

Acq On : 27 Dec 2005 17:46

Sample : A5E59211

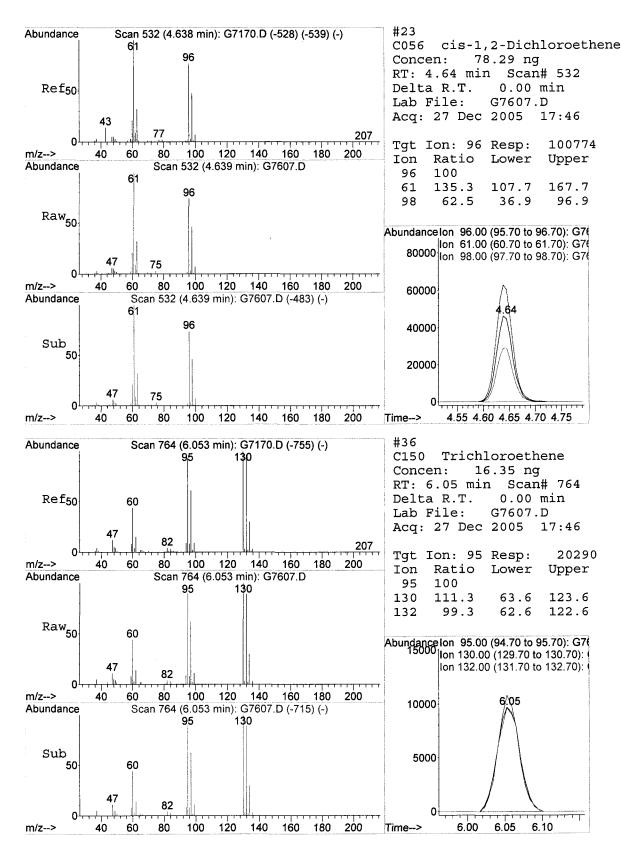
Misc :

Integrator: RTE

Quant Time: Dec 27 18:08:09 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER


QLast Update: Tue Dec 27 08:55:23 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122705\

Operator : TLC

Internal Standards	R.T	. QIon	Response	Conc Unit	cs Dev(Min) Rcv(Ar)
37) C140 1,2-Dichloropropan	0.00	63	0	N.D.	
38) C278 Dibromomethane	0.00	93	0	N.D.	
39) C130 Bromodichlorometha	0.00	83	0	N.D.	
40) C161 2-Chloroethylvinyl	6.85	63	308	N.D.	
41) C012 Methylcyclohexane	0.00	83	0	N.D.	
42) C145 cis-1,3-Dichloropr	0.00	75	0	N.D.	
45) C230 Toluene	7.28	92	183	N.D.	
46) C170 trans-1,3-Dichloro	0.00	75	0	N.D.	
47) C284 Ethyl Methacrylate	0.00	69	0	N.D.	
48) C160 1,1,2-Trichloroeth	0.00	83	0	N.D.	
49) C210 4-Methyl-2-pentano	7.22	43	1999	N.D.	
50) C220 Tetrachloroethene	0.00	166	0	N.D.	
51) C221 1,3-Dichloropropan	0.00	76	0	N.D.	
52) C155 Dibromochlorometha	0.00	129	0	N.D.	
53) C163 1,2-Dibromoethane	0.00	107	0	N.D.	
54) C215 2-Hexanone	7.88	43	56	N.D.	
55) C235 Chlorobenzene	0.00	112	0	N.D.	
56) C281 1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
57) C240 Ethylbenzene	8.95	91	219	N.D.	
58) C246 m,p-Xylene	0.00	106	0	N.D.	
59) C247 o-Xylene	0.00	106	0	N.D.	
60) C245 Styrene	0.00	104	0	N.D.	
61) C180 Bromoform	0.00	173	0	N.D.	
64) C966 Isopropylbenzene	0.00	105	0	N.D.	
65) C301 Bromobenzene	0.00	156	0	N.D.	
66) C225 1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
67) C282 1,2,3-Trichloropro	0.00	110	0	N.D.	
68) C283 t-1,4-Dichloro-2-B	0.00	51	0	N.D.	
69) C302 n-Propylbenzene	9.93	91	519	N.D.	
70) C303 2-Chlorotoluene	0.00	126	0	N.D.	
71) C289 4-Chlorotoluene	0.00	126	0	N.D.	
72) C304 1,3,5-Trimethylben	0.00	105	0	N.D.	
73) C306 tert-Butylbenzene	0.00	134	0	N.D.	
74) C307 1,2,4-Trimethylben	10.70	105	75	N.D.	
75) C308 sec-Butylbenzene	10.70	105	75	N.D.	
76) C260 1,3-Dichlorobenzen	0.00	146	0	N.D.	
77) C309 4-Isopropyltoluene	0.00	119	0	N.D.	
78) C267 1,4-Dichlorobenzen	0.00	146	0	N.D.	
79) C249 1,2-Dichlorobenzen	0.00	146	0	N.D.	
80) C310 n-Butylbenzene	0.00	91	0	N.D.	
81) C286 1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
82) C313 1,2,4-Trichloroben	0.00	180	0	N.D.	
83) C316 Hexachlorobutadien	0.00	225	0	N.D.	
84) C314 Naphthalene	13.02	128	988	N.D.	
85) C934 1,2,3-Trichloroben	0.00	180 	0 	N.D.	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

P-11		

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59213

Sample wt/vol: ____5.00 (g/mL) ML Lab File ID: ____G7609.RR _____

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/22/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	CONCENTRATION UNIT (ug/L or ug/Kg)	.S: <u>UG/L</u>	Q
67-64-1	Acetone		5.0	U
71-43-2			1.0	U
75-27-4	Bromodichloromethane		1.0	ט
75-25-2	Bromoform		1.0	U
74-83-9	Bromomethane		1.0	ט
78-93-3	2-Butanone		5.0	U
75-15-0	Carbon Disulfide		1.0	ט
56-23-5	Carbon Tetrachloride		1.0	ט
108-90-7	Chlorobenzene		1.0	U
75-00-3	Chloroethane		1.0	ן ט
67-66-3	Chloroform		1.0	U
74-87-3	Chloromethane		1.0	ע
110-82-7	Cyclohexane		1.0	U
	-1,2-Dibromoethane		1.0	U
124-48-1	Dibromochloromethane		1.0	ע [
96-12-8	1,2-Dibromo-3-chloropropane		1.0	ן ט
	1,2-Dichlorobenzene		1.0	ע
541-73-1	1,3-Dichlorobenzene		1.0	U
106-46-7	1,4-Dichlorobenzene		1.0	U
75-71-8	Dichlorodifluoromethane		1.0	U
75-34-3	1,1-Dichloroethane		1.0	ע
107-06-2	1,2-Dichloroethane		1.0	U
75-35-4	1,1-Dichloroethene		1.0	U
156-59-2	cis-1,2-Dichloroethene		12	
156-60-5	trans-1,2-Dichloroethene		1.3	
	1,2-Dichloropropane		1.0	U
	cis-1,3-Dichloropropene		1.0	ן ט
	-trans-1,3-Dichloropropene		1.0	ע
	Ethylbenzene		1.0	U
591-78-6			5.0	U
	Isopropylbenzene		1.0	U
	Methyl acetate		1.0	U
1	Methylcyclohexane		1.0	ן ט
	Methylene chloride		1.0	U

186/304

METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

			P-11
Lab Name: <u>STL Buffalo</u>	Contract: 4		
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.: <u>1205GW</u>	
Matrix: (soil/water) WATER		Lab Sample ID:	A5E59213
Sample wt/vol: $\underline{5.00}$ (g/mL)	ML	Lab File ID:	<u>G7609.RR</u>
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	12/22/2005 12/23/2005
% Moisture: not dec Heate	ed Purge: <u>N</u>	Date Analyzed:	12/27/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)		Soil Aliquot Vol	ume: (uL)

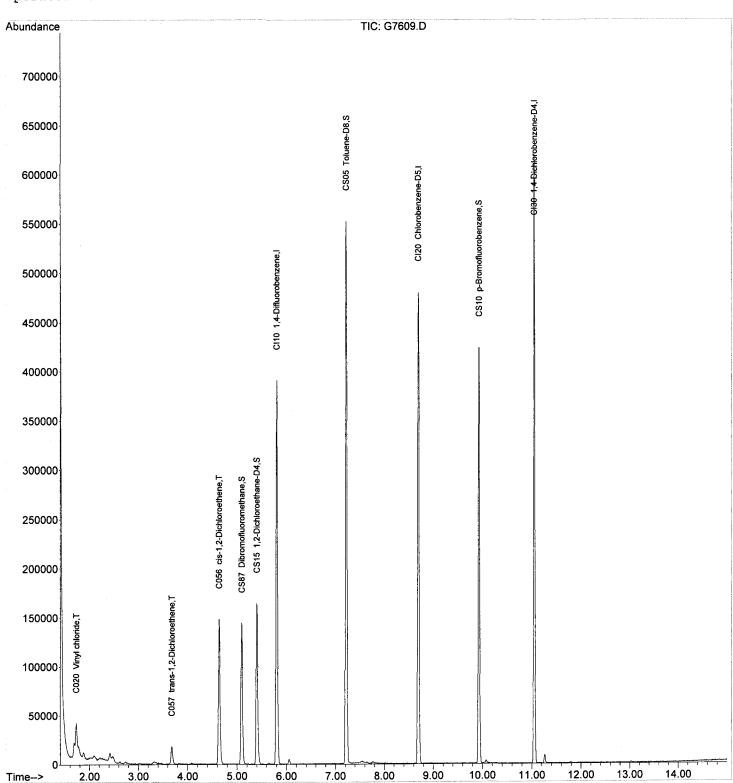
(CON	ŒN.	TRATION	UNI'	IS:
		-	-	- 1	_

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L_	Q
108-10-1	4-Methyl-2-pentanone		5.0	U
	Methyl-t-Butyl Ether (MTB)	E)	1.0	ע
	Naphthalene		1.0	ט
100-42-5	Styrene		1.0	ט
79-34-5	1,1,2,2-Tetrachloroethane		1.0	ע
127-18-4	Tetrachloroethene		1.0	ע
108-88-3	Toluene		1.0	ן די
120-82-1	1,2,4-Trichlorobenzene		1.0	U
71-55-6	1,1,1-Trichloroethane		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-tri	fluoroethane	1.0	U
	Trichlorofluoromethane		1.0	U
79-01-6	Trichloroethene		1.0	U
75-01-4	Vinyl chloride		7.4	
1330-20-7	Total Xylenes		3.0	ט
1				

: 27 Dec 2005 18:31 Acq On

Sample : A5E59213

Misc


Integrator: RTE

Quant Time: Dec 27 19:24:49 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Acq On : 27 Dec 2005 18:31

Sample : A5E59213

Misc

Integrator: RTE

Quant Time: Dec 27 19:24:49 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration
Data Path : C:\MSDCHEM\1\DATA\122705\

Inte	ernal	Standards	R.T.	QIon	Response			Rcv	(Min) (Ar)
1)	CI10	1,4-Difluorobenzene	5.80	114	345155				
43)	CI20	Chlorobenzene-D5	8.70	82	173809	125.00	ng		0.00 0.52%
63)	CI30	1,4-Dichlorobenzene-	11.06	152	167063				
26) Sp: 31) Sp: 44) Sp: 62)	CS87 iked A CS15 iked A CS05 iked A CS10	nitoring Compounds Dibromofluoromethane mount 125.000 Ran 1,2-Dichloroethane-D mount 125.000 Ran Toluene-D8 mount 125.000 Ran p-Bromofluorobenzene	nge 70 5.40 nge 73 7.22 nge 77 9.94	- 130 65 - 136 98 - 122 174	Recove 130261 Recove 407267 Recove 124348	ry = 117.23 ry = 116.20 ry = 115.47	92 ng 93 ng 92 ng	.33% .78% .96%	0.00
Sp	iked A	mount 125.000 Ran	nge 74	- 120	Recove	ry =	92	.38%	
2)	C290	mpounds Dichlorodifluorome	0.00	85	0	∟N.D.		Qva	alue
3) (4)	C010 2020	Chloromethane Vinyl chloride Bromomethane	1.60 1.73	50 62 94	93 52729 0	N.D. 37.10 N.D.	ng		95
6) 7)	C025 C275	Chloroethane Trichlorofluoromet	0.00	64 101	0 0	N.D. N.D.			
8) 9)	C045 C030 C040	1,1-Dichloroethene Methylene chloride Carbon disulfide	0.00 3.44	96 84 76	0 278 665	N.D. N.D. N.D.			
11)	C036	Narolein	α α	56	Λ	N.D. N.D.			
13)	C035	Acrylonitrile Acetone Acetonitrile Iodomethane 1,1,2-Trichloro-1,	3.04 3.32	43 41	1282 1703	N.D. N.D.			
16)	C276 C291					N.D. N.D.			
(18)	€057	T-butyl Methyl Eth trans-1,2-Dichloroet	3.70	73 96	3749 7401	N.D. 6.50	ng	#	48
20) 21)	C255 C050 C125	Methyl Acetate 1,1-Dichloroethane Vinyl Acetate 2,2-Dichloropropan	3.36 4.08 0.00	63	1532				
23)	C272	cis-1,2-Dichloroethe Tetrahydrofuran	4.64 0.00	96 42	73618 0	58.13 N.D.	ng		97
27) 28)	C222 C060 C115	Bromochloromethane Chloroform 1,1,1-Trichloroeth	0.00	128 83 97	0 0 0	N.D. N.D. N.D.			
30) 32)	C120 C116 C165	Carbon tetrachlori 1,1-Dichloropropen Benzene	0.00 5.44	117 75 78	0 0 3555	N.D. N.D. N.D.			
34)	C065 C110	1,2-Dichloroethane 2-Butanone Cyclohexane	0.00 4.68 5.16	62 43 56	0 545 125	N.D. N.D. N.D.			
35) 36)		Trichloroethene	6.05	95	1916	N.D.			

189/304

Data File: C:\MSDCHEM\1\DATA\122705\G7609.D

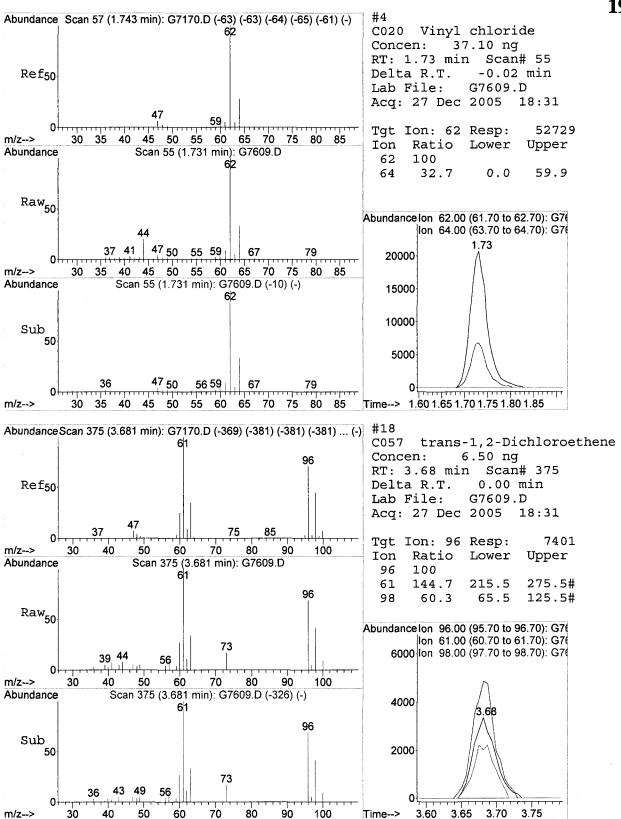
Acq On : 27 Dec 2005 18:31

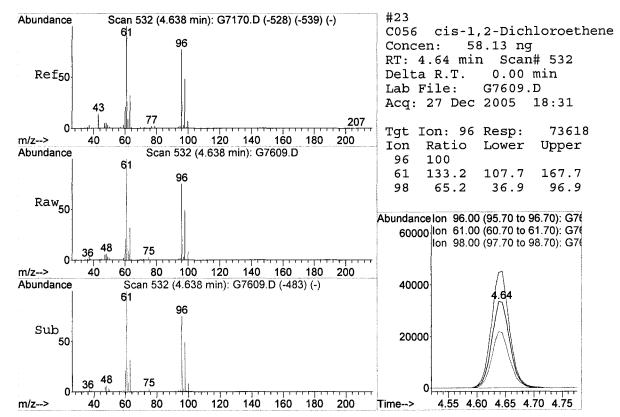
Sample : A5E59213

Misc

Integrator: RTE

Quant Time: Dec 27 19:24:49 2005


Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M


Quant Title : 8260 5ML WATER
QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration
Data Path : C:\MSDCHEM\1\DATA\122705\

Internal Standards	R.T	. QIon	Response	Conc Unit	s Dev(Min) Rcv(Ar)
37) C140 1,2-Dichloropropan	0.00	63	0	N.D.	
38) C278 Dibromomethane	0.00	93	0	N.D.	
39) C130 Bromodichlorometha	0.00	83	0	N.D.	
40) C161 2-Chloroethylvinyl	0.00	63	0	N.D.	
41) C012 Methylcyclohexane	0.00	83	0	N.D.	
42) C145 cis-1,3-Dichloropr	0.00	75	0	N.D.	
45) C230 Toluene	7.28	92	290	N.D.	
46) C170 trans-1,3-Dichloro	0.00	75	0	N.D.	
47) C284 Ethyl Methacrylate	0.00	69	0	N.D.	
48) C160 1,1,2-Trichloroeth	0.00	83	0	N.D.	
49) C210 4-Methyl-2-pentano	7.22	43	2086	N.D.	
50) C220 Tetrachloroethene	0.00	166	0	N.D.	
51) C221 1,3-Dichloropropan	0.00	76	0	N.D.	
52) C155 Dibromochlorometha	0.00	129	0	N.D.	
53) C163 1,2-Dibromoethane	0.00	107	0	N.D.	
54) C215 2-Hexanone	7.77	43	1052	N.D.	
55) C235 Chlorobenzene	0.00	112	0	N.D.	
56) C281 1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
57) C240 Ethylbenzene	8.84	91	59	N.D.	
58) C246 m,p-Xylene	0.00	106	0	N.D.	
59) C247 o-Xylene	0.00	106	0	N.D.	
60) C245 Styrene	0.00	104	0	N.D.	
61) C180 Bromoform	0.00	173	0	N.D.	
64) C966 Isopropylbenzene	9.94	105	64	N.D.	
65) C301 Bromobenzene	0.00	156	0	N.D.	
66) C225 1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
67) C282 1,2,3-Trichloropro	0.00	110	0	N.D.	
68) C283 t-1,4-Dichloro-2-B	0.00	51	0	N.D.	
69) C302 n-Propylbenzene	9.93	91	488	N.D.	
70) C303 2-Chlorotoluene	0.00	126	0	N.D.	
71) C289 4-Chlorotoluene	0.00	126	0	N.D.	
72) C304 1,3,5-Trimethylben	0.00	105	0	N.D.	
73) C306 tert-Butylbenzene	0.00	134	0	N.D.	
74) C307 1,2,4-Trimethylben	10.86	105	59 50	N.D.	
75) C308 sec-Butylbenzene	10.86	105	59	N.D.	
76) C260 1,3-Dichlorobenzen	0.00	146	0	N.D.	
77) C309 4-Isopropyltoluene	11.01	119	144	N.D.	
78) C267 1,4-Dichlorobenzen	0.00	146	0	N.D.	
79) C249 1,2-Dichlorobenzen	0.00	146	0	N.D.	
80) C310 n-Butylbenzene	0.00	91	0	N.D.	
81) C286 1,2-Dibromo-3-Chlo	0.00	75 180	0 0	N.D. N.D.	
82) C313 1,2,4-Trichloroben	0.00	180	0	N.D. N.D.	
83) C316 Hexachlorobutadien	0.00	225		N.D.	
84) C314 Naphthalene	13.03	128 180	1286 0		
85) C934 1,2,3-Trichloroben	0.00	T00	U	N.D.	 .

⁽#) = qualifier out of range (m) = manual integration (+) = signals summed

Standards

METHOD 8260 - AQUEOUS (30% RSD/ 20% D) 193/304 INITIAL CALIBRATION DATA

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u> Lab Sample ID: <u>A510002430-1</u>

Lab Code: <u>RECNY</u> Case No.: _____ SAS No.: ____ SDG No: <u>1205GW</u>

Intrument ID: <u>HP5973G</u> Calibration Dates(s): <u>12/20/2005</u> <u>12/20/2005</u>

Heated Purge (Y/N): N Calibration Times: 11:27 14:25

GC Column: DB-624 ID: 0.18 (mm)

GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)								
Lab File ID: RRI	F1 =	G7411.I	RR I	RRF10	= G7409	9.RR		
		G7406.I		RRF100	$= \overline{G740}$			
COMPOUND	RRF1	RRF10	RRF25	RRF50	RRF100	AVG RRF	% RSD	
Chloromethane	0.659	0.529	0.490	0.505	0.492	0.5350	13.300	
Bromomethane	0.343	0.234	0.214	0.214	0.212	0.2430	23.100	
Vinyl chloride	0.593	0.518	0.481	0.500	0.483	0.5150	9.000	
Chloroethane	0.363	0.254	0.254	0.258	0.262	0.2780	17.100	
Methylene chloride	0.774	0.472	0.438	0.421	0.414	0.5040	30.300	
Acetone	0.151	0.135	0.131	0.132	0.129	0.1360	6.600	
Carbon Disulfide	1.203	1.103	1.022	1.034	1.019	1.0760	7.300	
1,1-Dichloroethene	0.404	0.380	0.360	0.349	0.344	0.3670	6.700	
1,1-Dichloroethane	0.833	0.808	0.778	0.757	0.748	0.7850	4.600	
cis-1,2-Dichloroethene	0.495	0.475	0.457	0.439	0.427	0.4590	5.900	
trans-1,2-Dichloroethene	0.450	0.434	0.410	0.393	0.375	0.4120	7.400	
Chloroform	0.813	0.775	0.752	0.733	0.718	0.7580	5.000	
1,2-Dichloroethane	0.651	0.648	0.635	0.628	0.619	0.6360	2.100	
2-Butanone	0.233	0.222			0.205	0.2170	5.000	
1,1,1-Trichloroethane	0.671	0.673				0.6510	3.300	
Carbon Tetrachloride	0.548	0.563		0.539	0.540	0.5470	1.700	
Bromodichloromethane	0.523	0.525		l .		0.5260	0.600	
1,2-Dichloropropane	0.488	0.460		1	1	1		
cis-1,3-Dichloropropene	0.659				1			
Trichloroethene	0.466	0.459			1			
Dibromochloromethane	0.702	0.720	•		1	B .		
1,1,2-Trichloroethane	0.658	0.640	1		1	I .	ľ	
Benzene	1.857	1.772		1		I.		
trans-1,3-Dichloropropene	1.132	1.272		1	1.301	1.2540	1	
Bromoform	0.351	0.423		0.468	0.490	0.4350	12.200	
4-Methyl-2-pentanone	0.928	0.968	0.937	0.927	0.893	0.9310	2.900	
2-Hexanone	0.670	0.689		0.659	0.639	0.6640	2.700	
Tetrachloroethene	0.994	0.970	0.956	0.897	0.878	0.9390	5.200	
1,1,2,2-Tetrachloroethane	1.021	1.046	1.021	1.013	1.026	1.0250	1.200	
Toluene	2.370	2.257	2.229	2.128	2.091	2.2150	5.000	
Chlorobenzene	2.677	2.558	2.508	2.391	2.357	2.4980	5.200	
Ethylbenzene	4.407	4.382	4.271	4.075	3.962	4.2190	4.600	
Styrene	2.517	l e			1	2	2.300	
Total Xylenes	1.687			1.555	1.528	1.6170	4.500	
1,1,2-Trichloro-1,2,2-trifl	0.359	P .	1	1	0.382	0.3840	4.600	
1,2,4-Trichlorobenzene	2.123	1.626		1.363	1	1	21.000	
1,2-Dibromo-3-chloropropane				0.191	0.203	I .	7.800	
1	1		L	1	1	1	I .	

METHOD 8260 - AQUEOUS (30% RSD/ 20% D) INITIAL CALIBRATION DATA

Lab Name: <u>STL Buffalo</u> Contract: 4 Lab Sample ID: <u>A510002430-1</u>

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No: 1205GW

Intrument ID: <u>HP5973G</u> Calibration Dates(s): <u>12/20/2005</u> <u>12/20/2005</u>

Heated Purge (Y/N): N Calibration Times: 11:27 14:25

GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm)

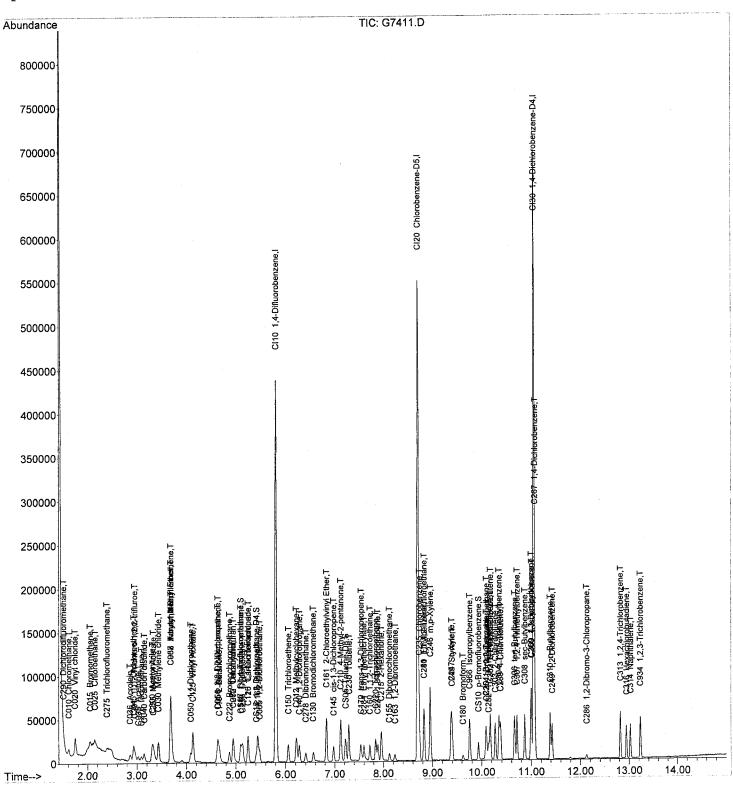
Lab File ID: RRI RRF25 = G7408.RR RRI		G7411.I G7406.I		RRF10 RRF100	$= \frac{G7409}{G740}$		
COMPOUND	RRF1	RRF10	RRF25	RRF50	RRF100	AVG RRF	% RSD
1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Cyclohexane Dichlorodifluoromethane Methyl acetate Naphthalene Trichlorofluoromethane Methyl-t-Butyl Ether (MTBE) Isopropylbenzene Methylcyclohexane	0.766 2.272 2.288 2.378 0.753 0.472 0.736 3.964 0.645 1.354 4.499 0.792	0.589 1.375 4.656	2.866 0.540 1.314 4.458	2.004 2.083 0.776 0.425 0.550 2.974 0.574 1.314 4.245	1.980 1.966 2.082 0.741 0.399 0.539 2.978 0.548 1.262 4.281	2.0840 2.1120 2.1890 0.7620 0.4230 0.6030 3.2560 0.5790 1.3240 4.4280	2.400 7.300 13.100 14.300 7.200 3.300 3.800
Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	2.368 0.739 0.378	2.705 0.828 0.427	2.415 0.743 0.375	0.743	0.820	0.7740	6.300 5.800 7.300

Comments:

Acq On : 20 Dec 2005 14:25

Sample : VSTD001

Misc :


Integrator: RTE

Ouant Time: Dec 20 14:58:13 2005

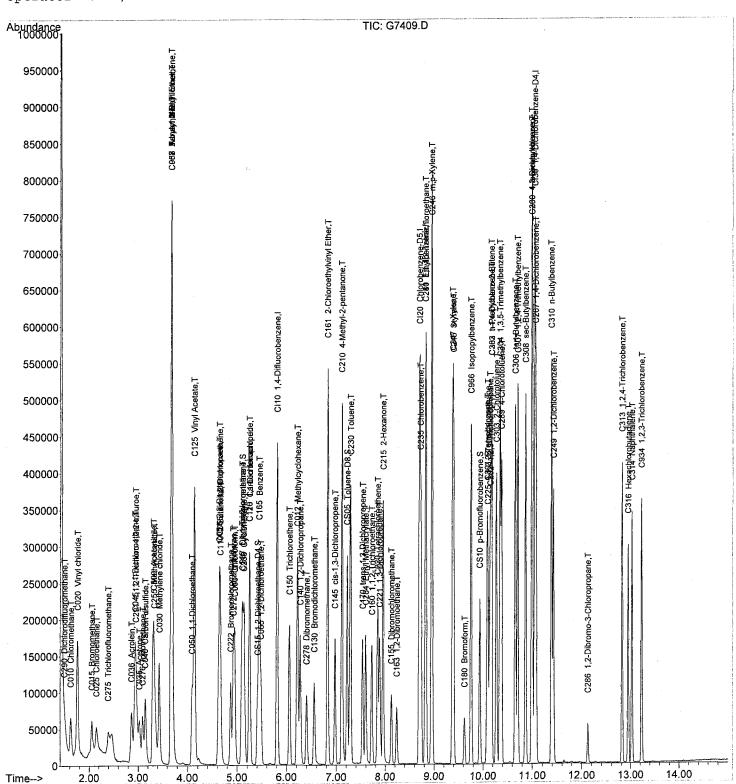
Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Acq On : 20 Dec 2005 13:40

Sample : VSTD010


Misc :

Integrator: RTE
Quant Time: Dec 20 15:02:57 2005

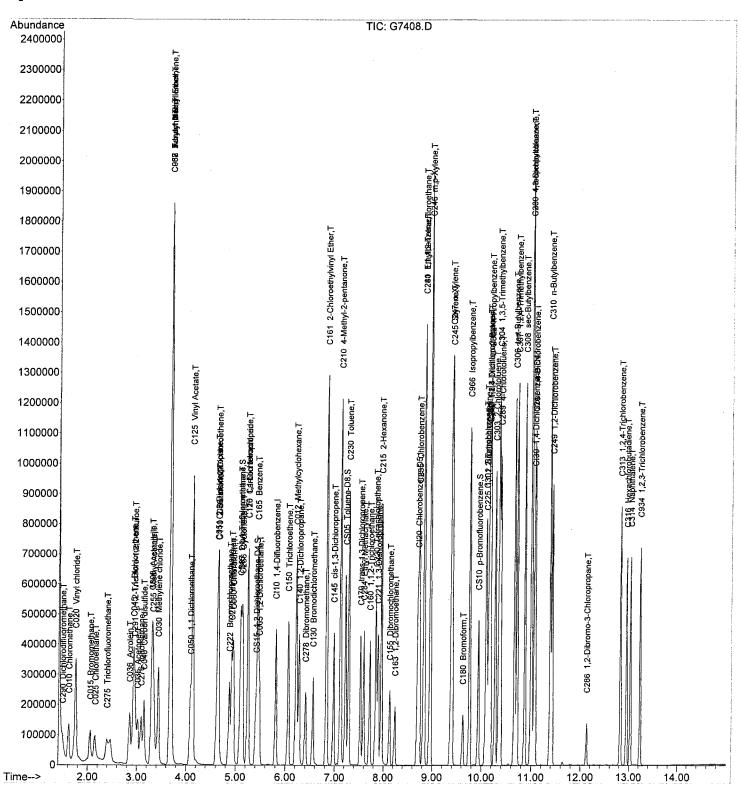
Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Acq On : 20 Dec 2005 13:18

Sample : VSTD025


Misc

Integrator: RTE Quant Time: Dec 20 15:01:38 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

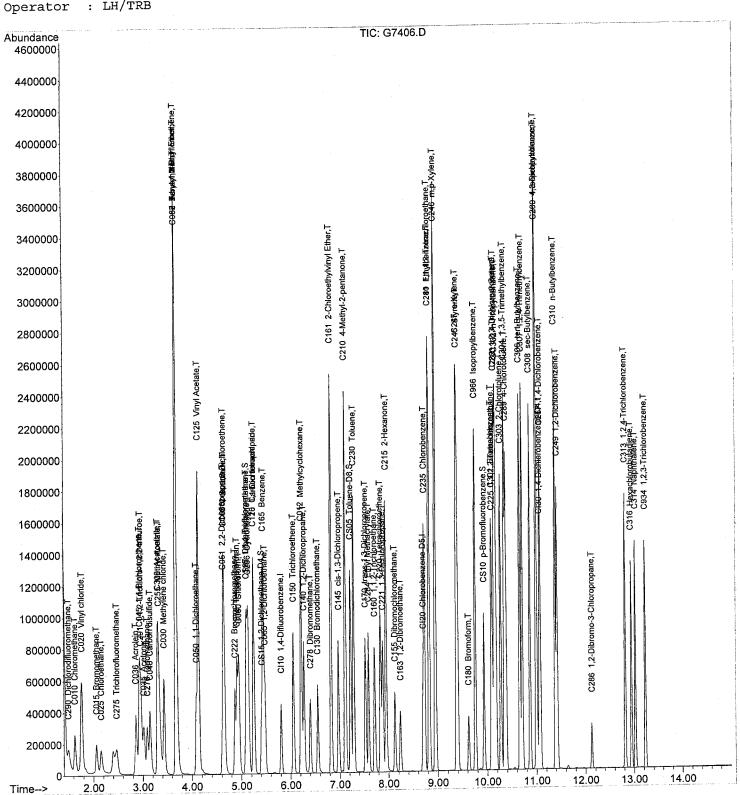
QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

: 20 Dec 2005 11:27 Acq On

VSTD050 Sample :

Misc

Integrator: RTE


Quant Time: Dec 20 14:58:37 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

5ML WATER 8260 Quant Title

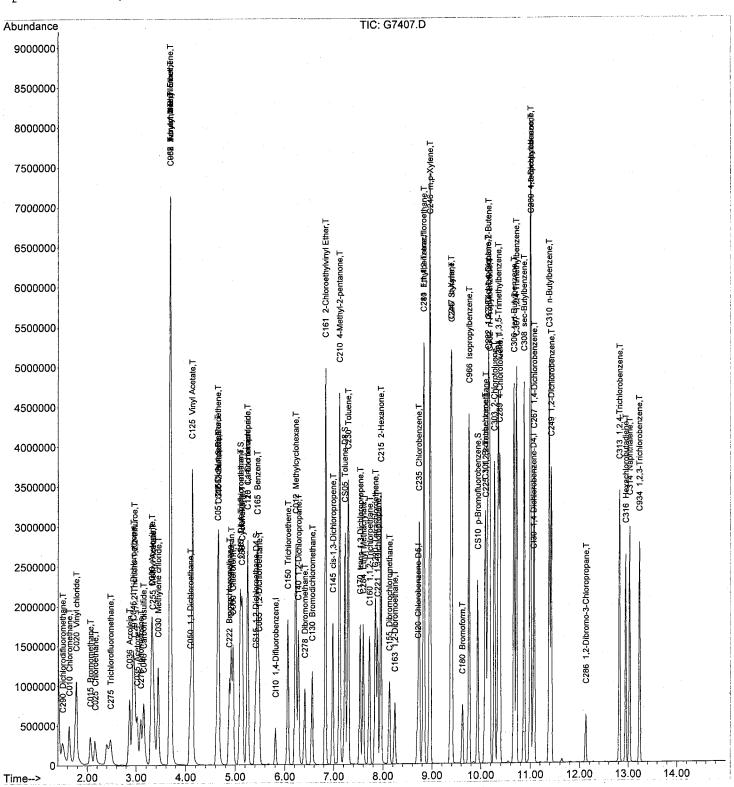
QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

: LH/TRB

Acq On : 20 Dec 2005 11:50

Sample : VSTD100

Misc :


Integrator: RTE

Quant Time: Dec 20 15:00:09 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

200/304

Method Path : C:\MSDCHEM\1\METHODS\8260-5MLLOW\

Method File: A5I0002430.M : 8260 5ML WATER

Last Update : Tue Dec 20 15:05:36 2005

Response Via : Initial Calibration

8240 (ASI., 2430) 8260 GE (ASI., 2430 GE)

Calibration Files

=G7411.D 2 =G7406.D 5 1 =G7409.D 3 =G7408.D

=G7407.D

		Compo	ound	1	2	3	4	5	Avg	%RSD
1)		CI10	1,4-Difluoroben							
2)		C290	Dichlorodifluor							7.30
3)		C010	Chloromethane							13.30
4)	T	C020	Vinyl chloride							8.95
5)	T	C015	Bromomethane				0.214			23.13
6) 7)	T T	C025 C275	Chloroethane				0.258			17.10
8)	T	C2/5	Trichlorofluoro 1,1-Dichloroeth							7.23
9)	T	C045	Methylene chlor							6.69 30.33
10)	T	C040	Carbon disulfid							7.34
11)	Ť	C036	Acrolein				0.032			11.92
12)	T	C038	Acrylonitrile							3.75
13)	T	C035	Acetone				0.132			6.56
14)	T	C300	Acetonitrile						0.059	5.51
15)	T	C276	Iodomethane							2.91
16)	${f T}$	C291	1,1,2-Trichloro							4.58
17)	\mathbf{T}	C962	T-butyl Methyl							3.28
18)	\mathbf{T}	C057	trans-1,2-Dichl							7.39
19)	\mathbf{T}	C255	Methyl Acetate							13.08
20)	Т	C050	1,1-Dichloroeth	0.833	0.808	0.778	0.757	0.748	0.785	4.55
21)	\mathbf{T}	C125	Vinyl Acetate	0.792	0.863	0.838	0.869	0.824	0.837	3.72
22)	${f T}$	C051	2,2-Dichloropro							4.53
23)	T	C056	cis-1,2-Dichlor							5.95
24)	\mathbf{T}	C272	Tetrahydrofuran							3.70
25)	\mathbf{T}	C222	Bromochlorometh							4.62
26)	S	CS87	Dibromofluorome							7.50
27)	T	C060	Chloroform				0.733			4.95
28)	T	C115	1,1,1-Trichloro							3.28
29)	T	C120	Carbon tetrachl							1.74
30)	T	C116	1,1-Dichloropro							3.21
31)	S	CS15	1,2-Dichloroeth							7.28
32) 33)	T T	C165 C065	Benzene				1.657			5.59
34)	T	C110	1,2-Dichloroeth 2-Butanone				0.628			2.09 5.02
35)	T	C256					0.212			2.44
36)	T	C150	Trichloroethene							4.52
37)	Ť	C140	1,2-Dichloropro							4.07
38)	T	C278					0.256			2.54
39)	\mathbf{T}	C130	Bromodichlorome							0.58
40)		C161	2-Chloroethylvi							3.17
41)	T	C012	Methylcyclohexa							2.97
42)	T	C145	cis-1,3-Dichlor							1.83
43)	I	CI20	Chlorobenzene-D			T S				
44)		CS05					2.434			6.32
45)		C230	Toluene	2.370	2.257	2.229	2.128	2.091	2.215	5.00
46)		C170	trans-1,3-Dichl							5.53
47)		C284	Ethyl Methacryl							3.81
	Т	C160	1,1,2-Trichloro							3.18
49)	T	C210	4-Methyl-2-pent							2.87
50)	T	C220	Tetrachloroethe	0.994	0.970	0.956	0.897	0.878	0.939	5.24
•	T	C221	1,3-Dichloropro							2.29
	T	C155	Dibromochlorome							4.13
53)	T	C163	1,2-Dibromoetha	0.766	0.758	0.761	0.753	0.745	0.757	1.06

```
Method Path : C:\MSDCHEM\1\METHODS\8260-5MLLOW\
Method File: A5I0002430.M
Title
        : 8260 5ML WATER
Last Update : Tue Dec 20 15:05:36 2005
Response Via: Initial Calibration
                            0.670 0.689 0.664 0.659 0.639 0.664 2.73
54) T
       C215 2-Hexanone
       C235 Chlorobenzene 2.677 2.558 2.508 2.391 2.356 2.498
55) T
       C281 1,1,1,2-Tetrach 0.812 0.832 0.831 0.815 0.801 0.818 C240 Ethylbenzene 4.407 4.382 4.271 4.075 3.962 4.219
56) T
57) T.
                                                                 4.61
       C246 m,p-Xylene 1.751 1.708 1.65/ 1.505 1.528 1.616
C247 o-Xylene 1.687 1.686 1.626 1.555 1.528 1.616
58) T
                                                                 5.64
59) T
                                                                 4.54
       C245 Styrene 2.517 2.628 2.637 2.555 2.517 2.571 2.27 C180 Bromoform 0.351 0.423 0.442 0.468 0.490 0.435 12.24
60) T
61) T
62) S
       CS10 p-Bromofluorobe 0.739 0.828 0.743 0.743 0.820 0.774
                                                               5.81
       CI30 1,4-Dichloroben ------ISTD------
63) I
       C966 Isopropylbenzen 4.499 4.656 4.458 4.245 4.280 4.428 3.80
64) T
                          1.197 1.124 1.086 1.030 1.029 1.093 6.42
65) T
       C301 Bromobenzene
       C225 1,1,2,2-Tetrach 1.020 1.046 1.021 1.013 1.026 1.025 1.21
66) T
       C282 1,2,3-Trichloro 0.365 0.338 0.326 0.311 0.315 0.331 6.56
67) T
68) T
       C283 t-1,4-Dichloro- 0.089 0.117 0.127 0.140 0.152 0.125 19.24
69) T
       C302 n-Propylbenzene 5.523 5.714 5.603 5.342 5.338 5.504 2.98
                                                                 5.31
70) T
       C303 2-Chlorotoluene 1.150 1.088 1.060 1.011 1.019 1.065
       C289 4-Chlorotoluene 1.181 1.146 1.106 1.052 1.055 1.108 5.08
71) T
       C304 1,3,5-Trimethyl 3.859 3.889 3.778 3.644 3.634 3.761 3.15
72) T
       C306 tert-Butylbenze 0.862 0.876 0.845 0.810 0.806 0.840 3.71
73) T
74) T
       C307 1,2,4-Trimethyl 3.877 3.936 3.845 3.689 3.731 3.816 2.69
75) T
       C308 sec-Butylbenzen 4.759 4.818 4.699 4.498 4.517 4.658 3.09
76) T
       C260 1,3-Dichloroben 2.288 2.197 2.104 2.004 1.965 2.112 6.32
77) T
       C309 4-Isopropyltolu 4.205 4.411 4.290 4.085 4.064 4.211 3.44
78) T
       C267 1,4-Dichloroben 2.378 2.243 2.158 2.083 2.082 2.189 5.70
79) T
       C249 1,2-Dichloroben 2.272 2.127 2.053 1.989 1.980 2.084 5.78
80) T
       C310 n-Butylbenzene 4.039 4.013 3.909 3.762 3.781 3.901
81) T
       C286 1,2-Dibromo-3-C 0.164 0.180 0.182 0.191 0.203 0.184 7.83
82) T
       C313 1,2,4-Trichloro 2.123 1.626 1.392 1.363 1.344 1.570 21.00
       C316 Hexachlorobutad 0.900 0.719 0.642 0.616 0.601 0.696 17.68
83) T
84) T
       C314 Naphthalene 3.964 3.499 2.866 2.974 2.978 3.256 14.32
      C934 1,2,3-Trichloro 1.948 1.469 1.178 1.147 1.133 1.375 25.37
85) T
______
                                            Total Average %RSD 6.44
_______
```

L = Linear LO = Linear + Origin Q = Quad QO = Quad + Origin R = Corr. Coef (#) = Out of Range

A5I0002430.M Tue Dec 20 15:06:54 2005 HP5973G

ICC Profile Date: 12/21/2005

Time: 16:18:58

ICC Profile Code: A00263 METHOD 8260 low 5ML PURGE (30% RSD/ 20% D)

Fraction: MV

No of Points: 5

Default Min. RRF: 0.3000

CCC Conc: 125.00

QC Approver: JRS

QC Date: 11/08/2005

Page:

Rept: AN0287R

Comments:

			no	on Column		
Seg	Parameter	Point 1	Point 2	Point 3	Point 4	Point 5
2 123-91-1	1,4-Dioxane	200.0000	2000.0000	5000.0000	10000.0000	20000.0000
7 77-73-6	Dicyclopentadiene	5.0000	50.0000	125.0000	250.0000	500.0000
8 526-73-8	1,2,3-Trimethylbenzene	5.0000	50.0000	125.0000	250.0000	500.0000
15 994-05-8	tert-Amyl Methyl Ether (TAME)	5.0000	50.0000	125.0000	250.0000	500.0000
18 67-64-1	Acetone	25.0000	250.0000	625.0000	1250.0000	2500.0000
20 71-43-2	Benzene	5.0000	50.0000	125.0000	250.0000	500.0000
25 637-92-3	Ethyl-t-butyl ether (ETBE)	5.0000	50.0000	125.0000	250.0000	500.0000
30 108-86-1	Bromobenzene	5.0000	50.0000	125.0000	250.0000	500.0000
40 74-97-5	Bromochloromethane	5.0000	50.0000	125.0000	250.0000	500.0000
50 75-27-4	Bromodichloromethane	5.0000	50.0000	125.0000	250.0000	500.0000
51 108-70-3	1,3,5-Trichlorobenzene	5.0000	50.0000	125.0000	250.0000	500.0000
60 75-25-2	Bromoform	5.0000	50.0000	125.0000	250,0000	500.0000
70 74-83-9	Bromomethane	5.0000	50.0000	125.0000	250.0000	500.0000
88 78-93-3	2-Butanone	25.0000	250.0000	625.0000	1250.0000	2500.0000
90 104-51-8	n-Butylbenzene	5.0000	50.0000	125.0000	250.0000	500.0000
91 107-12-0	Propionitrile	50.0000	500.0000	1250.0000	2500.0000	5000.0000
92 126-98-7	Methacrylonitrile	5.0000	50.0000	125.0000	250.0000	500.0000
93 108-20-3	Isopropyl Ether (DIPE)	5.0000	50.0000	125.0000	250.0000	500.0000
94 78-83-1	Isobutanol	200.0000	2000.0000	5000.0000	10000.0000	20000.0000
95 71-36-3	n-Butyl alcohol	200.0000	2000.0000	5000.0000	10000.0000	20000.0000
96 108-41-8	m-Chlorotoluene	5.0000	50.0000	125.0000	250.0000	500.0000
97 108-94-1	Cyclohexanone	50.0000	500.0000	1250.0000	2500.0000	5000.0000
98 76-01-7	Pentachloroethane	5.0000	50.0000	125.0000	250.0000	500.0000
99 75-65-0	tert-Butyl Alcohol (TBA)	100.0000	1000.0000	2500.0000	5000.0000	10000.0000
100 135-98-8	sec-Butylbenzene	5.0000	50.0000	125.0000	250.0000	500.0000
101 79-20-9	Methyl acetate	5.0000	50.0000	125.0000	250.0000	500.0000
102 110-82-7	Cyclohexane	5.0000	50.0000	125.0000	250.0000	500.0000
103 108-87-2	Methylcyclohexane	5.0000	50.0000	125.0000	250.0000	500.0000
104 98-56-6	p-Monochlorobenzotrifluoride	5.0000	50.0000	125.0000	250.0000	500.0000
105 98-15-7	m-Monochlorobenzotrifluoride	5.0000	50.0000	125.0000	250.0000	500.0000
106 88-16-4	o-Monochlorobenzotrifluoride	5.0000	50.0000	125.0000	250.0000	500.0000
110 98-06-6	tert-Butylbenzene	5.0000	50.0000	125.0000	250.0000	500.0000
111 106-89-8	Epichlorohydrin	100.0000	1000.0000	2500.0000	5000.0000	10000.0000
112 79-46-9	2-Nitropropane	25.0000	250.0000	625.0000	1250.0000	2500.0000
114 TOTALVOA	Total Volatile Organic Compoun	5.0000	50.0000	125.0000	250.0000	500.0000
120 554-14-3	2-Methyl Thiophene	5.0000	50.0000	125.0000	250.0000	500.0000
121 616-44-4	3-Methyl Thiophene	5.0000	50.0000	125.0000	250.0000	500.0000
128 75-15-0	Carbon Disulfide	5.0000	50.0000	125.0000	250.0000	500.0000
130 56-23-5	Carbon Tetrachloride	5.0000	50.0000	125.0000	250.0000	500.0000
140 108-90-7	Chlorobenzene	5.0000	50.0000	125.0000	250.0000	500.0000
145 104-76-7	2-Ethyl-1-hexanol	50.0000	500.0000	1250.0000	2500.0000	5000.0000
150 75-00-3	Chloroethane	5.0000	50.0000	125.0000	250.0000	500.0000
160 67-66-3	Chloroform	5.0000	50.0000	125.0000	250.0000	500.0000
170 74-87-3	Chloromethane	5.0000	50.0000	125 0000	250.0000	500.0000
180 <i>9</i> 5-49-8	o-Chlorotoluene	5.0000	50.0000	125.0000	250.0000	500.0000
190 106-43-4	p-Chlorotoluene	5.0000	50.0000	125.0000	250.0000	500.0000
200 124-48-1	Dibromochloromethane	5.0000	50.0000	125.0000	250.0000	500.0000
,	· · · · · · · · · · · · · · · · · · ·					

ICC Profile

Date: 12/21/2005 Time: 16:18:58

660 SU95-50-1

1,2-Dichlorobenzene-d4

ICC Profile Code: A00263 METHOD 8260 low 5ML PURGE (30% RSD/ 20% D) (continued)

—ng On Column -Point 1 Point 2 Point 3 Point 4 Point 5 Parameter Seq 201 110-54-3 125.0000 250,0000 500.0000 5.0000 50.0000 Hexane 5.0000 50.0000 125.0000 250.0000 500.0000 202 142-82-5 Heptane 2500.0000 25.0000 250.0000 625.0000 1250.0000 203 534-15-6 1,1-Dimethoxyethane 25.0000 250.0000 625.0000 1250.0000 2500.0000 204 75-56-9 Propylene Oxide 5.0000 50.0000 125.0000 250.0000 500.0000 210 96-12-8 1,2-Dibromo-3-chloropropane 500,0000 5.0000 50.0000 125.0000 250.0000 220 106-93-4 1,2-Dibromoethane 5.0000 50.0000 125.0000 250.0000 500.0000 45.75 230 74-95-3 Dibromomathane 1,2-Dichlorobenzene 5.0000 50.0000 125.0000 250.0000 500.0000 240 95-50-1 250.0000 500.0000 125.0000 1,3-Dichlorobenzene 5.0000 50.0000 250 541-73-1 250.0000 500,0000 260 106-46-7 1,4-Dichlorobenzene 5.0000 50.0000 125.0000 250.0000 500.0000 270 75-71-8 Dichlorodifluoromethane 5.0000 50.0000 125.0000 5.0000 50.0000 125.0000 250.0000 500.0000 1,1-Dichloroethane 280 75-34-3 290 107-06-2 125.0000 250.0000 500.0000 1,2-Dichloroethane 5.0000 50.0000 250.0000 500.0000 125.0000 300 75-35-4 1,1-Dichloroethene 5.0000 50.0000 307 109-99-9 Tetrahydrofuran 25.0000 250.0000 625.0000 1250.0000 2500.0000 5.0000 50.0000 125.0000 250.0000 500.0000 310 156-59-2 cis-1,2-Dichloroethene 250.0000 500.0000 50.0000 125.0000 trans-1,2-Dichloroethene 5.0000 320 156-60-5 125.0000 250.0000 500.0000 330 78-87-5 1,2-Dichloropropane 5.0000 50.0000 250.0000 340 142-28-9 1,3-Dichloropropane 5.0000 50,0000 125.0000 500.0000 350 594-20-7 2,2-Dichloropropane 5.0000 50.0000 125.0000 250.0000 500.0000 5.0000 50.0000 125.0000 250.0000 500.0000 360 563-58-6 1,1-Dichloropropene 250.0000 500.0000 125.0000 5.0000 50.0000 370 10061-01-5 cis-1,3-Dichloropropene 125.0000 250.0000 500.0000 380 10061-02-6 trans-1,3-Dichloropropene 5.0000 50.0000 390 100-41-4 Ethylbenzene 5.0000 50.0000 125.0000 250.0000 500.0000 125.0000 250.0000 500.0000 **Hexachlorobutadiene** 5.0000 50.0000 410 87-68-3 25.0000 250.0000 625.0000 1250.0000 2500.0000 418 591-78-6 2-Hexanone 250.0000 500.0000 420 98-82-8 Isopropylbenzene 5.0000 50.0000 125.0000 p-Cymene 5.0000 50.0000 125.0000 250.0000 500.0000 430 99-87-6 440 75-09-2 Methylene chloride 5.0000 50.0000 125.0000 250.0000 500.0000 625.0000 1250.0000 2500.0000 25.0000 250.0000 458 108-10-1 4-Methyl-2-pentanone 5.0000 50.0000 125.0000 250.0000 500.0000 460 91-20-3 Naphthalene 50.0000 125.0000 250.0000 500.0000 470 103-65-1 n-Propylbenzene 5.0000 5.0000 50.0000 125.0000 250.0000 500.0000 480 100-42-5 Styrene 490 630-20-6 1,1,1,2-Tetrachloroethane 5.0000 50.0000 125.0000 250.0000 500.0000 250.0000 500.0000 50.0000 125.0000 500 79-34-5 1,1,2,2-Tetrachloroethane 5.0000 510 127-18-4 Tetrachloroethene 5.0000 50.0000 125.0000 250.0000 500.0000 250.0000 500.0000 520 108-88-3 5.0000 50.0000 125.0000 Toluene 250,0000 500,0000 530 87-61-6 1,2,3-Trichlorobenzene 5.0000 50.0000 125.0000 50.0000 125.0000 250.0000 500.0000 540 120-82-1 1,2,4-Trichlorobenzene 5.0000 50.0000 125.0000 250.0000 500.0000 550 71-55-6 1,1,1-Trichloroethane 5.0000 5.0000 50.0000 125.0000 250.0000 500.0000 560 79-00-5 1,1,2-Trichloroethane 5.0000 50.0000 125.0000 250.0000 500.0000 570 79-01-6 Trichloroethene 250.0000 500.0000 580 75-69-4 Trichlorofluoromethane 5.0000 50.0000 125.0000 5.0000 50.0000 125.0000 250.0000 500.0000 590 96-18-4 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 5.0000 50,0000 125.0000 250.0000 500.0000 600 95-63-6 250.0000 500.0000 50.0000 125.0000 610 108-67-8 1,3,5-Trimethylbenzene 5.0000 620 75-01-4 Vinyl chloride 5.0000 50,0000 125.0000 250.0000 500,0000 375.0000 750.0000 1500.0000 630 1330-20-7 Total Xylenes 15.0000 150.0000 50.0000 125.0000 250.0000 500.0000 646 SU107-06-2 1,2-Dichloroethane-D4 5.0000 5.0000 50.0000 125.0000 250.0000 500.0000 648 2037-26-5 Toluene-D8 250.0000 500.0000 650 460-00-4 p-Bromofluorobenzene 5.0000 50.0000 125.0000

5.0000

50.0000

125.0000

250.0000

500.0000

Page: 2

Rept: AN0287R

ICC Profile

Date: 12/21/2005

Time: 16:18:58

ICC Profile Code: A00263 METHOD 8260 low 5ML PURGE (30% RSD/ 20% D) (continued)

—ng On Column -Parameter Point 1 Point 2 Point 3 Point 4 Point 5 670 SU106-46-7 1,4-Dichlorobenzene-D4 0.0000 0.0000 0.0000 0.0000 0.0000 680 3114-55-4 Chlorobenzene-D5 0.0000 0.0000 0.0000 0.0000 0.0000 690 540-36-3 1,4-Difluorobenzene 0.0000 0.0000 0.0000 0.0000 0.0000 700 462-06-6 0.0000 Fluorobenzene 0.0000 0.0000 0.0000 0.0000 800 1634-04-4 Methyl-t-Butyl Ether (MTBE) 5.0000 50.0000 125.0000 250.0000 500.0000 805 75-43-4 Dichlerofluoromethane 5.0000 50.0000 125.0000 250.0000 500,0000 810 594-18-3 Dibromodichloromethane 5.0000 50.0000 125.0000 250.0000 500.0000 815 107-02-8 Acrolein 100.0000 1250.0000 2500.0000 5000.0000 10000.0000 820 76-13-1 1,1,2-Trichloro-1,2,2-trifluor 5.0000 50.0000 125.0000 250.0000 500.0000 825 107-13-1 Acrylonitrile 100.0000 1250.0000 2500.0000 5000.0000 10000.0000 830 80-62-6 Methyl methacrylate 5.0000 50.0000 125.0000 250.0000 500.0000 840 540-59-0 1,2-Dichloroethene (Total) 10.0000 100.0000 250.0000 500.0000 1000.0000 850 M/P XYLENE m/p-Xylenes 10.0000 100.0000 250.0000 500.0000 1000.0000 860 95-47-6 o-Xylene 5.0000 50.0000 250.0000 125.0000 500.0000 870 108-05-4 Vinyl acetate 25,0000 250.0000 625.0000 1250.0000 2500.0000 880 110-75-8 2-Chloroethylvinyl ether 25.0000 250.0000 625.0000 1250.0000 2500.0000 890 110-57-6 trans-1,4-Dichloro-2-butene 25.0000 250.0000 625.0000 1250.0000 2500.0000 900 74-88-4 Iodomethane 5.0000 50.0000 125.0000 250,0000 500,0000 Ethyl methacrylate 910 97-63-2 5.0000 50.0000 125.0000 250.0000 500.0000 920 75-45-6 Chlorodifluoromethane 5.0000 50.0000 125.0000 250.0000 500.0000 930 544-10-5 1-Chlorohexane 5.0000 50.0000 125.0000 250.0000 500.0000 940 75-05-8 Acatonitrile 200.0000 5000.0000 10000.0000 20000.0000 2000.0000 950 60-29-7 Ethyl ether 5.0000 50.0000 125.0000 250.0000 500,0000 951 108-38-3 m-Xylene 10.0000 100.0000 250.0000 500.0000 1000.0000 952 106-42-3 p-Xylene 10.0000 100.0000 250.0000 500.0000 1000.0000 962 542-75-6 1,3-Dichloropropene (Total) 10.0000 100.0000 250.0000 500.0000 1000.0000 972 64-17-5 Ethanol 100.0000 1000.0000 2500.0000 5000.0000 10000.0000 982 141-78-6 Ethyl acetate 5.0000 50,0000 125.0000 250,0000 500,0000 992 107-05-1 3-Chloropropene (Allyl Chlor.) 5.0000 50.0000 125.0000 250.0000 500.0000 993 126-99-8 2-Chloro-1,3-butadiene 5.0000 50.0000 125.0000 250.0000 500.0000 994 54-28-81TIC Bis(chloromethyl) ether (VOA T 5.0000 50.0000 125.0000 250.0000 500,0000

3 Page: Rept: AN0287R

Acq On : 20 Dec 2005 14:25

: VSTD001 Sample

Misc Integrator: RTE

Quant Time: Dec 20 14:58:13 2005

zaamereaeren kepere

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M Quant Title : 8260 5ML WATER QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

In	ternal	Standards	R.T.	QIon	Response	Conc Uni		v(Min) v(Ar)
,1) CI10	1,4-Difluorobenzene	5.81	114	388903	125.00		0.00 31.16%
43) CI20	Chlorobenzene-D5	8.70	82	197830	125.00	ng	0.00 36.24%
63) CI30	1,4-Dichlorobenzene-	11.05	152	185577	125.00	ng	0.00 16.09%
Sv	stem Mo	onitoring Compounds						
26) CS87	Dibromofluoromethane		111		4.63 N		
	piked A		_	- 130	Recove	ery =	3.709	
			5.41		5885	4.70 r		
		Amount 125.000 Ran		- 136	Recove	ery =		
		Toluene-D8		98		4.70 r		
		Amount 125.000 Ran		- 122	Recove			
		p-Bromofluorobenzene				4.77 r		0.00
S	piked <i>F</i>	Amount 125.000 Ran	ge 74	- 120	Recove	ery =	3.828	5 II
		mpounds						<i>r</i> alue
		Dichlorodifluorometh	1.50	85	7347			100
		Chloromethane	1.60	50	10253			89
4) C020	Vinyl chloride	1.73	62	9222	5.76 r		96
	•	Bromomethane	2.04	94	5328			83
		Chloroethane	2.15	64	5647			100
		Trichlorofluorometha	2.39		10035		_	95
) C045			96	6277		_	84
) C030		3.43	84	12040			93
) C040	Carbon disulfide		76	18721	5.59 n		93
) C036	Acrolein	2.86	56	12618	119.80 m		96
) C038	Acrylonitrile	3.68	53	50196	102.09 n		97
) C035	Acetone	3.02	43	11768	27.82 n		95
) C300	Acetonitrile	3.31	41	40095	216.82 n	_	97
) C276	Iodomethane	3.09	142	9160	4.97 n	_	97 01
) C291	1,1,2-Trichloro-1,2,	2.96	101	5586 21058	4.67 n		91
) C962	T-butyl Methyl Ether	3.69	73	21058	5.11 n	_	90 48
) C057	trans-1,2-Dichloroet	3.69	96 43	7004			93
) C255) C050	Methyl Acetate 1,1-Dichloroethane	3.33	43 63	11448 12961	6.10 n 5.31 n		95
) C125	Vinyl Acetate	4.08	43	61612	23.65 n		97
) C123	2,2-Dichloropropane		43 77	10753	5.16 n		98
) C051	cis-1,2-Dichloroethe	4.64	96	7699	5.40 n		88
) C272	Tetrahydrofuran	4.94	42	11672	26.39 n		91
	C272	Bromochloromethane	4.88	128	3697	5.33 n		78
	C060	Chloroform	4.95	83	12654	5.36 n		95
	C115	1,1,1-Trichloroethan	5.10	97	10432	5.15 n	-	95
	C120	Carbon tetrachloride	5.25	117	8520	5.00 n		98
	C116	1,1-Dichloropropene	5.25	75	9172	5.01 n	_	87
	C165	Benzene	5.44	78	28886	5.40 n	_	98
	C065	1,2-Dichloroethane	5.48	62	10128	5.12 n		93
	C110	2-Butanone	4.67	43	18087	26.85 n		98
	C256	Cyclohexane	5.13	56	11721	4.94 n		86
	C150	Trichloroethene	6.05	95	7253	5.27 n		83

Acq On : 20 Dec 2005 14:25

Sample : VSTD001

Misc

Integrator: RTE

Quant Time: Dec 20 14:58:13 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 20 14:56:38 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122005\

Intern	nal Standards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
37) C1	40 1,2-Dichloropropane	6.27	63	7584	5.34 ng	95
38) C2		6.40	93	4190	5.21 ng	92
39) C1		6.55	83	8139	4.97 ng	97
40) CI		6.83	63	22691	24.13 ng	96
	112 Methylcyclohexane	6.21	83	12324	4.81 ng	90
41) C(6.97	75	10257	4.86 ng	92
•	230 Toluene	7.29	92	18754	5.35 ng	94
46) CI		7.53	75	8955	4.51 ng	94
•	284 Ethyl Methacrylate	7.60	69	8803	4.66 ng	94
47) C2	-	7.72	83	5205	5.23 ng	93
49) C2	• •	7.12	43	36699	24.92 ng	98
50) C2		7.84	166	7863	5.29 ng	89
		7.89	76	11331	5.13 ng	97
51) C2	.55 Dibromochloromethane	8.12	129	5558	4.74 ng	91
		8.24	107	6063	5.06 ng	96
53) C1		7.95	43	26502	25.22 ng	96
54) C2				21181	5.36 ng	96
55) C2		8.74	112		4.96 ng	85
	281 1,1,1,2-Tetrachloroe	8.82	131	6428	5.22 ng	99
57) C2	-	8.83	91	34873		98
58) C2		8.95	106	27717	10.66 ng	98
. 59) C2	-	9.38	106	13351	5.22 ng	93
60) C2		9.40	104	19918	4.90 ng	99
•	80 Bromoform	9.62	173	2777	4.04 ng	
64) CS		9.76	105	33395	5.08 ng	98
	01 Bromobenzene	10.09	156	8882	5.47 ng	85
66) C2		10.10	83	7575	4.98 ng	94
67) C2		10.14	110	2709	5.51 ng	100
68) C2		10.17	51	3304	17.80 ng	# 23
69) C3	- -	10.17	91	40994	5.02 ng	100
70) C3		10.27	126	8533	5.40 ng	100
71) C2		10.38	126	8763	5.33 ng	100
72) C3		10.34	105	28647	5.13 ng	96
73) C3		10.66	134	6399	5.13 ng	# 92
74) C3	· · · · · · · · · · · · · · · · · · ·	10.71	105	28777	5.08 ng	100
75) C3	. -	10.87	105	35328	5.11 ng	98
76) C2		10.99	146	16984	5.42 ng	95
77) C3		11.00	119	31215	4.99 ng	94
78) C2		11.08	146	17651	5.43 ng	95
79) C2	•	11.42	146	16866	5.45 ng	88
80) C3		11.38	91	29979	5.18 ng	100
81) C2		12.12	75	1220	4.47 ng	81
82) C3		12.82	180	15761	6.76 ng	90
83) C3		12.95	225	6681	6.47 ng	98
84) C3	<u>-</u>	13.03	128	29427	6.09 ng	99
85) C9	1,2,3-Trichlorobenze	13.23	180	14460	7.08 ng	99
			-			

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Acq On : 20 Dec 2005 13:40

: VSTD010 Sample

Misc Integrator: RTE

Quant Time: Dec 20 15:02:57 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Internal	Standards	R.T.	QIon	Response			Rcv ((Min) (Ar)
1) CI10	1,4-Difluorobenzene	5.81	114	385985				
43) CI20	Chlorobenzene-D5	8.70	82	194933	125.0	0 ng		0.00 .25%
63) CI30	1,4-Dichlorobenzene-	11.06	152	183829	125.0	0 ng		0.00 5.00%
26) CS87 Spiked A 31) CS15 Spiked A	nitoring Compounds Dibromofluoromethane mount 125.000 Ran 1,2-Dichloroethane-D mount 125.000 Ran Toluene-D8	ge 70 5.41 ge 73	- 130 65 - 136	Recove 65923 Recove	ery = 53.05 ery =	43 ng 42	.04%# .44%#	0.00 t
Spiked A	Toluene-D8 mount 125.000 Ran	ae 77	- 122	Recove	erv =		. 93%#	
62) CS10	p-Bromofluorobenzene	9.94	174	64542	53.44			0.00
Spiked A	mount 125.000 Ran	ge 74	- 120	Recove	ery =	$\overline{4}2$. 75%#	‡
Target Co			85	65838				ılue 97
3) CO10	Chloromethane	1.61	50	81644				95
4) C020	Vinyl chloride Bromomethane	1.75	62	79897	50.24	ng		96
5) C015	Bromomethane	2.05	94	36150	50.24 48.13	ng		97
	Chloroethane	2.15	64	39237	45.68	ng		99
7) C275		2.39	101	90889m	80.66	ng		97
8) C045		2.93	96	58725	51.77 46.85	ng		87
9) C030	Methylene chloride Carbon disulfide	3.44	84	72861	46.85			89
10) C040	Carbon disulfide		76	170231	51.23			98
11) C036	Acrolein	2.86	56	99475	951.57			100
12) C038	Acrylonitrile		53	509341				99
13) C035	Acetone	3.02	43	104538	249.02			98
14) C300	Acetonitrile	3.31	41	375911		_		100
15) C276	Iodomethane	3.09		95190				95
16) C291		2.96	101	61873	52.14			92 91
17) C962	T-butyl Methyl Ether	3.69	73	212311 67034	51.94	ng	ш	50
18) C057	trans-1,2-Dichloroet	3.68	96	67034 93331	50.12		#	97
19) C255	Methyl Acetate 1,1-Dichloroethane	3.33	43 63	93331 104702	50.12			96
20) C050 21) C125	I, I-DICHIOFOETHAME	4.03	43	124783	257 83	na		97
21) C125 22) C051	Vinyl Acetate 2,2-Dichloropropane	4.63	77	666566 108158	52 32	na		93
23) C056	cis-1,2-Dichloroethe	4.64	96	73342	51.79			96
24) C272	Tetrahydrofuran	4.92	42	111502	253.99			92
25) C222	Bromochloromethane	4.87	128	35345	51.33			88
27) C060	Chloroform	4.95	83	119719	51.12			96
28) C115	1,1,1-Trichloroethan	5.10	97	103955	51.68	ng		94
29) C120	Carbon tetrachloride	5.25	117.	86868	51.40	ng		98
30) C116	1,1-Dichloropropene	5.25	75	94835	52.16			92
32) C165	Benzene	5.44	78	273516	51.49			100
33) C065	1,2-Dichloroethane	5.48	62	100012	50.90	_		96
34) C110	2-Butanone	4.66	43	171370	256.34	_		96
35) C256	Cyclohexane	5.14	56	121404	51.59		#	86
36) C150	Trichloroethene	6.06	95	70911	51.94	ng		95

Acq On : 20 Dec 2005 13:40

Sample : VSTD010

Misc :

Integrator: RTE

Quant Time: Dec 20 15:02:57 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Inte	rnal	Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
					_		Rcv(Ar)
37)	C140	1,2-Dichloropropane	6.27	63	71010	50.38 ng	96
38)	C278	Dibromomethane	6.40	93	40181	50.31 ng	83
39)	C130	Bromodichloromethane	6.56	83	81060	49.87 ng	95
40)	C161	2-Chloroethylvinyl E	6.83	63	242414	259.73 ng	94
41)	C012	Methylcyclohexane	6.22	83	130341	51.30 ng	88
42)	C145	cis-1,3-Dichloroprop	6.97	75	106968	51.10 ng	97
	C230	Toluene	7.29	92	175971	50.95 ng	97
46)	C170	trans-1,3-Dichloropr	7.53	75	99172	50.70 ng	97
-	C284	Ethyl Methacrylate	7.60	69	94096	50.57 ng	98
•	C160	1,1,2-Trichloroethan	7.72	83	49861	50.87 ng	99
49)		4-Methyl-2-pentanone	7.11	43	377308	260.01 ng	99
50)		Tetrachloroethene	7.84	166	75657	51.67 ng	92
51)		1,3-Dichloropropane	7.89	76	110608	50.84 ng	98
•	C155	Dibromochloromethane	8.13	129	56135	48.63 ng	98
53)		1,2-Dibromoethane	8.24	107	59107	50.10 ng	99
54) (2-Hexanone	7.95	43	268464	259.32 ng	100
55) (Chlorobenzene	8.73	112	199431	51.20 ng	100
56) (1,1,1,2-Tetrachloroe	8.82	131	64884	50.84 ng	94
•	C240	Ethylbenzene	8.83	91	341694	51.93 ng	98
58) (m,p-Xylene	8.95	106	266432	103.97 ng	95
59) (o-Xylene	9.38	106	131493	52.16 ng	96
60) (Styrene	9.40	104	204875	51.10 ng	99
	C180	Bromoform	9.62	173	32961	48.64 ng	97
64) (Isopropylbenzene	9.76	105	342372	52.58 ng	97
•	C301	Bromobenzene	10.09	156	82623	51.40 ng	# 86
	C225	1,1,2,2-Tetrachloroe	10.10	83	76901	51.01 ng	99
	C282	1,2,3-Trichloropropa	10.14	110	24873	51.09 ng	100
	C283	t-1,4-Dichloro-2-But	10.17	51	42938	233.51 ng	# 52
•	C302 C303	n-Propylbenzene	10.17	91	420132	51.91 ng	97
	C289	2-Chlorotoluene	10.27	126	79971	51.05 ng	100
	C209	4-Chlorotoluene	10.38	126	84257	51.72 ng	100
73) (1,3,5-Trimethylbenze tert-Butylbenzene	10.34	105 134	285954 64427	51.70 ng 52.17 ng	96 96
	C3 0 7	1,2,4-Trimethylbenze	10.33	105	289418	51.58 ng	97
	C3 0 8	sec-Butylbenzene	10.71	105	354302	51.72 ng	98
-	C260	1,3-Dichlorobenzene	10.87	146	161549	52.02 ng	99
	C309	4-Isopropyltoluene	11.00	119	324372	52.38 ng	98
•	2267	1,4-Dichlorobenzene	11.08	146	164964	51.25 ng	96
· ·	C249	1,2-Dichlorobenzene	11.42	146	156420	51.03 ng	87
•	2310	n-Butylbenzene	11.38	91	295070	51.44 ng	98
•	C286	1,2-Dibromo-3-Chloro	12.12	75	13203	48.81 ng	91
	C313	1,2,4-Trichlorobenze	12.82	180	119561	51.80 ng	99
	C316	Hexachlorobutadiene	12.95	225	52857	51.67 ng	99
-	2314	Naphthalene	13.03	128	257257	53.73 ng	99
85) C		1,2,3-Trichlorobenze	13.23	180	107993	53.41 ng	99
						3	

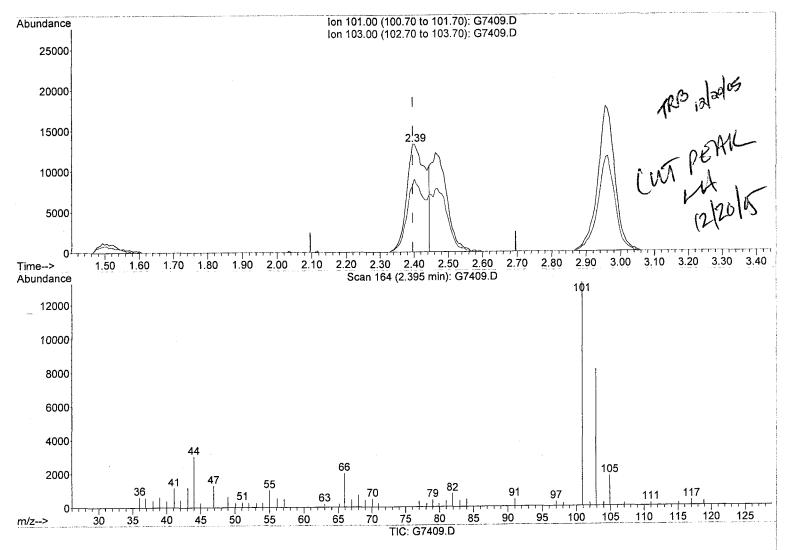
⁽#) = qualifier out of range (m) = manual integration (+) = signals summed

Acq On : 20 Dec 2005 13:40

Sample : VSTD010

Misc

:


Integrator: RTE
Ouant Time: Dec 20 14:58:07 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Operator : LH/TRB

(7) C275 Trichlorofluoromethane (T)

2.39min (+0.000) 45.98ng

response 51810

 Ion
 Exp%
 Act%

 101.00
 100
 100

 103.00
 63.20
 61.12

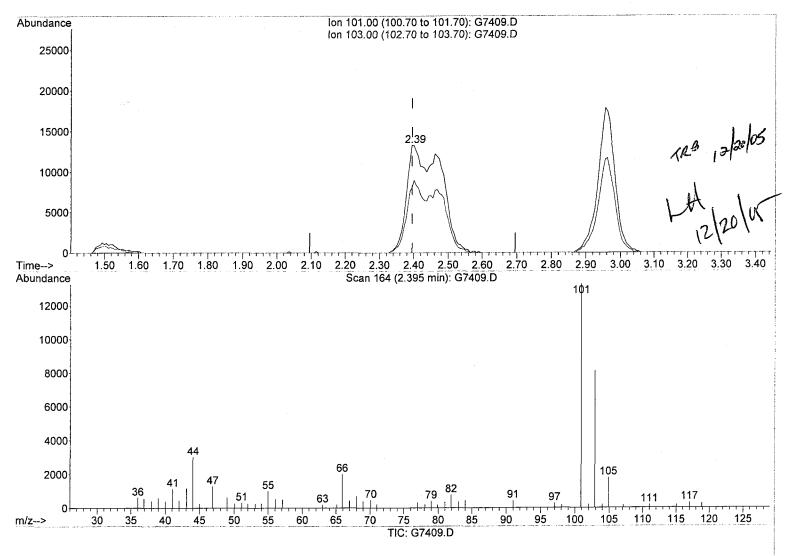
 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

Acq On : 20 Dec 2005 13:40

Sample : VSTD010

Misc :


Integrator: RTE
Quant Time: Dec 20 14:58:07 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Operator : LH/TRB

(7) C275 Trichlorofluoromethane (T)

2.39min (+0.000) 80.66ng m

response 90889

 lon
 Exp%
 Act%

 101.00
 100
 100

 103.00
 63.20
 61.12

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

Acq On : 20 Dec 2005 13:18

: VSTD025 Sample

Misc

Integrator: RTE

Quant Time: Dec 20 15:01:38 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
1) CI10 1,4-Difluorobenzene	5.80	114	390432		0.00 131.68%
43) CI20 Chlorobenzene-D5	8.70	82	194855	125.00 ng	0.00 134.19%
63) CI30 1,4-Dichlorobenzene-	11.05	152	187204	125.00 ng	
31) CS15 1,2-Dichloroethane-D Spiked Amount 125.000 Ran 44) CS05 Toluene-D8 Spiked Amount 125.000 Ran 62) CS10 p-Bromofluorobenzene	ge 70 5.41 ge 73 7.22 ge 77 9.94	65 - 136 98 - 122 174	Recove 146429 Recove 470519 Recove 144813	116.50 ng ery = 9: 119.75 ng ery = 9:	3.94% 0.00 3.20% 0.00 5.80%
Spiked Amount 125.000 Ran	ige /4	- 120	Recove	21 y - 2	Qvalue
Target Compounds	1.49	85	154033	116.54 ng	
2) C290 Dichlorodifluorometh	1.61		191261		
3) C010 Chloromethane	1.74		187658		
4) C020 Vinyl chloride	2.05	94	83627	110.08 ng	99
5) C015 Bromomethane	2 1/	64	99025	113.98 ng	95
0, 6025 6112010 0011111	2.14		210740m	184.89 ng	97
7) C275 Trichlorofluorometha	2.40		140531		
8) C045 1,1-Dichloroethene	2.93			108.64 ng	91
9) C030 Methylene chloride	3.43		170905 398994	118.71 ng	97
10) C040 Carbon disulfide	3.14				98
11) C036 Acrolein	2.85		1228931		
11) C036 Acrolein 12) C038 Acrylonitrile 13) C035 Acetone	3.68		256036		
15, 0035			894442		
14) C300 Acetonitrile	3.30		034442	125.80 ng	
15) C276 Iodomethane	3.08 2.96				
16) C291 1,1,2-Trichloro-1,2,					
17) C962 T-butyl Methyl Ether	3.68 3.68		159976		
18) C057 trans-1,2-Dichloroet	3.33		229025	124.22 ng 121.60 ng	98
19) C255 Methyl Acetate	4.08		303571	123.86 ng	98
20) C050 1,1-Dichloroethane	4.13				
21) C125 Vinyl Acetate			265924	127.17 ng	
22) C051 2,2-Dichloropropane	4.64		178503	124.61 ng	
23) C056 cis-1,2-Dichloroethe	4.91		270446	609.03 ng	
24) C272 Tetrahydrofuran 25) C222 Bromochloromethane	4.87		85671	123.00 ng	
·	4.95		293639	123.96 ng	
27) C060 Chloroform			255121	125.38 ng	
28) C115 1,1,1-Trichloroethan 29) C120 Carbon tetrachloride	5.25		213776	125.05 ng	86
	5.24		233773	127.11 ng	87
·	5.44		664965	123.74 ng	r 99
32) C165 Benzene 33) C065 1,2-Dichloroethane	5.47		248081	124.81 ng	97
	4.66		412783	610.41 ng	
	5.13		294492	123.72 ng	
35) C256 Cyclohexane 36) C150 Trichloroethene	6.05		171137	123.93 ng	93

Acq On : 20 Dec 2005 13:18

Sample : VSTD025

Misc : Integrator: RTE

Quant Time: Dec 20 15:01:38 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

_							
Int	ernal	Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
					_		Rcv(Ar)
37)	C140	1,2-Dichloropropane	6.27	63	173873	121.96 ng	97
38)	C278	Dibromomethane	6.40	93	99651	123.34 ng	87
39)	C130	Bromodichloromethane	6.55	83	205226	124.83 ng	95
40)	C161	2-Chloroethylvinyl E	6.83	63	600107	635.65 ng	93
41)	C012	Methylcyclohexane	6.21	83	321652	125.16 ng	89
42)	C145	cis-1,3-Dichloroprop	6.97	75	265869	125.56 ng	99
45)	C230	Toluene	7.29	92	434269	125.79 ng	98
46)	C170	trans-1,3-Dichloropr	7.53	75	249336	127.52 ng	93
47)	C284	Ethyl Methacrylate	7.60	69	236709	127.26 ng	99
48)	C160	1,1,2-Trichloroethan	7.72	83	121318	123.82 ng	99
49)	C210	4-Methyl-2-pentanone	7.11	43	913028	629.44 ng	99
	C220	Tetrachloroethene	7.84	166	186217	127.22 ng	91
51)	C221	1,3-Dichloropropane	7.88	76	272115	125.13 ng	99
52)	C155	Dibromochloromethane	8.13	129	144350	125.11 ng	98
53)	C163	1,2-Dibromoethane	8.24	107	148224	125.68 ng	100
54)	C215	2-Hexanone	7.95	43	646861	625.08 ng	99
55)	C235	Chlorobenzene	8.73	112	488753	125.52 ng	98
56)	C281	1,1,1,2-Tetrachloroe	8.82	131	161955	126.95 ng	93
57)	C240	Ethylbenzene	8.83	91	832141	126.52 ng	99
58)	C246	m,p-Xylene	8.95	106	645558	252.03 ng	95
59)	C247	o-Xylene	9.38	106	316758	125.70 ng	99
60)	C245	Styrene	9.40	104	513886	128.24 ng	99
61)	C180	Bromoform	9.62	173	86100	127.10 ng	98
64)	C966	Isopropylbenzene	9.75	105	834612	125.86 ng	97
-	C301	Bromobenzene	10.08	156	203232	124.15 ng	93
	C225	1,1,2,2-Tetrachloroe	10.10	83	191055	124.45 ng	100
-	C282	1,2,3-Trichloropropa	10.14	110	61013	123.06 ng	100
	C283	t-1,4-Dichloro-2-But	10.15	51	119118	636.12 ng	# 63
	C302	n-Propylbenzene	10.17	91	1048935	127.25 ng	97
	C303	2-Chlorotoluene	10.27	126	198367	124.35 ng	100
71)	C289	4-Chlorotoluene	10.38	126	207032	124.78 ng	100
72)	C304	1,3,5-Trimethylbenze	10.34	105	707332	125.58 ng	95
73)	C306	tert-Butylbenzene	10.66	134	158192	125.78 ng	95
	C307	1,2,4-Trimethylbenze	10.71	105	719790	125.96 ng	96
75)	C308	sec-Butylbenzene	10.87	105	879746	126.10 ng	96
	C260	1,3-Dichlorobenzene	10.99	146	393940	124.56 ng	98
77)	C309	4-Isopropyltoluene	11.00	119	803085	127.34 ng	98
78)	C267	1,4-Dichlorobenzene	11.08	146	404003	123.24 ng	97
79)	C249	1,2-Dichlorobenzene	11.42	146	384241	123.10 ng	89
80)	C310	n-Butylbenzene	11.38	91	731820	125.27 ng	98
81)	C286	1,2-Dibromo-3-Chloro	12.12	75	34009	123.46 ng	90
82)	C313	1,2,4-Trichlorobenze	12.82	180	260502	110.82 ng	97
83)	C316	Hexachlorobutadiene	12.95	225	120266	115.44 ng	98
84)	C314	Naphthalene	13.03	128	536501	110.02 ng	99
85)	C934	1,2,3-Trichlorobenze	13.23	180	220456	107.07 ng	96

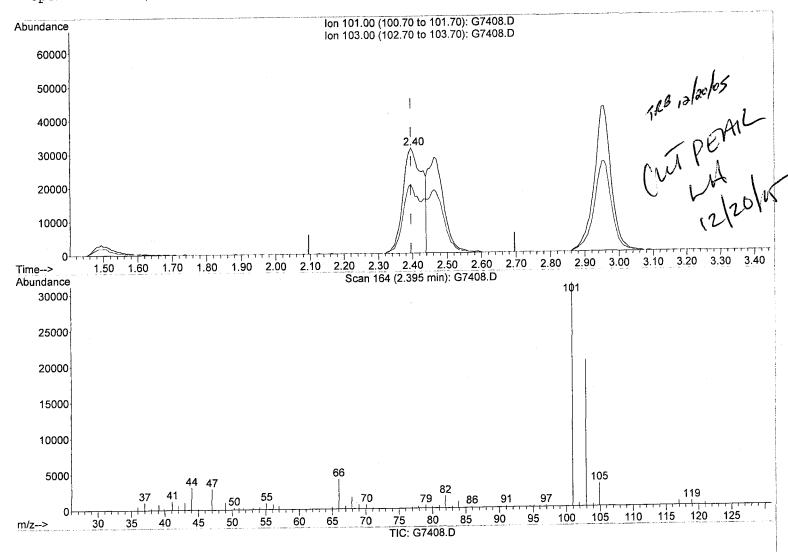
^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Acq On : 20 Dec 2005 13:18

Sample : VSTD025

Misc

Integrator: RTE


Quant Time: Dec 20 14:58:01 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 20 14:56:38 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122005\

Operator : LH/TRB

(7) C275 Trichlorofluoromethane (T)

2.40min (+0.000) 106.75ng

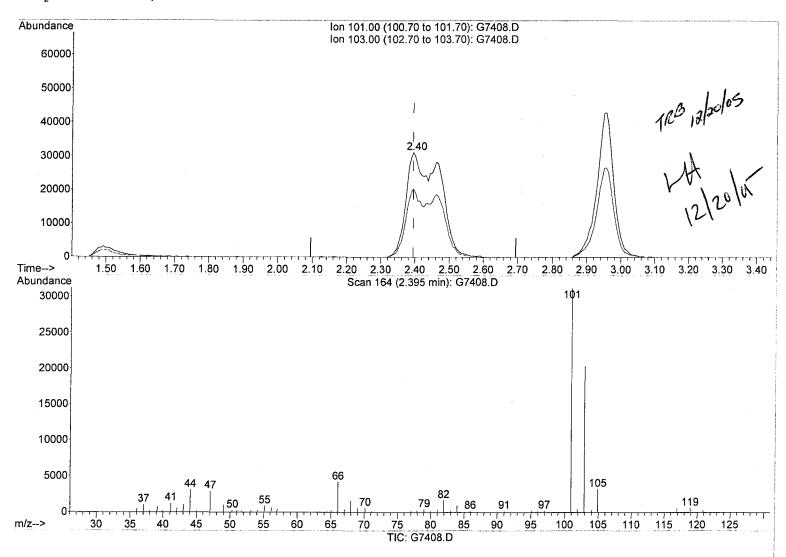
Ion	Exp%	Act%
101.00	100	100
103.00	63.20	65.32
0.00	0.00	0.00
0.00	0.00	0.00

Acq On : 20 Dec 2005 13:18

Sample : VSTD025

Misc

Integrator: RTE


Quant Time: Dec 20 14:58:01 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Operator : LH/TRB

(7) C275 Trichlorofluoromethane (T)

2.40min (+0.000) 184.89ng m

lon	Exp%	Act%
101.00	100	100
103.00	63.20	65.32
0.00	0.00	0.00
0.00	0.00	0.00

Acq On : 20 Dec 2005 11:27

: VSTD050 Sample

Misc

Integrator: RTE

Quant Time: Dec 20 14:58:37 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title: 8260 5ML WATER
QLast Update: Tue Dec 20 14:56:38 2005
Response via: Initial Calibration
Data Path: C:\MSDCHEM\1\DATA\122005\

Internal Standards			Response		nits	Dev(Rcv(Min) Ar)
1) CI10 1,4-Difluorobenzene					o ng		0.00 .21%
43) CI20 Chlorobenzene-D5	8.70	82	193571	125.0	ng ng		0.00 .31%
63) CI30 1,4-Dichlorobenzene-	11.06	152	186771	125.0	0 ng		0.00
31) CS15 1,2-Dichloroethane-D Spiked Amount 125.000 Ran 44) CS05 Toluene-D8 Spiked Amount 125.000 Ran 62) CS10 p-Bromofluorobenzene Spiked Amount 125.000 Ran	ge 70 5.41 ge 73 7.22 ge 77	- 130 65 - 136 98 - 122 174	Recove 300407 Recove 942280 Recove 287723	ery = 243.56 ery = 241.41 ery = 239.91	195 ng 194 ng 193 ng	.09%# .85%# .13%# .93%#	0.00
Target Compounds						Qva	lue
2) C290 Dichlorodifluorometh			325575		_		97
3) C010 Chloromethane	1.63		386652	235.75			97
4) C020 Vinyl chloride	1.77		383253				99
5) C015 Bromomethane	2.05	94	163783				100
6) C025 Chloroethane	2.15		197635				100
7) C275 Trichlorofluorometha				393.18			96
8) C045 1,1-Dichloroethene	2.93	96	267253	237.35		4.4	88
9) C030 Methylene chloride	3.44		322227	208.73	_		90
10) C040 Carbon disulfide	3.14	76	791928		_		97
11) C036 Acrolein	2.86	56	495382		-		100
12) C038 Acrylonitrile	3.68	53	2414042	4983.55			100
13) C035 Acetone	3.02	43	507027	1216.77			98
14) C300 Acetonitrile	3.30	41	1787691	9812.80			100
15) C276 Iodomethane	3.09			250.01			95
16) C291 1,1,2-Trichloro-1,2,	2.96	101	307657 1007005	261.18	ng		93
17) C962 T-butyl Methyl Ether	3.69	73	1007005	248.18	ng		92
18) C057 trans-1,2-Dichloroet	3.68	96	300905	238.09	ng	#	52
19) C255 Methyl Acetate		43	421558	228.09	ng		97
20) C050 1,1-Dichloroethane			580043	241.17	ng		98
21) C125 Vinyl Acetate	4.13	43	3327739	1296.74			96
22) C051 2,2-Dichloropropane	4.63	77	491649				92
23) C056 cis-1,2-Dichloroethe	4.64	96	336305	239.25	_		92
24) C272 Tetrahydrofuran	4.91	42	540123	1239.49			92
25) C222 Bromochloromethane	4.87	128	166526	243.65			91
27) C060 Chloroform	4.95	83	562016	241.78			96
28) C115 1,1,1-Trichloroethan	5.10	97	486229	243.52			95
29) C120 Carbon tetrachloride	5.25	117	412825	246.09	7.		99
30) C116 1,1-Dichloropropene	5.25	75	440178	243.91			88
32) C165 Benzene	5.44	78	1269683	240.78			98 95
33) C065 1,2-Dichloroethane	5.48	62	481425	246.83	_		95 93
34) C110 2-Butanone	4.66	43	811302	1222.58			93 86
35) C256 Cyclohexane	5.14	56	594565	254.54		•	93
36) C150 Trichloroethene	6.06	95	325692	240.34	119		در

Acq On : 20 Dec 2005 11:27

Sample : VSTD050

Misc :

Integrator: RTE

Quant Time: Dec 20 14:58:37 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Intern	nal Standards	R.T.	QIon	Response	Conc Units		/(Min) /(Ar)
37) C1	140 1,2-Dichloropropane	6.27	63	341935	244.42 ng		98
38) C2		6.40	93	196138	247.39 ng		88
39) C1		6.55	83	403510	250.11 ng		94
40) C1		6.83	63	1168499	1261.29 ng		94
41) C	- -	6.22	83	650316	257.87 ng		90
42) C1		6.98	75	516191	248.43 ng		97
45) C2		7.29	92	823728	240.43 ng		100
46) C1		7.53	75	498481	256.64 ng		94
	284 Ethyl Methacrylate	7.60	69	472931	255.95 ng		99
48) C1		7.72	83	237517	244.01 ng		99
49) C2	210 4-Methyl-2-pentanone	7.11	43	1794392	1245.26 ng		100
50) C2	- ~	7.11	166	347432	238.93 ng		92
51) C2		7.89	76	532272	246.39 ng		98
52) C1	·	8.13	129	293292			99
53) C1		8.24	107	291390	255.88 ng		
54) C2		7.95	43	1275141	248.71 ng		98
55) C2		8.73	112		1240.38 ng		100
56) C2		8.82	131	925582	239.27 ng		98 93
57) C2		8.83		315566	248.99 ng		
58) C2	. 2	8.95	91 106	1577680	241.46 ng		99
59) C2	· ± ±	9.38		1214835	477.42 ng		96
60) C2		9.40	106	601962	240.47 ng		96
61) C1	4	9.63	104 173	988966	248.43 ng		99
64) C9		9.76	105	180997	268.97 ng		97
65) C3		10.08	156	1585612	239.67 ng		98 05
66) C2		10.00		384892	235.67 ng		95
67) C2	, , , ============		83	378412	247.06 ng		100
68) C2	· · ·	10.14	110	116094	234.71 ng	11	100
69) C3		10.15	51	261462	1399.51 ng	#	66
70) C3		10.17	91 126	1995604	242.66 ng		98
70) C3		10.27	126	377502	237.19 ng		100
71) C2 72) C3			126	392823	237.31 ng		100
72) C3		10.34 10.66	105	1361035	242.21 ng		98
74) C3		10.88	134	302576	241.13 ng		95
75) C3			105	1378112	241.72 ng		97
76) C2		10.87	105	1680286	241.40 ng		97
77) C3		10.99	146	748633	237.26 ng		. 96
77) C3		11.00	119	1526068	242.54 ng		98
79) C2	•	11.08	146	778115	237.91 ng		97
80) C3		11.42	146	742937	238.57 ng		90
81) C2		11.38	91 75	1405287	241.11 ng		98
82) C3		12.12	75	71294	259.41 ng		94
83) C3		12.82	180	509093	217.07 ng		98
84) C3		12.95	225	229997	221.29 ng		98
85) C9	<u> </u>	13.03 13.23	128 180	1110728	228.31 ng		99 100
~~~~			<u> </u>	428606	208.64 ng		

⁽#) = qualifier out of range (m) = manual integration (+) = signals summed

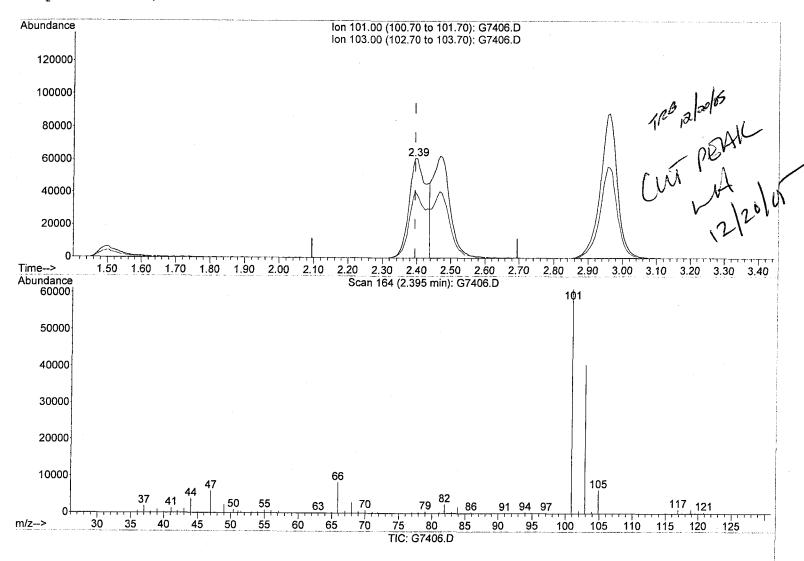
Acq On : 20 Dec 2005 11:27

Sample : VSTD050

Misc

:

Integrator: RTE


Quant Time: Dec 20 14:57:55 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Operator : LH/TRB



## (7) C275 Trichlorofluoromethane (T)

2.39min (+0.000) 196.96ng

response 220300

 ion
 Exp%
 Act%

 101.00
 100
 100

 103.00
 63.20
 66.44

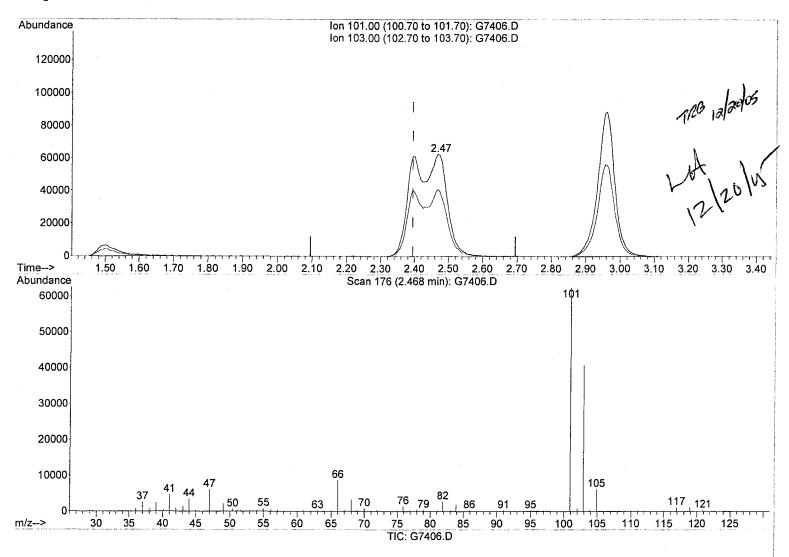
 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

Acq On : 20 Dec 2005 11:27

Sample : VSTD050

Misc : Integrator: RTE


Quant Time: Dec 20 14:57:55 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Operator : LH/TRB



## (7) C275 Trichlorofluoromethane (T)

2.47min (+0.073) 393.18ng m

response 439761

 lon
 Exp%
 Act%

 101.00
 100
 100

 103.00
 63.20
 65.23

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

Data File: C:\MSDCHEM\1\DATA\122005\G7407.D

Acq On : 20 Dec 2005 11:50

: VSTD100 Sample

Misc

Integrator: RTE

Quant Time: Dec 20 15:00:09 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Internal	Standards	R.T.	QIon	Response		Dev(Min) Rcv(Ar )
1) CI10	1,4-Difluorobenzene	5.81	114	396488		0.00 133.72%
43) CI20	Chlorobenzene-D5	8.70	82	198746		0.00 136.87%
63) CI30	1,4-Dichlorobenzene-	11.06	152	186826	125.00 ng	0.00 116.88%
26) CS87	nitoring Compounds Dibromofluoromethane	5.10	111	537599	541.68 NG	0.00
Spiked A	mount 125.000 Ran	ge 70	- 130	Recove		.34%#
31) CS15	1,2-Dichloroethane-D	5.41	65	697344	546.33 ng	0.00 nes#
Spiked A	mount 125.000 Ran	ge 73	- 136	Recove	ery = 43/	0 00
44) CS05	Toluene-D8	77.22	98 - 122	Z131Z11	331.70  ng	42%#
Spiked A	Toluene-D8 mount 125.000 Ran p-Bromofluorobenzene	96 77	174	651517	529.10 ng	0.00
Sniked A	mount 125.000 Ran	αe 74	- 120	Recove	ery = 423	.28%#
Target Co		<i>.</i>			•	Qvalue
2) C290	Dichlorodifluorometh	1.50	85	633030	471.65 ng	98
	Chloromethane		50	780422	459.82 ng	95
4) C020	Vinvl chloride	1.78		765712m	468.73 ng 434.85 ng	0
5) C015	Bromomethane Chloroethane Trichlorofluorometha	2.06 2.16	94	335471	434.85 ng 471.16 ng	99
6) C025	Chloroethane	2.16	64	415711	471.16 ng	100
7) C275	Trichlorofluorometha	2.47	101		750.32 ng	99 88
	1,1-Dichloroethene	2.94	96	545884	468.48 ng	
9) C030	Methylene chloride	3.44	84	656833	411.15 ng 473.50 ng	97
10) C040	Carbon disulfide Acrolein	3.14	E 6	1088815	10139.58 ng	1 99
11) C036	Acrolein Acrylonitrile Acetone	2.00	53		9428.68 ng	
12) C038 13) C035	Acrylonicille	3.00	43	1024127		
14) C300	Acetone Acetonitrile Iodomethane	3.31	41			
14) C300 15) C276	Iodomethane	3.09	142	901481	479.65 ng	95
16) C291	1,1,2-Trichloro-1,2,	2.97	101	605137	496.42 ng	92
17) C962	T-butyl Methyl Ether	3.69	73	2001349	476.62 ng 454.49 ng 446.53 ng	92
18) C057	trans-1,2-Dichloroet	3.69	96	594421	454.49 ng	# 53
19) 0255	Methyl Acetate	3.33	43	854052	446.53 ng	97
20) C050	1,1-Dichloroethane	4.09	63	1185654	476.36 ng	98
21) C125	Vinyl Acetate	4.13		6533023	2460.01 ng	96 94
22) C051	2,2-Dichloropropane	4.63		1003243	1,2.,0 119	94 91
23) C056	cis-1,2-Dichloroethe	4.64	96	677223	465.55 ng 2406.26 ng	93
24) C272	Tetrahydrofuran	4.91		1085107 335592	474.47 ng	93
25) C222	Bromochloromethane	4.87 4.95		1138060	473.10 ng	96
27) C060	Chloroform 1,1,1-Trichloroethan	5.10		991605	479.90 ng	95
28) C115 29) C120	Carbon tetrachloride	5.25		856312	493.26 ng	100
30) C116	1,1-Dichloropropene	5.25		899152	481.44 ng	87
32) C165	Benzene	5.44		2559170	468.96 ng	98
33) C065	1,2-Dichloroethane	5.48	62	982104	486.56 ng	96
34) C110	2-Butanone	4.66		1623914	2364.70 ng	94
35) C256	Cyclohexane	5.14		1174359	485.82 ng	87
36) C150	Trichloroethene	6.06	95	668779	476.90 ng	94

Acq On : 20 Dec 2005 11:50

Sample : VSTD100

Misc :

Integrator: RTE

Quant Time: Dec 20 15:00:09 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

37) C140 1,2-Dichloropropane 6.27 63 702747 485.41 ng	v(Ar)
- 571 1 1401 1 7 200 TO TO TO TO TO TO TO TO TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TH	98
38) C278 Dibromomethane 6.41 93 400507 488.15 ng	83
39) C130 Bromodichloromethane 6.56 83 842621 504.70 ng	9.3
40) C161 2-Chloroethylvinyl E 6.83 63 2324498 2424.57 ng	94
41) C012 Methylcyclohexane 6.22 83 1276538 489.14 ng	90
42) C145 cis-1,3-Dichloroprop 6.98 75 1082827 503.58 ng	98
45) C230 Toluene 7.29 92 1662008 471.97 ng	99
46) C170 trans-1,3-Dichloropr 7.53 75 1034056 518.51 ng	95
47) C284 Ethyl Methacrylate 7.60 69 962147 507.16 ng	99
48) C160 1,1,2-Trichloroethan 7.72 83 484522 484.81 ng	98
49) C210 4-Methyl-2-pentanone 7.11 43 3550249 2399.62 ng	99
50) C220 Tetrachloroethene 7.84 166 697984 467.51 ng	95
51) C221 1,3-Dichloropropane 7.89 76 1075789 485.02 ng	100
52) C155 Dibromochloromethane 8.13 129 620264 527.05 ng	99
53) C163 1,2-Dibromoethane 8.24 107 592450 492.51 ng	99
54) C215 2-Hexanone 7.95 43 2538424 2404.93 ng	100
55) C235 Chlorobenzene 8.74 112 1873356 471.67 ng	98
56) C281 1,1,1,2-Tetrachloroe 8.82 131 637081 489.59 ng	95
57) C240 Ethylbenzene 8.83 91 3149411 469.46 ng	100
58) C246 m,p-Xylene 8.95 106 2433541 931.47 ng	97
59) C247 o-Xylene 9.38 106 1215062 472.75 ng	95
60) C245 Styrene 9.40 104 2001130 489.59 ng	98
61) C180 Bromoform 9.63 173 389309 563.46 ng	97
64) C966 Isopropylbenzene 9.76 105 3198827 483.38 ng	98
65) C301 Bromobenzene 10.08 156 769003 470.72 ng	98
66) C225 1,1,2,2-Tetrachloroe 10.10 83 766437 500.25 ng	99
67) C282 1,2,3-Trichloropropa 10.14 110 235634 476.24 ng	100
68) C283 t-1,4-Dichloro-2-But 10.15 51 567445 3036.44 ng #	
69) C302 n-Propylbenzene 10.17 91 3988953 484.91 ng	97
70) C303 2-Chlorotoluene 10.27 126 761241 478.15 ng	100
71) C289 4-Chlorotoluene 10.38 126 788660 476.30 ng	100
72) C304 1,3,5-Trimethylbenze 10.34 105 2715747 483.15 ng	97
73) C306 tert-Butylbenzene 10.66 134 602139 479.72 ng	97
74) C307 1,2,4-Trimethylbenze 10.71 105 2788349 488.94 ng	98
75) C308 sec-Butylbenzene 10.87 105 3375647 484.83 ng	98
76) C260 1,3-Dichlorobenzene 11.00 146 1468805 465.36 ng	97
77) C309 4-Isopropyltoluene 11.00 119 3036689 482.48 ng	99
78) C267 1,4-Dichlorobenzene 11.08 146 1556031 475.62 ng	96
79) C249 1,2-Dichlorobenzene 11.42 146 1479885 475.07 ng	90
80) C310 n-Butylbenzene 11.38 91 2825802 484.69 ng	99
81) C286 1,2-Dibromo-3-Chloro 12.12 75 151898 552.52 ng	94
82) C313 1,2,4-Trichlorobenze 12.82 180 1004748 428.29 ng	99
83) C316 Hexachlorobutadiene 12.95 225 449179 432.04 ng	98
84) C314 Naphthalene 13.03 128 2225133 457.25 ng	98 97
85) C934 1,2,3-Trichlorobenze 13.23 180 846463 411.93 ng	<i>J  </i>

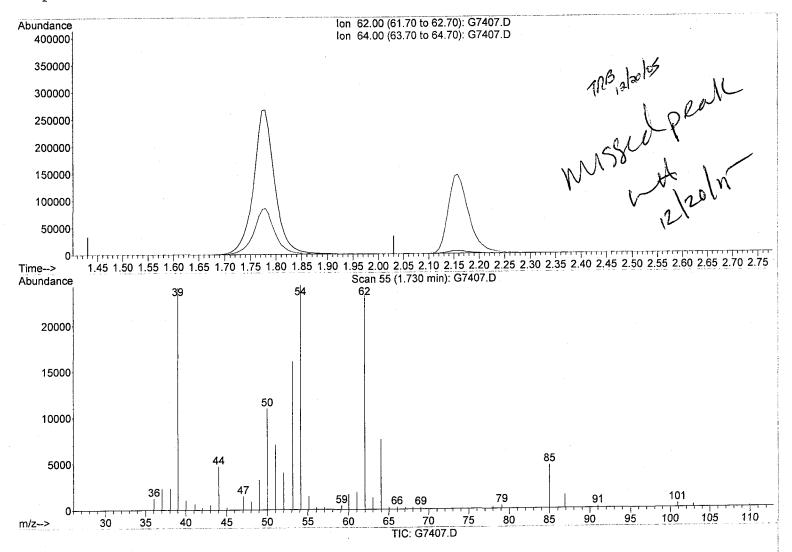
^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Acq On : 20 Dec 2005 11:50

Sample : VSTD100

Misc

Integrator: RTE


Quant Time: Dec 20 14:57:46 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Operator : LH/TRB



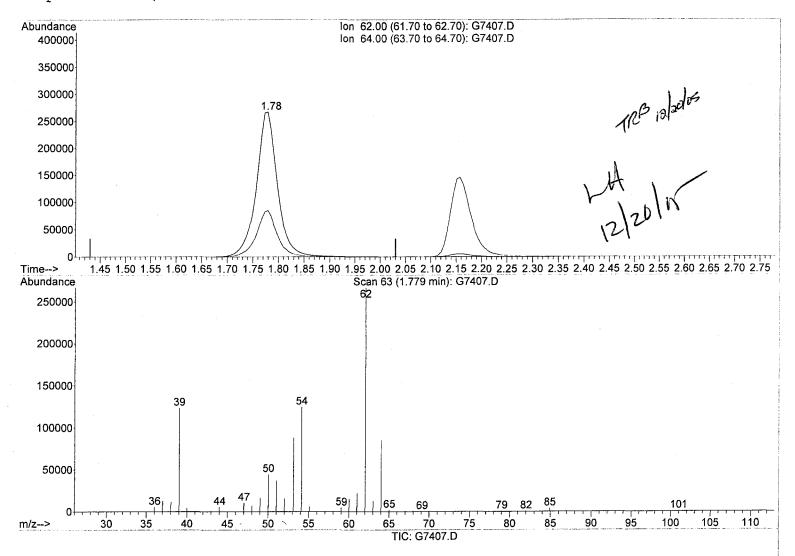
## (4) C020 Vinyl chloride (T)

1.73min (-1.730) 0.00ng

lon	Exp%	Act%
62.00	100	0.00
64.00	29.90	0.00
0.00	0.00	0.00
0.00	0.00	0.00

Acq On : 20 Dec 2005 11:50

Sample : VSTD100


Misc :

Integrator: RTE
Quant Time: Dec 20 14:57:46 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M Quant Title: 8260 5ML WATER

QLast Update: Tue Dec 20 14:56:38 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122005\

Operator : LH/TRB



## (4) C020 Vinyl chloride (T)

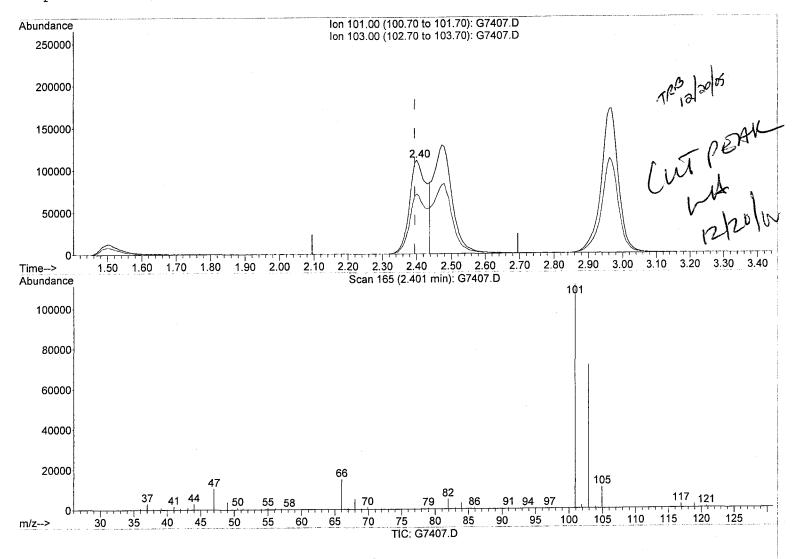
1.78min (+0.049) 468.73ng m

lon	Exp%	Act%
62.00	100	100
64.00	29.90	31.86
0.00	0.00	0.00
0.00	0.00	0.00

Acq On : 20 Dec 2005 11:50

Sample : VSTD100

Misc : Integrator: RTE


Quant Time: Dec 20 14:57:46 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 20 14:56:38 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122005\

Operator : LH/TRB



## (7) C275 Trichlorofluoromethane (T)

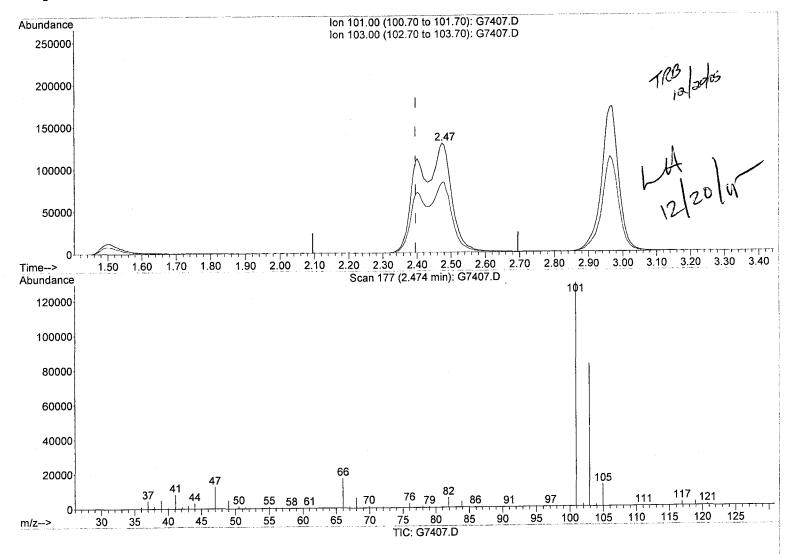
2.40min (+0.006) 335.38ng

lon	Exp%	Act%
101.00	100	100
103.00	63.20	64.06
0.00	0.00	0.00
0.00	0.00	0.00

Acq On : 20 Dec 2005 11:50

Sample : VSTD100

Misc : Integrator: RTE


Quant Time: Dec 20 14:57:46 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 20 14:56:38 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122005\

Operator : LH/TRB



### (7) C275 Trichlorofluoromethane (T)

2.47min (+0.079) 750.32ng m

response 868471

 Ion
 Exp%
 Act%

 101.00
 100
 100

 103.00
 63.20
 63.70

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

## METHOD 8260 - AQUEOUS (30% RSD/ 20% D) CONTINUING CALIBRATION CHECK

Lab Name: <u>STL Buffalo</u> Contract: 4 Lab Samp ID: <u>A5C0006619-1</u>

Lab Code: <u>RECNY</u> Case No.: _____ SAS No.: ____ SDG No: <u>1205GW</u>

Lab File Id: <u>G7591.RR</u> Calibration Date: <u>12/27/2005</u> Time: <u>08:35</u>

Intrument ID: <u>HP5973G</u> Init. Calib. Date(s): <u>12/20/2005</u> <u>12/20/2005</u>

Heated Purge (Y/N): N Init. Calib. Times: 11:27 14:25

GC Column: <u>DB-624</u> ID: <u>0.25</u>(mm)

Chloroethane       0.2780       0.2826       0.0100       -1.600       100.00         Methylene chloride       0.5040       0.4527       0.0100       10.200       100.00         Acetone       0.1360       0.2261       0.0100       -66.200       100.00         Carbon Disulfide       1.0760       1.4896       0.0100       -38.400       100.00	Drummi. <u>DB-024</u> ID: <u>0.25</u> (mm)					
Bromomethane	COMPOUND		RRF25		% D	
Vinyl chloride         0.5150         0.4149         0.0100         19.400         20.00           Chloroethane         0.2780         0.2826         0.0100         -1.600         100.00           Methylene chloride         0.5040         0.4527         0.0100         10.200         100.00           Acetone         0.1360         0.2261         0.0100         -66.200         100.00           Carbon Disulfide         1.0760         1.4896         0.0100         -38.400         100.00           1,1-Dichloroethene         0.3670         0.3730         0.0100         -1.600         20.00           1,1-Dichloroethane         0.4590         0.4649         0.0100         -1.300         100.00           cis-1,2-Dichloroethane         0.4590         0.4649         0.0100         -1.300         100.00           Chloroform         0.7580         0.7666         0.0100         -1.300         100.00           1,2-Dichloroethane         0.6360         0.6418         0.0100         -1.400         100.00           2-Butanone         0.2170         0.2266         0.0100         -4.400         100.00           1,1,1-Trichloroethane         0.6510         0.6836         0.0100         -5.000 <t< td=""><td>Chloromethane</td><td>0.5350</td><td>0.3965</td><td>0.1000</td><td>25.900</td><td>100.00</td></t<>	Chloromethane	0.5350	0.3965	0.1000	25.900	100.00
Vinyl chloride         0.5150         0.4149         0.0100         19.400         20.00           Chloroethane         0.2780         0.2826         0.0100         -1.600         100.00           Methylene chloride         0.5040         0.4527         0.0100         10.200         100.00           Acetone         0.1360         0.2261         0.0100         -66.200         100.00           Carbon Disulfide         1.0760         1.4896         0.0100         -38.400         100.00           1,1-Dichloroethene         0.3670         0.3730         0.0100         -1.600         20.00           1,1-Dichloroethane         0.4590         0.4649         0.0100         -1.300         100.00           cis-1,2-Dichloroethane         0.4590         0.4649         0.0100         -1.300         100.00           Chloroform         0.7580         0.7666         0.0100         -1.300         100.00           1,2-Dichloroethane         0.6360         0.6418         0.0100         -1.400         100.00           2-Butanone         0.2170         0.2266         0.0100         -4.400         100.00           1,1,1-Trichloroethane         0.6510         0.6836         0.0100         -5.000 <t< td=""><td></td><td>0.2430</td><td></td><td>0.0100</td><td>10.500</td><td>100.00</td></t<>		0.2430		0.0100	10.500	100.00
Chloroethane Methylene chloride Acetone Carbon Disulfide 1.0760				0.0100		
Methylene chloride         0.5040         0.4527         0.0100         10.200         100.00           Acetone         0.1360         0.2261         0.0100         -66.200         100.00           1,1-Dichloroethene         1.0760         1.4896         0.0100         -38.400         100.00           1,1-Dichloroethane         0.3670         0.3730         0.0100         -1.600         20.00           1,1-Dichloroethane         0.7850         0.8079         0.1000         -2.900         100.00           cis-1,2-Dichloroethene         0.4590         0.4649         0.0100         -1.300         100.00           Chloroform         0.6360         0.7666         0.0100         -3.400         100.00           1,2-Dichloroethane         0.6360         0.6418         0.0100         -1.100         20.00           1,2-Dichloroethane         0.6510         0.6836         0.0100         -4.400         100.00           2-Butanone         0.2170         0.2266         0.0100         -4.400         100.00           2-Butanone         0.5260         0.5715         0.0100         -5.000         100.00           2-Dichloropropane         0.4560         0.4590         0.0100         -2.800 <t< td=""><td></td><td>Ť</td><td></td><td></td><td></td><td>B .</td></t<>		Ť				B .
Acetone         0.1360         0.2261         0.0100         -66.200         100.00           Carbon Disulfide         1.0760         1.4896         0.0100         -38.400         100.00           1,1-Dichloroethene         0.3670         0.3730         0.0100         -1.600         20.00           1,1-Dichloroethane         0.4590         0.4649         0.0100         -1.300         100.00           cis-1,2-Dichloroethane         0.4120         0.4260         0.0100         -3.400         100.00           Chloroform         0.7580         0.7666         0.0100         -1.300         100.00           1,2-Dichloroethane         0.6360         0.6418         0.0100         -0.900         100.00           2-Butanone         0.6510         0.6836         0.0100         -5.000         100.00           2-Butanone         0.6510         0.6836         0.0100         -5.000         100.00           2-Butanone         0.5470         0.6603         0.0100         -9.700         100.00           Carbon Tetrachloride         0.5470         0.6603         0.0100         -9.700         100.00           1,2-Dichloropropane         0.4560         0.5715         0.0100         -9.300         100						
Carbon Disulfide         1.0760         1.4896         0.0100         -38.400         100.00           1,1-Dichloroethene         0.3670         0.3730         0.0100         -1.600         20.00           cis-1,2-Dichloroethene         0.4590         0.4649         0.0100         -1.300         100.00           trans-1,2-Dichloroethene         0.4120         0.4260         0.0100         -3.400         100.00           Chloroform         0.6360         0.6418         0.0100         -1.300         100.00           1,2-Dichloroethane         0.6360         0.6418         0.0100         -0.900         100.00           2-Butanone         0.6360         0.6418         0.0100         -4.400         100.00           1,1,-Trichloroethane         0.6510         0.6836         0.0100         -5.000         100.00           1,2-Dichloroptopane         0.5470         0.6033         0.0100         -9.700         100.00           1,2-Dichloropropane         0.4560         0.4690         0.0100         -2.800         20.00           cis-1,3-Dichloropropene         0.4560         0.4690         0.0100         -2.800         20.00           Dibromochloromethane         0.6290         0.6366         0.0100	Acetone			1	1	I .
1,1-Dichloroethane       0.3670       0.3730       0.0100       -1.600       20.00         1,1-Dichloroethane       0.7850       0.8079       0.1000       -2.900       100.00         cis-1,2-Dichloroethene       0.4590       0.4649       0.0100       -3.400       100.00         trans-1,2-Dichloroethene       0.4120       0.4260       0.0100       -3.400       100.00         Chloroform       0.7580       0.7666       0.0100       -1.100       20.00         1,2-Dichloroethane       0.6360       0.6418       0.0100       -0.900       100.00         2-Butanone       0.2170       0.2266       0.0100       -4.400       100.00         1,1,1-Trichloroethane       0.6510       0.6836       0.0100       -5.000       100.00         Carbon Tetrachloride       0.5470       0.6003       0.0100       -5.000       100.00         Bromodichloromethane       0.5260       0.5715       0.0100       -8.600       100.00         1,2-Dichloropropane       0.6780       0.7409       0.0100       -2.800       20.00         cis-1,3-Dichloropropene       0.6290       0.6366       0.0100       -2.800       100.00         1,1,2-Trichloroethane       0.6290				1		
1,1-Dichloroethane       0.7850       0.8079       0.1000       -2.900       100.00         cis-1,2-Dichloroethene       0.4590       0.4649       0.0100       -1.300       100.00         Chloroform       0.7580       0.7666       0.0100       -1.100       20.00         1,2-Dichloroethane       0.6360       0.6418       0.0100       -0.900       100.00         2-Butanone       0.6510       0.6836       0.0100       -4.400       100.00         1,1,1-Trichloroethane       0.5570       0.6033       0.0100       -5.000       100.00         Carbon Tetrachloride       0.5470       0.6003       0.0100       -9.700       100.00         Bromodichloromethane       0.55260       0.5715       0.0100       -8.600       100.00         1,2-Dichloropropane       0.6780       0.7409       0.0100       -9.300       100.00         1,2-Dichloropropene       0.6780       0.7409       0.0100       -9.300       100.00         Trichloroethene       0.7400       0.8244       0.0100       -2.800       2.00         Dibromochloromethane       0.7400       0.8244       0.0100       -1.200       100.00         1,1,2-Trichloropropene       1.2540       1.368						
cis-1,2-Dichloroethene         0.4590         0.4649         0.0100         -1.300         100.00           trans-1,2-Dichloroethene         0.4120         0.4260         0.0100         -3.400         100.00           Chloroform         0.7580         0.7666         0.0100         -1.100         20.00           1,2-Dichloroethane         0.6360         0.6418         0.0100         -0.900         100.00           2-Butanone         0.2170         0.2266         0.0100         -4.400         100.00           1,1-Trichloroethane         0.6510         0.6836         0.0100         -9.700         100.00           Bromodichloromethane         0.5260         0.5715         0.0100         -9.700         100.00           1,2-Dichloropropane         0.4560         0.4690         0.0100         -9.700         100.00           1,2-Dichloropropane         0.6780         0.7409         0.0100         -2.800         20.00           1,2-Dichloropropene         0.6780         0.7409         0.0100         -2.800         20.00           1,1,2-Trichloroethane         0.6290         0.6366         0.0100         -1.200         100.00           1,1,2-Trichloropropene         1.2540         1.3687         0.0100 <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td>			1			1
trans-1,2-Dichloroethene         0.4120         0.4260         0.0100         -3.400         100.00           Chloroform         0.7580         0.7666         0.0100         -1.100         20.00           1,2-Dichloroethane         0.6360         0.6418         0.0100         -0.900         100.00           2-Butanone         0.2170         0.2266         0.0100         -4.400         100.00           1,1,1-Trichloroethane         0.6510         0.6836         0.0100         -9.700         100.00           Carbon Tetrachloride         0.5470         0.6003         0.0100         -9.700         100.00           Bromodichloromethane         0.5260         0.5715         0.0100         -8.600         100.00           1,2-Dichloropropane         0.6780         0.7409         0.0100         -2.800         20.00           1,2-Dichloromethane         0.4500         0.4508         0.0100         -2.800         20.00           Trichloroethane         0.4420         0.4508         0.0100         -2.000         100.00           1,1,2-Trichloroethane         0.6290         0.6366         0.1000         -1.400         100.00           Bromoform         0.4350         0.5231         0.1000         -2.	· ·					
Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane 2-Bomodichloromethane 3,2-Dichloromethane 3,2-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,4-Z-Tichloroethane 3,4-Z-Tichloropropene 3,2-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethane 3,3-Dichloromethan	· ·					
1,2-Dichloroethane       0.6360       0.6418       0.0100       -0.900       100.00         2-Butanone       0.2170       0.2266       0.0100       -4.400       100.00         1,1,1-Trichloroethane       0.6510       0.6836       0.0100       -5.000       100.00         Bromodichloromethane       0.5470       0.6003       0.0100       -9.700       100.00         1,2-Dichloropropane       0.4560       0.4690       0.0100       -2.800       20.00         cis-1,3-Dichloropropene       0.6780       0.7409       0.0100       -9.300       100.00         Trichloroethane       0.4420       0.4508       0.0100       -2.800       20.00         Dibromochloromethane       0.7409       0.0100       -9.300       100.00         1,1,2-Trichloroethane       0.6290       0.6366       0.0100       -1.200       100.00         Benzene       1.7200       1.7924       0.0100       -4.200       100.00         trans-1,3-Dichloropropene       1.2540       1.3687       0.0100       -9.100       100.00         Bromoform       0.4350       0.5231       0.1000       -2.800       100.00         2-Hexanone       0.6640       0.6804       0.0100 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>•</td></td<>						•
2-Butanone 1,1,1-Trichloroethane 0.2170 0.2266 0.0100 0.4400 100.00 Carbon Tetrachloride 0.5470 0.6003 0.0100 0.9.700 0.000 Bromodichloromethane 0.5260 0.5715 0.0100 0.8860 0.0100 0.2.8600 0.000 0.2.800 0.0100 0.2.800 0.000 0.000 0.2.800 0.000 0.2.800 0.000 0.2.800 0.000 0.2.800 0.000 0.2.800 0.000 0.2.800 0.000 0.2.800 0.000 0.2.800 0.000 0.2.800 0.000 0.2.800 0.000 0.2.800 0.000 0.2.800 0.000 0.2.800 0.000 0.000 0.2.800 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000			1			1
1,1,1-Trichloroethane       0.6510       0.6836       0.0100       -5.000       100.00         Carbon Tetrachloride       0.5470       0.6003       0.0100       -9.700       100.00         Bromodichloromethane       0.5260       0.5715       0.0100       -8.600       100.00         1,2-Dichloropropane       0.4560       0.4690       0.0100       -2.800       20.00         cis-1,3-Dichloropropene       0.6780       0.7409       0.0100       -9.300       100.00         Trichloroethene       0.4420       0.4508       0.0100       -2.800       100.00         Dibromochloromethane       0.7400       0.8244       0.0100       -1.200       100.00         1,1,2-Trichloroethane       0.6290       0.6366       0.0100       -1.200       100.00         1,1,2-Trichloropropene       1.2540       1.3687       0.0100       -9.100       100.00         4-Methyl-2-pentanone       0.9310       0.9567       0.0100       -2.800       100.00         2-Hexanone       0.6640       0.6804       0.0100       -2.500       100.00         1,1,2,2-Tetrachloroethane       1.0250       1.0636       0.3000       -3.800       100.00         1,1,2-Trichloro-1,2,2-trifluoro	· · ·					
Carbon Tetrachloride         0.5470         0.6003         0.0100         -9.700         100.00           Bromodichloromethane         0.5260         0.5715         0.0100         -8.600         100.00           1,2-Dichloropropane         0.4560         0.4690         0.0100         -2.800         20.00           cis-1,3-Dichloropropene         0.6780         0.7409         0.0100         -9.300         100.00           Trichloroethane         0.4420         0.4508         0.0100         -2.000         100.00           Dibromochloromethane         0.7400         0.8244         0.0100         -11.400         100.00           1,1,2-Trichloroethane         0.6290         0.6366         0.0100         -1.200         100.00           Benzene         1.7200         1.7924         0.0100         -4.200         100.00           trans-1,3-Dichloropropene         1.2540         1.3687         0.0100         -9.100         100.00           Bromoform         0.4350         0.5231         0.1000         -2.800         100.00           4-Methyl-2-pentanone         0.9310         0.9567         0.0100         -2.800         100.00           2-Hexanone         0.6640         0.6804         0.0100         <	·					
Bromodichloromethane         0.5260         0.5715         0.0100         -8.600         100.00           1,2-Dichloropropane         0.4560         0.4690         0.0100         -2.800         20.00           cis-1,3-Dichloropropene         0.6780         0.7409         0.0100         -9.300         100.00           Trichloroethane         0.4508         0.0100         -2.000         100.00           Dibromochloromethane         0.7400         0.8244         0.0100         -11.400         100.00           1,1,2-Trichloroethane         0.6290         0.6366         0.0100         -12.200         100.00           Benzene         1.7200         1.7924         0.0100         -4.200         100.00           trans-1,3-Dichloropropene         1.2540         1.3687         0.0100         -9.100         100.00           Bromoform         0.4350         0.5231         0.1000         -2.800         100.00           4-Methyl-2-pentanone         0.9310         0.9567         0.0100         -2.800         100.00           2-Hexanone         0.6640         0.6804         0.0100         -2.500         100.00           Totack         0.22-Tetrachloroethane         1.0250         1.0636         0.3000		•	3			1
1,2-Dichloropropane       0.4560       0.4690       0.0100       -2.800       20.00         cis-1,3-Dichloropropene       0.6780       0.7409       0.0100       -9.300       100.00         Trichloroethene       0.4420       0.4508       0.0100       -2.000       100.00         Dibromochloromethane       0.7400       0.8244       0.0100       -11.400       100.00         1,1,2-Trichloroethane       0.6290       0.6366       0.0100       -1.200       100.00         Benzene       1.7200       1.7924       0.0100       -4.200       100.00         trans-1,3-Dichloropropene       1.2540       1.3687       0.0100       -9.100       100.00         4-Methyl-2-pentanone       0.9310       0.9567       0.0100       -2.800       100.00         2-Hexanone       0.6640       0.6804       0.0100       -2.500       100.00         1,1,2,2-Tetrachloroethane       1.0250       1.0636       0.3000       -3.800       100.00         1,1,2,2-Tetrachloroethane       2.2150       2.2853       0.0100       -3.200       20.00         Chlorobenzene       2.4980       2.4872       0.3000       0.400       100.00         Styrene       2.5710       2.6673 <td></td> <td></td> <td></td> <td></td> <td></td> <td>I</td>						I
cis-1,3-Dichloropropene       0.6780       0.7409       0.0100       -9.300       100.00         Trichloroethene       0.4420       0.4508       0.0100       -2.000       100.00         Dibromochloromethane       0.7400       0.8244       0.0100       -11.400       100.00         1,1,2-Trichloroethane       0.6290       0.6366       0.0100       -1.200       100.00         Benzene       1.7200       1.7924       0.0100       -4.200       100.00         trans-1,3-Dichloropropene       1.2540       1.3687       0.0100       -9.100       100.00         Bromoform       0.4350       0.5231       0.1000       -20.200       100.00         4-Methyl-2-pentanone       0.9310       0.9567       0.0100       -2.800       100.00         2-Hexanone       0.6640       0.6804       0.0100       -2.800       100.00         Tetrachloroethene       1.0250       1.0636       0.3000       -3.800       100.00         1,1,2,2-Tetrachloroethane       2.2150       2.2853       0.0100       -3.200       20.00         Chlorobenzene       4.2190       4.3008       0.0100       -3.700       100.00         Styrene       2.5710       2.6673       0.			l i		•	
Trichloroethene Dibromochloromethane O.4420 Dibromochloromethane O.7400 O.8244 O.0100 O.11.400 Dibromochloromethane O.6290 O.6366 O.0100 O-1.200 Dibromochloropethane O.6290 Dibromochloropethane O.6290 Dibromochloropethane O.6290 Dibromochloropethane O.6366 D.0100 O-1.200 Dibromochloropethane O.6290 Dibromochloropethane Dibromochloropethane O.6290 Dibromochloropethane Dibromoform O.4350 D.5231 D.1000 D.2000 D.2000 D.000 D.2000 D.000 D.2000 D.000 D.2000 D.000 D.2000 D.000 D.2000 D.000 D.2000 D.000 D.2000 D.000 D.2000 D.000 D.2000 D.000 D.2000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000						
Dibromochloromethane       0.7400       0.8244       0.0100       -11.400       100.00         1,1,2-Trichloroethane       0.6290       0.6366       0.0100       -4.200       100.00         Benzene       1.7200       1.7924       0.0100       -4.200       100.00         trans-1,3-Dichloropropene       1.2540       1.3687       0.0100       -9.100       100.00         Bromoform       0.4350       0.5231       0.1000       -20.200       100.00         4-Methyl-2-pentanone       0.9310       0.9567       0.0100       -2.800       100.00         2-Hexanone       0.6640       0.6804       0.0100       -2.500       100.00         Tetrachloroethene       1.0250       1.0636       0.3000       -3.800       100.00         1,1,2,2-Tetrachloroethane       2.2150       2.2853       0.0100       -3.200       20.00         Chlorobenzene       4.2190       4.3008       0.0100       -1.900       20.00         Ethylbenzene       2.5710       2.6673       0.0100       -3.700       100.00         Styrene       1.6170       1.6322       0.0100       -0.900       100.00         1,2,4-Trichloroethane       1.5700       1.4114       0.0100 </td <td></td> <td>Y .</td> <td></td> <td></td> <td></td> <td></td>		Y .				
1,1,2-Trichloroethane       0.6290       0.6366       0.0100       -1.200       100.00         Benzene       1.7200       1.7924       0.0100       -4.200       100.00         trans-1,3-Dichloropropene       1.2540       1.3687       0.0100       -9.100       100.00         Bromoform       0.4350       0.5231       0.1000       -2.200       100.00         4-Methyl-2-pentanone       0.9310       0.9567       0.0100       -2.800       100.00         2-Hexanone       0.6640       0.6804       0.0100       -2.500       100.00         Tetrachloroethene       0.9390       0.9449       0.0100       -0.600       100.00         1,1,2,2-Tetrachloroethane       1.0250       1.0636       0.3000       -3.800       100.00         Toluene       2.4980       2.4872       0.3000       -4.200       100.00         Chlorobenzene       4.2190       4.3008       0.0100       -3.200       20.00         Styrene       2.5710       2.6673       0.0100       -3.700       100.00         1,1,2-Trichloro-1,2,2-trifluoro       0.3840       0.3902       0.0100       -1.600       100.00         1,2-Dibromo-3-chloropropane       0.1840       0.1946       <						
Benzene       1.7200       1.7924       0.0100       -4.200       100.00         trans-1,3-Dichloropropene       1.2540       1.3687       0.0100       -9.100       100.00         Bromoform       0.4350       0.5231       0.1000       -20.200       100.00         4-Methyl-2-pentanone       0.9310       0.9567       0.0100       -2.800       100.00         2-Hexanone       0.6640       0.6804       0.0100       -2.500       100.00         Tetrachloroethene       0.9390       0.9449       0.0100       -0.600       100.00         1,1,2,2-Tetrachloroethane       1.0250       1.0636       0.3000       -3.800       100.00         Toluene       2.4980       2.4872       0.3000       -3.200       20.00         Chlorobenzene       4.2190       4.3008       0.0100       -1.900       20.00         Styrene       2.5710       2.6673       0.0100       -3.700       100.00         1,1,2-Trichloro-1,2,2-trifluoro       0.3840       0.3902       0.0100       -1.600       100.00         1,2-Dibromo-3-chloropropane       1.5700       1.4114       0.0100       -5.800       100.00         1,2-Dibromoethane       0.7570       0.7597       0						
trans-1,3-Dichloropropene       1.2540       1.3687       0.0100       -9.100       100.00         Bromoform       0.4350       0.5231       0.1000       -20.200       100.00         4-Methyl-2-pentanone       0.9310       0.9567       0.0100       -2.800       100.00         2-Hexanone       0.6640       0.6804       0.0100       -2.500       100.00         Tetrachloroethene       0.9390       0.9449       0.0100       -0.600       100.00         1,1,2,2-Tetrachloroethane       1.0250       1.0636       0.3000       -3.800       100.00         Toluene       2.2150       2.2853       0.0100       -3.200       20.00         Chlorobenzene       4.2190       4.3008       0.0100       -1.900       20.00         Ethylbenzene       2.5710       2.6673       0.0100       -3.700       100.00         5tyrene       2.5710       2.6673       0.0100       -0.900       100.00         1,1,2-Trichloro-1,2,2-trifluoro       0.3840       0.3902       0.0100       -1.600       100.00         1,2-Dibromo-3-chloropropane       0.1840       0.1946       0.0100       -5.800       100.00         1,2-Dibromoethane       0.7570       0.7597						
Bromoform       0.4350       0.5231       0.1000       -20.200       100.00         4-Methyl-2-pentanone       0.9310       0.9567       0.0100       -2.800       100.00         2-Hexanone       0.6640       0.6804       0.0100       -2.500       100.00         Tetrachloroethene       0.9390       0.9449       0.0100       -0.600       100.00         1,1,2,2-Tetrachloroethane       1.0250       1.0636       0.3000       -3.800       100.00         Toluene       2.2150       2.2853       0.0100       -3.200       20.00         Chlorobenzene       2.4980       2.4872       0.3000       0.400       100.00         Ethylbenzene       4.2190       4.3008       0.0100       -1.900       20.00         Styrene       2.5710       2.6673       0.0100       -3.700       100.00         1,1,2-Trichloro-1,2,2-trifluoro       0.3840       0.3902       0.0100       -1.600       100.00         1,2,4-Trichlorobenzene       1.5700       1.4114       0.0100       -5.800       100.00         1,2-Dibromo-3-chloropropane       0.1840       0.1946       0.0100       -5.800       100.00         1,2-Dibromoethane       0.7570       0.7597						
4-Methyl-2-pentanone0.93100.95670.0100-2.800100.002-Hexanone0.66400.68040.0100-2.500100.00Tetrachloroethene0.93900.94490.0100-0.600100.001,1,2,2-Tetrachloroethane1.02501.06360.3000-3.800100.00Toluene2.21502.28530.0100-3.20020.00Chlorobenzene2.49802.48720.30000.400100.00Ethylbenzene4.21904.30080.0100-1.90020.00Styrene2.57102.66730.0100-3.700100.001,1,2-Trichloro-1,2,2-trifluoro1.61701.63220.0100-0.900100.001,2,4-Trichlorobenzene1.57001.41140.0100-1.600100.001,2-Dibromo-3-chloropropane0.18400.19460.0100-5.800100.001,2-Dibromoethane0.75700.75970.0100-0.400100.00						
2-Hexanone0.66400.68040.0100-2.500100.00Tetrachloroethene0.93900.94490.0100-0.600100.001,1,2,2-Tetrachloroethane1.02501.06360.3000-3.800100.00Toluene2.21502.28530.0100-3.20020.00Chlorobenzene2.49802.48720.30000.400100.00Ethylbenzene4.21904.30080.0100-1.90020.00Styrene2.57102.66730.0100-3.700100.00Total Xylenes1.61701.63220.0100-0.900100.001,2,4-Trichloro-1,2,2-trifluoro0.38400.39020.0100-1.600100.001,2-Dibromo-3-chloropropane0.18400.19460.0100-5.800100.001,2-Dibromoethane0.75700.75970.0100-0.400100.00						
Tetrachloroethene       0.9390       0.9449       0.0100       -0.600       100.00         1,1,2,2-Tetrachloroethane       1.0250       1.0636       0.3000       -3.800       100.00         Toluene       2.2150       2.2853       0.0100       -3.200       20.00         Chlorobenzene       2.4980       2.4872       0.3000       0.400       100.00         Ethylbenzene       4.2190       4.3008       0.0100       -1.900       20.00         Styrene       2.5710       2.6673       0.0100       -3.700       100.00         Total Xylenes       1.6170       1.6322       0.0100       -0.900       100.00         1,2,4-Trichloro-1,2,2-trifluoro       0.3840       0.3902       0.0100       -1.600       100.00         1,2-Dibromo-3-chloropropane       0.1840       0.1946       0.0100       -5.800       100.00         1,2-Dibromoethane       0.7570       0.7597       0.0100       -0.400       100.00						
1,1,2,2-Tetrachloroethane       1.0250       1.0636       0.3000       -3.800       100.00         Toluene       2.2150       2.2853       0.0100       -3.200       20.00         Chlorobenzene       2.4980       2.4872       0.3000       0.400       100.00         Ethylbenzene       4.2190       4.3008       0.0100       -1.900       20.00         Styrene       2.5710       2.6673       0.0100       -3.700       100.00         Total Xylenes       1.6170       1.6322       0.0100       -0.900       100.00         1,1,2-Trichloro-1,2,2-trifluoro       0.3840       0.3902       0.0100       -1.600       100.00         1,2,4-Trichlorobenzene       1.5700       1.4114       0.0100       -5.800       100.00         1,2-Dibromo-3-chloropropane       0.7570       0.7597       0.0100       -0.400       100.00						L
Toluene						1
Chlorobenzene       2.4980       2.4872       0.3000       0.400       100.00         Ethylbenzene       4.2190       4.3008       0.0100       -1.900       20.00         Styrene       2.5710       2.6673       0.0100       -3.700       100.00         Total Xylenes       1.6170       1.6322       0.0100       -0.900       100.00         1,2-Trichloro-1,2,2-trifluoro       0.3840       0.3902       0.0100       -1.600       100.00         1,2-Trichlorobenzene       1.5700       1.4114       0.0100       10.100       100.00         1,2-Dibromo-3-chloropropane       0.1840       0.1946       0.0100       -5.800       100.00         1,2-Dibromoethane       0.7570       0.7597       0.0100       -0.400       100.00	· · · · ·					
Ethylbenzene       4.2190       4.3008       0.0100       -1.900       20.00         Styrene       2.5710       2.6673       0.0100       -3.700       100.00         Total Xylenes       1.6170       1.6322       0.0100       -0.900       100.00         1,2-Trichloro-1,2,2-trifluoro       0.3840       0.3902       0.0100       -1.600       100.00         1,2,4-Trichlorobenzene       1.5700       1.4114       0.0100       10.100       100.00         1,2-Dibromo-3-chloropropane       0.1840       0.1946       0.0100       -5.800       100.00         1,2-Dibromoethane       0.7570       0.7597       0.0100       -0.400       100.00						L.
Styrene       2.5710       2.6673       0.0100       -3.700       100.00         Total Xylenes       1.6170       1.6322       0.0100       -0.900       100.00         1,1,2-Trichloro-1,2,2-trifluoro       0.3840       0.3902       0.0100       -1.600       100.00         1,2,4-Trichlorobenzene       1.5700       1.4114       0.0100       10.100       100.00         1,2-Dibromo-3-chloropropane       0.1840       0.1946       0.0100       -5.800       100.00         1,2-Dibromoethane       0.7570       0.7597       0.0100       -0.400       100.00						
Total Xylenes						
1,1,2-Trichloro-1,2,2-trifluoro0.38400.39020.0100-1.600100.001,2,4-Trichlorobenzene1.57001.41140.010010.100100.001,2-Dibromo-3-chloropropane0.18400.19460.0100-5.800100.001,2-Dibromoethane0.75700.75970.0100-0.400100.00			ł .			
1,2,4-Trichlorobenzene1.57001.41140.010010.100100.001,2-Dibromo-3-chloropropane0.18400.19460.0100-5.800100.001,2-Dibromoethane0.75700.75970.0100-0.400100.00					i .	i
1,2-Dibromo-3-chloropropane 0.1840 0.1946 0.0100 -5.800 100.00 0.7570 0.7597 0.0100 -0.400 100.00						
1,2-Dibromoethane 0.7570 0.7597 0.0100 -0.400 100.00						
			1			
2.0040 2.09// 0.0100 90.700 100.0	•		4		§ .	i .
	1,2 Dichiotobenzene	2.0040	2.09//	0.0100	/ . / . /	1 50.00

## METHOD 8260 - AQUEOUS (30% RSD/ 20% D) CONTINUING CALIBRATION CHECK

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u> Lab Samp ID: <u>A5C0006619-1</u>

Lab Code: <u>RECNY</u> Case No.: _____ SAS No.: ____ SDG No: <u>1205GW</u>

Lab File Id:  $\underline{G7591.RR}$  Calibration Date:  $\underline{12/27/2005}$  Time:  $\underline{08:35}$ 

Heated Purge (Y/N): N Init. Calib. Times: 11:27 14:25

GC Column: DB-624 ID: 0.25 (mm)

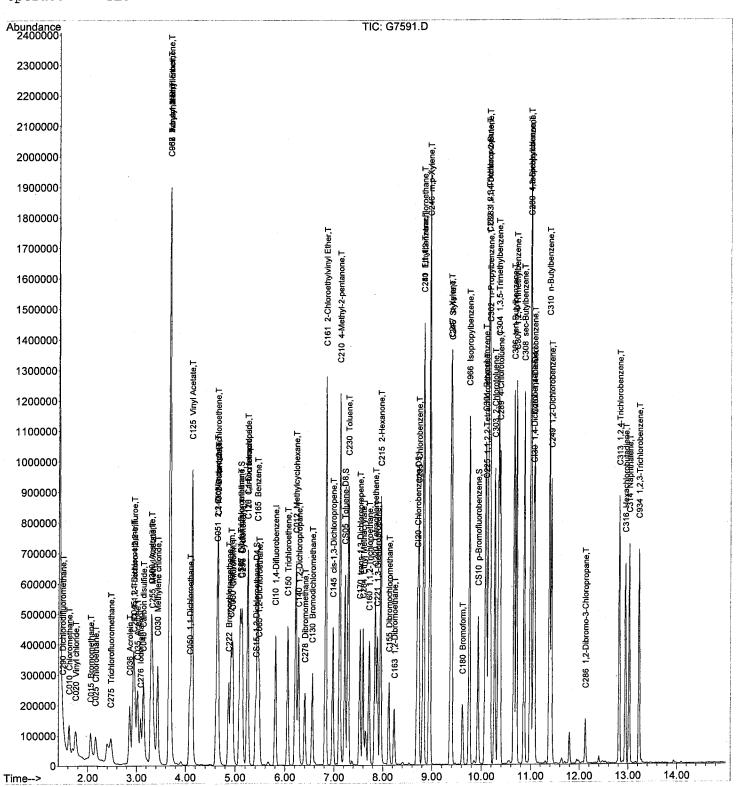
COMPOUND	AVG RRF	RRF25	MIN RRF	% D	MAX % D
1,3-Dichlorobenzene 1,4-Dichlorobenzene Cyclohexane Dichlorodifluoromethane Methyl acetate Naphthalene Trichlorofluoromethane Methyl-t-Butyl Ether (MTBE) Isopropylbenzene Methylcyclohexane	2.1120 2.1890 0.7620 0.4230 0.6030 3.2560 0.5790 1.3240 4.4280 0.8230	0.7715 0.2196 0.5363 3.0492 0.5178 1.3389 4.4730	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	-0.800 -1.200 48.100 11.100 6.400 10.600 -1.100	100.00 100.00 100.00 100.00 100.00 100.00
Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	2.5210 0.7740 0.4020	0.7358	0.0100 0.0100 0.0100	4.900	100.00 100.00 100.00

Acq On : 27 Dec 2005 8:35

Sample : VSTD025

Misc :

Integrator: RTE


Quant Time: Dec 27 08:53:49 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Sat Dec 24 10:47:40 2005 Response via : Initial Calibration Data Path : C:\MSDChem\1\DATA\122705\

Data File: C:\MSDChem\1\DATA\122705\G7591.D



Acq On : 27 Dec 2005 8:35

Sample : VSTD025

Misc : Integrator: RTE

Quant Time: Dec 27 08:53:49 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Sat Dec 24 10:47:40 2005 Response via : Initial Calibration Data Path : C:\MSDChem\1\DATA\122705\

Internal	Standards	R.T.	QIon	Response	Conc Ur	nits		(Min) (Ar )
1) CI10	1,4-Difluorobenzene	5.80	114	374276	125.00	ng		0.00 1.85%
43) CI20	Chlorobenzene-D5	8.70	82	192006	125.00	ng ng		0.00 3.85%
63) CI30	1,4-Dichlorobenzene-	11.05	152	183265	125.00	ng ng		0.00 1.94%
26) CS87 Spiked A	1,2-Dichloroethane-D	ge 70 5.41 ge 73	- 130 65	Recove 141460 Recove	ery = 117.40	95 ng 93	. 30왕 . 92왕	0.00
Spiked A	Amount 125.000 Ran	ge 77	- 122	Recove	ery =	95	.29%	
62) CS10	p-Bromofluorobenzene	9.94	174	141284 Recove	118.77		025	0.00
Spiked F	Amount 125.000 Ran	ge /4	- 120	RECOVE	er A =	93	. 023	
Target Co							Qva	alue
	Dichlorodifluorometh	1.49		82185		ng		99
	Chloromethane	1.62		148383	92.65			96
	Vinyl chloride	1.75	62	155280		_		99
	Bromomethane	2.06		81414				96
•	Chloroethane	2.16	64	105769				100
7) C275	Trichlorofluorometha	2.47		193800m				97
8) C045	1,1-Dichloroethene	2.93	96	139605		_		87
9) C030	Methylene chloride	3.43	84	169450		_		89
10) C040	Carbon disulfide	3.14	76	557511		_		98
11) C036	Acrolein	2.86	56	261905				100 100
12) C038	Acrylonitrile	3.68	53	1245716				100
13) C035	Acetone	3.02	43	423126	1040.06 5159.74	_		99
14) C300	Acetonitrile	3.30 3.08	41 142	918268 222936	125.66			95
15) C276	Iodomethane	2.96		146050				92
16) C291	1,1,2-Trichloro-1,2, T-butyl Methyl Ether	3.68	73	501135		_	,	93
17) C962 18) C057	trans-1,2-Dichloroet	3.68	96	159428		_	#	51
19) C255	Methyl Acetate	3.33		200729				99
20) C050	1,1-Dichloroethane	4.08		302359	128.69			98
21) C125	Vinyl Acetate	4.13	43	1684387	671.90	_		96
22) C051	2,2-Dichloropropane	4.63		266678	133.03			94
23) C056	cis-1,2-Dichloroethe	4.64	96	173990	126.71			92
24) C272	Tetrahydrofuran	4.91	42	286955	674.10			93
25) C222	Bromochloromethane	4.87	128	82920	124.19	ng		89
27) C060	Chloroform	4.95	83	286927	126.36			93
28) C115	1,1,1-Trichloroethan	5.10	97	255848	131.17	ng		97
29) C120	Carbon tetrachloride	5.25	117	224673	137.10	ng		99
30) C116	1,1-Dichloropropene	5.24	75	230733	130.88			86
32) C165	Benzene	5.44	78	670869	130.23	_		98
33) C065	1,2-Dichloroethane	5.47	62	240227	126.08	_		97
34) C110	2-Butanone	4.66	43	424104	654.22			95
35) C256	Cyclohexane	5.13	56	288739	126.54	_		87
36) C150	Trichloroethene	6.05	95	168738	127.47	ng		96

Data File: C:\MSDChem\1\DATA\122705\G7591.D

: 27 Dec 2005 8:35 Acq On

Sample : VSTD025

Misc

Integrator: RTE

Quant Time: Dec 27 08:53:49 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M Quant Title : 8260 5ML WATER

QLast Update : Sat Dec 24 10:47:40 2005 Response via : Initial Calibration Data Path : C:\MSDChem\1\DATA\122705\

Operator : TLC

Internal	Standards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar )
37) C140	1,2-Dichloropropane	6.27	63	175521	128.43 ng	98
38) C278	Dibromomethane	6.40	93	98701	127.44 ng	83
39) C130	Bromodichloromethane	6.55	83	213891	135.72 ng	95
40) C161	2-Chloroethylvinyl E	6.83	63	591638	653.73 ng	94
41) C012	Methylcyclohexane	6.22	83	313148	127.11 ng	90
42) C145	cis-1,3-Dichloroprop	6.97	75	277293	136.61 ng	99
45) C230	Toluene	7.29	92	438793	128.98 ng	100
46) C170	trans-1,3-Dichloropr	7.53	75	262806	136.41 ng	94
47) C284	Ethyl Methacrylate	7.60	69	237675	129.68 ng	98
48) C160	1,1,2-Trichloroethan	7.72	83	122237	126.60 ng	97
49) C210	4-Methyl-2-pentanone	7.11	43	918418	642.55 ng	99
50) C220	Tetrachloroethene	7.84	166	181426	125.78 ng	92
51) C221	1,3-Dichloropropane	7.88	76	268602	125.35 ng	98
52) C155	Dibromochloromethane	8.13	129	158297	139.23 ng	99
53) C163	1,2-Dibromoethane	8.24	107	145872	125.52 ng	100
54) C215	2-Hexanone	7.95	43	653167	640.45 ng	100
55) C235	Chlorobenzene	8.73	112	477556	124.46 ng	99
56) C281	1,1,1,2-Tetrachloroe	8.82	131	162679	129.40 ng	93
57) C240	Ethylbenzene	8.83	91	825778	127.41 ng	100
58) C246	m,p-Xylene	8.95	106	642710	254.64 ng	95
59) C247	o-Xylene	9.38	106	313383	126.21 ng	94
60) C245	Styrene	9.40	104	512141	129.70 ng	99
61) C180	Bromoform	9.62	173	100443	150.48 ng	99
64) C966	Isopropylbenzene	9.75	105	819744	126.28 ng	.98
65) C301	Bromobenzene	10.08	156	198925	124.13 ng	96
66) C225	1,1,2,2-Tetrachloroe	10.10	83	194919	129.69 ng	99
67) C282	1,2,3-Trichloropropa	10.14	110	59918	123.45 ng	100
68) C283	t-1,4-Dichloro-2-But	10.15	51	176380	962.55 ng	# 75
69) C302	n-Propylbenzene	10.17	91	1071230	132.75 ng	98
70) C303	2-Chlorotoluene	10.27	126	196177	125.62 ng	100
71) C289	4-Chlorotoluene	10.37	126	204551	125.94 ng	100
72) C304	1,3,5-Trimethylbenze	10.34	105	707867	128.38 ng	98
73) C306	tert-Butylbenzene	10.66	134	155800	126.54 ng	97
74) C307	1,2,4-Trimethylbenze	10.71	105	723536	129.34 ng	96
75) C308	sec-Butylbenzene	10.87	105	876713	128.36 ng	98
76) C260	1,3-Dichlorobenzene	10.99	146	392958	126.92 ng	98
77) C309	4-Isopropyltoluene	11.00	119	802972	130.06 ng	98
78) C267	1,4-Dichlorobenzene	11.08	146	404204	125.95 ng	97
79) C249	1,2-Dichlorobenzene	11.42	146	384439	125.81 ng	89
80) C310	n-Butylbenzene	11.38	91	738866	129.19 ng	97
81) C286	1,2-Dibromo-3-Chloro	12.12	75	35664	132.25 ng	96
82) C313	1,2,4-Trichlorobenze	12.82	180	258660	112.40 ng	100
83) C316	Hexachlorobutadiene	12.95	225	116741	114.47 ng	97
84) C314	Naphthalene	13.03	128	558806	117.06 ng	99
85) C934	1,2,3-Trichlorobenze	13.23	180	214700	106.51 ng	98
						- <i></i>

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

229/304

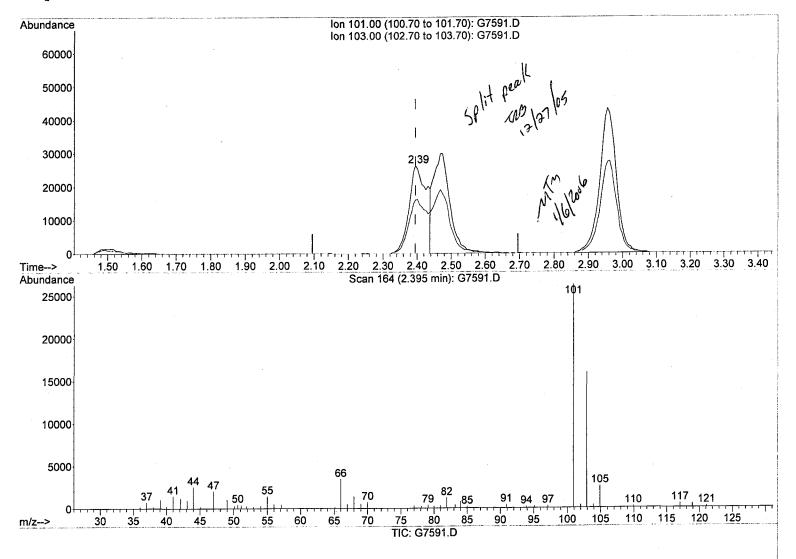
Data File: C:\MSDChem\1\DATA\122705\G7591.D

Acq On : 27 Dec 2005 8:35

Sample : VSTD025

Misc

Integrator: RTE


Quant Time: Dec 27 08:51:51 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Sat Dec 24 10:47:40 2005 Response via : Initial Calibration Data Path : C:\MSDChem\1\DATA\122705\

Operator : TLC



#### (7) C275 Trichlorofluoromethane (T)

2.39min (-0.000) 54.27ng

response 94091

 Ion
 Exp%
 Act%

 101.00
 100
 100

 103.00
 63.20
 60.77

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

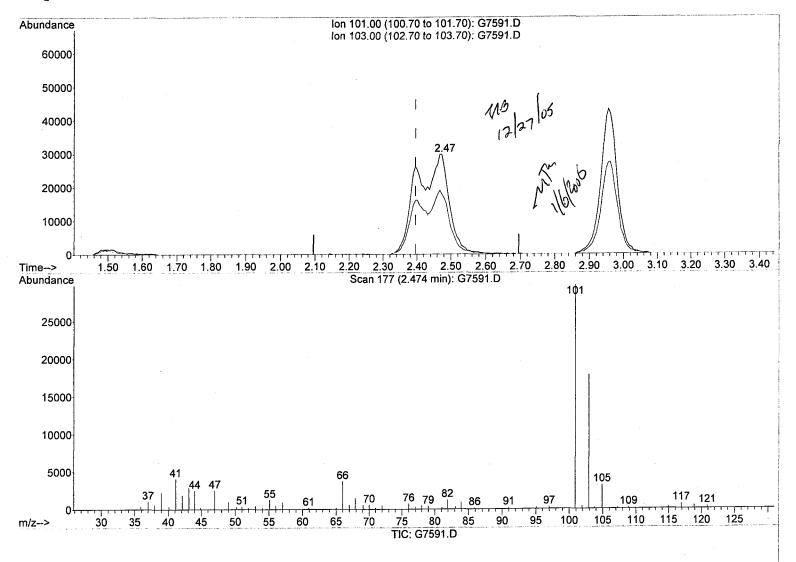
Data File: C:\MSDChem\1\DATA\122705\G7591.D

Acq On : 27 Dec 2005 8:35

Sample : VSTD025

Misc :

Integrator: RTE


Quant Time: Dec 27 08:51:51 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Sat Dec 24 10:47:40 2005 Response via : Initial Calibration Data Path : C:\MSDChem\1\DATA\122705\

Operator : TLC



#### (7) C275 Trichlorofluoromethane (T)

2.47min (+0.079) 111.79ng m

response 193800

 Ion
 Exp%
 Act%

 101.00
 100
 100

 103.00
 63.20
 59.83

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

# METHOD 8260 - AQUEOUS (30% RSD/ 20% D) CONTINUING CALIBRATION CHECK

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u> Lab Samp ID: <u>A5C0006622-1</u>

Lab Code: <u>RECNY</u> Case No.: _____ SAS No.: ____ SDG No: <u>1205GW</u>

Lab File Id:  $\underline{G7615.RR}$  Calibration Date:  $\underline{12/27/2005}$  Time:  $\underline{20:41}$ 

Heated Purge (Y/N): N Init. Calib. Times: 11:27 14:25

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)

COMPOUND	AVG RRF	RRF25	MIN RRF	% D	MAX % D
Chloromethane	0.5350	0.4807	0.1000	10.100	100.00
Bromomethane	0.2430	0.2271	0.0100	6.500	100.00
Vinyl chloride	0.5150		0.0100	6.800	20.00
Chloroethane	0.2780	0.2863	0.0100	-3.000	100.00
Methylene chloride	0.5040			15.300	
Acetone	0.1360		0.0100	-1.300	
Carbon Disulfide	1.0760		0.0100	-1.700	i
1,1-Dichloroethene	0.3670		0.0100	2.500	
1,1-Dichloroethane	0.7850	1	0.1000		100.00
cis-1,2-Dichloroethene	0.4590		0.0100		100.00
trans-1,2-Dichloroethene	0.4120	1	0.0100		100.00
Chloroform	0.7580	0.7293	0.0100		1
1,2-Dichloroethane	0.6360		0.0100		100.00
2-Butanone	0.2170		0.0100	-1.200	
1,1,1-Trichloroethane	0.6510		0.0100		100.00
Carbon Tetrachloride	0.5470	1	0.0100		100.0
Bromodichloromethane	0.5260	0.4970	0.0100		100.0
1,2-Dichloropropane	0.3260		0.0100		
cis-1,3-Dichloropropene	0.4380	0.6458	0.0100		100.0
Trichloroethene	0.6780	1 1	0.0100		100.0
Dibromochloromethane	0.7400	l i	0.0100	i e	100.0
1,1,2-Trichloroethane	0.7400		0.0100		100.0
		1	0.0100		100.0
Benzene	1.7200				1
trans-1,3-Dichloropropene	1.2540		0.0100		100.00
Bromoform	0.4350		0.1000	10.900	l .
4-Methyl-2-pentanone	0.9310	0.9538	0.0100		
2-Hexanone	0.6640	0.6748	0.0100	-1.600	1
Tetrachloroethene	0.9390	0.9052	0.0100		100.0
1,1,2,2-Tetrachloroethane	1.0250	1.0273	0.3000	-0.200	
Toluene	2.2150		0.0100		
Chlorobenzene	2.4980	2.4200	0.3000		100.0
Ethylbenzene	4.2190	4.1350	0.0100	2.000	
Styrene	2.5710	2.5271	0.0100		100.0
Total Xylenes	1.6170	1.5615	0.0100		100.0
1,1,2-Trichloro-1,2,2-trifluoro	0.3840	0.4013	0.0100	-4.500	
1,2,4-Trichlorobenzene	1.5700	1.2886	0.0100	17.900	
1,2-Dibromo-3-chloropropane	0.1840	0.1722	0.0100		100.0
1,2-Dibromoethane	0.7570	0.7395	0.0100	ĺ	100.0
1,2-Dichlorobenzene	2.0840	1.9914	0.0100	4.400	100.0
<b>!</b>					

## 233/304

# METHOD 8260 - AQUEOUS (30% RSD/ 20% D) CONTINUING CALIBRATION CHECK

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u> Lab Samp ID: <u>A5C0006622-1</u>

Lab Code: <u>RECNY</u> Case No.: _____ SAS No.: ____ SDG No: <u>1205GW</u>

Lab File Id: G7615.RR Calibration Date: 12/27/2005 Time: 20:41

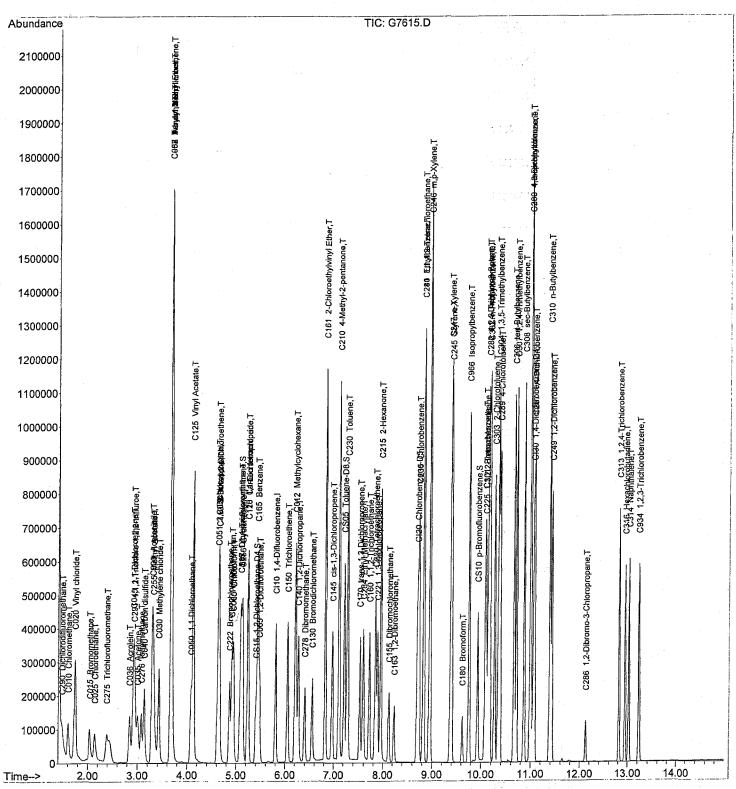
Heated Purge (Y/N): N Init. Calib. Times: 11:27 14:25

GC Column: <u>DB-624</u> ID: <u>0.25</u>(mm)

COMPOUND	AVG RRF	RRF25	MIN RRF	% D	MAX % D
1,3-Dichlorobenzene 1,4-Dichlorobenzene Cyclohexane Dichlorodifluoromethane Methyl acetate Naphthalene Trichlorofluoromethane Methyl-t-Butyl Ether (MTBE) Isopropylbenzene Methylcyclohexane	2.1120 2.1890 0.7620 0.4230 0.6030 3.2560 0.5790 1.3240 4.4280 0.8230	0.5515 2.6952 0.5910 1.3102 4.3262	0.0100 0.0100 0.0100 0.0100 0.0100	4.300 -1.700 17.600 8.500 17.200 -2.100 1.000 2.300	100.00 100.00 100.00 100.00
Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	2.5210 0.7740 0.4020			6.800	100.00

Acq On : 27 Dec 2005 20:41

Sample : VSTD025


Misc : Integrator: RTE

Quant Time: Dec 27 21:05:31 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 27 08:55:23 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122705\



Acq On : 27 Dec 2005 20:41

Sample : VSTD025

Misc :

Integrator: RTE

Quant Time: Dec 27 21:05:31 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 27 08:55:23 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122705\

Int	ernal	Standards	R.T.	QIon	Response	Conc U	nits		(Min) (Ar )
1)	CI10	1,4-Difluorobenzene	5.80	114	349549	125.0	0 ng		0.00 3.39%
43)	CI20	Chlorobenzene-D5	8.70	82	177567	125.0	0 ng		
63)	CI30	1,4-Dichlorobenzene-	11.05	152	170788	125.0	0 ng		0.00 3.19%
Sys	tem Mc	onitoring Compounds							
		Dibromofluoromethane mount 125.000 Rar						.51%	0.00
		mount 125.000 Rar 1,2-Dichloroethane-D							0.00
		mount 125.000 Rar							0.00
44)	CS05	Toluene-D8 mount 125.000 Rar	7.22	98	426817	119.20			0.00
Sp	iked A	mount 125.000 Rar	1ge 77	- 122	Recov	ery =	95.	.36%	
		p-Bromofluorobenzene						7.00	0.00
sp	ikea A	mount 125.000 Ran	ige 74	- 120	Recov	ery =	93.	16%	
Tar	get Co	mpounds						Qva	lue
		Dichlorodifluorometh	1.49	85	121839				99
3)	C010	Chloromethane	1.61	50	168034	112.34	ng		99
4)	C020	Vinyl chloride	1.74		167805	116.57			99
		Bromomethane	2.04	94	79374	116.70	_		100
6)	C025	Chloroethane	2.14	64	100082				97
		Trichlorofluorometha			206466m				0
- \	C045		2.93		125044	121.72			83
10)	C030	Methylene chloride Carbon disulfide Acrolein	3.43 3.13	84	149146	105.90			88
11)	C040	Acrolein	2.85	76 56	382563 193798	127.13 2045.63	ng		97 99
,	C038	Acrylonitrile	3.67	53	193798	2589.26			99
	C035	Acetone	3.00	43		633.76	_		97
	C300	Acetonitrile	3.29		833370	5013.95			100
	C276	Iodomethane	3.08			124.68			95
-	C291	1,1,2-Trichloro-1,2,	2.94	101		130.54			92
	C962	T-butyl Methyl Ether	3.68	73		123.71			92
18)	C057	trans-1,2-Dichloroet				123.26	ng	#	51
19)	C255	Methyl Acetate	3.32	96 43	192779	123.26 114.30	ng		100
	C050	1,1-Dichloroethane	4.08	63	263725	120.19			97
	C125	Vinyl Acetate	4.12	43	1467366	626.73	ng		96
	C051	2,2-Dichloropropane	4.62	77	229974	122.84	_		93-
	C056	cis-1,2-Dichloroethe	4.63	96	154491	120.47			91
	C272	Tetrahydrofuran	4.91	42	250135	629.17	_		93
	C222	Bromochloromethane	4.86	128	74598	119.63			91
	C060 C115	Chloroform 1,1,1-Trichloroethan	4.94 5.09	83	254924 223392	120.20	_		95 94
	C120	Carbon tetrachloride	5.24	97 117	188050	122.63 122.87			99
	C116	1,1-Dichloropropene	5.24	75	204070	123.94	_		87
	C165	Benzene	5.44	78	583926	121.37			98
	C065	1,2-Dichloroethane	5.47	62	217412	122.18			97
	C110	2-Butanone	4.65	43	383704	633.77			96
	C256	Cyclohexane	5.13	56	271012	127.17			87
36)	C150	Trichloroethene	6.05	95	148645	120.23	ng		90

Acq On : 27 Dec 2005 20:41

: VSTD025 Sample

Misc

Integrator: RTE

Quant Time: Dec 27 21:05:31 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER
QLast Update : Tue Dec 27 08:55:23 2005
Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Int	ernal	Standards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
3.7)	C140	1,2-Dichloropropane	6.27	63	155822	122.08 ng	98
	C278	Dibromomethane	6.40	93	88343	122.13 ng	# 81
•	C130	Bromodichloromethane	6.55	83	173713	118.02 ng	96
	C161	2-Chloroethylvinyl E	6.82	63	536807	635.11 ng	94
	C012	Methylcyclohexane	6.21	83	296421	128.83 ng	89
	C145	cis-1,3-Dichloroprop	6.97	75	225733	119.08 ng	98
	C230	Toluene	7.28	92	378821	120.41 ng	98
	C170	trans-1,3-Dichloropr	7.53	75	209489	117.57 ng	93
-	C284	Ethyl Methacrylate	7.60	69	211920	125.03 ng	98
•	C160	1,1,2-Trichloroethan	7.72	83	108083	121.05 ng	99
,	C210	4-Methyl-2-pentanone	7.11	43	846801	640.62 ng	99
	C220	Tetrachloroethene	7.84	166	160741	120.51 ng	93
51)		1,3-Dichloropropane	7.88	76	243084	122.67 ng	98
•	C155	Dibromochloromethane	8.13	129	120653	114.75 ng	99
	C163	1,2-Dibromoethane	8.24	107	131312	122.18 ng	98
•	C215	2-Hexanone	7.95	43	599073	635.18 ng	99
	C235	Chlorobenzene	8.73	112	429708	121.10 ng	99
	C281	1,1,1,2-Tetrachloroe	8.82	131	142137	122.26 ng	94
•	C240	Ethylbenzene	8.83	91	734238	122.50 ng	99
	C246	m,p-Xylene	8.95	106	568024	243.35 ng	96
	C247	o-Xylene	9.38	106	277278	120.75 ng	94
	C245	Styrene	9.40	104	448725	122.88 ng	98
	C180	Bromoform	9.62	173	68841	111.52 ng	99
•	C966	Isopropylbenzene	9.75	105	738859	122.13 ng	98
-	C301	Bromobenzene	10.08	156	176475	118.17 ng	94
	C225	1,1,2,2-Tetrachloroe	10.10	83	175456	125.27 ng	99
•	C282	1,2,3-Trichloropropa	10.14	110	54257	119.96 ng	100
-	C283	t-1,4-Dichloro-2-But	10.14	51	124461	728.84 ng	# 65
-	C3 02	n-Propylbenzene	10.17	91	931075	123.81 ng	97
	C3 03	2-Chlorotoluene	10.27	126	176199	121.07 ng	100
•	C289	4-Chlorotoluene	10.38	126	179606	118.66 ng	100
	C304	1,3,5-Trimethylbenze	10.34	105	627266	122.07 ng	97
•	C306	tert-Butylbenzene	10.66	134	140925	122.82 ng	96
•	C307	1,2,4-Trimethylbenze	10.71	105	635306	121.86 ng	97
•	C3 08	sec-Butylbenzene	10.87	105	779137	122.41 ng	97
	C260	1,3-Dichlorobenzene	10.99	146	348198	120.68 ng	98
	C3 0 9	4-Isopropyltoluene	11.00	119	712974	123.92 ng	98
	C267	1,4-Dichlorobenzene	11.08	146	357827	119.64 ng	96
-	C249	1,2-Dichlorobenzene	11.42	146	340099	119.43 ng	89
•	C310	n-Butylbenzene	11.38	91	643207	120.68 ng	97
-	C286	1,2-Dibromo-3-Chloro	12.12	75	29418	117.06 ng	97
	C313	1,2,4-Trichlorobenze	12.82	180	220076	102.62 ng	100
	C316	Hexachlorobutadiene	12.95	225	105704	111.22 ng	96
	C314	Naphthalene	13.03	128	460306	103.47 ng	99
	C934	1,2,3-Trichlorobenze	13.23	180	180395	96.03 ng	98

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

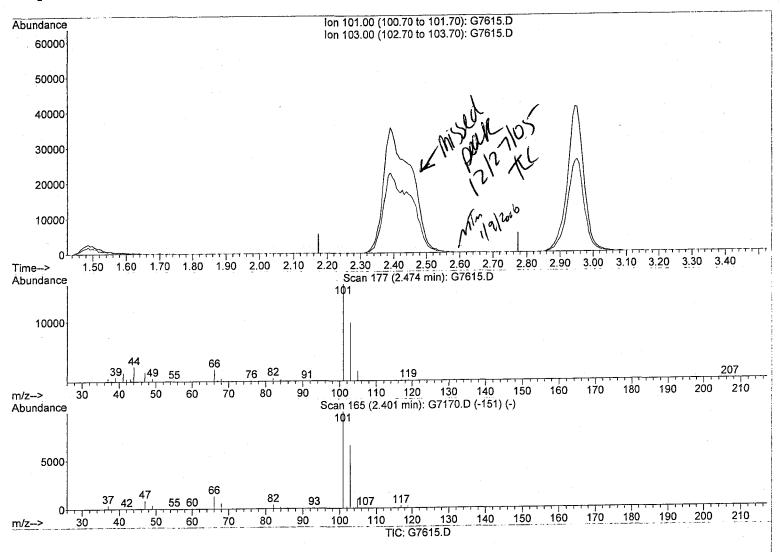
Data File: C:\MSDCHEM\1\DATA\122705\G7615.D

Acq On : 27 Dec 2005 20:41

Sample : VSTD025

Misc

Integrator: RTE


Quant Time: Dec 27 21:00:04 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Ouant Title : 8260 5ML WATER

QLast Update: Tue Dec 27 08:55:23 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122705\

Operator : TLC



#### (7) C275 Trichlorofluoromethane (T)

2.47min (-2.474) 0.00ng

response 0

 Ion
 Exp%
 Act%

 101.00
 100
 0.00

 103.00
 63.20
 0.00#

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

Data File: C:\MSDCHEM\1\DATA\122705\G7615.D

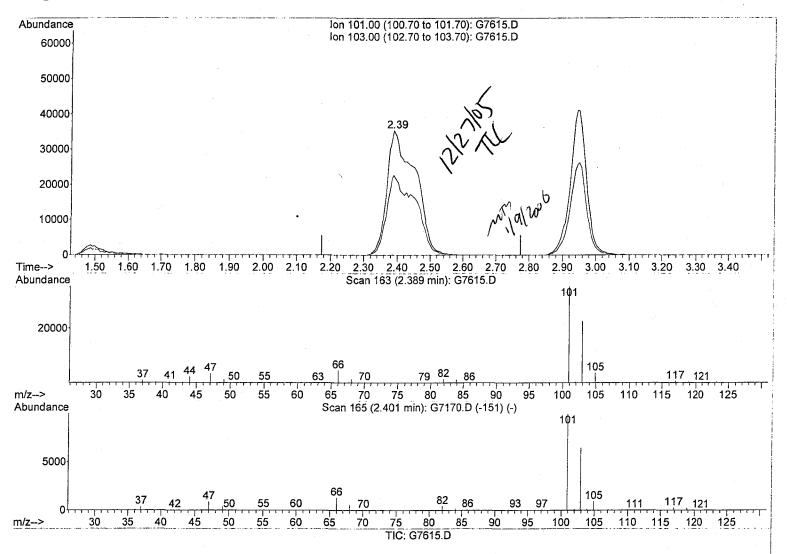
Acq On : 27 Dec 2005 20:41

Sample : VSTD025

Misc

. ....

Integrator: RTE


Quant Time: Dec 27 21:00:04 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 27 08:55:23 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122705\

Operator : TLC



#### (7) C275 Trichlorofluoromethane (T)

2.39min (-0.085) 127.52ng m

response 206466

 Ion
 Exp%
 Act%

 101.00
 100
 100

 103.00
 63.20
 64.03

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

## METHOD 8260 - AQUEOUS (30% RSD/ 20% D) CONTINUING CALIBRATION CHECK

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u> Lab Samp ID: <u>A5C0006633-1</u>

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No: 1205GW

Lab File Id: G7643.RR Calibration Date: 12/28/2005 Time: 08:50

Heated Purge (Y/N): N Init. Calib. Times: 11:27 14:25

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)

DE-624 ID: 0.25 (IIIII)					
COMPOUND	AVG RRF	RRF25	MIN RRF	% D	MAX % D
Chloromethane	0.5350	0.4654	0.1000	13.000	100.00
Bromomethane	0.2430	0.2498	0.0100	-2.800	100.00
Vinyl chloride	0.5150	I .	0.0100	12.000	
Chloroethane	0.2780	0.3009	0.0100	-8.200	
Methylene chloride	0.5040		0.0100	16.300	
Acetone	0.1360	1	0.0100	-0.700	
Carbon Disulfide	1.0760	I	0.0100		100.00
1,1-Dichloroethene	0.3670	I .	0.0100	8.100	
1,1-Dichloroethane	0.7850		0.1000		100.00
cis-1,2-Dichloroethene	0.4590	•	0.0100		100.00
trans-1,2-Dichloroethene	0.4120	1			100.00
Chloroform	0.7580	I .	0.0100		
1,2-Dichloroethane	0.6360	1 1	0.0100		100.00
2-Butanone	0.2170				
1,1,1-Trichloroethane	0.6510	1	0.0100		100.00
Carbon Tetrachloride	0.5470	1			100.00
Bromodichloromethane	0.5260	1			100.00
1,2-Dichloropropane	0.4560	I .			
cis-1,3-Dichloropropene	0.4300	1	0.0100		100.00
Trichloroethene	0.4420		0.0100		100.00
Dibromochloromethane	0.7400	1	0.0100		100.00
1,1,2-Trichloroethane	0.6290		0.0100		100.00
Benzene	1.7200				100.00
trans-1,3-Dichloropropene	1.2540		0.0100		100.00
Bromoform	0.4350	1	0.1000		100.00
4-Methyl-2-pentanone	0.4330	ł	0.0100	-2.200	
2-Hexanone					
Tetrachloroethene	0.6640 0.9390		0.0100		100.0
					100.0
1,1,2,2-Tetrachloroethane Toluene	1.0250		0.3000		1
Chlorobenzene	2.2150	1			100.0
	2.4980				
Ethylbenzene	4.2190			1.600	
Styrene	2.5710		0.0100		100.00
Total Xylenes	1.6170	1.5594	0.0100		100.00
1,1,2-Trichloro-1,2,2-trifluoro	0.3840	0.3547	0.0100		100.00
1,2,4-Trichlorobenzene	1.5700	1.2980	0.0100	17.300	i
1,2-Dibromo-3-chloropropane	0.1840	0.1622	0.0100	11.800	1
1,2-Dibromoethane	0.7570	0.7346	0.0100		100.00
1,2-Dichlorobenzene	2.0840	2.0093	0.0100	3.600	100.00
<u> </u>					

#### METHOD 8260 - AQUEOUS (30% RSD/ 20% D) CONTINUING CALIBRATION CHECK

Lab Name: <u>STL Buffalo</u> Contract: <u>4</u> Lab Samp ID: <u>A5C0006633-1</u>

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No: 1205GW

Calibration Date: <u>12/28/2005</u> Time: <u>08:50</u> Lab File Id: <u>G7643.RR</u>

Intrument ID: <u>HP5973G</u> Init. Calib. Date(s): <u>12/20/2005</u> <u>12/20/2005</u>

Heated Purge (Y/N): N Init. Calib. Times: 11:27 14:25

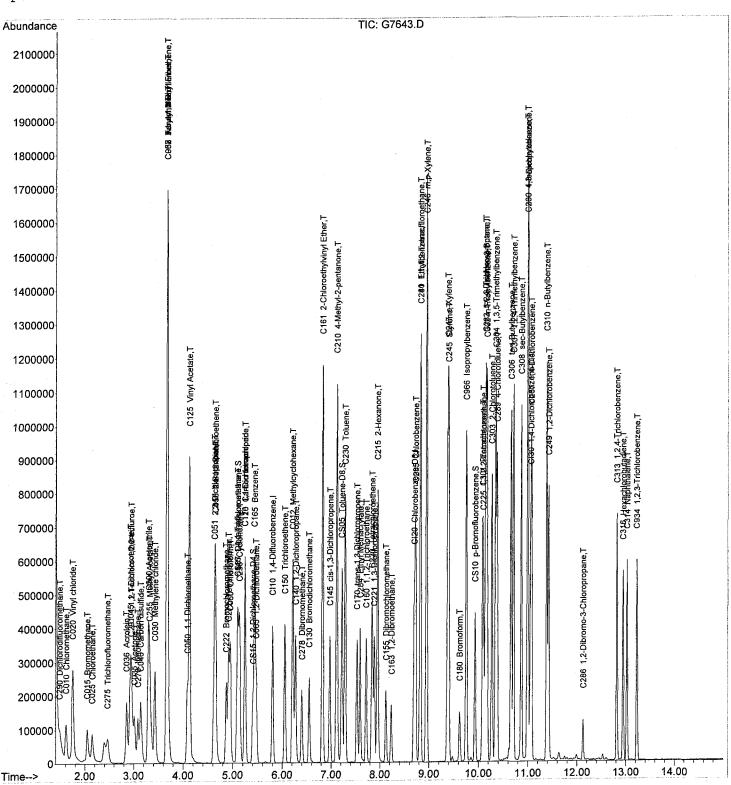
GC Column:  $\underline{DB-624}$  ID:  $\underline{0.25}$  (mm)

COMPOUND	AVG RRF	RRF25	MIN RRF	% D	MAX % D
1,3-Dichlorobenzene 1,4-Dichlorobenzene Cyclohexane Dichlorodifluoromethane Methyl acetate Naphthalene Trichlorofluoromethane Methyl-t-Butyl Ether (MTBE) Isopropylbenzene Methylcyclohexane	2.1120 2.1890 0.7620 0.4230 0.6030 3.2560 0.5790 1.3240 4.4280 0.8230	2.1432 0.7035 0.3382 0.4701 2.7094 0.5179 1.2877 4.3000	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	2.100 7.700 20.000 22.000 16.800 10.600 2.700 2.900	100.00 100.00
Toluene-D8 p-Bromofluorobenzene 1,2-Dichloroethane-D4	2.5210 0.7740 0.4020	0.7370	0.0100 0.0100 0.0100	4.800	100.00 100.00 100.00

Acq On : 28 Dec 2005 8:50

Sample : VSTD025

Misc :


Integrator: RTE

Quant Time: Dec 28 09:14:44 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 21:28:27 2005 Response via : Initial Calibration Data Path : C:\MSDChem\1\DATA\122805\



Acq On : 28 Dec 2005 8:50

Sample : VSTD025

Misc :

Integrator: RTE

Quant Time: Dec 28 09:14:44 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 27 21:28:27 2005 Response via: Initial Calibration Data Path: C:\MSDChem\1\DATA\122805\

Internal Standards	R.T.	QIon	Response	Conc Ur		Rcv (	(Min) (Ar )
1) CI10 1,4-Difluorobenzene	5.80	114	350953	125.00	ng ng	100	0.00 0.40%
43) CI20 Chlorobenzene-D5	8.70	82	175597	125.00	ng ng	98	0.00 3.89%
63) CI30 1,4-Dichlorobenzene-	11.05	152	168435	125.00	ng ng		0.00 3.62%
System Monitoring Compounds 26) CS87 Dibromofluoromethane Spiked Amount 125.000 Rang 31) CS15 1,2-Dichloroethane-D Spiked Amount 125.000 Rang 44) CS05 Toluene-D8 Spiked Amount 125.000 Rang 62) CS10 p-Bromofluorobenzene Spiked Amount 125.000 Rang	ge 70 5.40 ge 73 7.22 ge 77 9.94	65 - 136 98 - 122 174	Recove 127335 Recove 422466 Recove 129411	ery = 112.70 ery = 119.31 ery = 118.95	92 . ng 90 . ng 95 . ng	.95%	0.00 0.00 0.00 0.00
Target Compounds						Qva	alue
18) C057 trans-1,2-Dichloroet 19) C255 Methyl Acetate 20) C050 1,1-Dichloroethane 21) C125 Vinyl Acetate 22) C051 2,2-Dichloropropane	2.93 3.43 3.14 2.85 3.68 3.01 3.30 3.08 2.96 3.68 3.68 3.33 4.08 4.13 4.63	101 96 84 76 53 43 41 142 101 73 96 43 63 43 77	124480 451916 138502 164997 258308 1562681 216457	110.01 128.38 135.22 111.82 114.70 104.63 122.24 2501.68 2528.50 629.90 4883.98 121.61 115.37 121.59 119.64 97.44 117.25 664.77 115.15	ng ng ng ng ng ng ng ng ng ng ng ng ng n	#	99 93 100 93 88 87 98 99 100 96 100 96 92 91 51 98 97
23) C056 cis-1,2-Dichloroethe 24) C272 Tetrahydrofuran 25) C222 Bromochloromethane 27) C060 Chloroform 28) C115 1,1,1-Trichloroethan 29) C120 Carbon tetrachloride 30) C116 1,1-Dichloropropene 32) C165 Benzene 33) C065 1,2-Dichloroethane 34) C110 2-Butanone 35) C256 Cyclohexane 36) C150 Trichloroethene	4.64 4.91 4.86 4.95 5.10 5.25 5.24 5.47 4.65 5.13 6.05	96 42 128 83 97 117 75 78 62 43 56	154920 244614 74790 254844 213773 180743 195749 574681 215597 383605 246882 146850	120.32 612.82 119.46 119.69 116.88 117.62 118.41 118.97 120.67 631.07 115.38 118.30	ng		96 93 91 97 94 97 86 98 97 95 86 92

Acq On : 28 Dec 2005 8:50

Sample : VSTD025

Misc Integrator: RTE

Quant Time: Dec 28 09:14:44 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER
QLast Update : Tue Dec 27 21:28:27 2005
Response via : Initial Calibration
Data Path : C:\MSDChem\1\DATA\122805\

Internal	Standards	R.T.	QIon	Response	Conc Units	Dev(Min) Rcv(Ar )
37) C140	1,2-Dichloropropane	6.27	63	154205	120.33 ng	98
38) C278	Dibromomethane	6.40	93	87781	120.87 ng	82
39) C130	Bromodichloromethane	6.55	83	174279	117.93 ng	96
40) C161	2-Chloroethylvinyl E	6.82	63	541057	637.57 ng	93
41) C012	Methylcyclohexane	6.21	83	278868	120.72 ng	88
42) C145	cis-1,3-Dichloroprop	6.97	75	223310	117.33 ng	98
45) C230	Toluene	7.28	92	377976	121.49 ng	99
46) C170	trans-1,3-Dichloropr	7.53	75	206733	117.33 ng	94
47) C284	Ethyl Methacrylate	7.60	69	215971	128.85 ng	98
48) C160	1,1,2-Trichloroethan	7.72	83	106476	120.59 ng	99
49) C210	4-Methyl-2-pentanone	7.11	43	835121	638.87 ng	100
50) C220	Tetrachloroethene	7.84	166	159030	120.56 ng	92
51) C221	1,3-Dichloropropane	7.88	76	238623	121.77 ng	98
52) C155	Dibromochloromethane	8.13	129	123504	118.78 ng	97
53) C163	1,2-Dibromoethane	8.24	107	128998	121.38 ng	97
54) C215	2-Hexanone	7.95	43	591475	634.16 ng	98
55) C235	Chlorobenzene	8.73	112	428567	122.13 ng	99
56) C281	1,1,1,2-Tetrachloroe	8.82	131	142253	123.73 ng	93
57) C240	Ethylbenzene	8.83	91	729142	123.02 ng	100
58) C246	m,p-Xylene	8.95	106	564495	244.55 ng	92
59) C247	o-Xylene	9.38	106	273825	120.58 ng	95
60) C245	Styrene	9.40	104	449734	124.54 ng	97
61) C180	Bromoform	9.62	173	70086	114.81 ng	99
64) C966	Isopropylbenzene	9.75	105	724263	121.39 ng	98
65) C301	Bromobenzene	10.08	156	178017	120.87 ng	92
66) C225	1,1,2,2-Tetrachloroe	10.10	83	169402	122.64 ng	99
67) C282	1,2,3-Trichloropropa	10.14	110	53188	119.23 ng	100
68) C283	t-1,4-Dichloro-2-But	10.15	51	130638	775.69 ng	# 66
69) C302	n-Propylbenzene	10.17	91	915832	123.49 ng	96
70) C303	2-Chlorotoluene	10.27	126	173186	120.66 ng	100
71) C289	4-Chlorotoluene	10.38	126	181090	121.31 ng	100
72) C304	1,3,5-Trimethylbenze	10.34	105	617372	121.83 ng	97
73) C306	tert-Butylbenzene	10.66	134	136743	120.84 ng	97
74) C307	1,2,4-Trimethylbenze	10.71	105	626103	121.77 ng	. 98
75) C308	sec-Butylbenzene	10.87	105	762797	121.52 ng	96
76) C260	1,3-Dichlorobenzene	10.99	146	346732	121.85 ng	97
77) C309	4-Isopropyltoluene	11.00	119	698740	123.14 ng	99
78) C267	1,4-Dichlorobenzene	11.08	146	360998	122.39 ng	97
79) C249	1,2-Dichlorobenzene	11.42	146	338430	120.50 ng	89
80) C310	n-Butylbenzene	11.38	91	631147	120.08 ng	98
81) C286	1,2-Dibromo-3-Chloro	12.12	75	27319	110.22 ng	89
82) C313	1,2,4-Trichlorobenze	12.82	180	218625	103.37 ng	98
83) C316	Hexachlorobutadiene	12.95	225	96720	103.19 ng	96
84) C314	Naphthalene	13.03	128	456357	104.02 ng	100
85) C934	1,2,3-Trichlorobenze	13.23	180	179523	96.90 ng	97

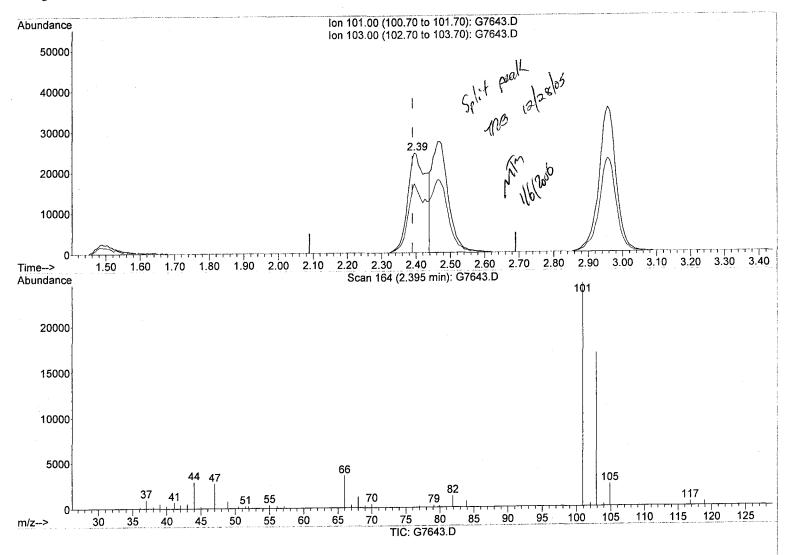
^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Acq On : 28 Dec 2005 8:50

Sample : VSTD025

Misc :

Integrator: RTE


Quant Time: Dec 28 09:13:43 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 21:28:27 2005 Response via : Initial Calibration Data Path : C:\MSDChem\1\DATA\122805\

Operator : TLC



#### (7) C275 Trichlorofluoromethane (T)

2.39min (+0.006) 56.36ng

response 91622

 Ion
 Exp%
 Act%

 101.00
 100
 100

 103.00
 63.20
 68.65

 0.00
 0.00
 0.00

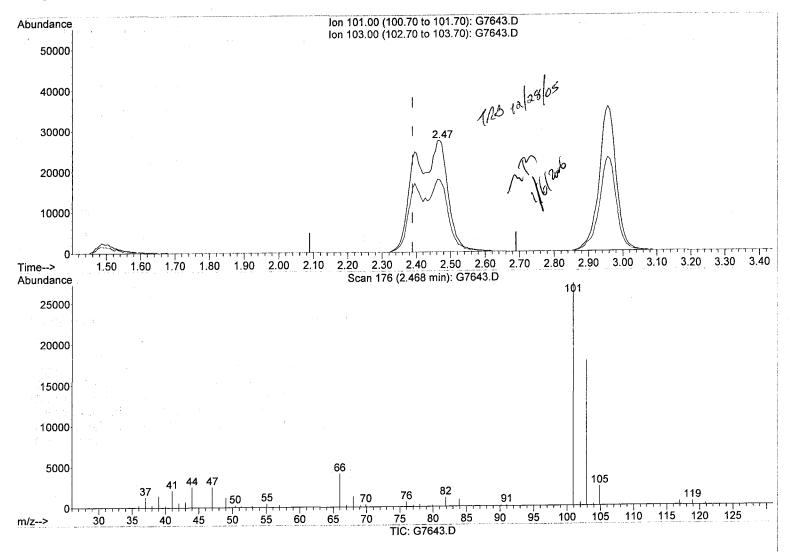
 0.00
 0.00
 0.00

Acq On : 28 Dec 2005 8:50

Sample : VSTD025

Misc :

Integrator: RTE


Quant Time: Dec 28 09:13:43 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 21:28:27 2005 Response via : Initial Calibration Data Path : C:\MSDChem\1\DATA\122805\

Operator : TLC



#### (7) C275 Trichlorofluoromethane (T)

2.47min (+0.079) 111.82ng m

response 181773

 Ion
 Exp%
 Act%

 101.00
 100
 100

 103.00
 63.20
 64.92

 0.00
 0.00
 0.00

 0.00
 0.00
 0.00

Raw QC Data

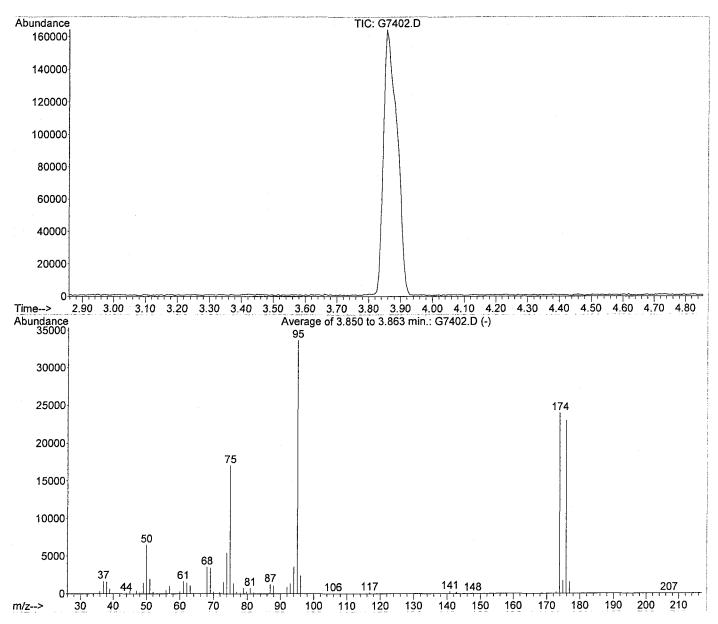
BFB Tune Evaluation

Data File : C:\MSDChem\1\DATA\122005\G7402.D

Acq On : 20 Dec 2005 9:53

Sample : 1220BFBG1

Misc


MS Integration Params: RTEINT.P

Vial: 1 Operator: LH/TRB

Inst : HP5973G Multiplr: 1.00

Method : C:\MSDCHEM\1\MET...LOW\A510002394.M (RTE Integrator)

Title : 8260 5ML WATER



Peak Apex is scan: 401 (3.86 min)

А	verage or	3 scans:	400,401,40	J2 minus ba	ackgrouna	scan 381 (3	3./3 mln)
	Target	Rel, to	Lower	Upper	Rel.	Raw	Result
İ	Mass	Mass	Limit,%	Limit,%	Abn,%	Abn	Pass/Fail
-					<b></b>		
J	50	95	15	40	19.3	6483	PASS
- [	75	95	30	60	50.7	17057	PASS
	95	95	100	100	100.0	33674	PASS
İ	96	95	5	9	7.1	2379	PASS
·	173	174	0	2	0.9	205	PASS
Ì	174	95	50	100	71.2	23978	PASS
İ	175	174	5	9	7.2	1723	PASS
ı	176	174	95	101	95.9	23000	PASS
ĺ	177	176	5	9	6.8	1575	PASS

Modified:sul	btracted						
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
35.95	327	55.95	484	74.00	5459	94.00	3591
37.00	1650	57.00	1003	75.00	17057	95.00	33674
38.00	1536	60.00	304	76.00	1367	96.00	2379
39.00	643	61.00	1634	76.95	268	140.85	284
45.00	356	62.00	1437	78.90	739	142.90	209
47.00	376	62.95	1070	79.90	259	172.85	205
48.00	181	68.00	3530	80.90	753	173.90	23978
49.00	1427	69.00	3407	86.95	1239	174.90	1723
50.00	6483	69.95	270	87.95	1071	175.90	23000
51.00	1981	71.90	194	91.95	869	176.90	1575
52.05	245	73.00	1550	92.95	1325		

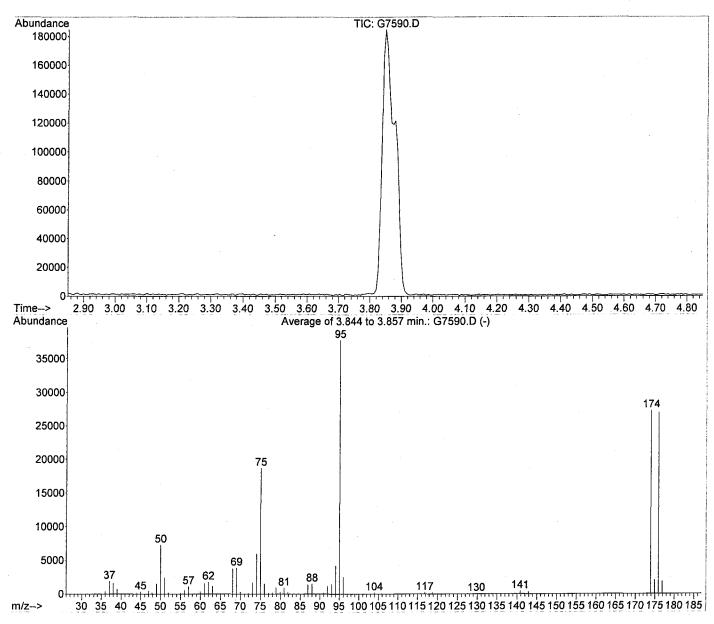
BFB Tune Evaluation

Data File : C:\MSDChem\1\DATA\122705\G7590.D

Acq On : 27 Dec 2005 8:11

Sample : 1224BFBG1

Inst : HP5973G Multiplr: 1.00


Vial: 1

Operator: TLC

Misc: Multiplr: 1.0
MS Integration Params: RTEINT.P

Method : C:\MSDCHEM\1\MET...LOW\A510002430.M (RTE Integrator)

Title : 8260 5ML WATER



Peak Apex is scan: 400 (3.85 min)

Average of 3 scans: 399,400,401 minus background scan 380 (3.73 min)

£	Average of	3 scans:	399,400,40	)l minus ba	ackground	scan 380 (3	3.73 min)	
	Target	Rel. to	Lower	Upper	Rel.	Raw	Result	١
	Mass	Mass	Limit,%	Limit,%	Abn,%	Abn	Pass/Fail	۱
-			· 					_
	50	95	15	40	19.4	7307	PASS	1
	75	95	30	60	49.6	18712	PASS	١
	95	95	100	100	100.0	37744	PASS	١
	96	95	5	9	6.6	2505	PASS	Ì
	173	174	0	2	0.4	99	PASS	l
	174	95	50	100	72.2	27264	PASS	l
	175	174	5	9	7.5	2032	PASS	l
	176	174	95	101	98.8	26936	PASS	l
	177	176	- 5	9	6.9	1860	PASS	l
				•				

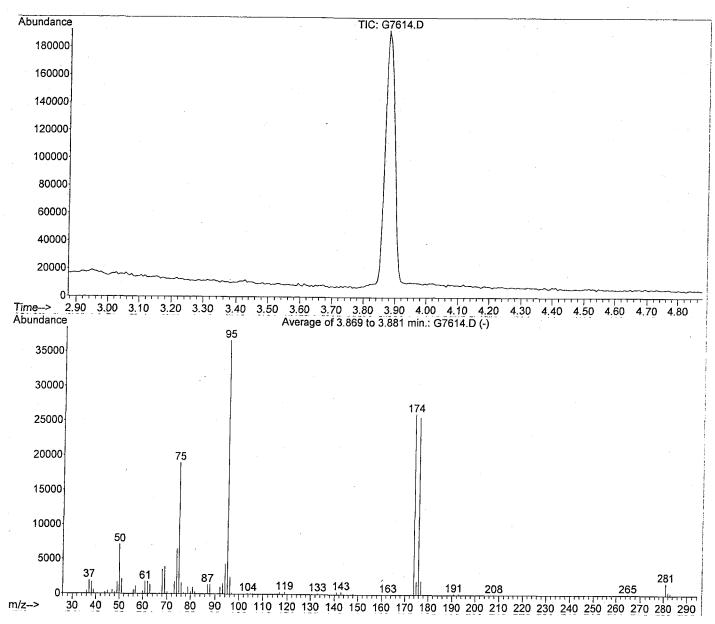
Modified:su	btracted						
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
36.00	408	57.00	1098	75.95	1516	95.00	37744
37.00	1913	59.95	356	77.95	193	96.00	2505
38.00	1608	61.00	1562	78.90	945	103.95	212
39.00	727	62.00	1786	79.95	289	116.85	240
44.95	363	63.00	1177	80.90	882	118.85	204
47.05	496	68.00	3795	81.90	228	140.85	416
47.90	200	69.00	3884	86.95	1397	142.90	346
49.00	1548	69.95	311	88.00	1482	173.90	27264
50.00	7307	72.95	1657	91.95	1149	174.90	2032
51.00	2401	74.00	5984	93.00	1460	175.90	26936
56.00	542	75.00	18712	94.00	4206	176.90	1860

BFB Tune Evaluation

Data File : C:\MSDCHEM\1\DATA\122705\G7614.D

: 27 Dec 2005 20:20

Sample : 1227BFBG2


Misc

Vial: 1 Operator: TLC Inst : HP5973G Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\MSDCHEM\1\MET...LOW\A510002430.M (RTE Integrator)

Title : 8260 5ML WATER



Peak Apex is scan: 404 (3.87 min)

			(0.0, .					
2	Average of	f 3 scans:	403,404,40	05 minus ba	ackground	scan 384 (	3.75 min)	
	Target	Rel. to	Lower	Upper	Rel.	Raw	Result	١
	Mass	Mass	Limit,%	Limit,%	Abn,%	Abn	Pass/Fail	ĺ
•					· · ·	·		_
	50	95	15	40	19.5	7137	PASS	l
	75	95	30	- 60	51.8	18970	PASS	ĺ
	95	95	100	100	100.0	36650	PASS	
	96	95	5	9	6.8	2484	PASS	l
	173	174	0	2	0.4	110	PASS	ĺ
	174	95	50	100	71.2	26096	PASS	
-	175	174	5	9	7.3	1909	PASS	
- 1	176	174	95	101	98.1	25613	PASS	
1	177	176	5	9	7.6	1955	PASS	
			•			1		

.227BFBG2 lodified:su	htragtod						
m/z	abund.	m/z	abund.	m/z	abund.	/-	
36.00	411	56.05		•		m/z	abund.
			548	75.00	18970	95.00	3,6650
37.05	1936	56.95	1093	76.00	1611	96.00	2484
38.05	1681	60.00	3 9.0	78.90	970	116.90	269
39.00	587	61.00	1787	79.95	312	118.85	330
43.95	202	62.00	1782	80.90	919	140.85	363
45.00	404	63.00	1360	81.85	261	142.85	391
47.00	528	68.00	3517	86.95	1358	173.90	26096
48.05	200	69.00	3890	87.95	1380	174.90	1909
49.00	1679	70.05	275	91.95	985	175.90	25613
50.00	7137	73.00	1769	93.00	1501	176.90	1955
51.00	2163	74.00	6485	94.00	4308	281.00	1725
verage of	3.869 to	3.881 min.:	G7614.D				
227BFBG2							•
Modified:sul	otracted						
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
282.00	458	-		•		, –	<del></del>
283.00	284						

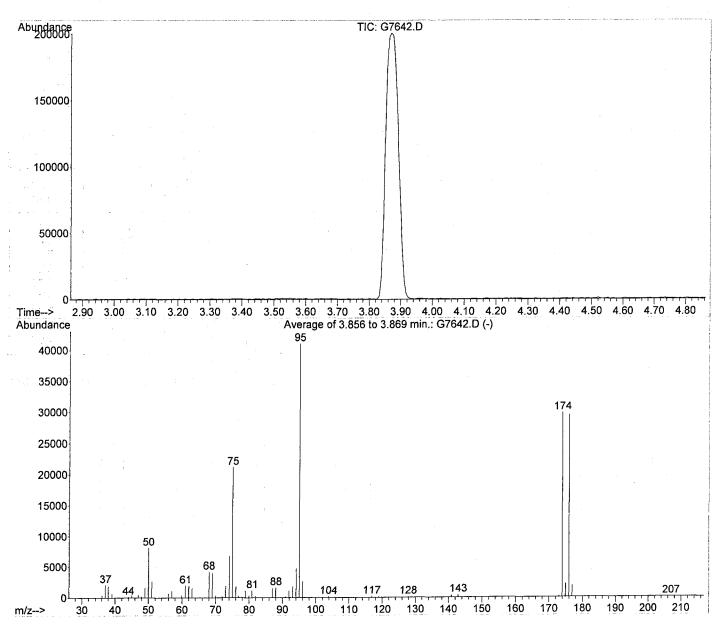
BFB Tune Evaluation

253/304

Data File : C:\MSDChem\1\DATA\122805\G7642.D

Acq On : 28 Dec 2005 Sample : 1228BFBG1

8:09


Vial: 1 Operator: TLC

: HP5973G Inst Multiplr: 1.00

Misc MS Integration Params: RTEINT.P

: C:\MSDCHEM\1\MET...LOW\A510002430.M (RTE Integrator) Method

Title : 8260 5ML WATER



Peak Apex is scan: 402 (3.86 min)

7	Average of	3 scans:	401,402,40	)3 minus ba	ackground	scan 382 (.	3.74 min)	
ĺ	Target	Rel. to	Lower	Upper	Řel.	Raw	Result	
	Mass	Mass	Limit,%	Limit,%	Abn,%	Abn	Pass/Fail	l
-			,	<del>-</del>				_
١	50	95	15	40	19.7	8100	PASS	1
i	75	95	30	60	51.6	21186	PASS	
İ	95	95	100	100	100.0	41093	PASS	
	96	95	5	9	6.3	2609	PASS	
	173	174	0	2	0.5	161	PASS	
ĺ	174	95	50	100	72.6	29842	PASS	l
į	175	174	5	9	7.4	2195	PASS	
i	176	174	95	101	98.8	29488	PASS	
	177	176	5	9	6.4	1883	PASS	
- 1			' '		•		<del></del>	

Nodified:sub	otracted						
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
36.05	344	59.90	347	76.95	280	96.00	2609
37.05	2095	61.00	1983	78.90	1127	116.85	212
38.00	1836	62.00	1921	79.95	327	140.85	321
39.05	642	63.00	1555	80.90	1189	142.85	446
45.00	406	68.00	4192	81.85	241	173.90	29842
47.00	475	69.00	3963	86.95	1522	174.90	2195
49.00	1623	69.95	343	87.95	1651	175.90	29488
50.00	8100	72.95	1889	91.95	1099	176.90	1883
51.00	2625	74.00	6735	93.00	1773		
56.00	663	75.00	21186	94.00	4738		
57.00	1062	76.00	1839	95.00	41093		

Soil Aliquot Volume: ____ (uL)

# METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

			VBLK36
Lab Name: <u>STL Buffalo</u>	Contract: 4		
Lab Code: RECNY Case No.:	SAS No.:	SDG No.: <u>1205GW</u>	,
Matrix: (soil/water) WATER		Lab Sample ID:	A5B2007002
Sample wt/vol: $\underline{5.00}$ (g/mL)	<u>ML</u>	Lab File ID:	G7593.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	
% Moisture: not dec Heated	l Purge: <u>N</u>	Date Analyzed:	12/27/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (m	m)	Dilution Factor:	1.00

Soil Extract Volume: ____ (uL)

CAS NO.	COMPOUND	CONCENTRATION UNI (ug/L or ug/Kg)	ITS: <u>UG/L</u>	Q
67-64-1			5.0	ט
71-43-2			1.0	U
75-27-4	Bromodichloromethane		1.0	U
75-25-2			1.0	U
74-83-9	Bromomethane		1.0	ע
78-93-3	2-Butanone		5.0	ע
75-15-0	Carbon Disulfide		1.0	U
56-23-5	Carbon Tetrachloride		1.0	U
108-90-7	Chlorobenzene		1.0	U
75-00-3	Chloroethane		1.0	ע
67-66-3	Chloroform		1.0	U
	Chloromethane		1.0	U
110-82-7	Cyclohexane		1.0	U
	1,2-Dibromoethane		1.0	U
124-48-1	Dibromochloromethane		1.0	ע
96-12-8	1,2-Dibromo-3-chloropropane		1.0	U
95-50-1	1,2-Dichlorobenzene		1.0	U
541-73-1	1,3-Dichlorobenzene		1.0	U
106-46-7	1,4-Dichlorobenzene		1.0	U
75-71-8	Dichlorodifluoromethane		1.0	U
75-34-3	1,1-Dichloroethane		1.0	U
107-06-2	1,2-Dichloroethane		1.0	U
75-35-4	1,1-Dichloroethene		1.0	ט
156-59-2	cis-1,2-Dichloroethene		1.0	U
156-60-5	trans-1,2-Dichloroethene		1.0	U
78-87-5	1,2-Dichloropropane		1.0	U
10061-01-5	cis-1,3-Dichloropropene		1.0	ט
10061-02-6	trans-1,3-Dichloropropene		1.0	ע
	Ethylbenzene		1.0	U
591-78-6	2-Hexanone		5.0	U
98-82-8	Isopropylbenzene		1.0	U
	Methyl acetate		1.0	U
	Methylcyclohexane		1.0	ע
	Methylene chloride		1.0	ט
1	<del> </del>			1 1

U

U

U

1.0

1.0

3.0

#### METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

I ala Nama (MIII Disesa) a	Comban ab A		VBLK36
Lab Name: <u>STL Buffalo</u>	Contract: 4	<del></del>	
Lab Code: RECNY Case No.:	SAS No.:	SDG No.: <u>1205GW</u>	
Matrix: (soil/water) <u>WATER</u>		Lab Sample ID:	A5B2007002
Sample wt/vol: $\underline{5.00}$ (g/mL)	<u>ML</u>	Lab File ID:	G7593.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	
% Moisture: not dec Heated	l Purge: <u>N</u>	Date Analyzed:	12/27/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (m	m)	Dilution Factor:	1.00
Soil Extract Volume: (uL)		Soil Aliquot Volu	ume: (uL)

#### CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) Q <u>UG/L</u> 108-10-1----4-Methyl-2-pentanone 5.0 U 1634-04-4----Methyl-t-Butyl Ether (MIBE) U 1.0 91-20-3----Naphthalene U 1.0 100-42-5----Styrene U 1.0 79-34-5----1,1,2,2-Tetrachloroethane U 1.0 127-18-4----Tetrachloroethene 1.0 U 108-88-3----Toluene 1.0 U 120-82-1----1,2,4-Trichlorobenzene U 1.0 71-55-6----1,1,1-Trichloroethane 1.0 U 79-00-5----1,1,2-Trichloroethane U 1.0 76-13-1----1,1,2-Trichloro-1,2,2-trifluoroethane U 1.0 75-69-4----Trichlorofluoromethane 1.0 U

79-01-6----Trichloroethene

75-01-4-----Vinyl chloride

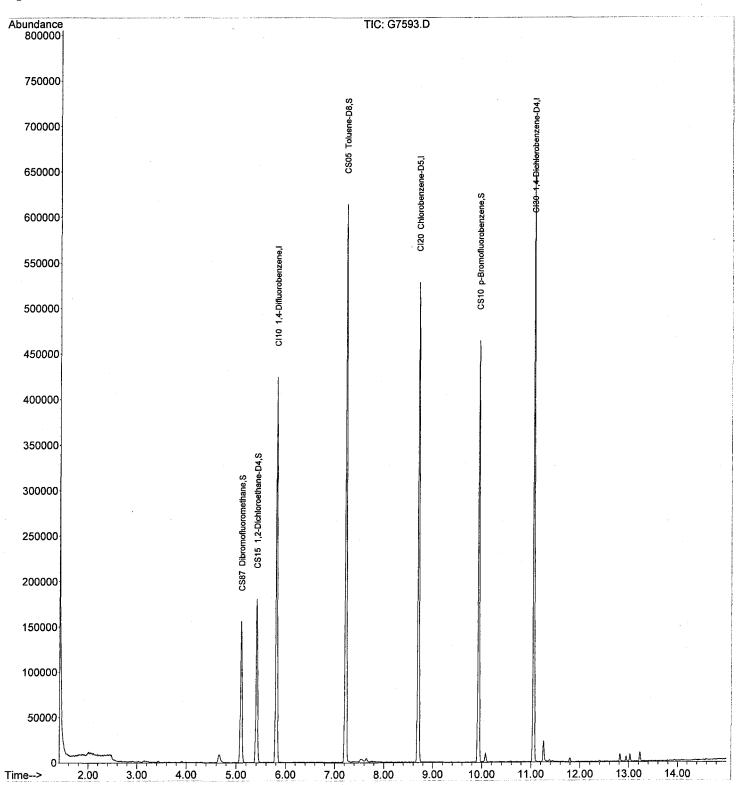
1330-20-7----Total Xylenes

Acq On : 27 Dec 2005 9:44

Sample : VBLK36

Misc

•


Integrator: RTE

Quant Time: Dec 27 10:01:54 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDChem\1\DATA\122705\



: 27 Dec 2005 9:44 Acq On

Sample : VBLK36

Misc

Integrator: RTE

Quant Time: Dec 27 10:01:54 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDChem\1\DATA\122705\

Internal Standards		R.T.	. QIon	Response	Conc Unit	S Dev(Min) Rcv(Ar )
1) CI10 1,4-Diflu	orobenzene	5.81	114	374123	125.00 r	ng 0.00
43) CI20 Chlorober	nzene-D5	8.70	82	188568	125.00 r	ng 0.00 98.21%
63) CI30 1,4-Dichl	orobenzene-	11.05	5 152	179068	125.00 r	
31) CS15 1,2-Dichl	uoromethane .25.000 Rai .oroethane-D .25.000 Rai .8 .25.000 Rai .uorobenzene	nge 70 5.43 nge 73 7.22 nge 75	0 - 130 L 65 B - 136 2 98 7 - 122 L 174	Recove 140537 Recove 447605 Recove 136832	116.68 ng ry = 9 117.72 ng ry = 9 117.12 ng	01.59% 0.00 03.34% 0.00 04.18%
Target Compounds 2) C290 Dichlorod		0.00	85	0	N.D.	Qvalue
9) C030 Methylene 10) C040 Carbon di 11) C036 Acrolein 12) C038 Acrylonit 13) C035 Acetone 14) C300 Acetonit 15) C276 Iodometha 16) C291 1,1,2-Tri 17) C962 T-butyl M 18) C057 trans-1,2 19) C255 Methyl Ac 20) C050 1,1-Dichl 21) C125 Vinyl Ace 22) C051 2,2-Dichl 23) C056 cis-1,2-E 24) C272 Tetrahydr 25) C222 Bromochlo 27) C060 Chlorofor 28) C115 1,1,1-Tri 29) C120 Carbon te 30) C116 1,1-Dichl 32) C165 Benzene	coride cane cane cane cane coroethene coroethene coroethene coroethene coroethene coroethene coroethene coroethene coroethene coroethane coropropan coroethene coroethane coroethane coroethene coroethene coroethene coroethene coroethene coroethene coroethene coroethene coroethene coroethene coroethene coroethene coroethene coroethene coroethene coroethene coroethene	0.00 3.44 3.14 2.91 0.00 3.04 3.32 0.00 0.00 0.00 0.00 0.00 0.00 4.19	50 62 94 64 101 96 84 76 53 41 142 101 73 63 43 77 96 42 128 83 97 175 78 62	464 0 66 0 0 804 3530 1079 0 1679 568 0 0 0 0 73 316 0 56 0 0 0 150 0	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	
34) C110 2-Butanon 35) C256 Cyclohexa 36) C150 Trichloro	e ne	4.66 0.00 0.00	43 56 95	567 0 0	N.D. N.D. N.D.	

Acq On : 27 Dec 2005 9:44

Sample : VBLK36

Misc :

Integrator: RTE

Quant Time: Dec 27 10:01:54 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 27 08:55:23 2005 Response via: Initial Calibration Data Path: C:\MSDChem\1\DATA\122705\

Internal	Standards	R.T	. QIon	Response	Conc Unit	s Dev(Min) Rcv(Ar )
37) C140	1,2-Dichloropropan	0.00	63	0	N.D.	
38) C278	Dibromomethane	0.00	93	0	N.D.	
39) C130	Bromodichlorometha	0.00	83	0	N.D.	
40) C161	2-Chloroethylvinyl	0.00	63	0	N.D.	
41) C012	Methylcyclohexane	0.00	83	0	N.D.	
42) C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
45) C230	Toluene	7.28	92	440	N.D.	
46) C170	trans-1,3-Dichloro	0.00	75	0	N.D.	
47) C284	Ethyl Methacrylate	0.00	69	0	N.D.	
48) C160	1,1,2-Trichloroeth	0.00	83	0	N.D.	
49) C210	4-Methyl-2-pentano	7.22	43	2169	N.D.	
50) C220	Tetrachloroethene	0.00	166	0	N.D.	
51) C221	1,3-Dichloropropan	0.00	76	0	N.D.	
52) C155	Dibromochlorometha	0.00	129	0	N.D.	
53) C163	1,2-Dibromoethane	0.00	107	0	N.D.	
54) C215	2-Hexanone	7.96	43	118	N.D.	
55) C235	Chlorobenzene	8.73	112	60	N.D.	
56) C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
57) C240	Ethylbenzene	8.83	91	114	N.D.	
58) C246	m,p-Xylene	8.95	106	60	N.D.	
59) C247	o-Xylene	0.00	106	0	N.D.	
60) C245	Styrene	0.00	104	0	N.D.	
61) C180	Bromoform	0.00	173	0	N.D.	
64) C966	Isopropylbenzene	9.93	105	82	N.D.	
65) C301	Bromobenzene	0.00	156	0	N.D.	
,66) C225	1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
67) C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
68) C283	t-1,4-Dichloro-2-B	0.00	51	0	N.D.	
69) C302	n-Propylbenzene	10.18	91	257	N.D.	
70) C303	2-Chlorotoluene	0.00	126	. 0	N.D.	
71) C289	4-Chlorotoluene	0.00	126	0	N.D.	
72) C304	1,3,5-Trimethylben	10.34	105	209	N.D.	
73) C306	tert-Butylbenzene	0.00	134	0	N.D.	
74) C307	1,2,4-Trimethylben	10.70	105	399	N.D.	
75) C308	sec-Butylbenzene	10.86	105	211	N.D.	
76) C260	1,3-Dichlorobenzen	11.00	146	128	N.D.	
77) C309	4-Isopropyltoluene	11.00	119	422	N.D.	
78) C267	1,4-Dichlorobenzen	11.00	146	128	N.D.	
79) C249	1,2-Dichlorobenzen	11.42	146	174	N.D.	
80) C310	n-Butylbenzene	11.38	91	1062	N.D.	
81) C286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
82) C313	1,2,4-Trichloroben	12.82	180	2652	N.D.	
83) C316	Hexachlorobutadien	12.94	225	1070	N.D.	
84) C314	Naphthalene	13.03	128	6336	N.D.	
85) C934	1,2,3-Trichloroben	13.23	180	3424	N.D.	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed



#### METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

VBLK3	37	
L		 

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: SAS No.: SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59215

Sample wt/vol:  $\underline{5.00}$  (g/mL)  $\underline{\text{ML}}$  Lab File ID:  $\underline{\text{G7618.RR}}$ 

Level: (low/med) LOW Date Samp/Recv: _____

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: 0.25 (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

#### CONCENTRATION UNITS:

67-64-1Acetone       5.0       U         71-43-2Benzene       1.0       U         75-25-4Bromodichloromethane       1.0       U         75-25-2	CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-27-4Bromodichloromethane         1.0         U           75-25-2				5.0	
75-25-2	71-43-2	Benzene		1.0	1 1
74-83-9Bromomethane       1.0       U         78-93-32-Butanone       5.0       U         75-15-0Carbon Disulfide       1.0       U         56-23-5Carbon Tetrachloride       1.0       U         108-90-7Chlorobenzene       1.0       U         75-00-3Chloropethane       1.0       U         76-63Chloromethane       1.0       U         10-82-7Chloromethane       1.0       U         106-93-41,2-Dibromoethane       1.0       U         106-93-41,2-Dibromoethane       1.0       U         96-12-81,2-Dibromoethane       1.0       U         95-50-11,2-Dichlorobenzene       1.0       U         95-50-11,3-Dichlorobenzene       1.0       U         95-57-81,4-Dichlorobenzene       1.0       U         106-46-71,4-Dichlorobenzene       1.0       U         95-34-31,1-Dichloroethane       1.0       U         107-06-21,2-Dichloroethane       1.0       U         156-59-2cis-1,2-Dichloroethene       1.0       U         156-59-2cis-1,2-Dichloroethene       1.0       U         10061-01-5cis-1,3-Dichloropropene       1.0       U <t< td=""><td>75-27-4</td><td>Bromodichloromethane</td><td></td><td>1.0</td><td>U</td></t<>	75-27-4	Bromodichloromethane		1.0	U
78-93-32-Butanone       5.0       U         75-15-0Carbon Disulfide       1.0       U         56-23-5Carbon Tetrachloride       1.0       U         108-90-7Chlorobenzene       1.0       U         75-00-3Chlorobethane       1.0       U         67-66-3Chloromethane       1.0       U         110-82-7	75-25-2	Bromoform		1.0	U
75-15-0Carbon Disulfide				1.0	U
56-23-5Carbon Tetrachloride       1.0       U         108-90-7Chlorobenzene       1.0       U         75-00-3Chlorotethane       1.0       U         67-66-3Chloroform       1.0       U         74-87-3Chloromethane       1.0       U         110-82-7Cyclohexane       1.0       U         110-82-7	78-93-3	2-Butanone		5.0	U
108-90-7Chloroebnzene       1.0       U         75-00-3Chloroethane       1.0       U         67-66-3Chloromethane       1.0       U         110-82-7Cyclohexane       1.0       U         110-82-7Cyclohexane       1.0       U         110-82-7Cyclohexane       1.0       U         110-82-7				1.0	U
108-90-7Chloroebnzene       1.0       U         75-00-3Chloroethane       1.0       U         67-66-3Chloromethane       1.0       U         110-82-7Cyclohexane       1.0       U         110-82-7Cyclohexane       1.0       U         110-82-7Cyclohexane       1.0       U         110-82-7	56-23-5	Carbon Tetrachloride		1.0	U
67-66-3Chloroform       1.0       U         74-87-3Chloromethane       1.0       U         110-82-7Cyclohexane       1.0       U         106-93-41,2-Dibromoethane       1.0       U         124-48-1Dibromochloromethane       1.0       U         96-12-81,2-Dibromo-3-chloropropane       1.0       U         95-50-11,2-Dichlorobenzene       1.0       U         541-73-11,3-Dichlorobenzene       1.0       U         541-73-11,4-Dichlorobenzene       1.0       U         75-71-8Dichlorobenzene       1.0       U         75-34-31,1-Dichloroethane       1.0       U         75-34-31,1-Dichloroethane       1.0       U         106-21,2-Dichloroethene       1.0       U         156-59-2cis-1,2-Dichloroethene       1.0       U         156-60-5trans-1,2-Dichloropropane       1.0       U         10061-02-6trans-1,3-Dichloropropene       1.0       U         10041-4Ethylbenzene       5.0       U         98-82-8	108-90-7	Chlorobenzene		1.0	U
74-87-3Chloromethane       1.0       U         110-82-7Cyclohexane       1.0       U         106-93-41,2-Dibromoethane       1.0       U         124-48-1Dibromochloromethane       1.0       U         96-12-81,2-Dibromo-3-chloropropane       1.0       U         95-50-11,2-Dichlorobenzene       1.0       U         541-73-11,3-Dichlorobenzene       1.0       U         541-73-11,4-Dichlorobenzene       1.0       U         75-71-8Dichlorobenzene       1.0       U         75-71-8Dichlorobenzene       1.0       U         75-34-31,1-Dichloroethane       1.0       U         107-06-21,2-Dichloroethane       1.0       U         156-59-2cis-1,2-Dichloroethene       1.0       U         156-60-5trans-1,2-Dichloroethene       1.0       U         1061-01-5cis-1,3-Dichloropropane       1.0       U         100-41-4Ethylbenzene       5.0       U         591-78-62-Hexanone       5.0       U         98-82-8Methyl acetate       1.0       U         108-87-2	75-00-3	Chloroethane		1.0	U
110-82-7Cyclohexane       1.0       U         106-93-41,2-Dibromoethlane       1.0       U         124-48-1Dibromochloromethane       1.0       U         96-12-81,2-Dibromo-3-chloropropane       1.0       U         95-50-11,2-Dichlorobenzene       1.0       U         541-73-11,3-Dichlorobenzene       1.0       U         106-46-71,4-Dichlorobenzene       1.0       U         75-71-8Dichlorodifluoromethane       1.0       U         75-34-31,1-Dichloroethane       1.0       U         107-06-21,2-Dichloroethane       1.0       U         156-59-2cis-1,2-Dichloroethene       1.0       U         156-60-5trans-1,2-Dichloroethene       1.0       U         1061-01-5cis-1,3-Dichloropropane       1.0       U         10061-02-6trans-1,3-Dichloropropene       1.0       U         100-41-4Ethylbenzene       5.0       U         98-82-8Methyl acetate       1.0       U         108-87-2				1.0	U
110-82-7Cyclohexane       1.0       U         106-93-41,2-Dibromoethlane       1.0       U         124-48-1Dibromochloromethane       1.0       U         96-12-81,2-Dibromo-3-chloropropane       1.0       U         95-50-11,2-Dichlorobenzene       1.0       U         541-73-11,3-Dichlorobenzene       1.0       U         106-46-71,4-Dichlorobenzene       1.0       U         75-71-8Dichlorodifluoromethane       1.0       U         75-34-31,1-Dichloroethane       1.0       U         107-06-21,2-Dichloroethane       1.0       U         156-59-2cis-1,2-Dichloroethene       1.0       U         156-60-5trans-1,2-Dichloroethene       1.0       U         1061-01-5cis-1,3-Dichloropropane       1.0       U         10061-02-6trans-1,3-Dichloropropene       1.0       U         100-41-4Ethylbenzene       5.0       U         98-82-8Methyl acetate       1.0       U         108-87-2	74-87-3	Chloromethane		1.0	U
106-93-41,2-Dibromoethane       1.0       U         124-48-1Dibromochloromethane       1.0       U         96-12-81,2-Dibromo-3-chloropropane       1.0       U         95-50-11,2-Dichlorobenzene       1.0       U         541-73-11,3-Dichlorobenzene       1.0       U         106-46-71,4-Dichlorobenzene       1.0       U         75-71-8Dichlorobenzene       1.0       U         75-34-31,1-Dichlorobethane       1.0       U         107-06-21,2-Dichlorobethane       1.0       U         107-35-41,1-Dichlorobethene       1.0       U         156-59-2cis-1,2-Dichlorobethene       1.0       U         156-60-5trans-1,2-Dichlorobethene       1.0       U         1061-01-5cis-1,3-Dichloropropane       1.0       U         10061-02-6trans-1,3-Dichloropropene       1.0       U         100-41-4Ethylbenzene       5.0       U         591-78-62-Hexanone       5.0       U         98-82-8	110-82-7	Cvclohevane		1.0	ט
96-12-81,2-Dibromo-3-chloropropane       1.0       U         95-50-11,2-Dichlorobenzene       1.0       U         541-73-11,3-Dichlorobenzene       1.0       U         106-46-71,4-Dichlorobenzene       1.0       U         75-71-8Dichlorodifluoromethane       1.0       U         75-34-31,1-Dichloroethane       1.0       U         107-06-21,2-Dichloroethane       1.0       U         156-59-2cis-1,2-Dichloroethene       1.0       U         156-60-5trans-1,2-Dichloroethene       1.0       U         1061-01-5cis-1,3-Dichloropropene       1.0       U         10041-4Ethylbenzene       1.0       U         591-78-62-Hexanone       5.0       U         98-82-8Isopropylbenzene       1.0       U         79-20-9Methyl acetate       1.0       U         108-87-2Methylcyclohexane       1.0       U	106-93-4			1.0	U
95-50-11,2-Dichlorobenzene       1.0       U         541-73-11,3-Dichlorobenzene       1.0       U         106-46-71,4-Dichlorobenzene       1.0       U         75-71-8Dichlorodifluoromethane       1.0       U         75-34-31,1-Dichloroethane       1.0       U         107-06-21,2-Dichloroethane       1.0       U         75-35-41,1-Dichloroethene       1.0       U         156-59-2cis-1,2-Dichloroethene       1.0       U         156-60-5trans-1,2-Dichloroethene       1.0       U         78-87-51,2-Dichloropropane       1.0       U         10061-01-5cis-1,3-Dichloropropene       1.0       U         100-41-4Ethylbenzene       1.0       U         591-78-62-Hexanone       5.0       U         98-82-8Isopropylbenzene       1.0       U         79-20-9Methyl acetate       1.0       U         108-87-2Methylcyclohexane       1.0       U	124-48-1	Dibromochloromethane		1.0	U
95-50-11,2-Dichlorobenzene       1.0       U         541-73-11,3-Dichlorobenzene       1.0       U         106-46-71,4-Dichlorobenzene       1.0       U         75-71-8Dichlorodifluoromethane       1.0       U         75-34-31,1-Dichloroethane       1.0       U         107-06-21,2-Dichloroethane       1.0       U         75-35-41,1-Dichloroethene       1.0       U         156-59-2cis-1,2-Dichloroethene       1.0       U         156-60-5trans-1,2-Dichloroethene       1.0       U         78-87-51,2-Dichloropropane       1.0       U         10061-01-5cis-1,3-Dichloropropene       1.0       U         100-41-4Ethylbenzene       1.0       U         591-78-62-Hexanone       5.0       U         98-82-8Isopropylbenzene       1.0       U         79-20-9Methyl acetate       1.0       U         108-87-2Methylcyclohexane       1.0       U	96-12-8	1,2-Dibromo-3-chloropropane		1.0	U
106-46-71,4-Dichlorobenzene       1.0       U         75-71-8Dichlorodifluoromethane       1.0       U         75-34-31,1-Dichloroethane       1.0       U         107-06-21,2-Dichloroethane       1.0       U         75-35-41,1-Dichloroethene       1.0       U         156-59-2cis-1,2-Dichloroethene       1.0       U         156-60-5trans-1,2-Dichloroethene       1.0       U         78-87-51,2-Dichloropropane       1.0       U         10061-01-5cis-1,3-Dichloropropene       1.0       U         10041-4Ethylbenzene       1.0       U         591-78-62-Hexanone       5.0       U         98-82-8Methyl acetate       1.0       U         108-87-2Methylcyclohexane       1.0       U				1.0	U
75-71-8Dichlorodifluoromethane       1.0       U         75-34-31,1-Dichloroethane       1.0       U         107-06-21,2-Dichloroethane       1.0       U         75-35-41,1-Dichloroethene       1.0       U         156-59-2cis-1,2-Dichloroethene       1.0       U         156-60-5trans-1,2-Dichloroethene       1.0       U         78-87-51,2-Dichloropropane       1.0       U         10061-01-5cis-1,3-Dichloropropene       1.0       U         10061-02-6trans-1,3-Dichloropropene       1.0       U         100-41-4Ethylbenzene       1.0       U         591-78-62-Hexanone       5.0       U         98-82-8Methyl acetate       1.0       U         108-87-2Methylcyclohexane       1.0       U	541-73-1	1,3-Dichlorobenzene		1.0	U
75-34-31,1-Dichloroethane       1.0       U         107-06-21,2-Dichloroethane       1.0       U         75-35-41,1-Dichloroethene       1.0       U         156-59-2cis-1,2-Dichloroethene       1.0       U         156-60-5trans-1,2-Dichloroethene       1.0       U         78-87-51,2-Dichloropropane       1.0       U         10061-01-5cis-1,3-Dichloropropene       1.0       U         10061-02-6trans-1,3-Dichloropropene       1.0       U         100-41-4Ethylbenzene       1.0       U         591-78-62-Hexanone       5.0       U         98-82-8Isopropylbenzene       1.0       U         79-20-9Methyl acetate       1.0       U         108-87-2Methylcyclohexane       1.0       U	106-46-7	1,4-Dichlorobenzene		1.0	U
107-06-21, 2-Dichloroethane       1.0       U         75-35-41, 1-Dichloroethene       1.0       U         156-59-2cis-1, 2-Dichloroethene       1.0       U         156-60-5trans-1, 2-Dichloroethene       1.0       U         78-87-51, 2-Dichloropropane       1.0       U         10061-01-5cis-1, 3-Dichloropropene       1.0       U         100-41-4Ethylbenzene       1.0       U         591-78-62-Hexanone       5.0       U         98-82-8Methyl acetate       1.0       U         108-87-2Methylcyclohexane       1.0       U	75-71-8	Dichlorodifluoromethane		1.0	U
75-35-41,1-Dichloroethene       1.0       U         156-59-2cis-1,2-Dichloroethene       1.0       U         156-60-5trans-1,2-Dichloroethene       1.0       U         78-87-51,2-Dichloropropane       1.0       U         10061-01-5cis-1,3-Dichloropropene       1.0       U         100-41-4Ethylbenzene       1.0       U         591-78-62-Hexanone       5.0       U         98-82-8Methyl acetate       1.0       U         108-87-2Methylcyclohexane       1.0       U	75-34-3	1,1-Dichloroethane		1.0	U
156-59-2cis-1,2-Dichloroethene       1.0       U         156-60-5trans-1,2-Dichloroethene       1.0       U         78-87-51,2-Dichloropropane       1.0       U         10061-01-5cis-1,3-Dichloropropene       1.0       U         10061-02-6trans-1,3-Dichloropropene       1.0       U         100-41-4Ethylbenzene       1.0       U         591-78-62-Hexanone       5.0       U         98-82-8Isopropylbenzene       1.0       U         79-20-9Methyl acetate       1.0       U         108-87-2Methylcyclohexane       1.0       U	107-06-2	1,2-Dichloroethane		1.0	U
156-60-5trans-1,2-Dichloroethene       1.0       U         78-87-51,2-Dichloropropane       1.0       U         10061-01-5cis-1,3-Dichloropropene       1.0       U         10061-02-6trans-1,3-Dichloropropene       1.0       U         100-41-4Ethylbenzene       1.0       U         591-78-62-Hexanone       5.0       U         98-82-8Isopropylbenzene       1.0       U         79-20-9Methyl acetate       1.0       U         108-87-2Methylcyclohexane       1.0       U	75-35-4	1,1-Dichloroethene		1.0	U
78-87-51,2-Dichloropropane       1.0       U         10061-01-5cis-1,3-Dichloropropene       1.0       U         10061-02-6trans-1,3-Dichloropropene       1.0       U         100-41-4Ethylbenzene       1.0       U         591-78-62-Hexanone       5.0       U         98-82-8Isopropylbenzene       1.0       U         79-20-9Methyl acetate       1.0       U         108-87-2Methylcyclohexane       1.0       U	156-59-2	cis-1,2-Dichloroethene		1.0	U
78-87-51,2-Dichloropropane       1.0       U         10061-01-5cis-1,3-Dichloropropene       1.0       U         10061-02-6trans-1,3-Dichloropropene       1.0       U         100-41-4Ethylbenzene       1.0       U         591-78-62-Hexanone       5.0       U         98-82-8Isopropylbenzene       1.0       U         79-20-9Methyl acetate       1.0       U         108-87-2Methylcyclohexane       1.0       U	156-60-5	trans-1,2-Dichloroethene		1.0	U
10061-02-6trans-1,3-Dichloropropene       1.0       U         100-41-4Ethylbenzene       1.0       U         591-78-62-Hexanone       5.0       U         98-82-8Isopropylbenzene       1.0       U         79-20-9Methyl acetate       1.0       U         108-87-2Methylcyclohexane       1.0       U				1.0	U
10061-02-6trans-1,3-Dichloropropene       1.0       U         100-41-4Ethylbenzene       1.0       U         591-78-62-Hexanone       5.0       U         98-82-8Isopropylbenzene       1.0       U         79-20-9Methyl acetate       1.0       U         108-87-2Methylcyclohexane       1.0       U				1.0	U
100-41-4Ethylbenzene       1.0       U         591-78-62-Hexanone       5.0       U         98-82-8Isopropylbenzene       1.0       U         79-20-9Methyl acetate       1.0       U         108-87-2Methylcyclohexane       1.0       U	10061-02-6	trans-1,3-Dichloropropene		1.0	U
591-78-62-Hexanone       5.0       U         98-82-8Isopropylbenzene       1.0       U         79-20-9Methyl acetate       1.0       U         108-87-2Methylcyclohexane       1.0       U	100-41-4	1 71	ŀ	1.0	U
79-20-9Methyl acetate       1.0       U         108-87-2Methylcyclohexane       1.0       U				5.0	U
79-20-9Methyl acetate       1.0       U         108-87-2Methylcyclohexane       1.0       U	98-82-8	Isopropylbenzene		1.0	U
1.0 U				1.0	U
					ט
				1.0	lu l

#### METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

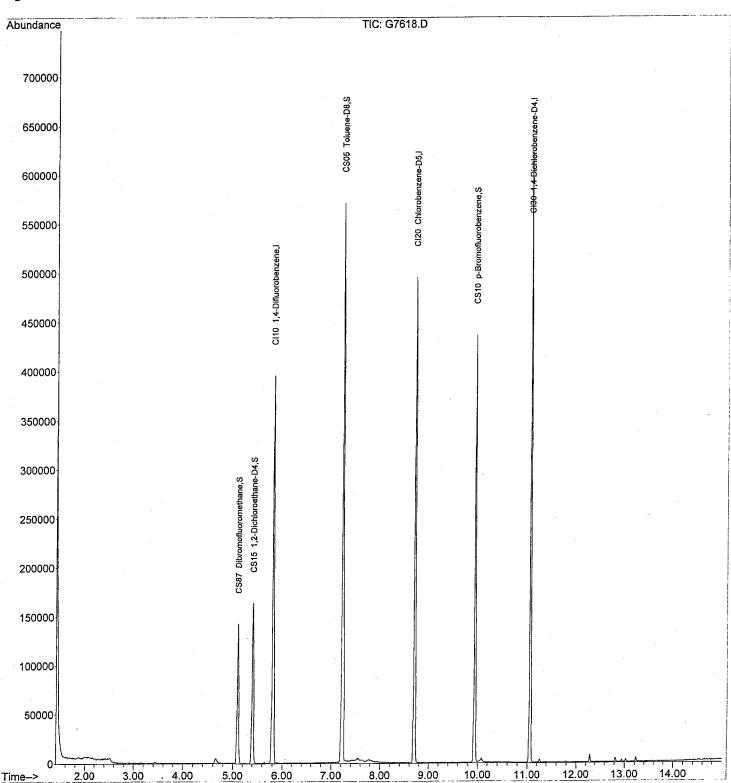
Client No.

	VBLK37	
SDG No.: <u>1205G</u>	M	
Lab Sample ID:	A5E59215	
Lab File ID:	<u>G7618.RR</u>	·
Date Samp/Recv:		
Date Analyzed:	12/27/20	<u>05</u>
Dílution Factor	:1.00	
Soil Aliquot Vo	lume:	(uL)
YNTENTERATION INTTS	•	
		Q
roethane_	5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ
	Lab Sample ID:  Lab File ID:  Date Samp/Recv:  Date Analyzed:  Dilution Factor  Soil Aliquot Vo	SDG No.: 1205GW     Lab Sample ID: A5E59215     Lab File ID: G7618.RR     Date Samp/Recv:

Data File: C:\MSDCHEM\1\DATA\122705\G7618.D

Acq On : 27 Dec 2005 21:51

Sample : VBLK37


Misc :

Integrator: RTE
Quant Time: Dec 27 22:08:42 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 27 21:28:27 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122705\



Data File: C:\MSDCHEM\1\DATA\122705\G7618.D

Acq On : 27 Dec 2005 21:51

Sample : VBLK37

Misc

Integrator: RTE

Quant Time: Dec 27 22:08:42 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 27 21:28:27 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122705\

Operator : TLC

Operacor	. 120					
				4	Conc Units	RCV(AL)
1) CI10	1,4-Difluorobenzene	5.81	114	349100	125.00 ng	0.00 99.87%
43) CI20	Chlorobenzene-D5	8.70	82	175393	125.00 ng	0.00 98.78%
63) CI30	1,4-Dichlorobenzene	- 11.05	152	165543	125.00 ng	0.00 96.93%
System Mc	onitoring Compounds	•			·	
26) CS87	Dibromofluoromethan	e 5.10	111	98616	112.85 NG	0.00
Spiked A	Amount 125.000 R	ange 70	- I30	Recove	115 57 pc	.40° 0 00
31) CS15	- 1,2-Dichioroethane	D 5.41	- 136	123000	rv := 92	.46%
Spiked F	Toluene-D8	ange 73.	98	412984	116.77 ng	0.00
Sniked I	Amount 125,000 R	ange 77	- 122	Recove	rv = 93	.42%
62) CS10	p-Bromofluorobenzen	e 9.94	174	125482	115.47 ng	0.00
Spiked A	Amount 125.000 R 1,2-Dichloroethane- Amount 125.000 R Toluene-D8 Amount 125.000 R p-Bromofluorobenzen Amount 125.000 R	ange 74	- 120	Recove	ry = 92	.38%
						Qvalue
Target Co	mpounds	0.00	0 =	0	N.D.	Qvaiue
2) C290	Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane	1 50	50 50	121	N.D.	
3) COIO	Viryl chloride	0.00	62	131	N.D.	
4) C020	Bromomethane	0.00	94	. 0	N.D.	
5) C015	Chloroethane	0.00	64	0	N.D.	
7) C275	Trichlorofluoromet	0.00	101	Ō	N.D.	
8) C045	Chloroethane Trichlorofluoromet 1,1-Dichloroethene Methylene chloride Carbon disulfide	0.00	96	0	N.D.	
9) C030	Methylene chloride	3.44	84	635	N.D.	
10) C040	Carbon disulfide	3.15	76	1227	N.D.	
11) C036	Acrolein Acrylonitrile Acetone Acetonitrile	2.89	56	324	N.D.	
12) C038	Acrylonitrile	0.00	53	0	N.D.	
13) C035	Acetone	3.03	43	1152	N.D.	
14) C300	Acetonitrile	3.35	41	143	N.D.	
15) C276	Iodomethane	0.00	142	0	N.D.	
16) C291	1,1,2-Trichloro-1,	0.00	TOT	0	N.D.	
17) C962	1,1,2-Trichloro-1, T-butyl Methyl Eth trans-1,2-Dichloro	0.00	73	0	N.D. N.D.	
18) C057 19) C255	Methyl Acetate	0.00	J0 43	0	N.D.	
20) C050	1 1-Dichloroethane	0.00	63	0	N.D.	
21) C125	1,1-Dichloroethane Vinyl Acetate	0.00	43	0	N.D.	
22) C051	2,2-Dichloropropan	0.00	77	. 0	N.D.	
23) C056	cis-1,2-Dichloroet	0.00	96	0	N.D.	
24) C272	Tetrahydrofuran	0.00	42	0	N.D.	
25) C222	Bromochloromethane	0.00	128	0	N.D.	
27) C060	Chloroform	0.00	83	0	N.D.	
28) C115	1,1,1-Trichloroeth	0.00	97	0	N.D.	
29) C120	Carbon tetrachlori		117	0	N.D.	
30) C116	1,1-Dichloropropen	0.00	75	0	N.D.	
32) C165	Benzene	5.45	78	57 0	N.D. N.D.	
33) C065	1,2-Dichloroethane	0.00 4.69	62 43	447	N.D.	
34) C110	2-Butanone Cyclohexane	0.00	56	0	N.D.	
35) C256 36) C150	Trichloroethene	0.00	95	Ō	N.D.	
307 0130	11101101000110110		·	-		

Majub

Data File: C:\MSDCHEM\1\DATA\122705\G7618.D

Acq On : 27 Dec 2005 21:51

Sample : VBLK37

Misc :

Integrator: RTE

Quant Time: Dec 27 22:08:42 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 27 21:28:27 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122705\

Internal Standards	R.T	. QIon	Response	Conc Unit	s Dev(Min) Rcv(Ar )
37) C140 1,2-Dichloropropan	0.00	63	0	N.D.	
38) C278 Dibromomethane	0.00	93	0	N.D.	
39) C130 Bromodichlorometha	0.00	83	Ō	N.D.	
40) C161 2-Chloroethylvinyl	6.85	63	295	N.D.	
41) C012 Methylcyclohexane	0.00	83	0	N.D.	
42) C145 cis-1,3-Dichloropr	0.00	75	Ö	N.D.	
45) C230 Toluene	7.28	92	306	N.D.	
46) C170 trans-1,3-Dichloro	0.00	75	0	N.D.	
47) C284 Ethyl Methacrylate	0.00	69	Ö	N.D.	
48) C160 1,1,2-Trichloroeth	0.00	83	Ö	N.D.	
49) C210 4-Methyl-2-pentano	7.22	43	2126	N.D.	
50) C220 Tetrachloroethene	0.00	166	0	N.D.	
51) C221 1,3-Dichloropropan	0.00	76	Ö	N.D.	
	0.00	129	Ö	N.D.	
	0.00	107	Ö	N.D.	
53) C163 1,2-Dibromoethane 54) C215 2-Hexanone	0.00	43	0	N.D.	
<del>-</del> -,	8.74	112	374	N.D.	
/ - · · ·	0.00	131	0	N.D.	
	8.95	91	135	N.D.	
57) C240 Ethylbenzene	0.00	106	0	N.D.	
58) C246 m,p-Xylene	0.00	106	0	N.D.	
59) C247 o-Xylene	0.00	104	Ö	N.D.	
60) C245 Styrene 61) C180 Bromoform	0.00	173	0	N.D.	
	0.00	105	Ö	N.D.	
	0.00	156	Ö	N.D.	
	0.00	83	0	N.D.	
66) C225 1,1,2,2-Tetrachlor 67) C282 1,2,3-Trichloropro	0.00	110	Ö	N.D.	
	0.00	51	Ö	N.D.	
·	10.33	91	260	N.D.	
69) C302 n-Propylbenzene 70) C303 2-Chlorotoluene	0.00	126	0	N.D.	
·	0.00	126	ő	N.D.	
	0.00	105	Ö	N.D.	
	0.00	134	Ö	N.D.	
	10.70	105	206	N.D.	
		105	63	N.D.	
75) C308 sec-Butylbenzene	10.86 0.00	146	0	N.D.	
76) C260 1,3-Dichlorobenzen	11.00	119	143	N.D.	
77) C309 4-Isopropyltoluene	0.00	146	0	N.D.	
78) C267 1,4-Dichlorobenzen	0.00	146	Ö	N.D.	
79) C249 1,2-Dichlorobenzen	11.39	91	459	N.D.	•
80) C310 n-Butylbenzene			•	N.D.	
81) C286 1,2-Dibromo-3-Chlo	12.29	75 180	387 1554	N.D.	
82) C313 1,2,4-Trichloroben	12.82	225	418	N.D.	
83) C316 Hexachlorobutadien	12.95 13.03	128	2793	N.D.	
84) C314 Naphthalene	13.03	180	1586	N.D.	
85) C934 1,2,3-Trichloroben					

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed



#### METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

	VBLK38
5GW	
:	A5B2013902

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: SAS No.: SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5B2013902

Sample wt/vol:  $\underline{5.00}$  (g/mL)  $\underline{\text{ML}}$  Lab File ID:  $\underline{\text{G7646.RR}}$ 

Level: (low/med) <u>LOW</u> Date Samp/Recv: _____

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/28/2005

GC Column: <u>DB-624</u> ID: <u>0.18</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

### CONCENTRATION UNITS:

		CONCENTRATION (			
CAS NO.	COMPOUND	(ug/L or ug/Kg	3)	UG/L	Q
67-64-1	Acetone			5.0	U
71-43-2	Benzene			1.0	ע
75-27-4	Bromodichloromethane			1.0	U
75-25-2	Bromoform			1.0	U
74-83-9	Bromomethane			1.0	U
78-93-3	2-Butanone			5.0	U
75-15-0	Carbon Disulfide			1.0	U
56-23-5	Carbon Tetrachloride			1.0	U
108-90-7	Chlorobenzene			1.0	ע
75-00-3	Chloroethane			1.0	ט
67-66-3	Chloroform			1.0	ט
74-87-3	Chloromethane			1.0	ן ט
110-82-7	Cyclohexane			1.0	U
106-93-4	1,2-Dibromoethane			1.0	U
	Dibromochloromethane			1.0	U
	1,2-Dibromo-3-chloropropane			1.0	U
	1,2-Dichlorobenzene			1.0	ט
	1,3-Dichlorobenzene			1.0	ן ט
	1,4-Dichlorobenzene			1.0	U
	Dichlorodifluoromethane			1.0	U
75-34-3	1,1-Dichloroethane			1.0	U
	1,2-Dichloroethane	· · · · · · · · · · · · · · · · · · ·		1.0	U
	1,1-Dichloroethene			1.0	U
	cis-1,2-Dichloroethene			1.0	ט
156-60-5	trans-1,2-Dichloroethene			1.0	ט
	1,2-Dichloropropane			1.0	U
	cis-1,3-Dichloropropene			1.0	ט
	trans-1,3-Dichloropropene			1.0	U
	Ethylbenzene			1.0	U
591-78-6				5.0	Ū
1	Isopropylbenzene			1.0	U
1	Methyl acetate			1.0	Ū
	Methylcyclohexane			1.0	Ū
	-Methylene chloride			1.0	Ū
L				<del>-</del>	

#### METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

- 1	<b>~</b>		VBLK38
Lab Name: <u>STL Buffalo</u>	Contract: 4		
Lab Code: RECNY Case No.:	SAS No.:	SDG No.: <u>1205GW</u>	
Matrix: (soil/water) WATER		Lab Sample ID:	A5B2013902
Sample wt/vol: $\underline{5.00}$ (g/mL)	ML	Lab File ID:	G7646.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	
% Moisture: not dec Heated	d Purge: <u>N</u>	Date Analyzed:	12/28/2005
GC Column: <u>DB-624</u> ID: <u>0.18</u> (m	nm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)		Soil Aliquot Vol	ume: (uL)

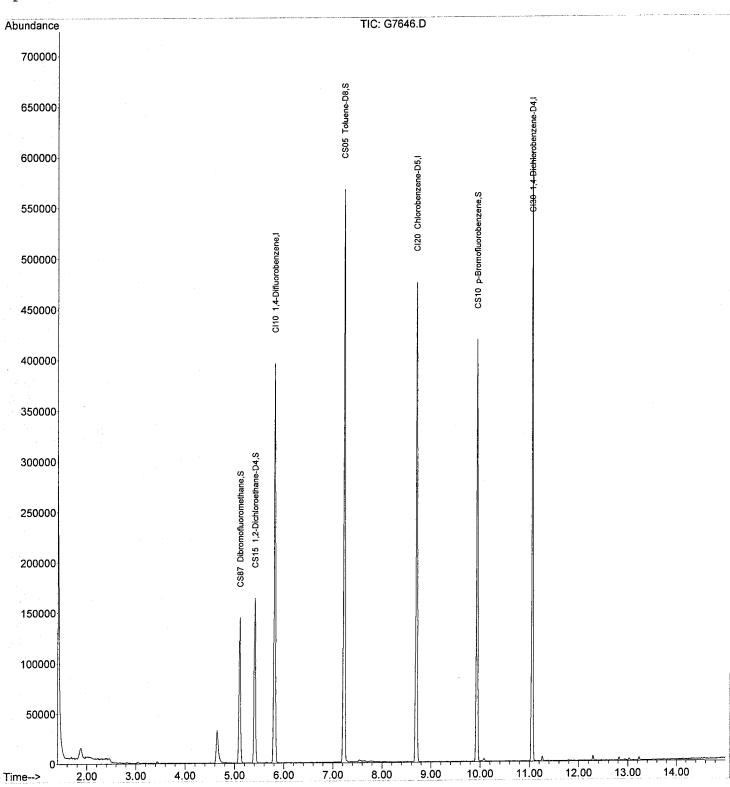
#### CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
108-10-1	4-Methyl-2-pentanone		5.0	U
	Methyl-t-Butyl Ether (MTB	E)	1.0	U
91-20-3	Naphthalene		1.0	U
100-42-5	Styrene		1.0	U
	1,1,2,2-Tetrachloroethane		1.0	U
	Tetrachloroethene		1.0	U
108-88-3	Toluene		1.0	U
120-82-1	1,2,4-Trichlorobenzene		1.0	υ
71-55-6	1,1,1-Trichloroethane		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	ט
76-13-1	1,1,2-Trichloro-1,2,2-tri	fluoroethane	1.0	U
75-69-4	Trichlorofluoromethane		1.0	U
79-01-6	Trichloroethene		1.0	U
75-01-4	Vinyl chloride		1.0	[ע
1330-20-7	Total Xylenes		3.0	บ
1				1

: 28 Dec 2005 10:29 Acq On

: VBLK38 Sample

Misc


Integrator: RTE

Quant Time: Dec 28 10:47:26 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Wed Dec 28 09:16:02 2005 Response via : Initial Calibration Data Path : C:\MSDChem\1\DATA\122805\



Acq On : 28 Dec 2005 10:29

Sample : VBLK38

Misc

Integrator: RTE

Quant Time: Dec 28 10:47:26 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Wed Dec 28 09:16:02 2005 Response via : Initial Calibration Data Path : C:\MSDChem\1\DATA\122805\

Operator : TLC

Internal	Standards	R.T		Response		its Dev Rcv	(Min) (Ar )
1) CI10	1,4-Difluorobenzene	5.83					0.00 3.80%
43) CI20	Chlorobenzene-D5	8.70	0 82	170365	125.00		0.00 7.02%
63) CI30	1,4-Dichlorobenzene	11.05	5 152	164259	125.00	ng	0.00 7.52%
System Mo	nitoring Compounds						
26) CS87	Dibromofluoromethane	5.10		95584	110.13 l	NG 88.10%	0.00
Spiked A	mount 125.000 Ra 1,2-Dichloroethane-I	ange 70			113.62 1		0.00
31) CS15 Spiked A		nge 73				90.90%	
-	Toluene-D8	7.22			117.88 1		0.00
Spiked A	mount 125.000 Ra					94.30%	
62) CS10	p-Bromofluorobenzene	9.94	1 174	122196	115.77		0.00
	mount 125.000 Ra	ange 74	1 - 120	Recove	ry =	92.62%	
Target Co	mnounds					Ova	alue
2) C290	Dichlorodifluorome	0.00	85	0	N.D.	~ .	
	Chloromethane	1.60	50	60	N.D.		
	Vinyl chloride	0.00	62	0	N.D.		
	Bromomethane	2.02	94	55	N.D.		
	Chloroethane	2.16	64	62	N.D.		
	Trichlorofluoromet	0.00	101	0	N.D.		
8) C045		0.00	96	0	N.D.		
9) C030		3.43	84	818	N.D.		
10) C040	Carbon disulfide	3.15	76	543	N.D.		
11) C036	Acrolein	2.85	56	60	N.D.		
12) C038	Acrylonitrile	0.00		0	N.D.		
13) C035	Acetone	3.03	43	1924	N.D.		
14) C300	Acetonitrile	3.32	41	142	N.D. N.D.		
15) C276	Iodomethane	0.00	142	0 0	N.D.		
16) C291	1,1,2-Trichloro-1,	0.00	101 73	0	N.D.		
17) C962 18) C057	T-butyl Methyl Eth trans-1,2-Dichloro	0.00	96	Ö	N.D.		
19) C255	Methyl Acetate	0.00	43	Ö	N.D.		
20) C050	1,1-Dichloroethane	0.00	63	0	N.D.		
21) C125	Vinyl Acetate	0.00	43	0	N.D.		
22) C051	2,2-Dichloropropan	4.64	77	2257	N.D.		
23) C056	cis-1,2-Dichloroet	0.00	96	0	N.D.		
24) C272	Tetrahydrofuran	0.00	42	0	N.D.		
25) C222	Bromochloromethane	0.00	128	0	N.D.		
27) C060	Chloroform	0.00	83	0	N.D.		
28) C115	1,1,1-Trichloroeth	0.00	97	0	N.D.		
29) C120	Carbon tetrachlori	0.00	117	0	N.D.		
30) C116	1,1-Dichloropropen	0.00	75 78	0 117	N.D. N.D.		
32) C165	Benzene	5.44	78 62	0	N.D.		
33) C065	1,2-Dichloroethane	0.00 4.64	6∠ 43	2526	N.D.		
34) C110	2-Butanone Cyclohexane	0.00	56	0	N.D.		
35) C256 36) C150	Trichloroethene	0.00	95	Ö	N.D.	n e e e e e e e e e e e e e e e e e e e	

(No Adds)
Clean 12/25/25

Acq On : 28 Dec 2005 10:29
Sample : VBLK38
Misc

Misc

Integrator: RTE

Quant Time: Dec 28 10:47:26 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER QLast Update : Wed Dec 28 09:16:02 2005 Response via : Initial Calibration
Data Path : C:\MSDChem\1\DATA\122805\

<b>-</b>					
Internal Standards	R.T	. QIon	Response	Conc Units Dev(Min) Rcv(Ar)	
37) C140 1,2-Dichloropropan	0.00	63	0	N.D.	
38) C278 Dibromomethane	0.00	93	0	N.D.	
39) C130 Bromodichlorometha	0.00	83	0	N.D.	
40) C161 2-Chloroethylvinyl	0.00	63	0	N.D.	
41) C012 Methylcyclohexane	0.00	83	0	N.D.	
42) C145 cis-1,3-Dichloropr	0.00	75	0	N.D.	
45) C230 Toluene	7.29	92	303	N.D.	
46) C170 trans-1,3-Dichloro	0.00	75	0	N.D.	
47) C284 Ethyl Methacrylate	0.00	69	0	N.D.	
48) C160 1,1,2-Trichloroeth	0.00	83	0	N.D.	
49) C210 4-Methyl-2-pentano	7.22	43	1872	N.D.	
50) C220 Tetrachloroethene	0.00	166	0	N.D.	
51) C221 1,3-Dichloropropan	0.00	76	0	N.D.	
52) C155 Dibromochlorometha	0.00	129	0	N.D.	
53) C163 1,2-Dibromoethane	0.00	107	0	N.D.	
54) C215 2-Hexanone	0.00	43	0	N.D.	
55) C235 Chlorobenzene	8.74	112	409	N.D.	
56) C281 1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
57) C240 Ethylbenzene	8.95	91	179	N.D.	
58) C246 m,p-Xylene	8.94	106	131	N.D.	
59) C247 o-Xylene	0.00	106	0	N.D.	
60) C245 Styrene	0.00	104	0	N.D.	
61) C180 Bromoform	0.00	173	0	N.D.	
64) C966 Isopropylbenzene	0.00	105	0	N.D.	
65) C301 Bromobenzene	0.00	156	0	N.D.	
66) C225 1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
67) C282 1,2,3-Trichloropro	0.00	110	0	N.D.	
68) C283 t-1,4-Dichloro-2-B	0.00	51	0	N.D.	
69) C302 n-Propylbenzene	10.32	91	71	N.D.	
70) C303 2-Chlorotoluene	0.00	126	0	N.D.	
71) C289 4-Chlorotoluene	0.00	126	0	N.D.	
72) C304 1,3,5-Trimethylben	0.00	105	0	N.D.	
73) C306 tert-Butylbenzene	0.00	134	0	N.D.	
74) C307 1,2,4-Trimethylben	10.70	105	55	N.D.	
75) C308 sec-Butylbenzene	10.70	105	55	N.D.	
76) C260 1,3-Dichlorobenzen	0.00	146	0	N.D.	
77) C309 4-Isopropyltoluene	0.00	119	0	N.D.	
78) C267 1,4-Dichlorobenzen	0.00	146	0	N.D.	
79) C249 1,2-Dichlorobenzen	0.00	146	0	N.D.	
80) C310 n-Butylbenzene	11.39	91	307	N.D.	
81) C286 1,2-Dibromo-3-Chlo	12.28	75	282	N.D.	
82) C313 1,2,4-Trichloroben	12.82	180	1092	N.D.	
83) C316 Hexachlorobutadien	12.95	225	268	N.D.	
84) C314 Naphthalene	13.03	128	2128	N.D.	
85) C934 1,2,3-Trichloroben	13.23	180	1270	N.D.	_

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

#### METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

Tale Many CERT DASS 1	Charles and A		MSB36
Lab Name: <u>STL Buffalo</u>	Contract: 4	<del></del>	<u>, , , , , , , , , , , , , , , , , , , </u>
Lab Code: RECNY Case No.:	SAS No.:	SDG No.: <u>1205GW</u>	
Matrix: (soil/water) WATER		Lab Sample ID:	A5B2007001
Sample wt/vol: $\underline{5.00}$ (g/mL)	ML	Lab File ID:	G7594.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	
% Moisture: not dec Heated	d Purge: <u>N</u>	Date Analyzed:	12/27/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (n	m)	Dilution Factor:	1.00
Soil Extract Volume: (uL)		Soil Aliquot Vol	ume:(uL)

	CONCENTRATION UNIT		
COMPOUND	(ug/L or ug/Kg)	UG/L_	Q
Acetone		5.0	11

CAS NO. COMPOUND	(ug/L or ug/Kg)	UG/L_	Q
67-64-1Acetone		5.0	U
71-43-2Benzene		26	1
75-27-4Bromodichloromethane		1.0	<b>ט</b>
75-25-2Bromoform		1.0	ַ ט
74-83-9Bromomethane		1.0	U
78-93-32-Butanone		5.0	U
75-15-0Carbon Disulfide		1.0	U
56-23-5Carbon Tetrachloride		1.0	U
108-90-7Chlorobenzene		26	
75-00-3Chloroethane		1.0	U
67-66-3Chloroform		1.0	U
74-87-3Chloromethane		1.0	U
110-82-7Cyclohexane		1.0	ט
106-93-41,2-Dibromoethane		1.0	U
124-48-1Dibromochloromethane		1.0	U
96-12-81,2-Dibromo-3-chloropropane	e	1.0	บ
95-50-11,2-Dichlorobenzene	-	1.0	U
541-73-11,3-Dichlorobenzene		1.0	U
106-46-71,4-Dichlorobenzene		1.0	U
75-71-8Dichlorodifluoromethane		1.0	U
75-34-31,1-Dichloroethane		1.0	U
107-06-21,2-Dichloroethane		1.0	U
75-35-41,1-Dichloroethene		27	
156-59-2cis-1,2-Dichloroethene		1.0	U
156-60-5trans-1,2-Dichloroethene		1.0	U
78-87-51,2-Dichloropropane		1.0	U
10061-01-5cis-1,3-Dichloropropene		1.0	U
10061-02-6trans-1,3-Dichloropropene		1.0	U
100-41-4Ethylbenzene		1.0	U
591-78-62-Hexanone		5.0	שׁ
98-82-8Isopropylbenzene		1.0	U
79-20-9Methyl acetate		1.0	U
108-87-2Methylcyclohexane		1.0	ע
75-09-2Methylene chloride		1.0	U

#### METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

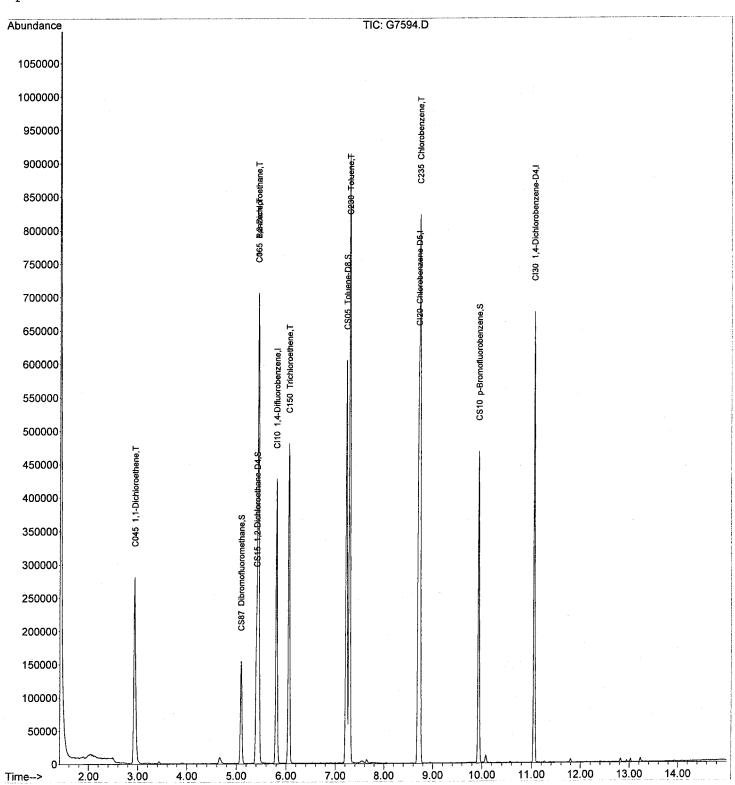
Tale Manager Communication	Garata and A		MSB36
Lab Name: <u>STL Buffalo</u>	Contract: 4		
Lab Code: RECNY Case No.:	SAS No.:	SDG No.: <u>1205GW</u>	
Matrix: (soil/water) <u>WATER</u>		Lab Sample ID:	A5B2007001
Sample wt/vol: $\underline{5.00}$ (g/mL)	<u>ML</u>	Lab File ID:	G7594.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	
% Moisture: not dec Heated	l Purge: <u>N</u>	Date Analyzed:	12/27/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (m	m)	Dilution Factor:	1.00
Soil Extract Volume: (uL)		Soil Aliquot Volu	ume: (uL)
CAS NO. COMPOUND		CONCENTRATION UNITS: (ug/L or ug/Kg) [	UG/L Q
108-10-14-Methyl-2-r	pentanone		5.0 U

CAS NO. COMPOUND	(ug/L or ug/kg)	UG/L	Q
108-10-14-Methyl-2-pentanone		5.0	U
1634-04-4Methyl-t-Butyl Ether (MTBE)		1.0	U
91-20-3Naphthalene		1.0	U
100-42-5Styrene		1.0	U
79-34-51,1,2,2-Tetrachloroethane		1.0	ע
127-18-4Tetrachloroethene		1.0	ט
108-88-3Toluene		26	
120-82-11,2,4-Trichlorobenzene		1.0	U
71-55-61,1,1-Trichloroethane		1.0	U
79-00-51,1,2-Trichloroethane		1.0	U
76-13-11,1,2-Trichloro-1,2,2-triflu	oroethane	1.0	U
75-69-4Trichlorofluoromethane		1.0	U
79-01-6Trichloroethene		26	
75-01-4Vinyl chloride		1.0	บ
1330-20-7Total Xylenes		3.0	U
			1

: 27 Dec 2005 10:26 Acq On

Sample

Misc


Integrator: RTE

Quant Time: Dec 27 10:45:50 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via: Initial Calibration Data Path : C:\MSDChem\1\DATA\122705\



Data File:  $C:\MSDChem\1\DATA\122705\G7594.D$ 

Acq On : 27 Dec 2005 10:26

Sample : MSB Misc :

Integrator: RTE

Quant Time: Dec 27 10:45:50 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDChem\1\DATA\122705\

Internal	Standards	R.T.	QIon	Response		ts Dev(Min) Rcv(Ar )
1) CI10	1,4-Difluorobenzene	5.80	114	374730		ng 0.00 100.12%
43) CI20	Chlorobenzene-D5	8.70	82	190265	125.00	ng 0.00 99.09%
63) CI30	1,4-Dichlorobenzene	- 11.05	152	179924		
26) CS87 Spiked A 31) CS15 Spiked A 44) CS05 Spiked A 62) CS10	nitoring Compounds Dibromofluoromethane mount 125.000 Re 1,2-Dichloroethane-l mount 125.000 Re Toluene-D8 mount 125.000 Re p-Bromofluorobenzene	ange 70 D 5.41 ange 73 7.22 ange 77 e 9.93	- 130 65 - 136 98 - 122 174	Recove 138616 Recove 454857 Recove 136455	ry = 114.90 n ry = 118.56 n ry = 115.76 n	g 0.00 91.92% g 0.00 94.85% g 0.00
_	mount 125.000 Ra	ange 74	- 120	Recove	ry =	92.61% Qvalue
3) C010 4) C020 5) C015 6) C025	Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet	1.63 0.00 2.06 0.00	50 62	143 0	N.D. N.D. N.D. N.D. N.D. N.D.	Qvalue
(8) C045 9) C030 10) C040 11) C036 12) C038	1,1-Dichloroethene Methylene chloride Carbon disulfide Acrolein Acrylonitrile	2.94 3.43 3.14 2.88 0.00	96 84 76 56 53	147335 1884 2547	N.D. N.D.	g 85
13) C033 14) C300 15) C276 16) C291 17) C962 18) C057	Acetone Acetonitrile Iodomethane 1,1,2-Trichloro-1, T-butyl Methyl Eth trans-1,2-Dichloro	2.93 : 0.00	41 142 101 73	144 0 66 0	N.D. N.D.	
19) C255 20) C050 21) C125 22) C051	Methyl Acetate 1,1-Dichloroethane Vinyl Acetate 2,2-Dichloropropan	0.00 0.00 4.65	63 43 77	0 687	N.D. N.D. N.D. N.D. N.D.	
23) C056 24) C272 25) C222 27) C060 28) C115	cis-1,2-Dichloroet Tetrahydrofuran Bromochloromethane Chloroform 1,1,1-Trichloroeth	0.00	96 42 128 83 97	0 353 0 0 0	N.D. N.D. N.D. N.D. N.D.	
29) C120 30) C116 32) C165 33) C065 34) C110	Carbon tetrachlori 1,1-Dichloropropen Benzene 1,2-Dichloroethane 2-Butanone	0.00 0.00 5.44 5.44 4.65	117 75 78 <del>62</del> 43	0 674985 	N.D. 130.87 no 3.30 no N.D.	
35) C256 (36) C150	Cyclohexane Trichloroethene	0.00 6.05	56 95	0 171012	N.D. 129.03 ng	g 93

Data File: C:\MSDChem\1\DATA\122705\G7594.D

Acq On : 27 Dec 2005 10:26

Sample : MSB Misc :

Integrator: RTE

Quant Time: Dec 27 10:45:50 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 27 08:55:23 2005 Response via: Initial Calibration Data Path: C:\MSDChem\1\DATA\122705\

Operator : TLC

Internal	Standards	R.T	QIon	Response	Conc Units	Dev(Min) Rcv(Ar )
37) C140	1,2-Dichloropropan	0.00	63	0	N.D.	100 (111 )
38) C278	Dibromomethane	0.00	93	0	N.D.	
39) C130	Bromodichlorometha	0.00	83	ő	N.D.	
40) C161	2-Chloroethylvinyl	0.00	63	. 0	N.D.	
41) C012	Methylcyclohexane	0.00	83	Ö	N.D.	
42) C145	cis-1,3-Dichloropr	0.00	75	Ö	N.D.	
(5) C230	Toluene	7.2		431212	127.91 ng	99
46) C170	trans-1,3-Dichloro	0.00	75	0	N.D.	, , ,
47) C284	Ethyl Methacrylate	0.00	73 69	Ö	N.D.	
48) C160	1,1,2-Trichloroeth	0.00	83	ŏ	N.D.	
49) C210	4-Methyl-2-pentano	7.22	43	2110	N.D.	
50) C220	Tetrachloroethene	0.00	166	0	N.D.	
51) C221	1,3-Dichloropropan	0.00	76	Ö	N.D.	
52) C155	Dibromochlorometha	0.00	129	Ö	N.D.	
53) C163	1,2-Dibromoethane	0.00	107	Ö	N.D.	
53) C103	2-Hexanone	7.98	43	57	N.D.	
(5) C235	Chlorobenzene	8.7		489287	128.68 ng	99
56) C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
57) C240	Ethylbenzene	8.95	91	756	N.D.	
•	<b>-</b>		106	293	N.D.	
58) C246	m,p-Xylene	8.95		293	N.D.	
59) C247	o-Xylene	0.00	106	0	N.D.	
60) C245	Styrene	0.00	104 173	0	N.D.	
61) C180	Bromoform	0.00 9.92	105	123	N.D.	
64) C966	Isopropylbenzene Bromobenzene	0.00	156	0	N.D.	
65) C301 66) C225	1,1,2,2-Tetrachlor	0.00		0	N.D.	
67) C282	1,2,3-Trichloropro	0.00	83 110	0	N.D.	
68) C283	t-1,4-Dichloro-2-B	0.00	51	0	N.D.	
69) C302	n-Propylbenzene	10.17	91	269	N.D.	
70) C302	2-Chlorotoluene	0.00	126	0	N.D.	
70) C303	4-Chlorotoluene	0.00	126	0	N.D.	
72) C304	1,3,5-Trimethylben	10.34	105	65	N.D.	
73) C304	tert-Butylbenzene	0.00	134	0	N.D.	
74) C307	1,2,4-Trimethylben	10.71	105	406	N.D.	
75) C308	sec-Butylbenzene	10.71	105	227	N.D.	
76) C260	1,3-Dichlorobenzen	0.00	146	0	N.D.	
77) C309	4-Isopropyltoluene	11.00	119	228	N.D.	
78) C267	1,4-Dichlorobenzen	0.00	146	0	N.D.	
79) C249	1,2-Dichlorobenzen	0.00	146	ő	N.D.	
80) C310	n-Butylbenzene	11.38	91	531	N.D.	
81) C286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
82) C313	1,2,4-Trichloroben	12.82	180	1810	N.D.	
83) C316	Hexachlorobutadien	12.95	225	506	N.D.	
84) C314	Naphthalene	13.03	128	3982	N.D.	
85) C934	1,2,3-Trichloroben	13.23	180	2171	N.D.	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed



274/304

## METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MSB37
-------

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59216

Sample wt/vol:  $\underline{5.00}$  (g/mL)  $\underline{\text{ML}}$  Lab File ID:  $\underline{\text{G7617.RR}}$ 

Level: (low/med) <u>LOW</u> Date Samp/Recv: ______

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

#### CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	0
		(-3, = -= -3, -3,		
67-64-1			]	Մ
71-43-2			26	
75-27-4	Bromodichloromethane		1.0	ט
75-25-2	Bromoform			ן ט
74-83-9	Bromomethane		1.0	ט
78-93-3	2-Butanone		5.0	ט
	Carbon Disulfide		1.0	ט
56-23-5	Carbon Tetrachloride		1.0	ט
108-90-7	Chlorobenzene		26	
75-00-3	Chloroethane		1.0	U
67-66-3	Chloroform		1.0	U
74-87-3	Chloromethane		1.0	U
110-82-7	Cyclohexane		1.0	ט
106-93-4	1,2-Dibromoethane		1.0	U
124-48-1	Dibromochloromethane		1.0	U
96-12-8	1,2-Dibromo-3-chloropropane		1.0	U
95-50-1	1,2-Dichlorobenzene		1.0	U
541-73-1	1,3-Dichlorobenzene		1.0	U
106-46-7	1,4-Dichlorobenzene		1.0	U
75-71-8	Dichlorodifluoromethane		1.0	U
75-34-3	1,1-Dichloroethane		1.0	U
107-06-2	1,2-Dichloroethane		1.0	U
75-35-4	1,1-Dichloroethene		26	
156-59-2	cis-1,2-Dichloroethene		1.0	U
156-60-5	trans-1,2-Dichloroethene		1.0	U
78-87-5	1,2-Dichloropropane		1.0	Ū
10061-01-5	cis-1,3-Dichloropropene		1.0	Ū
10061-02-6	trans-1,3-Dichloropropene		1.0	U
100-41-4	Ethylbenzene		1.0	U
591-78-6			5.0	Ŭ
98-82-8	Isopropylbenzene		1.0	ប
	Methyl acetate		1.0	Ū
	Methylcyclohexane		1.0	Ū
	Methylene chloride		1.0	U

# 276/304

## METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

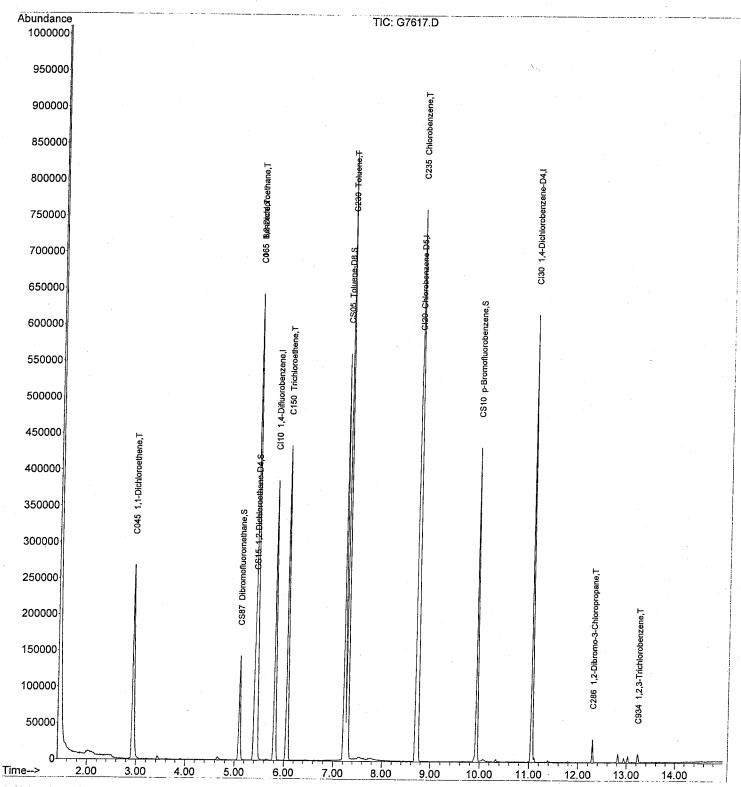
Lab Name COTT Duffalo	andrean sub-		MSB37
Lab Name: <u>STL Buffalo</u> Con	ntract: 4		
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.: <u>1205GW</u>	
Matrix: (soil/water) <u>WATER</u>		Lab Sample ID:	A5E59216
Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$		Lab File ID:	G7617.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	
% Moisture: not dec Heated P	urge: <u>N</u>	Date Analyzed:	12/27/2005
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)		Dilution Factor:	1.00
Soil Extract Volume: (uL)		Soil Aliquot Volu	me: (uL)

CONCENTRATION UNIT	rs:	
(ug/L or ug/Kg)	<u>UG/L</u>	Q

CAS NO. COMPOUND		(ug/L or ug/k	(g)	<u>UG/L</u>	Q
108-10-14-Methyl-2	-pentanone			5.0	บ
1634-04-4Methyl-t-B				1.0	U
91-20-3Naphthalene		*		1.0	U
100-42-5Styrene				1.0	U
79-34-51,1,2,2-Tet	rachloroethane			1.0	U
127-18-4Tetrachlor	ethene			1.0	<b>ט</b>
108-88-3Toluene				26	
120-82-11,2,4-Tricl	lorobenzene			1.0	U
71-55-61,1,1-Trick	loroethane			1.0	U
79-00-51,1,2-Trick	loroethane			1.0	U
76-13-11,1,2-Trick	loro-1,2,2-trifluo	proethane		1.0	U
75-69-4Trichlorof	Luoromethane			1.0	U
79-01-6Trichloroet	:hene			25	
75-01-4Vinyl chlor	ride			1.0	U
1330-20-7Total Xyler	nes			3.0	ָּט

Data File: C:\MSDCHEM\1\DATA\122705\G7617.D

Acq On : 27 Dec 2005 21:29


Sample : MSB Misc :

Integrator: RTE
Quant Time: Dec 27 21:48:15 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 27 21:28:27 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122705\



Data File: C:\MSDCHEM\1\DATA\122705\G7617.D

Acq On : 27 Dec 2005 21:29

Sample : MSB Misc :

Integrator: RTE

Quant Time: Dec 27 21:48:15 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 21:28:27 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Int	ernal	Standards	R.T.	QIon	Response	Conc U		Rcv(Ar )	
1)	CI10	1,4-Difluorobenzene	5.81	114	344655	125.0			
43)	CI20	Chlorobenzene-D5	8.70	82	173200	125.0	0 ng	98.60% 0.0 97.54%	0
63)	CI30	1,4-Dichlorobenzene	- 11.05	152	164553	125.0	0 ng	0.0 96.35%	0
Sys	tem Mc	onitoring Compounds							
26) Sp	CS87 iked A	Dibromofluoromethan Amount 125.000 R	e 5.10 ange 70	111 - 130	97469 Recove	112.98 ery =	NG 90.	0.00 38%.	
Sp	iked A	1,2-Dichloroethane- Amount 125.000 R	ange 73	- 136	Recove	erv =	92.	0.00 21%	
44) Sp	CS05 iked A	Toluene-D8 Mmount 125.000 R p-Bromofluorobenzen	7.22 ange 77	98 - 122	415402 Recove	118.94 erv =	ng 95.	0.00 .15%	
62) Sp	CS10 iked A	p-Bromofluorobenzen Amount 125.000 R	e 9.94 ange 74	174 - 120	125439 Recove	116.89 ery =	ng 93.	0.00 51%	
Tar	get Co	ompounds						Qvalue	
2)	C290	Dichlorodifluorome Chloromethane	0.00	85	0	N.D.			
3)	C010	Chloromethane	1.61	50	63				
4)	C020	Vinyl chloride	0.00	62					
5)	C015	Bromomethane Chloroethane Trichlorofluoromet	0.00	94	0	N.D.			
6)	C025	Chloroethane	0.00	64	0	N.D.			
$\mathcal{Z}$	C275	Trichlorofluoromet	0.00	101	0	N.D.		0.5	
<b>(</b>	C045	1,1-Dichloroethene Methylene chloride	2.94	96	131295		ng	85	
9)	C030	Methylene chloride	3.44	84	2283	N.D.			
10)	C040	Carbon disulfide Acrolein Acrylonitrile	3.14	76	1776	N.D.			
11)	C036	Acrolein	2.91	56	2115 0	N.D.			
12)	C038	Acrylonitrile	0.00	53	0				
12)	C035	ACELONE	3.03	4:3	Z004				
14)	0300	Acetonitrile Iodomethane 1,1,2-Trichloro-1,	3.35	41 140	129	N.D.			
15)	C2 / b	1000methane	0.00	142 101	116	N.D. N.D.			
171	C231	T-butyl Methyl Eth	0.00	72	110				
10)	C057	trang-1 2-Dighloro	0.00	96	0	N.D.			
10)	C255	trans-1,2-Dichloro Methyl Acetate 1,1-Dichloroethane	3 25	7.3	59	N.D.			
20)	C050	1 1-Dichloroethane	0.00	63	0	N.D.			
21)	C125	Vinyl Acetate	0.00	43	Ö	N.D.			
	C051	2,2-Dichloropropan		77	Ö	N.D.			
	C056	cis-1,2-Dichloroet	0.00	96	ő	N.D.			
	C272	Tetrahydrofuran	0.00	42	ő	N.D.			
	C222	Bromochloromethane		128	Ö	N.D.			
	C060	Chloroform	0.00	83	Ō	N.D.			
	C115	1,1,1-Trichloroeth	0.00	97	Ö	N.D.			
	C120	Carbon tetrachlori		L17	Ō	N.D.			
(3,0)	C116	1,1-Dichloropropen	0.00	75	Ō	N.D.			
(2)	C165	Benzene	5.44	78	612721	129.17	ng	98	
337	C065	1,2-Dichloroethane	5.44	- 62	<del>5330</del>	3.04	<del>ng</del>	_#1-	_
	C110	2-Butanone	4.67	43	527	N.D.			
	C256	Cyclohexane	0.00	56	0	N.D.			
\\$6)\	C150	Trichloroethene	6.05	95	154783	126.97	ng .	93	

Data File: C:\MSDCHEM\1\DATA\122705\G7617.D

Acq On : 27 Dec 2005 21:29

Sample : MSB Misc : Integrator: RTE

Quant Time: Dec 27 21:48:15 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 27 21:28:27 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122705\

Operator : TLC

In	ternal	Standards	R.	r. QIon	Response	Conc Units	Dev(Min) Rcv(Ar )
37	) C140	1,2-Dichloropropan	0.00	63	0	N.D.	,
	) C278	Dibromomethane	0.00	93	0	N.D.	
	) C130	Bromodichlorometha	0.00	83	Ö	N.D.	
	) C161	2-Chloroethylvinyl	0.00	63	Ö	N.D.	
41	•	Methylcyclohexane	0.00	83	Ö	N.D.	
142		cis-1,3-Dichloropr	0.00	75	ő	N.D.	
¥5		Toluene	7.2		392646	127.95 ng	99
48		trans-1,3-Dichloro	0.00	75	0	N.D.	. ,
47		Ethyl Methacrylate	0.00	69	Ö	N.D.	
	) C160	1,1,2-Trichloroeth	0.00	.83	Ö	N.D.	
	) C210	4-Methyl-2-pentano	7.22	43	1899	N.D.	
	) C220	Tetrachloroethene	7.84	166	59	N.D.	
	) C221	1,3-Dichloropropan	0.00	76	0	N.D.	
	) C155	Dibromochlorometha	0.00	129	0	N.D.	
	) C163	1,2-Dibromoethane	0.00	107	. 0	N.D.	
, 54		2-Hexanone	0.00	43			
(55)	C235	Chlorobenzene	8.7		0 445917	N.D.	99
	C233	1,1,1,2-Tetrachlor	0.00	131		128.83 ng	33
	C240	Ethylbenzene	8.83	91	0 244	N.D. N.D.	
	C246	m,p-Xylene	8.95	106	66	N.D.	
	C240	o-Xylene	0.00	106	0	N.D.	
	C247	Styrene	0.00	104	0	N.D.	
	C180	Bromoform	0.00	173	0	N.D.	
	C966	Isopropylbenzene	9.76	105	.63	N.D.	
	C301	Bromobenzene	0.00	156	0	N.D.	
	C225	1,1,2,2-Tetrachlor	9.89	83	60	N.D.	
	C282	1,2,3-Trichloropro	0.00	110	0		
	C282	t-1,4-Dichloro-2-B	0.00	51	0	N.D. N.D.	
	C3 02	n-Propylbenzene					
	C3 02	2-Chlorotoluene	10.17 10.33		66 727	N.D.	
•	C289	4-Chlorotoluene		126	727	N.D.	
	C304	1,3,5-Trimethylben	10.33 10.34	126 105	727	N.D.	*
	C304	tert-Butylbenzene	0.00	134	314 0	N.D. N.D.	
-	C307	1,2,4-Trimethylben	10.71	105	434	N.D.	
	C3 0 8	sec-Butylbenzene		105			
	C260	1,3-Dichlorobenzen	10.88 11.00	146	526 340	N.D. N.D.	
	C309	4-Isopropyltoluene	11.00	119	509	N.D.	
	C267	1,4-Dichlorobenzen	11.00	146			
	C249	1,2-Dichlorobenzen	11.42	146	416	N.D.	
	C310	n-Butylbenzene	11.39	91	509	N.D.	
		1,2-Dibromo-3-Chlor			1569	N.D. - 6.36 ng -	# 1
	C313	1,2,4-Trichloroben			1539		1
	C313	Hexachlorobutadien	12.82 12.95	180 225	3786 1399	N.D. N.D.	
	C314	Naphthalene	13.03	225 128	7263	N.D.	
(85)	_	1,2,3-Trichlorobenze			4009	2.22 ng	98
737	)						
_	,						

-(#) = qualifier out of range (m) = manual integration (+) = signals summed



## METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

			MSB38
Lab Name: <u>STL Buffalo</u>	Contract: 4		
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.: <u>1205GW</u>	
Matrix: (soil/water) <u>WATER</u>		Lab Sample ID:	A5B2013901
Sample wt/vol: $\underline{5.00}$ (g/mL)	<u>ML</u>	Lab File ID:	<u>G7645.RR</u>
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	
% Moisture: not dec Heate	d Purge: <u>N</u>	Date Analyzed:	12/28/2005
GC Column: <u>DB-624</u> ID: <u>0.18</u> (	mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)		Soil Aliquot Vol	ume: (uL)

		CONCENTRATION (	JNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg	3) ]	JG/L	Q
67-64-1				5.0	U
71-43-2				26	
	-Bromodichloromethane			1.0	ע
75-25-2				1.0	ט
74-83-9	Bromomethane			1.0	U
78-93-3				5.0	U
	-Carbon Disulfide			1.0	U
56-23-5	-Carbon Tetrachloride			1.0	ע
108-90-7	Chlorobenzene			26	
75-00-3	-Chloroethane			1.0	U
67-66-3	Chloroform			1.0	ע
	-Chloromethane			1.0	ע
110-82-7	Cyclohexane			1.0	ט
106-93-4	-1,2-Dibromoethane			1.0	ט
124-48-1	-Dibromochloromethane			1.0	ע
96-12-8	-1,2-Dibromo-3-chloropropane			1.0	ע
	-1,2-Dichlorobenzene			1.0	ט
541-73-1	-1,3-Dichlorobenzene			1.0	ע
106-46-7	-1,4-Dichlorobenzene			1.0	U
75-71-8	-Dichlorodifluoromethane			1.0	U
75-34-3	-1,1-Dichloroethane			1.0	ט
	-1,2-Dichloroethane			1.0	U
75-35-4	-1,1-Dichloroethene			26	
	-cis-1,2-Dichloroethene			1.0	ע
156-60-5	-trans-1,2-Dichloroethene			1.0	ט
78-87-5	-1,2-Dichloropropane			1.0	U
10061-01-5	-cis-1,3-Dichloropropene			1.0	<b>ט</b>
	-trans-1,3-Dichloropropene			1.0	U
100-41-4	-Ethylbenzene			1.0	U
591-78-6				5.0	U
98-82-8	-Isopropylbenzene			1.0	ע
	-Methyl acetate			1.0	U
	-Methylcyclohexane			1.0	U
	-Methylene chloride			1.0	U

# 281/304

## METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

			MSB38
Lab Name: <u>STL Buffalo</u>	Contract: 4	<del></del>	
Lab Code: RECNY Case No.:	SAS No.:	SDG No.: <u>1205GW</u>	
Matrix: (soil/water) WATER		Lab Sample ID:	A5B2013901
Sample wt/vol: $\underline{5.00}$ (g/mL)	ML	Lab File ID:	G7645.RR
Level: (low/med) <u>LOW</u>		Date Samp/Recv:	
% Moisture: not dec Heate	d Purge: <u>N</u>	Date Analyzed:	12/28/2005
GC Column: <u>DB-624</u> ID: <u>0.18</u> (1	mm)	Dilution Factor:	1.00
Soil Extract Volume: (uL)		Soil Aliquot Volu	ume: (uL)

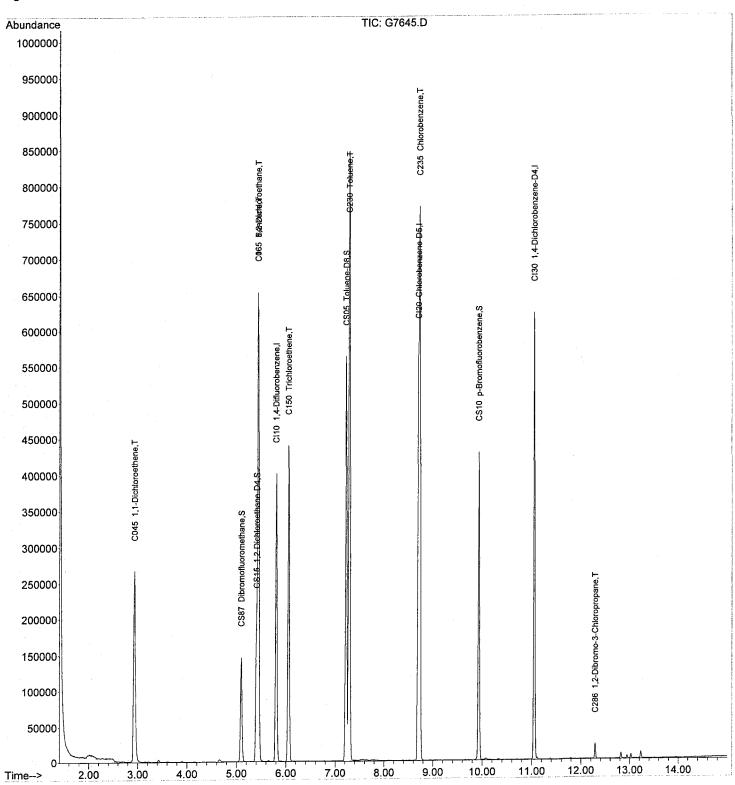
#### CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
108-10-1	4-Methyl-2-pentanone		5.0	U
	Methyl-t-Butyl Ether (MTBE)		1.0	ט
91-20-3	Naphthalene		1.0	U
100-42-5	Styrene		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1.0	ט
127-18-4	Tetrachloroethene		1.0	ע
108-88-3	Toluene		25	
120-82-1	1,2,4-Trichlorobenzene		1.0	U
71-55-6	1,1,1-Trichloroethane		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifl	uoroethane	1.0	U
75-69-4	Trichlorofluoromethane		1.0	ַּט
79-01-6	Trichloroethene		25	
75-01-4	Vinyl chloride		1.0	U
1330-20-7	Total Xylenes		3.0	U
<b></b>	<del>-</del> <del></del>			

Data File: C:\MSDChem\1\DATA\122805\G7645.D

Acq On : 28 Dec 2005 10:06

Sample : MSB Misc :


Integrator: RTE

Quant Time: Dec 28 10:28:26 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update: Wed Dec 28 09:16:02 2005 Response via: Initial Calibration Data Path: C:\MSDChem\1\DATA\122805\



Data File: C:\MSDChem\1\DATA\122805\G7645.D

Acq On : 28 Dec 2005 10:06

Sample : MSB Misc

Integrator: RTE

Quant Time: Dec 28 10:28:26 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Wed Dec 28 09:16:02 2005 Response via : Initial Calibration Data Path : C:\MSDChem\1\DATA\122805\

Inte		Standards						Dev(Min) Rcv(Ar )
1)		1,4-Difluorobenzene				125.00	) ng	0.00 100.21%
43)	CI20	Chlorobenzene-D5	8.70	82	176749	125.00	) ng	0.00 100.66%
	CI30	1,4-Dichlorobenzene-	11.05	152	165886	125.00	) ng	0.00 98.49%
* 4 * *								
Syst	em Mor	nitoring Compounds						
		Dibromofluoromethane	5.10	111	99348	112.85	NG	0.00
Spi	.ked Ar				Recove	ry =	90	.28%
31)	CS15	1,2-Dichloroethane-D	5.40	65	129454			
Spi	.ked Ar	mount 125.000 Ra	nge 73	- 136	Recove	ry =	27	0.00
44)	CS05	Toluene-D8 nount 125.000 Ra	7.22	98	419818	117.79	119	238
Spi	.ked Ar	mount 125.000 Ra p-Bromofluorobenzene	nge //	171	127635	116 55	na	0.00
62)	CSIO	p-Bromoffuorobenzene mount 125.000 Ra	9.34 20 74	. 47 <del>4</del>	Recove	rv =	93	. 248
Spi	ked Ai	125.000 Ra	119e /4	- 120	Recove	· - 1		
Tarc	ret Cor	mpounds						Qvalue
2)	C290	Dichlorodifluorome	0.00	85	0	N.D.		
3)	C010	Chloromethane	1.61	50	61 0	N.D.		
4)	C020	Vinyl chloride	0.00	62	0	N.D.		
5)	C015	Bromomethane	2.07	94	57			
6)	C025	Vinyl chloride Bromomethane Chloroethane	0.00	64	0	N.D.		
7.)	C275	Trichlorofluoromet	0.00	101	0	N.D.		0.0
82)	)C045	1,1-Dichloroethene	2.93	96	131905	127.62	ng	88
9)	C030	Methylene chloride Carbon disulfide	3.43	84	1763	N.D.		
10)	C040	Carbon disulfide	3.14		908			
		Acrolein	2.88		1066	N.D. N.D.		
	C038	Acrylonitrile	0.00 3.03	53	0 1465	N.D.		•
	C035	Acetone	3.32	43 41	224	N.D.		
	C300		0.00	142	0	N.D.		
	C276 C291	<pre>Iodomethane 1,1,2-Trichloro-1,</pre>		101	55	N.D.		
10)	C251	T-butyl Methyl Eth	0.00		0	N.D.		
10)	C057	T-butyl Methyl Eth trans-1,2-Dichloro	0.00	96	Ō	N.D.		
19)	C255	Methyl Acetate	3.33	43	67	N.D.		
	C050					N.D.		
21)	C125	Vinvl Acetate	0.00	43	0	N.D.		
22)	C051	2,2-Dichloropropan	0.00	77	0	N.D.		
	C056	cis-1,2-Dichloroet	0.00	96	0	N.D.		
24)	C272	Tetrahydrofuran	0.00	42	0	N.D.		
		Bromochloromethane	0.00	128	0	N.D.		
27)	C060	Chloroform	0.00	83	0	N.D.		
28)	C115	1,1,1-Trichloroeth	0.00	97	0	N.D.		
	C120	Carbon tetrachlori	0.00	117	0 0	N.D. N.D.		
30)	C116	1,1-Dichloropropen	0.00 سر 5.44	75 : 78	617322	127.53	nα	98
(354)	C165	Benzene 1,2-Dichloreethane	5.44		5357	2.99		_#1.
33)	€ <del>065</del>	2-Butanone	4.67	43	730	N.D.		-
34) -35)	C110 C256	Cyclohexane	0.00	56	0	N.D.		
(36)	C250	Trichloroethene	6.05		158588	127.49	ng	93
(20)	10							



Data File: C:\MSDChem\1\DATA\122805\G7645.D Acq On : 28 Dec 2005 10:06

Sample : MSB Misc :

Integrator: RTE

Quant Time: Dec 28 10:28:26 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update: Wed Dec 28 09:16:02 2005 Response via : Initial Calibration Data Path : C:\MSDChem\1\DATA\122805\

Internal	Standards	R.T	. QIon	Response	Conc Units	Dev(Min) Rcv(Ar )
37) C140	1,2-Dichloropropan	0.00	63	0	N.D.	
38) C278	Dibromomethane	0.00	93	0	N.D.	
39) C130	Bromodichlorometha	0.00	83	0	N.D.	
40) C161	2-Chloroethylvinyl	0.00	63	0	N.D.	
41) C012	Methylcyclohexane	6.06	83	1696	N.D.	
42) C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
(45) C230	Toluene	7.2		394916	126.10 ng	100
46) C170	trans-1,3-Dichloro	0.00	75	0	N.D.	
47) C284	Ethyl Methacrylate	0.00	69	Ö	N.D.	
	1,1,2-Trichloroeth	0.00	83	Ö	N.D.	
48) C160 49) C210	4-Methyl-2-pentano	7.22	43	1972	N.D.	
	Tetrachloroethene	0.00	166	0	N.D.	
50) C220	1,3-Dichloropropan	0.00	76	Ö	N.D.	
51) C221		0.00	129	Ö	N.D.	
52) C155		0.00	107	Ö	N.D.	
53) C163	1,2-Dibromoethane	0.00	43	Ö	N.D.	
54) C215	2-Hexanone	8.7		450932	127.67 ng	99
(55) C235	Chlorobenzene	0.00	131	0	N.D.	
56) C281	1,1,1,2-Tetrachlor		91	658	N.D.	
57) C240	Ethylbenzene	8.94	106	214	N.D.	
58) C246		8.95		0	N.D.	
59) C247		0.00	106	0	N.D.	
60) C245	Styrene	0.00	104 173	0	N.D.	
61) C180		0.00		0	N.D.	
64) C966		0.00	105	0	N.D.	
65) C301	Bromobenzene	0.00	156	0	N.D.	
66) C225	1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
67) C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
68) C283	t-1,4-Dichloro-2-B	0.00	51		N.D.	
69) C302	n-Propylbenzene	10.17	91 126	66	N.D.	
70) C303	2-Chlorotoluene	10.33	126	382	N.D.	
71) C289	4-Chlorotoluene	10.33	126	382	N.D.	
72) C304	1,3,5-Trimethylben	0.00	105	0		
73) C306	tert-Butylbenzene	0.00	134	0	N.D. N.D.	
74) C307		10.72	105	209	N.D.	
75) C308	sec-Butylbenzene	10.86	105	138		
76) C260	1,3-Dichlorobenzen	11.00	146	61	N.D.	
77) C309	4-Isopropyltoluene	11.01	119	249	N.D.	
78) C267	1,4-Dichlorobenzen	11.07	146	196	N.D.	
79) C249	1,2-Dichlorobenzen	11.43	146	74	N.D.	
80) C310	n-Butylbenzene	11.38	91	980	N.D.	#1
81) - <del>C</del> 286				1175	4.81 ng	
82) C313		12.82	180	2886	N.D.	
83) C316		12.95	225	966	N.D.	
84) C314	Naphthalene	13.03	128	5111	N.D.	
85) C934	1,2,3-Trichloroben	13.23	180	3184	N.D.	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

#### METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-31	
1	

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59201MS

Sample wt/vol:  $\underline{5.00}$  (g/mL)  $\underline{\text{ML}}$  Lab File ID:  $\underline{\text{G7596.RR}}$ 

Level: (low/med) Low Date Samp/Recv:  $\underline{12/21/2005}$   $\underline{12/23/2005}$ 

% Moisture: not dec. Heated Purge: N Date Analyzed: 12/27/2005

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

#### CONCENTRATION UNITS:

67-64-1Acetone       2.8         71-43-2Benzene       19         75-27-4	S NO.	COMPOUND	(ug/L or ug/Kg		Q
75-27-4Bromodichloromethane       1.0         75-25-2Bromoform       1.0         74-83-9Bromomethane       1.0         78-93-32-Butanone       5.0         75-15-0Carbon Disulfide       1.0         56-23-5Carbon Tetrachloride       1.0         108-90-7Chlorobenzene       19         75-00-3Chloromethane       1.0         67-66-3	-64-1 <i>-</i>	Acetone		2.8	J
75-25-2Bromoform       1.0         74-83-9Bromomethane       1.0         78-93-32-Butanone       5.0         75-15-0Carbon Disulfide       1.0         56-23-5Carbon Tetrachloride       1.0         108-90-7Chlorobenzene       19         75-00-3Chlorotethane       1.0         67-66-3Chloroform       1.0         74-87-3Cyclohexane       1.0         110-82-7	-43-2I	Benzene		19	
74-83-9Brommethane       1.0         78-93-32-Butanone       5.0         75-15-0Carbon Disulfide       1.0         56-23-5Carbon Tetrachloride       1.0         108-90-7Chlorobenzene       19         75-00-3Chloroethane       1.0         67-66-3Chloromethane       1.0         110-82-7Chloromethane       1.0         110-82-7Cyclohexane       1.0         106-93-41,2-Dibromoethane       1.0         124-48-1Dibromochloromethane       1.0         95-50-11,2-Dibromo-3-chloropropane       1.0         95-50-11,2-Dichlorobenzene       1.0         541-73-11,3-Dichlorobenzene       1.0         75-71-8Dichlorobenzene       1.0         75-71-8Dichloroethane       1.0         107-06-21,2-Dichloroethane       1.0         107-06-21,2-Dichloroethane       1.0         15-59-2cis-1,2-Dichloroethene       1.0         156-60-5trans-1,2-Dichloroethene       1.0         10061-02-6trans-1,3-Dichloropropene       1.0         10061-02-6trans-1,3-Dichloropropene       1.0         10041-4Ethylbenzene       5.0         98-82-8Isopropylbenzene       1.0 <td>-27-4I</td> <td>Bromodichloromethane</td> <td></td> <td>1.0</td> <td>ט  </td>	-27-4I	Bromodichloromethane		1.0	ט
78-93-32-Butanone       5.0         75-15-0Carbon Disulfide       1.0         56-23-5Carbon Tetrachloride       1.0         108-90-7Chlorobenzene       19         75-00-3Chlorobenzene       1.0         67-66-3Chloroform       1.0         74-87-3Chloromethane       1.0         110-82-7Cyclohexane       1.0         106-93-41,2-Dibromoethane       1.0         124-48-1Dibromochloromethane       1.0         95-50-11,2-Dibromo-3-chloropropane       1.0         95-50-11,2-Dichlorobenzene       1.0         541-73-11,3-Dichlorobenzene       1.0         75-71-8Dichlorodifluoromethane       1.0         75-34-31,1-Dichloroethane       1.0         75-34-31,2-Dichloroethane       1.0         107-06-21,2-Dichloroethene       1.0         156-69-2cis-1,2-Dichloroethene       1.0         156-60-5trans-1,2-Dichloropropane       1.0         10061-01-5cis-1,3-Dichloropropene       1.0         100-41-4Ethylbenzene       5.0         98-82-8Isopropylbenzene       1.0	-25 <b>-</b> 2E	Bromoform		1.0	ט
75-15-0Carbon Disulfide       1.0         56-23-5Carbon Tetrachloride       1.0         108-90-7Chlorobenzene       19         75-00-3Chloroethane       1.0         67-66-3Chloromethane       1.0         110-82-7Cyclohexane       1.0         110-82-7Cyclohexane       1.0         106-93-41, 2-Dibromoethane       1.0         124-48-1Dibromoethloromethane       1.0         96-12-81, 2-Dibromo-3-chloropropane       1.0         95-50-11, 2-Dichlorobenzene       1.0         541-73-11, 3-Dichlorobenzene       1.0         541-73-11, 4-Dichlorobenzene       1.0         75-71-8Dichlorodifluoromethane       1.0         75-34-31, 1-Dichloroethane       1.0         107-06-21, 2-Dichloroethene       1.0         156-59-2cis-1, 2-Dichloroethene       1.0         156-60-5trans-1, 2-Dichloropropane       1.0         10061-01-5cis-1, 3-Dichloropropene       1.0         10061-02-6trans-1, 3-Dichloropropene       1.0         100-41-4Ethylbenzene       5.0         98-82-8Isopropylbenzene       1.0	-83-9F	Bromomethane		1.0	ט
56-23-5Carbon Tetrachloride       1.0         108-90-7Chlorobenzene       19         75-00-3Chloroethane       1.0         67-66-3Chloromethane       1.0         110-82-7Cyclohexane       1.0         106-93-41, 2-Dibromoethane       1.0         124-48-1Dibromochloromethane       1.0         96-12-81, 2-Dibromo-3-chloropropane       1.0         95-50-11, 2-Dichlorobenzene       1.0         541-73-11, 3-Dichlorobenzene       1.0         541-73-11, 4-Dichlorobenzene       1.0         75-71-8Dichlorodifluoromethane       1.0         75-34-31, 1-Dichloroethane       1.0         107-06-21, 2-Dichloroethane       1.0         156-59-2cis-1, 2-Dichloroethene       1.0         156-60-5trans-1, 2-Dichloroethene       1.0         1061-01-5cis-1, 3-Dichloropropane       1.0         10061-02-6trans-1, 3-Dichloropropene       1.0         100-41-4Ethylbenzene       5.0         98-82-8	-93-32	2-Butanone		5.0	ט
108-90-7Chlorobenzene       19         75-00-3Chloroethane       1.0         67-66-3Chloroform       1.0         74-87-3Chloromethane       1.0         110-82-7Cyclohexane       1.0         106-93-41,2-Dibromoethane       1.0         124-48-1Dibromochloromethane       1.0         96-12-81,2-Dibromo-3-chloropropane       1.0         95-50-11,2-Dibromo-3-chloropropane       1.0         541-73-11,3-Dichlorobenzene       1.0         106-46-71,4-Dichlorobenzene       1.0         75-71-8Dichlorodifluoromethane       1.0         75-34-31,1-Dichloroethane       1.0         75-341,1-Dichloroethane       1.0         75-35-41,2-Dichloroethene       1.0         156-60-5trans-1,2-Dichloroethene       1.0         156-60-5trans-1,2-Dichloropropane       1.0         10061-02-6trans-1,3-Dichloropropene       1.0         10041-4Ethylbenzene       5.0         98-82-8Isopropylbenzene       1.0	-15-0(	Carbon Disulfide		1.0	ט
75-00-3Chloroethane       1.0         67-66-3Chloroform       1.0         74-87-3Chloromethane       1.0         110-82-7Cyclohexane       1.0         106-93-41,2-Dibromoethane       1.0         124-48-1Dibromochloromethane       1.0         96-12-81,2-Dibromo-3-chloropropane       1.0         95-50-11,2-Dichlorobenzene       1.0         541-73-11,3-Dichlorobenzene       1.0         106-46-71,4-Dichlorobenzene       1.0         75-71-8Dichlorodifluoromethane       1.0         75-34-31,1-Dichloroethane       1.0         107-06-21,2-Dichloroethene       1.0         156-59-2cis-1,2-Dichloroethene       1.0         156-59-2cis-1,2-Dichloroethene       1.0         156-59-2cis-1,3-Dichloropropane       1.0         100-10-5cis-1,3-Dichloropropane       1.0         100-61-02-6trans-1,3-Dichloropropene       1.0         100-41-4Ethylbenzene       5.0         98-82-8Isopropylbenzene       1.0	-23-5(	Carbon Tetrachloride		1.0	ט
67-66-3Chloroform       1.0         74-87-3Chloromethane       1.0         110-82-7Cyclohexane       1.0         106-93-41,2-Dibromoethane       1.0         124-48-1Dibromochloromethane       1.0         96-12-81,2-Dibromo-3-chloropropane       1.0         95-50-11,2-Dichlorobenzene       1.0         541-73-11,3-Dichlorobenzene       1.0         106-46-71,4-Dichlorobenzene       1.0         75-71-8Dichlorodifluoromethane       1.0         75-34-31,1-Dichloroethane       1.0         107-06-21,2-Dichloroethene       1.0         156-59-2cis-1,2-Dichloroethene       1.0         156-60-5trans-1,2-Dichloroethene       1.0         1061-01-5cis-1,3-Dichloropropane       1.0         10061-02-6trans-1,3-Dichloropropene       1.0         100-41-4Ethylbenzene       5.0         591-78-6Isopropylbenzene       5.0	3-90-7 <b></b> (	Chlorobenzene		19	
74-87-3Chloromethane       1.0         110-82-7Cyclohexane       1.0         106-93-41,2-Dibromoethane       1.0         124-48-1Dibromochloromethane       1.0         96-12-81,2-Dibromo-3-chloropropane       1.0         95-50-11,2-Dichlorobenzene       1.0         541-73-11,3-Dichlorobenzene       1.0         106-46-71,4-Dichlorobenzene       1.0         75-71-8Dichlorodifluoromethane       1.0         75-34-31,1-Dichloroethane       1.0         107-06-21,2-Dichloroethane       1.0         156-59-2cis-1,2-Dichloroethene       1.0         156-60-5trans-1,2-Dichloroethene       1.0         1061-01-5cis-1,3-Dichloropropene       1.0         10061-02-6trans-1,3-Dichloropropene       1.0         100-41-4Ethylbenzene       5.0         98-82-8Isopropylbenzene       1.0	-00-3(	Chloroethane		1.0	ט
110-82-7Cyclohexane       1.0         106-93-41,2-Dibromoethane       1.0         124-48-1Dibromochloromethane       1.0         96-12-81,2-Dibromo-3-chloropropane       1.0         95-50-11,2-Dichlorobenzene       1.0         541-73-11,3-Dichlorobenzene       1.0         106-46-71,4-Dichlorobenzene       1.0         75-71-8Dichlorodifluoromethane       1.0         75-34-31,1-Dichloroethane       1.0         107-06-21,2-Dichloroethane       1.0         15-35-41,1-Dichloroethene       1.0         156-59-2cis-1,2-Dichloroethene       1.0         156-60-5trans-1,2-Dichloroethene       1.0         100-101-5cis-1,3-Dichloropropene       1.0         10061-01-5cis-1,3-Dichloropropene       1.0         100-41-4Ethylbenzene       5.0         98-82-8Isopropylbenzene       5.0	-66-3(	Chloroform		1.0	U
106-93-41, 2-Dibromoethane       1.0         124-48-1Dibromochloromethane       1.0         96-12-81, 2-Dibromo-3-chloropropane       1.0         95-50-11, 2-Dichlorobenzene       1.0         541-73-11, 3-Dichlorobenzene       1.0         106-46-71, 4-Dichlorobenzene       1.0         75-71-8Dichlorodifluoromethane       1.0         75-34-31, 1-Dichloroethane       1.0         107-06-21, 2-Dichloroethane       1.0         75-35-41, 1-Dichloroethene       13         156-59-2cis-1, 2-Dichloroethene       100         156-60-5trans-1, 2-Dichloroethene       1.0         78-87-51, 2-Dichloropropane       1.0         10061-01-5cis-1, 3-Dichloropropene       1.0         10041-4Ethylbenzene       5.0         591-78-62-Hexanone       5.0         98-82-8Isopropylbenzene       1.0	-87-3(	Chloromethane		1.0	ט
124-48-1Dibromochloromethane       1.0         96-12-81,2-Dibromo-3-chloropropane       1.0         95-50-11,2-Dichlorobenzene       1.0         541-73-11,3-Dichlorobenzene       1.0         106-46-71,4-Dichlorobenzene       1.0         75-71-8Dichlorodifluoromethane       1.0         75-34-31,1-Dichloroethane       1.0         107-06-21,2-Dichloroethane       1.0         75-35-41,1-Dichloroethene       13         156-59-2cis-1,2-Dichloroethene       1.0         156-60-5trans-1,2-Dichloroethene       1.0         1061-01-5cis-1,3-Dichloropropane       1.0         10061-02-6trans-1,3-Dichloropropene       1.0         100-41-4Ethylbenzene       5.0         98-82-8Isopropylbenzene       1.0	0-82-7(	Cyclohexane		1.0	ט
96-12-81,2-Dibromo-3-chloropropane       1.0         95-50-11,2-Dichlorobenzene       1.0         541-73-11,3-Dichlorobenzene       1.0         106-46-71,4-Dichlorobenzene       1.0         75-71-8Dichlorodifluoromethane       1.0         75-34-31,1-Dichloroethane       1.0         107-06-21,2-Dichloroethane       1.0         75-35-41,1-Dichloroethene       13         156-59-2cis-1,2-Dichloroethene       1.0         156-60-5trans-1,2-Dichloroethene       1.0         1061-01-5cis-1,3-Dichloropropane       1.0         10061-02-6trans-1,3-Dichloropropene       1.0         100-41-4Ethylbenzene       1.0         591-78-62-Hexanone       5.0         98-82-8Isopropylbenzene       1.0	5-93-41	1,2-Dibromoethane		1.0	ע
95-50-11, 2-Dichlorobenzene       1.0         541-73-11, 3-Dichlorobenzene       1.0         106-46-71, 4-Dichlorobenzene       1.0         75-71-8Dichlorodifluoromethane       1.0         75-34-31, 1-Dichloroethane       1.0         107-06-21, 2-Dichloroethane       1.0         75-35-41, 1-Dichloroethene       13         156-59-2cis-1, 2-Dichloroethene       1.0         156-60-5trans-1, 2-Dichloroethene       1.0         78-87-51, 2-Dichloropropane       1.0         10061-01-5cis-1, 3-Dichloropropene       1.0         10041-4Ethylbenzene       1.0         591-78-62-Hexanone       5.0         98-82-8Isopropylbenzene       1.0	4 <b>-</b> 48-1I	Dibromochloromethane		1.0	ע
541-73-11, 3-Dichlorobenzene       1.0         106-46-71, 4-Dichlorobenzene       1.0         75-71-8Dichlorodifluoromethane       1.0         75-34-31, 1-Dichloroethane       1.0         107-06-21, 2-Dichloroethane       1.0         75-35-41, 1-Dichloroethene       13         156-59-2cis-1, 2-Dichloroethene       100         156-60-5trans-1, 2-Dichloroethene       1.0         78-87-51, 2-Dichloropropane       1.0         10061-01-5cis-1, 3-Dichloropropene       1.0         100-41-4Ethylbenzene       1.0         591-78-62-Hexanone       5.0         98-82-8Isopropylbenzene       1.0	-12-81	1,2-Dibromo-3-chloropropane		1.0	ע
106-46-71,4-Dichlorobenzene       1.0         75-71-8Dichlorodifluoromethane       1.0         75-34-31,1-Dichloroethane       1.0         107-06-21,2-Dichloroethane       1.0         75-35-41,1-Dichloroethene       13         156-59-2cis-1,2-Dichloroethene       100         156-60-5trans-1,2-Dichloroethene       1.0         78-87-51,2-Dichloropropane       1.0         10061-01-5cis-1,3-Dichloropropene       1.0         10061-02-6trans-1,3-Dichloropropene       1.0         100-41-4Ethylbenzene       5.0         98-82-8Isopropylbenzene       1.0	-50-11	1,2-Dichlorobenzene		1.0	U
75-71-8Dichlorodifluoromethane       1.0         75-34-31,1-Dichloroethane       1.0         107-06-21,2-Dichloroethane       1.0         75-35-41,1-Dichloroethene       13         156-59-2cis-1,2-Dichloroethene       100         156-60-5trans-1,2-Dichloroethene       1.0         78-87-51,2-Dichloropropane       1.0         10061-01-5cis-1,3-Dichloropropene       1.0         10041-4Ethylbenzene       1.0         591-78-62-Hexanone       5.0         98-82-8Isopropylbenzene       1.0	1-73-1 <u>-</u> 1	1,3-Dichlorobenzene		1.0	U
75-34-31, 1-Dichloroethane       1.0         107-06-21, 2-Dichloroethane       1.0         75-35-41, 1-Dichloroethene       13         156-59-2cis-1, 2-Dichloroethene       100         156-60-5trans-1, 2-Dichloroethene       1.0         78-87-51, 2-Dichloropropane       1.0         10061-01-5cis-1, 3-Dichloropropene       1.0         10061-02-6trans-1, 3-Dichloropropene       1.0         100-41-4Ethylbenzene       1.0         591-78-62-Hexanone       5.0         98-82-8Isopropylbenzene       1.0	5-46-71	1,4-Dichlorobenzene		1.0	U
107-06-21, 2-Dichloroethane       1.0         75-35-41, 1-Dichloroethene       13         156-59-2cis-1, 2-Dichloroethene       100         156-60-5trans-1, 2-Dichloroethene       1.0         78-87-51, 2-Dichloropropane       1.0         10061-01-5cis-1, 3-Dichloropropene       1.0         10061-02-6trans-1, 3-Dichloropropene       1.0         100-41-4Ethylbenzene       1.0         591-78-62-Hexanone       5.0         98-82-8Isopropylbenzene       1.0	<b>-71</b> -8I	Dichlorodifluoromethane		1.0	U
75-35-41,1-Dichloroethene       13         156-59-2cis-1,2-Dichloroethene       100         156-60-5trans-1,2-Dichloroethene       1.0         78-87-51,2-Dichloropropane       1.0         10061-01-5cis-1,3-Dichloropropene       1.0         10061-02-6trans-1,3-Dichloropropene       1.0         100-41-4Ethylbenzene       1.0         591-78-62-Hexanone       5.0         98-82-8Isopropylbenzene       1.0	-34-31	1,1-Dichloroethane		1.0	U
156-59-2cis-1,2-Dichloroethene       100         156-60-5trans-1,2-Dichloroethene       1.0         78-87-51,2-Dichloropropane       1.0         10061-01-5cis-1,3-Dichloropropene       1.0         10061-02-6trans-1,3-Dichloropropene       1.0         100-41-4Ethylbenzene       1.0         591-78-62-Hexanone       5.0         98-82-8Isopropylbenzene       1.0	7-06-21	1,2-Dichloroethane		1.0	שׁ
156-59-2cis-1,2-Dichloroethene       100         156-60-5trans-1,2-Dichloroethene       1.0         78-87-51,2-Dichloropropane       1.0         10061-01-5cis-1,3-Dichloropropene       1.0         10061-02-6trans-1,3-Dichloropropene       1.0         100-41-4Ethylbenzene       1.0         591-78-62-Hexanone       5.0         98-82-8Isopropylbenzene       1.0	-35-41	1,1-Dichloroethene		13	
78-87-51, 2-Dichloropropane       1.0         10061-01-5cis-1, 3-Dichloropropene       1.0         10061-02-6trans-1, 3-Dichloropropene       1.0         100-41-4Ethylbenzene       1.0         591-78-62-Hexanone       5.0         98-82-8Isopropylbenzene       1.0				100	
10061-01-5cis-1,3-Dichloropropene       1.0         10061-02-6trans-1,3-Dichloropropene       1.0         100-41-4Ethylbenzene       1.0         591-78-62-Hexanone       5.0         98-82-8Isopropylbenzene       1.0	5-60-5t	trans-1,2-Dichloroethene		1.0	U
10061-02-6trans-1,3-Dichloropropene       1.0         100-41-4Ethylbenzene       1.0         591-78-62-Hexanone       5.0         98-82-8Isopropylbenzene       1.0	-87-51	1,2-Dichloropropane		1.0	U
100-41-4Ethylbenzene       1.0         591-78-62-Hexanone       5.0         98-82-8Isopropylbenzene       1.0	061-01-5	cis-1,3-Dichloropropene		1.0	U
100-41-4Ethylbenzene       1.0         591-78-62-Hexanone       5.0         98-82-8Isopropylbenzene       1.0				1.0	U
591-78-62-Hexanone       5.0         98-82-8Isopropylbenzene       1.0	0 <b>-</b> 41-4	Ethylbenzene	•	1.0	U
	1-78-62	2-Hexanone		5.0	U
	-82-8]	Isopropylbenzene		1.0	U
75 20 5 Rectify accepted				1.0	U
1.08-87-2Methylcyclohexane 1.0				1.0	U
75-09-2Methylene chloride 1.0				1.0	U

# 286/304

#### METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

F		
MW	-31	
1	<b>-</b>	

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ___ SDG No.: 1205GW

Lab Sample ID: <u>A5E59201MS</u> Matrix: (soil/water) WATER

Lab File ID: <u>G7596.RR</u> Sample wt/vol:  $\underline{5.00}$  (g/mL)  $\underline{ML}$ 

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: ____1.00

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: _____ (uL)

## CONTOURNED AUTOM LINTEUR

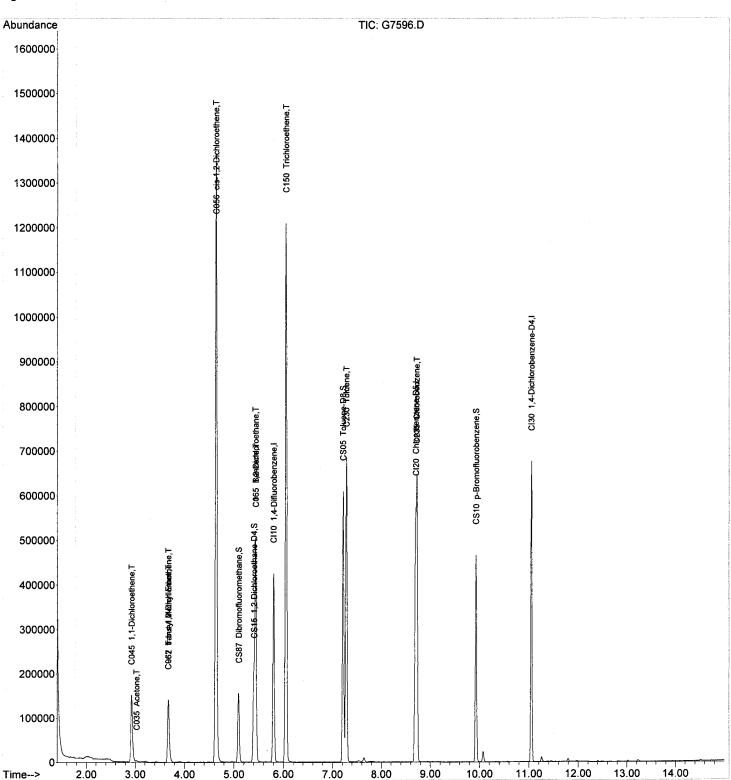
CAS NO.		ONCENTRATION UNIT (ug/L or ug/Kg)		Q
108-10-1	4-Methyl-2-pentanone		5.0	U
	Methyl-t-Butyl Ether (MTBE)		2.4	
91-20-3	Naphthalene	*	1.0	U
100-42-5	Styrene		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1.0	υ
127-18-4	Tetrachloroethene		1.0	U
108-88-3	Toluene		19	
120-82-1	1,2,4-Trichlorobenzene		1.0	U
71-55-6	1,1,1-Trichloroethane		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoro	bethane	1.0	ับ
75-69-4	Trichlorofluoromethane		1.0	ប
79-01-6	Trichloroethene		67	
75-01-4	Vinyl chloride		1.0	[บ
1330-20-7-	Total Xylenes		3.0	U
				1

Data File: C:\MSDCHEM\1\DATA\122705\G7596.D

: 27 Dec 2005 13:39 Acq On

Sample : A5E59201MS

Misc


Integrator: RTE

Quant Time: Dec 27 18:06:48 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\



R.T. QIon Response Conc Units Dev(Min)

Acq On : 27 Dec 2005 13:39

: A5E59201MS Sample

Misc

Integrator: RTE Quant Time: Dec 27 18:06:48 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

Internal Standards

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

1110	CIHAI	beandards		QIOII	кевропве	cone or		Rcv(Ar)
1)	CI10	1,4-Difluorobenzene	5.80	114	372272	125.00	ng	0.00
43)	CI20	Chlorobenzene-D5	8.70	82	189889	125.00	ng	
63)	CI30	1,4-Dichlorobenzene-	11.05	152	179742	125.00	) na	
03,	CISO	1,4 Diditologenzene	11.03	132	1/5/42	123.0	· · · · · ·	98.08%
		nitoring Compounds						
		Dibromofluoromethane		111	107960	115.85		0.00
	iked A		nge 70					.68%
		1,2-Dichloroethane-D			138743	115.77		0.00
_	iked A			- 136				.62%
	CS05	Toluene-D8	7.22		443135	115.73		0.00
				- 122				.58%
		p-Bromofluorobenzene				114.43	_	0.00
Sp:	ткеа А	amount 125.000 Ra	.nge 74	- 120	Recove	ry =	91	.54%
Tare	aet Co	ompounds						Qvalue
		Dichlorodifluorome	0.00	85	0	N.D.		
		Chloromethane	1.59	50	967	N.D.		
		Vinyl chloride	1.71	62	1824	N.D.		
		Bromomethane	2.04	94	223	N.D.		
		Chloroethane	0.00	64	0	N.D.		
		Trichlorofluoromet	0.00	101	0	N.D.		
<b>€</b>	€045	1,1-Dichloroethene	2.93	96	73625	67.30	ng	92
9)	C030	Methylene chloride	3.42	84	790	N.D.		
10)	C040	Carbon disulfide	3.14	76	3674	N.D.		
	C036	Acrolein	2.91	56	76	N.D.		
12)	C038	Acrylonitrile	3.69	53	362	N.D.		
	C035	Acetone	3.02	43	5579	13.79	ng	81
	C300	Acetonitrile	3.38	41	388	N.D.		
	C276	Iodomethane		142	0	N.D.		
	C291	1,1,2-Trichloro-1,		101	0	N.D.		
	C962	T-butyl Methyl Ether		73	47575	12.07	_	93
	-C057				51251		ng	_#51
	C255	Methyl Acetate	3.33	43	126	N.D.		
	C050	1,1-Dichloroethane	4.08	63	1440	N.D.		
	C125	Vinyl Acetate	4.14	43	267	N.D.		
	C051	2,2-Dichloropropan		77	359 690725	N.D.	nœ	97
	C056	cis-1,2-Dichloroethe			680725 1044	498.40	119	<i>3 /</i>
	C272	Tetrahydrofuran	4.97	42	1044	N.D.		
	C222	Bromochloromethane		128	0 0	N.D. N.D.		
	C060 C115	Chloroform 1,1,1-Trichloroeth	0.00 0.00	83 97	0	N.D.		
	C113	Carbon tetrachlori		117	0	N.D.		
	C120	1,1-Dichloropropen	0.00	75	0	N.D.		
	C165	Benzene	5.44	75 78	478953	93.48	nα	99
	C <del>065</del>	1,2-Dichloroethane	5.44	THE RESERVE AND DESCRIPTIONS ASSESSMENT OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE P	4711	2.49		# 1
	C110	2-Butanone	4.68	43	1931	N.D.	3	
	C256	Cyclohexane	0.00	56	0	N.D.		
_	£150	Trichloroethene	6.05		443516	336.84	na	94
33,7	<b>5</b>		3.00				5	

Data File: C:\MSDCHEM\1\DATA\122705\G7596.D

Acq On : 27 Dec 2005 13:39

Sample : A5E59201MS

Misc : Integrator: RTE

Quant Time: Dec 27 18:06:48 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A510002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\

Operator : TLC

Inte	ernal	Standards	R.T	. QIon	Response	Conc Units	Dev(Min) Rcv(Ar )
37)	C140	1,2-Dichloropropan	0.00	63	0	N.D.	1101 (111 )
	C278	Dibromomethane	0.00	93	ő	N.D.	
	C130	Bromodichlorometha	0.00	83	Ö	N.D.	
	C161	2-Chloroethylvinyl	6.84	63	285	N.D.	
	C012	Methylcyclohexane	0.00	83	0	N.D.	
	C145	cis-1,3-Dichloropr	0.00	75	0	N.D.	
	C230	<del>_</del>	7.2			93.83 ng	99
~ ~		Toluene			315686	_	99
	C170	trans-1,3-Dichloro	0.00	75 60	0	N.D.	
	C284	Ethyl Methacrylate	0.00	69	0	N.D.	
	C160	1,1,2-Trichloroeth	0.00	83	0	N.D.	
	C210	4-Methyl-2-pentano	7.22	43	2212	N.D.	
	C220	Tetrachloroethene	7.83	166	271	N.D.	
	C221	1,3-Dichloropropan	0.00	76	0	N.D.	
	C155	Dibromochlorometha	0.00	129	0	N.D.	
	C163	1,2-Dibromoethane	0.00	107	0	N.D.	
	C215	2-Hexanone	8.06	43	115	N.D.	
	<b>-</b> C235	Chlorobenzene	8.7		365347	96.28 ng	99
	C281	1,1,1,2-Tetrachlor	0.00	131	0	N.D.	
57)	C240	Ethylbenzene	8.94	91	836	N.D.	
58)	C246	m,p-Xylene	8.94	106	248	N.D.	
	C247	o-Xylene	0.00	106	0	N.D.	
60)	C245	Styrene	0.00	104	0	N.D.	
61)	C180	Bromoform	0.00	173	0	N.D.	
64)	C966	Isopropylbenzene	9.75	105	77	N.D.	
65)	C301	Bromobenzene	0.00	156	0	N.D.	
66)	C225	1,1,2,2-Tetrachlor	0.00	83	0	N.D.	
67)	C282	1,2,3-Trichloropro	0.00	110	0	N.D.	
	C283	t-1,4-Dichloro-2-B	0.00	51	0	N.D.	
	C302	n-Propylbenzene	10.16	91	67	N.D.	
	C303	2-Chlorotoluene	0.00	126	0	N.D.	
	C289	4-Chlorotoluene	0.00	126	0	N.D.	
	C304	1,3,5-Trimethylben	10.35	105	62	N.D.	
	C306	tert-Butylbenzene	0.00	134	0	N.D.	
	C307	1,2,4-Trimethylben	10.70	105	475	N.D.	
	C308	sec-Butylbenzene	10.70	105	475	N.D.	
	C260	1,3-Dichlorobenzen	10.99	146	57	N.D.	
	C309	4-Isopropyltoluene	11.01	119	353	N.D.	
-	C267	1,4-Dichlorobenzen	11.08	146	123	N.D.	
	C249	1,2-Dichlorobenzen	0.00	146	0	N.D.	
•	C310	n-Butylbenzene	11.38	91	298	N.D.	
	C286	1,2-Dibromo-3-Chlo	0.00	75	0	N.D.	
	C313	1,2,4-Trichloroben	12.82	180	747	N.D.	
	C316	Hexachlorobutadien	12.95	225	258	N.D.	
•	C314	Naphthalene	13.03	128	2640	N.D.	
	C934	1,2,3-Trichloroben		180	813	N.D.	
						·	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

destyl, m

289/304

#### METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

W-31
------

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: ____ SAS No.: ____ SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59201SD

Sample wt/vol:  $\underline{5.00}$  (g/mL)  $\underline{\text{ML}}$  Lab File ID:  $\underline{\text{G7597.RR}}$ 

Level: (low/med) Low Date Samp/Recv:  $\underline{12/21/2005}$   $\underline{12/23/2005}$ 

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

#### CONCENTRATION UNITS:

		CONCENTRATION	UNITS		
CAS NO.	COMPOUND	(ug/L or ug/K	g)	UG/L	Q
67-64-1	Acetone			5.0	U
71-43-2	Benzene			23	
75-27-4	Bromodichloromethane			1.0	U
75-25-2	Bromoform			1.0	U
74-83-9	Bromomethane			1.0	U
78-93-3	2-Butanone			5.0	U
75-15-0	Carbon Disulfide			1.0	U
56-23-5	Carbon Tetrachloride			1.0	U
108-90-7	Chlorobenzene			24	
75-00-3	Chloroethane			1.0	ט
67-66-3	Chloroform			1.0	ט
74-87-3	Chloromethane			1.0	U
110-82-7	Cyclohexane			1.0	ט
	-1,2-Dibromoethane			1.0	U
124-48-1	Dibromochloromethane			1.0	ן ט
96-12-8	-1,2-Dibromo-3-chloropropane			1.0	ן ט
	-1,2-Dichlorobenzene			1.0	U
541-73-1	-1,3-Dichlorobenzene			1.0	ן ט
106-46-7	-1,4-Dichlorobenzene			1.0	ן ט
75-71-8	Dichlorodifluoromethane			1.0	U
75-34-3	1,1-Dichloroethane			1.0	U
107-06-2	-1,2-Dichloroethane			1.0	U
75-35-4	-1,1-Dichloroethene			17	1
156-59-2	-cis-1,2-Dichloroethene			99	1
156-60-5	-trans-1,2-Dichloroethene			1.0	U
78-87-5	-1,2-Dichloropropane			1.0	ן ט
	-cis-1,3-Dichloropropene			1.0	ט
	-trans-1,3-Dichloropropene	. ,		1.0	ן ט
100-41-4	Ethylbenzene			1.0	U
591-78-6				5.0	U
	-Isopropylbenzene			1.0	U
	Methyl acetate			1.0	lυ
	-Methylcyclohexane			1.0	ט
	Methylene chloride			1.0	Ū
	-				<u> </u>

# 291/304

#### METHOD 8260 - TCL VOLATILE ORGANICS + NAPH - W ANALYSIS DATA SHEET

Client No.

MW-31			

Lab Name: STL Buffalo Contract: 4

Lab Code: RECNY Case No.: SAS No.: SDG No.: 1205GW

Matrix: (soil/water) WATER Lab Sample ID: A5E59201SD

Sample wt/vol:  $\underline{5.00}$  (g/mL)  $\underline{ML}$  Lab File ID:  $\underline{G7597.RR}$ 

Level: (low/med) <u>LOW</u> Date Samp/Recv: <u>12/21/2005</u> <u>12/23/2005</u>

% Moisture: not dec. ____ Heated Purge: N Date Analyzed: 12/27/2005

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: <u>1.00</u>

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____ (uL)

#### CONCENTRATION UNITS:

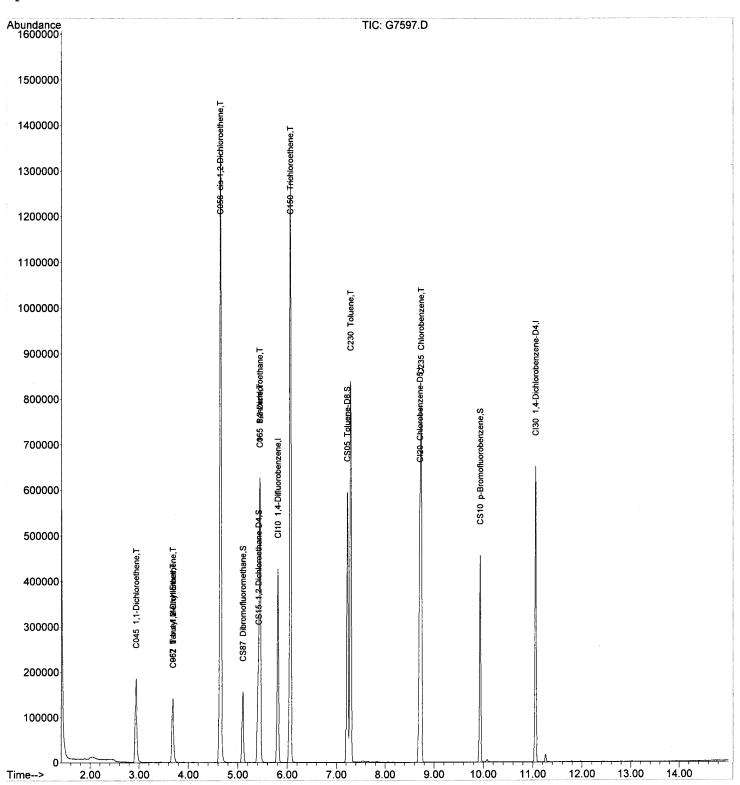
CAS NO.	COMPOUND	(ug/L or ug/Kg)		: Q
108-10-1	4-Methyl-2-pentanone		5.0	ט
1634-04-4	Methyl-t-Butyl Ether (MTBE)		2.4	
91-20-3	Naphthalene		1.0	U
100-42-5	Styrene		1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1.0	U
127-18-4	Tetrachloroethene		1.0	U
108-88-3	Toluene		24	
120-82-1	1,2,4-Trichlorobenzene		1.0	U
71-55-6	1,1,1-Trichloroethane		1.0	U
79-00-5	1,1,2-Trichloroethane		1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-triflu	oroethane	1.0	U
75-69-4	Trichlorofluoromethane		1.0	U
79-01-6	Trichloroethene		72	
75-01-4	Vinyl chloride		1.0	U
1330-20-7	Total Xylenes		3.0	ע
1				1 1

Data File: C:\MSDCHEM\1\DATA\122705\G7597.D

Acq On : 27 Dec 2005 14:01

Sample : A5E59201SD

Misc


Integrator: RTE

Quant Time: Dec 27 18:06:59 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update : Tue Dec 27 08:55:23 2005 Response via : Initial Calibration Data Path : C:\MSDCHEM\1\DATA\122705\



Data File: C:\MSDCHEM\1\DATA\122705\G7597.D

Acq On : 27 Dec 2005 14:01

Sample : A5E59201SD

Misc

Integrator: RTE

Quant Time: Dec 27 18:06:59 2005

Quant Method: C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER
QLast Update : Tue Dec 27 08:55:23 2005
Response via : Initial Calibration
Data Path : C:\MSDCHEM\1\DATA\122705\

Internal	Standards	R.T.	QIon	Response	Conc Ur	nits	Dev(Min) Rcv(Ar )
1) CI10	1,4-Difluorobenzene	5.80	114	370238	125.00	) ng	0.00 98.92%
43) CI20	Chlorobenzene-D5	8.70	82	185846	125.00	ng	0.00 96.79%
63) CI30	1,4-Dichlorobenzene-	11.05	152	176742	125.00		
System Mo	nitoring Compounds						
26) CS87	Dibromofluoromethane				113.68		
		nge 70					.94%
	1,2-Dichloroethane-D						
	mount 125.000 Ra						.93%
	Toluene-D8						
Spiked A	mount 125.000 Ra	nge //	174	130808	ry =		
	p-Bromofluorobenzene mount 125.000 Ra						
Spiked A	anount 125.000 Ra	iige /4	- 120	Recove	- x	90	.00%
Target Co	mpounds						Qvalue
	Dichlorodifluorome	0.00	85	0	N.D.		_
•	Chloromethane	1.61	50	132	N.D.		
4) C020	Vinyl chloride	1.74	62	1842	N.D.		
5) C015	Bromomethane	2.05	94	162	N.D.		
6) C025	Chloroethane Trichlorofluoromet	2.15	64	57	N.D.		
7) C275	Trichlorofluoromet	0.00	101	0	N.D.		
	1,1-Dichloroethene	2.94			85.43	ng	85
9) C030	Methylene chloride	3.43	84	414	N.D.		
10) C040	Carbon disulfide	3.14	76	984	N.D.		
11) C036	Acrolein	2.88 3.68	56	60	N.D.		
12) C038	Acrylonitrile Acetone	3.68	53 43	428	N.D.		
13) C035 14) C300	Acetone	3.02		1294 145	N.D. N.D.		
15) C276	Iodomethane		142	142	N.D.		
16) C291		0.00	101	Ö	N.D.		
C962	T-butyl Methyl Ether					nq	92
	trans-1,2-Dichloroet						
19) C255	Methyl Acetate	3.35		57	N.D.	_	
20) C050	1,1-Dichloroethane	4.10	63	1331	N.D.		
21) C125	Vinyl Acetate			121	N.D.		
	2,2-Dichloropropan			84	N.D.		
€35 €056	cis-1,2-Dichloroethe		96	673947	496.15	ng	98
24) C272	Tetrahydrofuran	4.97	42	72	N.D.		
25) C222	Bromochloromethane		128	0	N.D.		
27) C060	Chloroform 1,1,1-Trichloroeth	0.00 0.00	83	0	N.D.		
28) C115 29) C120	Carbon tetrachlori		97 117	0	N.D. N.D.		
30) C116	1,1-Dichloropropen	0.00	75	0	N.D.		
32) C165	Benzene	5.44	78	594112	116.59	na	98
33) <del>C065</del>	1,2-Dichloroethane	$-\frac{5.11}{5.44}$		5748	3.05	_	# 1
34) C110	2-Butanone	4.69	43	1195	N.D.	_	
35) C256	Cyclohexane	0.00	56	0	N.D.		
361 C150	Trichloroethene	6.05	95	474871	362.63	ng	96
~							

Data File: C:\MSDCHEM\1\DATA\122705\G7597.D

Acq On : 27 Dec 2005 14:01

Sample : A5E59201SD

Misc : Integrator: RTE

Quant Time: Dec 27 18:06:59 2005

Quant Method : C:\MSDCHEM\1\METHODS\8260-5MLLOW\A5I0002430.M

Quant Title : 8260 5ML WATER

QLast Update: Tue Dec 27 08:55:23 2005 Response via: Initial Calibration Data Path: C:\MSDCHEM\1\DATA\122705\

Operator : TLC

Internal	Standards	R.T	. QIon	Response	Conc Units	Dev(Min) Rcv(Ar)
37) C140	1,2-Dichloropropan	0.00	63	0	N.D.	
38) C278		0.00	93	0	N.D.	
39) C130		0.00	83	Ō	N.D.	
40) C161		6.85	63	230	N.D.	
41) C012		0.00	83	0	N.D.	
42) C145		0.00	75	Ō	N.D.	
45) C230		7.2		397018	120.57 ng	99
46) C170		0.00	75	. 0	N.D.	
47) C284		0.00	69	0	N.D.	
48) C160		0.00	83	Ō	N.D.	
49) C210		7.22	43	2278	N.D.	
50) C220		7.85	166	326	N.D.	
51) C221		0.00	76	0	N.D.	
52) C155	·	0.00	129	ő	N.D.	
53) C163		0.00	107	Ö	N.D.	
54) C215	•	0.00	43	Ŏ	N.D.	
(55) C235		8.7		456058	122.80 ng	99
56) C281		0.00	131	0	N.D.	
57) C240		8.95	91	423	N.D.	
58) C246	4	8.94	106	125	N.D.	
59) C247		0.00	106	0	N.D.	
60) C245		0.00	104	Ö	N.D.	
61) C180		0.00	173	ő	N.D.	
64) C966		0.00	105	Ö	N.D.	
65) C301		0.00	156	Ö	N.D.	
66) C225		0.00	83	Ö	N.D.	
67) C282		0.00	110	Ö	N.D.	
68) C283		0.00	51	ő	N.D.	
69) C302	-	9.93	91	456	N.D.	
70) C302		0.00	126	0	N.D.	
71) C289		0.00	126	ő	N.D.	
72) C304		10.26	105	63	N.D.	
73) C304		0.00	134	0	N.D.	
74) C307		10.71	105	196	N.D.	
75) C308		10.71	105	196	N.D.	
76) C260	-	0.00	146	0	N.D.	
77) C309		11.00	119	233	N.D.	
78) C267		0.00	146	0	N.D.	
79) C249		0.00	146	Ö	N.D.	
80) C310	*	0.00	91	ō	N.D.	
81) C286		0.00	75	Ö	N.D.	
82) C313	•	12.81	180	78	N.D.	
83) C316		0.00	225	0	N.D.	
84) C314		13.03	128	1484	N.D.	
85) C934	_		180	226	N.D.	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Mr. 16/20st

															· 							2.2.1.000					T		T		Page 2
	COMMENTS				Reshort 1540	Reslant SF 40					SWF O.J									\$4115	, i			-12MSS		177 + 1 m > 00/08	0 - W	1. A. T. T. A. T. V. V.	(#11 44%)	`	NO.
	pH<2	1	/	/	/	>	/	\	>	/			>	/	>		<u> </u>	Ŋ	>	7 6	>	>	>		1					-	000033
	REANALYSIS?				<b>ک</b> -	<i>}</i>													-												Õ
N LOG	S.S. #4 % REC.	00/	101	99	28	100	66	30	88	86	28	101	66	66	78	92	97	00/	26	101	100	101	001								
GCMS VOLATILE INJECTION LOG	S.S. #3 % REC.	89	89	8.9	&	80	90	88	88	90	90	80	88	88	88	23	84	8	68	%	89	80	89								
GCMS VOLA	S.S. #2 % REC.	88	68	18	88	89	06	88	89	88	68	88	88	89	88	88	88	83	68	90	89	83	88								
	S.S. #1 % REC.	%	8	90	90	90	16	88	06	68	68		88			88					88	92	92								
	I.S. #3 % REC.	74 100	764 103	48 99	1017	ľ	8	163 to 2	At 001	66 00/	Jes 94	15 66	85 66	88 AF	65 00/	100	66	%	63	26	86	100	101								: T
-	1.S. #2 % REC.	£01 &	Follow	798/101	801 25	\$ 101		44	A A	25-001		20		£\$ 00!		201	101	8	8	66	66	100	101								
	I.S. #1 % REC.	707/03	101 x01	101,001	100 tot	103 tot			107 cal	100 to 100	-BO+201	St 001		100 94	#	101	001	66	00/	8	001	101	101								
	AUTO #																								1	]			1	1	Date

DATE TIME AN 12/24/05 16/46 77	ANALYST FILE #		_				
	_	SAMPLEID	10B#	INJ. VOL.	EXT. WHT.	D.F. STANDARD MIX #	I.S. / SS MIX
È	91STB	A5€ 5/14	E504	500	-	4	Kighthala
	5	)		-			**************************************
721		1	1				
1754	67579	08 H254	98h7				
12181	(F)S80						-
1839	6781	80					-
706	283159	b0 1					
526	G-7585	ACE-400)	11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20 11/20				
1461	18-SL 5	1 02				1	
0192	G-758S	03			5		-
7202	67586	すの					
55%	1887	C3 MS				UN LIKZBE Q	
1112	4 (2758)	J. (BSD)		<u> </u>	-1	1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
412 1	7 C.K.89	ASES2105	ESZI		1		1
/ H7	06269	1224 BFBG1	]-	/"r	,	IC/5/17	168 1000
1, 1895	G7591	V5-TD025		SMC	  -	6-67 81314 1-148 8121 2-NB 284	
)	67592	MSB (NG)				and harries	ļ ,
Dank	G7593	VBLK 36					
9,00	G 7594	MSB	_\			L W33A5-10	-
A HO	6 7595	E592 0(	E592		}-		
1,551	6-7596	0 1 115				1 WS3A5-10	
MOM	(27597	0510					
777	67598	. 60				7	
27.70	G7599	63					
25	G7600	70					
- - - - - - - - - - - - - - - - - - -	10925	9.5					
(553	G 7603						
3(3)	6-7603	07,					
8 1/2 × W	1 G7604	80	<b>-</b> )			7	4
STL BUFFALO	•		Reviewed By	ed Bv		950000	Dane

					•	0										-									<del></del>							_
	COMMENTS	DF 4		NF 28	15/5um ant/6,0/10/10.	102					Rochest DF 5 Frams	7				45 I 2420	:	١,	CHILES.			1 4.42	The Market	728							000047 NO. Page 2	
	pH<2	>	7	>	1	>	>	7	>	>	>	1	1	1	/	7	1		1	>		\	\	_				1	1	7	Ğ	
	REANALYSIS?	1		7	7	1-					<b>)</b> —									(a/a)	10 10 10 V	12 X	X	>-							-	
ON LOG	S.S. #4 % REC.	2	2	80	44	68	96	90	726	89	90	ā	15	16	726				d d	93	93	75	9	76	92,	bb	7 b	76	25	92		
ICMS VOLATILE INJECTION LOG	S.S. #3 % REC.	46	76	+8	(15)	96	16	93	2	5	なっ	すっ	95	93	93				dy	95	94	25	0 5	J	92	9.5	56	hb	93	4		
GCMS VOLA	S.S. #2 % REC.	47	26	26	90	93	92	26	26	92	92	74	92	92	93	1			93	92	ho	93	7 6	hh	9.5	nb	98	93	75	6		
	S.S. #1 % REC.	42	90	88	85	92	91	76	90	89	90	91	91	90	7				9.7	9	93	93	٩١	7 b	7 h	dr	9.5	6.	9	ds ds		
	I.S. #3 % REC.	101	(00	109	107	104	102	101	99	los	101	98	97	97	95				N/O	80	ds	. Sb	96,	d 5,	hb	76	5	93	44,	0 0		
	I.S. #2 % REC.	101	106	128	(226)	110	108	107	104		106	104	102	101	99				Q.S.	da	9	0 0	Q	5 b.	0 5	5	7,6	94	2	05		
	I.S. #1 % REC.	(82)	105	,109	80	107	901	105	105	107	50)	163	101	زما	99				100	98	વવ	60	da	J.	95	٥٦	93	2	0	9		-
1	# OTUA																					-		-							Date	

1.S. / SS MIX #	Halv Wast												155/0 WKH	•													7		
STANDARD MIX #													MYTHO - 1	1215 12 M. 1-NBG1201-1215131	WSSAL-4, WSSAM-Y	INS3B5-10	1												
T. D.F.	-	_	_	_	_				_	25		92	1				-	2	Qh	80	70	20	₹.		7	22	9	-,	-
EXT. WHT.	}			_					7				1								•						_		
INJ. VOL.	5m2								7				١	Smy														1	١
10B#	E892						E619			4507		1277					7	EULOS	( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )	ES 34	F204	-				٦	48h	7 7	
SAMPLEID	E 593 09	(0)	))	۴1	(3		E619 01	0 ዓ	03	E507 61		にはおりのする一つ	12278/1862	, VS10025	KDORS	, wish	West 30	_	ASESIA31201	ASES3401 DC	ASESON CT	80	00	0		2 15	HS EUSLODE	10 7 NCL 10 N	
FILE #	47605	G 7606	67607	82925	60923	01923	67611	G 76 (A	6763	M 92.9	ı	G 7616 TEL	1	S18(5)	ر اهاري ا	(3.70/ · 1	670018	6.70/9	6.71620	129(0)	67b2L	(570/5)	=	2000	97010	(5 M C,	₹	02 VL 2	
ANALYST	LH 1/120	1										P	20	-															
TIME	701		1746	1909	<b>忍</b>	353	0	1933	2000				2020	100	2100	2129	1/2/	-											
DATE	la an las	-											SJ22/10S																_

													1	1.	15	$\neg$	-															Page 2
	COMMENTS										NH DIM	- TC 1012 TC 1012 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10 TO 10		2200	10136 (012	HS T 2450 (2660 >M)	HSI (959 (ADD SML)						DFOO	1/- 800	0/ 10							NO.
	pH<2	\	.\	7	>	>	1	/3		^	<u>'</u> 							(	1	2	7	/	`>	>	`,	7	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	>	>	>	>	000049
	REANALYSIS?																						>	<b>&gt;</b> ~	<i>ۍ</i>							
N LOG	S.S. #4 % REC.	76	2	2	\ \ \	26	8	26	93,	76							, , ,	25	25													
GCMS VOLATILE INJECTION LOG	S.S. #3 % REC.	2 6	43	20	フ	93	20	26	94	0 2								95	93													
GCMS VOLA	S.S. #2 % REC.		93	93	93	2 م	76	94	91	مر									25													
	S.S. #1 % REC.	ō	90		اً	92			Q°	7 0									90		-											
	I.S. #3 % REC.	9 5	26	26	92	ď	96	96	5	0 0								9	_ 5													
	I.S. #2 % REC.	d 5	9 5	7,6	2	6	89	9	∑- >>-	5							200	8	D.								-					
	I.S. #1 % REC.	95	Hb	hh	d 5	4		5	5	7,6							<	2 2	8		-	•										
i.	AUTO#												1											·								Date

													455		<u>.                                    </u>		T.														Page 2
	COMMENTS	FOAMS							DF1			TL 12128105	451 , 2430 (Baco Sout) P	1 CAST ONLY (SUC) Sml)	1/656/	) /// / / /					Has Headspace										NO.
	pH<2	>	1	`_	7	.\	>	<i>&gt;</i>	\	\	7		1	1				Ż	×	\ \	3	}	X	Y	×	メ	B	3	ろ	Y	00000
	REANALYSIS?								بد													•						:	-		ð
N LOG	S.S. #4 % REC.	83	16	200	88	83	83	93	23	24	44	63				93	93	9.5	B	J.	95	9.3	9	6.6	62	93	93	7.h	25	7,6	
GCMS VOLATILE INJECTION LOG	S.S. #3 % REC.	95	th6	86	88	83	94	24	24	25	95	84				66	pp.	J'b	dd	96	95	93	70	93,	ブ ぱ	95	do	d]. ′	10	dS	
GCMS VOLA	S.S. #2 % REC.	95	8	hb	93	23	23	43	82	63	8/	82				16	6	0	27	6.5	<b>d</b> 5	q L	93	8	9.5	م ر	9.2	96	9,5	d.	
	S.S. #1 % REC.	16	90	93	6/	76	22	8	90	92	88	90				90	8	05	84	Sc	4	00	da	000	5	00	8	4.0	80	00	<b>5</b>
	I.S. #3 % REC.	45	62	93	86	66	20	36	26	83	86	85				86	86	80	96	98	96	0	9.3	ブグ	d'h	95.	pp	3	9	מל	
	I.S. #2 % REC.	95	36	44	105	66	62	96	62	95	67	96				101	97	8	26	0	ماره	م ک	00	90	900	DO	95	7	9	70	
	S.#1 % REC.	96	79	96	97	86	86	86	66	86	00/	6				00/	66	00	99	99	<u>ح</u>	50	00	٥٠	9 5	50	80 ···	S.2		90	Date

#### ANALYTICAL REPORT

Job#: A05-D441

STL Project#: NY4A9171

Site Name: Environmental Strategies Corporation

Task: Sherburne

Mr. David Bouchard Environmental Strategies Corp. 5 Sullivan Street Cazenovia, NY 13035

STL Buffalo

Candace L. Fox Project Manager Case Narrative

#### SAMPLE SUMMARY

				SAMPI	ED	RECEIVE	${f f I}$
LAB SAMPLE	ID CLIENT	SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME_
A5D44104	MW31050		SOIL	11/18/2005	09:45	11/25/2005	08:45
A5D44106	MW32050		SOIL	11/18/2005	12:05	11/25/2005	08:45
A5D44103	MW33060		SOIL	11/17/2005	15:10	11/25/2005	08:45
A5D44107	MW34070		SOIL	11/18/2005	14:45	11/25/2005	08:45
A5D44108	MW35050		SOIL	11/21/2005	09:45	11/25/2005	08:45
A5D44109	MW36080		SOIL	11/21/2005	13:50	11/25/2005	08:45
A5D44110	MW36170		SOIL	11/21/2005	14:20	11/25/2005	08:45
A5D44102	MW37070		SOIL	11/17/2005	12:55	11/25/2005	08:45
A5D44101	MW38070		SOIL	11/17/2005	11:10	11/25/2005	08:45
A5D44111	MW39090		SOIL	11/22/2005	10:02	11/25/2005	08:45
A5D44105	MW92050		SOIL	11/18/2005	11:05	11/25/2005	08:45

#### METHODS SUMMARY

Job#: <u>A05-D441</u>

STL Project#: NY4A9171

Site Name: Environmental Strategies Corporation

PARAMETER ANALYTICAL
PARAMETER METHOD
Total Organic Carbon OTHER KAHN

OTHER Non-Standard Protocol and Method Defined by State, Client QAPP or Developed by Laboratory

### NON-CONFORMANCE SUMMARY

Job#: <u>A05-D441</u>

STL Project#: NY4A9171

Site Name: Environmental Strategies Corporation

### General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

### Sample Receipt Comments

### A05-D441

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

### Wet Chemistry Data

Total Organic Carbon was subcontracted to STL Chicago. The complete subcontract report is included in this report as Appendix A. Comments pertaining to Total Organic Carbon may be found within the comment summary of the subcontract report.

*****

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Chain of Custody

of_

No.034615 **ENVIRONMENTAL STRATEGIES CONSULTING LLC** A QUANTA TECHNICAL SERVICES COMPANY ☐ Minneapolis Office: 123 North 3rd St, #706, Minneapolis, MN 55401 Tel: (612) 343-0510, Fax: (612) 343-0506 Remarks Denver Office: 4600 South Ulster, # 930, Denver, CO 8023 Tel: (303) 850-9200, Fax: (303) 850-9214 Requested Analyse and. Of Laboratory Location: 144025.1105.05 Custody Seal Numbers: Method of Shipment: BUFFALO _aboratory Name: 0304 403-501  $\Rightarrow$ ☐ Pittsburgh Office: 300 Corporate Center Dr, # 200, Moon Twp, PA 15108 Sumber of Container Matrix 350 Don 1 420 BOIL 198 **2**... A = Air; Bu = Bulk;OW = Oily Waste; Tracking Sugnbers 523 416 BARRE ☐ Reston Office: 11911 Freedom Dr, # 900, Reston, VA 20190 0945 0940 1105 (205 1002 145 W = WipeBi = Biota; 1510 Aq = Water Matrices: Time 0 = Other 011 S = Soil;Received by (Signature): Received by (Signature): 120/22 ろれ >0|@1|11 11100 一つで X 21 105 Labor 18 B 12/2 1 13 18 12/22 12/22 Frik Roinet 14882.00 FORMER DIC - CHERTONIA JE, NY Date Tel; (412) 604-1040, Fax: (412) 604-1055 Tel: (703) 709-6500, Fax: (703) 709-8505 Chiel Chiel 11/22 2158 Time Date | Time Site and Location Date Turn-Around Time: Standard TAND A. DONATED MW39090 MW37070 MW KO DCBO JW38070 MW 31,050 NW36080 NAW 92 050 MW35 050 MW36170 Kelinquished by (Signature): MW 32 050 MW 24 OTO Sampler's Signature(s): Relinquished by (Signatule) Sample Identification Sampler's Name(s): Project Number:

315-455-3900 (V); 215-455-3907(F) CAZEMBUIA OFFICE: 5 SULLIVAN DT. MZENDUIA, NY 13035

Appendix A



STL Chicago 2417 Bond Street University Park, IL 60466

Tel: 708 534 5200 Fax: 708 534 5211 www.sti-inc.com

### SEVERN TRENT LABORATORIES ANALYTICAL REPORT

JOB NUMBER: 242347

Prepared For:

Severn Trent Laboratories 10 Hazelwood Drive Suite 106 Amherst, NY 14228

Project: Amherst

Attention: Candace Fox

Date: 12/01/2005

Signature

Name: Bonnie M. Stadelmann

Title: Project Manager

E-Mail: bstadelmann@stl-inc.com

(1/01/05 Date

STL Chicago

2417 Bond Street

University Park, IL 60466

PHONE: (708) 534-5200 FAX..: (708) 534-5211

This Report Contains ( ) Pages

205-D441

SAMPLE INFORMATION bate: 12/01/2005

Job Number.: 242347

Customer...: Severn Trent Laboratories Attn.....: Candace Fox

Project Number.....: 20000259
Customer Project ID...: AMHERST NY4A9171
Project Description...: Amherst

Laboratory Sample ID	Customer Sample ID	Sample Metrix	Date Sampled	Time Sampled	Date Received	Time Received
242347-1	MW38070	Soil	11/17/2005	11:10	11/29/2005	10:00
242347-2	MW37070	Soil	11/17/2005	12:55	11/29/2005	10:00
242347-3	MW33060	Soil	11/17/2005	15:10	11/29/2005	10:00
242347-4	MW31050	Soil	11/18/2005	09:45	11/29/2005	10:00
242347-5	MW92050	Soil	11/18/2005	11:05	11/29/2005	10:00
242347-6	M¥32050	Soil	11/18/2005	12:05	11/29/2005	10:00
242347-7	MW34070	Soil	11/18/2005	14:45	11/29/2005	10:00
242347-8	MN35050	Soil	11/21/2005	09:45	11/29/2005	10:00
242347-9	MW36080	Soil	11/21/2005	13:50	11/29/2005	10:00
242347-10	mw36170	Soil	11/21/2005	14:20	11/29/2005	10:00
242347-11	MW39090	Soil	11/22/2005	10:02	11/29/2005	10:00

	12521-1		<u> </u>			<u> [</u> 1/
			‡ £3	<u> </u>	·	
			DATE/TINE	11/30/05 0943		
ις	Fox		7			
Date:12/01/2005	Candace Fox		ватсн	167109		
Date:	4TTN;		UNITS	mg/Kg		
			DILUTION			
S F		0: 242347-1 .: 11/29/2005 .: 10:00	<b>2</b>	9860		
T RESUL	Y4.K91771	Laboratory Sample 1D: Date Received Time Received	MPL	500		
T E S	ANHERST NY449171	Labo Date Time	o FLAGS			Page 2
<b>д</b> ВОКА⊤ОКΥ	PROJECT		SAMPLE RESULT	6100	:	
Job Number: 242347	CUSTOMER: Severn Trent Laboratories	Customer Sample ID: MW38070 Date Sampled: 11/17/2005 Time Sampled: 11:10 Sample Matrix: Soil	PARAMETER/TEST DESCRIPTION	Toc Average Duplicates, Solid		* In Description = Dry Wgt.
	CUSTOMER: Ser	Custom Date Sa Time Sa Sample	TEST METHOD			

	11 71.01	_	TECH	u)	12/2
			DATE/TIME T	11/30/05 1004 cls	
	ŏ		<b>t</b> a		
Date:12/01/2005	ATIN: Candace Fox		ватсн	167109	
Date:12	ATTN:		UNITS	mg/Kg	
			DILUTION		
s ⊢		b: 242347–2 .: 11/29/2005 .: 10:00		9850	
T RESUL	Y4A9171	Laboratory Sample ID: Date Received		190	
± 8	PROJECT: AMHERST NY4A9171	Labo Date Time	FLAGS		Page 3
ABORATORY	PROJECT		SAMPLE RESULT G	1300	ď
Job Number: 242347	CUSTOMER: Severn Trent Laboratories	Customer Sample ID: MW37070 Date Sampled: 11/17/2005 Time Sampled: 12:55 Sample Matrix: Soil	PARRHETER/TEST DESCRIPTION	Tot Average Duplicates, Solid	* In Description = Dry Ngt.
	CUSTOMER: Sever	Customer Date Sam Time Sam Sample Ne	TEST METHOD	Lloyd Kahn	

	1 1		<del></del>		<u> </u>
	77 77 77 77		TECH	\$ 10	
			BATCH OT DATE/TIME TECH	11/30/05 1016 ets	
55	Fox		T		
Date: 12/01/2005	Candace Fox		ватсн	167109	
Date: 1	SN1.LK		CNITS	X/Su	
			DILUTION		
S L		0: 242347-3 .: 11/29/2005 .: 10:00	<del>-</del>	570	
חר		ple 1			
ж п с	<u>ب</u>	Laboratory Sample ID: Date Received	9	86	
۲- د	N.Y.4	ate Re			
Н	ANHERS	3 & F	Q FLAGS		90
ABORATORY	PROJECT: ANHERST NYGADITA		SAMPLE RESULT	1400	g C
Job Number: 242347	CUSTOMER: Severn Trent Laboratories	Customer Sample ID: MW33060 Date Sampled: 11/17/2005 Time Sampled: 15:10 Sample Matrix: Soil	PARAMETER/TEST DESCRIPTION	Total Organic Carbon (Soils) TOC Average Duplicates, Solid	* In Description = Bry Wgt.
	CUSTONER: Sever	Customer Date Samp Time Samp Sample Ma	TEST METHOD	Lloyd Kahn	

Inc.
Laboratories,
Trent
Severn
₽
s part
-
chi cago
STL

J	1.554		J. <del></del> .		14/2
			TECH	رد <b>د</b>	
			DATE/TIME	11/30/05 1111	
ξ	Fox		10		
Date:12/01/2005	Candace Fox		ВАТСН	167109	
Date:1	ATTA		UNITS	mg/kg	
			DILUTION	Ę	
s ⊢		ID: 242347-4 11/29/2005 10:00		380	
T RESUL	121644YN	Laboratory Sample ID: Date Received		88	
F S	PROJECT AMHERST NY4A9171	Eat Dati Ting	a FLAGS		Page 5
ABORATORY	PROJECT		SAMPLE RESILLT	1100	ď
Job Number: 242347	CUSTOMER: Severn Trent Laboratonies	Customer Sample ID: NW31050 Date Sampled: 11/78/2005 Time Sampled: 09:45 Sample Matrix: Soil	PARAMETER/TEST DESCRIPTION	Total Organic Carbon (Soils) TOC Average Duplicates, Solid	* In Description = Dry Wgt.
	CUSTOMER: Sever	Customer Date Samp Time Samp Sample Na	TEST METHOD	Lloyd Kahn	

	1				13/2
			TECH	ง	
		DATE/TIRE	11/30/05 1131 ets.		
	ă		*	<u> </u>	
Date: 12/01/2005	Candace Fox		a Hote	167109	
Date: 12	*TTN:		SLIMA	mg/Kg	
			DILUTION		
S L		0: 242347-5 .: 11/29/2005 .: 10:00	THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S	970	
T RESUL	P440171	Laboratory Sample ID: 242347-5 Date Received 11/29/2005 Time Received 10:00	MDL	8	
⊢ Ω	ANHERST N	Labo Date Time	O FLAGS		Page 6
BORATORY	1937		SAMPLE RESULT	086	~ a
L A					
Job Mumber: 242347 CUSTOMER: Severn Trent Laboratories	Customer Sample ID: MW92050 Date Sampled: 11/18/2005 Time Sampled: 11:05 Sample Matrix: Soil	PARAMETER/TEST DESCRIPTION	Total Organic Carbon (Soils) TOC Average Duplicates, Solid	* In Description = Dry Wgt.	
do J.	vern Tr	Customer Sample ID: Date Sampled Time Sampled Sample Matrix			
	CUSTOMER: SK	Custon Date ( Time ( Sample	TEST METHOD	Lloyd Kahn	

1									
			TECH	cls					
								7-3	
			DATE/TIME	11/30/05 1202					
			DAT	/30/					
	Š		10	+		\ <del></del>		- the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the	
2005	açe			8				············	
Date:12/01/2005	ATTN: Candade Fox		BATCH	167109					
te: 12	ž		S						
E Z	-		STIN	mg/Kg					
			Z						_
			DILUTION						
			ij	-					
		905							
		242347-6 11/29/2005 10:00	7	24					
S		242 11/ 10:							
<b>⊢</b>		Laboratory Sample ID: Date Received			·			· 41-24-	
n s		omp Co							
ъ П	17	7. S	Q.	62					
<b>                   </b>	YGAP	rato Rec							
S S	TS.	Labo Date Time	.2						
<b> -</b>	PROJECT: AMHERST NYGA9171		FUGS						Page 7
>- ex	C.L.		·Or						- g.
0 _	ROJE		17						
4	•		ш.	1500					
6			SAMPLE RESULT						
L A						· · · · · · · · · · · · · · · · · · ·		and the second second	
			₹						
			PARAMETER/TEST DESCRIPTION						.:
			ESCR	C. Pili					* In Description = Dry Wgt.
			Ts:	Total Organic Carbon (Soils) TOC Average Duplicates, Solid					D.
	es S	MW32050 11/18/2005 12:05 Soil	R/T	oon ate					E .
2347	to	MW32050 11/18/20 12:05 Soil	19	Cart					ipt
24%	abor	8 ± ± 5 8	PAR	ne g					Descr
aber .	2			O P P P P P P P P P P P P P P P P P P P					5
Job Number: 242347	1-	ed		otal OC A					*
, S	evern.	Customer Sample ID: Date Sampled: Time Sampled: Sample Matrix		<del></del>			The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon		_
	.>	uston ate S ime S ample	OHT:	Cahn					
	CUSTOMER: Severn Trent Laboratories	S I E	TEST METHOD	Lloyd Kahn					
	COS		1	Ĕ					
L			1	ı					

					 17/2
			HECH.	_	
			DATE/TIME TECH	11/30/05 1222	
	š			11/	
Date:12/01/2005	Candace Fox		BATCH DT	167/109	
Date:12	ATTR		UNITS	mg/Kg	
			NOTTOTIO		
& ⊢		. ID: 242347-7 : 11/29/2005 : 10:00	R	410	
RESUL	4A9171	Laboratory Sample ID: Date Received Time Received	NDC	75	
TEST	PROJECT: AMHERST NYAA9171	Labor Date Time	G FLAGS		ව ඉති
A B O R A T O R Y	PROJECT:		SAMPLE RESULT C	1700	
Job Number: 242347	CUSTOMER, Severn Trent Laboratories	Customer Sample ID: Mw34070 Date Sampled: 11/18/2005 Time Sampled: 14:45 Sample Matrix: Soil	PARAMETER/TEST DESCRIPTION	Total Organic Carbon (Soils) TOC Average Duplicates, Solid	* In Description = Dry Wgt.
	CUSTOMER: Seve	Customer Date Sam Time Sam Sample M	TEST METHOR	Lloyd Kahn	

Inc.
Laboratories,
Trent
Severn
₽
part of
2
STL Chicago
STL

Date:12/01/2005	ATTN: Candace Fox	
LABORATORY TEST RESULTS	PROJECT: AMHERST NYAA9171	Laboratory Sample 19: 242347-8 Date Received: 11/29/2005 Time Received: 10:00
Job Number: 242347	CUSTOMER: Severn Trent Laboratories	Customer Sample ID: MN35050 Date Sampled 11/21/2005 Time Sampled 09:45 Sample Matrix Soil

TECH	داع.	1	.8/
DATE/TIME	11/30/05 1337 cls.		
BATCH DT	167109	•	
UNITS	mg/Kg 1		
PILUTION			
	360		
MOL	£6		
o FLAGS			Page 9
SAMPLE RESULT C	1700		Pa
PARAMETER/TEST DESCRIPTION	Total Organic Carbon (Soils) TOC Average Duplicates, Solid		* In Description = Bry Wgt.
TEST METHOD	Lloyd Kahn Tr		

PROJECT: ANHERST NYGART	Laboratory Sample ID: 242347-9 Date Received 11/29/2005 Time Received 10:00	CRIPTION SAMPLE RESULT Q FLAGS	
Job Number: 242347 CUSTOMER: Severn Trent Laboratories	Customer Sample ID: MW36080 Date Sampled: 11/21/2005 Time Sampled: 13:50 Sample Matrix: Soil	LLoyd Kahn Total Organic Carbon (Soils) TOC Average Duplicates, Solid	

TECH

STL Chicago is part of Severn Trent Laboratories, Inc.

cls

			ECH	<b>9</b>	20
			DATE/TIME	11/30/05 1423 cls	
2	Ę		5		
Date:12/01/2005	candace Fox		ВАТСН	167109	
Date:12	ATTN		SIINO	ng/Kg	
			MOI LOTI G	-	
<i>ω</i> ⊢		1b: 242347-10 : 11/29/2005 : 10:00		<b>458</b>	
FRESUL	V4A9171	Laboratory Sample ID: Date Received: Time Received	ā	100	
_ ES	AMHERST	Labo Dete Time	FLAGS	V., V.,	4
LABORATORY	PROJECT: AMHERST NY4A9171		SAMPLE RESULT Q	32000	ď.
Job Number: 242347	CUSTONER, Severn Trent Laboratories	Customer Sample ID: MW36170 Date Sampled: 11/21/2005 Time Sampled: 14:20 Sample Matrix: Soil	PARANETER/TEST DESCRIPTION	TOC Average Duplicates, Solid	* In Description = Dry Wat
ት ት	CUSTOMER: Sever	Customer : Date Samp Time Samp Sample Mar	TEST METHOD	L Loyd Kann	

Inc.
Laboratories,
Trent
Severn
ţ
part
<u>ئ</u>
Chicago
STL (

			163	<u> </u>	 21/2
			DATE/TIME T	11/30/05 1448 015	
ñ	Ş		10		
Date: 12/01/2005	Candace Fox		ВАТСН	167109	
Date:1	ATTI		S,LINIO	ang / Kaj	
			01_UTTON	-	
s L		10: 242347-11 : 11/29/2005 : 10:00	<b>*</b>	1300	
TRESUL	12,1647,11	Laboratory Sample ID: Date Received	MOL	300	
⊢ m S	AMHERST AYCA9171	Labo Date Time	G FLAGS		Page 12
ABORATORY	PROJECT:		SAMPLE RESULT	2600	ě
Job Number: 242347	CUSTONER: Severn Trent Laboratonies	Customer Sample ID: MW39090 Date Sampled: 11/22/2005 Time Sampled: 10:02 Sample Matrix: Soil	PARAMETER/TEST DESCRIPTION	Total Organic Carbon (Soils) TOC Average Duplicates, Solid	* In Description = Dry Wgt.
יי	CUSTONER: Severn	Customer S Date Sampl Time Sample Sample Mat	TEST METHOD	Lioyd Kahn T	

Jol	o Number: 242347	LABORATORY	СН	RONI	CLE	Date:	12/01/2005	
CUSTOMER, Severn	Trent Laboratories	PROJECT	: AMHERS	T NY4A9	177		ATTN: Candace Fox	
Lab ID: 242347-1 METHOD PKG INO (WC) Lloyd Kahn	DESCRIPTION PKG INO (WET CHEMISTR			BATCH#	/29/2005 PREP BT 167109		Date: 11/17/2005 DATE/TIME ANALYZED 11/30/2005 0943	DILUTION
Lab ID: 242347-2 METHOD Lloyd Kahn	DESCRIPTION	(Soils)		BATCH#	/29/2005 PREP BT 167109		Date: 11/17/2005 DATE/TIME ANALYZED 11/30/2005 1004	DILUTION
Lab ID: 242347-3 METHOD Lloyd Kahn	Client ID: MW33060 DESCRIPTION Total Organic Carbon	(Soils)		BATCH#	/29/2005 PREP BT 167109		Date: 11/17/2005 DATE/TIME ANALYZED 11/30/2005 1016	DILUTION
Lab ID: 242347-4 METHOD Lloyd Kahn	Client ID: MW31050 DESCRIPTION Total Organic Carbon	(Sails)		BATCH#	/29/2005 PREP BT 167109		Date: 11/18/2005 DATE/TIME ANALYZED 11/30/2005 1111	DILUTION
Lab ID: 242347-5 METHOD Lloyd Kahn	Client ID: MW92050 DESCRIPTION Total Organic Carbon	(Soits)		BATCH#	/29/2005 PREP BT 167109		Date: 11/18/2005 DATE/TIME ANALYZED 11/30/2005 1131	DILUTION
Lab ID: 242347-6 METHOD Lloyd Kahn	DESCRIPTION	(Soils)		BATCH#	/29/2005 PREP BT 167109		Date: 11/18/2005 DATE/TIME ANALYZED 11/30/2005 1202	DILUTION
Lab ID: 242347-7 METHOD Lloyd Kahn	Client ID: MW34070 DESCRIPTION Total Organic Carbon	(Soils)		BATCH#	/29/2005 PREP BT 167109		Date: 11/18/2005 DATE/TIME ANALYZED 11/30/2005 1222	DILUTION
Lab ID: 242347-8 METHOD Eloyd Kahn	Client ID: MW35050 DESCRIPTION Total Organic Carbon	(Soils)		BATCH#	/29/2005 PREP BT 167109		Date: 11/21/2005 DATE/TIME ANALYZED 11/30/2005 1337	DILUTION
Lab ID: 242347-9 METHOD Lloyd Kahn	Client ID: MW36080 DESCRIPTION Total Organic Carbon	(Soils)		BATCH#	/29/2005 PREP BT 167109		Date: 11/21/2005 DATE/TIME ANALYZED 11/30/2005 1402	DILUTION
Lab ID: 242347-10 METHOD Lloyd Kahn	O Client ID: MW36170 DESCRIPTION Total Organic Carbon	(Soils)		BATCH#	/29/2005 PREP BT 167109		Date: 11/21/2005 DATE/TIME ANALYZED 11/30/2005 1423	DILUTION
Lab ID: 242347-1 METHOD Lloyd Kahn	Client ID: MW39090 DESCRIPTION Total Organic Carbon	(Soils)		BATCH#	/29/2005 PREP BT 167109		Date: 11/22/2005 DATE/TIME ANALYZED 11/30/2005 1448	DILUTION

QUALITY CONTROL RESULTS

Job Number.: 242347

Report Date.: 12/01/2005

CUSTOMER: Severn Trent Laboratories

PROJECT: AMHERST NY4A9171

ATTN: Candace Fox

		QC Result		QC Result	True Value	Orig.	Value	QC Calc. F	*	Limits	Date	Time
7-002 IO5KSTTC	~, ~	1815.06			2000.00			91	%	85-115	11/30/2005	
			U		2000 00			92	%	85-115		
9~015	mg/Kg	29.00	IJ		2000.02				,,	02 112		
	2 mg/Kg	1818.78			2000.00						11/30/2005	1534
9~015	mg/Kg	29.00	U								11/30/2005	1540
	-003 -014 105KSTTC2 -015 -014 105KSTTC2 -015	-003 mg/Kg -014 IO5KSTTC2 mg/Kg -015 mg/Kg -014 IO5KSTTC2 mg/Kg -015 mg/Kg	-003 mg/kg 29.00  -014 I05KSTTC2 mg/kg 1830.30  -015 mg/kg 29.00  -014 I05KSTTC2 mg/kg 1818.78	-003 mg/kg 29.00 u  -014 105KSTTC2 mg/kg 1830.30  -015 mg/kg 29.00 u  -014 105KSTTC2 mg/kg 1818.78  -015 mg/kg 29.00 u	-003 mg/Kg 29.00 U -014 I05KSTTC2 mg/Kg 1830.30 -015 mg/Kg 29.00 U -014 I05KSTTC2 mg/Kg 1818.78 -015 mg/Kg 29.00 U	-003 mg/Kg 29.00 U  -014 105KSTTC2 mg/Kg 1830.30 2000.00  -015 mg/Kg 29.00 U  -014 105KSTTC2 mg/Kg 1818.78 2000.00  -015 mg/Kg 29.00 U	-003 mg/Kg 29.00 U  -014 105KSTTC2 mg/Kg 1830.30 2000.00  -015 mg/Kg 29.00 U  -014 105KSTTC2 mg/Kg 1818.78 2000.00  -015 mg/Kg 29.00 U	-003 mg/Kg 29.00 U -014 I05KSTTC2 mg/Kg 1830.30 2000.00 -015 mg/Kg 29.00 U -014 I05KSTTC2 mg/Kg 1818.78 2000.00 -015 mg/Kg 29.00 U	-003 mg/Kg 29.00 u -014 I05KSTTC2 mg/Kg 1830.30 2000.00 92 -015 mg/Kg 29.00 u -014 I05KSTTC2 mg/Kg 1818.78 2000.00015 mg/Kg 29.00 U	-003 mg/Kg 29.00 U -014 I05KSTTC2 mg/Kg 1830.30 2000.00 92 % -015 mg/Kg 29.00 U -014 I05KSTTC2 mg/Kg 1818.78 2000.00 -015 mg/Kg 29.00 U	003 mg/Kg 29.00 U  014 105KSTTC2 mg/Kg 1830.30 2000.00 92 % 85-115  015 mg/Kg 29.00 U  014 105KSTTC2 mg/Kg 1818.78 2000.00  015 mg/Kg 29.00 U	11/30/2005 mg/Kg 29.00 U 11/30/2005 11/30/2005 11/30/2005 11/30/2005 11/30/2005 11/30/2005 11/30/2005 11/30/2005 11/30/2005 11/30/2005 11/30/2005 11/30/2005 11/30/2005

### QUALITY ASSURANCE METHODS

### REFERENCES AND NOTES

Report Date: 12/01/2005

### REPORT COMMENTS

- 1) All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.
- 2) Soil, sediment and sludge sample results are reported on a "dry weight" basis except when analyzed for landfill disposal or incineration parameters. All other solid matrix samples are reported on an "as received" basis unless noted differently.
- Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.
- 4) The test results for the noted analytical method(s) meet the requirements of NELAC. Lab Cert. ID# 100201
- 5) According to 40CFR Part 136.3, pH, Chlorine Residual and Dissolved Oxygen analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH Field) they were not analyzed immediately, but as soon as possible on laboratory receipt.

Glossary of flags, qualifiers and abbreviations (any number of which may appear in the report) Inorganic Qualifiers (Q-Column)

- Analyte was not detected at or above the stated limit.
- Not detected at or above the reporting limit.
- Result is less than the RL, but greater than or equal to the method detection limit.
- Result is less than the CRDL/RL, but greater than or equal to the IDL/MDL.
- Result was determined by the Method of Standard Additions.
- AFCEE: Result is less than the RL, but greater than or equal to the method detection limit. Inorganic Flags (Flag Column)
  - ICV,CCV,ICB,CCB,ISA,ISB,CRI,CRA,MRL: Instrument related QC exceed the upper or lower control limits.
- LCS, LCD, MD: Batch QC exceeds the upper or lower control limits.
- MSA correlation coefficient is less than 0.995.
- MS, MSD: The analyte present in the original sample is 4 times greater
  - than the matrix spike concentration, therefore, control limits are not applicable.
- SD: Serial dilution exceeds the control limits. E
- н MB, EB1, EB2, EB3: Batch QC is greater than reporting limit or had a
  - negative instrument reading lower than the absolute value of the reporting limit.
- MS, MSD: Spike recovery exceeds the upper or lower control limits.
- AS(GFAA) Post-digestion spike was outside 85-115% control limits.

### Organic Qualifiers (Q - Column)

- Analyte was not detected at or above the stated limit,
- ND Compound not detected.
- Result is an estimated value below the reporting limit or a tentatively J identified compound (TIC).
- Result was qualitatively confirmed, but not quantified.
- C Pesticide identification was confirmed by GC/MS.
- The chromatographic response resembles a typical fuel pattern.
- The chromatographic response does not resemble a typical fuel pattern.
- Result exceeded calibration range, secondary dilution required.
- AFCEE: Result is an estimated value below the reporting limit or a tentatively identified compound (TIC) Organic Flags (Flags Column)
- В MB: Batch QC is greater than reporting limit.
- LCS, LCD, ELC, ELD, CV, MS, MSD, Surrogate: Batch QC exceeds the upper or Lower control limits. EB1, EB2, EB3, MLE: Batch QC is greater than reporting Limit *
- A
- Concentration exceeds the instrument calibration range Concentration is below the method Reporting Limit ( $R\bar{L}$ )
- Compound was found in the blank and sample.
- Surrogate or matrix spike recoveries were not
  - obtained because the extract was diluted for
    - analysis; also compounds analyzed at a dilution will be flagged with a D.
- Alternate peak selection upon analytical review н
- I Indicates the presence of an interfence, recovery is not calculated.
- Manually integrated compound.
- The lower of the two values is reported when the % difference between the results of two GC columns is

### QUALITY ASSURANCE NETHODS

### REFERENCES AND NOTES

Report Date: 12/01/2005

```
greater than 25%.
Abbreviations
AS
         Post Digestion Spike (GFAA Samples - See Note 1 below)
Batch
         Designation given to identify a specific extraction, digestion, preparation set, or analysis set
CAP
         Capillary Column CCB Continuing Calibration Blank
CCV
         Continuing Calibration Verification
CF
         Confirmation analysis of original
СI
         Confirmation analysis of A1 or D1
02
         Confirmation analysis of A2 or D2
¢3
         Confirmation analysis of A3 or D3
         Low Level Standard Check - GFAA; Mercury
CRA
CRI
         Low Level Standard Check - ICP
Ç٧
         Calilbration Verification Standard
Dil Fac
        Dilution Factor - Secondary dilution analysis
01
         Dilution 1
02
         Dilution 2
03
         Dilution 3
DLFac
         Detection Limit Factor
DSH
         Distilled Standard - High Level
         Distilled Standard - Low Level
DSL
         Distilled Standard - Medium Level
DSM
ÉB1
         Extraction Blank 1
FB2
         Extraction Blank 2
EB3
         DI Blank
ELC
         Method Extracted LCS
         Method Extracted LCD
ELD
ICAL
         Initial calibration
TCR
         Initial Calibration Blank
ICV
         Initial Calibration Verification
IDL
         Instrument Detection Limit
ISA
         Interference Check Sample A - ICAP
         Interference Check Sample B - ICAP
TSB
Job No.
         The first six digits of the sample ID which refers to a specific client, project and sample group
         Lab ID An 8 number unique laboratory identification
LCD
         Laboratory Control Standard Duplicate
LCS
         Laboratory Control Standard with reagent grade water or a matrix free from the analyte of interest
         Method Blank or (PB) Preparation Blank
MB
MD
         Method Duplicate
MDL
         Method Detection Limit
MLE
         Medium Level Extraction Blank
MRI.
         Method Reporting Limit Standard
MSA
         Method of Standard Additions
MS
         Matrix Spike
MSD
         Matrix Spike Duplicate
ND
         Not Detected
PREPF
         Preparation factor used by the Laboratory's Information Management System (LIMS)
PDS
         Post Digestion Spike (ICAP)
         Re analysis of original
ŘΑ
A1
         Re-analysis of D1
Α2
         Re-analysis of D2
A3
         Re-analysis of D3
RD
         Re-extraction of dilution
RE
         Re-extraction of original
RC
         Re-extraction Confirmation
RL
         Reporting Limit
         Relative Percent Difference of duplicate (unrounded) analyses
RPD
RRF
         Relative Response Factor
RT
         Retention Time
```

### QUALITY ASSURANCE METHODS

### REFERENCES AND NOTES

Report Date: 12/01/2005

RTW Retention Time Window Sample ID A 9 digit number unique for each sample, the first six digits are referred as the job number SCB Seeded Control Blank Serial Dilution (Calculated when sample concentration exceeds 50 times the MDL) SD UCB Unseeded Control Blank SSV Second Source Verification Standard Solid Laboratory Control Standard(LCS) SLCS PHC pH Calibration Check LCSP pH Laboratory Control Sample LCDP pH Laboratory Control Sample Duplicate pH Sample Duplicate MDPH MDFP Flashpoint Sample Duplicate LCFP Flashpoint LCS **G1** Gelex Check Standard Range 0-1 62 Gelex Check Standard Range 1-10 63 Gelex Check Standard Range 10-100 Gelex Check Standard Range 100-1000 G4 Note 1: The Post Spike Designation on Batch QC for GFAA is designated with an "S" added to the current

abbreviation used. EX. LCS S=LCS Post Spike (GFAA); MSS=MS Post Spike (GFAA) Note 2: The MD calculates an absolute difference (A) when the sample concentration is less than 5 times the

reporting limit. The control limit is represented as +/- the RL.

Date: 11/28/2005 Time: 12:00:36		H	STL Buffalo Internal Chain of Custody		Rept: AN009
ient: Envi	tal Strategies	ies Corpo	poration	· PM: Candace L	· Fox
Project: NY4A9171 Ocote: NY03-491				Turn Around Regi	equired: 15B r#: TBD
• 1	Tab ID	Matrix	Parameters	# and Type of Samp Containers	Sample Date/Time
CIlent sampre to	ı			100	005 11.1
207	A5D44101 A5D44102 A5D44103		000 000 000	1-402F 1-402P 1-402P	/17/2005 12: /17/2005 15:
200 000 000	504410	11-11-	O O O O O	-402 -402	1/18/2005 09:4
200 200 200	504410	41-41-		-402	/18/2005 12:0
4:0 00 1-10	504410 504410	٦H,		4.4.4 0.00 0.01	1/21/2005 14:40
MW36080 MW36170	504410 5044110 504411	<b>→</b> ⊢		 444 000 000	/21/2005 13:3 /21/2005 14:2 /22/2005 10:0
ע ט ע	175577	4 }	201		

Relinquished by STL Buffalo	Date	Time	Received By Signature (B)	Received By <u>STL - Chicago:</u> Signature(B)	Date	Time
1)	11012	JOF /	(3)	Ţ	11/24 /2006	(SOS)
2) /	/ /20		(4) 0		/ /20	

Appendix F – Data Validation Report

# Data Usability Summary Report for Groundwater Samples Collected at the Former General Instrument Corporation Site Sherburne, New York December 20 through 22, 2005

### Introduction

This Data Usability Summary Report includes 33 groundwater samples (including two blind duplicate samples), two equipment blanks, and two trip blanks. All samples were collected between December 20 through 22, 2005, at the former General Instrument Corporation site in Hicksville, New York. STL-Buffalo of Amherst, New York, analyzed the samples for VOCs, including naphthalene and MTBE, by EPA SW-846 Method 8260. The data were reviewed in accordance with method and chain-of-custody criteria following the National Functional Guidelines of Organic Data Review dated October 1999. The validated analytical results are presented in Table 2 of the Semiannual Groundwater Monitoring Report.

### **Volatile Organic Compounds**

Twenty-five groundwater samples, an equipment blank, and a trip blank were analyzed for VOCs, including dichlorobenzenes, by EPA SW-846 Method 8260. The data were reviewed for surrogate recovery, matrix spike/matrix spike duplicate (MS/MSD) recovery, blank contamination, instrument performance, calibration, and calculation criteria. The data satisfied the criteria for surrogate recovery, MS/MSD recovery, instrument performance, and calculation.

Several analytes were detected in sample EB-122205. In cases where concentrations for these analytes were below the quantitation limits in associated samples, the concentrations were adjusted to the quantitation limit and qualified "U" as non-detectable. In cases where these analytes were detected at concentrations between the quantitation limit and five times (10 times for acetone and toluene) the concentration in the associated blank, the sample concentrations were also qualified "U" as non-detectable.

Several positive and non-detectable methylcyclohexane and naphthalene chloride results were qualified "J", as estimated, for failing to meet continuing calibration criteria.

### Overall Assessment of the Data

The data presented are acceptable as qualified for the groundwater monitoring activities at the site.





December 12, 2005

Project No. 2005-403-01

Mr. David Bouchard Environmental Strategies Consulting, LLC 5 Sullivan Road Cazenovia, NY 13035

# Transmittal Laboratory Test Results Former GIC 148992.03

Please find attached the laboratory test results for the above referenced project. The tests were outlined on the Project Verification Form that was faxed to your firm prior to the testing. The testing was performed in general accordance with the methods listed on the enclosed data sheets. The test results are believed to be representative of the samples that were submitted for testing and are indicative only of the specimens which were evaluated. We have no direct knowledge of the origin of the samples and imply no position with regard to the nature of the test results, i.e. pass/fail and no claims as to the suitability of the material for its intended use.

The test data and all associated project information provided shall be held in strict confidence and disclosed to other parties only with authorization by our Client. The test data submitted herein is considered integral with this report and is not to be reproduced except in whole and only with the authorization of the Client and Geotechnics. The remaining sample materials for this project will be retained for a minimum of 90 days as directed by the Geotechnics' Quality Program.

We are pleased to provide these testing services. Should you have any questions or if we may be of further assistance, please contact our office.

Reflectively submitted,

Geolechnics, Inc.

David R. Backstrom Laboratory Director

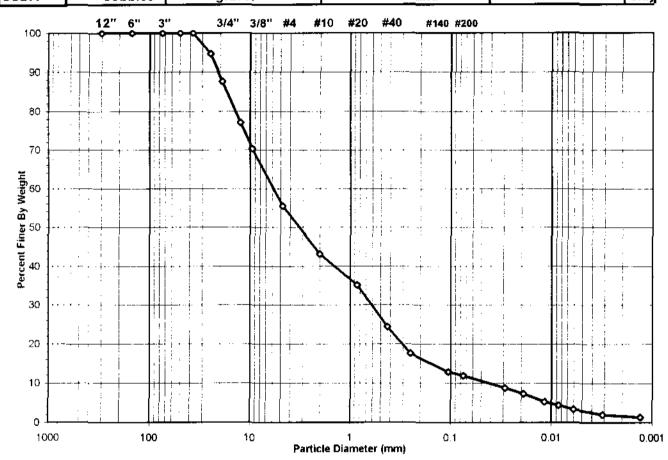
We understand that you have a choice in your laboratory services and we thank you for choosing Geotechnics.

## SIEVE AND HYDROMETER ANALYSIS ASTM D 422-63/AASHTO T88-00 (SOP-S3)



Client Client Reference Project No. Lab ID Environmental Strategies FORMER GIC 148992.03 2005-403-01

2005-403-01-01


Boring No. Depth (ft) Sample No.

Soil Color

NA MW38110 BROWN

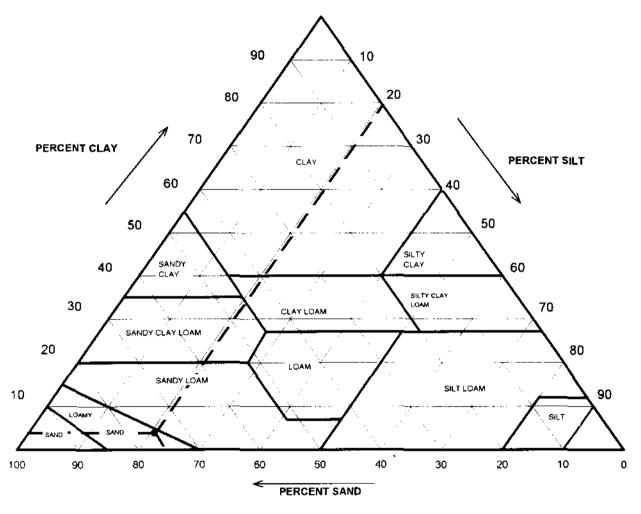
NA

		SIEVE ANA	LYSIS	HYDROMETER
uscs	cobbles	gravel	sand	silt and clay fraction
USDA	cobbles	gravel	sand	silt cla



	USCS Summary	•					
Sieve Sizes (mm)		Percentage	<del>-</del>				
Greater Than #4	Gravel	44.54					
#4 To #200	Sand	43.50					
Finer Than #200	Silt & Clay	11.96					
			D60 =	5.866		<u> </u>	
USCS Symbol	gw-gm, ASSUMED		D30 =	0.608	СС	=	1.52
USCS Classification	WELL-GRADED GRAVEL WITH SIL	T AND SAND	D10 =	0.042	cu	=	141.11

page 1 of 4


DCN: CT-S3A DATE:1/36/04 REVISION: 6

C:WSOFFICE\ExceNPrintQ\Q364.xisJSheet1



### **USDA CLASSIFICATION CHART**

Client Client Reference Project No. Lab ID Environmental Strategies FORMER GIC 148992.03 2005-403-01 2005-403-01-01 Boring No. Depth (ft) Sample No. Soil Color NA NA MW38110 BROWN



Particle Size (mm)	Percent Finer	USDA SUMMAR	Y Actual Percentage	Corrected % of Minus 2.0 mm material for USDA Classificat.
		Gravel	56.81	0.00
2	43.19	Sand	32.58	75.42
0.05	10.61	Silt	8.92	20.66
0.002	1.69	Clay	1.69	3.92
		USDA Classification	LOAMY SAND	

page 2 of 4

DCN: CT-S3A DATE:1/30/04 REVISION: 6

C \MSOFFICE\ExcenPrintQ\Q364.xls\) Sheet1



### **WASH SIEVE ANALYSIS**

ASTM D 422-63/AASHTO T88-00 (SOP-S3)

Client Client Reference Environmental Strategies FORMER GIC 148992.03

Boring No.
Depth (ft)

NA NA

Project No. Lab ID 2005-403-01 2005-403-01-01 Sample No. Soil Color MW38110 BROWN

Moisture Content of Passing 3/4" M	laterial	Water Content of Retained 3/4" Material	
Tare No.	637	Tare No.	NA
Wgt.Tare + Wet Specimen (gm)	1562.30	Wgt.Tare + Wet Specimen (gm)	NA.
Wgt.Tare + Dry Specimen (gm)	1435.60	Wgt.Tare + Dry Specimen (gm)	N/A
Weight of Tare (gm)	101.54	Weight of Tare (gm)	N/
Weight of Water (gm)	126.70	Weight of Water (gm)	NA
Weight of Dry Soil (gm)	1334.06	Weight of Dry Soil (gm)	N.A
Moisture Content (%)	9.5	Moisture Content (%)	N.A

Wet Weight -3/4" Sample (gm)	NA	Weight of the Dry Specimen (gm)	1334.06
Dry Weight - 3/4" Sample (gm)	1010.07	Weight of minus #200 material (gm)	159.61
Wet Weight +3/4" Sample (gm)	NA	Weight of plus #200 material (gm)	1174.45
Dry Weight + 3/4" Sample (gm)	164.38		
Total Dry Weight Sample (gm)	NA		
l			

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	71.42	5.35	5.35	94.65	94.65
3/4"	19.0	92.96	6,97	12.32	87.68	87.68
1/2"	12.5	140.88	10.56	22.88	77.12	77.12
3/8"	9.50	89.96	6.74	29.63	70.3 <b>7</b>	70.37
#4	4.75	198.98	14.92	44.54	55.46	55.46
#10	2.00	163.65	12.27	56.81	43.19	43.19
#20	0.85	106.57	7.99	64.80	35.20	35.20
#40	0.425	143.73	10.77	75.57	24.43	24.43
#60	0.250	90.95	6.82	82.39	17.61	17.61
#140	0.106	62.42	4.68	87.07	12.93	12.93
#200	0.075	12.93	0.97	88.04	11.96	11.96
Pan	•	159.61	11.96	100.00	-	-

Tested By MB

Date

12/6/05 Checked By

MB

Date 12-12-05

page 3 of 4

DCN: CT-83A DATE:1/30/04 REVISION: 6

C-WSOFFICE\Excel\PrintQ\Q364.xis\Sheet1



### **HYDROMETER ANALYSIS**

ASTM D 422-63/AASHTO T88-00 (SOP-S3)

Client Client Reference Project No.

Lab ID

Environmental Strategies FORMER GIC 148992.03

FORMER GIC 148992.0 2005-403-01 2005-403-01-01 Boring No. Depth (ft) Sample No. Soil Color NA NA MW38110 BROWN

Elapsed Time (min)		R Measured	Temp.	Composite Correction	R Corrected	N (%)	K Factor	Diameter ( mm )	N' (%) 
0	NA	NA	NA	NA	NA	NA	NA	NA	NΑ
2	39.0	40.0	22.1	6.76	33.2	73.5	0.01311	0.0289	8.8
5		34.5	22.1	6.76	27.7	61.3	0.01311	0.0191	7.3
15		27.0	22.1	6.76	20.2	44.8	0.01311	0.0117	5.4
30		23.5	22.1	6.76	16.7	37.0	0.01311	0.0084	4.4
62		19.5	22.1	6.76	12.7	28.2	0.01311	0.0060	3.4
250		14.5	21.8	6.87	7.6	16.9	0.01316	0.0031	2.0
1440		12.0	22.0	6.80	5.2	11.5	0.01313	0.0013	1.4

Soil Specimen Data	<del></del>	Other Corrections	
Tare No.	708		
Tare + Dry Material (gm)	148.65	a - Factor	0.99
Weight of Tare (gm)	98.88		
Weight of Deflocculant (gm)	5.0	Percent Finer than # 200	11.96
Weight of Dry Material (gm)	44.77		
_ · · · · · · · · · · · · · · · · · · ·		Specific Gravity	2.7 Assumed

Note: Hydrometer test is performed on - # 200 sieve material.

Tested By

Date

12/6/05 Checked By

This.

Date 12-12-05

page 4 of 4

DCN: CT-83A DATE:1/30/04 REVISION: 6

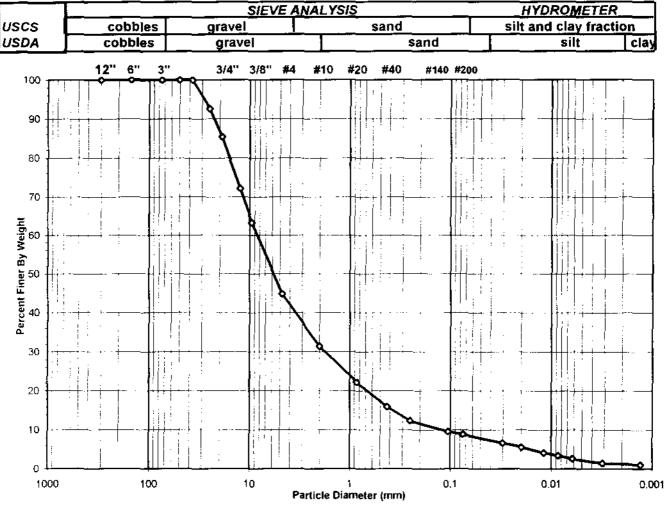
C.\MSOFFICE\ExcenPrintQ\Q364.xis\Sheet1

### SIEVE AND HYDROMETER ANALYSIS ASTM D 422-63/AASHTO T88-00 (SOP-S3)



Client Client Reference Project No.

**Environmental Strategies** FORMER GIC 148992.03


Depth (ft) 2005-403-01 Sample No. NA MW37120

NA

2005-403-01-02 Lab ID

Soil Color **BROWN** 

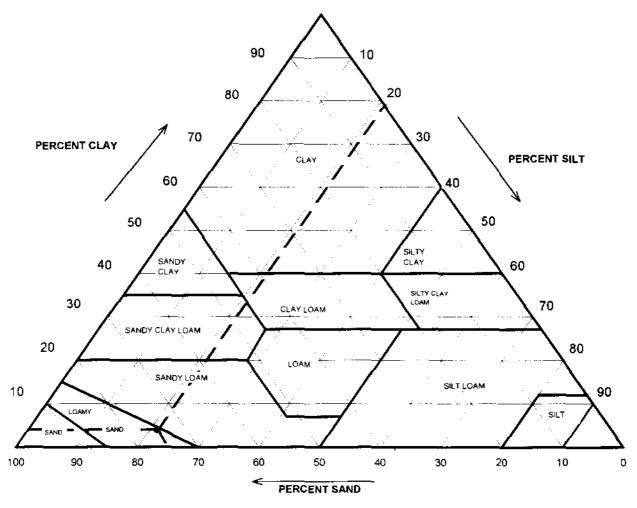
Boring No.



	USCS Summary						
Sieve Sizes (mm)		Percentage					
Greater Than #4	Gravel	55,17					
#4 To #200	Sand	35.93					
Finer Than #200	Silt & Clay	8.90					
USCS Symbol	gp-gm, ASSUMED	<del></del>	D60 =	8.394			
OSCS SYMBOL	gp-gm, A330MED		D30 =	1.750	ÇC	=	3.05
USCS Classification	POORLY GRADED GRAVEL WI	TH SILT AND SAND					
			D10 =	0.120	CU	=	70.21

page 1 of 4

DCN: CT-83A DATE:1/30/04 REVISION: 6


C:\MSOFFICE\Excel\PrintQ\Q365.xls\Sheet1



### **USDA CLASSIFICATION CHART**

Client Client Reference Project No. Lab ID Environmental Strategies FORMER GIC 148992.03 2005-403-01 2005-403-01-02 Boring No.
Depth (ft)
Sample No.
Soil Color

NA NA MW37120 BROWN



Particle Size (mm)	Percent Finer	USDA SUMMAR	Y Actual Percentage	Corrected % of Minus 2.0 mm material for USDA Classificat.
		Gravel	68.56	0.00
2	31.44	Sand	23.53	74.85
0.05	7.91	Silt	6.66	21.18
0.002	1.25	Clay	1.25	3.97
		USDA Classification	LOAMY SAND	

page 2 of 4

DCN: CT-S3A DATE: 1/30/04 REVISION: 6

C WSOFFICE\Excel\PrintQ\Q365.xls]Sheet1



### **WASH SIEVE ANALYSIS**

ASTM D 422-63/AASHTO T88-00 (SOP-S3)

Client Reference

Environmental Strategies FORMER GIC 148992.03

Boring No. Depth (ft) NA NA

Project No.

2005-403-01 2005-403-01-02 Sample No. Soil Color MW37120 BROWN

Moisture Content of Passing 3/4" N	laterial	Water Content of Retained 3/4" Material	
Tare No.	672	Tare No.	NA
Wgt.Tare + Wet Specimen (gm)	1926.90	Wgt,Tare + Wet Specimen (gm)	NA
Wgt.Tare + Dry Specimen (gm)	1776.60	Wgt.Tare + Dry Specimen (gm)	NA
Weight of Tare (gm)	97.42	Weight of Tare (gm)	NA.
Weight of Water (gm)	150.30	Weight of Water (gm)	NA
Weight of Dry Soil (gm)	1679.18	Weight of Dry Soil (gm)	NA
Moisture Content (%)	_9.0	Moisture Content (%)	NA

			₹
Wet Weight -3/4" Sample (gm)	NA	Weight of the Dry Specimen (gm)	1679.18
Dry Weight - 3/4" Sample (gm)	1284.35	Weight of minus #200 material (gm)	149.47
Wet Weight +3/4" Sample (gm)	NA	Weight of plus #200 material (gm)	1529.71
Dry Weight + 3/4" Sample (gm)	245.36		
Total Dry Weight Sample (gm)	NA		ł
			ì

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0,00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	124.54	7.42	7.42	92.58	92.58
3/4"	19.0	120.82	7.20	14.61	85.39	85.39
1/2"	12.5	222.88	13.27	27.89	72.11	72.11
3/8"	9.50	148.04	8.82	36.70	63.30	63,30
#4	4.75	310.14	18.47	55.17	44.83	44.83
#10	2.00	224.86	13.39	68.5 <del>6</del>	31.44	31.44
#20	0.85	154.72	9.21	77.78	22.22	22.22
#40	0.425	104.80	6,24	84.02	15.98	15.98
#60	0.250	60.83	3.62	87.64	12.36	12.36
#140	0.106	46.10	2.75	90.39	9.61	9.61
#200	0.075	11.98	0.71	91.10	8.90	8.90
Pan		149.47	8.90	100.00	-	<del>-</del>

	Tested By	МВ	Date	12/6/05	Checked By	448	Date 12-12-05
page 3 of 4		DCN: CT-S3A DATE	:1/30/04 REVISION: 6				C-MSOFFICE\ExcelPrintQ\Q365.xis)Sheet1



### **HYDROMETER ANALYSIS**

ASTM D 422-63/AASHTO T88-00 (SOP-S3)

Client Client Reference Project No.

Lab ID

Environmental Strategies FORMER GIC 148992.03 2005-403-01

2005-403-01-02

Boring No. Depth (ft) Sample No. Soil Color NA NA MW37120 BROWN

Elapsed Time (min)		R Measured	Temp. (°C)	Composite Correction	R Corrected	N (%) ———	K Factor	Diameter ( mm )	N' (%)
0	NA	NA	NA	NΑ	NA	NA	NA	NA	NA
2	35.0	35.5	22.1	6.76	28.7	74.7	0.01311	0.0300	6.7
5		31.0	22.1	6.76	24.2	63.0	0.01311	0.0196	5.6
15		24.5	22.1	6.76	17.7	46.1	0.01311	0.0119	4.1
30		21.5	22.1	6.76	14.7	38.3	0.01311	0.0086	3.4
60		18.0	22.1	6.76	11.2	29.2	0.01311	0.0062	2.6
250		13.0	21.8	6.87	6.1	15.9	0.01316	0.0031	1.4
1440		11.5	22.0	6.80	4.7	12.2	0.01313	0.0013	1.1

Soil Specimen Data		Other Corrections	
Tare No.	2337		
Tare + Dry Material (gm)	141.78	a - Factor	0.99
Weight of Tare (gm)	98.71		
Weight of Deflocculant (gm)	5.0	Percent Finer than # 200	8.90
Weight of Dry Material (gm)	38.07		
		Specific Gravity	2.7 Assumed

Note: Hydrometer test is performed on - # 200 sieve material.

Tested By

TO

12/6/05

Checked By

<u> KB</u>

Date 12-12-05

page 4 of 4

DCN: CT-83A DATE:1/30/04 REVISION: 6

Date

C.MSOFFICE\ExceNPrintQ\Q365.xls\Sheet



SIEVE AND HYDROMETER ANALYSIS ASTM D 422-63/AASHTO T88-00 (SOP-S3)

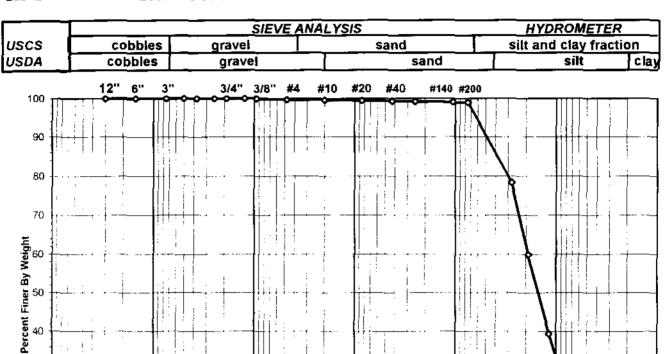
Client Client Reference Environmental Strategies FORMER GIC 148992.03

Boring No. Depth (ft) Sample No. NA NA

Project No. Lab ID

30

20


10

1000

2005-403-01 2005-403-01-03

Soil Color

MW37150 GRAY



	USCS Summary		
Sieve Sizes (mm)	· · · · · · · · · · · · · · · · · · ·	Percentage	<del></del>
Greater Than #4	Gravel	0.33	
#4 To #200	Sand	0.71	
Finer Than #200	Silt & Clay	98.96	
USCS Symbol	ci, Assumed		

Particle Diameter (mm)

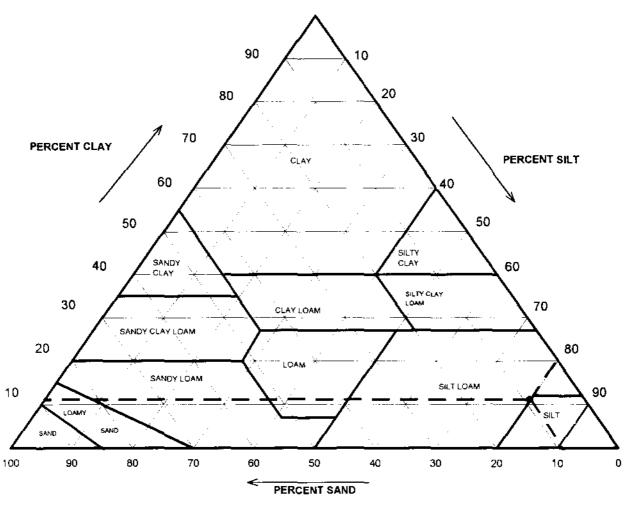
0.1

0.01

0.001

USCS Classification

LEAN CLAY


100

10



Client Client Reference Project No. Lab ID Environmental Strategies FORMER GIC 148992.03 2005-403-01 2005-403-01-03 Boring No.
Depth (ft)
Sample No.
Soil Color

NA NA MW37150 GRAY



Particle Size (mm)	Percent Finer	USDA SUMMARY	Actual Percentage	Corrected % of Minus 2.0 mm material for USDA Classificat.
		Gravel	0.41	0.00
2	99.59	Sand	9.02	9.06
0.05	90.57	Silt	79.52	79.85
0.002	11.05	Clay	11.05	11.09
		USDA Classification S	ILT LOAM	

page 2 of 4

DCN: CT-83A DATE:1/30/04 REVISION: 6

C \MSOFFICE\Excel\PrintQ\Q366.xts\Sheet1



ASTM D 422-63/AASHTO T88-00 (SOP-S3)

Client Client Reference **Environmental Strategies** FORMER GIC 148992.03 Boring No. Depth (ft)

NA NA

Project No. Lab ID

2005-403-01 2005-403-01-03 Sample No.

MW37150

Soil Color **GRAY** 

Moisture Content of Passing 3/4" M	aterial	Water Content of Retained 3/4" Material				
Tare No.	527	Tare No.	NA			
Wgt.Tare + Wet Specimen (gm)	709.80	Wgt.Tare + Wet Specimen (gm)	NA			
Wgt.Tare + Dry Specimen (gm)	602,60	Wgt.Tare + Dry Specimen (gm)	N.A			
Weight of Tare (gm)	96,45	Weight of Tare (gm)	NΑ			
Weight of Water (gm)	107,20	Weight of Water (gm)	NA			
Weight of Dry Soil (gm)	506.15	Weight of Dry Soil (gm)	NA			
Moisture Content (%)	21.2	Moisture Content (%)	NA			
Wet Weight -3/4" Sample (gm)	NA	Weight of the Dry Specimen (gm)	506.15			
Dry Weight - 3/4" Sample (gm)	5.26	Weight of minus #200 material (gm)	500.89			
Wet Weight +3/4" Sample (gm)	NA	Weight of plus #200 material (gm)	5.26			
Dry Weight + 3/4" Sample (gm)	0.00	-				
Total Dry Weight Sample (gm)	NA					

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	0.00	0.00	0.00	100.00	100.00
1/2"	12.5	0.00	0.00	0.00	100.00	100.00
3/8"	9.50	0.00	0.00	0.00	100.00	100.00
#4	4.75	1.67	0.33	0,33	99.67	99.67
#10	2.00	0.41	0.08	0.41	99.59	99.59
#20	0.85	0.72	0.14	0.55	99.45	99.45
#40	0.425	0.87	0.17	0.73	99.27	99.27
#60	0,250	0,54	0.11	0.83	99.17	99.17
#140	0.106	0.73	0.14	0.98	99.02	99.02
#200	0.075	0.32	0.06	1.04	98.96	98.96
Pan	<u> </u>	500.89	98.96	100.00	- <del></del>	-

Tested By

ΜB

Date

12/6/05 Checked By

page 3 of 4

DCN: CT-S3A DATE:1/30/04 REVISION: 6

C:WSOFFICE\Excel\PrintQ\Q366.xis|Sheet1



ASTM D 422-63/AASHTO T88-00 (SOP-S3)

Client Client Reference Project No. Lab ID Environmental Strategies FORMER GIC 148992.03 2005-403-01 2005-403-01-03 Boring No. Depth (ft) Sample No. Soil Color NA NA MW37150 GRAY

Elapsed Time (min)		R Measured	Temp. (°C)	Composite Correction	R Corrected	N (%)	K Factor	Diameter ( mm )	(%)
0	NA	NA	NA	NA	NA	NA	NA	NA	NA
2	44.0	45.0	22.1	6.76	38.2	79.2	0.01311	0.0277	78.3
5		36.0	22.1	6.76	29.2	60.5	0.01311	0.0189	59.9
15		26.0	22.1	6.76	19.2	39.8	0.01311	0.0117	39.4
31		20.0	22.1	6.76	13.2	27.4	0.01311	0.0085	27.1
65		16.5	22.1	6.76	9.7	20.2	0.01311	0.0060	20.0
250		13.0	21.8	6.87	6.1	12.7	0.01316	0.0031	12.6
1440		11.5	22.0	6.80	4.7	9.7	0.01313	0.0013	9.6

Soil Specimen Data	<u> </u>	Other Corrections				
Tare No.	679					
Tare + Dry Material (gm)	151.7	a - Factor	0.99			
Weight of Tare (gm)	98.88					
Weight of Deflocculant (gm)	5.0	Percent Finer than # 200	98.96			
Weight of Dry Material (gm)	47.82					
•		Specific Gravity	2.7 Assumed			

Note: Hydrometer test is performed on - # 200 sieve material.

Tested By

TO

Date 12

12/6/05 Checked By

46B

Date 12-12-05

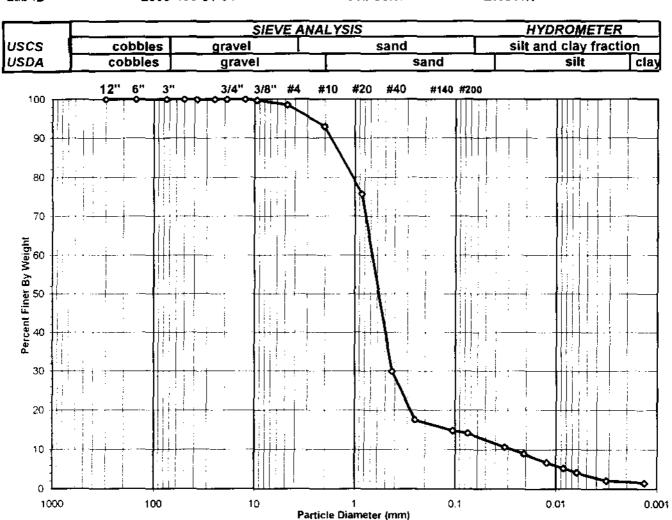
page 4 of 4

DCN: CT-S3A DATE:1/30/04 REVISION: 6

C:\MSOFFICE\ExceNPrintQ\Q366,xis\]Sheet1






Client Reference

Environmental Strategies FORMER GIC 148992.03

Boring No.
Depth (ft)

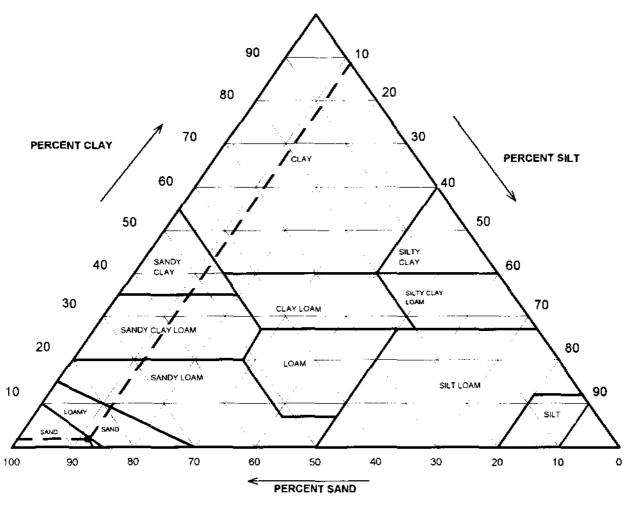
NA NA

Project No. Lab ID 2005-403-01 2005-403-01-04 Sample No. Soil Color MW31050 BROWN



	USCS Summary		<u> </u>
Sieve Sizes (mm)	- -	Percentage	
Greater Than #4	Gravel	1.46	
#4 To #200	Sand	84.29	
Finer Than #200	Silt & Clay	14.24	
USCS Symbol	sm, ASSUMED		
JSCS Classification	SILTY SAND		

page 1 of 4


DCN: CT-S3A DATE:1/30/04 REVISION: 6

C.WSOFFICE\Excel\PrintQ\Q367.xts)Sheet1



Client Client Reference Project No. Lab ID Environmental Strategies FORMER GIC 148992.03 2005-403-01 2005-403-01-04 Boring No.
Depth (ft)
Sample No.
Soil Color

NA NA MW31050 BROWN



Particle Size (mm)	Percent Finer	USDA SUMMARY	Actual Percentage	Corrected % of Minus 2.0 mm material for USDA Classificat.
		Gravel	7.11	0.00
2	92.89	Sand	80.37	86.53
0.05	12.51	Silt	10.73	11.55
0,002	1.78	Clay	1.78	1.92
		USDA Classification SA	ND	

page 2 of 4

DCN: CT-53A DATE:1/30/04 REVISION: 6

C.M/SOFFICE\Excel\PrintQ\(Q367.xis\)Sheet1



ASTM D 422-63/AASHTO T88-00 (SOP-S3)

Client Client Reference **Environmental Strategies** FORMER GIC 148992.03 Boring No. Depth (ft) Sample No. NA NA

Project No. Lab ID

2005-403-01 2005-403-01-04

Soil Color

MW31050 **BROWN** 

Moisture Content of Passing 3/4" Material		Water Content of Retained 3/4" Material	<u></u>
Tare No.	701	Tare No.	NA
Wgt.Tare + Wet Specimen (gm)	706.30	Wgt.Tare + Wet Specimen (gm)	NA
Wgt.Tare + Dry Specimen (gm)	592,52	Wgt.Tare + Dry Specimen (gm)	NA
Weight of Tare (gm)	100.41	Weight of Tare (gm)	NA
Weight of Water (gm)	113,78	Weight of Water (gm)	NA
Weight of Dry Soil (gm)	492.11	Weight of Dry Soil (gm)	NA
Moisture Content (%)	<u>2</u> 3.1	Moisture Content (%)	NA

Wet Weight -3/4" Sample (gm)	NA	Weight of the Dry Specimen (gm)	492.11
Dry Weight - 3/4" Sample (gm)	422,01	Weight of minus #200 material (gm)	70.10
Wet Weight +3/4" Sample (gm)	NA	Weight of plus #200 material (gm)	422.01
Dry Weight + 3/4" Sample (gm)	0.00		
Total Dry Weight Sample (gm)	NA		

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
		(gm)	(%)	_(%)	(%)	(%)
12"	300	0.00	0,00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	7 <b>5</b>	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	0.00	0.00	0.00	100.00	100.00
1/2"	12.5	0.00	0.00	0.00	100.00	100.00
3/8"	9.50	1.30	0.26	0.26	99.74	99.74
#4	4.75	5.89	1.20	1,46	98.54	98.54
#10	2.00	27.82	5.65	7.11	92.89	92.89
#20	0.85	84.47	17.16	24,28	75.72	75.72
#40	0.425	225.34	45.79	70.07	29.93	29.93
#60	0.250	60.56	12.31	82.38	17.62	17.62
#140	0.106	13.63	2.77	85.15	14.85	14.85
#200	0.075	3.00	0,61	85.76	14.24	14.24
Pan	-	70.10	14.24	100.00		-

Tested By

MB

Date

12/6/05 Checked By

page 3 of 4

DCN: CT-S3A DATE:1/30/04 REVISION: 6

CAMSOFFICE\Excel\PrintQ\Q367.xis\Sheet1



ASTM D 422-63/AASHTO T88-00 (SOP-S3)

Client Client Reference Project No. Lab ID Environmental Strategies FORMER GIC 148992.03 2005-403-01 2005-403-01-04 Boring No. Depth (ft) Sample No. Soil Color NA NA MW31050 BROWN

Elapsed Time (min)	_	R Measured	Temp.	Composite Correction	R Corrected	N (%)	K Factor	Diameter ( mm )	N' (%)
0	NA	NA	NA	NA	NA	NA	NA	NA	NA
2	25.0	25.5	22.1	6.76	18.7	74.7	0.01311	0.0323	10.6
5		22.5	22.1	6.76	15.7	62.7	0.01311	0.0208	8.9
15		18.5	22.1	6.76	11.7	46.8	0.01311	0.0123	6.7
33		16.0	22.1	6.76	9.2	36.8	0.01311	0.0084	5.2
62		14.0	22.1	6.76	7.2	28.9	0.01311	0.0062	4.1
250		10.5	21.8	6.87	3.6	14.5	0.01316	0.0032	2.1
1440		9.5	22.0	6.80	2.7	10.8	0.01313	0.0013	1.5

Soil Specimen Data	<u></u>	Other Corrections				
Tare No.	693					
Tare + Dry Material (gm)	125.46	a - Factor	0.99			
Weight of Tare (gm)	95.63					
Weight of Deflocculant (gm)	5.0	Percent Finer than # 200	14.24			
Weight of Dry Material (gm)	24.83					
		Specific Gravity	2.7 Assumed			

Note: Hydrometer test is performed on - # 200 sieve material.

Tested By

TO

Date

12/6/05 Checked By

KB

Date 12-12-05

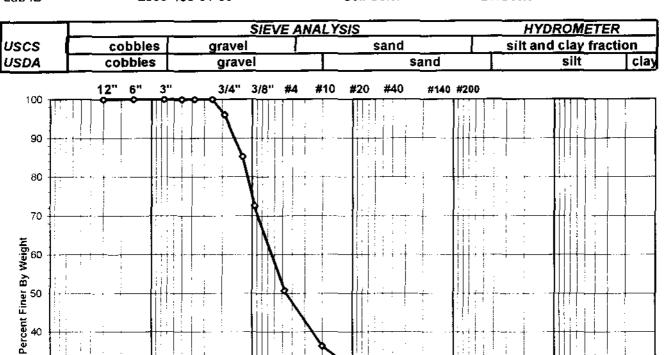
page 4 of 4

DCN: CT-S3A DATE:1/30/04 REVISION: 6

C \MSOFFICE\ExcelPrintQ\(Q367 xis\)Sheel1

## SIEVE AND HYDROMETER ANALYSIS ASTM D 422-63/AASHTO T88-00 (SOP-S3)




Client Reference

Environmental Strategies FORMER GIC 148992.03

Boring No. Depth (ft) Sample No. NA NA

Project No. Lab ID 2005-403-01 2005-403-01-05 Sample No. MW32110 Soil Color BROWN

0.1



	USCS Summary		<u> </u>
Sieve Sizes (mm)		Percentage	
Greater Than #4	Gravel	49.30	
#4 To #200	Sand	34.77	
Finer Than #200	Silt & Clay	15.93	

Particle Diameter (mm)

USCS Symbol

30

20

10

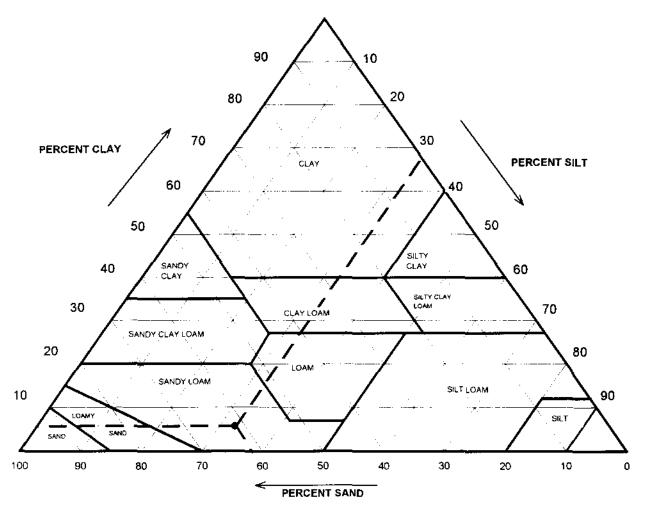
1000

gm, ASSUMED

100

**USCS Classification** 

SILTY GRAVEL WITH SAND


10

0.01

0.001



Client Client Reference Project No. Lab ID Environmental Strategies FORMER GIC 148992.03 2005-403-01 2005-403-01-05 Boring No. NA
Depth (ft) NA
Sample No. MW32110
Soil Color BROWN



Particle Size (mm)	Percent Finer	USDA SUMMAR	Y Actual Percentage	Corrected % of Minus 2.0 mm material for USDA Classificat.
		Gravel	63.72	0.00
2	36.28	Sand	22.37	61.67
0.05	13.91	Silt	11.82	32.57
0.002	2.09	Clay	2.09	5.76
		USDA Classification	SANDY LOAM	

page 2 of 4

DCN: CT-S3A DATE:1/30/04 REVISION: 6

C \MSOFFICE\Excel\PrintQ\Q368.xls\]Sheet1



ASTM D 422-63/AASHTO T88-00 (SOP-S3)

Client Reference Project No.

Lab ID

Environmental Strategies FORMER GIC 148992.03

2005-403-01 2005-403-01-05 Boring No.
Depth (ft)

NA NA

Sample No. MV Soil Color BR

MW32110 BROWN

Moisture Content of Passing 3/4" Material		Water Content of Retained 3/4" Material		
Tare No.	683	Tare No.	NA	
Wgt.Tare + Wet Specimen (gm)	963.90	Wgt.Tare + Wet Specimen (gm)	NA	
Wgt.Tare + Dry Specimen (gm)	875.00	Wgt.Tare + Dry Specimen (gm)	NA	
Weight of Tare (gm)	100.39	Weight of Tare (gm)	NA	
Weight of Water (gm)	88.90	Weight of Water (gm)	NA	
Weight of Dry Soil (gm) 774.61		Weight of Dry Soil (gm)	NA	
Moisture Content (%)	11.5	Moisture Content (%)	NA	

Wet Weight -3/4" Sample (gm)	NA	Weight of the Dry Specimen (gm)	774.61
Dry Weight - 3/4" Sample (gm)	619.72	Weight of minus #200 material (gm)	123.39
Wet Weight +3/4" Sample (gm)	NA	Weight of plus #200 material (gm)	651.22
Dry Weight + 3/4" Sample (gm)	31.50		
Total Dry Weight Sample (gm)	NA		

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
	. ,	(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	31.50	4.07	4.07	95.93	95.93
1/2"	12.5	82.76	10.68	14.75	85.25	85.25
3/8"	9.50	98.02	12.65	27.40	72.60	72.60
#4	4.75	169.62	21.90	49.30	50.70	50.70
#10	2.00	111.68	14.42	63.72	36.28	36.28
#20	0.85	57.27	7.39	71.11	28.89	28.89
#40	0.425	53.10	6.86	77.97	22.03	22.03
#60	0.250	24.39	3.15	81.12	18.88	18.88
#140	0.106	18.25	2.36	83.47	16.53	16.53
#200	0.075	4.63	0.60	84.07	15.93	15.93
Pan	•	123.39	15.93	100.00	<u>-</u>	-

Tested By MB Date 12/6/05 Checked By

MB

Date 12-12-0

page 3 of 4

DCN: CT-S3A DATE:1/30/04 REVISION: 6

C WISOFFICE\Excel\PrintQ\Q368.xls\Sheet1



ASTM D 422-63/AASHTO T88-00 (SOP-S3)

Client Client Reference

Project No. Lab ID

**Environmental Strategies** FORMER GIC 148992.03

2005-403-01

2005-403-01-05

Boring No. Depth (ft)

Sample No. Soil Color

NA NA

MW32110 BROWN

Elapsed Time (min)		R Measured	Temp.	Composite Correction	R Corrected	N (%)	K Factor	Diameter ( mm )	N' (%)
0	NA	NA	NA	NA	NA	NA	NA	NA	NA
2	36.0	36.0	22.1	6.76	29.2	71.2	0.01311	0.0299	11.3
5		30.5	22.1	6.76	23.7	57.8	0.01311	0.0197	9.2
17		23.5	22.1	6.76	16.7	40.8	0.01311	0.0112	6.5
30		20.5	22.1	6.76	13.7	33.4	0.01311	0.0086	5.3
60		18.0	22.1	6.76	11.2	27.4	0.01311	0.0062	4.4
250		13.0	21.8	6.87	6.1	14.9	0.01316	0.0031	2.4
1440		11.5	22.0	6.80	4.7	11.4	0.01313	0.0013	1.8

Soil Specimen Data		Other Corrections	,, <u>, , , , , , , , , , , , , , , , , ,</u>
Tare No.	968		
Tare + Dry Material (gm)	149.11	a - Factor	0.99
Weight of Tare (gm)	103.45		
Weight of Deflocculant (gm)	5.0	Percent Finer than # 200	15.93
Weight of Dry Material (gm)	40.66		
		Specific Gravity	2.7 Assumed

Note: Hydrometer test is performed on - # 200 sieve material.

Tested By

TO

12/6/05

Checked By

page 4 of 4

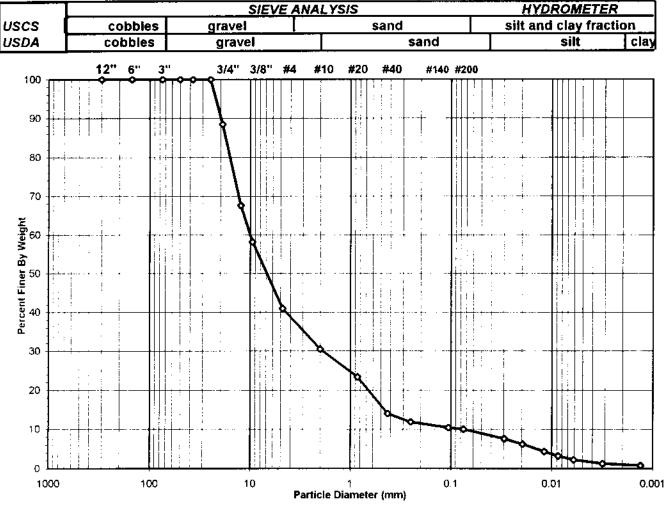
DCN: CT-S3A DATE:1/30/04 REVISION: 6

Date

## SIEVE AND HYDROMETER ANALYSIS ASTM D 422-63/AASHTO T88-00 (SOP-S3)



Client Client Reference

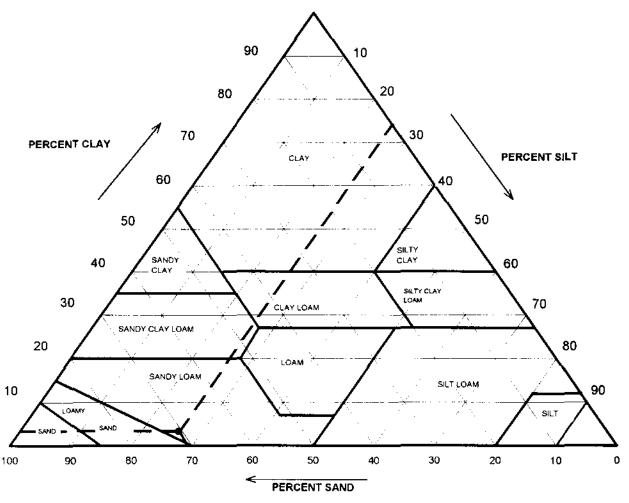

**Environmental Strategies** FORMER GIC 148992.03 2005-403-01

Boring No. Depth (ft) Sample No. NA NA MW34105

Project No. Lab ID

2005-403-01-06

Soil Color BROWN




	USCS Summary						
Sieve Sizes (mm)		Percentage					
Greater Than #4	Gravel	58.97					
#4 To #200	Sand	31.00					
Finer Than #200	Silt & Clay	10.03					
USCS Symbol	gp-gm, ASSUMED		D60 =	10.039			
USCS Classification	POORLY GRADED GRAVEL WITH	LI CU T AND CAND	D30 =	1.884	СС	=	4.78
COCO CIASSIIICALIOII	FOORLT GRADED GRAVEL WITH	T SIL I AND SAND	D10 =	0.074	CU	=	135.58



Client Client Reference Project No. Lab ID Environmental Strategies FORMER GIC 148992.03 2005-403-01 2005-403-01-06 Boring No.
Depth (ft)
Sample No.
Soil Color

NA NA MW34105 BROWN



Particle Size (mm)	Percent Finer	USDA SUMMARY	Actual Percentage	Corrected % of Minus 2.0 mm material for USDA Classificat.
		Gravel	69.51	0.00
2	30.49	Sand	21.53	70.61
0.05	8.96	Silt	7.95	26.07
0.002	1.01	Clay	1.01	3.33
		USDA Classification SA	NDY LOAM	

page 2 of 4

DCN: CT-83A DATE:1/30/04 REVISION: 6

C-WSOFFICE\Excel\PrintQ\Q369.xls)Sheet1



ASTM D 422-63/AASHTO T88-00 (SOP-S3)

Client Reference

Environmental Strategies FORMER GIC 148992.03

Boring No. Depth (ft) NA NA

Project No. Lab ID 2005-403-01 2005-403-01-06 Sample No. Soil Color

MW34105 BROWN

Moisture Content of Passing 3/4" Material		Water Content of Retained 3/4" Material		
Tare No.	951	Tare No.	NA	
Wgt.Tare + Wet Specimen (gm)	893.10	Wgt.Tare + Wet Specimen (gm)	NA	
Wgt.Tare + Dry Specimen (gm)	827.70	Wgt.Tare + Dry Specimen (gm)	NA	
Weight of Tare (gm)	1 <b>02</b> .95	Weight of Tare (gm)	NA	
Weight of Water (gm)	65.40	Weight of Water (gm)	NA	
Weight of Dry Soil (gm) 724.75		Weight of Dry Soil (gm)	NA	
Moisture Content (%)	9.0	Moisture Content (%)	NA	

Wet Weight -3/4" Sample (gm)	NA	Weight of the Dry Specimen (gm)	724.75
Dry Weight - 3/4" Sample (gm)	568.32	Weight of minus #200 material (gm)	72.72
Wet Weight +3/4" Sample (gm)	NA	Weight of plus #200 material (gm)	652.03
Dry Weight + 3/4" Sample (gm)	83.71		
Total Dry Weight Sample (gm)	NA		

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	83.71	11.55	11.55	88.45	88.45
1/2"	12.5	151.16	20.86	32.41	67.59	67.59
3/8"	9.50	68.88	9.50	41.91	58.09	58.09
#4	4.75	123.63	17.06	58.97	41.03	41.03
#10	2.00	76.36	10.54	69.51	30.49	30.49
#20	0.85	51.38	7.09	76,59	23.41	23.41
#40	0.425	67.62	9.33	85.92	14.08	14.08
#60	0.250	15.77	2.18	88.10	11.90	11.90
#140	0.106	10.52	1.45	89.55	10.45	10.45
#200	0.075	3.00	0.41	89.97	10.03	10.03
Pan	-	72.72	10.03	100.00	-	-

Tested By

MB

Date

12/6/05 Ch

Checked By

14S

Date 12-12-05

page 3 of 4

DCN: CT-S3A DATE:1/30/04 REVISION: 6

C:\MSOFFICE\Excel\PrintQ\Q369.xls\Sheet1



ASTM D 422-63/AASHTO T88-00 (SOP-S3)

Client Client Reference Environmental Strategies FORMER GIC 148992.03

Boring No. Depth (ft) Sample No. NA NA MW3410

Project No. Lab ID 2005-403-01 2005-403-01-06

Sample No.
Soil Color

MW34105 BROWN

Elapsed Time (min)		R Measured	Temp. (°C)	Composite Correction	R Corrected	N (%)	K Factor	Diameter ( mm )	N' (%)
0	NA	NA	NA	NA	NA	NA	NA	NA	NA
2	37.5	37.5	22.1	6.76	30.7	75.5	0.01311	0.0295	7.6
5		32.0	22.1	6.76	25.2	62.0	0.01311	0.0195	6.2
15		24.5	22.1	6.76	17.7	43.6	0.01311	0.0119	4.4
30		20.0	22.1	6.76	13.2	32.5	0.01311	0.0086	3.3
63		16.0	22.1	6.76	9.2	22.7	0.01311	0.0061	2.3
250		12.0	21.8	6.87	5.1	12.6	0.01316	0.0032	1.3
1440		10.0	22.0	6.80	3.2	7.9	0.01313	0.0013	8.0

Soil Specimen Data		Other Corrections		
Tare No.	523			
Tare + Dry Material (gm)	142.29	a - Factor	0.99	
Weight of Tare (gm)	96.98			
Weight of Deflocculant (gm)	5.0	Percent Finer than # 200	10.03	
Weight of Dry Material (gm)	40.31			
		Specific Gravity	2.7 Assumed	

Note: Hydrometer test is performed on - # 200 sieve material.

Tested By

TO

12/6/05

Checked By

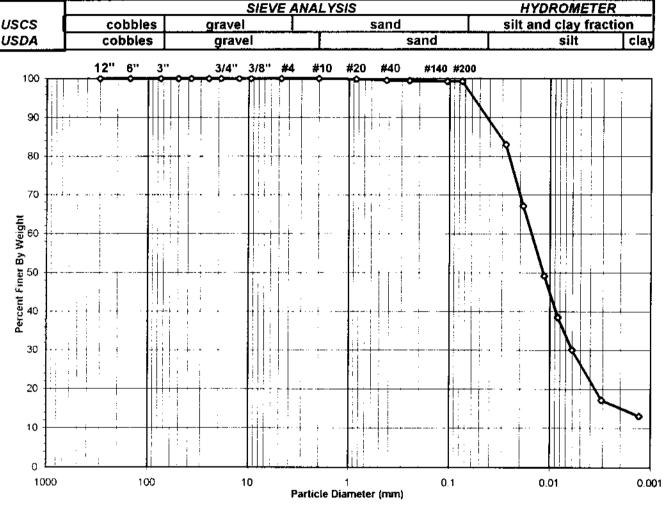
YYB

Date 12-12-05

Date

# SIEVE AND HYDROMETER ANALYSIS ASTM D 422-63/AASHTO T88-00 (SOP-S3)




Client Client Reference Environmental Strategies
EORMER GIC 148992 03

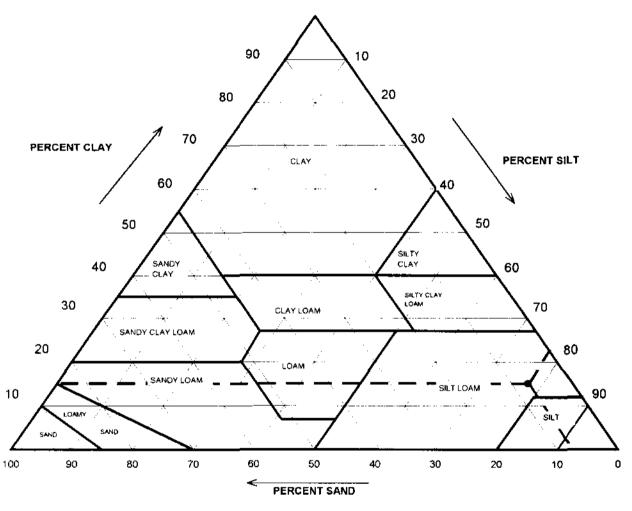
FORMER GIC 148992.03 2005-403-01

Project No. 2005-403-01 Lab ID 2005-403-01-07 Boring No. NA
Depth (ft) NA

Sample No. MW34150

Soil Color GRAYISH BROWN




	USCS Summary		
Sieve Sizes (mm)		Percentage	
Greater Than #4	Gravel	0.00	
#4 To #200	Sand	0.72	
Finer Than #200	Silt & Clay	99.28	
	·	· · · · · · · · · · · · · · · · · · ·	
USCS Symbol	ci, ASSUMED		
USCS Classification	LEAN CLAY		



Client Client Reference Project No. Lab ID Environmental Strategies FORMER GIC 148992.03 2005-403-01 2005-403-01-07 Boring No. Depth (ft) Sample No.

NA NA MW34150

Soil Color GRAYISH BROWN



Particle Size (mm)	Percent Finer	ÜSDA SUMMARY	Actual Percentage	Corrected % of Minus 2.0 mm material for USDA Classificat.
		Gravel	0.01	0.00
2	99.99	Sand	7.30	7.30
0.05	92.69	Silt	77.56	77.57
0.002	15.13	Clay	15.13	15.13
		USDA Classification SIL	TLOAM	

page 2 of 4

DCN: CT-S3A DATE:1/30/04 REVISION: 6

C:\MSOFFICE\ExceNPrintQ\(Q370.xls\)Sheet1



ASTM D 422-63/AASHTO T88-00 (SOP-S3)

Client Client Reference Environmental Strategies FORMER GIC 148992.03

Boring No. Depth (ft) NA NA

Project No.

2005-403-01

Sample No.

MW34150

Lab ID

2005-403-01-07

Soil Color

**GRAYISH BROWN** 

Moisture Content of Passing 3/4" M	aterial	Water Content of Retained 3/4" Material	
Tare No.	703	Tare No.	NA
Wgt.Tare + Wet Specimen (gm)	660.70	Wgt.Tare + Wet Specimen (gm)	NA
Wgt.Tare + Dry Specimen (gm)	553.00	Wgt.Tare + Dry Specimen (gm)	NA
Weight of Tare (gm)	101.00	Weight of Tare (gm)	NA
Weight of Water (gm)	107.70	Weight of Water (gm)	NA
Weight of Dry Soil (gm)	452.00	Weight of Dry Soil (gm)	NA
Moisture Content (%)	23.8	Moisture Content (%)	NA
Wet Weight -3/4" Sample (gm)	NA	Weight of the Dry Specimen (gm)	452.00
Dry Weight - 3/4" Sample (gm)	3.27	Weight of minus #200 material (gm)	448.73
Wet Weight +3/4" Sample (gm)	NA	Weight of plus #200 material (gm)	3.27
Dry Weight + 3/4" Sample (gm)	0.00		
Total Dry Weight Sample (gm)	NA		

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	0.00	0.00	0.00	100.00	100.00
1/2"	12.5	0.00	0.00	0.00	100.00	100.00
3/8"	9.50	0.00	0.00	0.00	100.00	100.00
#4	4.75	0.00	0.00	0.00	100.00	100.00
#10	2.00	0.05	0.01	0.01	99.99	99.99
#20	0.85	0.63	0.14	0.15	99.85	99.85
#40	0.425	1.41	0.31	0.46	99.54	99.54
#60	0.250	0.58	0.13	0.59	99.41	99.41
#140	0.106	0.47	0.10	0.69	99.31	99.31
#200	0.075	0.13	0.03	0.72	99.28	99.28
Pan	-	448.73	99.28	100.00	_	-

Tested B
----------

MB

Date

12/6/05 Checked By

K4

Date 12-12-05



ASTM D 422-63/AASHTO T88-00 (SOP-S3)

Client Reference

Environmental Strategies FORMER GIC 148992.03

Boring No. NA
Depth (ft) NA

Client Reference Project No.

2005-403-01

Sample No. MW34150

Lab ID

2005-403-01-07

Soil Color

**GRAYISH BROWN** 

Elapsed Time (min)		R Measured	Temp.	Composite Correction	R Corrected	N (%)	K Factor	Diameter ( mm )	N' ( % )
<b>\'''''''</b>				<u>.</u>	<u> </u>	•••			
0	NA	NA	NA	NA	NA	NA	NA	NA	NA
2	45.0	46.0	22.1	6.76	39.2	83.5	0.01311	0.0274	82.9
5		38.5	22.1	6.76	31.7	67.6	0.01311	0.0185	67.1
15		30.0	22.1	6.76	23.2	49.5	0.01311	0.0114	49.1
30		25.0	22.1	6.76	18.2	38.8	0.01311	0.0084	38.5
60		21.0	22.1	6.76	14.2	30.3	0.01311	0.0061	30.1
250		15.0	21.8	6.87	8.1	17.3	0.01316	0.0031	17.2
1440		13.0	22.0	6.80	6.2	13.2	0.01313	0.0013	13.1

Soil Specimen Data		Other Corrections		
Tare No.	705			
Tare + Dry Material (gm)	154.12	a - Factor	0.99	
Weight of Tare (gm)	102.62			
Weight of Deflocculant (gm)	5.0	Percent Finer than # 200	99.28	
Weight of Dry Material (gm)	46.5			
		Specific Gravity	2.7 Assumed	

Note: Hydrometer test is performed on - # 200 sieve material.

Tested By

TO

12/6/05

Checked By

KY

Date 12-12-05

page 4 of 4

DCN: CT-83A DATE:1/30/04 REVISION: 6

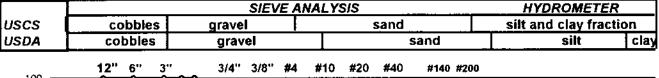
Date

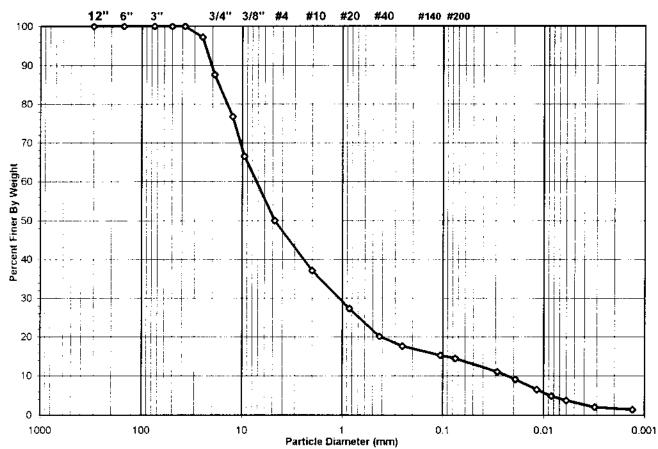
C:WSOFFICE\Excel\PrintQ\Q370.xlsjSheet1

# SIEVE AND HYDROMETER ANALYSIS ASTM D 422-63/AASHTO T88-00 (SOP-S3)



Client Reference


Environmental Strategies FORMER GIC 148992.03


Project No. 2005-403-01 Lab ID 2005-403-01-08 Boring No. Depth (ft) Sample No.

Soil Color

NA NA

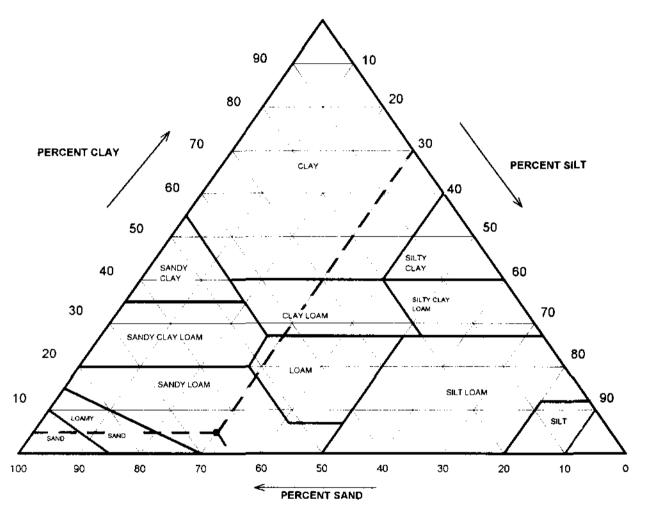
MW35090 BROWN





USCS Summary		
	Percentage	
Gravel	50.08	
Sand	35.51	
Silt & Clay	14.41	
	Gravel Sand	Percentage  Gravel 50.08 Sand 35.51

USCS Symbol


gm, ASSUMED

**USCS Classification** 

SILTY GRAVEL WITH SAND



Client Client Reference Project No. Lab ID Environmental Strategies FORMER GIC 148992.03 2005-403-01 2005-403-01-08 Boring No. Depth (ft) Sample No. Soil Color NA NA MW35090 BROWN



Particle Size (mm)	Percent Finer	USDA SUMMAR	Y Actual Percentage	Corrected % of Minus 2.0 mm material for USDA Classificat.
		Gravel	62.85	0.00
2	37.15	Sand	24.17	65.05
0.05	12.98	Silt	11.18	30.11
0.002	1.80	Clay	1.80	4.84
		USDA Classification	SANDY LOAM	

page 2 of 4

DCN: CT-S3A DATE:1/30/04 REVISION: 6

C WSOFFICE\Excel\PrintQ\Q378 xls]Sheet1



ASTM D 422-63/AASHTO T88-00 (SOP-S3)

Client Client Reference Environmental Strategies FORMER GIC 148992.03

Boring No. Depth (ft) NA NA

Project No. Lab ID 2005-403-01 2005-403-01-08 Sample No. Soil Color MW35090 BROWN

Moisture Content of Passing 3/4" M	laterial	Water Content of Retained 3/4" Material		
Tare No.	2330	Tare No.	NA	
Wgt.Tare + Wet Specimen (gm)	1156.00	Wgt.Tare + Wet Specimen (gm)	NA	
Wgt.Tare + Dry Specimen (gm)	1059.10	Wgt.Tare + Dry Specimen (gm)	NA	
Weight of Tare (gm)	101.15	Weight of Tare (gm)	NA	
Weight of Water (gm)	96.90	Weight of Water (gm)	NA	
Weight of Dry Soil (gm)	957.95	Weight of Dry Soil (gm)	NA	
Moisture Content (%)	10.1	Moisture Content (%)	NA	

Wet Weight -3/4" Sample (gm)	NA	Weight of the Dry Specimen (gm)	957.95
Dry Weight - 3/4" Sample (gm)	701.61	Weight of minus #200 material (gm)	138.04
Wet Weight +3/4" Sample (gm)	NA	Weight of plus #200 material (gm)	819.91
Dry Weight + 3/4" Sample (gm)	118.30	, , ,	
Total Dry Weight Sample (gm)	NA		

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
	, ,	(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	26.93	2.81	2.81	97.19	97.19
3/4"	19.0	91.37	9.54	12.35	87.65	87.65
1/2"	12.5	104.35	10.89	23.24	76.76	76.76
3/8"	9.50	98.47	10.28	33.52	66.48	66.48
#4	4.75	158.61	16.56	50.08	49.92	49.92
#10	2.00	122.36	12.77	62.85	37.15	37.15
#20	0.85	93.50	9.76	72.61	27.39	27.39
#40	0.425	69.85	7.29	79.90	20.10	20.10
#60	0.250	23.69	2.47	82.38	17.62	17.62
#140	0.106	22.78	2.38	84.75	15,25	15.25
#200	0.075	8.00	0.84	85.59	14.41	14.41
Pan	-	138.04	14.41	100.00	-	-

Tested By MB Date 12/9/05 Checked By Com Date 12 / 12
page 3 of 4 DCN: CT-S3A DATE:1/30/04 REVISION: 6 C.MSOFFICE\(\text{ExceNPrintQVQ3}\)



ASTM D 422-63/AASHTO T88-00 (SOP-S3)

Client Client Reference Project No.

Lab ID

Environmental Strategies FORMER GIC 148992.03

2005-403-01 2005-403-01-08 Boring No. Depth (ft) Sample No. NA NA

Sample No. MW35090 Soil Color BROWN

Elapsed Time (min)		R Measured	Temp. (°C)	Composite Correction	R Corrected	N (%)	K Factor	Diameter ( mm )	N' (%)
0	NA	NA	NA	NA	NA	NA	NA	NA	NA
2	40.0	41.0	22.0	6.80	34.2	76.6	0.01313	0.0287	11.0
5		35.0	22.0	6.80	28.2	63.1	0.01313	0.0191	9.1
15		27.0	22.0	6.80	20.2	45.2	0.01313	0.0117	6.5
31		22.0	22.0	6.80	15.2	34.0	0.01313	0.0084	4.9
64		18.5	22.0	6.80	11.7	26.2	0.01313	0.0060	3.8
250		13.5	21.7	6.91	6.6	14.8	0.01317	0.0031	2.1
1440		11.5	21.8	6.87	4.6	10.4	0.01316	0.0013	1.5

Soil Specimen Data		Other Corrections				
Tare No.	2342					
Tare + Dry Material (gm)	145.79	a - Factor	0.99			
Weight of Tare (gm)	96.56					
Weight of Deflocculant (gm)	5.0	Percent Finer than # 200	14.41			
Weight of Dry Material (gm)	44.23					
-		Specific Gravity	2.7 Assumed			

Note: Hydrometer test is performed on - # 200 sieve material.

Tested By

TO

Date

12/6/05

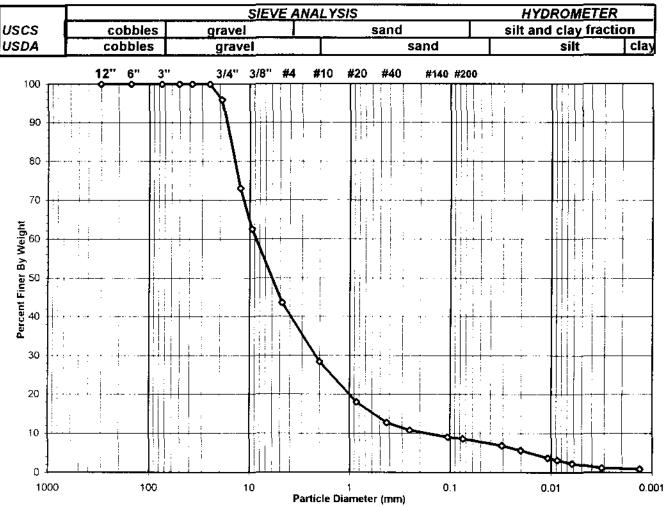
Checked By

Date /2-12-05

page 4 of 4

DCN: CT-83A DATE:1/36/04 REVISION: 6

C.\MSOFFICE\Exce\PrintQ\Q378.xls\]Sheel1


# SIEVE AND HYDROMETER ANALYSIS ASTM D 422-63/AASHTO T88-00 (SOP-S3)



Client Client Reference Environmental Strategies FORMER GIC 148992.03

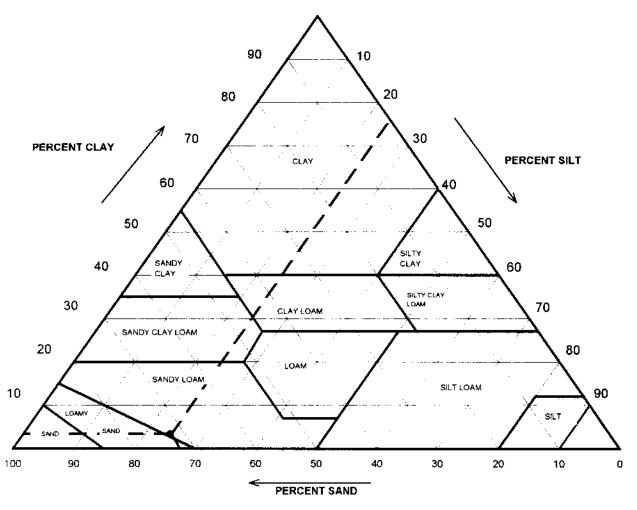
Boring No. Depth (ft) Sample No. NA NA

Project No. Lab ID 2005-403-01 2005-403-01-09 Sample No. MW36088 Soil Color BROWN



	USCS Summary						
Sieve Sizes (mm)		Percentage					
Greater Than #4	Gravel	56.43					
#4 To #200	Sand	34.91					
Finer Than #200	Silt & Clay	8.66					
			D60 =	8.654			<u> </u>
USCS Symbol	gp-gm, ASSUMED		D20 -	0.404	-00	_	2.00
USCS Classification	POORLY GRADED GRAVEL WI	TH SILT AND SAND	D30 =	2.194	CC	=	3.32
			D10 =	0.167	CU	=	51.67

page 1 of 4


DCN: CT-S3A DATE:1/30/04 REVISION: 6

C:\MSOFFICE\Excel\PrintQ\(Q379.xls\)Sheet1



Client Client Reference Project No. Lab ID Environmental Strategies FORMER GIC 148992.03 2005-403-01 2005-403-01-09 Boring No.
Depth (ft)
Sample No.
Soil Color

NA NA MW36088 BROWN



Particle Size (mm)	Percent Finer	USDA SUMMARY	Actual Percentage	Corrected % of Minus 2.0 mm material for USDA Classificat.
		Gravel	71.63	0.00
2	28.37	Sand	20.54	72.39
0.05	7.83	Silt	6.86	24.18
0.002	0.97	Clay	0.97	3.43
		USDA Classification S.	ANDY LOAM	

page 2 of 4

DCN: CT-83A DATE:1/30/04 REVISION: 6

C WSOFFICE\Excel\PrintQ\Q379 xls]\\$heet1



ASTM D 422-63/AASHTO T88-00 (SOP-S3)

Client Client Reference **Environmental Strategies** 

NA

FORMER GIC 148992.03 2005-403-01

Boring No. Depth (ft) NA

Project No. Lab ID

2005-403-01-09

Sample No.

MW36088

Soil Color

**BROWN** 

Moisture Content of Passing 3/4" M	aterial	Water Content of Retained 3/4" Material	
Tare No.	965	Tare No.	NA
Wgt.Tare + Wet Specimen (gm)	817.80	Wgt.Tare + Wet Specimen (gm)	N/A
Wgt.Tare + Dry Specimen (gm)	740.30	Wgt.Tare + Dry Specimen (gm)	N/A
Weight of Tare (gm)	102.75	Weight of Tare (gm)	NA
Weight of Water (gm)	77.50	Weight of Water (gm)	NA
Weight of Dry Soil (gm)	637.55	Weight of Dry Soil (gm)	NA
Moisture Content (%)	12.2	Moisture Content (%)	NA
Wet Weight -3/4" Sample (gm)	NA	Weight of the Dry Specimen (gm)	637.55
Dry Weight - 3/4" Sample (gm)	556.58	Weight of minus #200 material (gm)	55.19
Wet Weight +3/4" Sample (gm)	NA	Weight of plus #200 material (gm)	582.36
Dry Weight + 3/4" Sample (gm)	25.78	<u>-</u>	
Total Dry Weight Sample (gm)	NA		

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	25.78	4.04	4.04	95.96	95.96
1/2"	12.5	146.23	22.94	26.98	73.02	73.02
3/8"	9.50	66.73	10.47	37.45	62.55	62.55
#4	4.75	121.04	18. <del>9</del> 9	56.43	43.57	43.57
#10	2.00	96.88	15.20	71.63	28.37	28.37
#20	0.85	66.00	10.35	81.98	18.02	18.02
#40	0.425	33.40	5.24	87.22	12.78	12.78
#60	0.250	12.47	1.96	89.17	10.83	10.83
#140	0.106	11,28	1.77	90.94	9.06	9.06
#200	0.075	2.55	0.40	91.34	8.66	8.66
Pan	-	55.19	8.66	100.00	-	-

Tested By 12/9/05 MB Date Checked By

page 3 of 4

DCN: CT-83A DATE:1/30/04 REVISION: 6

C:\MSOFFICE\Exce\PrintQ\Q379.xls\Sheet1



ASTM D 422-63/AASHTO T88-00 (SOP-S3)

Client Client Reference Project No.

Lab ID

Environmental Strategies FORMER GIC 148992.03

2005-403-01 2005-403-01-09 Boring No. Depth (ft) Sample No. Soil Color NA NA MW36088 BROWN

Elapsed Time (min)		R Measured	Temp. (°C)	Composite Correction	R Corrected	N (%)	K Factor	Diameter ( mm )	N' (%)
0	NA	NA	NA	NA	NA	NA	NA	NA	NA
2	32.0	32.0	22.0	6.80	25.2	79.2	0.01313	0.0309	6.9
5		27.5	22.0	6.80	20.7	65.1	0.01313	0.0202	5.6
19		20.5	22.0	6.80	13.7	43.1	0.01313	0.0108	3.7
30		18.5	22.0	6.80	11.7	36.8	0.01313	0.0087	3.2
61		15.0	22.0	6.80	8.2	25.8	0.01313	0.0063	2.2
250		11.0	21.7	6.91	4.1	12.9	0.01317	0.0032	1.1
1440		10.0	21.8	6.87	3.1	9.8	0.01316	0.0013	0.9

Soil Specimen Data		Other Corrections	
Tare No.	2331		
Tare + Dry Material (gm)	135.68	a - Factor	0.99
Weight of Tare (gm)	99.18		
Weight of Deflocculant (gm)	5.0	Percent Finer than # 200	8.66
Weight of Dry Material (gm)	31.5		
_ ,		Specific Gravity	2.7 Assumed

Note: Hydrometer test is performed on - # 200 sieve material.

Tested By

TO

Date

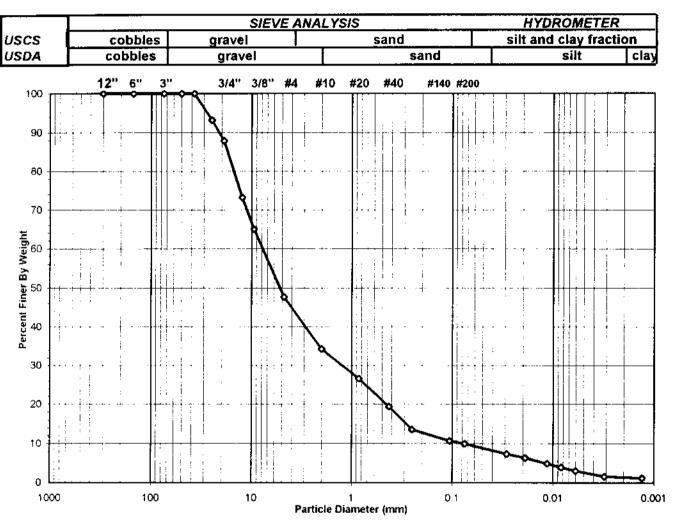
12/6/05 Checked By

Date 12-12-05

page 4 of 4

DCN: CT-S3A DATE:1/30/04 REVISION: 6

C:\MSOFFICE\Excel\PrintQ\Q379.xls\Sheet1

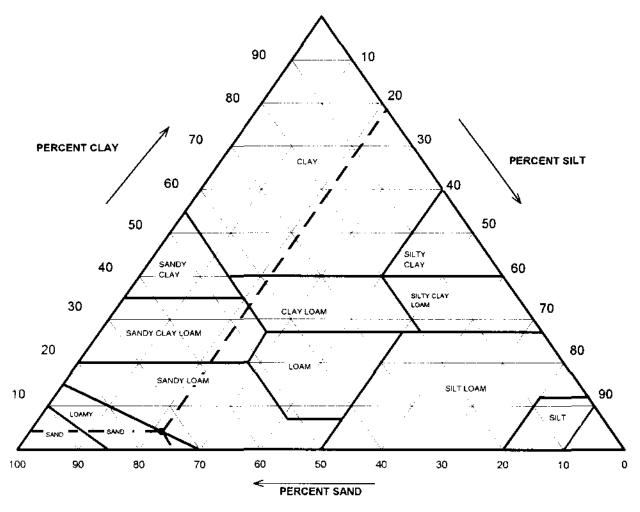



## SIEVE AND HYDROMETER ANALYSIS ASTM D 422-63/AASHTO T88-00 (SOP-S3)

Client Client Reference Environmental Strategies FORMER GIC 148992.03

Boring No. Depth (ft) Sample No. NA NA

Project No. Lab ID 2005-403-01 2005-403-01-10 Sample No. MW36125 Soil Color BROWN




	USCS Summary						
Sieve Sizes (mm)	•	Percentage					
Greater Than #4	Gravel	52.39					
#4 To #200	Sand	37.67					
Finer Than #200	Silt & Clay	9.94					
			D60 =	7.790			
USCS Symbol	gp-gm, ASSUMED		Daa	4 005			
USCS Classification	WELL-GRADED GRAVEL WITH	SILT AND SAND	D30 =	1.235	cc	=	2.54
			D10 =	0.077	CU	=	100.89



Client Client Reference Project No. Lab ID Environmental Strategies FORMER GIC 148992.03 2005-403-01 2005-403-01-10 Boring No.
Depth (ft)
Sample No.
Soil Color

NA NA MW36125 BROWN



Particle Size (mm)	Percent Finer	USDA SUMMAR	Y Actual Percentage	Corrected % of Minus 2.0 mm material for USDA Classificat.
		Gravel	65.69	0.00
2	34.31	Sand	25,47	74.24
0.05	8.84	Silt	7.40	21.57
0.002	1.43	Clay	1.43	4.18
		USDA Classification	LOAMY SAND	

page 2 of 4

DCN: CT-S3A DATE:1/30/04 REVISION: 6

C. MSOFFICE VExceNPrintQVQ380.xls) Sheet 1



ASTM D 422-63/AASHTO T88-00 (SOP-S3)

Client Client Reference Environmental Strategies FORMER GIC 148992.03

Boring No. Depth (ft) NA NA

Project No.

2005-403-01

Sample No.

MW36125

Lab ID 2005-403-01-10

Soil Color

**BROWN** 

Moisture Content of Passing 3/4" N	lateria'l	Water Content of Retained 3/4" Material	
Tare No.	2445	Tare No.	NA
Wgt.Tare + Wet Specimen (gm)	1873.40	Wgt.Tare + Wet Specimen (gm)	NA
Wgt.Tare + Dry Specimen (gm)	1759.70	Wgt.Tare + Dry Specimen (gm)	NA
Weight of Tare (gm)	93.73	Weight of Tare (gm)	NA
Weight of Water (gm)	113.70	Weight of Water (gm)	NA
Weight of Dry Soil (gm) 1665.97		Weight of Dry Soil (gm)	NA
Moisture Content (%)	6.8	Moisture Content (%)	NA.
Wet Weight -3/4" Sample (gm)	NA	Weight of the Dry Specimen (gm)	1665.97
Dry Weight - 3/4" Sample (gm)	1299.24	Weight of minus #200 material (gm)	165.64
Wet Weight +3/4" Sample (gm)	NA	Weight of plus #200 material (gm)	1500.33
Dry Weight + 3/4" Sample (gm)	201.09	· · · · · · · · · · · · · · · · · · ·	
Total Dry Weight Sample (gm)	NA		

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	113.43	6.81	6.81	93.19	93.19
3/4"	19.0	87.66	5.26	12.07	87.93	87.93
1/2"	12.5	245.48	14.73	26.81	73.19	73.19
3/8"	9.50	136. <del>9</del> 7	8.22	35.03	64.97	64.97
#4	4.75	289.30	17.37	52.39	47.61	47.61
#10	2.00	221.57	13.30	65.69	34.31	34.31
#20	0.85	127.37	7.65	73.34	26.66	26.66
#40	0.425	121.41	7.29	80,63	19.37	19.37
#60	0.250	96.28	5.78	86.40	13.60	13.60
#140	0.106	49.44	2.97	89.37	10.63	10.63
#200	0.075	11.42	0.69	90.06	9.94	9.94
Pan	-	165.64	9.94	100.00	-	-

Tested By

MB

Date

12/9/05

Checked By

Date / 2 - /2 - 0.5

page 3 of 4

DCN: CT-83A DATE:1/30/04 REVISION: 6

C:WSOFFICE\Excel\PrintO\Q380.xls|Sheet1



ASTM D 422-63/AASHTO T88-00 (SOP-S3)

Client Reference Project No.

Lab ID

Environmental Strategies FORMER GIC 148992.03

2005-403-01 2005-403-01-10 Boring No. Depth (ft) Sample No. Soil Color NA NA MW36125 BROWN

Elapsed Time (min)		R Measured	Temp.	Composite Correction	R Corrected	N (%)	K Factor	Diameter ( mm )	(%)
0	NA	NA	NA	NA	NA	NA	NA	NA	NA
2	40.5	40.5	22.0	6.80	33.7	73.8	0.01313	0.0288	7.3
5		36.0	22.0	6.80	29.2	63.9	0.01313	0.0189	6.4
15		29.5	22.0	6.80	22.7	49.7	0.01313	0.0115	4.9
30		25.0	22.0	6.80	18.2	39.8	0.01313	0.0084	4.0
61		21.0	22.0	6.80	14.2	31.1	0.01313	0.0060	3.1
250		14.5	21.7	6.91	7.6	16.6	0.01317	0.0031	1.7
1440		12.5	21.8	6.87	5.6	12.3	0.01316	0.0013	1.2

Soil Specimen Data		Other Corrections			
Tare No.	633				
Tare + Dry Material (gm)	150.95	a - Factor	0.99		
Weight of Tare (gm)	100.73				
Weight of Deflocculant (gm)	5.0	Percent Finer than # 200	9.94		
Weight of Dry Material (gm)	45.22				
		Specific Gravity	2.7 Assumed		

Note: Hydrometer test is performed on - # 200 sieve material.

Tested By

TO

Date

Checked By

Date /2-/2-05

page 4 of 4

DCN: CT-S3A DATE:1/30/04 REVISION: 6

C:\MSOFFICE\Exce\PrintQ\Q380.xls\Sheet1

12/6/05



# SIEVE ANALYSIS ASTM D 422-63/AASHTO T88-00 (SOP-S3)

Client Reference Project No.

Lab ID

Environmental Strategies FORMER GIC 148992.03

2005-403-01 2005-403-01-11

PC

Date

DCN: CT-S3C DATE 8-26-98 REVISION: 2

Tested By

page 1 of 2

Boring No. Depth (ft) Sample No. Soil Color

NA MW39105 BROWN

Date (2-)2-05

C WISOFFICE\ExcelVrintQVQ371 xls]Sheet1

NA

HYDROMETER SIEVE ANALYSIS uscs gravel sand silt and clay 12" 6" 3/4" 3/8" #10 #20 #40 #140 #200 100 90 80 70 Percent Finer By Weight 60 50 40 30 20 10 0 1000 100 10 1 Particle Diameter (mm) 0.1 0.01 0.001 D60 =6.7 CC = 3.8 **USCS Symbol** gp-gm, ASSUMED D30 =1.6 CU = 64.8 USCS Classification POORLY GRADED GRAVEL WITH SILT AND SAND **UNABLE TO RUN HYDROMETER** D10 =0.1

12/6/05 Checked By



ASTM D 422-63/AASHTO T88-00 (SOP-S3)

Client Client Reference Environmental Strategies FORMER GIC 148992.03

Boring No.
Depth (ft)

NA NA

Project No. Lab ID 2005-403-01 2005-403-01-11 Sample No. Soil Color

MW39105 BROWN

Moisture Content of Passing 3/4" M	aterial	Water Content of Retained 3/4" Material	
Tare No.	1614	Tare No.	NA
Wgt.Tare + Wet Specimen (gm) 217.53		Wgt.Tare + Wet Specimen (gm)	NA
Wgt.Tare + Dry Specimen (gm)	205.72	Wgt.Tare + Dry Specimen (gm)	NA
Weight of Tare (gm)	95.55	Weight of Tare (gm)	NA
Weight of Water (gm)	11.81	Weight of Water (gm)	NA
Weight of Dry Soil (gm) 110.17		Weight of Dry Soil (gm)	NA
Moisture Content (%)	10.7	Moisture Content (%)	NA

Wet Weight -3/4" Sample (gm)	NA	Weight of the Dry Specimen (gm)	110.17
Dry Weight - 3/4" Sample (gm)	99.6	Weight of minus #200 material (gm)	10.59
Wet Weight +3/4" Sample (gm)	NA	Weight of plus #200 material (gm)	99.58
Dry Weight + 3/4" Sample (gm)	0.00		
Total Dry Weight Sample (gm)	NA		

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	0.00	0.00	0.00	100.00	100.00
1/2"	12.50	15.40	13.98	13.98	86.02	86.02
3/8"	9.50	15.21	13.81	27.78	72.22	72.22
#4	4.75	27.24	24.73	52.51	47.49	47.49
#10	2.00	17.44	15.83	68.34	31.66	31.66
#20	0.850	7.93	7.20	75.54	24.46	24.46
#40	0.425	10.84	9.84	85.38	14.62	14.62
#60	0.250	3.72	3.38	88.75	11.25	11.25
#140	0.106	1.35	1.23	89.98	10.02	10.02
#200	0.075	0.45	0.41	90.39	9.61	9.61
Pan	-	10.59	9.61	100.00		-

Tested By

PC

Date

12/6/05 Checked By

The

Date 12-12-05

page 2 of 2

DCN: CT-83C DATE 6-25-98 REVISION: 2

C \MSOFFICE\Excel\PnntQ\Q371 xisjSheet