

Environmental Consultants

804 Salem Woods Drive, Suite 201B, Raleigh, NC 27615-3343 Phone (919) 844-9890 Fax (919) 844-0917 Cell/VM (408) 892-3233

Web site: www.ishincusa.com Email. ishwar@ishincusa.com

Alternate Email: ishinc@earthlink.net

February 2, 2006

Mr. Anthony Karwiel
Project Manager
Remedial Bureau C, 11th Floor
Division of Environmental remediation
New York State Department of Environmental Conservation
625 Broadway
Albany, New York 12233-7014

Subject: Norwich Former MGP Site, Norwich, New York

Site No: 7-09-011

Final Supplemental Remedial Investigation (SRI) Report

Dear Mr. Karwiel:

On behalf of our client, New York State Electric & Gas Corporation (NYSEG), Ish Inc. is pleased to submit the replacement pages to finalize the Supplemental Remedial Investigation (SRI) Report for the Norwich Former MGP Site. I have also enclosed the CD containing the pdf version of this final report and have directly sent one copy of the replacement pages for the final report to Mr. Nate Walz at the NYSDOH.

If you have any questions regarding this submittal, please do not hesitate to contact me on my cell phone 408-892-3233. Any official comments from the agency should be directed to NYSEG's project manager, Mr. Tracy Blazicek, at 607-762-8839.

Best regards,

Sincerely,

Ishwar P. Murarka, Ph.D. Executive Scientist

Encl: Replacement Inserts for the Final SRI Report for Norwich Former MGP Site and CD

CC: Mr. Nate Walz, NYSDOH (one copy of replacement inserts)

Mr. Tracy Blazicek, NYSEG (one copy of replacement inserts)

Mr. Joe Simone, NYSEG (w/o encl)

Mr. Pete DeClercq, Ish Inc. team (one copy of replacement inserts)

FINAL SUPPLEMENTAL REMEDIAL INVESTIGATION (SRI) REPORT NORWICH FORMER MGP SITE NORWICH, NEW YORK

Prepared for:

New York State Electric & Gas Corporation 18 Link Drive Binghamton, NY 13904

Prepared by:

Ish Inc. 804 Salem Woods Drive, Suite 201B Raleigh, NC 27615

META Environmental, Inc. 49 Clarendon Street Watertown, MA 02472

New York State Department of Environmental Conservation

Division of Environmental Remediation

Remedial Bureau 'C', 11th Floor

625 Broadway, Albany, New York 12233-7014 **Phone:** (518) 402-9662 • **FAX:** (518) 402-9679

Website: www.dec.state.ny.us

December 26, 2006

Mr. Tracy Blazicek
Project Manager
NYSEG
Corporate Drive
Kirkwood Industrial Park
P.O. Box 5224
Binghamton, N.Y. 13902-5224

JAN 0 2 2006

Environmental compliance Deat

Re:

Draft Supplemental Remedial Investigation (SRI) Report

Norwich Former MGP site, Site #7-09-011

Birdsall Road, Chenango County

Norwich, New York

Dear Mr. Blazicek:

The New York State Department of Environmental Conservation (Department) and the New York State Department of Health (DOH) have reviewed the draft Supplemental Remedial Investigation.

The Draft Supplemental Remedial Investigation is approved with the following comments:

- Page 6-12, third paragraph discusses QC measures not meeting acceptable criteria, please discuss this issue further,
- Page 6-19, section 6.5.2.1 BTEX in Vapor and Air Samples, last sentence; please clarify.

The supplemental remedial investigation has adequately delineated the extent of contamination encountered onsite and offsite. NYSEG should initiate procedures to generate a Feasibility Study (FS) as directed in New York State Electric & Gas Corporation multisite Order on Consent Index # D0-0002-9309. The Order indicates that within 150 days, after receipt of this notice of the Department's approval of the Remedial Investigation Report, NYSEG shall submit a Feasibility Study evaluating remedial actions to eliminate, to the maximum extent practicable, all health and environmental hazards and potential hazards attributable to hazardous substance disposal at the Site.

If you have any questions please contact me at (518) 402-9662.

Sincerely,

Anthony Karwiel
Project Manager

cc: I. Murarka, Ish Inc.

FINAL SUPPLEMENTAL REMEDIAL INVESTIGATION (SRI) REPORT FOR THE NORWICH FORMER MGP SITE NORWICH, NEW YORK

Prepared for:

New York State Electric & Gas Corporation

Kirkwood Industrial Park Binghamton, NY 13902

Prepared by:

Ish Inc.

804-201B Salem Woods Drive Raleigh, NC 27615

META Environmental, Inc.

49 Clarendon Street Watertown, MA 02472

EXECUTIVE SUMMARY

Introduction and Background

The report describes the supplemental remedial investigation (SRI) program that was performed for New York State Electric and Gas Corporation (NYSEG) at the Norwich former manufactured gas plant (MGP) site (site) located at 20 Birdsall Street in the City of Norwich, New York. The planned activities for this SRI were detailed in the Work Plan for the Supplemental Remedial Investigation, Former MGP Site, Norwich, New York (Work Plan), prepared by Ish Inc. in October 2004, and subsequently approved by the New York State Department of Environmental Conservation (NYSDEC). As a result of the initial SRI findings, the extent of the investigation expanded beyond the original scope, to include additional investigation work, especially off-site to the south.

Objectives of the SRI

There were two primary objectives for the SRI work. The first objective was to delineate the nature and extent of the residual source material in the subsurface at the site that is contributing to the onsite groundwater plume. The second objective was to delineate the off-site extent of the plume of dissolved MGP constituents in groundwater.

Scope of Field Work Performed

As part of the SRI, 65 direct push borings were installed across the site and the surrounding area between October 2004 and October 2005. Numerous subsurface soil samples were collected and analyzed for organic compounds associated with former MGP site residues, particularly benzene, toluene, ethylbenzene, xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAHs). In addition, site soils were subjected to the synthetic precipitation leaching procedure (SPLP) and analyzed for volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs).

To evaluate groundwater quality conditions, 39 piezometers and one monitoring well were installed at the site and surrounding off-site areas. One synoptic groundwater sampling round was performed at the vast majority of existing wells and the newly installed groundwater monitoring locations for measuring VOCs, SVOCs, and total cyanide.

SVI evaluation samples were collected from 14 off-site properties from March 22 to 24, 2006 and March 28 and 29, 2006. At each location, indoor air samples were collected in the basement (except for two locations that did not have basements) and the lowest floor that is occupied by people (living area). In addition, sub-slab or sub-slab equivalent samples (locations with dirt floor basements) were collected from each building. These samples were analyzed for VOCs.

Results

Evidence of coal tar NAPL, in the form of sheens and small NAPL globules, was observed in the subsurface soil across the majority of the Norwich former MGP site, as well as downgradient of the site, to the south. The NAPL observed was reddish-brown in color and was intermixed with water within the pore spaces of the relatively loose sand and gravel outwash present in the shallow aquifer above the silt and clay confining layer, which was encountered at depths of 8 to 25 feet below grade across the study area. The silt and clay layer appears to have prevented further downward migration of the NAPL, which has spread laterally and with the flow of groundwater to the south. Exceedances for regulated organic compounds associated with MGP residues coincided with the observed NAPL presence.

Shallow groundwater at the site has been impacted by VOCs and SVOCs related to MGP residuals in the saturated sand and gravel outwash layer, present above the silt and clay confining layer. Specifically, BTEX, isopropylbenzene, and SVOC concentrations exceeded NYSDEC Class GA groundwater standards or guidance values in groundwater at sampling locations covering most of the site and in a plume extending approximately 700 feet to the south. The depth to groundwater at the site and surrounding area varies from approximately 4 to 14 feet below grade with an aquifer thickness of generally 10 to 15 feet thick.

Soil vapor intrusion potential was examined at 14 locations. While VOCs were detected in most of the samples collected, the levels were within the expected ranges based on the NYSDOH background database and the chemical product inventory specific for each home. Although it was not possible to determine a specific source of the chemicals due to their ubiquitous nature, it was determined that vapors from the Norwich MGP site are not affecting indoor air quality in the test locations.

Recommendation

Based on the site data collected during previous investigations and this SRI, Ish Inc. recommends that it is now appropriate to perform a focused feasibility study (FFS) to determine what remedial measure(s) would be necessary to achieve remedial goals that NYSEG and NYSDEC agree to pursue for the Norwich site.

CONTENTS

1 INTRODUCTION	1-1
1.1 Overview of Report	1-1
1.2 SRI Objectives	1-1
1.3 SRI Report Organization	1-2
2 SITE BACKGROUND	2-1
2.1 Operational History	2-1
2.2 Summary of Previous Investigations and Activities	2-2
2.2.1 Task II Investigation Report for the Former Manufactured Gas Plant Site, Norwich, New York, by Engineering-Science, Inc. (ES) in July 1992	2-2
2.2.2 Task III Investigation Report for the Former Manufactured Gas Plant Site, Norwich, New York, by Engineering-Science, Inc. in June 1993 (final issued July 1997)	2-3
2.2.3 Final Report Phase III Interim Remedial Measures Work Plan for Norwich Former MGP Site, by Fluor Daniel GTI, Inc. in October 1997	2-4
2.2.4 Semi-Annual Status Report – January 2003 to June 2003, Air Sparge/SVE System – Operation & Maintenance, Norwich Former MGP Site, by Shaw Environmental, Inc. in July 2003	2-4
2.3 Summary of Previous Site Knowledge	2-5
2.3.1 Site Geology	2-5
2.3.2 Site Hydrogeology	2-5
2.3.3 Summary of Impacts	2-6
2.3.3.1 Surface Soils	2-6
2.3.3.1.1 On-site	2-6
2.3.3.1.2 Off-site	2-7
2.3.3.2 Subsurface Soils	2-7
2.3.3.2.1 On-site	2-8
2.3.3.2.2 Off-site	2-9
2.3.3.3 Groundwater	2-10
2.3.3.3.1 Pre-Remediation Groundwater Data	2-11
2.3.3.3.2 Recent Groundwater Trends	2-12
2.3.3.4 Soil Gas	2-14
2 DDO JECT ADDDOACH	2.4

	3.1 Delineate Nature and Extent of Source Materials Remaining in Subsurface	3-1
	3.2 Groundwater Plume Delineation	3-2
	3.3 Soil Gas/Soil Vapor Assessment	3-2
4	INVESTIGATION METHODS	4-1
	4.1 Field Methods	4-1
	4.1.1 Underground Utilities	4-1
	4.1.2 Subsurface Soil Investigation	4-1
	4.1.2.1 Direct Push Soil Borings	4-1
	4.1.2.2 Soil Sampling	4-2
	4.1.3 Groundwater Monitoring Installations	4-2
	4.1.3.1 Monitoring Well Installation	4-2
	4.1.3.2 Temporary Piezometer Installation	4-3
	4.1.4 Groundwater Sampling	4-4
	4.1.5 SVI Evaluation	4-4
	4.1.5.1 Site Survey and Inventory	4-4
	4.1.5.2 SVI Sample Collection	4-5
	4.1.5.2.1 Indoor and Outdoor Air Samples	4-5
	4.1.5.2.2 Sub-slab Samples	4-5
	4.1.6 Sample Identification	4-6
	4.1.7 Sample Handling	4-7
	4.1.8 Decontamination Procedures	4-8
	4.1.9 Waste Handling	4-9
	4.1.10 Quality Assurance and Quality Control	4-9
	4.1.11 Health and Safety	4-9
	4.2 Sample Analysis	4-10
	4.2.1 Data Quality Objectives	4-11
	4.2.2 Quality Assurance and Quality Control (QA/QC) Samples	4-11
	4.2.3 Data Validation Screening	4-11
5	SUPPLEMENTAL REMEDIAL INVESTIGATION (SRI) FIELD ACTIVITY SUMMARY	·5-1
	5.1 Subsurface Soil Investigation	5-1
	5.1.1 Direct Push Soil Borings	5-1
	5.2 Subsurface Soil Sampling	5-6
	5.3 Groundwater Monitoring Program	5-7

5.3.1 Piezometer and Monitoring Well Installation	5-7
5.3.2 Piezometer and Monitoring Well Sampling	5-10
5.4 SVI Evaluation	5-11
5.4.1 Initial Site Survey and Inventory	5-12
5.4.2 SVI Sample Collection	5-12
5.5 Waste Handling	5-13
5.6 Survey	5-13
6 SUPPLEMENTAL RI RESULTS	6-1
6.1 Geology	6-1
6.2 Hydrogeology	6-3
6.2.1 Horizontal Groundwater Flow Direction and Hydraulic Gradients	6-7
6.2.2 Hydraulic Conductivity	6-7
6.2.3 Specific Discharge and Groundwater Seepage Velocity	6-8
6.3 Subsurface Soil Conditions	6-9
6.3.1 Visual Observations of Sheens or NAPL in Subsurface Soils	6-9
6.3.2 Chemical Analysis Results for Subsurface Soil	6-11
6.3.2.1 VOCs in Subsurface Soil Samples	6-12
6.3.2.2 SVOCs in Subsurface Soil Samples	6-13
6.3.3 Total Organic Carbon in Soil	6-14
6.3.4 SPLP Leaching Tests for VOCs and SVOCs in Soil	6-14
6.4 Groundwater Quality	6-16
6.4.1 VOCs in Shallow Groundwater	6-16
6.4.2 SVOCs in Shallow Groundwater	6-17
6.4.3 Total Cyanide in Shallow Groundwater	6-18
6.5 SVI Evaluation	6-18
6.5.1 Field Screening Results for Sub-slab and Soil Vapor Samples	6-19
6.5.2 Chemical Analysis Results for Air and Vapor Samples	6-19
6.5.2.1 BTEX in Vapor and Air Samples	6-19
6.5.2.2 Solvents and Chlorinated VOCs in Vapor and Air Samples	6-20
6.5.2.3 Other VOCs Detected in Vapor and Air Samples	6-20
6.5.3 Interpretation of the SVI Data	6-21
6.6 Quality Assurance/Quality Control	6-23
7 CONCLUSIONS AND RECOMMENDATIONS	7-1

7.1 Summary of Impacts at the Site	7-1
7.1.1 NAPL and MGP-related VOCs and SVOCs in the Subsurface Soils	7-1
7.1.2 MGP-related VOCs and SVOCs in Groundwater	7-2
7.1.3 Total Cyanide in Groundwater	7-3
7.1.4 SVI Evaluation	7-3
7.2 Recommendations	7-4
7.2.1 Perform Focused Feasibility Study	7-4
8 REFERENCES	8-1
A FIGURES	A-1
B TABLES	B-1
C SUBSURFACE BORING LOGS AND WELL CONSTRUCTION RECORDS	C-1
D GROUNDWATER SAMPLING SHEETS	D-1
E SVI SITE SURVEY AND INVENTORY SHEETS	E-1
F SVI FIELD SAMPLING SHEETS	F-1
G CHAIN OF CUSTODY RECORDS	G-1
H LABORATORY ANALYTICAL DATA PACKAGES AND DUSRs (CD)	H-1

LIST OF FIGURES

Appendix A:

- Figure A-1 Locus Map
- Figure A-2 Site Base Map
- Figure A-3 Benzene Concentrations in Monitoring Well GW01-15S, 2002 through 2003 (μg/L)
- Figure A-4 Naphthalene Concentrations in Monitoring Well GW01-15S, 2002 through 2003 (μg/L)
- Figure A-5 Total VOC Concentrations in Monitoring Well GW01-15S, 2002 through 2003 (μg/L)
- Figure A-6 Total SVOC Concentrations in Monitoring Well GW01-15S, 2002 through 2003 (μg/L)
- Figure A-7 Benzene Concentrations in Monitoring Well GW91-6, 1999 through 2003 (μg/L)
- Figure A-8 Naphthalene Concentrations in Monitoring Well GW91-6, 1999 through 2003 (μg/L)
- Figure A-9 Total VOC Concentrations in Monitoring Well GW91-6, 1999 through 2003 (μg/L)
- Figure A-10 Total SVOC Concentrations in Monitoring Well GW91-6, 1999 through 2003 (μg/L)
- Figure A-11 Benzene Concentrations in Monitoring Well GW01-14, 2002 through 2003 $(\mu g/L)$
- Figure A-12 Naphthalene Concentrations in Monitoring Well GW01-14, 2002 through 2003 (μg/L)
- Figure A-13 Total VOC Concentrations in Monitoring Well GW01-14, 2002 through 2003 (μg/L)
- Figure A-14 Total SVOC Concentrations in Monitoring Well GW01-14, 2002 through 2003 (μg/L)
- Figure A-15 Benzene Concentrations in Monitoring Well GW92-11D, 1999 through 2003 $(\mu g/L)$
- Figure A-16 Benzene Concentrations in Monitoring Well GW92-8, 1999 through 2003 $(\mu g/L)$
- Figure A-17 Estimated Extent of the Plume prior to SRI
- Figure A-18 Summary of Proposed Sampling Locations
- Figure A-19 Summary of Sampling Locations
- Figure A-20 Proposed SVI Assessment Locations for the Norwich Neighborhood
- Figure A-21 Summary of SVI Sampling Locations
- Figure A-22 Location of Geologic Cross-sections
- Figure A-23 Geologic Cross-Section A-A'
- Figure A-24 Geologic Cross-Section B-B'

Figure A-25 Geologic Cross-Section C-C'

Figure A-26 Geologic Cross-Section D-D'

Figure A-27 Silty Clay Layer Elevation Contour

Figure A-28 Groundwater Elevation Contour – June 17, 2005

Figure A-29 Groundwater Elevation Contour – December 5, 2005

Figure A-30 Visual Observations of Sheens or NAPL in Subsurface Soils

Figure A-31 Summary of Chemical Results for Subsurface Soils

Figure A-32 Summary of Chemical Results in Groundwater

Figure A-33 Summary of Chemical Results for the SVI Study

Figure A-34 Extent of NAPL and Sheens

Figure A-35 Extent of MGP-related Class GA Groundwater Exceedances

LIST OF TABLES

Table 4-1 Analytical Methodologies	4-10
Table 5-1 Direct Push Boring Locations and Rationales	5-2
Table 5-2 Piezometer Locations and Rationales	5-7
Table 5-3 Monitoring Well Locations and Rationales	5-10
Table 5-4 Summary of SVI Sampling Locations	5-12
Table 5-5 Number of SVI Samples Analyzed	5-13
Table 6-1 Approximate Screened Intervals of Selected Monitoring Wells	6-4
Table 6-2 Approximate Screened Intervals of Piezometers	6-4
Table 6-3 Summary of Selected Groundwater Elevation Data	6-5
Table 6-4 Average Horizontal Hydraulic Gradients	6-7
Table 6-5 Horizontal Hydraulic Conductivity (K) Results from Previous ES Work - 1992.	6-8
Table 6-6 Estimated Specific Discharges and Seepage Velocities	6-9
Table 6-7 NAPL Observations in Monitoring Wells and Piezometers	6-11
Appendix B	
Table B-1 EPA Method 8021 Groundwater Results from June 2003 (µg/L)	
Table B-2 EPA Method 625 Groundwater Results from June 2003 (µg/L)	
Table B-3 Summary of Samples Analyzed	
Table B-4 Summary of SVI Evaluation Samples	
Table B-5 Field Observations of Possible MGP Residuals in Boring Logs	
Table B-6 Subsurface Soil VOC Results – Part 1	
Table B-7 Subsurface Soil VOC Results – Part 2	
Table B-8 Subsurface Soil BTEX Results	
Table B-9 Subsurface Soil SVOC Results – Part 1	
Table B-10 Subsurface Soil SVOC Results – Part 2	
Table B-11 Subsurface Soil PAH Results	
Table B-12 Subsurface Soil TOC Results	
Table B-13 Subsurface Soil SPLP VOC Results	
Table B-14 Subsurface Soil SPLP SVOC Results	
Table B-15 Groundwater BTEX and Naphthalene Results	
Table B-16 Groundwater VOC Results from July 2005	
Table B-17 Groundwater VOC Results from December 2005	
Table B-18 Groundwater SVOC Results from July 2005	
Table B-19 Groundwater SVOC Results from December 2005	
Table B-20 Groundwater Total Cyanide Results	
Table B-21 SVI Sub-slab Sample Field Measurement Summary	

Table B-22 SVI Sample Detection Frequency and Concentration Ranges

Table B-23 SVI Analytical Results

Table B-24 Equipment Rinsate and Trip Blank VOC Results

Table B-25 Equipment Rinsate Blank SVOC Results

Table B-26 Field Duplicate VOC Results in Soil

Table B-27 Field Duplicate SVOC Results in Soil

Table B-28 Field Duplicate VOC Results in Groundwater

Table B-29 Field Duplicate SVOC Results in Groundwater

Table B-30 Field Duplicate Total Cyanide Results in Groundwater

Table B-31 Field Duplicate SVI Sample Results

1 INTRODUCTION

1.1 OVERVIEW OF REPORT

This report describes the supplemental remedial investigation (SRI) program that was performed for New York State Electric and Gas Corporation (NYSEG) at the Norwich former manufactured gas plant (MGP) site (site) located at 20 Birdsall Street in the City of Norwich, New York. The planned activities for this SRI were detailed in the Work Plan for the Supplemental Remedial Investigation, Former MGP Site, Norwich, New York (Work Plan), prepared by Ish Inc. in October 2004, and subsequently approved by the New York State Department of Environmental Conservation (NYSDEC). In addition, constant contact was maintained with the NYSDEC during the course of field efforts. Summaries of results and findings were provided periodically and telephone conversations with NYSDEC, NYSEG and the Ish Inc. team occurred throughout the progress of the SRI work. As a result of the initial SRI findings, the extent of the investigation expanded beyond the original scope, to include more investigation work, especially off-site.

After the horizontal and vertical extent of impacts to soil and groundwater were defined, a soil vapor intrusion (SVI) study was performed off-site to evaluate the concentrations of MGP residuals in sub-slab vapor and indoor air of homes located within the groundwater plume emanating from the site. The SVI work plan was prepared by the Ish Inc. team and submitted in December 2005 to NYSDEC for approval. The NYSDEC approved the work plan for the SVI evaluation in January 2006 before its implementation in March 2006.

1.2 SRI OBJECTIVES

There were two primary objectives for the planned work, which can be summarized as follows:

NYSEG: Norwich SRI Report

1. The first objective was to delineate the nature and extent of the remaining source materials in the subsurface of the site that were responsible for the ongoing groundwater plume.

The second objective was to delineate the off-site extent of the plume of dissolved MGP constituents in groundwater.

1.3 SRI REPORT ORGANIZATION

This SRI report has seven remaining sections. Section 2 presents the site background, including operational history and a summary of previous investigations and knowledge for the site. The overall approach for the project, including a discussion of data gaps that were targeted for this SRI, is discussed in Section 3. The procedures used during the implementation of the SRI are presented in Section 4, while a summary of the field work performed is provided in Section 5. Section 6 presents the results of the field activities. Conclusions and recommendations are discussed in Section 7 and the references used in the preparation of this report are listed in Section 8.

NYSEG: Norwich SRI Report

2 SITE BACKGROUND

2.1 OPERATIONAL HISTORY

The former MGP site occupies approximately 1 acre and is located at 24 Birdsall Street in the City of Norwich, Chenango County, New York (see Figure A-1). The site is bounded to the north by a plaza with retail shops, to the east by a NYSEG substation and residences, to the south by the former Aero Products property (now owned by NYSEG), and to the west by railroad tracks. The northern part of the site has been encroached by the plaza located to the north of the site. NYSEG purchased the former Aero Products facility and then used the building for storage. During the summer of 2006, NYSEG demolished the former Aero Products building. Although the property is now owned by NYESG, it is not part of the area referenced as the "site" in the report, which refers to the former MGP site only.

Although it is unknown exactly when the operations at the MGP began, Sanborn maps suggest that the plant operations started sometime between 1863 and 1887. MGP operations ceased in 1953 and the gas plant structures were subsequently razed. The site base map is shown on Figure A-2. NYSEG acquired the property in 1939 after two steel gas holders, three oil tanks, a purifier building, and an additional coal storage facility were added to the MGP site. The gas manufacturing process and the feed fuels were changed several times during the operational history of the MGP. Oil, coal and coke were used at various times during the plant's operation as feed fuels for the coal gasification, water gas and/or carbureted water gas processes used at the plant. Gas production generally increased during the operating life of the plant. Little is known about the generation and disposal practices of residues from the MGP, except that two tar storage vessels existed in the subsurface until they were removed in 1997. In addition, a potential purifier box chips disposal area was identified by NUS Corporation in 1990 through an interview with a former employee. Subsequent site investigation activities did not find any buried purifier box wastes at the Norwich former MGP site.

NYSEG: Norwich SRI Report

Historical Sanborn maps from 1887 show that the gas works facility operated by Norwich Gas Light Company consisted of a large coal storage area, a 35,000-cubic-foot gas holder or gasometer, and a main production building situated over a tar well. At this time, coke storage facilities and several other buildings were present on-site. In 1892, the name of the facility operator was changed to Norwich Illuminating Company, which was later changed again in 1917 to Norwich Gas and Electric Company. At this time, major expansions were made to the facility and the presence of both a water gas plant and an electric power plant can be seen on the Sanborn map. Modifications included the construction of two steel gas holders, three oil tanks, a purifier building, and additional coal storage. NYSEG acquired the property by 1939 and Sanborn maps from this time indicate a tar pit on the west side of the purifier building and an oxide storage area in the purifier building, indicating that the gas cleansing process was used. Gas plant structures were razed after gas works operations ceased in 1953.

In the years following cessation of gas production, NYSEG has used the site for equipment storage. In addition, a substation exists on the eastern portion of the site. Today, much of the property is paved with asphalt or covered with compacted gravel.

2.2 SUMMARY OF PREVIOUS INVESTIGATIONS AND ACTIVITIES

A number of previous investigations and remedial actions had been performed at the site over the 14 years preceding this SRI and reports had been prepared by the various organizations involved. These reports were reviewed for the preparation of this work plan and a brief summary of each is presented below.

2.2.1 Task II Investigation Report for the Former Manufactured Gas Plant Site, Norwich, New York, by Engineering-Science, Inc. (ES) in July 1992

In 1990, ES assessed data from seven subsurface soil samples collected and analyzed by NUS Corporation, under contract to the U.S. EPA. Based on this assessment, ES developed the Task II investigation plan to address the potential presence of MGP residues in the subsurface and the potential for migration of MGP constituents into groundwater. Task II activities included an expanded historical search, a geophysical investigation (EM-31 survey), soil investigation (41 soil borings and two surface soil samples), hydrogeologic investigation (installation of eight

NYSEG: Norwich SRI Report

monitoring wells, including two well pairs and slug testing), groundwater quality investigation (two rounds of sampling), soil vapor survey (47 samples), and a preliminary risk assessment. The results of these activities found benzene, ethylbenzene, toluene, and xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAHs) in subsurface soils on-site at concentrations above background, with the most highly contaminated soils occurring at depths from 1 to 6 feet below grade, particularly beneath and immediately downgradient of the former relief and distribution holders, the tar well, and former above ground oil tanks. BTEX and PAHs were also detected above NYSDEC Class GA standards or guidance values in groundwater samples during two rounds of groundwater sampling. In addition, BTEX and PAH compounds were detected in the upgradient well GW91-2D. These groundwater quality results were attributed to an abandoned underground storage tank (UST) discovered immediately upgradient of the well GW91-2D during drilling activities. Although soil and groundwater contamination was found on-site, it was concluded that no imminent health or environmental threats existed based on the Task II investigation due to remote potential for exposure to these contaminated materials.

2.2.2 Task III Investigation Report for the Former Manufactured Gas Plant Site, Norwich, New York, by Engineering-Science, Inc. in June 1993 (final issued July 1997)

The Task III investigation plan was designed by ES to address data gaps identified during the Task II investigation, including assessing the potential presence of surface soil contamination in backyards adjoining the site, defining the lateral extent of groundwater contamination, particularly south of the site, and determining the location and size of the former tar well and relief holder. Task III investigation activities included a surface and subsurface soil investigation (five surface soils, 17 soil borings, and seven test pits), groundwater investigation (installation of eight new monitoring wells, including two well pairs; sampling of all existing wells, and an upgradient supply well and groundwater from the basement of a local residence), and preliminary qualitative risk assessment.

Surface soil sample results showed no detectable concentrations of cyanide or BTEX compounds, and PAHs were detected below published background concentrations for urban soils. Subsurface soil results confirmed the presence of a suspected MGP residue source beneath the former relief holder. MGP residues were found in two borings near the holder and in borings

NYSEG: Norwich SRI Report

to the north and west of the holder. Off-site subsurface soil samples had little or no detected BTEX or PAH compounds. However, the measured groundwater concentrations of BTEX, PAHs and total cyanide in downgradient wells were above background levels and NYSDEC Class GA groundwater standards or guidance values. The conclusion of the preliminary risk assessment was that no imminent health or environmental threats were identified.

2.2.3 Final Report Phase III Interim Remedial Measures Work Plan for Norwich Former MGP Site, by Fluor Daniel GTI, Inc. in October 1997

The objective of this interim remedial measure (IRM) was to remove MGP residues from source areas at the site to achieve a site-wide soil clean-up goal of 0.1 mg/kg for benzene and 500 mg/kg for total PAHs. During the IRM, approximately 11,500 tons of soil were excavated and removed from the site, of which approximately 6,800 tons were considered source material. The excavation included the former relief holder (654 tons) and the soils surrounding it (3,649 tons), the tar well (427 tons), related piping (3,412 tons), and shallow soils (3,305 tons). In addition, the below-ground portions of the vertical air sparging and horizontal SVE systems were installed at that time.

2.2.4 Semi-Annual Status Report – January 2003 to June 2003, Air Sparge/SVE System – Operation & Maintenance, Norwich Former MGP Site, by Shaw Environmental, Inc. in July 2003

This was the last semi-annual report for the air sparging/SVE system, prior to its shut down at the end of June 9, 2003. The SVE system began operating in December 1999 and the vertical air sparging system was activated in January 2000. There were four legs to the air-sparging/SVE system with the one closest to nearby residences in constant operation and the other three operated in shifts of 8 hours during the last six months of the operation. For monitoring the system's performance, two pairs of Sparge Point Monitoring Points (SPMPs) and two Vapor Point Monitoring Points (VPMPs) were installed. Based on Shaw's calculations, a total of approximately 586 pounds of BTEX and approximately 761 pounds of total volatile organic compounds (VOCs) were removed by the system during its operation from startup to shut down.

NYSEG: Norwich SRI Report

2.3 SUMMARY OF PREVIOUS SITE KNOWLEDGE

Based on previously completed work, it was believed that there may have been residual source materials in the subsurface of the site that were contributing to the continuing presence of the dissolved groundwater plume off-site to the south/southwest. Source material, for the purposes of relating to the persistent groundwater plume at the Norwich site, can be defined as subsurface soil that contains non-aqueous phase liquid (NAPL) and/or significant concentrations of chemical constituents that leach sufficient amounts to sustain the groundwater plume over a long period of time.

2.3.1 Site Geology

Prior to the 1997 IRM that included the removal of approximately 11,500 tons of impacted soils, the unconsolidated materials under the site were described as consisting of Quaternary glacial lacustrine deposits overlain by a thin layer of alluvial sediments and fill. Across the site, the depth of fill varied from less than 1 foot to the south and west of the site to greater than 6 feet near the former above ground oil tank. The fill inside former structures primarily consisted of demolition debris, bricks, concrete and wood, while the fill outside the structures was characterized by brown to black medium sand, gravel, silt, brick, ash, and glass.

The alluvium consisted of sand and silt varying from 1 to 8 feet in thickness. The alluvium is underlain by a layer of glacial outwash sand and gravel varying from 7 to 15 feet in thickness. The glacial outwash is underlain by the lacustrine deposits of silt and clay. No borings to date fully penetrated the lacustrine layer and therefore its thickness is unknown. The elevation of the lacustrine layer was found to be lowest in the center of the site, increasing in elevation to both the west and east of the site. Because of the 1997 IRM activities, more of the site now consists of fill that was emplaced after removal of impacted soils.

2.3.2 Site Hydrogeology

Based on historical well gauging data, the water table is normally found at 7 to 10 feet below ground surface. The flow direction of groundwater at the site and surrounding area is generally to the south, based on recorded piezometric measurements made in the existing shallow and deep wells. The maximum horizontal hydraulic gradient for the unconfined aquifer was found to be

NYSEG: Norwich SRI Report

Site Background

0.01 ft/ft. Through slug tests and calculations, hydraulic conductivities were determined to range

from 153 ft/day to 4.22 ft/day with a geometric mean of 25.8 ft/day and an arithmetic mean of

51.2 ft/day. Based on an assumed porosity of 0.30 for the sand and gravel layer at the site, the

horizontal groundwater flow velocity using the geometric mean of the hydraulic conductivities

was estimated to be 313 feet per year. Comparisons of water levels in the deep and shallow

wells at each well pair indicated that the vertical groundwater flow is negligible. This

observation was true at all well pairs during all sampling rounds.

In response to the NYSDEC comments on the Work Plan dated August 13, 2004, NYSEG

immediately obtained one complete round of water level measurements from the existing

monitoring wells to reconfirm the groundwater flow conditions. On September 2, 2004, NYSEG

completed water level measurements for the wells at the site and surrounding area. The resulting

groundwater elevation contour map of the site and surrounding area suggested a more

westerly/south westerly flow direction which appeared to be somewhat different than the

historical interpretation indicating flow direction generally to the south. However, many

additional piezometers were installed as part of this SRI to clarify the groundwater flow regime.

In addition, the original proposed location of PZ03 was shifted to the west to provide better

coverage in the area of former well G92-10.

2.3.3 Summary of Impacts

2.3.3.1 Surface Soils

Eleven composite surface soil samples were collected from on- and off-site locations; six (five

on-site and one off-site) during the Task II investigation and five (all off-site) during Task III

investigation. The Task II samples were collected from 0 to 1 foot below ground surface (bgs)

while the Task III samples were collected from 0 to 0.5 feet bgs.

2.3.3.1.1 On-site

During Task II, five on-site soil samples were analyzed for VOCs, SVOCs, and total cyanide.

On-site, the concentrations of total BTEX ranged from not detected to approximately 0.010

mg/kg, while total PAHs ranged from approximately 30 to 230 mg/kg. These concentrations

2-6

NYSEG: Norwich SRI Report

were described by ES as above background in the areas associated with the former relief and distribution holders. On-site, the surface soils had very low levels of total cyanide, with concentrations ranging from not detected to approximately 0.016 mg/kg of total cyanide. The IRM soil removal performed in 1997 included approximately 3,300 tons of on-site surface soils.

2.3.3.1.2 Off-site

One off-site sample was collected during Task II, to the northeast of the site, while five off-site surface soil samples were collected during Task III, mainly in residential backyards downgradient from the site, based on the groundwater flow direction. These surface soil samples were analyzed for VOCs, SVOCs, and cyanide. In addition, three soil samples collected nearest to the electrical substation were analyzed for polychlorinated biphenyls (PCBs). No BTEX compounds or PCBs were detected in any off-site surface soil samples. Only one off-site surface soil, collected just to the northeast of the site, had detectable results (approximately 0.022 mg/kg) for total cyanide. Relatively low levels of PAHs were found, with concentrations ranging from approximately 4.7 to 21 mg/kg. The PAH concentrations were characterized by ES as below published background concentrations for urban soil.

2.3.3.2 Subsurface Soils

Subsurface soil conditions were evaluated by ES during the Task II and Task III investigations through the advancement of 58 soil borings and the excavation of seven test pits. During Task II, 32 on-site borings (two were completed as wells) and nine off-site borings (six were completed as wells) were installed. Samples were collected from depths of 1 to 4 feet (ten samples), 4 to 6 feet (ten samples), 6 to 10 feet (ten samples), and greater than 10 feet bgs (six samples). During Task III, three on-site borings and 14 off-site borings (eight completed as wells) were installed to further characterize soil conditions. Samples were collected from depths of 2 to 4 feet (two samples), 4 to 6 feet (four samples), 6 to 10 feet (three samples), and greater than 10 feet bgs (ten samples from nine borings).

NYSEG: Norwich SRI Report

2.3.3.2.1 On-site

During Task III, seven test pits were excavated on-site. The test pits identified several existing

on-site structures including the former relief holder and the tar well. The contents of the

structures were described as fill and several structures were holding water to some extent. Low

viscosity coal tar was observed in test pits located inside the holder. The tar well contained silty

gravel fill, overlying tar-stained wood chips, overlying tar-stained rounded gravel. Three test

pits which were excavated in the suspected purifier box chips disposal area found no evidence of

purifier box wood chips, but did find coal tar-stained material and perched water.

During the advancement of the Task II and Task III soil borings, eight on-site samples from 1 to

4 feet below grade were collected. Four of the samples were analyzed for VOCs, SVOCs, and

total cyanide, three were analyzed for SVOCs only, and one was analyzed for VOCs only. The

on-site sample results for BTEX ranged from approximately 3 to 350 mg/kg, while total PAH

concentrations ranged from approximately 16 to 37,000 mg/kg. The highest concentrations were

near the former holders and the tar well. The concentrations for total cyanide in on-site samples

ranged from not detected to approximately 0.088 mg/kg.

During both investigations, eleven samples were collected on-site from depths of 4 to 6 feet bgs

from ten boring locations in the areas of former MGP operations. Six samples were analyzed for

VOCs, SVOCs and total cyanide, four were analyzed for PAHs only, and one sample was

analyzed for VOCs only. The sample results for BTEX ranged from 0.014 to 10,300 mg/kg,

while total PAH concentrations ranged from 1.3 to 35,000 mg/kg. Total cyanide results ranged

from not detected to 2.9 mg/kg.

A total of eight on-site samples from depth of 6 to 10 feet bgs were collected during the

investigations. One on-site sample was analyzed for VOCs, SVOCs, and cyanide, while the

remaining seven were analyzed for SVOCs only. In general, PAHs were detected at lower levels

than samples from 1 to 4 feet or 4 to 6 feet bgs, with total PAH concentrations ranging from 0.79

to 1,000 mg/kg. The one sample analyzed for BTEX yielded a total BTEX concentration of 1.9

mg/kg, at the location of the former gas oil tank. This sample was also analyzed for total

2-8

cyanide, but total cyanide was not detected.

NYSEG: Norwich SRI Report

Site Background

Four on-site samples from greater than 10 feet bgs were collected from three borings during both

investigations. Three of the samples were analyzed for VOCs, SVOCs, and total cyanide, while

one sample was analyzed for VOCs only. Total BTEX concentrations ranged from not detected

to approximately 117 mg/kg, while total PAH concentrations ranged from approximately 0.86 to

216 mg/kg. Total cyanide concentrations ranged from not detected to approximately 2 mg/kg.

The maximum concentrations were measured in the same sample, which was collected from 20

to 22 feet below grade just to the northwest of the former gas plant building.

Because of the IRM excavation activities performed in 1997 and the subsequent air sparging and

SVE system installation and operation from 1999 to 2003, prior to the SRI, it was not certain

what concentrations of MGP constituents remained in on-site subsurface soils and to what depth.

2.3.3.2.2 Off-site

During the advancement of the Task II and Task III borings, four soil samples were collected

from depth of 1 to 4 feet bgs and analyzed for VOCs, SVOCs, and total cyanide. One sample

was collected just to the northeast of the site, one was collected just to the north of the property

on the western side, and two were collected to the south of the NYSEG substation. Only two of

the samples had detectable BTEX compounds, with very low total BTEX concentrations of

0.001 mg/kg (south of the substation) and 0.007 mg/kg (northeast of the site). Low levels of

total PAHs were measured in each sample, with a maximum concentration of 1.3 mg/kg

measured south of the substation. Total cyanide was not detected in any of these samples.

During both investigations, a total of three off-site soil samples were analyzed from depth of 4 to

6 feet bgs. One sample, just to the north of the site was analyzed for VOCs only and had a total

BTEX concentration of 54.4 mg/kg. In addition, two samples from 4 to 6 feet bgs, one just to

the southwest of the site and one to the southeast of the site were found to contain no detectable

BTEX, PAHs, or total cyanide.

During the Task II and Task III investigations, five off-site soil samples at depths ranging from 6

to 10 feet bgs were collected. All of the samples were analyzed for VOCs, SVOCs, and total

cyanide. Four samples, two collected to the north of the site and two collected downgradient of

NYSEG: Norwich SRI Report

October 2006

2-9

the site, had total PAH concentrations ranging from approximately 3.4 to 50 mg/kg, but no measurable amounts of BTEX or cyanide were found. The other sample, collected to the west of the site, did not show any detectable levels of BTEX, PAHs, or total cyanide.

A total of twelve off-site soil samples were collected from greater than 10 feet below grade. All of these samples were analyzed for VOCs, SVOCs, and total cyanide. Ten of the twelve samples had no detectable concentrations of BTEX. The two locations with total BTEX measured above detection limit were downgradient from the site and the measured concentrations were 0.012 mg/kg and 0.72 mg/kg. Total PAH concentrations ranged from not detected (at three locations) to approximately 210 mg/kg, which was measured in the sample just to the northwest of the site. The maximum downgradient total PAH concentration was approximately 17 mg/kg, just downgradient of the former Norwich Aero Products building, which was demolished by the NYSEG in 2006. Total cyanide was detected in only two of the twelve samples analyzed with 0.002 mg/kg measured in a sample just to the northeast of the site and 0.003 mg/kg measured in a sample just downgradient of the former Norwich Aero Products building.

Because of the IRM excavation activities performed in 1997 and the subsequent air sparging and SVE system installation and operation from 1999 to 2003, prior to the SRI, it was not certain what concentrations of MGP constituents remained in off-site subsurface soils and to what depth.

2.3.3.3 Groundwater

Twenty monitoring wells and four Sparge Point Monitoring Points (SPMPs) were installed during previous site investigation activities. Eight wells (GW91-1, GW91-2SH, GW91-2D, GW91-4SH, GW91-4D, GW91-5, GW91-6, and GW91-7) were installed in 1991 by ES during the Task II investigation and an additional eight wells (GW92-8, GW92-9SH, GW92-9D, GW92-10, GW92-11SH, GW92-11D, GW92-12, and GW92-13) were installed during Task III. GW91-3 was abandoned and does not exist. In addition, GW91-1, GW91-2D, GW91-2SH, GW92-9D, GW92-9SH, and GW92-10 had been lost prior to this SRI, during construction activities in the area. In 2001, three more wells (GW01-14, GW01-15SH, and GW01-15D) were installed to examine the groundwater response to the IRM, as well as to monitor the air sparging/SVE system performance. A total of thirteen monitoring wells still exist at the site

NYSEG: Norwich SRI Report

from the previous investigations. Six of these monitoring wells form three well pairs containing a shallow and a deep well. These wells were installed to evaluate vertical flow. It should be noted that the shallow and deep wells are installed within the same zone of the relatively thin aquifer. In addition, the four SPMPs (SPMP-1S, SPMP-1D, SPMP-2S, and SPMP-2D) were installed to monitor groundwater during the air sparging/SVE system operation.

2.3.3.3.1 Pre-Remediation Groundwater Data

During the Task II investigation performed by ES, the eight GW91 monitoring wells were sampled for two rounds and analyzed for VOCs, SVOCs, total cyanide, PCBs and metals (Round 2 only). In addition, one sample was collected from an upgradient supply well used by Victory Markets for making ice. Two of the wells, GW91-7 and the Victory Markets well, had no detectable BTEX compounds, PAHs, or total cyanide. BTEX compounds were measured in at least one round in six wells (GW91-1, GW91-2D, GW91-4SH, GW91-4D, GW91-5, and GW91-6), with the highest concentration of 1.24 mg/L measured at GW91-2D during the second round. This well was located upgradient from the site, but just downgradient from a former UST on the Victory Markets property. The source of the BTEX in groundwater in this well was suspected to be from leaking of the petroleum product stored in the nearby UST. Total BTEX was found in the on-site and downgradient monitoring wells, with 1.19 mg/L measured in groundwater from GW91-6, just downgradient of the former Norwich Aero Products building. Similarly, total PAHs were found at the same six wells, with the highest concentration of 52.4 mg/L measured at GW91-4D, in the area of the former gas oil tank.

During Task II, total PAHs were measured upgradient, on-site and downgradient from the site. Total cyanide was also measured in groundwater samples from six wells (GW91-1, GW91-2SH, GW91-4SH, GW91-4D, GW91-5, and GW91-6) with the only concentrations of total cyanide above the NYSDEC Class GA groundwater standard of 0.2 mg/L measured at the GW91-4SH and GW91-4D well pair. The maximum total cyanide concentration was 0.95 mg/L, measured in the groundwater sample from GW91-4D during the second round of sampling. PCBs were not detected in any samples. Elevated levels of metals were found in samples from upgradient, on-site and downgradient, including several metals that were measured above NYSDEC Class GA standards or guidance values. The Task II report concluded that metals were widespread, may

NYSEG: Norwich SRI Report

Site Background

have been attributable to turbidity in the samples, and that no obvious upgradient or on-site

source of metals was identified.

During the Task III investigation, two more rounds of samples were collected from the eight

monitoring wells installed during Task II, the eight new monitoring wells, and the Victory

Markets supply well and analyzed for VOCs, SVOCs, metals, and total cyanide. The

concentrations in the eight Task II wells were similar to what were measured in the second round

of sampling. A well pair (GW92-9SH and GW92-9D) was installed upgradient of the former

UST located upgradient from the site. Low levels (0.001 to 0.004 mg/L) of total PAHs were

detected in the deeper well and total cyanide was detected in the shallow well at 0.015 mg/L

during one round of sampling and analysis.

During Task III, three wells (GW92-10, GW92-12, and GW92-13) were installed to the

southwest and southeast of the site (not directly downgradient). Groundwater was collected from

these three locations and samples had no detectable BTEX, PAHs or total cyanide during both

rounds. Lastly, three wells (GW92-8, GW92-11SH, and GW92-11D) were installed further

downgradient from GW91-5 and GW91-6. For groundwater samples from these three wells, the

maximum concentration of total BTEX was 0.45 mg/L (GW92-11D); while the maximum

measured concentration of total PAHs was 0.32 mg/L (GW92-8). The maximum total cyanide

concentration for these wells of 0.073 mg/L was measured in GW92-8.

2.3.3.3.2 Recent Groundwater Trends

Although there were multiple rounds of groundwater data collected during the 1990s, those data

predate the IRM performed in 1997 and the subsequent air sparging/SVE system operation from

1999 to 2003. As a result, the SRI Work Plan relied on the more recent and likely to be more

pertinent groundwater data, which were collected from 1999 through 2003.

Table B-1 and Table B-2 show the groundwater results for the June 2003 sampling round which

was the last event preceding the SRI activities. As shown in the tables, one or more compounds

were measured above the NYSDEC Class GA standards or guidance values at eight of the ten

wells where samples were analyzed by EPA Method 8021 and EPA Method 625. The only two

NYSEG: Norwich SRI Report

October 2006

2-12

wells with no exceedances of groundwater standards were GW91-5 and GW92-12. The monitoring wells most impacted by VOCs were GW91-6, GW01-14, GW01-15S, SPMP-1S, and SPMP-2S, each of which had several VOCs measured above the NYSDEC Class GA standards and guidance values. The monitoring wells most impacted by PAHs were SPMP-1S and SPMP-2S, which both had several PAHs measured above the NYSDEC Class GA groundwater standards or guidance values. In addition, four other monitoring wells, GW91-5, GW92-11SH, GW01-14, and GW01-15S, had exceedances for acenaphthene or naphthalene. From these results, it was evident that the groundwater quality was impacted on-site and downgradient of the site from source material in the subsurface. During the September 2, 2004 water level gauging event, the field technician noted presence of NAPL (brown/orange color) in SMPM-1S and VPMP-1, as well as very viscous tar in monitoring well GW01-15D.

Because of the recent remedial activities, including the source removal excavation in 1997 and the air sparging/SVE system that operated from 1999 to 2003, one might expect to see a decreasing trend of chemical concentrations in groundwater. Figure A-3 and Figure A-4 depict benzene and naphthalene concentrations measured in groundwater samples from monitoring well GW-01-15S. Figure A-5 and Figure A-6 show the corresponding total VOC and total SVOC concentrations data for this monitoring well. These concentration data showed some fluctuations in the measured levels of benzene, naphthalene, total VOC, and total SVOC but no discernable decreasing trend over time. Figure A-7 and Figure A-8 show the benzene and naphthalene concentrations from 1999 to 2003 in downgradient well GW91-6. As shown in these two figures, there appeared to be a downward trend in benzene and naphthalene concentrations in this monitoring well. However, as shown in Figure A-9 and Figure A-10, the total VOC and total SVOC concentrations did not exhibit this same downward trend over time.

Figure A-11 and Figure A-12 show time-series plot of measured benzene and naphthalene in groundwater samples from monitoring well GW01-14. Total VOC and total SVOC data for this well are presented in the time series plots shown in Figure A-13 and Figure A-14. These figures suggested that there was essentially no decrease or reduction in groundwater concentrations for these constituents in this well. The benzene concentrations in groundwater from 1999 to 2003 in monitoring well GW92-11D are shown in Figure A-15, which showed fluctuations in benzene

NYSEG: Norwich SRI Report

concentrations over time but did not indicate a decreasing trend over time. In contrast, Figure A-16 shows a decreasing trend in benzene concentrations in groundwater at GW92-8 from 1999 to 2003. Monitoring well GW92-8 is located cross-gradient from GW92-11D and appeared to be closer to the edge of the dissolved plume.

Overall, the groundwater concentrations did not consistently show a decrease in dissolved MGP constituents over time. As a result, additional investigation to determine the nature and extent of potential source material remaining in the subsurface was warranted. In addition, the full extent of the off-site groundwater plume had not been delineated, particularly to the west and south of GW92-11SH and GW92-11D. Therefore, additional investigations were necessary to delineate the boundaries of the groundwater plume, which are the focus of this SRI.

2.3.3.4 Soil Gas

During Task II, 47 soil vapor samples were collected from across the site and around its perimeter by ES. The objectives of the soil gas survey were to identify sources of VOC contamination in the unsaturated zone beneath the site, and to determine if a groundwater contaminant plume was present, and if so, to determine its lateral extent. Three of these samples were sent to a laboratory and analyzed to confirm field results. Field samples were analyzed insitu using a portable Photovac GC unit. The results of these analyses indicated benzene detects in 21 samples, with total BTEX ranging from 0 parts per million (ppm) to 65 ppm. In general, the highest soil vapor concentrations were in areas where there was visual evidence of stained soil or oily residue on the soil vapor probes. The highest concentration of BTEX occurred at the north property line in the center of the site, but a line of sample points 50 feet north of that property line did not have detects for any BTEX in the soil gas samples, indicating that the VOC source was localized, but may have extended off-site to the north to some extent. Laboratory samples also detected BTEX compounds, as well as chlorinated solvents, hexanes, heptane, butane, and pentane. Laboratory and field results were not directly comparable. Based on the age of the soil gas samples and the remedial activities that have occurred since the collection of the soil gas samples, the soil gas results were not relied upon in developing the scope of this SRI.

NYSEG: Norwich SRI Report

3 PROJECT APPROACH

This section of the report presents the data gaps that were addressed by this SRI to satisfy the

project objectives discussed in Section 1.2. The additional data needs were identified based on a

review of available information for the site, including the Task II and Task III reports written by

ES, the Phase III IRM report written by Fluor Daniel, a semi-annual status report prepared by

Shaw for the air sparging/SVE system, and groundwater monitoring results collected between

1991 and 2003.

During the preparation of the Work Plan for this SRI, the Ish Inc. team completed a review of the

documents and data provided by NYSEG for the Norwich former MGP site. Based on this

review and understanding of the site, areas for further investigation were identified, along with

the rationale for additional/supplemental investigation activities to delineate the "nature and

extent" of sources and impacts that may warrant potential remediation following the completion

of this SRI. This approach was approved by NYSDEC prior to implementation.

Figure A-17 shows the previously installed monitoring wells at the site along with the

suspected/extrapolated extent of the groundwater plume based on the pre-SRI data. Figure A-18

shows the proposed SRI sampling locations for delineating the nature and extent of source

materials as well as the extent of groundwater plume. The proposed additional piezometers were

intended to clarify the groundwater flow field at the site and surrounding areas. The

investigation rationale and the original scope of the proposed effort from the Work Plan are

presented below. The scope of the investigation was expanded during the execution of the SRI

work, as described in Section 5, which summarizes the field activities that were performed.

3.1 DELINEATE NATURE AND EXTENT OF SOURCE MATERIALS REMAINING IN

SUBSURFACE

Based on the persistent groundwater plume and the estimated extent of the plume shown in

Figure A-17, there was a need to examine the subsurface for potential source materials. There

3-1

NYSEG: Norwich SRI Report

Project Approach

was a source removal IRM in 1997 that included 11,500 tons of on-site material and

subsequently an air sparging/SVE system was operated from 1999 to 2003. Yet, the

groundwater concentrations in monitoring wells from 1999 to 2003 did not consistently show a

decreasing trend over time for dissolved MGP constituents. Therefore, additional investigation

was warranted to determine the nature and extent of residual source material in the subsurface

and its leaching potential.

Between 20 and 30 direct push soil borings were proposed by Ish Inc. for this SRI work effort.

Figure A-18 shows 22 of the proposed direct push boring locations and it was anticipated that up

to eight more may have been needed to fully delineate the nature and extent of impacts to the

soil. These borings were proposed at both on-site and off-site locations within the suspected

plume to search for presence of NAPL and/or heavy PAHs contamination in the subsurface.

3.2 GROUNDWATER PLUME DELINEATION

The extent of the groundwater plume had not been delineated during previous investigations. In

particular, additional information was needed for on-site and downgradient areas of the former

Norwich Aero Products building (recently demolished by NYSEG). As a result, up to ten

piezometer locations were proposed to characterize the thin shallow water bearing zone at the

site and surrounding area (see Figure A-18).

3.3 SOIL GAS/SOIL VAPOR ASSESSMENT

Prior to implementing the SRI, NYSEG recognized that there would likely be a need to conduct

a soil-vapor/soil gas sampling program in the delineated groundwater plume. However, NYSEG

believed it was prudent to first complete the residual source identification and groundwater

plume delineation work proposed in the SRI Work Plan and then design, and carry out soil

gas/soil vapor work, as needed. Based on the results of the SRI, a soil vapor intrusion (SVI)

evaluation was warranted and an SVI assessment work plan was prepared by Ish Inc. and

approved by the NYSDEC in March 2006. The purpose of the SVI assessment was to

Collect soil vapor samples from underneath the slabs of identified buildings and analyze

3-2

for volatile organic compounds (VOCs),

NYSEG: Norwich SRI Report

- Collect indoor air sample within the identified residences and commercial buildings to be analyzed for VOCs, and
- Collect outdoor ambient air samples for VOC analysis.

NYSEG: Norwich SRI Report

4
INVESTIGATION METHODS

This section summarizes the field methods and sample collection techniques used during the

execution of this SRI, including sample identification, sample handling, equipment

decontamination, field quality assurance and quality control procedures, and health and safety

procedures. In addition, the analytical methods used are discussed in this section. For more

details on the procedures followed, please refer to the Work Plan.

4.1 FIELD METHODS

4.1.1 Underground Utilities

Prior to performing any subsurface investigations in Norwich, Dig Safely New York (formerly

UFPO) was contacted at least two full days before excavation activities were scheduled to begin.

All underground utilities, including electric, telephone, cable TV, sewers, water, etc., were

identified and marked. In addition, before working at any location, a visual survey for signs of

potential underground utilities was made. Other potential on-site hazards, such as sharp objects,

overhead power lines, and building hazards, were also noted and any necessary safety

precautions were taken to ensure the safety of site workers and the public.

4.1.2 Subsurface Soil Investigation

4.1.2.1 Direct Push Soil Borings

All of the soil borings were advanced using direct push techniques, which involved using a

hydraulic hammer mounted on a conventional drill rig or a trailer (for limited access locations) to

drive Geoprobe® Macro-Core samplers. The Macro-Core samplers are approximately 2 inches

in diameter and 4 feet long. For each 4-foot depth interval, a new approximately 1.5-inch

diameter acrylic liner was inserted into the sampler to hold the soil core as the sampler was

4-1

advanced. All borings were sampled continuously to depth.

NYSEG: Norwich SRI Report

After the maximum depth of the boring was reached at each location, it was either completed as a monitoring well or a piezometer, or properly abandoned by grouting to grade from the bottom up. NYSEG personnel surveyed the locations and elevations of all the soil borings (Appendix C).

All remaining soils from each core after sampling were containerized in Department of Transportation (DOT)-approved 55-gallon drums. Following analysis of soil samples from the drums, NYSEG arranged for disposal of the soils at an approved facility.

4.1.2.2 Soil Sampling

All Macro-Core acrylic sleeves were opened and immediately screened with a photoionization detector (PID) for organic vapors in an undisturbed portion of the liner. The soils were geologically logged and the pertinent information was recorded, including the recovery in the sampler, soil color, moisture content, density, soil description, staining, and PID readings. If NAPL was present, the locations and quantity observed was also noted. In general, borings were advanced until there was apparent decrease, based on visual and olfactory evidence, in the degree of contamination present. Sample intervals were identified based on field observations and judgment. The soils from these intervals were collected using clean stainless steel spoons and appropriate sample jars. The sample jars were labeled and notes regarding the samples were recorded in the field log book.

4.1.3 Groundwater Monitoring Installations

4.1.3.1 Monitoring Well Installation

In one instance, a direct push soil boring was completed as a NAPL collection monitoring well. In this case, conventional 4.25-inch hollow stem augers (HSAs) were used to overdrill the direct push boring. The well was constructed of 2-inch diameter flush-threaded PVC pipe, with a 10-foot, 20-slot screen, and a 2-foot long DNAPL sump. An appropriately-sized silica sand pack was placed such that it extended 2 to 3 feet above the top of the screen. Then, a bentonite/grout seal was placed above the sand pack, and the annular space was filled to near the surface with grout (Appendix C). The monitoring well was protected at the surface by a stand pipe emplaced

NYSEG: Norwich SRI Report

in concrete. A lock was used to secure the cap of the stand pipe and NYSEG personnel surveyed the location and elevation of the monitoring well (Appendix C).

Following installation, the monitoring well was developed to establish hydraulic connection between the well and surrounding soils. The well was developed through a combination of surging and pumping to remove suspended sediments from the water column until the purge water was relatively clear and free of sediment. Development water was contained in DOT-approved 55-gallon drums or polyethylene aqueous storage tanks, pending sampling and analysis by the Ish Inc. team and proper disposal by NYSEG.

4.1.3.2 Temporary Piezometer Installation

Piezometers were installed using direct-push methodology to a depth determined by previous boring logs, direct push soil sampling performed near that location and/or groundwater gauging information from existing wells as well as by examining current direct-push boreholes. Specifically, 2.125-inch probe rods were fitted with an expendable tip and driven into the ground using a hydraulic hammer mounted on a conventional drill rig or a trailer. After the casing was driven to the appropriate depth, 1-inch schedule 40 polyvinyl chloride (PVC) pipe was inserted inside the drive casing. The piezometers were screened using 1-inch flush-joint PVC with 0.010-inch slotted screens and O-rings between riser connections and were completed with enough riser pipe to reach the ground surface. After inserting the PVC into the casing, the probe rods were pulled up while the PVC was held in place. Then, a sand pack was placed in the annular space that remained after any caving, such that the sand level was at least 2 feet above the top of the screen. Then, a bentonite/grout seal was placed above the sand pack, and the annular space was filled to near the surface with grout. Finally, flush-mount curb boxes were installed at each piezometer location and a locking cap was placed on the top of the PVC riser. NYSEG personnel surveyed the locations and elevations of the piezometers.

Following installation, the piezometers were developed to establish hydraulic connection between the piezometer screens and surrounding aquifer material. They were developed through a combination of surging and pumping to remove suspended sediments from the water column, until the purge water was clear and relatively free of sediment. Development water was

NYSEG: Norwich SRI Report

contained in DOT-approved 55-gallon drums or polyethylene aqueous storage tanks, pending

analysis and appropriate disposal.

4.1.4 Groundwater Sampling

Groundwater sampling at piezometers and monitoring wells was performed using low-flow

purging methodology. Although the Work Plan stated that the Grundfos Redi-flo2 or another

comparable submersible pump would be used for monitoring wells, very cold conditions during

the full groundwater sampling event in December 2005 caused the submersible pumps to freeze.

Ish Inc. suggested and NYSDEC approved (via email correspondence) a change to using

peristaltic pumps for well sampling during the full groundwater sampling round. As planned for

the piezometers, peristaltic pumps were used for purging and collecting groundwater samples.

Prior to sampling, each piezometer or well was gauged to determine the water level in the well

and calculate the water in one well volume. The sample tubing was placed approximately 2 feet

above the bottom of the screened interval. Then, purging and sampling were performed at a rate

of 150 mL/min. Details concerning temperature, pH, and conductivity were recorded after every

one-half well volume was removed during the purging process (Appendix D). Sampling was

performed after three consecutive readings for pH, conductivity, and temperature had stabilized

to within 10% and a minimum of two well volumes had been removed.

4.1.5 SVI Evaluation

4.1.5.1 Site Survey and Inventory

Site surveys and chemical inventories were completed prior to the SVI sampling for each of the

buildings included in the sampling program. The purpose of the survey and inventory was to

determine the use and status of the location, to interview the occupant or owner and to complete

an inventory of potential chemical sources stored at the location. The occupant or owner was

interviewed for most locations using the NYSDOH Indoor Air Quality Questionnaire and

Building Inventory from the NYSDOH Soil Vapor Intrusion Guidance. Inventories were

completed for the basement (where present) and first floors of the sampling location areas. Also

NYSEG: Norwich SRI Report

October 2006

locations with dirt floor basements were identified. The site survey field forms are included in

Appendix E.

4.1.5.2 SVI Sample Collection

4.1.5.2.1 Indoor and Outdoor Air Samples

During the collection of indoor air samples, the intake was placed in the breathing zone, at

approximately 3 to 5 feet above the floor. To the extent possible, based on the building features,

the samples were collected in a central location away from outside windows or doors. At the

time of retrieval, any noticeable changes in the condition of the sampling area, such as open

windows or doors, operation of the heating/ventilation system, or condition or location of items

in proximity to the canister were noted on the sampling form.

The outdoor ambient air samples were collected concurrent with the indoor air sampling from

three locations in proximity to the buildings being sampled each day. The intake of the sample

was placed at the breathing zone height, approximately 3 to 5 feet above grade.

The sampling procedure for collecting both indoor and outdoor ambient air was essentially the

same. First, the brass plug was removed from canister fitting. Then, a pre-calibrated/certified

24-hour flow controller with particulate filter was attached to the Summa® Canister and the

initial vacuum of -30 PSI was confirmed. Next, the field team opened the canister valve to

initiate sample collection and recorded the start time and the initial vacuum. After 24 hours, the

final pressure was checked and if within specifications, recorded. Then, the valve was closed

and the end time recorded. All relevant information was filled out on the Summa® Canister

Sampling Field Data Sheet (Appendix F).

4.1.5.2.2 Sub-slab Samples

For the sub-slab samples where a concrete floor was present, a 1-inch hole was drilled in the

concrete slab. The hole, which served as the sampling port, was extended approximately 2

inches deeper than the bottom of the slab. Teflon tubing was inserted into the hole and sealed at

the floor surface using non VOC-containing modeling clay. A bucket equipped with a fitting for

NYSEG: Norwich SRI Report

October 2006

a Tedlar bag was placed over each sub-slab sampling port. A 1-liter Tedlar bag was filled with

helium and attached to the bucket creating a helium enriched atmosphere around the sampling

port. The integrity of the sampling port was tested by measuring the concentration of helium in

the sample tubing after purging using a Dielectric Technologies helium detector. If the measured

helium concentration was less than 20%, the sampling port was considered to have sufficient

integrity, and was sampled. All samples were collected using 6-liter summa canisters with flow

controllers that allowed filling over a period of 24 hours. The filling procedure for sub-slab

sample canisters was generally the same as described above for the indoor and outdoor air

samples.

For basements where a concrete floor was not present or only covered a small portion of the

basement, a soil probe was installed to collect a sub-slab equivalent sample. To collect these

samples, a 1 inch Geoprobe® rod was fitted with a PRT adapter tip holder and expendable tip

driven to a depth of 3 feet below the basement floor. Then, a 4-foot by 4-foot sheet of plastic

was placed around the soil probe. Hydrated bentonite clay was used to seal the edges to the

ground and a thin layer of sand was used to weigh it down. The probe rod was sealed to the

surrounding soil using hydrated bentonite. Next, a smaller sheet of plastic (approximately 18

inches by 18 inches) was placed over the probe and sealed with hydrated bentonite around the

edge. The helium tracer testing was performed by introducing helium underneath this plastic

sheet from a filled 1 liter Tedlar bag via a piece of tubing. Similar to the procedure for concrete

slabs, if the measured helium concentration was less than 20%, the sampling port was considered

to have sufficient integrity, and was sampled.

At each of the sub-slab sampling locations, field measurements were collected for CO₂, CH₄, O₂,

and total VOCs. Measurements for CO₂, CH₄ and O₂ were collected using a portable multi gas

meter (Landtec GEM 2000) and total VOCs were determined using a portable PID meter (ppb

RAE).

4.1.6 Sample Identification

Each soil and groundwater sample was assigned a unique field sample ID according to the

following scheme:

NYSEG: Norwich SRI Report

October 2006

NO-DP10(16.5-17.5), where:

NO Norwich Former MGP Site

DP10 Sequential number for Direct Push (DP) boring, Piezometer (PZ), or

Monitoring Well (GW04-16, with 04 representing the year installed)

(16.5-17.5) Sample interval in feet below grade (for direct push locations only)

Each soil gas, sub-slab, and indoor air sample was assigned a unique field sample ID according to the following naming system:

NO-12BAB, where:

NO Norwich Former MGP Site

12BA Street address location – 12 Baldwin

B Sample location, B - basement sample, F - first floor sample, S- sub-slab

sample

Each outdoor air sample was assigned a unique field sample ID according to the following naming system:

NO-UP062803, where:

NO	Norwich Former MGP Site
UP	Two-digit code for sample location – upwind (UP), background or cross wind (BK), and in the middle or center of the sampling area (MI and CE)
06	Two-digit code for year when the sample collected
28	Two-digit code for day when the sample collected
03	Two-digit code for month when the sample collected

4.1.7 Sample Handling

All soil sample containers were QC-acceptable, pre-cleaned glass containers with Teflon-lined lids. Water samples were collected in QC-acceptable, glass jars for organic compounds (preserved with hydrochloric acid for VOCs) or plastic bottles preserved with sodium hydroxide for total cyanide analysis. Vapor and air samples were collected in batch-certified cleaned 6-liter summa canisters provided by the laboratory. All containers were labeled with the sample ID, date and time of collection, the analysis to be performed, and the personnel performing the sampling.

NYSEG: Norwich SRI Report

All soil and groundwater samples were placed on ice immediately after sampling and then

maintained at approximately 4°C throughout the chain-of-custody (COC). Sample containers

were carefully packed in foam and/or bubble wrap to prevent breakage or damage during

shipment. Complete and accurate COC forms (Appendix G) were filled out and shipped with the

samples to the appropriate laboratory via an overnight carrier.

4.1.8 Decontamination Procedures

During soil sampling, two decontamination areas were set up for the decontamination of field

equipment. All decontamination of equipment occurred in these areas. The first area was set up

for drilling equipment decontamination and the second area was set up for the decontamination

of sampling equipment. A new sampling equipment decontamination area was located in the

vicinity of each boring.

All non-disposable field sampling equipment used for the collection of soil samples, such as

spatulas and split-spoons, were decontaminated prior to each use by the following procedure:

knock, scrape, or wipe off excess soil,

• pre-rinse with tap water,

• wash with non-phosphate detergent and tap water,

• rinse with tap water,

• rinse with methanol,

• rinse with distilled water, and

• air dry on a clean surface.

Drilling equipment was decontaminated between each boring using a pressure washer or steam

cleaner. All decontamination fluids were collected and containerized, pending analysis and

4-8

appropriate disposal.

NYSEG: Norwich SRI Report

4.1.9 Waste Handling

The investigation-derived waste (IDW) generated during the SRI field activities consisted of solid waste such as sample liners, soil cuttings from borings, groundwater purged from sampling locations, and wastewater from decontamination of reusable drilling and soil sampling equipment. Solid waste, soil, and wastewater were contained in DOT-approved 55-gallon drums. Composite samples were collected for the wastewater and soil samples to characterize the wastes for disposal. The wastewater samples were analyzed for total benzene and flashpoint (ignitability), while the soil samples were analyzed for TCLP benzene, reactivity, and pH. Waste materials were disposed of properly by NYSEG.

4.1.10 Quality Assurance and Quality Control

Appropriate Quality Assurance/Quality Control (QA/QC) procedures, as detailed in the project-specific Quality Assurance Project Plan (QAPP) were followed during the field sampling, sample handling, and sample analysis. For example, for field work, all methods and materials were documented. All sample containers were pre-cleaned, QC-acceptable vessels and all samples were packed, shipped, and stored in accordance with the QAPP procedures to ensure sample integrity.

Once samples were collected for shipment, COC procedures were used to document sample possession. In addition, field rinsate blanks, matrix spikes, and duplicate samples were analyzed to provide checks regarding the impacts of sampling and sample handling on analytical results, variation among samples, and analytical precision and accuracy.

4.1.11 Health and Safety

A project-specific Health and Safety Plan (HASP) was prepared for this SRI. The HASP contained project-specific information including emergency contacts, the route to the nearest hospital, project-specific hazards, and details of the Community Air Monitoring Plan (CAMP), which was implemented during the SRI. Based on remedial investigation experiences at other MGP sites, modified Level D personnel protection was planned and implemented. The level of protection required by site workers would have been upgraded as discussed in the HASP, if conditions warranted such a modification. However, conditions during the SRI activities did not

NYSEG: Norwich SRI Report

warrant an upgrade beyond modified Level D at any time during field activities. Similarly, no vapor or particulate response actions were required during implementation of the CAMP.

4.2 SAMPLE ANALYSIS

The potential constituents of concern at the site and surrounding area were those related to the residuals from former MGP processes, including BTEX, PAHs, petroleum fuels, and cyanide. Therefore, soil and groundwater samples were analyzed for various analytical parameters, including Target Compound List (TCL) VOCs, TCL SVOCs, and total cyanide. Additionally, four soil samples were collected and analyzed for total organic carbon (TOC). Selected soil samples were also subjected to Synthetic Precipitation Leaching Procedure (SPLP) leaching tests (EPA Method 1312) to obtain data on the release potentials for BTEX and PAH compounds from the impacted soils from the Norwich site and surrounding area. During the SVI evaluation, samples were collected in 6-liter Summa canisters and analyzed for VOCs by EPA Method TO-15 by STL. Lastly, wastewater samples were analyzed for total benzene, flashpoint (ignitability) and pH, while the soil IDW samples were analyzed for TCLP benzene, reactivity, and pH. The analytical methods used during the investigation are summarized in Table 4-1.

Table 4-1 Analytical Methodologies

Parameter	Method	Description
TCL VOCs	EPA 8260	VOCs by GC/MS Capillary Column Technique
TCL SVOCs	EPA 8270	SVOCs by GC/MS Capillary Column Technique
SPLP TCL VOCs	EPA 1312/8260	Aqueous Leaching with GC/MS Analysis for VOCs
SPLP TCL SVOCs	EPA 1312/8270	Aqueous Leaching with GC/MS Analysis for SVOCs
Total Cyanide	335.2/9010B	Acid Distillation and Colorimetric
TOC	EPA 9060	Total Organic Carbon Analyzer
VOCs in Air	EPA TO-15	Summa Canisters with GC/MS Analysis
TCLP Benzene	EPA 1311/8260	Aqueous Leaching with GC/MS Analysis for Benzene
Reactivity	SW846 Ch. 7	
pH Soil/Water	EPA 9045/150.1	Capillary Ion Electrophoresis
Ignitability	EPA 1020	Setaflash Closed Tester

NYSEG: Norwich SRI Report

Ish Inc.'s analytical laboratory subcontractors for chemical analyses, Chemtech Laboratories

(Chemtech), Accutest Laboratories (Accutest), and Severn Trent Laboratories (STL) - Knoxville

are certified by the ELAP and are participating members of the NYSDOH ASP-CLP.

4.2.1 Data Quality Objectives

Laboratory analyses of environmental samples were conducted in accordance with NYSDOH

ASP protocols, with Category B deliverables. As part of the ASP analyses, Chemtech, Accutest,

and STL generated analytical data packages for review following the "Guidance for the

Development of Data Usability Summary Reports", as documented by the NYSDEC Division of

Environmental Remediation.

4.2.2 Quality Assurance and Quality Control (QA/QC) Samples

An integral part of the overall analytical program was the collection of appropriate QA/QC

samples. Field blanks were collected to verify the effectiveness of field decontamination

procedures for reusable sampling equipment and analyzed for the same parameters as the

associated environmental samples. Trip blanks accompanied groundwater samples to be

analyzed for TCL VOCs.

Field duplicate samples were analyzed at a frequency of one per 20 per environmental media, for

the same parameters as parent media samples. The reproducibility and homogeneity of the

samples was assessed by determining the Relative Percent Difference (RPD) for duplicate

samples. Matrix spike/matrix spike duplicate (MS/MSD) samples were analyzed at a frequency

of one per 20 field samples or one per week.

4.2.3 Data Validation Screening

The Ish Inc. team performed a review of QA/QC data generated by Chemtech, Accutest, and

STL. This validation included a review of pertinent QA/QC data such as sample extraction and

analysis, holding times, calibration, a review of laboratory blanks and QA/QC sample results,

and a review of the analytical case narrative. A Data Usability Summary Report (DUSR) was

prepared which includes a compliance chart, a list of samples included in each sample delivery

NYSEG: Norwich SRI Report

October 2006

group and recalculations of sample results (Appendix H). Nonconforming QA/QC results were evaluated with respect to their implications for data reliability and usability, and data results were flagged accordingly on the results sheets. These qualifiers were entered into the project-specific database and appear in the summary tables presented in Appendix B of this report.

NYSEG: Norwich SRI Report

5

SUPPLEMENTAL REMEDIAL INVESTIGATION (SRI) FIELD ACTIVITY SUMMARY

The Work Plan for the SRI was intended to be a guide for the field activities to be undertaken.

Field judgment and discussions of results with NYSDEC and NYSEG as work progressed

modified and adjusted the field investigation activities, as needed, in order to meet the project

objectives. The field investigation for this SRI was performed in multiple phases and this section

presents a summary of the field activities that were completed, including significant additional

work beyond what was put forth in the Work Plan.

Ish Inc. mobilized to the site and provided all personnel and equipment for the field and

analytical tasks completed for this SRI and summarized in the following subsections. The direct

push activities were subcontracted to Lyon Drilling Company. The chemical analyses were

subcontracted to Chemtech of Sheffield, New Jersey and Accutest of Marlborough,

Massachusetts and STL of Knoxville, Tennessee.

5.1 SUBSURFACE SOIL INVESTIGATION

A focused direct push sampling program was used to generate geologic and soil quality data to

address the project objectives. Based on the results of the previous work at the site and

surrounding area, it appeared that a subsurface source of BTEX and PAHs remained after the

remedial activities that were conducted from approximately 1997 to 2003. A summary of the

sampling locations is discussed in the following subsections.

5.1.1 Direct Push Soil Borings

In the Work Plan, 20 to 30 direct-push soil borings were planned to determine the nature and

extent of remaining source materials in the subsurface. Twenty-two of these proposed locations

(DP01 through DP22) were identified specifically on a map of the site and surrounding area, as

5-1

NYSEG: Norwich SRI Report

shown on Figure A-18. As the off-site work expanded, 39 additional direct push borings (DP23 through DP61) were installed as part of the field effort.

Table 5-1 lists the 65 direct push borings with their locations and rationale and they are shown on Figure A-19. The installation of direct push soil borings was performed in phases. As more data was gathered, investigation activities expanded and access agreements were obtained to perform the work on public and private property. Locations DP05 through DP18, DP20, DP21A, DP21B, DP23 and DP24 were installed from October 25 to 29, 2004, while DP01 and DP03, DP04A, DP04B, DP04C, DP19, DP22, DP25 through DP33, DP35 and DP36 were installed from April 25 to 30, 2005. Later, DP37, DP30, DP40, DP40A, DP41, and DP43 were installed on May 19 and 20, 2005. DP34, DP39, DP42, DP44 through DP50 were installed from June 13 to 16, 2005. Lastly, DP51 through DP61 were installed on from October 10 to 12, 2005.

Table 5-1
Direct Push Boring Locations and Rationales

Direct Push Boring (Depth)	Location/Rationale
DP01 (24 feet)	Within footprint of former relief holder, to collect soil samples and examine for the presence of NAPL
DP02 (24 feet)	Within footprint of former relief holder, to collect soil samples and examine for the presence of NAPL
DP03 (28 feet)	Southwest of former above ground distribution holder, to collect soil samples and examine for the presence of NAPL
DP04A (3.7 feet)	Within the former above ground distribution holder, to collect soil samples and examine for the presence of NAPL
DP04B (3.6 feet)	Within the former above ground distribution holder, to collect soil samples and examine for the presence of NAPL
DP04C (24 feet)	Just southeast of former above ground distribution holder, to collect soil samples and examine for the presence of NAPL
DP05 (20 feet)	Southwest of former relief holder and just north of the former gas plant building, to collect soil samples and examine for the presence of NAPL
DP06 (24 feet)	Just south of former relief holder, to collect soil samples and examine for the presence of NAPL
DP07 (24 feet)	Southwest of former above ground distribution holder, to collect soil samples and examine for the presence of NAPL

NYSEG: Norwich SRI Report

Table 5-1 (cont.) **Direct Push Boring Locations and Rationales**

Direct Push Boring (Depth)	Location/Rationale
DP08 (16 feet)	Southeast of former above ground distribution holder, to collect soil samples and examine for the presence of NAPL
DP09 (20 feet)	Western portion of site, just east of former above ground oil tanks, to collect soil samples and examine for the presence of NAPL
DP10 (24 feet)	East of the former tar wells and west of the purifier house, to collect soil samples and examine for the presence of NAPL
DP11 (17.2 feet)	East of the former purifier house, to collect soil samples and examine for the presence of NAPL
DP12 (24 feet)	Eastern portion of site, southwest of circular above ground oil tank, to collect soil samples and examine for the presence of NAPL
DP13 (17.8 feet)	Just south of southwestern corner of former Aero Products building, to collect soil samples and examine for the presence of NAPL
DP14 (20 feet)	Just south of central portion of former Aero Products building, to collect soil samples and examine for the presence of NAPL
DP15 (20 feet)	Just south of southeastern corner of former Aero Products building, to install PZ04, collect soil samples and examine for the presence of NAPL
DP16 (20 feet)	Just northwest of northwestern corner of former Aero Products building, to collect soil samples and examine for the presence of NAPL
DP17 (20 feet)	Western edge of site, between former coal sheds, to collect soil samples and examine for the presence of NAPL
DP18 (28 feet)	Northwest of former gas plant building, to collect soil samples and examine for the presence of NAPL, well GW04-16 installed with DNAPL sump
DP19 (20 feet)	East of former above ground distribution holder, to install PZ11, collect soil samples and examine for the presence of NAPL
DP20 (24 feet)	Northeast of former relief holder, to collect soil samples and examine for the presence of NAPL
DP21A (2.1 feet)	West of former electric plant, to collect soil samples and examine for the presence of NAPL
DP21B (7.4 feet)	West of former electric plant, to collect soil samples and examine for the presence of NAPL
DP22 (24 feet)	West of former relief holder in footprint of former oil tank, to collect soil samples and examine for the presence of NAPL
DP23 (24 feet)	Backyard of 37 Front Street, to install PZ06, collect soil samples and examine for the presence of NAPL

Table 5-1 (cont.) **Direct Push Boring Locations and Rationales**

Direct Push Boring (Depth)	Location/Rationale
DP24 (24 feet)	Backyard of 37 Front Street, to install PZ05, collect soil samples and examine for the presence of NAPL
DP25 (20 feet)	Backyard of 43 Front Street, to install PZ10, collect soil samples and examine for the presence of NAPL
DP26 (24 feet)	West of 40 Front Street on railroad property, to install PZ09, collect soil samples and examine for the presence of NAPL
DP27 (32 feet)	Northwest of former electric plant building in plaza parking lot, to install PZ12, collect soil samples and examine for the presence of NAPL
DP28 (28 feet)	North of former MGP plant facilities in plaza parking lot, to collect soil samples and examine for the presence of NAPL
DP29 (24 feet)	North of former MGP plant facilities right in front of plaza building, to collect soil samples and examine for the presence of NAPL
DP30 (24 feet)	Southeast of former Aero Product building in the backyard of 47 Front Street, to collect soil samples and examine for the presence of NAPL
DP31 (24 feet)	Southeast of former Aero Product building in the backyard of 47 Front Street, to collect soil samples and examine for the presence of NAPL
DP32 (16 feet)	ROW on north side of Front Street at intersection with Columbia, to install PZ13, collect soil samples and examine for the presence of NAPL
DP33 (20 feet)	ROW on Columbia Street east of house at 42 Front Street, to install PZ14, collect soil samples and examine for the presence of NAPL
DP34 (24 feet)	Backyard of 40 Front Street, to install PZ15, collect soil samples and examine for the presence of NAPL
DP35 (24 feet)	West of plaza entrance off of Front Street, to install PZ16, collect soil samples and examine for the presence of NAPL
DP36 (20 feet)	West of plaza entrance off of Front Street, to install PZ17, collect soil samples and examine for the presence of NAPL
DP37 (32 feet)	West of 40 Front Street on railroad property, to collect soil samples and examine for the presence of NAPL
DP38 (28 feet)	East of 30 Front Street on railroad property, to install PZ20, collect soil samples and examine for the presence of NAPL
DP39 (26 feet)	In front of 10 Baldwin Street, to install PZ21, collect soil samples and examine for the presence of NAPL
DP40 (31.5 feet)	East of 12 Baldwin Street on railroad property, to collect soil samples and examine for the presence of NAPL

Table 5-1 (cont.) **Direct Push Boring Locations and Rationales**

Direct Push Boring	Location/Rationale
(Depth) DP40A (8.2 feet)	East of 12 Baldwin Street on railroad property, to collect soil samples and examine for the presence of NAPL
DP41 (24 feet)	West of 10 Columbia Street on railroad property, to install PZ18, collect soil samples and examine for the presence of NAPL
DP42 (28 feet)	In front of 12 Baldwin Street, to install PZ22, collect soil samples and examine for the presence of NAPL
DP43 (24 feet)	Southwest of 12 Columbia Street on railroad property, to install PZ19, collect soil samples and examine for the presence of NAPL
DP44 (28 feet)	Northwest of former electric plant building in plaza parking lot, to install PZ27, collect soil samples and examine for the presence of NAPL
DP45 (28 feet)	Northwest of former coal sheds in plaza parking lot, to collect soil samples and examine for the presence of NAPL
DP46 (24 feet)	Southeast corner of 45 Front Street yard, to install PZ23, collect soil samples and examine for the presence of NAPL
DP47 (28 feet)	North of former MGP plant facilities right in front of plaza building, to install PZ26, collect soil samples and examine for the presence of NAPL
DP48 (28 feet)	East of 12 Baldwin Street on railroad property, to install PZ24, collect soil samples and examine for the presence of NAPL
DP49 (28 feet)	West of 20 Columbia Street on railroad property, to install PZ25, collect soil samples and examine for the presence of NAPL
DP50 (28 feet)	West of 18 Columbia Street on railroad property, to install PZ28, collect soil samples and examine for the presence of NAPL
DP51 (20 feet)	ROW on Columbia Street northeast of house at 12 Columbia Street, to install PZ29, collect soil samples and examine for the presence of NAPL
DP52 (20 feet)	ROW in front of 20 Columbia Street, to install PZ30, collect soil samples and examine for the presence of NAPL
DP53 (20 feet)	ROW at northwest corner of Columbia Street and Brown Avenue intersection, to install PZ31, collect soil samples and examine for the presence of NAPL
DP54 (20 feet)	ROW in front of 19 Brown Street, to install PZ32, collect soil samples and examine for the presence of NAPL
DP55 (24 feet)	Behind building at 13 Brown Street, to install PZ33, collect soil samples and examine for the presence of NAPL
DP56 (20 feet)	Southeast of building at 13 Brown Street, to install PZ34, collect soil samples and examine for the presence of NAPL

Table 5-1 (cont.)
Direct Push Boring Locations and Rationales

Direct Push Boring (Depth)	Location/Rationale
DP57 (20 feet)	ROW in front of 13 Brown Street, to install PZ35, collect soil samples and examine for the presence of NAPL
DP58 (20 feet)	ROW in front of 35 Brown Avenue, to install PZ36, collect soil samples and examine for the presence of NAPL
DP59 (20 feet)	ROW in front of 31 Brown Avenue, to install PZ37, collect soil samples and examine for the presence of NAPL
DP60 (20 feet)	ROW in front of 21 Brown Avenue, to install PZ38, collect soil samples and examine for the presence of NAPL
DP61 (16 feet)	Backyard of 16 Baldwin Street, to install PZ39, collect soil samples and examine for the presence of NAPL

5.2 SUBSURFACE SOIL SAMPLING

During the subsurface soil investigation (direct push soil borings), special care was taken to identify and record soil zones that contained NAPL. Evidence of NAPL included NAPL-saturated soil, visible NAPL droplets, and/or sheens. During the advancement of the soil borings, soils of interest for chemical analysis were collected and submitted for TCL VOCs, and TCL SVOCs. In addition, selected samples were collected and subjected to Synthetic Precipitation Leaching Procedure (SPLP) leaching test (EPA Method 1312) to obtain data on the release potentials for BTEX and naphthalene from soils serving as a potential source of groundwater impacts at the site and surrounding area. Subsurface soil samples were collected where there was visual or field instrument evidence of contamination. Specifically, a worst-case sample was analyzed from each location based on visual, olfactory and PID screening observations in the field. In addition, samples were collected for analysis to characterize different waste types, staining at a different depth interval or to document "clean" soils at the bottom of the boring. A summary of the analyses performed by sample matrix are presented in Table B-3.

In addition to chemical analyses, four subsurface soil samples were analyzed for total organic carbon (TOC). Only samples representative of native materials were collected for TOC analysis.

NYSEG: Norwich SRI Report

This parameter is helpful for evaluating and designing potential remedial alternatives including in-situ chemical oxidation and monitored natural attenuation.

5.3 GROUNDWATER MONITORING PROGRAM

To delineate the impacts in groundwater, the Ish Inc. team installed a network of piezometers using direct push methodology to supplement the existing monitoring wells. In addition, one DNAPL collection well (GW04-16) was installed in an area with significant NAPL in the saturated zone. Details of the groundwater monitoring program for this SRI are presented below.

5.3.1 Piezometer and Monitoring Well Installation

In the NYSDEC-approved Work Plan, 10 piezometers were planned, as shown on Figure A-18. All of the locations were installed as planned, also soil borings were added at some locations (PZ04, PZ05, PZ06, PZ09, and PZ10) to obtain additional data on soil conditions. In addition, 29 piezometers with direct push soil borings were added to the scope of the work to fully delineate the extent of the groundwater plume. A total of 39 piezometers (PZ01 through PZ39) were installed to monitor groundwater quality and are shown on Figure A-19. In addition, Table 5-2 shows the screen intervals of the piezometers, as well as describes their locations and rationales. Each piezometer was screened to intersect the impacted zone at that location.

Table 5-2
Piezometer Locations and Rationales

Piezometer (Screen Interval)	Location/Rationale
PZ01 (7.3 to 17.3 feet)	North of former purifier house, to examine on groundwater quality in the central portion of site
PZ02 (5 to 15 feet)	Southeast of former relief holder, to examine groundwater quality in the central portion of site
PZ03 (7.5 to 17.5 feet)	West of former Aero Products building, to examine groundwater quality near the western edge of the site
PZ04 (7 to 17 feet)	Just south of southeastern corner of former Aero Products building, to examine groundwater quality near the eastern edge of the site
PZ05 (11 to 21 feet)	Backyard of 37 Front Street, to examine groundwater quality downgradient of the site

NYSEG: Norwich SRI Report

Table 5-2 (cont.)
Piezometer Locations and Rationales

Piezometer (Screen Interval)	Location/Rationale
PZ06 (11 to 21 feet)	Backyard of 37 Front Street, to examine groundwater quality downgradient of the site
PZ07 (10 to 20 feet)	ROW in front of 37 Front Street, to examine groundwater quality downgradient of the site
PZ08 (10 to 20 feet)	ROW in front of 41 Front Street, to examine groundwater quality downgradient of the site
PZ09 (12.5 to 22.5 feet)	West of 40 Front Street on railroad property, to examine groundwater quality downgradient of the site
PZ10 (9 to 19 feet)	Backyard of 43 Front Street, to examine groundwater quality downgradient of the site
PZ11 (9.5 to 19.5 feet)	East of former above ground distribution holder, to examine groundwater quality near the eastern edge of the site
PZ12 (14 to 24 feet)	Northwest of former electric plant building in plaza parking lot, to examine groundwater quality upgradient of the site
PZ13 (5.5 to 15.5 feet)	ROW on north side of Front Street at intersection with Columbia, to examine groundwater quality near the eastern edge of the plume
PZ14 (8 to 18 feet)	ROW on Columbia Street east of house at 42 Front Street, to examine groundwater quality near the eastern edge of the plume
PZ15 (9.8 to 19.8 feet)	Backyard of 40 Front Street, to examine groundwater quality downgradient of the site
PZ16 (6 to 16 feet)	West of plaza entrance off of Front Street, to examine groundwater quality near the western edge of the plume
PZ17 (6 to 16 feet)	West of plaza entrance off of Front Street, to examine groundwater quality near the western edge of the plume
PZ18 (8 to 18 feet)	West of 10 Columbia Street on railroad property, to examine groundwater quality downgradient of the site
PZ19 (9 to 19 feet)	Southwest of 12 Columbia Street on railroad property, to examine groundwater quality downgradient of the site
PZ20 (10 to 20 feet)	East of 30 Front Street on railroad property, to examine groundwater quality near the western edge of the plume
PZ21 (9 to 19 feet)	In front of 10 Baldwin Street, to examine groundwater quality downgradient of the site
PZ22 (9 to 19 feet)	In front of 12 Baldwin Street, to examine groundwater quality downgradient of the site

Table 5-2 (cont.)
Piezometer Locations and Rationales

Piezometer (Screen Interval)	Location/Rationale
PZ23 (8 to 18 feet)	Southeast corner of 45 Front Street yard, to examine groundwater quality near the eastern edge of the plume
PZ24 (11 to 21 feet)	East of 12 Baldwin Street on railroad property, to examine groundwater quality downgradient of the site
PZ25 (11 to 21 feet)	West of 20 Columbia Street on railroad property, to examine groundwater quality downgradient of the site
PZ26 (14 to 24 feet)	North of former MGP plant facilities right in front of plaza building, to examine groundwater quality upgradient of the site
PZ27 (14 to 24 feet)	Northwest of former electric plant building in plaza parking lot, to examine groundwater quality upgradient of the site
PZ28 (9 to 19 feet)	West of 18 Columbia Street on railroad property, to examine groundwater quality downgradient of the site
PZ29 (6 to 16 feet)	ROW on Columbia Street northeast of house at 12 Columbia Street, to examine groundwater quality near the eastern edge of the plume
PZ30 (6 to 16 feet)	ROW in front of 20 Columbia Street, to examine groundwater quality near the eastern edge of the plume
PZ31 (6 to 16 feet)	ROW at northwest corner of Columbia Street and Brown Avenue, to examine groundwater quality near the eastern edge of the plume
PZ32 (8 to 18 feet)	ROW in front of 19 Brown Street, to examine groundwater quality near the downgradient edge of the plume
PZ33 (9 to 19 feet)	Behind building at 13 Brown Street, to examine groundwater quality near the western edge of the plume
PZ34 (6 to 16 feet)	Southeast of building at 13 Brown Street, to examine groundwater quality near the downgradient edge of the plume
PZ35 (5 to 15 feet)	ROW in front of 13 Brown Street, to examine groundwater quality near the downgradient edge of the plume
PZ36 (6 to 16 feet)	ROW in front of 35 Brown Avenue, to examine groundwater quality near the eastern edge of the plume
PZ37 (6 to 16 feet)	ROW in front of 31 Brown Avenue, to examine groundwater quality near the downgradient edge of the plume
PZ38 (7.5 to 17.5 feet)	ROW in front of 21 Brown Avenue, to examine groundwater quality near the downgradient edge of the plume
PZ39 (6 to 16 feet)	Backyard of 16 Baldwin Street, to examine groundwater quality near the downgradient edge of the plume

In addition to the piezometer network, one monitoring well (GW04-16) was installed with a 2-foot sump for NAPL collection in the western portion of the site, based on the observation of significant NAPL in the subsurface during the installation of DP18. Since NAPL did not collect in this well, no other installations were completed in this manner.

Table 5-3
Monitoring Well Locations and Rationales

Monitoring Well (Screen Interval)	Location/Rationale
GW04-16 (11 to 21 feet)	Northwest of former gas plant building, to attempt to collect NAPL

5.3.2 Piezometer and Monitoring Well Sampling

As part of these SRI field activities, the newly installed piezometers were used to form a network of groundwater monitoring locations to delineate the shallow groundwater plume at the site and surrounding area.

Piezometers and monitoring wells were installed during five different field mobilizations, which occurred in October 2004, and in April, May, June and October 2005. Two partial rounds of groundwater sampling were conducted in November 2004 and July 2005, to provide chemical data to guide the further installation of soil borings and piezometers. A full synoptic groundwater sampling event was performed in December 2005. A summary of total numbers of groundwater samples analyzed is shown in Table B-3.

On November 22, 2004, piezometers PZ03, PZ04, PZ07, and PZ08 had groundwater samples collected and analyzed for BTEX and naphthalene. On July 25 and 26, 2005, piezometers PZ03 and PZ10 through PZ28, along with existing monitoring well GW92-12 had samples collected and analyzed for VOCs and SVOCs. These rounds were used to guide the further selection of additional piezometer locations to fully delineate the groundwater plume.

A full synoptic round of groundwater sampling was performed from December 6 to 13, 2005, in which all 39 piezometers (PZ01 through PZ39) and 12 existing monitoring wells (Existing Well,

NYSEG: Norwich SRI Report

GW91-4SH, GW91-4D, GW91-6, GW91-7, GW92-8, GW92-11SH, GW92-11D, GW92-12,

GW92-13, GW01-14, and GW04-16) were sampled and analyzed for VOCs, SVOCs, and total

cyanide. The "Existing Well" is a well that was found in the plaza parking lot north of the

former MGP site that was not previously known to NYSEG. The "Existing Well" does not

match up with the location of any previously known wells, so the origin of this well is not

known.

A total of five groundwater elevation and NAPL thickness gauging events were performed as

part of this SRI. Partial gauging events were performed on September 2, 2004 (during Work

Plan finalization), December 2, 2004, January 20, 2005 and June 17, 2005, while a full gauging

was performed as part of the synoptic gauging event on December 5 and 6, 2005. The partial

rounds were used in combination with groundwater quality results to guide further investigation

activities.

5.4 SVI EVALUATION

The area of interest for the SVI evaluation is mostly located downgradient of the site to the

south. The off-site plume area is covered by mostly residential housing and extends

approximately 800 feet to the south with a width of approximately 300 feet east to west. In

addition, a commercial plaza is located just to the north of the site and occupies part of the

footprint of the former MGP facilities. The residential neighborhood to the south is comprised of

two story, one and two family homes. At the southern end of the potentially impacted area is a

vacant one story commercial building. The western side of the potentially impacted area

includes a Railroad right-of-way.

A total of 19 buildings were proposed in the SVI Work Plan for inclusion in the SVI evaluation

(Figure A-20). Permission to perform the sampling was obtained from 14 of these properties and

Table 5-4 summarizes the locations sampled as part of the SVI evaluation. The buildings

sampled for the SVI assessment are shown on Figure A-21.

NYSEG: Norwich SRI Report

October 2006

Table 5-4
Summary of SVI Sampling Locations

Location	Description
12 Baldwin St.	Downgradient residence near western edge of groundwater plume
14 Baldwin St.	Downgradient residence near western edge of groundwater plume
35 Brown Ave.	Downgradient vacant commercial building near edge of groundwater plume
10 Columbia St.	Downgradient residence near eastern edge of groundwater plume
16 Columbia St.	Downgradient residence near eastern edge of groundwater plume
18 Columbia St.	Downgradient residence near eastern edge of groundwater plume
20 Columbia St.	Downgradient residence near eastern edge of groundwater plume
30 Front St.	Downgradient residence near western edge of groundwater plume
37 Front St.	Downgradient residence near centerline of groundwater plume
41 Front St.	Downgradient residence near centerline of groundwater plume
42 Front St.	Downgradient residence near eastern edge of groundwater plume
43 Front St.	Downgradient residence near eastern edge of groundwater plume
45 Front St.	Downgradient residence near eastern edge of groundwater plume
Little Caesar's	Pizza restaurant situated on footprint of former distribution holder

5.4.1 Initial Site Survey and Inventory

Site surveys and inventories were completed on March 16, 17 and 24, 2006, by the Ish Inc. team for the properties listed in Table 5-4 in order to determine the use and status of the location, to interview the occupant or owner and to complete an inventory of potential chemical sources used or stored at the location.

5.4.2 SVI Sample Collection

SVI evaluation samples were collected from 14 properties included in the SVI assessment from March 22 to 24, 2006 and March 28 and 29, 2006. At each location, indoor air samples were collected in the basement (except for two locations that did not have basements) and the lowest floor that is occupied by people (living area). In addition, sub-slab or sub-slab equivalent

NYSEG: Norwich SRI Report

samples (locations with dirt floor basements) were collected from each building. Table 5-5 shows the numbers of each type of sample collected. On each day of SVI evaluation fieldwork, three outdoor air samples were collected concurrently with the indoor air and sub-slab samples. The samples collected as part of the SVI assessment are summarized in Table B-4.

Table 5-5
Number of SVI Samples Analyzed

Sample Type	Number of Samples	Field Duplicates	Total Number of Samples
Lowest Living Area Air	14	1	15
Basement Air	12	1	13
Sub-slab Gas (or equivalent)	14	2	16
Outdoor Air	12	1	13

5.5 WASTE HANDLING

Composite samples were collected to represent for the wastewater and soil drums to characterize the wastes for disposal. These results were provided to NYSEG, which used the results to dispose of the IDW in accordance with applicable regulations.

5.6 SURVEY

NYSEG personnel performed the land surveying required for the execution of the SRI. The location and elevation of all direct push soil borings, piezometers and monitoring wells were surveyed immediately following completion of each phase of the field effort and an AutoCAD map was provided to the Ish Inc. team.

NYSEG: Norwich SRI Report

6
SUPPLEMENTAL RI RESULTS

This section presents the results of the SRI completed by the Ish Inc. team as described in

Section 5. Information on sampling and analysis procedures is presented in Section 4, while

Section 3 contains the general project approach. The analytical results for samples collected

during this work are presented in tables included in Appendix B.

6.1 GEOLOGY

In addition to the geologic information that was gathered during previous investigations and

discussed in Section 2.3.1, supplemental information was obtained regarding the lithology of the

site and surrounding area from the 65 direct push soil borings (DP01, DP02, DP03, DP04A,

DP04B, DP04C, DP05 through DP20, DP21A, DP21B, DP22 through DP40, DP40A, and DP41

through DP61) completed as part of this SRI. The direct push borings were completed to depths

ranging from 2.1 to 32 feet below ground surface (bgs).

Prior to the 1997 IRM that included the removal of approximately 11,500 tons of impacted soils,

the unconsolidated materials under the site were described as consisting of Quaternary glacial

lacustrine deposits overlain by a thin layer of alluvial sediments and fill. For the area

investigated during this SRI, the depth of fill varied from less than 1 foot off-site to the south,

east and west of the site to greater than 11 feet on-site, within the former excavation area, which

covered the area from the former relief holder to the tar wells and gas plant building to the

southwest.

The fill at the site generally consisted of varying quantities of silt, sand and gravel. The alluvium

consisted of sand and silt and was found at thicknesses ranging from 1 to 8 feet. The alluvium is

underlain by a layer of glacial outwash sand and gravel varying from 7 to 15 feet in thickness.

The glacial outwash is underlain by glacial lacustrine deposits of silt and clay. No borings to

date fully penetrated the lacustrine layer and therefore its thickness is unknown. The elevation of

NYSEG: Norwich SRI Report

October 2006

the lacustrine layer was found to be lowest in the center of the site, increasing in elevation to

both the west and east of the site.

Boring logs and piezometer/monitoring well construction diagrams are included in Appendix C.

Using the previously gathered geologic information, along with results from the soil borings

installed as part of this SRI work, four geologic cross-sections were constructed for the site and

surrounding area (Figure A-22). Geologic cross section A-A' is presented on Figure A-23, and

runs along the approximate centerline of the groundwater plume from the north to the south.

Cross section A-A' starts in the north (DP28) and continues to the south, ending at the

(DP48/PZ25). In addition, geologic cross-section B-B' is shown on Figure A-24, and runs

across the site from southwest to northeast, from DP16 to DP19/PZ11. Geologic cross-section

C-C' (Figure A-25) runs approximately east/west just south of the site, from DP36/PZ17 to

DP30. Lastly, geologic cross-section D-D' (Figure A-26) runs generally east west, south of

Front Street, from DP35/PZ16 to DP33/PZ14.

Since the top of the silt and clay surface is behaving as a continuous confining layer beneath the

thin shallow aquifer, a silt and clay confining layer elevation contour map was generated to help

understand both the groundwater flow and the potential migration of denser than water non-

aqueous phase liquid (DNAPL). The contour of the top of the silty clay surface is shown on

Figure A-27. The fine silty clay layer was generally encountered between 8 and 25 feet below

grade.

It should be noted that soil recovery in direct push cores is, by its nature, somewhat imprecise.

Therefore, the depths to the silty clay layer should be considered approximate to within plus or

minus 5 feet. In addition, at many borings during the direct push boring program, the driller

noted a change in stratigraphy that was likely the clay layer. Because of the nature of the glacial

outwash sand and gravel, the depth of the clay noted in logging the soil cores did not always

match the driller observations. As a result, there are areas where the silt and clay layer may be a

few feet shallower than represented on the confining layer contour and geologic cross-sections.

6-2

The observations of the driller are noted on the boring logs in Appendix C.

NYSEG: Norwich SRI Report

As shown on the silt and clay surface contour map (Figure A-27), the surface of the confining layer on the site generally slopes toward the center of the site from the east and west, with a dip to the south on the southern portion of the site and a dip to the north on the northern portion of the site. There is a low just to the north of site at DP28. In addition, south of the site near Front Street, there is another low in the contour, highlighted by the 980' contour surrounding DP23, DP37, DP26, and DP40. As discussed later in Section 6.3.1, this contour is consistent with the NAPL observed at downgradient locations in this area and the generally north to south flow of groundwater from the site. Beyond this low to the south, the silt and clay layer rises slightly to the approximate elevation found on-site. The contour is generally consistent with the groundwater flow as discussed below.

6.2 HYDROGEOLOGY

The shallow aquifer at the site and surrounding area has been impacted by dissolved MGP residuals and is the focus of this hydrogeologic evaluation. The aquifer in the area is shallow with the depth to water ranging from approximately 4 to 14 feet below grade. The silt and clay confining layer is present at depths ranging from approximately 8 to 25 feet across the study area. Observations from borings indicate that the thickness of the aquifer is generally 10 to 15 feet thick, but it is thinner in some areas where the silty clay layer is relatively shallow. Because the aquifer of concern is relatively thin, piezometers, as part of this effort, were installed to intersect the observed impacted zone of the aquifer with a 10-foot screen.

As part of the investigation, one additional monitoring well (GW04-16) and 39 piezometers (PZ01 through PZ39) were installed to examine groundwater quality and provide water level information for evaluating the groundwater flow direction and hydraulic gradients on-site. During this SRI, all of the new piezometers and the monitoring wells were installed with 10-foot screens to avoid potential dilution of groundwater quality results. The screen intervals (feet bgs) for selected monitoring wells and piezometers are shown in Table 6-1 and Table 6-2, respectively. As shown in the table, the screen intervals ranged from 6 to 26 feet bgs, in order to intersect the impacted groundwater zone, as discussed above.

NYSEG: Norwich SRI Report

Table 6-1 **Approximate Screened Intervals of Selected Monitoring Wells**

Monitoring Well	Top of Screen (ft. bgs)	Bottom of Screen (ft. bgs)
GW91-4D	15	20
GW91-4SH	8	13
GW91-5	6	16
GW91-6	7	17
GW91-7	6	11
GW92-8	5	15
GW92-11D	15	20
GW92-11SH	4.4	9.4
GW92-12	6	16
GW92-13	5	15
GW04-16	11	21

Table 6-2 **Approximate Screened Intervals of Piezometers**

Piezometer	Top of Screen (ft. bgs)	Bottom of Screen (ft. bgs)
PZ01	7.3	17.3
PZ02	5	15
PZ03	7.5	17.5
PZ04	7	17
PZ05	11	21
PZ06	11	21
PZ07	10	20
PZ08	10	20
PZ09	12.5	22.5
PZ10	9	19
PZ11	9.5	19.5
PZ12	14	24
PZ13	5.5	15.5
PZ14	8	18
PZ15	9.8	19.8
PZ16	6	16
PZ17	6	16
PZ18	8	18
PZ19	9	19
PZ20	10	20
PZ21	9	19
PZ22	9	19
PZ23	8	18
PZ24	11	21

Table 6-2 (cont.)
Approximate Screened Intervals of Piezometers

PZ25	11	21
PZ26	14	24
PZ27	14	24
PZ28	9	19
PZ29	6	16
PZ30	6	16
PZ31	6	16
PZ32	8	18
PZ33	9	19
PZ34	6	16
PZ35	5	15
PZ36	6	16
PZ37	6	16
PZ38	7.5	17.5
PZ39	6	16

As part of the SRI activities, one full and four partial groundwater gauging events were performed. The groundwater elevations from these five gauging events are shown in Table 6-3. The depth to water varied from approximately 4 to 14 feet bgs.

Table 6-3 Summary of Selected Groundwater Elevation Data

Well or	Elevation	Groundwater Elevations above MSL				
Piezometer	of TOC (MSL)	9/2/04	12/2/04	1/20/05	6/17/05	12/6/05
GW91-4D	1005.50	NM	994.35	994.98	993.79	994.69
GW91-4SH	1006.40	NM	994.42	994.88	993.76	994.69
GW91-5	1000.68	994.56	994.25	994.53	Dry	NM
GW91-6	1001.31	994.69	994.47	994.61	987.59	994.34
GW91-7	1005.14	996.19	996.52	996.82	996.16	996.03
GW92-8	1000.45	994.42	994.15	994.35	993.53	994.17
GW92-11D	1001.31	994.36	994.21	994.39	NM	994.19
GW92-11SH	1001.66	994.43	994.39	994.37	993.49	994.15
GW92-12	999.09	995.22	995.70	995.26	994.14	995.24
GW92-13	1001.86	995.76	995.78	996.36	995.25	995.65
GW01-14	1001.05	994.53	994.25	994.55	993.63	994.37
GW01-15D	1004.29	994.97	994.31	994.97	993.79	NM
GW01-15SH	1004.01	994.94	994.34	994.86	993.77	NM
GW04-16	1006.85		993.65	994.73	993.75	994.56

NYSEG: Norwich SRI Report

Table 6-3 (cont.) **Summary of Selected Groundwater Elevation Data**

Well or	Elevation	Groundwater Elevations above MSL				
Piezometer	of TOC (MSL)	9/2/04	12/2/04	1/20/05	6/17/05	12/6/05
PZ01	1003.74		994.24	994.84	993.76	994.64
PZ02	1003.91		994.26	994.86	993.70	994.64
PZ03	1003.35		994.50	994.93	994.19	994.73
PZ04	1001.55		994.35	994.60	993.70	994.46
PZ05	1002.86		994.26	994.50	993.65	994.27
PZ06	1001.82		994.22	994.41	993.55	994.21
PZ07	1001.91		994.27	994.35	993.54	994.16
PZ08	1000.85		994.22	994.32	993.50	994.13
PZ09	1000.49				993.42	993.99
PZ10	1000.51				993.55	994.21
PZ11	1003.86				993.76	994.73
PZ12	1003.45				993.79	994.78
PZ13	1000.52				993.48	994.12
PZ14	999.96				993.42	994.06
PZ15	999.81				993.43	994.00
PZ16	1004.49				993.74	994.19
PZ17	1003.68				993.66	994.36
PZ18	999.15				993.38	993.97
PZ19	999.51				993.36	993.93
PZ20	1003.64				993.47	993.99
PZ21	1001.25				993.42	994.02
PZ22	1000.55				993.33	993.97
PZ23	1001.21				993.56	994.27
PZ24	1003.27				993.37	993.92
PZ25	1002.43				993.11	993.59
PZ26	1004.18				993.81	994.77
PZ27	1003.37				993.85	994.76
PZ28	998.79				992.95	993.65
PZ29	998.91					993.86
PZ30	998.23					992.84
PZ31	997 93					991 22
PZ32	1000.62					993.39
PZ33	1003.00					994.06
PZ34	1000.02					991.91
PZ35	1001.25					994.10
PZ36	999.82					991.95
PZ37	999.44					992.75
PZ38	1000.18					992.96
PZ39	999.05					993.65

MSL = Mean Sea Level; TOC = Top of casing; NM = Elevation Not Measured -- = location not present at that time

All measurements are in feet.

NYSEG: Norwich SRI Report

6.2.1 Horizontal Groundwater Flow Direction and Hydraulic Gradients

Groundwater contour maps were generated utilizing the data from the June 17, 2005 and December 5 to 6, 2005 gauging events performed as part of this SRI field work. The contours for the piezometer and monitoring well locations, which are all installed in the shallow unconfined aquifer present above the silt and clay confining layer, are shown on Figure A-28 and Figure A-29. As shown on these contours, groundwater in the area flows generally to the south, with some convergence of groundwater from the east and west immediately around the site.

Horizontal hydraulic gradients for the shallow aquifer were determined for the June 2005 and December 2005 groundwater gauging events by using the groundwater elevation contours. We first measured the distance from PZ01 to PZ28 along the groundwater flow path on each contour. For the June 2005 contour, the straight-line distance between PZ01 and PZ28 was used since the precise flow path is not apparent, with only one contour line between the two piezometers. By dividing the drop in hydraulic head (change in water table elevation) over the distance along each flow path, average horizontal hydraulic gradients were calculated, as shown in Table 6-4. The groundwater gradients for the gauging events were calculated as 0.0011 ft/ft and 0.0013 ft/ft in the shallow aquifer along the approximate centerline of the plume.

Table 6-4
Average Horizontal Hydraulic Gradients

	Drop in Head (ft)	Length of Flow Path (ft)	Gradient (ft/ft)
Shallow Saturated Zone (Gravel and Sand)			
6/17/05	0.81	740	0.0011
12/5/05	0.99	750	0.0013

6.2.2 Hydraulic Conductivity

Hydraulic conductivity testing was performed by ES as part of the Task II investigation activities in 1992. Hydraulic conductivity values were determined by ES using the Bouwer and Rice method for analyzing slug test method. Hydraulic conductivities were determined by ES to be between 4.22 and 153 ft/day for the shallow water bearing zone, with a geometric mean of 25.8 ft/day and an arithmetic mean of 51.2 ft/day. The geology of the aquifer is mostly outwash sand

NYSEG: Norwich SRI Report

and gravel and the range of hydraulic conductivity values measured are consistent with those expected for unconsolidated deposits of silty to clean sand (Freeze and Cherry, 1979). According to several authors, including Domenico and Schwartz (1990), the average hydraulic conductivity of a lithologic unit is better represented by the geometric rather than the arithmetic mean of measured values from that unit. As a result, the value of 25.8 ft/day (9,420 ft/yr) will be used for the calculations of groundwater velocities in Section 6.3.1. The individual hydraulic conductivity values from those measurements are presented in Table 6-5. No new/additional hydraulic conductivity tests were conducted during the current SRI work.

Table 6-5
Horizontal Hydraulic Conductivity (K) Results from Previous ES Work 1992

Well	K (ft/day)	K (ft/yr)
GW91-1	91.9 33,500	
GW91-4D	33.6	12,200
GW91-4SH	12.8	4,680
GW91-5	153	55,700
GW91-6	11.5	4,210
GW91-7	4.22	1,540

6.2.3 Specific Discharge and Groundwater Seepage Velocity

In order to estimate the specific discharge and groundwater seepage velocity along the centerline of the plume, some assumptions were made. As shown in the boring logs (Appendix C), the lithology of the shallow aquifer is sand and gravel. Using this value, along with an estimated effective porosity (Freeze and Cherry, 1979) for the sand and gravel of 0.35 and the average horizontal hydraulic gradient calculated in Section 6.2.1 (0.0012 ft/ft), specific discharge and seepage velocity were calculated, as shown in Table 6-6.

NYSEG: Norwich SRI Report

Table 6-6
Estimated Specific Discharges and Seepage Velocities

Source of K	K (ft/yr)	Effective Porosity ¹	Specific Discharge (ft/yr) ²	Seepage Velocity (ft/yr) ³
ES Testing	9,420	0.35	11.3	32.3

¹ Estimated from Freeze and Cherry, 1979

Based on the assumptions indicated above, the estimated specific discharge for the site was 11.3 ft/yr, while the estimated seepage velocity was 32.3 ft/year. The specific discharge is a macroscopic number that indicates how long it takes for groundwater to flow through the soil and can be used to calculate the time of travel for groundwater to move from one point to another. The groundwater seepage velocity is an estimate of the linear measure of the actual velocity of groundwater as it flows through the pore spaces in porous media.

6.3 SUBSURFACE SOIL CONDITIONS

Information on subsurface soil conditions was gathered through the installation of soil borings by direct push methodologies. In addition to visual observations during geologic logging and PID measurements, samples were collected for chemical analysis. This subsection summarizes the subsurface soil conditions observed during this SRI.

6.3.1 Visual Observations of Sheens or NAPL in Subsurface Soils

The boring logs for the 65 borings completed on the site and surrounding area during this SRI are attached in Appendix C and a summary of the observations made during the logging of the soil borings is presented in Table B-5. Figure A-30 displays the qualitative field observations of the field geologist regarding the quantity of actual NAPL in the subsurface: sheens, slight NAPL, moderate NAPL, and substantial NAPL. In general, the NAPL observed was reddish-brown in color and was intermixed with water within the pore spaces of the relatively loose sand and gravel outwash present in the shallow aquifer above the silt and clay confining layer. On-site and on the former Aero Products building property (now owned by NYSEG), scattered NAPL

NYSEG: Norwich SRI Report

² Specific discharge is equal to hydraulic conductivity multiplied by hydraulic gradient.

³ Seepage velocity is equal to specific discharge divided by effective porosity.

impacts were present in a 5 to 10 feet thick soil zone. Further to the south, the soils observed with some NAPL present were less than 5 feet thick. When observed, NAPL was found at depths ranging from approximately 7 to 26 feet bgs at the site and surrounding area.

As shown on Figure A-30, NAPL was observed in subsurface soil across the site with moderate to substantial NAPL observed at almost all locations within the footprint of former MGP operations. In addition, sheens were noted at one location (DP27/PZ12) upgradient (north) of the site. NAPL has also migrated along the silt and clay confining unit to the south of the site, in the direction of groundwater flow. Moderate or substantial quantities of NAPL were observed in DP13, DP14, DP37, DP26 and DP40, moving from the site toward the south. In addition, slight quantities of NAPL or sheens were observed in soils from DP15, DP25, DP23, DP32, DP41, and DP43. The clay contour (Figure A-27) shows a depression in the area of DP23, DP37, DP26, and DP40, which is consistent with the NAPL observed in this area.

Cross-sectional representations of the site geology with areas where NAPL and sheens were observed during the logging of soil borings are shown on Geologic Cross-Section A-A' (Figure A-23) through Geologic Cross-Section D-D' (Figure A-26). As shown on cross section A-A', which runs along the general groundwater flow path, NAPL was observed in the shallow saturated glacial outwash at DP14, DP26, DP34, and DP41, which is consistent with a southerly migration of NAPL and groundwater flow from the site. It is very important to note that the impacts were observed above the silty clay layer, which by all indications is acting as a confining layer to vertical migration at the site and surrounding area.

Geologic cross-section B-B', which runs across the former MGP from the southwest to the northeast (Figure A-24), shows several locations where NAPL and/or sheens were observed in the shallow saturated zone on-site, including (moving from west to east) DP16, DP17, DP09, DP18, DP05, DP22, DP01, DP06, DP02, DP20, DP07, DP03, DP08, and DP04C. Similarly, cross-section C-C' shows observed NAPL globules at DP23, DP24, and DP25. Lastly, cross-section D-D' shows observed NAPL globules at DP26 and DP37. These figures again show that the sheens and NAPL globules do not extend into the confining silt and clay layer.

NYSEG: Norwich SRI Report

In addition to NAPL observed within the soil matrix during the advancement of soil borings, there was also some accumulation of NAPL noted in monitoring wells and piezometers during well gauging. Table 6-7 lists only the monitoring wells and piezometers that contained at least trace evidence of NAPL (sheens excluded), as noted during the three groundwater elevation gauging events performed in December 2004, June 2005, and December 2005. As shown by these data, substantial NAPL has accumulated in GW01-15D, GW04-16, and PZ09. The two wells are located on-site and PZ09 is located in the low area of the clay contour south of Front Street, where substantial NAPL was observed during soil boring activities.

Table 6-7
NAPL Observations in Monitoring Wells and Piezometers

Monitoring Well/Piezometer	NAPL Observations
GW01-15D	Up to 0.9 feet of DNAPL, measured June 2005
GW04-16	Substantial NAPL, too smeared to measure
PZ01	Trace DNAPL, measured December 2005
PZ02	Trace DNAPL, measured June 2005
PZ06	Trace DNAPL, measured June 2005
PZ09	Up to 2.0 feet of DNAPL, measured June 2005

6.3.2 Chemical Analysis Results for Subsurface Soil

This subsection presents a summary of the results for chemical analyses performed on subsurface soil samples as part of this SRI. The results for chemical analyses performed on subsurface soils are presented in Table B-6 and Table B-7 for VOCs, Table B-8 for BTEX compounds only, Table B-9 and Table B-10 for SVOCs, and Table B-11 for PAHs. The tables for the soil analysis results also include a column containing appropriate standards, criteria and guidelines (SCGs), the NYSDEC Technical and Administrative Guidance Memorandum (TAGM) #4046 Recommended Soil Cleanup Objectives (RSCOs). In addition, the subsurface soil results are presented graphically on Figure A-31.

NYSEG: Norwich SRI Report

6.3.2.1 VOCs in Subsurface Soil Samples

Benzene, toluene, ethyl benzene, and xylene (BTEX) are a group of VOCs commonly found in MGP residuals. Also, they are commonly found as groundwater contaminants from the release of petroleum products and other industrial products/residues. The BTEX concentrations found in subsurface soil are presented Table B-6, Table B-7, and Table B-8, while benzene concentrations are plotted on Figure A-31.

BTEX compounds were detected in many subsurface soil samples from the saturated soils above the silt and clay layer (see Table B-5) at levels above New York State (NYS) Technical and Administrative Guidance Memorandum (TAGM) #4046 Recommended Soil Cleanup Objectives (RSCOs), including DP01, DP02, DP03, DP04C, DP05, DP06, DP13, DP22, DP26, DP29, DP37, and DP40 (Table B-6 and Table B-7). The shallower sample from DP37 (there were two samples collected from this location) was the only sample with BTEX exceedances that was significantly below the top of the clay layer (the sample was collected from 26.5 to 27.5, below the top of the clay and sand at 24 feet). However, the sample from DP37 collected from 31.5 to 32 feet bgs had levels well below the RSCOs. The highest BTEX concentrations were measured in the sample from 20 to 21.5 feet bgs at DP26, which is located in a depression on the silt and clay confining layer. Of all of the samples with BTEX exceedances, each were collected from borings where NAPL was observed, except for the sample from 23 to 24 feet below grade at DP29, which had only slight odors noted. In general, the BTEX data correspond very well to the field observations of NAPL.

BTEX compounds were not detected and no sheens or NAPL were observed in soil samples from borings DP19, DP28, DP31, DP33, DP35, DP36, DP42, DP44, DP45 and DP50. In addition, the samples from borings DP30, DP46, DP47, DP51, and DP52 also had no visual observations of impacts, but these samples did have some rejected ("R" flagged) results because of low internal standard recoveries (Appendix H). The results for BTEX compounds in DP30 (23-24), as well as ethylbenzene and xylenes (total) in DP46 (22-24), DP47 (26-27), DP51 (19-20), and DP52 (19-20) were rejected for not meeting the internal standard recoveries. However, benzene and toluene were not detected in the samples from DP46, DP47, DP51 and DP52. Based on nearby soil results, results from piezometers installed at some of the locations

NYSEG: Norwich SRI Report

discussed above, and the visual observations from the field logging of the soil borings, these

rejected data do not affect the overall evaluation of the site.

Other than BTEX, isopropylbenzene, which is a constituent of coal tar, was detected in samples

with high BTEX concentrations. No other VOCs were detected with any regularity or at

elevated levels. No VOC other than BTEX were detected above RSCOs.

6.3.2.2 SVOCs in Subsurface Soil Samples

The SVOC concentrations in subsurface soils are shown in Table B-9 and Table B-10, while

results for some samples analyzed for PAHs only are presented Table B-11. In addition, the total

SVOCs, total carcinogenic PAHs (CPAHs), and naphthalene concentrations measured in

subsurface soils are plotted on Figure A-31. As can be seen in Table B-9 and Table B-10, the

vast majority of the SVOCs detected at the site were PAHs. In addition to PAHs, dibenzofuran

was the only other SVOC detected in any samples above its RSCO of 6,200 μg/kg.

Similar to the BTEX in soil results, a number of soil samples collected from the saturated soils

above the silt and clay layer contained one or more SVOCs (specifically PAHs and

dibenzofuran) at concentrations above TAGM #4046 RSCOs. The borings where samples

collected had exceedances of RSCOs for PAHs or dibenzofuran were DP01, DP02, DP03,

DP04C, DP05, DP06, DP08, DP09, DP10, DP14, DP15, DP17, DP18, DP19, DP20, DP22,

DP23, DP25, DP26, DP29, DP32, DP37, DP40, DP41, and DP46 (Table B-9, Table B-10, and

Table B-11). These data are consistent with visual observations made during logging of the soil

borings (Appendix C).

The only samples from within the clay layer that had exceedances measured for one or more

PAHs were collected from the upper few feet of the clay layer at borings DP26, DP29, and

DP37. These data, along with the observations of NAPL in the subsurface indicate that there is

NAPL present across the site in the shallow saturated soils that is confined from moving

downward by the silt and clay layer but has moved off-site to the south and into the depression in

the confining layer to the south of Front Street.

NYSEG: Norwich SRI Report

October 2006

In samples collected well into the silty clay layer, SVOCs were generally present at relatively

low levels or not measured above reporting limits. The lack of significant concentrations of

SVOCs in samples from the silt and clay layer is consistent with observations made during soil

borings (Appendix C) that indicated that NAPL had not migrated into this confining layer.

There were no detects for SVOCs and no sheens or NAPL were observed in soil samples from

borings DP30, DP31, DP33, DP35, DP36, DP45 and DP47. In addition, samples borings DP51

through DP61 were visually clean and analyzed for PAHs only. PAHs were not detected in any

of the soil samples from these borings. These borings are located around the perimeter of the

study area.

6.3.3 Total Organic Carbon in Soil

In addition to analyses for chemical characterization, four samples were collected and analyzed

for TOC (Table B-12). Three samples were collected from native materials representative of the

stratigraphy observed during the advancement of soil borings. The TOC concentrations for these

samples ranged from <1,100 to 12,800 mg/kg.

6.3.4 SPLP Leaching Tests for VOCs and SVOCs in Soil

In order to evaluate the potential leaching of MGP residuals (BTEX and PAHs) from subsurface

site soils, six samples from soil borings DP01, DP02, DP03, DP08, DP18, and DP22 were

subjected to EPA Method 1312, SPLP. The leachates from these tests were then analyzed for

VOC and SVOCs. SPLP leaching conditions are designed to mimic acid precipitation and can

be used to estimate the leaching potential for chemicals of concern in the natural environment.

The results for the SPLP analyses are shown on Table B-13 for VOCs and Table B-14 for

SVOCs. Most of the samples subjected to the SPLP leaching procedure had observations of

NAPL in the sampling zone. The exceptions were DP18(27.4-27.9), which was analyzed for

SPLP VOCs and SVOCs, and DP26(10-11), which was analyzed for SPLP SVOCs only.

The SPLP VOC results show that four of the six samples had VOCs detected above the Class

GA groundwater standards or guidance values, which were placed in the table for reference

purposes, since SPLP results do not have SCGs in for direct comparison. The four samples with

6-14

NYSEG: Norwich SRI Report

exceedances all had NAPL observed, as indicated on the boring logs in Appendix C. The other two samples from DP08 and DP18 did not have measurable concentrations of VOCs in the leachate. While the sample from 12 to 14 feet bgs at DP08 did have NAPL observed, the SPLP sample did not have detected VOC constituents nor were exceedances measured for individual total VOCs in this sample (Table B-6). These data suggest that the NAPL at this location may have been lower in VOC content than at some other locations, especially since both the total SVOCs and SPLP SVOCs samples from this sample interval showed elevated PAHs (Table B-9 and Table B-14). The VOCs that were present in the SPLP leachates above the Class GA groundwater standard or guidance values were benzene, ethylbenzene, isopropylbenzene, MTBE, styrene, and toluene. All of these compounds, except for the MTBE found in one sample, are constituents of MGP tar. MTBE is an oxygenate in gasoline, suggesting there may be some gasoline impacts in this particular sample.

Of the three samples subjected to the SPLP leaching procedure for SVOC analysis, DP08 had NAPL observed, while DP18 and DP26 did not. The results for the samples DP08 and DP28 exceed the Class GA standards or guidance values. As mentioned in the preceding paragraph, SVOCs were found in the samples submitted for both total SVOC analysis and SPLP leaching from DP18, which was collected at 27.4 to 27.9 feet bgs. These samples were collected from the upper portion of the silt and clay layer at a location that had substantial NAPL in the saturated sand and gravel outwash present just above the sample interval. These data suggest that PAH constituents had leached from overlying tarry NAPL into the upper portion of the silt and clay layer. The SVOCs measured above the Class GA standards or guidance values in the SPLP samples were acenaphthene, fluorene, naphthalene, phenanthrene, 1-1'biphenyl, and 4-nitroaniline. All of these compounds, except for 4-nitroaniline, are constituents of coal tar.

In general, the SPLP results for VOCs and SVOCs suggest that the tarry NAPL observed in the subsurface of the site is responsible for the dissolved phased constituents that had been measured historically and during this SRI at the site and the surrounding area.

NYSEG: Norwich SRI Report

6.4 GROUNDWATER QUALITY

This section presents a summary of the results for chemical analyses performed on groundwater samples as part of this SRI. The results for BTEX and naphthalene analyses performed on groundwater samples from four piezometers sampled in November 2004 are presented in Table B-15. The results for samples collected from monitoring wells and piezometers are presented in Table B-16 and Table B-15 for VOCs from July 2005 and December 2005, respectively; Table B-18 and Table B-19 for SVOCs from July and December 2005, respectively; and Table B-20 for total cyanide from December 2005. The July sampling event was a partial round of sampling to guide further investigation activities, while the December 2005 sampling included all of the piezometers (DP01 through DP39) and most of the monitoring wells (all monitoring wells, except for GW01-15SH and GW01-15D, which are in close proximity to PZ02) that exist at the site. In order to compare the groundwater results to appropriate SCGs, the NYSDEC Class GA groundwater standards and guidance values are included in these tables. In addition, the groundwater results for all three rounds are presented graphically on Figure A-32.

Although, there were shallow and deep wells installed during previous investigation of the site and surrounding area, these wells are screened within the same relatively thin aquifer, which ranges from approximately 10 to 15 feet thick. The newly installed piezometers and monitoring wells were screened across the vertical zone of worst-case impacts at each location to accurately delineate the groundwater plume areally. When discussing shallow groundwater quality, this SRI report is referring to the relatively thin aquifer that is present above the silt and clay confining layer, which is found from approximately 8 to 25 feet below grade across the study area. The observations from soil borings, as well as the results from chemical analysis of soil samples well into the silt and clay indicate that impacts are limited to the shallow aquifer and the upper portion of the silt and clay layer.

6.4.1 VOCs in Shallow Groundwater

The VOC concentrations measured in groundwater are presented in Table B-15 for BTEX for four piezometers sampled in November 2004; and in Table B-16 and Table B-15 for VOCs measured from July 2005 and December 2005, respectively. In addition, total VOCs and benzene concentrations are shown graphically on Figure A-32.

NYSEG: Norwich SRI Report

VOC compounds were present in shallow groundwater samples above the NYSDEC Class GA drinking water standards or guidance values in at least one sample from many locations across the site and surrounding area (GW01-14, GW04-16, GW91-6, GW92-8, GW92-11D, GW92-11SH PZ01, PZ02, PZ05, PZ06, PZ07, PZ08, PZ09, PZ10, PZ15, PZ19, PZ20, PZ21, PZ22, PZ24, PZ25, and PZ28). The VOC compounds measured above the Class GA groundwater standards or guidance values included BTEX and isopropylbenzene. The exceedances were found across the site and extending to the south through 37 and 41 Front Street to north of 35 Brown Avenue. These results are consistent with NAPL globules/sheens observed in the borings when wells/piezometers were installed at these locations as well as inference derived from the groundwater flow direction at the site, which is to the south.

VOCs were not detected in groundwater at many of the perimeter sampling locations, such as PZ11, PZ12, PZ26, PZ27 and GW91-7 north of the site, GW92-12, GW92-13, PZ29, PZ30, PZ31 to the east of the plume, PZ03, PZ16, PZ17, PZ32, PZ33, PZ34 and PZ39 to the west of the plume, and PZ36 and PZ37 to the south of the plume. Again, these data are consistent with observed soil impacts and the groundwater flow direction, which is generally to the south.

6.4.2 SVOCs in Shallow Groundwater

SVOC concentrations measured in groundwater are presented in Table B-15 for naphthalene for four piezometers sampled in November 2004; and in Table B-18 and Table B-19 for SVOCs measured from July 2005 and December 2005, respectively. In addition, total SVOCs, total CPAHs, and naphthalene concentrations are shown graphically on Figure A-32.

SVOCs were detected in shallow groundwater samples at levels above NYSDEC Class GA standards or guidance values across the site and to the south following the groundwater direction. Specifically groundwater samples from GW01-14, GW04-16, GW91-4SH, GW92-8, GW92-11D, GW92-13, PZ01, PZ02, PZ05, PZ06, PZ07, PZ08, PZ09, PZ10, PZ15, PZ19, PZ20, PZ21, PZ22, PZ23, PZ24, PZ25, and PZ28 had SVOCs measured above Class GA standards or guidance values. The compounds measured above the standards in groundwater at these locations included various PAHs as well as 1,1'-biphenyl, bis(2-ethylhexyl)phthalate, 2,4-dinitrophenol, pentachlorophenol, phenol. Both 1,1'-biphenyl and phenol are constituents of

NYSEG: Norwich SRI Report

coal tar, while bis(2-ethylhexyl)phthalate is a common laboratory artifact. Pentachlorophenol is a wood preservative chemical and is not associated with former MGP operations. The concentrations of some of the heavier weight PAHs suggest that some sheens may have been present in these samples, which is consistent with the observations of NAPL or sheens at these locations during the logging of soils when the wells/piezometers were installed.

SVOCs were not detected in groundwater samples from many perimeter locations, such as PZ12 and PZ27 to the of north of the site, PZ18, PZ30 and PZ31 to the east of the plume, PZ16, PZ33, PZ34, PZ35, PZ38, and PZ39 to the west of the plume.

6.4.3 Total Cyanide in Shallow Groundwater

During the full round of groundwater sampling in December 2005, each location was sampled and analyzed for total cyanide. The results for total cyanide in groundwater are shown in Table B-20 and on Figure A-32. Total cyanide was detected in groundwater above its NYSDEC Class GA groundwater standard of 200 µg/L at only two locations, GW91-4D and PZ02. These two locations are in close proximity on the eastern portion of the site. In addition to the total cyanide exceedances, there were widespread low level detections of total cyanide from the eastern portion of the site south to Brown Avenue. The total cyanide concentrations found at the vast majority of these locations were well below the NYSDEC Class GA standard of 200 µg/L, which is based on the EPA maximum contaminant level (MCL) for free cyanide of 200 µg/L.

6.5 SVI EVALUATION

The properties included in the SVI evaluation are listed in Table 5-4. The use and status of each location was determined by interviewing the occupant or owner of the property and an inventory of potential chemical sources at each location was conducted prior to sampling. At one location, 45 Front Street, only the landlord was present for the survey/inventory. At the vacant building at 35 Brown Avenue, no one was present or available for the interview/survey and the key for access was obtained from the real estate office. For the active commercial establishment a worker was present for the survey/inventory. The site survey field forms are included in Appendix E.

NYSEG: Norwich SRI Report

Eleven of the locations are residential, one is used as a child day care (41 Front Street), one is an

active commercial establishment (Little Caesar's is a take out restaurant) and one is a vacant

commercial building (35 Brown Avenue). In general, most of the residential basements were not

finished and if used at all were used for storage and laundry. Most of the basements did not have

a complete concrete floor if a concrete floor was present. Four locations only had dirt floors

present in the basement (37 Front Street, 41 Front Street, 43 Front Street and 18 Columbia

Street).

The following sub-sections summarize the results of the SVI field sampling program, which was

performed following the procedures described in Section 4.1.5.

6.5.1 Field Screening Results for Sub-slab and Soil Vapor Samples

As part of the sampling procedure, sub-slab vapor samples were screened in the field prior to the

collection of the vapor samples for laboratory analysis. The field screening results are

summarized in Table B-21. The concentration for CH₄ at all sample locations was 0%. The

detected concentrations of carbon dioxide (CO_2) ranged from 0.1 - 2.4%. The range detected for

 O_2 was 17.8 - 20.2% and the range of PID readings for total VOCs was 1,010 - > 199,000 ppb.

The highest PID readings were recorded at the sample locations along Front Street (39 Front

Street, 41 Front Street, and 43 Front Street) where the measured concentrations exceeded 10,000

ppb.

6.5.2 Chemical Analysis Results for Air and Vapor Samples

The frequency of detection and range of detected concentrations for the sub-slab, indoor and

outdoor air samples are shown in Table B-22. Summary of results for all of the sub-slab

samples, indoor air and outdoor air samples are presented in Table B-23.

6.5.2.1 BTEX in Vapor and Air Samples

Benzene was detected in 12 of 14 sub-slab sample locations and 24 of 26 indoor air samples

collected. The concentrations in the sub-slab samples ranged from 1.2 to 15 µg/m³ and in the

indoor air samples from 0.67 to 30 µg/m³. Toluene was detected in 14 sub-slab and 24 indoor air

NYSEG: Norwich SRI Report

October 2006

samples and ethylbenzene was detected in 10 sub-slab and 9 indoor air samples. In addition, toluene was detected at concentrations ranging from 4.6 to 37 μ g/m³ in the sub-slab samples and 1.4 to 65 μ g/m³ in the indoor air samples, while ethylbenzene concentrations range from 2.6 to 18 μ g/m³ in the sub-slab and 0.87 to 8.6 μ g/m³ in the indoor air. In addition, m/p-xylene and o-xylene were each detected in 14 sub-slab samples, as well as in 23 (m/p-xylene) and 11 (o-xylene) indoor air samples. Concentrations ranged from 3.6 to 45 μ g/m³ for m/p-xylene and 2.8 to 22 μ g/m³ for o-xylene in the sub-slab samples and 0.96 to 31 μ g/m³ for m/p-xylene and 0.95 to 10 μ g/m³ for o-xylene in the indoor air samples.

BTEX compounds were also detected in ambient air, which were collected at three locations on each day of sampling. Benzene was detected in all of the outdoor ambient air samples collected at concentrations ranging from 0.77 to $2.6 \,\mu g/m^3$, while ethylbenzene was detected in 2 of the 12 samples at concentrations of 1.1 and 1.2 $\,\mu g/m^3$. In addition, m/p-xylene was detected in 8 of the 12 outdoor air samples collected at concentrations ranging from 0.95 to 3.3 $\,\mu g/m^3$ and o-xylene was detected in 3 samples from 1.1 to 1.3 $\,\mu g/m^3$. Lastly, toluene was detected in 11 samples with concentrations ranging from 1 to 7.2 $\,\mu g/m^3$.

6.5.2.2 Solvents and Chlorinated VOCs in Vapor and Air Samples

Chlorinated solvent compounds were detected in a limited number of sub-slab and indoor air samples. Tetrachloroethene was measured at 550 $\mu g/m^3$ in the first floor indoor air sample from one location (14 Baldwin Street), while 4.0 $\mu g/m^3$ was measured in the basement and none was detected in the sub-slab gas at this location. In addition, methylene chloride was detected in 9 of 14 sub-slab samples at concentrations ranging from 3.5 to 25 $\mu g/m^3$ and in 3 of 26 indoor air samples at concentrations ranging from 7.1 to 63 $\mu g/m^3$.

Chlorinated solvents were not detected in the outdoor ambient air samples collected during the SVI evaluation sampling.

6.5.2.3 Other VOCs Detected in Vapor and Air Samples

In addition to BTEX, solvents and chlorinated VOCs, other compounds detected in the sub-slab and indoor air samples included methylated benzenes, alkanes, and chlorofluorocarbons.

NYSEG: Norwich SRI Report

1,2,4-trimethylbenzene was detected in 1 of 12 outdoor air samples collected at a concentration of 1 μ g/m³. Chloromethane was detected in 9 of 12 outdoor air samples at concentrations ranging from 1.1 to 1.7 μ g/m³. Dichlorodifluoromethane was detected in all 12 outdoor air samples at concentrations ranging from 2 – 3.1 μ g/m³. n-butane was detected in 12 outdoor air samples (1.1 to 8.1 μ g/m³), n-hexane was detected in one sample at 2.1 μ g/m³, nonane was detected in 4 samples (2.6 to 4.9 μ g/m³) and pentane was detected in one sample at 3.6 μ g/m³.

6.5.3 Interpretation of the SVI Data

As discussed in the preceding paragraphs, BTEX and other VOCs were detected in indoor air and vapor samples collected from the site. The presence of these compounds in indoor air samples is not unexpected given their widespread use in common household products like paints, stains, varnishes, furniture polish, air fresheners, cleaning products, and others.

The extent to which they are present in soil vapor samples is determined by a number of factors, including: the sample point's proximity (both horizontally and vertically) to a contaminant source; the degree of contamination present (i.e. free-phase vs. residual vs. dissolved phase); whether the contaminant source is above or below the groundwater table; the soil type; and the heterogeneity of the soil.

The presence of volatile compounds in soil vapor does not mean that indoor air quality is being adversely affected. Without soil vapor intrusion (i.e. the migration of soil vapors into a structure such as a home or commercial building) there is no migration pathway for contaminants in soil vapor to enter the home or building. Factors unique to each building such as its foundation type and depth and its HVAC (heating/ventilating/air conditioning) system along with certain atmospheric conditions affect the degree to which soil vapor intrusion occurs.

In some instances, soil vapor intrusion can be significant while in other instances it may be intermittent or altogether absent. The NYSDOH has determined that the likely worst-case scenario for soil vapor intrusion for impacting indoor air occurs when heating systems are running continuously and doors and windows are closed. Therefore, soil vapor intrusion

NYSEG: Norwich SRI Report

investigations are routinely conducted in the winter months to measure indoor air quality for the

worst-case scenario.

To determine if soil vapor intrusion is occurring, one must compare sample results from samples

collected simultaneously from sub-slab vapor, from ambient air in the basement, and from

ambient air in the first floor living space. When chemical concentrations are higher in the

basement and/or first floor air samples than in the sub-slab vapor samples it is generally accepted

that soil vapor intrusion is not occurring. In such situations, it is usually possible to explain the

presence of chemicals in the basement and/or first floor air samples based on the presence of

chemical products found in the inventory that was conducted prior to the sampling.

When chemicals are present in basement and/or first floor indoor air samples at concentrations

similar to or lower than in the sub-slab vapor sample, soil vapor intrusion is potentially

occurring. In these circumstances the basement and first floor indoor air results are compared to

the NYSDOH database of background chemical concentrations. This database presents a range

of concentrations for each chemical that has been detected in fuel-oil heated homes that are not

close to contaminated sites.

For all of the locations sampled as part of this soil vapor intrusion evaluation, every chemical

detected in basement and first floor air was determined to be within the expected range for that

chemical, with only two exceptions. At one home, tetrachloroethene (PCE) and trichloroethene

(TCE) were present at concentrations of 550 µg/m³ and 6.5 µg/m³, respectively, in the first floor

Those concentrations far exceeded the concentrations of those same indoor air sample.

chemicals in the basement and sub-slab samples. The presence of those chemicals is likely

attributable to dry-cleaned clothing in the home. At another home, several chemicals were

detected in the basement and first floor indoor air samples that were in excess of the expected

range based on the NYSDOH database. However, at that location, gasoline was stored in the

basement and was the likely source of those chemicals.

Except for the two situations described immediately above, because of the ubiquitous nature of

volatile organic compounds it was not possible during this soil vapor intrusion evaluation to

determine a particular source for the chemicals detected in soil vapor, basement indoor air and

NYSEG: Norwich SRI Report

October 2006

first floor indoor air. However, since the chemical concentrations detected were generally within the ranges expected based on the use of common household products containing the chemicals, it is concluded that vapors generated in the subsurface from the residues associated with former MGP site are not affecting indoor air quality inside any of the locations that were part of this soil vapor intrusion evaluation.

6.6 QUALITY ASSURANCE/QUALITY CONTROL

As part of the chemical analyses performed for this SRI, Chemtech, Accutest, and STL performed all of the quality assurance and quality control (QA/QC) procedures required by the individual methods and sufficient to produce New York State ASP Category B deliverables packages. Internal laboratory QA/QC samples included but were not limited to initial calibrations, continuing calibrations, interference check samples, calibration checks, calibration blanks, preparation blanks, spike samples, laboratory duplicates and serial dilution samples.

The Ish Inc. team performed a review of QA/QC data generated by Chemtech, Accutest, and STL. This review included pertinent QA/QC data such as sample extraction and analysis methodology, holding times, calibration, a review of laboratory blanks and QA/QC sample results, and a review of the analytical case narrative. A Data Usability Summary Report (DUSR) was prepared according to NYS guidance which included a compliance chart, a list of samples included in each sample delivery group and recalculations of sample results, if needed. Nonconforming QA/QC results were evaluated with respect to their implications for data reliability and usability, and data results were flagged accordingly on the results sheets. These qualifiers were entered into the site-specific electronic database and appear in the summary tables presented in Appendix B of this report.

In addition to the laboratory QC measures described above, field QC samples were collected and analyzed to monitor the field sampling procedures. The field samples collected for the soil and groundwater investigation included equipment rinsate blanks, field duplicates and trip blanks. Equipment rinsate blanks were collected to monitor the effectiveness of field decontamination procedures. To verify the consistency of the sample collection procedures, field duplicates were collected. In addition, trip blanks were analyzed for shipments of groundwater samples analyzed

NYSEG: Norwich SRI Report

for VOCs only to determine if any samples were compromised during sample handling or

shipment. For the SVI evaluation, the field QC samples collected were field duplicate samples

to verify the consistency of the sample collection procedures.

The results for the field QC samples are presented in Appendix B. The equipment rinsate and

trip blank results for VOCs are presented in Table B-24, while the SVOC results for the

equipment rinsate blanks and one trip blank analyzed for naphthalene are presented in Table

B-25. Results for field duplicate soil samples are presented in Table B-26 for VOCs and Table

B-27 for SVOCs. Similarly, the field duplicate results for groundwater samples are presented in

Table B-28 for VOCs, Table B-29 for SVOCs and Table B-30 for total cyanide.

VOCs were detected in two of the eight trip blank samples; one trip blank for a shipment on

12/14/05 had toluene at 0.55 µg/L, while a second trip blank from that day had 0.35 µg/L of

ethylbenzene, indicating that there was only minimal cross-contamination during sample

handling and shipment. On trip blank from November 19, 2004 was analyzed for naphthalene,

but none was detected. No VOC or SVOC target compounds were detected in the two

equipment rinsate blank samples collected. These results indicate that the decontamination

procedures were effective.

The results for field duplicates of soil samples are shown in Table B-26 and Table B-27. In

general, relative percent differences (RPDs) of less than 50% for field duplicates indicate that

both field sampling procedures and the analytical precision are of sufficient quality. The RPDs

for measurements of individual VOCs in soil varied from 5 to 58%, while the RPDs for

individual SVOCs ranged from 1 to 60%. The RPDs were generally less than 50%, with a few

exceptions. Overall, the RPDs for duplicate samples indicate that the sampling procedures and

analytical precision are of sufficient quality.

The results for field duplicates of groundwater samples are shown in Table B-28 through Table

B-30. A total of four groundwater duplicates were collected (GW04-16, PZ05, PZ09, and PZ10)

over three rounds of sampling. The sample from PZ10 was analyzed for VOCs and SVOCs

only. For VOCs and SVOCs the RPDs were all found to be less than 50%. Similarly, the RPDs

NYSEG: Norwich SRI Report

October 2006

for total cyanide were less than 30%. The groundwater duplicate results indicate that the

sampling and analytical procedures met the data quality objectives.

The field duplicate samples from the SVI evaluation are shown in Table B-31. Many of the

compounds were not detected and others were detected slightly above the detection limit, so they

were estimated (J flag). A total of four compounds across three duplicate pairs had RPDs greater

than 50. In general, the RPDs for duplicate air and vapor samples indicate that the sampling

procedures and analytical precision are of sufficient quality.

NYSEG: Norwich SRI Report

CONCLUSIONS AND RECOMMENDATIONS

This section provides a summary of the site conditions, as determined by the completion of the

SRI work. This section also presents some recommendations.

7.1 SUMMARY OF IMPACTS AT THE SITE

The following subsections briefly summarize the environmental impacts at the Norwich former

MGP site, organized by areas of potential concern for the site.

7.1.1 NAPL and MGP-related VOCs and SVOCs in the Subsurface Soils

As shown on Figure A-30, evidence of coal tar NAPL, in the form of sheens and small NAPL

globules, was observed in the subsurface soil across the majority of the Norwich former MGP

site, as well as downgradient of the site, to the south. There is a significant amount of coal tar

NAPL globules in the subsurface at the site based on observations recorded the logging of the 65

soil borings completed at the site and surrounding area.

In general, the NAPL observed was reddish-brown in color and was intermixed with water

within the pore spaces of the relatively loose sand and gravel outwash present in the shallow

aguifer above the silt and clay confining layer. In all of the borings where impacts were noted in

the outwash layer and the silt and clay layer was recovered, the confining layer appeared to be

preventing further downward migration of the NAPL, which has spread laterally and with the

flow of groundwater to the south. On-site and on the former Aero Products building property

(now owned by NYSEG), the thickness of the NAPL was generally 5 to 10 feet thick. Further

south, NAPL thicknesses, when present, were less than 5 feet. When observed, NAPL was

found at depths ranging from approximately 7 to 26 feet bgs at the site and surrounding area.

Figure A-34 shows the estimated extent of the NAPL and sheens at the site and surrounding area.

NYSEG: Norwich SRI Report

October 2006

Substantial NAPL was observed in GW01-15D, GW04-16, and PZ09 during monitoring well and piezometer gauging events. GW01-15D and GW04-16 are located on-site and PZ09 is located in the low area of the clay contour south of Front Street, where substantial NAPL was observed during soil boring activities. These data indicate that in some areas on-site and in one area downgradient from the site, there is sufficient NAPL present in the subsurface to collect in monitoring wells or piezometers.

To confirm the visual observations and PID measurements made during the logging of soil borings in the field, soil samples were collected for chemical analysis. There were more than 75 subsurface soil samples collected and analyzed for VOCs and SVOCs. Many of these samples had concentrations above NYSDEC TAGM #4046 RSCOs for either individual compounds, total VOCs, or total SVOCs (Table B-6, Table B-7, Table B-8, Table B-9, Table B-10, and Table B-11). There were elevated concentrations for BTEX, isopropylbenzene, PAHs and dibenzofuran, which are all attributable to MGP residuals and these elevated concentrations corresponded very well to visual observations of staining, sheens and NAPL in the subsurface.

The VOC and SVOC results in subsurface soils confirm that the impacts from MGP residuals (coal tar) that are present in the sand and gravel outwash layer are not migrating deep into the silt and clay confining unit. While there are some exceedances for BTEX, PAHs, and dibenzofuran in the upper few feet of the silt and clay layer (the sample at DP37 was collected from 2.5 to 3.5 feet below the top of the clay layer and had BTEX exceedances), soil samples collected from beyond this depth into the lacustrine unit did not show elevated concentrations of VOCs and SVOCs related to MGP residuals. Both the field observations and chemical data suggest that NAPL and dissolved constituents are not migrating downward into the silt and clay confining unit.

7.1.2 MGP-related VOCs and SVOCs in Groundwater

Shallow groundwater at the site has been impacted by VOCs and SVOCs related to MGP residuals in the saturated sand and gravel outwash layer, present above the silt and clay confining unit. This conclusion is supported by the data for VOCs and SVOCs obtained from the monitoring wells and piezometers (Table B-15, Table B-16, Table B-17, Table B-18, and Table

NYSEG: Norwich SRI Report

B-19). Specifically, BTEX, isopropylbenzene, and SVOC concentrations exceeded NYSDEC

Class GA groundwater standards or guidance values in groundwater at sampling locations

covering most of the site and in a plume extending approximately 700 feet to the south, across

Front Street to the north of 35 Brown Avenue. These results are consistent with NAPL

observations in the borings when wells/piezometers were installed at these locations as well as

inference derived from the groundwater flow direction at the site, which is to the south. The

approximate extent of NYSDEC Class GA groundwater standard or guidance values

exceedances related to MGP residuals (BTEX, isopropylbenzene, PAHs, and dibenzofuran) is

shown on Figure A-35.

The depth to groundwater at the site and surrounding area varies from approximately 4 to 14 feet

below grade. As part of the SRI work, the vapor intrusion pathway was examined to determine

if the contaminated groundwater in the shallow zone presents a pathway for vapor phase

migration into the surrounding residences and buildings.

7.1.3 Total Cyanide in Groundwater

Total cyanide was detected above the NYSDEC Class GA groundwater standard of 200 µg/L at

two locations, GW91-4D and PPZ02, at 400 and 220 µg/L, respectively. In addition, lower level

concentrations of total cyanide were measured at several other locations (GW01-14, GW91-4SH,

GW91-6, GW92-11D, GW92-8, PZ01, PZ04, PZ05, PZ06, PZ08, PZ09, PZ10, PZ11, PZ14,

PZ15, PZ19, PZ25, PZ28, PZ30, PZ31, and PZ36) below the Class GA standard. No off-site

groundwater locations had total cyanide measured above the Class GA groundwater standard.

7.1.4 SVI Evaluation

Soil vapor or indoor air samples were collected over a period of 24 hours from the sub-slab, from

the basement (where present) and from the first floor of each of the 14 buildings investigated.

Basement and first floor air samples were collected from the breathing zone height (i.e. 3-5

above the floor). First floor air samples were collected from a living space. For each day of

sampling, three outdoor air samples were collected.

NYSEG: Norwich SRI Report

October 2006

Conclusions and Recommendations

Volatile organic compounds were detected in each of the samples collected. The presence of

these compounds in indoor air samples is not unexpected given their widespread use in common

household products like paints, stains, varnishes, furniture polish, air fresheners, cleaning

products, and others. Because of the ubiquitous nature of these chemicals it was not possible

from this SVI evaluation to attribute them to any particular source.

Because all of the chemicals detected in all of the basement and first floor indoor air samples at

each location were generally within their expected ranges based on the NYSDOH background

data base (except for two exceptions as discussed in Section 6.5.3), it has been determined that

soil vapors generated from the residues from the former MGP site are not affecting indoor air

quality inside any of the test locations.

7.2 RECOMMENDATIONS

7.2.1 Perform Focused Feasibility Study

Based on the site data collected during previous investigations and this SRI, Ish Inc. recommends

that it is now appropriate to perform a focused feasibility study (FFS) to determine what

remedial measure(s) would be necessary to achieve remedial goals that NYSEG and NYSDEC

7-4

agree to pursue.

NYSEG: Norwich SRI Report

8 REFERENCES

ASTM, 1990, Standard Practice for Design and Installation of Groundwater Monitoring Wells in Aquifers, Designation D 5092-90.

ASTM, 1990, Test Method for the Classification of Soils for Engineering Purposes, Designation D 2487.

Domenico, P.A. and F.W. Schwartz, 1990, Physical and Chemical Hydrogeology, John Wiley & Sons, New York, 506 p.

Driscoll, Fletcher, 1986, Groundwater and Wells, Johnson Screens, St. Paul, MN.

Engineering-Science, Inc., 1992, Task II Investigation Report for the Former Manufactured Gas Plant Site, Norwich, New York (NYSGE Code CGNO).

Engineering-Science, Inc., 1997. Task III Investigation Report for the Former Manufactured Gas Plant Site, Norwich, New York (NYSGE Code CGNO).

EPRI, 1999, State of the Science Review of Cyanide and Its Compounds at Former Manufactured Gas Plant Sites, EPRI Final Report No. TR-114121.

EPRI, 1996, Characterization and Monitoring Before and After Source Removal at a Former Manufactured Gas, EPRI Final Report No. TR-105921.

Edinger, G.J., D.J. Evans, S. Gebauer, T.G. Howard, D.M. Hunt, and A.M. Olivero (editors). 2002. Ecological Communities of New York State. Second Edition. A revised and expanded edition of Carol Reschke's Ecological Communities of New York State. (Draft for review). New York Natural Heritage Program, New York State Department of Environmental Conservation, Albany, NY.

Fluor Daniel GTI, 1997, Final Report, Phase III, Interim Remedial Measures Work Plan for Norwich Former MGP Site, Norwich, New York.

Freeze, R.A., and J.A. Cherry, 1979. Groundwater. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 604 p.

Greenberg, A.E., Clesceri, L.S., Eaton, A. D., 1992, Standard Methods for the Examination of Water Wastewater, 18th Edition, American Public Health Association, American Water Works Association, Water Environment Federation.

NYSEG: Norwich SRI Report

GRI, 1996, Management of Manufactured Gas Plant Sites Volumes I & II, Amherst Scientific Publishers, Amherst, MA.

Huling, S.G. and Weaver, J. W., 1991, USEPA Groundwater Issue Report "Dense Non-aqueous Phase Liquids".

NYSDEC, 1991, Analytical Services Protocol.

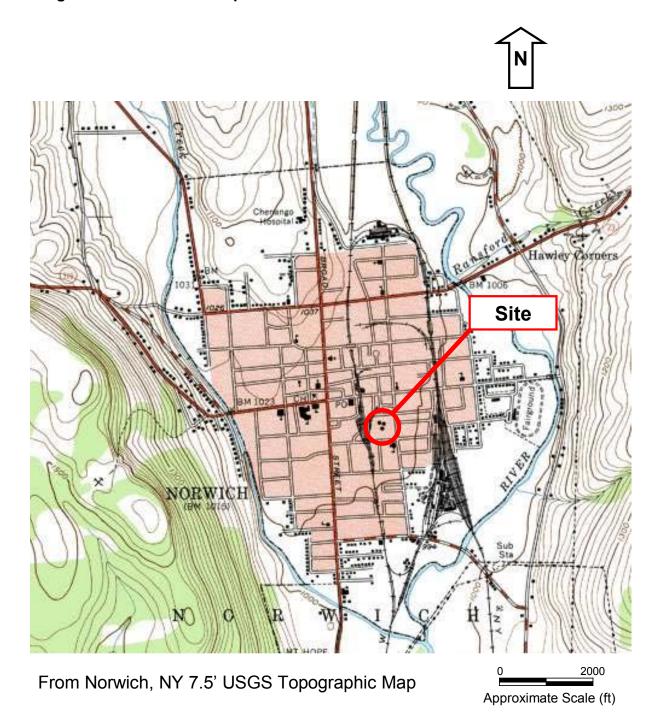
NYSDEC, 1994, Order On Consent Index # DO-0002-9309, "In the Matter of the Development and Implementation of a Former Manufactured Gas Plant (MGP) Sites Investigation and Remediation Program by The New York State Electric and Gas Corporation".

NYSDEC, 1994, Technical and Administrative Guidance Memorandum #4046, "Determination of Soil Cleanup Objectives and Cleanup Levels".

NYSDEC, 2002, Draft DER-10, Technical Guidance for Site Investigation and Remediation.

Puls, R.W. and Barcelona, M.J., 1996, USEPA Groundwater Issue Report "Low-Flow (Minimal Drawdown) Groundwater Sampling Procedures.

Shaw Environmental, Inc., 2003, Semi-Annual Status Report – January 2003 to June 2003, Air Sparge/SVE System – Operation & Maintenance, Norwich Former MGP Site, Birdsall Road, Norwich, Chenango County, New York.


USEPA, 1986, Test Methods for Evaluating Solid Waste Physical/Chemical Methods. SW-846 Third Edition. Office of Solid Waste, USEPA, Washington DC.

USEPA, 1989. "Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part A)", United States Environmental Protection Agency (USEPA), Office of Emergency and Remedial Response, EPA/540/1-89/002.

FIGURES

NYSEG: Norwich SRI Report October 2006

Figure A-1 Site Locus Map

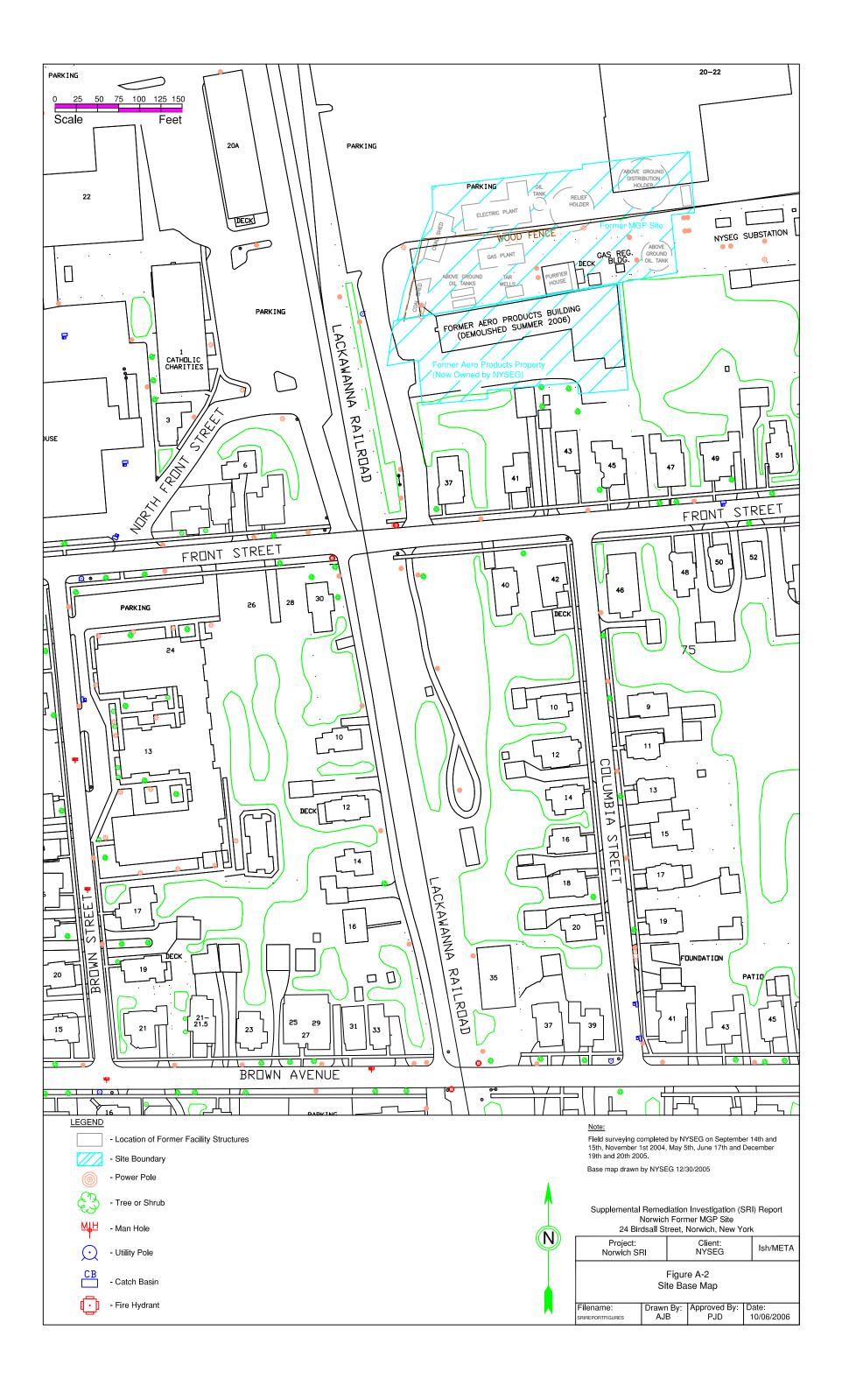


Figure A-3 Benzene Concentrations in Monitoring Well GW01-15S, 2002 through 2003 ($\mu g/L$)

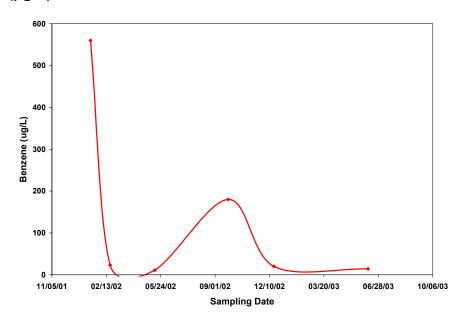


Figure A-4 Naphthalene Concentrations in Monitoring Well GW01-15S, 2002 through 2003 ($\mu g/L$)

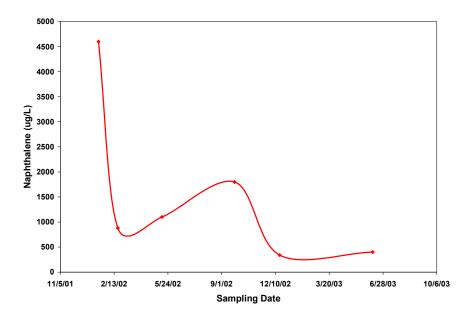


Figure A-5 Total VOC Concentrations in Monitoring Well GW01-15S, 2002 through 2003 (μ g/L)

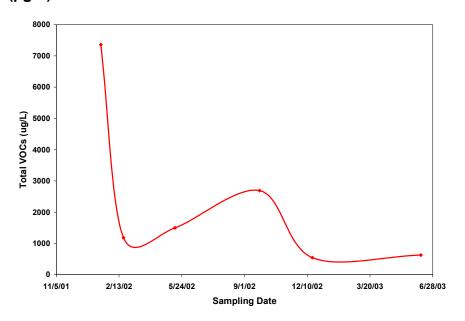


Figure A-6 Total SVOC Concentrations in Monitoring Well GW01-15S, 2002 through 2003 ($\mu g/L$)

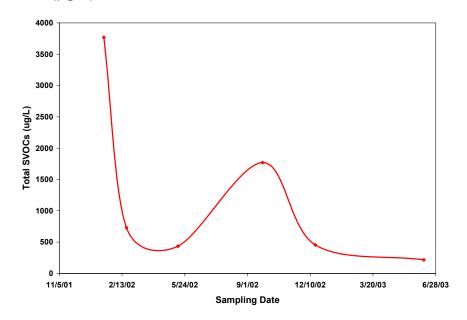


Figure A-7 Benzene Concentrations in Monitoring Well GW91-6. 1999 through 2003 (μ g/L)

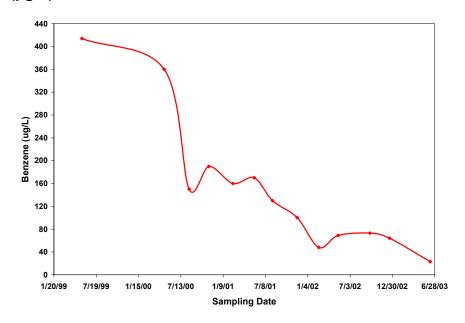


Figure A-8 Naphthalene Concentrations in Monitoring Well GW91-6, 1999 through 2003 (μ g/L)

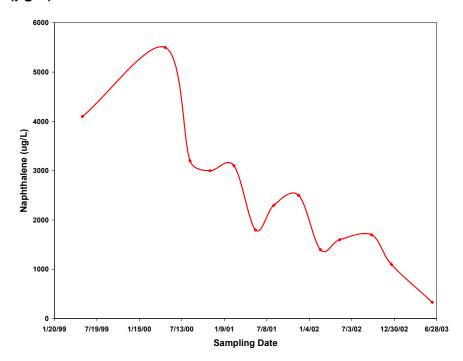


Figure A-9 Total VOC Concentrations in Monitoring Well GW91-6, 1999 through 2003 (μ g/L)

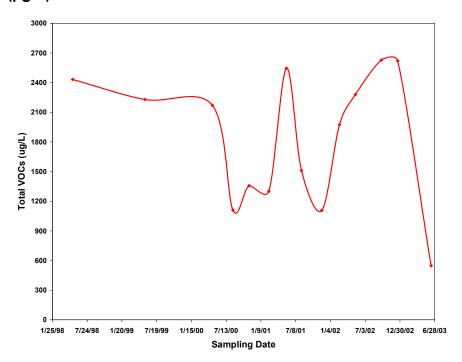


Figure A-10 Total SVOC Concentrations in Monitoring Well GW91-6, 1999 through 2003 (μ g/L)

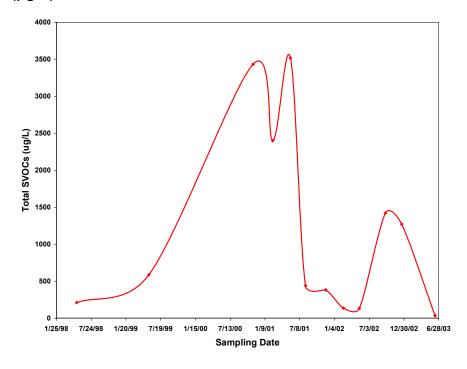


Figure A-11 Benzene Concentrations in Monitoring Well GW01-14, 2002 through 2003 ($\mu g/L$)

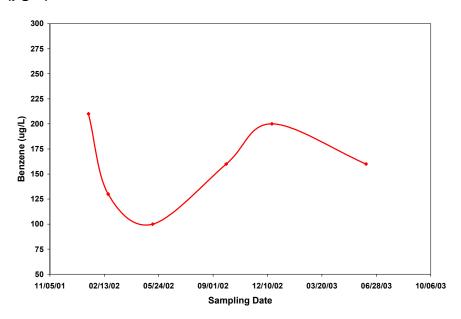


Figure A-12 Naphthalene Concentrations in Monitoring Well GW01-14, 2002 through 2003 ($\mu g/L$)

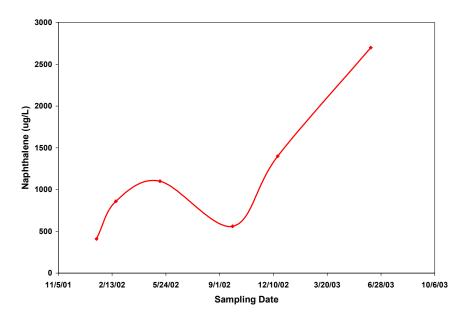


Figure A-13 Total VOC Concentrations in Monitoring Well GW01-14, 2002 through 2003 ($\mu g/L$)

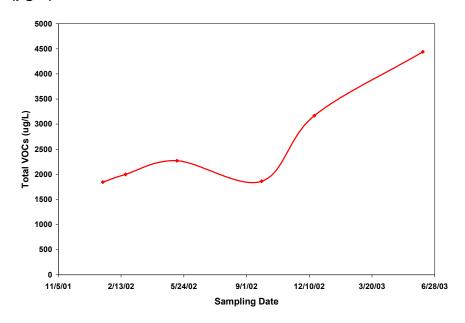


Figure A-14 Total SVOC Concentrations in Monitoring Well GW01-14, 2002 through 2003 (μ g/L)

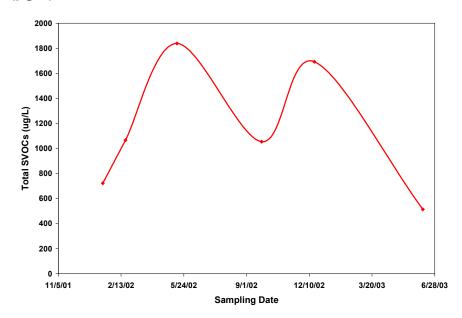
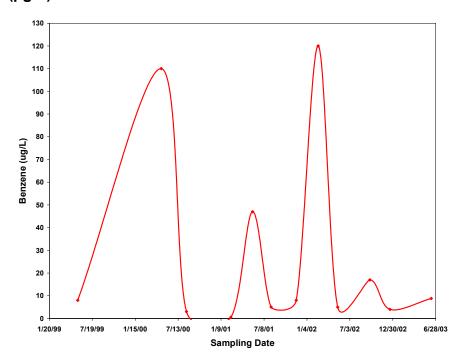
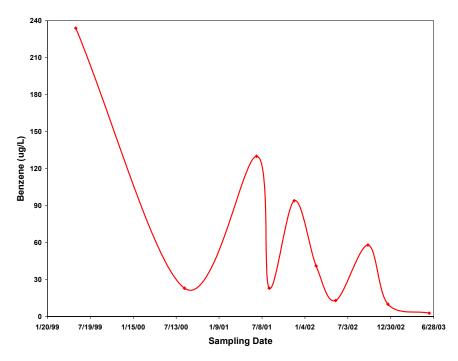
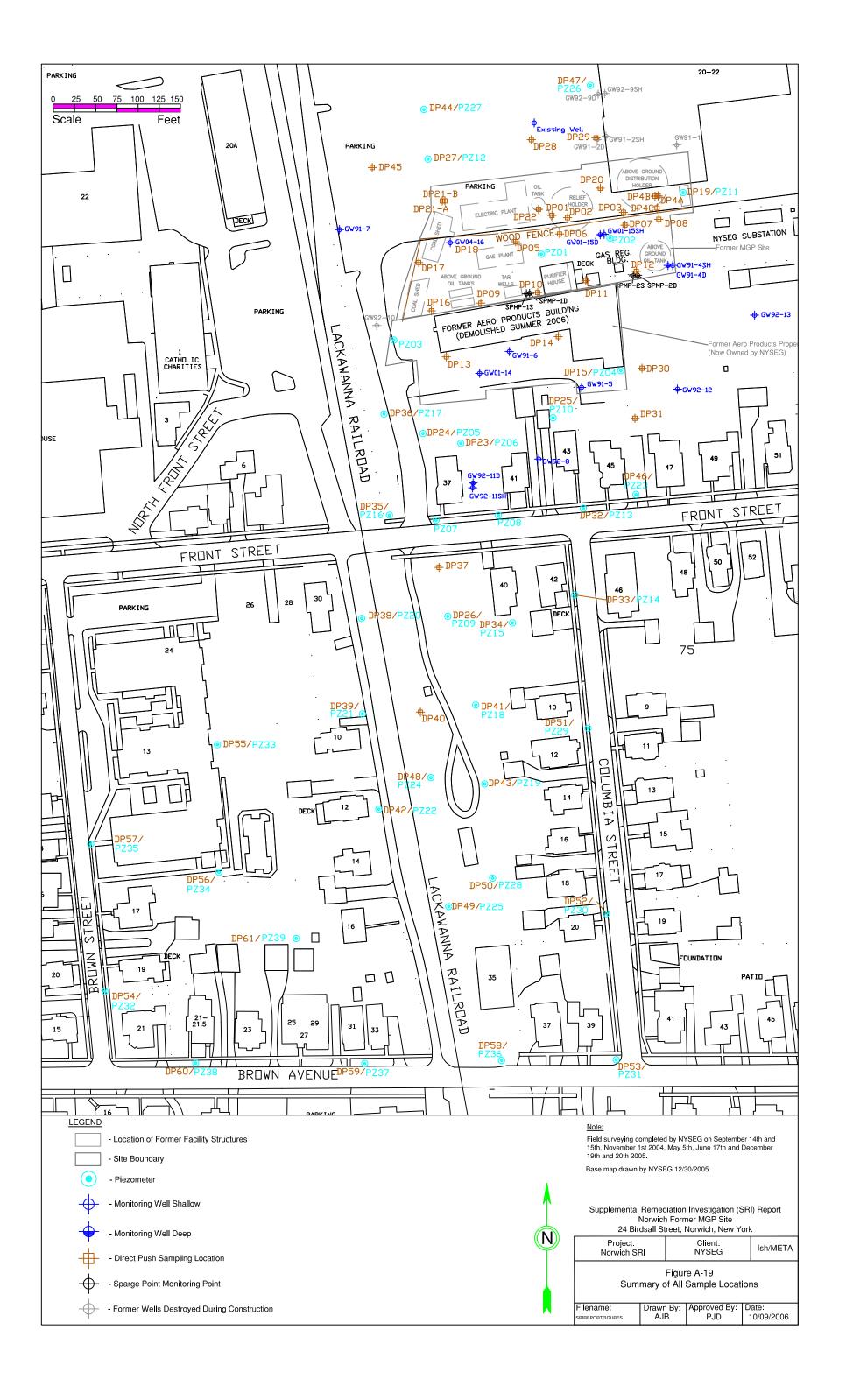
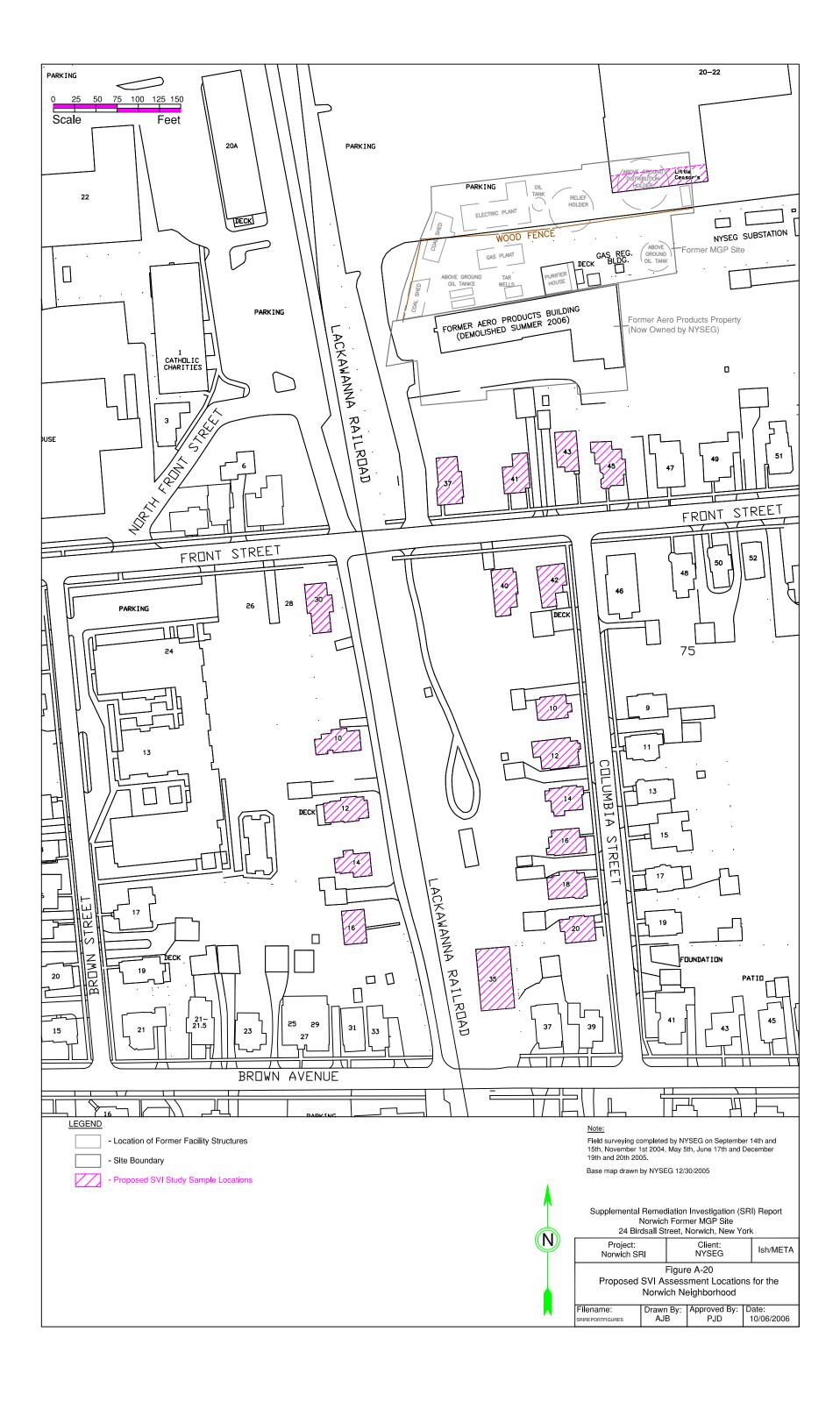
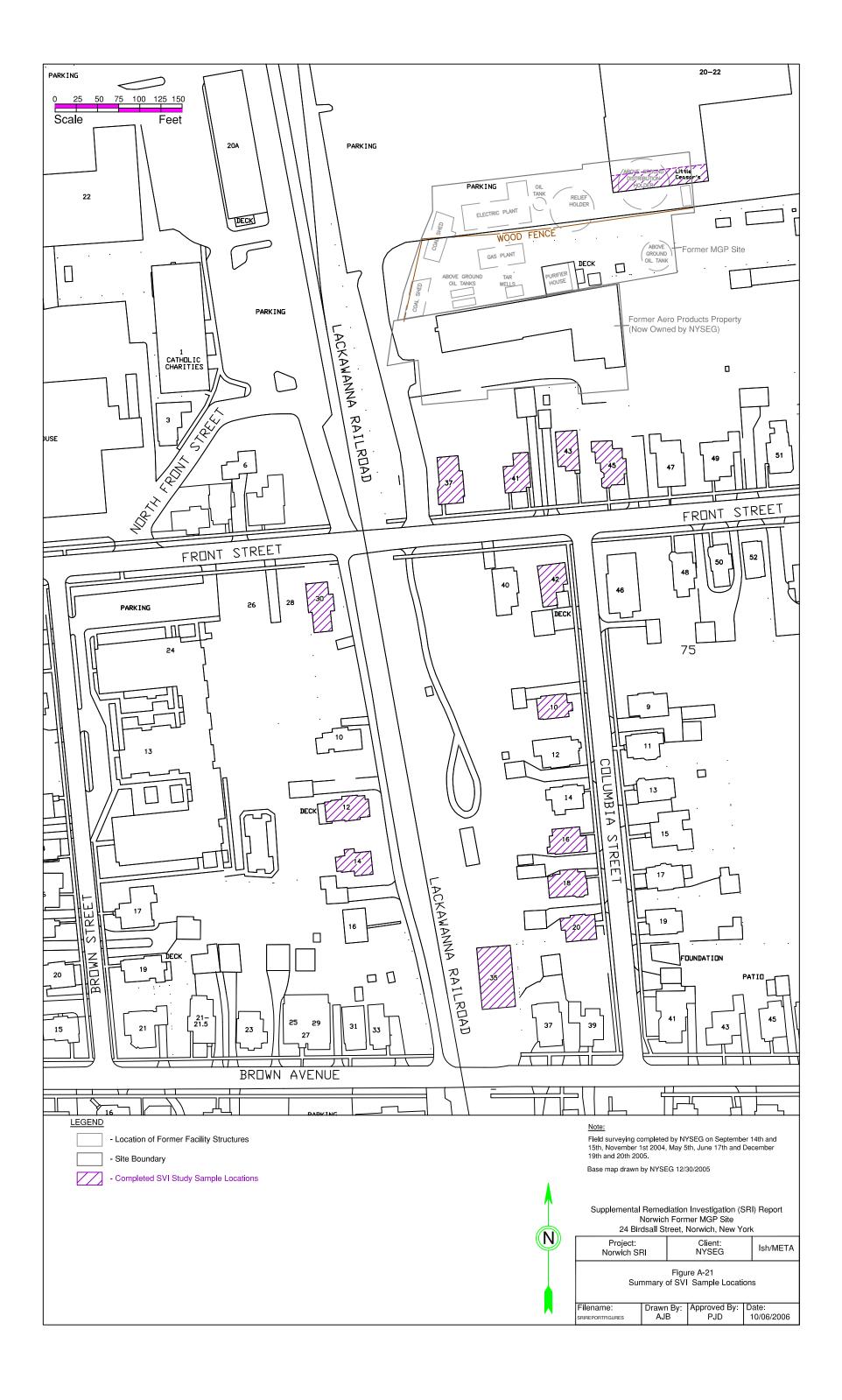


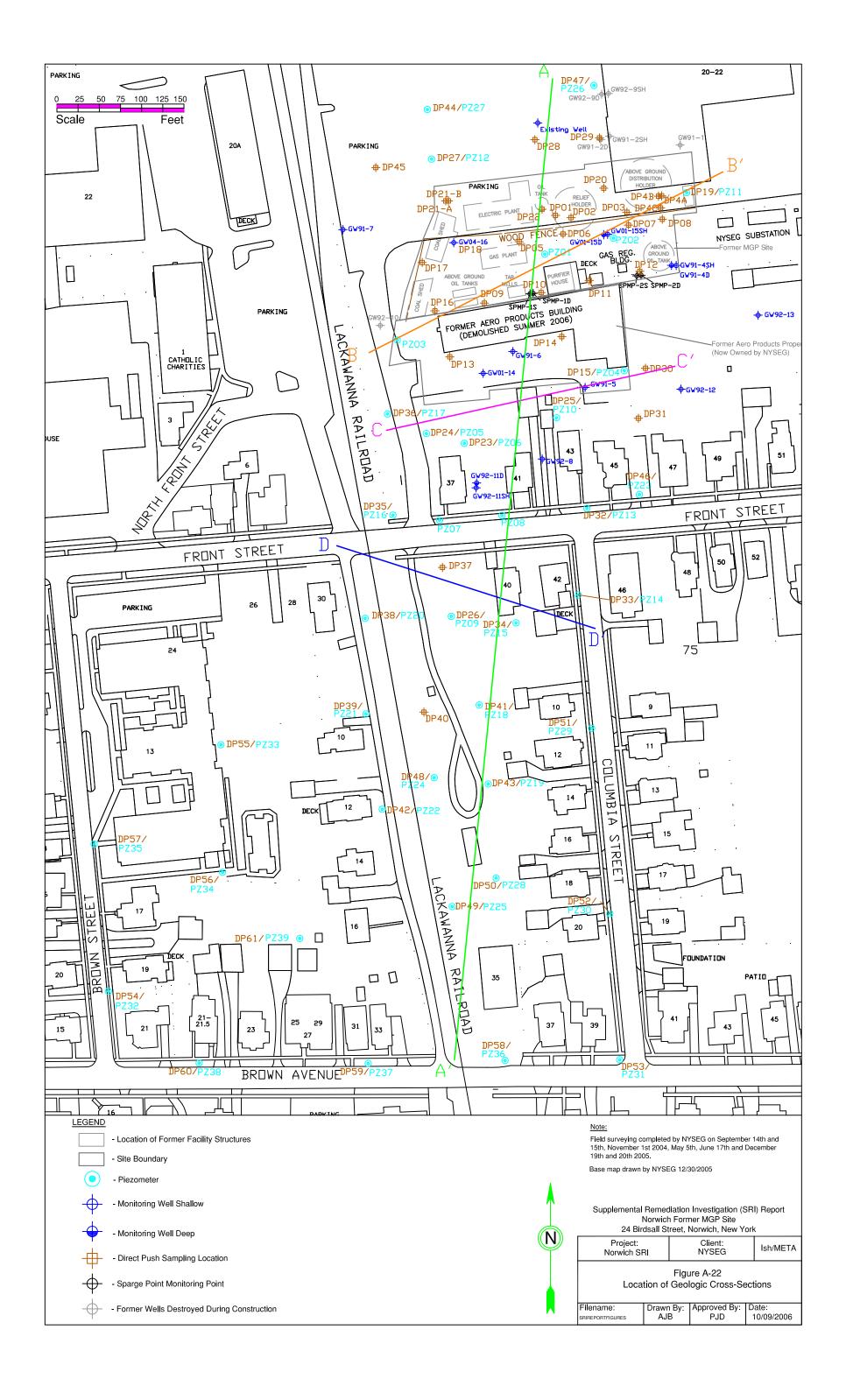
Figure A-15 Benzene Concentrations in Monitoring Well GW92-11D, 1999 through 2003 ($\mu g/L$)

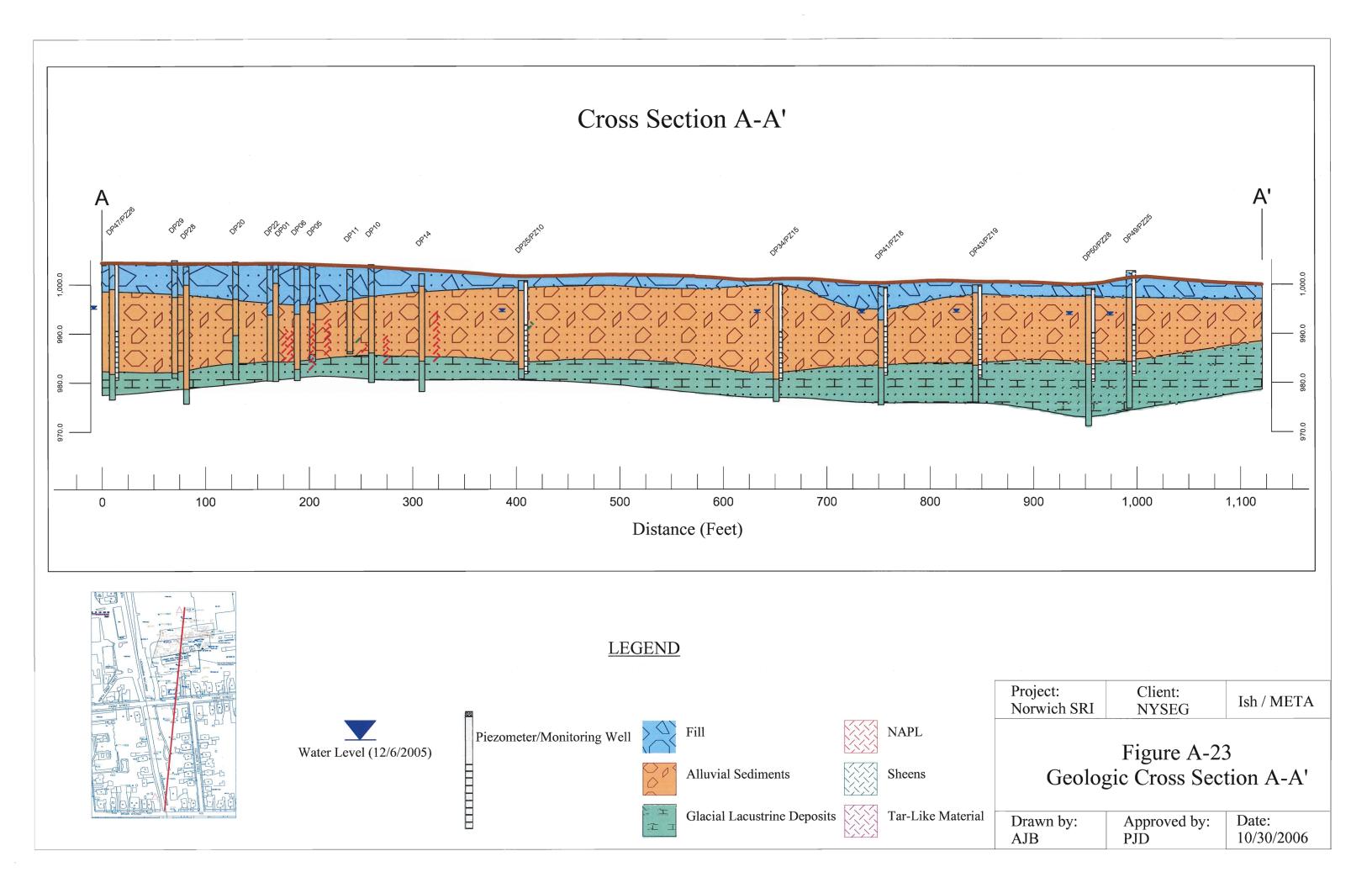



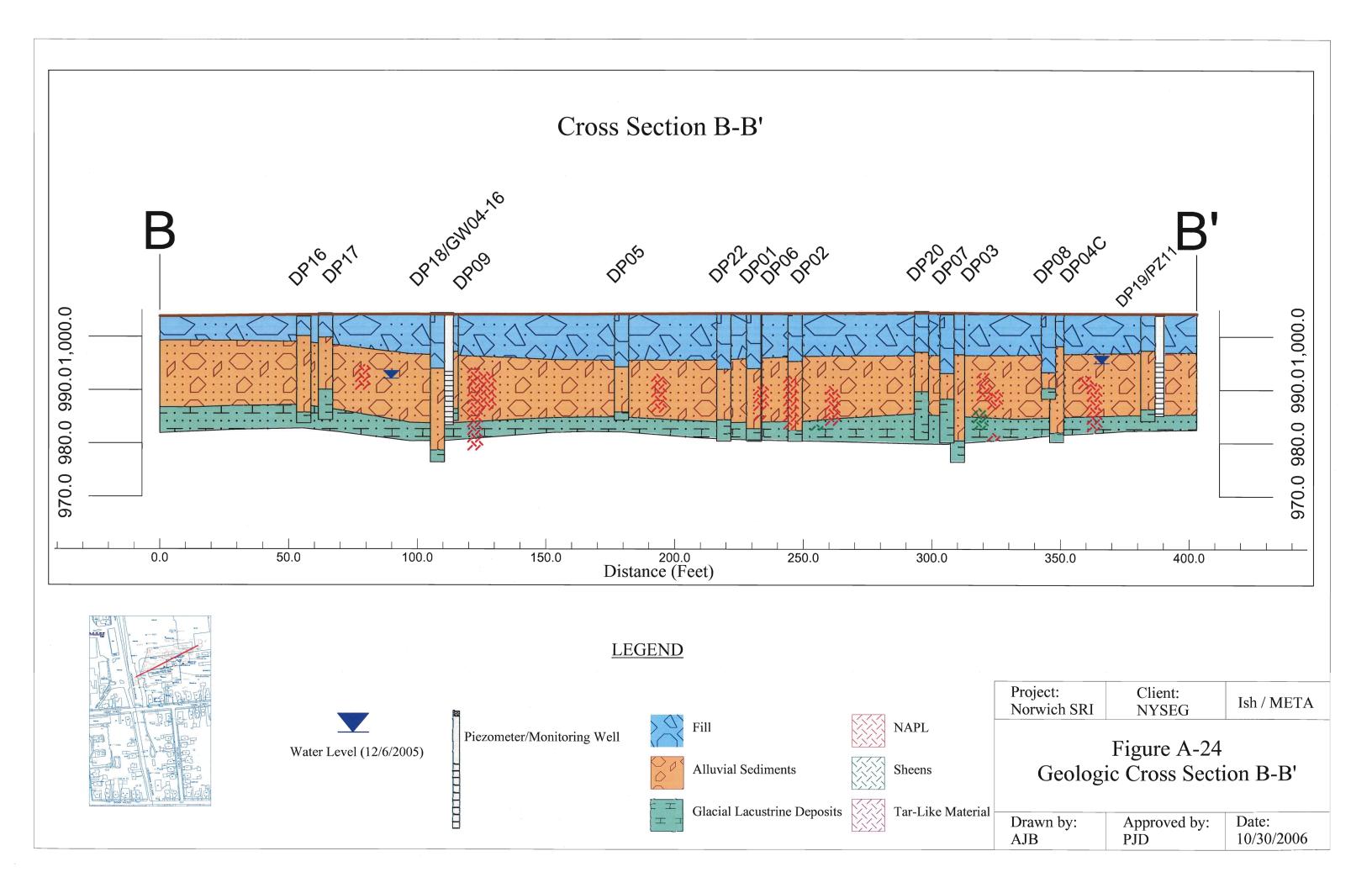


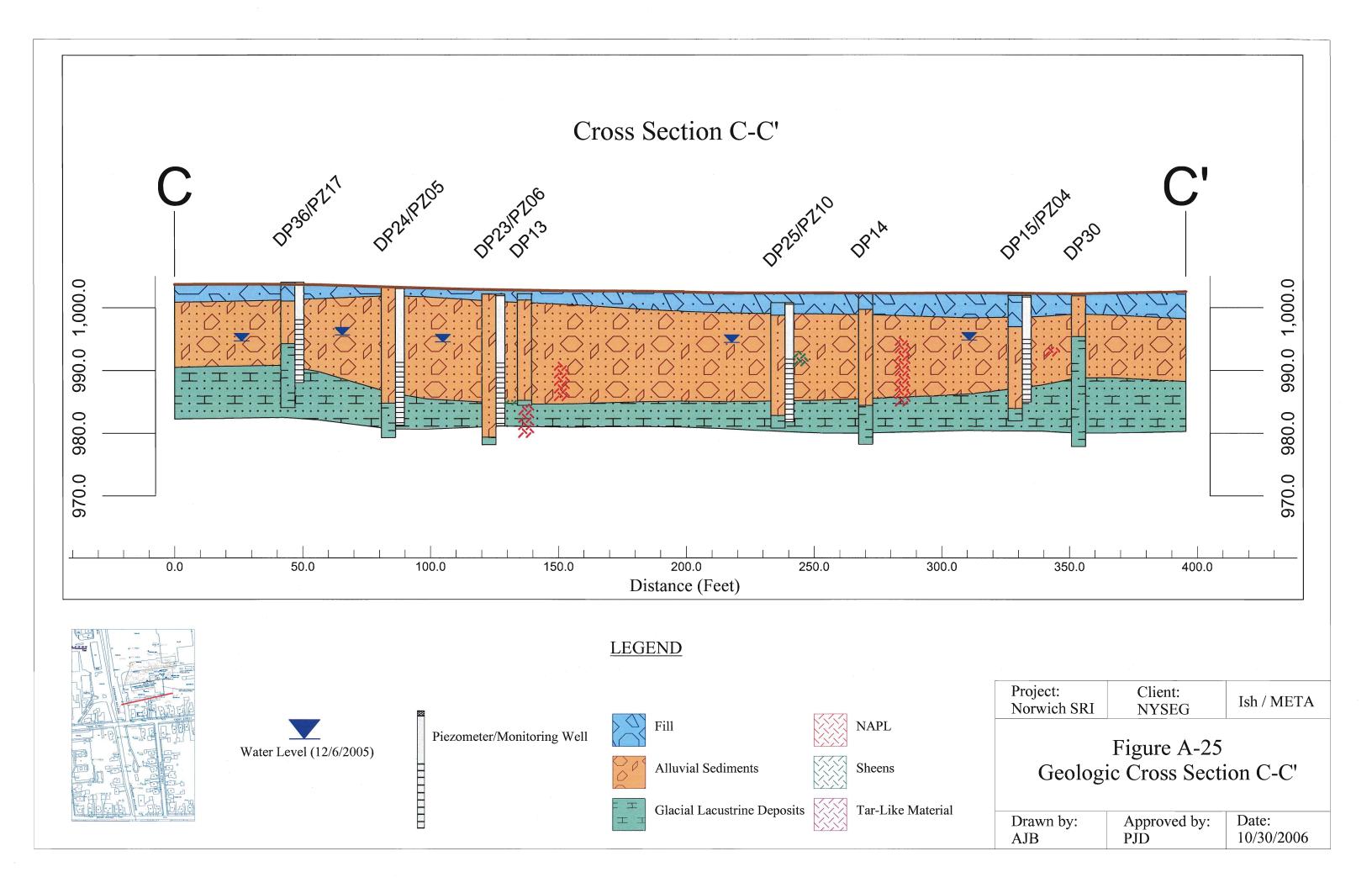

Figure A-16 Benzene Concentrations in Monitoring Well GW92-8, 1999 through 2003 ($\mu g/L$)

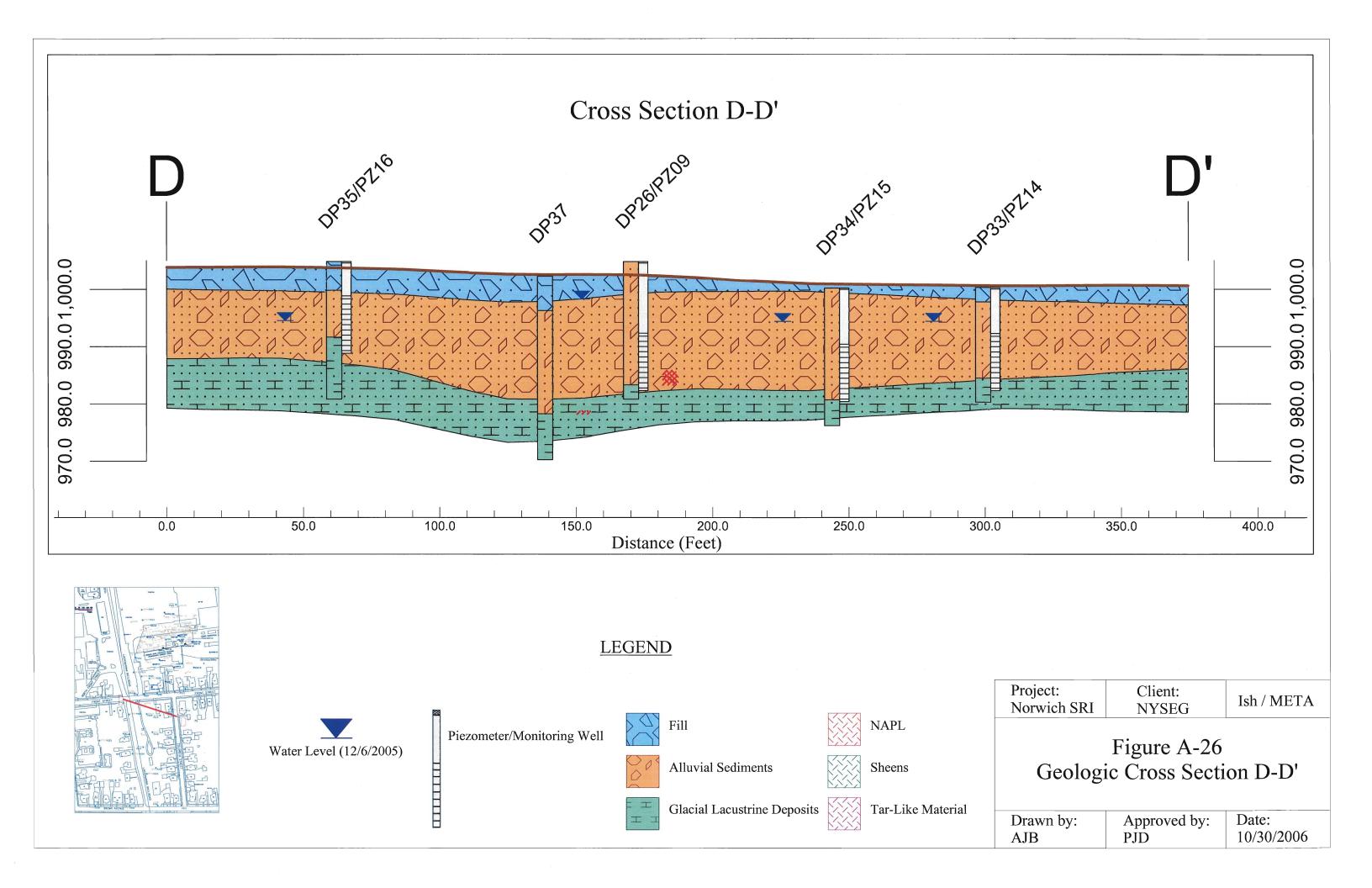


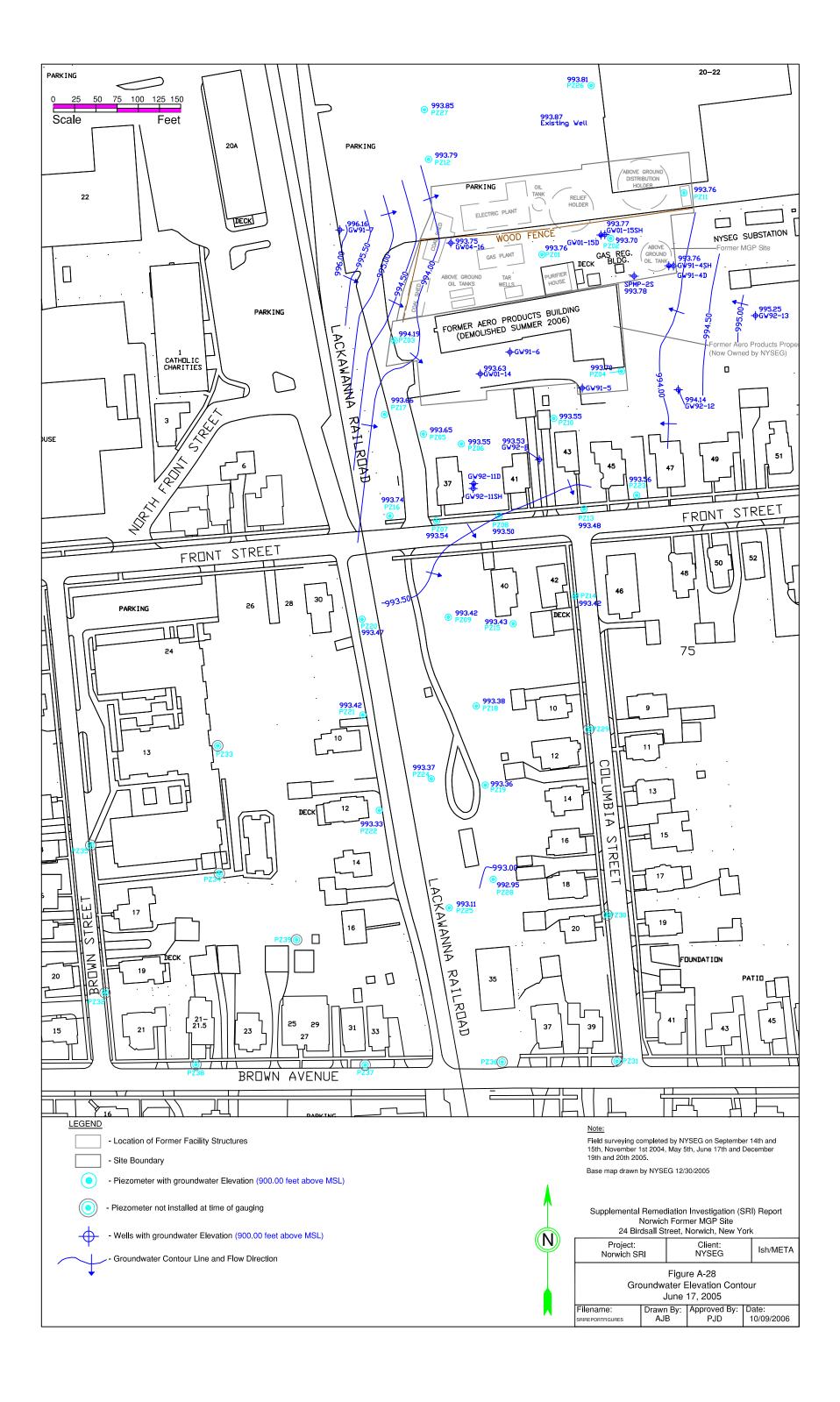


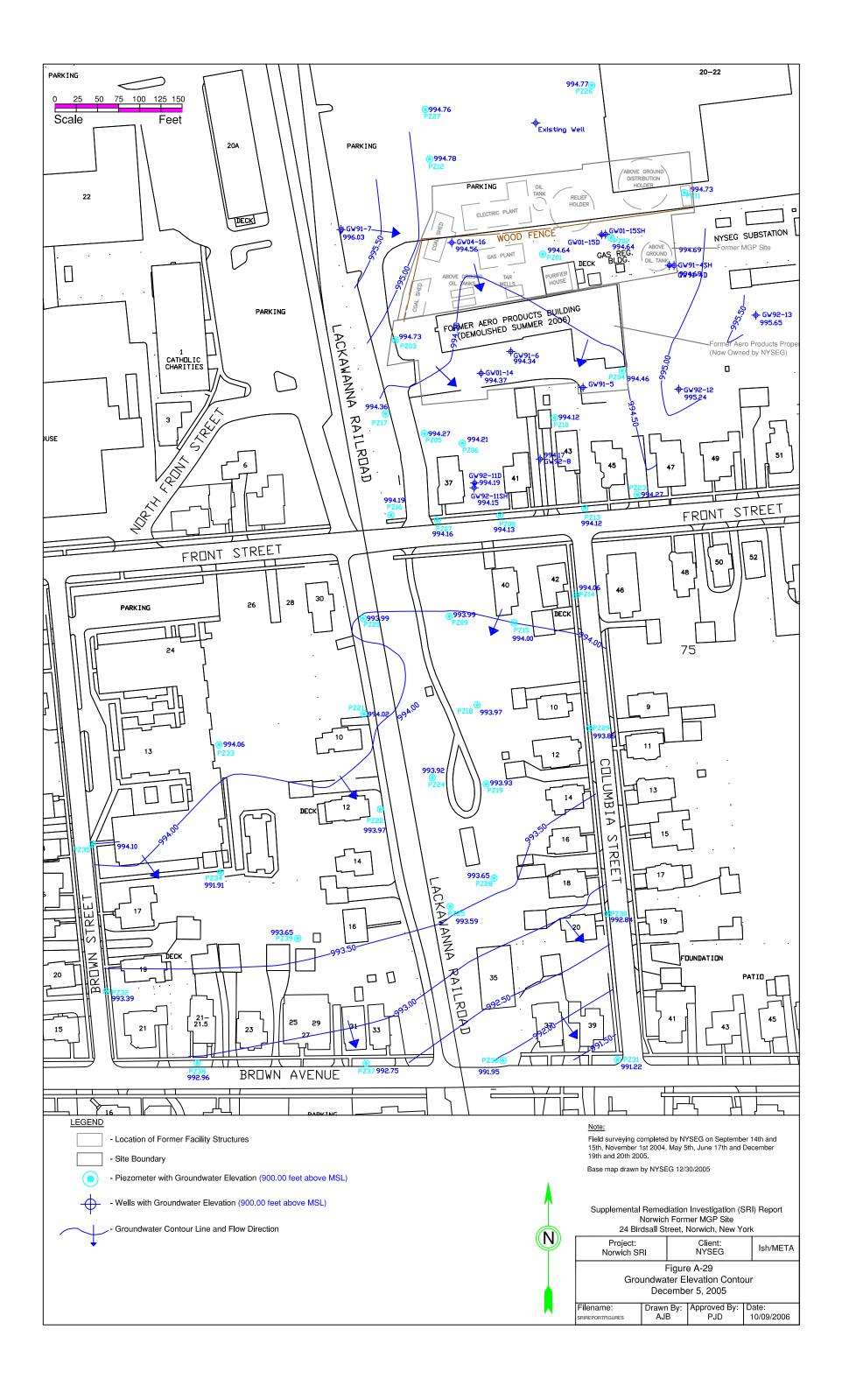


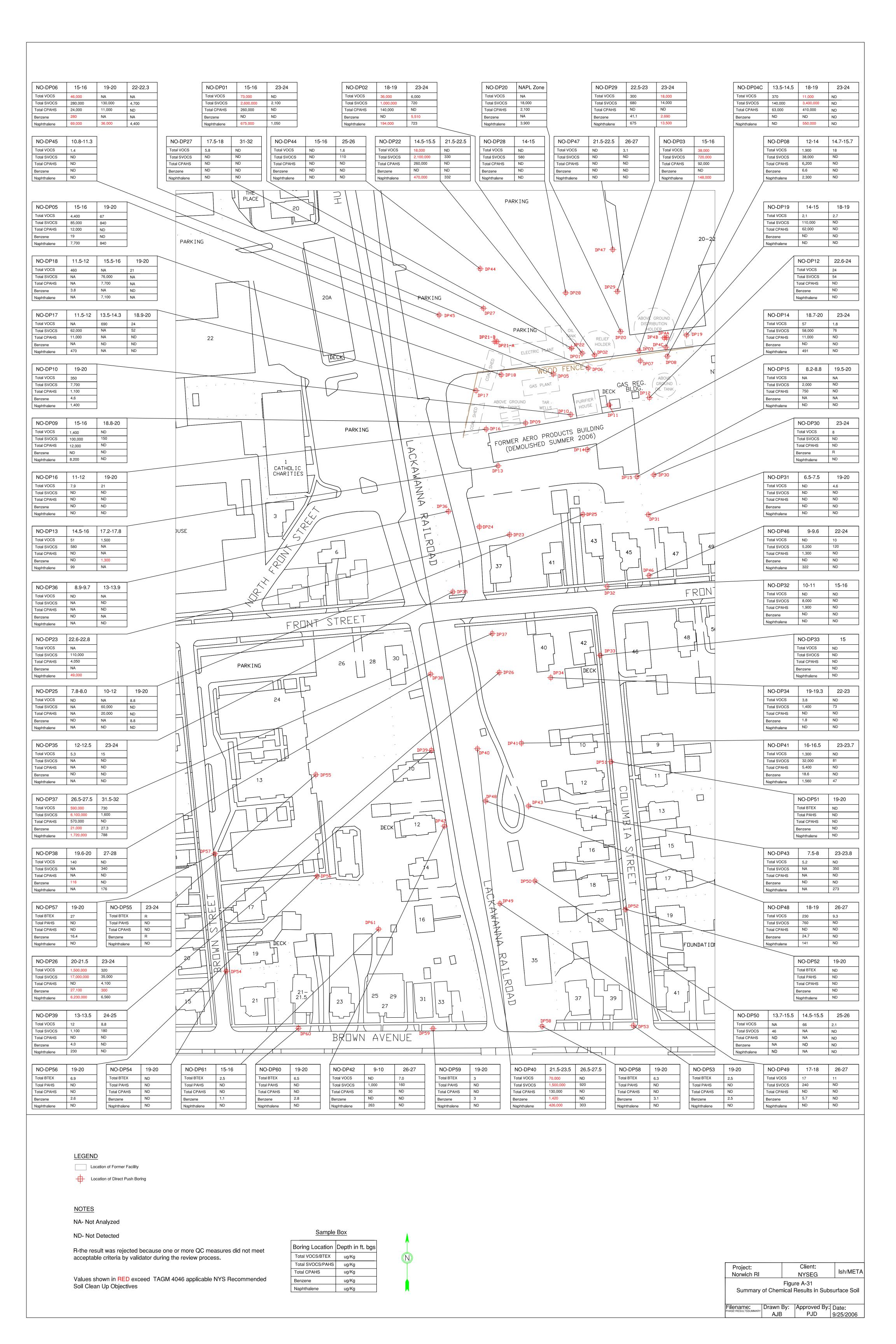


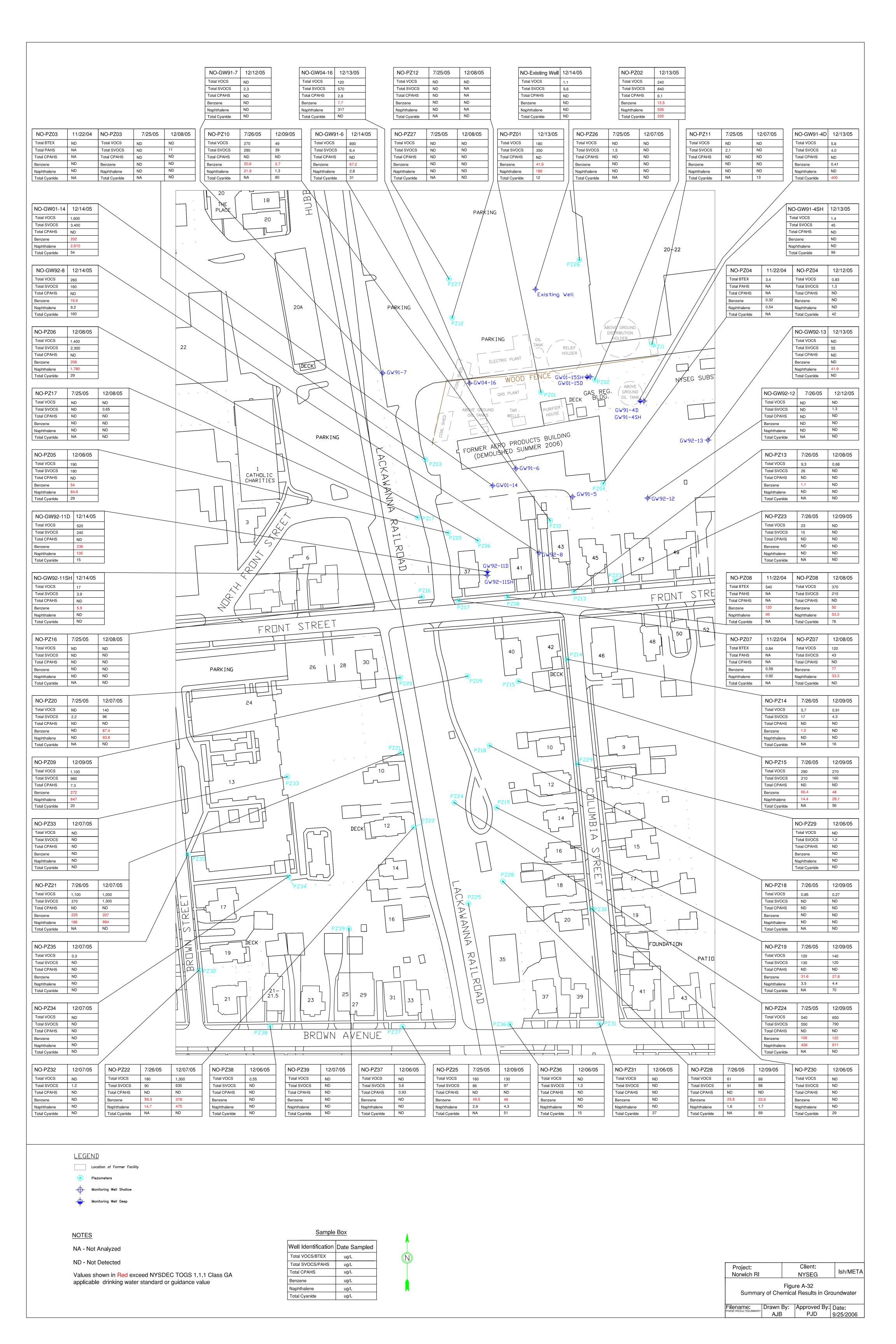


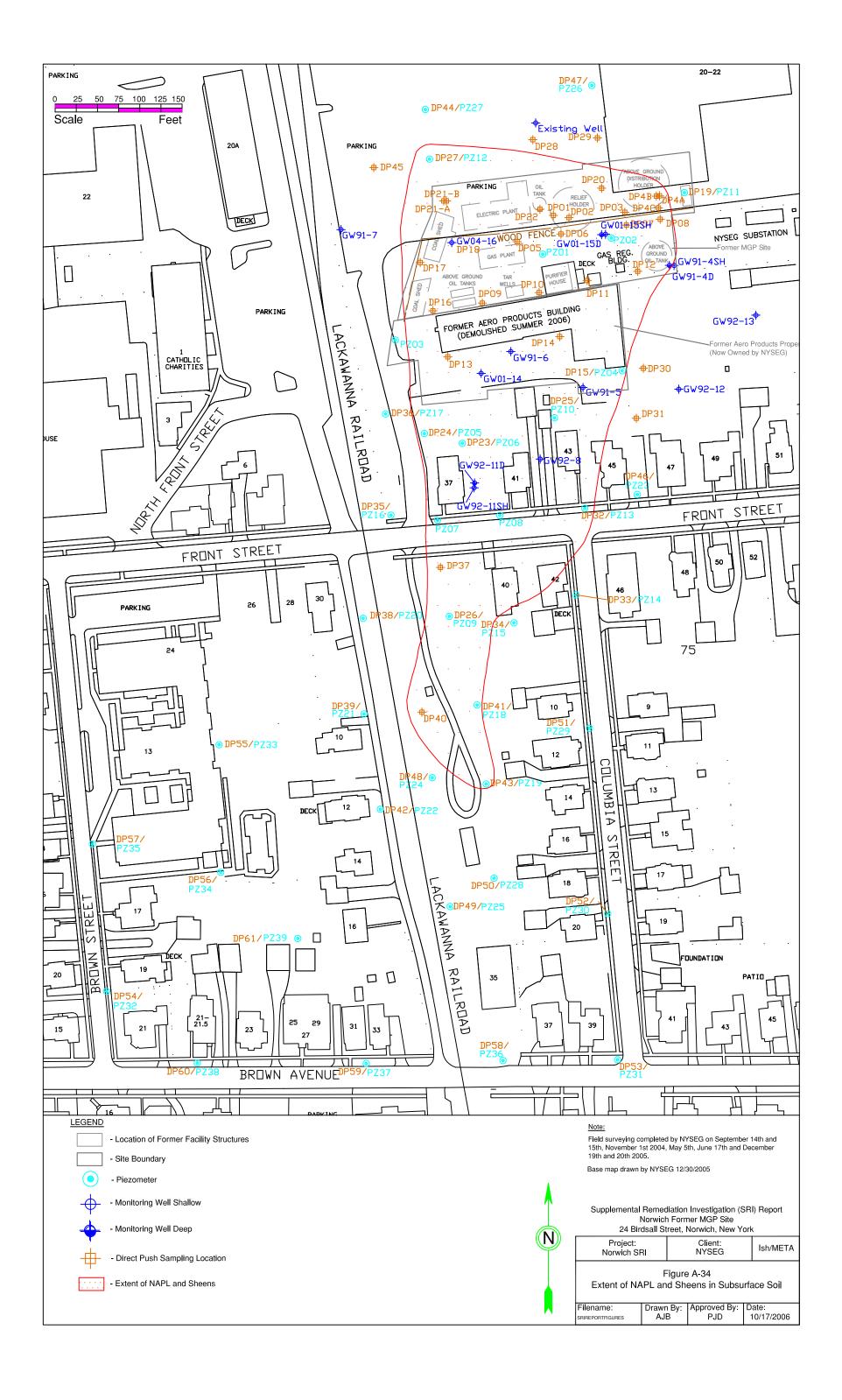


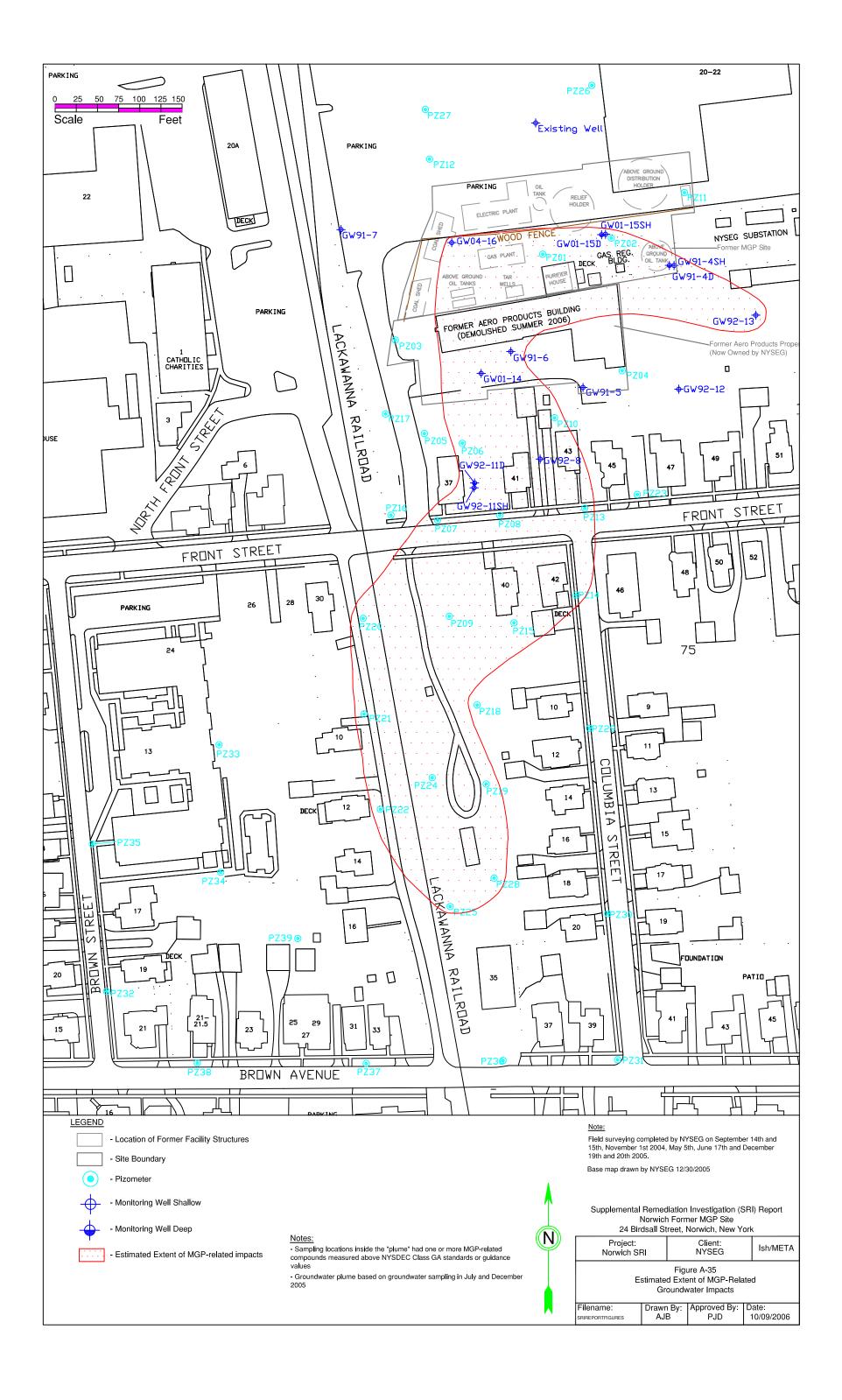












В **TABLES**

NYSEG: Norwich SRI Report October 2006

Table B-1
EPA Method 8021 Groundwater Results from June 2003 (ug/L)
Norwich Former MGP Site
Norwich, New York

Compound	NYSDEC Class GA Standard	GW91-5	GW91-6	GW92-8	GW92-11SH	GW92-11D	GW92-12	GW01-14	GW01-15S	SPMP-1S	SPMP-2S
Benzene	1	<0.5	23	2.7	8.8	8.8	<0.5	160	14	3.5	<1.0
Toluene	5	<1.0	2.2	<1.0	<1.0	<1.0	<1.0	<20	<5.0	<2.0	<2.0
Ethylbenzene	5	<1.0	72	12	6.8	<1.0	<1.0	630	76	5.9	50
m,p-Xylene	10	<1.0	7	<1.0	<1.0	<1.0	<1.0	69	15	4.3	3.3
o-Xylene	5	<1.0	49	3.5	5.3	2.3	<1.0	240	40	21	43
Isopropylbenzene	5	<1.0	7.8	1.2	2.5	<1.0	<1.0	60	<5.0	<2.0	7
n-Propylbenzene	5	<1.0	1.9	<1.0	<1.0	<1.0	<1.0	23	<5.0	<2.0	2.8
1,3,5-Trimethylbenzene	5	<1.0	3.2	<1.0	<1.0	<1.0	<1.0	61	12	11	3.2
tert-Butylbenzene	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<20	<5.0	<2.0	<2.0
1,2,4-Trimethylbenzene	5	<1.0	40	<1.0	2.2	<1.0	<1.0	330	43	13	82
sec-Butylbenzene	5	<1.0	8.2	<1.0	<1.0	<1.0	<1.0	98	16	14	26
4-Isopropyltoluene	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<20	<5.0	2.2	<2.0
n-Butylbenzene	5	<1.0	2.5	<1.0	<1.0	<1.0	<1.0	69	10	31	8.5
Naphthalene	10	<5.0	330	<5.0	<5.0	<5.0	<5.0	2,700	400	140	59
Methyl tert-butyl ether	NA	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<40	<10	<4.0	<4.0

NA – indicates that no standard is available

Bolded results indicate concentrations above the NYSDEC Class GA standards or guidance values

< means the compound was not detected above the concentration shown

Table B-2
EPA Method 625 Groundwater Results from June 2003 (ug/L)
Norwich Former MGP Site
Norwich, New York

Compound	NYSDEC Class GA Standard	GW91-5	GW91-6	GW92-8	GW92-11SH	GW92-11D	GW92-12	GW01-14	GW01-15S	SPMP-1S	SPMP-2S
2-Methylnaphthalene	NA	<10	<10	12	46	<10	<11	44	18	33	150
Acenaphthene	20	<10	34	10	24	<10	<11	110	77	280	86
Acenaphthylene	NA	<10	<10	<10	<11	<10	<11	<21	<10	37	37
Anthracene	50	<10	<10	<10	<11	<10	<11	<21	14	120	30
Benz(a)anthracene	0.002	<10	<10	<10	<11	<10	<11	<21	<10	<12	<11
Benzo(a)pyrene	ND	<10	<10	<10	<11	<10	<11	<21	<10	93	12
Benzo(b)fluoranthene	0.002	<10	<10	<10	<11	<10	<11	<21	<10	49	<11
Benzo(g,h,i)perylene	NA	<10	<10	<10	<11	<10	<11	<21	<10	39	<11
Benzo(k)fluoranthene	0.002	<10	<10	<10	<11	<10	<11	<21	<10	55	<11
Chrysene	0.002	<10	<10	<10	<11	<10	<11	<21	<10	100	14
Dibenz(a,h)anthracene	NA	<10	<10	<10	<11	<10	<11	<21	<10	<12	<11
Dibenzofuran	NA	<10	<10	<10	<11	<10	<11	<21	<10	16	<11
Fluoranthene	50	<10	<10	<10	<11	<10	<11	<21	<10	190	34
Fluorene	50	<10	<10	<10	<11	<10	<11	29	22	120	44
Indeno(1,2,3-cd)pyrene	0.002	<10	<10	<10	<11	<10	<11	<21	<10	38	<11
Naphthalene	10	<10	<10	<10	<11	<10	<11	290	49	73	47
Phenanthrene	50	<10	<10	<10	<11	<10	<11	41	24	220	97
Pyrene	50	<10	<10	<10	<11	<10	<11	<21	13	250	48

NA – indicates that no standard is available

Bolded results indicate concentrations above the NYSDEC Class GA standards or guidance values

< means the compound was not detected above the concentration shown

Table B-3 Summary of Samples Analyzed Norwich Former MGP Site Norwich, NY

Parameter	Subsurface Soil Samples	Groundwater Samples	QA/QC Duplicate Samples (soil)	QA/QC Duplicate Samples (water)	Field Blanks and Trip Blanks	Total Number of Samples
		Ch	emical Analysis			
TCL VOCs	79	73	3	3	10	168
TCL SVOCs	79	74	3	3	2	161
SPLP TCL VOCs	7					7
SPLP TCL SVOCs	6					6
Cyanide (Total)		52	1	3		56
Total Organic Carbon	4					
BTEX		4			1	5
PAHs	11					
Naphthalene	11	4			1	16
	-	Wast	e Characterization			
Ignitability		2				2
Benzene	2	3				5
CN, Sulfide Reactivity, pH	2					2
рН		2				2

Table B-4 Summary of SVI Evaluation Samples (Indoor Air and Building Sub-slab Samples)

Sample Location	Sample Type	Sample Date	Notes, Sampling Duration
NO-14BAS	Sub-slab	3/22/06	24 hr sample
NO-14BAB Dup	Basement	3/22/06	Field duplicate sample, 24 hr sample
NO-14BAB	Basement	3/22/06	24 hr sample
NO-14BAF	First Floor	3/22/06	24 hr sample
NO-10COS	Sub-slab	3/22/06	24 hr sample
NO-10COB	Basement	3/22/06	24 hr sample
NO-10COF	First Floor	3/22/06	24 hr sample
NO-12BAS	Sub-slab	3/22/06	24 hr sample
NO-12BAS Dup	Sub-slab	3/22/06	Field duplicate sample, 24 hr sample
NO-12BAB	Basement	3/22/06	24 hr sample
NO-12BAF	First Floor	3/22/06	24 hr sample
NO-16COS	Sub-slab	3/22/06	24 hr sample
NO-16COB	Basement	3/22/06	24 hr sample
NO-16COF	First Floor	3/22/06	24 hr sample
NO-42FRS	Sub-slab	3/24/06	24 hr sample
NO-42FRB	Basement	3/24/06	24 hr sample
NO-42FRF	First Floor	3/24/06	24 hr sample
NO-30FRS	Sub-slab	3/24/06	24 hr sample
NO-30FRS Dup	Sub-slab	3/24/06	Field duplicate sample, 24 hr sample
NO-30FRB	Basement	3/24/06	24 hr sample
NO-30FRF	First Floor	3/24/06	24 hr sample
NO-41FRS	Sub-slab	3/24/06	Dirt floor basement, 24 hr sample
NO-41FRB	Basement	3/24/06	24 hr sample
NO-41FRF	First Floor	3/24/06	24 hr sample
NO-41FRF Dup	First Floor	3/24/06	Field duplicate sample, 24 hr sample
NO45FRS	Sub-slab	3/28/06	24 hr sample
NO-45FRB	Basement	3/28/06	24 hr sample
NO-45FRF	First Floor	3/28/06	24 hr sample
NO-35BRS	Sub-slab	3/28/06	24 hr sample
NO-35BRF	First Floor	3/28/06	24 hr sample
NO-43FRS	Sub-slab	3/28/06	Dirt floor basement, 24 hr sample
NO-43FRB	Basement	3/28/06	24 hr sample
NO-43FRF	First Floor	3/28/06	24 hr sample
NO-LCS	Sub-slab	3/29/06	24 hr sample
NO-LCF	First Floor	3/29/06	24 hr sample
NO-37FRS	Sub-slab	3/29/06	Dirt floor basement, 24 hr sample
NO-37FRB	Basement	3/29/06	24 hr sample
NO-37FRF	First Floor	3/29/06	24 hr sample
NO-18COS	Sub-slab	3/29/06	Dirt floor basement, 24 hr sample
NO-18COB	Basement	3/29/06	24 hr sample
NO-18COF	First Floor	3/29/06	24 hr sample
NO-20COS	Sub-slab	3/29/06	24 hr sample
			Window in the basement had been
NO-20COB	Basement	3/29/06	open prior to the start of sample
			collection, 24 hr sample
NO-20COF	First Floor	3/29/06	24 hr sample

Table B-4 Summary of SVI Evaluation Samples (Ambient Air Samples)

Sample Location	Sample Type	Sample Date	Notes, Sampling Duration
NO-UP062203	Upwind sample	3/22/06	Along fence at north side of NYSEG property, 24 hr sample
NO-CE062203	Site area sample	3/22/06	Located on fence at 10 Columbia, 24 hr sample
NO-BK062203	Background sample	3/22/06	Located at 35 Brown, 24 hr sample
NO-BK062403	Background sample	3/24/06	Located on fence at Birdsall St substation, 24 hr sample
NO-MI062403	Site area sample	3/24/06	Located at 42 Front St, 24 hr sample
NO-UP062403	Upwind sample	3/24/06	Located at 35 Brown, 24 hr sample
NO-MI062803	Site area sample	3/28/06	Located between NYSEG and Front St, 24 hr sample
NO-UP062803	Upwind sample	3/28/06	Located at 35 Brown, 24 hr sample
NO-UP062803 Dup	Upwind sample	3/28/06	Field duplicate sample, Located at 35 Brown, 24 hr sample
NO-BK062803	Background sample	3/28/06	On fence at Birdsall substation, 24 hr sample
NO-BK062903	Background sample	3/29/06	On fence at Birdsall substation, 24 hr sample
NO-MI062903	Site area sample	3/29/06	Located between NYSEG and Front St, 24 hr sample
NO-UP062903	Upwind sample	3/29/06	Located at 35 Brown, 24 hr sample

	Depth		
Location	Interval (ft)		Discussion of NAPL
DP01		asphalt	no observed MGP residuals
	0.3-4		no observed MGP residuals
		gravel	no observed MGP residuals
	4.8-11.5	sand and silt	tar-like material at 6.1 bgs
		sand and silt	black staining and a tar-like odor
		gravel and sand	NAPL globules, odor and sheens
	20-24		no observed MGP residuals
DP02	0-0.3	asphalt	no observed MGP residuals
	0.3-5.6		no observed MGP residuals
	5.6-9	fill	some coal-like material with a slight odor at 5.6' bgs
		sand and silt	no observed MGP residuals
		sand and gravel	some black staining and a tar-like odor
		sand and gravel	moderate sheens, odor and NAPL globules
	21-22	sand and gravel	sheens
	22-24	clay and sand	no observed MGP residuals
DP03	0-0.3	asphalt	no observed MGP residuals
	0.3-6	fill	no observed MGP residuals
	6-7.8	fill	some coal-like material
	7.8-11.8	sand, silt and gravel	no observed MGP residuals
	11.8-14.5	gravel and sand	slight odor with black staining
	14.5-18	gravel	tar-like odor, sheens and NAPL globules
	18-22	gravel and sand	tar-like odor and sheens
	22-22.75	gravel	no observed MGP residuals
	22.75-24	gravel and sand	moderate sheens, strong odor and NAPL globules
	24-28	clay	no observed MGP residuals
DP04A	0-0.3	asphalt	no observed MGP residuals
	0.3-3.7	fill	no observed MGP residuals
DP04B	0-0.3	asphalt	no observed MGP residuals
	0.3-3.6	fill	odor and staning at 3.6' bgs
DP04C	0-0.3	asphalt	no observed MGP residuals
	0.3-6	fill	very slight odor at 4' bgs
	6-6.3	silt	slight black staining and odor
	6.3-10	sand and silt	no observed MGP residuals
	10-13	sand and silt	slight black staining and sheens at 12' bgs
	13-22	gravel and sand	sheens and NAPL globules
	22-22.3	gravel	no observed MGP residuals
	22.3-24	clay and sand	no observed MGP residuals
DP05	0-11.5	fill	no observed MGP residuals
	11.5-18.5	sand and gravel	NAPL globules
		clay and silt	no observed MGP residuals
DP06	0-10.4		no observed MGP residuals
	10.4-12	silt, sand and gravel	black staining and slight odor
		silt, sand and gravel	NAPL globules throughout
		clay and silt	no observed MGP residuals
DP07	0-11		no observed MGP residuals
		silt, sand and gravel	NAPL globules
		silt, sand and gravel	black staining
		sand and gravel	NAPL globules
			J 3.000.00
		no recovery	TV V E globules

	Depth		
Location	Interval (ft)	Soil Description	Discussion of NAPL
DP08	0-0.4	fill	very slight odor
	0.4-11	fill	no observed MGP residuals
	11-11.7	silt, sand and gravel	no observed MGP residuals
	11.7-14	silt and gravel	NAPL globules and a strong odor
	14-16	clay and silt	no observed MGP residuals
DP09	0-3		coal-like material
	3-7		no observed MGP residuals
	7-8		slight odor and staining
		silt, sand and gravel	slight tar-like odor
		silt, sand and gravel	NAPL globules
		clay and silt	no observed MGP residuals
DP10	0-6		no observed MGP residuals
	6-6.4		slight odor
		silt, sand and gravel	no observed MGP residuals
		silt, sand and gravel	some black staining and a faint odor
		silt, sand and gravel	black staining and NAPL globules
		no recovery	
DP11	0-6.3		no observed MGP residuals
	6.3-7		no observed MGP residuals
		silt and gravel	some staining and odor
		silt, sand and gravel	sheen and odor
		silt and gravel	NAPL globules and black staining
	16.8-17.2		no observed MGP residuals
DP12	0-8		some coal-like material at 6.0' bgs
		silt and gravel	no observed MGP residuals
		silt, sand and gravel	no observed MGP residuals
		silt, sand and gravel	NAPL globules
5546	22.1-24		no observed MGP residuals
DP13	0-1		no observed MGP residuals
	1-7		no observed MGP residuals
		silt, sand and gravel	no observed MGP residuals
		silt, sand and gravel	some NAPL globules
DD44	17-17.8		no observed MGP residuals
DP14		asphalt	no observed MGP residuals
	0.75-2.5		coal-like material
		sand and gravel	no observed MGP residuals
		gravel and sand	sheens, odor and NAPL globules
DD45/D704		clay and silt	no observed MGP residuals
DP15/PZ04	0-0.75		coal-like material
	0.75-4.75		no observed MGP residuals
		silt, sand and gravel	no observed MGP residuals
	7.2-8.3		no observed MGP residuals
	8.3-9.6		NAPL globules and sheens
		no recovery	no observed MCD residuals
DD16		clay and silt	no observed MGP residuals
DP16	0-3.6		no observed MCP residuels
	3.6-9.75		no observed MCP residuels
		silt, sand and gravel	no observed MGP residuals
		silt, sand and gravel	slight MGP odor
		silt, sand and gravel	slight sheen and NAPL globules from 14.5-15
		silt, sand and gravel	no observed MGP residuals
	18-20	ciay	no observed MGP residuals

Location	Depth	Sail Description	Discussion of NADI
Location DP17	Interval (ft) 0-3.5		Discussion of NAPL no observed MGP residuals
DP17	3.6-4		
	3.0-4 4-4.5		slight MGP odor
		****	black, residual tar-like material
		clay and silt	black to gray staining and an MGP odor
		clay and silt	no observed MGP residuals
		silt and gravel	black staining, MGP odor and NAPL globules
DD40/014/04 40		clay and silt	no observed MGP residuals
DP18/GW04-16	0-4	****	no observed MGP residuals
	4-8		some black staining at 8.0' bgs
	8-10.4		no observed MGP residuals
		silt, sand and gravel	NAPL globules throughout
	25.75-28		no observed MGP residuals
DP19/PZ11		asphalt	no observed MGP residuals
	0.3-2	fill	no observed MGP residuals
			ash-like and coal-like material, black staining and a sligh
	2-5.75		odor
		gravel and sand	no observed MGP residuals
	17.75-20	clay and sand	no observed MGP residuals
DP20		asphalt	no observed MGP residuals
	0.4-7.6	fill	no observed MGP residuals
	7.6-8	silt	no observed MGP residuals
	8-12	gravel and sand	no observed MGP residuals
		no recovery	
		gravel and sand	NAPL present on bottom of sleeve
DP21A		asphalt	no observed MGP residuals
	0.4-2.1	·	no observed MGP residuals
DP21B		asphalt	no observed MGP residuals
	0.4-3		no observed MGP residuals
	3-4.3		coal-like material
		no recovery	
DP22	0-0.3	asphalt	no observed MGP residuals
	0.3-5.5		no observed MGP residuals
	5.5-10.5		small amount of coal-like material and black staining
		sand and silt	sheens, staining and NAPL globules from 11.8-12' bgs
		gravel and sand	sheens, NAPL globules and odor present
	18.2-19.2		no observed MGP residuals
		gravel and sand	sheens and slight NAPL globules
	20-24	0	no observed MGP residuals
DP23/PZ06		silt and gravel	no observed MGP residuals
DF23/F200	11.6-15		no observed MGP residuals
		gravel and sand	slight MGP odor and sheen on bottom of sleeve
		gravel and sand	NAPL globules from 22.6-22.8' bgs
	_	clay and silt	no observed MGP residuals
DP24/PZ05	0-5.75		some coal-like material between 3.1 and 3.3' bgs
		silt, sand and gravel	no observed MGP residuals
		no recovery	
		no recovery	NAPL present on outside of sample sleeve
DP25/PZ10		topsoil	no observed MGP residuals
	0.5-2		coal-like material
	_	sand and silt	no observed MGP residuals
	6-7.8	gravel and sand	no observed MGP residuals
		gravel and sand	sheens and a fuel-like odor
		gravel and sand	slight fuel-like odor
		clay	no observed MGP residuals

	Danth		
Location	Depth Interval (ft)	Sail Description	Discussion of NAPL
DP26/PZ09		Soil Description topsoil	no observed MGP residuals
DF 20/F 209		sand, silt and gravel	no observed MGP residuals
		gravel and sand	no observed MGP residuals
		gravel and sand	sheens and NAPL globules
	21.5-24	-	no observed MGP residuals
DP27/PZ12		asphalt	no observed MGP residuals
DEZMEZIZ	0.2-7.8		no observed MGP residuals
	7.8-10		no observed MGP residuals
		sand and gravel	no observed MGP residuals
	17.5-18		NAPL present on tip of sampling sleeve
		gravel	no observed MGP residuals
	23-24	-	no observed MGP residuals
		no recovery	The observed MGF residuals
		clay and sand	no observed MGP residuals
DP28		asphalt	no observed MGP residuals
DF 20	0.3-3		no observed MGP residuals
	3-3.75		ash-like and coal-like material
		sand and silt	no observed MGP residuals
		gravel and sand	no observed MGP residuals
		clay and sand	no observed MGP residuals
DP29		asphalt	no observed MGP residuals
DF29	0.3-3.2		no observed MGP residuals
	3.2-7.5		ash-like and coal-like material
		sand, silt and gravel	no observed MGP residuals
		gravel and sand	no observed MGP residuals
		sand and silt	no observed MGP residuals
		sand and silt	very slight odor
		clay and sand	no observed MGP residuals
DP30		topsoil	no observed MGP residuals
DF 30		sand and silt	no observed MGP residuals
		gravel and sand	no observed MGP residuals
		clay and silt	no observed MGP residuals
		clay and sand	no observed MGP residuals
		clay and salid	no observed MGP residuals
DP31		topsoil	no observed MGP residuals
DI 31		sand and silt	no observed MGP residuals
		gravel and sand	no observed MGP residuals
		clay and silt	no observed MGP residuals
		clay and silt	no observed MGP residuals
DP32/PZ13		topsoil	no observed MGP residuals
DI 32/1 2 13	0.3-2.8		coal-like material at 2.3'
	2.8-5.8		no observed MGP residuals
	5.8-6.8		no observed MGP residuals
	6.8-10		no observed MGP residuals
		gravel and sand	sheens
		gravel and sand	no observed MGP residuals
		clay and sand	no observed MGP residuals
	14.0-10	ciay aliu saliu	THO ODSERVED IVIOR TESTUDIAIS

Location	Depth Interval (ft)		Discussion of NAPL
DP33/PZ14	0-0.2	topsoil	no observed MGP residuals
	0.2-2.2	fill	no observed MGP residuals
	2.2-2.5	fill	ash-like and coal-like material
	2.5-6.5	sand and silt	no observed MGP residuals
	6.5-15.8	sand and gravel	no observed MGP residuals
		clay and sand	no observed MGP residuals
DP34/PZ15		topsoil	no observed MGP residuals
		sand and silt	no observed MGP residuals
		gravel and sand	no observed MGP residuals
	14-19.3		slight odor from 19-19.3' bgs
		clay, silt and sand	no observed MGP residuals
DP35/PZ16	0-5		no observed MGP residuals
DI 33/1 210	5-7		Ino observed MGP residuals
	_	sand and silt	Ino observed MGP residuals
	_	gravel and sand	no observed MGP residuals
		sand and silt	no observed MGP residuals
	13.2-24		no observed MGP residuals
DP36/PZ17		topsoil	no observed MGP residuals
DP30/PZ17			
	0.5-3		coal-like material
	3-9		no observed MGP residuals
		sand and silt	no observed MGP residuals
		clay and sand	no observed MGP residuals
222		no recovery	
DP37		no recovery	
	4-5.75		no observed MGP residuals
		sand and gravel	no observed MGP residuals
	15.5-18.5		no observed MGP residuals
	18.5-20	~	slight odor
		gravel	strong odor, sheens and NAPL globules from 23.5-24' bg
	24-32	clay and sand	no observed MGP residuals
DP38/PZ20	0-1.8	fill	coal-like material
	1.8-4		no observed MGP residuals
	4-6.5	sand	slight odor at 6' bgs
	6.5-16	gravel and sand	no observed MGP residuals
	16-20	no recovery	
	20-28	clay	no observed MGP residuals
DP39/PZ21	0-2.9	fill	no observed MGP residuals
	2.9-8	sand and silt	no observed MGP residuals
			TIO ODSELVED MIGH TESIGUAIS
		gravel and sand	no observed MGP residuals
		gravel and sand	
	8-12 12-13.8	gravel and sand gravel	no observed MGP residuals very slight odor
DP40	8-12 12-13.8 13.8-26	gravel and sand	no observed MGP residuals
DP40	8-12 12-13.8 13.8-26	gravel and sand gravel clay, silt and sand no recovery-auger to 9'	no observed MGP residuals very slight odor no observed MGP residuals
DP40	8-12 12-13.8 13.8-26 0-9 9-11	gravel and sand gravel clay, silt and sand no recovery-auger to 9' fill	no observed MGP residuals very slight odor no observed MGP residuals no observed MGP residuals coal-like material
DP40	8-12 12-13.8 13.8-26 0-9 9-11 11-13.5	gravel and sand gravel clay, silt and sand no recovery-auger to 9' fill sand and silt	no observed MGP residuals very slight odor no observed MGP residuals no observed MGP residuals
DP40	8-12 12-13.8 13.8-26 0-9 9-11 11-13.5 13.5-20	gravel and sand gravel clay, silt and sand no recovery-auger to 9' fill sand and silt gravel and sand	no observed MGP residuals very slight odor no observed MGP residuals no observed MGP residuals coal-like material no observed MGP residuals no observed MGP residuals no observed MGP residuals
DP40	8-12 12-13.8 13.8-26 0-9 9-11 11-13.5 13.5-20 20-24.5	gravel and sand gravel clay, silt and sand no recovery-auger to 9' fill sand and silt gravel and sand gravel and sand	no observed MGP residuals very slight odor no observed MGP residuals no observed MGP residuals coal-like material no observed MGP residuals no observed MGP residuals sheens and NAPL globules
	8-12 12-13.8 13.8-26 0-9 9-11 11-13.5 13.5-20 20-24.5 24.5-31.5	gravel and sand gravel clay, silt and sand no recovery-auger to 9' fill sand and silt gravel and sand gravel and sand clay	no observed MGP residuals very slight odor no observed MGP residuals no observed MGP residuals coal-like material no observed MGP residuals no observed MGP residuals sheens and NAPL globules no observed MGP residuals
DP40A	8-12 12-13.8 13.8-26 0-9 9-11 11-13.5 13.5-20 20-24.5	gravel and sand gravel clay, silt and sand no recovery-auger to 9' fill sand and silt gravel and sand gravel and sand clay fill	no observed MGP residuals very slight odor no observed MGP residuals no observed MGP residuals coal-like material no observed MGP residuals no observed MGP residuals sheens and NAPL globules

Location	Depth Interval (ft)	Soil Description	Discussion of NAPL
DP41/PZ18		topsoil	no observed MGP residuals
	0.75-6.75	· ·	no observed MGP residuals
		sand and gravel	slight odor between 11.5-12' bgs
	12-16.5		slight sheens and NAPL globules from 16-16.5' bgs
		clay and silt	very slight odor
	17.5-24		no observed MGP residuals
DP42/PZ22		topsoil	no observed MGP residuals
	1-1.75	= -	no observed MGP residuals
		sand and silt	no observed MGP residuals
		gravel and sand	no observed MGP residuals
		clay, silt and sand	no observed MGP residuals
DP43/PZ19		topsoil	no observed MGP residuals
D. 10/1 210	0.5-1.75	•	coal-like material and wood pieces
		sand and silt	no observed MGP residuals
		gravel and sand	slight odor from 7.3-8' bgs
		gravel and sand	no observed MGP residuals
		clay, silt and sand	no observed MGP residuals
DP44/PZ27		asphalt	no observed MGP residuals
DI 11/1 22/	0.5-4.4		coal-like material
		silt and clay	no observed MGP residuals
		gravel and sand	no observed MGP residuals
		clay and silt	no observed MGP residuals
DP45		asphalt	no observed MGP residuals
DI 40	0.5-4	•	coal-like material
		gravel and sand	no observed MGP residuals
		clay and silt	no observed MGP residuals
DP46/PZ23		topsoil	no observed MGP residuals
DI 40/1 223		sand and gravel	no observed MGP residuals
		gravel	no observed MGP residuals
		clay, silt and sand	no observed MGP residuals
DP47/PZ26		asphalt	no observed MGP residuals
DI 47/1 220	0.5-5.5		no observed MGP residuals
		silt and clay	no observed MGP residuals
		gravel and sand	no observed MGP residuals
		clay and silt	no observed MGP residuals
DP48/PZ24	0-4		ash-like and coal-like material and wood
DI: 40/F ZZ4	-	sand and silt	no observed MGP residuals
	_	gravel and sand	no observed MGP residuals
		gravel and sand	slight odor
		clay, silt and sand	no observed MGP residuals
DP49/PZ25		topsoil	no observed MGP residuals
DI 73/1 ZZ3	1.5-5.5	•	ash-like and coal-like material and wood
		sand and silt	no observed MGP residuals
		gravel and sand	no observed MGP residuals
		gravel and sand	
			very slight odor
	18.5-28	clay, silt and sand	no observed MGP residuals

	Depth	0.115	
Location	Interval (ft)		Discussion of NAPL
DP50/PZ28		topsoil	no observed MGP residuals
	0.5-1.5		ash-like and coal-like material
		gravel and sand	no observed MGP residuals
		gravel and sand	very slight odor from 10-10.5' bgs
		gravel and sand	no observed MGP residuals
		clay and silt	no observed MGP residuals
DP51/PZ29		asphalt	no observed MGP residuals
	0.5-6.3		coal-like material
		gravel and sand	no observed MGP residuals
		clay, silt and sand	no observed MGP residuals
DP52/PZ30		topsoil	no observed MGP residuals
	1.8-2.9	fill	no observed MGP residuals
	2.9-8.2	gravel and sand	no observed MGP residuals
		clay and sand	no observed MGP residuals
DP53/PZ31	0-1	topsoil	no observed MGP residuals
	1-3.2	fill	no observed MGP residuals
	3.2-8.9	gravel and sand	no observed MGP residuals
		clay and sand	no observed MGP residuals
DP54/PZ32	0-1.75	topsoil	no observed MGP residuals
	1.75-3.4	-	no observed MGP residuals
	3.4-12.8	gravel and sand	no observed MGP residuals
		clay and sand	no observed MGP residuals
DP55/PZ33		topsoil	no observed MGP residuals
D1 00/1 200	1.5-3.8		no observed MGP residuals
		sand and silt	no observed MGP residuals
		gravel and sand	no observed MGP residuals
		clay and sand	no observed MGP residuals
DP56/PZ34		topsoil	no observed MGP residuals
DF 30/F 234	1-5	-	coal-like material
		sand	no observed MGP residuals
		gravel and sand	no observed MGP residuals
		=	
DD57/D705		clay and sand	no observed MGP residuals
DP57/PZ35		topsoil	no observed MGP residuals
	1.75-5.6		no observed MGP residuals
		gravel and sand	no observed MGP residuals
		clay and sand	no observed MGP residuals
DP58/PZ36	0-1.3		no observed MGP residuals
	1.3-2.3		coal-like material
		gravel and sand	no observed MGP residuals
		clay, silt and sand	no observed MGP residuals
DP59/PZ37		topsoil	no observed MGP residuals
	1.4-4		no observed MGP residuals
		sand and gravel	no observed MGP residuals
	8-12	no recovery	
		clay and sand	no observed MGP residuals
DP60/PZ38		topsoil	no observed MGP residuals
	1.8-4	fill	no observed MGP residuals
	4-16	gravel and sand	no observed MGP residuals
	16-20	clay and sand	no observed MGP residuals
DP61/PZ39		topsoil	no observed MGP residuals
	2-4	-	no observed MGP residuals
		gravel and sand	no observed MGP residuals
		J	

Table B-6 Subsurface Soil VOC Results - Part 1 Norwich Former MGP Site, Norwich, New York

Sample ID (Depth in Feet)	NYSDEC	NO-DP05(15.0-16.0)	NO-DP05(19.0-20.0)	NO-DP06(15.0-16.0)	NO-DP08(12.0-14.0)	NO-DP08(14.7-15.7)	NO-DP09(15.0-16.0)	NO-DP09(18.8-20.0)	NO-DP10(19.0-20.0)	NO-DP12(22.6-24.0)
Laboratory Identification	Recommended Soil	S5497-01	S5497-02RE	S5497-03	S5497-06	S5497-07	S5497-08RE	S5497-09	S5497-10	S5497-11
Date Sampled	Cleanup Objective 1	10/26/04	10/26/04	10/27/04	10/27/04	10/27/04	10/26/04	10/26/04	10/26/04	10/28/04
Volatile Organic Compounds										
1,1,1-Trichloroethane	800	56 U	12 U	1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ
1,1,2,2-Tetrachloroethane	600	56 U	12 UJ	1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ
1,1,2-Trichloroethane	NL	56 U	12 U	1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ
1,1,2-Trichlorotrifluoroethane	6,000	56 U	12 UJ	1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ
1,1-Dichloroethane	200	56 U	12 UJ	1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ
1,1-Dichloroethene	400	56 U	12 UJ	1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ
1,2,4-Trichlorobenzene	3,400	56 U	12 UJ	1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ
1,2-Dibromo-3-Chloropropane	NL	56 U	12 UJ	1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ
1,2-Dibromoethane	NL 7.000	56 U	12 U	1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ
1,2-Dichlorobenzene	7,900	56 U	12 UJ	1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ
1,2-Dichloroethane	100	56 U	12 U	1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ
1,2-Dichloropropane	NL 1,600	56 U	12 U 12 UJ	1,400 U 1,400 U	11 U 11 U	13 U 13 U	1,400 U 1,400 U	13 U 13 U	11 U 11 U	13 UJ 13 UJ
1,3-Dichlorobenzene 1,4-Dichlorobenzene	1,600 8.500	56 U 56 U	12 UJ 12 UJ	1,400 U 1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ 13 UJ
2-Butanone	300	280 U	62 U	7,200 U	56 U	66 U	7,400 U	64 U	57 U	66 UJ
2-Hexanone	NL	280 U	62 UJ	7,200 U	56 UJ	66 U	7,100 U	64 UJ	57 UJ	66 UJ
4-Methyl-2-Pentanone	1,000	280 U	62 UJ	7,200 U	56 U	66 U	7,100 U	64 U	57 U	66 UJ
Acetone	200	280 U	62 UJ	7,200 U	56 U	18 J	7,100 U	64 U	57 U	19 J
Benzene	60	19 J	12 U	280 J	6.6 J	13 U	1,400 U	13 U	4.6 J	13 UJ
Bromodichloromethane	NL NL	56 U	12 U	1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ
Bromoform	NL	56 U	12 U	1,400 U	11 U	13 U	1.400 U	13 U	11 U	13 UJ
Bromomethane	NL	56 U	12 UJ	1,400 U	11 U	13 U	1.400 U	13 U	11 U	13 UJ
Carbon Disulfide	2,700	13 J	12 UJ	1,400 U	11 UJ	13 U	1,400 U	13 UJ	11 J	3.5 J
Carbon Tetrachloride	600	56 U	12 U	1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ
Chlorobenzene	1,700	56 U	12 UJ	1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ
Chloroethane	1,900	56 U	12 UJ	1,400 U	R	13 U	R	R	R	13 UJ
Chloroform	300	56 U	12 UJ	1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ
Chloromethane	NL	56 U	12 UJ	1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ
cis-1,2-Dichloroethene	NL	56 U	12 UJ	1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ
cis-1,3-Dichloropropene	NL	56 U	12 U	1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ
Cyclohexane	NL	56 U	12 UJ	1,400 U	11 UJ	13 U	1,400 U	13 UJ	11 UJ	13 UJ
Dibromochloromethane	NL	56 U	12 U	1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ
Dichlorodifluoromethane	NL 5.500	56 U	12 UJ	1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ
Ethyl Benzene	5,500	1,500 D	2.0 J	23,000	1,000 JD	13 U	1,400 U	13 U	190 J	13 UJ
Isopropylbenzene m/n Yylonos	NL NL	920 J 280	12 UJ 39 J	5,700 8,800	220 J 63 J	13 U 13 U	410 J 180 J	13 U 13 U	42 J 24 J	13 UJ 13 UJ
m/p-Xylenes Methyl Acetate	NL NL	56 U	12 UJ	1,400 U	11 U	13 U	1.400 U	13 U	24 J 11 U	13 UJ
Methyl tert-butyl Ether	NL NL	56 U	12 UJ	1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ
Methylcyclohexane	NL NL	510	12 U	1,400 U	72 J	13 U	1,400 U	13 U	11 U	13 UJ
Methylene Chloride	100	56 U	12 UJ	1,400 U	11 U	13 U	1,400 U	13 U	11 U	1.7 J
o-Xylene	NL	1,100	26 J	6,800	550 JD	13 U	780 J	13 U	71 J	13 UJ
Styrene	NL NL	56 U	12 UJ	1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ
t-1,3-Dichloropropene	NL NL	56 U	12 U	1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ
Tetrachloroethene	1,400	56 U	12 UJ	1,400 U	11 UJ	13 U	1,400 U	13 UJ	11 UJ	13 UJ
Toluene	1,500	50 J	12 UJ	940 J	27 J	13 U	1,400 U	13 U	5.7 J	13 UJ
trans-1,2-Dichloroethene	300	56 U	12 UJ	1,400 U	11 UJ	13 U	1,400 U	13 UJ	11 UJ	13 UJ
Trichloroethene	700	56 U	12 U	1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ
Trichlorofluoromethane	NL	56 U	12 UJ	1,400 U	11 UJ	13 U	1,400 U	13 UJ	11 UJ	13 UJ
Vinyl Chloride	200	56 U	12 UJ	1,400 U	11 U	13 U	1,400 U	13 U	11 U	13 UJ
Xylene (total)	1,200	1,380	65	15,600	613	ND	960	ND	95	ND
Total VOCa (valka)	10.000	4.400	67	46,000	1.000	10	1 400	ND	250	24
Total VOCs (µg/kg)	10,000	4,400	6/	46,000	1,900	18	1,400	ND	350	24

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

D = The concentration indicated was obtained from a diluted analytical run.

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

J = The associated numerical value is an estimated quantity.

R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process Bold value - compound detected above regulatory standard or guidance value.

¹NYSDEC TAGM HWR-94-4046 - Determination of Soil Cleanup Objectives and Cleanup Levels [NYSDEC, Jan. 1994]

Table B-6 Subsurface Soil VOC Results - Part 1 Norwich Former MGP Site, Norwich, New York

Sample ID (Depth in Feet)	NYSDEC	NO-DP13(14.5-16.0)	NO-DP13(17.2-17.8)	NO-DP16(11.0-12.0)	NO-DP16(19.0-20.0)	NO-DP17(13.5-14.3)	NO-DP17(18.9-20.0)	NO-DP18(11.5-12.0)	NO-DP18(19.0-20.0)
Laboratory Identification	Recommended Soil	S5497-12	S5497-13DL	S5497-14	S5497-15	S5497-17RE	S5497-18	S5497-21	S5497-23
Date Sampled	Cleanup Objective ¹	10/27/04	10/27/04	10/26/04	10/26/04	10/26/04	10/26/04	10/25/04	10/25/04
Date Sampled	Cleanup Objective	10/2//04	10/27/04	10/20/04	10/20/04	10/20/04	10/20/04	10/23/04	10/23/04
Volatile Organic Compounds									
1,1,1-Trichloroethane	800	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
1,1,2,2-Tetrachloroethane	600	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
1,1,2-Trichloroethane	NL	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
1,1,2-Trichlorotrifluoroethane	6,000	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
1,1-Dichloroethane	200	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
1,1-Dichloroethene	400	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
1,2,4-Trichlorobenzene	3,400	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
1,2-Dibromo-3-Chloropropane	NL	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
1,2-Dibromoethane	NL	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
1,2-Dichlorobenzene	7,900	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
1,2-Dichloroethane	100	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
1,2-Dichloropropane	NL	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
1,3-Dichlorobenzene	1,600	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
1,4-Dichlorobenzene	8,500	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
2-Butanone	300	58 U	320 UD	57 U	63 UJ	600 U	64 UJ	60 UJ	63 UJ
2-Hexanone	NL	58 UJ	320 UJD	57 UJ	63 UJ	600 UJ	64 UJ	60 UJ	63 UJ
4-Methyl-2-Pentanone	1,000	58 U	320 UD	57 U	63 UJ	600 U	64 UJ	60 UJ	63 UJ
Acetone	200	58 U	320 UD	57 U	19 J	600 U	21 J	60 UJ	21 J
Benzene	60	12 U	1,300 JD	11 U	13 UJ	120 U	13 UJ	3.8 J	13 UJ
Bromodichloromethane	NL	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
Bromoform	NL	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
Bromomethane	NL	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
Carbon Disulfide	2,700	9.2 J	56 JD	7.9 J	2.4 J	120 UJ	3.3 J	12 UJ	13 UJ
Carbon Tetrachloride	600	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
Chlorobenzene	1,700	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
Chloroethane	1,900	R	13 UJ						
Chloroform	300	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
Chloromethane	NL	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
cis-1,2-Dichloroethene	NL	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
cis-1,3-Dichloropropene	NL	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
Cyclohexane	NL	12 UJ	64 UJD	11 UJ	13 UJ	120 UJ	13 UJ	12 UJ	13 UJ
Dibromochloromethane	NL	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
Dichlorodifluoromethane	NL	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
Ethyl Benzene	5,500	11 J	36 JD	11 U	13 UJ	15 J	13 UJ	89 J	13 UJ
Isopropylbenzene	NL	7.0 J	64 UD	11 U	13 UJ	49 J	13 UJ	27 J	13 UJ
m/p-Xylenes	NL	6.5 J	21 JD	11 U	13 UJ	390 J	13 UJ	130 J	13 UJ
Methyl Acetate	NL	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
Methyl tert-butyl Ether	NL	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
Methylcyclohexane	NL	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
Methylene Chloride	100	12 U	13 JD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
o-Xylene	NL	17 J	20 JD	11 U	13 UJ	220 J	13 UJ	200 J	13 UJ
Styrene	NL	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	1.2 J	13 UJ
t-1,3-Dichloropropene	NL	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
Tetrachloroethene	1,400	12 UJ	64 UJD	11 UJ	13 UJ	120 UJ	13 UJ	12 UJ	13 UJ
Toluene	1,500	12 U	75 JD	11 U	13 UJ	13 J	13 UJ	4.5 J	13 UJ
trans-1,2-Dichloroethene	300	12 UJ	64 UJD	11 UJ	13 UJ	120 UJ	13 UJ	12 UJ	13 UJ
Trichloroethene	700	12 U 12 UJ	64 UD	11 U 11 UJ	13 UJ	120 U	13 UJ 13 UJ	12 UJ 12 UJ	13 UJ 13 UJ
Trichlorofluoromethane	NL 200		64 UJD		13 UJ	120 UJ			
Vinyl Chloride	200	12 U	64 UD	11 U	13 UJ	120 U	13 UJ	12 UJ	13 UJ
Xylene (total)	1,200	24	41	ND	ND	610	ND	330	ND
Total VOCs (µg/kg)	10,000	51	1,500	7.9	21	690	24	460	21

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

D = The concentration indicated was obtained from a diluted analytical run.

- U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.
- J = The associated numerical value is an estimated quantity.
- R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process Bold value compound detected above regulatory standard or guidance value.

Table B-7 Subsurface Soil VOC Results - Part 2 Norwich Former MGP Site, Norwich, New York

Sample ID (Depth in Feet)	NYSDEC	NO-DP01(15-16)	NO-DP01(23-24)	NO-DP02(18-19)	NO-DP02(23-24)	NO-DP03(15-16)	NO-DP04C(13.5-14.5)	NO-DP04C(18-19)	NO-DP04C(23-24)	NO-DP14(18.7-20)
' ' '	Recommended Soil	M46810-4	M46810-6	M46810-8	M46810-9	M46810-10	M46906-7	M46906-8	M46906-9	M48323-9
,	Cleanup Objective ¹	04/25/2005	04/25/2005	04/25/2005	04/25/2005	04/25/2005	04/26/2005	04/26/2005	04/26/2005	06/16/2005
Date Sampled	Cleanup Objective	04/23/2003	04/23/2003	04/23/2003	04/25/2005	04/23/2003	04/20/2003	04/20/2003	04/20/2003	00/10/2003
Volatile Organic Compounds ('ua/ka)									
1,1,1-Trichloroethane	800	1,200 U	160 U	530 U	160 U	490 l	J 71 U	490 U	160 U	73 U
1,1,2,2-Tetrachloroethane	600	1,200 U	160 U	530 U	160 U	490 l	J 71 U	490 U	160 U	73 U
1,1,2-Trichloroethane	NL	1,200 U	160 U	530 U	160 U	490 l	J 71 U	490 U	160 U	73 U
1,1-Dichloroethane	200	1,200 U	160 U	530 U	160 U	490 l	J 71 U	490 U	160 U	73 U
1,1-Dichloroethene	400	1,200 U	160 U	530 U	160 U	490 l	J 71 U	490 U	160 U	73 U
1,2,4-Trichlorobenzene	3,400	3,100 U	410 U	1,300 U	400 U	1,200 l	J 180 U	1,200 U	400 U	180 U
1,2-Dibromo-3-chloropropane	NL	3,100 UJ	410 UJ	1,300 UJ	400 UJ	1,200 U	J 180 U	1,200 U	400 U	180 U
1,2-Dibromoethane	NL	1,200 U	160 U	530 U	160 U	490 l		490 U	160 U	73 U
1,2-Dichlorobenzene	7,900	1,200 U	160 U	530 U	160 U	490 l		490 U	160 U	73 U
1,2-Dichloroethane	100	1,200 UJ	160 UJ	530 UJ	160 UJ	490 U	J 71 U	490 U	160 U	73 U
1,2-Dichloropropane	NL	1,200 U	160 U	530 U	160 U	490 l		490 U	160 U	73 U
1,3-Dichlorobenzene	1,600	1,200 U	160 U	530 U	160 U	490 l		490 U	160 U	73 U
1,4-Dichlorobenzene	8,500	1,200 U	160 U	530 U	160 U	490 l		490 U	160 U	73 U
2-Butanone (MEK)	300	3,100 U	410 U	1,300 U	400 U	1,200 l		1,200 U	400 U	180 UJ
2-Hexanone	NL	3,100 U	410 U	1,300 U	400 U	1,200 l		1,200 U	400 U	180 UJ
4-Methyl-2-pentanone (MIBK)	1,000	3,100 U	410 U	1,300 U	400 U	1,200 l		1,200 U	400 U	180 U
Acetone	200	3,100 U	410 U	1,300 U	400 U	1,200 l		1,200 UJ	400 UJ	180 U
Benzene	60	310 U	41 U	130 U	5,510	120 l		120 U	40 U	18 U
Bromodichloromethane	NL	1,200 U	160 U	530 U	160 U	490 l		490 U	160 U	73 U
Bromoform	NL	1,200 U	160 U	530 U	160 U	490 l		490 U	160 U	73 U
Bromomethane	NL	1,200 U	160 U	530 U	160 U	490 l		490 U	160 U	73 U
Carbon disulfide	2,700	3,100 U	410 U	1,300 U	400 U	1,200 l		1,200 U	400 U	180 UJ
Carbon tetrachloride	600	1,200 U	160 U	530 U	160 U	490 l		490 U	160 U	73 U
Chlorobenzene	1,700	1,200 U	160 U	530 U	160 U	490 l		490 U	160 U	73 U
Chloroethane	1,900	3,100 U	410 U	1,300 U	400 U	1,200 L		1,200 U	400 U	180 UJ
Chloroform	300	1,200 U	160 U	530 U	160 U	490 U		490 U 1.200 U	160 U	73 U
Chloromethane	NL NI	3,100 U 1,200 U	410 U 160 U	1,300 U 530 U	400 U	.,		.,	400 U	180 U 73 U
cis-1,2-Dichloroethene	NL NI	.,	160 U 160 U	000 0	160 U				160 U	
cis-1,3-Dichloropropene	NL NL	1,200 U 3.100 U	410 U	530 U 1.300 U	160 U 400 U	490 U 1.200 U		490 U 1.200 U	160 U 400 U	73 U 180 UJ
Cyclohexane Dibromochloromethane	NL NL	1,200 U	160 U	530 U	160 U	1,200 t		1,200 U	160 U	73 U
Dichlorodifluoromethane	NL NL	1,200 UJ	160 UJ	530 UJ	160 UJ	490 U		490 U	160 U	73 UJ
Ethylbenzene	5,500	34,000	160 U	16,400	202	23,300	139	4,660	160 U	73 UJ 10 J
Freon 113	6.000	3.100 U	410 U	1,300 U	400 U	1.200 U		1,200 U	400 U	180 U
Isopropylbenzene	NL	9,810	410 U	5,690	400 U	2,890	180 U	1,780	400 U	17.1 J
Methyl Acetate	NL NL	3,100 U	410 U	1,300 U	400 U	1,200 U		1,200 U	400 U	180 U
Methyl Tert Butyl Ether	NL NL	1,200 U	160 U	530 U	160 U	490 U		490 U	160 U	73 U
Methylcyclohexane	NL	3,100 U	410 U	1,300 U	400 U	1,200 U		1,200 U	400 U	180 UJ
Methylene chloride	100	1,200 U	160 U	530 U	160 U	490 U		490 U	160 U	73 U
Styrene	NL	3,100 U	410 U	1,300 U	400 U	1,200 U		1,200 U	400 U	180 UJ
Tetrachloroethene	1,400	1,200 U	160 U	530 U	160 U	490 U		490 U	160 U	73 U
Toluene	1,500	1,200 U	160 U	530 U	160 U	657	71 U	490 U	160 U	73 U
trans-1,2-Dichloroethene	300	1,200 U	160 U	530 U	160 U	490 l		490 U	160 U	73 U
trans-1,3-Dichloropropene	NL	1,200 UJ	160 UJ	530 UJ	160 UJ	490 U		490 U	160 U	73 UJ
Trichloroethene	700	1,200 U	160 U	530 U	160 U	490 l		490 U	160 U	73 U
Trichlorofluoromethane	NL	1,200 U	160 U	530 U	160 U	490 l		490 U	160 U	73 UJ
Vinyl chloride	200	1,200 U	160 U	530 U	160 U	490 l		490 U	160 U	73 U
Xylene (total)	1,200	29,300	160 U	14,100	240	11,100	229	4,210	160 U	29.7 J
	_			_						
Total VOCs (µg/kg)	10,000	73,000	ND	36,000	6,000	38,000	370	11,000	ND	57

NA = Not Analyzed NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

- D = The concentration indicated was obtained from a diluted analytical run.

 U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.
- J = The associated numerical value is an estimated quantity.
- R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process

Bold value - compound detected above regulatory standard or guidance value.

Table B-7 Subsurface Soil VOC Results - Part 2 Norwich Former MGP Site, Norwich, New York

Sample ID (Depth in Feet)	NYSDEC	NO-DP14(23-24)	NO-DP19(14-15)	NO-DP19(18-19)	NO-DP22(14.5-15.5)	NO-DP22(21.5-22.5)	NO-DP25(7.8-8)	NO-DP25(19-20)	NO-DP26(20-21.5)	NO-DP26(23-24)
Laboratory Identification	Recommended Soil	M48323-11	M46906-5	M46906-6	M46810-2	M46810-3	M46966-9	M46966-11	M46966-6	M46966-8
Date Sampled	Cleanup Objective ¹	06/16/2005	04/26/2005	04/26/2005	04/25/2005	04/25/2005	04/29/2005	04/29/2005	04/28/2005	04/28/2005
Bate campion	Glodinap Objective	00/10/2000	0 1120/2000	0 11/20/2000	0 11/20/2000	0 112012000	0 11/20/2000	0 1120/2000	0 112012000	0 1120/2000
Volatile Organic Compounds	(μg/kg)									
1,1,1-Trichloroethane	800	2.4 UJ	2.1 UJ	2.0 U	590 U	75 U	59 U	2.4 UJ	1,300 U	2.6 UJ
1,1,2,2-Tetrachloroethane	600	R	2.1 U	2.0 UJ	590 U	75 U	59 U	R	1,300 U	2.6 UJ
1,1,2-Trichloroethane	NL	2.4 UJ	2.1 U	2.0 U	590 U	75 U	59 U	2.4 UJ	1,300 U	2.6 UJ
1,1-Dichloroethane	200	2.4 UJ	2.1 UJ	2.0 U	590 U	75 U	59 U	2.4 UJ	1,300 U	2.6 UJ
1,1-Dichloroethene	400	2.4 UJ	2.1 UJ	2.0 U	590 U	75 U	59 U	2.4 UJ	1,300 U	2.6 UJ
1,2,4-Trichlorobenzene	3,400	R	5.2 U	5.1 UJ	1,500 U	190 U	150 U	R	3,200 U	6.6 UJ
1,2-Dibromo-3-chloropropane	NL	R	5.2 U	5.1 UJ	1,500 UJ	190 UJ	150 U	R	3,200 U	6.6 UJ
1,2-Dibromoethane	NL	2.4 UJ	2.1 UJ	2.0 UJ	590 U	75 U	59 U	2.4 UJ	1,300 U	2.6 UJ
1,2-Dichlorobenzene	7,900	R	2.1 U	2.0 UJ	590 U	75 U	59 U	R	1,300 U	2.6 UJ
1,2-Dichloroethane	100	2.4 UJ	2.1 U	2.0 U	590 UJ	75 UJ	59 U	2.4 UJ	1,300 U	2.6 UJ
1,2-Dichloropropane	NL	2.4 UJ	2.1 U	2.0 U	590 U	75 U	59 U	2.4 UJ	1,300 U	2.6 UJ
1,3-Dichlorobenzene	1,600	R	2.1 U	2.0 UJ	590 U	75 U	59 U	R	1,300 U	2.6 UJ
1,4-Dichlorobenzene	8,500	R	2.1 U	2.0 UJ	590 U	75 U	59 U	R	1,300 U	2.6 UJ
2-Butanone (MEK)	300	6.0 UJ	5.2 UJ	5.1 U	1,500 U	190 U	150 U	6.1 UJ	3,200 U	6.6 UJ
2-Hexanone	NL	6.0 UJ	5.2 UJ	5.1 UJ	1,500 U	190 U	150 UJ	6.1 UJ	3,200 UJ	6.6 UJ
4-Methyl-2-pentanone (MIBK)	1,000	6.0 UJ	5.2 U	5.1 U	1,500 U	190 U	150 U	6.1 UJ	3,200 U	6.6 UJ
Acetone	200	36.9 UJ	9.3 UJ	5.1 U	1,500 U	190 U	150 UJ	33.4 UJ	3,200 UJ	38.1 UJ
Benzene	60	0.6 UJ	0.52 U	0.51 U	150 U	19 U	15 U	8.8 J	27,100	300 J
Bromodichloromethane	NL	2.4 UJ	2.1 U	2.0 U	590 U	75 U	59 U	2.4 UJ	1,300 U	2.6 UJ
Bromoform	NL	2.4 UJ	2.1 UJ	2.0 UJ	590 U	75 U	59 U	2.4 UJ	1,300 U	2.6 UJ
Bromomethane	NL	2.4 UJ	2.1 UJ	2.0 U	590 U	75 U	59 U	2.4 UJ	1,300 U	2.6 UJ
Carbon disulfide	2,700	0.94 J	5.2 UJ	5.1 U	1,500 U	190 U	150 U	6.1 UJ	3,200 U	6.6 UJ
Carbon tetrachloride	600	2.4 UJ	2.1 U	2.0 U	590 U	75 U	59 U	2.4 UJ	1,300 U	2.6 UJ
Chlorobenzene	1,700	2.4 UJ	2.1 UJ	2.0 UJ	590 U	75 U	59 U	2.4 UJ	1,300 U	2.6 UJ
Chloroethane	1,900	6.0 UJ	5.2 UJ	5.1 U	1,500 U	190 U	150 U	6.1 UJ	3,200 U	6.6 UJ
Chloroform	300	2.4 UJ	2.7 UJ	2.7 B	590 U	75 U	59 U	3.1 UJ	1,300 U	2.6 UJ
Chloromethane	NL	6.0 UJ	5.2 UJ	5.1 U	1,500 U	190 U	150 U	6.1 UJ	3,200 U	6.6 UJ
cis-1,2-Dichloroethene	NL	2.4 UJ	2.1 UJ	2.0 U	590 U	75 U	59 U	2.4 UJ	1,300 U	2.6 UJ
cis-1,3-Dichloropropene	NL	2.4 UJ	2.1 U	2.0 U	590 U	75 U	59 U	2.4 UJ	1,300 U	2.6 UJ
Cyclohexane	NL NI	6.0 UJ	5.2 U	5.1 U	1,500 U	190 U 75 U	150 U	6.1 UJ	3,200 U	6.6 UJ 2.6 UJ
Dibromochloromethane	NL NL	2.4 UJ 2.4 UJ	2.1 UJ 2.1 UJ	2.0 UJ 2.0 U	590 U 590 UJ	75 UJ	59 U 59 UJ	2.4 UJ 2.4 UJ	1,300 U 1,300 UJ	2.6 UJ
Dichlorodifluoromethane Ethylbenzene	5.500	2.4 UJ	2.1 UJ	2.0 UJ	9.770	75 U	59 U	2.4 UJ 2.4 UJ	668.000	2.6 UJ
Freon 113	6,000	0.82 J	5.2 UJ	5.1 U	1,500 U	190 U	150 U	6.1 UJ	3,200 U	6.6 UJ
Isopropylbenzene	6,000 NL	0.82 J R	5.2 U	5.1 UJ	2,850	190 U	150 U	6.1 UJ	62,700	6.6 UJ
Methyl Acetate	NL NL	6.0 UJ	5.2 UJ	5.1 UJ	2,650 U	190 U	150 U	6.1 UJ	3,200 U	6.6 UJ
Methyl Tert Butyl Ether	NL NL	2.4 UJ	2.1 UJ	2.0 U	590 U	75 U	59 U	2.4 UJ	1,300 U	2.6 UJ
Methylcyclohexane	NL NL	6.0 UJ	5.2 U	5.1 U	1,630	190 U	150 U	6.1 UJ	3,200 U	6.6 UJ
Methylene chloride	100	2.4 UJ	2.1 UJ	2.0 U	590 U	75 U	59 U	2.4 UJ	1,300 U	24.3 J
Styrene	NL	6.0 UJ	5.2 UJ	5.1 UJ	1,500 U	190 U	150 U	6.1 UJ	3,340	6.6 UJ
Tetrachloroethene	1.400	2.4 UJ	2.1 J	2.0 UJ	590 U	75 U	59 U	2.4 UJ	1,300 U	2.6 UJ
Toluene	1,500	2.4 UJ	2.1 U	2.0 U	590 U	75 U	59 U	2.4 UJ	193.000 J	2.6 UJ
trans-1,2-Dichloroethene	300	2.4 UJ	2.1 UJ	2.0 U	590 U	75 U	59 U	2.4 UJ	1,300 U	2.6 UJ
trans-1,3-Dichloropropene	NL NL	2.4 UJ	2.1 U	2.0 U	590 UJ	75 UJ	59 U	2.4 UJ	1,300 U	2.6 UJ
Trichloroethene	700	2.4 UJ	2.1 U	2.0 U	590 U	75 U	59 U	2.4 UJ	1,300 U	2.6 UJ
Trichlorofluoromethane	NL NL	2.4 UJ	2.1 UJ	2.0 U	590 U	75 U	59 U	2.4 UJ	1,300 U	2.6 UJ
Vinyl chloride	200	2.4 UJ	2.1 UJ	2.0 U	590 U	75 U	59 U	2.4 UJ	1,300 U	2.6 UJ
Xylene (total)	1,200	2.4 UJ	2.1 UJ	2.0 UJ	3,910	75 U	59 U	2.4 UJ	519,000	2.6 UJ
, , , , ,	,							1		
Total VOCs (μg/kg)	10,000	1.8	2.1	2.7	18,000	ND	ND	8.8	1,500,000	320

NA = Not Analyzed NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

- D = The concentration indicated was obtained from a diluted analytical run.

 U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

 J = The associated numerical value is an estimated quantity.
- R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process

Bold value - compound detected above regulatory standard or guidance value.

NYSDEC TAGM HWR-94-4046 - Determination of Soil Cleanup Objectives and Cleanup Levels [NYSDEC, Jan. 1994]

Table B-7 Subsurface Soil VOC Results - Part 2 Norwich Former MGP Site, Norwich, New York

Sample ID (Depth in Feet)	NYSDEC	NO-DP27(17.5-18)	NO-DP27(31-32)	NO-DP28(14-15)	NO-DP29(22.5-23)	NO-DP29(23-24	4)	NO-DP30(23-24)	NO-DP31(6.5-7.5)	NO-DP31(19-20)	NO-DP32(10-11)
Laboratory Identification	Recommended Soil	M46906-2	M46906-4	M46906-11	M46906-12	M46906-13	.,	M46966-12	M46966-13	M46966-14	M46906-16
Date Sampled	Cleanup Objective ¹	04/26/2005	04/26/2005	04/27/2005	04/27/2005	04/27/2005		04/29/2005	04/29/2005	04/29/2005	04/27/2005
Date Gampled	Oleanup Objective	04/20/2003	04/20/2003	04/21/2003	04/21/2003	04/2//2003		04/23/2003	04/23/2003	04/23/2003	04/21/2003
Volatile Organic Compounds	(μg/kg)										
1,1,1-Trichloroethane	800	2.5 U	2.4 U	1.9 UJ	1.7 U	130	U	R	2.2 UJ	2.3 UJ	1.7 U
1,1,2,2-Tetrachloroethane	600	2.5 U	2.4 U	1.9 UJ	1.7 UJ	130	U	R	2.2 UJ	R	1.7 UJ
1,1,2-Trichloroethane	NL	2.5 U	2.4 UJ	1.9 UJ	1.7 U	130	U	R	2.2 UJ	2.3 UJ	1.7 U
1,1-Dichloroethane	200	2.5 U	2.4 U	1.9 UJ	1.7 U	130	U	R	2.2 UJ	2.3 UJ	1.7 U
1,1-Dichloroethene	400	2.5 U	2.4 U	1.9 UJ	1.7 U	130	U	R	2.2 UJ	2.3 UJ	1.7 U
1,2,4-Trichlorobenzene	3,400	6.3 U	6.1 U	4.6 UJ	4.3 UJ	320	U	R	5.5 UJ	R	4.1 UJ
1,2-Dibromo-3-chloropropane	NL	6.3 U	6.1 U	4.6 UJ	4.3 UJ	320	U	R	5.5 UJ	R	4.1 UJ
1,2-Dibromoethane	NL	2.5 U	2.4 UJ	1.9 UJ	1.7 U	130	U	R	2.2 UJ	2.3 UJ	1.7 U
1,2-Dichlorobenzene	7,900	2.5 U	2.4 U	1.9 UJ	1.7 UJ	130	U	R	2.2 UJ	R	1.7 UJ
1,2-Dichloroethane	100	2.5 U	2.4 UJ	1.9 UJ	1.7 U	130	U	R	2.2 UJ	2.3 UJ	1.7 U
1,2-Dichloropropane	NL	2.5 U	2.4 UJ	1.9 UJ	1.7 U	130	U	R	2.2 UJ	2.3 UJ	1.7 U
1,3-Dichlorobenzene	1,600	2.5 U	2.4 U	1.9 UJ	1.7 UJ	130	U	R	2.2 UJ	R	1.7 UJ
1,4-Dichlorobenzene	8,500	2.5 U	2.4 U	1.9 UJ	1.7 UJ	130		R	2.2 UJ	R	1.7 UJ
2-Butanone (MEK)	300	6.3 U	6.1 U	4.6 UJ	4.3 U	320	U	R	5.5 UJ	5.7 UJ	4.1 U
2-Hexanone	NL	6.3 U	6.1 UJ	4.6 UJ	4.3 U			R	5.5 UJ	5.7 UJ	4.1 U
4-Methyl-2-pentanone (MIBK)	1,000	6.3 U	6.1 UJ	4.6 UJ	4.3 U	320		R	5.5 UJ	5.7 UJ	4.1 U
Acetone	200	14.1 U	15.5 U	7.9 UJ	15.9 U	320	UJ	40.3 UJ	5.5 UJ	22.8 UJ	14.7 U
Benzene	60	0.63 U	0.61 UJ	0.46 UJ	41.1	2,690		R	0.55 UJ	0.57 UJ	0.41 U
Bromodichloromethane	NL	2.5 U	2.4 UJ	1.9 UJ	1.7 U			R	2.2 UJ	2.3 UJ	1.7 U
Bromoform	NL	2.5 U	2.4 UJ	1.9 UJ	1.7 U	130	U	R	2.2 UJ	2.3 UJ	1.7 U
Bromomethane	NL	2.5 U	2.4 U	1.9 UJ	1.7 U	130	U	R	2.2 UJ	2.3 UJ	1.7 U
Carbon disulfide	2,700	6.3 U	6.1 U	4.6 UJ	4.3 U	320	U	R	5.5 UJ	5.7 UJ	4.1 U
Carbon tetrachloride	600	2.5 U	2.4 UJ	1.9 UJ	1.7 U	130	U	R	2.2 UJ	2.3 UJ	1.7 U
Chlorobenzene	1,700	2.5 U	2.4 UJ	1.9 UJ	1.7 U	130	U	R	2.2 UJ	2.3 UJ	1.7 U
Chloroethane	1,900	6.3 U	6.1 U	4.6 UJ	4.3 U	320	U	R	5.5 UJ	5.7 UJ	4.1 U
Chloroform	300	3.3 U	3.1 U	2.3 UJ	2.2 U	130	U	2.5 UJ	2.2 UJ	2.3 UJ	2.1 U
Chloromethane	NL	6.3 U	6.1 U	4.6 UJ	4.3 U	320		R	5.5 UJ	5.7 UJ	4.1 U
cis-1,2-Dichloroethene	NL	2.5 U	2.4 U	1.9 UJ	1.7 U	130	U	R	2.2 UJ	2.3 UJ	1.7 U
cis-1,3-Dichloropropene	NL	2.5 U	2.4 UJ	1.9 UJ	1.7 U			R	2.2 UJ	2.3 UJ	1.7 U
Cyclohexane	NL	6.3 U	6.1 UJ	4.6 UJ	4.3 U	320	U	R	5.5 UJ	5.7 UJ	4.1 U
Dibromochloromethane	NL	2.5 U	2.4 UJ	1.9 UJ	1.7 U			R	2.2 UJ	2.3 UJ	1.7 U
Dichlorodifluoromethane	NL	2.5 U	2.4 U	1.9 UJ	1.7 U		U	R	2.2 UJ	2.3 UJ	1.7 U
Ethylbenzene	5,500	2.5 U	2.4 UJ	1.9 UJ	134	5,950		R	2.2 UJ	2.3 UJ	1.7 U
Freon 113	6,000	6.3 U	6.1 U	4.6 UJ	4.3 U	320		R	5.5 UJ	5.7 UJ	4.1 U
Isopropylbenzene	NL	6.3 U	6.1 U	4.6 UJ	6.9 J	320		R	5.5 UJ	R	4.1 UJ
Methyl Acetate	NL	6.3 U	6.1 UJ	4.6 UJ	4.3 UJ			R	5.5 UJ	5.7 UJ	4.1 UJ
Methyl Tert Butyl Ether	NL	2.5 U	2.4 U	1.9 UJ	1.7 U	130		R	2.2 UJ	2.3 UJ	1.7 U
Methylcyclohexane	NL	6.3 U	6.1 UJ	4.6 UJ	4.3 U			R	5.5 UJ	5.7 UJ	4.1 U
Methylene chloride	100	2.5 U	2.4 U	1.9 UJ	1.7 U		U	8.0 J	2.2 UJ	4.6 J	1.7 U
Styrene	NL	6.3 U	6.1 UJ	4.6 UJ	4.3 U	686		R	5.5 UJ	5.7 UJ	4.1 U
Tetrachloroethene	1,400	2.8	2.4 UJ	1.9 UJ	1.7 U			R	2.2 UJ	2.3 UJ	1.7 U
Toluene	1,500	2.5 U	2.4 UJ	1.9 UJ	36.3	2,580		R	2.2 UJ	2.3 UJ	1.7 U
trans-1,2-Dichloroethene	300	2.5 U	2.4 U	1.9 UJ	1.7 U			R	2.2 UJ	2.3 UJ	1.7 U
trans-1,3-Dichloropropene	NL	2.5 U	2.4 UJ	1.9 UJ	1.7 U			R	2.2 UJ	2.3 UJ	1.7 U
Trichloroethene	700	2.5 U	2.4 UJ	1.9 UJ	1.7 U	130		R	2.2 UJ	2.3 UJ	1.7 U
Trichlorofluoromethane	NL	2.5 U	2.4 U	1.9 UJ	1.7 U			R	2.2 UJ	2.3 UJ	1.7 U
Vinyl chloride	200	2.5 U	2.4 U	1.9 UJ	1.7 U		U	R	2.2 UJ	2.3 UJ	1.7 U
Xylene (total)	1,200	3.0	2.4 UJ	1.9 UJ	75.6	6,100	Ш	R	2.2 UJ	2.3 UJ	1.7 U
Tetal MOCe (weller)	10.000	5.0	ND	ND	200	40.000	Ш	8.0	ND	4.0	ND
Total VOCs (µg/kg)	10,000	5.8	ND	ND	300	18,000		8.0	ND	4.6	ND

NA = Not Analyzed NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

D = The concentration indicated was obtained from a diluted analytical run.

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

J = The associated numerical value is an estimated quantity.

R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process

Bold value - compound detected above regulatory standard or guidance value.

NYSDEC TAGM HWR-94-4046 - Determination of Soil Cleanup Objectives and Cleanup Levels [NYSDEC, Jan. 1994]

Table B-7 Subsurface Soil VOC Results - Part 2 Norwich Former MGP Site, Norwich, New York

Sample ID (Depth in Feet)	NYSDEC	NO-DP32(15-16)	NO-DP33(15-15.0)	NO-DP34(19-19.3)	NO-DP34(22-23)	NO-DP35(12-12.5	NO-DP35(23-24)	NO-DP36(8.9-9.7)	NO-DP37(26.5-27.5)	NO-DP37(31.5-32)
Laboratory Identification	Recommended Soil	M46906-17	M46906-14	M48220-7	M48220-8	M46966-3	M46966-4	M46966-1	M47558-1	M47558-2
Date Sampled	Cleanup Objective ¹	04/27/2005	04/27/2005	06/14/2005	06/14/2005	04/28/2005	04/28/2005	04/28/2005	05/19/2005	05/19/2005
Date Sampled	Cleanup Objective	04/21/2003	04/2//2003	00/14/2003	00/14/2003	04/20/2003	04/26/2003	04/20/2003	03/19/2003	03/19/2003
Volatile Organic Compounds	(µg/kg)									
1,1,1-Trichloroethane	800	2.3 U	2.1 U	2.4 U	5.1 UJ	2.6	U 2.5 UJ	1.9 U	13,000 U	78 U
1,1,2,2-Tetrachloroethane	600	2.3 UJ	2.1 U	2.4 U	R	2.6	U R	1.9 U	13,000 U	78 U
1,1,2-Trichloroethane	NL	2.3 UJ	2.1 U	2.4 U	5.1 UJ	2.6	U 2.5 UJ	1.9 U	13,000 U	78 U
1,1-Dichloroethane	200	2.3 U	2.1 U	2.4 U	5.1 UJ	2.6	U 2.5 UJ	1.9 U	13,000 U	78 U
1,1-Dichloroethene	400	2.3 U	2.1 U	2.4 U	5.1 UJ	2.6	U 2.5 UJ	1.9 U	13,000 U	78 U
1,2,4-Trichlorobenzene	3,400	R	5.2 U	5.9 U	R		U R	4.9 U	32,000 U	190 U
1,2-Dibromo-3-chloropropane	NL	5.8 UJ	5.2 U	5.9 U	R	6.5		4.9 U	32,000 U	190 U
1,2-Dibromoethane	NL	2.3 UJ	2.1 U	2.4 U	R		U R	1.9 U	13,000 U	78 U
1,2-Dichlorobenzene	7,900	2.3 UJ	2.1 U	2.4 U	R		U R	1.9 U	13,000 U	78 U
1,2-Dichloroethane	100	2.3 UJ	2.1 U	2.4 U	5.1 UJ		U 2.5 UJ	1.9 U	13,000 U	78 U
1,2-Dichloropropane	NL	2.3 UJ	2.1 U	2.4 U	5.1 UJ		U 2.5 UJ		13,000 U	78 U
1,3-Dichlorobenzene	1,600	2.3 UJ	2.1 U	2.4 U	R		U R	1.9 U	13,000 U	78 U
1,4-Dichlorobenzene	8,500	2.3 UJ	2.1 U	2.4 U	R		U R	1.9 U	13,000 U	78 U
2-Butanone (MEK)	300	5.8 U	5.2 U	5.9 UJ	13 UJ	6.5		4.9 U	32,000 U	190 U
2-Hexanone	NL	5.8 U	5.2 U	5.9 U	R		U R	4.9 U	32,000 U	190 U
4-Methyl-2-pentanone (MIBK)	1,000	5.8 U	5.2 U	5.9 UJ	13 UJ		U 6.2 UJ		32,000 U	190 U
Acetone	200	20.2 U	9.9 U	15.2 UJ	74.7 UJ		U 27.6 UJ	4.9 U	32,000 U	190 U
Benzene	60	41 UJ	0.52 U	1.8	1.3 UJ		U 0.62 UJ		21,000	27.3
Bromodichloromethane	NL 	2.3 UJ	2.1 U	2.4 U	5.1 UJ	2.6			13,000 U	78 U
Bromoform	NL 	2.3 UJ	2.1 U	2.4 U	R		U R	1.9 U	13,000 U	78 U
Bromomethane	NL 0.700	2.3 U	2.1 U	2.4 U	5.1 UJ	2.6			13,000 U	78 U
Carbon disulfide	2,700	5.8 U	5.2 U	2.0 J	13 UJ	6.5			32,000 U	190 U
Carbon tetrachloride	600 1.700	2.3 U 2.3 UJ	2.1 U 2.1 U	2.4 U 2.4 U	5.1 UJ R		U 2.5 UJ U R	1.9 U 1.9 U	13,000 U 13,000 U	78 U 78 U
Chlorobenzene Chloroethane	,	2.3 U	5.2 U	2.4 U 5.9 U	13 UJ		U 6.2 UJ		32.000 U	190 U
Chloroform	1,900 300	2.9 U	2.6 U	2.4 U	5.1 UJ		U 2.5 UJ	2.5 U	13,000 U	78 U
Chloromethane	NL	5.8 UJ	5.2 U	5.9 UJ	13 UJ		U 6.2 UJ		32.000 U	190 U
cis-1.2-Dichloroethene	NL NL	2.3 UJ	2.1 U	2.4 U	5.1 UJ	2.6			13.000 U	78 U
cis-1,3-Dichloropropene	NL NL	2.3 UJ	2.1 U	2.4 U	5.1 UJ	2.6		1.9 U	13,000 U	78 U
Cyclohexane	NL NL	5.8 U	5.2 U	5.9 U	13 UJ		U 6.2 UJ		32.000 U	190 U
Dibromochloromethane	NL	2.3 UJ	2.1 U	2.4 U	10 00 R	2.6		1.9 U	13.000 U	78 U
Dichlorodifluoromethane	NL	2.3 U	2.1 U	2.4 UJ	5.1 UJ		U 2.5 UJ	1.9 U	10,000 C	R
Ethylbenzene	5.500	2.3 UJ	2.1 U	2.4 U	R		U R	1.9 U	159.000	137
Freon 113	6.000	5.8 U	5.2 U	5.9 U	13 UJ	6.5			32.000 U	190 U
Isopropylbenzene	NL	5.8 UJ	5.2 U	5.9 U	R	6.5	U R	4.9 U	9,150 J	10.1 J
Methyl Acetate	NL	5.8 U	5.2 UJ	5.9 UJ	13 UJ	6.5			32,000 U	190 U
Methyl Tert Butyl Ether	NL	2.3 U	2.1 U	2.4 U	5.1 UJ	2.6		1.9 U	13,000 U	78 U
Methylcyclohexane	NL	5.8 U	5.2 U	5.9 U	13 UJ	6.5	U 6.2 UJ	4.9 U	32,000 U	190 U
Methylene chloride	100	2.3 UJ	2.1 U	2.4 U	5.1 UJ	5.3	15.3 J	1.9 U	13,000 U	78 U
Styrene	NL	5.8 UJ	5.2 U	5.9 U	R		U R	4.9 U	32,000 U	120
Tetrachloroethene	1,400	2.3 U	2.1 U	2.4 U	R		U R	1.9 U	13,000 U	78 U
Toluene	1,500	2.3 UJ	2.1 U	2.4 U	5.1 UJ		U 2.5 UJ	1.9 U	134,000	155
trans-1,2-Dichloroethene	300	2.3 U	2.1 U	2.4 U	5.1 UJ	2.6			13,000 U	78 U
trans-1,3-Dichloropropene	NL	2.3 UJ	2.1 U	2.4 U	5.1 UJ		U 2.5 UJ	1.9 U	13,000 U	78 U
Trichloroethene	700	2.3 UJ	2.1 U	2.4 U	5.1 UJ	2.6		1.9 U	13,000 U	78 U
Trichlorofluoromethane	NL	2.3 U	2.1 U	2.4 U	5.1 UJ		U 2.5 UJ		13,000 U	78 U
Vinyl chloride	200	2.3 U	2.1 U	2.4 U	5.1 UJ		U 2.5 UJ		13,000 U	78 U
Xylene (total)	1,200	2.3 UJ	2.1 U	2.4 U	R	2.6	U R	1.9 U	266,000	277
								ļ		
Total VOCs (μg/kg)	10,000	ND	ND	3.8	ND	5.3	15	ND	590,000	730

NA = Not Analyzed NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

- D = The concentration indicated was obtained from a diluted analytical run.

 U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.
- J = The associated numerical value is an estimated quantity.
- R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process

Bold value - compound detected above regulatory standard or guidance value.

Table B-7 Subsurface Soil VOC Results - Part 2 Norwich Former MGP Site, Norwich, New York

Laboratory identification Recommended Sun Mr7598-7 Mr7598-8 Mr7598-9 Mr7598-	Sample ID (Depth in Feet)	NYSDEC	NO-DP38(19.6-20)	NO-DP38(27-28)	NO-DP39(13-13.5)	NO-DP39(24-25)	NO-DP40(21.5-23	3.5)	NO-DP40(26.5-27.5)	NO-DP41(16-16.5)	NO-DP41(23-23.7)	NO-DP42(9-10)
Companie C	' ' '		, ,	, ,	, ,	` ,		0.0,	,	, ,	, ,	` '
Volatile Organic Compounds (ug/Nat)	,											
1.1-Tinchiorochame	Date Sampled	Cleanup Objective	03/20/2003	03/20/2003	00/13/2003	00/13/2003	03/20/2003		03/20/2003	03/19/2003	03/19/2003	00/13/2003
1.1-Tinchiorochame	Volatile Organic Compounds	(ua/ka)										
11.22-Friendenteerhame			75 U	80 U	2.4 U	5.3 UJ	1,000	U	84 U	130 U	78 U	2.2 U
1-10-bin/cordemen	1,1,2,2-Tetrachloroethane	600	75 U	80 U		R	1,000	U		130 U	78 U	2.2 U
1-10-Informethene	1,1,2-Trichloroethane	NL	75 U	80 U	2.4 U	5.3 U	1,000	U	84 U	130 U	78 U	2.2 U
12-Entiphicheprezene	1,1-Dichloroethane	200	75 U	80 U	2.4 U	5.3 UJ	1,000	U	84 U	130 U	78 U	2.2 U
12-Disponse-shringpropene	1,1-Dichloroethene	400	75 U	80 U	2.4 U	5.3 UJ	1,000	U	84 U	130 U	78 U	2.2 U
12-Discharcement	1,2,4-Trichlorobenzene	3,400	190 U	200 U	6.0 U	R	2,600	U	210 U	310 U	200 U	5.5 U
12-Dichiotochemene	1,2-Dibromo-3-chloropropane	NL	190 U	200 U	6.0 U	R	2,600	U	210 U	310 U	200 U	5.5 U
12-Dichiotopename	1,2-Dibromoethane	NL	75 U	80 U	2.4 U	5.3 UJ	1,000	U		130 U	78 U	2.2 U
12-Dischloropropane	1,2-Dichlorobenzene	7,900	75 U		2.4 U	R	1,000	U		130 U	78 U	2.2 U
13-Obinordenzene	1,2-Dichloroethane	100	75 U	80 U	2.4 U	5.3 U	1,000	U	84 U	130 U	78 U	2.2 U
14-Dichlordemenne	1,2-Dichloropropane						1,000				78 U	2.2 U
2-Butanone (MEK)	1,3-Dichlorobenzene				2.4 U		1,000	_			78 U	2.2 U
2-Hexanone NL												2.2 U
A-Methy-S-pentanone (MBK)												5.5 UJ
Rectane 200 190 U 200 U 17 U 516 U 2,00 U 210 U 310 U 200 U 8.8 U 5.5 U 1.8 U 1.5								_				5.5 U
Enzière 60												5.5 UJ
Bromodichloromethane			.00					UJ				8.3 UJ
Bromorform												0.55 U
Erromentane	Bromodichloromethane											2.2 U
Carbon etlaride												2.2 U
Carbon lefrachloride												2.2 U
Chiorobetzene												5.5 U
Chiorothame												2.2 U
Chloroform 300 75 U 80 U 2.4 U 5.3 U 1.000 U 84 U 130 U 78 U 2.5 Chloromethane NIL 190 U 200 U 6.0 U 13 U 2.600 U 210 U 310 U 200 U 5.5 Chloropethene NIL 75 U 80 U 2.4 U 5.3 U 1.000 U 84 U 130 U 78 U 2.5 Chloropethene NIL 75 U 80 U 2.4 U 5.3 U 1.000 U 84 U 130 U 78 U 2.5 Chloropethene NIL 75 U 80 U 2.4 U 5.3 U 1.000 U 84 U 130 U 78 U 2.5 Chloropethene NIL 190 U 200 U 6.0 U 13 U 2.600 U 210 U 310 U 78 U 2.5 U 2.5 Chloropethene NIL 75 U 80 U 2.4 U 5.3 U 1.000 U 84 U 130 U 78 U 2.5												2.2 U
Chioromethane												5.5 U
cis-1,2-Dichloroethene NL 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2.0 Gis-1,3-Dichloropropene NL 190 U 80 U 2.4 U 5.3 U 1,000 U 310 U 200 U 5.0 U 210 U 310 U 200 U 5.0 U 210 U 310 U 200 U 5.0 Dibrorodhloromethane NL 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 7.8 U 2.2 U 5.3 UJ 1,000 U 84 U 130 U 2.0 U 5.3 UJ 1,000 U 84 U 130 U 2.0 U 5.0 5.3 UJ 2.8 U <												2.2 U
Cis-1,3-Dichloropropene												5.5 UJ
Cyclohexane								_				2.2 U
Dibromochloromethane												2.2 U
Dichlorodiffluoromethane												5.5 U
Ethylbenzene 5,500 14.3 J 80 U 5.0 5.3 UJ 28,100 84 U 604 78 U 2. Freon 113 6,000 190 U 200 U 6.0 U 13 UJ 2,600 U 210 U 310 U 200 U 5. Isopropylbenzene NL 190 U 200 U 6.0 U R 3,110 210 U 234 200 U 5. Methyl Acetate NL 190 U 200 U 6.0 UJ 13 UJ 2,600 U 210 U 310 U 200 U 5. Methyl Tert Butyl Ether NL 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Methylcyclohexane NL 190 U 200 U 6.0 U 13 U 2,600 U 210 U 310 U 200 U 5. Methylcyclohexane NL 190 U 200 U 6.0 U 13 U 2,600 U 210 U 310 U 200 U 5. Methylcyclohexane NL 190 U 200 U 6.0 U 13 U 2,600 U 210 U 310 U 200 U 5. Methylere chloride 100 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Methylere chloride 1,400 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Methylere elloride 1,400 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Methylere elloride 1,500 14 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Methylere elloride 1,500 14 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Methylere elloride 1,500 14 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Methylere elloride 1,500 14 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Methylere elloride 1,500 14 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Methylere elloride 1,500 14 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Methylere elloride 1,500 14 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Methylere elloride 1,500 15 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Methylere elloride 1,500 15 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Methylere elloride 1,500 15 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Methylere elloride 1,500 15 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Methylere elloride 1,500 15 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Methylere elloride 1,500 15 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Methylere elloride 1,500 15 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Methylere elloride 1,500 15 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Methylere elloride 1,500 15 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Methylere elloride 1,500 15 U 80 U 2.4 U 5.3 UJ 1,000 U							1,000					2.2 U
Freon 113							00.400	К				2.2 UJ
Isopropylbenzene												2.2 U 5.5 U
Methyl Acetate NL 190 U 200 U 6.0 UJ 13 UJ 2,600 U 210 U 310 U 200 U 5.5 Methyl Tert Butyl Ether NL 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 200 U 5.0 U 2.10 U 310 U 200 U 5.3 UJ 1,000 U 84 U 130 U 2.0 U 5.3 UJ 1,000 U 84 U 130 U 2.0 U 5.3 UJ 1,000 U 84 U 130 U 2.0 U 5.3 UJ 1,000 U 84 U 130 U 2.0 U 5.3 UJ 1,000 U 84 U 130 U 2.0 5.3 UJ 1,000 U		- /						U				5.5 U
Methyl Tert Butyl Ether NL 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Methylcyclohexane NL 190 U 200 U 6.0 U 13 U 2,600 U 210 U 310 U 200 U 5. Methylene chloride 100 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Styrene NL 190 U 200 U 6.0 U 13 UJ 2,600 U 210 U 310 U 200 U 5. Tetrachloroethene 1,400 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Toluene 1,500 14 J 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. trans-1,2-Dichloroethene 300 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. trans-1,3-Dichloropropene NL 75 U												5.5 UJ
Methylcyclohexane NL 190 U 200 U 6.0 U 13 U 2,600 U 210 U 310 U 200 U 5. Methylene chloride 100 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Styrene NL 190 U 200 U 6.0 U 13 UJ 2,600 U 210 U 310 U 200 U 5.0 U 210 U 310 U 200 U 5.3 UJ 1,000 U 84 U 310 U 22. Toluene 1,500 14 J 80 U 2.4 U 5.3 U 8,910 84 U 130 U 78 U 2. trans-1,2-Dichlorotethene 300 75 U 80												2.2 U
Methylene chloride 100 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2.5 Styrene NL 190 U 200 U 6.0 U 13 UJ 2,600 U 210 U 310 U 200 U 5. U 310 U 200 U 5. U 310 U 22. U 5.3 UJ 1,000 U 84 U 1330 U 78 U 2. U 5.3 UJ 1,000 U 84 U 1330 U 78 U 2. U 5.3 UJ 1,000 U 84 U 1330 U 78 U 2. U 1,000 U 84 U 1330 U 78 U 2. U 1,000 U 84 U <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5.5 U</td></t<>												5.5 U
Styrene NL 190 U 200 U 6.0 U 13 UJ 2,600 U 210 U 310 U 200 U 5.5 Tetrachloroethene 1,400 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Toluene 1,500 14 J 80 U 2.4 U 5.3 U 8,910 U 84 U 130 U 78 U 2. trans-1,2-Dichloroethene 300 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. trans-1,3-Dichloropropene NL 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Trichloroethene 700 75 U 80 U 2.4 U 5.3 U 1,000 U 84 U 130 U 78 U 2. Trichlorofluoromethane NL 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Vinyl chloride 200 75 U 8												2.2 U
Tetrachloroethene 1,400 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Toluene 1,500 14 J 80 U 2.4 U 5.3 U 8,910 84 U 130 U 78 U 2. trans-1,2-Dichloroptehene 300 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. trans-1,3-Dichloropropene NL 75 U 80 U 2.4 U 5.3 U 1,000 U 84 U 130 U 78 U 2. Trichloroffluoromethane 70 75 U 80 U 2.4 U 5.3 U 1,000 U 84 U 130 U 78 U												5.5 U
Toluene 1,500 14 J 80 U 2.4 U 5.3 U 8,910 84 U 130 U 78 U 2. trans-1,2-Dichloroethene 300 75 U 80 U 2.4 U 5.3 U 1,000 U 84 U 130 U 78 U 2. trans-1,3-Dichloropropene NL 75 U 80 U 2.4 U 5.3 U 1,000 U 84 U 130 U 78 U 2. Trichloroethene 700 75 U 80 U 2.4 U 5.3 U 1,000 U 84 U 130 U 78 U 2. Trichloroethene NL 75 U 80 U 2.4 U 5.3 U 1,000 U 84 U 130 U 78 U 2. Trichloroethene NL 75 U 80 U 2.4 U 5.3 U 1,000 U 84 U 130 U 78 U 2. Trichlorofluoromethane NL 75 U 80 U 2.4 U 5.3 U 1,000 U 84 U 130 U 78 U 2. Vinyl chloride 200 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2.												2.2 U
trans-1,2-Dichloroethene 300 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. trans-1,2-Dichloropropene NL 75 U 80 U 2.4 U 5.3 U 1,000 U 84 U 130 U 78 U 2. Trichloroethene 700 75 U 80 U 2.4 U 5.3 U 1,000 U 84 U 130 U 78 U 2. Trichlorofluoromethane NL 75 U 80 U 2.4 U 5.3 U 1,000 U 84 U 130 U 78 U 2. Vinyl chloride 200 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U								U				2.2 U
trans-1,3-Dichloropropene NL 75 U 80 U 2.4 U 5.3 U 1,000 U 84 U 130 U 78 U 2. Trichloroethene 700 75 U 80 U 2.4 U 5.3 U 1,000 U 84 U 130 U 78 U 2. Trichlorofluoromethane NL 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Vinyl chloride 200 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Vinyl chloride 200 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U								- 11				2.2 U
Trichloroethene 700 75 U 80 U 2.4 U 5.3 U 1,000 U 84 U 130 U 78 U 2. Trichlorofluoromethane NL 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Vinyl chloride 200 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Vinyl chloride 200 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2.												2.2 U
Trichlorofluoromethane NL 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2. Vinyl chloride 200 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2.												2.2 U
Vinyl chloride 200 75 U 80 U 2.4 U 5.3 UJ 1,000 U 84 U 130 U 78 U 2.												2.2 U
												2.2 U
Princip (1000) 1,500 100 00 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0								۲				2.2 U
	Aylono (total)	1,200	,3 0	00 0	0.0	5.5 00	20,300	H	04 0	713	73 0	2.2 0
Total VOCs (µg/kg) 10,000 140 ND 12 8.8 70,000 ND 1,300 ND NI	Total VOCs (µg/kg)	10,000	140	ND	12	8.8	70,000		ND	1,300	ND	ND

NA = Not Analyzed NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

- D = The concentration indicated was obtained from a diluted analytical run.

 U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.
- J = The associated numerical value is an estimated quantity.
- R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process

Bold value - compound detected above regulatory standard or guidance value.

NYSDEC TAGM HWR-94-4046 - Determination of Soil Cleanup Objectives and Cleanup Levels [NYSDEC, Jan. 1994]

Table B-7 Subsurface Soil VOC Results - Part 2 Norwich Former MGP Site, Norwich, New York

Company Comp	Sample ID (Depth in Feet)	NYSDEC	NO-DP42(26-27)	NO-DP43(7.5-8)	NO-DP43(23-23.8)	NO-DP44(15-16)	NO-DP44(25-26)	NO-DP45(10.8-11.3)	NO-DP46(9-9.6)	NO-DP46(22-24)	NO-DP47(21.5-22.5)
Company Comp	' ' '		` '	` '	, ,	` ,	` '	, ,	, ,	, ,	, ,
Valetia Cryanic Compounds (pgleg) 7.1.1. Fredirecterium 800 90 91 91 92 91 92 91 92 92 92 93 93 94 94 94 94 94 94 94 94 94 94 94 94 94	,										
1.1.1 Tricolforderime	Date Gampled	Oleanup Objective	00/13/2003	05/19/2005	03/13/2003	00/13/2003	00/13/2003	00/13/2003	00/14/2003	00/14/2003	00/13/2003
1.1.1 Tricolforderime	Volatile Organic Compounds	(ua/ka)									
11.22-Februschenbure			5.3 UJ	2.3 U	80 U	2.3 U	2.2 UJ	2.5 U	2.3 U	4.7 UJ	2.3 U
File Design of the Company File Design of	1,1,2,2-Tetrachloroethane	600	R	2.3 U	80 U	2.3 U	R	R	2.3 U	R	2.3 U
1-Debroordename	1,1,2-Trichloroethane	NL	5.3 U	2.3 U	80 U	2.3 U	2.2 UJ	2.5 U	2.3 U	4.7 UJ	2.3 U
Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 6. Fig. 7. Fig.	1,1-Dichloroethane	200	5.3 UJ	2.3 U	80 U	2.3 U	2.2 UJ	2.5 U	2.3 U	4.7 UJ	2.3 U
12-Distromo-Senter N.L. S. S. U 200 U S. U R R S. T. U R S. S. S. U 2.0 U S.	1,1-Dichloroethene	400	5.3 UJ	2.3 U	80 U	2.3 U	2.2 UJ	2.5 U	2.3 U	4.7 UJ	2.3 U
12-Deninomentane	1,2,4-Trichlorobenzene	3,400	R	5.8 U	200 U	5.8 U	R	R	5.7 U	R	5.8 U
12-Dichistocherzene 7,900	1,2-Dibromo-3-chloropropane	NL	R	5.8 U	200 U	5.8 U	R	R	5.7 U	R	5.8 U
F2-Obinitroprepare	1,2-Dibromoethane	NL	5.3 UJ	2.3 U	80 U	2.3 U	2.2 UJ	2.5 UJ	2.3 U	R	2.3 U
12-Dischoroprogene	1,2-Dichlorobenzene	7,900			80 U	2.3 U	R	R	2.3 U	R	2.3 U
13-Obintonchemene	1,2-Dichloroethane	100	5.3 U		80 U	2.3 U			2.3 U	4.7 UJ	2.3 U
14-Dichlorobenzene	1,2-Dichloropropane										2.3 U
2-Bitanone (MEK) 300											2.3 U
2-Hesanone											2.3 U
##### Acetane											5.8 U
Acetone 200 38,7 U 5,2 J 200 U 5,8 U 13,9 U 10,8 U 5,7 U 5,8 U 0,55 U											5.8 U
Benzene											5.8 U
Bromodichloromethane											5.8 U
Bromorform											0.58 U
Bromomethane											2.3 U
Carbon etachoride											2.3 U
Carbon tetrachloride											2.3 U
Chioroehzene											5.8 U
Chicrofrom											2.3 U
Chloroform 300 5.3 UJ 2.3 U 8.0 U 2.3 U 2.5 U 2.5 U 2.3 U 4.7 UJ 2.3 U 2.5 U 2.5 U 2.3 U 4.7 UJ 2.3 U 2.5 U 2.											2.3 U
Chloromethane											5.8 U
cis-1,2-Dichloroethene NL 5.3 U 2.3 U 8.0 U 2.3 U 2.5 U 2.3 U 4.7 UJ 2.3 cis-1,3-Dichloropropene NL 1.3 U 5.3 U 2.0 U 2.2 UU 2.5 U 2.3 U 4.7 UJ 2.3 Cyclohexane NL 1.3 U 5.8 U 200 U 5.8 U 5.5 U 5.7 U 1.2 UJ 5.5 U 2.3 U 2.2 UJ 2.5 U 2.3 U R 2.3 U 2.2 UJ 2.5 U 2.3 U R 2.3 U 2.2 UJ 2.5 U 2.3 U R 2.3 U 2.2 UJ 2.5 U 2.3 U R 2.3 U 2.5 U 2.5 U 2.3 U 2.0											2.3 U
cis-13-Dichloropropene NL 5.3 U 2.3 U 80 U 2.3 U 2.5 U 2.3 U 4.7 UJ 2.3 Cyclohexane NL 13 U 5.8 U 200 U 5.8 U 5.5 UJ 6.1 U 5.7 U 12 UJ 5.8 Dichlorodifluoromethane NL 5.3 UJ 2.3 U R 2.3 U 2.5 UJ 2.3 U R 2.3 Eithylberizene 5.500 5.3 UJ 2.3 U R 2.3 U 2.5 U 2.3 U 4.7 UJ 2.3 Freon 113 6,000 13 UJ 5.8 U 200 U 5.8 U 5.5 UJ 6.1 U 5.7 U 12 UJ 5.8 Isopropylbenzene NL 13 UJ 5.8 U											5.8 U 2.3 U
Cyclohexane											
Dibromochloromethane											2.3 U 5.8 U
Dichlorodifluoromethane	-,										2.3 U
Ethylbenzene 5,500 5.3 UJ 2.3 U 80 U 2.3 U 2.5 UJ 2.5 UJ 2.3 U RR 2.3 Freon 113 6,000 13 UJ 5.8 U 200 U 5.8 U 5.5 UJ 6.1 U 5.7 U 12 UJ 5.8 Methyl Acetate NL 13 UJ 5.8 U 200 U 5.8 U 5.5 UJ 6.1 U 5.7 U 12 UJ 5.8 Methyl Acetate NL 13 UJ 5.8 U 200 U 5.8 U 5.5 UJ 6.1 U 5.7 U 12 UJ 5.8 Methyl Tert Butyl Ether NL 5.3 UJ 2.3 U 80 U 2.3 U 2.2 UJ 2.5 U 2.3 U 4.7 UJ 2.3 Methylcyclohexane NL 13 UJ 5.8 U 200 U 5.8 U 5.5 UJ 6.1 U 5.7 U 12 UJ 5.8 Methylcyclohexane NL 13 UJ 5.8 U 200 U 5.8 U 5.5 UJ 6.1 U 5.7 U 12 UJ 5.8 Methylcyclohexane NL 13 UJ 5.8 U 200 U 5.8 U 5.5 UJ 6.1 U 5.7 U 12 UJ 5.8 Methylcyclohexane NL 13 UJ 5.8 U 200 U 5.8 U 5.5 UJ 6.1 U 5.7 U 12 UJ 5.8 Methylcyclohexane NL 13 UJ 5.8 U 200 U 5.8 U 5.5 UJ 6.1 U 5.7 U 12 UJ 5.8 Methylcyclohexane NL 13 UJ 5.8 U 200 U 5.8 U 5.5 UJ 6.1 U 5.7 U 12 UJ 5.8 Methylcyclohexane NL 13 UJ 5.8 U 200 U 5.8 U 5.5 UJ 6.1 U 5.7 U 12 UJ 5.8 Methylcyclohexane NL 13 UJ 5.8 U 2.3 U 80 U 5.5 UJ 6.1 U 5.7 U 12 UJ 5.8 Methylcyclohexane NL 13 UJ 5.8 U 2.3 U 80 U 5.8 U 5.5 UJ 6.1 U 5.7 U 12 UJ 5.8 Methylcyclohexane NL 13 UJ 5.8 U 2.3 U 80 U 5.8 U 5.5 UJ 6.1 UJ 5.7 U 12 UJ 5.8 U 5.5 UJ 6.1 U 5.7 U 12 UJ 5.8 U 5.5 UJ 6.1 U 5.7 U 12 UJ 5.8 U 5.5 UJ 5.1 U											2.3 U
Fron 113											2.3 U
Sopropylbenzene NL											5.8 U
Methyl Acetate											5.8 U
Methyl Tert Butyl Ether NL 5.3 UJ 2.3 U 2.2 UJ 2.5 U 2.3 U 4.7 UJ 2.3 Methylcyclohexane NL 13 U 5.8 U 200 U 5.5 UJ 6.1 U 5.7 U 12 UJ 5.8 Methylene chloride 100 5.3 UJ 2.3 U 80 U 5.5 UJ 6.1 U 2.3 U 4.7 UJ 5.8 Styrene NL 13 UJ 5.8 U 200 U 5.8 U 5.5 UJ 6.1 UJ 2.3 U 4.7 UJ 5.8 U 2.0 U 5.8 U 5.5 UJ 6.1 UJ 5.7 U R 5.8 D 4.7 UJ 5.8 U 5.5 UJ 4.7 UJ 5.8 U 5.5 UJ 4.7											5.8 U
Methylcyclohexane NL 13 U 5.8 U 200 U 5.8 U 5.5 UJ 6.1 U 5.7 U 12 UJ 5.8 Methylene chloride 100 5.3 UJ 2.3 U 80 U 5 U 4.4 UJ 16.6 U 2.3 U 4.7 UJ 5.1 Styrene NL 13 UJ 5.8 U 200 U 5.8 U 5.5 UJ 6.1 UJ 5.7 U 4.7 UJ 5.1 Fetrachlorethene 1,400 5.3 UJ 2.3 U 8.0 U 2.2 UJ 2.5 UJ 2.3 U R 5.8 Toluene 1,500 5.3 UJ 2.3 U 8.0 U 2.2 UJ 2.5 U 2.3 U 4.7 UJ 2.3 trans-1,2-Dichloroptenene 300											2.3 U
Methylene chloride											5.8 U
Styrene NL 13 UJ 5.8 U 200 U 5.8 U 5.5 UJ 6.1 UJ 5.7 U R 5.8 Elerachloroethene 1,400 5.3 UJ 2.3 U 80 U 2.3 U 2.2 UJ 2.5 UJ 2.3 U 2.3 U R 2.3 Toluene 1,500 5.3 UJ 2.3 U 80 U 2.3 U 2.2 UJ 2.5 UJ 2.3 U 4.7 UJ 2.3 Erans-1,2-Dichloroethene 300 5.3 UJ 2.3 U 80 U 2.3 U 2.2 UJ 2.5 U 2.3 U 4.7 UJ 2.3 Erans-1,3-Dichloropropene NL 5.3 U 2.3 U 80 U 2.3 U 2.2 UJ 2.5 U 2.3 U 4.7 UJ 2.3 Erans-1,3-Dichloropropene NL 5.3 U 2.3 U 80 U 2.3 U 2.2 UJ 2.5 U 2.3 U 4.7 UJ 2.3 Erans-1,3-Dichloropropene 700 5.3 U 2.3 U 80 U 2.3 U 2.2 UJ 2.5 U 2.3 U 4.7 UJ 2.3 Erans-1,6-Dichlorofluoromethane NL 5.3 UJ 2.3 U 80 U 2.3 U 2.2 UJ 2.5 U 2.3 U 4.7 UJ 2.3 Erans-1,6-Dichloropropene NL 5.3 UJ 2.3 U 80 U 2.3 U 2.2 UJ 2.5 U 2.3 U 4.7 UJ 2.3 Erans-1,6-Dichloropropene 700 5.3 UJ 2.3 U 80 U 2.3 U 2.2 UJ 2.5 U 2.3 U 4.7 UJ 2.3 Erans-1,6-Dichloropropene 700 5.3 UJ 2.3 U 80 U 2.3 U 2.2 UJ 2.5 U 2.3 U 4.7 UJ 2.3 Erans-1,6-Dichloropropene 700 70											5.1 U
Tetrachloroethene 1,400 5.3 UJ 2.3 U 80 U 2.3 U 2.5 UJ 2.5 UJ 2.3 U R 2.3 U R 2.3 Toluene 1,500 5.3 UJ 2.3 U 80 U 2.3 U 2.2 UJ 2.5 UJ 2.3 U 4.7 UJ 2.3 U 2.3 U 4.7 UJ 2.3 U 4.7 UJ 2.3 U 2											5.8 U
Toluene 1,500 5.3 U 2.3 U 80 U 2.3 U 2.5 U 2.5 U 2.3 U 4.7 UJ 2.3 trans-1,2-Dichloroethene 300 5.3 UJ 2.3 U 80 U 2.3 U 2.5 U 2.5 U 2.3 U 4.7 UJ 2.3 trans-1,3-Dichloropropene NL 5.3 U 2.3 U 80 U 2.3 U 2.5 U 2.5 U 2.3 U 4.7 UJ 2.3 Trichloroethene 700 5.3 U 2.3 U 80 U 2.3 U 2.5 U 2.5 U 2.3 U 4.7 UJ 2.3 Trichloroethene NL 5.3 U 2.3 U 80 U 2.3 U 2.5 U 2.5 U 2.3 U 4.7 UJ 2.3 Trichlorofluoromethane NL 5.3 UJ 2.3 U 80 U 2.3 U 2.5 U 2.5 U 2.3 U 4.7 UJ 2.3 Trichlorofluoromethane NL 5.3 UJ 2.3 U 80 U 2.3 U 2.5 U 2.5 U 2.3 U 4.7 UJ 2.3 Trichlorofluoromethane NL 5.3 UJ 2.3 U 80 U 2.3 U 2.5 U 2.5 U 2.3 U 4.7 UJ 2.3 Vinyl chloride 200 5.3 UJ 2.3 U 80 U 2.3 U 2.5 U 2.5 U 2.3 U 4.7 UJ 2.3 Xylene (total) 1,200 5.3 UJ 2.3 U 80 U 2.3 U 2.5 UJ 2.5 UJ 2.5 UJ 2.3 U 4.7 UJ 2.3 Xylene (total) 1,200 5.3 UJ 2.3 U 80 U 2.3 U 2.5 UJ 2.5 UJ 2.5 UJ 2.3 U 7.7 UJ 2.3 Xylene (total) 2.3 U 2.3 U 2.5 UJ 2.5 UJ 2.3 U 3.3 U 3.3 U 3.3 Xylene (total) 2.3 UJ 2											2.3 U
trans-1,2-Dichloroethene 300 5.3 UJ 2.3 U 2.3 U 2.2 UJ 2.5 U 2.3 U 4.7 UJ 2.3 trans-1,3-Dichloropropene NL 5.3 U 2.3 U 80 U 2.3 U 2.5 U 2.3 U 4.7 UJ 2.3 Trichloroethene 700 5.3 U 2.3 U 80 U 2.3 U 2.5 U 2.3 U 4.7 UJ 2.3 Trichlorofluoromethane NL 5.3 UJ 2.3 U 80 U 2.3 U 2.5 U 2.3 U 4.7 UJ 2.3 Vinyl chloride 200 5.3 UJ 2.3 U 80 U 2.3 U 2.5 U 2.3 U 4.7 UJ 2.3 Xylene (total) 1,200 5.3 UJ 2.3 U											2.3 U
trans-1,3-Dichloropropene NL 5.3 U 2.3 U 2.3 U 2.2 UJ 2.5 U 2.3 U 4.7 UJ 2.3 Trichloroeftene 700 5.3 U 2.3 U 80 U 2.3 U 2.5 U 2.3 U 4.7 UJ 2.3 Trichlorofluoromethane NL 5.3 UJ 2.3 U 80 U 2.3 U 2.5 U 2.3 U 4.7 UJ 2.3 Vinyl chloride 200 5.3 UJ 2.3 U 80 U 2.3 U 2.5 U 2.3 U 4.7 UJ 2.3 Vinyl chloride 200 5.3 UJ 2.3 U 80 U 2.3 U 2.2 UJ 2.5 U 2.3 U 4.7 UJ 2.3 Xylene (total) 1,200 5.3 UJ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2.3 U</td></t<>											2.3 U
Trichloroethene 700 5.3 U 2.3 U 2.3 U 2.2 UJ 2.5 U 2.3 U 4.7 UJ 2.3 Trichlorofluoromethane NL 5.3 UJ 2.3 U 2.3 U 2.2 UJ 2.5 U 2.3 U 4.7 UJ 2.3 Vinyl chloride 200 5.3 UJ 2.3 U 2.3 U 2.2 UJ 2.5 U 2.3 U 4.7 UJ 2.3 Xylene (total) 1,200 5.3 UJ 2.3 U 2.3 U 2.2 UJ 2.5 U 2.3 U 4.7 UJ 2.3 Xylene (total) 1,200 5.3 UJ 2.3 U 2.3 U 2.2 UJ 2.5 U 2.3 U 4.7 UJ 2.3											2.3 U
Vinyl chloride 200 5.3 UJ 2.3 U 2.3 U 2.2 UJ 2.5 U 2.3 U 4.7 UJ 2.3 Xylene (total) 1,200 5.3 UJ 2.3 U 2.3 U 2.2 UJ 2.5 UJ 2.3 U R 2.3											2.3 U
Vinyl chloride 200 5.3 UJ 2.3 U 80 U 2.3 U 2.2 UJ 2.5 U 2.3 U 4.7 UJ 2.3 Xylene (total) 1,200 5.3 UJ 2.3 U 2.3 U 2.2 UJ 2.5 UJ 2.3 U R 2.3	Trichlorofluoromethane	NL	5.3 UJ	2.3 U	80 U	2.3 U	2.2 UJ	2.5 U	2.3 U	4.7 UJ	2.3 U
		200	5.3 UJ	2.3 U	80 U	2.3 U	2.2 UJ	2.5 U	2.3 U	4.7 UJ	2.3 U
	Xylene (total)	1,200			80 U		2.2 UJ		2.3 U	R	2.3 U
					_				_		
Total VOCs (µg/kg) 10,000 7.0 5.2 ND ND 1.6 1.4 ND 10 ND	Total VOCs (µg/kg)	10,000	7.0	5.2	ND	ND	1.6	1.4	ND	10	ND

NA = Not Analyzed NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

- D = The concentration indicated was obtained from a diluted analytical run.

 U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.
- J = The associated numerical value is an estimated quantity.
- R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process

Bold value - compound detected above regulatory standard or guidance value.

Table B-7 Subsurface Soil VOC Results - Part 2 Norwich Former MGP Site, Norwich, New York

Laboratory Identification Recommended Sol M48323-2 M48323-	Sample ID (Depth in Feet)	NYSDEC	NO-DP47(26-27)	NO-DP48(18-19)	NO-DP48(26-27)	NO-DP49(17-18)	NO-DP49(26-27)	NO-DP50(14.5-15.5)	NO-DP50(25-26)
Date Sampled Cleanup Objective 06/15/2005 06/14/2			` ,	` ,		` '	, ,	, , ,	, ,
Volatile Organic Compounds (gp/kg)	,								
11.1-Tinchfororebane	Date Sampled	Cleanup Objective	06/15/2005	06/14/2005	06/14/2005	06/14/2005	06/14/2005	06/16/2005	06/16/2005
11.1-Tinchfororebane	Voletile Organia Compounds	(110/lea)							
1.1.2.2 Felthoroderbane			25 111	23 11	25 111	23 11	51111	24 11	25 11.1
11,12-Trichforcethane									R R
11-Dichirocethame									
11-Dehroroehene									
12.4-Tirchioroperame									
12-Dibromos-3-chiropropage									2.0 GC
12-Dibriomoentame									R
1.2-Dichlorobenzene									
12-Dichloropename									2.0 St
1,2-Dichioropropane									
13-Dichirochemzene									2.5 UJ
14-Dichrobenzene									2.0 St
ZButanone (MEK) 300 6.3 UJ 5.7 UJ 6.2 UJ 5.8 UJ 13 UJ 6.1 U 6.3 U 2.4 ZEVARAINONE NL R 6.1 U 6.3 U 4.0 Methyl-z-pentanone (MIBK) 1,000 6.3 UJ 5.7 UJ 6.2 UJ 5.8 UJ 13 UJ 6.1 U 6.3 U 4.0 Methyl-z-pentanone (MIBK) 1,000 6.3 UJ 5.7 UJ 6.2 UJ 5.8 UJ 13 UJ 6.1 U 6.3 U 4.0 Methyl-z-pentanone (MIBK) 1,000 6.3 UJ 2.4 U 2.5 UJ 2.7 UJ 11.6 UJ 6.3 UJ 3.0 UJ 3.0 UJ 3.0 UJ 2.4 U 2.5 U 2.3 U 2.5 U 2.3 U 0.6 U 0.63 UJ 2.5 U 2.3 U 2.5 U 2.3 U 0.6 U 0.63 UJ 2.5 U 2.3 U 0.6 U 0.63 UJ 2.5 U 2.3 U 0.6 U 0.63 UJ 2.5 U 0.6									R
2-Hexanone NIL R 5.7 U 6.2 UJ 5.8 U R 6.1 U 6.3 U 4.8 Methyl-2-pentanone (MIBK) 1.000 6.3 UJ 5.7 UJ 6.2 UJ 5.8 UJ 13 UJ 6.1 U 6.3 U Acetone 200 27 UJ 12 UJ 2.0 U 5.7 U 11.6 UJ 0.61 U 0.63 U 0.63 U 0.61 U 0.63 U 0.63 U 0.61 U 0.63 U									
A-Methyl-Z-pentanone (MIBK) 1,000									
Acetone									
Benzene 60									
Bromodichloromethane									
Bromofern									2.5 UJ
Brommethane									
Carbon disulfide									
Carbon tetrachioride									
Chlorobenzene		,							
Chioroethane									
Chloroform 300 2.5 UJ 2.3 U 2.5 UJ 2.3 U 5.1 UJ 2.4 U 2.5 UJ 2.5		,							
Chioromethane									2.5 UJ
cis-1,2-Dichloroethene NL 2.5 UJ 2.3 U 2.5 UJ 2.3 U 5.1 UJ 2.4 U 2.5 U 2.5 U 2.3 U 5.1 UJ 2.4 U 2.5 U 2.3 U 7.8 2.4 U 2.5									
cis-1,3-Dichloropropene NL 2.5 UJ 2.3 U 2.5 U 2.3 U 5.1 UJ 2.4 U 2.5 U Cyclohexane NL 6.3 UJ 5.7 U 6.2 U 5.8 U 13 UJ 6.1 U 6.3 U Dibromochloromethane NL R 2.3 U 2.5 UJ 2.3 U R 2.4 U 2.5 U Dichlorodifluoromethane NL 2.5 UJ 2.3 UJ 2.5 UJ 2.3 UJ 5.1 UJ 2.4 U 2.5 UJ Ethylbenzene 5,500 R 116 2.5 UJ 5.8 U 13 UJ 5.1 UJ 2.4 U 2.5 UJ Freon 113 6,000 0.6 J 5.7 U 6.2 UJ 5.8 U 13 UJ 7.5 S 0.65 Isopropylbenzene NL R 8.1 I R 2.1 UJ 8.8 U 13 UJ 6.1 U 9.5 UJ 2.3 U 2.5 UJ 2.3 U 5.5 UJ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Cyclohexane NL 6.3 UJ 5.7 U 6.2 U 5.8 U 13 UJ 6.1 U 6.3 U Dibromochloromethane NL R 2.3 U 2.5 UJ 2.3 UJ 2.1 UJ 2.4 U 2.5 UJ 2.5 UJ 2.3 UJ 5.1 UJ 2.4 U 2.5 UJ 2.5 UJ 2.5 UJ 2.3 UJ 5.1 UJ 2.4 U 2.5 UJ 2.5 UJ 2.3 UJ 5.1 UJ 2.4 U 2.5 UJ 2.5 UJ 2.3 UJ 5.1 UJ 2.4 U 2.5 UJ 2.5 UJ 2.5 UJ 2.3 UJ 5.1 UJ 2.4 U 2.5 UJ									2.5 UJ
Dibromochloromethane									
Dichlorodiffuoromethane									
Ethylbenzene									
Freon 113									2.5 UJ
Isopropylbenzene			0.6 J	5.7 U	6.2 UJ		13 UJ	7.5	0.65 J
Methyl Acetate NL 6.3 UJ 5.7 UJ 6.2 UJ 5.8 UJ 13 UJ 6.1 U 6.3 U 6.3 U 6.3 U 6.3 U 5.7 U 6.2 U 5.8 UJ 2.3 U 5.1 UJ 2.4 U 2.5 U 3.0 U 6.1 U 6.3 U 6.3 U 2.5 U 2.5 U 2.5 U 3.0 U 5.8 U 13 UJ 6.1 U 6.3 U 6.3 U 3.0 U 6.2 U 5.8 U 13 UJ 5.1 UJ 5.5 U 6.3 U 5.7 U 6.2 UJ 5.8 U R 6.1 U 6.3 U 5.7 U 6.2 UJ 5.8 U R 6.1 U 6.3 U 5.7 U 6.2 UJ 5.8 U R 6.1 U 6.3 U 7.0 U 6.2 UJ 5.8 U R 6.1 U 6.3 U 7.0 U 6.2 UJ 5.8 U R 6.1 U 6.3 U 7.0 U 6.2 UJ 5.8 UJ <th< td=""><td></td><td></td><td>R</td><td></td><td></td><td></td><td></td><td></td><td>R</td></th<>			R						R
Methyl Tert Butyl Ether NL 2.5 UJ 2.3 U 2.5 UJ 2.3 U 5.1 UJ 2.4 U 2.5 U Methylcyclohexane NL 6.3 UJ 5.7 U 6.2 U 5.8 U 13 UJ 6.1 U 6.3 U Methylene chloride 100 19.1 UJ 2.3 U 9.3 J 2.3 U 5.1 UJ 58.1 2.5 U Styrene NL R 5.7 U 6.2 UJ 5.8 U R 6.1 U 6.3 U Tetrachloroethene 1,400 R 2.3 U 2.5 UJ 2.3 U 2.5 UJ 8.8 U R 6.1 U 6.3 U Toluene 1,500 2.5 UJ 19.6 2.5 UJ 2.3 U 2.3 U 5.1 UJ 2.4 U 2.5 U trans-1,2-Dichloroethene 300 2.5 UJ 2.3 U 2.5 UJ 2.3 U 5.1 UJ 2.4 U 2.5 U trans-1,3-Dichloropropene NL 2.5 UJ 2.3 U 2.5 UJ 2.3 U 5.1 UJ 2.4 U 2.5 U Trichloroethene 700 2.5 UJ <td></td> <td>NL</td> <td>6.3 UJ</td> <td>5.7 UJ</td> <td>6.2 UJ</td> <td>5.8 UJ</td> <td>13 UJ</td> <td>6.1 U</td> <td>6.3 UJ</td>		NL	6.3 UJ	5.7 UJ	6.2 UJ	5.8 UJ	13 UJ	6.1 U	6.3 UJ
Methylcyclohexane NL 6.3 UJ 5.7 U 6.2 U 5.8 U 13 UJ 6.1 U 6.3 U Methylene chloride 100 19.1 UJ 2.3 U 9.3 J 2.3 U 5.1 UJ 58.1 2.5 U Styrene NL R 5.7 U 6.2 UJ 5.8 U R 6.1 U 6.3 U Tetrachloroethene 1,400 R 2.3 U 2.5 UJ 2.3 U R 6.1 U 6.3 U Toluene 1,500 2.5 UJ 19.6 2.5 U 2.3 U 5.1 UJ 2.4 U 2.5 U trans-1,2-Dichloroethene 300 2.5 UJ 2.3 U 2.5 UJ 2.3 U 5.1 UJ 2.4 U 2.5 U trans-1,3-Dichloropropene NL 2.5 UJ 2.3 U 2.5 U 2.3 U 5.1 UJ 2.4 U 2.5 U Trichlorofthene 700 2.5 UJ 2.3 U 2.5 U 2.3 U 5.1 UJ 2.4 U 2.5 U Trichloroffuoromethane NL 2.5 UJ 2.3 U 2.5 UJ 2.3 U									2.5 UJ
Methylene chloride 100 19.1 UJ 2.3 U 9.3 J 2.3 U 5.1 UJ 58.1 2.5 U Styrene NL R 5.7 U 6.2 UJ 5.8 U R 6.1 U 6.3 U Tetrachloroethene 1,400 R 2.3 U 2.5 UJ 2.5 UJ R 2.4 U 2.5 U Toluene 1,500 2.5 UJ 19.6 2.5 U 2.3 U 5.1 UJ 2.4 U 2.5 U trans-1,2-Dichloroethene 300 2.5 UJ 2.3 U 2.5 UJ 2.3 U 5.1 UJ 2.4 U 2.5 U trans-1,3-Dichloropropene NL 2.5 UJ 2.3 U 2.5 UJ 2.3 U 5.1 UJ 2.4 U 2.5 U Trichloroftene 700 2.5 UJ 2.3 U 2.5 U 2.3 U 5.1 UJ 2.4 U 2.5 U Trichlorofluoromethane NL 2.5 UJ 2.3 U 2.5 UJ 2.3 U 5.1 UJ 2.4 U 2.5 U Trichlorofluoromethane NL 2.5 UJ 2.3 U 2.5 UJ 2.3									6.3 UJ
Styrene									
Tetrachloroethene 1,400 R 2.3 U 2.5 UJ 2.3 U R 2.4 U 2.5 U Toluene 1,500 2.5 UJ 19.6 2.5 U 2.3 U 5.1 UJ 2.4 U 2.5 U trans-1,2-Dichloroethene 300 2.5 UJ 2.3 U 2.5 UJ 2.3 U 2.5 UJ 2.4 U 2.5 U trans-1,2-Dichloroethene NL 2.5 UJ 2.3 U 2.5 UJ 2.5 UJ 2.4 U 2.5 U 2.5 UJ 2.4 U 2.5 U 2.5 U 5.1 UJ 2.4 U 2.5 U 2.3 U 5.1 UJ 2.4 U 2.5 U 2.5 U 5.1 UJ 2.4 U 2.5 U 2.5 U 5.1 UJ 2.4									
Toluene 1,500 2.5 UJ 19.6 2.5 U 2.3 U 5.1 UJ 2.4 U 2.5 U trans-1,2-Dichloroptene 300 2.5 UJ 2.5 UJ 2.3 U 5.1 UJ 2.4 U 2.5 U trans-1,3-Dichloropropene NL 2.5 UJ 2.3 U 2.5 U 2.3 U 5.1 UJ 2.4 U 2.5 U Trichloroptene 700 2.5 UJ 2.3 U 2.5 U 5.1 UJ 2.4 U 2.5 U Trichlorofluoromethane NL 2.5 UJ 2.3 U 2.5 UJ 2.3 U 5.1 UJ 2.4 U 2.5 U Vinyl chloride 200 2.5 UJ 2.3 U 2.5 UJ 3.1 U 2.4 U 2.5 U Xylene (total)									2.5 UJ
trans-1,2-Dichloroethene 300 2.5 UJ 2.3 U 2.5 UJ 2.3 U 5.1 UJ 2.4 U 2.5 U 2.5 U trans-1,3-Dichloropropene NL 2.5 UJ 2.3 U 2.5 U 2.3 U 5.1 UJ 2.4 U 2.5 U 2.5 U Trichloroethene 700 2.5 UJ 2.3 U 2.5 U 2.3 U 5.1 UJ 2.4 U 2.5 U 2.5 U Trichlorofluoromethane NL 2.5 UJ 2.3 U 2.5 UJ 2.3 U 5.1 UJ 2.4 U 2.5 U Vinyl chloride 200 2.5 UJ 2.3 U 2.5 UJ 2.3 U 5.1 UJ 2.4 U 2.5 U Xylene (total) 1,200 R 59.2 2.5 UJ 3.1 R 2.4 U 2.5 U									
trans-1,3-Dichloropropene NL 2.5 UJ 2.3 U 2.5 U 5.1 UJ 2.4 U 2.5 U Trichloroethene 700 2.5 UJ 2.3 U 5.1 UJ 2.4 U 2.5 U Trichlorofluoromethane NL 2.5 UJ 2.3 U 5.1 UJ 2.4 U 2.5 U Vinyl chloride 200 2.5 UJ 2.3 U 5.1 UJ 2.4 U 2.5 U Xylene (total) 1,200 R 59.2 2.5 UJ 3.1 R 2.4 U 2.5 U									
Trichloroethene 700 2.5 UJ 2.3 U 2.5 U 2.3 U 5.1 UJ 2.4 U 2.5 U Trichlorofluoromethane NL 2.5 UJ 2.3 U 2.5 UJ 2.3 U 5.1 UJ 2.4 U 2.5 UJ Vinyl chloride 200 2.5 UJ 2.3 U 2.5 UJ 2.3 U 5.1 UJ 2.4 U 2.5 UJ Xylene (total) 1,200 R 59.2 2.5 UJ 3.1 U R 2.4 U 2.5 UJ									2.5 UJ
Trichlorofluoromethane NL 2.5 UJ 2.3 U 2.5 UJ 2.4 U 2.5 U Vinyl chloride 200 2.5 UJ 2.3 U 5.1 UJ 2.4 U 2.5 U Xylene (total) 1,200 R 59.2 2.5 UJ 3.1 R 2.4 U 2.5 U									
Vinyl chloride 200 2.5 UJ 2.3 U 2.5 UJ 5.1 UJ 2.4 U 2.5 U Xylene (total) 1,200 R 59.2 2.5 UJ 3.1 R 2.4 U 2.5 U									
Xylene (total) 1,200 R 59.2 2.5 UJ 3.1 R 2.4 U 2.5 U									
		1,200	R				R		2.5 UJ
Total VOCs (µg/kg) 10,000 3.1 230 9.3 17 11 66 2.1	· , ,	·							
	Total VOCs (µg/kg)	10,000	3.1	230	9.3	17	11	66	2.1

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

D = The concentration indicated was obtained from a diluted analytical run.
U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

J = The associated numerical value is an estimated quantity.

R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process

Bold value - compound detected above regulatory standard or guidance value.

NYSDEC TAGM HWR-94-4046 - Determination of Soil Cleanup Objectives and Cleanup Levels [NYSDEC, Jan. 1994]

Table B-8 Subsurface Soil BTEX Results Norwich Former MGP Site Norwich, New York

Sample ID (Depth in Feet)	NYSDEC	NO-DP51 (19	9-20)	NO-DP52 (1	9-20)	NO-DP53 (19	9-20)	NO-DP54 (19	9-20)	NO-DP55 (23	3-24)	NO-DP56 (19	9-20)
Laboratory Identification	Recommended Soil	M51636-	1	M51636-	2	M51636-	3	M51636-	4	M51636-	5	M51738-	1
Date Sampled	Cleanup Objective ¹	10/10/200	5	10/10/200)5	10/10/200)5	10/11/200	5	10/11/200)5	10/11/200)5
Volatile Organic Compou	olatile Organic Compounds (µg/kg)												
Benzene	60	0.61	UJ	0.6	UJ	2.5	J	0.67	J		R	2.6	J
Ethylbenzene	5,500		R		R		R	2.7	J		R		R
Toluene	1,500	2.5	UJ	2.4	UJ	6.4	UJ	2.7	J		R	4.3	J
Xylene (total)	1,200		R		R		R	2.7	J		R		R

Notes:

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

J = The associated numerical value is an estimated quantity.

R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process. Bold value - compound detected above regulatory standard or guidance value.

Table B-8 Subsurface Soil BTEX Results Norwich Former MGP Site Norwich, New York

Sample ID (Depth in Feet) Laboratory Identification Date Sampled		NO-DP57 (19-20 M51738-2 10/11/2005		NO-DP58 (19-20) M51738-3 10/12/2005		NO-DP59 (19-20) M51738-4 10/12/2005		0) NO-DP60 (19-20) M51738-5 10/12/2005		NO-DP61 (15-1 M51738-6 10/12/2005	
Volatile Organic Compou	nds (µg/kg)										
Benzene	60	16.4	J	3.1	J	3	J	2.8	J	1.1	J
Ethylbenzene	5,500		R		R		R		R		R
Toluene	1,500	10.9	J	3.2	J		R	3.7	J	1.4	J
Xylene (total)	1,200		R		R		R		R		R

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

J = The associated numerical value is an estimated quantity.

R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process. Bold value - compound detected above regulatory standard or guidance value.

							orwich, New York							
Sample ID	NYSDEC	NO-DP05(15.0-16.0)	NO-DP05(19.0-20.0)	NO-DP06(15.0-16.0)	NO-DP06(19.0-20.0)	NO-DP06(22.0-22.3)	NO-DP08(12.0-14.0)	NO-DP08(14.7-15.7)	NO-DP09(15.0-16.0)	NO-DP09(18.8-20.0)	NO-DP10(19.0-20.0)	NO-DP12(22.6-24.0)	NO-DP13(14.5-16.0)	NO-DP15(8.2-8.8)
Laboratory Identification	Cleanup Objective ¹	S5497-01	S5497-02	S5497-03	S5497-04	S5497-05	S5497-06	S5497-07	S5497-08	S5497-09	S5497-10	S5497-11	S5497-12	S5497-19
Date Sampled	Recommended Soil	10/26/2004	10/26/2004	10/27/2004	10/27/2004	10/27/2004	10/27/2004	10/27/2004	10/26/2004	10/26/2004	10/26/2004	10/28/2004	10/27/2004	10/29/2004
Sami valatila Organia Compo	undo (ug/L)			<u> </u>									1	
Semi-volatile Organic Compo 2-Methylnaphthalene	36,400	8,100 D	410 U	47,000 D	24,000	250 J	1,100	430 U	6,300 D	420 U	170 J	430 U	65 J	94 J
Acenaphthene	50,400	10,000 D	410 U	25,000 B	9,600	410 U	4,100 D	430 U	13,000 D	54 J	300 J	430 U	110 J	97 J
Acenaphthylene	41,000	1,400	410 U	4,800	2,400 J	410 U	640	430 U	1,500	420 U	85 J	430 U	380 U	78 J
Anthracene	50,000	6,000 D	410 U	14,000	5,400	410 U	1,900 JD	430 U	7,300 D	420 U	530	430 U	53 J	120 J
Benzo(a)anthracene	224/MDL	3,300 D	410 U	7,100	3,200 J	410 U	1,600	430 U	3,000 JD	420 U	330 J	430 U	380 U	240 J
Benzo(a)pyrene	61/MDL	1,900 J	410 U	4,100	2,000 J	410 U	1,100	430 U	1,900 J	420 U	200 J	430 U	380 U	160 J
Benzo(b)fluoranthene	1,100 50,000	2,300 J	410 U 410 U	3,500 J 3,800 U	1,800 J	410 U 410 U	1,100 J	430 U 430 U	2,900 J 270 J	420 U	130 J	430 U 430 U	380 U	120 J 390 UJ
Benzo(g,h,i)perylene Benzo(k)fluoranthene	1,100	290 J 1,100 J	410 U	2,100 J	3,800 U 1,400 J	410 U	210 J 560	430 U	1,200 J	420 U 420 U	380 UJ 150 J	430 U	380 U 380 U	390 U
Chrysene	400	2,700 D	410 U	5,400	2,500 J	410 U	1,500	430 U	2,400 JD	420 U	290 J	430 U	380 U	230 J
Dibenzo(a,h)anthracene	14/MDL	140 J	410 U	3,800 U	3,800 U	410 U	370 UJ	430 U	150 J	420 U	380 UJ	430 U	380 U	390 UJ
Fluoranthene	50,000	6,000 D	410 U	15,000	7,000	410 U	3,300 JD	430 U	7,600 D	420 U	820	430 U	77 J	200 J
Fluorene	50,000	5,200 D	410 U	12,000	5,100	410 U	2,900	430 U	7,700 D	420 U	230 J	430 U	380 U	82 J
Indeno(1,2,3-cd)pyrene	3,200	490 J	410 U	1,300 J	3,800 U	410 U	340 J	430 U	510 J	420 U	380 UJ	430 U	380 U	390 UJ
Naphthalene	13,000	7,700 D	840 410 U	69,000 D	36,000 D	4,400 D	2,300	430 U 430 U	8,200 D	420 U	1,400	430 U	99 J	390 U
Phenanthrene Pyrene	50,000 50,000	16,000 D 7,400 D	410 U	36,000 JD 18,000	21,000 8,400	410 U 410 U	9,400 D 4,300 D	430 U	27,000 D 7,700 D	96 J 420 U	2,000 990	54 J 430 U	180 J 380 U	280 J 340 J
Pyrene	50,000	1,400 D	410 0	10,000	0,400	410 0	₹,300 D	430 0	7,700 D	420 0	990	430 0	360 0	340 J
Total PAHs (μg/L)	500,000	80,000	840	260,000	130,000	4,700	36,000	ND	99,000	150	7,600	54	580	2,000
	·	·				·	·							
Total CPAHs (µg/L)	NL	12,000	ND	24,000	11,000	ND	6,200	ND	12,000	ND	1,100	ND	ND	750
4.41.81.1	h.,,	2 - 2 -							2 222 :=					222
1,1'-Biphenyl	NL 100	2,700 D	410 U	6,800	3,000 J	410 U	1,100	430 U	3,200 JD	420 U	380 U	430 U 430 U	380 U	390 U
2,2-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol	100 NL	370 U 930 U	410 U 1,000 U	3,800 U 9,500 U	3,800 U 9,500 U	410 U 1,000 U	370 U 930 U	430 U 1,100 U	370 U 940 U	420 U 1,100 U	380 U 950 U	430 U 1,100 U	380 U 960 U	390 U 980 U
2,4,6-Trichlorophenol	400	370 U	410 U	3,800 U	3,800 U	410 U	370 U	430 U	370 U	420 U	380 U	430 U	380 U	390 U
2,4-Dichlorophenol	NL	370 U	410 U	3,800 U	3,800 U	410 U	370 U	430 U	370 U	420 U	380 U	430 U	380 U	390 U
2,4-Dimethylphenol	200/MDL	370 U	410 U	3,800 U	3,800 U	410 U	370 U	430 U	370 U	420 U	380 U	430 U	380 U	390 U
2,4-Dinitrophenol	NL	930 UJ	1,000 UJ	9,500 U	9,500 U	1,000 UJ	930 UJ	1,100 UJ	940 UJ	1,100 UJ	950 UJ	1,100 UJ	960 UJ	980 UJ
2,4-Dinitrotoluene	1,000	370 U	410 U	3,800 U	3,800 U	410 U	370 U	430 U	370 U	420 U	380 U	430 U	380 U	390 U
2,6-Dinitrotoluene	NL 800	370 U 370 U	410 U 410 U	3,800 U 3,800 U	3,800 U 3,800 U	410 U 410 U	370 U 370 U	430 U 430 U	370 U 370 U	420 U 420 U	380 U 380 U	430 U 430 U	380 U 380 U	390 U 390 U
2-Chloronaphthalene 2-Chlorophenol	100/MDL	370 U	410 U	3,800 U	3,800 U	410 U	370 U	430 U	370 U	420 U	380 U	430 U	380 U	390 U
2-Methylphenol	430/MDL	370 U	410 U	3,800 U	3,800 U	410 U	370 U	430 U	370 U	420 U	380 U	430 U	380 U	390 U
2-Nitroaniline	330/MDL	930 U	1,000 U	9,500 U	9,500 U	1,000 U	930 U	1,100 U	940 U	1,100 U	950 U	1,100 U	960 U	980 U
2-Nitrophenol	NL	370 U	410 U	3,800 U	3,800 U	410 U	370 U	430 U	370 U	420 U	380 U	430 U	380 U	390 U
3&4-Methylphenol	NL	370 U	410 U	3,800 U	3,800 U	410 U	370 U	430 U	370 U	420 U	380 U	430 U	380 U	390 U
3,3'-Dichlorobenzidine	500/MDL NL	370 U 930 U	410 U 1,000 U	3,800 U	3,800 U 9,500 U	410 U 1,000 U	370 U 930 U	430 U 1,100 U	370 U 940 U	420 U 1,100 U	380 U 950 U	430 U 1,100 U	380 U	390 U 980 U
3-Nitroaniline 4,6-Dinitro-o-cresol	NL NL	930 U	1,000 UJ	9,500 U 9,500 U	9,500 U	1,000 UJ	930 U	1,100 UJ	940 U	1,100 UJ	950 U	1,100 UJ	960 U 960 UJ	980 U
4-Bromophenyl phenyl ether	240/MDL	370 U	410 U	3,800 U	3,800 U	410 U	370 U	430 U	370 U	420 U	380 U	430 U	380 U	390 U
4-Chloro-3-methylphenol	220/MDL	370 U	410 U	3,800 U	3,800 U	410 U	370 U	430 U	370 U	420 U	380 U	430 U	380 U	390 U
4-Chloroaniline	NL	370 U	410 U	3,800 U	3,800 U	410 U	370 U	430 U	370 U	420 U	380 U	430 U	380 U	390 U
4-Chlorophenyl phenyl ether	NL	370 U	410 U	3,800 U	3,800 U	410 U	370 U	430 U	370 U	420 U	380 U	430 U	380 U	390 U
4-Nitroaniline	100/MDL	930 U 930 UJ	1,000 U 1,000 UJ	9,500 U	9,500 U 9,500 UJ	1,000 U	930 U 930 UJ	1,100 U	940 U 940 UJ	1,100 U	950 U 950 UJ	1,100 U 1,100 UJ	960 U 960 UJ	980 U 980 UJ
4-Nitrophenol Acetophenone	NL NL	710 J	410 U	9,500 UJ 3,600 J	3,800 U	1,000 UJ 410 U	370 UJ	1,100 UJ 430 U	1,800 J	1,100 UJ 420 U	380 UJ	430 U	380 U	390 UJ
Atrazine	NL NL	370 U	410 U	3,800 U	3,800 U	410 U	370 U	430 U	370 U	420 U	380 U	430 U	380 U	390 U
Benzaldehyde	NL	110 J	410 U	3,800 U	3,800 U	410 U	370 UJ	430 U	370 UJ	420 U	380 UJ	430 U	380 U	390 UJ
Bis(2-chloroethoxy) methane	NL	370 U	410 UJ	3,800 UJ	3,800 UJ	410 UJ	370 U	430 UJ	370 U	420 UJ	380 U	430 UJ	380 UJ	390 U
Bis(2-chloroethyl) ether	NL 50.000	370 UJ	410 U	3,800 U	3,800 U	410 U	370 UJ	430 U	370 UJ	420 U	380 UJ	430 U	380 U	390 UJ
Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate	50,000 50,000	370 U 370 U	410 UJ 410 U	3,800 U 3,800 U	3,800 U 3,800 U	410 UJ 410 U	370 U 370 U	430 UJ 430 U	370 U 370 U	420 UJ 420 U	380 U 380 U	430 UJ 430 U		390 U 390 U
Caprolactam	50,000 NL	370 UJ	410 U		3,800 U	410 U	370 UJ	430 U	370 UJ	420 U		430 U		390 UJ
Carbazole	NL NL	370 U	410 U	450 J	3,800 U	410 U	370 U	430 U	510	420 U	380 U	430 U	380 U	390 U
Dibenzofuran	6,200	1,400	410 U	3,200 J	1,400 J	410 U	550	430 U	4,100 D	420 U	53 J	430 U	380 U	390 U
Diethyl phthalate	7,100	370 U	410 U	3,800 U	3,800 U	410 U	370 U	430 U	370 U	420 U	380 U	430 U		390 U
Dimethyl phthalate	2,000	370 U	410 U	3,800 U	3,800 U	410 U	370 U	430 U		420 U	380 U	430 U	380 U	390 U
Di-n-butyl phthalate	8,100 50,000	370 UJ 370 UJ	410 UJ 410 U	3,800 UJ 3,800 U	3,800 UJ 3,800 U	410 UJ 410 U	370 UJ 370 UJ	430 UJ 430 U	370 UJ 370 UJ	420 UJ 420 U	380 UJ 380 UJ	430 UJ 430 U	380 UJ 380 U	390 UJ 390 UJ
Di-n-octyl phthalate Hexachlorobenzene	410	370 UJ	410 U 410 UJ	3,800 UJ	3,800 U 3,800 UJ	410 U 410 UJ	370 UJ	430 UJ	370 UJ	420 UJ	380 UJ	430 U 430 UJ	380 U	390 UJ
Hexachlorobutadiene	NL	370 U	410 U	3,800 U	3,800 U	410 U	370 U	430 U	370 U	420 U	380 U	430 U	380 U	390 U
Hexachlorocyclopentadiene	NL	370 U	410 U	3,800 U	3,800 U	410 U	370 U	430 U	370 U	420 U	380 U	430 U	380 U	390 U
Hexachloroethane	NL	370 U	410 UJ		3,800 UJ	410 UJ	370 U	430 UJ		420 UJ	380 U	430 UJ	380 UJ	390 U
Isophorone	4,400	370 U	410 U	3,800 UJ	3,800 UJ	410 U	370 U	430 U	370 U	420 U	380 U	430 U	380 U	390 U
Nitrobenzene	200/MDL	370 U	410 U	3,800 U	3,800 U	410 U	370 U	430 U	370 U	420 U	380 U	430 U	380 U	390 U
N-Nitroso-Di-n-propylamine N-nitrosodiphenylamine	NL NL	370 U 370 U	410 U 410 U	3,800 U 3,800 U	3,800 U 3,800 U	410 U 410 U	370 U 370 U	430 U 430 U	370 U 370 U	420 U 420 U	380 U 380 U	430 U 430 U	380 U 380 U	390 U 390 U
Pentachlorophenol	1.000/MDL	930 U	1,000 U	9,500 U	9,500 U	1,000 U	930 U	1,100 U	940 U	1,100 U	950 U	1,100 U		980 U
Phenol	30/MDL	370 UJ	410 U	3,800 U	3,800 U	410 U	370 UJ	430 U	370 UJ	420 U	380 UJ	430 U	380 U	390 UJ
Total SVOCs (µg/L) ²	500,000	85,000	840	280,000	130,000	4,700	38,000	ND	100,000	150	7,700	54	580	2,000
					- · · · · · · · · · · · · · · · · · · ·								-	

Notes: NA = Not Analyzed NL = Not Listed ND = Not Detected

MDL - Not Detected
MDL - Method Detection Limit
D = The concentration indicated was obtained from a diluted analytical run.
J = The associated numerical value is an estimated quantity.

R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

Bold value - compound detected above regulatory guidance value.

¹NYSDEC TAGM HWR-94-4046 - Determination of Soil Cleanup Objectives and Cleanup Levels [NYSDEC, Jan. 1994]

²The total SVOC values include all PAH compounds

					NOTWIC	h, New York			
Sample ID	NYSDEC	NO-DP15(19.5-20.0)	NO-DP16(11.0-12.0)	NO-DP16(19.0-20.0)	NO-DP17(11.5-12.0)	` ,	, ,	NO-DP20(NAPL ZONE)	NO-DP23(22.6-22.8)
Laboratory Identification	Cleanup Objective ¹	S5497-20	S5497-14	S5497-15	S5497-16	S5497-18	S5497-22	S5497-25	S5497-26
Date Sampled	Recommended Soil	10/29/2004	10/26/2004	10/26/2004	10/26/2004	10/26/2004	10/25/2004	10/29/2004	10/28/2004
Semi-volatile Organic Compo	unds (ua/L)				 	 		 	<u> </u>
2-Methylnaphthalene	36,400	440 U	380 U	420 U	7,600 D	420 U	18,000 D	2,400 JD	24,000 D
Acenaphthene	50.000	440 U	380 U	420 U	4,400 D	420 U	6,700 D	740	1,500 J
Acenaphthylene	41,000	440 U	380 U	420 U	1,100	420 U	1,100	770	3,500
Anthracene	50,000	440 U	380 U	420 U	4,500 D	420 U	3,500 JD	830	2,300
Benzo(a)anthracene	224/MDL	440 U	380 U	420 U	2,400 JD	420 U	2,100	590	1,200 J
Benzo(a)pyrene	61/MDL	440 U	380 U	420 U	1,800	420 U	1,200	340 J	730 J
Benzo(b)fluoranthene	1,100	440 U	380 U	420 U	2,600 J	420 U	1,400 J	270 J	500 J
Benzo(g,h,i)perylene	50,000	440 U	380 U	420 U	290 J	420 U	190 J	87 J	1,900 U
Benzo(k)fluoranthene	1,100 400	440 U 440 U	380 U 380 U	420 U 420 U	1,000 2,800	420 U 420 U	750 1,800	240 J 520	680 J
Chrysene Dibenzo(a,h)anthracene	14/MDL	440 U 440 U	380 U	420 U 420 U	130 J	420 U	1,800 85 J	370 UJ	940 J 1,900 U
Fluoranthene	50.000	440 U	380 U	420 U	5,800 D	420 U	3,900 D	1,200	2,700
Fluorene	50,000	440 U	380 U	420 U	4,100 D	420 U	4,100 D	730	2,400
Indeno(1,2,3-cd)pyrene	3,200	440 U	380 U	420 U	520 J	420 U	330 J	140 J	1,900 U
Naphthalene	13,000	440 U	380 U	420 U	470	420 U	7,100 D	3,900 D	49,000 D
Phenanthrene	50,000	440 U	380 U	420 U	14,000 D	52 J	14,000 D	2,900	8,800
Pyrene	50,000	440 U	380 U	420 U	6,900 D	420 U	5,100 D	1,600	3,300 J
Total PAHs (µg/L)	500,000	ND	ND	ND	60,000	52	71,000	17,000	100,000
T-4-LODALI- (- ")	N.P.	NB	115	115	11.000	115	7 700	0.400	4.050
Total CPAHs (µg/L)	NL	ND	ND	ND	11,000	ND	7,700	2,100	4,050
1,1'-Biphenyl	NL	440 U	380 U	420 U	1,200	420 U	2,400	390	1,500 J
2,2-oxybis(1-Chloropropane)	100	440 U	380 U	420 U	360 U	420 U	370 U	370 U	1,500 J
2,4,5-Trichlorophenol	NL	1,100 U	950 U	1,000 U	910 U	1,100 U	940 U	940 U	4,800 U
2,4,6-Trichlorophenol	400	440 U	380 U	420 U	360 U	420 U	370 U	370 U	1,900 U
2,4-Dichlorophenol	NL	440 U	380 U	420 U	360 U	420 U	370 U	370 U	1,900 U
2,4-Dimethylphenol	200/MDL	440 U	380 U	420 U	360 U	420 U	370 U	370 U	1,900 U
2,4-Dinitrophenol	NL	1,100 UJ	950 UJ	1,000 UJ	910 UJ	1,100 UJ	940 UJ	940 UJ	4,800 U
2,4-Dinitrotoluene	1,000	440 U	380 U	420 U	360 U	420 U	370 U	370 U	1,900 U
2,6-Dinitrotoluene	NL	440 U	380 U	420 U	360 U	420 U	370 U	370 U	1,900 U
2-Chloronaphthalene	800	440 U	380 U	420 U	360 U	420 U	370 U	370 U	1,900 U
2-Chlorophenol	100/MDL	440 U	380 U	420 U	360 U	420 U	370 U	370 U	1,900 U
2-Methylphenol 2-Nitroaniline	430/MDL 330/MDL	440 U 1,100 U	380 U 950 U	420 U 1,000 U	360 U 910 U	420 U 1,100 U	370 U 940 U	370 U 940 U	1,900 U 4,800 U
2-Nitrophenol	NL	1,100 U	380 U	420 U	360 U	420 U	370 U	370 U	1,900 U
3&4-Methylphenol	NL NL	440 U	380 U	420 U	360 U	420 U	370 U	370 U	1,900 U
3,3'-Dichlorobenzidine	500/MDL	440 U	380 U	420 U	360 U	420 U	370 U	370 U	1,900 U
3-Nitroaniline	NL	1,100 U	950 U	1,000 U	910 U	1,100 U	940 U	940 U	4,800 U
4,6-Dinitro-o-cresol	NL	1,100 UJ	950 UJ	1,000 UJ	910 U	1,100 UJ	940 U	940 U	4,800 U
4-Bromophenyl phenyl ether	240/MDL	440 U	380 U	420 U	360 U	420 U	370 U	370 U	1,900 U
4-Chloro-3-methylphenol	220/MDL	440 U	380 U	420 U	360 U	420 U	370 U	370 U	1,900 U
4-Chloroaniline	NL	440 U	380 U	420 U	360 U	420 U	370 U	370 U	1,900 U
4-Chlorophenyl phenyl ether	NL	440 U	380 U	420 U	360 U	420 U	370 U	370 U	1,900 U
4-Nitroaniline	100/MDL	1,100 U	950 U	1,000 U	910 U	1,100 U	940 U	940 U	4,800 U
4-Nitrophenol	NL NL	1,100 UJ 440 U	950 UJ 380 U	1,000 UJ 420 U	910 UJ 360 UJ	1,100 UJ 420 U	940 UJ 370 UJ	940 UJ 370 UJ	4,800 UJ 1,700 J
Acetophenone Atrazine	NL NL	440 U	380 U 380 U	420 U 420 U	360 UJ	420 U 420 U	370 UJ 370 U	370 UJ 370 U	1,700 J 1,900 U
Benzaldehyde	NL NL	440 U	380 U	420 U	360 UJ	420 U	370 UJ	370 UJ	1,900 U
Bis(2-chloroethoxy) methane	NL NL	440 UJ	380 UJ	420 UJ	360 U	420 UJ	370 U	370 U	1,900 UJ
Bis(2-chloroethyl) ether	NL NL	440 U	380 U	420 U	360 UJ	420 U	370 UJ		1.900 U
Bis(2-ethylhexyl) phthalate	50,000	440 UJ					370 U	370 U	1,900 U
Butyl benzyl phthalate	50,000	440 U	380 U	420 U	360 U	420 U	370 U	370 U	1,900 U
Caprolactam	NL	440 U	380 U				370 UJ		1,900 U
Carbazole	NL	440 U	380 U				57 J	370 U	1,900 U
Dibenzofuran	6,200	440 U	380 U	420 U			1,800	190 J	750 J
Diethyl phthalate	7,100	440 U	380 U	420 U			370 U		1,900 U
Dimethyl phthalate	2,000	440 U	380 U	420 U			370 U 370 UJ		1,900 U
Di-n-butyl phthalate Di-n-octyl phthalate	8,100 50,000	440 UJ 440 U	380 UJ 380 U				370 UJ 370 UJ		1,900 UJ 1,900 U
Hexachlorobenzene	410	440 UJ	380 UJ				370 UJ		1,900 UJ
Hexachlorobutadiene	NL	440 U	380 U	420 U			370 U		1,900 U
Hexachlorocyclopentadiene	NL NL	440 U	380 U	420 U			370 U		1,900 U
Hexachloroethane	NL NL	440 UJ	380 UJ				370 U		1,900 UJ
Isophorone	4,400	440 U	380 U				370 U		1,900 UJ
Nitrobenzene	200/MDL	440 U	380 U	420 U			370 U		1,900 U
N-Nitroso-Di-n-propylamine	NL	440 U	380 U	420 U	360 U	420 U	370 U	370 U	1,900 U
N-nitrosodiphenylamine	NL	440 U	380 U	420 U			370 U		1,900 U
Pentachlorophenol	1,000/MDL	1,100 U	950 U	1,000 U			940 U		4,800 U
Phenol	30/MDL	440 U	380 U	420 U	360 UJ	420 U	370 UJ	370 UJ	1,900 U
					-	 			
Total SVOCs (µg/L) ²	500,000	ND	ND	ND	62,000	52	76,000	18,000	110,000

Notes: NA = Not Analyzed NL = Not Listed ND = Not Detected

MDL - Not Detected
MDL - Method Detection Limit
D = The concentration indicated was obtained from a diluted analytical run.
J = The associated numerical value is an estimated quantity.

R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

Bold value - compound detected above regulatory guidance value.

¹NYSDEC TAGM HWR-94-4046 - Determination of Soil Cleanup Objectives and Cleanup Levels [NYSDEC, Jan. 1994]

²The total SVOC values include all PAH compounds

Sample ID (Depth in Feet)	NYSDEC	NO-DP01(15-16)	NO-DP01(23-24)	NO-DP02(18-19)	NO-DP02(23-24)	NO-DP03(15-16)	NO-DP04C(13.5-14.5)	NO-DP04C(18-19)	NO-DP04C(23-24)	NO-DP14(18.7-20)	NO-DP14(23-24)	NO-DP19(14-15)	NO-DP19(18-19)	NO-DP22(14.5-15.5)	NO-DP22(21.5-22.5)	NO-DP25(10-12)
Laboratory Identification	1	M46810-4	M46810-6	M46810-8	M46810-9	M46810-10	M46906-7	M46906-8	M46906-9	M48323-9	M48323-11	M46906-5	M46906-6	M46810-2	M46810-3	M46966-10
Date Sampled	Recommended Soil	04/25/2005	04/25/2005	04/25/2005	04/25/2005	04/25/2005	04/26/2005	04/26/2005	04/26/2005	06/16/2005	06/16/2005	04/26/2005	04/26/2005	04/25/2005	04/25/2005	04/29/2005
Semi-volatile Organic Comp	nounds (ug/kg)															
2-Methylnaphthalene	36,400	417,000	593	138,000	310 U	54,100	2,900 U	336,000	310 U	1,480	320 U	2,900 U	320 U	173,000	300 U	1,400 U
Acenaphthene	50,000	201,000	320 U	68,600	310 U	55,800	2,900 U	195,000	310 U	4,210	320 U	2,900 U	320 U	220,000	300 U	2,550
Acenaphthylene	41,000 50,000	34,900 88,500	320 U 320 U	24,700 45,600	310 U 310 U	12,200 35,500	8,820 J 4,780 J	158,000 162,000	310 U 310 U	1,230 4.150	320 U 320 U	2,900 U 3,200	320 U 320 U	25,000 80,200	300 U 300 U	2,500 5,180
Anthracene Benz(a)anthracene	224/MDL	58,400	320 U	31,800	310 U	21,400	8,630 J	81,500	310 U	2.640	320 U	12,300	320 U	55,300	300 U	4,290
Benzo(a)pyrene	61/MDL	56,500	320 U	32,900	310 U	21,500	19,000 J	92,900	310 U	2,550	320 U	12,200	320 U	56,600	300 U	3,820
Benzo(b)fluoranthene	1,100	30,500	320 U	19,300	310 U	9,850	9,060 J	60,800	310 U	1,130	320 U	11,400	320 U	32,700	300 U	2,150
Benzo(g,h,i)perylene Benzo(k)fluoranthene	50,000 1,100	27,000 J 35,000	320 U 320 UJ	14,700 .	J 310 U J 310 UJ	9,710 J 11,500 J	11,700 J 8,490 J	43,300 J 47,800	310 U 310 UJ	950 1,230	320 U 320 U	6,970 J 7,510 J	320 U 320 UJ	26,700 J 34,300	300 U 300 UJ	1,710 J 1,730 J
Chrysene	400	50,000	320 U	27,100	310 U	19,800	8,780 J	77,600	310 U	2,350	320 U	11,000	320 U	48,100	300 U	3,850
Dibenz(a,h)anthracene	14/MDL	7,980 J	320 U	3,800	J 310 U	2,700 U	2,900 U	9,920 J	310 U	308 J	320 UJ	2,900 U	320 U	7,360 J	300 U	1,400 U
Fluoranthene	50,000	145,000	320 U	64,100	310 U	54,100	13,300 J	273,000	310 U	5,230 J	320 U	19,800	320 U	146,000	300 U	7,510
Fluorene Indeno(1,2,3-cd)pyrene	50,000 3,200	146,000 22.800 J	320 U 320 U	47,700 12,400	310 U 310 U	39,500 8,020 J	2,900 U 9.110 J	202,000 35,000 J	310 U 310 U	5,040 706	320 U 320 U	2,900 U 7.080 J	320 U 320 U	138,000 22,500 J	300 U 300 U	2,780 1.400 U
Naphthalene	13,000	675,000	1,050	194,000	723	148,000	2,900 U	550,000	310 U	491	320 U	2,900 U	320 U	470,000	332	1,400 U
Phenanthrene	50,000	341,000	437	154,000	310 U	130,000	11,600 J	582,000	310 U	15,800	76	4,080	320 U	348,000	300 U	11,500
Pyrene	50,000	177,000	320 U	74,000	310 U	66,400	21,400 J	345,000	310 U	7,400 J	320 U	16,100	320 U	182,000	300 U	10,400
Total PAHs (μg/kg)	500,000	2,500,000	2,100	970,000	720	700,000	140,000	3,300,000	ND	57,000	76	110,000	ND	2,100,000	330	60,000
Total CPAHs (µg/kg)	NL	260,000	ND	140.000	ND	92.000	63,000	410.000	ND	11.000	ND	62.000	ND	260.000	ND	20.000
				.,				-,		,,,,,,						.,
1,1'-Biphenyl	NL NI	55,700	630 U	24,200	630 U	16,000	5,800 U	82,800	630 U	1,050	650 U	5,800 U	640 U	46,100	610 U	2,800 U
1,2-Diphenylhydrazine 2,4,5-Trichlorophenol	NL 100	2,800 U 5,600 U	320 U 630 U	2,800 U 5,600 U	J 310 U 630 U	2,700 U 5,500 U	2,900 U 5,800 U	2,700 U 5,400 U	310 U 630 U	300 U 610 U	320 U 650 U	2,900 U 5,800 U	320 U 640 U	2,700 U 5,500 U	300 U 610 U	1,400 U 2,800 U
2,4,6-Trichlorophenol	NL	5,600 U	630 U	5,600 l	J 630 U	5,500 U	5,800 U	5,400 U	630 U	610 U	650 U	5,800 U	640 U	5,500 U	610 U	2,800 U
2,4-Dichlorophenol	400	5,600 U	630 U	5,600 U	J 630 U	5,500 U	5,800 U	5,400 U	630 U	610 U	650 U	5,800 U	640 U	5,500 U	610 U	2,800 U
2,4-Dimethylphenol 2,4-Dinitrophenol	NL 200/MDL	5,600 U 11,000 U	630 U 1,300 U	5,600 U 11,000 U	J 630 U J 1,300 U	5,500 U 11,000 U	5,800 U 12,000 U	5,400 U 11,000 U	630 U 1,300 U	610 U 1,200 U	650 U 1,300 U	5,800 U 12,000 U	640 U 1,300 U	5,500 U 11,000 U	610 U 1,200 U	2,800 U 5,600 UJ
2,4-Dinitrotoluene	NL	5,600 U	630 U	5,600 (J 630 U	5,500 U	5,800 U	5,400 U	630 U	610 U	650 U	5,800 U	640 U	5,500 U	610 U	2,800 U
2,6-Dinitrotoluene	1,000	5,600 U	630 U	5,600 l	J 630 U	5,500 U	5,800 U	5,400 U	630 U	610 U	650 U	5,800 U	640 U	5,500 U	610 U	2,800 U
2-Chloronaphthalene	NL 200	2,800 U	320 U	2,800 (J 310 U	2,700 U	2,900 U	2,700 U	310 U	300 U	320 U	2,900 U	320 U	2,700 U	300 U	1,400 U
2-Chlorophenol 2-Methylphenol	800 100/MDL	2,800 U 5,600 U	320 U 630 U	2,800 U 5,600 U		2,700 U 5,500 U	2,900 U 5.800 U	2,700 U 5,400 U	310 U 630 U	300 U 610 U	320 U 650 U	2,900 U 5,800 U	320 U 640 U	2,700 U 5,500 U	300 U 610 U	1,400 U 2.800 U
2-Nitroaniline	430/MDL	5,600 U	630 U	5,600 U		5,500 U	5,800 U	5,400 U	630 U	610 U	650 U	5,800 U	640 U	5,500 U	610 U	2,800 U
2-Nitrophenol	330/MDL	5,600 U	630 U	5,600 U		5,500 U	5,800 U	5,400 U	630 U	610 U	650 U	5,800 U	640 U	5,500 U	610 U	2,800 U
3&4-Methylphenol 3,3'-Dichlorobenzidine	NL NL	5,600 U 2,800 U	630 U 320 U	5,600 U 2,800 U		5,500 U 2,700 U	5,800 U 2,900 U	5,400 U 2,700 U	630 U 310 U	610 U 300 U	650 U 320 U	5,800 U 2,900 U	640 U 320 U	5,500 U 2,700 U	610 U 300 U	2,800 U 1,400 U
3-Nitroaniline	500/MDL	5,600 U	630 U	5,600 l		5,500 U	5,800 U	5,400 U	630 U	610 U	650 U	5,800 U	640 U	5,500 U	610 U	2,800 U
4,6-Dinitro-o-cresol	NL	5,600 U	630 U	5,600 \		5,500 U	5,800 U	5,400 U	630 U	610 U	650 U	5,800 U	640 U	5,500 U	610 U	2,800 U
4-Bromophenyl phenyl ether 4-Chloro-3-methyl phenol	NL 240/MDL	2,800 U 5.600 U	320 U 630 U	2,800 U 5,600 U		2,700 U 5.500 U	2,900 U 5.800 U	2,700 U 5,400 U	310 U 630 U	300 U 610 U	320 U 650 U	2,900 U 5,800 U	320 U 640 U	2,700 U 5,500 U	300 U 610 U	1,400 U 2.800 U
4-Chloroaniline	220/MDL	5,600 U	630 U	5,600 (5,500 U	5,800 U	5,400 U	630 U	610 UJ	650 UJ	5,800 U	640 U	5,500 U	610 U	2,800 UJ
4-Chlorophenyl phenyl ether	NL	2,800 U	320 U	2,800 l		2,700 U	2,900 U	2,700 U	310 U	300 U	320 U	2,900 U	320 U	2,700 U	300 U	1,400 U
4-Nitroaniline	NL 100/MPH	5,600 U	630 U	5,600 (5,500 U	5,800 U	5,400 U	630 U	610 U	650 U	5,800 U	640 U	5,500 U	610 U	2,800 U
4-Nitrophenol Acetophenone	100/MDL NL	11,000 U 5,600 U	1,300 U 630 U	11,000 U 5,600 U		11,000 U 5,500 U	12,000 U 5,800 U	11,000 U 5,400 U	1,300 U 630 U	1,200 U 610 U	1,300 U 650 U	12,000 U 5,800 U	1,300 U 640 U	11,000 U 5,500 U	1,200 U 610 U	5,600 U 2,800 U
Aniline	100	5,600 U	630 U	5,600 U		5,500 U	5,800 U	5,400 U	630 U	610 UJ	650 UJ	5,800 U	640 U	5,500 U	610 U	2,800 U
Atrazine	NL NI	5,600 U	630 U	5,600 U	J 630 U	5,500 U	5,800 U	5,400 U	630 U	610 UJ	650 UJ	5,800 U	640 U	5,500 U	610 U	2,800 U
Benzaldehyde Benzoic acid	NL NL	11,000 U 5,600 U	1,300 U 630 U	11,000 U 5,600 U	J 1,300 U J 630 U	11,000 U 5.500 U	12,000 U 5.800 U	11,000 U 5,400 U	1,300 U 630 U	1,200 U 610 U	1,300 U 650 U	12,000 U 5,800 U	1,300 U 640 U	11,000 U 5,500 U	1,200 U 610 U	5,600 U 2.800 U
bis(2-Chloroethoxy)methane	NL NL	2,800 U	320 U	2,800 (J 310 U	2,700 U	2,900 U	2,700 U	310 U	300 U	320 U	2,900 U	320 U	2,700 U	300 U	2,800 U
bis(2-Chloroethyl)ether	NL	2,800 U	320 U	2,800 l	J 310 U	2,700 U	2,900 U	2,700 U	310 U	300 U	320 U	2,900 U	320 U	2,700 U	300 U	1,400 U
bis(2-Chloroisopropyl)ether	NL 50,000	2,800 U	320 U	2,800 (2,700 U	2,900 U	2,700 U	310 U	300 U	320 U	2,900 U	320 U	2,700 U	300 U	1,400 U
Butyl benzyl phthalate	50,000 50,000	5,600 U 5,600 U	630 U 630 U	5,600 U		5,500 U 5,500 U	5,800 U 5,800 U	5,400 U 5,400 U	630 U	610 U 610 U	650 U 650 U	5,800 U 5,800 U	640 U 640 U	5,500 U 5,500 U	610 U 610 U	2,800 U 2,800 U
Caprolactam	NL	5,600 U	630 U	5,600 l	J 630 U	5,500 U	5,800 U	5,400 U	630 U	610 U	650 U	5,800 U	640 U	5,500 U	610 U	2,800 U
Carbazole	NL 0.000	7,030	320 U	2,800 (2,700 U	2,900 U	2,700 U	310 U	300 U	320 U	2,900 U	320 U	3,730	300 U	1,400 U
Dibenzofuran Diethyl phthalate	6,200 7,100	26,100 5,600 U	320 U 630 U	11,600 5,600 U	310 U J 630 U	6,910 5,500 U	2,900 U 5,800 U	29,500 5,400 U	310 U 630 U	300 U 610 U	320 U 650 U	2,900 U 5,800 U	320 U 640 U	21,100 5,500 U	300 U 610 U	1,400 U 2,800 U
Dimethyl phthalate	2,000	5,600 U	630 U	5,600 (5,500 U	5,800 U	5,400 U	630 U	610 U	650 U	5,800 U	640 U	5,500 U	610 U	2,800 U
Di-n-butyl phthalate	8,100	5,600 U	630 U	5,600 l	J 630 U	5,500 U	5,800 U	5,400 U	630 U	610 U	650 U	5,800 U	640 U	5,500 U	610 U	2,800 U
Di-n-octyl phthalate	50,000 410	5,600 U 2,800 U	630 U 320 U	5,600 U 2,800 U		5,500 U 2,700 U	5,800 U 2,900 U	5,400 U 2,700 U	630 U	610 U 300 U	650 U 320 U	5,800 U 2,900 U	640 U 320 U	5,500 U 2,700 U	610 U 300 U	2,800 U 1,400 U
Hexachlorobenzene Hexachlorobutadiene	410 NL	2,800 U	320 U	2,800 t		2,700 U 2,700 U	2,900 U	2,700 U 2,700 U	310 U 310 U	300 U	320 U	2,900 U 2,900 U	320 U	2,700 U 2,700 U	300 U	1,400 U 1,400 U
Hexachlorocyclopentadiene	NL	5,600 UJ	630 UJ	5,600 L	JJ 630 UJ	5,500 UJ	5,800 UJ	5,400 UJ	630 UJ	610 U	650 U	5,800 UJ	640 UJ	5,500 UJ	610 UJ	2,800 UJ
Hexachloroethane	NL 1.100	2,800 U	320 U	2,800 1		2,700 U	2,900 U	2,700 U	310 U	300 U	320 U	2,900 U	320 U		300 U	1,400 U
Isophorone Nitrobenzene	4,400 200/MDL	2,800 U 2,800 U	320 U 320 U	2,800 U 2,800 U		2,700 U 2,700 U	2,900 U 2,900 U	2,700 U 2,700 U	310 U 310 U	300 U 300 U	320 U 320 U	2,900 U 2,900 U	320 U 320 U	2,700 U 2,700 U	300 U 300 U	1,400 U 1,400 U
N-Nitroso-di-n-propylamine	NL	2,800 U	320 U	2,800 (2,700 U	2,900 U	2,700 U	310 U	300 U	320 U	2,900 U	320 U	2,700 U	300 U	1,400 U
N-Nitrosodiphenylamine	NL	2,800 U	320 U	2,800 \	J 310 U	2,700 U	2,900 U	2,700 U	310 U	300 U	320 U	2,900 U	320 U	2,700 U	300 U	1,400 U
Pentachlorophenol	1,000/MDL 30/MDL	5,600 U 2,800 U	630 U 320 U	5,600 U 2,800 U		5,500 U 2,700 U	5,800 U 2,900 U	5,400 U 2,700 U	630 U 310 U	610 U 300 U	650 U 320 U	5,800 U 2,900 U	640 U 320 U	5,500 U 2,700 U	610 U 300 U	2,800 U 1,400 U
Phenol	SUMIDL	2,000 0	320 0	2,000	310 0	2,700 0	2,900 0	2,700 0	310 0	300 0	320 0	2,900 0	320 0	2,700 0	300 0	1,400 0
Total SVOCs (µg/Kg) ²	500,000	2,600,000	2,100	1,000,000	720	720,000	140,000	3,400,000	ND	58,000	76	110,000	ND	2,100,000	330	60,000

Notes:

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

D = The concentration indicated was obtained from a diluted analytical run.

J = The associated numerical value is an estimated quantity.

R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

Bold value - compound detected above regulatory guidance value.

¹NYSDEC TAGM HWR-94-4046 - Determination of Soil Cleanup Objectives and Cleanup Levels [NYSDEC, Jan. 1994]

²The total SVOC values include all PAH compounds

Sample ID (Depth in Feet)	NYSDEC	NO-DP25(19-20)	NO-DP26(20-21.5)	NO-DP26(23-24)	NO-DP27(17.5-18)	NO-DP27(31-32)	NO-DP28(14-15)	NO-DP29(22.5-23)	NO-DP29(23-24)	NO-DP30(23-24)	NO-DP31(19-20)	NO-DP31(6.5-7.5)	NO-DP32(10-11)	NO-DP32(15-16)	NO-DP33(15-15.0)	NO-DP34(19-19.3)
Laboratory Identification	Cleanup Objective ¹	M46966-11	M46966-6	M46966-8	M46906-2	M46906-4	M46906-11	M46906-12	M46906-13	M46966-12	M46966-14	M46966-13	M46906-16	M46906-17	M46906-14	M48220-7
Date Sampled	Recommended Soil	04/29/2005	04/28/2005	04/28/2005	04/26/2005	04/26/2005	04/27/2005	04/27/2005	04/27/2005	04/29/2005	04/29/2005	04/29/2005	04/27/2005	04/27/2005	04/27/2005	06/14/2005
Cami valetila Osmania Cama	aum da (um/lem)															
Semi-volatile Organic Comp 2-Methylnaphthalene	36.400	320 U	3,650,000	5,430	320 U	310 U	280 U	290 U	434	320 U	310 U	280 U	290 U	300 U	280 U	300 U
Acenaphthene	50,000	320 U	899,000	2,050	320 U	310 U	280 U	290 U	280 U	320 U	310 U	280 U	290 U	300 U	280 U	43.4 J
Acenaphthylene	41,000	320 U	679,000	1,490	320 U	310 U	280 U	290 U	280 U	320 U	310 U	280 U	683	300 U	280 U	300 U
Anthracene	50,000 224/MDL	320 U 320 U	611,000 590,000 U	1,680 1,020	320 U 320 U	310 U 310 U	280 U 280 U	290 U 290 U	280 U 280 U	320 U 320 U	310 U 310 U	280 U 280 U	816 521	300 U 300 U	280 U 280 U	300 U 300 U
Benz(a)anthracene Benzo(a)pyrene	61/MDL	320 U	590,000 U	890	320 U	310 U	280 U	290 U	280 U	320 U	310 U	280 U	533	300 U	280 U	300 U
Benzo(b)fluoranthene	1,100	320 U	590,000 U	544	320 U	310 U	280 U	290 U	280 U	320 U	310 U	280 U	290 U	300 U	280 U	300 U
Benzo(g,h,i)perylene	50,000	320 U	590,000 U	425 J	320 U	310 U	280 U	290 U	280 U	320 U	310 U	280 U	644 J	300 U	280 U	300 U
Benzo(k)fluoranthene	1,100	320 UJ	590,000 U	465	320 UJ	310 UJ	280 UJ	290 UJ	280 UJ	320 U	310 U	280 U	290 UJ	300 UJ	280 UJ	300 U
Chrysene Dibenz(a,h)anthracene	400 14/MDL	320 U 320 U	590,000 U 590,000 U	822 320 U	320 U 320 U	310 U 310 U	280 U 280 U	290 U 290 U	280 U 280 U	320 U 320 U	310 U 310 U	280 U 280 U	505 290 U	300 U 300 U	280 U 280 U	300 U 300 UJ
Fluoranthene	50,000	320 U	764,000	2,200	320 U	310 U	289	290 U	280 U	320 U	310 U	280 U	1,010	300 U	280 U	56.1 J
Fluorene	50,000	320 U	890,000	1,900	320 U	310 U	280 U	290 U	280 U	320 U	310 U	280 U	290 U	300 U	280 U	300 U
Indeno(1,2,3-cd)pyrene	3,200	320 U	590,000 U	358 J	320 U	310 U	280 U	290 U	280 U	320 U	310 U	280 U	318 J	300 U	280 U	300 U
Naphthalene Phenanthrene	13,000 50.000	320 U 320 U	6,230,000 2.010.000	6,560 5,240	320 U 320 U	310 U 310 U	280 U 280 U	675 290 U	13,500 280 U	320 U 320 U	310 U 310 U	280 U 280 U	290 U 1,640	300 U 300 U	280 U 280 U	300 U 114
Pyrene	50,000	320 U	924,000	2,620	320 U	310 U	295	290 U	280 U	320 U	310 U	280 U		300 U	280 U	71.8
													,			
Total PAHs (µg/kg)	500,000	ND	17,000,000	34,000	ND	ND	580	680	14,000	ND	ND	ND	8,000	ND	ND	290
Total CPAHs (μg/kg)	NL	ND	ND	4,100	ND	1.900	ND	ND	ND							
Total Of Aris (µg/kg)	INL	INU	INU	4,100	IND	INU	ואט	IND	IND	UNI	ואט	UNI	1,900	ואט	IND	IND
1,1'-Biphenyl	NL	640 U	1,200,000 U	908	650 U	610 U	570 U	580 U	570 U	640 U	620 U	550 U	570 U	590 U	560 U	600 U
1,2-Diphenylhydrazine	NL 400	320 U	590,000 U	320 U	320 U	310 U	280 U	290 U	280 U	320 U	310 U	280 U	290 U	300 U	280 U	300 U
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	100 NL	640 U 640 U	1,200,000 U 1,200,000 U	640 U 640 U		610 U 610 U	570 U 570 U	580 U 580 U	570 U 570 U	640 U 640 U	620 U 620 U	550 U 550 U	570 U 570 U	590 U 590 U	560 U 560 U	600 U 600 U
2,4-Dichlorophenol	400	640 U	1,200,000 U	640 U		610 U	570 U	580 U	570 U	640 U	620 U	550 U	570 U	590 U	560 U	600 U
2,4-Dimethylphenol	NL	640 U	1,200,000 U	640 U	650 U	610 U	570 U	580 U	570 U	640 U	620 U	550 U	570 U	590 U	560 U	600 U
2,4-Dinitrophenol	200/MDL	1,300 UJ	2,400,000 UJ	1,300 U.		1,200 U	1,100 U	1,200 U	1,100 U	1,300 UJ	1,200 UJ	1,100 UJ	1,100 U	1,200 U	1,100 U	1,200 U
2,4-Dinitrotoluene 2,6-Dinitrotoluene	NL 1,000	640 U 640 U	1,200,000 U 1,200,000 U	640 U 640 U	650 U 650 U	610 U 610 U	570 U 570 U	580 U 580 U	570 U 570 U	640 U 640 U	620 U 620 U	550 U 550 U	570 U 570 U	590 U 590 U	560 U 560 U	600 U 600 U
2-Chloronaphthalene	NL	320 U	590,000 U	320 U	320 U	310 U	280 U	290 U	280 U	320 U	310 U	280 U	290 U	300 U	280 U	300 U
2-Chlorophenol	800	320 U	590,000 U	320 U	320 U	310 U	280 U	290 U	280 U	320 U	310 U	280 U	290 U	300 U	280 U	300 U
2-Methylphenol	100/MDL	640 U	1,200,000 U	640 U		610 U	570 U	580 U	570 U	640 U	620 U	550 U	570 U	590 U	560 U	600 U
2-Nitroaniline 2-Nitrophenol	430/MDL 330/MDL	640 U 640 U	1,200,000 U 1,200,000 U	640 U 640 U		610 U 610 U	570 U 570 U	580 U 580 U	570 U 570 U	640 U 640 U	620 U 620 U	550 U 550 U	570 U 570 U	590 U 590 U	560 U 560 U	600 U 600 U
3&4-Methylphenol	NL NL	640 U	1,200,000 U	640 U		610 U	570 U	580 U	570 U	640 U	620 U	550 U	570 U	590 U	560 U	600 U
3,3'-Dichlorobenzidine	NL	320 U	590,000 U	320 U		310 U	280 U	290 U	280 U	320 U	310 U	280 U	290 U	300 U	280 U	300 U
3-Nitroaniline	500/MDL	640 U	1,200,000 U	640 U		610 U	570 U	580 U	570 U	640 U	620 U	550 U	570 U	590 U	560 U	600 U
4,6-Dinitro-o-cresol 4-Bromophenyl phenyl ether	NL NL	640 U 320 U	1,200,000 U 590,000 U	640 U 320 U		610 U 310 U	570 U 280 U	580 U 290 U	570 U 280 U	640 U 320 U	620 U 310 U	550 U 280 U	570 U 290 U	590 U 300 U	560 U 280 U	600 U 300 U
4-Chloro-3-methyl phenol	240/MDL	640 U	1,200,000 U	640 U		610 U	570 U	580 U	570 U	640 U	620 U	550 U	570 U	590 U	560 U	600 U
4-Chloroaniline	220/MDL	640 UJ	1,200,000 UJ	640 U.		610 U	570 U	580 U	570 U	640 UJ	620 UJ	550 UJ	570 U	590 U	560 U	600 UJ
4-Chlorophenyl phenyl ether	NL NI	320 U	590,000 U	320 U		310 U	280 U	290 U	280 U	320 U	310 U	280 U	290 U	300 U	280 U	300 U
4-Nitroaniline 4-Nitrophenol	NL 100/MDL	640 U 1,300 U	1,200,000 U 2,400,000 U	640 U 1,300 U		610 U 1,200 U	570 U 1,100 U	580 U 1,200 U	570 U 1,100 U	640 U 1,300 U	620 U 1,200 U	550 U 1,100 U	570 U 1,100 U	590 U 1,200 U	560 U 1,100 U	600 U 1,200 U
Acetophenone	NL	640 U	1,200,000 U	640 U		610 U	570 U	580 U	570 U	640 U	620 U	550 U	570 U	590 U	560 U	600 U
Aniline	100	640 U	1,200,000 U	640 U		610 U	570 U	580 U	570 U	640 U	620 U	550 U	570 U	590 U	560 U	600 U
Atrazine	NL NI	640 U	1,200,000 U	640 U		610 U	570 U	580 U	570 U	640 U	620 U	550 U	570 U	590 U	560 U	600 UJ
Benzaldehyde Benzoic acid	NL NL	1,300 U 640 U	2,400,000 U 1,200,000 U	1,300 U 640 U	1,300 U 650 U	1,200 U 610 U	1,100 U 570 U	1,200 U 580 U	1,100 U 570 U	1,300 U 640 U	1,200 U 620 U	1,100 U 550 U	1,100 U 570 U	1,200 U 590 U	1,100 U 560 U	1,200 UJ 600 U
bis(2-Chloroethoxy)methane	NL NL	320 U	590,000 U	320 U		310 U	280 U	290 U	280 U	320 U	310 U	280 U	290 U	300 U	280 U	300 U
bis(2-Chloroethyl)ether	NL	320 U	590,000 U	320 U	320 U	310 U	280 U	290 U	280 U	320 U	310 U	280 U	290 U	300 U	280 U	300 U
bis(2-Chloroisopropyl)ether	NL 50,000	320 U	590,000 U	320 U		310 U	280 U	290 U	280 U	320 U	310 U	280 U		300 U	280 U	300 U
bis(2-Ethylhexyl)phthalate Butyl benzyl phthalate	50,000 50,000	640 U 640 U	1,200,000 U 1,200,000 U	640 U 640 U		610 U 610 U	570 U 570 U	580 U	570 U 570 U	640 U 640 U	620 U 620 U	550 U 550 U	570 U 570 U	590 U 590 U	560 U 560 U	97.4 600 U
Caprolactam	NL	640 U	1,200,000 U	640 U		610 U	570 U	580 U	570 U	640 U	620 U	550 U	570 U	590 U	560 U	600 U
Carbazole	NL	320 U	590,000 U	320 U	320 U	310 U	280 U	290 U	280 U	320 U	310 U	280 U	290 U	300 U	280 U	300 U
Dibenzofuran	6,200	320 U	590,000 U	557	320 U	310 U	280 U	290 U	280 U	320 U	310 U	280 U	290 U	300 U	280 U	300 U
Diethyl phthalate Dimethyl phthalate	7,100 2,000	640 U 640 U	1,200,000 U 1,200,000 U	640 U 640 U		610 U 610 U	570 U 570 U	580 U 580 U	570 U 570 U	640 U 640 U	620 U 620 U	550 U 550 U		590 U 590 U	560 U 560 U	600 U 600 U
Di-n-butyl phthalate	8,100	640 U	1,200,000 U	640 U		610 U	570 U	580 U	570 U	640 U	620 U	550 U		590 U	560 U	
Di-n-octyl phthalate	50,000	640 U	1,200,000 U	640 U		610 U	570 U	580 U	570 U	640 U	620 U	550 U	570 U	590 U	560 U	
Hexachlorobenzene Hexachlorobutadiene	410	320 U	590,000 U	320 U		310 U	280 U	290 U	280 U	320 U	310 U	280 U		300 U	280 U	300 U 300 U
Hexachlorobutadiene Hexachlorocyclopentadiene	NL NL	320 U	590,000 U 1,200,000 U	320 U 640 U		310 U 610 U	280 U 570 UJ	290 U 580 UJ	280 U 570 UJ	320 U 640 U	310 U 620 U	280 U 550 U		300 U 590 U	280 U 560 UJ	300 U
Hexachloroethane	NL NL	320 U	590,000 U	320 U		310 U	280 U	290 U	280 U	320 U	310 U	280 U		300 U	280 U	
Isophorone	4,400	320 U	590,000 U	320 U	320 U	310 U	280 U	290 U	280 U	320 U	310 U	280 U	290 U	300 U	280 U	300 U
Nitrobenzene	200/MDL	320 U	590,000 U	320 U		310 U	280 U	290 U	280 U	320 U	310 U	280 U		300 U	280 U	300 U
N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine	NL NL	320 U 320 U	590,000 U 590,000 U	320 U 320 U		310 U 310 U	280 U 280 U	290 U 290 U	280 U 280 U	320 U 320 U	310 U 310 U	280 U 280 U		300 U 300 U	280 U 280 U	300 U 300 U
Pentachlorophenol	1,000/MDL	640 U	1,200,000 U	640 U		610 U	570 U	580 U	570 U	640 U	620 U	550 U		590 U	560 U	600 U
Phenol	30/MDL	320 U	590,000 U	320 U		310 U	280 U	290 U	280 U	320 U	310 U	280 U		300 U	280 U	300 U
Total SVOCs (µg/Kg) ²	500,000	ND	17,000,000	35,000	ND	ND	580	680	14,000	ND	ND	ND	8,000	ND	ND	1,400

Notes:

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

D = The concentration indicated was obtained from a diluted analytical run.

J = The associated numerical value is an estimated quantity.

R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit. 2 of 4

Bold value - compound detected above regulatory guidance value.

¹NYSDEC TAGM HWR-94-4046 - Determination of Soil Cleanup Objectives and Cleanup Levels [NYSDEC, Jan. 1994]

²The total SVOC values include all PAH compounds

Sample ID (Depth in Feet)	NYSDEC	NO-DP34(22-23)	NO-DP35(23-24)	NO-DP36(13-13.9)	NO-DP37(26.5-27.5)	NO-DP37(31.5-32)	NO-DP38(27-28)	NO-DP39(13-13.5)	NO-DP39(24-25)	NO-DP40(21.5-23.5)	NO-DP40(26.5-27.5)	NO-DP41(16-16.5)	NO-DP41(23-23.7)	NO-DP42(26-27)	NO-DP42(9-10)	NO-DP43(23-23.8)
Laboratory Identification	Cleanup Objective ¹	M48220-8	M46966-4	M46966-2	M47558-1	M47558-2	M47558-8	M48220-1	M48220-2	M47558-9	M47558-10	M47558-3	M47558-4	M48220-4	M48220-3	M47558-6
Date Sampled	Recommended Soil	06/14/2005	04/28/2005	04/28/2005	05/19/2005	05/19/2005	05/20/2005	06/13/2005	06/13/2005	05/20/2005	05/20/2005	05/19/2005	05/19/2005	06/13/2005	06/13/2005	05/19/2005
Semi-volatile Organic Comp	ounde (ug/kg)															
2-Methylnaphthalene	36.400	330 U	310 U	310 U	1,070,000	281	90.4	44.2 J	340 U	280,000	171	3,410	34.3 J	330 U	280 U	75.7
Acenaphthene	50,000	330 U	310 U	310 U		320 U	320 U	88.2	340 U	57,700	42.6 J	3,220	320 U	330 U	69.3	320 U
Acenaphthylene	41,000	330 U	310 U	310 U		111	320 U	300 U	340 U	85,300	70.3	669	320 U	330 U	43.7 J	320 U
Anthracene	50,000	330 U	310 U	310 U		43.1 J	320 U	66.6	340 U	58,800	37.2 J	2,170	320 U	330 U	48.6 J	320 U
Benz(a)anthracene	224/MDL	330 U 330 U	310 U	310 U		320 U	320 U 320 U	300 U	340 U 340 U	32,600	330 U 330 U	1,250	320 U	330 U 330 U	280 U 280 U	320 U
Benzo(a)pyrene Benzo(b)fluoranthene	61/MDL 1,100	330 U	310 U 310 U	310 U 310 U		320 U 320 U	320 U	300 U 300 U	340 U	24,400 15,800	330 U	1,150 564	320 U 320 U	330 U	280 U	320 U 320 U
Benzo(g,h,i)perylene	50,000	330 U	310 U	310 U		320 U	320 U	300 U	340 U	8,680	330 U	506	320 U	330 U	280 U	320 U
Benzo(k)fluoranthene	1,100	330 U	310 UJ	310 UJ	80,100	320 U	320 U	300 U	340 U	18,100	330 U	735	320 U	330 U	280 U	320 U
Chrysene	400	330 U	310 U	310 U	110,000	320 U	320 U	300 U	340 U	25,600	330 U	1,020	320 U	330 U	30.1 J	320 U
Dibenz(a,h)anthracene	14/MDL	330 UJ	310 U	310 U		320 UJ	320 UJ	300 UJ	340 UJ	4,000 J	330 UJ	222 J	320 UJ	330 UJ	280 UJ	320 UJ
Fluoranthene	50,000	330 U	310 U	310 U		60.1 J	320 U	81	340 U	66,200	42.4 J	2,530	320 U	330 U	88.6	320 U
Fluorene Indeno(1,2,3-cd)pyrene	50,000 3,200	330 U 330 U	310 U 310 U	310 U 310 U		76.6 320 U	320 U 320 U	300 U 300 U	340 U 340 U	84,700 8.080	59.9 J 330 U	2,190 427	320 U 320 U	330 U 330 U	280 U 280 U	320 U 320 U
Naphthalene	13.000	330 U	310 U	310 U		788	176	230 J	340 U	426.000	303	1.560	47 J	330 U	263 J	273
Phenanthrene	50,000	330 U	310 U	310 U		183	72.9	271 J	340 U	173,000	135	5,790	320 U	330 U	154 J	320 U
Pyrene	50,000	330 U	310 U	310 U	355,000	73	320 U	90	340 U	83500	55.6 J	3,120	320 U	330 U	103	320 U
Total PAHs (µg/kg)	500,000	ND	ND	ND	5,900,000	1,600	340	870	ND	1,500,000	920	31,000	81	ND	800	350
Total CPAHs (µg/kg)	NL	ND	ND	ND	570,000	ND	ND	ND	ND	130,000	ND	5,400	ND	ND	30	ND
- (1.99)										,						
1,1'-Biphenyl	NL	660 U	610 U	630 U		640 U	5,800 U	600 U	690 U	37,100	670 U	906	640 U	670 U	560 U	650 U
1,2-Diphenylhydrazine	NL 100	NA NA	310 U	310 U		320 U	2,900 U	300 U	340 U	1,500 U	330 U	280 U	320 U	330 U	280 U	320 U
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	100 NL	660 U 660 U	610 U 610 U	630 U 630 U		640 U 640 U	5,800 U 5,800 U	600 U 600 U	690 U 690 U	3,000 U 3,000 U	670 U 670 U	560 U 560 U	640 U 640 U	670 U 670 U	560 U 560 U	650 U 650 U
2,4-Dichlorophenol	400	660 U	610 U	630 U	5,900 U	640 U	5,800 U	600 U	690 U	3,000 U	670 U	560 U	640 U	670 U	560 U	650 U
2,4-Dimethylphenol	NL	660 U	610 U	630 U		640 U	5,800 U	600 U	690 U	3,000 U	670 U	560 U	640 U	670 U	560 U	650 U
2,4-Dinitrophenol	200/MDL	1,300 U	1,200 UJ	1,300 UJ	12,000 U	1,300 U	12,000 U	1,200 U	1,400 U	6,000 U	1,300 U	1,100 U	1,300 U	1,300 U	1,100 U	1,300 U
2,4-Dinitrotoluene	NL	660 U	610 U	630 U	5,900 U	640 U	5,800 U	600 U	690 U	3,000 U	670 U	560 U	640 U	670 U	560 U	650 U
2,6-Dinitrotoluene	1,000	660 U 330 U	610 U 310 U	630 U 310 U	5,900 U	640 U 320 U	5,800 U 2.900 U	600 U	690 U 340 U	3,000 U 1,500 U	670 U	560 U 280 U	640 U 320 U	670 U 330 U	560 U	650 U 320 U
2-Chloronaphthalene 2-Chlorophenol	NL 800	330 U	310 U	310 U	3,000 U 3,000 U	320 U	2,900 U	300 U 300 U	340 U	1,500 U	330 U 330 U	280 U	320 U	330 U	280 U 280 U	320 U
2-Methylphenol	100/MDL	660 U	610 U	630 U		640 U	5.800 U	600 U	690 U	3,000 U	670 U	560 U	640 U	670 U	560 U	650 U
2-Nitroaniline	430/MDL	660 U	610 U	630 U		640 U	5,800 U	600 U	690 U	3,000 U	670 U	560 U	640 U	670 U	560 U	650 U
2-Nitrophenol	330/MDL	660 U	610 U	630 U		640 U	5,800 U	600 U	690 U	3,000 U	670 U	560 U	640 U	670 U	560 U	650 U
3&4-Methylphenol	NL	660 U	610 U	630 U		640 U	5,800 U	600 U	690 U	3,000 U	670 U	560 U	640 U	670 U	560 U	650 U
3,3'-Dichlorobenzidine	NL FOO(MD)	330 U	310 U	310 U		320 U	2,900 U	300 U	340 U	1,500 U	330 U	280 U	320 U	330 U	280 U	320 U
3-Nitroaniline 4,6-Dinitro-o-cresol	500/MDL NL	660 U 660 U	610 U 610 U	630 U 630 U	5,900 U 5,900 U	640 U 640 U	5,800 U 5,800 U	600 U 600 U	690 U 690 U	3,000 U 3,000 U	670 U 670 U	560 U 560 U	640 U 640 U	670 U 670 U	560 U 560 U	650 U 650 U
4-Bromophenyl phenyl ether	NL	330 U	310 U	310 U	3,000 U	320 U	2,900 U	300 U	340 U	1,500 U	330 U	280 U	320 U	330 U	280 U	320 U
4-Chloro-3-methyl phenol	240/MDL	660 U	610 U	630 U	5,900 U	640 U	5,800 U	600 U	690 U	3,000 U	670 U	560 U	640 U	670 U	560 U	650 U
4-Chloroaniline	220/MDL	660 UJ	610 UJ	630 UJ	5,900 UJ	640 UJ	5,800 UJ	600 UJ	690 UJ	3,000 UJ	670 UJ	560 UJ	640 UJ	670 UJ	560 UJ	650 UJ
4-Chlorophenyl phenyl ether	NL NI	330 U	310 U	310 U		320 U	2,900 U	300 U	340 U	1,500 U	330 U	280 U	320 U	330 U	280 U	320 U
4-Nitroaniline 4-Nitrophenol	NL 100/MDL	660 U 1,300 U	610 U 1,200 U	630 U 1,300 U		640 U 1,300 U	5,800 U 12,000 U	600 U 1,200 U	690 U 1,400 U	3,000 U 6,000 U	670 U 1,300 U	560 U 1,100 U	640 U 1,300 U	670 U 1,300 U	560 U 1,100 U	650 U 1,300 U
Acetophenone	NL	660 U	610 U	630 U		640 U	5,800 U	600 U	690 U	3,000 U	670 U	560 U	640 U	670 U	560 U	650 U
Aniline	100	NA	610 U	630 U		640 U	5,800 U	600 U	690 U	3,000 U	670 U	560 U	640 U	670 U	560 U	650 U
Atrazine	NL	660 UJ	610 U	630 U	5,900 U	640 U	5,800 U	600 UJ	690 UJ	3,000 U	670 U	560 U	640 U	670 UJ	560 UJ	650 U
Benzaldehyde	NL Ni	1,300 UJ	1,200 U	1,300 U	12,000 U	1,300 U	12,000 U	1,200 UJ	1,400 UJ	6,000 U	1,300 U	1,100 U	1,300 U	1,300 UJ	1,100 UJ	1,300 U
Benzoic acid	NL NL	660 U 330 U	610 U 310 U	630 U 310 U		320 U	5,800 R 2.900 U	600 U 300 U	690 U 340 U	1,500 U	330 U	280 U	320 U	670 U 330 U	560 U 280 U	320 U
bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether	NL NL	330 U	310 U	310 U		320 U	2,900 U	300 U	340 U	1,500 U	330 U	280 U	320 U	330 U	280 U	320 U
bis(2-Chloroisopropyl)ether	NL NL	330 U	310 U	310 U		320 U	2,900 U	300 U	340 U	1,500 U	330 U	280 U		330 U	280 U	320 U
bis(2-Ethylhexyl)phthalate	50,000	73	610 U	630 U	5,900 U	640 U	5,800 U	139	177	1,420	670 U	560 U	640 U	164	170	650 U
Butyl benzyl phthalate	50,000	660 U	610 U	630 U		640 U	5,800 U	600 U	690 U	3,000 U	670 U	560 U		670 U	560 U	650 U
Caprolactam	NL NL	660 U 330 U	610 U 310 U	630 U 310 U		640 U 320 U	5,800 U 2,900 U	600 U 300 U	690 U 340 U	3,000 U 4,860	670 U	560 U 153	640 U 320 U	670 U 330 U	560 U 280 U	650 U 320 U
Carbazole Dibenzofuran	NL 6,200	330 U	310 U	310 U		320 U	2,900 U 2,900 U	300 U	340 U	4,860 17,900	330 U 330 U	153 617	320 U 320 U	330 U	280 U	320 U
Diethyl phthalate	7,100	660 U	610 U	630 U		640 U	5,800 U	600 U	690 U	3,000 U	670 U	560 U		670 U	560 U	650 U
Dimethyl phthalate	2,000	660 U	610 U	630 U	5,900 U	640 U	5,800 U	600 U	690 U	3,000 U	670 U	560 U	640 U	670 U	560 U	650 U
Di-n-butyl phthalate	8,100	660 U	610 U	630 U		640 U	5,800 U	38 J	690 U	3,000 U	670 U	560 U		670 U	560 U	
Di-n-octyl phthalate	50,000	660 U	610 U	630 U		640 U	5,800 U	600 U	690 U	3,000 U		560 U		670 U	560 U	
Hexachlorobenzene Hexachlorobutadiene	410 NL	330 U 330 U	310 U 310 U	310 U 310 U		320 U 320 U	2,900 U 2.900 U	300 U 300 U	340 U 340 U	1,500 U 1,500 U	330 U 330 U	280 U 280 U		330 U 330 U	280 U 280 U	320 U 320 U
Hexachlorocyclopentadiene	NL NL	660 U	610 UJ	630 UJ		640 U	5.800 U	600 U	690 U	3,000 U		560 U			560 U	650 U
Hexachloroethane	NL NL	330 U	310 U	310 U		320 U	2,900 U	300 U	340 U	1,500 U		280 U			280 U	
Isophorone	4,400	330 U	310 U	310 U	3,000 U	320 U	2,900 U	300 U	340 U	1,500 U	330 U	280 U	320 U	330 U	280 U	320 U
Nitrobenzene	200/MDL	330 U	310 U	310 U		320 U	2,900 U	300 U	340 U	1,500 U	330 U	280 U		330 U	280 U	320 U
N-Nitroso-di-n-propylamine	NL NI	330 U	310 U	310 U		320 U	2,900 U	300 U	340 U	1,500 U	330 U	280 U		330 U	280 U	320 U
N-Nitrosodiphenylamine Pentachlorophenol	NL 1.000/MDL	330 U 660 U	310 U 610 U	310 U 630 U		320 U 640 U	2,900 U 5,800 U	300 U 600 U	340 U 690 U	1,500 U 3,000 U	330 U 670 U	280 U 560 U		330 U 670 U	280 U 560 U	320 U 650 U
Phenol	30/MDL	330 U	310 U	310 U		320 U	2,900 U	300 U	340 U	1,500 U		280 U		330 U	280 U	320 U
				0.0	0,000 0		2,000 0			.,555 0						
Total SVOCs (μg/Kg) ²	500,000	73	ND	ND	6,100,000	1,600	340	1,100	180	1,500,000	920	32,000	81	160	1,000	350

Notes:

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

D = The concentration indicated was obtained from a diluted analytical run.

J = The associated numerical value is an estimated quantity.

R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

Bold value - compound detected above regulatory guidance value.

¹NYSDEC TAGM HWR-94-4046 - Determination of Soil Cleanup Objectives and Cleanup Levels [NYSDEC, Jan. 1994]

²The total SVOC values include all PAH compounds

Sample ID (Depth in Feet)	NYSDEC	NO-DP44(15-16)	NO-DP44(25-26)	NO-DP45(10.8-11.3)	NO-DP46(9-9.6)	NO-DP46(22-24)	NO-DP47(21.5-22.5)	NO-DP47(26-27)	NO-DP48(18-19)	NO-DP48(26-27)	NO-DP49(17-18)	NO-DP49(26-27)	NO-DP50(13.7-15.5)	NO-DP50(25-26)
Laboratory Identification		M48323-3	M48323-4	M48323-5	M48220-5	M48220-6	M48323-1	M48323-2	M48220-9	M48220-10	M48220-11	M48220-12	M48323-7	M48323-8
	Recommended Soil	06/15/2005	06/15/2005	06/15/2005	06/14/2005	06/14/2005	06/15/2005	06/15/2005	06/14/2005	06/14/2005	06/14/2005	06/14/2005	06/16/2005	06/16/2005
Date dampied	recommended com	00/10/2000	00/10/2000	00/10/2000	00/14/2000	00/14/2000	00/10/2000	00/10/2000	00/14/2000	00/14/2000	00/14/2000	00/14/2000	00/10/2000	00/10/2000
Semi-volatile Organic Comp	ounds (µg/kg)													
2-Methylnaphthalene	36,400	300 U	320 U	320 U	366	320 U	300 U	310 U	63.8	320 U	290 U	330 U	290 U	330 U
Acenaphthene	50,000	300 U	320 U	320 U	290 U	320 U	300 U	310 U	74.8	320 U	290 U	330 U		330 U
Acenaphthylene	41,000	300 U	320 U	320 U	1,180	320 U	300 U	310 U	290 U	320 U	290 U	330 U	290 U	330 U
Anthracene	50,000	300 U	320 U	320 U	190	320 U	300 U	310 U	53.7 J	320 U	290 U	330 U		330 U
Benz(a)anthracene	224/MDL	300 U	320 U	320 U	290 U	320 U	300 U	310 U	290 U	320 U	290 U	330 U		330 U
Benzo(a)pyrene	61/MDL	300 U	320 U	320 U	347	320 U	300 U	310 U	290 U	320 U	290 U	330 U		330 U
Benzo(b)fluoranthene	1,100	300 U 300 U	320 U	320 U	142 1,270	320 U	300 U	310 U 310 U	290 U	320 U	290 U 290 U	330 U		330 U
Benzo(g,h,i)perylene Benzo(k)fluoranthene	50,000 1.100	300 U	320 U 320 U	320 U 320 U	81.4	320 U 320 U	300 U 300 U	310 U	290 U 290 U	320 U 320 U	290 U	330 U 330 U		330 U 330 U
Chrysene	400	300 U	320 U	320 U	290 U	320 U	300 U	310 U	290 U	320 U	290 U	330 U		330 U
Dibenz(a,h)anthracene	14/MDL	300 UJ	320 UJ	320 UJ	290 UJ	320 UJ	300 UJ	310 UJ	290 UJ	320 UJ	290 UJ	330 UJ		330 UJ
Fluoranthene	50,000	300 U	320 U	320 U	290 U	320 U	300 U	310 U	68	320 U	31.3 J	330 U		330 U
Fluorene	50.000	300 U	320 U	320 U	126 J	320 U	300 U	310 U	290 U	320 U	290 U	330 U		330 U
Indeno(1,2,3-cd)pyrene	3,200	300 U	320 U	320 U	766	320 U	300 U	310 U	290 U	320 U	290 U	330 U		330 U
Naphthalene	13,000	300 U	320 U	320 U	322	320 U	300 U	310 U	141	320 U	290 U	330 U	290 U	330 U
Phenanthrene	50,000	300 U	320 U	320 U	290 U	320 U	300 U	310 U	194 J	320 U	53.3 J	330 U		330 U
Pyrene	50,000	300 U	320 U	320 U	223 J	320 U	300 U	310 U	93.9	320 U	79.2	330 U	46 J	330 U
Total PAHs (µg/kg)	500,000	ND	ND	ND	5,000	ND	ND	ND	690	ND	160	ND	46	ND
Total CDAIIo (*****	NII.	ND	ND	ND	4.000	ND	ND	A ID	ND	ND	ND	ND	ND	ND
Total CPAHs (µg/kg)	NL	ND	ND	ND	1,300	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1'-Biphenyl	NL	600 U	630 U	630 U	580 U	640 U	600 U	630 U	580 U	630 U	580 U	650 U	590 U	650 U
1,2-Diphenylhydrazine	NL NL	300 U	320 U	320 U	290 U	320 U	300 U	310 U	290 U	NA	290 U	330 U		330 U
2,4,5-Trichlorophenol	100	600 U	630 U	630 U	580 U	640 U	600 U	630 U	580 U	630 U	580 U	650 U		650 U
2,4,6-Trichlorophenol	NL NL	600 U	630 U	630 U	580 U	640 U	600 U	630 U	580 U	630 U	580 U	650 U		650 U
2,4-Dichlorophenol	400	600 U	630 U	630 U	580 U	640 U	600 U	630 U	580 U	630 U	580 U	650 U		650 U
2,4-Dimethylphenol	NL	600 U	630 U	630 U	580 U	640 U	600 U	630 U	580 U	630 U	580 U	650 U	590 U	650 U
2,4-Dinitrophenol	200/MDL	1,200 U	1,300 U	1,300 U	1,200 U	1,300 U	1,200 U	1,300 U	1,200 U	1,300 U	1,200 U	1,300 U	1,200 U	1,300 U
2,4-Dinitrotoluene	NL	600 U	630 U	630 U	580 U	640 U	600 U	630 U	580 U	630 U	580 U	650 U	590 U	650 U
2,6-Dinitrotoluene	1,000	600 U	630 U	630 U	580 U	640 U	600 U	630 U	580 U	630 U	580 U	650 U		650 U
2-Chloronaphthalene	NL	300 U	320 U	320 U	290 U	320 U	300 U	310 U	290 U	320 U	290 U	330 U		330 U
2-Chlorophenol	800	300 U	320 U	320 U	290 U	320 U	300 U	310 U	290 U	320 U	290 U	330 U		330 U
2-Methylphenol 2-Nitroaniline	100/MDL 430/MDL	600 U 600 U	630 U 630 U	630 U 630 U	580 U 580 U	640 U 640 U	600 U 600 U	630 U 630 U	580 U 580 U	630 U 630 U	580 U 580 U	650 U		650 U 650 U
2-Nitrophenol	330/MDL	600 U	630 U	630 U	580 U	640 U	600 U	630 U	580 U	630 U	580 U	650 U		650 U
3&4-Methylphenol	NL NL	600 U	630 U	630 U	580 U	640 U	600 U	630 U	580 U	630 U	580 U	650 U		650 U
3,3'-Dichlorobenzidine	NL NL	300 U	320 U	320 U	290 U	320 U	300 U	310 U	290 U	320 U	290 U	330 U		330 U
3-Nitroaniline	500/MDL	600 U	630 U	630 U	580 U	640 U	600 U	630 U	580 U	630 U	580 U	650 U		650 U
4,6-Dinitro-o-cresol	NL	600 U	630 U	630 U	580 U	640 U	600 U	630 U	580 U	630 U	580 U	650 U		650 U
4-Bromophenyl phenyl ether	NL	300 U	320 U	320 U	290 U	320 U	300 U	310 U	290 U	320 U	290 U	330 U		330 U
4-Chloro-3-methyl phenol	240/MDL	600 U	630 U	630 U	580 U	640 U	600 U	630 U	580 U	630 U	580 U	650 U		650 U
4-Chloroaniline	220/MDL	600 UJ	630 UJ	630 UJ	580 UJ	640 UJ	600 UJ	630 UJ	580 UJ	630 UJ	580 UJ	650 UJ		650 UJ
4-Chlorophenyl phenyl ether	NL	300 U	320 U	320 U	290 U	320 U	300 U	310 U	290 U	320 U	290 U	330 U		330 U
4-Nitroaniline	NL 100/LADI	600 U	630 U	630 U	580 U	640 U	600 U	630 U	580 U	630 U	580 U	650 U		650 U
4-Nitrophenol Acetophenone	100/MDL NL	1,200 U 600 U	1,300 U 630 U	1,300 U 630 U	1,200 U 580 U	1,300 U 640 U	1,200 U 600 U	1,300 U 630 U	1,200 U 580 U	1,300 U 630 U	1,200 U 580 U	1,300 U 650 U		1,300 U 650 U
Aniline	100	600 UJ	630 UJ	630 UJ	580 U	640 U	600 UJ	630 UJ	580 U	NA NA	580 U	650 U	590 UJ	650 UJ
Atrazine	NL	600 UJ	630 UJ	630 UJ	580 UJ	640 UJ	600 UJ	630 UJ	580 UJ	630 UJ	580 UJ	650 UJ	590 UJ	650 UJ
Benzaldehyde	NL NL	1,200 U	1,300 U	1,300 U	1,200 UJ	1,300 UJ	1,200 U	1,300 U	1,200 UJ	1,300 UJ	1,200 UJ	1,300 UJ		1,300 U
Benzoic acid	NL	600 U	630 U	630 U	580 U	640 U	R	630 U	580 U	R	580 U	650 U		650 U
bis(2-Chloroethoxy)methane	NL	300 U	320 U	320 U	290 U	320 U	300 U	310 U	290 U	320 U	290 U	330 U	290 U	330 U
bis(2-Chloroethyl)ether	NL	300 U	320 U	320 U	290 U	320 U	300 U	310 U	290 U	320 U	290 U	330 U	290 U	330 U
bis(2-Chloroisopropyl)ether	NL	300 U	320 U	320 U	290 U	320 U	300 U	310 U	290 U	320 U	290 U	330 U		330 U
bis(2-Ethylhexyl)phthalate	50,000	600 U	114	630 U	150 J		600 U		72.2	630 U	80.4	650 U		650 U
Butyl benzyl phthalate	50,000	600 U	630 U	630 U	580 U		600 U		580 U	630 U	580 U	650 U		650 U
Caprolactam	NL NI	600 U 300 U	630 U	630 U 320 U	580 U 290 U		600 U 300 U	630 U 310 U	580 U	630 U	580 U 290 U	650 U		650 U
Carbazole Dibenzofuran	NL 6,200	300 U	320 U 320 U	320 U	290 U		300 U	310 U	290 U 290 U	320 U 320 U	290 U	330 U 330 U		330 U 330 U
Diethyl phthalate	7,100	600 U	630 U	630 U	580 U		600 U	630 U	580 U	630 U	580 U	650 U		650 U
Dimethyl phthalate	2.000	600 U	630 U	630 U	580 U		600 U		580 U	630 U	580 U	650 U		650 U
Di-n-butyl phthalate	8,100	600 U	630 U	630 U	580 U		600 U	630 U	580 U	630 U	580 U	650 U		650 U
Di-n-octyl phthalate	50,000	600 U	630 U	630 U	580 U				580 U	630 U	580 U	650 U		650 U
Hexachlorobenzene	410	300 U	320 U	320 U	290 U	320 U	300 U	310 U	290 U	320 U	290 U	330 U	290 U	330 U
Hexachlorobutadiene	NL	300 U	320 U	320 U	290 U				290 U	320 U	290 U	330 U		330 U
Hexachlorocyclopentadiene	NL	600 U	630 U	630 U	580 U		600 U	630 U	580 U	630 U	580 U	650 U		650 U
Hexachloroethane	NL	300 U	320 U	320 U	290 U		300 U	310 U	290 U	320 U	290 U	330 U		330 U
Isophorone	4,400	300 U	320 U	320 U	290 U	320 U	300 U	310 U	290 U	320 U	290 U	330 U		330 U
Nitrobenzene	200/MDL	300 U	320 U	320 U	290 U		300 U		290 U	320 U	290 U	330 U		330 U
N-Nitroso-di-n-propylamine	NL NI	300 U 300 U	320 U 320 U	320 U	290 U 290 U	320 U	300 U		290 U	320 U	290 U 290 U	330 U		330 U 330 U
N-Nitrosodiphenylamine Pentachlorophenol	NL 1,000/MDL	300 U	630 U	320 U 630 U	290 U	320 U 640 U	300 U 600 U	310 U 630 U	290 U 580 U	320 U 630 U	290 U	330 U 650 U		650 U
Phenol	30/MDL	300 U	320 U	320 U	290 U	320 U	300 U	310 U	290 U	320 U	290 U	330 U		330 U
	JOHNIDE	300 0	320 0	320 0	200 0	320 0	300 0	310 0	230 0	320 0	230 0	330 0	200 0	330, 0
Total SVOCs (µg/Kg) ²	500,000	ND	110	ND	5,200	120	ND	ND	760	ND	240	ND	46	ND
. J 01000 (µg/1(g)	500,000	וטאו	110	טאו	3,200	120	IND	יטאו	100	עאו	240	יאו	40	IND

Notes:

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

D = The concentration indicated was obtained from a diluted analytical run.

J = The associated numerical value is an estimated quantity.

R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

Bold value - compound detected above regulatory guidance value.

¹NYSDEC TAGM HWR-94-4046 - Determination of Soil Cleanup Objectives and Cleanup Levels [NYSDEC, Jan. 1994]

²The total SVOC values include all PAH compounds CPAHs - Carcinogenic PAHs which are shown in bold and italics

Table B-11
Subsurface Soil PAH Results
Norwich Former MGP Site
Norwich, New York

Sample ID (Depth in Feet)	NYSDEC	NO-DP51 (19-20')	NO-DP52 (19-20')	NO-DP53 (19-20')	NO-DP54 (19-20')	NO-DP55 (23-24')	NO-DP56 (19-20)
Laboratory Identification	Cleanup Objective ¹	M51636-1	M51636-2	M51636-3	M51636-4	M51636-5	M51738-1
Date Sampled	Recommended Soil	10/10/2005	10/10/2005	10/10/2005	10/11/2005	10/11/2005	10/11/2005
Semi-volatile Organic Com	npounds (μg/kg)						
2-Methylnaphthalene	36,400	340 U	320 U	330 U	320 U	330 U	320 U
Acenaphthene	50,000	340 U	320 U	330 U	320 U	330 U	320 U
Acenaphthylene	41,000	340 U	320 U	330 U	320 U	330 U	320 U
Anthracene	50,000	340 U	320 U	330 U	320 U	330 U	320 U
Benzo(a)anthracene	224/MDL	340 U	320 U	330 U	320 U	330 U	320 U
Benzo(a)pyrene	61/MDL	340 U	320 U	330 U	320 U	330 U	320 U
Benzo(b)fluoranthene	1,100	340 U	320 U	330 U	320 U	330 U	320 U
Benzo(g,h,i)perylene	50,000	340 U	320 U	330 U	320 U	330 U	320 U
Benzo(k)fluoranthene	1,100	340 U	320 U	330 U	320 U	330 U	320 U
Chrysene	400	340 U	320 U	330 U	320 U	330 U	320 U
Dibenzo(a,h)anthracene	14/MDL	340 U	320 U	330 U	320 U	330 U	320 U
Fluoranthene	50,000	340 U	320 U	330 U	320 U	330 U	320 U
Fluorene	50,000	340 U	320 U	330 U	320 U	330 U	320 U
Indeno(1,2,3-cd)pyrene	3,200	340 U	320 U	330 U	320 U	330 U	320 U
Naphthalene	13,000	340 U	320 U	330 U	320 U	330 U	320 U
Phenanthrene	50,000	340 U	320 U	330 U	320 U	330 U	320 U
Pyrene	50,000	340 U	320 U	330 U	320 U	330 U	320 U
Total PAHs (µg/kg)	500,000	ND	ND	ND	ND	ND	ND
Total CPAHs (µg/kg)	NL	ND	ND	ND	ND	ND	ND

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

D = The concentration indicated was obtained from a diluted analytical run.

- J = The associated numerical value is an estimated quantity.
- R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process.
- U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

Bold value - compound detected above regulatory guidance value.

¹NYSDEC TAGM HWR-94-4046 - Determination of Soil Cleanup Objectives and Cleanup Levels [NYSDEC, Jan. 1994]

Table B-11
Subsurface Soil PAH Results
Norwich Former MGP Site
Norwich, New York

Sample ID (Depth in Feet)	NYSDEC	NO-DP57 (19-20)	NO-DP58 (19-20)	NO-DP59 (19-20)	NO-DP60 (19-20)	NO-DP61 (15-16)
Laboratory Identification	Cleanup Objective ¹	M51738-2	M51738-3	M51738-4	M51738-5	M51738-6
Date Sampled	Recommended Soil	10/11/2005	10/12/2005	10/12/2005	10/12/2005	10/12/2005
·						
Semi-volatile Organic Com	npounds (μg/kg)					
2-Methylnaphthalene	36,400	310 U	320 U	330 U	320 U	320 U
Acenaphthene	50,000	310 U	320 U	330 U	320 U	320 U
Acenaphthylene	41,000	310 U	320 U	330 U	320 U	320 U
Anthracene	50,000	310 U	320 U	330 U	320 U	320 U
Benzo(a)anthracene	224/MDL	310 U	320 U	330 U	320 U	320 U
Benzo(a)pyrene	61/MDL	310 U	320 U	330 U	320 U	320 U
Benzo(b)fluoranthene	1,100	310 U	320 U	330 U	320 U	320 U
Benzo(g,h,i)perylene	50,000	310 U	320 U	330 U	320 U	320 U
Benzo(k)fluoranthene	1,100	310 U	320 U	330 U	320 U	320 U
Chrysene	400	310 U	320 U	330 U	320 U	320 U
Dibenzo(a,h)anthracene	14/MDL	310 U	320 U	330 U	320 U	320 U
Fluoranthene	50,000	310 U	320 U	330 U	320 U	320 U
Fluorene	50,000	310 U	320 U	330 U	320 U	320 U
Indeno(1,2,3-cd)pyrene	3,200	310 U	320 U	330 U	320 U	320 U
Naphthalene	13,000	310 U	320 U	330 U	320 U	320 U
Phenanthrene	50,000	310 U	320 U	330 U	320 U	320 U
Pyrene	50,000	310 U	320 U	330 U	320 U	320 U
Total PAHs (µg/kg)	500,000	ND	ND	ND	ND	ND
Total CPAHs (µg/kg)	NL	ND	ND	ND	ND	ND

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

D = The concentration indicated was obtained from a diluted analytical run.

Bold value - compound detected above regulatory guidance value.

¹NYSDEC TAGM HWR-94-4046 - Determination of Soil Cleanup Objectives and Cleanup Levels [NYSDEC, Jan. 1994]

J = The associated numerical value is an estimated quantity.

R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process.

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

Table B-12 Subsurface Soil TOC Results Norwich Former MGP Site Norwich, New York

Sample ID (Depth in Feet) Laboratory Identification Date Sampled	M46906-1	NO-DP27 (18-18.5) M46906-3 04/26/2005	NO-DP28 (7-8) M46906-10 04/27/2005	NO-DP33 (17-18.0) M46906-15 04/27/2005
Total Organic Carbon (mg/kg)	12,800	1,100 U	2,360	4,900
Field Description	Moist to wet, fine sand and gravel	Wet, medium to coarse gravel	Dry to moist, fine sand and silt	Moist to wet clay and fine sand

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

D = The concentration indicated was obtained from a diluted analytical run.

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

J = The associated numerical value is an estimated quantity.

R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process

Table B-13 Synthetic Precipitation Leaching Procedure (SPLP) VOC Results Norwich Former MGP Site Norwich, New York

0	NIVODEO	NO DD04/44	45)	NO DDOO/45	10)	NO DECOMO	0.4)	NO DDOO(40.0	44.0\	NO DD40/07 4	07.0\	NO DD00/44 5 40)
Sample ID	NYSDEC	NO-DP01(14-	15)	NO-DP02(15-	,	NO-DP03(23-	,	NO-DP08(12.0-	14.0)		27.9)	NO-DP22(11.5-12)
Laboratory Identification	TOGS 1.1.1	M46810-5		M46810-7		M46810-11		S5497-28		S5497-24		M46810-1
Date Sampled	Class GA ¹	04/25/2005	,	04/25/2005	5	04/25/2005	5	10/30/2004		10/25/2004		04/25/2005
Volatile Organic Compounds	(ug/L)											
Acetone	50**	10.4	UJ	14.2	UJ	13.3	UJ	120	U	120	U	19 UJ
Benzene	1	4.8		34		39.2		25	Ü	25	UJ	6.7
Bromodichloromethane	50**	2	U	2	U	2	U	25	Ū	25	U	2 U
Bromoform	50**	2	U	2	Ü	2		25	Ü	25	Ü	2 U
Bromomethane	5*	2	U	2	Ü	2	U	25	Ü	25	U	2 U
2-Butanone (MEK)	50**	5	Ü	5	Ü	5	•	120	Ü	120	Ü	5 U
Carbon disulfide	NL	5	U	5	Ü	5		25	Ü	25	U	5.7
Carbon tetrachloride	NL NL	2	U	2	U	2	U	25	Ü	25	U	2 U
Chlorobenzene	5*	2	U	2	Ü	2	U	25	U	25	UJ	2 U
Chloroethane	5*	5	U	5	U	5		25	U	25	U	5 U
Chloroform	7	2	U	2	U	2	U	25	U	25	C	2 U
	, NL	5	U	5	U	5	U	25	U	25	U	5 U
Chloromethane Cyclohexane	NL NL	50	U	50	U	50	U	25	U	25 25	U	50 U
,	0.04		U	50		50	_	25 25	U	25 25	C	50 U
1,2-Dibromo-3-chloropropane	50**	5	U	2	U	2	U		U		U	2 U
Dibromochloromethane		2						25		25		
1,2-Dibromoethane	NL	2	U	2	U	2	U	25	U	25	U	2 U
1,2-Dichlorobenzene	3	2	U	2	U	2		25	U	25	U	2 U
1,3-Dichlorobenzene	3	2	U	2	U	2	U	25	U	25	U	2 U
1,4-Dichlorobenzene	3	2	U	2	U	2	U	25	U	25	U	2 U
Dichlorodifluoromethane	5*	2	UJ	2	UJ	2		25	U	25	С	2 UJ
1,1-Dichloroethane	5*	2	U	2	U	2	U	25	U	25	U	2 U
1,2-Dichloroethane	0.6	2	U	2	U	2	U	25	U	25	U	2 U
1,1-Dichloroethene	5*	2	U	2	U	2	U	25	U	25	UJ	2 U
cis-1,2-Dichloroethene	5*	2	U	2	U	2		25	U	25	U	2 U
trans-1,2-Dichloroethene	5*	2	U	2	U	2	U	25	U	25	U	2 U
1,2-Dichloropropane	1	2	U	2	U	2	U	25	U	25	U	2 U
cis-1,3-Dichloropropene	0.4	5	U	5	U	5		25	U	25	U	5 U
trans-1,3-Dichloropropene	5*	5	U	5	U	5	U	25	U	25	U	5 U
Ethylbenzene	5*	466		511		824		25	U	25	С	725
Freon 113	NL	5	С	5	U	5	С	NA		NA		5 U
2-Hexanone	50**	5	U	5	U	5	U	120	U	120	U	5 U
Isopropylbenzene	5*	75.3		63.2		48.3		25	U	25	U	65.8
Methyl Acetate	NL	5	U	5	U	5	U	25	U	25	U	5 U
Methylcyclohexane	NL	5	U	5	U	5	U	25	U	25	U	5 U
Methyl Tert Butyl Ether	10	2	U	48.2		2	U	25	U	25	U	2 U
4-Methyl-2-pentanone (MIBK)	5*	5	U	5	U	5	U	120	U	120	U	5 U
Methylene chloride	5*	4.6	U	2.2	U	2	U	25	U	25	U	2.9 U
Styrene	5*	5	U	5	U	76.3		25	U	25	U	5 U
1,1,2,2-Tetrachloroethane	5*	2	Ū	2	Ū	2	U	25	Ū	25	Ū	2 U
Tetrachloroethene	5*	2	Ü	2	Ü	2	•	25	Ü	25	Ü	2 U
Toluene	5*	24.7	-	95.1	Ť	382	_	25	Ū	25	U	32.3
1,2,4-Trichlorobenzene	NL	5	U	5	U	5	U	25	Ü	25	Ü	5 U
1,1,1-Trichloroethane	5*	2	Ü	2	Ü	2	Ü	25	Ü	25	Ü	2 U
1.1.2-Trichloroethane	1	2	Ü	2	Ü	2	U	25	Ü	25	U	2 U
1,1,2-Trichlorotrifluoroethane	, NL	NA NA		NA NA	<u> </u>	NA NA		25	Ü	25	Ü	NA NA
Trichloroethene	5*	2	U	2	U	2	U	25	U	25	U	2 U
Trichlorofluoromethane	5*	2	U	2	Ü	2	U	25	Ü	25	U	2 U
Vinyl chloride	2	2		2	U	2	IJ	25	U	25		2 U
Xylene (total)	5*	401	U	439	J	871	J	ND	U	ND	U	729
Total VOCs (µg/L)	NL	1,000		1,200		2,200		ND		ND		1,600

Notes:

NA = Not Analyzed NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

J = The associated numerical value is an estimated quantity.

Bold value - compound detected above NYSDEC Class GA groundwater standard or guidance value, comparison for reference purposes.

¹Class GA Drinking Water Standard or Guidance Value *Principal Organic Contaminant Standard

^{**}Class GA Guidance Value

Table B-14 Synthetic Precipitation Leaching Procedure (SPLP) SVOC Results Norwich Former MGP Site Norwich, New York

Sample ID	NYSDEC	NO-DP08(12.0-14	1.0)	NO-DP18(27.4-27	.9)	NO-DP26 (10-11)
Laboratory Identification	TOGS 1.1.1	S5497-28		S5497-24		M46966-5
Date Sampled	Class GA ¹	10/30/2004		10/25/2004		04/28/2005
Semi-volatile Organic Compo	inde hig/L)					
2-Methylnaphthalene	NL	87		1,500	EJ	10 U
Acenaphthene	20**	510	EJ	550	EJ	5 U
Acenaphthylene	NL	54		98		5 U
Anthracene	50**	42	J	48	J	5 U
Benzo(a)anthracene	0.002**	50		50	Ü	5 U
Benzo(a)pyrene	ND	50	U	50	U	5 U
Benzo(b)fluoranthene	0.002**	50	U	50	U	5 U
Benzo(g,h,i)perylene	NL	50		50	U	5 U
Benzo(k)fluoranthene	0.002**	50		50	U	5 UJ
Chrysene	0.002**	50		50	U	5 U
Dibenzo(a,h)anthracene	NL	50	U	50	U	5 U
Fluoranthene	50**	20		17	J	5 U
Fluorene	50**	170		200		5 U
Indeno(1,2,3-cd)pyrene	0.002** 10**	50 830	U EJ	50 1,700	U EJ	5 U
Naphthalene Phenanthrene	50**	250	EJ	250	EJ	5 U
Pyrene	50**	250	J	230	J	5 U
i yione	50	25	J	- 22	J	5 0
Total PAHs (µg/L)	NL	2,000	\vdash	4,400		ND
- W 3: =/		_,500		., , , 00		***
Total CPAHs (μg/L)	NL	ND		ND		ND
1,1'-Biphenyl	5*	120		200		10 U
1,2-Diphenylhydrazine	NL	NA	لبا	NA		10 U
2,2-oxybis(1-Chloropropane)	NL	50		50	U	NA 11
2,4,5-Trichlorophenol	1	50		50	U	10 U
2,4,6-Trichlorophenol	NL E*	50		50	U	10 U
2,4-Dichlorophenol 2,4-Dimethylphenol	5* 50**	50 50		50 50	U	10 U 20 U
2,4-Dimetnyipnenoi 2,4-Dinitrophenol	50^^ 10**	50		50 50	U	20 U
2,4-Dinitrophenol	5*	50	UJ	50	U	10 U
2,6-Dinitrotoluene	5*	50		50	U	10 U
2-Chloronaphthalene	10**	50		50	Ü	10 U
2-Chlorophenol	NL	50	U	50	U	10 U
2-Methylphenol	NL	50		50	Ü	10 U
2-Nitroaniline	5*	50	Ū	50	Ū	10 U
2-Nitrophenol	NL	50		50	U	10 U
3&4-Methylphenol	NL	50		50	U	10 U
3,3'-Dichlorobenzidine	5*	50		50	U	5 U
3-Nitroaniline	NL	50	U	50	U	10 U
4,6-Dinitro-o-cresol	NL NI	NA 50	\vdash	NA 50		10 U
4,6-Dinitro-2-methylphenol	NL NI	50		50	U	NA 10 U
4-Bromophenyl phenyl ether	NL NL	50 50	U	50 50		10 U 20 U
4-Chloro-3-methylphenol 4-Chloroaniline	5*	50		50	U	10 U
4-Chlorophenyl phenyl ether	NL NL	50	U	50	U	10 U
4-Nitroaniline	5*	7.9	J	50	U	10 U
4-Nitrophenol	NL	50		50	Ü	50 U
Acetophenone	NL NL	50	Ū	50	Ū	10 U
Aniline	5*	NA		NA		10 UJ
Atrazine	7.5	50	U	50	U	10 U
Benzaldehyde	NL	50	U	50	U	20 U
Benzoic acid	NL	NA	لبا	NA		10 U
Bis(2-chloroethoxy) methane	0.002**	50	U	50	U	10 U
Bis(2-chloroethyl) ether	5*	50	U	50	U	10 U
bis(2-Chloroisopropyl)ether	NL	NA 50	 -	NA 50	U	10 U
Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate	5 NL	50 50		50 50	U	10 U 10 U
Caprolactam	NL NL	50	U	50	U	10 U
Carbazole	NL NL	8.4	J	27	J	10 U
Dibenzofuran	NL NL	32	J	79	_	10 U
Diethyl phthalate	NL NL	50	U	50	U	10 U
Dimethyl phthalate	NL NL	50		50	Ü	10 U
Di-n-butyl phthalate	NL	50		50	Ü	10 U
Di-n-octyl phthalate	50**	50	U	50	כ	10 U
Hexachlorobenzene	0.04		UJ	50	U	10 U
Hexachlorobutadiene	0.5	50		50	U	10 U
Hexachlorocyclopentadiene	5*	50		50	U	10 U
Hexachloroethane	5*	50		50	U	10 U
Isophorone	50**	50		50	U	10 U
Nitrobenzene	0.4 NL	50		50	=	10 U
N-Nitroso-Di-n-propylamine N-nitrosodiphenylamine	NL 50**	50 50		50 50	U	10 U
Pentachlorophenol	1***	50		50	U	10 U
Phenol	1***	50		50	Ü	10 U
			Ė		Ė	
Total SVOCs (µg/L) ²	NL	2,200		4,700		ND

Notes:

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Nethod Detection Limit

E= Result is greater than the highest analytical calibration standard.

J = The associated numerical value is an estimated quantity.

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

Bold value - compound detected above NYSDEC Class GA groundwater standard or guidance value, comparison for reference purposes.

Class GA Drinking Water Standard or Guidance Value

Class GA Drinking Water Standard or Guidance Value

The total SVOC values include all PAH compounds

Principal Organic Contaminant Standard

**Class GA Guidance Value

**Applies to total chlorinated phenolic compounds

CPAHs - Carcinogenic PAHs which are shown in bold and italics

Table B-15
Groundwater BTEX and Naphthalene Results - November 2004
Norwich Former MGP Site
Norwich, New York

Sample ID Laboratory Identification Date Sampled		NO-PZ03 S5893-01 11/22/200		NO-PZ04 S5893-02 11/22/200	2	NO-PZ07 S5893-03 11/22/200	3	NO-PZ08 S5893-04 11/22/200	1
Volatile Organic Compour	nds (µg/L)								
Benzene	1	0.20	U	0.32	J	0.59	J	120	D
Ethyl Benzene	5*	0.18	U	1.50		0.18	U	320	D
Toluene	5*	0.19	U	0.19	U	0.19	U	11	
m&p-Xylenes	5*	0.36	U	0.36	U	0.36	U	15	
o-Xylene	5*	0.17	U	1.60		0.25	J	75	D
Naphthalene	10**	0.13	U	0.54	J	0.92	J	95	D

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

D = The concentration indicated was obtained from a diluted analytical run.

J = The associated numerical value is an estimated quantity.

R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process Bold value - compound detected above regulatory standard or guidance value.

¹Class GA Drinking Water Standard or Guidance Value

^{*}Principal Organic Contaminant Standard

^{**}Class GA Guidance Value

Table B-16 Groundwater VOC Results - July 2005 Norwich Former MGP Site, Norwich, New York

Sample ID	NYSDEC	NO-GW92-12	NO-PZ03	NO-PZ10	NO-PZ11	NO-PZ12	NO-PZ13	NO-PZ14	NO-PZ15	NO-PZ16	NO-PZ17	NO-PZ18
Laboratory Identification	TOGS 1.1.1	M49539-21	M49539-3	M49539-13	M49539-2	M49539-1	M49539-22	M49539-23	M49539-16	M49539-9	M49539-6	M49539-24
Date Sampled	Class GA ¹	07/26/2005	07/25/2005	07/26/2005	07/25/2005	07/25/2005	07/26/2005	07/26/2005	07/26/2005	07/25/2005	07/25/2005	07/26/2005
Volatile Organic Compounds (u	g/L)											
Acetone	50**	5.0 U										
Benzene	1	0.5 U	0.5 U	20.6	0.5 U	0.5 U	1.1	1.0	60.4	0.5 U	0.5 U	0.5 U
Bromodichloromethane	50**	1.0 U										
Bromoform	50**	1.0 U										
Bromomethane	5*	2.0 U	2.0 UJ	2.0 U	2.0 UJ	2.0 UJ	2.0 U	2.0 U	2.0 U	2.0 UJ	2.0 UJ	2.0 U
2-Butanone (MEK)	50**	5.0 U										
Carbon disulfide	NL	5.0 U	5.0 UJ	1.1	5.0 UJ	5.0 UJ	5.0 U	5.0 U	0.65 J	5.0 UJ	5.0 UJ	5.0 U
Carbon tetrachloride	NL	1.0 U										
Chlorobenzene	5*	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 UJ	1.0 U
Chloroethane	5*	2.0 U										
Chloroform	7	1.0 U										
Chloromethane	NL	2.0 U										
Cyclohexane	NL	5.0 U	5.0 UJ	5.0 U	5.0 UJ	5.0 UJ	5.0 U	5.0 U	5.0 U	5.0 UJ	5.0 UJ	5.0 U
1,2-Dibromo-3-chloropropane	0.04	5.0 U	5.0 UJ	5.0 U	5.0 UJ	5.0 UJ	5.0 U	5.0 U	5.0 U	5.0 UJ	5.0 UJ	5.0 U
Dibromochloromethane	50**	1.0 U										
1,2-Dibromoethane	NL	2.0 U										
1,2-Dichlorobenzene	3	1.0 U										
1,3-Dichlorobenzene	3	1.0 U										
1,4-Dichlorobenzene	3	1.0 U										
Dichlorodifluoromethane	5*	2.0 U	2.0 UJ	2.0 U	2.0 UJ	2.0 UJ	2.0 U	2.0 U	2.0 U	2.0 UJ	2.0 UJ	2.0 U
1,1-Dichloroethane	5*	1.0 U										
1,2-Dichloroethane	0.6	1.0 U										
1,1-Dichloroethene	5* 5*	1.0 U	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	5* 5*	1.0 U 1.0 U		1.0 U	1.0 U 1.0 U							
1,2-Dichloropropane	5 1	1.0 U 2.0 U	2.0 U	1.0 U 2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	1.0 U 2.0 U	2.0 U	2.0 U
cis-1,3-Dichloropropene	0.4	0.5 U										
trans-1,3-Dichloropropene	5*	0.5 U										
Ethylbenzene	5*	1.0 U	1.0 U	174	1.0 U	1.0 U	3.9	0.7	160	1.0 U	1.0 U	0.85 J
Freon 113	NL	5.0 U	5.0 U	5.0 U	5.0 U	5.0 UJ	5.0 U					
2-Hexanone	50**	5.0 U	5.0 UJ	5.0 U	5.0 UJ	5.0 UJ	5.0 U	5.0 U	5.0 U	5.0 UJ	5.0 UJ	5.0 U
Isopropylbenzene	5*	5.0 U	5.0 U	22.6	5.0 U	5.0 U	1.6 J	1.9	24.4	5.0 U	5.0 U	5.0 U
Methyl Acetate	NL	5.0 U	5.0 UJ	5.0 U	5.0 UJ	5.0 UJ	5.0 U	5.0 U	5.0 U	5.0 UJ	5.0 UJ	5.0 U
Methylcyclohexane	NL	5.0 U	5.0 U	5.0 U	5.0 U	5.0 UJ	5.0 U					
Methyl Tert Butyl Ether	10	1.0 U										
4-Methyl-2-pentanone (MIBK)	5*	5.0 U	5.0 UJ	5.0 U	5.0 UJ	5.0 UJ	5.0 U	5.0 U	5.0 U	5.0 UJ	5.0 UJ	5.0 U
Methylene chloride	5*	2.0 U										
Styrene	5*	5.0 U										
1,1,2,2-Tetrachloroethane	5*	1.0 U										
Tetrachloroethene	5*	1.0 U										
Toluene	5*	1.0 U	1.0 U	2.6	1.0 U	1.0 U	1.0 U	1.0 U	2.8	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	NL	5.0 U										
1,1,1-Trichloroethane	5*	1.0 U										
1,1,2-Trichloroethane	1	1.0 U										
Trichloroethene	5*	1.0 U										
Trichlorofluoromethane	5*	1.0 U										
Vinyl chloride	2	1.0 U										
Xylene (total)	5*	1.0 U	1.0 U	49.8	1.0 U	1.0 U	2.7	2.1	41.4	1.0 U	1.0 U	1.0 U
Total VOCs (μg/L)	NL	ND	ND	270	ND	ND	9.3	5.7	290	ND	ND	0.85

Notes:

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

Bold value - compound detected above regulatory standard or guidance value.

¹Class GA Drinking Water Standard or Guidance Value

D = The concentration indicated was obtained from a diluted analytical run.

J = The associated numerical value is an estimated quantity.

^{*}Principal Organic Contaminant Standard

^{**}Class GA Guidance Value

Table B-16 Groundwater VOC Results - July 2005 Norwich Former MGP Site, Norwich, New York

Sample ID	NYSDEC	NO-PZ19	NO-PZ20	NO-PZ21	NO-PZ22	NO-PZ23	NO-PZ24	NO-PZ25	NO-PZ26	NO-PZ27	NO-PZ28
Laboratory Identification	TOGS 1.1.1	M49539-18	M49539-7	M49539-25	M49539-26	M49539-15	M49539-8	M49539-10	M49539-4	M49539-5	M49539-17
Date Sampled	Class GA ¹	07/26/2005	07/25/2005	07/26/2005	07/26/2005	07/26/2005	07/25/2005	07/25/2005	07/25/2005	07/25/2005	07/26/2005
Date campion	0.000 0/1	0.720.2000	0.720.2000	0172072000	0772072000	0172072000	0772072000	0172072000	0772072000	0772072000	0772072000
Volatile Organic Compounds (µ	g/L)										
Acetone	50**	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzene	1	31.6	0.5 U	225	59.3	0.5 U	106	49.5	0.5 U	0.5 U	23.8
Bromodichloromethane	50**	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U
Bromoform	50**	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane	5*	2.0 U	2.0 UJ	2.0 U	2.0 U	2.0 U	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	2.0 U
2-Butanone (MEK)	50**	5.0 U	5.0 U	5.0 U	5.0 U	22.5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Carbon disulfide	NL	5.0 U	5.0 UJ	5.0 U	5.0 U	5.0 U	5.0 UJ	5.0 UJ	5.0 UJ	5.0 UJ	5.0 U
Carbon tetrachloride	NL	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	5*	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U
Chloroethane	5*	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloroform	7	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	NL	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Cyclohexane	NL	5.0 U	5.0 UJ	5.0 U	5.0 U	5.0 U	5.0 UJ	5.0 UJ	5.0 UJ	5.0 UJ	5.0 U
1,2-Dibromo-3-chloropropane	0.04	5.0 U	5.0 UJ	5.0 U	5.0 U	5.0 U	5.0 UJ	5.0 UJ	5.0 UJ	5.0 UJ	5.0 U
Dibromochloromethane	50**	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromoethane	NL	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichlorobenzene	3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dichlorodifluoromethane	5*	2.0 U	2.0 UJ	2.0 U	2.0 U	2.0 U	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	2.0 U
1,1-Dichloroethane	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	0.6	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
cis-1,3-Dichloropropene	0.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene	5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	5*	53.9	1.0 U	595	75.1	0.49 J	236	36.1	1.0 U	1.0 U	14.4
Freon 113	NL 50**	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2-Hexanone	50**	5.0 U	5.0 UJ	5.0 U	5.0 U	5.0 U	5.0 UJ	5.0 UJ	5.0 UJ	5.0 UJ	5.0 U
Isopropylbenzene	5* NL	11.4 5.0 U	5.0 U 5.0 UJ	36.1 5.0 U	9.4 5.0 U	5.0 U 5.0 U	17.4 5.0 UJ	18.1 5.0 UJ	5.0 U 5.0 UJ	5.0 U 5.0 UJ	9.3 5.0 U
Methyl Acetate	NL NL										
Methylcyclohexane Methyl Tert Butyl Ether	NL 10	5.0 U 1.0 U	5.0 U 1.0 U	5.0 U 1.0 U	5.0 U 1.0 U	5.0 U 1.0 U	5.0 U 1.0 U	5.0 U 1.0 U	5.0 U 1.0 U	5.0 U 1.0 U	5.0 U 1.0 U
	5*	5.0 U	5.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U 5.0 UJ	5.0 UJ	5.0 UJ	1.0 U 5.0 UJ	5.0 U
4-Methyl-2-pentanone (MIBK) Methylene chloride	5* 5*	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Styrene	5* 5*	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,1,2,2-Tetrachloroethane	5* 5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	5*	1.0 0	1.0 U	32.2	2.9	1.0 U	48.3	1.0 U	1.0 U	1.0 U	0.86 J
1.2.4-Trichlorobenzene	NL	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane	NL 5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
1.1.2-Trichloroethane	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl chloride	2	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Xylene (total)	5*	16.7	1.0 U	236	30.2	1.0 U	130	51.6	1.0 U	1.0 U	12.1
ryiono (totai)		10.7	1.0 0	200	30.2	1.0 0	100	31.0	1.0 0	1.0 0	12.1
Total VOCs (μg/L)	NL	120	ND	1,100	180	23	540	160	ND	ND	61

Notes:

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

Bold value - compound detected above regulatory standard or guidance value.

¹Class GA Drinking Water Standard or Guidance Value

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

D = The concentration indicated was obtained from a diluted analytical run.

J = The associated numerical value is an estimated quantity.

^{*}Principal Organic Contaminant Standard

^{**}Class GA Guidance Value

Table B-17 Groundwater VOC Results - December 2005 Norwich Former MGP Site, Norwich, New York

Sample ID	NYSDEC	NO-EXISTING WE	ELI	NO-GW01-		NO-GW04-16	NO-GW91-4D	NO-GW91-4SH	NO-GW91-6	NO-GW91-7	NO-GW92-8	NO-GW92-11D	NO-GW92-11SH
Laboratory Identification	TOGS 1.1.1	M53280-10		M53280-8		M53253-7	M53280-2	M53280-1	M53280-7	M53253-2	M53280-9	M53280-4	M53280-5
Date Sampled	Class GA ¹	12/14/2005		12/14/200	5	12/13/2005	12/13/2005	12/13/2005	12/14/2005	12/12/2005	12/14/2005	12/14/2005	12/14/2005
Valatila Ossasia Ossasassada (4										
Volatile Organic Compounds (5.0		5.0	UJ	5.0 UJ	5.0	5.0 UJ	5.0 UJ	5.0 111	5.0 111	50 111	5.0 UJ
Acetone	50**	5.0 U		5.0 202	UJ	5.0 UJ 7.7	5.0 UJ 0.41 J	0.0	5.0 UJ 67.2	5.0 UJ	5.0 UJ 19.9	5.0 UJ 236	
Benzene	1		U					0.5 U		0.5 U			5.9
Bromodichloromethane Bromoform	50** 50**		U	1.0 1.0	U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
Bromomethane	50 5*		U	2.0	O D	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
	50**		U	5.0	UJ	5.0 UJ	5.0 UJ	5.0 UJ	5.0 UJ	5.0 UJ	5.0 UJ		5.0 UJ
2-Butanone (MEK) Carbon disulfide	NL		JJ	5.0	U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 UJ	5.0 UJ 5.0 U	5.0 U
Carbon disdilide Carbon tetrachloride	NL NL		U	1.0	U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	5*		U	1.0	O D	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane	5*		U	2.0	U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloroform	7		U	1.0	O D	2.0 U	2.0 U	2.0 U	1.0 U	1.0 U	2.0 U	2.0 U	1.0 U
Chloromethane	, NL	2.0 U		2.0	UJ	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ
	NL NL		_		υJ	5.0 U	5.0 U	5.0 U	0.72 J	5.0 U	0.54 J	2.0 UJ 0.6 J	
Cyclohexane 1,2-Dibromo-3-chloropropane	0.04		U	1.1 5.0	U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U 5.0 U
	50**		IJ	1.0		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dibromochloromethane 1,2-Dibromoethane	NL		U	2.0	U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dibromoethane 1,2-Dichlorobenzene	NL 3		U	1.0	U	2.0 U	2.0 U	2.0 U	0.33 J	2.0 U	2.0 U	2.0 U	2.0 U
	3		U	1.0	O D	1.0 U	1.0 U	1.0 U	0.35 J	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	3		U	1.0		1.0 U	1.0 U	1.0 U	0.35 J	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	5*		JJ		UJ	2.0 UJ	2.0 UJ	2.0 UJ		2.0 UJ	2.0 UJ	2.0 UJ	
Dichlorodifluoromethane 1,1-Dichloroethane	5*		U	2.0 1.0	U	2.0 U	2.0 U	2.0 U	2.0 UJ 1.0 U	1.0 U	1.0 U	2.0 U	2.0 UJ 1.0 U
1,1-Dichloroethane	0.6		JJ	1.0	UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ
1,1-Dichloroethene	5*		U	1.0	U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	5*		U	1.0	U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	5*		U	1.0	O D	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	1		IJ	2.0	U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
cis-1,3-Dichloropropene	0.4		U	0.5	U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene	5*		U	0.5	U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	5*		U	758	U	36.1	1.0 U	1.0 U	485	1.0 U	161	154	3.6
Freon 113	NL		U	5.0	U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2-Hexanone	50**		U	5.0	U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 UJ	5.0 U	5.0 U
Isopropylbenzene	5*		U	73.2	0	5.0	1.3	5.0 U	49.3	5.0 U	26.1	35.3	1.8
Methyl Acetate	NL		IJ	5.0	U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 UJ	5.0 U	5.0 U
Methylcyclohexane	NL		U	2.8	0	5.0 U	5.0 U	5.0 U	2.2	5.0 U	2.0	1.1	5.0 U
Methyl Tert Butyl Ether	10		U	1.0	U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
4-Methyl-2-pentanone (MIBK)	5*		U	5.0	U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methylene chloride	5*		U	2.0	U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Styrene	5*		U	1.5	J	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1,2,2-Tetrachloroethane	5*		U	1.0	U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	5*		IJ	1.0	U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U
Toluene	5*		U	83.9		4.3	1.0 U	1.0 U	46.8	1.0 U	3.7 U	4.4 U	1.0 U
1,2,4-Trichlorobenzene	NL		U	5.0	U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1.1.1-Trichloroethane	5*		IJ	1.0	Ü	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	1		U	1.0	U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	5*		U	1.0	Ü	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane	5*		U	1.0	Ü	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Vinvl chloride	2		U	1.0	Ü	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Xylene (total)	5*	1.1		489		70.8	3.9	1.4	242	1.0 U	45.1 J	96.2	5.5
Total VOCs (µg/L)	NL	1.1		1,600		120	5.6	1.4	890	ND	260	520	17

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

Bold value - compound detected above regulatory standard or guidance value.

Class GA Drinking Water Standard or Guidance Value

J = The associated numerical value is an estimated quantity.

^{*}Principal Organic Contaminant Standard

^{**}Class GA Guidance Value

Table B-17 Groundwater VOC Results - December 2005 Norwich Former MGP Site, Norwich, New York

Sample ID	NYSDEC	NO-GW92-12	NO-GW92-13	NO-PZ01	NO-PZ02	NO-PZ03	NO-PZ04	NO-PZ05	NO-PZ06	NO-PZ07	NO-PZ08
Laboratory Identification	TOGS 1.1.1	M53253-1	M53280-3	M53253-5	M53253-6	M53200-4	M53253-3	M53162-6	M53200-3	M53200-1	M53200-2
Date Sampled	Class GA ¹	12/12/2005	12/13/2005	12/13/2005	12/13/2005	12/08/2005	12/12/2005	12/08/2005	12/08/2005	12/08/2005	12/08/2005
1											
Volatile Organic Compounds (
Acetone	50**	5.0 UJ	5.0 UJ	5.0 UJ	5.0 UJ	5.0 U	5.0 UJ	5.0 U	5.0 UJ	5.0 UJ	5.0 UJ
Benzene	1	0.5 U	0.5 U	41.9	12.5	0.5 U	0.5 U	54	206	77	50
Bromodichloromethane	50**	1.0 U									
Bromoform	50**	1.0 U									
Bromomethane	5*	2.0 U	2.0 UJ	2.0 U	2.0 U	2.0 U					
2-Butanone (MEK)	50**	5.0 UJ	5.0 UJ	5.0 UJ	5.0 UJ	5.0 U	5.0 UJ	5.0 U	5.0 U	5.0 U	5.0 U
Carbon disulfide	NL	5.0 U	5.0 U	5.0 U	0.47 J	5.0 U					
Carbon tetrachloride	NL	1.0 U									
Chlorobenzene	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.2 U	1.0 U				
Chloroethane	5*	2.0 U									
Chloroform	7	1.0 U									
Chloromethane	NL	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	2.0 U	2.0 UJ	2.0 U	2.0 U	2.0 U	2.0 U
Cyclohexane	NL	5.0 U	1.1	5.0 U	0.5 J						
1,2-Dibromo-3-chloropropane	0.04	5.0 U									
Dibromochloromethane	50**	1.0 U									
1,2-Dibromoethane	NL	2.0 U									
1,2-Dichlorobenzene	3	1.0 U									
1,3-Dichlorobenzene	3	1.0 U									
1,4-Dichlorobenzene	3	1.0 U									
Dichlorodifluoromethane	5*	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	2.0 U	2.0 UJ	2.0 UJ	2.0 U	2.0 U	2.0 U
1,1-Dichloroethane	5*	1.0 U									
1,2-Dichloroethane	0.6	1.0 UJ									
1,1-Dichloroethene	5*	1.0 U									
cis-1,2-Dichloroethene	5*	1.0 U									
trans-1,2-Dichloroethene	5*	1.0 U									
1,2-Dichloropropane	1	2.0 U									
cis-1,3-Dichloropropene	0.4	0.5 U									
trans-1,3-Dichloropropene	5*	0.5 U									
Ethylbenzene	5*	1.0 U	1.0 U	76.9	137	1.0 U	1.0 U	44	597	1.0 U	221
Freon 113	NL	5.0 U									
2-Hexanone	50**	5.0 U	5.0 UJ	5.0 U	5.0 U	5.0 U					
Isopropylbenzene	5*	5.0 U	5.0 U	4.7	14.6	5.0 U	5.0 U	19	60	8	31
Methyl Acetate	NL	5.0 U									
Methylcyclohexane	NL	5.0 U	5.0 U	0.7 J	1.5	5.0 UJ	5.0 U	5.0 U	2.6 J	5.0 UJ	2.0 J
Methyl Tert Butyl Ether	10	1.0 U									
4-Methyl-2-pentanone (MIBK)	5*	5.0 U									
Methylene chloride	5*	2.0 U									
Styrene	5*	5.0 U	5.0 U	5.0 U	2.1	5.0 U					
1,1,2,2-Tetrachloroethane	5*	1.0 U									
Tetrachloroethene	5*	1.0 U									
Toluene	5*	1.0 U	1.0 U	6.0	7.0	1.0 U	0.83 J	20	126	1.7 U	5.2
1,2,4-Trichlorobenzene	NL	5.0 U									
1,1,1-Trichloroethane	5*	1.0 U									
1,1,2-Trichloroethane	1	1.0 U									
Trichloroethene	5*	1.0 U									
Trichlorofluoromethane	5*	1.0 U									
Vinyl chloride	2	1.0 U									
Xylene (total)	5*	1.0 U	1.0 U	52.3	63.4	1.0 U	1.0 U	55	399	33	61
Total VOCs (ug/L)	NII .	ND	ND	400	040	ND	0.00	190	4.400	400	270
Total VOCs (µg/L)	NL	ND	ND	180	240	ND	0.83	190	1,400	120	370

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

Bold value - compound detected above regulatory standard or guidance value.

¹Class GA Drinking Water Standard or Guidance Value

J = The associated numerical value is an estimated quantity.

^{*}Principal Organic Contaminant Standard

^{**}Class GA Guidance Value

Table B-17 Groundwater VOC Results - December 2005 Norwich Former MGP Site, Norwich, New York

Sample ID	NYSDEC	NO-PZ09	NO-PZ		NO-PZ11	NO-PZ12	NO-PZ13	NO-PZ14	NO-PZ15	NO-PZ16	NO-PZ17	NO-PZ18
Laboratory Identification	TOGS 1.1.1	M53200-9	M53200-	17	M53162-4	M53162-10	M53200-5	M53200-18	M53200-16	M53162-8	M53162-9	M53200-8
Date Sampled	Class GA ¹	12/09/2005	12/09/20	05	12/07/2005	12/08/2005	12/08/2005	12/09/2005	12/09/2005	12/08/2005	12/08/2005	12/09/2005
Volatile Organic Compounds (
Acetone	50**	5.0 U	5.0		5.0 U	5.0 U	5.0 UJ	5.0 UJ	5.0 UJ	5.0 U	5.0 U	5.0 UJ
Benzene	1	272	2.	'	0.5 U	0.5 U	0.5 U	0.5 U	48	0.5 U	0.5 U	0.5 U
Bromodichloromethane	50**	1.0 U	1.0		1.0 U							
Bromoform	50**	1.0 U	1.0		1.0 U							
Bromomethane	5*	2.0 U	2.0		2.0 UJ	2.0 UJ	2.0 U	2.0 U	2.0 U	2.0 UJ	2.0 UJ	2.0 U
2-Butanone (MEK)	50**	5.0 U	5.0		5.0 U							
Carbon disulfide	NL	5.0 U	5.0		5.0 U							
Carbon tetrachloride	NL	1.0 U	1.0		1.0 U							
Chlorobenzene	5*	1.0 U	1.0		1.0 U							
Chloroethane	5*	2.0 U	2.0		2.0 U							
Chloroform	7	1.0 U	1.0		1.0 U							
Chloromethane	NL	2.0 U	2.0		2.0 U							
Cyclohexane	NL	0.6 J	5.0		5.0 U	5.0 U	5.0 U	5.0 U	0.5 J	5.0 U	5.0 U	5.0 U
1,2-Dibromo-3-chloropropane	0.04	5.0 U	5.0		5.0 U							
Dibromochloromethane	50**	1.0 U	1.0		1.0 U							
1,2-Dibromoethane	NL	2.0 U	2.0		2.0 U	2.0 U	2.0 U	2.0 UJ	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichlorobenzene	3	0.3 J	1.0		1.0 U							
1,3-Dichlorobenzene	3	0.3 J	1.0		1.0 U							
1,4-Dichlorobenzene	3	1.0 U	1.0		1.0 U							
Dichlorodifluoromethane	5*	2.0 U	2.0		2.0 UJ	2.0 UJ	2.0 U	2.0 U	2.0 U	2.0 UJ	2.0 UJ	2.0 U
1,1-Dichloroethane	5*	1.0 U	1.0		1.0 U							
1,2-Dichloroethane	0.6	1.0 U.	1.0		1.0 UJ							
1,1-Dichloroethene	5*	1.0 U	1.0		1.0 U							
cis-1,2-Dichloroethene	5*	1.0 U	1.0		1.0 U							
trans-1,2-Dichloroethene	5* 1	1.0 U 2.0 U	1.0		1.0 U 2.0 U							
1,2-Dichloropropane					2.0 U			0.5 U		2.0 U	0.5 U	
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	0.4 5*	0.5 U 0.5 U	0.9		0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U	0.5 U 0.5 U	0.5 U	0.5 U	0.5 U 0.5 U
Ethylbenzene	5*	388	30	_	1.0 U	1.0 U	0.5 U	0.5 U	153	1.0 U	1.0 U	1.0 U
Freon 113	NL	5.0 U	5.0		5.0 U							
2-Hexanone	50**	5.0 U	5.0		5.0 UJ	5.0 UJ	5.0 U	5.0 U	5.0 U	5.0 UJ	5.0 UJ	5.0 U
Isopropylbenzene	5*	40	5.9		5.0 U	5.0 U	5.0 U	0.3 J	24	5.0 U	5.0 U	5.0 U
Methyl Acetate	NL NL	5.0 U	5.0		5.0 U							
Methylcyclohexane	NL	1.3 J	0.7		5.0 U	5.0 U	5.0 UJ	5.0 UJ	1.6 J	5.0 U	5.0 U	5.0 UJ
Methyl Tert Butyl Ether	10	1.0 U	1.0		1.0 U							
4-Methyl-2-pentanone (MIBK)	5*	5.0 U	5.0		5.0 U							
Methylene chloride	5*	2.0 U	2.0		2.0 U							
Styrene	5*	5.0 U	5.0		5.0 U							
1,1,2,2-Tetrachloroethane	5*	0.3 J	1.0		1.0 U							
Tetrachloroethene	5*	1.0 U	1.0		1.0 U							
Toluene	5*	125	1.2		1.0 U	1.0 U	1.0 U	1.0 U	3.7 U	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	NL	5.0 U	5.0		5.0 U							
1,1,1-Trichloroethane	5*	1.0 U	1.0		1.0 U							
1,1,2-Trichloroethane	1	1.0 U	1.0		1.0 U							
Trichloroethene	5*	1.0 U	1.0		1.0 U							
Trichlorofluoromethane	5*	1.0 U	1.0		1.0 U							
Vinyl chloride	2	1.0 U	1.0		1.0 U							
Xylene (total)	5*	261	1.		1.0 U	1.0 U	0.32 J	0.30 J	45	1.0 U	1.0 U	0.27 J
Total VOCs (μg/L)	NL	1,100	49)	ND	ND	0.68	0.91	270	ND	ND	0.27

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

Bold value - compound detected above regulatory standard or guidance value.

Class GA Drinking Water Standard or Guidance Value

J = The associated numerical value is an estimated quantity.

^{*}Principal Organic Contaminant Standard

^{**}Class GA Guidance Value

Table B-17 Groundwater VOC Results - December 2005 Norwich Former MGP Site, Norwich, New York

Sample ID	NYSDEC	NO-PZ19	NO-PZ20	NO-PZ21	NO-PZ22	NO-PZ23	NO-PZ24	NO-PZ25	NO-PZ26	NO-PZ27	NO-PZ28
Laboratory Identification	TOGS 1.1.1	M53200-7	M53135-7	M53135-8	M53162-1	M53200-19	M53200-12	M53200-13	M53162-2	M53162-5	M53200-14
Date Sampled	Class GA ¹	12/09/2005	12/07/2005	12/07/2005	12/07/2005	12/09/2005	12/09/2005	12/09/2005	12/07/2005	12/08/2005	12/09/2005
Volatile Organic Compounds	(µg/L)										
Acetone	50**	5.0 UJ	5.0 U	5.0 U	5.0 U	5.0 U	5.0 UJ	5.0 UJ	5.0 U	5.0 U	5.0 UJ
Benzene	1	27.8	87.4 J	207	378	0.5 U	122	46	0.5 U	0.5 U	22.6
Bromodichloromethane	50**	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	50**	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane	5*	2.0 U	2.0 UJ	2.0 UJ	2.0 UJ	2.0 U	2.0 U	2.0 U	2.0 UJ	2.0 UJ	2.0 U
2-Butanone (MEK)	50**	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Carbon disulfide	NL	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Carbon tetrachloride	NL	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane	5*	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloroform	7	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	NL	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Cyclohexane	NL	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dibromo-3-chloropropane	0.04	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Dibromochloromethane	50**	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromoethane	NL	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichlorobenzene	3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dichlorodifluoromethane	5*	2.0 U	2.0 UJ	2.0 UJ	2.0 UJ	2.0 U	2.0 U	2.0 U	2.0 UJ	2.0 UJ	2.0 U
1,1-Dichloroethane	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ
1,2-Dichloroethane	0.6	1.0 UJ	1.0 U	1.0 U	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U
1,1-Dichloroethene	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
cis-1,3-Dichloropropene	0.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene	5* 5*	0.5 U	0.5 U	0.5 U 687	0.5 U 558	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	5^ NL	69.2	1.0 U 5.0 U			1.0 U 5.0 U	269 5.0 U	38	1.0 U 5.0 U	1.0 U 5.0 U	17.8 5.0 U
Freon 113 2-Hexanone	NL 50**	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 UJ	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 UJ	5.0 U 5.0 UJ	5.0 U 5.0 U
Isopropylbenzene	50 5*	16	7.9	40.9	43.3	5.0 U	22.8	17.8	5.0 U	5.0 U	12.7
Methyl Acetate	NL	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methylcyclohexane	NL NL	1.1 J	5.0 UJ	0.7 J	5.0 U	5.0 UJ	0.71 J	0.75 J	5.0 U	5.0 U	0.7 J
Methyl Tert Butyl Ether	10	1.1 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
4-Methyl-2-pentanone (MIBK)	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methylene chloride	5*	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Styrene	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.1	5.0 U	5.0 U	5.0 U	5.0 U
1,1,2,2-Tetrachloroethane	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	5*	2.1 U	4.1 U	18.6 J	60.6	1.0 U	73.6	2.3 U	1.0 U	1.0 U	1.7 U
1,2,4-Trichlorobenzene	NL	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1,1-Trichloroethane	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl chloride	2	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Xylene (total)	5*	22	42.6	200	253	1.0 U	159	23.2	1.0 U	1.0 U	14.4
Total VOCs (μg/L)	NL	140	140	1.200	1.300	ND	650	130	ND	ND	68
u g/		1-10	170	.,200	.,500	110	300	100	110	110	00

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

Bold value - compound detected above regulatory standard or guidance value.

¹Class GA Drinking Water Standard or Guidance Value

J = The associated numerical value is an estimated quantity.

^{*}Principal Organic Contaminant Standard
**Class GA Guidance Value

Table B-17 Groundwater VOC Results - December 2005 Norwich Former MGP Site, Norwich, New York

Sample ID	NYSDEC	NO-PZ29	NO-PZ30	NO-PZ31	NO-PZ32	NO-PZ33	NO-PZ34	NO-PZ35	NO-PZ36	NO-PZ37	NO-PZ38
Laboratory Identification	TOGS 1.1.1	M53135-6	M53135-1	M53135-2	M53135-9	M53135-10	M53135-11	M53135-12	M53135-5	M53135-3	M53135-4
Date Sampled	Class GA ¹	12/06/2005	12/06/2005	12/06/2005	12/07/2005	12/07/2005	12/07/2005	12/07/2005	12/06/2005	12/06/2005	12/06/2005
Volatile Organic Compounds	(μg/L)										
Acetone	50**	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzene	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane	50**	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	50**	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane	5*	2.0 UJ	2.0 UJ	2.0 UJ	2.0 U	2.0 UJ					
2-Butanone (MEK)	50**	5.0 U	5.0 U	5.0 U	5.0 UJ	5.0 U					
Carbon disulfide	NL	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Carbon tetrachloride	NL	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane	5*	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloroform	7	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.3 J	1.0 U	1.0 U	0.55 J
Chloromethane	NL	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Cyclohexane	NL 0.04	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dibromo-3-chloropropane	0.04	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Dibromochloromethane	50**	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromoethane	NL 2	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichlorobenzene	3	1.0 U	1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	1.0 U	1.0 U	1.0 U 1.0 U	1.0 U
1,3-Dichlorobenzene	3	1.0 U	1.0 U				1.0 U	1.0 U	1.0 U		1.0 U
1,4-Dichlorobenzene	3 5*	1.0 U 2.0 UJ	1.0 U 2.0 UJ	1.0 U 2.0 UJ	1.0 U 2.0 U	1.0 U 2.0 UJ					
Dichlorodifluoromethane 1,1-Dichloroethane	5*	2.0 UJ	2.0 UJ	2.0 UJ	2.0 U	2.0 UJ	1.0 U				
1,1-Dichloroethane	0.6	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
cis-1,3-Dichloropropene	0.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene	5*	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Freon 113	NL	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2-Hexanone	50**	5.0 U	5.0 U	5.0 U	5.0 UJ	5.0 U					
Isopropylbenzene	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methyl Acetate	NL	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methylcyclohexane	NL	5.0 UJ	5.0 UJ	5.0 UJ	5.0 U	5.0 UJ					
Methyl Tert Butyl Ether	10	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
4-Methyl-2-pentanone (MIBK)	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methylene chloride	5*	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Styrene	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1,2,2-Tetrachloroethane	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	NL	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1,1-Trichloroethane	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl chloride	2	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Xylene (total)	5*	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Total VOCs (μg/L)	NL	ND	ND	ND	ND	ND	ND	0.3	ND	ND	0.55

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

Bold value - compound detected above regulatory standard or guidance value.

¹Class GA Drinking Water Standard or Guidance Value

J = The associated numerical value is an estimated quantity.

^{*}Principal Organic Contaminant Standard

^{**}Class GA Guidance Value

Table B-17 Groundwater VOC Results - December 2005 Norwich Former MGP Site, Norwich, New York

Sample ID	NYSDEC	NO-PZ39	9
Laboratory Identification		M53162-	
Date Sampled		12/07/200	-
Date Sampled	Class GA	12/07/200	,5
Volatile Organic Compounds	(ua/L)		
Acetone	50**	5.0	U
Benzene	1	0.5	Ü
Bromodichloromethane	50**	1.0	Ü
Bromoform	50**	1.0	Ü
Bromomethane	5*	2.0	UJ
2-Butanone (MEK)	50**	5.0	U
Carbon disulfide	NL	5.0	Ü
Carbon tetrachloride	NL	1.0	U
Chlorobenzene	5*	1.0	Ü
Chloroethane	5*	2.0	Ü
Chloroform	7	1.0	Ü
Chloromethane	NL	2.0	Ü
Cyclohexane	NL	5.0	Ü
1,2-Dibromo-3-chloropropane	0.04	5.0	U
Dibromochloromethane	50**	1.0	U
1,2-Dibromoethane	NL	2.0	Ü
1.2-Dichlorobenzene	3	1.0	Ü
1,3-Dichlorobenzene	3	1.0	Ü
1,4-Dichlorobenzene	3	1.0	Ü
Dichlorodifluoromethane	5*	2.0	UJ
1,1-Dichloroethane	5*	1.0	U
1,2-Dichloroethane	0.6	1.0	UJ
1,1-Dichloroethene	5*	1.0	U
cis-1,2-Dichloroethene	5*	1.0	U
trans-1,2-Dichloroethene	5*	1.0	U
1,2-Dichloropropane	1	2.0	U
cis-1,3-Dichloropropene	0.4	0.5	U
trans-1,3-Dichloropropene	5*	0.5	U
Ethylbenzene	5*	1.0	U
Freon 113	NL	5.0	U
2-Hexanone	50**	5.0	UJ
Isopropylbenzene	5*	5.0	U
Methyl Acetate	NL	5.0	U
Methylcyclohexane	NL	5.0	U
Methyl Tert Butyl Ether	10	1.0	U
4-Methyl-2-pentanone (MIBK)	5*	5.0	U
Methylene chloride	5*	2.0	U
Styrene	5*	5.0	U
1,1,2,2-Tetrachloroethane	5*	1.0	U
Tetrachloroethene	5*	1.0	U
Toluene	5*	1.0	U
1,2,4-Trichlorobenzene	NL	5.0	U
1,1,1-Trichloroethane	5*	1.0	U
1,1,2-Trichloroethane	1	1.0	U
Trichloroethene	5*	1.0	U
Trichlorofluoromethane	5*	1.0	U
Vinyl chloride	2	1.0	U
Xylene (total)	5*	1.0	U
Total VOCs (μg/L)	NL	ND	

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit. J = The associated numerical value is an estimated quantity.

Bold value - compound detected above regulatory standard or guidance value.

¹Class GA Drinking Water Standard or Guidance Value *Principal Organic Contaminant Standard **Class GA Guidance Value

Table B-18 Groundwater SVOC Results - July 2005 Norwich Former MGP Site, Norwich, New York

01 12	NVCDEO	NO CWO 10	NO DZOO	NO DZ40	NO DZ44	NO DZ40	NO 0740	NO 0711	NO 0745	NO DZ40	NO DZ4Z	NO DZ40	NO DZ40	NO DZOO	NO DZO4	NO DZOO	NO DZOO	NO DZO4
Sample ID Laboratory Identification		NO-GW92-12 M49539-21	NO-PZ03 M49539-3	NO-PZ10 M49539-13	NO-PZ11 M49539-2	NO-PZ12 M49539-1	NO-PZ13 M49539-22	NO-PZ14 M49539-23	NO-PZ15 M49539-16	NO-PZ16 M49539-9	NO-PZ17 M49539-6	NO-PZ18 M49539-24	NO-PZ19 M49539-18	NO-PZ20 M49539-7	NO-PZ21 M49539-25	NO-PZ22 M49539-26	NO-PZ23 M49539-15	NO-PZ24 M49539-8
Date Sampled	4	07/26/2005	07/25/2005	07/26/2005	07/25/2005	07/25/2005	07/26/2005	07/26/2005	07/26/2005	07/25/2005	07/25/2005	07/26/2005	07/26/2005	07/25/2005	07/26/2005	07/26/2005	07/26/2005	07/25/2005
Bato campion	0.000 07 1	0172072000	0112012000	0172072000	0172072000	0172072000	01/20/2000	0172072000	0172072000	0172072000	0112012000	0172072000	0172072000	0.72072000	0172072000	0172012000	0172072000	0172072000
Semi-volatile Organic Compo																		
2-Methylnaphthalene	NL 2011	5.0 U	5.1 U	101 J	5.1 U	5.1 U	9.5	4.0	54.1	5.0 U	5.1 U	5.0 U	22.7	5.1 U	34.3	2.1	5.1 U	45.6
Acenaphthene Acenaphthylene	20** NL	5.0 U 5.0 U	5.1 U 5.1 U	53.2	5.1 U 5.1 U	5.1 U 5.1 U	5.4 3.4	5.9 3.9	49.3 7.1	5.0 U 5.0 U	5.1 U 5.1 U	5.0 U 5.0 U	38.3 7.2	5.1 U 5.1 U	56.4 9.1	25.8 5.0	5.1 U 5.1 U	34.7 8.8
Anthracene	50**	5.0 U	5.1 U	4.2	5.1 U	5.1 U	5.0 U	5.0 U	2.2	5.0 U	5.1 U	5.0 U	1.2	5.1 U	3.3	3.0	5.1 U	2.7
Benzo(a)anthracene	0.002**	5.0 U	5.1 U	5.1 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.0 U	5.1 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U
Benzo(a)pyrene	ND	5.0 U	5.1 U	5.1 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.0 U	5.1 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U
Benzo(b)fluoranthene	0.002**	5.0 U	5.1 U	5.1 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.0 U	5.1 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U
Benzo(g,h,i)perylene	NL	5.0 U	5.1 U	5.1 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.0 U	5.1 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U
Benzo(k)fluoranthene	0.002** 0.002**	5.0 U 5.0 U	5.1 U 5.1 U	5.1 U 5.1 U	5.1 U 5.1 U	5.1 U 5.1 U	5.0 U 5.0 U	5.0 U 5.0 U	5.1 U 5.1 U	5.0 U 5.0 U	5.1 U 5.1 U	5.0 U 5.0 U	5.1 U 5.1 U	5.1 U 5.1 U	5.0 U 5.0 U	5.0 U 5.0 U	5.1 U 5.1 U	5.1 U 5.1 U
Chrysene Dibenzo(a,h)anthracene	0.002 NL	5.0 U	5.1 U	5.1 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.0 U	5.1 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U
Fluoranthene	50**	5.0 U	5.1 U	3.2	5.1 U	5.1 U	5.0 U	0.7 J	2.3	5.0 U	5.1 U	5.0 U	1.7	5.1 U	1.0	1.5	5.1 U	1.0
Fluorene	50**	5.0 U	5.1 U	20.2	5.1 U	5.1 U	3.6	1.3	15.9	5.0 U	5.1 U	5.0 U	11.6	5.1 U	19.8	10.7	5.1 U	14.4
Indeno(1,2,3-cd)pyrene	0.002**	5.0 U	5.1 U	5.1 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.0 U	5.1 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U
Naphthalene	10**	5.0 U	5.1 U	21.9	5.1 U	5.1 U	5.0 U	5.0 U	14.4	5.0 U	5.1 U	5.0 U	3.5	5.1 U	186	14.7	5.1 U	406
Phenanthrene Pyrene	50** 50**	5.0 U 5.0 U	5.1 U 5.1 U	24.7 3.7	5.1 U 5.1 U	5.1 U 5.1 U	3.9 5.0 U	5.0 U 1.6	21.4	5.0 U 5.0 U	5.1 U 5.1 U	5.0 U 5.0 U	14 2.3	5.1 U 5.1 U	17.9 0.99 J	13.3 1.6	5.1 U 5.1 U	12.7 1.1
ryrene	30	3.0 0	3.1 0	3.7	3.1 0	3.1 0	3.0 0	1.0	2.4	3.0 0	3.1 0	3.0 0	2.5	3.1 0	0.99 3	1.0	3.1 0	
Total PAHs (µg/L)	NL	ND	ND	240	ND	ND	26	17	170	ND	ND	ND	100	ND	330	78	ND	530
Total CPAHs (µg/L)	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1 1! Diphor: d	F*	40 111	40 111	04 7	10 UJ	40 111	40 117	40 111	20.0	40 111	40 111	40 111	47.0	40 171	05.4	40 111	40 111	10 UJ
1,1'-Biphenyl 1,2-Diphenylhydrazine	5* NL	10 UJ NA	10 UJ 5.1 U	21.7 J NA	10 UJ 5.1 U	10 UJ 5.1 U	10 UJ NA	10 UJ NA	20.2 J NA	10 UJ 5.0 U	10 UJ 5.1 U	10 UJ NA	17.3 J NA	10 UJ 5.1 U	25.1 J NA	10 UJ NA	10 UJ NA	10 UJ 5.1 U
2,4,5-Trichlorophenol	1	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	R	10 U	10 U	10 U
2,4,6-Trichlorophenol	NL	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	R	10 U	10 U	10 U
2,4-Dichlorophenol	5*	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	R	10 U	10 U	10 U
2,4-Dimethylphenol	50**	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	R	10 U	10 U	10 U
2,4-Dinitrophenol 2,4-Dinitrotoluene	10** 5*	20 UJ 10 U	20 U 10 U	20 UJ 10 U	20 U 10 U	20 U 10 U	20 UJ 10 U	20 UJ 10 U	20 UJ 10 U	20 U 10 U	20 U 10 U	20 UJ 10 U	20 UJ 10 U	20 U 10 U	10 U	20 UJ 10 U	20 UJ 10 U	20 U 10 U
2,6-Dinitrotoluene	5*	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Chloronaphthalene	10**	5.0 UJ	5.1 UJ	5.1 UJ	5.1 UJ	5.1 UJ	5.0 UJ	5.0 UJ		5.0 UJ	5.1 UJ	5.0 UJ	5.1 UJ	5.1 UJ	5.0 UJ	5.0 UJ	5.1 UJ	5.1 UJ
2-Chlorophenol	NL	5.0 U	5.1 U	5.1 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.0 U	5.1 U	5.0 U	5.1 U	5.1 U	R	5.0 U	5.1 U	5.1 U
2-Methylphenol	NL	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	R	10 U	10 U	1.4
2-Nitroaniline	5*	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Nitrophenol 3&4-Methylphenol	NL NL	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U	10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	R	10 U 10 U	10 U 10 U	10 U 10 U
3,3'-Dichlorobenzidine	5*	5.0 UJ	5.1 UJ	5.1 UJ	5.1 UJ	5.1 UJ	5.0 UJ	5.0 UJ		5.0 UJ	5.1 UJ	5.0 UJ	5.1 UJ	5.1 UJ	5.0 UJ	5.0 UJ	5.1 UJ	5.1 UJ
3-Nitroaniline	NL	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4,6-Dinitro-o-cresol	NL	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	R	10 U	10 U	10 U
4-Bromophenyl phenyl ether	NL	5.0 U	5.1 U	5.1 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.0 U	5.1 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U
4-Chloro-3-methylphenol 4-Chloroaniline	NL 5*	10 U 10 U	10 U	10 U 10 U	10 U 10 U	10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	R 10 II	10 U 10 U	10 U 10 U	10 U 10 U
4-Chlorophenyl phenyl ether	NL	5.0 U	10 U 5.1 U	5.1 U	5.1 U	10 U 5.1 U	5.0 U	5.0 U	5.1 U	5.0 U	5.1 U	5.0 U	5.1 U	5.1 U	10 U 5.0 U	5.0 U	5.1 U	5.1 U
4-Nitroaniline	5*	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-Nitrophenol	NL	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	R	20 U	20 U	20 U
Acetophenone	NL	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Aniline	5*	NA 10 II	10 U	NA 10 U	10 U	10 U	NA 10 II	NA 10 II	NA 10 II	10 U	10 U	NA 10 II	NA 10 II	10 U	NA 10 II	NA 10 II	NA 10 II	10 U
Atrazine Benzaldehyde	7.5 NL	10 U 20 U	10 U 20 U	10 U 20 U	10 U 20 U	10 U 20 U	10 U 20 U	10 U 20 U	10 U 20 U	10 U 20 U	10 U 20 U	10 U 20 U	10 U 20 U	10 U 20 U	10 U 20 U	10 U 20 U	10 U 20 U	10 U 20 U
Benzoic acid	NL NL	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Bis(2-chloroethoxy) methane	0.002**	5.0 U	5.1 U	5.1 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.0 U	5.1 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U
Bis(2-chloroethyl) ether	5*	5.0 U	5.1 U	5.1 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.0 U	5.1 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U
bis(2-Chloroisopropyl)ether	NL	5.0 U	5.1 U	5.1 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.0 U	5.1 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U
Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate	5 NL	10 U 10 U	10 U 10 U	10 U 10 U	2.1 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	2.2 10 U	10 U 10 U	10 U 10 U	14.5 10 U	10 U 10 U
Caprolactam	NL NL	10 U	10 U	10 U	10 U	10 U	10 U	10 U			10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Carbazole	NL NL	5.0 U	5.1 U	10.8	5.1 U	5.1 U	5.0 U	5.0 U		5.0 U	5.1 U	5.0 U	6.6	5.1 U	15.2	7.2	5.1 U	7.5
Dibenzofuran	NL	5.0 U	5.1 U	4.3	5.1 U	5.1 U	5.0 U	5.0 U	5.0	5.0 U	5.1 U	5.0 U	4.1	5.1 U	6.0	3.4	5.1 U	4.0
Diethyl phthalate	NL	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Dimethyl phthalate	NL NI	10 U 10 U	10 U	10 U 10 U	10 U	10 U	10 U	10 U			10 U	10 U	10 U 10 U	10 U	10 U	10 U	10 U	10 U 10 U
Di-n-butyl phthalate Di-n-octyl phthalate	NL 50**	10 U	10 U 10 U	10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U			10 U 10 U	10 U 10 U	10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U
Hexachlorobenzene	0.04	5.0 U	5.1 U	5.1 U	5.1 U	5.1 U	5.0 U	5.0 U			5.1 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U
Hexachlorobutadiene	0.5	5.0 U	5.1 U	5.1 U	5.1 U	5.1 U	5.0 U	5.0 U			5.1 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	
Hexachlorocyclopentadiene	5*	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Hexachloroethane	5* 50**	5.0 U	5.1 U	5.1 U	5.1 U	5.1 U	5.0 U	5.0 U			5.1 U	5.0 U	5.1 U	5.1 U		5.0 U	5.1 U	5.1 U
Isophorone Nitrobenzene	50** 0.4	5.0 U 5.0 U	5.1 U	5.1 U 5.1 U	5.1 U 5.1 U	5.1 U	5.0 U 5.0 U	5.0 U			5.1 U 5.1 U	5.0 U 5.0 U	5.1 U 5.1 U	5.1 U 5.1 U		5.0 U	5.1 U 5.1 U	5.1 U 5.1 U
N-Nitroso-Di-n-propylamine	0.4 NL	5.0 U	5.1 U 5.1 U	5.1 U	5.1 U 5.1 U	5.1 U 5.1 U	5.0 U	5.0 U 5.0 U			5.1 U	5.0 U	5.1 U	5.1 U		5.0 U 5.0 U	5.1 U	5.1 U 5.1 U
N-nitrosodiphenylamine	50**	5.0 U	5.1 U	5.1 U	5.1 U	5.1 U	5.0 U	5.0 U			5.1 U	5.0 U	5.1 U	5.1 U		5.0 U	5.1 U	5.1 U
Pentachlorophenol	1***	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U	10 U	10 U	10 U	10 U	R	10 U	10 U	10 U
Phenol	1***	5.0 U	5.1 U	5.1 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.0 U	5.1 U	5.0 U	5.1 U	5.1 U	R	1.9	5.1 U	11.5
T-4-1 0\(00-7 \ "\2																		
Total SVOCs (µg/L) ²	NL	ND	ND	280	2.1	ND	26	17	210	ND	ND	ND	130	2.2	370	90	15	550

Notes: NA = Not Analyzed NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit
D = The concentration indicated was obtained from a diluted analytical run.
J = The associated numerical value is an estimated quantity.
R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process
U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

Sample ID Laboratory Identification Date Sampled Semi-volatile Organic Compo 2-Methylnaphthalene Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(g,h,i)nervlene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorante	Class GA ¹ **Unds (µg/L) **NL **20** **NL **50** **ND **0.002** **NL **0.002** **NL **0.002** **NL	NO-PZ25 M49539-1i 07/25/2009 19.3 35.9 5.3 5.1 5.1 5.1 5.1 5.1		NO-PZ26 M49539-4 07/25/2008 5.1 5.1 5.1 5.1 5.1	U U U	NO-PZ27 M49539-5 07/25/2005 5.0 5.0	U	NO-PZ28 M49539-17 07/26/2005 12.3 30.1	
Date Sampled Semi-volatile Organic Compo 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	Class GA ¹ unds (µg/L) NL 20** NL 50** 0.002** ND 0.002** NL 0.002** NL 0.002**	07/25/2009 19.3 35.9 5.3 5.1 5.1 5.1 5.1		07/25/2005 5.1 5.1 5.1 5.1	U U U	07/25/2005 5.0 5.0	U	07/26/2005	
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b,fluoranthene Benzo(b,fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	NL 20** NL 50** 0.002** ND 0.002** NL 0.002** NL 0.002** NL 0.002**	35.9 5.3 5.1 5.1 5.1 5.1 5.1	U	5.1 5.1 5.1	U	5.0	U		-
2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b,fluoranthene Benzo(b,fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	NL 20** NL 50** 0.002** ND 0.002** NL 0.002** NL 0.002** NL 0.002**	35.9 5.3 5.1 5.1 5.1 5.1 5.1	U	5.1 5.1 5.1	U	5.0	U		ı
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b,fluoranthene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	20** NL 50** 0.002** ND 0.002** NL 0.002** NL 0.002**	35.9 5.3 5.1 5.1 5.1 5.1 5.1	U	5.1 5.1 5.1	U	5.0	U		-
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	NL 50** 0.002** ND 0.002** NL 0.002** 0.002**	5.3 5.1 5.1 5.1 5.1 5.1	U	5.1 5.1	U				_
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	50** 0.002** ND 0.002** NL 0.002** 0.002** NL NL	5.1 5.1 5.1 5.1 5.1	U	5.1	_		U	5.6	
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	ND 0.002** NL 0.002** 0.002**	5.1 5.1 5.1	U	5.1	U	5.0	Ü		J
Benzo(b)fluoranthene Benzo(g,h.i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	0.002** NL 0.002** 0.002** NL	5.1 5.1		•	U	5.0	U	5.1	U
Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	NL 0.002** 0.002** NL	5.1		5.1	U	5.0	U		U
Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	0.002** 0.002** NL		U	5.1	U	5.0	U		U
Chrysene Dibenzo(a,h)anthracene Fluoranthene	0.002** NL		U	5.1 5.1	U	5.0 5.0	U		U
Dibenzo(a,h)anthracene Fluoranthene	NL	5.1	U	5.1	U	5.0	U		U
Fluoranthene		5.1	Ü	5.1	Ü	5.0	Ü		Ü
Fluorene	50**	1.7		5.1	U	5.0	U	2.1	
	50**	4.7		5.1	U	5.0	U	7.7	
Indeno(1,2,3-cd)pyrene	0.002**	5.1	U	5.1	U	5.0	U		U
Naphthalene	10**	2.9		5.1	U	5.0	U	1.6	_
Phenanthrene	50** 50**	4.3 1.9		5.1 5.1	U	5.0 5.0	U	9.0 2.3	
Pyrene	50***	1.9		5.1	U	5.0	U	2.3	
Total PAHs (µg/L)	NL	76		ND		ND		72	\neg
Total CPAHs (µg/L)	NL	ND		ND		ND		ND	
4.41.61.1			L						_
1,1'-Biphenyl 1,2-Diphenylhydrazine	5* NL	10 NA	UJ	10	UJ	10	UJ	11 NA	J
2,4,5-Trichlorophenol	NL 1	10	U	5.1 10	U	5.0 10	U		U
2,4,6-Trichlorophenol	NL	10	U	10	U	10	U		U
2,4-Dichlorophenol	5*	10	U	10	Ü	10	U		Ü
2,4-Dimethylphenol	50**	10	U	10	U	10	U		U
2,4-Dinitrophenol	10**	20	UJ	20	U	20	U		UJ
2,4-Dinitrotoluene	5*	10	U	10	U	10	U		U
2,6-Dinitrotoluene 2-Chloronaphthalene	5* 10**	10 5.1	U	10 5.1	UJ	10 5.0	UJ		U UJ
2-Chlorophenol	NL	5.1	U	5.1	U	5.0	U		U
2-Methylphenol	NL	10	Ü	10	Ü	10	U		U
2-Nitroaniline	5*	10	U	10	U	10	U		Ü
2-Nitrophenol	NL	10	U	10	U	10	U		С
3&4-Methylphenol	NL	10	U	10	U	10	U		U
3,3'-Dichlorobenzidine	5*	5.1	UJ	5.1	UJ	5.0	UJ		UJ
3-Nitroaniline 4,6-Dinitro-o-cresol	NL NL	10 10	U	10 10	U	10 10	U		U
4-Bromophenyl phenyl ether	NL NL	5.1	U	5.1	U	5.0	U		U
4-Chloro-3-methylphenol	NL	10	Ü	10	Ü	10	U		Ū
4-Chloroaniline	5*	10	U	10	U	10	U	10	U
4-Chlorophenyl phenyl ether	NL	5.1	U	5.1	U	5.0	U		U
4-Nitroaniline	5*	10	U	10	U	10	U		U
4-Nitrophenol	NL NI	20	U	20	U	20	U		U
Acetophenone Aniline	NL 5*	10 NA	U	10 10	U	10 10	U	10 NA	U
Atrazine	7.5	10	U	10	Ü	10	U		U
Benzaldehyde	NL NL	20	Ü	20	Ü	20	Ü		Ü
Benzoic acid	NL	10	U	10	U	10	U		U
Bis(2-chloroethoxy) methane	0.002**	5.1	U	5.1	U	5.0	U		U
Bis(2-chloroethyl) ether	5*	5.1	U	5.1	U	5.0	U		U
bis(2-Chloroisopropyl)ether Bis(2-ethylhexyl) phthalate	NL 5	5.1 10	U	5.1 1.5	U	5.0 10	U		U
Butyl benzyl phthalate	NL	10	U	1.5	U	10	U		U
Caprolactam	NL NL	10	Ü	10	Ü	10	U		U
Carbazole	NL	5.5		5.1	Ü	5.0	Ü	4.0	
Dibenzofuran	NL	3.6		5.1	U	5.0	U	4.1	
Diethyl phthalate	NL NI	10		10	U	10			U
Dimethyl phthalate	NL NI	10	U	10	U	10	U		U
Di-n-butyl phthalate Di-n-octyl phthalate	NL 50**	10 10	U	10 10	U	10 10	U		U
Hexachlorobenzene	0.04	5.1	U	5.1	U	5.0	U		U
Hexachlorobutadiene	0.5	5.1	U	5.1	Ü	5.0	U		U
Hexachlorocyclopentadiene	5*	10	Ü	10	Ü	10	Ü		Ü
Hexachloroethane	5*	5.1	U	5.1	U	5.0	U	5.1	U
Isophorone	50**	5.1	U	5.1	U	5.0	U		U
Nitrobenzene	0.4	5.1	∵ :	5.1	U	5.0	U		U
N-Nitroso-Di-n-propylamine	NL 50**	5.1	U	5.1	U	5.0	U		U
N-nitrosodiphenylamine Pentachlorophenol	50** 1***	5.1 10	U	5.1 10	U	5.0 10	U		U
Phenol	1***	1.3	J	5.1	U	5.0	U		U
		7.0		5.1		3.0		5	Ť
Total SVOCs (µg/L) ²	NL	86		1.5		ND		91	

2 of 2

Notes: NA = Not Analyzed NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit
D = The concentration indicated was obtained from a diluted analytical run.
J = The associated numerical value is an estimated quantity.
R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process
U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

Table B-18 Groundwater SVOC Results - July 2005 Norwich Former MGP Site, Norwich, New York

Table B-18 Groundwater SVOC Results - July 2005

Bold value - compound detected above regulatory guidance value.

¹Class GA Drinking Water Standard or Guidance Value

²The total SVOC values include all PAH compounds

*Principal Organic Contaminant Standard

**Class GA Guidance Value

***Applies to total chlorinated phenolic compounds

CPAHs - Carcinogenic PAHs which are shown in bold and italics

Sample ID	NYSDEC	NO-EXISTING WELL	NO-GW01-14	NO-GW04-16	NO-GW91-4D	NO-GW91-4SH	NO-GW91-6	NO-GW91-7	NO-GW92-8	NO-GW92-11D	NO-GW92-11SH	NO-GW92-12	NO-GW92-13	NO-PZ01	NO-PZ02
Laboratory Identification Date Sampled	TOGS 1.1.1 Class GA ¹	M53280-10 12/14/2005	M53280-8 12/14/2005	M53253-7 12/13/2005	M53280-2 12/13/2005	M53280-1 12/13/2005	M53280-7 12/14/2005	M53253-2 12/12/2005	M53280-9 12/14/2005	M53280-4 12/14/2005	M53280-5 12/14/2005	M53253-1 12/12/2005	M53280-3 12/13/2005	M53253-5 12/13/2005	M53253-6 12/13/2005
Semi-volatile Organic Compo															
2-Methylnaphthalene	NL 2011	5.0 U	333	84.3	5.1 U	5.2 U	5.0 U	5.9 U	5.1 U	5.1 U	5.0 U	5.0 U	5.2	45.2	78
Acenaphthulana	20** NL	5.0 U 5.0 U	161 10.4	54.2 10.4	5.1 U 5.1 U	5.2 U 5.2 U	5.0 U 5.0 U	5.9 U 5.9 U	58.1 8.8	58.7 15.4	5.0 U 5.0 U	5.0 U 5.0 U	3.2 5.1 U	41.3 3.2	83.9 11.1
Acenaphthylene Anthracene	50**	5.0 U	10.4	7.4	5.1 U	5.2 U	5.0 U	5.9 U	4.9	2.4	5.0 U	5.0 U	5.1 U	6.6	10.5
Benzo(a)anthracene	0.002**	5.0 U	5.0 U	1.2 J	5.1 U	5.2 U	5.0 U	5.9 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U	1.9 J
Benzo(a)pyrene	ND	5.0 U	5.0 U	0.71 J	5.1 U	5.2 U	5.0 U	5.9 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U	1.3
Benzo(b)fluoranthene	0.002**	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U	5.0 U	5.9 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U	0.58 J
Benzo(g,h,i)perylene	NL	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U		5.9 U	5.1 U	5.1 U	5.0 U	5.0 UJ	5.1 U	5.1 U	0.71 J
Benzo(k)fluoranthene	0.002**	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U	5.0 U	5.9 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U	0.78 J
Chrysene	0.002**	5.0 U	5.0 U	0.89 J	5.1 U	5.2 U	5.0 U	5.9 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U	1.5 J
Dibenzo(a,h)anthracene Fluoranthene	NL 50**	5.0 U 5.0 U	5.0 U 3.6	5.1 U 5.2	5.1 U 5.1 U	5.2 U 5.2 U	5.0 U 5.0 U	5.9 U 5.9 U	5.1 U 2.3	5.1 U 0.74 J	5.0 U 5.0 U	5.0 U 5.0 U	5.1 U 5.1 U	5.1 U 4.3	5.2 U 7.0
Fluorene	50**	5.0 U	44.4	17.4	5.1 U	5.2 U	5.0 U	5.9 U	14.8	1.5	5.0 U	5.0 U	5.1 U	12.4	26.7
Indeno(1,2,3-cd)pyrene	0.002**	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U	5.0 U	5.9 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U
Naphthalene	10**	5.0 U	2,810	317 J	5.1 U	5.2 U	2.8	5.9 U	9.2	105	5.0 U	5.0 U	41.9	189	526
Phenanthrene	50**	5.0 U	51.6	28.1	5.1 U	5.2 U	5.0 U	5.9 U	24.5	11.6	5.0 U	5.0 U	0.97 J	22.7	43.7
Pyrene	50**	5.0 U	3.6 J	6.9 J	5.1 U	5.2 U	5.0 U	5.9 U	2.6 J	0.81 J	5.0 U	5.0 U	5.1 U	5.6 J	9.8 J
Total DAHs (//)	NII.	ND	3,400	530	ND	ND	2.8	ND	130	200	ND	ND	51	330	800
Total PAHs (μg/L)	NL	ND	·			IND	2.0	IND							600
Total CPAHs (µg/L)	NL	ND	ND	2.8	ND	6.1									
1,1'-Biphenyl	5*	10 U	55.8	11.5	10 U	10 U	10 U	12 U	16.8	21.5	10 U	10 U	1.1	6.6	21.2
2,4,5-Trichlorophenol	1	10 U	10 U	10 U	10 U	10 U		12 U	10 U						
2,4,6-Trichlorophenol	NL	10 U	10 U	10 U	10 U	10 U	10 U	12 U	10 U						
2,4-Dichlorophenol	5*	10 U	10 U	10 U	10 U	10 U	10 U	12 U	10 U						
2,4-Dimethylphenol	50**	10 U	10 U	1.8	10 U	10 U	10 U	12 U	10 U						
2,4-Dinitrophenol	10**	20 U	20 U	20 U	20 U 10 U	23.8 J	20 U	24 U	20 U 10 U	21 U 10 U					
2,4-Dinitrotoluene 2.6-Dinitrotoluene	5* 5*	10 U 10 U	10 U 10 U	10 U 10 U	10 U	10 U	10 U	12 U 12 U	10 U 10 U	10 U	10 U				
2-Chloronaphthalene	10**	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U	5.0 U	5.9 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U
2-Chlorophenol	NL NL	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U	5.0 U	5.9 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U
2-Methylphenol	NL	10 U	10 U	10 U	10 U	10 U		12 U	10 U						
2-Nitroaniline	5*	10 U	10 U	10 U	10 U	10 U		12 U	10 U						
2-Nitrophenol	NL	10 U	10 U	10 U	10 U	10 U		12 U	10 U						
3&4-Methylphenol	NL 5*	10 U	10 U	4.9	10 U	10 U		12 U	10 U						
3,3'-Dichlorobenzidine 3-Nitroaniline	NL	5.0 U 10 U	5.0 U 10 U	5.1 U 10 U	5.1 U 10 U	5.2 U 10 U	5.0 U 10 U	5.9 U 12 U	5.1 U 10 U	5.1 U 10 U	5.0 U 10 U	5.0 U 10 U	5.1 U 10 U	5.1 U 10 U	5.2 U 10 U
4.6-Dinitro-o-cresol	NL NL	10 U	10 U	10 U	10 U	11.4	10 U	12 U	10 U						
4-Bromophenyl phenyl ether	NL NL	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U	5.0 U	5.9 U	5.1 U	5.1 U	5.0 U	5 U	5.1 U	5.1 U	5.2 U
4-Chloro-3-methylphenol	NL	10 U	10 U	10 U	10 U	10 U	10 U	12 U	10 U						
4-Chloroaniline	5*	10 U	10 U	10 U	10 U	10 U		12 U	10 U						
4-Chlorophenyl phenyl ether	NL	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U	5.0 U	5.9 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U
4-Nitroaniline	5*	10 U	10 U	10 U	10 U	10 U	10 U	12 U 24 U	10 U	10 U 20 U	10 U	10 U	10 U	10 U 20 U	10 U 21 U
4-Nitrophenol Acetophenone	NL NL	20 U 10 U	20 U 10 U	20 U 2.1	20 U 10 U	21 U 10 U	20 U 10 U	12 U	20 U 10 U	20 U	20 U 10 U	20 U 10 U	20 U 10 U	3.1	2.8
Atrazine	7.5	10 U	10 U	10 U	10 U	10 U	10 U	12 U	10 U						
Benzaldehyde	NL NL	R	R	R	1.2 J	R		R	R	R	R	R	R	R	R
Bis(2-chloroethoxy) methane	0.002**	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U		5.9 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U
Bis(2-chloroethyl) ether	5*	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U	5.0 U	5.9 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U
bis(2-Chloroisopropyl)ether	NL F	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U	5.0 U	5.9 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U
Bis(2-ethylhexyl) phthalate	5 NL	2.5 J	1.1 J	10 U	0.68 J	0.65 J	10 U 10 U	12 U 0.65 J	0.99 J	0.53 J	0.59 J	10 U 10 U	10 U	10 U	1.1 J
Caprolactam	NL NL	2.5 J	10 U	10 U	10 U	10 U		12 U	10 U						
Carbazole	NL NL	5.0 U	35.5	4.6	5.1 U	5.2 U		5.9 U	11.4	11.9	5.0 U	5.0 U	0.58 J	2.4	3.8
Dibenzofuran	NL	5.0 U	18.4	10.2	5.1 U	5.2 U	5.0 U	5.9 U	4.1	8.3	5.0 U	5.0 U	5.1 U	3.7	6.8
Diethyl phthalate	NL	10 U	10 U	10 U	10 U	10 U		12 U	10 U						
Dimethyl phthalate	NL NII	10 U 4.6	10 U	10 U	10 U	10 U		12 U	10 U						
Di-n-butyl phthalate Di-n-octyl phthalate	NL 50**	4.6 10 U	4.6 10 U	2.0 10 U	2.1 10 U	1.7 10 U	3.6 10 U	1.6 12 U	5.2 10 U	3.4 10 U	3.3 10 U	1.3 10 U	2.1 10 U	1.6 10 U	2.8 10 U
Hexachlorobenzene	0.04	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U	5.0 U	5.9 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U
Hexachlorobutadiene	0.5	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U		5.9 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U
Hexachlorocyclopentadiene	5*	10 U	10 U	10 U	10 U	10 U	10 U	12 U	10 U						
Hexachloroethane	5*	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U		5.9 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U
Isophorone	50**	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U		5.9 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U
Nitrobenzene N-Nitroso-Di-n-propylamine	0.4 NL	5.0 U 5.0 U	5.0 U 5.0 U	5.1 U 5.1 U	5.1 U 5.1 U	5.2 U 5.2 U		5.9 U 5.9 U	5.1 U 5.1 U	5.1 U 5.1 U	5.0 U 5.0 U	5.0 U 5.0 U	5.1 U 5.1 U	5.1 U 5.1 U	5.2 U 5.2 U
N-nitrosodiphenylamine	50**	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U	5.0 U	5.9 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U
Pentachlorophenol	1***	10 U	10 U	10 U	10 U	7.6 J	10 U	12 U	10 U						
Phenol	1***	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U		5.9 U	5.1 U	5.1 U	5.0 U	5.0 U	5.1 U	5.1 U	5.2 U
Total SVOCs (µg/L) ²	NL	9.6	3,500	570	4.0	45	6.4	2.3	160	240	3.9	1.3	55	350	840
11-0/		0.0	0,000	0.0	7.0	70	5.7	2.0	100	2-10	0.0	1.0	00	000	040

Notes: NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

D = The concentration indicated was obtained from a diluted analytical run.

J = The associated numerical value is an estimated quantity.

R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

Sample ID	NYSDEC	NO-PZ03	NO-PZ04	NO-PZ05	NO-PZ06	NO-PZ07	NO-PZ08	NO-PZ09	NO-PZ10	NO-PZ11	NO-PZ13	NO-PZ14	NO-PZ15	NO-PZ16	NO-PZ17
Laboratory Identification Date Sampled	TOGS 1.1.1 Class GA ¹	M53200-4 12/08/2005	M53253-3 12/12/2005	M53162-6 12/08/2005	M53200-3 12/08/2005	M53200-1 12/08/2005	M53200-2 12/08/2005	M53200-9 12/09/2005	M53200-17 12/09/2005	M53162-4 12/07/2005	M53200-5 12/08/2005	M53200-18 12/09/2005	M53200-16 12/09/2005	M53162-8 12/08/2005	M53162-9 12/08/2005
Semi-volatile Organic Compo	unds (µg/L)														
2-Methylnaphthalene	NL	5.5 U	5.1 U	9.3	158	0.79 J	5.0 U	134	5.0 U	5.1 U	5.0 U	5.0 U	5.0 U	5.1 U	5.1 U
Acenaphthene	20**	5.5 U	5.1 U	39.6	134	3.9	67.7	55	13.7	5.1 U	5.0 U	2.0	52.1	5.1 U	5.1 U
Acenaphthylene Anthracene	NL 50**	5.5 U 5.5 U	5.1 U 5.1 U	10.4 1.4	16.9 8.6	1.7 5.0 U	8.7 5.4	24.7 7.5	3.0 1.1	5.1 U 5.1 U	5.0 U 5.0 U	1.4 5.0 U	7.3	5.1 U 5.1 U	5.1 U 5.1 U
Benzo(a)anthracene	0.002**	5.5 U	5.1 U	5.1 U	5.0 U	5.0 U	5.0 U	7.5 1.9 J	5.0 U	5.1 U	5.0 U	5.0 U	5.0 U	5.1 U	5.1 U
Benzo(a)pyrene	ND	5.5 U	5.1 U	5.1 U	5.0 U	5.0 U	5.0 U	1.5	5.0 U	5.1 U	5.0 U	5.0 U	5.0 U	5.1 U	5.1 U
Benzo(b)fluoranthene	0.002**	5.5 U	5.1 U	5.1 U	5.0 U	5.0 U	5.0 U	0.71 J	5.0 U	5.1 U	5.0 U	5.0 U	5.0 U	5.1 U	5.1 U
Benzo(g,h,i)perylene	NL	5.5 UJ	5.1 U	5.1 UJ	5.0 UJ	5.0 UJ	5.0 UJ	0.86 J	5.0 UJ	5.1 UJ	5.0 UJ	5.0 UJ	5.0 UJ	5.1 UJ	5.1 UJ
Benzo(k)fluoranthene	0.002** 0.002**	5.5 U 5.5 U	5.1 U 5.1 U	5.1 U 5.1 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	0.95 J 1.5 J	5.0 U 5.0 U	5.1 U 5.1 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.1 U 5.1 U	5.1 U 5.1 U
Chrysene Dibenzo(a,h)anthracene	0.002 NL	5.5 U	5.1 U	5.1 U	5.0 U	5.1 U	5.0 U	5.0 U	5.0 U	5.1 U	5.1 U				
Fluoranthene	50**	5.5 U	5.1 U	0.74 J	2.9	5.0 U	2.8	5.4	1.2	5.1 U	5.0 U	5.0 U	2.2	5.1 U	5.1 U
Fluorene	50**	5.5 U	5.1 U	3.0	36.3	5.0 U	5.0 U	18.1	3.9	5.1 U	5.0 U	5.0 U	11.5	5.1 U	5.1 U
Indeno(1,2,3-cd)pyrene	0.002**	5.5 U	5.1 U	5.1 U	5.0 U	5.0 U	5.0 U	0.69 J	5.0 U	5.1 U	5.0 U	5.0 U	5.0 U	5.1 U	5.1 U
Naphthalene Phenanthrene	10** 50**	5.5 U 5.5 U	5.1 U 5.1 U	64.6 5.7	1,780 41.6	33.3 5.0 U	53.3 27.9	647 31.9	1.3 6.0	5.1 U 5.1 U	5.0 U 5.0 U	5.0 U 5.0 U	28.1 20.5	5.1 U 5.1 U	5.1 U 5.1 U
Pyrene	50**	5.5 U	5.1 U	0.96 J	3.3 J	5.0 U	3.5 J	7.6 J	2.1 J	5.1 U	5.0 U	5.0 U	2.9 J	5.1 U	5.1 U
Total PAHs (µg/L)	NL	ND	ND	140	2,200	40	170	940	32	ND	ND	3.4	130	ND	ND
Total CPAHs (µg/L)	NL	ND	ND	ND	ND	ND	ND	7.3	ND	ND	ND	ND	ND	ND	ND
τοιαι GFAITS (μg/L)	INL	ואט	IND	ואט	IND	UND	טאו	1.3	IND	IND	UU	IND	IND	IND	ועוי
1,1'-Biphenyl	5*	11 U	10 U	16.8 J	48.7	2.2	21	23.4	3.6	R	10 U	0.9 J	16.4	R	R
2,4,5-Trichlorophenol	1	11 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U						
2,4,6-Trichlorophenol	NL 5*	11 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U						
2,4-Dichlorophenol 2,4-Dimethylphenol	5* 50**	11 U 11 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U						
2,4-Dinitrophenol	10**	22 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U						
2,4-Dinitrotoluene	5*	11 U	10 U	10 U	3.6 J	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2,6-Dinitrotoluene	5*	11 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U						
2-Chloronaphthalene	10**	5.5 U 5.5 U	5.1 U	5.1 U	5.0 U	5.1 U	5.0 U	5.0 U	5.0 U	5.1 U	5.1 U				
2-Chlorophenol 2-Methylphenol	NL NL	5.5 U 11 U	5.1 U 10 U	5.1 U 10 U	5.0 U 10 U	5.1 U 10 U	5.0 U 10 U	5.0 U 10 U	5.0 U 10 U	5.1 U 10 U	5.1 U 10 U				
2-Nitroaniline	5*	11 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U						
2-Nitrophenol	NL	11 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U						
3&4-Methylphenol	NL	11 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U						
3,3'-Dichlorobenzidine 3-Nitroaniline	5* NL	5.5 UJ 11 U	5.1 U 10 U	5.1 U 10 U	5.0 UJ 10 U	5.0 UJ 10 U	5.0 UJ 10 U	5.0 UJ 10 U	5.0 UJ 10 U	5.1 U 10 U	5.0 UJ 10 U	5.0 UJ 10 U	5.0 UJ 10 U	5.1 U 10 U	5.1 U 10 U
4,6-Dinitro-o-cresol	NL NL	11 0	10 U	10 U	10 U	10 U	10 U	10 U	10 U						
4-Bromophenyl phenyl ether	NL	5.5 U	5.1 U	5.1 U	5 U	5.0 U	5.0 U	5.0 U	5.0 U	5.1 U	5.0 U	5.0 U	5.0 U	5.1 U	5.1 U
4-Chloro-3-methylphenol	NL	11 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U						
4-Chloroaniline	5*	11 UJ 5.5 U	10 U	10 U	10 UJ	10 U 5.1 U	10 UJ	10 UJ	10 UJ	10 U	10 U				
4-Chlorophenyl phenyl ether 4-Nitroaniline	NL 5*	5.5 U 11 U	5.1 U 10 U	5.1 U 10 U	5.0 U 10 U	5.1 U 10 U	5.0 U 10 U	5.0 U 10 U	5.0 U 10 U	5.1 U 10 U	5.1 U 10 U				
4-Nitrophenol	NL NL	22 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U						
Acetophenone	NL	11 U	10 U	R	10 U	R	10 U	10 U	10 U	R	R				
Atrazine	7.5	11 U	10 U	R	10 U	R	10 U	10 U	10 U	R	R				
Benzaldehyde	NL 0.002**	22 UJ 5.5 U	5.1 U	5.1 U	20 UJ 5.0 U	20 UJ 5.0 U	20 UJ 5.0 U	20 UJ 5.0 U	20 UJ 5.0 U	5.1 U	20 UJ 5.0 U	20 UJ 5.0 U	20 UJ 5.0 U	R 5.1 II	5.1 U
Bis(2-chloroethoxy) methane Bis(2-chloroethyl) ether	5*	5.5 U	5.1 U	5.1 U	5.0 U	5.1 U	5.0 U	5.0 U	5.0 U	5.1 U 5.1 U	5.1 U				
bis(2-Chloroisopropyl)ether	NL	5.5 U	5.1 U	5.1 U	5.0 U	5.1 U	5.0 U	5.0 U	5.0 U	5.1 U	5.1 U				
Bis(2-ethylhexyl) phthalate	5	11 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U						
Butyl benzyl phthalate Caprolactam	NL NL	11 U 11 U	10 U 10 U	1.6 J R	10 U 10 U	10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U	0.65 J R				
Carbazole	NL NL	5.5 U	5.1 U	14.1	31.8	1.1	14.8	8.3	2.4	5.1 U	5.0 U	5.0 U	11	5.1 U	5.1 U
Dibenzofuran	NL NL	5.5 U	5.1 U	6.8	16.9	5.0 U	6.3	8.1	1.1	5.1 U	5.0 U	5.0 U	5.3	5.1 U	5.1 U
Diethyl phthalate	NL	11 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U						
Dimethyl phthalate Di-n-butyl phthalate	NL NL	11 U 11 U	10 U 1.3	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U					
Di-n-octyl phthalate	50**	11 U	1.3 10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Hexachlorobenzene	0.04	5.5 U	5.1 U	5.1 U	5.0 U	5.1 U	5.0 U	5.0 U	5.0 U	5.1 U	5.1 U				
Hexachlorobutadiene	0.5	5.5 U	5.1 U	5.1 U	5.0 U	5.1 U	5.0 U	5.0 U	5.0 U	5.1 U	5.1 U				
Hexachlorocyclopentadiene	5*	11 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U						
Hexachloroethane Isophorone	5* 50**	5.5 U 5.5 U	5.1 U 5.1 U	5.1 U 5.1 U	5.0 U 5.0 U	5.1 U 5.1 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.1 U 5.1 U	5.1 U 5.1 U				
Nitrobenzene	0.4	5.5 U	5.1 U	5.1 U	5.0 U	5.1 U	5.0 U	5.0 U	5.0 U	5.1 U	5.1 U				
N-Nitroso-Di-n-propylamine	NL	5.5 U	5.1 U	5.1 U	5.0 U	5.1 U	5.0 U	5.0 U	5.0 U	5.1 U	5.1 U				
N-nitrosodiphenylamine	50**	5.5 U	5.1 U	5.1 U	5.0 U	5.1 U	5.0 U	5.0 U	5.0 U	5.1 U	5.1 U				
Pentachlorophenol	1***	11 U	10 U	10 U	6.8 J	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Phenol	1***	5.5 U	5.1 U	5.1 U	5.0 U	5.1 U	5.0 U	5.0 U	5.0 U	5.1 U	5.1 U				
Total SVOCs (µg/L) ²	NL	11	1.3	180	2,300	43	210	980	39	ND	ND	4.3	160	ND	0.65
··· (r·o· -/	146	11	1.0	100	2,000	اهد	210	300	55	עוו	NU	4.0	150	140	0.00
Notes:															

Notes: NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

D = The concentration indicated was obtained from a diluted analytical run.

J = The associated numerical value is an estimated quantity.

R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

Sample ID	NYSDEC	NO-PZ18	NO-PZ19	NO-PZ20	NO-PZ21	NO-PZ22	NO-PZ23	NO-PZ24	NO-PZ25	NO-PZ26	NO-PZ27	NO-PZ28	NO-PZ29	NO-PZ30	NO-PZ31
Laboratory Identification Date Sampled	TOGS 1.1.1 Class GA ¹	M53200-8 12/09/2005	M53200-7 12/09/2005	M53135-7 12/07/2005	M53135-8 12/07/2005	M53162-1 12/07/2005	M53200-19 12/09/2005	M53200-12 12/09/2005	M53200-13 12/09/2005	M53162-2 12/07/2005	M53162-5 12/08/2005	M53200-14 12/09/2005	M53135-6 12/06/2005	M53135-1 12/06/2005	M53135-2 12/06/2005
Semi-volatile Organic Compou															
2-Methylnaphthalene	NL 20**	5.0 U	5.0 U	1.1	24.2	14.3 43.6	5.0 U	62.4	8.4 37.3	5.1 U	5.1 U	5.0 U	5.0 U	5.0 U	5.0 U
Acenaphthene Acenaphthylene	20** NL	5.0 U 5.0 U	41.5 7.2	1.0 5.0 U	98.2 13.8	11.3	5.0 U 5.0 U	45.3 10.2	5.5	5.1 U 5.1 U	5.1 U 5.1 U	31 5.0	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
Anthracene	50**	5.0 U	1.2	5.0 U	7.6 J	4.2	5.0 U	3.3	0.68 J	5.1 U	5.1 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(a)anthracene	0.002**	5.0 U	5.0 U	5.0 U	50 U	5.1 L		5.0 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(a)pyrene	ND	5.0 U	5.0 U	5.0 U	50 U	5.1 L	5.0 U	5.0 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(b)fluoranthene	0.002**	5.0 U	5.0 U	5.0 U	50 U	5.1 L		5.0 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(g,h,i)perylene	NL 2 22222	5.0 UJ	5.0 UJ	5.0 U	50 U	5.1 U		5.0 UJ	5.0 UJ	5.1 UJ	5.1 UJ	5.0 UJ	5.0 U	5.0 U	5.0 U
Benzo(k)fluoranthene	0.002** 0.002**	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	50 U 50 U	5.1 L 5.1 L	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.1 U 5.1 U	5.1 U 5.1 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
Chrysene Dibenzo(a,h)anthracene	NL	5.0 U	5.0 U	5.0 U	50 U	5.1 C	5.0 U	5.0 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.0 U	5.0 U
Fluoranthene	50**	5.0 U	2.0	5.0 U	50 U	1.9	5.0 U	1.3	1.4	5.1 U	5.1 U	1.7	5.0 U	5.0 U	5.0 U
Fluorene	50**	5.0 U	8.0	5.0 U	24	10.5	5.0 U	11.5	4.4	5.1 U	5.1 U	3.6	5.0 U	5.0 U	5.0 U
Indeno(1,2,3-cd)pyrene	0.002**	5.0 U	5.0 U	5.0 U	50 U	5.1 L	5.0 U	5.0 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.0 U	5.0 U
Naphthalene	10**	5.0 U	4.4	93.8	994	475	5.0 U	611	4.3	5.1 U	5.1 U	1.7	5.0 U	5.0 U	5.0 U
Phenanthrene Pyrene	50** 50**	5.0 U 5.0 U	16.1 3.0 J	5.0 U 5.0 U	37.2 50 U	19.8 2.0	5.0 U 5.0 U	16.3 1.6 J	9.7 1.9 J	5.1 U 5.1 U	5.1 U 5.1 U	6.7 2.4 J	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
Fylene	50	5.0 0	3.0 3	5.0 0	30 0	2.0 3	5.0 0	1.0 J	1.9 J	5.1 0	5.1 0	2.4 J	5.0 0	5.0 0	5.0 0
Total PAHs (μg/L)	NL	ND	83	96	1,200	580	ND	760	74	ND	ND	52	ND	ND	ND
Total CPAHs (μg/L)	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1'-Biphenyl	5*	10 U	13.4	10 U	33.7	17.1 J	10 U	14.6	12.3	R	R	8.7	10 U	10 U	10 U
2,4,5-Trichlorophenol	1	10 U	10 U	10 U	100 U	10 U		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2,4,6-Trichlorophenol	NL	10 U	10 U	10 U	100 U	10 L		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2,4-Dichlorophenol	5*	10 U	10 U	10 U	100 U	10 L		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2,4-Dimethylphenol	50**	10 U	10 U	10 U	100 U	10 L		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2,4-Dinitrophenol 2,4-Dinitrotoluene	10** 5*	20 U	20 U	20 U	200 U 100 U	20 L 10 L		20 U 10 U	20 U 10 U	20 U 10 U	20 U	20 U 10 U	20 U 10 U	20 U 10 U	20 U 10 U
2,4-Dinitrotoluene 2.6-Dinitrotoluene	5*	10 U 10 U	10 U 10 U	10 U 10 U	100 U	10 C		10 U	10 U	10 U	10 U 10 U	10 U	10 U	10 U	10 U
2-Chloronaphthalene	10**	5.0 U	5.0 U	5.0 U	50 U	5.1		5.0 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.0 U	5.0 U
2-Chlorophenol	NL	5.0 U	5.0 U	5.0 U	50 U	5.1 L		5.0 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.0 U	5.0 U
2-Methylphenol	NL	10 U	10 U	10 U	100 U	10 L		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Nitroaniline	5*	10 U	10 U	10 U	100 U	10 L		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Nitrophenol 3&4-Methylphenol	NL NL	10 U 10 U	10 U 10 U	10 U 10 U	100 U 100 U	10 L 10 L		10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U
3,3'-Dichlorobenzidine	5*	5.0 UJ	5.0 UJ	5.0 U	50 U	5.1		5.0 UJ	5.0 UJ	5.1 U	5.1 U	5.0 UJ	5.0 U	5.0 U	5.0 U
3-Nitroaniline	NL	10 U	10 U	10 U	100 U	10 L		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4,6-Dinitro-o-cresol	NL	10 U	10 U	10 U	100 U	10 L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-Bromophenyl phenyl ether	NL	5.0 U	5.0 U	5.0 U	50 U	5.1 L		5.0 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.0 U	5.0 U
4-Chloro-3-methylphenol	NL 5*	10 U	10 U	10 U	100 U	10 L		10 U	10 U	10 U 10 U	10 U	10 U	10 U	10 U	10 U
4-Chloroaniline 4-Chlorophenyl phenyl ether	5* NL	10 UJ 5.0 U	10 UJ 5.0 U	10 U 5.0 U	100 U 50 U	10 L 5.1 L		10 UJ 5.0 U	10 UJ 5.0 U	5.1 U	10 U 5.1 U	10 UJ 5.0 U	10 U 5.0 U	10 U 5.0 U	10 U 5.0 U
4-Nitroaniline	5*	10 U	10 U	10 U	100 U	10 L		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-Nitrophenol	NL	20 U	20 U	20 U	200 U	20 L		20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
Acetophenone	NL	10 U	10 U	10 U	100 U	F		10 U	10 U	R	R	10 U	10 U	10 U	10 U
Atrazine	7.5	10 U	10 U	10 U	100 U	F		10 U	10 U	R	R	10 U	10 U	10 U	10 U
Benzaldehyde	NL 0.000**	20 UJ	20 UJ 5.0 U	20 UJ	200 UJ	F		20 UJ 5.0 U	20 UJ	R	R	20 UJ	1.2 J	20 UJ	20 UJ
Bis(2-chloroethoxy) methane Bis(2-chloroethyl) ether	0.002** 5*	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	50 U 50 U	5.1 L 5.1 L		5.0 U	5.0 U 5.0 U	5.1 U 5.1 U	5.1 U 5.1 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
bis(2-Chloroisopropyl)ether	NL	5.0 U	5.0 U	5.0 U	50 U	5.1 U		5.0 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.0 U	5.0 U
Bis(2-ethylhexyl) phthalate	5	10 U	10 U	10 U	100 U	10 L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Butyl benzyl phthalate	NL	10 U	10 U	10 U	100 U	0.75		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Caprolactam	NL	10 U	10 U	10 U	100 U	F		10 U	10 U	R	R	10 U	10 U	10 U	10 U
Carbazole Dibenzofuran	NL NL	5.0 U 5.0 U	7.6 4.3	5.0 U 5.0 U	19.7 10.3	11.8 5.6	5.0 U 5.0 U	9.5 5.1	6.9 4.0	5.1 U 5.1 U	5.1 U 5.1 U	3.8 3.8	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
Diethyl phthalate	NL NL	3.0 U	10 U	10 U	100 U	10 L		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Dimethyl phthalate	NL	10 U	10 U	10 U	100 U	10 L		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Di-n-butyl phthalate	NL	10 U	10 U	10 U	100 U	10 L		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Di-n-octyl phthalate	50**	10 U	10 U	10 U	100 U	10 L		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Hexachlorobenzene	0.04	5.0 U	5.0 U	5.0 U	50 U	5.1 L		5.0 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.0 U	5.0 U
Hexachlorobutadiene Hexachlorocyclopentadiene	0.5 5*	5.0 U 10 U	5.0 U 10 U	5.0 U 10 U	50 U 100 U	5.1 L 10 L		5.0 U 10 U	5.0 U 10 U	5.1 U 10 U	5.1 U 10 U	5.0 U 10 U	5.0 U 10 U	5.0 U 10 U	5.0 U 10 U
Hexachloroethane	5*	5.0 U	5.0 U	5.0 U	50 U	5.1 L		5.0 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.0 U	5.0 U
Isophorone	50**	5.0 U	5.0 U	5.0 U	50 U	5.1 L		5.0 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.0 U	5.0 U
Nitrobenzene	0.4	5.0 U	5.0 U	5.0 U	50 U	5.1 L	5.0 U	5.0 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.0 U	5.0 U
N-Nitroso-Di-n-propylamine	NL	5.0 U	5.0 U	5.0 U	50 U	5.1 L		5.0 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.0 U	5.0 U
N-nitrosodiphenylamine	50** 1***	5.0 U	5.0 U	5.0 U	50 U	5.1 L		5.0 U	5.0 U	5.1 U	5.1 U	5.0 U	5.0 U	5.0 U	5.0 U
Pentachlorophenol Phenol	1***	10 U 5.0 U	6.8 J 5.0 U	10 U 5.0 U	100 U 50.0 U	6.7 J 5.1 U		10 U 5.0 U	10 U 5.0 U	10 U 5.1 U	10 U 5.1 U	10 U 5.0 U	10 U 5.0 U	10 U 5.0 U	10 U 5.0 U
Total SVOCs (µg/L) ²	NL	ND	120	96	1,300	630	ND	790	97	ND	ND	68	1.2	ND	ND
. J	INL	ועטן	120	90	1,300	030	ועויו	7 90	91	ואטן	ואט	UO	1.2	INU	NU

Notes: NA = Not Analyzed

NL = Not Listed ND = Not Detected

MDL - Method Detection Limit

D = The concentration indicated was obtained from a diluted analytical run.

J = The associated numerical value is an estimated quantity.

R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

Table B-19 Groundwater SVOC Results - December 2005 Norwich Former MGP Site, Norwich, New York

Sample ID Laboratory Identification Date Sampled	NYSDEC TOGS 1.1.1 Class GA ¹	NO-PZ32 M53135-9 12/07/2005	NO-PZ33 M53135-10 12/07/2005	NO-PZ34 M53135-11 12/07/2005	NO-PZ35 M53135-12 12/07/2005	NO-PZ36 M53135-5 12/06/2005	NO-PZ37 M53135-3 12/06/2005	NO-PZ38 M53135-4 12/06/2005	NO-PZ39 M53162-3 12/07/2005
Semi-volatile Organic Compou	unds (μg/L)								
2-Methylnaphthalene	NL	5.0 U	5.0 U		U 5.0 U			5.0 U	5.1 U
Acenaphthene	20**	5.0 U	5.0 U		U 5.0 U				5.1 U
Acenaphthylene	NL 5044	5.0 U	5.0 U		U 5.0 U			5.0 U	5.1 U
Anthracene	50**	5.0 U	5.0 U		U 5.0 U				5.1 U
Benzo(a)anthracene	0.002** ND	5.0 U	5.0 U 5.0 U		U 5.0 U U 5.0 U				5.1 U 5.1 U
Benzo(a)pyrene	0.002**	5.0 U 5.0 U	5.0 U 5.0 U		U 5.0 U				5.1 U
Benzo(b)fluoranthene Benzo(g,h,i)perylene	NL	5.0 U	5.0 U		U 5.0 U				5.1 UJ
Benzo(k)fluoranthene	0.002**	5.0 U	5.0 U		U 5.0 U				5.1 U
Chrysene	0.002**	5.0 U	5.0 U		U 5.0 U				5.1 U
Dibenzo(a,h)anthracene	NL	5.0 U	5.0 U		U 5.0 U				5.1 U
Fluoranthene	50**	5.0 U	5.0 U		U 5.0 U				5.1 U
Fluorene	50**	5.0 U	5.0 U		U 5.0 U				5.1 U
Indeno(1,2,3-cd)pyrene	0.002**	5.0 U	5.0 U		U 5.0 U	5.4 l	J 5.0 U		5.1 U
Naphthalene	10**	5.0 U	5.0 U	5.0 l	U 5.0 U	5.4 l	J 5.0 U	5.0 U	5.1 U
Phenanthrene	50**	5.0 U	5.0 U	5.0 l	U 5.0 U	5.4 l	J 5.0 U	5.0 U	5.1 U
Pyrene	50**	5.0 U	5.0 U	5.0 l	U 5.0 U	5.4 l	J 5.0 U	5.0 U	5.1 U
Total PAHs (µg/L)	NL	ND	ND	ND	ND	ND	0.93	ND	ND
T (1004) (";									
Total CPAHs (μg/L)	NL	ND	ND	ND	ND	ND	ND	ND	ND
1 4! Dinhamid	F+	40 11	40 11	40 1	11 40 11	42 .	1 4 7	40 11	
1,1'-Biphenyl	5* 1	10 U	10 U 10 U		U 10 U			10 U 10 U	10 U
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	NL	10 U 10 U	10 U 10 U		U 10 U				10 U 10 U
2,4-Dichlorophenol	5*	10 U	10 U		U 10 U				10 U
2,4-Dimethylphenol	50**	10 U	10 U		U 10 U			10 U	10 U
2,4-Dinitrophenol	10**	20 U	20 U		U 20 U				20 U
2,4-Dinitrophenol	5*	10 U	10 U		U 10 U				10 U
2,6-Dinitrotoluene	5*	10 U	10 U		U 10 U				10 U
2-Chloronaphthalene	10**	5.0 U	5.0 U		U 5.0 U				5.1 U
2-Chlorophenol	NL	5.0 U	5.0 U		U 5.0 U				5.1 U
2-Methylphenol	NL	10 U	10 U		U 10 U				10 U
2-Nitroaniline	5*	10 U	10 U	10 l	U 10 U	11 l	J 10 U	10 U	10 U
2-Nitrophenol	NL	10 U	10 U	10 l	U 10 U	11 l	J 10 U	10 U	10 U
3&4-Methylphenol	NL	10 U	10 U		U 10 U			10 U	10 U
3,3'-Dichlorobenzidine	5*	5.0 U	5.0 U		U 5.0 U				5.1 U
3-Nitroaniline	NL	10 U	10 U		U 10 U				10 U
4,6-Dinitro-o-cresol	NL	10 U	10 U		U 10 U				10 U
4-Bromophenyl phenyl ether	NL	5.0 U	5.0 U		U 5.0 U				5.1 U
4-Chloro-3-methylphenol	NL 5*	10 U	10 U		U 10 U				10 U
4-Chloroaniline	5*	10 U 5.0 U	10 U 5.0 U		U 10 U U 5.0 U			10 U 5.0 U	10 U 5.1 U
4-Chlorophenyl phenyl ether 4-Nitroaniline	NL 5*	10 U	5.0 U 10 U		U 5.0 U U 10 U				10 U
4-Nitrophenol	NL NL	20 U	20 U		U 20 U			20 U	20 U
Acetophenone	NL	10 U	10 U		U 10 U				R
Atrazine	7.5	10 U	10 U		U 10 U				R
Benzaldehyde	NL	1.2 J	20 UJ	20 L					R
Bis(2-chloroethoxy) methane	0.002**	5.0 U	5.0 U		U 5.0 U				5.1 U
Bis(2-chloroethyl) ether	5*	5.0 U	5.0 U		U 5.0 U				5.1 U
bis(2-Chloroisopropyl)ether	NL	5.0 U	5.0 U		U 5.0 U	5.4 l			5.1 U
Bis(2-ethylhexyl) phthalate	5	10 U	10 U	10 l	U 10 U	11 l	J 10 U	10 U	10 U
Butyl benzyl phthalate	NL	10 U	10 U	10 U					10 U
Caprolactam	NL NI	10 U	10 U		U 10 U				R
Carbazole	NL NI	5.0 U	5.0 U		U 5.0 U				5.1 U
Dibenzofuran	NL NI	5.0 U	5.0 U	5.0 L				5.0 U	5.1 U
Diethyl phthalate	NL NI	10 U 10 U	10 U 10 U	10 U	U 10 U				10 U 10 U
Dimethyl phthalate Di-n-butyl phthalate	NL NL	10 U 10 U	10 U 10 U		U 10 U				10 U
Di-n-octyl phthalate	50**	10 U	10 U		U 10 U				10 U
Hexachlorobenzene	0.04	5.0 U	5.0 U		U 5.0 U				5.1 U
Hexachlorobutadiene	0.5	5.0 U	5.0 U		U 5.0 U				5.1 U
Hexachlorocyclopentadiene	5*	10 U	10 U		U 10 U				10 U
Hexachloroethane	5*	5.0 U	5.0 U	5.0 l					5.1 U
Isophorone	50**	5.0 U	5.0 U		U 5.0 U				5.1 U
Nitrobenzene	0.4	5.0 U	5.0 U		U 5.0 U				5.1 U
N-Nitroso-Di-n-propylamine	NL	5.0 U	5.0 U	5.0 l	U 5.0 U	5.4 l	J 5.0 U	5.0 U	5.1 U
N-nitrosodiphenylamine	50**	5.0 U	5.0 U		U 5.0 U				5.1 U
Pentachlorophenol	1***	10 U	10 U		U 10 U				10 U
Phenol	1***	5.0 U	5.0 U	5.0 l	U 5.0 U	5.4 l	J 5.0 U	5.0 U	5.1 U
Total SVOCs (μg/L) ²	NL	1.2	ND	ND	ND	1.3	3.6	ND	ND
Notes:				•			•	•	•

Notes: NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

D = The concentration indicated was obtained from a diluted analytical run.

J = The associated numerical value is an estimated quantity.

R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

Sample ID	NYSDEC	NO-EXISTING WELL	NO-GW01-14	NO-GW04-16	NO-GW91-4D	NO-GW91-4SH	NO-GW91-6	NO-GW91-7	NO-GW92-11D
Laboratory Identification	TOGS 1.1.1	M53280-10	M53280-8	M53253-7	M53280-2	M53280-1	M53280-7	M53253-2	M53280-4
Date Sampled	Class GA ¹	12/14/2005	12/14/2005	12/13/2005	12/13/2005	12/13/2005	12/14/2005	12/12/2005	12/14/2005
Total Cyanide (µg/L)	200	10 U	54	10 U	400	99	31	10 U	15

Notes:

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

J = The associated numerical value is an estimated quantity.

R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process

Bold - compound detected above regulatory guidance value.

Sample ID	NYSDEC	NO-GW92-11SH	NO-GW92-12	NO-GW92-13	NO-GW92-8	NO-PZ01	NO-PZ02	NO-PZ03	NO-PZ04
Laboratory Identification	TOGS 1.1.1	M53280-5	M53253-1	M53280-3	M53280-9	M53253-5	M53253-6	M53200-4	M53253-3
Date Sampled	Class GA ¹	12/14/2005	12/12/2005	12/13/2005	12/14/2005	12/13/2005	12/13/2005	12/08/2005	12/12/2005
Total Cyanide (µg/L)	200	10 U	10 U	10 U	160	12	220	10 U	42

Notes:

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

J = The associated numerical value is an estimated quantity.

R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process

Bold - compound detected above regulatory guidance value.

Sample ID	NYSDEC	NO-PZ05	NO-PZ06	NO-PZ07	NO-PZ08	NO-PZ09	NO-PZ10	NO-PZ11	NO-PZ12
Laboratory Identification	TOGS 1.1.1	M53162-6	M53200-3	M53200-1	M53200-2	M53200-9	M53200-17	M53162-4	M53162-10
Date Sampled	Class GA ¹	12/08/2005	12/08/2005	12/08/2005	12/08/2005	12/09/2005	12/09/2005	12/07/2005	12/08/2005
Total Cyanide (µg/L)	200	29	29	10 U	76	20	80	13	10 U

Notes:

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

J = The associated numerical value is an estimated quantity.

R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process

Bold - compound detected above regulatory guidance value.

Sample ID	NYSDEC	NO-PZ13	NO-PZ14	NO-PZ15	NO-PZ16	NO-PZ17	NO-PZ18	NO-PZ19	NO-PZ20
Laboratory Identification	TOGS 1.1.1	M53200-5	M53200-18	M53200-16	M53162-8	M53162-9	M53200-8	M53200-7	M53135-7
Date Sampled	Class GA ¹	12/08/2005	12/09/2005	12/09/2005	12/08/2005	12/08/2005	12/09/2005	12/09/2005	12/07/2005
Total Cyanide (µg/L)	200	10 U	16	56	10 U	10 U	10 U	70	10 U

Notes:

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

J = The associated numerical value is an estimated quantity.

R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process

Bold - compound detected above regulatory guidance value.

Sample ID	NYSDEC	NO-PZ21	NO-PZ22	NO-PZ23	NO-PZ24	NO-PZ25	NO-PZ26	NO-PZ27	NO-PZ28
Laboratory Identification	TOGS 1.1.1	M53135-8	M53162-1	M53200-19	M53200-12	M53200-13	M53162-2	M53162-5	M53200-14
Date Sampled	Class GA ¹	12/07/2005	12/07/2005	12/09/2005	12/09/2005	12/09/2005	12/07/2005	12/08/2005	12/09/2005
Total Cyanide (µg/L)	200	10 U	10 U	10 U	10 U	51	10 U	10 U	69

Notes:

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

J = The associated numerical value is an estimated quantity.

R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process

Bold - compound detected above regulatory guidance value.

Sample ID	NYSDEC	NO-PZ29	NO-PZ30	NO-PZ31	NO-PZ32	NO-PZ33	NO-PZ34	NO-PZ35	NO-PZ36
Laboratory Identification	TOGS 1.1.1	M53135-6	M53135-1	M53135-2	M53135-9	M53135-10	M53135-11	M53135-12	M53135-5
Date Sampled	Class GA ¹	12/06/2005	12/06/2005	12/06/2005	12/07/2005	12/07/2005	12/07/2005	12/07/2005	12/06/2005
Total Cyanide (µg/L)	200	10 U	29	27	10 U	10 U	10 U	10 U	15

Notes:

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

J = The associated numerical value is an estimated quantity.

R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process

Bold - compound detected above regulatory guidance value.

Sample ID	NYSDEC	NO-PZ37	NO-PZ38	NO-PZ39
Laboratory Identification	TOGS 1.1.1	M53135-3	M53135-4	M53162-3
Date Sampled	Class GA ¹	12/06/2005	12/06/2005	12/07/2005
Total Cyanide (µg/L)	200	10 U	10 U	10 U

Notes:

NA = Not Analyzed

NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

J = The associated numerical value is an estimated quantity.

R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process Bold - compound detected above regulatory guidance value.

Table B-21 SVI Sub-slab Sample Field Measurement Summary Norwich Former MGP Site Norwich, New York

Sample Location	CH ₄	CO ₂	O ₂	PID (ppb)	Rel pressure ("H₂O)	Start Vacuum	End Vacuum
NO-12BAS	0.0%	0.4%	19.3%	6,266	-0.04	27	5.25
NO-14BAS	0.0%	0.9%	18.9%	4,932	-0.06	28	0
NO-35BRS	0.0%	0.8%	18.8%	1,010	-0.03	29	7.5
NO-10COS	0.0%	0.5%	20.2%	6,856	-0.03	29	7
NO-16COS	0.0%	0.3%	19.3%	5,451	-0.05	29	7.5
NO-18COS	0.0%	0.7%	20.0%	2,321	0.01	28	6.5
NO-20COS	0.0%	0.8%	19.9%	2,761	0.00	30	9
NO-30FRS	0.0%	0.3%	19.7%	5,135	-0.04	30	6.5
NO-37FRS	0.0%	1.5%	19.1%	>199,000	-0.03	29	6
NO-41FRS	0.0%	0.7%	19.8%	> 10,000	-0.03	29	8
NO-42FRS	0.0%	0.4%	19.0%	6,654	-0.01	29.5	8
NO-43FRS	0.0%	2.4%	17.8%	19,500	-0.05	28.5	6
NO-45FRS	0.0%	0.1%	20.1%	1,836	-0.00	30	0.5
NO-LCS	0.0%	0.4%	19.4%	3,440	-0.04	29.5	4.0

Table B-22 SVI Sample Detection Frequency and Concentration Ranges Norwich Former MGP Site Norwich, New York

Compound		Indoor	Air			Sub-sla	b			Outdoor a	air	
Compound	samples	detects	min	max	samples	detects	min	max	samples	detects	min	max
1,1,1-trichloroethane	26	0	na	na	14	2	1.2	6.7	12	0	na	na
1,1,2,2-tetrachloroethane	26	0	na	na	14	1	2.9	2.9	12	0	na	na
1,2,4-trimethylbenzene	26	12	0.98	7.4	14	13	3	41	12	1	3.2	3.2
1,2-dichloroethane	26	2	1.6	8.9	14	0	NA	NA	12	0	na	na
1,3,5-trimethylbenzene	26	2	1.1	2.9	14	6	1.3	5.9	12	1	1	1
benzene	26	24	0.67	30	14	12	1.2	15	12	12	0.77	2.6
chloroethane	26	0	na	na	14	2	1.7	2.7	12	0	na	na
chloroform	26	2	1.5	1.9	14	4	1	1.6	12	0	na	na
chloromethane	26	18	1.1	3.7	14	1	1.6	1.6	12	9	1.1	1.7
cis-1,2-dichloroethene	26	1	12	12	14	1	1.8	1.8	12	0	na	na
dichlorodifluoromethane	26	22	1.7	5.2	14	10	2.1	38	12	12	2	3.1
ethylbenzene	26	9	0.87	8.6	14	10	2.6	18	12	2	1.1	1.2
methylene chloride	26	3	7.1	63	14	9	3.5	25	12	0	na	na
m/p-xylene	26	23	0.96	31	14	14	3.6	45	12	8	0.95	3.3
n-butane	26	26	1	420	14	13	0.96	120	12	12	1.1	8.1
n-dodecane	26	0	na	na	14	1	28	28	12	0	na	na
n-heptane	26	7	2.1	7.9	14	8	4.2	22	12	0	na	na
n-hexane	26	5	3	75	14	7	2.4	19	12	1	2.1	2.1
n-octane	26	2	3.8	6.1	14	8	3.8	28	12	0	na	na
nonane	26	6	2.7	43	14	11	6.2	110	12	4	2.6	4.9
n-undecane	26	0	na	na	14	1	28	28	12	0	na	na
o-xylene	26	11	0.95	10	14	11	2.8	22	12	3	1.1	1.3
pentane	26	11	3	64	14	6	3.5	30	12	1	3.6	3.6
styrene	26	2	1.2	2	14	7	2	3.6	12	0	na	na
tetrachloroethene	26	3	4	550	14	0	na	na	12	0	na	na
toluene	26	24	1.4	65	14	14	4.6	37	12	11	1	7.2
trichloroethene	26	3	2	6.5	14	1	1.2	1.2	12	0	na	na
trichlorofluoromethane	26	23	1.1	7	14	7	1.2	180	12	9	1.2	1.5

Sample numbers do not include field duplicate samples na – not applicable if compound not detected in any of the samples.

Table B-23 Soil Vapor Intrusion VOC Results Norwich Former MGP Site, Norwich, New York

Sample	NYSDOH	NYSDOH	USEPA	USEPA	NO-12BAB	NO-12BAF	NO-12BAS	NO-14BAB	NO-14BAF	NO-14BAS	NO-35BRF	NO-35BRS	NO-10COB	NO-10COF	NO-10COS	NO-16COB	NO-16COF	NO-16COS
Sample Type	Background		Indoor	Outdoor	Basement	1st Floor	Sub-slab	Basement	1st Floor	Sub-slab	1st Floor	Sub-slab	Basement	1st Floor	Sub-slab	Basement	1st Floor	Sub-slab
Sample Depth/Height	75% Indoor ¹	75% Outdoor ¹	Background ²	Background ²	3 ft. above groun	d 3 ft. above ground	2 in. below slab	3 ft. above ground	3 ft. above ground	2 in. below slab	3 ft. above ground	2 in. below slab	3 ft. above ground	3 ft. above ground	2 in. below slab	3 ft. above ground	3 ft. above ground	2 in. below slab
Sample Date			, and the second	Ŭ.	3/23/2006 10:45	3/23/2006 10:48	3/23/2006 10:45	3/22/2006 3:50	3/22/2006 3:55	3/22/2006 3:50	3/28/2006 4:35	3/28/2006 4:30	3/23/2006 8:55	3/23/2006 9:00	3/23/2006 8:55	3/22/2006 1:40	3/22/2006 1:42	3/22/2006 1:40
Dilution Factor					1	1	1	1	4	2	1	2	1	1	1	1	1	1
Volatile Organic Compounds (µg/m3) 1,1,1-Trichloroethane	1.1	0.33	2.6 - 11	< 0.6 - 1.7	Conc Q RL 1.1 U 1.	Conc Q RL 1 1.1 U 1.	Conc Q RL 1 1.1 U 1.1	Conc Q RL 1.1 U 1.1	Conc Q RL 4.4 U 4.4	Conc Q RL 4 2.2 U 2.2	Conc Q RL 1.1 U 1.	Conc Q RL 1 2.2 U 2.2	Conc Q RL 2 1.1 U 1.1	Conc Q RL 1.1 U 1.1	Conc Q RL 1.1 U 1.1	Conc Q RL 1.1 U 1.1	Conc Q RL 1.1 U 1.1	Conc Q RL 1.1 U 1.1
1,1,2,2-Tetrachloroethane	<0.25	<0.25	NL NL	NL	1.4 U 1.	4 1.4 U 1.	4 1.4 U 1.4	1.4 U 1.4	5.5 U 5.5	2.2 U 2.7	1.4 U 1.	4 2.7 U 2.7	7 1.4 U 1.4	1.1 U 1.4	2.9 1.4	1.4 U 1.4	1.4 U 1.4	1.4 U 1.4
1,1,2-Trichloro-1,2,2-trifluoroethane	1.1	1.1	NL	NL	1.5 U 1.		5 1.5 U 1.5	1.5 U 1.5	6.1 U 6.1	1 3.1 U 3.1	1.5 U 1.		1 1.5 U 1.5	1.5 U 1.5	1.5 U 1.5	1.5 U 1.5	1.5 U 1.5	1.5 U 1.5
1,1,2-Trichloroethane	<0.25	<0.25	< 1.3	< 12	1.1 U 1.	1 1.1 U 1.	1 1.1 U 1.1	1.1 U 1.1	4.4 U 4.4	4 2.2 U 2.2	1.1 U 1.	1 2.2 U 2.2	2 1.1 U 1.1	1.1 U 1.1	1.1 U 1.1	1.1 U 1.1	1.1 U 1.1	1.1 U 1.1
1,1-Dichloroethane	<0.25	<0.25	< 0.5	< 0.4	0.81 U 0.8		1 0.81 U 0.81	0.81 U 0.81	3.2 U 3.2	2 1.6 U 1.6	0.81 U 0.8	1 1.6 U 1.6	0.81 U 0.81	0.81 U 0.81	0.81 U 0.81	0.81 U 0.81	0.81 U 0.81	0.81 U 0.81
1,1-Dichloroethene	< 0.25	< 0.25	< 1.1	< 1.0	0.79 U 0.7			0.79 U 0.79	3.2 U 3.2	1.6 U 1.6	0.79 U 0.7		6 0.79 U 0.79 5 7 4 U 7 4	0.79 U 0.79	0.79 U 0.79	0.79 U 0.79	0.79 U 0.79	0.79 U 0.79
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	<0.25 4.3	< 0.25 0.81	NL 1.7 - 5.1	NL < 1.6 - 3.1	7.4 U 7. 0.98 U 0.9		7.4 U 7.4 8 7.3 0.98	7.4 U 7.4 1.9 J 0.98	30 U 30 3.9 U 3.9	15 U 15 9 3.0 2.0	7.4 U 7.4 7.4 0.9	4 15 U 19 8 3.3 2.0	7.4 U 7.4 0 2.4 0.98	7.4 U 7.4 3 1.0 0.98	7.4 U 7.4 8 8.3 0.98	7.4 U 7.4 1.2 0.98	7.4 U 7.4 0.98 U 0.98	7.4 U 7.4 6.1 0.98
1,2-Dibromoethane (EDB)	<0.25	<0.25	< 1.3	< 1.2	1.5 U 1.		5 1.5 U 1.5	1.5 U 1.5	6.1 U 6.1	3.1 U 3.1	1.5 U 1.	5 3.1 U 3.1	1 1.5 U 1.5	1.5 U 1.5		1.5 U 1.5	1.5 U 1.5	1.5 U 1.5
1,2-Dichloro-1,1,2,2-tetrafluoroethane	< 0.25	< 0.25	NL	NL	1.4 U 1.		4 1.4 U 1.4	1.4 U 1.4	5.6 U 5.6	6 2.8 U 2.8	1.4 U 1.	4 2.8 U 2.8	3 1.4 U 1.4	1.4 U 1.4	1.4 U 1.4	1.4 U 1.4	1.4 U 1.4	1.4 U 1.4
1,2-Dichlorobenzene	< 0.25	< 0.25	< 0.9	< 1.0	1.2 U 1.	2 1.2 U 1.	2 1.2 U 1.2	1.2 U 1.2	4.8 U 4.8	3 2.4 U 2.4	1.2 U 1.	2 2.4 U 2.4		2 1.2 U 1.2	1.2 U 1.2	1.2 U 1.2	1.2 U 1.2	1.2 U 1.2
1,2-Dichloroethane	< 0.25	<0.25	< 0.6	< 0.6	0.81 U 0.8			0.81 U 0.81	3.2 U 3.2	2 1.6 U 1.6	0.81 U 0.8	1 1.6 U 1.6	0.81 U 0.81	0.81 U 0.81	0.81 U 0.81	0.81 U 0.81	0.81 U 0.81	0.81 U 0.81
1,2-Dichloropropane 1,3,5-Trimethylbenzene	<0.25 1.7	<0.25 0.34	< 1.4 < 1.5	< 1.4 < 1.4	0.92 U 0.9 0.98 U 0.9			0.92 U 0.92 0.98 U 0.98	3.7 U 3.7 3.9 U 3.9	7 1.8 U 1.8 9 2.0 U 2.0	0.92 U 0.9 2.9 0.9		0.92 U 0.92 0.98 U 0.98	0.92 U 0.92 0.98 U 0.98	0.92 U 0.92 3 2.3 0.98	0.92 U 0.92 0.98 U 0.98	0.92 U 0.92 0.98 U 0.98	0.92 U 0.92 2 0.98
1,3-Dichlorobenzene	< 0.25	< 0.34	< 0.8	< 0.8	1.2 U 1.		2.2 0.98 2 1.2 U 1.2	1.2 U 1.2	4.8 U 4.8	3 2.4 U 2.4	1.2 U 1.	2 2.4 U 2.4		1.2 U 1.2	2.3 0.98 2 1.2 U 1.2	1.2 U 1.2	1.2 U 1.2	2 0.98 1.2 U 1.2
1,4-Dichlorobenzene	0.54	< 0.25	NL	NL	1.2 U 1.		2 1.2 U 1.2 2 1.2 U 1.2	1.2 U 1.2	4.8 U 4.8	3 2.4 U 2.4	1.2 U 1.	2 2.4 U 2.4	1.2 U 1.2	1.2 U 1.2	1.2 U 1.2	1.2 U 1.2	1.2 U 1.2	1.2 U 1.2
Benzene	5.9	2.3	2.1 - 5.1	1.2 - 3.7	0.67 0.6			0.67 0.64	2.6 U 2.6	6 1.3 U 1.3	6.6 0.6		3 2.5 0.64	1.0 0.64		0.77 0.64	0.79 0.64	2.1 0.64
Bromomethane	<0.25	<0.25	< 0.9	< 1.0	0.78 U 0.7			0.78 U 0.78	3.1 U 3.1	1 1.6 U 1.6	0.78 U 0.7	8 1.6 U 1.6	0.78 U 0.78	0.78 U 0.78	0.78 U 0.78	0.78 U 0.78	0.78 U 0.78	0.78 U 0.78
Carbon tetrachloride	0.59	0.6	< 0.9	< 1.0	1.3 U 1.		3 1.3 U 1.3	1.3 U 1.3	5.0 U 5.0	2.5 U 2.5	1.3 U 1.	3 2.5 U 2.5	1.3 U 1.3	1.3 U 1.3	1.3 U 1.3	1.3 U 1.3	1.3 U 1.3	1.3 U 1.3
Chlorosthana	< 0.25	< 0.25	< 0.7	< 0.8	0.92 U 0.9 0.53 U 0.5			0.92 U 0.92	3.7 U 3.7	7 1.8 U 1.8 1 1.1 U 1.1	0.92 U 0.9		0.92 U 0.92 0.53 U 0.53	0.92 U 0.92 0.53 U 0.53	0.92 U 0.92	0.92 U 0.92	0.92 U 0.92	0.92 U 0.92 1.7 0.53
Chloroethane Chloroform	< 0.25 0.54	< 0.25 < 0.25	NL < 0.5	NL < 0.4	0.53 U 0.5 0.98 U 0.9			0.53 U 0.53 0.98 U 0.98	2.1 U 2.1 3.9 U 3.9	9 2.0 U 2.0	0.53 U 0.5 0.98 U 0.9	3 1.1 U 1.1 8 2.0 U 2.0	0.53 U 0.53 0 0.98 U 0.98	0.53 U 0.53 0.98 U 0.98	0.53 U 0.53 1.4 0.98	0.53 U 0.53 0.98 U 0.98	0.53 U 0.53 0.98 U 0.98	1.7 0.53 1.6 0.98
Chloromethane	1.8	1.8	2.1 - 3.1	2.0 - 3.0	1.5 1.		0 1.6 1.0	1.2 1.0	4.1 U 4.1	1 2.1 U 2.1	1.8 1.	0 2.1 U 2.1	1 1.9 1.0	1.3 1.0		1.1 1.0	1.2 1.0	1.0 U 1.0
cis-1,2-Dichloroethene	<0.25	<0.25	< 1.0	< 1.0	0.79 U 0.7		9 0.79 U 0.79	0.79 U 0.79	12 3.2	2 1.8 1.6	0.79 U 0.7	9 1.6 U 1.6	0.79 U 0.79	0.79 U 0.79	0.79 U 0.79	0.79 U 0.79	0.79 U 0.79	0.79 U 0.79
cis-1,3-Dichloropropene	< 0.25	< 0.25	NL	NL	0.91 U 0.9		1 0.91 U 0.91	0.91 U 0.91	3.6 U 3.6	1.8 U 1.8	0.91 U 0.9	1 1.8 U 1.8	0.91 U 0.91	0.91 U 0.91	0.91 U 0.91	0.91 U 0.91	0.91 U 0.91	0.91 U 0.91
Dichlorodifluoromethane	4.1	4.2	NL	NL	3.0 0.9		9 3.2 0.99	2.9 0.99	4.0 U 4.0	2.9 2.0	2.7 0.9			3.0 0.99	2.5 0.99	2.9 0.99	2.6 0.99	2.8 0.99
Ethylbenzene Hexachlorobutadiene	2.8 <0.25	0.48 <0.25	< 1.6 - 3.4 NL	< 1.4 - 1.6 NL	0.87 U 0.8	7 0.87 U 0.8 1 11 U 1	7 6.4 0.87	0.87 U 0.87	3.5 U 3.5 43 U 43	1.7 U 1.7 3 21 U 21	8.6 0.8 11 U 1	7 3.8 1.3 1 21 U 2	7 3.5 0.87	0.87 U 0.87	18 0.87	0.87 0.87 11 U 11	0.87 U 0.87 11 U 11	7.4 0.87
Isopropylbenzene	0.4	< 0.25	NL NL	NL	2.0 U 2.			2.0 U 2.0	7.9 U 7.9	3.9 U 3.9	2.0 U 2.	0 3.9 U 3.9	2.0 U 2.0	2.0 U 2.0	2.0 U 2.0	2.0 U 2.0	2.0 U 2.0	2.0 U 2.0
Methyl tert-butyl ether	5.6	0.86	< 1.7 - 12	< 1.8	3.6 U 3.	6 3.6 U 3.	6 3.6 U 3.6	3.6 U 3.6	14 U 14	7.2 U 7.2	3.6 U 3.	6 7.2 U 7.2	2 3.6 U 3.6	3.6 U 3.6	3.6 U 3.6	3.6 U 3.6	3.6 U 3.6	3.6 U 3.6
Methylene chloride	6.6	0.73	< 1.7 - 5.0	< 1.8 - 3.0	1.7 U 1.		7 11 J 1.7	1.7 U 1.7	6.9 U 6.9	4.9 3.5		7 4.6 3.9		1.7 U 1.7	18 1.7	1.7 U 1.7	1.7 U 1.7	15 1.7
m-Xylene & p-Xylene	4.6	0.48	4.1 - 12	< 3.6 - 7.3	1.1 0.8			1.7 0.87	3.5 U 3.5	3.6 1.7	28 0.8		7 10 0.87	1.2 0.87	45 0.87	2.7 0.87	1.5 0.87	20 0.87
Naphthalene n-Butane	NL NL	NL NL	< 2.5 NL	< 2.4 NL	2.6 U 2. 1.8 0.9			2.6 UJ 2.6 1.2 J 0.95	10 U 10	5.2 U 5.2 3 2.1 1.9	2.6 U 2. 26 0.9	6 5.2 U 5.2 5 34 1.9	2 2.6 U 2.6 9 12 0.95	2.6 U 2.6 18 0.95	2.6 U 2.6 1.6 0.95	2.6 UJ 2.6 1.0 J 0.95	2.6 UJ 2.6 1.3 J 0.95	2.6 UJ 2.6 7.1 J 0.95
n-Decane	6.6	2	NL	NL	5.8 U 5.		5.8 U 5.8	5.8 U 5.8	23 U 23	3 12 U 12	5.8 U 5.	8 12 U 12	5.8 U 5.8	5.8 U 5.8	5.8 U 5.8	5.8 U 5.8	5.8 U 5.8	5.8 U 5.8
n-Dodecane	3.9	1.9	NL	NL	7.0 UJ 7.	0 7.0 UJ 7.	0 7.0 UJ 7.0	7.0 UJ 7.0	28 UJ 28	3 14 UJ 14	7.0 UJ 7.	0 14 UJ 14.0	7.0 UJ 7.0	7.0 UJ 7.0	7.0 UJ 7.0	7.0 UJ 7.0	7.0 UJ 7.0	7.0 UJ 7.0
n-Heptane	7.6	1.0	NL	NL	2.0 U 2.		5.4 2.0	2.0 U 2.0	8.2 U 8.2	2 4.1 U 4.1	7.9 2.	0 6.1 4.	1 4.6 2.0	2.0 U 2.0	7.6 2.0	2.1 2.0	2.0 U 2.0	4.7 2.0
n-Hexane	6.0	0.88	1.6 - 6.4	< 1.2 - 2.7	1.8 U 1.		8 2.4 1.8	1.8 U 1.8	7.0 U 7.0	3.5 U 3.5	8.7 1.	8 9.7 3.9		1.8 U 1.8		1.8 U 1.8	1.8 U 1.8	3.9 1.8
n-Octane Nonane	2.3 3.4	0.65 0.37	NL NL	NL NL	1.9 U 1. 2.6 U 2.		9 15 1.9 6 18 2.6	1.9 U 1.9 2.6 U 2.6	7.5 U 7.5 10 U 10	3.7 U 3.7 5.2 U 5.2	3.8 1. 4.3 2.	9 3.8 3.7 6 17 5.2	7 1.9 U 1.9 2 2.6 U 2.6	1.9 U 1.9 2.6 U 2.6	4.0 1.9 1.6 2.6	1.9 U 1.9 3.0 2.6	1.9 U 1.9 2.6 U 2.6	4.4 1.9 14 2.6
n-Undecane	5.0	0.67	NL NL	NL	6.4 U 6.		4 6.4 U 6.4	6.4 U 6.4	26 U 26	3.2 0 3.2 6 28 13	6.4 U 6.	4 13 U 13	6.4 U 6.4	6.4 U 6.4	6.4 U 6.4	6.4 U 6.4	6.4 U 6.4	6.4 U 6.4
o-Xylene	3.1	0.56	< 2.4 - 4.4	< 1.4 - 2.6	0.87 U 0.8		-	0.87 U 0.87	3.5 U 3.5	1.7 U 1.7	10 0.8		7 3.5 0.87	0.87 U 0.87	22 0.87	1.1 0.87	0.87 U 0.87	7.7 0.87
Pentane	NL	NL	NL	NL	3.0 U 3.			3.0 U 3.0	12.0 U 12.0	5.9 U 5.9	15 3.	0 19 5.9		3.0 U 3.0	4.3 3.0	3.0 U 3.0	3.0 U 3.0	7.5 3.0
Styrene	0.64	<0.25	< 1.8	< 1.6	0.85 U 0.8			0.85 U 0.85	3.4 U 3.4	1.7 U 1.7	0.85 U 0.8		7 1.2 0.85	0.85 U 0.85	3.6 0.85	0.85 U 0.85	0.85 U 0.85	2.1 0.85
Tetrachloroethene Toluene	1.1 24.8	0.34 2.4	< 1.9 - 5.9 10.7 - 26	< 1.4 - 3.0 5.9 - 16	1.4 U 1.	4 1.4 U 1. 5 2.6 0.7	4 1.4 U 1.4 5 21 0.75	4.0 1.4	550 5.4 3.0 U 3.0	2.7 U 2.7 4.6 1.5	1.4 U 1. 51 0.7	4 2.7 U 2.7 5 14 1.9	7 8.5 1.4	1.4 U 1.4 3.0 0.75	1.4 U 1.4 37 0.75	1.4 U 1.4 1.6 0.75	1.4 U 1.4 1.7 0.75	1.4 U 1.4 24 0.75
trans-1,3-Dichloropropene	< 0.25	< 0.25	10.7 - 26 NL	5.9 - 16 NL	0.91 U 0.9		1 0.91 U 0.75	0.91 U 0.91	3.6 U 3.6	3 4.6 1.5 6 1.8 U 1.8	0.91 U 0.9	14 1.8 U 1.8	0.75 3 0.91 U 0.91	0.91 U 0.91	0.91 U 0.91	0.91 U 0.91	0.75 0.91 U 0.91	0.91 U 0.91
Trichloroethene	<0.25	<0.25	< 1.2 - 1.2	< 1.5	1.1 U 1.	1 1.1 U 1.	1 1.1 U 1.1	1.1 U 1.1	6.5 4.3	3 2.1 U 2.1	1.1 U 1.	1 2.1 U 2.1	1 2.1 1.1	1.1 U 1.1	1.1 U 1.1	1.1 U 1.1	1.1 U 1.1	1.1 U 1.1
Trichlorofluoromethane	5.4	2.2	NL	NL	1.7 1.		1 1.6 1.1	1.4 1.1	4.5 U 4.5	2.2 U 2.2	1.6 1.	1 2.2 U 2.2		7.0 1.1	1.3 1.1	1.4 1.1	1.3 1.1	1.2 1.1
Vinyl chloride	<0.25	<0.25	< 0.9	< 1.0	0.51 U 0.5	1 0.51 U 0.5	1 0.51 U 0.51	0.51 U 0.51	2.0 U 2.0	1.0 U 1.0	0.51 U 0.5	1 1.0 U 1.0	0.51 U 0.51	0.51 U 0.51	0.51 U 0.51	0.51 U 0.51	0.51 U 0.51	0.51 U 0.51
Tentatively Identified Compounds (TICs) 1.2.3-Trimethylbenzene	1.1	< 0.25	NII	NII	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *
1,2,3-1rimethylbenzene 1-Methylnaphthalene	NL	< 0.25 NL	NL NL	NL NL	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *
2,2,4-Trimethylpentane	NL	NL	NL	NL	ND *	ND *	ND *	ND *	ND *	ND *	12 NJ *	ND *	ND *	ND *	ND *	ND *	ND *	ND *
2,3-Dimethylheptane	NL	NL	NL	NL	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *
2,3-Dimethylpentane	2.2	0.31	NL	NL	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *
2-Methylnaphthalene	NL NI	NL	NL NI	NL	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *
Butylcyclohexane Indane	NL NL	NL NL	NL NL	NL NL	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *
Indene	NL NL	NL NL	NL NL	NL NL	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *
Isopentane	NL	NL	NL	NL	ND *	ND *	ND *	ND *	ND *	ND *	44 NJ *	ND *	210 NJ *	ND *	ND *	ND *	ND *	ND *
Total VOCs (μg/m³)		<u> </u>			11	21	140	16	580	51	240	130	480	36	200	20	10	140
Notes:												-		-				

Notes:
NL - Not Listed
ND - Not Detected
MDL = Method Detection Limit

Q - Qualifier

1 of 4

U - Compound was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit

J - Associated numerical value is an estimated quantity

¹ NY DOH Background values from the NYSDOH Study of Volatile Organic Chemicals in Air of Fuel Oil Heated Homes, 1997 - 2003 ² USEPA Background values from the NYSDOH Vapor Intrusion Guidance - Table 3 1994 - 1998

R - Result was rejected because one or more QC measures did not meet acceptance criteria RL - Reporting limit N - compound identified as a tentatively identified compound (TIC)
* - compounds reported as TICs are not calibrated for and do not have a reporting limit Bolded results exceed the NYSDOH 75% Indoor Background values from homes with fuel oil heat Table B-23 Soil Vapor Intrusion VOC Results

Table B-23 Soil Vapor Intrusion VOC Results Norwich Former MGP Site, Norwich, New York

Sample	NYSDOH	NYSDOH	USEPA	USEPA	NO-18COB	Т	NO-18CO	F I	NO-18COS	NO-20COB	NO-20COF	NO-20COS	NO-30FRB	NO-30FRF	NO-30FRS	NO-37FRB	NO-37FRF	NO-37FRS	NO-41FRB
Sample Type	Background	Background	Indoor	Outdoor	Basement		1st Floor	_	Sub-slab	Basement	1st Floor	Sub-slab	Basement	1st Floor	Sub-slab	Basement	1st Floor	Sub-slab	Basement
Sample Depth/Height	75% Indoor ¹	75% Outdoor ¹	Background ²	Background ²	3 ft. above groun	_	ft. above gro	_	•	3 ft. above ground		2 in. below slab			2 in. below slab	3 ft. above ground	3 ft. above ground	3 ft. below grou	
Sample Date Dilution Factor					3/29/2006 11:40	0 3	3/29/2006 11	1:49	3/29/2006 11:38	3/29/2006 13:27	3/29/2006 13:37	3/29/2006 13:25	3/24/2006 11:30	3/24/2006 11:35	3/24/2006 11:30	3/29/2006 9:50	3/29/2006 9:56	3/29/2006 9:5: 18.18	3 3/24/2006 6:15
Volatile Organic Compounds (µg/m3)					Conc Q RI		Conc Q	DI	Conc Q RL	Conc Q RL	Conc Q RL	Conc Q RI	Conc Q RL	Conc Q RL	Conc Q RL	Conc Q RL	Conc Q RL	Conc Q F	RL Conc Q RL
1,1,1-Trichloroethane	1.1	0.33	2.6 - 11	< 0.6 - 1.7	1.1 U 1	.1	1.1 U	1.1	4.4 U 4.4	1.1 U 1.1	2.2 U 2.2	2.2 U 2.	2 1.1 U 1.1	1.1 U 1.1	1.1 U 1.1	1.1 U 1.1	1.1 U 1.1		20 1.1 U 1.1
1,1,2,2-Tetrachloroethane	<0.25	<0.25	NL	NL	1.4 U 1	.4	1.4 U	1.4	5.5 U 5.5	1.4 U 1.4	2.7 U 2.7	2.7 U 2.		1.4 U 1.4	1.4 U 1.4	1.4 U 1.4	1.4 U 1.4	25 U	25 1.4 U 1.4
1,1,2-Trichloro-1,2,2-trifluoroethane	1.1	1.1	NL	NL	1.5 U 1	.5		1.5	6.1 U 6.1	1.5 U 1.5	3.1 U 3.1	3.1 U 3.		1.5 U 1.5	1.5 U 1.5	1.5 U 1.5	1.5 U 1.5		28 1.5 U 1.5
1,1,2-Trichloroethane	<0.25	<0.25	< 1.3	< 12	1.1 U 1	.1	1.1 U	1.1	4.4 U 4.4	1.1 U 1.1	2.2 U 2.2	2.2 U 2.		1.1 U 1.1	1.1 U 1.1	1.1 U 1.1	1.1 U 1.1		20 1.1 U 1.1
1,1-Dichloroethane 1,1-Dichloroethene	<0.25 < 0.25	<0.25 < 0.25	< 0.5 < 1.1	< 0.4 < 1.0	0.81 U 0.8 0.79 U 0.7		0.81 U 0.79 U	0.81	3.2 U 3.2 3.2 U 3.2	0.81 U 0.81 0.79 U 0.79	1.6 U 1.6 1.6 U 1.6	1.6 U 1.	6 0.81 U 0.8 ² 6 0.79 U 0.79	0.81 U 0.81 0 0.79 U 0.79	0.81 U 0.81 0 0.79 U 0.79	0.81 U 0.81 0.79 U 0.79	0.81 U 0.81 0.79 U 0.79	15 U 14 U	15 0.81 U 0.81 14 0.79 U 0.79
1,2,4-Trichlorobenzene	<0.25	< 0.25	NL NL	NL	7.4 U 7			7.4	30 U 30	7.4 U 7.4	15 U 15	1.0 U 1	5 7.4 U 7.4	7.4 U 7.4	7.4 U 7.4	7.4 U 7.4	7.4 U 7.4		30 7.4 U 7.4
1,2,4-Trimethylbenzene	4.3	0.81	1.7 - 5.1	< 1.6 - 3.1	0.98 U 0.9			0.98	4.5 3.9	0.98 0.98	3 2.7 2.0	5.2 2.	0 0.98 U 1.0	0.98 U 1.0	41 J 1.0	0.98 U 0.98	0.98 U 0.98	18 U	18 0.98 U 0.98
1,2-Dibromoethane (EDB)	<0.25	<0.25	< 1.3	< 1.2	1.5 U 1	.5	1.5 U	1.5	6.1 U 6.1	1.5 U 1.5	3.1 U 3.1	3.1 U 3.		1.5 U 1.5	1.5 U 1.5	1.5 U 1.5	1.5 U 1.5		28 1.5 U 1.5
1,2-Dichloro-1,1,2,2-tetrafluoroethane	< 0.25	< 0.25	NL	NL	1.4 U 1	.4		1.4	5.6 U 5.6	1.4 UJ 1.4	2.8 UJ 2.8	2.8 UJ 2.			1.4 U 1.4	1.4 U 1.4	1.4 U 1.4		25 1.4 U 1.4
1,2-Dichlorobenzene 1,2-Dichloroethane	< 0.25 < 0.25	< 0.25 <0.25	< 0.9 < 0.6	< 1.0 < 0.6	1.2 U 1 8.9 0.8	.2	1.2 U 0.81 U	0.81	4.8 U 4.8 3.2 U 3.2	1.2 U 1.2 0.81 U 0.81	2 2.4 U 2.4 1.6 U 1.6	2.4 U 2. 1.6 U 1.	4 1.2 U 1.2 6 0.81 U 0.8	1.2 U 1.2 0.81 U 0.81	1.2 U 1.2 0.81 U 0.81	1.2 U 1.2 0.81 U 0.81	1.2 U 1.2 0.81 U 0.81	22 U 15 U	22 1.2 U 1.2 15 0.81 U 0.81
1,2-Dichloropropane	< 0.25	<0.25	< 1.4	< 1.4	0.92 U 0.9			0.92	3.7 U 3.7	0.92 U 0.92	1.8 U 1.8	1.8 U 1.	8 0.92 U 0.92	0.81 U 0.8 2 0.92 U 0.92	0.81 U 0.81	0.92 U 0.92	0.92 U 0.92	17 U	17 0.92 U 0.92
1,3,5-Trimethylbenzene	1.7	0.34	< 1.5	< 1.4	0.98 U 0.9			0.98	3.9 U 3.9	0.98 U 0.98	3 2.0 U 2.0	2.0 U 2.		0.98 U 1.0	5.9 1.0	0.98 U 0.98	0.98 U 0.98	18 U	18 0.98 U 0.98
1,3-Dichlorobenzene	< 0.25	< 0.25	< 0.8	< 0.8	1.2 U 1	.2	1.2 U	1.2	4.8 U 4.8	1.2 U 1.2	2 2.4 U 2.4	2.4 U 2.		2 1.2 U 1.2	1.2 U 1.2	1.2 U 1.2	1.2 U 1.2	22 U	22 1.2 U 1.2
1,4-Dichlorobenzene	0.54	< 0.25	NL	NL	1.2 U 1	.2	1.2 U	1.2	4.8 U 4.8	1.2 U 1.2	2.4 U 2.4	2.4 U 2.	4 1.2 U 1.2	1.2 U 1.2	1.2 U 1.2	1.2 U 1.2	1.2 U 1.2	22 U	22 1.2 U 1.2
Benzene Bromomothano	5.9	2.3	2.1 - 5.1 < 0.9	1.2 - 3.7 < 1.0	2.4 0.6			0.64	2.9 2.6	2.8 0.64 0.78 U 0.78	1.6 1.3 1.6 U 1.6	2.4 1. 1.6 U 1.	3 1.6 0.64 6 0.78 U 0.78	1.6 0.64 0.78 U 0.78	1.2 0.64	0.64 U 0.64	1.4 0.64 0.78 U 0.78	12 U	12 0.94 0.64
Bromomethane Carbon tetrachloride	<0.25 0.59	<0.25 0.6	< 0.9	< 1.0 < 1.0	0.78 U 0.7 1.3 U 1		0.78 U 1.3 U	0.78	3.1 U 3.1 5.0 U 5.0	0.78 U 0.78 1.3 U 1.3	3 1.6 U 1.6 3 2.5 U 2.5	2.5 U 2.	5 1.3 U 1.3	0.78 U 0.78 3 1.3 U 1.3	0.78 U 0.78 1.3 U 1.3	0.78 U 0.78 1.3 U 1.3	1.3 U 1.3	14 U 23 U	14 0.78 U 0.78 23 1.3 U 1.3
Chlorobenzene	<0.25	<0.25	< 0.7	< 0.8	0.92 U 0.9	.0		0.92	3.7 U 3.7	0.92 U 0.92	1.8 U 1.8	1.8 U 1.	8 0.92 U 0.92	0.92 U 0.92	0.92 U 0.92	0.92 U 0.92	0.92 U 0.92	17 U	17 0.92 U 0.92
Chloroethane	< 0.25	< 0.25	NL	NL NL	0.53 U 0.5	_		0.53	2.1 U 2.1	0.53 U 0.53	3 1.1 U 1.1	1.1 U 1.	1 0.53 U 0.53	0.53 U 0.53	0.53 U 0.53	0.53 U 0.53	0.53 U 0.53		9.6 0.53 U 0.53
Chloroform	0.54	< 0.25	< 0.5	< 0.4	0.98 U 0.9	98		0.98	3.9 U 3.9	0.98 U 0.98	3 2.0 U 2.0	2.0 U 2.	0 0.98 U 1.0	0.98 U 1.0	0.98 U 1.0	0.98 U 0.98	0.98 U 0.98	18 U	18 0.98 U 0.98
Chloromethane	1.8	1.8	2.1 - 3.1	2.0 - 3.0	1.0 U 1			1.0	4.1 U 4.1	1.2 J 1.0	2.1 UJ 2.1	2.1 UJ 2.		1.7 1.0	1.0 U 1.0	1.3 1.0	1.2 1.0	19.0 U 1	
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	<0.25 < 0.25	<0.25 < 0.25	< 1.0 NL	< 1.0 NL	0.79 U 0.7 0.91 U 0.9	_		0.79	3.2 U 3.2 3.6 U 3.6	0.79 U 0.79 0.91 U 0.91	1.6 U 1.6 1.8 U 1.8	1.6 U 1. 1.8 U 1.	6 0.79 U 0.79 8 0.91 U 0.99	0.79 U 0.79 0.91 U 0.91	0.79 U 0.79 0.91 U 0.91	0.79 U 0.79 0.91 U 0.91	0.79 U 0.79 0.91 U 0.91	14 U 17 U	14 0.79 U 0.79 17 0.91 U 0.91
Dichlorodifluoromethane	4.1	4.2	NL NL	NL NL	1.9 0.9			0.99	4.0 U 4.0	1.7 0.99	2.0 U 2.0	2.1 2.	0 3.2 1.0	3.0 1.0	3.1 1.0	4.6 0.99	5.2 0.99	18 U	18 2.5 0.99
Ethylbenzene	2.8	0.48	< 1.6 - 3.4	< 1.4 - 1.6	0.98 0.8			0.87	3.5 U 3.5	1.2 0.87	7 1.7 U 1.7	4.6 1.		7 0.87 U 0.87	2.6 0.87	0.87 U 0.87	0.87 U 0.87	16 U	16 0.87 U 0.87
Hexachlorobutadiene	<0.25	<0.25	NL	NL	11 U 1	11	11 U	11	43 U 43	11 U 11	21 U 21	21 U 2		11 U 11	11 U 11	11 U 11	11 U 11		90 11 U 11
Isopropylbenzene	0.4	< 0.25	NL	NL	2.0 U 2			2.0	7.9 U 7.9	2.0 U 2.0	3.9 U 3.9	3.9 U 3.	9 2.0 U 2.0	2.0 U 2.0	2.0 U 2.0	2.0 U 2.0	2.0 U 2.0		36 2.0 U 2.0
Methylogo chlorido	5.6 6.6	0.86 0.73	< 1.7 - 12 < 1.7 - 5.0	< 1.8 < 1.8 - 3.0	3.6 U 3 1.7 U 1	3.6	3.6 U 1.7 U	3.6	14 U 14 6.9 U 6.9	3.6 UJ 3.6 63 1.7	7.2 UJ 7.2 7 7.1 3.5	7.2 UJ 7. 3.5 3.	2 3.6 U 3.6 5 1.7 U 1.7	3.6 U 3.6 7 1.7 U 1.7	3.6 U 3.6 5.3 1.7	3.6 U 3.6 1.7 U 1.7	3.6 U 3.6 1.7 U 1.7	00 0	66 3.6 U 3.6 32 1.7 U 1.7
Methylene chloride m-Xylene & p-Xylene	4.6	0.73	4.1 - 12	< 3.6 - 7.3	3.3 0.8	87		0.87	7.6 3.5	6.9 0.87	7.1 3.5	3.5 3. 15 1.	7 1.1 0.8	2.0 0.87	7.4 0.87	0.87 U 0.87	1.7 0 1.7	19	16 0.87 U 0.87
Naphthalene	NL	NL NL	< 2.5	< 2.4	2.6 U 2	_		2.6	10 U 10	2.6 U 2.6	5.2 U 5.2	5.2 U 5.	2 2.6 U 2.6	2.6 U 2.6	3 2.6 U 2.6	2.6 U 2.6	2.6 U 2.6	48 U	48 2.6 U 2.6
n-Butane	NL	NL	NL	NL	19 0.9	95		0.95	24 3.8	23 J 0.95		4.1 J 1.	9 10 1.0	8.7	4.6 1.0	6.0 0.95	5.5 0.95	17 U	17 1.7 0.95
n-Decane	6.6	2	NL	NL	5.8 U 5	5.8		5.8	23 U 23	5.8 U 5.8	12 U 12	12 U 1	2 5.8 U 5.8	5.8 U 5.8	5.8 U 5.8	5.8 U 5.8	5.8 U 5.8		10 5.8 U 5.8
n-Dodecane	3.9 7.6	1.9 1.0	NL NL	NL NL	7.0 U 7 2.0 U 2	7.0	7.0 U 2.6	2.0	28 28 8.2 U 8.2	7.0 U 7.0 4.3 2.0	14 U 14 0 4.1 U 4.1	14 U 1 4.1 U 4.	4 7.0 UJ 7.0 1 2.0 U 2.0	7.0 UJ 7.0 2.0 U 2.0	7.0 UJ 7.0 2.0 U 2.0	7.0 UJ 7.0 2.0 U 2.0	7.0 UJ 7.0 2.0 U 2.0	130 U 1	30 7.0 UJ 7.0 37 2.0 U 2.0
n-Heptane n-Hexane	6.0	0.88	1.6 - 6.4	< 1.2 - 2.7	3.0 1			1.8	7 U 7.0	6.0 1.8	3.5 U 3.5	3.5 U 3.		3 1.8 U 1.8	3 1.8 U 1.8	1.8 U 1.8	1.8 U 1.8		32 1.8 U 1.8
n-Octane	2.3	0.65	NL NL	NL NL	1.9 U 1	.9	1.9 U	1.9	7.5 U 7.5	1.9 U 1.9	3.7 U 3.7	3.7 U 3.		1.9 U 1.9	1.9 U 1.9	1.9 U 1.9	1.9 U 1.9		34 1.9 U 1.9
Nonane	3.4	0.37	NL	NL	2.6 U 2	2.6	7.8	2.6	10 U 10	2.6 U 2.6	5.2 U 5.2	25 5.	2 2.6 U 2.6	2.6 U 2.6	6.3 2.6	2.6 U 2.6	2.6 U 2.6	48 U	48 2.6 U 2.6
n-Undecane	5.0	0.67	NL	NL	6.4 U 6	6.4	0.10	6.4	26 U 26	6.4 U 6.4	13 U 13	13 U 1	3 6.4 U 6.4	6.4 U 6.4	6.4 U 6.4	6.4 U 6.4	6.4 U 6.4		20 6.4 U 6.4
o-Xylene Bontono	3.1 NL	0.56 NL	< 2.4 - 4.4 NL	< 1.4 - 2.6 NL	1.5 0.8 7.1 3			3.0	3.5 U 3.5 12 U 12	2.8 0.87 3.6 3.0	1.8 1.7 5.9 U 5.9	5.9 1. 5.9 U 5.	7 0.87 U 0.87 9 4.2 3.0	0.87 U 0.87 4.9 3.0	2.8 0.87 3.0 U 3.0	0.87 U 0.87 3.0 U 3.0	0.87 U 0.87 3.0 U 3.0	16 U 54 U 54	16 0.87 U 0.87 4.0 3.0 U 3.0
Pentane Styrene	0.64	NL <0.25	NL < 1.8	NL < 1.6	0.85 U 0.8	_	-	0.85	3.4 U 3.4	0.85 U 0.85	5.9 U 5.9 5 1.7 U 1.7	2.0 1.	9 4.2 3.0 7 0.85 U 0.89	0 4.9 3.0 5 0.85 U 0.85	3.0 U 3.0 5 7.0 J 0.85	0.85 U 0.85	0.85 U 0.85	15 U	15 0.85 U 0.85
Tetrachloroethene	1.1	0.34	< 1.9 - 5.9	< 1.4 - 3.0	1.4 U 1	_		1.4	5.4 U 5.4	1.4 U 1.4	2.7 U 2.7	2.7 U 2.		1.4 U 1.4	1.4 U 1.4	1.4 U 1.4	1.4 U 1.4		25 1.4 U 1.4
Toluene	24.8	2.4	10.7 - 26	5.9 - 16	7.0 0.7		15	0.75	9.2 3	25 0.75	8.3 1.5	14 1.	5 2.1 0.75	4.7 0.75	7.8 0.75	0.75 U 0.75	6.3 0.75	21	14 1.7 0.75
trans-1,3-Dichloropropene	< 0.25	< 0.25	NL	NL	0.91 U 0.9	_		0.91	3.6 U 3.6	0.91 U 0.91	1.8 U 1.8	1.8 U 1.	8 0.91 U 0.9	0.91 U 0.91	0.91 U 0.91	0.91 U 0.91	0.91 U 0.91	17 U	17 0.91 U 0.91
Trichloroethene	<0.25	<0.25	< 1.2 - 1.2	< 1.5	1.1 U 1			1.1	4.3 U 4.3	1.1 U 1.1	2.1 U 2.1	2.1 U 2.			1.1 U 1.1	1.1 U 1.1	1.1 U 1.1		20 1.1 U 1.1 20 1.3 1.1
Trichlorofluoromethane Vinvl chloride	5.4 <0.25	2.2 <0.25	NL < 0.9	NL < 1.0	1.7 1 0.51 U 0.5		2.0 0.51 U	1.1	4.5 U 4.5 2.0 U 2.0	1.1 1.1 0.51 UJ 0.51		2.2 U 2. 1.0 UJ 1.				1.5 1.1 0.51 U 0.51	2.2 1.1 0.51 U 0.51	20 U 9.3 U	
Tentatively Identified Compounds (TICs)	-0.20	-0.20	- 0.8	- 1.0	0.01 0 0.0	<u> </u>	0.010	J.J I	2.0 0 2.0	0.01 00 0.01	1.0 00 1.0	1.0 00 1.	0.01 0 0.5	0.01 0 0.0	0.51 0 0.51	0.51 0 0.51	0.51 0 0.51	3.3 0	2.01 0 0.01
1,2,3-Trimethylbenzene	1.1	< 0.25	NL	NL	ND *		ND	*	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND	* ND *
1-Methylnaphthalene	NL	NL	NL	NL	ND *		ND	*	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND	* ND *
2,2,4-Trimethylpentane	NL NI	NL NI	NL NI	NL	ND *		ND	*	ND *	61 NJ *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND	* ND *
2,3-Dimethylpentane 2,3-Dimethylpentane	NL 2.2	NL 0.31	NL NL	NL NL	ND *	-	ND ND	*	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND ND	* ND * * ND *
2-Methylnaphthalene	NL	NL	NL NL	NL NL	ND *	-	ND	*	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND ND	* ND *
Butylcyclohexane	NL	NL	NL	NL	ND *		ND	*	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *		* ND *
Indane	NL	NL	NL	NL	ND *		ND	*	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND	* ND *
Indene	NL	NL NI	NL NI	NL	ND *		ND NU	*	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND	* ND *
Isopentane	NL	NL	NL	NL	32 NJ *	\perp	38 NJ	^	ND *	16 NJ *	ND *	ND *	9.44 NJ	10.92 NJ	ND *	ND *	ND *	ND	* ND *
Total VOCs (μg/m³)					89	1	150		76	240	120	84	33	39	90	13	23	40	8.1
Notes:					99	_1_	100		10	240	120	04	33	38	90	10	۷۵	40	0.1
110100.																			

Notes: NL - Not Listed

ND - Not Detected
MDL = Method Detection Limit

Q - Qualifier

U - Compound was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit

J - Associated numerical value is an estimated quantity

R - Result was rejected because one or more QC measures did not meet acceptance criteria
 RL - Reporting limit
 N - compound identified as a tentatively identified compound (TIC)
 * - compounds reported as TICs are not calibrated for and do not have a reporting limit
 Bolded results exceed the NYSDOH 75% Indoor Background values from homes with fuel oil heat

 $^{^{1}}$ NY DOH Background values from the NYSDOH Study of Volatile Organic Chemicals in Air of Fuel Oil Heated Homes, 1997 - 2003 2 USEPA Background values from the NYSDOH Vapor Intrusion Guidance - Table 3 1994 - 1998

Table B-23 Soil Vapor Intrusion VOC Results Norwich Former MGP Site, Norwich, New York

Cample	NVCDOLL	NVCDOLL	LICEDA	LICEDA	NO 44 EDE	NO 44EDO	NO 40EDD	NO ADEDE	NO ACEDO	NO ASERD	NO 42EDE	NO 42EDO	NO 45EDD	NO ACCRE	NO ACEDO	NO LOE	NO LCC
Sample Sample Type	NYSDOH Background	NYSDOH Background	USEPA Indoor	USEPA Outdoor	NO-41 FRF 1st Floor	NO-41FRS Sub-slab	NO-42FRB Basement	NO-42FRF 1st Floor	NO-42FRS Sub-slab	NO-43FRB Basement	NO-43FRF 1st Floor	NO-43FRS Sub-slab	NO-45FRB Basement	NO-45FRF 1st Floor	NO-45FRS Sub-slab	NO-LCF 1st Floor	NO-LCS Sub-slab
Sample Depth/Height	75% Indoor ¹	75% Outdoor ¹	Background ²	Background ²	3 ft. above ground	3 ft. below groun		3 ft. above ground	2 in. below slab	3 ft. above ground	3 ft. above ground	3 ft. below ground	3 ft. above ground	3 ft. above ground	2 in. below slab	3 ft. above grour	
Sample Date		,			3/24/2006 6:20	3/24/2006 6:15	3/24/2006 9:30	3/24/2006 9:42	3/24/2006 9:35	3/28/2006 5:24	3/28/2006 5:30	3/28/2006 5:24	3/28/2006 2:29	3/28/2006 2:40	3/28/2006 2:29	3/29/2006 10:40	3/29/2006 10:40
Dilution Factor					1	1	1	1	1	1	1	4	20	11.76	4	1	10
Volatile Organic Compounds (µg/m3) 1.1.1-Trichloroethane	1.1	0.33	2.6 - 11	< 0.6 - 1.7	Conc Q RL 1.1 U 1.1	Conc Q R	L Conc Q RL .1 1.1 U 1.1	Conc Q RL 1.1 U 1.1	Conc Q RL 1.2 1.1	Conc Q RL	Conc Q RL 1 1.1 U 1.1	Conc Q RL 4.4 U 4.4	Conc Q RL 22 U 22	Conc Q RL 13 U 13	Conc Q RL 3 4.4 U 4.4	Conc Q R 1.1 U 1	
1,1,2,2-Tetrachloroethane	<0.25	<0.25	NL	NL	1.4 U 1.4	1.1 U	1.1 U 1.1 U 1.4	1.4 U 1.4	1.4 U 1.4	1.1 U 1.4	1.1 U 1.1 1 1.4 U 1.4	5.5 U 5.5	27 U 27	16 U 16	5 5.5 U 5.5	1.1 U 1	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.1	1.1	NL	NL	1.5 U 1.5	1.5 U	.5 1.5 U 1.5	1.5 U 1.5	1.5 U 1.5	1.5 U 1.5	1.5 U 1.5	6.1 U 6.1	31 U 31	18 U 18	6.1 U 6.1	1.5 U 1	
1,1,2-Trichloroethane	<0.25	<0.25	< 1.3	< 12	1.1 U 1.1	1.1 U '		1.1 U 1.1	1.1 U 1.1	1.1 U 1.1	1 1.1 U 1.1	4.4 U 4.4	22 U 22	13 U 13	3 4.4 U 4.4	1.1 U 1	
1,1-Dichloroethane	<0.25	<0.25	< 0.5	< 0.4	0.81 U 0.81	0.81 U 0.		0.81 U 0.81	0.81 U 0.81	0.81 U 0.81	0.81 U 0.81	3.2 U 3.2	16 U 16	9.5 U 9.5	3.2 U 3.2	0.81 U 0.8	
1,1-Dichloroethene 1,2,4-Trichlorobenzene	< 0.25 <0.25	< 0.25 < 0.25	< 1.1 NL	< 1.0 NL	0.79 U 0.79 7.4 U 7.4	0.79 U 0. 7.4 U 7		0.79 U 0.79 7.4 U 7.4	0.79 U 0.79 7.4 U 7.4	0.79 U 0.79 7.4 U 7.4	9 0.79 U 0.79 4 7.4 U 7.4	3.2 U 3.2 30 U 30	16 U 16 150 U 150	9.3 U 9.3 87 U 87	3.2 U 3.2 30 U 30	0.79 U 0.7	
1,2,4-Trichloroberizerie	4.3	0.81	1.7 - 5.1	< 1.6 - 3.1	1.0 0.98	5.0 0.		1.7 0.98	7.4 0 7.4 3 7.9 0.98	0.98 U 0.98	3 1.7 0.98	5.3 3.9	20 U 20	12 U 12	6.3 3.9	1.4 0.9	
1,2-Dibromoethane (EDB)	<0.25	<0.25	< 1.3	< 1.2	1.5 U 1.5	1.5 U	.5 1.5 U 1.5	1.5 U 1.5	1.5 U 1.5	1.5 U 1.5	1.5 U 1.5	6.1 U 6.1	31 U 31	18 U 18	6.1 U 6.1	1.5 U 1	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	< 0.25	< 0.25	NL	NL	1.4 U 1.4	1.4 U	.4 1.4 U 1.4	1.4 U 1.4	1.4 U 1.4	1.4 U 1.4	1.4 U 1.4	5.6 U 5.6	28 U 28	16 U 16	5.6 U 5.6	1.4 U 1	
1,2-Dichlorobenzene	< 0.25	< 0.25	< 0.9	< 1.0	1.2 U 1.2	1.2 U -		1.2 U 1.2	1.2 U 1.2	1.2 U 1.2	1.2 U 1.2	4.8 U 4.8	24 U 24	14 U 14	4.8 U 4.8	1.2 U 1	
1,2-Dichloroethane 1,2-Dichloropropane	< 0.25 <0.25	<0.25 <0.25	< 0.6 < 1.4	< 0.6 < 1.4	0.81 U 0.81 0.92 U 0.92	0.81 U 0. 0.92 U 0.		1.6 0.81 0.92 U 0.92	0.81 U 0.81 0.92 U 0.92	0.81 U 0.81 0.92 U 0.92	1 0.81 U 0.81 2 0.92 U 0.92	3.2 U 3.2 3.7 U 3.7	16 U 16 18 U 18	9.5 U 9.5 11 U 11	3.2 U 3.2 3.7 U 3.7	0.81 U 0.8 0.92 U 0.9	
1,3,5-Trimethylbenzene	1.7	0.34	< 1.5	< 1.4	0.98 U 0.98	1.3 0.		0.98 U 0.98	1.8 1.0	0.98 U 0.98	0.92 U 0.98 0.98 U 0.98	3.9 U 3.9	20 U 20	12 U 12	3.9 U 3.9	0.98 U 0.9	
1,3-Dichlorobenzene	< 0.25	< 0.25	< 0.8	< 0.8	1.2 U 1.2	1.2 U		1.2 U 1.2	1.2 U 1.2	1.2 U 1.2	2 1.2 U 1.2	4.8 U 4.8	24 U 24	14 U 14	4.8 U 4.8	1.2 U 1	.2 12 U 12
1,4-Dichlorobenzene	0.54	< 0.25	NL	NL	1.2 U 1.2	1.2 U	.2 1.2 U 1.2	1.2 U 1.2	1.2 U 1.2	1.2 U 1.2	2 1.2 U 1.2	4.8 U 4.8	24 U 24	14 U 14	4.8 U 4.8	1.2 U 1	
Benzene	5.9 <0.25	2.3 <0.25	2.1 - 5.1	1.2 - 3.7 < 1.0	1.5 0.64 0.78 U 0.78	1.5 0. 0.78 U 0.		3.9 0.64 0.78 U 0.78	5.6 0.64 0.78 U 0.78	1.3 0.64 0.78 U 0.78	4 2.3 0.64 3 0.78 U 0.78	3.3 2.6 3.1 U 3.1	30 13 16 U 16	22 7.5 9.1 U 9.1	5 14 2.6 3.1 U 3.1	1.2 0.6 0.78 U 0.7	
Bromomethane Carbon tetrachloride	<0.25 0.59	<0.25 0.6	< 0.9 < 0.9	< 1.0	1.3 U 1.3	1.3 U	78 0.78 U 0.78 1.3 1.3 U 1.3	0.78 U 0.78	3 0.78 U 0.78 3 1.3 U 1.3	1.3 U 1.3	3 0.78 U 0.78 3 1.3 U 1.3	3.1 U 3.1 5 U 5	25 U 25	9.1 U 9.1 15 U 15	3.1 U 3.1 5 5 U 5	1.3 U 1	
Chlorobenzene	<0.25	<0.25	< 0.7	< 0.8	0.92 U 0.92	0.92 U 0.		0.92 U 0.92	0.92 U 0.92	0.92 U 0.92	2 0.92 U 0.92	3.7 U 3.7	18 U 18	11 U 11	3.7 U 3.7	0.92 U 0.9	
Chloroethane	< 0.25	< 0.25	NL	NL	0.53 U 0.53	0.53 U 0.		0.53 U 0.53	0.53 U 0.53	0.53 U 0.53	0.53 U 0.53	2.1 U 2.1	11 U 11	6.2 U 6.2	2.1 U 2.1	0.53 U 0.5	
Chloroform	0.54	< 0.25	< 0.5	< 0.4	0.98 U 0.98	0.98 U 0.		1.9 0.98	1.4 1.0	0.98 U 0.98	0.98 U 0.98	3.9 U 3.9	20 U 20	11 U 11	3.9 U 3.9	0.98 U 0.9	
Chloromethane cis-1.2-Dichloroethene	1.8 <0.25	1.8 <0.25	2.1 - 3.1 < 1.0	2.0 - 3.0 < 1.0	1.5 1.0 0.79 U 0.79	1.0 U 0.		3.7 1.0 0.79 U 0.79	1.0 U 1.0 0 0.79 U 0.79	1.2 1.0 0.79 U 0.79	0 1.4 1.0 9 0.79 U 0.79	4.1 U 4.1 3.2 U 3.2	21.0 U 21 16 U 16	12.0 U 12 9.3 U 9.3	4.1 U 4.1 3 3.2 U 3.2	1.3 1 0.79 U 0.3	
cis-1,3-Dichloropropene	< 0.25	< 0.25	NL	NL NL	0.79 U 0.79	0.79 U 0.		0.79 U 0.79 0.91 U 0.91	0.79 U 0.79	0.79 U 0.79	0.79 U 0.79 1 0.91 U 0.91	3.6 U 3.6	18 U 18	9.3 U 9.3	3.6 U 3.6	0.79 U 0.9	
Dichlorodifluoromethane	4.1	4.2	NL	NL	3.1 0.99	2.6 0.		3.2 0.99	2.9 0.99	2.5 0.99	2.8 0.99	4 U 4.0	20 U 20	12 U 12	2 4 U 4.0	2.7 0.9	
Ethylbenzene	2.8	0.48	< 1.6 - 3.4	< 1.4 - 1.6	0.87 U 0.87	6.1 0.		3.2 0.87	6.5 0.87	0.87 U 0.87	7 1.1 0.87	5.5 3.5	17 U 17	10 U 10	4.6 3.5	1.2 0.8	
Hexachlorobutadiene	<0.25	<0.25	NL NI	NL NI	11 U 11	11 U	11 11 U 11	11 U 11	11 U 11	11 U 11	1 11 U 11	43 U 43	210 U 210	130 U 130	43 U 43	11 U	11 110 U 110
Isopropylbenzene Methyl tert-butyl ether	0.4 5.6	< 0.25 0.86	NL < 1.7 - 12	NL < 1.8	2.0 U 2.0 3.6 U 3.6	2.0 U 2 3.6 U 3		2.0 U 2.0 3.6 U 3.6	2.0 U 2.0 3.6 U 3.6	2.0 U 2.0 3.6 U 3.6	2.0 U 2.0 6 3.6 U 3.6	7.9 U 7.9 14 U 14	39.0 U 39 72 U 72	23.0 U 23 42 U 42	7.9 U 7.9 2 14 U 14	2.0 U 2 3.6 U 3	
Methylene chloride	6.6	0.73	< 1.7 - 5.0	< 1.8 - 3.0	1.7 U 1.7	15		1.7 U 1.7	25 1.7	1.7 U 1.7	7 1.7 U 1.7	6.9 U 6.9	35 U 35	20 U 20	6.9 U 6.9	1.7 U 1	
m-Xylene & p-Xylene	4.6	0.48	4.1 - 12	< 3.6 - 7.3	1.6 0.87	15 0.	87 0.96 0.87	8.7 0.87	17 0.87	2.2 0.87	7 3.4 0.87	14 3.5	31 17	25 10	15 3.5	4.2 0.8	37 25 8.7
Naphthalene	NL	NL	< 2.5	< 2.4	2.6 U 2.6	2.6 U 2		2.6 U 2.6	2.6 U 2.6	2.6 U 2.6	2.6 U 2.6	10 U 10	52 U 52	31 U 31	10 U 10	2.6 U 2	
n-Butane n-Decane	NL 6.6	NL 2	NL NL	NL NL	5.1 J 0.95 5.8 U 5.8	0.96 0. 5.8 U 5		10 0.95 5.8 U 5.8	5 11 1.0 5 5.8 U 5.8	4.8 0.95 5.8 U 5.8	5 11 0.95 3 5.8 U 5.8	9.2 3.8 23 U 23	420 19 120 U 120	270 11 68 U 68	120 3.8 3 23 U 23	15 0.9 5.8 U 5	
n-Dodecane	3.9	1.9	NL	NL NL	7.0 UJ 7.0	7.0 UJ	7.0 7.0 UJ 7.0	7.0 UJ 7.0	7.0 UJ 7.0	7.0 UJ 7.0	7.0 UJ 7.0	28.0 UJ 28	140.0 UJ 140	82.0 UJ 82	2 28.0 U 28	7.0 UJ 7	.0 00 0
n-Heptane	7.6	1.0	NL	NL	2.0 U 2.0	2.3		2.0 U 2.0	6.7 2.0	2.0 U 2.0	6.0 2.0	8.2 U 8.2	41.0 U 41	24.0 U 24	13.0 8.2	2.0 U 2	
n-Hexane	6.0	0.88	1.6 - 6.4	< 1.2 - 2.7	1.8 U 1.8	1.9		1.8 U 1.8	7.5 1.8	1.8 U 1.8	1.8 U 1.8	7 U 7	35 U 35	21 U 21	19 7	1.8 U 1	
n-Octane	2.3	0.65	NL NI	NL NI	1.9 U 1.9	4.5		1.9 U 1.9	16 1.9	1.9 U 1.9	6.1 1.9	7.5 U 7.5	37 U 37	22 U 22	2 20 7.5	1.9 U 1	
Nonane n-Undecane	3.4 5.0	0.37 0.67	NL NL	NL NL	2.6 U 2.6 6.4 U 6.4	19 2 6.4 U 6		2.6 U 2.6 6.4 U 6.4	6 22 2.6 6.4 U 6.4	19 2.6 6.4 U 6.4	6 43 2.6 4 6.4 U 6.4	110 10 26 U 26	52 U 52 130 U 130	31 U 31 75 U 75	16 10 5 26 U 26	2.7 2 6.4 U 6	
o-Xylene	3.1	0.56	< 2.4 - 4.4	< 1.4 - 2.6	0.87 U 0.87	5.1 0.		2.4 0.87	6 0.87	0.95 0.87	7 1.2 0.87	4.9 3.5	17 U 17	10 U 10	4.8 3.5	1.7 0.8	
Pentane	NL	NL	NL	NL	3.0 U 3.0	3.0 U 3	3.0 3.0 U 3.0	3.0 3.0	8.3 3.0	3.0 U 3.0	3.0 U 3.0	12.0 U 12.0	64.0 59.0	45.0 35.0	30.0 12.0	3.0 U 3	.0 30.0 U 30
Styrene	0.64	<0.25	< 1.8	< 1.6	0.85 U 0.85	3.1 0.		2.0 0.85	2.8 0.85	0.9 U 0.85	0.9 U 0.85	3.4 U 3.4	17.0 U 17	10.0 U 10	3.4 U 3.4	0.9 U 0.8	
Tetrachloroethene Toluene	1.1 24.8	0.34 2.4	< 1.9 - 5.9 10.7 - 26	< 1.4 - 3.0 5.9 - 16	1.4 U 1.4 3.8 0.75	1.4 U 22 0.		1.4 U 1.4 22 0.75	1.4 U 1.4 24 0.75	1.4 U 1.4 4.1 0.75	1.4 U 1.4 5 11 0.75	5.4 U 5.4 23 3.0	27 U 27 64 15	16 U 16 52 8.9	5.4 U 5.4 28 3	1.4 U 1 4.9 0.7	
trans-1,3-Dichloropropene	< 0.25	< 0.25	NL	5.9 - 16 NL	0.91 U 0.91	0.91 U 0.		0.91 U 0.91	0.91 U 0.91	0.91 U 0.91	0.75 0.91 U 0.91	3.6 U 3.6	18 U 18	11 U 11	3.6 U 3.6	0.91 U 0.9	
Trichloroethene	<0.25	<0.25	< 1.2 - 1.2	< 1.5	1.1 U 1.1	1.1 U		2.0 1.1	1.2 1.1	1.1 U 1.1	1 1.1 U 1.1		21.0 U 21	13.0 U 13	3 4.3 U 4.3	1.1 U 1	
Trichlorofluoromethane	5.4	2.2	NL	NL	1.8 1.1	1.2		1.6 1.1	1.3 1.1	1.4 1.1	1 2.3 1.1	4.5 U 4.5	22 U 22	13 U 13	3 4.5 U 4.5	2.4 1	
Vinyl chloride Tentatively Identified Compounds (TICs)	<0.25	<0.25	< 0.9	< 1.0	0.51 U 0.51	0.51 U 0.	51 0.51 U 0.51	0.51 U 0.51	0.51 U 0.51	0.51 U 0.51	1 0.51 U 0.51	2 U 2.0	10 U 10	6 U 6.0	2 U 2.0	0.51 U 0.8	5.1 U 5.1
1,2,3-Trimethylbenzene	1.1	< 0.25	NL	NL	ND *	ND .	· ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *
1-Methylnaphthalene	NL	NL	NL	NL	ND *	ND 1	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *
2,2,4-Trimethylpentane	NL	NL	NL	NL	ND *	ND .	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *
2,3-Dimethylheptane	NL	NL	NL	NL	ND *	ND	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *
2,3-Dimethylpentane 2-Methylnaphthalene	2.2 NL	0.31 NL	NL NL	NL NL	ND *	ND T	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *
2-Methylnaphthalene Butylcyclohexane	NL NL	NL NL	NL NL	NL NL	ND *	ND ND	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *
Indane	NL	NL	NL	NL	ND *	ND 1	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *
Indene	NL	NL	NL	NL	ND *	ND	* ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *	ND *
Isopentane	NL	NL	NL	NL	ND *	ND 1	ND *	19 NJ	ND *	ND *	18 NJ *	ND *	210 NJ *	150 NJ *	ND *	ND *	ND *
T-4-1-VOO- 443					40	446			100		140	100		570	200		100
Total VOCs (μg/m³)					19	110	14	91	180	37	110	180	820	570	290	39	460
Notes:																	

NL - Not Listed

ND - Not Detected
MDL = Method Detection Limit

Q - Qualifier

U - Compound was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit

J - Associated numerical value is an estimated quantity

R - Result was rejected because one or more QC measures did not meet acceptance criteria
 RL - Reporting limit
 N - compound identified as a tentatively identified compound (TIC)
 * - compounds reported as TICs are not calibrated for and do not have a reporting limit
 Bolded results exceed the NYSDOH 75% Indoor Background values from homes with fuel oil heat

¹ NY DOH Backgrou ¹ NY DOH Background values from the NYSDOH Study of Volatile Organic Chemicals in Air of Fuel Oil Heated Homes, 1997 - 2003 ² USEPA Backgroun² USEPA Background values from the NYSDOH Vapor Intrusion Guidance - Table 3 1994 - 1998

Table B-23 Soil Vapor Intrusion VOC Results Norwich Former MGP Site, Norwich, New York

Sample	NYSDOH	NYSDOH	USEPA	USEPA	NO-BK-062203	NO-BK062403	NO-BK062803	NO-BK062903	NO-CE062203	NO-MI062403	NO-M1062803	NO-MI062903	NO-UP062203	NO-UP062403	NO-UP062803	NO-UP062903
_ '	Background	Background	Indoor	Outdoor	Ambient Air											
	75% Indoor ¹	75% Outdoor ¹	Background ²	Background ²	3 ft above ground	3 ft. above ground	3 ft. above ground	3 ft. above ground	3 ft. above ground	3 ft. above ground	3 ft. above ground	3 ft. above ground	3 ft. above ground	3 ft. above ground	3 ft. above ground	3 ft. above ground
Sample Date Dilution Factor					3/23/2006 9:25	3/24/2006 8:48	3/28/2006 1:53	3/29/2006 14:02	3/23/2006 9:15	3/24/2006 9:50	3/28/2006 5:50	3/29/2006 14:50	3/22/2006 7:55	3/24/2006 10:25	3/28/2006 5:57	3/29/2006 14:58
Volatile Organic Compounds (μg/m3)					Conc Q RL											
1,1,1-Trichloroethane	1.1	0.33	2.6 - 11	< 0.6 - 1.7	1.1 U 1.1											
1,1,2,2-Tetrachloroethane	<0.25	<0.25	NL	NL	1.4 U 1.4											
1,1,2-Trichloro-1,2,2-trifluoroethane	1.1	1.1	NL	NL	1.5 U 1.5											
1,1,2-Trichloroethane	<0.25	<0.25	< 1.3	< 12	1.1 U 1.1											
1,1-Dichloroethane 1,1-Dichloroethene	<0.25 < 0.25	<0.25 < 0.25	< 0.5 < 1.1	< 0.4 < 1.0	0.81 U 0.81 0.79 U 0.79											
1,2,4-Trichlorobenzene	<0.25	< 0.25	NL NL	NL	7.4 U 7.4											
1,2,4-Trimethylbenzene	4.3	0.81	1.7 - 5.1	< 1.6 - 3.1	0.98 U 0.98	3.2 0.98	0.98 U 0.98	0.98 U 0.98	0.98 U 0.98	0.98 U 0.98	0.98 U 0.98	0.98 U 0.98	0.98 U 0.98	0.98 U 0.98	0.98 U 0.98	0.98 U 0.98
1,2-Dibromoethane (EDB)	<0.25	<0.25	< 1.3	< 1.2	1.5 U 1.5											
1,2-Dichloro-1,1,2,2-tetrafluoroethane	< 0.25	< 0.25	NL	NL	1.4 U 1.4	1.4 U 1.4	1.4 U 1.4	1.4 UJ 1.4	1.4 U 1.4	1.4 U 1.4	1.4 U 1.4	1.4 UJ 1.4	1.4 U 1.4	1.4 U 1.4	1.4 U 1.4	1.4 U 1.4
1,2-Dichlorobenzene	< 0.25 < 0.25	< 0.25 <0.25	< 0.9 < 0.6	< 1.0 < 0.6	1.2 U 1.2 0.81 U 0.81											
1,2-Dichloroethane 1,2-Dichloropropane	<0.25	<0.25	< 1.4	< 1.4	0.92 U 0.92	0.81 U 0.81 0.92 U 0.92	0.81 U 0.81 0.92 U 0.92	0.81 U 0.81 0.92 U 0.92	0.81 U 0.81 0.92 U 0.92	0.91 U 0.91	0.92 U 0.92	0.92 U 0.92	0.81 U 0.81 0.92 U 0.92	0.81 U 0.81	0.81 U 0.81 0.92 U 0.92	0.81 U 0.81 0.92 U 0.92
1,3,5-Trimethylbenzene	1.7	0.34	< 1.5	< 1.4	0.98 U 0.98	1 0.98	0.98 U 0.98	0.98 U 0.98	0.98 U 0.98	0.98 U 0.98	0.98 U 0.98	0.98 U 0.98	0.98 U 0.98	0.98 U 0.98	0.98 U 0.98	0.98 U 0.98
1,3-Dichlorobenzene	< 0.25	< 0.25	< 0.8	< 0.8	1.2 U 1.2											
1,4-Dichlorobenzene	0.54	< 0.25	NL	NL	1.2 U 1.2											
Benzene Promomothano	5.9 <0.25	2.3	2.1 - 5.1	1.2 - 3.7	0.77 0.64 0.78 U 0.78	1.5 0.64	1.3 0.64	1.3 0.64	0.8 0.64 0.78 U 0.78	1.2 0.64	2.6 0.64	1.2 0.64	0.93 0.64 0.78 U 0.78	1.2 0.64 0.78 U 0.78	1.5 0.64 0.78 U 0.78	1.2 0.64 0.78 U 0.78
Bromomethane Carbon tetrachloride	<0.25 0.59	<0.25 0.6	< 0.9 < 0.9	< 1.0 < 1.0	0.78 U 0.78 1.3 U 1.3											
Chlorobenzene	<0.25	<0.25	< 0.7	< 0.8	0.92 U 0.92											
Chloroethane	< 0.25	< 0.25	NL	NL NL	0.53 U 0.53											
Chloroform	0.54	< 0.25	< 0.5	< 0.4	0.98 U 0.98											
Chloromethane	1.8	1.8	2.1 - 3.1	2.0 - 3.0	1.2 1.0	1.2 1.0	1.0 U 1.0	1.0 UJ 1.0	1.6 1.0	1.3 1.0	1.4 1.0	1.0 UJ 1.0	1.4 1.0	1.7 1.0	1.1 J 1.0	1.2 1.0
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	<0.25 < 0.25	<0.25 < 0.25	< 1.0 NL	< 1.0 NL	0.79 U 0.79 0.91 U 0.91											
Dichlorodifluoromethane	4.1	4.2	NL NL	NL NL	2.5 0.99	3.1 0.99	2.1 0.99	2.1 0.99	2.9 0.99	2.9 0.99	2.9 0.99	2 0.99	2.5 0.99	3.0 0.99	2.5 0.99	2.4 0.99
Ethylbenzene	2.8	0.48	< 1.6 - 3.4	< 1.4 - 1.6	0.87 U 0.87	1.1 0.87	0.87 U 0.87	0.87 U 0.87	0.87 U 0.87	0.87 U 0.87	1.2 0.87	0.87 U 0.87	0.87 U 0.87	0.87 U 0.87	0.87 U 0.87	0.87 U 0.87
Hexachlorobutadiene	<0.25	<0.25	NL	NL	11 U 11	11 UJ 11										
Isopropylbenzene	0.4	< 0.25	NL 10	NL	2.0 U 2.0		2.0 U 2.0									
Methyl tert-butyl ether Methylene chloride	5.6 6.6	0.86 0.73	< 1.7 - 12 < 1.7 - 5.0	< 1.8 < 1.8 - 3.0	3.6 U 3.6 1.7 U 1.7	3.6 U 3.6 1.7 U 1.7	3.6 U 3.6 1.7 U 1.7	3.6 UJ 3.6 1.7 U 1.7	3.6 U 3.6 1.7 U 1.7	3.6 U 3.6 1.7 U 1.7	3.6 U 3.6 1.7 U 1.7	3.6 UJ 3.6 1.7 U 1.7	3.6 U 3.6 1.7 U 1.7	3.6 U 3.6 1.7 U 1.7	3.6 U 3.6 1.7 U 1.7	3.6 U 3.6 1.7 U 1.7
m-Xylene & p-Xylene	4.6	0.48	4.1 - 12	< 3.6 - 7.3	0.87 U 0.87	3.3 0.87	1.6 0.87	1.5 0.87	0.87 U 0.87	1.0 0.87	3.3 0.87	1.4 0.87	0.95 0.87	0.87 U 0.87	2.6 0.87	0.87 U 0.87
Naphthalene	NL	NL	< 2.5	< 2.4	2.6 U 2.6											
n-Butane	NL	NL	NL	NL	1.1 0.95	2.8 0.95	2.9 0.95	2.6 J 0.95	1.5 0.95	2.4 0.95	8.1 0.95	2 J 0.95	1.3 0.95	2.0 0.95	4.9 0.95	3.8 0.95
n-Decane	6.6	2	NL NI	NL	5.8 U 5.8											
n-Dodecane n-Heptane	3.9 7.6	1.9 1.0	NL NL	NL NL	7.0 UJ 7.0 2.0 U 2.0	7.0 UJ 7.0 2.0 U 2.0	7.0 U 7.0 2.0 U 2.0	7.0 U 7.0 2.0 U 2.0	7.0 UJ 7.0 2.0 U 2.0	7.0 UJ 7.0 2.0 U 2.0	7.0 UJ 7.0 2.0 U 2.0	7.0 U 7.0 2.0 U 2.0	7.0 UJ 7.0 2.0 U 2.0	7.0 UJ 7.0 2.0 U 2.0	7.0 UJ 7.0 2.0 U 2.0	7.0 U 7.0 2.0 U 2.0
n-Hexane	6.0	0.88	1.6 - 6.4	< 1.2 - 2.7	1.8 U 1.8	2.1 1.8	1.8 U 1.8	1.8 U 1.8	1.8 U 1.8	1.8 U 1.8	1.8 U 1.8	1.8 U 1.8	1.8 U 1.8	1.8 U 1.8	1.8 U 1.8	1.8 U 1.8
n-Octane	2.3	0.65	NL	NL	1.9 U 1.9											
Nonane	3.4	0.37	NL	NL	2.6 U 2.6	2.6 U 2.6	2.6 2.6	3.2 2.6	2.6 U 2.6	2.6 U 2.6	2.6 U 2.6	4.9 2.6	2.6 U 2.6	2.6 U 2.6	4.2 2.6	2.6 U 2.6
n-Undecane	5.0	0.67	NL	NL	6.4 U 6.4											
o-Xylene Pentane	3.1 NL	0.56 NL	< 2.4 - 4.4 NL	< 1.4 - 2.6 NL	0.87 U 0.87 3.0 U 3.0	1.3 0.87 3.0 U 3.0	0.87 U 0.87 3.0 U 3.0	0.87 U 0.87 3.0 U 3.0	0.87 U 0.87 3.0 U 3.0	0.87 U 0.87 3.0 U 3.0	1.2 0.87 3.6 3.0	0.87 U 0.87 3.0 U 3.0	0.87 U 0.87 3.0 U 3.0	0.87 U 0.87 3.0 U 3.0	1.1 0.87 3.0 U 3.0	0.87 U 0.87 3.0 U 3.0
Styrene	0.64	<0.25	< 1.8	< 1.6	0.85 U 0.85	0.9 U 0.85	0.85 U 0.85	0.85 U 0.85	0.9 U 0.85	0.85 U 0.85						
Tetrachloroethene	1.1	0.34	< 1.9 - 5.9	< 1.4 - 3.0	1.4 U 1.4											
Toluene	24.8	2.4	10.7 - 26	5.9 - 16	1.0 0.75	5.3 0.75	3.2 0.75	2.9 0.75	1.8 0.75	2.6 0.75	7.2 0.75	2.7 0.75	1.5 0.75	2.1 0.75	4.3 0.75	0.75 U 0.75
trans-1,3-Dichloropropene	< 0.25	< 0.25	NL	NL	0.91 U 0.91											
Trichloroethene Trichlorofluoromethane	<0.25 5.4	<0.25 2.2	< 1.2 - 1.2 NL	< 1.5 NL	1.1 U 1.1 1.2 1.1	1.1 U 1.1 1.3 1.1	1.1 U 1.1 1.1 U 1.1	1.1 U 1.1 1.1 U 1.1	1.1 U 1.1 1.3 1.1	1.1 U 1.1 1.4 1.1	1.1 U 1.1 1.5 1.1	1.1 U 1.1 1.1 U 1.1	1.1 U 1.1 1.2 1.1	1.1 U 1.1 1.4 1.1	1.1 U 1.1 1.4 1.1	1.1 U 1.1 1.3 1.1
Vinyl chloride	<0.25	<0.25	NL < 0.9	NL < 1.0	0.51 U 0.51	0.51 U 0.51	0.51 U 0.51	0.51 UJ 0.51				0.51 UJ 0.51		0.51 U 0.51	0.51 U 0.51	0.51 U 0.51
Tentatively Identified Compounds (TICs)	J.20	5.20	3.0	1.0	0.01	0.01	0.01	0.01	5.5. 5 5.51	5.5. 5 5.01	5.5. 6 5.51	0.01	5.5. 6 5.51	5.5. 6 0.01	3.3. 3 0.01	3.3. 0 3.01
1,2,3-Trimethylbenzene	1.1	< 0.25	NL	NL	ND *											
1-Methylnaphthalene	NL	NL	NL	NL	ND *											
2,2,4-Trimethylpentane	NL	NL NI	NL NI	NL NI	ND *											
2,3-Dimethylheptane 2,3-Dimethylpentane	NL 2.2	NL 0.31	NL NL	NL NL	ND *											
2-Methylnaphthalene	NL	NL	NL NL	NL	ND *											
Butylcyclohexane	NL	NL	NL	NL	ND *											
Indane	NL	NL	NL	NL	ND *											
Indene	NL	NL NI	NL NI	NL NI	ND *											
Isopentane	NL	NL	NL	NL	ND *	ND *	8.6 NJ *	ND *	ND *	ND *	11 NJ *	ND *	ND *	ND *	ND *	ND *
Total VOCs (μg/m³)					7.8	27	23	14	9.9	13	44	14	9.8	11	24	9.9
Notes:					1.0	۷.	20	17	3.3	10	77	17	9.0	1.1	47	3.3

Notes: NL - Not Listed

ND - Not Detected

MDL = Method Detection Limit

Q - Qualifier

U - Compound was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit

J - Associated numerical value is an estimated quantity

R - Result was rejected because one or more QC measures did not meet acceptance criteria RL - Reporting limit N - compound identified as a tentatively identified compound (TIC) * - compounds reported as TICs are not calibrated for and do not have a reporting limit Bolded results exceed the NYSDOH 75% Indoor Background values from homes with fuel oil heat

¹ NY DOH Background values from the NYSDOH Study of Volatile Organic Chemicals in Air of Fuel Oil Heated Homes, 1997 - 2003 ² USEPA Background values from the NYSDOH Vapor Intrusion Guidance - Table 3 1994 - 1998

Table B-24 Equipment Rinsate and Trip Blank VOC Results Norwich Former MGP Site, Norwich, New York

Sample ID (Depth in Feet)	NO-RB102804	NO-FIELD BLANK 01	TRIPBLANK	TRIP BLANK	NO-TB120905-01	NO-TB120905-02	NO-TB120905-03	NO-TB121305	NO-TB121405-01	NO-TB121405-02
Laboratory Identification	S5497-27	M46966-15	S5893-05	M46906-18	M53200-11	M53200-6	M53200-15	M53253-9	M53280-6	M53280-11
Date Sampled	10/28/04	04/29/2005	11/19/2004	04/27/2005	12/09/2005	12/09/2005	12/09/2005	12/13/2005	12/14/2005	12/14/2005
Sate campion		0 112012000		0	.2.00.2000	12.00.2000	.2.00,2000	.20.2000	.22000	.22000
Volatile Organic Compounds (µg/kg)										
1,1,1-Trichloroethane	10 U	2.0 U	NA	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	10 U	2.0 UJ	NA	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	10 U	2.0 U	NA	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichlorotrifluoroethane	10 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloroethane	10 U	2.0 U	NA	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	10 U	1.0 U	NA	1.0 U	1.0 U	1.0 U				
1,2,4-Trichlorobenzene	10 U	5.0 U	NA	5.0 U	5.0 U	5.0 U				
1,2-Dibromo-3-Chloropropane	10 U	5.0 UJ	NA	5.0 U	5.0 U	5.0 U				
1,2-Dibromoethane	10 U	2.0 U	NA	2.0 U	2.0 U	2.0 U				
1,2-Dichlorobenzene	10 U	2.0 U	NA	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	10 U	2.0 U	NA	2.0 U	1.0 U	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ
1,2-Dichloropropane	10 U	2.0 U	NA	2.0 U	2.0 U	2.0 U				
1,3-Dichlorobenzene	10 U	2.0 U	NA	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	10 U	2.0 U	NA	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2-Butanone	50 U	5.0 U	NA	5.0 U	5.0 UJ		5.0 U	5.0 UJ	5.0 UJ	5.0 UJ
2-Hexanone	50 U	5.0 UJ	NA	5.0 U	5.0 UJ		5.0 U	5.0 U	5.0 U	5.0 U
4-Methyl-2-Pentanone	50 U	5.0 UJ	NA	5.0 U	5.0 U	5.0 U				
Acetone	50 U	5.0 UJ	NA	5.0 U	5.0 UJ	5.0 UJ	5.0 UJ	5.0 UJ	5.0 UJ	5.0 UJ
Benzene	10 U	0.5 UJ	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane	10 U	2.0 U	NA	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	10 U	2.0 U	NA	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane	10 U	2.0 U	NA	2.0 U	2.0 U	2.0 U				
Carbon Disulfide	10 U	5.0 U	NA	5.0 U	5.0 UJ		5.0 U	5.0 U	5.0 U	5.0 U
Carbon Tetrachloride	10 U	2.0 U	NA	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	10 U	2.0 UJ	NA	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane	10 U	5.0 U 2.0 U	NA	5.0 U 2.0 U	2.0 U 1.0 U	2.0 U 1.0 U	2.0 U	2.0 U	2.0 U	2.0 U 1.0 U
Chloroform	10 U 10 U		NA		1.0 U 2.0 U		1.0 U 2.0 U	1.0 U 2.0 UJ	1.0 U	2.0 UJ
Chloromethane cis-1,2-Dichloroethene	10 U	5.0 U 2.0 U	NA NA	5.0 U 2.0 U	2.0 U	2.0 U 1.0 U	2.0 U 1.0 U	2.0 UJ	2.0 UJ 1.0 U	2.0 U
cis-1,3-Dichloropropene	10 U	0.5 U	NA NA	0.5 U	0.5 U	0.5 U				
Cyclohexane	10 U	5.0 U	NA NA	5.0 U	5.0 UJ	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Dibromochloromethane	10 U	2.0 U	NA NA	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dichlorodifluoromethane	10 U	2.0 UJ	NA NA	2.0 U	2.0 UJ		2.0 U	2.0 UJ	2.0 UJ	2.0 UJ
Ethyl Benzene	10 U	1.0 U	0.18 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.35 J
Freon 113	NA NA	5.0 U	NA NA	5.0 U	5.0 U	5.0 U				
Isopropylbenzene	10 U	5.0 U	NA	5.0 U	5.0 U	5.0 U				
m/p-Xylenes	10 U	NA NA	0.36 U	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA
Methyl Acetate	10 U	5.0 U	NA	5.0 U	5.0 UJ	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methyl tert-butyl Ether	10 U	1.0 U	NA	1.0 U	1.0 U	1.0 U				
Methylcyclohexane	10 U	5.0 U	NA	5.0 U	5.0 UJ	5.0 UJ	5.0 UJ	5.0 U	5.0 U	5.0 U
Methylene Chloride	10 J	2.0 U	NA	2.0 U	2.0 U	2.0 U				
o-Xylene	10 U	NA	0.17 U	NA	NA	NA	NA	NA	NA	NA
Styrene	10 U	5.0 U	NA	5.0 U	5.0 U	5.0 U				
t-1,3-Dichloropropene	10 U	0.5 U	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	10 U	2.0 U	NA	2.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	10 U	1.0 U	0.19 U	1.0 U	1.4 U	1.0 U	1.0 U	1.0 U	0.55 J	1.0 U
trans-1,2-Dichloroethene	10 U	2.0 U	NA	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	NA	NA	NA	0.5 U	0.5 U	0.5 U				
Trichloroethene	10 U	2.0 U	NA	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane	10 U	2.0 U	NA	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl Chloride	10 U	2.0 U	NA	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Xylene (total)	ND	1.0 U	NA	1.0 U	1.0 U	1.0 U				
Total VOCs (ug/kg)	10	ND	ND	ND	ND	ND	ND	ND	ND	0.35
Total VOCs (μg/kg)	IU	IND	טא	ואט	טאו	ואט	IND	טא	ואט	0.33

Notes:

NA = Not Analyzed NL = Not Listed

ND = Not Detected

MDL - Method Detection Limit

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

J = The associated numerical value is an estimated quantity.

Bold value - compound detected above regulatory standard or guidance value.

Semi-volatile Organic Compounds (ug/L)	Sample ID Laboratory Identification Date Sampled	NO-RB102804 S5497-27 10/28/2004		NO-FIELD BLANK M46966-15 04/29/2005	01	TRIPBLANK S5893-05 11/19/2004	
2-Methyinaphthalene	Semi-volatile Organic Compou	nds (µg/L)					
Acenaphthylene				5.0	U	NA	
Anthracene							
Benzo(a)propries					_		
Benzo(ghrophene			,				
Benzo(gh/picyrlene							
Benzo(gh_perylene							
Benzol(#fluoranthene							
Disparzed, a)anthracene							
Dibenzo(a,h)anthracene							
Fluorene		11	U	5.0	U	NA	
Indenot/1.23-cdjpyrene	Fluoranthene	11	כ	5.0	כ	NA	
Naphthalene							
Phenanthrene							
Pyrene							U
Total PAHs (µg/L) Total CPAHs (µg/L) ND ND ND ND ND ND ND ND ND N							
Total CPAHs (µg/L)	Pyrene	11	U	5.0	U	NA	
Total CPAHs (µg/L)	Total DAIIs (ver/L)	ND		ND		ND	
1.1-Biphenyl	Total PAHS (µg/L)	ND		ND		ND	
1.1-Biphenyl	Total CPAHs (ug/L)	ND	H	ND	\vdash	ND	
12-Diphenythydrazine	· · · · · · · · · · · · · · · · · · ·	ND	Н	ND		ND	
12-Diphenythydrazine	1,1'-Biphenvl	11	U	10	U	NA	
2,2-oxybis(1-Chloropropane)	1,2-Diphenylhydrazine		Ť		_		
2.4.5-Trichlorophenol	2,2-oxybis(1-Chloropropane)		U		Ĺ		
2.4.6-Trichlorophenol					U		
2.4-Dimethylphenol 11 U 10 U NA 2.4-Dinitrofoluene 11 U 20 U NA 2.6-Dinitrofoluene 11 U 10 U NA 2.6-Dinitrofoluene 11 U 10 U NA 2Chloropaphthalene 11 U 5.0 U NA 2Chlorophenol 11 U 5.0 U NA 2Mitroniline 11 U 10 U NA 2Mitrophenol 11 U 10 U NA 3Witrophenol 11 U 10 U NA 3Witrophenol 11 U 10 U NA 3Witrophenol 11 U 10 U NA 4.B-Introphenyl phenyl ether 11 U 10 U NA 4.B-Tomphenyl phenyl ether 11 U 10 U NA 4Chlorophenyl phenyl ether	2,4,6-Trichlorophenol	11	U	10	U	NA	
2.4-Dinitrophenol	2,4-Dichlorophenol	11	U	10	כ	NA	
2,4-Dinitrotoluene	2,4-Dimethylphenol		,	10			
2.6-Dinitrotoluene 11 U 10 U NA 2-Chloropaphthalene 11 U 5.0 U NA 2-Chlorophenol 11 U 5.0 U NA 2-Methylphenol 11 U 10 U NA 2-Nitrophenol 11 U 10 U NA 2-Nitrophenol 11 U 10 U NA 3.8-Hethylphenol 11 U 10 U NA 3.3-Dichlorobenzidine 21 U 5.0 U NA 3Nitroaniline 11 U 10 U NA 4.6-Dinitro-o-cresol 21 U 10 U NA 4-Bromophenyl phenyl ether 11 U 5.0 U NA 4-Chloro-3-methylphenol 11 U 10 U NA 4-Chloropaniline 11 U 10 U NA 4-Chlorophenyl phenyl ether 11 U 10 U NA 4-Nitroaniline 11 U 10 U NA 4-Nitrophenol 21 U 20 U NA A-Nitrophenol 21 U 20 U NA Antilir		21	J	20	כ	NA	
2-Chloronaphthalene							
2-Chlorophenol							
2-Methylphenol							
2-Nitrophenol							
2-Nitrophenol							
3.3*-Dichlorobenzidine							
3,3'-Dichlorobenzidine							
3-Nitroaniline							
4,6-Dinitro-o-cresol							
4-Bromophenyl phenyl ether 11 U 5.0 U NA 4-Chloro-3-methylphenol 11 U 10 U NA 4-Chlorophenyl phenyl ether 11 U 5.0 U NA 4-Nitrophenol 21 U 20 U NA 4-Nitrophenol 21 U 20 U NA 4-Nitrophenol 11 U 10 U NA A-Nitrophenol 21 U 20 U NA A-Rotophenone 11 U 10 U NA Aniline NA 10 UJ NA Aniline NA 10 UJ NA Benzaldehyde 11 U 20 U NA Benzaldehyde 11 U 20 U NA Bis(2-chloroethyd) ether 11 U 5.0 U NA Bis(2-chloroethy) ether 11 U 5.0 <							
4-Chloro-3-methylphenol 11 U 10 U NA 4-Chloroaniline 11 U 10 U NA 4-Chlorophenyl phenyl ether 11 U 5.0 U NA 4-Nitrophenol 21 U 20 U NA 4-Nitrophenol 21 U 20 U NA Acetophenone 11 U 10 U NA Aniline NA 10 U NA Atrazine 11 U 10 U NA Benzoic Acid NA 10 U NA Benzoic Acid NA 10 U NA Bis(2-chloroethoxy) methane 11 U 5.0							
4-Chlorophenyl phenyl ether		11	U	10	υ	NA	
4-Nitropaniline 11 U 10 U NA 4-Nitrophenol 21 U 20 U NA Acetophenone 11 U 10 U NA Aniline NA 10 UJ NA Aniline NA 10 U NA Benzaldehyde 11 U 20 U NA Benzoic Acid NA 10 U NA Bis(2-chloroethoxy) methane 11 U 5.0 U NA Bis(2-chloroethyl) ether 11 U 5.0 U NA Bis(2-chloroisopropyl)ether NA 5.0 U NA Bis(2-chloroi		11	U	10	U	NA	
4-Nitrophenol	4-Chlorophenyl phenyl ether	11	J	5.0	כ	NA	
Acetophenone	4-Nitroaniline		J	10	כ	NA	
Aniline							
Atrazine			U		_		
Benzaldehyde			۲.				
Benzoic Acid							
Bis(2-chloroethoxy) methane			U				
Bis(2-chloroethyl) ether			11				
Bis(2-Chloroisopropyl)ether					_		
Bis(2-ethylhexyl) phthalate			Ť				
Butyl benzyl phthalate	D1- (0 - th- th 1) - 1-th 1-t-		UJ				
Caprolactam 11 U 10 U NA Carbazole 11 U 5.0 U NA Dibenzofuran 11 U 5.0 U NA Diethyl phthalate 11 U 10 U NA Din-byl phthalate 11 U 10 U NA Di-n-byl phthalate 11 U 5.0 U NA Hexachlorotyl phthalate 11 U 5.0 U NA Hexachlorobenzene 11 U 5.0 U NA Hexachlorobutadiene 11 U 5.0 U NA Hexachlorocyclopentadiene 11 U 5.0 U NA Hexachlorocyclopentadiene 11 U 5.0 U NA Hexachlorocyclopentadiene 11 U 5.0 U NA Isophorone 11 U 5.0 U NA Nitrobenzene							
Carbazole 11 U 5.0 U NA Dibenzofuran 11 U 5.0 U NA Diethyl phthalate 11 U 10 U NA Dimethyl phthalate 11 U 10 U NA Din-butyl phthalate 11 U 5.0 U NA Din-octyl phthalate 11 U 5.0 U NA Hexachlorobenzene 11 U 5.0 U NA Hexachlorobutadiene 11 U 5.0 U NA Hexachlorocyclopentadiene 11 U 5.0 U NA Hexachlorocyclopentadiene 11 U 5.0 U NA Isophorone 11 U 5.0 U NA Nitroso-Di-n-propylamine 11 U 5.0 U NA N-nitroso-Di-n-propylamine 11 U 5.0 U NA N-nitroso-Di-n-pr							
Diethyl phthalate							
Dimethyl phthalate							
Di-n-butyl phthalate							
Di-n-octyl phthalate 11 U 5.0 U NA Hexachlorobenzene 11 U 5.0 U NA Hexachlorobutadiene 11 U 10 U NA Hexachlorocyclopentadiene 11 U 5.0 U NA Hexachloroethane 11 U 5.0 U NA Isophorone 11 U 5.0 U NA Nitrobenzene 11 U 5.0 U NA N-Nitroso-Di-n-propylamine 11 U 5.0 U NA N-nitrosodiphenylamine 11 U 10 U NA Pentachlorophenol 21 U 5.0 U NA Phenol 11 U NA NA							
Hexachlorobenzene							
Hexachlorobutadiene							
Hexachlorocyclopentadiene							
Hexachloroethane							
Isophorone							
Nitrobenzene 11 U 5.0 U NA N-Nitroso-Di-n-propylamine 11 U 5.0 U NA N-nitrosodiphenylamine 11 U 10 U NA Pentachlorophenol 21 U 5.0 U NA Phenol 11 U NA NA							
N-Nitroso-Di-n-propylamine 11 U 5.0 U NA N-nitrosodiphenylamine 11 U 10 U NA Pentachlorophenol 21 U 5.0 U NA Phenol 11 U NA NA							
N-nitrosodiphenylamine 11 U 10 U NA Pentachlorophenol 21 U 5.0 U NA Phenol 11 U NA NA							
Pentachlorophenol 21 U 5.0 U NA Phenol 11 U NA NA							
Phenol 11 U NA NA							
					ŕ		
T-4-1 0//00- (-		Ė	10.1		74.1	
Iotal Svocs (µg/L)⁻ ND ND ND	Total SVOCs (µg/L) ²	ND		ND		ND	

Notes:

NA = Not Analyzed NL = Not Listed

NL = Not Listed
ND = Not Detected
MDL - Method Detection Limit
D = The concentration indicated was obtained from a diluted analytical run.
J = The associated numerical value is an estimated quantity.

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

Table B-26 Field Duplicate VOC Results in Soil Norwich Former MGP Site, Norwich, New York

Sample ID (Depth in Feet) Laboratory Identification Date Sampled	NO-DP14(18.7-20)	NO-DP14(18.7-20)[' I RPI
	M48323-9	M48323-10		RPD	NO-DP26(20-21. M46966-6	•,	NO-DP26(20-21.5)DUF M46966-7	
Date Gampieu	06/16/2005	06/16/2005			04/28/2005		04/28/2005	
	00/10/2003	00/10/2003			04/20/2003		04/20/2003	
Volatile Organic Compounds (μg/kg)							1
Acetone	180 U	180	U	NC	3,200	UJ	3,800 U	J NC
Benzene	18 U	18	U	NC	27,100		29,300	8
Bromodichloromethane	73 U	70	U	NC	1,300	U	1,500 U	NC
Bromoform	73 U	70	U	NC	1,300	U	1,500 U	NC
Bromomethane	73 U	70	Ü	NC	1,300	U	1,500 U	_
2-Butanone (MEK)	180 UJ	180	UJ	NC	3,200	U	3,800 U	NC
Carbon disulfide	180 UJ	180	UJ	NC	3,200	Ü	3,800 U	
Carbon tetrachloride	73 U	70	U	NC	1,300	U	1,500 U	NC
Chlorobenzene	73 U	70	Ū	NC	1,300	Ū	1,500 U	_
Chloroethane	180 UJ	180	UJ	NC	3,200	Ū	3,800 U	_
Chloroform	73 U	70	U	NC	1,300	U	1,500 U	_
Chloromethane	180 U	180	Ü	NC	3,200	Ū	3,800 U	
Cyclohexane	180 UJ	180	UJ	NC	3,200	U	3,800 U	_
1,2-Dibromo-3-chloropropane	180 U	180	U	NC	3,200	U	3,800 U	_
Dibromochloromethane	73 U	70	Ü	NC	1,300	U	1,500 U	_
1,2-Dibromoethane	73 U	70	U	NC	1,300	U	1,500 U	_
1,2-Dishornoctriand 1,2-Dichlorobenzene	73 U	70	Ü	NC	1,300	U	1,500 U	
1,3-Dichlorobenzene	73 U	70	U	NC	1,300	U	1,500 U	
1,4-Dichlorobenzene	73 U	70	U	NC	1,300	U	1,500 U	_
Dichlorodifluoromethane	73 UJ	70	UJ	NC	1,300	UJ	1,500 U.	_
1,1-Dichloroethane	73 U	70	U	NC	1,300	U	1,500 U	_
1,1-Dichloroethane	73 U	70	U	NC	1,300	U	1,500 U	
1.1-Dichloroethene	73 U	70	U	NC	1,300	U	1,500 U	_
cis-1,2-Dichloroethene		70		NC		U		_
trans-1,2-Dichloroethene	73 U 73 U	70	U	NC	1,300 1,300	U	1,500 U 1,500 U	_
1,2-Dichloropropane	73 U	70	U	NC		U		_
cis-1,3-Dichloropropene	73 U	70	U	NC	1,300 1.300	U	1,500 U 1,500 U	
		70	UJ	NC	1,300	U	1,500 U	
trans-1,3-Dichloropropene						U		_
Ethylbenzene Freon 113	10 J 180 U	15	J	40 NC	668,000 3,200		581,000	14 NC
		180	U		-,	U	3,800 U	
2-Hexanone	180 UJ	180	UJ	NC 58	3,200	UJ	3,800 U.	
Isopropylbenzene	17.1 J	31	J		62,700		66,300	6
Methyl Acetate	180 U	180	U	NC	3,200	U	3,800 U	_
Methylcyclohexane	180 UJ	259	J	NC	3,200	U	3,800 U	
Methyl Tert Butyl Ether	73 U	70	U	NC	1,300	U	1,500 U	
4-Methyl-2-pentanone (MIBK)	180 U 73 U	180	U	NC	3,200	U	3,800 U	
Methylene chloride		70	U	NC	1,300	U	1,500 U	
Styrene	180 UJ	180	UJ	NC	3,340	1.1	3,800 U	_
1,1,2,2-Tetrachloroethane	73 U	70	U	NC	1,300	U	1,500 U	
Tetrachloroethene	73 U	70	U	NC	1,300	U	1,500 U	
Toluene	73 U	70	: C	NC	193,000	J	205,000 J	
1,2,4-Trichlorobenzene	180 U	180		NC	3,200	U	3,800 U	
1,1,1-Trichloroethane	73 U	70		NC	1,300		1,500 U	
1,1,2-Trichloroethane	73 U		U	NC	1,300	U	1,500 U	
Trichloroethene	73 U		U	NC	1,300		1,500 U	
Trichlorofluoromethane	73 UJ		IJ	NC	1,300		1,500 U	
Vinyl chloride	73 U	70	U	NC	1,300	U	1,500 U	
Xylene (total)	29.7 J	46.3	J	44	519,000		546,000	5
Total VOCs (μg/kg)	57	350		144	1,500,000		1,400,000	7

Notes:

RPD = Relative Percent Difference

NC = Not Calculated

NA = Not Analyzed

ND = Not Detected

MDL - Minimum Detection Limit
U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

J = The associated numerical value is an estimated quantity.

Table B-27 Field Duplicate SVOC Results in Soil Norwich Former MGP Site, Norwich, New York

Bearbeign		NO DD44440 = 0	٥)	NO BB44440 = 00\			NO DESCRIPTION OF	- \	Luc BBoores of Ex		
Date Sampled Del 19/2005 Del 19/2005 Del 29/2005	Sample ID (Depth in Feet)		0)		OUP	RPD		5)		OUP	RPD
Semi-volatile Organic Compounds (uplkg)											
2-Methylapiphtaleine	Date Sampled	00/10/2003		00/10/2003			04/20/2003		04/20/2003		
2-Methylapiphtaleine	Semi-volatile Organic Compo	ounds (ug/kg)									
Accesspring 1,230	2-Methylnaphthalene			2,730		59	3,650,000		3,360,000		8
Anthracene	Acenaphthene	4,210		6,430		42	899,000		893,000		1
Beanz (a) purpose	Acenaphthylene	1,230		2,000		48	679,000		645,000		5
Benzo(a)pyrene	Anthracene	4,150		5,820			611,000		620,000	U	
	Benz(a)anthracene										
Bearoog Description Security Securit	Benzo(a)pyrene										
Benzoki/Huraranthene								_			
Chrysene											
Dibental Nanthracene 308 3 549 3 56 590,000 U 620,000 U NC	. ,										
Fluoranthene							,		,		
Fluorene			J					U		U	
			J		J						
Naphthalsene				.,				-		-	
Pienantirrene								U		U	
Pyrene											
Total PAHs (µg/kg)			_		_						
Total CPAHs (µg/kg)	i yiene	7,400	J	10,100	J	- 50	324,000		302,000		
Total CPAHs (µg/kg)	Total PAHs (µg/kg)	57.000		94.000		49	17.000.000		15.000.000		13
1.1-Siphenyl 1.2-Diphenylhydrazine 300 U 300 U NC 599,000 U 1,200,000 U NC 1.2-Diphenylhydrazine 300 U 300 U NC 599,000 U 620,000 U NC 2.4.5-Trichlorophenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4.5-Trichlorophenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4.5-Trichlorophenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 590,000 U 620,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U		2.,300		2 .,500			,,,,,,,,,,		2,222,300		
1.1-Siphenyl 1.2-Diphenylhydrazine 300 U 300 U NC 599,000 U 1,200,000 U NC 1.2-Diphenylhydrazine 300 U 300 U NC 599,000 U 620,000 U NC 2.4.5-Trichlorophenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4.5-Trichlorophenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4.5-Trichlorophenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 590,000 U 620,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 2.4-Diphenol 610 U	Total CPAHs (µg/kg)	11,000		17,000		43	ND		ND		NC
12-Diphenylhydrazine											
12-Diphenylhydrazine	1,1'-Biphenyl	1,050		1,810				U	1,200,000	U	NC
24.6Firchlorophenol	1,2-Diphenylhydrazine		_						620,000		
2.4-Directylephenol	2,4,5-Trichlorophenol		_		_						
24-Dimethylphenol	2,4,6-Trichlorophenol		_		_			_			
2.4-Dintrophenol			_		_				, ,		
24-Dintrotoluene			_		_						
2.6-Dinitrotoluene					_						
2-Chloropaphthalene									, ,		
2-Chiorophenol 300 U 300 U NC 590.000 U 620.000 U NC 2-Mitrophenol 610 U 600 U NC 1,200.000 U 1,200.000 U NC 2-Mitrophenol 610 U 600 U NC 1,200.000 U 1,200.000 U NC 2-Mitrophenol 610 U 600 U NC 1,200.000 U 1,200.000 U NC 2-Mitrophenol 610 U 600 U NC 1,200.000 U 1,200.000 U NC 3,3-Dichiorobenzidine 300 U 300 U NC 590.000 U 1,200.000 U NC 3,3-Dichiorobenzidine 300 U 300 U NC 590.000 U 1,200.000 U NC 4,6-Dinitro-o-cresol 610 U 600 U NC 1,200.000 U 1,200.000 U NC 4,6-Dinitro-o-cresol 610 U 600 U NC 1,200.000 U 1,200.000 U NC 4,6-Dinitro-o-cresol 610 U 600 U NC 1,200.000 U 1,200.000 U NC 4-Dinitro-o-cresol 610 U 600 U NC 1,200.000 U 1,200.000 U NC 6-Dinitro-o-cresol 610 U 600 U NC 1,200.000 U 1,200.0					_						
2-Methylphenol 610 U 600 U NC 1,220,000 U 1,220,000 U NC 2-Nitropline 610 U 600 U NC 1,220,000 U 1,220,000 U NC 2-Nitropline 610 U 600 U NC 1,220,000 U 1,220,000 U NC 34-Methylphenol 610 U 600 U NC 1,220,000 U 1,220,000 U NC 33-Methylphenol 610 U 600 U NC 1,220,000 U 1,220,000 U NC 33-Methylphenol 610 U 600 U NC 590,000 U 620,000 U NC 3-Nitropline 610 U 600 U NC 590,000 U 620,000 U NC 3-Nitropline 610 U 600 U NC 1,220,000 U 1,220,000 U NC 3-Nitropline 610 U 600 U NC 1,220,000 U 1,220,000 U NC 4-Romophenyl phenyl ether 300 U 300 U NC 1,220,000 U 1,220,000 U NC 4-Romophenyl phenyl ether 300 U 300 U NC 1,220,000 U 1,220,000 U NC 4-Romophenyl phenyl ether 300 U 600 U NC 1,220,000 U NC 4-Romophenyl phenyl ether 300 U 600 U NC 1,220,000 U NC 4-Romophenyl phenyl ether 300 U 600 U NC 1,220,000 U NC 4-Romophenyl phenyl ether 300 U 600 U NC 1,220,000 U NC 4-Romophenyl phenyl ether 300 U 600 U NC 1,220,000 U NC 4-Romophenyl phenyl ether 300 U 300 U NC 590,000 U 620,000 U NC 4-Romophenyl phenyl ether 300 U 300 U NC 590,000 U 620,000 U NC 4-Romophenyl phenyl ether 300 U 300 U NC 3,200,000 U 3,200,000 U NC 4-Romophenyl phenyl ether 300 U 1,200,000 U NC 3,200,000 U 1,200,000 U NC 4-Romophenyl 1,200,000 U NC 4-Romoph									,		
2-Nitroaniline 610 U 600 U NC 1,200,000 U 1,200,000 U NC 3,3-Dichlorobenzidine 610 U 600 U NC 1,200,000 U 1,200,000 U NC 3,3-Dichlorobenzidine 610 U 600 U NC 1,200,000 U 1,200,000 U NC 3,3-Dichlorobenzidine 610 U 600 U NC 1,200,000 U 1,200,000 U NC 3,3-Dichlorobenzidine 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4,6-Dinitro-o-cresol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4,6-Dinitro-o-cresol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4,6-Dinitro-o-cresol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4,6-Dinitro-o-cresol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4,6-Dinitro-o-cresol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4,6-Dinitro-o-cresol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4,6-Dinitro-o-cresol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4,6-Dinitro-o-cresol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4,6-Dinitro-o-cresol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4,6-Dinitro-o-cresol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4,6-Dinitro-o-cresol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4,6-Dinitro-o-cresol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4,6-Dinitro-o-cresol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4-Dinitro-o-cresol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4-Dinitro-o-cresol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4-Dinitro-o-cresol 610 U 600 U NC 1,200,000 U 1,200,000 U NC Acetophenoe 1,200 U NC 2,400,000 U 1,200,000 U NC Atazine 610 U 600 U NC 1,200,000 U 1,200,000 U NC Atazine 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4Dinitro-o-cresol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 6Dinitro-o-cresol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 6Dinitro-o-cresol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 6Dinitro-o-cresol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 6Dinitro-o-cresol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 6Dinitro-o-cresol 610 U 600 U NC 1,200,000 U NC 6Dinitro-o-cresol 610 U 600 U NC 1,200,000 U NC 6Dinitro-o-cresol 610 U 600 U NC 1,200,000 U NC 6Dinitro-o-cresol 610 U 600 U NC 1,200,000 U NC 6Dinitro-o-cresol 610 U 600 U NC 1,200,000 U NC 6Dinitro-o-cresol 610 U 600 U NC 1,200,00			_		_						
2-Nitrophenol			_		_						
384-Methylphenol			_								
3.3 - Dichlorobenzidine 300 U 300 U NC 590,000 U 620,000 U NC			_		_						
3-Nitroaniline 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4-6-Dintire-o-cresol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4-6-Dintire-o-cresol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4-Chloro-3-methyl phenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4-Chloro-3-methyl phenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4-Chloro-3-methyl phenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4-Chloro-3-methyl phenyl ether 300 U 300 U NC 1,200,000 U 1,200,000 U NC 4-Chloro-3-methyl phenyl ether 300 U 300 U NC 5,000 U 1,200,000 U NC 4-Nitrophenyl phenyl ether 610 U 600 U NC 5,000 U 1,200,000 U NC 4-Nitrophenol 1,200 U 1,200 U NC 1,200,000 U NC 1,200,000 U NC 4-Nitrophenol 1,200 U 1,200 U NC 2,400,000 U 1,200,000 U NC 1,200,000 U					_						
4.6-Dinitro-o-cresol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4-Bromophenyl phenyl ether 300 U 300 U NC 590,000 U 620,000 U NC 4-Chloro-3-methyl phenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4-Chloro-3-methyl phenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4-Chloro-3-methyl phenyl ether 300 U 300 U NC 590,000 U 620,000 U NC 4-Nitrophenyl phenyl ether 300 U 300 U NC 590,000 U 620,000 U NC 4-Nitrophenyl phenyl ether 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4-Nitrophenyl phenyl ether 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4-Nitrophenol 1,200 U 1,200 U NC 2,400,000 U 1,200,000 U NC 4-Nitrophenol 1,200 U NC 1,200 U NC 2,400,000 U 1,200,000 U NC A-Nitrophenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC Aniline 610 UJ 600 UJ NC 1,200,000 U 1,200,000 U NC Aniline 610 UJ 600 UJ NC 1,200,000 U 1,200,000 U NC Aniline 610 UJ 600 UJ NC 1,200,000 U 1,200,000 U NC Aniline 610 UJ 600 UJ NC 1,200,000 U 1,200,000 U NC Benzola acid 610 U 1,200 U NC 2,400,000 U 1,200,000 U NC Benzola acid 610 U 600 U NC 1,200,000 U 1,200,000 U NC Benzola acid 610 U 600 U NC 1,200,000 U 1,200,000 U NC Benzola acid 610 U 600 U NC 1,200,000 U 1,200,000 U NC bis(2-Chloroethyl)ether 300 U 300 U NC 590,000 U 620,000 U NC bis(2-Chloroethyl)ether 300 U 300 U NC 590,000 U 620,000 U NC bis(2-Chloroethyl)ether 300 U 300 U NC 590,000 U 620,000 U NC Butlyl benzyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Caprolactam 611 U 600 U NC 1,200,000 U 1,200,000 U NC Caprolactam 610 U 600 U NC 1,200,000 U 1,200,000 U NC Caprolactam 610 U 600 U NC 1,200,000 U 1,200,000 U NC Caprolactam 610 U 600 U NC 1,200,000 U 1,200,000 U NC Caprolactam 610 U 600 U NC 1,200,000 U 1,200,000 U NC Caprolactam 610 U 600 U NC 1,200,000 U 1,200,000 U NC Caprolactam 610 U 600 U NC 1,200,000 U 1,200,000 U NC Caprolactam 610 U 600 U NC 1,200,000 U 1,200,000 U NC Caprolactam 610 U 600 U NC 1,200,000 U 1,200,000 U NC Caprolactam 610 U 600 U NC 1,200,000 U 1,200,000 U NC Caprolactam 610 U 600 U NC 1,200,000 U 1,200,000 U NC Caprolactam 610 U 600 U NC 1,200,000 U 1,200,000 U NC Cap					_						
4-Bromophenyl phenyl ether 300 U 300 U NC 590,000 U 620,000 U NC 4-Chloro-3-methyl phenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4-Chloro-3-methyl phenol 610 UJ 600 UJ NC 1,200,000 U 1,200,000 U NC 4-Chloro-3-methyl phenyl ether 300 U 300 U NC 590,000 U 620,000 U NC 4-Nitrophenyl phenyl ether 300 U 300 U NC 590,000 U 620,000 U NC 4-Nitrophenol 1,200 U 1,200 U NC 2,400,000 U 1,200,000 U NC 4-Nitrophenol 1,200 U 1,200 U NC 2,400,000 U 1,200,000 U NC 4-Nitrophenol 1,200 U 1,200 U NC 2,400,000 U 1,200,000 U NC 4-Nitrophenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC Acetophenone 610 UJ 600 UJ NC 1,200,000 U 1,200,000 U NC 4-Nitrophenol 610 UJ 600 UJ NC 1,200,000 U 1,200,000 U NC 4-Nitrophenol 610 UJ 600 UJ NC 1,200,000 U 1,200,000 U NC 4-Nitrophenol 610 UJ 600 UJ NC 1,200,000 U 1,200,000 U NC 4-Nitrophenol 610 UJ 600 UJ NC 1,200,000 U 1,200,000 U NC 4-Nitrophenol 610 UJ 600 UJ NC 1,200,000 U 1,200,000 U NC 4-Nitrophenol 610 UJ 600 UJ NC 1,200,000 U 1,200,000 U NC 4-Nitrophenol 610 UJ 600 UJ NC 1,200,000 U 1,200,000 U NC 6-Nitrophenol 610 UJ 600 UJ NC 1,200,000 U 1,200,000 U NC 6-Nitrophenol 610 U NC 1,200,000 U 1,200,000 U NC 6-Nitrophenol 610 U NC 1,200,000 U 1,200,000 U NC 6-Nitrophenol 610 U NC 1,200,000 U 1,200,000 U NC 6-Nitrophenol 610 U NC 1,200,000 U 1,200,000 U NC 6-Nitrophenol 610 U NC 1,200,000											
4-Chloro-3-methyl phenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4-Chlorosnilline 610 UJ 600 UJ NC 1,200,000 UJ 1,200,000 UJ NC 4-Chlorophenyl phenyl ether 300 U 300 U NC 590,000 U 620,000 U NC 4-Nitrophenyl phenyl ether 610 U 600 U NC 1,200,000 U 1,200,000 U NC 4-Nitrophenol 1,200 U 1,200 U NC 4-Nitrophenol 1,200 U 1,200 U NC 4-Nitrophenol 1,200 U 1,200 U 1,200,000 U NC Acetophenone 610 U 600 U NC 1,200,000 U 1,200,000 U NC Acetophenone 610 U 600 U NC 1,200,000 U 1,200,000 U NC Aniline 610 UJ 600 UJ NC 1,200,000 U 1,200,000 U NC Aniline 610 UJ 600 UJ NC 1,200,000 U 1,200,000 U NC Aniline 610 UJ 600 UJ NC 1,200,000 U 1,200,000 U NC Aniline 610 UJ 600 UJ NC 1,200,000 U 1,200,000 U NC Benzaldehyde 1,200 U 1,200 U NC 2,400,000 U 1,200,000 U NC Benzaldehyde 1,200 U NC 2,400,000 U 1,200,000 U NC 6,200,000 U											
4-Chlorophenyl phenyl ether 300 U 300 U NC 590,000 U 620,000 U NC 4-Nitrophenyl phenyl ether 300 U 300 U NC 590,000 U 620,000 U NC 4-Nitrophenol 1,200 U 1,200 U NC 4-Nitrophenol 1,200 U 1,200 U 1,200 U NC 4-Nitrophenol 1,200 U 1,200 U NC 4-Nitrophenol 1,200 U 1,200 U NC 4-Nitrophenol 1,200 U 1,200 U NC 2,400,000 U 1,200,000 U NC Anline 610 U 600 U NC 1,200,000 U 1,200,000 U NC Anline 610 U 600 U NC 1,200,000 U 1,200,000 U NC Anline 610 U 600 U NC 1,200,000 U 1,200,000 U NC Anline 610 U 600 U NC 1,200,000 U 1,200,000 U NC Alrazine 610 U 600 U NC 1,200,000 U 1,200,000 U NC Benzole acid 610 U 600 U NC 1,200,000 U 1,200,000 U NC Benzole acid 610 U 600 U NC 1,200,000 U 1,200,000 U NC Benzole acid 610 U 600 U NC 1,200,000 U 1,200,000 U NC bis(2-Chloroethy)ether 300 U 300 U NC 590,000 U 620,000 U NC bis(2-Chloroethy)ether 300 U 300 U NC 590,000 U 620,000 U NC bis(2-Chloroethy)ether 300 U 300 U NC 590,000 U 620,000 U NC bis(2-Chloroethy)ether 300 U 300 U NC 590,000 U 620,000 U NC bis(2-Chloroethy)ether 300 U 300 U NC 590,000 U 620,000 U NC bis(2-Chloroethy)ether 300 U 300 U NC 590,000 U 620,000 U NC bis(2-Chloroethy)ether 300 U 300 U NC 590,000 U 620,000 U NC bis(2-Chloroethy)ether 300 U 300 U NC 590,000 U 620,000 U NC bis(2-Chloroethy)ether 300 U 300 U NC 590,000 U 620,000 U NC bis(2-Chloroethy)ether 300 U 300 U NC 590,000 U 620,000 U NC bis(2-Chloroethy)ether 300 U 300 U NC 590,000 U 620,000 U NC bis(2-Chloroethy)ether 300 U 300 U NC 590,000 U 620,000 U NC bis(2-Chloroethy)ether 300 U 300 U NC 590,000 U 620,000 U NC bis(2-Chloroethy)ether 300 U 300 U NC 590,000 U 620,000 U NC Caprolactam 610 U 600 U NC 1,200,000 U 1,200,000 U NC Caprolactam 610 U 600 U NC 1,200,000 U 1,200,000 U NC Caprolactam 610 U 600 U NC 1,200,000 U 1,200,000 U NC Caprolactam 610 U 600 U NC 1,200,000 U 1,200,000 U NC Dienerbyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Dienerbyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Dienerbyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Dienerbyl phthalate 610 U 600 U NC 1,200,000 U		610	U	600	U	NC	1,200,000	U	1,200,000	U	NC
A-Nitroaniline	4-Chloroaniline	610	UJ	600	UJ	NC	1,200,000	UJ	1,200,000	UJ	NC
4-Nitrophenol 1,200 U 1,200 U NC 2,400,000 U 2,500,000 U NC Acetophenone 610 U 600 U NC 1,200,000 U 1,200,000 U NC Arizine 610 UJ 600 UJ NC 1,200,000 U 1,200,000 U NC Benzaldehyde 1,200 U 1,200 U NC 2,400,000 U 1,200,000 U NC Benzaldehyde 1,200 U 1,200 U NC 2,400,000 U 1,200,000 U NC Benzaldehyde 1,200 U 1,200 U NC 2,400,000 U 1,200,000 U NC bis(2-Chloroethoxy)methane 300 U 300 U NC 590,000 U 620,000 U NC bis(2-Chloroestry)pither 300 U 300 U NC 590,000 U <td>4-Chlorophenyl phenyl ether</td> <td>300</td> <td>U</td> <td>300</td> <td>U</td> <td>NC</td> <td>590,000</td> <td>U</td> <td>620,000</td> <td>U</td> <td>NC</td>	4-Chlorophenyl phenyl ether	300	U	300	U	NC	590,000	U	620,000	U	NC
Acetophenone	4-Nitroaniline	610	U	600	U	NC	1,200,000	U	1,200,000	כ	NC
Aniline	4-Nitrophenol	1,200		1,200					2,500,000	U	
Atrazine 610 UJ 600 UJ NC 1,200,000 U 1,200,000 U NC Benzaldehyde 1,200 U 1,200 U NC 2,400,000 U 2,500,000 U NC Benzaldehyde 1,200 U 1,200 U NC 2,400,000 U 2,500,000 U NC bis(2-Chloroethoxy)methane 300 U 300 U NC 590,000 U 620,000 U NC bis(2-Chloroethoxy)methane 300 U 300 U NC 590,000 U 620,000 U NC bis(2-Chloroethyd)ether 300 U 300 U NC 590,000 U 620,000 U NC bis(2-Chloroethyd)phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC bis(2-Chloroethyd)phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC bis(2-Chloroethyd)phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Butyl benzyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Caprolactam 610 U 600 U NC 1,200,000 U 1,200,000 U NC Carbazole 300 U 300 U NC 590,000 U 620,000 U NC Dibenzofuran 300 U 391 NC 590,000 U 620,000 U NC Dibenzofuran 300 U 391 NC 590,000 U 620,000 U NC Dibenzofuran 300 U 391 NC 590,000 U 620,000 U NC Dibenzofuran 300 U 391 NC 590,000 U 620,000 U NC Dinerbyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Dinerbyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Dinerbyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Dinerbyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Dinerbyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Dinerbyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Dinerbyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Dinerbyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Dinerbyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Dinerbyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Dinerbyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Dinerbyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Dinerbyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Dinerbyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Dinerbyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Dinerbyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Dinerbyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Dinerbyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Dinerbyl pht	Acetophenone	610		600			1,200,000		1,200,000		
Benzaldehyde	Aniline										
Benzoic acid	Atrazine						, ,				
bis(2-Chloroethoxy)methane 300 U 300 U NC 590,000 U 620,000 U NC bis(2-Chloroethy)lether 300 U 300 U NC 590,000 U 620,000 U NC bis(2-Chloroisopropyl)ether 300 U 300 U NC 590,000 U 620,000 U NC bis(2-Chloroisopropyl)ether 300 U NC 590,000 U 620,000 U NC 590,000 U 620,000 U NC bis(2-Chloroisopropyl)ether 300 U RO 590,000 U 620,000 U NC 1,200,000 U 1,200,000 U NC Butyl benzyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Carbazole 300 U 300 U NC 590,000 U 620,000 U NC Die	Benzaldehyde				_				, ,		
bis(2-Chloroethyl)ether 300 U 300 U NC 590,000 U G20,000 U NC bis(2-Chloroisopropyl)ether 300 U 300 U NC 590,000 U G20,000 U NC bis(2-Ethylhexyl)phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U 1,200,000 U NC Butyl benzyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Caprolactam 610 U 600 U NC 1,200,000 U 1,200,000 U NC Carbazole 300 U 300 U NC 590,000 U 620,000 U NC Dibenzofuran 300 U 391 NC 590,000 U 620,000 U NC Diethyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Dirn-butyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Di-n-octyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Hexachlorobutadiene			_		_			_			
bis(2-Chloroisopropyl)ether 300 U 300 U NC 590,000 U 620,000 U NC bis(2-Ethylhexyl)phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Butyl benzyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Caprolactam 610 U 600 U NC 1,200,000 U 1,200,000 U NC Carbazole 300 U 300 U NC 590,000 U 620,000 U NC Dienzofuran 300 U 300 U NC 590,000 U 620,000 U NC Dienthyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Din-butyl phthalate 610 U 600 U NC 1,200,000 U <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			_		_						
bis(2-Ethylhexyl)phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Butyl benzyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U 1,200,000 U NC Carbazole 300 U 300 U NC 590,000 U 620,000 U NC Dibenzofuran 300 U 391 NC 590,000 U 620,000 U NC Diethyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Di-n-butyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Di-n-butyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Di-n-octyl phthalate 610 U 600 U NC <			_		_						
Butyl benzyl phthalate					_						
Caprolactam 610 U 600 U NC 1,200,000 U 1,200,000 U NC Carbazole 300 U 300 U 300 U NC 590,000 U 620,000 U NC Dibenzofuran 300 U 391 NC 590,000 U 620,000 U NC Diethyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Din-butyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Di-n-butyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Di-n-butyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Hexachlorobutadiene 300 U 300 U NC 1,200,000 U 1,200,000 U NC Hexachlorobutadiene 300 U 300 U NC 590,000 U 620,000 U NC Hexachlorocyclopentadiene 610 U 600 U NC 1,200,000 U 1,200,000 U NC Hexachlorocyclopentadiene 610 U </td <td></td>											
Carbazole 300 U 300 U NC 590,000 U 620,000 U NC Dibenzofuran 300 U 391 NC 590,000 U 620,000 U NC Dientyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Di-n-butyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Di-n-butyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Di-n-butyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Di-n-butyl phthalate 610 U 600 U NC 1,200,000 U NC DI NC 1,200,000 U NC DI NC NC 1,200,000 U NC NC NC											
Dibenzofuran 300 U 391 Diethylphthalate NC 590,000 U U 620,000 U NC Diethyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U 1,200,000 U NC Di-n-butyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Di-n-butyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Di-n-octyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Hexachlorobenzene 300 U 300 U NC 590,000 U 620,000 U NC Hexachlorobutadiene 300 U 300 U NC 590,000 U 620,000 U NC Hexachlorocyclopentadiene 610 U 600 U NC 1,200,000 U 1,200,000 U NC Hexachlorocyclopentadiene 610 U 600 U NC 590,000 U 620,000 U NC Hexachlorocyclopentadiene 300 U 300 U NC 590,000 U 620,000 U NC											
Diethyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U 1,200,000 U NC Dimethyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U 1,200,000 U NC Di-n-butyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Di-n-butyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Hexachlorobenzene 300 U 300 U NC 590,000 U 620,000 U NC Hexachlorobutadiene 300 U 300 U NC 590,000 U 620,000 U NC Hexachlorocyclopentadiene 610 U 600 U NC 1,200,000 U 1,200,000 U NC Hexachlorocyclopentadiene 610 U 600 U NC 1,200,000 U 620,000 U NC Hexachlorocyclopentadiene 300 U 300 U NC 590,000 U 620,000 U NC Hexachloropethane 300 U 300 U NC 590,000 U 620,000 U NC	Dibenzofuran										
Dimethyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U 1,200,000 U NC Din-butyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U 1,200,000 U NC Din-butyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Hexachlorobenzene 300 U 300 U NC 590,000 U 620,000 U NC Hexachlorobutadiene 300 U 300 U NC 590,000 U 620,000 U NC Hexachloroethane 300 U 300 U NC 590,000 U 620,000 U NC Isophorone 300 U 300 U NC 590,000 U 620,000 U NC Isrborone 300 U 300 U NC 590,000 U 620,000 U NC N-Nitroso-di-n-propylamine 300 U 300 U NC 590,000 U 620,000 U NC N-Nitroso-di-n-propylamine 300 U 300 U NC 590,000 U 620,000 U NC N-Ni					IJ				,		
Di-n-butyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U 1,200,000 U NC Di-n-octyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Hexachloroberacene 300 U 300 U NC 590,000 U 620,000 U NC Hexachlorobutadiene 300 U 300 U NC 590,000 U 620,000 U NC Hexachlorocyclopentadiene 610 U 600 U NC 1,200,000 U 1,200,000 U NC Hexachloroethane 300 U 300 U NC 590,000 U 620,000 U NC Isophorone 300 U 300 U NC 590,000 U 620,000 U NC Nitrobenzene 300 U 300 U NC 590,000 U 620,000 U NC N-Nitroso-di-n-propylamine 300 U 300 U NC 590,000 U 620,000 U NC N-Nitrosodiphenylamine 300 U 300 U NC 590,000 U 620,000 U NC Pentachlorophenol	, .										
Di-n-octyl phthalate 610 U 600 U NC 1,200,000 U 1,200,000 U NC Hexachlorobenzene 300 U 300 U NC 590,000 U 620,000 U NC Hexachlorobutadiene 610 U 600 U NC 1,200,000 U 1,200,000 U NC Hexachlorocyclopentadiene 610 U 600 U NC 1,200,000 U 1,200,000 U NC Hexachloroethane 300 U 300 U NC 590,000 U 620,000 U NC Isophorone 300 U 300 U NC 590,000 U 620,000 U NC Nitrobenzene 300 U 300 U NC 590,000 U 620,000 U NC N-Nitrosodiphenylamine 300 U 300 U NC 590,000 U											
Hexachlorobenzene 300 U 300 U NC 590,000 U 620,000 U NC Hexachlorobutadiene 300 U 300 U NC 590,000 U 620,000 U NC Hexachlorocyclopentadiene 610 U 600 U NC 1,200,000 U 1,200,000 U NC Hexachloroethane 300 U 300 U NC 590,000 U 620,000 U NC Hexachloroethane 300 U 300 U NC 590,000 U 620,000 U NC Isophorone 300 U 300 U NC 590,000 U 620,000 U NC Isophorone 300 U 300 U NC 590,000 U 620,000 U NC N-Nitrosodi-n-propylamine 300 U 300 U NC 590,000 U 620,000 U NC N-Nitrosodi-n-propylamine 300 U 300 U NC 590,000 U 620,000 U NC N-Nitrosodiphenylamine 300 U 300 U NC 590,000 U 620,000 U NC N-Nitrosodiphenylamine 300 U 300 U NC 590,000 U 620,000 U NC N-Nitrosodiphenylamine 300 U 300 U NC 590,000 U 620,000 U NC N-Nitrosodiphenylamine 300 U 300 U NC 590,000 U 620,000 U NC N-Nitrosodiphenylamine 300 U 300 U NC 590,000 U 620,000 U NC N-Nitrosodiphenylamine 300 U 300 U NC 590,000 U 620,000 U NC N-Nitrosodiphenylamine 300 U 300 U NC 590,000 U 620,000 U NC N-Nitrosodiphenylamine 300 U 300 U NC 590,000 U 620,000 U NC N-Nitrosodiphenylamine 300 U 300 U NC 590,000 U 620,000 U NC N-Nitrosodiphenylamine 300 U 300 U NC 590,000 U 620,000 U NC N-Nitrosodiphenylamine 300 U NC 590,000 U 620,000 U NC N-Nitrosodiphenylamine 300 U NC 590,000 U 620,000 U NC N-Nitrosodiphenylamine 300 U NC 590,000 U 620,000 U NC N-Nitrosodiphenylamine 300 U NC 590,000 U 620,000 U NC	Di-n-octyl phthalate				_						
Hexachlorobutadiene 300 U 300 U NC 590,000 U 620,000 U NC Hexachlorocyclopentadiene 610 U 600 U NC 1,200,000 U 1,200,000 U NC Hexachlorocyclopentadiene 300 U 300 U NC 590,000 U 620,000 U NC Isophorone 300 U 300 U NC 590,000 U 620,000 U NC Nitrobenzene 300 U 300 U NC 590,000 U 620,000 U NC N-Nitroso-di-n-propylamine 300 U 300 U NC 590,000 U 620,000 U NC N-Nitrosodiphenylamine 300 U 300 U NC 590,000 U 620,000 U NC N-Nitrosodiphenylamine 300 U 300 U NC 590,000 U 620,000 U NC Pentachlorophenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC NC 1,200,000 U 1,200,000 U NC NC 1,200,000 U NC 1,200,000 U NC 1,200,000 U NC NC 1,200,000 U NC 1,2	Hexachlorobenzene										
Hexachlorocyclopentadiene	Hexachlorobutadiene	300	U		U	NC					NC
Sophorone 300 U 300 U NC 590,000 U 620,000 U NC							1,200,000		1,200,000	U	NC
Nitrobenzene 300 U 300 U NC 590,000 U 620,000 U NC N-Nitroso-di-n-propylamine 300 U 300 U NC 590,000 U 620,000 U NC N-Nitrosodiphenylamine 300 U 300 U NC 590,000 U 620,000 U NC Pentachlorophenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC Phenol 300 U 300 U NC 590,000 U 620,000 U NC	Hexachloroethane	300	U	300	U			U	620,000	U	NC
N-Nitroso-di-n-propylamine 300 U 300 U NC 590,000 U 620,000 U NC N-Nitrosodiphenylamine 300 U 300 U NC 590,000 U 620,000 U NC Pentachlorophenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC Phenol 300 U NC 590,000 U 620,000 U NC	Isophorone										
N-Nitrosodiphenylamine 300 U 300 U NC 590,000 U 620,000 U NC Pentachlorophenol 610 U 600 U NC 1,200,000 U 1,200,000 U NC Phenol 300 U 300 U NC 590,000 U 620,000 U NC											
Pentachlorophenol 610 U 600 U NC 1,200,000 U U 1,200,000 U U NC Phenol 300 U 300 U NC 590,000 U 620,000 U NC	N-Nitroso-di-n-propylamine										
Phenol 300 U 300 U NC 590,000 U 620,000 U NC	N-Nitrosodiphenylamine				_						
					_						
Total SVOCs (μg/Kg) ² 58,000 97,000 50 17,000,000 15,000,000 13	Phenol	300	U	300	U	NC	590,000	U	620,000	U	NC
10tai 5VOC5 (µg/ng) 58,000 97,000 50 17,000,000 15,000,000 13	Tatal SVOCa (************************************						45		,	\vdash	
	rotal SVOCs (µg/Kg)*	58,000		97,000		50	17,000,000		15,000,000		13

Notes:
RPD = Relative Percent Difference
NC = Not Calculated
NA = Not Analyzed
NL = Not Listed
ND = Not Detected
MDL - Method Detection Limit

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

J = The associated numerical value is an estimated quantity.

CPAHs - Carcinogenic PAHs which are shown in bold and italics

Table B-28
Field Duplicate VOC Results in Groundwater
Norwich Former MGP Site, Norwich, New York

Sample ID Laboratory Identification Date Sampled	NO-GW04- M53253- 12/13/200	-7	NO-GW04-16 M53253- 12/13/200	8	RPD	NO-PZ05 M53162- 12/08/200	6	NO-PZ05DUP M53162-7 12/08/2005	RPD	NO-PZ09 M53200-9 12/09/2005	NO-PZ09DUP M53200-10 12/09/2005	RPD	NO-PZ10 M49539-13 07/26/2005	NO-PZ10DUP M49539-14 07/26/2005	RPD
Date Gampieu	12/15/200	55	12/15/200	,5		12/00/200	,5	12/00/2003		12/03/2003	12/03/2003		0772072003	01/20/2003	
Volatile Organic Compounds	(µg/L)														
Acetone	5.0	UJ	5.0	UJ	NC	5.0	\Box	5.0 U	NC	5.0 UJ	5.0 UJ	NC	5.0 U	5.0 U	NC
Benzene	7.7		7.4		4	54		56	3	272	277	2	20.6	22.1	7
Bromodichloromethane	1.0	U	1.0	U	NC	1.0	U	1.0 U	NC	1.0 U	1.0 U	NC	1.0 U	1.0 U	NC
Bromoform	1.0	U	1.0	U	NC	1.0	U	1.0 U	NC	1.0 U	1.0 U	NC	1.0 U	1.0 U	NC
Bromomethane	2.0	U	2.0	U	NC	2.0	J	2.0 UJ	NC	2.0 U	2.0 U	NC	2.0 U	2.0 U	NC
2-Butanone (MEK)	5.0	UJ	5.0	UJ	NC	5.0	כ	5.0 U	NC	5.0 U	5.0 U	NC	5.0 U	5.0 U	NC
Carbon disulfide	5.0	U	5.0	C	NC	5.0	כ	5.0 U	NC	5.0 U	5.0 U	NC	1.1	0.81 J	30
Carbon tetrachloride	1.0	U	1.0	U	NC	1.0	U	1.0 U	NC	1.0 U	1.0 U	NC	1.0 U	1.0 U	NC
Chlorobenzene	1.0	U	1.0	U	NC	1.0	U	1.0 U	NC	1.0 U	1.0 U	NC	1.0 U	1.0 UJ	NC
Chloroethane	2.0	U	2.0	U	NC	2.0	\neg	2.0 U	NC	2.0 U	2.0 U	NC	2.0 U	2.0 U	NC
Chloroform	1.0	U	1.0	U	NC	1.0	J	1.0 U	NC	1.0 U	1.0 U	NC	1.0 U	1.0 U	NC
Chloromethane	2.0	UJ	2.0	UJ	NC	2.0	כ	2.0 U	NC	2.0 U	2.0 U	NC	2.0 U	2.0 U	NC
Cyclohexane	5.0	U	5.0	U	NC	5.0	כ	5.0 U	NC	0.59 J	0.58 J	2	5.0 U	5.0 U	NC
1,2-Dibromo-3-chloropropane	5.0	U	5.0	U	NC	5.0	כ	5.0 U	NC	5.0 U	5.0 U	NC	5.0 U	5.0 U	NC
Dibromochloromethane	1.0	U	1.0	U	NC	1.0	כ	1.0 U	NC	1.0 U	1.0 U	NC	1.0 U	1.0 U	NC
1,2-Dibromoethane	2.0	U	2.0	U	NC	2.0	כ	2.0 U	NC	2.0 U	2.0 U	NC	2.0 U	2.0 U	NC
1,2-Dichlorobenzene	1.0	U	1.0	U	NC	1.0	U	1.0 U	NC	0.34 J	1.0 U	NC	1.0 U	1.0 U	NC
1,3-Dichlorobenzene	1.0	U	1.0	U	NC	1.0	U	1.0 U	NC	0.30 J	1.0 U	NC	1.0 U	1.0 U	NC
1,4-Dichlorobenzene	1.0	U	1.0	U	NC	1.0	U	1.0 U	NC	1.0 U	1.0 U	NC	1.0 U	1.0 U	NC
Dichlorodifluoromethane	2.0	UJ	2.0	UJ	NC	2.0	J	2.0 UJ	NC	2.0 U	2.0 U	NC	2.0 U	2.0 U	NC
1,1-Dichloroethane	1.0	U	1.0	U	NC	1.0	J	1.0 U	NC	1.0 U	1.0 U	NC	1.0 U	1.0 U	NC
1,2-Dichloroethane	1.0	UJ	1.0	UJ	NC	1.0	UJ	1.0 UJ	NC	1.0 UJ	1.0 UJ	NC	1.0 U	1.0 U	NC
1,1-Dichloroethene	1.0	U	1.0	U	NC	1.0	U	1.0 U	NC	1.0 U	1.0 U	NC	1.0 U	1.0 U	NC
cis-1,2-Dichloroethene	1.0	U	1.0	U	NC	1.0	U	1.0 U	NC	1.0 U	1.0 U	NC	1.0 U	1.0 U	NC
trans-1,2-Dichloroethene	1.0	U	1.0	U	NC	1.0	כ	1.0 U	NC	1.0 U	1.0 U	NC	1.0 U	1.0 U	NC
1,2-Dichloropropane	2.0	U	2.0	С	NC	2.0	כ	2.0 U	NC	2.0 U	2.0 U	NC	2.0 U	2.0 U	NC
cis-1,3-Dichloropropene	0.50	U	0.50	C	NC	0.50	כ	0.50 U	NC	0.50 U	0.50 U	NC	0.50 U	0.50 U	NC
trans-1,3-Dichloropropene	0.50	U	0.50	U	NC	0.50	U	0.50 U	NC	0.50 U	0.50 U	NC	0.50 U	0.50 U	NC
Ethylbenzene	36.1		35.4		2	44		46	4	388	392	1	174	200	14
Freon 113	5.0	U	5.0	U	NC	5.0	כ	5.0 U	NC	5.0 U	5.0 U	NC	5.0 U	5.0 U	NC
2-Hexanone	5.0	U	5.0	С	NC	5.0	3	5.0 UJ	NC	5.0 U	5.0 U	NC	5.0 U	5.0 U	NC
Isopropylbenzene	5.0		4.9		2	19		19	3	40	40	0	22.6	26.6	16
Methyl Acetate	5.0	U	5.0	C	NC	5.0		5.0 U	NC	5.0 U	5.0 U	NC	5.0 U	5.0 U	NC
Methylcyclohexane	5.0	U	5.0	C	NC	5.0	כ	5.0 U	NC	1.3 J	1.2 J	8	5.0 U	5.0 U	NC
Methyl Tert Butyl Ether	1.0	U	1.0	U	NC	1.0		1.0 U	NC	1.0 U	1.0 U	NC	1.0 U	1.0 U	NC
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	U	NC	5.0		5.0 U	NC	5.0 U	5.0 U	NC	5.0 U	5.0 U	NC
Methylene chloride	2.0	U	2.0	C	NC	2.0		2.0 U	NC	2.0 U	2.0 U	NC	2.0 U	2.0 U	NC
Styrene	5.0	U	5.0	C	NC	5.0		5.0 U	NC	5.0 U	5.0 U	NC	5.0 U	5.0 U	NC
1,1,2,2-Tetrachloroethane	1.0	U	1.0	C	NC	1.0		1.0 U	NC	0.3 J	1.0 U	NC	1.0 U	1.0 U	NC
Tetrachloroethene	1.0	U	1.0	U	NC	1.0	כ	1.0 U	NC	1.0 U	1.0 U	NC	1.0 U	1.0 U	NC
Toluene	4.3		4.2		2	20		22	8	125	127	2	2.6	2.9	11
1,2,4-Trichlorobenzene	5.0	U	5.0	C	NC	5.0		5.0 U	NC	5.0 U	5.0 U	NC	5.0 U	5.0 U	NC
1,1,1-Trichloroethane	1.0	U	1.0	C	NC	1.0		1.0 U	NC	1.0 U	1.0 U	NC	1.0 U	1.0 U	NC
1,1,2-Trichloroethane	1.0	U	1.0	C	NC	1.0		1.0 U	NC	1.0 U	1.0 U	NC	1.0 U	1.0 U	NC
Trichloroethene	1.0	U	1.0	U	NC	1.0		1.0 U	NC	1.0 U	1.0 U	NC	1.0 U	1.0 U	NC
Trichlorofluoromethane	1.0	U	1.0	U	NC	1.0		1.0 U	NC	1.0 U	1.0 U	NC	1.0 U	1.0 U	NC
Vinyl chloride	1.0	U	1.0	U	NC	1.0	U	1.0 U	NC	1.0 U	1.0 U	NC	1.0 U	1.0 U	NC
Xylene (total)	70.8		70.2		1	55		58	6	261	267	2	49.8	57.4	14
Total VOCs (μg/L)	120		120		0	190		200	5	1,100	1,100	0	270	310	14

Notes:

RPD = Relative Percent Difference

NC = Not Calculated

NA = Not Analyzed

ND = Not Detected

MDL - Method Detection Limit

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

J = The associated numerical value is an estimated quantity.

Table B-29 Field Duplicate SVOC Results in Groundwater Norwich Former MGP Site, Norwich, New York

Sample ID Laboratory Identification Date Sampled	NO-GW04-1 M53253-7 12/13/2005		NO-GW04-16DUP M53253-8 12/13/2005	RPD	NO-PZ05 M53162-6 12/08/2005	NO-PZ05DUP M53162-7 12/08/2005	RPD	NO-PZ09 M53200-9 12/09/2005	NO-PZ09DUP M53200-10 12/09/2005	RPD	NO-PZ10 M49539-13 07/26/2005	NO-PZ10DUP F M49539-14 07/26/2005	RPD
Semi-volatile Organic Compo	unds (µg/L)												
2-Methylnaphthalene	84.3		77.1	9	9.3	8.0	15	134	145	8	101 J		32
Acenaphthene Acenaphthylene	54.2 10.4		50.9 9.9	6 5	39.6 10.4	36.3 9.4	9 10	55 24.7	58.9 27.6	7 11	53.2 9.0	41.9 7.2	24
Anthracene	7.4		6.7	10	1.4	1.3	7	7.5	6.7	11	4.2	3.5	18
Benzo(a)anthracene		J	0.83 J	36	5.1 U	5.1 U	NC	1.9 J	5.0 U	NC	5.1 U		NC
Benzo(a)pyrene		J	5.1 U	NC	5.1 U	5.1 U	NC	1.5	5.0 U	NC	5.1 U		NC
Benzo(b)fluoranthene Benzo(g,h,i)perylene		U U	5.1 U 5.1 U	NC NC	5.1 U 5.1 UJ	5.1 U 5.1 UJ	NC NC	0.71 J 0.86 J	5.0 U 5.0 UJ	NC NC	5.1 U 5.1 U		NC NC
Benzo(k)fluoranthene		Ü	5.1 U	NC	5.1 U	5.1 U	NC	0.95 J	5.0 U	NC	5.1 U		NC
Chrysene		J	5.1 U	NC	5.1 U	5.1 U	NC	1.5 J	5.0 U	NC	5.1 U	5.1 U	NC
Dibenzo(a,h)anthracene		U	5.1 U	NC	5.1 U	5.1 U	NC	5.0 U	5.0 U	NC	5.1 U		NC
Fluoranthene Fluorene	5.2 17.4	_	4.4 16.6	17 5	0.74 J 3.0	5.1 U 2.7	NC 11	5.4 18.1	3.5 18.7	43 3	3.2 20.2	2.7 16.2	17 22
Indeno(1,2,3-cd)pyrene		U	5.1 U	NC	5.1 U	5.1 U	NC	0.69 J	5.0 U	NC	5.1 U		NC
Naphthalene		J	203 J	44	64.6	56.6	13	647	775	18	21.9	16.9	26
Phenanthrene	28.1		25.5	10	5.7	4.9	15	31.9	29.8	7	24.7	20.6	18
Pyrene	6.9	J	5.8 J	17	0.96 J	0.75 J	25	7.6 J	4.7 J	47	3.7	3.3	11
Total PAHs (μg/L)	530		400	28	140	120	15	940	1,100	16	240	190	23
Total CPAHs (µg/L)	2.8		0.83	109	ND	ND	NC	7.3	ND	NC	ND	ND	NC
1,1'-Biphenyl	11.5		11.1	4	16.8 J	15.5 J	8	23.4	24.7	5	21.7 J	15.9 J	31
1,2-Diphenylhydrazine	NA		NA	NC	NA	NA	NC	NA	NA	NC	NA		NC
2,4,5-Trichlorophenol		U	10 U 10 U	NC	10 U 10 U	10 U 10 U	NC	10 U	10 U	NC	10 U 10 U		NC NC
2,4,6-Trichlorophenol 2,4-Dichlorophenol		U	10 U	NC NC	10 U	10 U 10 U	NC NC	10 U	10 U 10 U	NC NC	10 U 10 U		NC NC
2,4-Dimethylphenol	1.8	Ŭ	10 U	NC	10 U	10 U	NC	10 U	10 U	NC	10 U		NC
2,4-Dinitrophenol	20	U	20 U	NC	20 U	20 U	NC	20 U	20 U	NC	20 UJ		NC
2,4-Dinitrotoluene		U	10 U	NC	10 U	10 U	NC	10 U	10 U	NC	10 U		NC
2,6-Dinitrotoluene 2-Chloronaphthalene		U	10 U 5.1 U	NC NC	10 U 5.1 U	10 U 5.1 U	NC NC	10 U 5.0 U	10 U 5.0 U	NC NC	10 U 5.1 UJ		NC NC
2-Chlorophenol		U	5.1 U	NC	5.1 U	5.1 U	NC	5.0 U	5.0 U	NC	5.1 U		NC
2-Methylphenol		Ū	10 U	NC	10 U	10 U	NC	10 U	10 U	NC	10 U		NC
2-Nitroaniline		U	10 U	NC	10 U	10 U	NC	10 U	10 U	NC	10 U		NC
2-Nitrophenol		U	10 U 4.1	NC	10 U 10 U	10 U 10 U	NC	10 U	10 U	NC	10 U		NC NC
3&4-Methylphenol 3,3'-Dichlorobenzidine	4.9 5.1	U	5.1 U	18 NC	5.1 U	5.1 U	NC NC	5.0 UJ	10 U 5.0 UJ	NC NC	10 U 5.1 UJ		NC
3-Nitroaniline		Ü	10 U	NC	10 U	10 U	NC	10 U	10 U	NC	10 U		NC
4,6-Dinitro-o-cresol		U	10 U	NC	10 U	10 U	NC	10 U	10 U	NC	10 U		NC
4-Bromophenyl phenyl ether		U	5.1 U	NC	5.1 U	5.1 U	NC	5.0 U	5.0 U	NC	5.1 U		NC
4-Chloro-3-methylphenol 4-Chloroaniline		U	10 U 10 U	NC NC	10 U 10 U	10 U 10 U	NC NC	10 U 10 UJ	10 U 10 UJ	NC NC	10 U 10 U		NC NC
4-Chlorophenyl phenyl ether		U	5.1 U	NC	5.1 U	5.1 U	NC	5.0 U	5.0 U	NC	5.1 U		NC
4-Nitroaniline	10	Ü	10 U	NC	10 U	10 U	NC	10 U	10 U	NC	10 U	10 U	NC
4-Nitrophenol		U	20 U	NC	20 U	20 U	NC	20 U	20 U	NC	20 U		NC
Acetophenone	2.1		2.0	5	R NA	R	NC	10 U NA	10 U	NC	10 U		NC
Aniline Atrazine	NA 10	U	NA 10 U	NC NC	NA R	NA R	NC NC	10 U	NA 10 U	NC NC	10 U		NC NC
Benzaldehyde		R	R	NC	R	R	NC	20 UJ	20 UJ		20 U		NC
Benzoic acid	NA		NA	NC	NA	NA	NC	NA	NA	NC	10 U	10 U	NC
Bis(2-chloroethoxy) methane		U	5.1 U	NC	5.1 U	5.1 U	NC	5.0 U	5.0 U	NC	5.1 U		NC
Bis(2-chloroethyl) ether bis(2-Chloroisopropyl)ether		U	5.1 U 5.1 U	NC NC	5.1 U 5.1 U	5.1 U 5.1 U	NC NC	5.0 U 5.0 U	5.0 U 5.0 U	NC NC	5.1 U 5.1 U		NC NC
Bis(2-ethylhexyl) phthalate		U	10 U	NC	10 U	10 U	NC	10 U	10 U	NC	10 U		NC
Butyl benzyl phthalate	10	U	10 U	NC	1.6 J	10 U	NC	10 U	10 U	NC	10 U	10 U	NC
Carbazala		U	10 U	NC	R	R	NC	10 U	10 U	NC	10 U		NC 12
Carbazole Dibenzofuran	4.6 10.2	_	4.3 9.9	7	14.1 6.8	13 6.3	8	8.3 8.1	11.9 8.3	36 2	10.8 4.3	9.6 3.3	12 26
Diethyl phthalate		U	10 U	NC	10 U	10 U	NC	10 U	10 U		10 U		NC
Dimethyl phthalate	10	Ū	10 U	NC	10 U	10 U	NC	10 U	10 U	NC	10 U	10 U	NC
Di-n-butyl phthalate	2.0		2.0	0	10 U	10 U	NC	10 U	10 U		10 U		NC
Di-n-octyl phthalate Hexachlorobenzene		U	10 U 5.1 U	NC NC	10 U 5.1 U	10 U 5.1 U	NC NC	10 U 5.0 U	10 U 5.0 U	NC NC	10 U 5.1 U		NC NC
Hexachlorobutadiene		U	5.1 U	NC	5.1 U	5.1 U	NC	5.0 U	5.0 U		5.1 U		NC
Hexachlorocyclopentadiene	10	Ü	10 U	NC	10 U	10 U	NC	10 U	10 U	NC	10 U	10 U	NC
Hexachloroethane		U	5.1 U	NC	5.1 U	5.1 U	NC	5.0 U	5.0 U	NC	5.1 U		NC
Isophorone Nitrobonzono		U	5.1 U 5.1 U	NC NC	5.1 U 5.1 U	5.1 U 5.1 U	NC NC	5.0 U 5.0 U	5.0 U 5.0 U		5.1 U 5.1 U		NC NC
Nitrobenzene N-Nitroso-Di-n-propylamine		U	5.1 U 5.1 U	NC	5.1 U	5.1 U	NC	5.0 U	5.0 U	NC	5.1 U		NC
N-nitrosodiphenylamine		U	5.1 U	NC	5.1 U	5.1 U	NC	5.0 U	5.0 U		5.1 U		NC
Pentachlorophenol	10	U	10 U	NC	10 U	10 U	NC	10 U	10 U	NC	10 U	10 U	NC
Phenol	5.1	U	5.1 U	NC	5.1 U	5.1 U	NC	5.0 U	5.0 U	NC	5.1 U	5.1 U	NC
Total SVOCs (μg/L) ²	570		430	28	180	160	12	980	1,100	12	280	210	29

Notes: RPD = Relative Percent Difference NC = Not Calculated NA = Not Analyzed

NL = Not Listed ND = Not Detected

ND = Not Detected
MDL - Method Detection Limit
J = The associated numerical value is an estimated quantity.
U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.
R = The result was rejected because one or more QC measures did not meet acceptable criteria by validator during the review process CPAHs - Carcinogenic PAHs which are shown in bold and italics

Table B-30
Field Duplicate Total Cyanide Results in Groundwater
Norwich Former MGP Site, Norwich, New York

Sample ID	NO-GW04-16	NO-GW04-16DUP	RPD	NO-PZ05	NO-PZ05DUP	RPD	NO-PZ09	NO-PZ09DUP	RPD
Laboratory Identification	M53253-7	M53253-8		M53162-6	M53162-7		M53200-9	M53200-10	
Date Sampled	12/13/2005	12/13/2005		12/08/2005	12/08/2005		12/09/2005	12/09/2005	
Total Cyanide (µg/L)	10 U	10 U	NC	29	23	23	20	15	29

Notes:

RPD = Relative Percent Difference

NC = Not Calculated

NA = Not Analyzed

ND = Not Detected

MDL - Method Detection Limit

U = The material was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit.

Table B-31 Field Duplicate SVI Results in Air and Vapor Norwich Former MGP Site, Norwich, New York

Fig. 1. Sept. 1. Sept	Sample	NO-12BAS	NO-12BAS DUP	RPD	NO-14BAB	NO-14BAB DUP	RPD	NO-30FRS	NO-30FRS DUP	RPD	NO-41 FRF	NO-41 FRF DUP	RPD	NO-UP062803	NO-UP062803 DUP	RPD
Wester Cares Company (a) 6. See 1. Se	Sample Type	Sub-slab	Sub-slab		Basement	Basement		Sub-slab	Sub-slab		1st Floor	1st Floor		Ambient Air	Ambient Air	
Part	Sample Depth/Height	2 in. below slab	2 in. below slab		3 ft. above ground	3 ft. above ground		2 in. below slab	2 in. below slab		3 ft. above ground	3 ft. above ground		3 ft. above ground	3 ft. above ground	
Vester Propose Company (appert)	Sample Date	3/23/2006 10:45	3/23/2006 10:45		3/22/2006 3:50	3/22/2006 3:50		3/24/2006 11:30	3/24/2006 11:30		3/24/2006 6:20	3/24/2006 6:20		3/28/2006 5:57	3/28/2006 5:57	
Company Comp	Dilution Factor	1	1		1	1		1	1		1	1		1	1	
3-25 contemporal c	Volatile Organic Compounds (µg/m3)		Conc Q RL		Conc Q RL			Conc Q RL			Conc Q RL	Conc Q RL		Conc Q RL		
	, ,				1.1 U 1.1					_	1.1 U 1.1			1.1 U 1.1		
2-Part alman and any and any and any and any and any	, , ,															
Company Comp																
Company Comp																
2 A CHARLAMANIAN SALE AND A STATE AND A ST																
## Accessory of the company of the c																
*** Approximate priform** 15 1 15 15 15 17 17 17										_						
Application 1	, ,									_						
Selection conservant 10 17 28 15 18 17 19 17 19 17 19 17 19 17 19 17 19 17 19 17 19 17 19 17 19 17 19 17 19 17 19 17 19 17 19 17 19 17 19 19	, ,															
2 Abmorestance	, , , ,															
2 Decembersperse	,															
3-3 Frementembersere										_						
September 12 V 12 12 V 13 V 12 V 12 V 13 V 12	·															
4 Controversery 12 V 12 12 V 12 NC 12 V 12 V																
entering	1,4-Dichlorobenzene															
remomenhame	Benzene															
Intercentance 10 1 10 10 10 10 10 10	Bromomethane						NC									NC
Introductions 1	Carbon tetrachloride	1.3 U 1.3	1.3 U 1.3	NC	1.3 U 1.3	1.3 U 1.3	NC	1.3 U 1.3	1.3 U 1.3	NC	1.3 U 1.3	1.3 U 1.3	NC	1.3 U 1.3	1.3 U 1.3	NC
Horsense 10	Chlorobenzene	0.92 U 0.92	0.92 U 0.92	NC	0.92 U 0.92	0.92 U 0.92	NC	0.92 U 0.92	0.92 U 0.92	2 NC	0.92 U 0.92	0.92 U 0.92	NC NC	0.92 U 0.92	0.92 U 0.92	NC
1000mahahan 16 0 0 12 10 29 12 10 29 12 10 10 10 10 10 10 10	Chloroethane	2.7 0.53		12	0.53 U 0.53		NC	0.53 U 0.53	0.53 U 0.53	NC NC	0.53 U 0.53	0.53 U 0.53	NC	0.53 U 0.53	0.53 U 0.53	NC
to 4.2 Distributions with the property of the	Chloroform															
Best September Properties Sept U Sept Sept Sept U S	Chloromethane															
International content Signature Sign	cis-1,2-Dichloroethene									_						
Inhybergroes 6.4 0.87 5.7 0.87 12 0.87	cis-1,3-Dichloropropene			_						_						
Personal production				ŭ												
geographeneare	,															
lengy fieth buyl effect only of them of the property of the pr																
tethymen chierde chier	,									_						
Syleme 20 0.87 17 0.87 16 1.7 0.87 16 1.7 0.87 18 0.87 17 0.87 18 0.87 19 7.4 0.87 7.5 0.87 1 1.6 0.87 12 0.87 29 2.8 0.87 24 0.87 8 18 18 18 18 18 18 1										_						
Suphrelation 26 U 26 Ze U 28 NC 26 U 26	,															
-Butane																
-Decame	n-Butane									_						
Dedecame	n-Decane															NC
-Hexane	n-Dodecane		7.0 UJ 7.0	NC	7.0 UJ 7.0	7.0 UJ 7.0	NC	7.0 UJ 7.0	7.0 UJ 7.0	NC		7.0 UJ 7.0	NC	7.0 UJ 7.0		
Octaine 15 19 12 19 22 19 22 19 19	n-Heptane	5.4 2.0	4.4 2.0	20	2.0 U 2.0	2.0 U 2.0	NC	2.0 U 2.0	2.0 U 2.0	NC NC	2.0 U 2.0	2.0 U 2.0	NC	2.0 U 2.0	2.0 U 2.0	NC
Defane 18	n-Hexane	2.4 1.8	3.1 1.8	25	1.8 U 1.8	1.8 U 1.8	NC	1.8 U 1.8	1.8 U 1.8	3 NC	1.8 U 1.8	1.8 U 1.8	NC	1.8 U 1.8	1.8 U 1.8	NC
Undecane 6.4 U 6.4 6.4 U 6.4 NC NC NS	n-Octane	15 1.9	12 1.9	22	1.9 U 1.9	1.9 U 1.9	NC	1.9 U 1.9	1.9 1.9) NC	1.9 U 1.9	1.9 U 1.9	NC	1.9 U 1.9	1.9 U 1.9	NC
Sylene St.	Nonane	18 2.6	14 2.6	25		2.6 U 2.6	NC	6.3 2.6	6.1 2.6	3	2.6 U 2.6	2.6 U 2.6	NC	4.2 2.6	4.4 2.6	5
entane	n-Undecane									1 NC						
Tyrene 2.6 J 0.85 1.9 J 0.85 3.1 0.85 0.85 U 0.85	o-Xylene									7 7						
efrachtorethene	Pentane															
oluene	Styrene															
ans-13-Dichloropropene 0.91 U 0.91										_						
inchloroethene inchloroethene in 1.1 U 1.1 1.1 U 1.1 NC 1												•				
inchlorofluoromethane	, , , , , , , , , , , , , , , , , , , ,															
Interlatively Identified Compounds (TICs) 2,3-Trimethylbenzene ND																
Tentaively Identified Compounds (TICs)																
2,3-Trimethylbenzene		0.51 0 0.51	0.51 0 0.51	INC	0.51 0 0.51	0.51 0 0.51	INC	0.51 0 0.51	0.51 0 0.51	INC	0.51 0 0.51	0.51 0 0.51	INC	0.51 0 0.51	0.51 0 0.51	INC
-Methylnaphthalene	1.2.3-Trimethylhenzene	ND *	ND *	NC	ND *	ND *	NC	ND *	ND *	NC	ND *	ND *	NC	ND *	ND *	NC
2.4-Trimethylpentane																
3-Dimethylheptane ND * ND * ND * NC ND * ND																
3-Dimethylpentane	2,3-Dimethylheptane															
Methylnaphthalene	2,3-Dimethylpentane															
Autylcyclohexane ND * ND * NC ND * ND <th< td=""><td>2-Methylnaphthalene</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	2-Methylnaphthalene															
Addiné ND * ND * NC ND	Butylcyclohexane									_				ND *		
Sopentane ND * ND * NC ND *	Indane									NC				ND *		
otal VOCs (µg/m³) 140 130 7 16 14 13 90 47 62 19 14 34 24 24 0	Indene	ND *	ND *	NC	ND *	ND *	NC	ND *	ND *	NC	ND *	ND *	NC	ND *	ND *	NC
	Isopentane	ND *	ND *	NC	ND *	ND *	NC	ND *	ND *	NC	ND *	ND *	NC	ND *	ND *	NC
lotes:	Total VOCs (μg/m³)	140	130	7	16	14	13	90	47	62	19	14	34	24	24	0
	Notes:															

Notes:

RPD = Relative Percent Difference

NC = Not Calculated

ND - Not Detected
MDL = Method Detection Limit

Q - Qualifier

U - Compound was analyzed for but not detected at or above the MDL. The associated numerical value is the sample reporting limit J - Associated numerical value is an estimated quantity

RL - Reporting limit
N - compound identified as a tentatively identified compound (TIC)
* - compounds reported as TICs are not calibrated for and do not have a reporting limit

C SUBSURFACE BORING LOGS AND WELL CONSTRUCTION RECORDS

NYSEG: Norwich SRI Report

October 2006

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

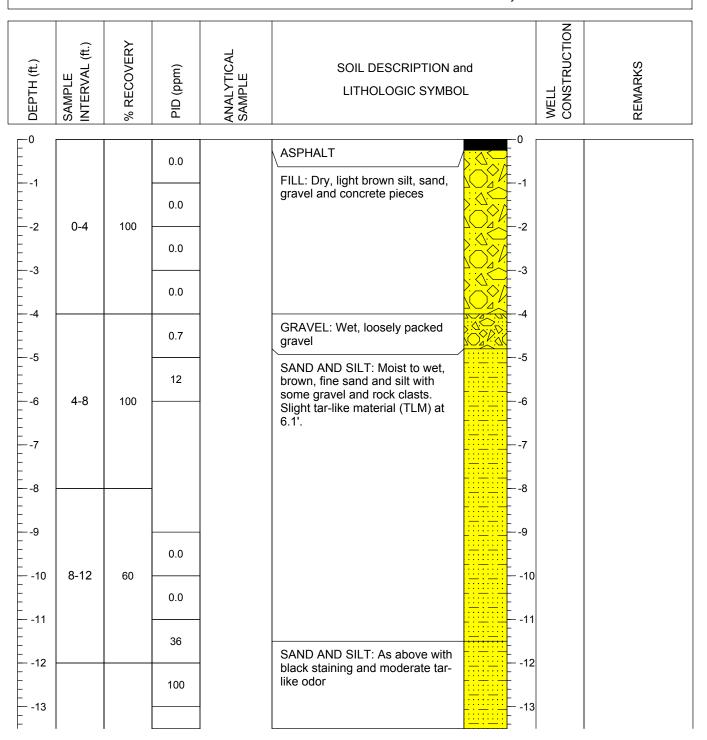
DATE: 4/25/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.28 ft. above MSL


WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 24 ft. below grade

WEATHER: Rainy
GEOLOGIST: Lara Gray

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

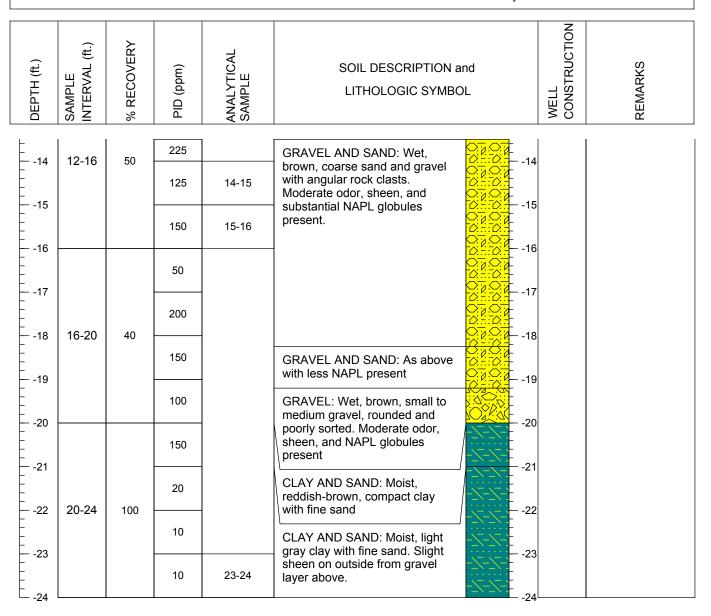
DATE: 4/25/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.28 ft. above MSL


WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 24 ft. below grade

WEATHER: Rainy

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

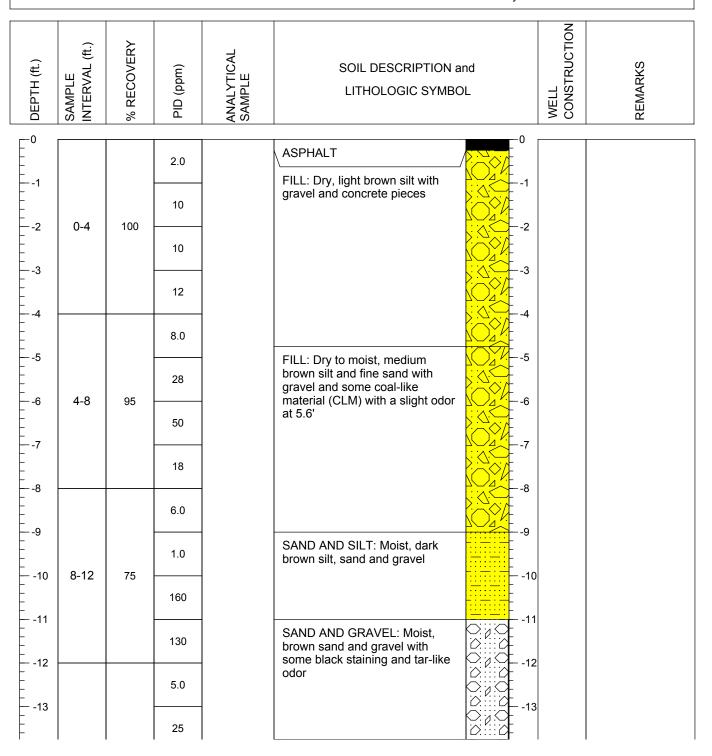
DATE: 4/25/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.35 ft. above MSL


WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 24 ft. below grade

WEATHER: Cloudy with rain GEOLOGIST: Lara Gray

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

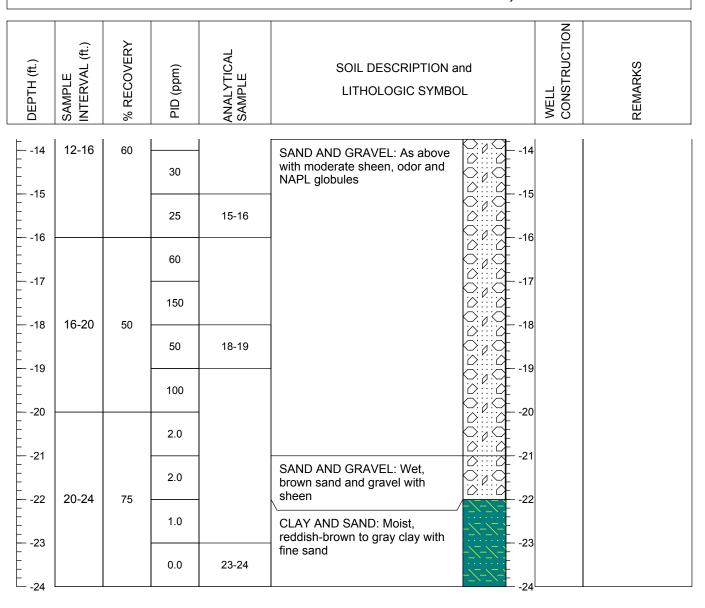
DATE: 4/25/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.35 ft. above MSL


WELL ELEVATION: NA

OUTER CASING ELEVATION: NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 24 ft. below grade

WEATHER: Cloudy with rain GEOLOGIST: Lara Gray

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

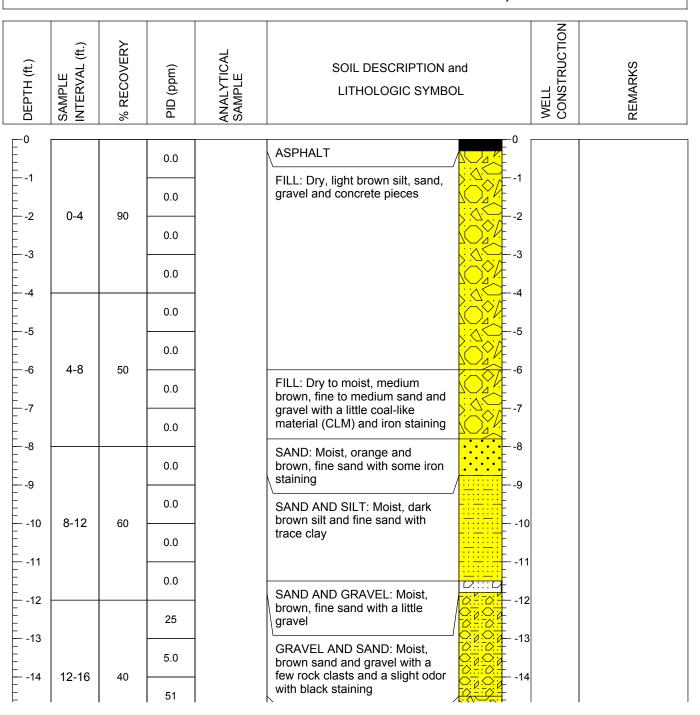
DATE: 4/25/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores


GROUND ELEVATION: NA WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 28 ft. below grade

WEATHER: Cool and rainy GEOLOGIST: Lara Gray

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

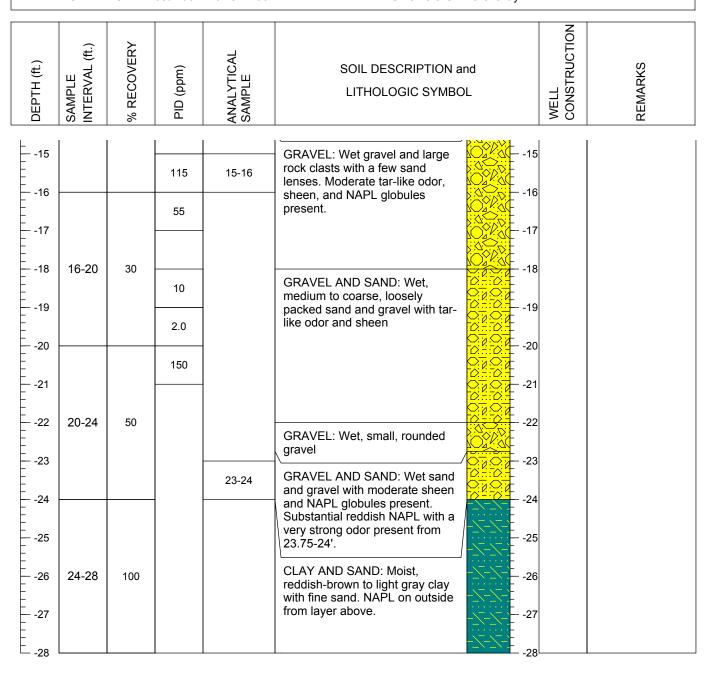
DATE: 4/25/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores


GROUND ELEVATION: NA WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 28 ft. below grade

WEATHER: Cool and rainy GEOLOGIST: Lara Gray

NO-DP04A

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

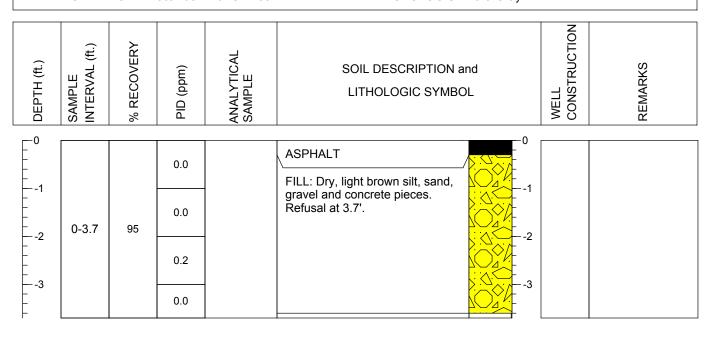
DATE: 4/26/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.16 ft. above MSL


WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 3.7 ft. below grade

WEATHER: Warm, sunny, breezy

NO-DP04B

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

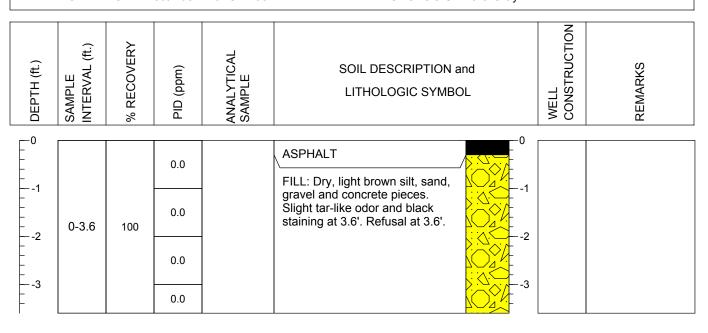
DATE: 4/26/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.16 ft. above MSL


WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 3.6 ft. below grade

WEATHER: Warm, sunny, breezy

NO-DP04C

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

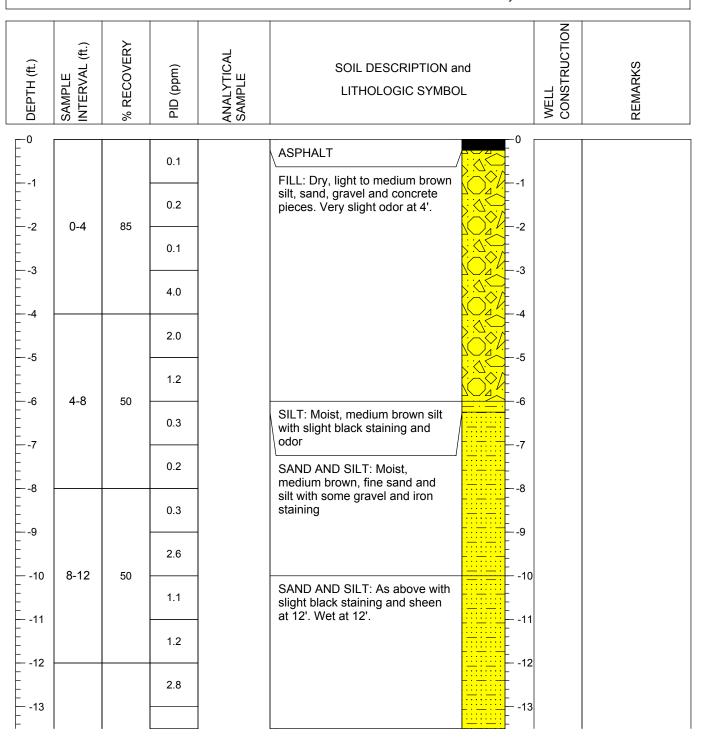
DATE: 4/26/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.19 ft. above MSL


WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 24 ft. below grade

WEATHER: Warm, sunny, breezy

NO-DP04C

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

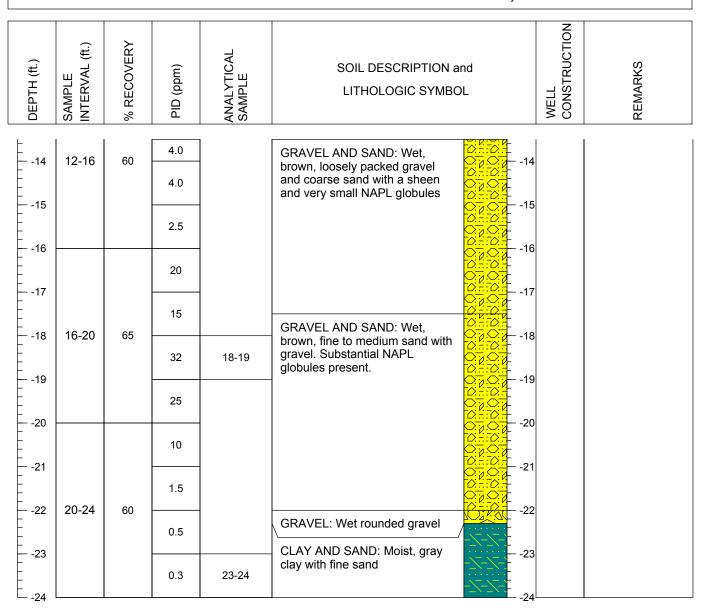
DATE: 4/26/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.19 ft. above MSL


WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 24 ft. below grade

WEATHER: Warm, sunny, breezy

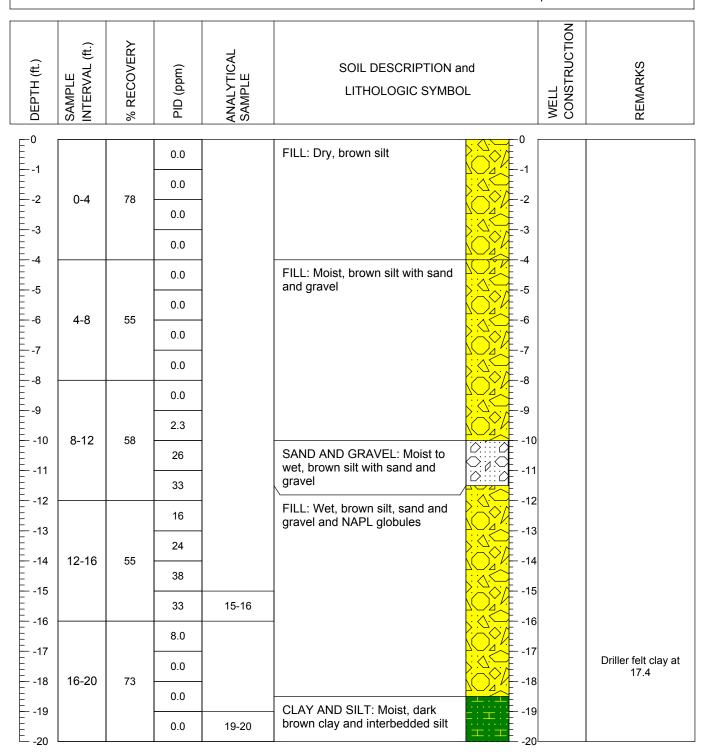
PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/26/2004

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55


SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.30 ft. above MSL

WELL ELEVATION: N/A

OUTER CASING ELEVATION: N/A

DEPTH TO WATER: N/A

BOREHOLE DEPTH: 20 ft. below grade

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/27/2004

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.48 ft. above MSL

WELL ELEVATION: N/A

OUTER CASING ELEVATION: N/A

DEPTH TO WATER: N/A

BOREHOLE DEPTH: 24 ft. below grade

DEPTH (ft.)	SAMPLE INTERVAL (ft.)	% RECOVERY	PID (ppm)	ANALYTICAL SAMPLE	SOIL DESCRIPTION a LITHOLOGIC SYMBC		WELL	REMARKS
E ₀			0.5		FILL: Dry to moist, brown silt	0		
-1			1		and gravel	-1		
-2	0-4	50	1.5			-2		
-3			0.0			-3		
-4			0.0		FILL: Dry, brown silt, sand and	-4		
- -5			0.0		gravel	-5		
-6	4-8	80	0.0			-6		
- -7			0.0			-7		
-8 9			0.0			-8		
			0.0			-9		
-10	8-12	53	0.0			-10		
-11			1.3		SILT, SAND AND GRAVEL: Moist, brown silt, sand and	-11		
-12			73		gravel with black staining and a slight odor	-12		
-13	40.40		170		SILT, SAND AND GRAVEL:	-13		
-14	12-16	55	70		Wet, brown silt, sand and gravel with NAPL throughout	-14		
-15 - 16			130	15-16	_	-15		
F			47			-16		
-17	16-20	58	60					
E	10-20	56	50			-18		
-19 -20			75			-20		
-20						○ E -20		
-22	20-24	93				22		
	20-27	55	6.0	22-23	CLAY AND SILT: Moist, dark brown to gray clay and			
-23					interbedded silt	-24		

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/27/2004

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.08 ft. above MSL

WELL ELEVATION: N/A

OUTER CASING ELEVATION: N/A

DEPTH TO WATER: N/A

BOREHOLE DEPTH: 24 ft. below grade

DEPTH (ft.)	SAMPLE INTERVAL (ft.)	% RECOVERY	PID (ppm)	ANALYTICAL SAMPLE	SOIL DESCRIPTION and LITHOLOGIC SYMBOL		WELL CONSTRUCTION	REMARKS
E-1			0.1.16		FILL: Moist, brown silt, sand and			
	0-4	65	1.6		graver with some debits	-1		
-2			2.1					
-3			0.0			-3		
4 5 	4-8	58	0.0		FILL: Moist, brown , sand and gravel	-5		
			0.0					
			0.0			7		
			0.0			-8		
	8-12	55	0.0			-9		
			0.0			-10		
			42			-11		
-12			20		SILT, SAND AND GRAVEL: Wet, brown silt, sand and gravel	-12		
-13					with some NAPL			
-14	12-16	20			SILT, SAND AND GRAVEL:	0:::0= 0:7:0=-14		
-15					Wet, brown silt, sand and gravel with black staining			Duilley felt alove at
-16			-		SAND AND GRAVEL: Wet,	-16		Driller felt clay at 15.8'
-17					brown sand and gravel with little silt and NAPL	<u>-</u> -17		
-18	16-20	0			NO RECOVERY: Hole caving-	<u>-</u> -18		
-19					No representative material sampled from 16-24' bgs	-19		
-19			-			-20		
-21						-21		
-22	20-24	0				-22		
-23						-23		
E -24						E_ ₋₂₄ l		

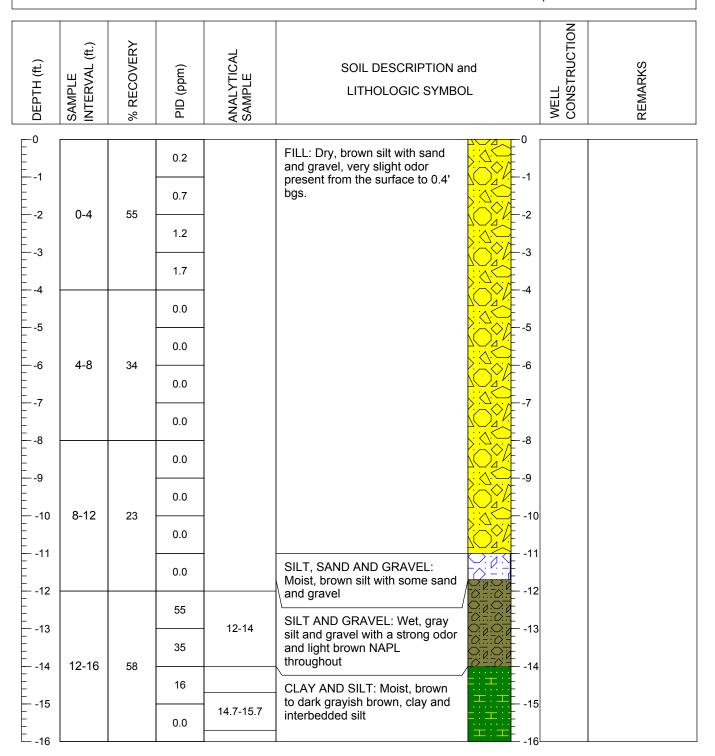
PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/27/2004

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55


SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.29 ft. above MSL

WELL ELEVATION: N/A

OUTER CASING ELEVATION: N/A

DEPTH TO WATER: N/A

BOREHOLE DEPTH: 16 ft. below grade

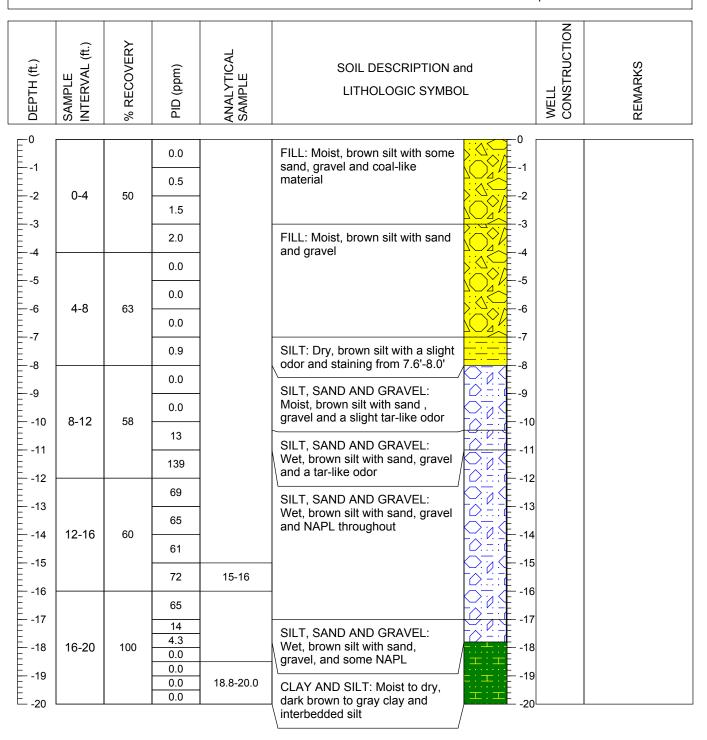
PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/26/2004

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55


SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1007.18 ft. above MSL

WELL ELEVATION: N/A

OUTER CASING ELEVATION: N/A

DEPTH TO WATER: N/A

BOREHOLE DEPTH: 20 ft. below grade

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/26/2004

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.07 ft. above MSL

WELL ELEVATION: N/A

OUTER CASING ELEVATION: N/A

DEPTH TO WATER: N/A

BOREHOLE DEPTH: 24 ft. below grade

DEPTH (ft.)	SAMPLE INTERVAL (ft.)	% RECOVERY	PID (ppm)	ANALYTICAL SAMPLE	SOIL DESCRIPTION at LITHOLOGIC SYMBO		WELL	REMARKS
E-1			0.1		FILL: Dry silt, clay and sand with	0		
-2 -3 -4 -5 -6 -7 -8	0-4	40	0.6		some organic matter	-1		
					FILL: Dry silt with sand and gravel	-2		
			1.1			-3	-3	
			0.0			-4		
		75	0.0			-5		
	4-8		0.0			-6		
			0.0		FILL: Moist silt with sand, gravel and a slight odor	-7	-7	
			0.0					
	8-12	48	0.0		silt with sand with some iron staining			
			0.0					
-10			0.0			-10		
- -11			1.3		SILT, SAND AND GRAVEL: Moist, brown silt with sand,	vith sand,		
-12	12-16	50	1.1		gravel	-12		
-13			834		SILT, SAND AND GRAVEL: Wet, brown silt with sand and gravel	-13		
-14			15			-14		
-15			32		SILT, SAND AND GRAVEL:	-15		
- -16					Wet, brown silt, sand and gravel with some black staining and a	-16		
-17					faint odor	-17		Driller felt clay at 18'
	16-20	63	7.4		SILT, SAND AND GRAVEL: Wet, brown silt, sand and gravel,		bgs	
			4.1	19-20	with black staining and NAPL throughout			
-20					NO RECOVERY: Hole caving,	1 -20		
-21					no representative recovery	-21 -		
-22	20-24	0.0				-22		
-23						-23		
E ₋₂₄						LE_ ₋₂₄ l		

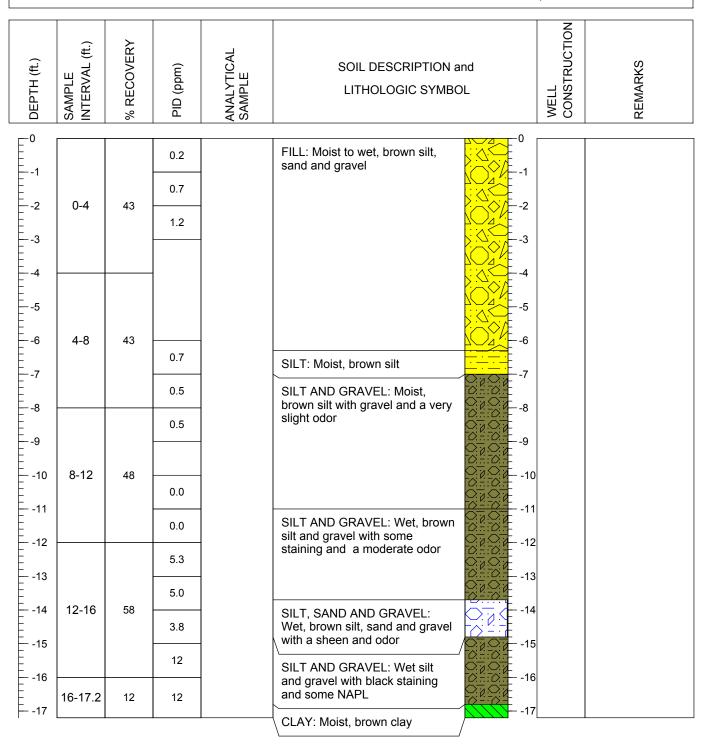
PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/27/2004

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55


SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1003.10 ft. above MSL

WELL ELEVATION: N/A

OUTER CASING ELEVATION: N/A

DEPTH TO WATER: N/A

BOREHOLE DEPTH: 17.2 ft. below grade

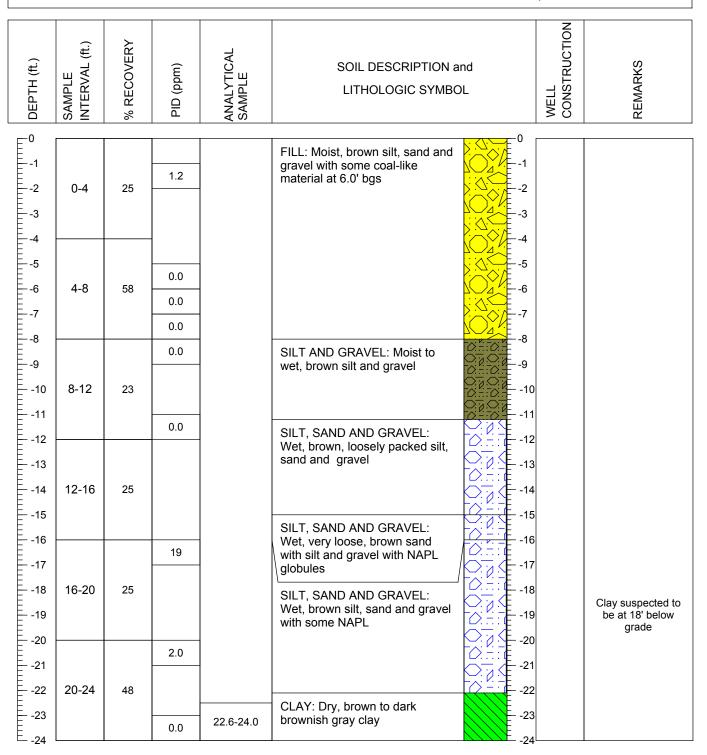
PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/28/2004

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55


SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1003.34 ft. above MSL

WELL ELEVATION: N/A

OUTER CASING ELEVATION: N/A

DEPTH TO WATER: N/A

BOREHOLE DEPTH: 24 ft. below grade

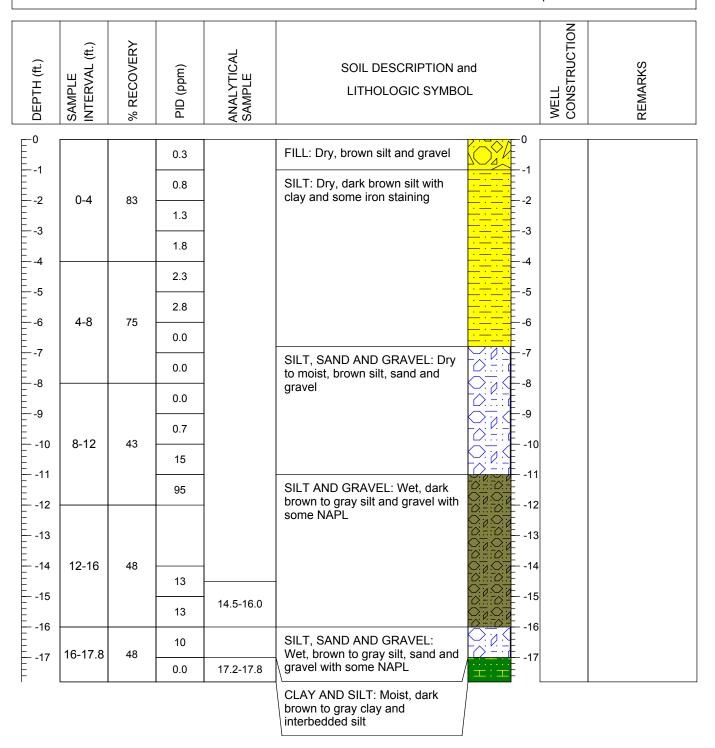
PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/26/2004

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55


SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1002.20 ft. above MSL

WELL ELEVATION: N/A

OUTER CASING ELEVATION: N/A

DEPTH TO WATER: N/A

BOREHOLE DEPTH: 17.8 ft. below grade

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

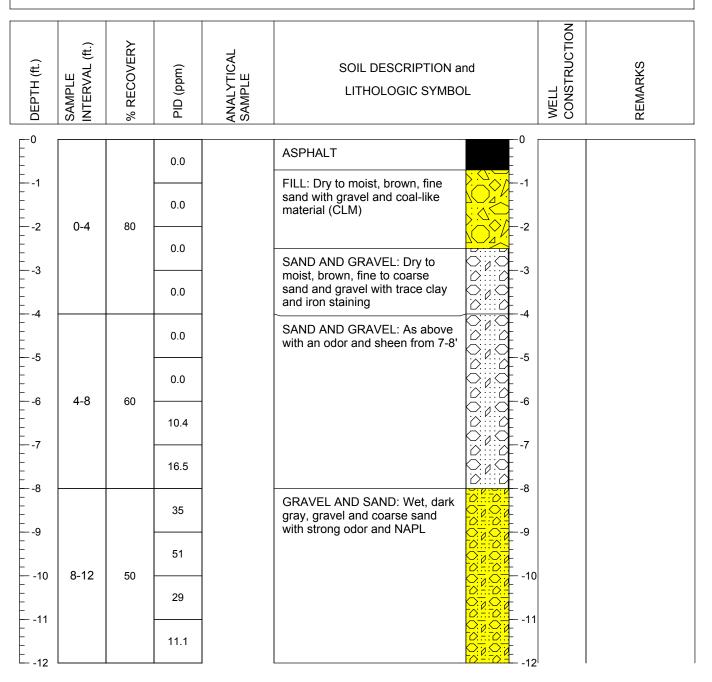
DATE: 6/16/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1002.19 ft. above MSL


WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 24 ft. below grade

WEATHER: Cool, cloudy, rainy GEOLOGIST: Amanda Bissell

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

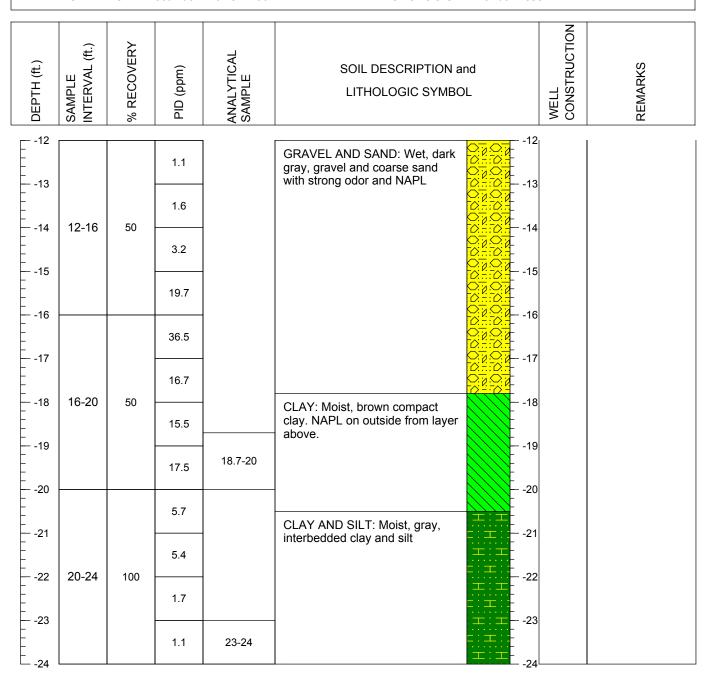
DATE: 6/16/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1002.19 ft. above MSL


WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 24 ft. below grade

WEATHER: Cool, cloudy, rainy GEOLOGIST: Amanda Bissell

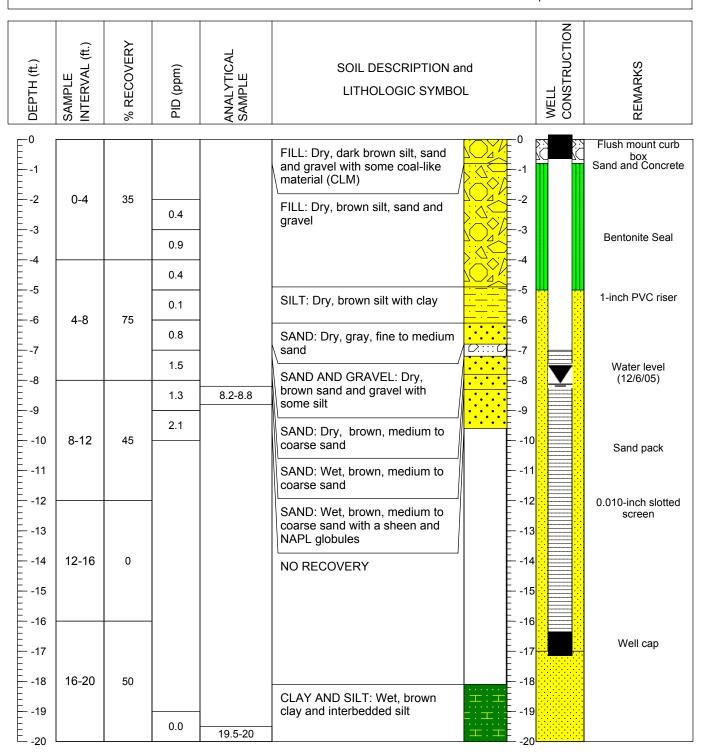
NO-DP15/PZ04

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/29/2004

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon


DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1001.94 ft. above MSL WELL ELEVATION: 1001.55 ft. above MSL

OUTER CASING ELEVATION: N/A

DEPTH TO WATER: 7.85 below TOC (6/17/05)

BOREHOLE DEPTH: 20 ft. below grade

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/26/2004

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1003.73 ft. above MSL

WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 20 ft. below grade

DЕРТН (ft.)	SAMPLE INTERVAL (ft.)	% RECOVERY	PID (ppm)	ANALYTICAL SAMPLE	SOIL DESCRIPTION and LITHOLOGIC SYMBOL	WELL	REMARKS
E ⁻⁰			0.8		FILL: Dry gravel, sand, and silt with brick and other debris at		
1 2 3 4 5	0-4	70	1.3		3.4'		
			1.8			!	
			2.3			•	
	4-8	50			SILT: Wet brown silt with some sand and iron staining		
			0.0		SILT: Moist, brown silt with iron staining		
			0.0		SILT: Dry, brown silt with iron		
	8-12	58	0.0		staining		
-9			0.0				
10 11			0.0		brown silt with sand and gravel	10	
-12			4.1		SILT, SAND AND GRAVEL:		
-12	12-16		1.9		and a slight MGP odor	12	
Ē			0.0			13	
-14		50	0.0		SILT, SAND AND GRAVEL:	14	
15			0.0		Very slight sheen and a few	15	
-16		3-20 88	0.4		to 15.0'.	16	
17	40.00		0.0		Wet, brown silt, sand and gravel	17	Driller felt clay at 17.5'
18	16-20		0.0		CLAY AND SILT: Moist, dark	18	
-19 -20			0.0	19-20		19	

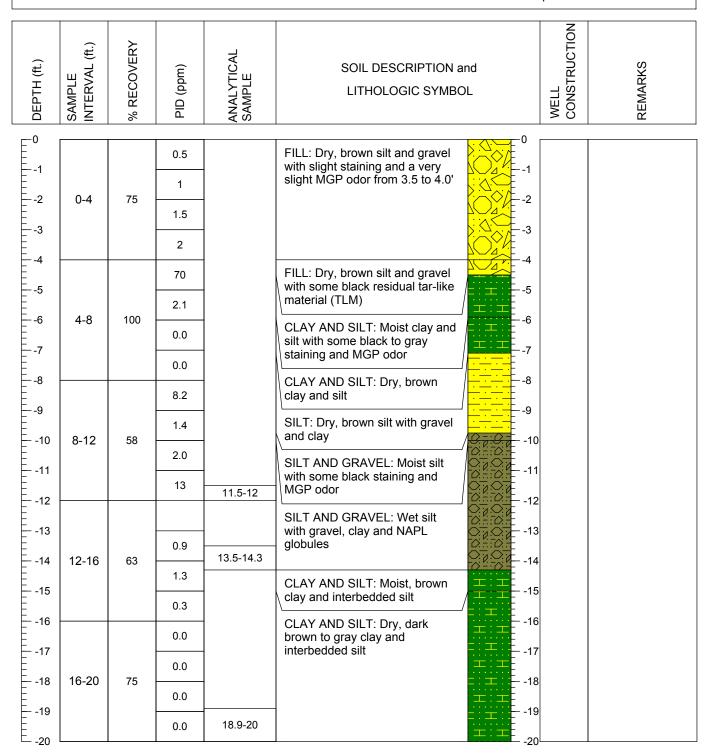
PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/26/2004

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55


SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.34 ft. above MSL

WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 20 ft. below grade

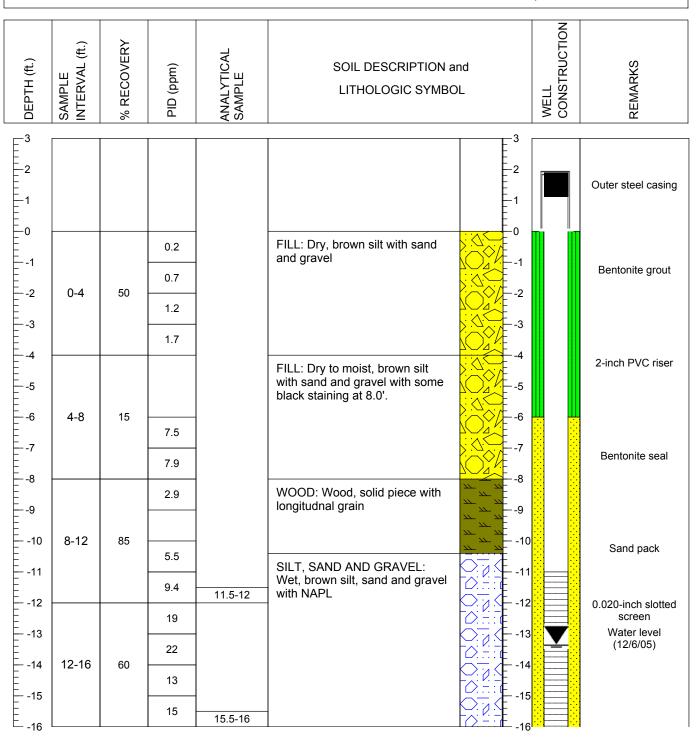
NO-DP18/GW04-16

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/25/2004

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon


DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.40 ft. above MSL WELL ELEVATION: 1006.85 ft. above MSL

OUTER CASING ELEVATION: 1006.95 ft. above MSL

DEPTH TO WATER: 13.10 depth below TOC

BOREHOLE DEPTH: 28 ft. below grade

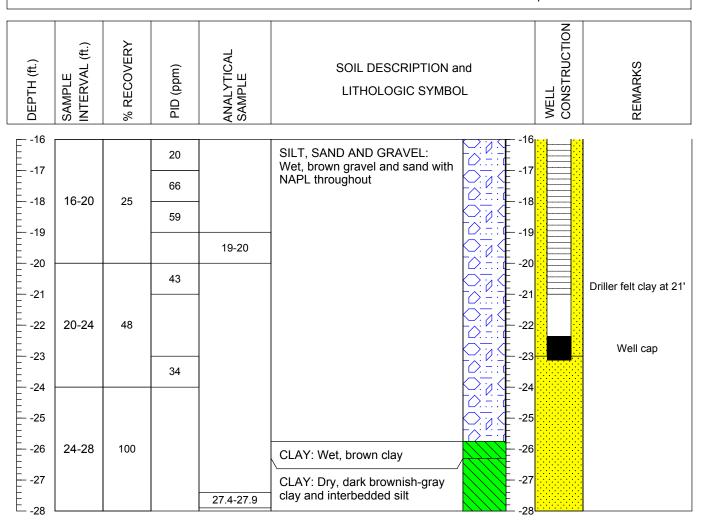
NO-DP18/GW04-16

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/25/2004

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon


DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.40 ft. above MSL

WELL ELEVATION: 1006.85 ft. above MSL

OUTER CASING ELEVATION: 1006.95 ft. above MSL

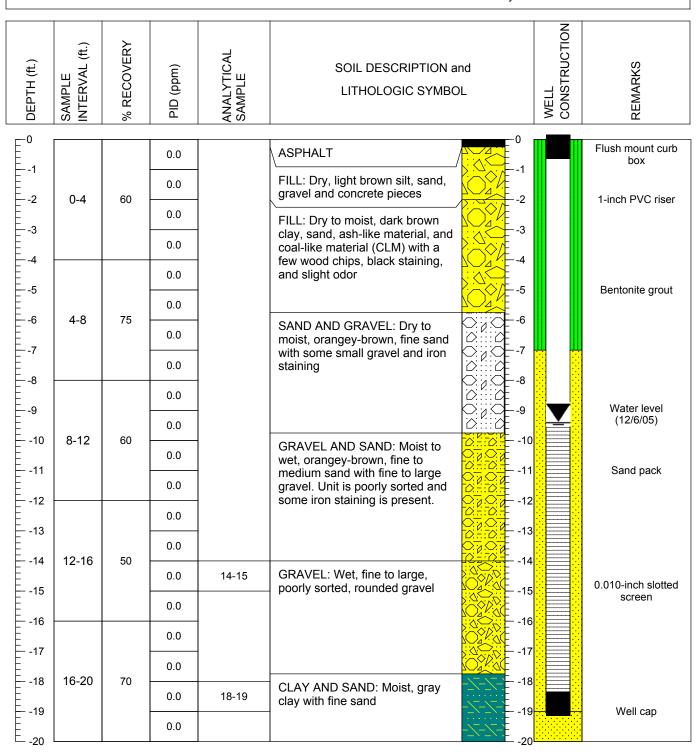
DEPTH TO WATER: 13.10 depth below TOC BOREHOLE DEPTH: 28 ft. below grade

NO-DP19/PZ11

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 4/26/2005

DRILLING CONTRACTOR: Lyon Drilling


DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.13 ft. above MSL WELL ELEVATION: 1003.86 ft. above MSL

OUTER CASING ELEVATION:NA
DEPTH TO WATER: 9.13 ft. below TOC
BOREHOLE DEPTH: 20 ft. below grade

WEATHER: Warm, sunny, breezy

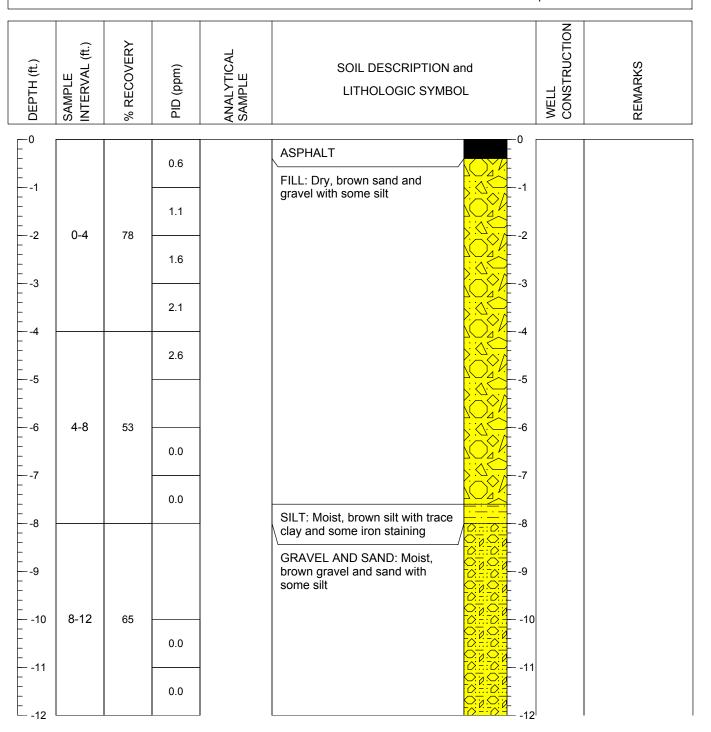
PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/29/2004

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55


SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.67 ft. above MSL

WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 24 ft. below grade

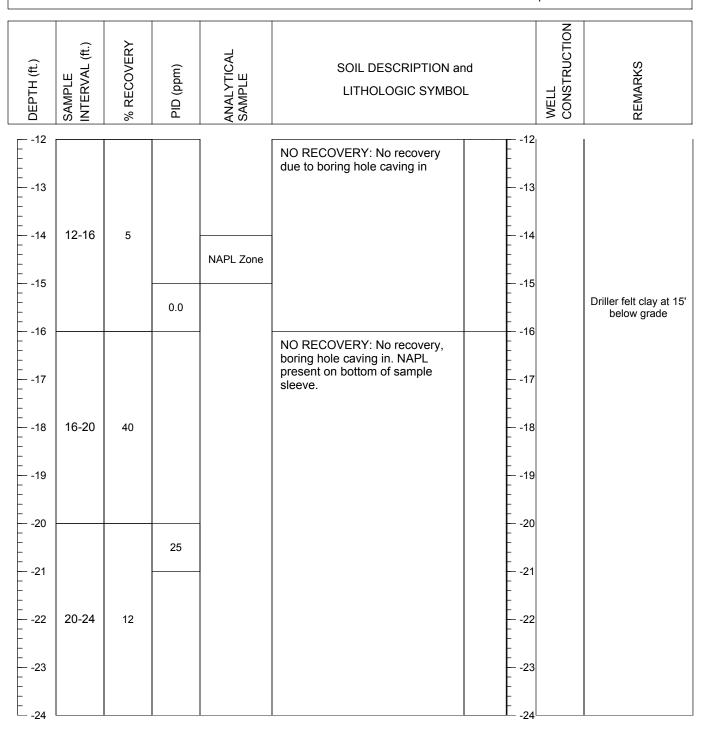
PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/29/2004

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55


SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.67 ft. above MSL

WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 24 ft. below grade

NO-DP21A

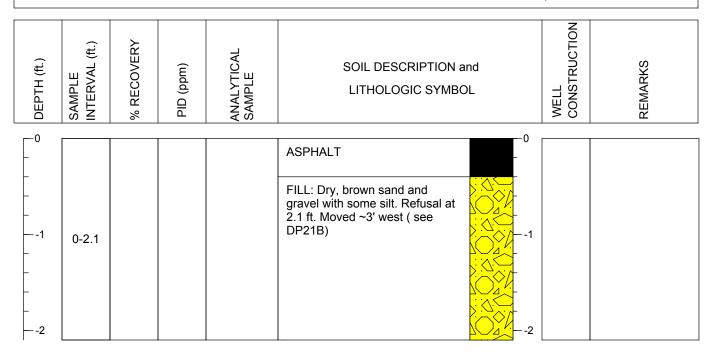
PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/29/2004

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55


SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.13 ft. above MSL

WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 2.1 ft. below grade

NO-DP21B

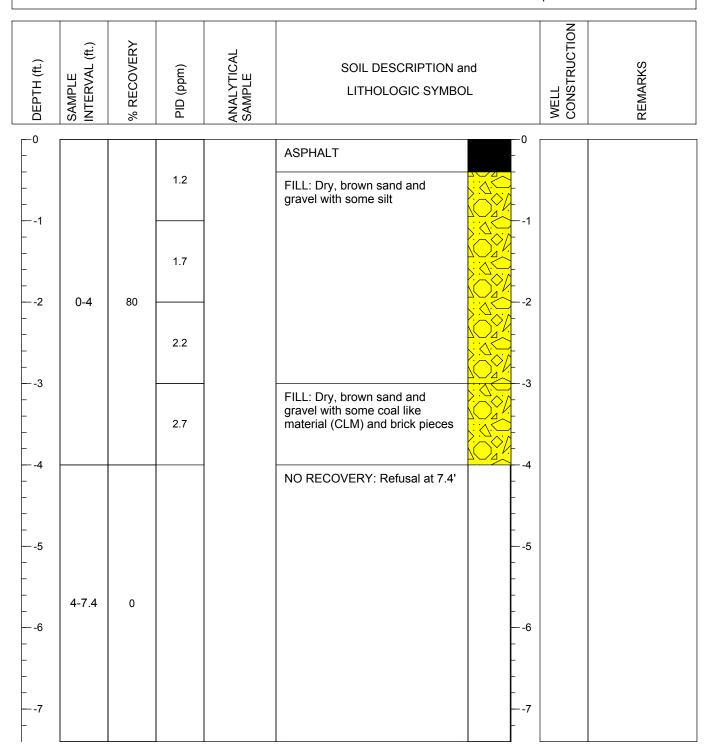
PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/29/2004

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55


SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.12 ft. above MSL

WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 7.4 ft. below grade

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

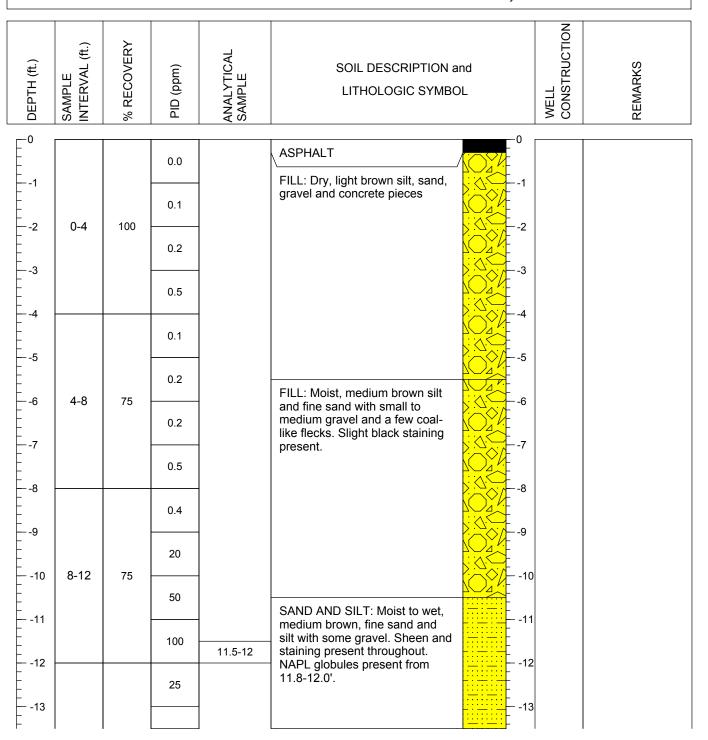
DATE: 4/25/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.36 ft. above MSL


WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 24 ft. below grade

WEATHER: Cool with flurries GEOLOGIST: Lara Gray

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 4/25/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.36 ft. above MSL

WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 24 ft. below grade

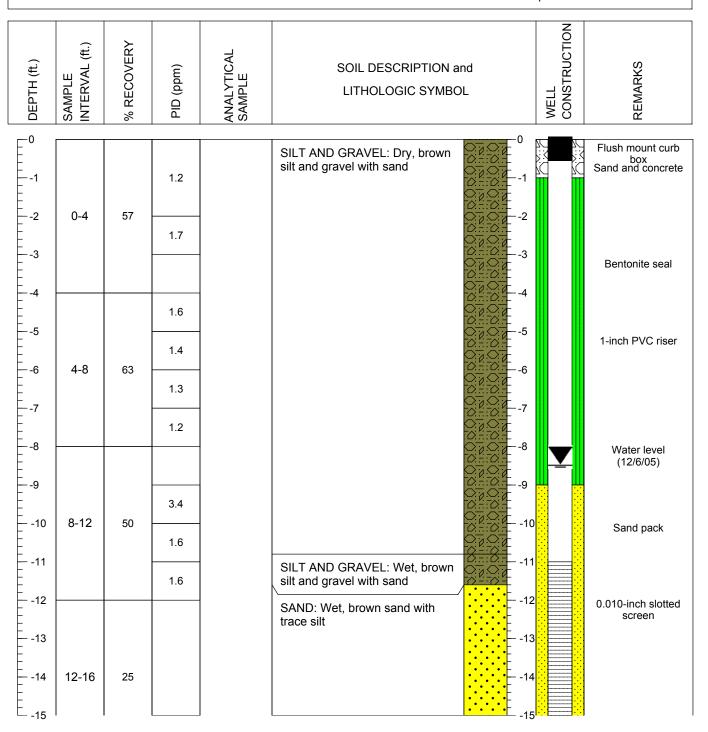
WEATHER: Cool with flurries GEOLOGIST: Lara Gray

DEPTH (ft.)	SAMPLE INTERVAL (ft.)	% RECOVERY	PID (ppm)	ANALYTICAL SAMPLE	SOIL DESCRIPTION and LITHOLOGIC SYMBOL		WELL CONSTRUCTION	REMARKS
- - 14	12-16	60	75		GRAVEL AND SAND: Wet,	27- 27- 2714		
	12-10	00	26		brown, fine to medium sand and gravel. NAPL globules, sheen, and moderate odor present			
15 			46	14.5-15.5	throughout.	-15		
-16						-16		
- 			35		[<u>0</u> ::72 ○: <u>72</u> ○:-72 -72 -73);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		
17 	16-20	70	25		○ 7 C	-17		
18					GRAVEL AND SAND: As above with slight sheen and NAPL globules	-18		
-						<u>0</u> -		
19 - -			1.5		GRAVEL: Wet, brown, small to medium gravel	-19		
_ 20					GRAVEL AND SAND: Wet,	-20		
-			1.5		brown, medium to coarse sand and gravel with sheen and slight NAPL globules present			
	20-24	100	0.5		CLAY AND SAND: Moist,	-21		
					reddish-brown, compact clay with fine sand	-22		
- - 23					CLAY AND SAND: Moist to dry,	23		
23			0.1		gray clay with fine sand	-23		
L -24						-24		

NO-DP23/PZ06

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/28/2004


DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

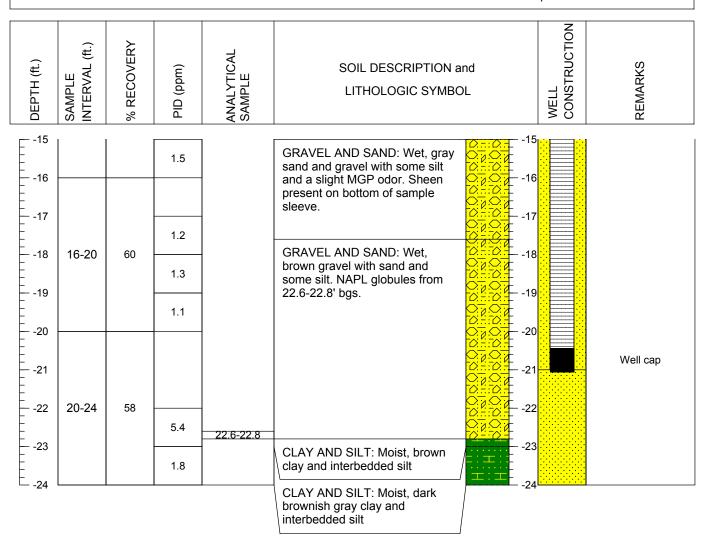
SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1002.13 ft. above MSL WELL ELEVATION: 1001.82 ft. above MSL

OUTER CASING ELEVATION:NA
DEPTH TO WATER: 8.27 ft. below TOC
BOREHOLE DEPTH: 24 ft. below grade

NO-DP23/PZ06

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/28/2004


DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

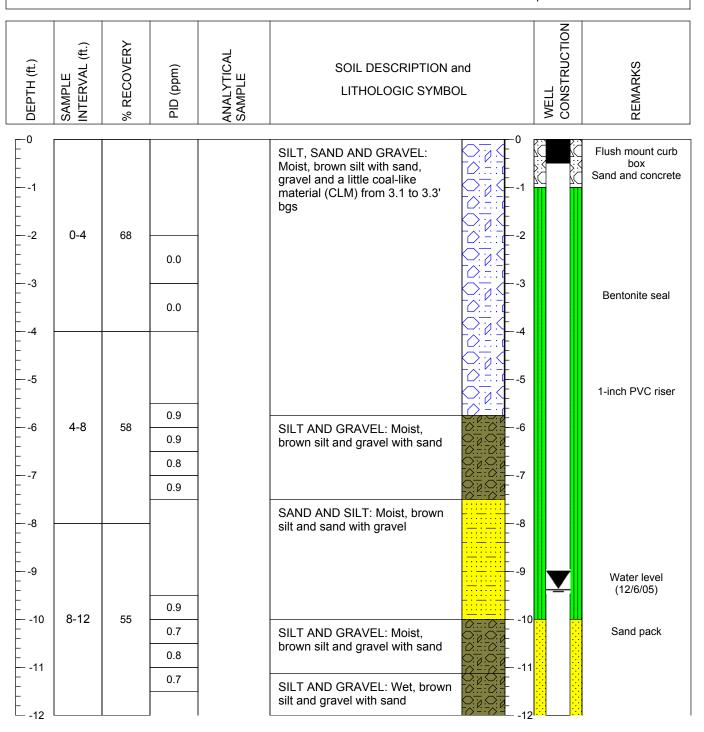
SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1002.13 ft. above MSL WELL ELEVATION: 1001.82 ft. above MSL

OUTER CASING ELEVATION:NA
DEPTH TO WATER: 8.27 ft. below TOC
BOREHOLE DEPTH: 24 ft. below grade

NO-DP24/PZ05

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/28/2004


DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

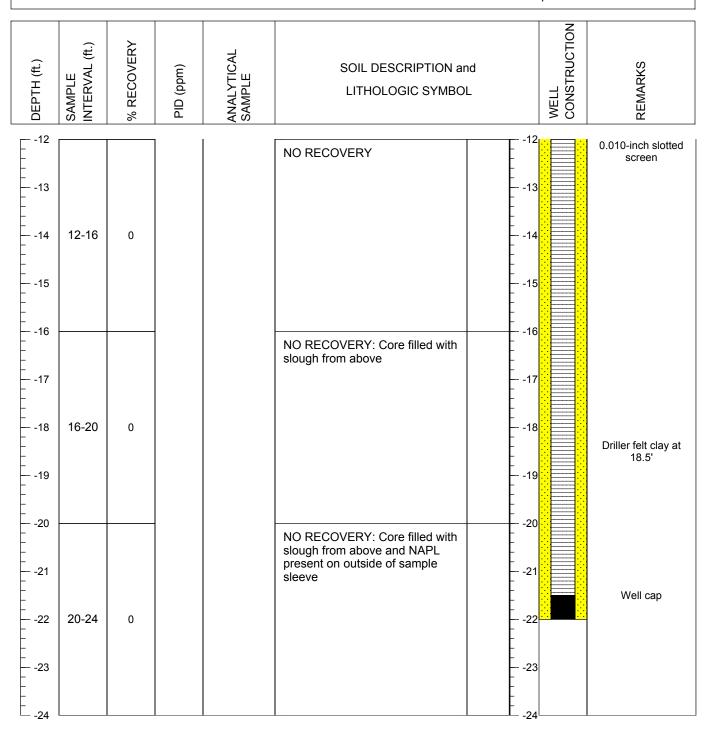
SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1003.24 ft. above MSL WELL ELEVATION: 1002.86 ft. above MSL

OUTER CASING ELEVATION:NA
DEPTH TO WATER: 9.21 ft. below TOC
BOREHOLE DEPTH: 24 ft. below grade

NO-DP24/PZ05

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/28/2004


DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

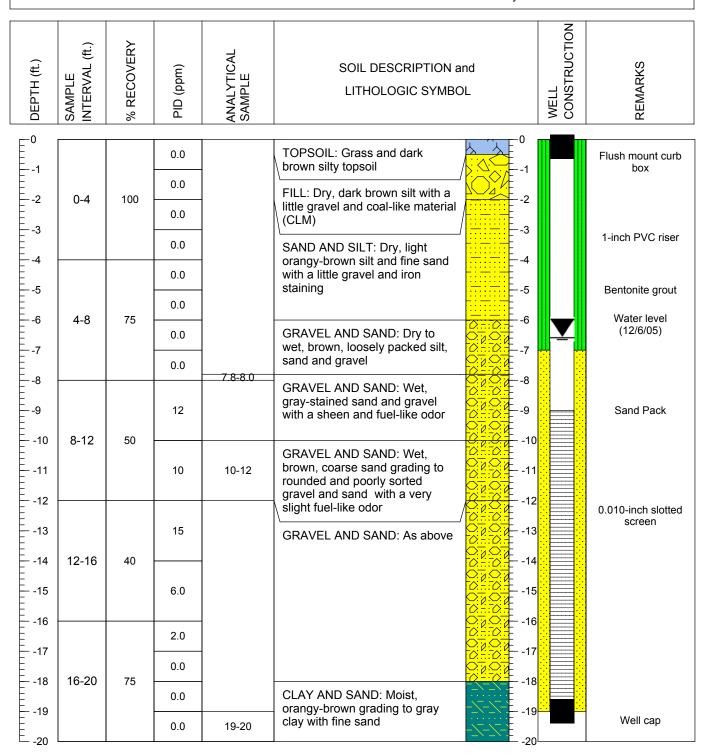
SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1003.24 ft. above MSL WELL ELEVATION: 1002.86 ft. above MSL

OUTER CASING ELEVATION:NA
DEPTH TO WATER: 9.21 ft. below TOC
BOREHOLE DEPTH: 24 ft. below grade

NO-DP25/PZ10

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 4/29/2005


DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1000.75 ft. above MSL WELL ELEVATION: 1000.51 ft. above MSL

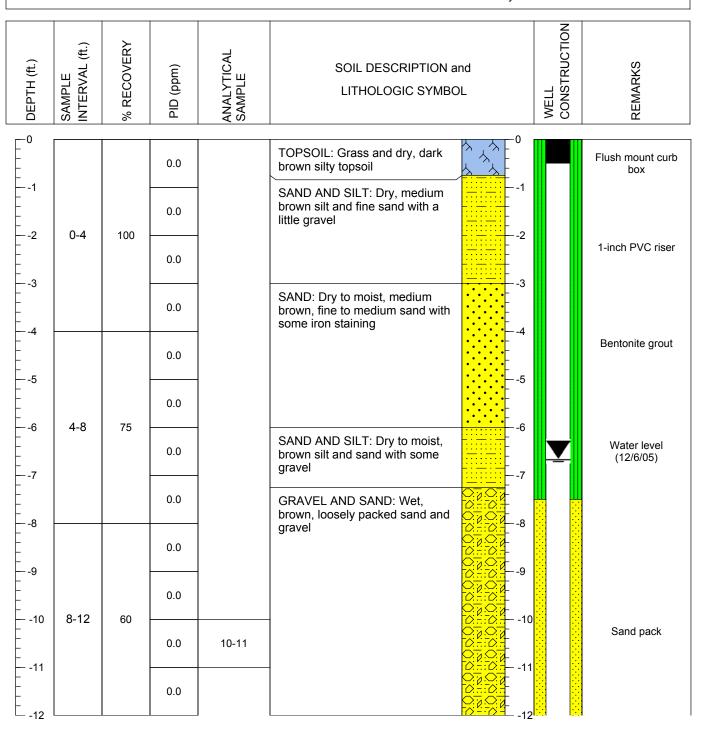
OUTER CASING ELEVATION:NA
DEPTH TO WATER: 6.30 ft. below TOC
BOREHOLE DEPTH: 20 ft. below grade
WEATHER: Cool, sunny, slight breeze

NO-DP26/PZ09

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 4/28/2005

DRILLING CONTRACTOR: Lyon Drilling


DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.79 ft. above MSL WELL ELEVATION: 1004.49 ft. above MSL

OUTER CASING ELEVATION:NA
DEPTH TO WATER: 6.50 ft. below TOC
BOREHOLE DEPTH: 24 ft. below grade

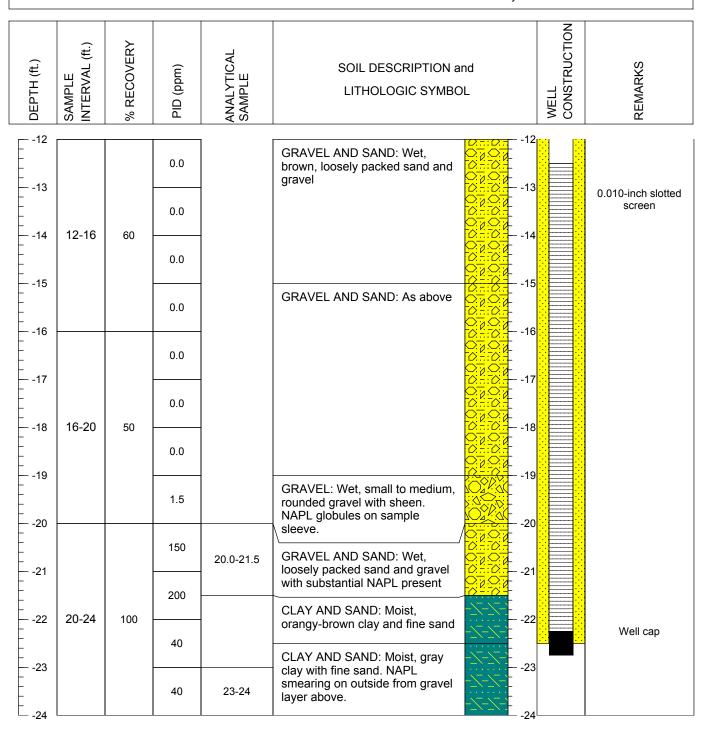
WEATHER: Cool, cloudy, windy

NO-DP26/PZ09

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 4/28/2005

DRILLING CONTRACTOR: Lyon Drilling


DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.79 ft. above MSL WELL ELEVATION: 1004.49 ft. above MSL

OUTER CASING ELEVATION:NA
DEPTH TO WATER: 6.50 ft. below TOC
BOREHOLE DEPTH: 24 ft. below grade

WEATHER: Cool, cloudy, windy

NO-DP27/PZ12

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 4/26/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

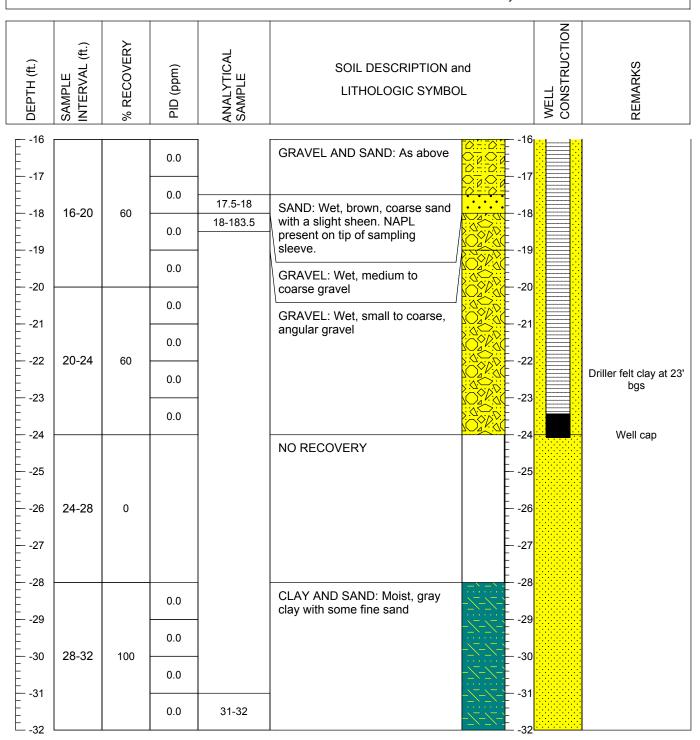
SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1003.82 ft. above MSL WELL ELEVATION: 1003.45 ft. above MSL

OUTER CASING ELEVATION:NA
DEPTH TO WATER: 8.67 ft. below TOC
BOREHOLE DEPTH: 32 ft. below grade
WEATHER: Warm, sunny, breezy

NO-DP27/PZ12

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 4/26/2005


DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1003.82 ft. above MSL WELL ELEVATION: 1003.45 ft. above MSL

OUTER CASING ELEVATION:NA
DEPTH TO WATER: 8.67 ft. below TOC
BOREHOLE DEPTH: 32 ft. below grade
WEATHER: Warm, sunny, breezy

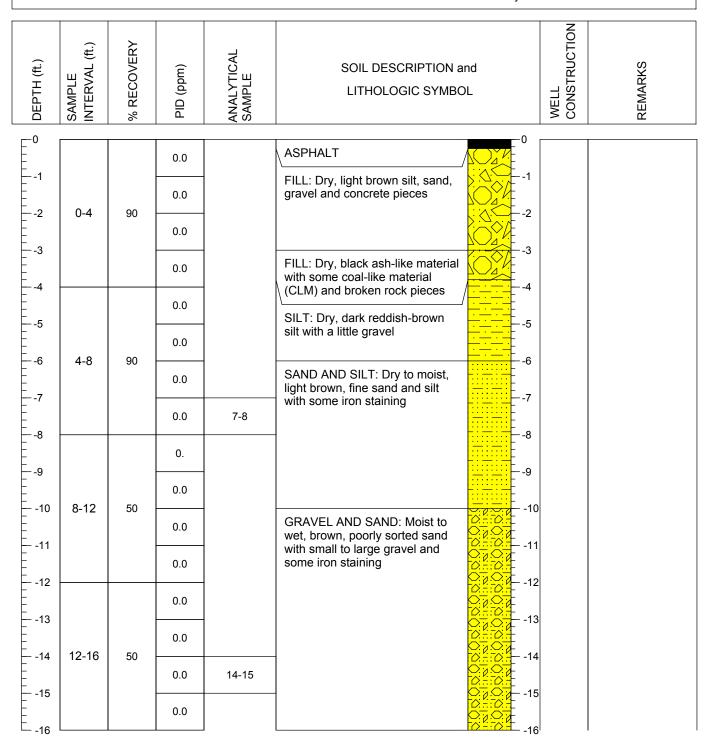
PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 4/27/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55


SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1003.73 ft. above MSL

WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 28 ft. below grade WEATHER: Cool, cloudy, light rain

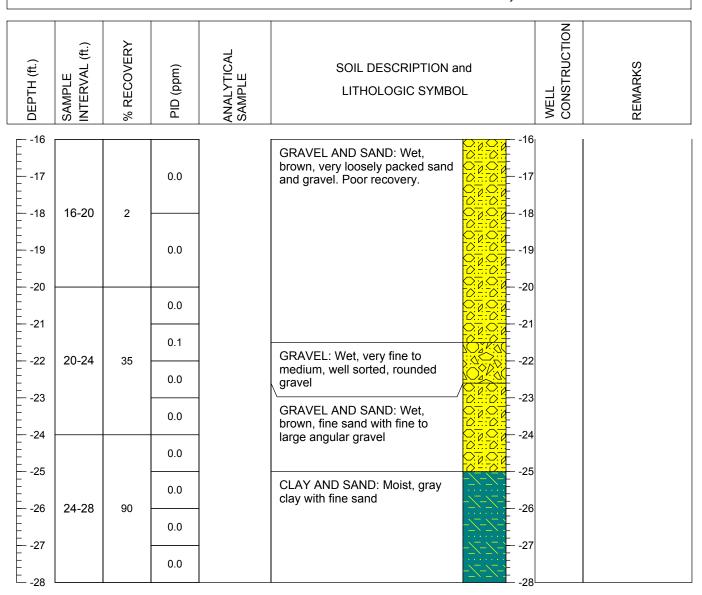
PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 4/27/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55


SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1003.73 ft. above MSL

WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 28 ft. below grade WEATHER: Cool, cloudy, light rain

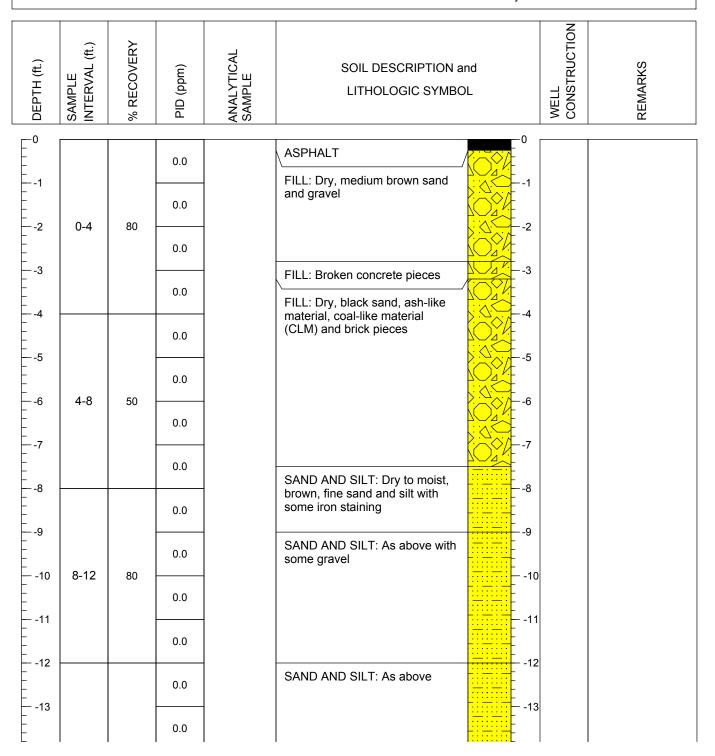
PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 4/27/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55


SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.96 ft. above MSL

WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 24 ft. below grade WEATHER: Cool, cloudy, light rain

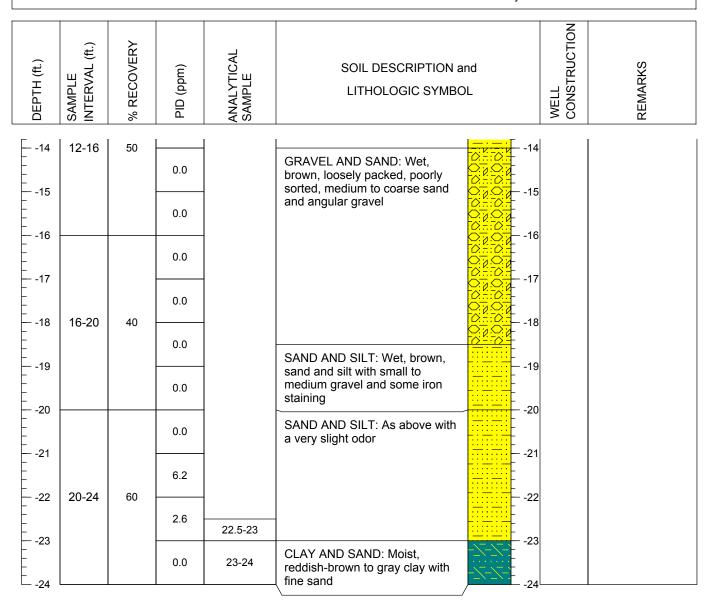
PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 4/27/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55


SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.96 ft. above MSL

WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 24 ft. below grade WEATHER: Cool, cloudy, light rain

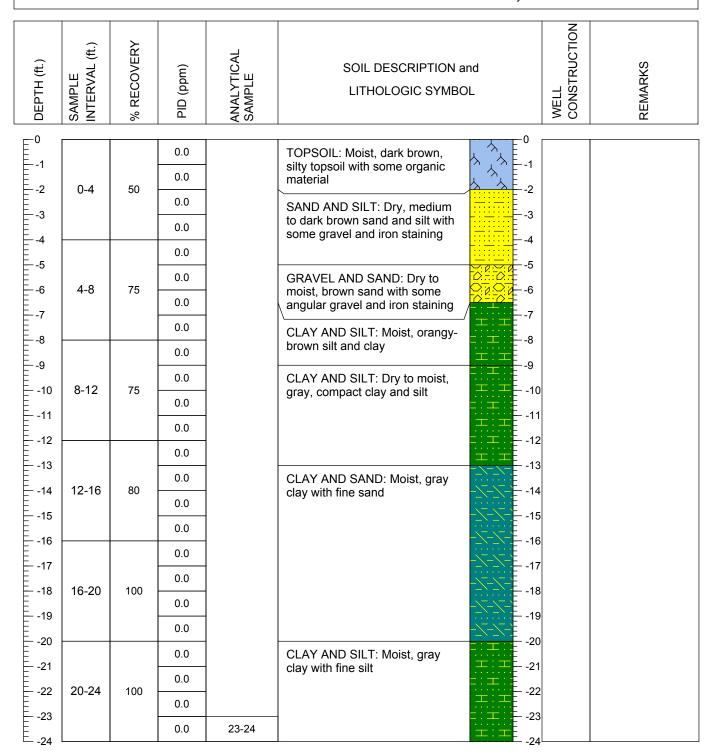
PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 4/29/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55


SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1001.87 ft. above MSL

WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 24 ft. below grade WEATHER: Warm, sunny, slight breeze

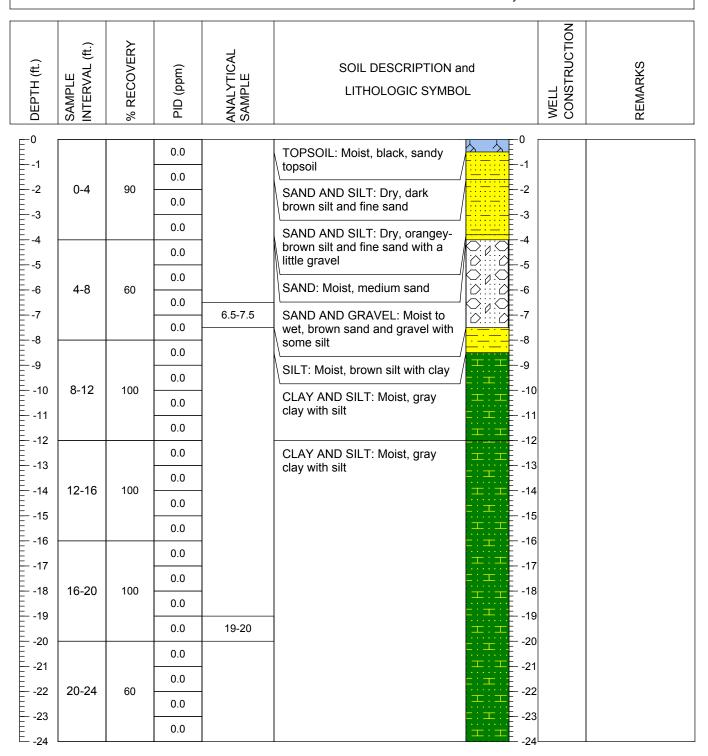
PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 4/29/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55


SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1001.30 ft. above MSL

WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

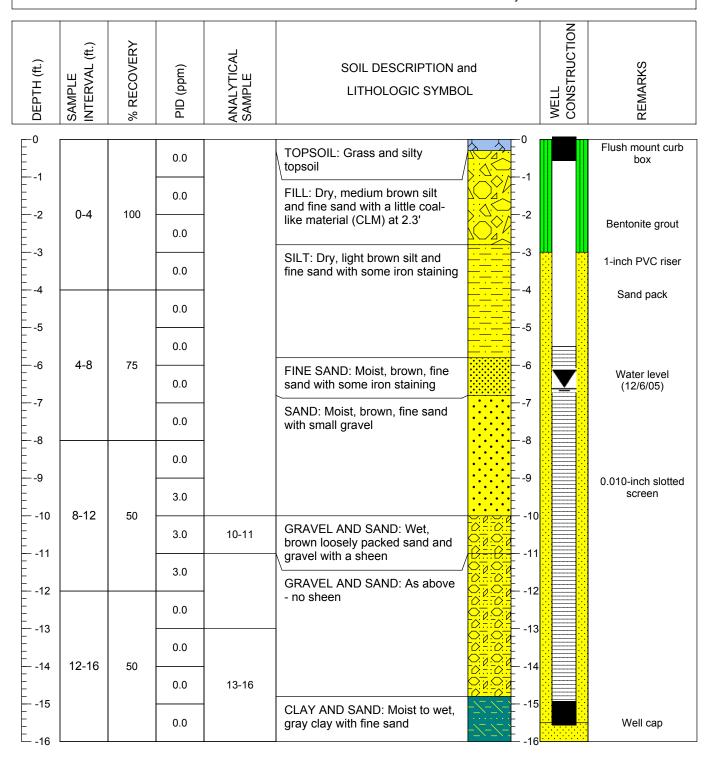
BOREHOLE DEPTH: 24 ft. below grade WEATHER: Warm, sunny, slight breeze

NO-DP32/PZ13

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 4/27/2005

DRILLING CONTRACTOR: Lyon Drilling


DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1000.88 ft. above MSL WELL ELEVATION: 1000.52 ft. above MSL

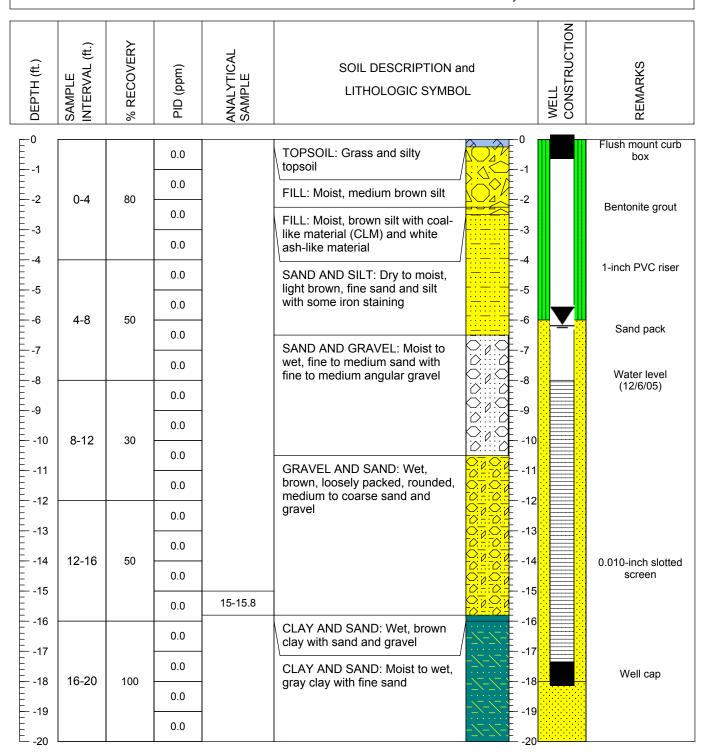
OUTER CASING ELEVATION:NA
DEPTH TO WATER: 6.40 ft. below TOC
BOREHOLE DEPTH: 16 ft. below grade

WEATHER: Cool, cloudy, light rain

NO-DP33/PZ14

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 4/27/2005


DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1000.25 ft. above MSL WELL ELEVATION: 999.96 ft. above MSL

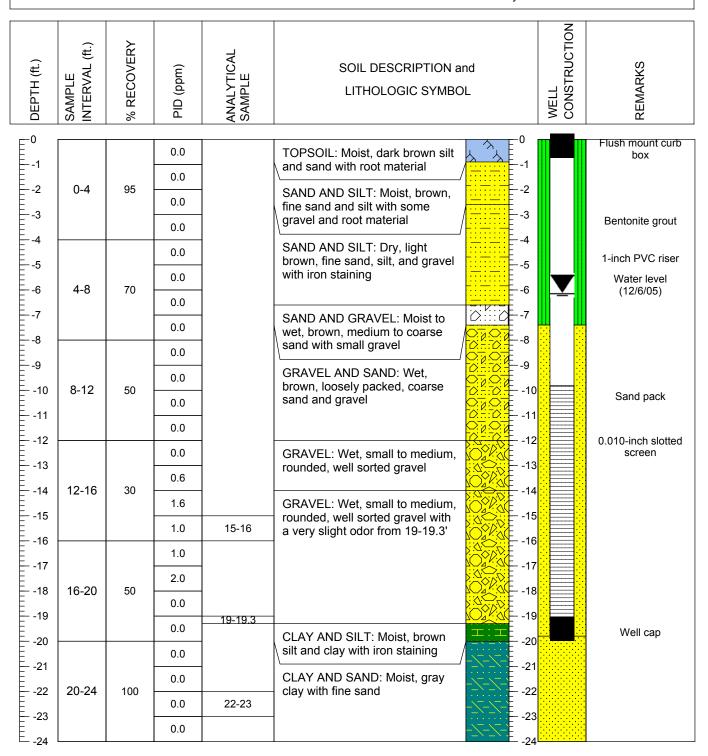
OUTER CASING ELEVATION: NA
DEPTH TO WATER: 5.90 ft. below TOC
BOREHOLE DEPTH: 20 ft. below grade
WEATHER: Cool, cloudy, light rain

NO-DP34/PZ15

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 6/14/2005

DRILLING CONTRACTOR: Lyon Drilling


DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1000.17 ft. above MSL WELL ELEVATION: 999.81 ft. above MSL

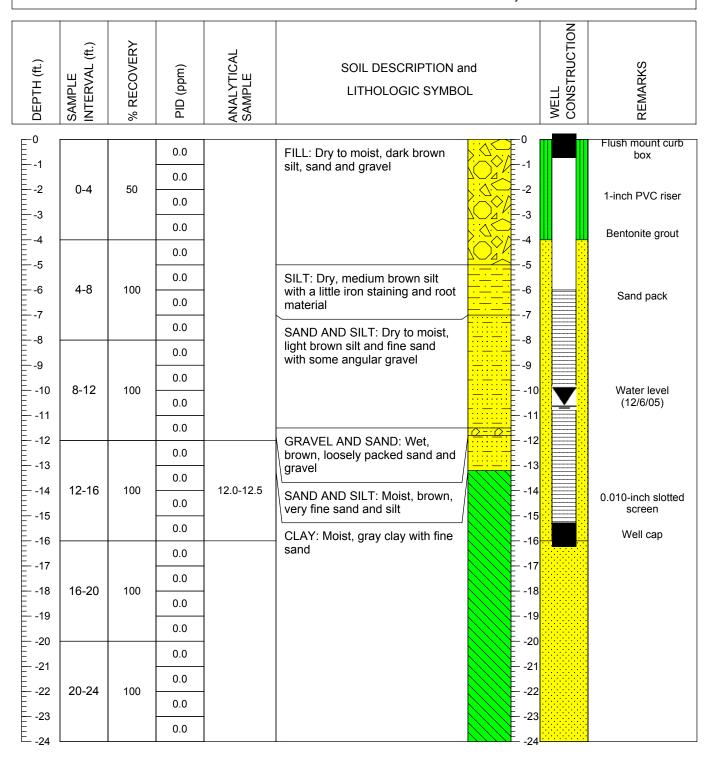
OUTER CASING ELEVATION:NA

DEPTH TO WATER: 5.81 ft. below TOC BOREHOLE DEPTH: 24 ft. below grade WEATHER: Hot, humid, few showers

NO-DP35/PZ16

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 4/28/2005


DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.81 ft. above MSL WELL ELEVATION: 1004.49 ft. above MSL

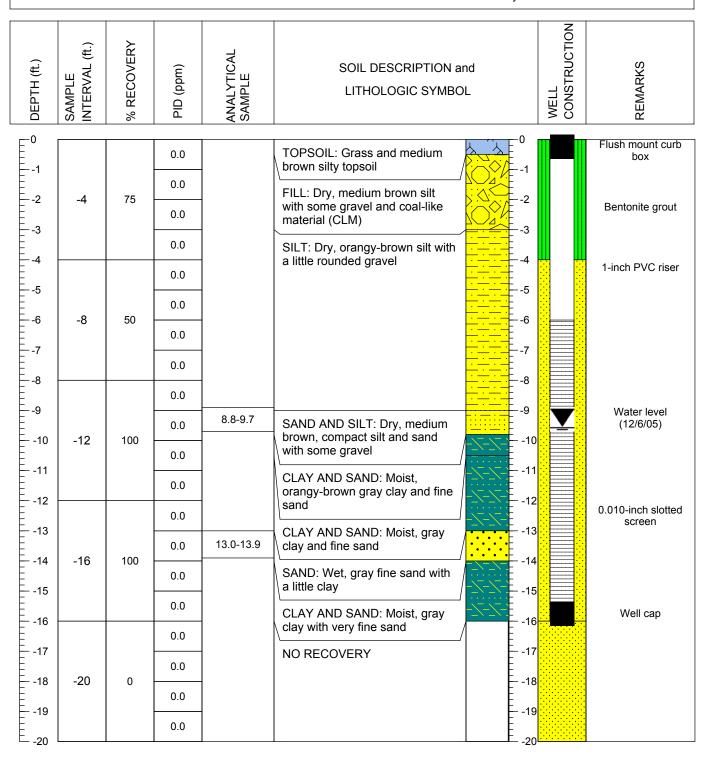
OUTER CASING ELEVATION:NA
DEPTH TO WATER: 10.30 ft. belowTOC
BOREHOLE DEPTH: 24 ft. below grade
WEATHER: Cool, cloudy, showers

NO-DP36/PZ17

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 4/28/2005

DRILLING CONTRACTOR: Lyon Drilling


DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.04 ft. above MSL WELL ELEVATION: 1003.68 ft. above MSL

OUTER CASING ELEVATION:NA
DEPTH TO WATER: 9.32 ft. below TOC
BOREHOLE DEPTH: 20 ft. below grade

WEATHER: Warm, sunny, windy

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 5/19/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1002.25 ft. above MSL

WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 32 ft. below grade

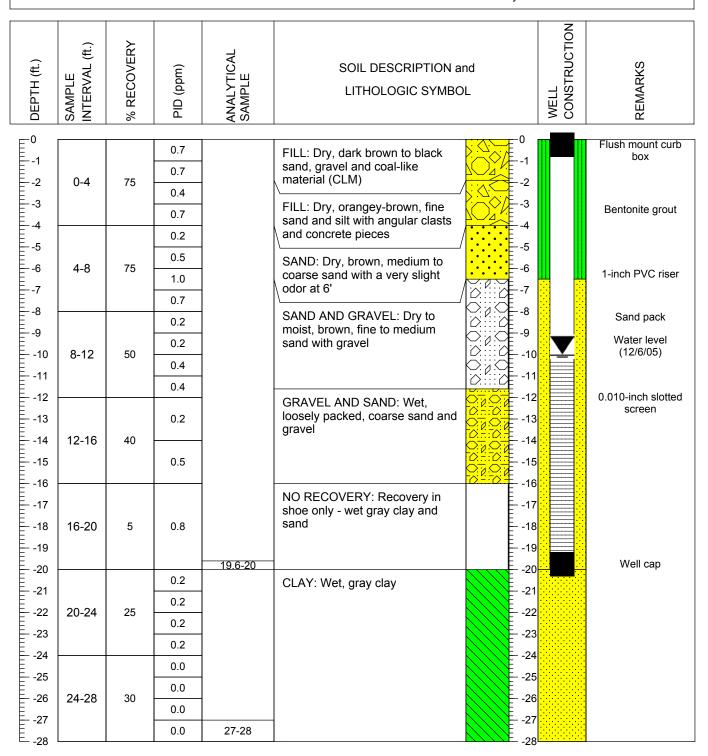
WEATHER: Warm, partly sunny

DEPTH (ft.)	SAMPLE INTERVAL (ft.)	% RECOVERY	PID (ppm)	ANALYTICAL SAMPLE	SOIL DESCRIPTION and LITHOLOGIC SYMBOL		WELL	REMARKS
-0 -1 -2 -3 4 5 6 7 8 9 10	0-4	5			NO RECOVERY: Very little recovery - only a small amount of grass and topsoil	-1 -2 -3		
	4-8	90	0.0		FILL: Dry, brown, very fine sand with some small gravel and brick pieces	-5		
			0.0					
			0.0					
			0.0		SAND AND GRAVEL: Dry to			
E-8	8-12	50	0.0		moist, tightly packed, fine to			
-12			0.0		medium sand with angular gravel	D::::U=-9		
			0.0			-10		
			0.0		GRAVEL: Wet, small to large gravel	-11		
	40.40		0.0			-12		
			0.0			-13		
	12-16	60	0.0			-14		
-15			0.0		SAND: Wet, medium to coarse sand GRAVEL: Wet, small to large, rounded gravel with a slight odor in shoe	-15		
-15 -16 -17	7		0.0			-16		
			0.0			-17		
-18	16-20	50	0.6			-18 -19		
			1.0			\(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
-20			1.0			-20		
-21	20-24	40	1.0		GRAVEL: As above with strong odor and sheen. NAPL blebs from 23.5-24	-21		
-			1.0			-22		
-23			82			-23		
-24	25 26 24-28	100	66	00.5.07.5	CLAY: Moist, brown to gray clay. NAPL on outside from layer above.	-24		
-25 -26			110			-25		
E			290			-26		
-27			344	26.5-27.5	CLAY AND SAND: Moist, gray, interbedded clay and sand. NAPL on outside from layer above.	-27		
-28	28-32	100	113			-28		
-29 -30			60			-29		
-30			20			-\\		
-31			2.0	31.5-32				
E -32				31.3-32	<u> </u>	-32		

NO-DP38/PZ20

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 5/20/2005


DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

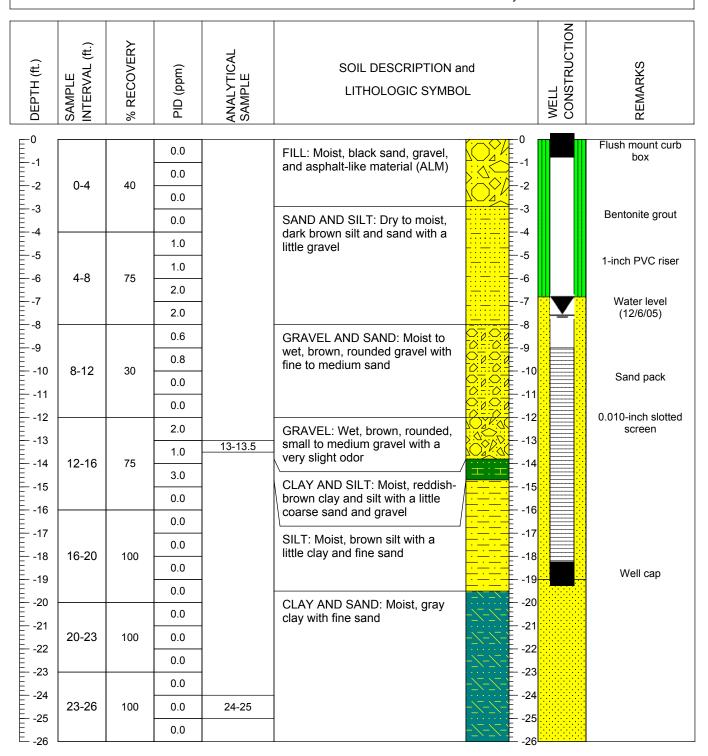
SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1003.97 ft. above MSL WELL ELEVATION: 1003.64 ft. above MSL

OUTER CASING ELEVATION:NA
DEPTH TO WATER: 9.65 ft. below TOC
BOREHOLE DEPTH: 28 ft. below grade
WEATHER: Warm, cloudy, light breeze

NO-DP39/PZ21

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 6/16/2005


DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1001.69 ft. above MSL WELL ELEVATION: 1001.25 ft. above MSL

OUTER CASING ELEVATION:NA
DEPTH TO WATER: 7.23 ft. below TOC
BOREHOLE DEPTH: 26 ft. below grade
WEATHER: Hot, humid, sunny, slight breeze

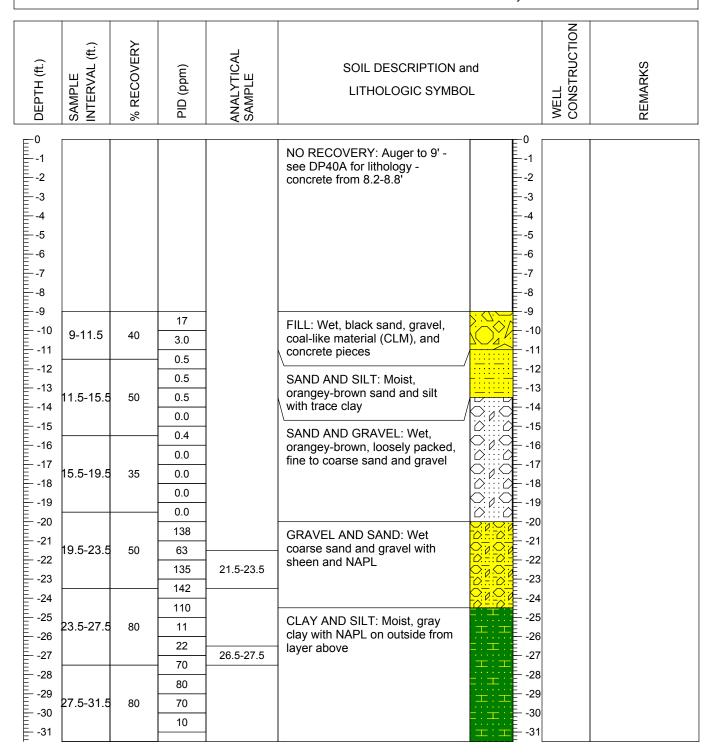
PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 5/20/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55


SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.25 ft. above MSL

WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 31.5 ft. below grade WEATHER: Warm, partly sunny, light breeze

NO-DP40A

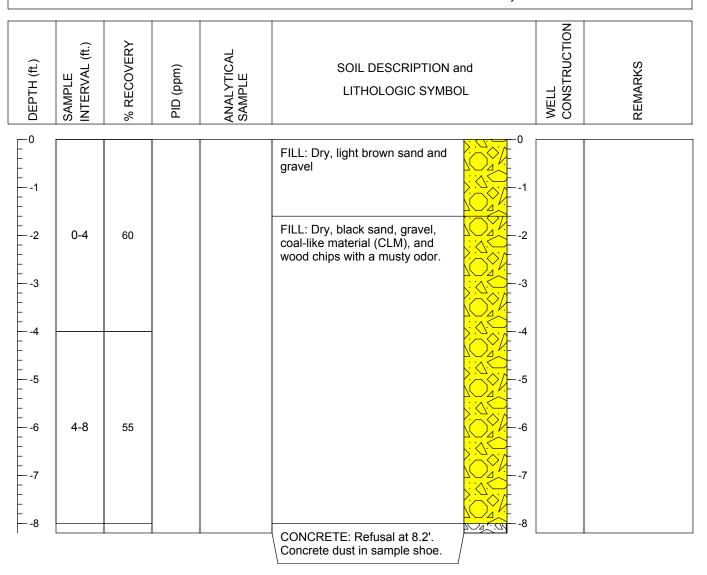
PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 5/19/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55


SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.25 ft. above MSL

WELL ELEVATION: NA

OUTER CASING ELEVATION: NA

DEPTH TO WATER: NA

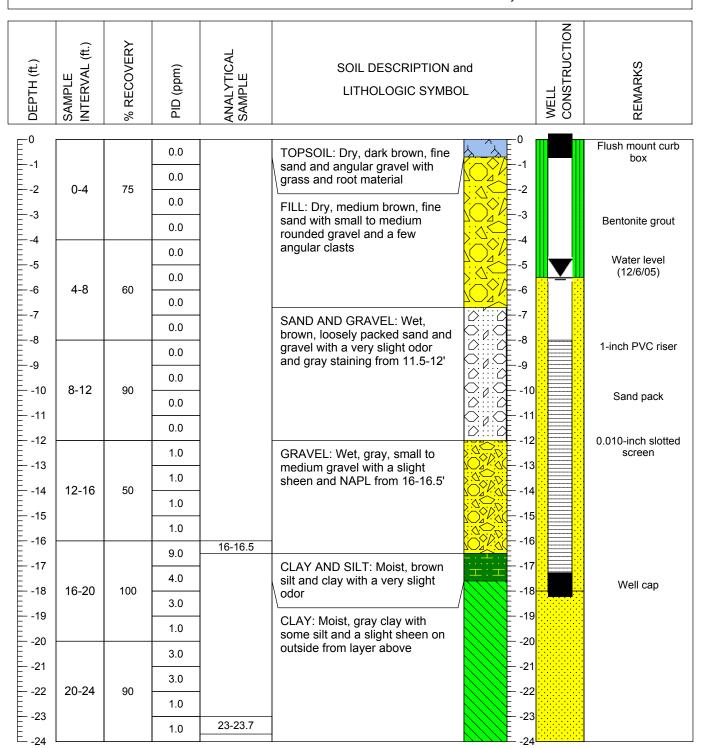
BOREHOLE DEPTH: 8.2 ft. below grade WEATHER: Hot, sunny, slight breeze

NO-DP41/PZ18

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 5/19/2005

DRILLING CONTRACTOR: Lyon Drilling


DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 999.44 ft. above MSL WELL ELEVATION: 999.15 ft. above MSL

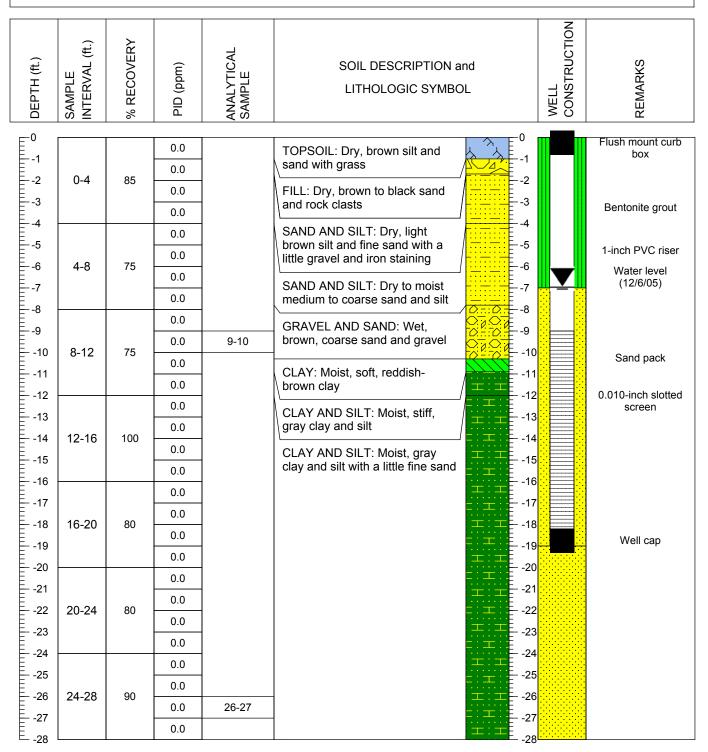
OUTER CASING ELEVATION:NA

DEPTH TO WATER: 5.18 ft. below TOC BOREHOLE DEPTH: 24 ft. below grade WEATHER: Warm, sunny, slight breeze

NO-DP42/PZ22

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 6/13/2005


DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1000.88 ft. above MSL WELL ELEVATION: 1000.55 ft. above MSL

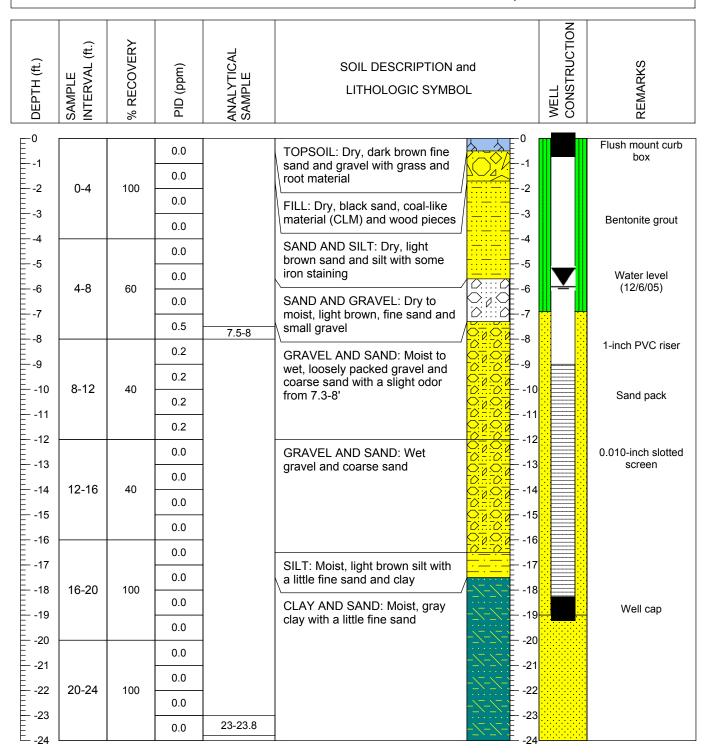
OUTER CASING ELEVATION:NA
DEPTH TO WATER: 6.58 ft. below TOC
BOREHOLE DEPTH: 28 ft. below grade
WEATHER: Hot, humid, sunny, slight breeze

NO-DP43/PZ19

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 5/19/2005

DRILLING CONTRACTOR: Lyon Drilling


DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 999.99 ft. above MSL WELL ELEVATION: 999.51 ft. above MSL

OUTER CASING ELEVATION:NA

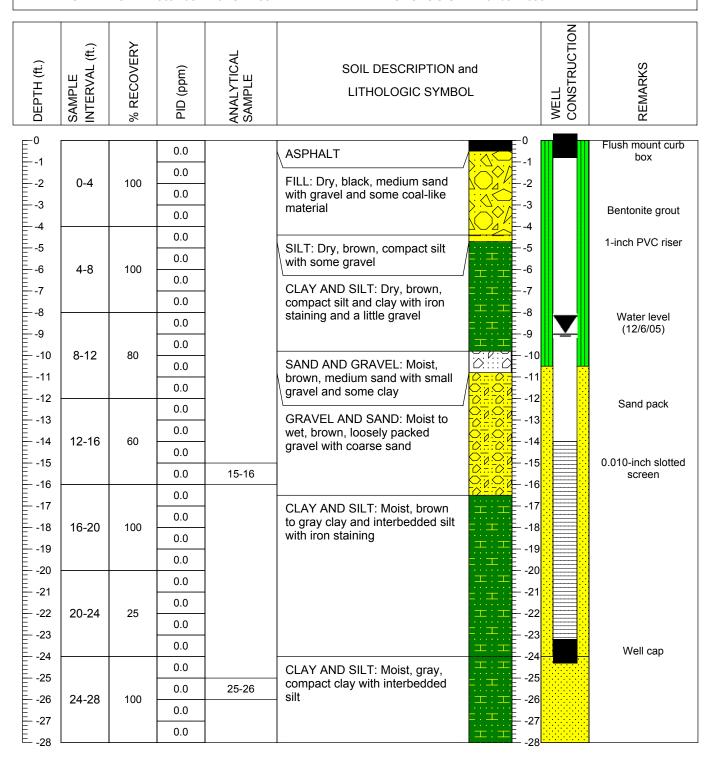
DEPTH TO WATER: 5.58 ft. below TOC BOREHOLE DEPTH: 24 ft. below grade WEATHER: Warm, sunny, slight breeze

NO-DP44/PZ27

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 6/15/2006

DRILLING CONTRACTOR: Lyon Drilling


DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1003.78 ft. above MSL WELL ELEVATION: 1003.37 ft. above MSL

OUTER CASING ELEVATION:NA
DEPTH TO WATER: 8.61 ft. below TOC
BOREHOLE DEPTH: 28 ft. below grade

WEATHER: Hot, partly cloudy GEOLOGIST: Amanda Bissell

NO-DP45

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 6/15/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.52 ft. above MSL

WELL ELEVATION: NA

OUTER CASING ELEVATION:NA

DEPTH TO WATER: NA

BOREHOLE DEPTH: 28 ft. below grade WEATHER: Warm, cloudy, few showers

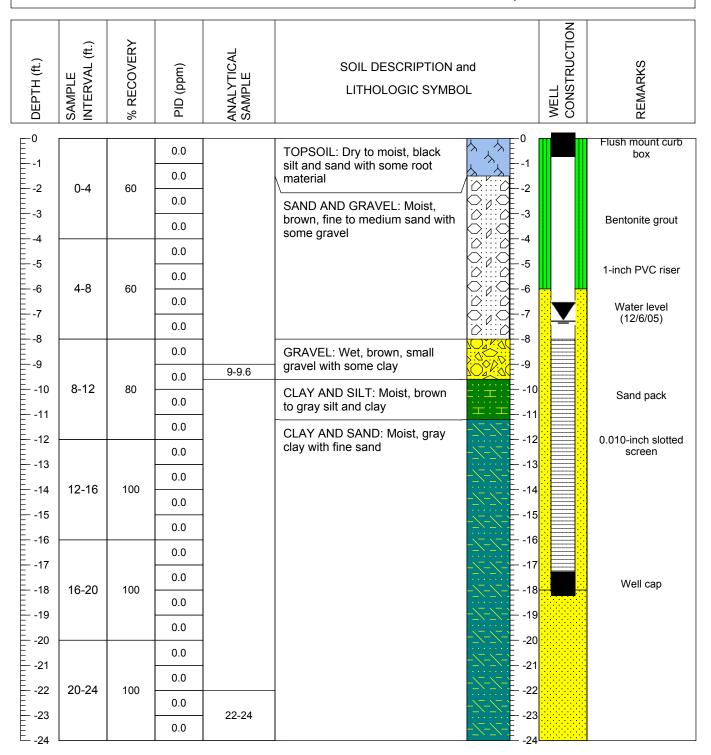
GEOLOGIST: Amanda Bissell

DEPTH (ft.)	SAMPLE INTERVAL (ft.)	% RECOVERY	PID (ppm)	ANALYTICAL SAMPLE	SOIL DESCRIPTION &		WELL	REMARKS
130	0-4 4-8 8-12 12-16 20-24	95 95 95 95 98	0.0 0.0 0.0 4.5 0.0 0.0 4.5 5.7 0.0 0.0 1.5 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10.8-11.3	ASPHALT FILL: Dry, black, medium sand with gravel and some coal-like material SAND AND GRAVEL: Dry to moist, brown, fine to coarse sand and gravel with trace clay and iron staining CLAY AND SILT: Dry, brown, compact silt and clay with iron staining and a little gravel CLAY AND SILT: Moist, dark gray, interbedded clay and silt	-0 -1-1-2 -2-3-3-4 -4-6-5-5-6-6-7-7-7-8-8-9-10-11 -1-11-11-11-11-11-11-11-11-11-11-11-		A R
	24-28	80	0.0 0.0 0.0 0.0	26-27				

NO-DP46/PZ23

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 6/14/2005


DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1001.56 ft. above MSL WELL ELEVATION: 1001.21 ft. above MSL

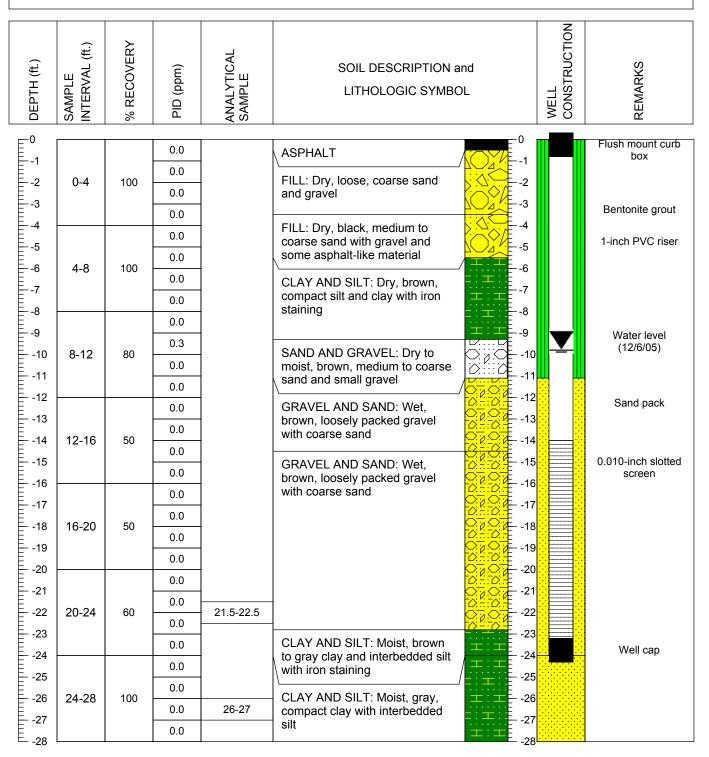
OUTER CASING ELEVATION:NA
DEPTH TO WATER: 6.94 ft. below TOC
BOREHOLE DEPTH: 24 ft. below grade
WEATHER: Hot, humid, few showers

NO-DP47/PZ26

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 6/15/2005

DRILLING CONTRACTOR: Lyon Drilling


DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.61 ft. above MSL WELL ELEVATION: 1004.18 ft. above MSL

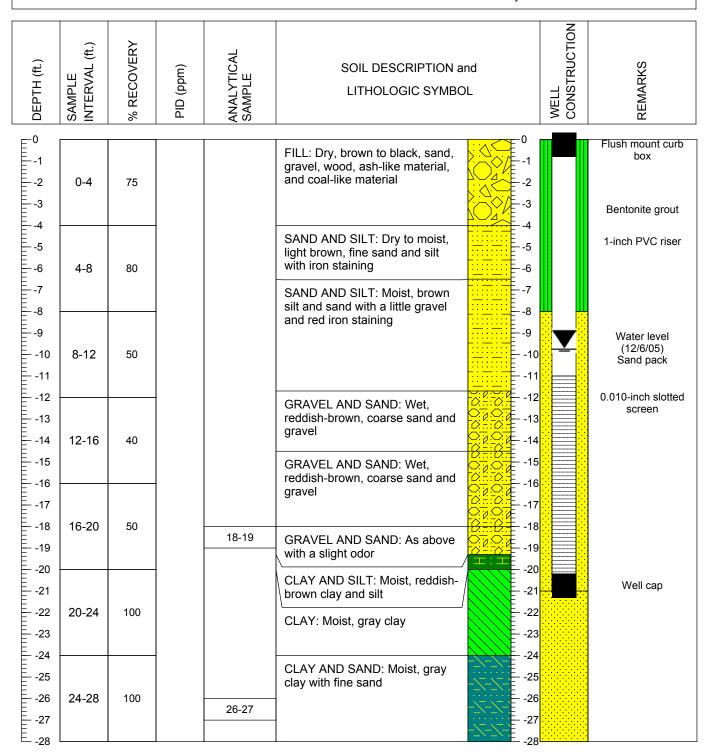
OUTER CASING ELEVATION:NA
DEPTH TO WATER: 9.41 ft. below TOC
BOREHOLE DEPTH: 28 ft. below grade

WEATHER: Hot, humid, sunny GEOLOGIST: Amanda Bissell

NO-DP48/PZ24

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 6/14/2005


DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1003.60 ft. above MSL WELL ELEVATION: 1003.27 ft. above MSL

OUTER CASING ELEVATION:NA
DEPTH TO WATER: 9.35 ft. below TOC
BOREHOLE DEPTH: 28 ft. below grade
WEATHER: Hot, partly sunny, humid

NO-DP49/PZ25

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 6/14/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1002.78 ft. above MSL WELL ELEVATION: 1002.43 ft. above MSL

OUTER CASING ELEVATION:NA DEPTH TO WATER: 8.84 ft. below TOC BOREHOLE DEPTH: 28 ft. below grade

WEATHER: Hot, humid, sunny GEOLOGIST: Lara Gray

DEPTH (ft.)	SAMPLE INTERVAL (ft.)	% RECOVERY	PID (ppm)	ANALYTICAL SAMPLE	SOIL DESCRIPTION and LITHOLOGIC SYMBOL		WELL CONSTRUCTION	REMARKS
						0		
-1 2			0.0		TOPSOIL: Dry, brown silt and sand with grass			Flush mount curb box
-2	0-4	70	0.3		Sand with grass	2		
-3	0-4	70	0.0		FILL: Dry to moist, black sand, wood, ash-like material, and	-3		Danta ita anas t
E -4			0.0		coal-like material			Bentonite grout
-5			0.0			-5		1-inch PVC riser
E	4.0	7-	0.0					
-6 -7	4-8	75	0.0		SAND AND SILT: Dry to moist, light brown silt with fine sand and iron staining	<u> </u>		
F I			0.0			<u></u>		
- -8		65	0.0		SAND: Moist to wet, brown,	-8		Water level
- -9			4.0		medium to coarse sand	-9	<u> </u>	(12/6/05)
E	10 8-12		0.0		SAND AND GRAVEL: Moist to	-10		Sand pack
-11			0.0		wet, brown, medium to coarse sand with a little gravel	-11 -11		0.040 in the sletter d
-12 13			0.0			-12 -12		0.010-inch slotted screen
-14	12-16	60	0.0		GRAVEL AND SAND: Wet, brown, loosely packed, coarse sand and gravel	-13		
-15	12-10		0.0			0 - : 0 15		
E			0.0			X a×ae		
-16 17			0.0			-16		
-18	16-20	75	0.2	17-18	GRAVEL AND SAND: As above	-18		
-19	10 20	. •	0.5		with a very slight odor	-19		
-20			0.0		CLAY AND SILT: Moist, reddish-	-20		
Ė.			0.0		brown clay and silt			Well cap
-21 22	20-24	100	0.0		SAND AND SILT: Moist, gray, fine sand and silt	-21		·
=	20-24	100	0.0					
-23 -24			0.0		CLAY AND SAND: Moist, gray clay and fine sand	-23		
E			0.0					
-25 26	24-28	100	0.0			-25		
E	24-20	100	0.0	26-27		\\-		
-27 -28			0.0			-27 -28		
-20						-20		

NO-DP50/PZ28

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 6/16/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 999.17 ft. above MSL WELL ELEVATION: 998.79 ft. above MSL

OUTER CASING ELEVATION:NA
DEPTH TO WATER: 5.14 ft. below TOC
BOREHOLE DEPTH: 28 ft. below grage

WEATHER: Warm, cloudy, breezy
GEOLOGIST: Amanda Bissell

CONSTRUCTION € RECOVERY ANALYTICAL SAMPLE DEPTH (ft.) NTERVAL SOIL DESCRIPTION and REMARKS PID (ppm) SAMPLE LITHOLOGIC SYMBOL WELL -0 Flush mount curb 0.0 TOPSOIL: Dry, brown silt and box fine sand with grass 2.2 . W. -2 0-4 80 -2 1.6 FILL: Dry, black gravel with ash--3 -3 like material, coal-like material Bentonite grout 1.3 and some root material -4 1-inch PVC riser 0.6 Water level SAND AND GRAVEL: Dry to -5 -5 (12/6/05)16 moist, brown, fine to coarse -6 4-8 60 -6 sand and gravel with trace clay \mathcal{L} 1.3 and iron staining - -7 1.1 - -8 -8 GRAVEL AND SAND: Wet, Sand pack 0.4 brown, gravel and coarse sand -9 -9 with trace clay 0.0 -10 8-12 70 0.0 GRAVEL AND SAND: As above -11 with a slight odor from 10-10.5' 0.0 -12 -12 0.010-inch slotted 0.0 GRAVEL AND SAND: Wet. screen -13 brown, gravel and fine to coarse 0.0 12-16 75 sand -14 0.0 13.7-15.5 - -15 0.0 -16 CLAY: Moist, brown compact -16 0.0 clay -17 0.0 100 CLAY AND SILT: Moist, gray, -18 16-20 -18 0.0 interbedded clay and silt Well cap -19 0.0 -20 -20 0.0 -21 -21 0.0 20-24 100 -22 -22 0.0 -23 -23 0.0 -24 -24 0.0 -25 -25 0.0 25-26 24-28 100 -26 -26 0.0 -27 0.0 -28

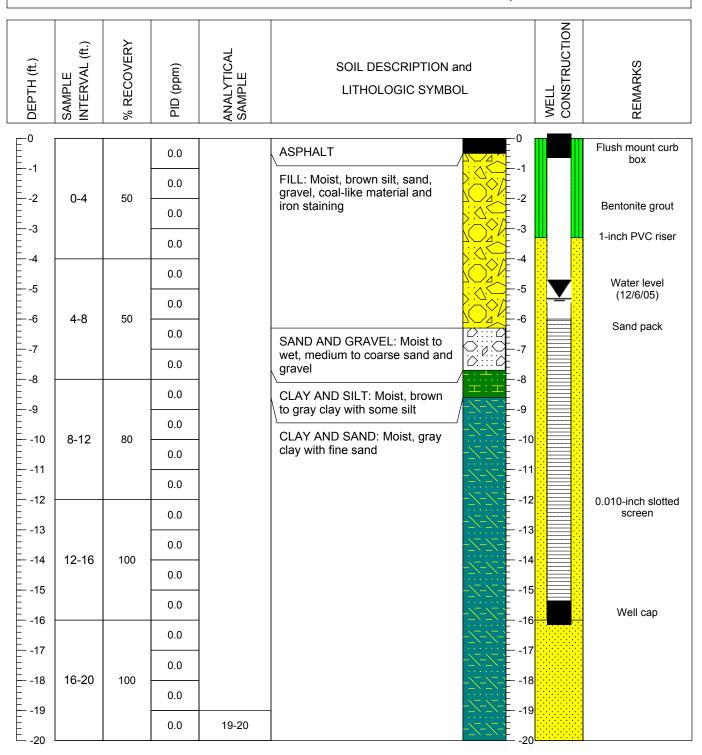
NO-DP51/PZ29

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/10/2005

DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon


DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 999.29 ft. above MSL WELL ELEVATION: 998.91 ft. above MSL

OUTER CASING ELEVATION:NA

DEPTH TO WATER: 5.05 ft. below TOC BOREHOLE DEPTH: 20 ft. below grade

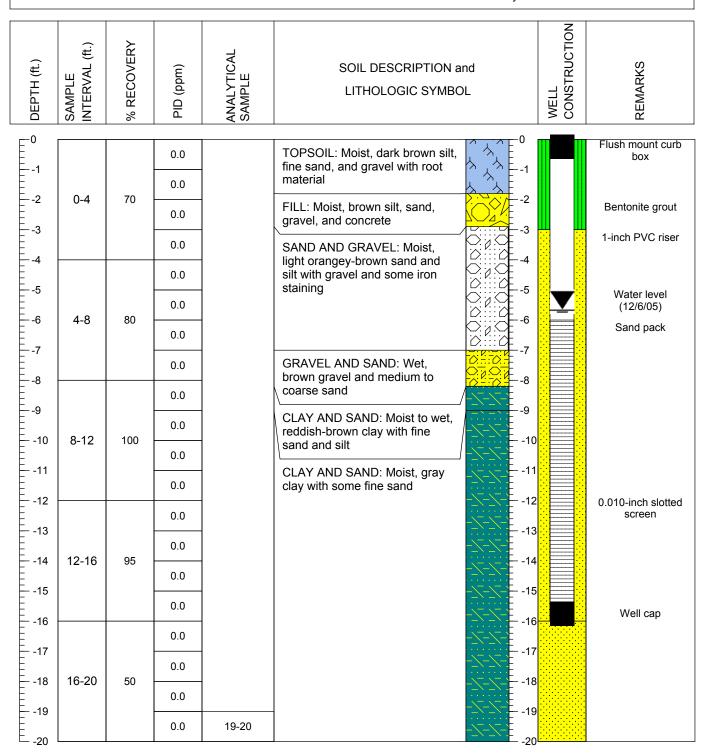
WEATHER: Cool, overcast, misty

NO-DP52/PZ30

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/10/2005

DRILLING CONTRACTOR: Lyon Drilling


DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 998.53 ft. above MSL WELL ELEVATION: 998.23 ft. above MSL

OUTER CASING ELEVATION: NA
DEPTH TO WATER: 5.39 ft. below TOC
BOREHOLE DEPTH: 20 ft. below grade

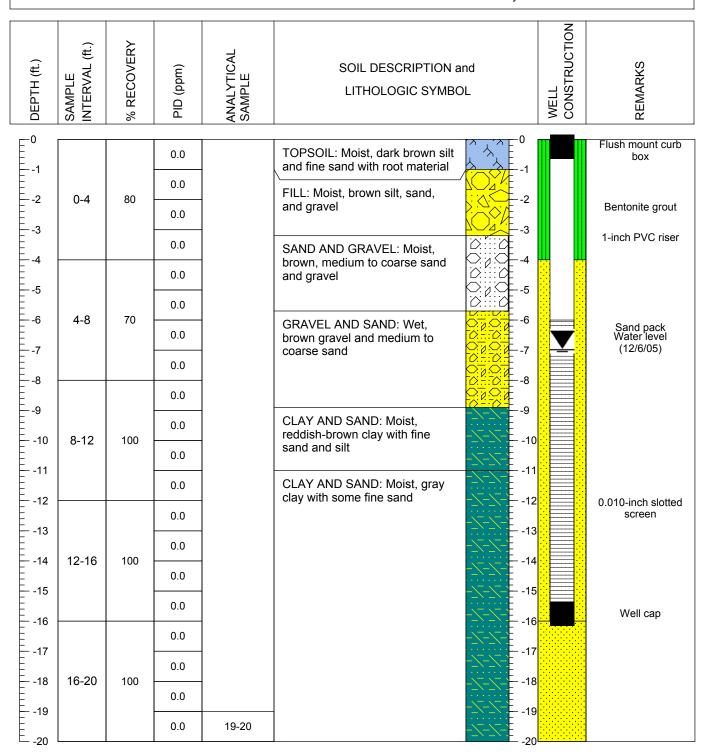
WEATHER: Cool, overcast GEOLOGIST: Lara Gray

NO-DP53/PZ31

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/10/2005

DRILLING CONTRACTOR: Lyon Drilling


DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 998.34 ft. above MSL WELL ELEVATION: 997.93 ft. above MSL

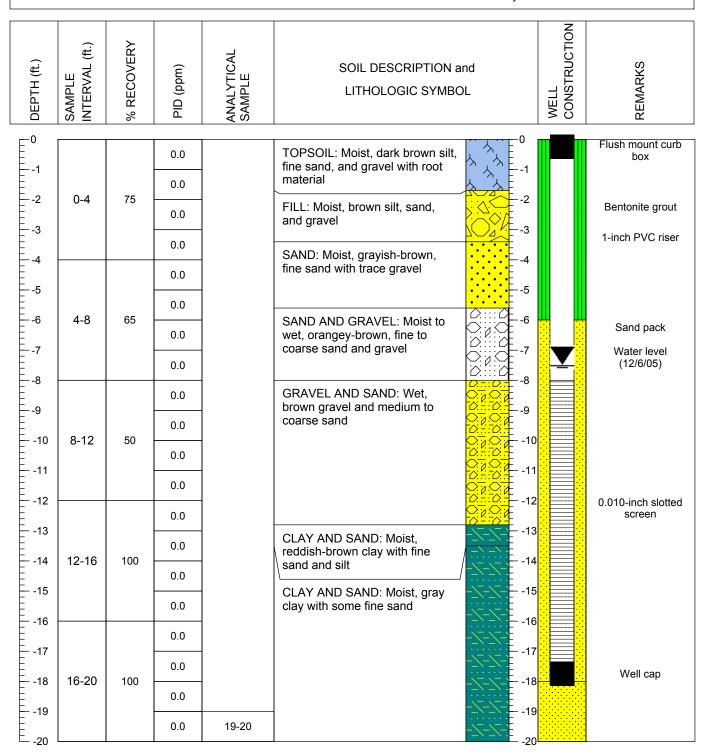
OUTER CASING ELEVATION:NA
DEPTH TO WATER: 6.71 ft. below TOC
BOREHOLE DEPTH: 20 ft. below grade

WEATHER: Cool, overcast GEOLOGIST: Lara Gray

NO-DP54/PZ32

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/11/2005


DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1000.99 ft. above MSL WELL ELEVATION: 1000.62 ft. above MSL

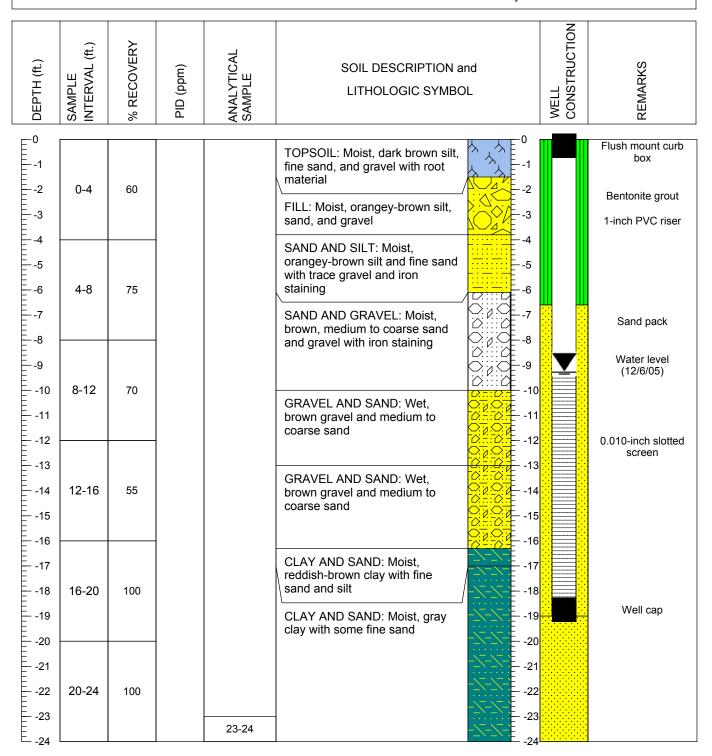
OUTER CASING ELEVATION:NA
DEPTH TO WATER: 7.23 ft. below TOC
BOREHOLE DEPTH: 20 ft. below grade
WEATHER: Cool, overcast, slight breeze

NO-DP55/PZ33

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/11/2005

DRILLING CONTRACTOR: Lyon Drilling


DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1003.40 ft. above MSL WELL ELEVATION: 1003.00 ft. above MSL

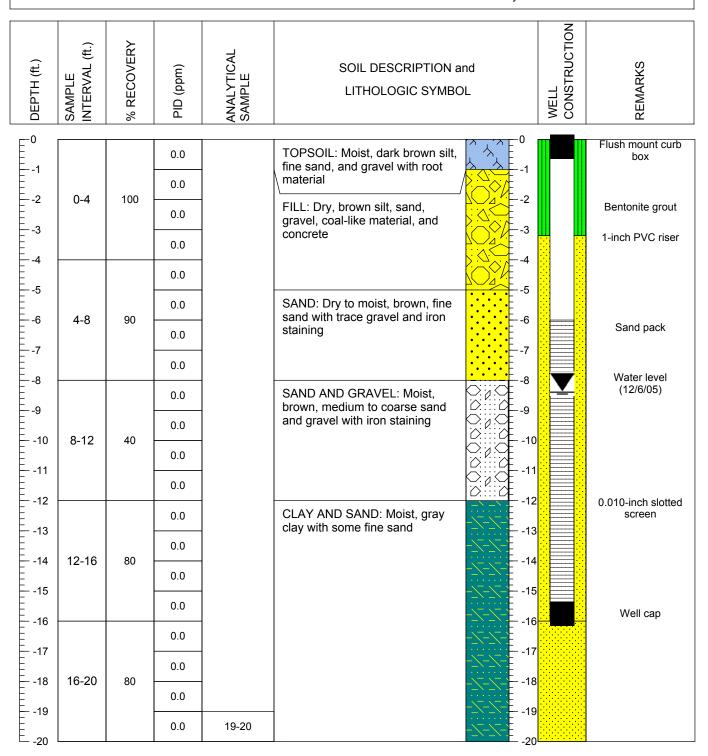
OUTER CASING ELEVATION:NA

DEPTH TO WATER: 8.94 ft. below TOC BOREHOLE DEPTH: 24 ft. below grade WEATHER: Cool, overcast, slight breeze

NO-DP56/PZ34

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/11/2005


DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

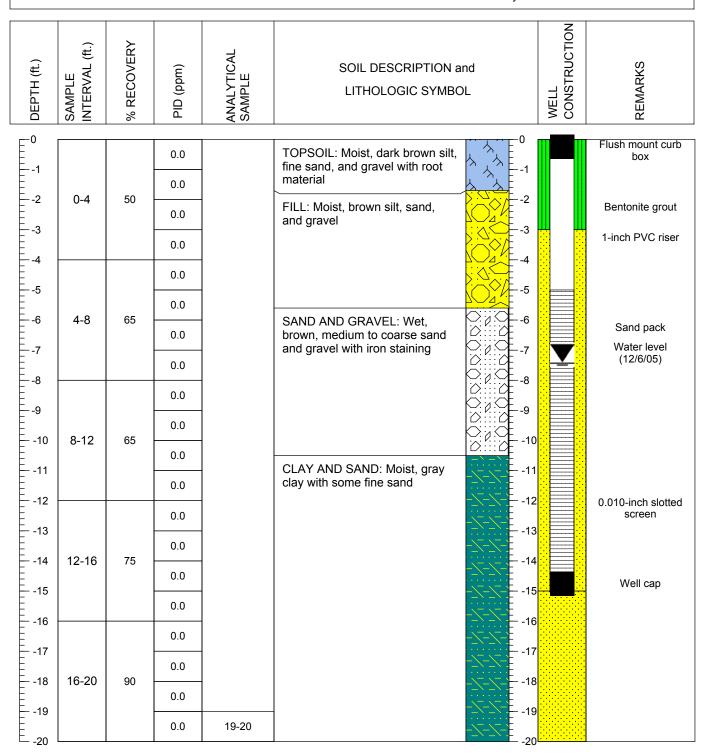
SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1002.41 ft. above MSL WELL ELEVATION: 1002.02 ft. above MSL

OUTER CASING ELEVATION: NA
DEPTH TO WATER: 8.11 ft. below TOC
BOREHOLE DEPTH: 20 ft. below grade
WEATHER: Cool, overcast, slight breeze

NO-DP57/PZ35

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/11/2005


DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

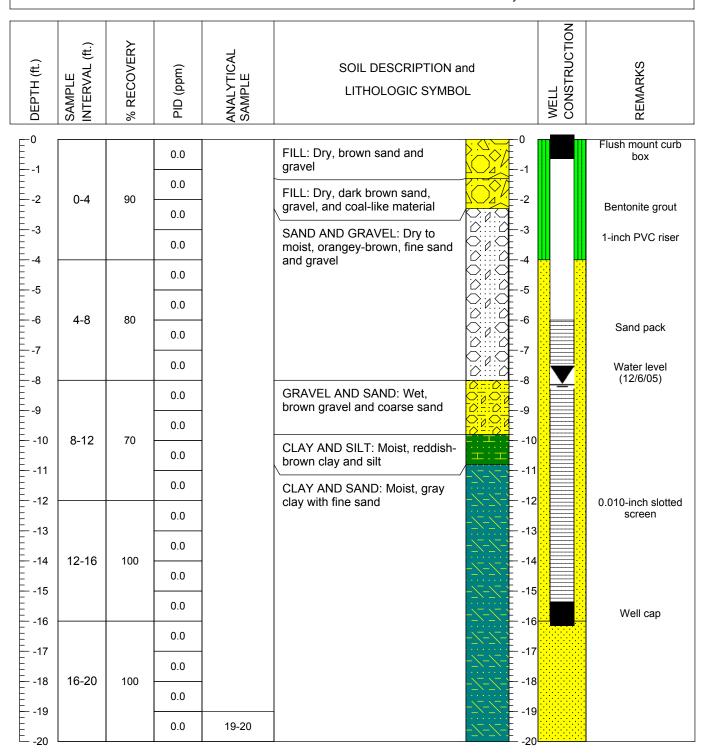
SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1001.52 ft. above MSL WELL ELEVATION: 1001.25 ft. above MSL

OUTER CASING ELEVATION:NA
DEPTH TO WATER: 7.15 ft. below TOC
BOREHOLE DEPTH: 20 ft. below grade
WEATHER: Cool, overcast, slight breeze

NO-DP58/PZ36

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/12/2005


DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1000.10 ft. above MSL WELL ELEVATION: 999.82 ft. above MSL

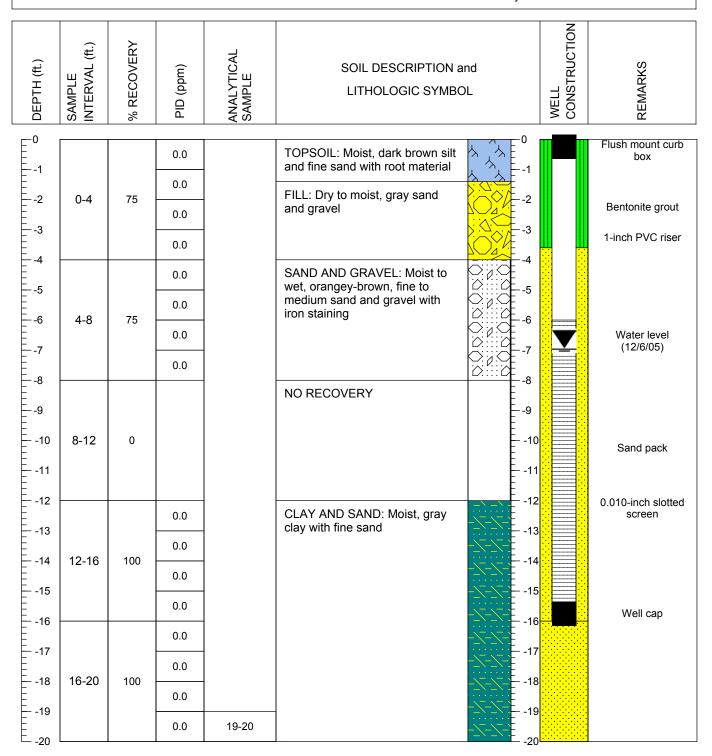
OUTER CASING ELEVATION: NA
DEPTH TO WATER: 7.87 ft. below TOC
BOREHOLE DEPTH: 20 ft. below grade
WEATHER: Cool, overcast, few showers

NO-DP59/PZ37

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/12/2005

DRILLING CONTRACTOR: Lyon Drilling


DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 999.71 ft. above MSL WELL ELEVATION: 999.44 ft. above MSL

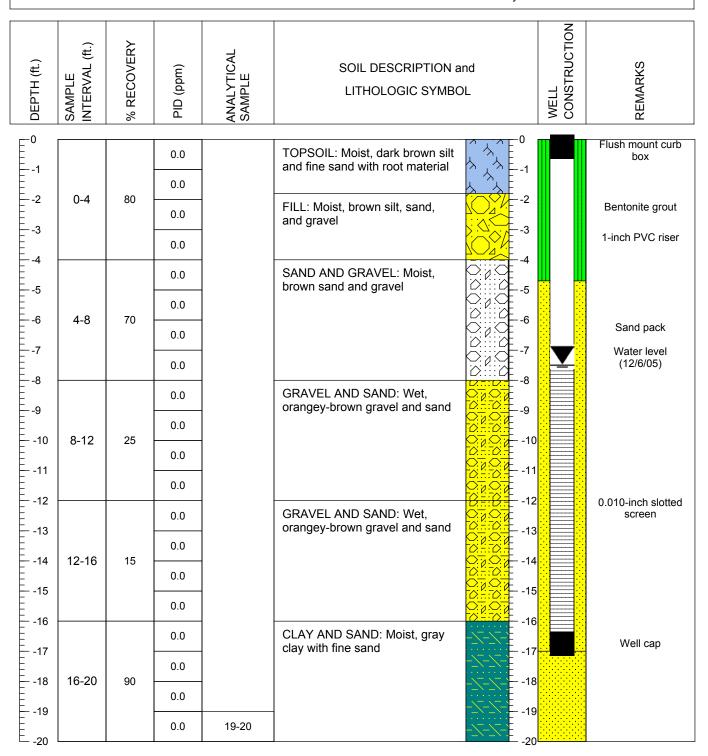
OUTER CASING ELEVATION: NA

DEPTH TO WATER: 6.69 ft. below TOC BOREHOLE DEPTH: 20 ft. below grade WEATHER: Cool, overcast, few showers

NO-DP60/PZ38

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/12/2005


DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1000.37 ft. above MSL WELL ELEVATION: 1000.18 ft. above MSL

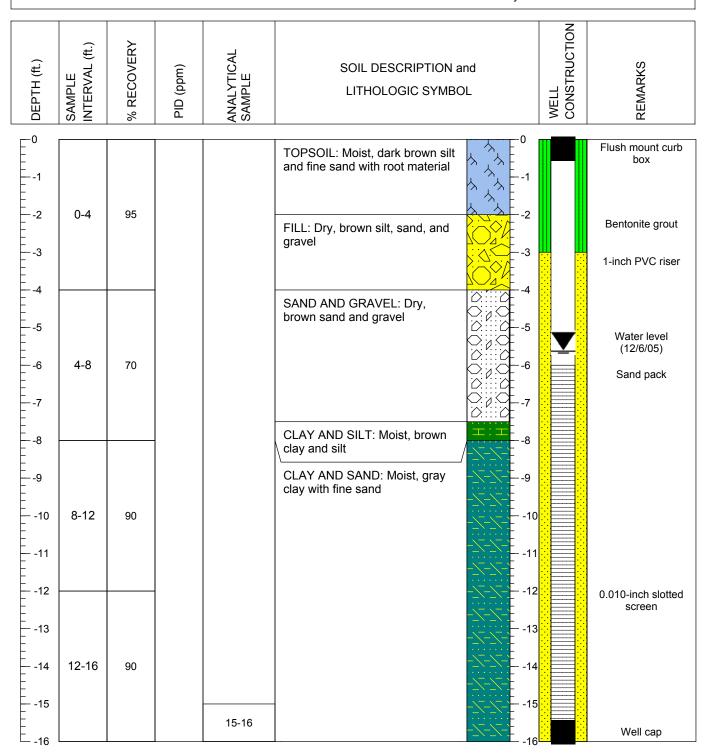
OUTER CASING ELEVATION:NA
DEPTH TO WATER: 7.22 ft. below TOC
BOREHOLE DEPTH: 20 ft. below grade
WEATHER: Cool, overcast, heavy rain

NO-DP61/PZ39

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/12/2005

DRILLING CONTRACTOR: Lyon Drilling


DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

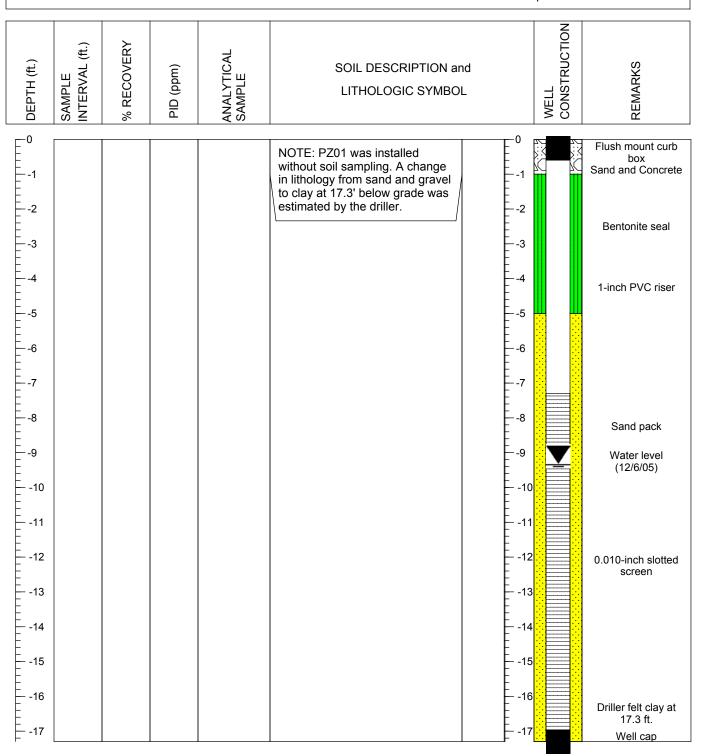
SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 999.41 ft. above MSL WELL ELEVATION: 999.05 ft. above MSL

OUTER CASING ELEVATION:NA

DEPTH TO WATER: 5.40 ft. below TOC BOREHOLE DEPTH: 16 ft. below grade WEATHER: Cool, overcast, heavy rain

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/27/2004


DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

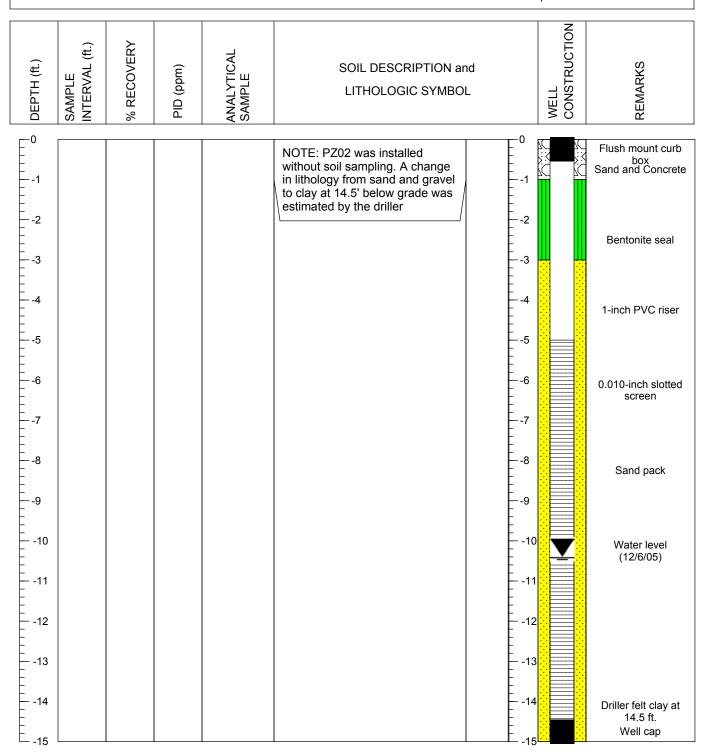
SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.30 ft. above MSL WELL ELEVATION: 1003.74 ft. above MSL

OUTER CASING ELEVATION:NA
DEPTH TO WATER: 9.10 ft. below TOC
BOREHOLE DEPTH: 17.3 ft. below grade

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/27/2004

DRILLING CONTRACTOR: Lyon Drilling


DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

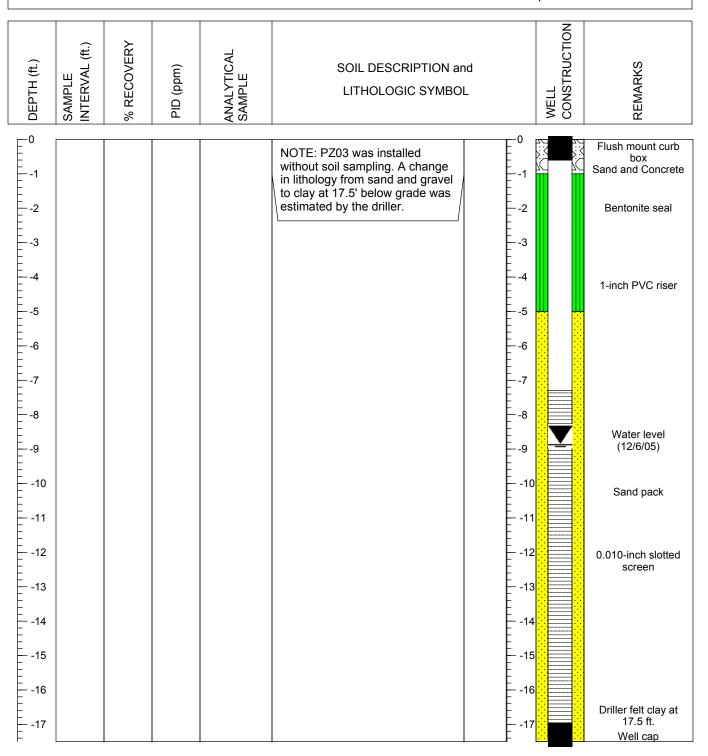
SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1004.18 ft. above MSL WELL ELEVATION: 1003.91 ft. above MSL

OUTER CASING ELEVATION: NA

DEPTH TO WATER: 10.21 ft. below TOC BOREHOLE DEPTH: 15 ft. below grade

PROJECT: Norwich - NYSEG PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/27/2004


DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon

DRILLING METHOD: Direct Push with CME55

SAMPLING METHOD: 4 ft. Geoprobe macrocores GROUND ELEVATION: 1003.63 ft. above MSL WELL ELEVATION: 1003.35 ft. above MSL

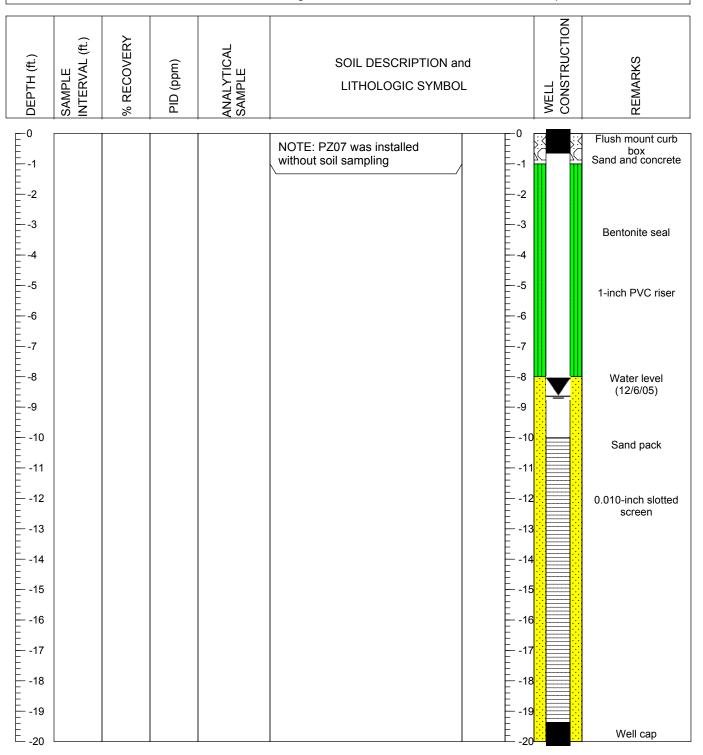
OUTER CASING ELEVATION:NA
DEPTH TO WATER: 8.62 ft. below TOC
BOREHOLE DEPTH: 17.5 ft. below grade

PROJECT: Norwich - NYSEG

PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/28/2004
DRILLING CONTRACTOR: Lyon Drilling

DRILLER: Harry Lyon


DRILLING METHOD: Trailer-mounted Direct Push Rig

SAMPLING METHOD:4 ft. Geoprobe macrocores GROUND ELEVATION: 1002.19 ft. above MSL

WELL ELEVATION:1001.91 ft. above MSL

OUTER CASING ELEVATION:NA
DEPTH TO WATER: 8.37 ft. below TOC

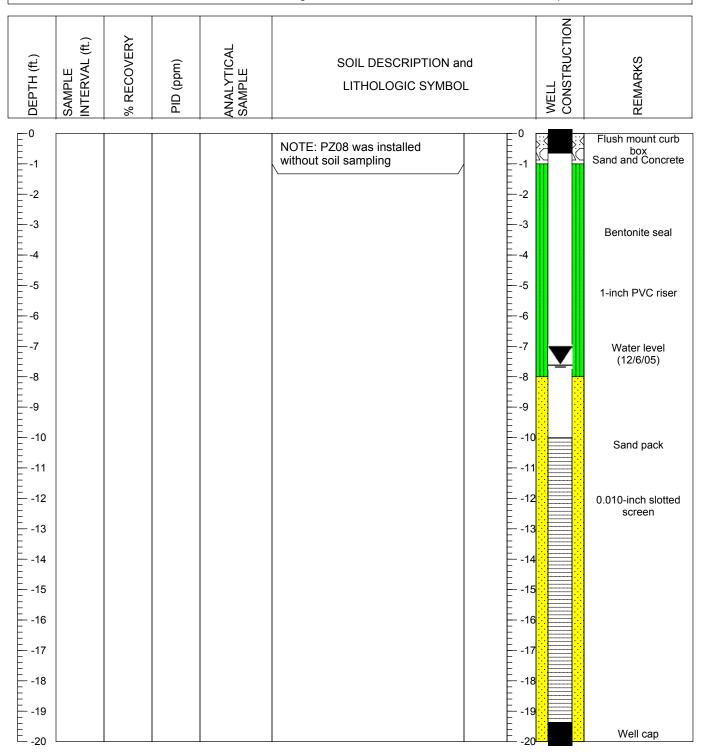
BOREHOLE DEPTH: 20 ft. below grade

PROJECT: Norwich - NYSEG

PROJECT NO: 103032 LOCATION: Norwich, NY

DATE: 10/28/2004

DRILLING CONTRACTOR: Lyon Drilling


DRILLER: Harry Lyon

DRILLING METHOD: Trailer-mounted Direct Push Rig

SAMPLING METHOD:4 ft. Geoprobe macrocores GROUND ELEVATION: 1001.11 ft. above MSL

WELL ELEVATION: 1000.85 ft. above MSL

OUTER CASING ELEVATION:NA
DEPTH TO WATER: 7.35 ft. below TOC
BOREHOLE DEPTH: 20 ft. below grade

GROUNDWATER SAMPLING SHEETS

NYSEG: Norwich SRI Report October 2006

Site: NOEWICH

Date: 6/17/05

	Well Number	Depth to Bottom	Depth to Water	Feet of Water	Depth to NAPL	PID
	PZII	18.24	10.10			
	P226	22.82	10.37	·		
	P2 17	15. 23	10.02			_
sitty _		14.77	10.75			
	PZ 20	18.55	10.17	_		
5iltu*-	- PZ21	17.22	7.83			
sidu*	- PZ22	17.40	7.22		Note VERY SOF	T BOTTON
silty*- silty*- silty*-	- PZ23	15.85	7.65		Note VERY SOFT but probe no very 5-67 55 but probe not	ton 574
a)	PZIH	17.20	6.54			
	P713	14.83	7.04			
	P208	19.71	7.35			
	P207	19.50	8.37	_		
Moster Lock	GW 92-1134 PZ05	9.90	8.17			
slip cap -	- P=05	21.65	9.21			
slip cap —	- PZ06	20.61	8.27		Trace DNUPL	
	PZ 03	16.77	9.16			
	-GW91-7	10.64	8.98	,		
Coo	P7-12	23.17	9.46	3		
slip cap_	P.204	16.58	7.85		odor	
	P2 10	[8,76	6196		oder	
70109	- SW20 SW21	12.61	6.92		oder	
we have	Suro	13.06	8.03			
Nowhan	SWZ	couldn't	Spen			
	SWZZ	couldn't				

* was developed yesterday

Water Level Work Sheet 2 of 2

Site:

NORWICH

Date: 6/17/05

		_		•	
Well Number	Depth to Bottom	Depth to Water	Feet of Water	Depth to NAPL	PID
GW01-14	15.82	7.42		sit wood.	~
5pmp-25	14.85	11.89		odov	
5pmp - 20	18.70	11.91		sit u/shee	nend o
(2W91-45h	15.60	12.64		·	
GW91-4D	20.07	11.71			
P702	14.63	10.21		Truce DNAPL	
P201	16.91	9.98		strong odor	
GW91-5	7.00	-		3	
GW92-12	13.05	4,95			
GU92-13	14.91	10.61		Silt-no odor	
P219	17.80	6.15		Silt -Stisht odar Silt, some	
P218	17.08	5,77		Silt, some	
P209	20.85	7.07		21 of DNAPL sheen on top	Cl west
Gwoi-155A	13.01	10.24		Sediment	9000
Gwoi-15 Deep	not Baused	10.50		0,91 of DNAV	1_
Gw04-16	Not measured	13.10		LNAPL prese	nts but
GW19-06	7.66	13.72		slight alar	
- Existing Well	15. 5 9	9.61		Sediment	
	1				
4					
	_			,	
, , , , , , , , , , , , , , , , , , ,					
<u>.</u>			_		

INLOX

(highest-lowest)/ ((highest + lowest)/2)

Well Sampling Data Sheet

Well Number: $6W9^2/2$

Client: 1SH/Meta	Site: Norw	ich, NY	
Personnel: The Weath	er: <u>Sunny</u> 70°	ich, NY Date: 7/26/05	
PUMPING PARAMETERS Casing inner diameter (gal/foot): 2" (0.16) 4" (0.65)	5" (1.02	2) Other	
Height of casing reference above grade Depth of well from top of casing Water level from top of casing Feet of water in casing NAPL level from top of casing(if present) NAPL thickness Min gallons of purge (feet of water X gal/ft	Previous Report X 3 well vols.) 7.7	Measured Depth Ref. Location 13.05	
Purging Method: Peris. Pump Sampling Method: Peris. Pump		os. Pump (Grundfos)Other Os. Pump (Grundfos)Other	
Type of Tubing: Tygon Teflon Polyethylene Bailer Type: Teflon S	Pumphead X tainless Steel	Downhole $1/2 \text{ vol} = 0.58$ $\frac{\text{gal} \cdot 3700 \text{ ml}}{\text{gal}} = \frac{150 \text{ ml}}{\text{min}}$ Disposable = 14.3	
CHEMICAL PARAMETERS Time Volume Eh (gallons) (mV) 08:30 0.5 (0.56) -74		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
08:38 1 (1.16) -107 08:50 1.5 (1.74) -127 09:02 2 (3.32) -131 09:14 3.5 (2.90) -133 09:27 3 (3.48) -131 09:40 3.5 (4.06) -135	36.8 11.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
4.64 4.5 5.22 5 5.80 % Difference between final 3 readings:	# · · · · · · · · · · · · · · · · · · ·		

Well Sampling Data Sheet Well Number: 6-W92-/2

SAMPLE APPEARANCE Initial Volumes Final Volumes	Turbidity Low	Color clear	Odor <u>None</u> Slight
SAMPLES COLLECTED	Sample List:		
ID GW92-12		Quantity Volume	/
	·		- -
			- -
PUMPING RATES Average Purge m	nL/min Average	Sampling mL	/min
OTHER READINGS DO (mg/L)	PID (ppm)	CO2 (mg	/L)
·	· · · · · · · · · · · · · · · · · · ·		
** The Project Manager will inst	√ ° A	hich disposal method is	applicable.
sampled @ o well, did not have	9:45 7/26/05, Ba	ruas it in the	relo 140.
	- Next	* 65	
· *			

Well Sampling Data Sheet

Well Number: <u>PZ-03</u>

Client: ISH/NYSE(Site: No	moich, N9
Client: ISH/NYSE() Personnel: TSL/AB Weath	er: P/Cloudy 85°	Date: 7-25-05
PUMPING PARAMETERS Casing inner diameter (gal/foot): 2" (0.16) 4" (0.65)	5" (1.	.02) 1 Other 6:041
Height of casing reference above grade Depth of well from top of casing Water level from top of casing Feet of water in casing NAPL level from top of casing(if present) NAPL thickness Min gallons of purge (feet of water V gal/ft	Previous Report	Measured Depth Ref. Location 14.74 9.02 7.74 N/A Type:
Min gallons of purge (feet of water X gal/ft		'
Purging Method: X Peris. Pump Sampling Method: Y Peris. Pump		Pos. Pump (Grundfos)Other Pos. Pump (Grundfos)Other
Type of Tubing: Tygon Teflon. 50 1000 Polyethylene Poiler Type: Toflon. 50 1000 State Type	Pumphead	Downhole $1/2 \text{ Vol} = 0.15$ $\frac{0.159a(3700 \text{ m})}{9a(100 \text{ m})} = \frac{150 \text{ m}}{100 \text{ m}}$ Disposable $\frac{23.90 \text{ m/s}}{100 \text{ m/s}} = \frac{3.90 \text{ m/s}}{100 \text{ m/s}}$
	ainless Steel	Disposable
Time Volume Ehorp (gallons) (mV) 2.54	(NTU) (() 0	Tos: 0.268 PH Conductivity (SU) (indicate units) 7.79 7.64 7.64 7.37 0.425 3.60 0.5 7.37 0.436 3.08 8.4 6.88 0.434 5.49
(highest-lowest)/ ((highest + lowest)/2)		and the second second

Well Sampling Data Sheet

Well Number: <u>PZ-03</u>

SAMPLE APPEARANCE	Turbidity		Color	
nitial Volumes	High	<u>_Br</u>	oun	None
Final Volumes	Low	Bro	un_	None
SAMPLES COLLECTED	Sample Lis	t:		
ID	Analysis	Quantity	Volume	
P2-03	8260/8270	2,2	40ml/12	
			<u> </u>	
				
OTT CONTACT DATE				
PUMPING RATES Average Purge n	ıI./min Ave	erage Sampling	mL/min	
rivoluge i uigeii		nugo bumpinig_		
OTHER READINGS				
DO (mg/L)	PID (ppm)		CO_2 (mg/L) _	
PURGE WATER DISPOSAL				
On-site storage pending a	nalysis			
Relinquished to licensed l			٠.	
Discharge in sewer (previ	ous analysis completed)		
Discharge on ground (pre	vious analysis complete	ed)		
** The Project Manager will inst	ruct the Field Team as	to which disposa	al method is appl	licable.
	· " /	•	11	
COMMENTS (difficulties, cond	ition of casing, etc.)			
Well started to ha	ve air bubblee come	up into the	flow thin ca	oll,
Indicating a dry w	ell. will sample	0 13:15 an	7/25/05- Rem	<u>wed</u>
1.5 volumes from the	e wella			
Towns (sir.	4,		
- 2				

(highest-lowest)/ ((highest + lowest)/2)

Well Sampling Data Sheet

Well Number: PZ-10

	Client: ISH/NYSEL	Site: No	DIWICH, NY		
Personnel:	43B Weath	ner: wwm, partl	y clary D	ate: 7/26/0	5
PUMPING PARAN Casing inner diamete 2" (0.16	er (gal/foot):			Other Lo	
NAPL thickness	op of casing of casing	Previous Report	18.73 7.0 11.73		Ref. Location
Purging Method: Sampling Method:	Peris. Pump	Bailer Bailer _	Pos. Pump (C	Grundfos) _	Other
Type of Tubing:	Tygon Teflon Polyethylene	Pumphead	Downhol	e 1/2 vol = 0 0.250al -	25gal x 3700ml - Innin Sai 150mi
CHEMICAL PARA Time Volu (gallo 9:35 9:31 0.50	METERS me Eh ons) (mV) -7 25) -16 -5) -26 -15) -36 -0) -43 -25) -48	Turbidity (NTU) 999-0 390-0 291-0 138-0 68-7 53.6 49.3	TDS: 1.09, 1 91L Temp (°C) 15.00 13.99 13.78 13.79	.11 pH C	Conductivity Double and Conductivity Indicate units) 1.69 7.40 1.73 4.12 1.74 3.52 1.74 3.65 1.75 2.72
% Difference between	n final 3 readings:	* <u>C</u>).157.	07.	0.61.

Well Sampling Data Sheet Well Number: 72-10

SAMPLE APPEARANCE	Turbidity	Color	Odor
Initial Volumes	modrate.	brown	Slight, Shan Present
Final Volumes	low	Ueur	moderate
SAMPLES COLLECTED	Sample List:		
ID	Analysis Q	uantity Volume	
NO-6510	TLL VOCS	1 40 ml	
	Tel suces	14	
NO-PZ10 DUP	TLL VUCS	40m1	
\	TCL SVOCS	<u> </u>	
			
 	 —		
·	<u> </u>		N _e
PUMPING RATES	I /min Avorage S	Sampling mL/m	.in
Average Purge \ \(\frac{150}{} \) m	L/IIIII Average S	ampinig miz/ii	Ш
OTHER READINGS			
DO (mg/L)	PID (ppm)	CO ₂ (mg/L))
, , , <u>———</u>			·
PURGE WATER DISPOSAL			
On-site storage pending an	alysis 1		
Relinquished to licensed has	auler		
	ous analysis completed)		,
Discharge on ground (prev	vious analysis completed)	·	
** The Draiget Manager will instr	not the Field Toom as to whi	ah dianagal mathadia a	mmliachla
** The Project Manager will instr		ch disposal method is a	pplicable.
COMMENTS (difficulties, condi			
		9.	
	: '		
	245*	**	
	•		

Sheet	1	of 2
Spice	•	عرانا

Speet 1 of 2		Well	Sampling D	ata Sheet	Well N	umber: 1211	_
	Client:	15H/NYS		Norwich			
Perso	onnel: ASB	Wea	ther: Cloudy,	worm, breeze	Date: 712	5105	
Casing inner	PARAMETERS diameter (gal/fo 2" (0.16)		55) 5	5" (1.02)	X Other	1" (0.041)	
	, ,		Previous Rep			Ref. Location	
Height of cas	sing reference ab	ove grade	r revious Rep	port Ivica	sured Depth	Ref. Location	11
C	Il from top of cas	_		18	3.2		
•	from top of casin		•		81		
Feet of water	r in casing			8.			
NAPL level	from top of casis	ng(if present))	·	Тур	e:	
NAPL thickr	ness						
Min gallons	of purge (feet of	water X gal	ft X 3 well vols	.) 8.39 x	0.041=0.3	5gal	
Purging Met Sampling Me		ris. Pump ris. Pump	Bailer Bailer		mp (Grundfos) mp (Grundfos)		_
Type of Tub	ing:		Pumphead	Dow	vnhole 1/2 vol	· 0.175 gal	
7 1	Tygon				(1)75•	3700 - 150	>=Δ
	Teflon			•		4.3 mm	- ~ 5
	Polyeth	nylene		•		4. 3 min	
Bailer Type:	Teflon		Stainless Steel		_Disposable	VPD.	
CHEMICA	L PARAMETE	RS			Ti	05:1.391L	
Time	Volume	Eh	Turbidity	Temp	pН	Conductivity	SICM T
	(gallons)	(mV)	(NTU)	(°C)	(SU)	(indicate unit	
10:17	0 (0.0)	226	999.0	21.24	7.14	1.92	7.2
10:24	0.5 (0.175)	229	482.0	19.00	6.47	2.09	5.8
10:29	1.0 (0.35)	231	238·D	18.19	6.30	2.04	4.4
10:33	1.5 (0.525)	233	129.0	18.06	6.3	2.02	3.8
10:37	2.0(0.1)	233	98.8	17.95 17.92	6.35	2.02	3.60
10:41	<u>25 (0.878)</u>	<u> 232</u>	84.2	17.94	6.34	2.02	3.53
10:45	3.0 (1.05)	231	51.3	11,74	634	2.02	3.44
				-			
				<u>_</u>			
	:		 				
	e between final 3 est)/ ((highest +			0.161.	1.57.	01.	

Well Sampling Data Sheet

Well Number: P2-11

SAMPLE APPEARANCE	Turbidity	Col	Color	
Initial Volumes	high	low clear		none
Final Volumes	low			hone
SAMPLES COLLECTED	Sample List	:		
ID	Analysis	Quantity	Volume	
NO-P211	TLL VOCS	1	40ms	
<u> </u>	Tu Suocs	2.	11	
,	·			
PUMPING RATES				
Average Purge_150_m	L/min Aver	rage Sampling_	mL/min	
OTHER READINGS				
DO (mg/L)	PID (ppm)		CO ₂ (mg/L)	
23 (mg. 2)	(FF) _			
PURGE WATER DISPOSAL	4.			
On-site storage pending ar	nalysis 🗸			
Relinquished to licensed h	/			
Discharge in sewer (previ	ous analysis completed)			
Discharge on ground (pre-	,			
•				
** The Project Manager will instr	£*	o which disposa	method is app	licable.
COMMENTS (difficulties, condi	tion of casing, etc.)			
COMMISSION (amountes, cond.	don of casing, co.,			.•
· · · · · · · · · · · · · · · · · · ·		·	· · ·	
1979 -	2,5% 			
**************************************		*		
. <i>k</i>	,			

Well Sampling Data Sheet

Well Number: P2-12

	Clien	:: [SHIN YSE	Site:_	Norwich			
Per	sonnel: AS	Weat	her: Rolly clos	voly, warn	Date: 7125	105	
	F PARAMETER er diameter (gal/f 2" (0.16)		5)5	" (1.02)		(0.041)	
Depth of w Water level Feet of wat NAPL level NAPL thick	rasing reference a rell from top of casi from top of casi ter in casing al from top of cas kness	nsing ng ing(if present)	Previous Reposition of X 3 well vols.	23.4 9.1 14.3	5 25 Type		
Purging Mo Sampling M	ethod: YPe	eris. Pump eris. Pump	Bailer Bailer	Pos. Pum	p (Grundfos) p (Grundfos)	Other_	_ _
Type of Tu	Tygor Teflor Polye	n thylene	Pumphead K Stainless Steel	Down	0.3 x 	3700ml - Sal 7.4min	150 mm
Time :4 :46 :50 :55 2:00 2:06	Volume (gallons) o (6.0) o 6 (6.3) 1 (6.6) 1.5 (6.9) 2 (1.2) 2.5 (1.5) 3 (1.8)	Eh (mV) 291 298 300 301 302 302	Turbidity (NTU) 999.0 726.0 349.0 227.0 106.0 96.9	Temp (°C) 1763 12-66-63 16.38 15.88 15.81 16.35	pH (SU) 6.45 6.34 6.45 6.46 6.40	49 3/L 59,1.69,1.12 Conductivity (indicate unit 2.3) 2.48 2.63 2.68 2.72 2.75 2.70	
	ce between final west)/ ((highest -	_		3.4%	3.27.	2.21.	

Well Sampling Data Sheet Well Number: P2-12

SAMPLE APPEARAN	ICE	Turbidity	Col	or	Odor
Initial Volumes		Nigh	brow	un_	none
Final Volumes		low	clea	<u>ur</u>	none
		0 1 1 1 4			
SAMPLES COLLECT	ED	Sample List:			
ID	Ar	nalysis	Quantity	Volume	
NO-PZIZ	<u>Tc</u>	LVOCS	_2_	46 m	
	To	1 SVCS		16	
	·				
	<u> </u>				
PUMPING RATES					
	NSO_mL/min	Δver	age Sampling	mI /min	
Average Turge_		71101	age bamping_	1112/111111	
OTHER READINGS					
DO (mg/L)		PID (ppm)		CO ₂ (mg/L)	
:	 ,			_	
PURGE WATER DISI	POSAL				
On-site storage p	ending analysis _	_			
Relinquished to l	icensed hauler				
	er (previous analy				
Discharge on gro	ound (previous ana	llysis completed	D	•	,
** The Project Manager	will instruct the I	rieid Team as to	o wnich disposa	method is appi	icable.
COMMENTS (difficult	ies, condition of c	asing, etc.)		•	· ·
	, K		• •		
		St. April	·		
· · · · · · · · · · · · · · · · · · ·					- ,
					_
No.		Sr.	* ***		
- 4					
	A.				

Client: 15H/Meta	Site: Norwick,	<u>y</u>
Personnel: TI/AB Weather	r: <u>Sunny 750</u>	Date: 7/26/05
PUMPING PARAMETERS Casing inner diameter (gal/foot):2" (0.16)4" (0.65)	5" (1.02)	1" Other 0.04/
Height of casing reference above grade Depth of well from top of casing Water level from top of casing Feet of water in casing NAPL level from top of casing(if present) NAPL thickness Min gallons of purge (feet of water X gal/ft X	7.6 7.6 N/	2 8 A 4 Type:
Purging Method: Yeris. Pump Sampling Method: Peris. Pump	Bailer Pos. Pum	O (Grundfos) Other Other Other
Tygon Teflon Silicon Polyethylene	X	99/x 3700 ml : 150 nl - 399/ min
Bailer Type: Teflon Sta		risposable
10:26	Turbidity Temp (NTU) (CC) 245 164 16.7 104 16.7 43.6 37.7 16.7 33.8 16.6 29.1	pH Conductivity DO (SU) (indicate units) 0.48 7.43 0.543 0.11 7.17 0.546 8.00 7.07 0.531 0.00 6.95 0.530 0.00 0.00
Casing inner diameter (gal/foot): 2" (0.16)4" (0.65) Height of casing reference above grade Depth of well from top of casing Water level from top of casing Feet of water in casing NAPL level from top of casing(if present) NAPL thickness Min gallons of purge (feet of water X gal/ft X Purging Method:	5" (1.02) Previous Report Measure	1"Other 0.04/ ared Depth Ref. Location 0 2 8 7 Type:

SAMPLE APPEARANCE Initial Volumes Final Volumes	Turbidity Moderate Low	Color Laht Brown Clear	Odor un <u>Honello</u> Yes <u>Yes</u>
SAMPLES COLLECTED	Sample List:		
ID PZ-13	1	•	lume
	·		
PUMPING RATES Average Purge	mL/min Average	e Sampling	mL/min
OTHER READINGS DO (mg/L)	PID (ppm)	CO	2 (mg/L)
· —	g analysis		
** The Project Manager will in COMMENTS (difficulties, co	· " 3	hich disposal metl	nod is applicable.
5/19ht sheen in 10:50 7/26/05.	well aslso had slight	Collected Saw - odor from	H20,
in the second se	. 50"	· •,	
. A*			

Well Number: <u>P2-14</u>

Client: 15h / Mefa	Site:	Vornick, NY	
Client: 15h / Mefa Personnel: 15/AB Weath	her: Suny 8	Date: 7-26	1-05
PUMPING PARAMETERS Casing inner diameter (gal/foot):2" (0.16)4" (0.65)	5)5"	(1.02)/^Other_	6.64/
Height of casing reference above grade Depth of well from top of casing Water level from top of casing Feet of water in casing NAPL level from top of casing(if present) NAPL thickness Min gallons of purge (feet of water X gal/f	Previous Repo	17.20 10.56 N/A Type:	
Purging Method: Sampling Method: Yeris. Pump Peris. Pump	Bailer Bailer	Pos. Pump (Grundfos) Pos. Pump (Grundfos)	Other
Type of Tubing: Tygon Teflon 51 1000 Polyethylene	Pumphead		y 3700ml - 150ml gal - Min = 5.33min
CHEMICAL PARAMETERS Time Volume Eh (gallons) (mV) 11:47 0 (0.22) +31 11:52 15 (0.23) +1e 12:62 15 (0.25) +5 12:07 2 (1.50) +6 12:17 3.5 (1.51) 4 4 4.5	Turbidity (NTU) 999 3/8 3/8 3/1 //0 /08 93.4 90.7	Temp (C) (SU) 16.9 7.31 16.2 7.05 16.2 7.03 15.9 7.05 15.6 7.08 7.08	Conductivity (indicate units) $\frac{1.25}{1.29}$ 0.20 $\frac{1.29}{1.29}$ 0.00 $\frac{1.29}{1.28}$ 0.00 $\frac{1.29}{1.28}$ 0.00
Water level from top of casing Feet of water in casing NAPL level from top of casing(if present) NAPL thickness Min gallons of purge (feet of water X gal/f Purging Method: Peris. Pump Sampling Method: Tygon Teflon Polyethylene Bailer Type: Teflon CHEMICAL PARAMETERS Time Volume (gallons) (mV) 11.97 11.57 12.62 15.63 16.13 17.13	Bailer Bailer Pumphead X Stainless Steel Turbidity (NTU) 999 318 211 110 108 93.4 90.7	N/A	Other Other Other Other Other Other Other Other Some 150ml Min 5.33 min DO (indicate units) 4.85 1.25 1.24 0.21 1.28 0.00 1.29 0.00 1.29 0.00

SAMPLE APPEARANCE Initial Volumes Final Volumes	Turbidity High Low	Color Brown clear	Odor Ves Yes
SAMPLES COLLECTED	Sample List:		
ID PZ-14	-)	Quantity Volume 40ml/11	
PUMPING RATES Average Purge m	L/min Average	Sampling mL/m	in
OTHER READINGS DO (mg/L)	PID (ppm)	CO2 (mg/L)	
** The Project Manager will instr	5 % A	nich disposal method is ap	pplicable.
	top of the o in bu		<u> </u>
. 17 (1.4 .) 		, M ₂	_
, A*			

Well Number: P2-15

Client: ISY IN 45EG

Site: hat, hazy breezy gr

Person	nnel: A) B	Weath	er: <u>hot, ha</u>	ly, blarry	Date: 1/24	105	
	ARAMETERS	\mathbf{S}		,, ,			
_	diameter (gal/fo ' (0.16)	oot): 4" (0.65)	:	5" (1.02)	l Other_	10.041)	
Haight of assi	na reference of	ove grade	Previous Re	port Meas	ured Depth	Ref. Location	
J	ng reference ab	•		19.3	25	mark N	IOC
-	from top of car						
	om top of casir	ıg		<u>(p. 6</u>	-		
Feet of water	_	ng(if present)		12.			
	rom top of casi	ng(n present)	4		Type	··	
NAPL thickne	288						
Min gallons o	f purge (feet of	water X gal/ft	X 3 well vol	s.) 12.45 x C	MI= 0.5	Sal	
Purging Meth	od: Pe	ris. Pump	Bailer	Pos. Pum	p (Grundfos)	Other	
Sampling Met		ris. Pump	Bailer		p (Grundfos)	Other_	_
	, ,			-	. 1/2 vol	= 0.25 gal	
Type of Tubir	_		Pumphead	Dowr	IIIOIC	1 : 370am).	Imun :
	Tygon Teflon				0.2.5	SAL	(Some
•		hylene		X	•	2	G ,
Bailer Type:	Teflon	ss	tainless Steel	1	Disposable	- le min	
CHEMICAL	DAD AMERICA	DC .		TOS	s1L= 1.2, 1.1	9	
Time	PARAMETE Volume	Eh	Turbidity	Temp	рH	Conductivit	v Do
THIC	(gallons)	(mV)	(NTU)	(°C)	(SU)	(indicate un	11
12:40	010.0)	-14	813.0	14.46	U.81	1.87	9.0
12:43	0.5 (0.75)	35	<u>453.0</u>	1384	6.62	1-89	5.06
12:49	1 (05)	-45	577.0	14.25	6.59	1.87	3.71
12:54	1.5 (0.75)	52_	449.0	14.44	6.59	1.86	3.2
13:00	·2 (1.0)	S <u>S</u>	400.0	14.56	4.59	1.86	3.0
13:06	2.5(1.25)	-58	394.D	14.30	6.60	1.86	3.07
B:12	3 (1.S)	41_	389.0	14.43	6.60	1.85	2.90
				-		<u>.</u>	
			20 200				

% Difference between final 3 readings: (highest-lowest)/ ((highest + lowest)/2)

1.37.

1.57.

0.541.

Well Sampling Data Sheet Well Number: P2-15

SAMPLE APPEARANCE	Turbidity	Color	Odor/Shew
Initial Volumes	module	light brown	n madrate/311
Final Volumes	low	cirar	slight SV
CAMDI EC COI I ECTED	Sample Lists		(no sheen
SAMPLES COLLECTED	Sample List:		
, ID	Analysis (Quantity Vol	ume
NO-7215	TCL VOCS		<u>Oml</u>
<u> </u>	TCL SUUCS	2 1	<u>L</u>
	. — — —		
	 ·		
	<u>·</u>		
PUMPING RATES			
Average Purge V50 mi	L/min Average	Sampling	mL/min
		- C	
OTHER READINGS			
DO (mg/L)	PID (ppm)	CO ₂	(mg/L)
	•		
PURGE WATER DISPOSAL	s 		
On-site storage pending an			
Relinquished to licensed ha	, š		
·-	ous analysis completed)		
Discharge on ground (prev	vious analysis completed)		the state of the s
** The Project Manager will instr	uct the Field Team as to wh	ich disposal methe	od is applicable
	·	:	od is approache.
COMMENTS (difficulties, condition	tion of casing, etc.)	·	· · · · · · · · · · · · · · · · · · ·
			ing the second of the second o
·			
			· · ·
		. 4,	

(highest-lowest)/ ((highest + lowest)/2)

Well Sampling Data Sheet

Client: 15h/w/SEG	Site: Nov	wich, NY	
Client: 15h/WKEG Personnel: TS/MB Weath	er: <u>Smy 85°</u>	Date: 7-25-0	
PUMPING PARAMETERS Casing inner diameter (gal/foot):2" (0.16)4" (0.65)	5" (1.0	02)Other	04/_
Height of casing reference above grade Depth of well from top of casing Water level from top of casing Feet of water in casing NAPL level from top of casing(if present) NAPL thickness Min gallons of purge (feet of water X gal/ft	Previous Report X 3 well vols.)	Measured Depth I 14.8565 15.00 10.91 4.09 N/A Type: 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09	Ref. Location
Purging Method: Sampling Method: Yeris. Pump Peris. Pump		Pos. Pump (Grundfos) Pos. Pump (Grundfos)	OtherOther
Type of Tubing: Tygon Teflon Polyethylene	Pumphead	Downhole 1/210/= 0.08 9a	-
Bailer Type:	(NTU) (° 20 19 19 19 18 116 116 116 116 116 116 116 116 116	TDS: 2,19-2,32 emp pH (C) (SU) (7,06 1,4 7,02 1,7 6,98	M 5/cm Do Conductivity Do Cond

SAMPLE APPEARANCE Initial Volumes	High		pion	Odor Nene
Final Volumes	Low	Cl	ear	None
SAMPLES COLLECTED	Sample List:			
ID PZ-16	Analysis 2240/8270	Quantity 2,2	Volume	.i.
	·			
PUMPING RATES Average Purge m	L/min Avera	age Sampling_	mL/mir	ı
OTHER READINGS DO (mg/L)	PID (ppm) _		CO ₂ (mg/L)	
PURGE WATER DISPOSAL On-site storage pending an Relinquished to licensed had Discharge in sewer (previous Discharge on ground	alysis auler ous analysis completed)			
** The Project Manager will instr COMMENTS (difficulties, condi-	· · · · · · · · · · · · · · · · · · ·	which dispos	al method is app	olicable.
Arund volume 1,5,	I dumped out Au	w Yhrough	cell because	2
Arund volume 1,5, of the build-up of	sediment in it.	Was clear	-mest of 4	<u>he</u>
4 rice Sampled 6	0 15:10 7/25/05	Slight	shun not	<u>'ced</u>
in bucket	jar	. "", t		
. *	*			

Client:	ish/nysea	Site:/	Vorwich			
Personnel: A35	Weath	er: Partly Cla	udywam	Date: 112	6105	
PUMPING PARAMETERS Casing inner diameter (gal/foo		breezy	•	_l" Other_		
Height of casing reference about Depth of well from top of cases. Water level from top of casing Feet of water in casing NAPL level from top of casing NAPL thickness. Min gallons of purge (feet of the casing purple)	g g(if present)	Previous Repo	6. ID: 5	Sured Depth		2
<u> </u>	is. Pump is. Pump	Bailer Bailer		np (Grundfos) np (Grundfos)	OtherOther	
Type of Tubing: Tygon Teflon Polyeth	ylene	Pumphead X	Down	0.15al	= 0.18al x <u>3700ml</u> : Sal = 2.71min	:150mi
Bailer Type:Teflon	* * * * * * * * * * * * * * * * * * *	ainless Steel		Disposable		
CHEMICAL PARAMETER	·-					
Time Volume	Eh (mV)	Turbidity	Temp	pH (SLD)	Conductivity	Po
(gallons) (3:1) (b)	(mV) 1 83	(NTU) 999. 0	(°C) _t6.76	(SU) ط9 س	(indicate units)	6.79
13:14 0.5 (0.11)	66	999.0	16.07	4.77	0.408	3.06
13:18 (0.72)	53	999.0	17.34	4.74	0.427	3.52
13:21 (.B (0.33)	52	999.0	18.60	6.75	0.438	4.58
2 10.44)			<u> </u>		<u> </u>	1130
2.5 (0.55)						
3 10.66				,		
			*			
				· .		
		##F	***			
<u> </u>						
% Difference between final 3		t				

SAMPLE APPEARANCE	Turbidity	Co	lor	Odor
Initial Volumes Final Volumes	high	- Sr		none
That Volumes	·			
SAMPLES COLLECTED	Sample List:	:		
ID	Analysis	Quantity	Volume	
ND-PZ17	TCL VOCS	2	40 ml	
NO-PZ17	TLL SVOCS	<u> </u>	16	
PUMPING RATES				
Average Purge 150 ml	/min Aver	age Sampling_	mL/min	
OTHER READINGS				
DO (mg/L)	PID (ppm) _		CO ₂ (mg/L)	
PURGE WATER DISPOSAL	93.			
On-site storage pending and	· · · · · · · · · · · · · · · · · · ·			
Relinquished to licensed ha	· x			
Discharge in sewer (previon Discharge on ground (previon provided previous description of the provided provided previous description of the pre				
Discharge on ground (prev	ious analysis completed	1)		
** The Project Manager will instru	act the Field Team as to	o which disposa	al method is appl	icable.
COMMUNITY (difficulties condit	ion of ossing ata			
COMMENTS (difficulties, condit	ion of casing, etc.)			
	1	0 ,	to the	
Well ran dry of	ter 1.5 Volumes	s st wate	r Was ver	noved,
Sampling comme	nced after w	ell richai	ged no for	ther
veadings w/ he			O .	
	<i>pr</i>	**		-
- - 				
	4			

(highest-lowest)/ ((highest + lowest)/2)

Well Sampling Data Sheet

	Client	BH/Me ta	Site:_ ther:_Simy_9	Normith, A	14		
Personnel:	ts/AB	_ Wear	ther: Smry 9	?o°	Date: 7-26	0-05	
PUMPING PARA Casing inner diame	METERS	Soot):	5) 5'				
Height of casing red Depth of well from Water level from the Feet of water in can NAPL level from the NAPL thickness Min gallons of pur	n top of casing top of casing	sing ng ng(if present)		17 _5 	<u>A</u>	Ref. Location	
Purging Method: Sampling Method:		_	Bailer Bailer		np (Grundfos) np (Grundfos)	Other	
Type of Tubing:	Polyet	hylene	Pumphead	Down		23.700ml - 1.750ml - 1.750	in .
Bailer Type:	_Teflon	V. 1	Stainless Steel		Disposable	20.10 m/m	
Time Vo (ga Discontinuous particular de la continuous par	olume ollons) (0.60) (0.23) (0.46) (0.70 (0.93) (1.17) (1.46)	Eh (mV)	Turbidity (NTU)	Temp (°C)	pH (SU)	Conductivity (indicate units)	

Well Number: <u>P2-/8</u>

SAMPLE APPEARANCE Initial Volumes	Turbidity	Co Br	lor wn/Black	Odor <i>Ye</i> Ç
Final Volumes	1000	Cle	rav	yes
SAMPLES COLLECTED	Sample List:			
ID	Analysis	Quantity	Volume	
PZ-18	8260/8270	2,2_	40ml//L	
			· · · · · · · · · · · · · · · · · · ·	
				
			,	
PUMPING RATES		/		
Average Purge	mL/min Aver	age Sampling_	mL/min	l
OTHER READINGS				
DO (mg/L)	PID (ppm) _	<u>·</u>	$CO_2 (mg/L)_{-}$	
PURGE WATER DISPOSAI				
On-site storage pending	2 N to			
Relinquished to license	3			
	evious analysis completed) previous analysis completed			
** The Project Manager will in	nstruct the Field Team as to	which disposa	ll method is app	licable.
COMMENTS (difficulties, co	ndition of casing, etc.)			
Will not mand	ph, cond, terb etc.		0 2001	
Drumpe/LNAPE CO	ming at of wells S	trung for	like odor o	/
product, will fem	love volumes at rate	1 sangle	offer 3 vol	mes
	pled @ 17:15 7/26/6			

Client	: 154]N45EA	Site:_	Norwich,	ν <u>γ</u>		
Personnel: A) B	Weath	ier: Hot, ha	zy, no bus	2 Date: 7/24	<u> 105</u>	
PUMPING PARAMETER: Casing inner diameter (gal/fo 2" (0.16)	S	h um 1 d)5	" (1.02)	_\\" Other_	(0.041)	
Height of casing reference at Depth of well from top of casin Water level from top of casin Feet of water in casing NAPL level from top of casin NAPL thickness	ising ing ing(if present)	Previous Rep	17. g	55 Type		
Purging Method:Pe	ris. Pump ris. Pump	Bailer Bailer	Pos. Pun	np (Grundfos) np (Grundfos)	OtherOther	
Type of Tubing: Tygor Teflor Polyet		Pumphead	Down	•	. 3700ms . 1 15al	min
Bailer Type:Teflon	S	Stainless Steel		Disposable	= 6 mis	
CHEMICAL PARAMETE Time Volume (gallons) [6:36 0(0.0) [6:40 0.5 (0.25)	Eh (mV)	Turbidity (NTU) 10.0 996.0	Temp (°C) 13.64	pH (SU) 1.67 (o.72		<u>90</u> 9.20 4.91
16:43 16:47 16:52 16:52 16:57 16:57 10:50 10	-10 -20 -25	919.0 525.0 421.0	13.31 13.44 13.43	6.61 6.59 6.60	1.57	3.5° 3.05 2.93
17:02 3 (1.5)	-28	301.0	(3.25	6.40		.63
% Difference between final :		A	1.35%	1.57.	0.637.	
(highest-lowest)/ ((highest -	lowest)/2)					

Well Sampling Data Sheet Well Number: Pz - 19

SAMPLE APPEARANCE Initial Volumes Final Volumes	Turbidity <u>V.h.sh</u> <u>low</u>	Color brown Clear-cludy	Odor <u>none</u> <u>modust</u> e
SAMPLES COLLECTED	Sample List:	<u>· </u>	
ID NO-PZ19	TCL VOCS	Quantity Volume 2 40m1 2 1L	
)		
PUMPING RATES Average Purge 156 ml OTHER READINGS DO (mg/L) PURGE WATER DISPOSAL	PID (ppm)	Sampling mL/m CO2 (mg/L)	
On-site storage pending an Relinquished to licensed had Discharge in sewer (previous previous	nuler		
_	ious analysis completed)	- 	The state of the s
** The Project Manager will instru COMMENTS (difficulties, condit		ich disposal method is ap	oplicable.
	ion of casing, etc.)		
**************************************		· • • • • • • • • • • • • • • • • • • •	

Client: 15H/WYSEG Site: Norwich, NY						
Personnel: ASS Weath	er: Hot, portu	Claudy Date:	7125105			
PUMPING PARAMETERS Casing inner diameter (gal/foot):2" (0.16)4" (0.65)			Other <u>10.041)</u>			
Height of casing reference above grade Depth of well from top of casing Water level from top of casing Feet of water in casing NAPL level from top of casing(if present) NAPL thickness Min gallons of purge (feet of water X gal/ft	Previous Repo	18.22 10.52 1.10	Type:			
Purging Method: Sampling Method: Peris. Pump Peris. Pump	Bailer Bailer	Pos. Pump (Grui	ndfos)Other			
Type of Tubing: Tygon Teflon Polyethylene	Pumphead		$72 \text{ vol} = 0.16 \text{ gal}$ $0.16 \times 3700 \div 150 = 3.6$ $501 4 \text{ min}$	7		
CHEMICAL PARAMETERS Time Volume Eh (gallons) (mV) 15:18 0(0.0) 257 15:21 0.5(0.16) 247 15:29 1 (0.32) 276 15:33 1.5 (0.48) 280 15:37 2 (0.64) 283 15:40 2.5 (0.66) 285 15:45 3 (0.46) 287	Turbidity (NTU) -100 999.0 919.0 747.0 551.0 3820	Temp pH (°C) (SU 19. 88 6.7 15.97 6.5 17.18 6.5 17.41 6.5 17.38 6.5 17.61	TDS: 1.9 3/L 2.04 Conductivity (indicate units) 1	15 24 29 2		
% Difference between final 3 readings: (highest-lowest)/ ((highest + lowest)/2)		1.3%	<u>().37.</u>			

Well Sampling Data Sheet Well Number: P ≥ 20

Initial	PLE APPEARANCE Volumes Volumes	<u>V.</u>	urbidity Nigh	Colo <u>brow</u> light	r Svay	Odor none none
SAM	PLES COLLECTED	Sar	mple List:			
	ID NO-PZ20	Analysis TCL VX	ucs	Quantity 2 2	Volume 40 ml	
PUM	PING RATES Average Purge 156 n	nL/min	Average	e Sampling	mL/min	
отн	ER READINGS DO (mg/L)	PII	O (ppm)		CO2 (mg/L)	<u>_</u>
	GE WATER DISPOSAL On-site storage pending a Relinquished to licensed l Discharge in sewer (previous process) Discharge on ground (pre	nalysis hauler ious analysis co				
** Th	e Project Manager will inst		Team as to w		nethod is appli	cable.
СОМ	MENTS (difficulties, cond	ition of casing,	etc.)	*, +> ,+\$,		18.2 20.0
	eri Valence	÷	· · · · · · · · · · · · · · · · · · ·			
						-
	***************************************			·		-

15:33

15:37 15:41

(highest-lowest)/ ((highest + lowest)/2)

Well Sampling Data Sheet

	•			
	Client: 15H/Meta	Site: <u>Mo</u>	ruich, NY	
	Client: 15H/Meta Personnel: 75/AB Weather	er: <u>Smy 90</u>	Date: 7-26	-05
	PUMPING PARAMETERS Casing inner diameter (gal/foot): 2" (0.16) 4" (0.65)		.02) <u></u>	
	Height of casing reference above grade Depth of well from top of casing Water level from top of casing Feet of water in casing NAPL level from top of casing(if present) NAPL thickness	Previous Report	Measured Depth $ 7.40 $ $ 7.97 $ $ 9.43 $ $ N/A $ Type:	Ref. Location
	Min gallons of purge (feet of water X gal/ft Purging Method: Y Peris. Pump Sampling Method: Y Peris. Pump	X 3 well vols.) 9 Bailer Bailer	Pos. Pump (Grundfos) Pos. Pump (Grundfos)	386 Other Other
	Type of Tubing: Tygon Teflon Silcon Polyethylene Bailer Type: Teflon Silcon Silcon Polyethylene	Pumphead X tainless Steel	Downhole 1/2 vol = 9at	193 (x3700gg : 180min 991 min >9.52 min 4.76
15:37 15:41 15:45 15:48 15:5	CHEMICAL PARAMETERS Time Volume Eh (gallons) (mV) 15:29 0 (0.00) -39 15:38 0.5 (0.37).19 - 97 15:48 1 (0.77).39 -110 15:57 1.5 (2.16).58 -119 14:06 2. (4.54).77-123	Turbidity (NTU) 999 999 999 570 281	TDS: 1.78, 2.13 Temp pH (°C) (SU) 8.3 7.23 7.14 7.16 7.16 7.16 7.16 7.16 7.16	$M \ s/cm$ Conductivity DO (indicate units) $2.89 3.76$ $3.31 0.00$ $3.31 0.00$ $3.33 0.00$ $3.33 0.00$ $3.33 0.00$

SAMPLE APPEARANCE	Turbidity	Col	lor	Odor
Initial Volumes	High		un	YES
Final Volumes	Low	cle	26r_	<u>'Yes</u>
SAMPLES COLLECTED	Sample Lis	st:		
ID	Analysis	Quantity	Volume	
PZ-21	8260/8270	2,2	40ml/16	
			·	
	·			
PUMPING RATES				
Average Purge	_ mL/min Ave	erage Sampling_	mL/min	
OTHER READINGS				
DO (mg/L)	PID (ppm)		CO ₂ (mg/L)	
	_			
PURGE WATER DISPOSA	a N.			
On-site storage pendin	- 1			
Relinquished to license	idage X		•	
	revious analysis completed			
Discharge on ground (previous analysis complete	ea)		
** The Project Manager will	instruct the Field Team as	to which disposa	l method is appli	cable.
CONTRACTOR (4100141				
COMMENTS (difficulties, co	ondition of casing, etc.)			
slight shew i	n 420 bucket. A/	of of sedimen	t in flow	
Mongheell empt	n 1/20 bucket. A/A rêd it out, still pre Mough. Sempled @	thy brown,	Aso Through	
Albina icalean 4	March Scholad @	11/15 7/26	he	
TABLES (2 COOL 1	do les adda de la	10000	, ₍₍₎	_
				_

Client: 15H/Meta Site: Norwich, NY
ersonnel: TS/AB Weather: Suny 85° Date: 7-26-05
NG PARAMETERS nner diameter (gal/foot): 2" (0.16)4" (0.65)5" (1.02)/" Other
Previous Report Measured Depth Ref. Location well from top of casing vel from top of casing vel from top of casing $\frac{17.00}{7.38}$ vel from top of casing $\frac{10.38}{\sqrt{A}}$ Type: $\frac{\sqrt{A}}{\sqrt{A}}$ ons of purge (feet of water X gal/ft X 3 well vols.) $\frac{10.38}{\sqrt{0.041}}$ $\frac{\sqrt{0.041}}{\sqrt{0.425}}$
Method: Y Peris. Pump Bailer Pos. Pump (Grundfos) Other Method: Y Peris. Pump Bailer Pos. Pump (Grundfos) Other
Tygon Teflon Silicane Polyethylene $ \begin{array}{cccccccccccccccccccccccccccccccccc$
CAL PARAMETERS Volume Eh Turbidity Temp pH Conductivity DO (gallons) (mV) (NTU) (°C) (SU) (indicate units) O (0.00) +35 O 18.1 7.48 2.13 3.10 D.5 (0.21) +15 O 10.7 7.11 2.63 0.56 1 (0.43) -22 999 16.2 6.98 2.80 0.00 1.5 (0.64) -48 999 16.2 6.98 2.80 0.00 2 (0.05) -64 074 16.1 6.99 2.84 0.00 2.5 (1.06) -70 400 16.3 7.01 2.85 0.00 3.5
A

Well Number: <u>PZ-22</u>

SAMPLE APPEARANCE	Turbidity		Color Brown Clear	
Initial Volumes	High	<u>_B</u> 1		
Final Volumes	Low	<u>_Cl</u>	ear	Yes
SAMPLES COLLECTED	Sample List:			
, ID	Analysis	Quantity	Volume	
PZ-22	8260,8270	2,2	140ml/16	
				¥
·				
PUMPING RATES				
Average Purger	mL/min Avera	age Sampling_	mL/min	
OTHER READINGS				
DO (mg/L)	PID (ppm) _	.:	CO ₂ (mg/L) _	
** The Project Manager will ins COMMENTS (difficulties, cond	· · · · · · · · · · · · · · · · · · ·	which dispos	al method is appl	icable.
		//	0/ / 1	
5/ight shen in	bucket from the	nell. Also	Aushed ort	_
flow through rell, b	ut did not help turi	bidity. Hz	0 was fairly	
clear after 1st ve	olume, even though vea	ding turb i	shigh Did r	704
dimanc Plan roll	Sampled @ 14:	30 0 7/26	loc	
Thomas is a son thu		con 11 ex V	700	_

	Client	: ISH/NYSEG	Site:_	Norwell	14		
Persor	nnel: ASB	Weatl	ner: hot, parte	411wdes	Date: 1-21	<u>v-05</u>	
Casing inner	PARAMETER diameter (gal/fo (0.16)	\mathbf{S})5	" (1.02)	_\"_Other_		
Depth of well Water level fr Feet of water NAPL level fr NAPL thickne	rom top of casi	sing ng ng(if present)	Previous Rep	15.0 7.1 7.	18 86 Type		
Purging Meth Sampling Met	od: Pe	r water X gal/r ris. Pump ris. Pump	Bailer Bailer	Pos. Pun	np (Grundfos) np (Grundfos)	32 ~ 0.35a Other Other	.l - -
Type of Tubin	Tygor Teflor		Pumphead	Down	O-155a	0.15 sal 1 3700mu: Sal = 3.7 min = 1	1 mm =
Bailer Type:	Teflon	1 2	Stainless Steel		Disposable	- , 230 .0. 230	
Time : 6 : 8 : 23 : 27 : 3 : 34	PARAMETE Volume (gallons) 0 (0 0) 05 (0 15) 1.0 (0 3) 1.5 (0 45) 2.0 (0 6) 2.5 (.75) 3.0 (.90)	Eh (mV) 174 162 162 164 169 175 182	Turbidity (NTU) 944.0 949.0 949.0 443.0 384.0 360.0	Temp (°C) 15.08 15.17 15.02 15.02 15.25 15.25	pH (SU) 7.39 7.35 6.16 6.82 6.17 6.75 6.73	Conductivity (indicate units	De
•	between final (st)/ ((highest -	_		0.13%	5.91.	5.3%	

SAMPLE APPEARANCE	Turbidity	Color	Odor
Initial Volumes	Vinish	brown	none
Final Volumes	moderate-low	light brown	_none_
SAMPLES COLLECTED	Sample List:		
ID	Analysis	Quantity Volume	
NO-P223		2 40ml	
y	TLL SVOCS	2 14	
English to the second s			
PUMPING RATES		G 11 T /	
Average Purge \50 ml	L/min Averag	e Sampling mL/r	nın
OTHER READINGS			
DO (mg/L)	PID (ppm)	CO ₂ (mg/I	L)
*	(1 / <u></u>		<i>'</i>
PURGE WATER DISPOSAL	4		
On-site storage pending an	alysis 🖊		
Relinquished to licensed has	auler		
Discharge in sewer (previous	ous analysis completed) _		
Discharge on ground (prev	rious analysis completed)	· 	•
** The Duringt Manager will instru	not the Field Toom on to r	ribioh diamonal mathadia	
** The Project Manager will instr	uct the Field Team as to A	vilicii disposai illediod is a	аррисавіе.
COMMENTS (difficulties, condi-	tion of casing, etc.)		
. 			· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	*ئور	. 45	
2 			

Well Number: 72-24

	Client: \SH/NYSE	Site: 1	lorwich, N	4		
Personnel:_A	3B Weath	er: hot, bire	:24	Date: 7/25/	05	
PUMPING PARAM Casing inner diameter 2" (0.16))5"	(1.02)	1'` Other_ (c	2.040	
Height of casing refer Depth of well from to Water level from top Feet of water in casin NAPL level from top NAPL thickness	op of casing of casing g of casing(if present)	Previous Repor	19.38 28.9.3 9.3	3 10.00 88 Type:		
Min gallons of purge Purging Method: Sampling Method:	(feet of water X gal/ft Peris. Pump Peris. Pump	X 3 well vols.) Bailer Bailer	Pos. Pump	(Grundfos) (Grundfos)	OtherOther	
Type of Tubing:	Tygon Teflon Polyethylene	Pumphead	Downh	ole 1/2 vol = 6 0.2 sal _ 	$\frac{3700}{150mm} = 4.9$	l
Bailer Type:T	eflon S	tainless Steel		isposable	5min	
	ne Eh ns) (mV) 0) 40 2) 80 4) 67 6) 54 0) 52 2) 49	Turbidity (NTU) 944.0 934.0 781.0 726.0 640.0 638.0	Temp (°C) 14.41 13.45 13.37 13.28 13.26 13.16	(SU) (1.94 (1.70) (1.62) (1.40) (1.58) (1.57) (1.57)	1.64	43
% Difference between (highest-lowest)/ ((hi	_		2.21.	1.67.	0.54%	

Well Sampling Data Sheet Well Number: Pz-29

SAMPLE APPEARANCE Initial Volumes Final Volumes	Turbidity moderate 10W	Color gray Usar	Odor 5 trong 5 trong
SAMPLES COLLECTED	Sample List:		
ID	Analysis Q	uantity Volume	
NO-PZZ4		2 40m1	
		2 16	
ays AID-P224 DUP	Tc2 VO65		
	 ·		
PUMPING RATES			
Average Purge 150 ml	/min Average S	ampling mL/mi	n
OTHER READINGS	PID (nnm)	CO ₂ (mg/L)	
DO (mg/L)	PID (ppm)	CO2(IIIg/L)	
PURGE WATER DISPOSAL			
On-site storage pending an	alysis _ x		
Relinquished to licensed ha	in the second se		
	us analysis completed)	_	
Discharge on ground (prev	ious analysis completed)	<u> </u>	
** The Project Manager will instru	uct the Field Team as to whi	ch disposal method is an	nlicable
	A STA	en disposar mediod is ap	pineable.
COMMENTS (difficulties, condit	ion of casing, etc.)	•	
			* * , * ,
	·		·
-	<u> </u>		
		<u> </u>	
<i>X</i>			

Well Number: <u>PZ-25</u>

	Client: 1511/N45E	G Site:	Norwich, N9	
	Client: /S///N45E Personnel: 7]/AU Weat	her: Sinny -	<u>85-0</u> Date: 7-25	-05
	PUMPING PARAMETERS Casing inner diameter (gal/foot): 2" (0.16) 4" (0.65)			
	Height of casing reference above grade Depth of well from top of casing Water level from top of casing Feet of water in casing NAPL level from top of casing(if present) NAPL thickness Min gallons of purge (feet of water X gal/f	Previous Repo	19.75 9.50 10.25 N/A 10/A	Ref. Location
	Purging Method: Yeris. Pump Sampling Method: Peris. Pump	Bailer Bailer	Pos. Pump (Grundfos) Pos. Pump (Grundfos)	Other Other
	Type of Tubing: Tygon Teflon Silicon Polyethylene	Pumphead		1991 : 150 mln
	Bailer Type:Teflon	Stainless Steel		=5.18 min
16:21	CHEMICAL PARAMETERS Time Volume Ehopp (gallons) (mV) 6	Turbidity (NTU) 0 176 121 90.5 81.2 79.5 104.0	Temp pH (°C) (SU) 15.7 7.38 14.2 6.80 14.0 6.80 14.4 6.81 14.4 6.83 13.7 6.89	M S/cm Conductivity DO (indicate units) 1.74 4/.82 1.84 0.00 1.84 0.00 1.84 0.00 1.84 0.00 1.84 0.00

Sheet 2 of 2

Well Sampling Data Sheet

SAMPLE APPEARANCE Initial Volumes Final Volumes	Turbidity High Low	Colo Brou Clea	M	Odor -None(5)
SAMPLES COLLECTED	Sample List:			
ID P7-25	Analysis 8260 8270	Quantity 2, 2	Volume 40mk // L	
PUMPING RATES				100
Average Purge mL/n	min Averag	e Sampling	mL/min	
OTHER READINGS DO (mg/L)	PID (ppm)		CO ₂ (mg/L)	
On-site storage pending analy Relinquished to licensed haul Discharge in sewer (previous Discharge on ground (previous	lers analysis completed)			
** The Project Manager will instruc	t the Field Team as to v	which disposal	method is applie	cable.
COMMENTS (difficulties, conditio	n of casing, etc.)			
At beginning of purg flow through cell to correct turbidity. Slight shown noticed	forced me to de Collected sample (ean it out	to get	- - -

(highest-lowest)/ ((highest + lowest)/2)

Well Sampling Data Sheet

Client: ISHA YSEL	Site: 1	Norwich, NY	
Personnel: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	er: Clary, w	arm Date: 7/2	<u> 2510</u> 5
PUMPING PARAMETERS Casing inner diameter (gal/foot): 2" (0.16) 4" (0.65)	5"	(1.02)	0.04
Height of casing reference above grade Depth of well from top of casing Water level from top of casing Feet of water in casing NAPL level from top of casing(if present) NAPL thickness Min gallons of purge (feet of water X gal/ft	Previous Repo	23./5 10.12 13.03 N/A Typ	
Purging Method: Sampling Method: Peris. Pump Peris. Pump	Bailer Bailer	Pos. Pump (Grundfos) Pos. Pump (Grundfos) Downhole	OtherOther
Type of Tubing: Tygon Feflon Silican Polyethylene Bailer Type:TeflonSt	Pumphead ainless Steel		Sal = 150 ml
CHEMICAL PARAMETERS Time Volume Eh (gallons) (mV) 09:19	Turbidity (NTU) 975 -115 -211	CEP Temp + 198 pH (°C) (SU))4.7 6.84)4.3 6.80 14.2 6.77 14.2 6.74 14.1 4.74 14.0 6.74 14.0 6.75	

SAMPLE APPEARANCE	Turbidity	Col		Odor
Initial Volumes Final Volumes	Mod 2000	1370 L	ar	None
rmai volumes		<u> </u>	<u> </u>	work.
SAMPLES COLLECTED	Sample List:_			
ID	Analysis	Quantity	Volume	
PZ-24	\$260, 8270	2, 2	40, 12	
				
 				
PUMPING RATES				
Average Purge	_ mL/min Averag	ge Sampling	mL/min	
OTHER READINGS				
DO (mg/L)	PID (ppm)		CO ₂ (mg/L)	
	g analysis ed hauler evious analysis completed) _ previous analysis completed) nstruct the Field Team as to		method is appli	cable.
COMMENTS (difficulties, co	ondition of casing, etc.)			
Sample time	09:50			_
,				
		•		_
	ps.	. 45		_
				_
	*	•		

(highest-lowest)/ ((highest + lowest)/2)

Well Sampling Data Sheet

Well Number: <u>P2-27</u>

Client: 15H/NYSE	6 Site:	Narwick, NY	
Personnel: TI/AB Weath	er: Cloudy,	Narial, NY Warn Date: 7/25	105
PUMPING PARAMETERS Casing inner diameter (gal/foot):2" (0.16)4" (0.65)		(1.02) / Other_	
Height of casing reference above grade Depth of well from top of casing Water level from top of casing Feet of water in casing NAPL level from top of casing(if present) NAPL thickness Min gallons of purge (feet of water X gal/ft	Previous Repo	23.48 9.30 14.18 N/A Type:	
Purging Method: Peris. Pump Sampling Method: Peris. Pump	Bailer Bailer	Pos. Pump (Grundfos) Pos. Pump (Grundfos)	Other Other
Type of Tubing: Tygon Teflon 57/1000 Polyethylene	Pumphead	Downhole 1/2 vol 2	0.29 1 (3760m (1 150m) 99 (min
Bailer Type:TeflonS	tainless Steel	Disposable	=7.15 min
Time Volume Eh ORP (gallons) (mV) 10:47 0.00(0.00) +27 10:52 0.5 (0.24) +23 10:58 1 0.58) +37 11:05 1.5 (0.81) +49 11:10 25 (1.45) +70 11:23 3 (1.74) +78 11:30 3.5 (2.03) +85 4 (2.32) 4.5 (2.10) % Difference between final 3 readings:	Turbidity (NTU) 999 999 671 500 125 83.7 126 171	TDS: 0.269,0.483 Temp pH (°C) (SU) 14.5 7.65 14.8 7.65 14.7 7.25 14.7 7.22 15.2 7.24 15.1 7.25	Conductivity Do (indicate units) 0.418 0.451 0.00 0.587 0.00 0.638 0.00 0.716 0.00 0.750 0.00 0.751 0.00

Well Sampling Data Sheet Well Number: P2-27

SAMPLE APPEARANCE	Turbidity	Co	lor	Odor
Initial Volumes	High	Br	our	None
Final Volumes	Low	_CL	oar_	Work
SAMPLES COLLECTED	Sample List:			
ID	Analysis	Quantity	Volumę	
PZ-27		$\frac{2}{2}$		
			////	
,				
			·	
PUMPING RATES				
Average Purge	_mL/min Avera	age Sampling_	mL/min	
OTHER READINGS				
DO (mg/L)	PID (ppm)		CO ₂ (mg/L)	
PURGE WATER DISPOSAI	L *			
On-site storage pending	g analysis			
Relinquished to license	· T			
	evious analysis completed)			
Discharge on ground (p	previous analysis completed)		
** The Project Manager will in	estruct the Field Team as to	which dispose	l mathad is anni:	anhla
	V	winen disposa	i method is appli	Cable.
COMMENTS (difficulties, co	ndition of casing, etc.)			
	, ,			
Sampled @ 11:	35 7/25/05			_
				_
	24*			
. *				_
	*			

Well Sampling Data Sheet Well Number: Pz 28

	Client	: ISHINYSEG	Site:_	Norwice	h, NY		
Perso	nnel: A\B	_ Weath	er: warm, he	a ty	Date: 1-26	-05	
Casing inner	PARAMETERS diameter (gal/fo " (0.16)		breezy	" (1.02)	Other	w. <u>041)</u>	
Depth of wel Water level f Feet of water NAPL level f NAPL thickn	from top of casin	sing ng ng(if present)	Previous Report	- - - -	Measured Depth 10.19 10.99 Type:		
Purging Meth Sampling Me	nod: Per	water X gai/ft ris. Pump ris. Pump	Bailer Bailer	Pos.	Pump (Grundfos) Pump (Grundfos)	OtherOther	5'
Type of Tubi	ng: Tygon Teflon Polyet		Pumphead	I - - -	Downhole 1/2 vol	= 0.25 <u>3700</u> m; + (5	ori
Bailer Type:	Teflon	S	tainless Steel	_	Disposable	Omn	
CHEMICAL Time 15:02 15:08 15:16 15:22 15:32 15:37	PARAMETE Volume (gallons) 0 (0.0) 0.5 (0.75) 1.0 (0.5) 1.5 (0.75) 2.0 (1.0) 2.5 U.25) 3.0 (1.5)	Eh (mV) 55 34 17 22 10 4 -0	Turbidity (NTU) -10.0 999.0 278.0 999.0 309.0	Temp (°C) 15.69 15.11 14.16 13.97 13.22 13.09	6.68 6.57 6.58 6.56 6.55	Conductivity (indicate units) 1.50 1.56 1.57 1.58 1.57	7.57 5.03 3.83 3.86 3.51 3.22 3.05
	between final 3 st)/ ((highest +	_		1.3%	4.6%	0.63%	

Well Sampling Data Sheet Well Number: 72-28

SAMPLE APPEARANCE	Turbidity	Co	lor	Odor
Initial Volumes	V. Nigh	bro	lun_	<u>n</u> one
Final Volumes	low	<u></u>	car	Slight
SAMPLES COLLECTED	Sample List:	:		
ID	Analysis	Quantity	Volume	
NO-P38	TCL VOCS	_ 2	40 ml	
	Tel svocs	1	16	
		· · ·		
	:			
PUMPING RATES				
Average Purge 150 m	L/min Aver	age Sampling_	mL/min	
OTHER READINGS				
DO (mg/L)	PID (ppm) _		CO ₂ (mg/L)	
DO (mg/L)	1 1D (ppin) _			
PURGE WATER DISPOSAL	s			
On-site storage pending an	alysis <u>X</u>			
Relinquished to licensed h				
Discharge in sewer (previous				
Discharge on ground (prev	vious analysis completed	i)		
** The Project Manager will instr	not the Field Team as to	o which dispose	al method is ann	licable
The Project Manager will fish	det the Fred Team as to	o winch dispose	ir mediod is app	icable.
COMMENTS (difficulties, condi	tion of casing, etc.)		* * * * * * * * * * * * * * * * * * * *	
* 1		,	14.1 (c) 4.1	4
First attempt to	purce failed du	e to heave	1 Sediment	in the second
•			-	
(S:1+) clossing the	every. A viges	PIECE OF TH	boing was	_
used and worked.				_
		"		
*	3			
4				

Water Level Work Sheet

Site: Norwich

Date: 12 5 05

	7 (- 1.5 -		.010			
1	Well Number	Depth to Bottom	Depth to Water	Feet of Water	Depth to NAPL	PID
	PZ-35	14.64	7.15			_
	PE 34	15.42	8.11			
	P233	18.56	8.94			
	PZ32	17.47	7.23			
	PZ38	16.55	7.22			
	PZ37	15.51	6.69			_
	P236	15.60	7.87			
	P231	15.56	6.71			
	PZ30	15.53	5.39			
	P= 29	15.10	5.05			
,	PE14	(7.19	5.90			,
	PE23	15.72	6.94			·
	PZ 20	18.74	9.65			
	PZ21	17.84	7.23			
withle signs	P 222	17.71	6.58	,		
'ador	PZ39	15.47	5.40			
	P217	15.18	9,32			
	PZ16	14.98	10.30			
	GW91-7	10.71	9.11	1.40		
	PE12	23.13	8.67			
	PE27	23.41	8.61			
	P&26	23.02	9.41			
	PEIL	18.58	9.13			
bailer -	- GW91-6	13.71	6.97	6.74		

I bailor full of water

built remand Ghol-14

15.81

6.68

9.13

Water Level Work Sheet

GW04-16

Site: NORWICH

Date: 1210105

	Well Number	Depth to Bottom	Depth to Water	Feet of Water	Depth to NAPL	PID
	P207	19.46	7.75			
	P208	19.66	6.72			
	PtB	17.10	5.18			
	P219	18.03	5.58			
	PEZB	17.27	5.14			
	P#25	20.15	8.84			
	PZ24	20.27	9.35			
	P709	Not measured	6.50		NAPL presen	t when sampling
no jely	409 -GW9Z-11sh	9.90	7.51	2.39		
hailer removed	GW92-11D	19.39	7.12	12.27		
	. 12201	20.57	7.61			
ship are /	PZ05	21.61	g.59			
	P203	18.26	8.62			
	- PEOA	16.53	7.09	_		
bailer -	-GW92-12	12.54	3.85	8-69		
•	GW91-5	couldn't loc	ate (mud an	nd leaves t	parted con)	
	P213	14.77	6.40		,	
bailer removed	-GW92.8	12.62	6.28	6.34		
Lemon	P210	18.68	6.30			
	P215	19.29	5.81		o.e.	
	GW92-13	14.88	6.21	8.67		
	GW91-40	20.06	10.81	9.25		
	Gw91-45h	15.58	11.71	3.87		
	P202	14.58	9.27			,
	P201	16.86	9.10		Trace DAG	ape on probe

12.29

Well Number: Existing Well

	Client:_	ISH MYSES		Notwi	ch, My	
Personnel: <u>埃</u>	2/ LM6	Weath	ner: very cold,	lear	Date:	12/14/05
PUMPING PARAM Casing inner diamete 	r (gal/foo			" (1.02)		Other
Height of casing refe Depth of well from to Water level from top Feet of water in casin NAPL level from top NAPL thickness	op of casing of casing of casing of casing	ng g(if present)	Previous Rep		13.61 9.35 6.36	Type:
Min gallons of purge						•
Purging Method: Sampling Method:	<u> </u>	s. Pump s. Pump	Bailer Bailer		. Pump (Grur . Pump (Grur	ndfos) Other
Type of Tubing:	Tygon Teflon Polyethy	vlene	Pumphead		Downhole	$0.81 g \propto \frac{3750 \text{ m}}{9} \cdot \frac{15}{15}$
Bailer Type:T	Teflon	s	Stainless Steel		Disposa	ble
8:44 0.5(me ons) 0.51\ 0.51\ 5.3\ 0.04\ 0.55\	S Eh (mV)	Turbidity (NTU)	Temp (°C)	pH (SU)	

Well Number: Existing Woll

SAMPLE APPEARANCE	Turbidity	Co	olor	Odor
Initial Volumes	high	da	14 gray	MGP Waste
Final Volumes	<u>lau</u>		<u> </u>	MGP waste
SAMPLES COLLECTED	Sample List:_	9:55		
ID	Analysis	Quantity	Volume	
NO-Existing Well	TCL VOGS	_2_	40 mL	
20.3	TCL SVOGS	2	1000 mL	
	(yanide		250 mL	
·				
		,		
	•			
PUMPING RATES				
Average Purge \\ \ \ mL/	min Averag	ge Sampling_	158 mL/mi	n
OTHER READINGS				
DO (mg/L)	PID (ppm)		$CO_2 (mg/L)$	
PURGE WATER DISPOSAL				
On-site storage pending anal	ysis			
Relinquished to licensed hau	ıler			
Discharge in sewer (previou	s analysis completed) _			
Discharge on ground (previous	ous analysis completed)			
** The Project Manager will instruc	ct the Field Team as to	which dispos	al method is ap	plicable.
COMMENTS (difficulties, condition	on of casing, etc.)			
CONTINUE (15 (Continue), continue	or cg,,			
1		, ,		
No water quality	readings taken A	we or t	rizen water	<u>r </u>
No water quality a	red 3 well volve	mes theo	Samded	
	ð	· · · · · · · · · · · · · · · · · · ·	7	

(highest-lowest)/ ((highest + lowest)/2)

Well Sampling Data Sheet

Well Number: Gwq1-45

	Client	: Ish/Ms&	Site:_	Nowich, 1	<i>y</i>		
Person	nel: KG/LM	<u>خ</u> Wea	other: cdd dea	<u>~</u>	Date: 17/	13/05	
Casing inner of	ARAMETER liameter (gal/f (0.16)	oot):	65) 5"	(1.02)	Other		
Depth of well Water level from Feet of water NAPL level from NAPL thickne	rom top of cas	nsing ng ing(if present	Previous Repo		.58 .71 .87 Typ	Ref. Location e:	
Purging Metho	od: X Pe hod: X Pe ng: Tygor	eris. Pump eris. Pump	Pumphead	Pos. Pur	mp (Grundfos) mp (Grundfos)	Other O.31 2 2 3700 ml	1 min
Bailer Type:	·	n thylene	Stainless Steel		X Disposable	~ 8 mins.	
CHEMICAL	PARAMETE Volume (gallons) 0(v) 0.5(0.3)) 1(0.62) 1.5(0.93) 2(1.34)	Eh (mV) 117 150 171 140	Turbidity (NTU) AHA 109 AA.4 12.4 8.6	Temp (°C) 3.78 6.09 6.15 6.13	pH (SU) 6.47 5.80 6.03 6.00	Conductivity (indicate units) 0.194 0.162 0.162 0.161 0.162	D. 1.13 0.41 0.09 0.05
% Difference	hetween final	3 readings:		0 34	n 7el		

Well Number: 6491-045

Turbidity Color SAMPLE APPEARANCE Odor **Initial Volumes** E/801 Final Volumes Sample List: 440 SAMPLES COLLECTED ID **Analysis** Quantity Volume NO-6W91-04 TCL VOLA 40 ml TCL 5416 m on Cymide In RIG **PUMPING RATES** Average Purge M mL/min Average Sampling 150 mL/min OTHER READINGS PID (ppm) DO (mg/L) CO₂ (mg/L) **PURGE WATER DISPOSAL** On-site storage pending analysis Relinquished to licensed hauler Discharge in sewer (previous analysis completed) Discharge on ground (previous analysis completed) ** The Project Manager will instruct the Field Team as to which disposal method is applicable. **COMMENTS** (difficulties, condition of casing, etc.) Fr.

Well Number: <u>GW91-4</u>D

	Client	: Ish/mys	جح Site:_	NORWICH	<u> </u>		
Person	nnel: LMG	Wea	ather: very c	old -3.F	Date: 17[1]	7(15	
Casing inner of	ARAMETER diameter (gal/f ' (0.16)	S		" (1.02)	Other_		
Depth of well Water level fr Feet of water NAPL level fr NAPL thickne	rom top of cas	nsing ng ing(if present	Previous Rep	<u>10.</u> 	8) 25 Type		n
Purging Meth Sampling Met	od:Pe	eris. Pump eris. Pump	Bailer Bailer	Pos. Pun	np (Grundfos) np (Grundfos)	✓ Other Ы ✓ Other Ы	
Type of Tubir	Tygor Teflor		Pumphead	Down	nhole Yzvo @	l= 0.75 q. 150 m/n -18 mi	~ ~ ~
Bailer Type:	Teflon		_Stainless Steel	·	Disposable		
CHEMICAL Time 3:30 3:45 3:06 3:24 3:43 4:10	PARAMETE Volume (gallons) 0 (a) 0.5 (0.75) 1 (1.5) 1.5 (2.35) 3.5 (3.75)	ERS Eh (mV) 134 38 70 41 20 9	Turbidity (NTU) 223 193 177 86 61.9 59.6	Temp (°C) 6.92 5.9 5.9 5.9 5.9	pH (SU) 6.4/ 6.55 6.55 6.56 6.55	785	Da
	between final st)/ ((highest -	_		3.4%	£ %.	0.5%	

\$ 700

Well Sampling Data Sheet

Well Number: <u>Gw91-4</u>Q

SAMPLE APPEARANCE Initial Volumes Final Volumes	ret _e s	Turbidity low	<u>\(\lambda \) \</u>	olor Lac	Odor MGP Waste MGB Waste
riliai volumes				*************************************	MGN WAY
SAMPLES COLLECTED		Sample List	:_ પ્યાંડ		
1D No-6w91-40	TO	nalysis L voca L svoca y anide	Quantity a	Volume 10 mL 100 mL 250 ml	
PUMPING RATES Average Purge_\5\	mL/min	Ave	rage Sampling_	1/50 mL/mi	n
OTHER READINGS					
DO (mg/L)		PID (ppm)		$CO_2 (mg/L)$	
PURGE WATER DISPOS On-site storage pendi Relinquished to licen Discharge in sewer (Discharge on ground	ng analysis _ sed hauler previous analy	ysis completed)			
** The Project Manager will	instruct the I	Field Team as 1	to which dispos	al method is ap	plicable.
COMMENTS (difficulties,	condition of c	asing, etc.)		٠٠.	
	्री हैं है है है है 				
	* :				

Well Number: 6491-6

reisonnei	LMG W	eather: Very Col	d (-8F)	Date: 1711	<u>410</u> 5	
PUMPING PARAL Casing inner diameter 2" (0.1		clear, 6" of one of the one of th	•	Other_	<u>.</u>	
Height of coging and	foranca aboya grada	Previous Rep	ort Mea	sured Depth	Ref. Location	
Height of casing ref	_					
Depth of well from	_	<u> </u>		<u>.71</u>		
Water level from to Feet of water in cas	-			·97 ·74		
	•			- _	٠.	
NAPL level from to NAPL thickness	op of casing(if presen			Type	e:	
NAPL unckness						
Min gallons of purg	ge (feet of water X g	al/ft X 3 well vols) 10.74×	0.16 = 1.1	301	
will gallons of parg	Approva-	d by DEC	·/ <u></u>	<u> </u>		
Purging Method:	Approva Y Peris. Pump			mp (Grundfos)		
Sampling Method:	Y Peris. Pump	Bailer	Pos. Pu	mp (Grundfos)	Other	
Type of Tubing:		Pumphead	Dov	vnhole Yz v	ol= 0.55 gal	
Type of Tuonig.	Tygon	Silicon	1501			
	Teflon				! 150 mc/nin = 13.5 min	
	Polyethylene			-	. <u>5.2 kg</u>	1
Bailer Type:	Teflon	Stainless Steel		_Disposable		
CHEMICAL PAR	AMETEDS			TOS	= 1.19lc	
	ume Eh	Turbidity	Temp	рH	Conductivity	Dir
(gal	lons) (mV)	(NTU)	(°C)	(SU)	(indicate units)	AIL
<u>8.36</u> <u>o(</u> 2	. 	145	12.1	6.64		0.87
	(0.55) - 76	<u>50.9</u>	11.7	6.61		$\cdot u$
	1.1) -44	25.6	11.2	6.43		.06
	<u>(1.65) -59</u>	20.5	11.4	6.68	+ + -	10.
9:34	2.2) -66	13.6	11.0	6.70	1.86 0	.03
	(2.75)					
						

Well Sampling Data Sheet Well Number: ムルタリーし

SAMPLE APPEARANCE Initial Volumes Final Volumes	Turbidity wod-l		olor Lacour	Odor mod ruspodo
SAMPLES COLLECTED	Sample Li	st:		
ID	Analysis	Quantity	Volume	
	^			
	· · · · · · · · · · · · · · · · · · ·			
	v - v			
PUMPING RATES	•			
Average Purge	mL/min Av	erage Sampling_	mL/min	1
OTHER READINGS				
DO (mg/L)	PID (ppm)	CO ₂ (mg/L)	
PURGE WATER DISPOSAL	,			
On-site storage pending	analysis			
Relinquished to licensed				
Discharge in sewer (pre	vious analysis complete	d)		
Discharge on ground (pr	revious analysis comple	ted)		
** The Project Manager will in	struct the Field Team as	s to which dispos	al method is app	olicable.
COMMENTS (difficulties, cor	ndition of casing, etc.)		•	
				· .*
			;	
	· ·			

Well Number: Gw91-7

Personnel: LMG Weat	ther: cold, c	Lear	Date: 12	8105	
PUMPING PARAMETERS Casing inner diameter (gal/foot): 2" (0.16) 4" (0.6)		" (1.02)	Other_		
Height of casing reference above grade	Previous Rep	ort Mea	sured Depth	Ref. Location	
Depth of well from top of casing			.71		
Water level from top of casing			· []		
Feet of water in casing			60		
NAPL level from top of casing(if present)				: :	
NAPL thickness				•	
Min gallons of purge (feet of water X gal/	ft X 3 well vols.)			
Purging Method: Peris. Pump Sampling Method: Peris. Pump	Bailer Bailer	X Pos. Pur	ploddlergu np (Grundfos) np (Grundfos)		
Type of Tubing:	Pumphead	Dow	nhole		
Tygon					
Teflon Polyethylone			<u> </u>		
Polyethylene			<u>, </u>		
Bailer Type:Teflon	Stainless Steel		Disposable		
CHEMICAL PARAMETERS				TDS=08	
Time Volume Eh	Turbidity	Temp	pН	Conductivity	A
$ \begin{array}{ccc} \text{(gallons)} & \text{(mV)} \\ \text{(§2)} & \text{(§3)} \end{array} $	(NTU) 448	(°C) 7. %	(SU) 7.21	(indicate units)	4,28
were dry ofter ~	1/3 gall				-
War was any 2012	7 <u>3 24</u> 0	sh revec	<u> </u>		
4					
					

Well Sampling Data Sheet Well Number: _____

SAMPLE APPEAR Initial Volumes Final Volumes	ANCE	Turbidity	<u>. </u>	olor 	Odor
SAMPLES COLLE	CTED	Sample L	ist:		
ID		Analysis	Quantity	Volume	
	<u> </u>				
				-	
		,			
					٠
PUMPING RATES					
Average Purg	ge mL/m	in A	verage Sampling	mL/min	
OTHER READING	S	·	٠.	:	
DO (mg/L) _		PID (ppm	n)	CO ₂ (mg/L) _	
Relinquished Discharge in Discharge on ** The Project Mana COMMENTS (diffic	ge pending analysis to licensed haule sewer (previous a ground (previous ger will instruct culties, condition	analysis completes analysis completes analysis completes the Field Team a of casing, etc.)	eted)s to which dispos	sal method is appl	_
				_	_
					_

Well Number: 64-93-8

	Client	IGH/NYSEG	Site:	Nowish, N	y _	
Personn	el: <u>Kb/LM(</u>	weatl	ner: Very co	ld, clear	Date: 12/14	1/05
PUMPING PA Casing inner di	ameter (gal/fo			5" (1.02)	Other_	
Height of casing Depth of well for Water level from Feet of water in NAPL level from NAPL thickness	from top of casing casing om top of casing c	ng ng(if present)	Previous Rej	13. 6. 5.	7 4 %3 Type	:
Min gallons of					•	
Purging Metho Sampling Meth		ris. Pump ris. Pump	Bailer Bailer		np (Grundfos) np (Grundfos)	Other Other
Type of Tubing	Tygor Teflor		PumpheadX	,	0. V	. = 0.47 g 17 x = 100 ml : 150 ~ ~ 12 mins
Bailer Type:	Teflon		Stainless Steel		Disposable	
CHEMICAL 1 Time 11:34 11:46 11:58 13:10 13:33	PARAMETE Volume (gallons) 0(6) 05(0.41) 1(0.94) 15(1.41) 2(1.86)	Eh (mV) -19 -38 -43 -48 -59	Turbidity (NTU) 138 22.6 19.6 16.5	Temp (°C) §:\$9 10.21 10.04 10.06	pH (SU) 6.61 6.60 6.60 6.59	Conductivity (indicate units) 0.790 0.813 0.818 0.819 0.809 0.818 0.00
% Difference by thighest-lowest		_		0.3%	1,6:0	0.1%

Well Number: 6w92-8

SAMPLE APPEARANCE	Turbidity	Co	or Odo	r
Initial Volumes	_ lon	Je	<u>r M6P </u>	Vad
Final Volumes				
SAMPLES COLLECTED	Sample Lis	t:		
ID	Analysis	Quantity	Volume	
NO- 6w92-8	TU VOG	2	40 ml	
7.00	TU SAU	7	1000 ml	
	Cymide	1	050 mL	
· .	<u> </u>			
DIMBING DATES				
PUMPING RATES Average Purge 150 m	I /min Ave	rage Sampling	sta mI/min	
Average Funge 150 in	L/IIIII Ave	rage Samping_	חוב/חוווו	
OTHER READINGS				
DO (mg/L)	PID (ppm)		CO ₂ (mg/L)	
	41 /		- (8 –)	
PURGE WATER DISPOSAL				
On-site storage pending ar	nalysis			
Relinquished to licensed h	auler			
Discharge in sewer (previous	ous analysis completed)		
Discharge on ground (prev	_	ed)		
** The Project Manager will instr		to which diamore	l mathad is amplicable	
The Project Manager will histi	uct the Field Team as	to which disposa	i method is applicable.	
COMMENTS (difficulties, condi	tion of casing, etc.)		*	
			,	
		-		
-				
	,			

Start

Well Sampling Data Sheet

Well Number: 6 W92-115h

	Client:	Ish/my	Site:_	Norwi	4	
Person	nel: LMG	Weat	her: v. colcl	(-7F)	Date: 12 14	Has
Casing inner d	ARAMETERS liameter (gal/foo (0.16)			' (1.02)	Other_	·
Depth of well Water level from Feet of water in	om top of casin	ing g	Previous Repo		Sured Depth 9.90 2.51 .39 Type	Ref. Location
Min gallons of Purging Metho Sampling Metho	od: X Per	water X gal/: Aparona is. Pump is. Pump	ft X 3 well vols. Bailer Bailer	Pos. Pur Pos. Pur	mp (Grundfos) mp (Grundfos)	Other
Type of Tubin	g: Tygon Teflon Polyeth	ylene	Pumphead Silium		vnhole Yz vo	0 m/nuh = 5 min
Bailer Type:	Teflon		Stainless Steel		_Disposable	
Time 12:16 12:18	PARAMETER Volume (gallons) 0 (0) 2(0.8)	Eh (mV)	Turbidity (NTU)	Temp (°C)	pH (SU)	Conductivity (indicate units)
	between final 3 t)/ ((highest +	_				

Well Number: 64-11sh

SAMPLE APPEARANCE	Turbidity	Co	olor	Odor
Initial Volumes	high	bre	<u> </u>	V.Slig
Final Volumes	Low	<u>_ </u>	a	NOME
SAMPLES COLLECTED	Sample List:	17:20		
ID	Analysis	Quantity	Volume	
NO. GW92-1154	TEL VOCS		40 ml	
	TEL SVOG		14	
	Total Co		Zoone	
\$				
. —				
				
 	The same			
PUMPING RATES	·	. 0 1	T / •	
Average Purge mL	/min Aver	age Sampling_	mL/min	
OTHER READINGS				
DO (mg/L)	PID (ppm)		CO ₂ (mg/L)	
DO (mg/ L)	112 (ppm) _	_	(Mg/L) _	
PURGE WATER DISPOSAL				
On-site storage pending ana	lysis 🍃			
Relinquished to licensed has	•			
Discharge in sewer (previous	as analysis completed)			
Discharge on ground (previ	ous analysis completed	d)		
			•	,
** The Project Manager will instru	ct the Field Team as to	o which dispos	al method is app	licable.
COMMENTS (difficulties, conditi	on of casing, etc.)			
,	2, ,			
				
			·	
				-
•				

Well Number: 6W92-11D

Client: Ish/NUSC	Site: No	rwich	
Personnel: Lug Weathe	r: <u>v. cold (-7</u>	F) Date: 12/14	20
PUMPING PARAMETERS Casing inner diameter (gal/foot): 2" (0.16) 4" (0.65)			
Height of casing reference above grade	Previous Report	Measured Depth	Ref. Location
Depth of well from top of casing		19.27	
Water level from top of casing	- Line	7.12	
Feet of water in casing		12.27	
NAPL level from top of casing(if present)	 		
NAPL thickness		Type.	
NAPL unchiess			
Min gallons of purge (feet of water X gal/ft X	X 3 well vols.) 12.2	7x0.16. 2ga	1
Purging Method: Peris. Pump	Pec Poiler Po	s. Pump (Grundfos)	Other
Sampling Method: Peris. Pump		s. Pump (Grundfos)	Other
Type of Tubing:	Pumphead	Downhole /z vo	
Tygon	Silicon	@ 150	o m/min
Teflon Polyethylene			25 min
1 oryettry tene			
Bailer Type:TeflonSta	ninless Steel	Disposable	= 1.2 9/6
CHEMICAL PARAMETERS		, 23	, , , ,
(gallons) (mV)	Turbidity Tem (NTU) $(^{\circ}C)$	(SU)	Conductivity (indicate units)
11:35 0(0) 121	7.88 -64.2 9.(1.87 2.97
11:45 0.5(1) 66	19.8 11.3		2.02 0.18
11:58 1(2) (3	18.3		2.05 0.12
1Z:11 1.5(3) <u>56</u>	18.6		2.06 0.07
12:23 2(4) 5	20.5		2.06 0.01
12:32 2.25(4.5) 51	<u> </u>	6.76	2.06 0.00
			
		<u></u>	
			
% Difference between final 3 readings: (highest-lowest)/ ((highest + lowest)/2)			

Well Number: Gw92-11D

SAMPLE APPEARANCE	Turbidity	Color	Odor
Initial Volumes	LOW	clear	v. sligha
Final Volumes	<u> </u>	<u> </u>	
SAMPLES COLLECTED	Sample List:		
ID	Analysis	Quantity Volume	e
NO-GW92-11D	Tel vog	2 40,	<u>n</u> C
<u> </u>	TCL SVOG		
	Total Gr	200	<u>_</u> L
			<u> </u>
			_
PUMPING RATES	7.1.	a 11	
Average Purge1	mL/min Avera	age Sampling ml	_/min
OTHER READINGS			
DO (mg/L)	PID (ppm)	CO ₂ (ms	g/L)
	1112 (ppin) _		
PURGE WATER DISPOSAL			
On-site storage pending	analysis 🗶		
Relinquished to licensed			
Discharge in sewer (prev	vious analysis completed)		
Discharge on ground (pr	evious analysis completed)	
•			
** The Project Manager will ins	truct the Field Team as to	which disposal method i	s applicable.
COMMENTS (difficulties, cond	dition of casing, etc.)	* :	
			<u> </u>
			
		-	

Well Number: <u>Gw9a-1a</u>

	Client:	Ish/NY.	ther: <u>cold</u> , <u>s</u>	Norwic	h_		
Persor	nnel: <u>LMG [6</u>	≤6 Wea	ther: cold, s	vnny	Date: 12/	12/05	
Casing inner	diameter (gal/fo	ot):					
<u>\ 2'</u>	" (0.16)	4" (0.0	55) 5	0" (1.02)	Other_		
			Previous Rep	oort Meas	ured Depth	Ref. Location	ı
•	ing reference ab	_					
-	from top of cas	_		<u> 13.</u>			
	rom top of casin	ıg		<u> 3.°</u>	.14		
Feet of water	in casing from top of casing	ng(if present				, ,•	
NAPL thickne	-	ng(n present			Type		
IVAL UNCKI	CSS						
Min gallons o	of purge (feet of	water X gal	ft X 3 well vols	1.) 9.14 x	0.16=1.	5 901	
Purging Meth	nod: Per	ris. Pump	Bailer	Pos. Pun	p (Grundfos)	Other	
Sampling Me		ris. Pump	Bailer		p (Grundfos)	Other_	- -
Type of Tubin	ng:		Pumphead	Down	nhole /z v	6 = 0.75 . 50 mc/m	g od
- -	Tygon				<u> </u>	150 m /	•
	Teflon Polyet					= 18.5	· .
	Tolycu	ily ictic			····	= 18.5	mis
Bailer Type:	Teflon		_Stainless Steel		Disposable		
CHEMICAL	PARAMETE:	RS					
Time	Volume	Eh (m.V.)	Turbidity	Temp	pH	Conductivity	20
13:20	(gallons)	(mV) 	(NTU) 3	(°C) 10.72	(SU) 7-41	(indicate units	2.129
13:38	0.5(0.75)	75	58.3	8.95	7.31	0.257	0.29
13:57	1(1.5)	-93	30.3	9.10	7.31	0.264	0.08
4:15	1.5 (2.25)		42.2	9.70	7.33	0.276	0.08
14:34	2(3.0)	- 9 9		9.25	7.34	0.276	0.00
			••••				
% Difference	between final 3	l readings:		1.1	45	1'1	
	est)/ ((highest +	•		0/·			

Well Number: <u>GW92-12</u>

SAM	PLE APPEARANCE	Turbidity	Co	lor	Odor
Initial	l Volumes	mid-10	w Argh	they cloudy	none
Final	Volumes	Cons		an language	none
SAM	PLES COLLECTED	Sample List:	14:40		
	ID	Analysis	Quantity	Volume	•
	NU-GW92-12	TU VOG	2.	40 mL	
	1	TCL SVOC	2	1 4	
	4	Total Go	1	200 mL	
	• • •				
PUM	PING RATES				
	Average Purge 150 mL	/min Avera	age Sampling_	150 mL/min	
ОТН	ER READINGS				
	DO (mg/L)	PID (ppm)		CO ₂ (mg/L)	
**	DO (mg/D)	110 (ppin) _		CO2 (Mg/L)	
PUR	GE WATER DISPOSAL				
	On-site storage pending ana	lysis 🗶			
	Relinquished to licensed has	uler			
	Discharge in sewer (previou	is analysis completed)			
	Discharge on ground (previ	ous analysis completed)		
		ernough the			٠.
** Th	ne Project Manager will instru	ct the Field Team as to	which disposa	d method is appli	cable.
COM	IMENTS (difficulties, conditi	on of casing, etc.)			
		3 , 113,			
	•				
					_
					-
	-				
					_

Well Number: Gw92-13

	Client: ISN/MY8EG	Site:_	Noewict	<u>t</u>		
Personnel:1	weath	er: very cold	~15 F	Date: 12/13	3/05	
PUMPING PARAM Casing inner diameter 2" (0.16	METERS er (gal/foot): b) 4" (0.65)		wis F win grown ear and s	ed Unvid Other_		
Height of ansing refe	oronos aboyo grado	Previous Rep	ort Meass	ured Depth	Ref. Location	l
Height of casing refe		. ———		<u> </u>	<u> </u>	
Depth of well from to	-		<u> 14.</u>			
Water level from top	_		<u>6.2</u> 8.0			
Feet of water in casis	•		_6.			
-	p of casing(if present)			1 ype	::	
NAPL thickness						
Min gallons of purge	e (feet of water X gal/ft	X 3 well vols	8.67× 0	16= 1.4 6	al	
Purging Method:	Approved L X Peris. Pump X Peris. Pump	DEC Bailer	Pos. Pum	p (Grundfos) p (Grundfos)	OtherOther	-
Type of Tubing:	Tygon	Pumphead	Down	hole /z v	01 = 0.7 qa 150 ml/v = 17 mi	٦ .
	Tygon Teflon	silian			120 ml/1	min
	Polyethylene		X		= 17 mi	2
Bailer Type:	ΓeflonSi	ainless Steel	·I	Disposable		
CHEMICAL PARA	METERS			TDS=	0.27916	
Time Volu		Turbidity	Temp	рН	Conductivity	Do
(gallo	. <i>V</i>	(NTU)	(°C)	(SU)	(indicate units) wa 11
15:10 0(0	. /- \ 	75.6	2.4	7.36	0.409	2.1
	(6.7) 109	15.8	8.1	7.26	0.365	5.4
	152	13.7	<u>8·1</u>	7.25	0.369	4.25
16:01 1.5	• • • • • • • • • • • • • • • • • • • •	17.7	8.1	7.28	0.388	2.78
16:18 2(2.8) 214	11.5	8.2	7.33	0.414	1.4
						7
% Difference betwee (highest-lowest)/ ((h	_		17-	<u>\v`/.</u>	11%	: : : : : : : : : : : : : : : : : : : :

Well Number: <u>6 w 9 2-13</u>

SAMPLE APPEARANCE	Turbidity	Co	lor	Odor
Initial Volumes	LOW	<u>cl</u>	ear	none
Final Volumes	<u>low</u>	<u></u>	ear_	none
SAMPLES COLLECTED	Sample List:	16:20		
ID	Analysis	Quantity	Volume	
NO-GW92-13	TZL VOCS	2	40ml	
	TCL SVOCS		16	
	Total Con	2 2 1	200 ml	•
in the second				
PUMPING RATES		- 9		
Average Purge 150 mL/r	nin Aver:	age Sampling	15 Oml/min	
Average Targem_m_r	111011			
OTHER READINGS				
DO (mg/L)	PID (ppm)	•	CO ₂ (mg/L)	
e #	_		_	
PURGE WATER DISPOSAL				
On-site storage pending analy	rsis X			
Relinquished to licensed haul	· · · · · · · · · · · · · · · · · · ·			
Discharge in sewer (previous				
Discharge on ground (previous	us analysis completed	1)		
** The Project Manager will instruct	the Field Team as to	which dienoe	al method is ann	licable
The Troject Manager will institute	the ricid ream as to	winen dispose	ii iiiciiod is appi	ileabie.
COMMENTS (difficulties, condition	n of casing, etc.)		, , ,	
				,
	•			
•				
	•			_
				_
				_

Well Number: <u>Gwol -14</u>

Person	inel: Lmg	Wea	ther: very color,	d (-8F)	Date: 12]1	4/05	
PUMPING P	ARAMETER	S	clear,	on a round			
Casing inner of		oot):		_			
<u>×</u> 2"	(0.16)	4" (0.6	5)	5" (1.02)	Other_		
Height of casi	na rafaranca s	hove grade	Previous Rep	port Meas	sured Depth	Ref. Location	
Depth of well	•	_		15.			
Water level fr	-	•		-	<u>68</u>		
Feet of water	-	 5			13		
NAPL level fi	Č	ing(if present)				e:	
NAPL thickne	-	mg(m presens)				·	
				-			
Min gallons o	f purge (feet o	f water X gal/	ft X 3 well vols	s.) 9.13×0	.16 = 1.59	<u>al</u>	
Durging Moth	od: V D	proved by eris. Pump	DEC Bailer	Dog Dur	nn (Crundfos)	Othor	
Purging Meth Sampling Met	thod: $\sum_{i=1}^{\infty} P(i)$	eris. Pump	Bailer		np (Grundfos) np (Grundfos)		
		r					1
Type of Tubir	-	_	Pumphead	Dow	nhole 12 voi	= 0.75 ga 50 me/nin = 1	18.5.
	Tygo: Teflo:					so mo man	- U
		thylene					
Bailer Type:	Teflon		Stainless Steel		Disposable		
CHENTICAL	TO A TO A WATEROOT	an C			·		
CHEMICAL Time	Volume	LKS - Eh	Turbidity	Temp	pН	Conductivity	120
1 1110	(gallons)	(mV)	(NTU)	(°C)	(SU)	(indicate units)	
8:10	0(0)	- 6 1	7199	11.18	6.78	1.17	0.3
8:25	0.5(0.75)	-117	90.2	11.07	6.79	1.18	0.00
8: 41035	1(1.5)	-133	33.4	10.69	6.78	1.18	OO. OO
(2000	1.5 (2.25)		24.7	10.58	6.75	<u>(.18</u>	0.00
8:53	.5(3)	-163	23.2	10.83	6.74	1.18	0.00
9:07							

Well Number: 6W01-14

SAMPLE APPEARANCE Initial Volumes Final Volumes	Turb		Color	Odor Strong Map adv
SAMPLES COLLECTED	Samp	le List:		,
ID	Analysis	Quantity	Volume	
	H			
PUMPING RATES			1	
Average Purge	mL/min	Average Sampling	g mL/mir	1
OTHER READINGS				
the state of the s	PID ((ppm)	CO ₂ (mg/L)	
PURGE WATER DISPOSAL				
On-site storage pending	analysis			
Relinquished to licensed				
Discharge in sewer (prev	vious analysis com	pleted)		
Discharge on ground (pr	evious analysis co	mpleted)		
** The Project Manager will ins	truct the Field Tea	am as to which dispo	osal method is app	olicable.
COMMENTS (difficulties, cond	dition of casing, et	tc.)		
	3 3 1 m			
				_
				_

start

Well Sampling Data Sheet

Well Number: GW04-16

	Client:	ISh/MYR	ارچ Site:_	NORWICH	+	
Personr	nel: LMG	Weat	her: <u>very col</u>	d ZF	Date: 12	13/05
PUMPING PA Casing inner di X_2"	iameter (gal/fo	oot):	~6" d, s.	•	Other	
Haight of oncin	a rafaranasiah	ovo grado	Previous Rep	oort Meas	sured Depth	Ref. Location
Height of casin		_		2-	·	ud from field U
Depth of well from	-	_	<u> </u>			no from Press of
Water level from	-	ıg			<u>.29</u>	
Feet of water in	•	ng(if present)		10	<u>. 71</u> · 15 ⊤yp	
NAPL level from	-	ng(n present)		_10		•
NAPL thicknes	SS					DNAPL - String Coated 14.
Min gallons of	nurge (feet of	water X gal/f	t X 3 well vols) 10.31 80		, ,
Min gallons of	US	ed peris. p	ump due =	to heavy	NAPL pre	unce
Purging Metho	od: X Pe	ris. Pump	Bailer	Pos. Pur	np (Grundfos)	Other
Sampling Meth	nod: X Pe	ris. Pump	Bailer		np (Grundfos)	
Type of Tubing	σ.		Pumphead	Dow	nhole 1/2 v	150 ml/min =
Type of Tuom	Tygon		silicon	Don		150 ml/min 3
	Teflon					
	Polyet	hylene		×	<u>. </u>	~21 min
Bailer Type:	Teflon		Stainless Steel		Disposable	
CHEMICAL	PARAMETE	RS				
Time	Volume	Eh	Turbidity	Temp	pН	Conductivity
	(gallons)	(mV)	(NTU)	(°C)	(SU)	(indicate units)
: 10:24	0 (0)		quality n		verd d	ve
	3 (5.1)	- 78 pr	ilmer of	NAPL		
	•		-			-
						
						
						
0/ D:cc)				
% Difference to (highest-lowest)		_				

Well Number: Gwo4-16

SAMPLE APPEARANCE	Turbidity	Color	Odor
Initial Volumes	high	brown	MGP odor
Final Volumes	Low	Clea	<u> </u>
SAMPLES COLLECTED	Sample List:	12:00	
ID	Analysis	Quantity	Volume
NO-GWO4-16	TCL VOG	_2_	40mc
	TLL SVOCS	_2_	16
	TotalCn		200 ml
NO-6404-16 dup	TEL VOCS	_2_	40m
***	TCL SVOG		16
<u>, , , , , , , , , , , , , , , , , , , </u>	Total (n		200 ml
· · · · · · · · · · · · · · · · · · ·	. — .		
	en et en		
PUMPING RATES		· · · · · · · · · · · · · · · · · · ·	· ••••
Average Purge 50 mL	/min Avera	ige Sampling 19	mL/min
OTHER READINGS			
DO (mg/L)	PID (ppm) _		CO ₂ (mg/L)
and the second of the second			
PURGE WATER DISPOSAL			
On-site storage pending ana	lysis X_ _		
Relinquished to licensed has	ıler		
Discharge in sewer (previou	is analysis completed) _		
Discharge on ground (previ-	ous analysis completed))	
** The Project Manager will instru	ct the Field Team as to	which disposal r	nethod is applicable.
COMMENTS (difficulties, conditi	on of casing, etc.)		
Continue (management)	on or cubing, cic.)		
	<u> </u>		

	-		

(highest-lowest)/ ((highest + lowest)/2)

Well Sampling Data Sheet

Well Number: PZ-0|

Person	nnel: <u>KG/LM</u>	W e	ather: wha de	,at	Date: 13/1	3 /05	
Casing inner	PARAMETER diameter (gal/t " (0.16)		.65)5	" (1.02)	Other	1" (0.041)	
			Previous Rep	ort Mea	sured Depth	Ref. Locati	on
Height of cas	ing reference a	bove grade				i	
Depth of well	l from top of c	asing	* * * *	16	.86		
Water level f	rom top of cas	ing	<u> </u>	<u> </u>	.10		
Feet of water	in casing			<u> 7.</u>	76		
NAPL level 1	from top of cas	sing(if presen	t)		Тур	e:	
NAPL thickn	iess						
Min gallons o	of purge (feet o	of water X ga	l/ft X 3 well vols.	7.76 20	SE. 0 -140.		
Purging Metl		eris. Pump	Bailer		mp (Grundfos)		
Sampling Me	ethod:P	eris. Pump	Bailer	Pos. Pu	mp (Grundfos)		
Type of Tubi	ino.		Pumphead	Dov	vnhole	rol. = 0.16	1
Type of Tub.	Tygo	n	X			b g 2 3700 m	- 150
	Teflo					•	. 130
	Polye	ethylene			<u> </u>	~ 4 mins	•
Bailer Type:	Teflon	-	_Stainless Steel		_Disposable		
СНЕМІСАІ	L PARAMET	RRS				TOS	= 1.4
Time	Volume	- Eh	Turbidity	Temp	pН	Conductivi	ty D
	(gallons)	(mV)	(NTU)	(°C)	(SU)	(indicate ur	nits)
10:3a	0(0)	337	59.7	8.0	<u>6.34</u>	3.78	۵.
10:36	0.5 (0.16)	326	31.8	8.7	6.50	<u> 2.48</u>	0.0
10:40	1 (0.32)	<u>-98</u>	20.9	9.1	6.54	<u>a.46</u>	0.66
10:44	1.5(0.48)	35	(FE) -7517.3	<u> </u>	6.55	<u>a.55</u>	0.40
10:48	. 5 (0.64)	~41	14.5	8.9	6.57	2.53	0.00
10:52	3.5 (0.80)	-43	\3.0	9.0	6.57	2. 53	0.00
·							

Well Number: P2-01

SAMPLE APPEARANCE	Turbidity	Colo	r	Odor
Initial Volumes	low	_de	N	MGP WO
Final Volumes	<u> </u> •w	clea	<u>r</u>	MGP Wes
SAMPLES COLLECTED	Sample List:	N:00		
ID	Analysis	Quantity	Volume	
10-9201	TCL VOG	5	40 ml	
	TCL SVOLS	7	NOO W	
10 to	Cyande	I	Ja. 026	
w.				
 				
PUMPING RATES				
Average Purge 🦏 mI	_/min Aver	age Sampling V	<u>mL/min</u>	
OFFICE DEADING				
OTHER READINGS	DID (nnm)		COn (ma/I)	
DO (mg/L)	PID (ppm) _		CO ₂ (mg/L) _	
PURGE WATER DISPOSAL				
On-site storage pending and	alvsis			
Relinquished to licensed ha				
Discharge in sewer (previo				
Discharge on ground (prev				
			et.	
** The Project Manager will instru	uct the Field Team as to	o which disposal	method is appl	icable.
COMMENTS (difficulties, condit	ion of casing etc.)	* : 	·: ·	*
CONTINIENTS (difficulties, condit	ion of casing, cic.)	\$		
·				<u> </u>
				_
		•	<u> </u>	_
		_		_

(highest-lowest)/((highest + lowest)/2)

Well Sampling Data Sheet

Well Number: PZ-02

	Client	t: Ish / NY4		Norwich, 1	<u> </u>		
Perso	onnel: KG/LA	№ Wea	ther: ven w	d, clear	Date: 13/13	105	
Casing inner	PARAMETER r diameter (gal/f 2" (0.16)		55)5	" (1.02)	<u> </u>	1" (0.041)	
Height of co	asing reference a	hove grade	Previous Rep	oort Mea	sured Depth	Ref. Locati	on
•	ell from top of ca	_		14	1.5%		
-	from top of casi	_		-	. <u>27</u>		
Feet of water	-	6			31		
	from top of cas	ing(if present))			e:	
NAPL thick	-	<i>5</i> (p/					•
Min gallons	of purge (feet o	of water X gal	ft X 3 well vols	.) <u>5.31 x (</u>	1.041 = 0.22		
Purging Me Sampling M		eris. Pump eris. Pump	Bailer Bailer		mp (Grundfos) mp (Grundfos)	Other_Other_	_
Type of Tub	Tygo: Teflo: Polye		Pumphead Stainless Steel	_	O.1	$vol. = 0.11 g$ $l g \times \frac{3700 m}{2}$ $\sim 3 mins.$	÷ 150
Bailer Type	:Teflon		_Statilless Steel		_Disposable	T 0/2 1	3
	L PARAMETE		773 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, m	**	TOS= 1.	
Time	Volume (gallons)	Eh (mV)	Turbidity (NTU)	Temp (°C)	pH (SU)	Conductivities (indicate un	
ጙ ፡ አ ይ	0(0)	701	_a\.q,	7.8	5.68	2.0%	5.89
B:31	0.5(0.11)	680	13.6	8.9	5.64	2.03	0.00
8:34	1 (0.23)	669	11.3	8.2	5.67	2.03	0.00
T:37	1.5 (0.33)	658	9.9	8.1	5.69	9.04	0.00
ব:40	·2(1.44)	648	8.9	8.5	5.68	2.04	000
							
% Difference	ce between final	3 readings:			0,4%	0.506	

Well Number: P2-02

SAMPLE APPEARANCE	Turbidity	Co	olor	Odor
Initial Volumes	low	راء_	ear_	M67 wast
Final Volumes	- Pru	_c.le	ar	MGP Wa
SAMPLES COLLECTED	Sample List:	8:50		
ID	Analysis	Quantity	Volume	
No-6500	TCL VOLS		40 mL	
	TCL SYOLS	2	1400 m	
	Cymide		250 mL	
PUMPING RATES				
Average Purge 150 m	L/min Aver	age Sampling	150 mL/m	nin
OTHER READINGS				
DO (mg/L)	PID (ppm) _		CO ₂ (mg/L	.)
DUD OF WAMED DIODOGAL				
PURGE WATER DISPOSAL	nolycic			
On-site storage pending ar Relinquished to licensed h				
Discharge in sewer (previo				
Discharge on ground (prev				
	•			
** The Project Manager will instr	ruct the Field Team as to	which dispos	al method is a	pplicable.
COMMENTS (difficulties, condi	tion of casing, etc.)			
	-			
		·		

Well Number: P303

	Client:	Ish/Mys	EG Site:_	Norwid			
Personn	nel: Lung	Weath	er: <u>Col I,</u>	clear (7'F	Date: 12[8]	<u>02</u>	
	ARAMETERS iameter (gal/foo (0.16))5	" (1.02)	∠ Other 1	" (p · 04))
Depth of well for Water level from Feet of water in NAPL level from NAPL thickness	om top of casing	ng g(if present)	Previous Rep	18· 8. 9.(<u>6</u> 2 <u>0</u> 4 Type:		
Purging Metho Sampling Meth	d: X Peris	s. Pump s. Pump	Bailer Bailer	Pos. Pun	np (Grundfos) np (Grundfos)	OtherOther	- -
Type of Tubing	g: Tygon Teflon Polyethy	ylene	Pumphead Silicon			0.29a e 150mly ~5mig	
Bailer Type:	Teflon	S	Stainless Steel	· ·	Disposable		,
	PARAMETER Volume (gallons) 0 (0) 0.5 (0.2) 1 (0.4) 1.5 (0.6) 7. (0.8)	Eh (mV) 235 180 115 WEL	~ 0.4 pump >999	Temp (°C) 11.1 10.8 9.6 2 10:4 9.10 810 810 9.7 10.3 9ain at	pH (SU) 7.28 7.14 Sayter Recorde	Conductivity (indicate units 0.480 0.505 0.516 0.516 0.520 0.521	DO m4/L 0.98 0.74 4.18
	between final 3 is: ((highest +	•					

Well Number: P2-03

SAMPLE APPEARANCE	Turbidity	Co	Color		
nitial Volumes	high	bro	wn	none	
Final Volumes					
SAMPLES COLLECTED	Sample List:	1530			
ID	Analysis	Quantity	Volume		
NO- PZ03	TCL VOCS	_ •	40 ml		
	TUSVOG	_	14		
	Totalon		200 mL		
	· · · · · · · · · · · · · · · · · · ·				
The second secon					
PUMPING RATES	/m:	0 1'			
Average Purge <u>uso</u> mI	_/min Avera	age Sampling_	150mL/min		
OTHER READINGS					
DO (mg/L)	PID (ppm)		CO ₂ (mg/L)		
	1 1D (ppin) _		CO2 (mg/L)		
PURGE WATER DISPOSAL					
On-site storage pending and	alvsis 🗴				
Relinquished to licensed ha					
Discharge in sewer (previous					
Discharge on ground (previ					
** The Project Manager will instru	act the Field Team as to	which disposa	al method is applic	cable.	
COMMENTS (difficulties, condit	ion of casing etc.)	* :			
SOMMENTE (announces, condit.	ion of casing, cic.)	* * * * * * * * * * * * * * * * * * * *	· *		
en e	· · · · · · · · · · · · · · · · · · ·		* * * * * * * * * * * * * * * * * * *		
				-	
#	# # # * * * * * * * * * * * * * * * * *	*		Ç+ 41 - 7	
				- : ;	
	A Company of the same			- ×	
					

Well Number: Pz-04

	Client	: Igh/MYSEL	Site:_	Notwich.	M	
Person	nel: KG/LM(<u>Weatl</u>	her: <u>(۵۵</u> , کس	<u>.</u>	Date: 12/13	1105
PUMPING PA Casing inner d			5)5	" (1.02)	_ Other_	1" (0.841)
Height of casin Depth of well Water level from Feet of water in NAPL level from NAPL thickne	from top of casion top of casion casing com top of casions	nsing ng ing(if present)	Previous Rep	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Тур	Ref. Location ——— e:
Min gallons of Purging Metho Sampling Methon	od: <u>L</u> Pe	eris. Pump	ft X 3 well vols BailerBailer	Pos. Pur	np (Grundfos) np (Grundfos)	Other Other
Type of Tubin	Tygor Teflor		PumpheadX	Dow	rnhole C	1.19 g x 3700 ml - 150 2.19 g x 3700 ml - 150
Bailer Type:	Teflon		Stainless Steel		Disposable	
CHEMICAL Time :43 :47 :53 :57 3:08	PARAMETE Volume (gallons) o(o) 0.5(0.14) 1 (0.31) 1.5 (0.57) 2 (0.76)	ERS Eh (mV) 38 103 148 140	Turbidity (NTU)	Temp (°C) 9.3 9.3 9.1 9.3	pH (SU) 7.24 6.74 6.66 6.64	Conductivity 0.0 (indicate units) 0.378 0.354 1.37 0.351 1.33 0.348 1.37
	between final st)/ ((highest -	•		17/0)*	<u>0</u> .3%	5.7%

Well Number: PZ-04

SAMPLE APPEARANCE		Turbidity	Co	lor	Odor
Initial Volumes		low	_ cla	ar	none
Final Volumes				C or	UANE
SAMPLES COLLECTED		Sample List:_	9:10		
ID	Ana	llysis	Quantity	Volume	
NO-P204		VOCS	2	40 mL	
1		5004	<u>a</u>	1000 ml	
		anide		2-50 ml	
	4.				
					
PUMPING RATES					
Average Purge 150	mL/min	Avera	ge Sampling_	/50 mL/min	
OTHER READINGS					
OTHER READINGS DO (mg/L)		PID (ppm)		CO ₂ (mg/L)	
DO (mg/L)	_	F1D (ppin)		CO2 (IIIg/L)	
PURGE WATER DISPOSA	AT.				
On-site storage pendi					
Relinquished to licens					
Discharge in sewer (p					
Discharge on ground		_			
** The Project Manager will	instruct the Fi	eld Team as to	which disposa	l method is appli	cable.
COMMENTS (difficulties, o	ondition of ca	sing etc)			:
COMMINATO (difficulties, c	ondition of ca	sing, cic.			
· •	4.5			the second	* 1
					_
					_
					_
					_
•	. 16				

Well Number: 7205

1.5%

0.5%

2%

Client: Ich/MYZG Site: NORWICH Date: 12 8 05 Personnel: LWG Weather: cold, clean **PUMPING PARAMETERS** Casing inner diameter (gal/foot): X Other 1" (0.041) 4" (0.65) 5" (1.02) 2" (0.16) Measured Depth Previous Report Ref. Location Height of casing reference above grade Depth of well from top of casing 21.61 8.59 Water level from top of casing 13.02 Feet of water in casing NAPL level from top of casing(if present) Type: NAPL thickness Min gallons of purge (feet of water X gal/ft X 3 well vols.) _13.02 x 0.04 [= 0.5 q2 [= 1 vo/ X Peris. Pump Purging Method: Pos. Pump (Grundfos) Bailer Other XPeris. Pump Bailer Pos. Pump (Grundfos) Sampling Method: Other Downhole Type of Tubing: Pumphead Tygon silicon **Teflon** Polyethylene Bailer Type: Teflon Stainless Steel Disposable TOS= 1.5 all CHEMICAL PARAMETERS **Turbidity** Conductivity Do Time Volume Eh Temp pН (indicate units) (gallons) (mV) (NTU) (°C) (SU) 6.73 0(0) 637 2 B0 2.44 11:24 2.08 6.66 2.24 11:30 0.5(0.25) 10 55.9 000 1 (0.5) 11:36 i l. 8 6.62 2.17 0.00 21 1.5 (0.35) 7.6 6.61 2.16 0.00 11:42 22 10.2 .2 (1.0) 2.16 0.00 6.61 5.2 11:48 22 10.2

% Difference between final 3 readings: (highest-lowest)/ ((highest + lowest)/2)

Well Number: PZOS

SAMPLE APPEARANCE	Turbidity	Co	lor	Odor
Initial Volumes	low		lear	Slight-
Final Volumes	Low		Iran	Sligh
SAMPLES COLLECTED	Sample List	11:55		
ID	Analysis	Quantity	Volume	
<u> </u>	TCL VOG	z	dome	
	TCL SVOG	~~	<u> </u>	
	Total Cn	1	200 ml	•
NO- PZ 05 due	TU VOCS		40mL	
	TCLSVOCS		14	
<u>\</u>	Total Cn	1	200 mL	•
The state of the s				
PUMPING RATES				
Average Purge 150 _mL/	min Aver	age Sampling_	150 mL/min	
OTHER READINGS				
DO (mg/L)	PID (ppm)		$CO_2(mg/L)$	
PURGE WATER DISPOSAL				
On-site storage pending anal	lysis <u>X</u>			
Relinquished to licensed hau	ıler			
Discharge in sewer (previou	s analysis completed)			
Discharge on ground (previous	ous analysis completed	i)		
		š , '	, , ,	
** The Project Manager will instruct		o which disposa	al method is appl	icable.
COMMENTS (difficulties, condition	on of casing etc.)			
	on casing, etc.)			
				\$,
			· }	
				_
				_
	1 ,			

Well Number: <u>Pその</u>

Client: Ish/1450	Site:_	Norwich	<u>t </u>		
Personnel: LMG Weath	er: cold,	clear	Date: 12 (05	
PUMPING PARAMETERS Casing inner diameter (gal/foot):2" (0.16)4" (0.65)	5	" (1.02)	X Other	1"(0.041)	
Height of casing reference above grade Depth of well from top of casing Water level from top of casing Feet of water in casing NAPL level from top of casing(if present) NAPL thickness Min gallons of purge (feet of water X gal/ft	Previous Rep	-20 -3 -12		Ref. Location	
Purging Method: Sampling Method: Yeris. Pump Peris. Pump	Bailer Bailer	Pos. Pun	np (Grundfos) np (Grundfos)	Other Other	
Type of Tubing: Tygon Teflon Polyethylene	Pumphead Sile Con		nhole /z v	50mL/min = 6 min	a _
Bailer Type:TeflonS	tainless Steel		Disposable	5=1·69/L	
CHEMICAL PARAMETERS Time Volume Eh (gallons) (mV) 14:33 0(0) 655 14:39 0.5(0.25) 634 14:45 1 (0.5) 633 14:51 1.5 (0.75) 631 14:57 2(1) 677	Turbidity (NTU) 539 78.3 25.9 42.6 38.2	Temp (°C) 9.3 10.0 10.1 10.4	pH (SU) 6.85 6.72 6.71 (6.70	Conductivity (indicate units) wo	υ. υ. υ.
% Difference between final 3 readings: (highest-lowest)/ ((highest + lowest)/2)		3 %	1.5 %		

Well Number: P206

SAMPLE APPEARANCE Initial Volumes Final Volumes	Turbidity		lor gray M	Odor <u>od. M</u> G
SAMPLES COLLECTED	Sample List:	15:00		
ID	Analysis	Quantity	Volume	
NO- P706		2	40 ml	
41.2	TCL SVOCS TOTAL CO		14	
	Total Con		200 mL	
· ·				
PUMPING RATES			3	
Average Purge 150 m	L/min Aver	age Sampling_	15 6 mL/min	
OTHER READINGS				
OTHER READINGS DO (mg/L)	PID (nnm)		CO ₂ (mg/L)	
DO (mg/L)	1 115 (ppin) _		CO2 (IIIg/L)	
PURGE WATER DISPOSAL				
On-site storage pending ar	nalysis <u>X</u>			
Relinquished to licensed h	auler			
Discharge in sewer (previous	ous analysis completed)			
Discharge on ground (prev	vious analysis completed	d)		
www.Tiles Dunings Management 11 in sec			.1	
** The Project Manager will instr		o winch disposa	ii memod is applica	bie.
COMMENTS (difficulties, condi	tion of casing, etc.)	,		
	·		<u> </u>	
	· · · · · · · · · · · · · · · · · · ·			
	4			

Well Number: **P2-7**

	Client	: <u>Ish/Nyse</u>	Site:	Norwich, N	1		
Person	nel: K6/lmu	• Weat	her: cold, su	404	Date: 12/8	/o s	
PUMPING P. Casing inner co			5) 5	i" (1.02)	Other_	1" (0.041)	
Height of casis Depth of well Water level from Feet of water NAPL level from NAPL thickness Min gallons of	from top of casi om top of casi in casing rom top of cas	nsing ng ing(if present)	Previous Rep	19	15ured Depth	Ref. Location e:	
Purging Methors Sampling Met	od: <u>×</u> Pe	eris. Pump eris. Pump	Bailer Bailer	Pos. Pu	mp (Grundfos) mp (Grundfos)	Other	
Type of Tubin	Tygor Teflor		Pumphead	Dov		$yol.=0.34$ $g \times \frac{3700 \text{ ml}}{3}$ $\sim 6 \text{ mins.}$	1 min
Bailer Type:	Teflon		Stainless Steel		_Disposable	TD5 = 1.6	
CHEMICAL Time 2:34 3:46 3:58 3:59	Volume (gallons) 0 (b) 0.5(0.24) 100.48) 1.5(0.76) 2 (00)	Eh (mV) 264 369 355 253 253	Turbidity (NTU) [31 63.2 58.9 53.7 53.3	Temp (°C) 10.7 11.5 11.3 11.4	pH (SU) 6.64 6.54 6.54 6.54	Conductivity (indicate units) 2.55 2.78 2.76 2.75 2.77	D. Q. 6.53 0.40 0.33 6.33 6.33
% Difference (highest-lowes	between final st)/ ((highest	•		18%	0%	0.7%	

Well Sampling Data Sheet Well Number: <u>P2-7</u>

	IPLE APPEARANCE	Turbidity		olor	Odor
	al Volumes	low		Ber	Dove
Fina	l Volumes	low		<u> </u>	none
SAN	IPLES COLLECTED	Sample Lis	st: <u>3:05</u>		
	ID	Analysis	Quantity	Volume	
	No-P27	TCL VOCS	2	40 ml	
		TCL SUCS		1000 ml	
	<u> </u>	Cyanide		250 mL	
	· · · · · ·				
		3 4 1 , 42)			
PUN	MPING RATES				
	Average Purge 150 m	nL/min Av	erage Sampling	160 mL/min	
	A Commence of the Commence of				
OTI	HER READINGS				
¢	DO (mg/L)	PID (ppm)		$CO_2 (mg/L)$	
PUR	On-site storage pending a Relinquished to licensed l Discharge in sewer (previ Discharge on ground (pre	naulerous analysis completed			*
** T	he Project Manager will inst	ruct the Field Team as	to which dispos	al method is appl	icable.
COI	MMENTS (difficulties, cond	ition of casing, etc.)			ag [™] , [†] #
			•		٠٠,
	: 			· · · · · · · · · · · · · · · · · · ·	
					_

Well Number: P2-08

	Client:	Ish/MYSEG	Site:	Nowich, M			
Personnel:_	KG/LMG	Weath	ner: cold, sum	y	Date: 18/2	5/05	
PUMPING PARA Casing inner diame2" (0.1	ter (gal/foo)5'	(1.02)	_K_Other_	<u>j" (0.041)</u>	
Height of casing re Depth of well from Water level from to Feet of water in cas NAPL level from to NAPL thickness Min gallons of pur	top of cas op of casing sing op of casin	ing g g(if present)	Previous Repo	19 12 	Sured Depth - 667694 Type	Ref. Location	
Purging Method: Sampling Method:	<u>γ</u> Per	is. Pump is. Pump	Bailer Bailer	Pos. Pur	np (Grundfos) np (Grundfos)	OtherOtherOtherOther	,
Type of Tubing:	Tygon Teflon Polyeth	•	Pumphead		nhole Ø.8	+6 g x = 3700 mb = 1/150 mb = 1/1	<u>m</u> ~
Bailer Type: CHEMICAL PAR	_Teflon		Stainless Steel		Disposable	70s = 1. J.	
Time Vo. (ga 3:51 0.57 0.5 1.5	(ANTE LE L'AUME (LO) (L) (L) (L) (L) (L) (L) (L) (L) (L) (L	Eh (mV) -bb - 117 - 133 - 145	Turbidity (NTU) 1.9 0.0 0.0 0.0 0.0	Temp (°C) 10.7 11.5 11.6 11.7	pH (SU) 6.64 6.48 6.47 6.47	Conductivity (indicate units) 1.79 1.83 0.00 1.84 0.00 1.84 0.00 1.79	06
% Difference betw (highest-lowest)/ ((_		1.7%	0%	0%.	

Well Number: Pz-08

SAMPLE APPEARANCE	Turbidity	Col	or	Odor
Initial Volumes	low		<u>ear</u>	NAPL
Final Volumes	104	de	<u>ur</u>	NAPL
SAMPLES COLLECTED	Sample Lis	t: <u> </u>		
ID	Analysis	Quantity	Volume	
NO-P208	TCL VOLS	2	40 mL	
NO - PZ 09	TCL GUOLS	3	1000 ml	
NO-PZOG	Cyande	1	250 ml	
<u> </u>	•			
3.2	: .			
PUMPING RATES				
Average Purge 150 m	ıL/min Ave	erage Sampling_	mL/min	ı
Market State State State				
OTHER READINGS				
DO (mg/L)	PID (ppm)		$CO_2(mg/L)$	
A second				
PURGE WATER DISPOSAL				
On-site storage pending a	nalysis			
Relinquished to licensed h	nauler			
Discharge in sewer (previ	ous analysis completed	D		
Discharge on ground (pre	vious analysis complet	ed)		
3			, ,	
** The Project Manager will inst	ruct the Field Team as	to which disposa	I method is app	licable.
COMMENTS (difficulties, cond	ition of casing etc.)			,
COMMENTS (difficulties, cond	mon or casing, etc.)			*
and the second second		1.4	S	
	•			
	f·			

Well Number: P209

	Client:	Ish/Mys	56 Site:_	NORWIC	H	
Person	nel: LMG	Weath	er: cold, s	nowiz	Date: <u>1219</u> 25 F	105
Casing inner d	ARAMETERS iameter (gal/foo (0.16)	ot):		•		1"(0.041)
Depth of well Water level fro Feet of water i NAPL level fr NAPL thickne	om top of casin	ing g ng(if present)	Previous Rep	6. 11	50 .5	Ref. Location 5 gal
	od: X Per hod: X Per		Bailer Bailer	Pos. Pun	np (Grundfos) np (Grundfos)	Other
Type of Tubin	g: Tygon Teflon Polyeth	nylene	Pumphead <u>Silicon</u>	Dow	nhole 1/2 vo @ 150 =	1= 0.25 gal 0 ml/min ~6 min
Bailer Type:	Teflon	S	tainless Steel		Disposable	
	PARAMETER Volume (gallons) 6(0) 2(1.5)	Eh (mV)	Turbidity (NTU)	Temp (°C) ty met esence	pH (SU)	Conductivity (indicate units)
	between final 3 t)/ ((highest +	•				

Well Number: Perog_

				IAAL BLEE
SAMPLE APPEARANCE	Turbidity	Co	olor and N a w/ sheen	Odor
Initial Volumes	Low	clea	1 w/ sheen	mod.
Final Volumes				<i>u</i>
SAMPLES COLLECTED	Sample List:_	11:30		
ID	Analysis	Quantity	Volume	
NO PZO9	TLLVOCS		fone.	
	TCLEVOCS	2	14	
→	TotalCn	1	200 mL	
NOPZOIdyp	TCLVOCS	7_	40 ml	
1	TUSVOCS		16	
	TOTALCO	1	rome	
 ,				
PUMPING RATES				
Average Purge 150 m	L/min Avera	ge Sampling	150 mL/min	
υ υ <u></u>		0 1 0_		
OTHER READINGS				
DO (mg/L)	PID (ppm)		CO ₂ (mg/L)	
	(FF -)	 	- (g , <u>-</u> 2)	
PURGE WATER DISPOSAL				
On-site storage pending ar	nalvsis 💪			
Relinquished to licensed h				
Discharge in sewer (previous				
Discharge on ground (pre-	·			
Discharge on ground (pre	rious analysis completed)			* 3
** The Project Manager will instr	ruct the Field Team as to	which dispos	al method is appl	icable.
		Willer Gispos	ar anomico is uppi	
COMMENTS (difficulties, condi-	tion of casing, etc.)			
	<u> </u>			_
				_
				_

Well Number: PZ-10

	Client:	Ishi MYSEL	Site	: Norwic	h, M	_		
Personn	nel: KG/LMG	Weat	her: <u>6</u> 12, 5	how	Date	: <u>] } 9</u>	105	
PUMPING PA Casing inner di 2"			5)	5" (1.02)	_ <u>X</u> _	Other_	12 (0:045)	
Height of casin Depth of well for Water level fro Feet of water in NAPL level fro NAPL thickness	From top of casing casi	sing g ng(if present)	Previous R		Measured D 18.68 6.30 12.39 8 × 0.041 =	Туре	Ref. Location	
Purging Metho Sampling Meth	d: <u> </u>	ris. Pump ris. Pump	Bailer Bailer	Pos	. Pump (Gru	indfos) indfos)	OtherOther	
Type of Tubing	g: Tygon Teflon Polyetl		Pumphead X		Downhole		vol.= 0.25 g. 25 g × <u>370 p.</u> 5 ~6 mins.	750,
	Teflon PARAMETE Volume (gallons) 06) 0.5 (0.35) 1.5 (0.35) 1.2 (1.00)		Stainless Stee Turbidity (NTU) 37H 8.6 4.9 3.6	Temp (°C) 6.2 7.7 7.8 7.7	(SI <u>6.</u> 7.0 <u>6.</u> 6.	1])]9 52 50	Conductivity (indicate units	D.0 0.90 0.00 0.00
% Difference to thighest-lowest		•		1.3%	0	010	0.3%	

Well Number: Pz-10

SAMPLE APPEARANCE	Turbidity	Co	olor	Odor
Initial Volumes	<u>low</u>	ام	lar_	slight M
Final Volumes	_low	<u></u>	cor	dight M
SAMPLES COLLECTED	Sample List	: 4:45		
ID	Analysis	Quantity	Volume	
No- PZIO	TU VOCS		40 ml	
	TEL SVOLS		1000 mL	
	The SVOLS Cyonide		250 mc	
	<u> </u>			
DELL'ENTRE DA MEG				
PUMPING RATES Average Purge \\ \(\)0 m	A	mana Cammilina	150 1 /	:
Average Purge_ \ 7\ II	iL/IIIII Ave.	rage Samping_	<u> </u>	Ш
OTHER READINGS				
DO (mg/L)	PID (ppm)		CO ₂ (mg/L)	
	ų1 /		- (
PURGE WATER DISPOSAL				
On-site storage pending a	nalysis			
Relinquished to licensed h	nauler			
Discharge in sewer (previ	ous analysis completed)			
Discharge on ground (pre	vious analysis complete	d)		
	en e			
** The Project Manager will inst	ruct the Field Team as t	to which dispos	al method is ap	plicable.
COMMENTS (difficulties, cond	ition of casing, etc.)			

Sheet 1 of 2	Well	Sampling Data	a Sheet	Well Num	ber: <u>PZ-11</u>	
	Client: Ish /NYSE	6 Site: ∧	forwich M			
Personnel: K	.6/LM6 Wes	other: cold, fluris	v D	ate:]].]7 <i>[</i> c	<u>55</u>	
PUMPING PARAM Casing inner diamete 2" (0.16		55) 5"	(1.02)	Ľ Other ∫	" (D. 041)	
Height of casing refe Depth of well from to Water level from top Feet of water in casin NAPL level from top NAPL thickness Min gallons of purge	op of casing of casing ng of casing(if present)		18.58 9.13 9.45		Ref. Location	
Purging Method: Sampling Method: Type of Tubing:	Peris. Pump Peris. Pump Tygon Teflon Polyethylene	Bailer Bailer Pumphead L	Pos. Pump (Composition Pos. Pump (Composition Pownhole Pos. Pump (Composition Pownhole Pos. Pump (Composition Pos.	Grundfos) Grundfos) e 8.19	OtherOther	<u>I</u> m 150
Bailer Type:T	Teflon	_Stainless Steel	Disp	oosable		
CHEMICAL PARA Time Volu		Turbidity	Temp	рН	705 = 1.4 Conductivity	

Duller Type							
CHEMICA	L PARAMETE	ERS				705=1.4	
Time	Volume	- Eh	Turbidity	Temp	pН	Conductivit	y
	(gallons)	(mV)	(NTU)	(°C)	(SU)	(indicate un	its) Do
ጋ ፡ 59	(a)	725	28.4	2.5	6.68	3.24	3.6
3:04	0.5 (0.19)	299	<u>614</u>	\$ q.4	6.49	3.27	000
3: 09	1 (0.38)	3(0	3.8	9.2	6.48	a.30	0.00
3:14	1.5 (0.57)	311	0.5	9.4	6,47	2.32	0,00
3:19	· 2(0.76)	318	0.4	9.5	6.47	3.33	0-16
3:24							
-					-		
							
						·	

% Difference between final 3 readings: (highest-lowest)/ ((highest + lowest)/2) 3.4%

0.2%

Well Sampling Data Sheet Well Number: <u>P2-W</u>

SAMPLE APPEARANCE	Turbidity	Col	or	Odor
Initial Volumes	" low !	_ \d	and the same of th	now
Final Volumes	low	_ cle	BM	DONE
SAMPLES COLLECTED	Sample List	: 3130		
ID	Analysis	Quantity	Volume	
NO-PZ41	YCL VOLS	g	40 mL	
	The svous	<u>g</u>	1000 ml	
	Cy anide		100 ml	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
* * * * * * * * * * * * * * * * * * *	1 ,			
PUMPING RATES				
Average Purge 150 ml	L/min Aver	rage Sampling_	156 mL/min	
OTHER READINGS				
OTHER READINGS	DID (mass)		CO (- /T)	
DO (mg/L)	PID (ppm)		CO ₂ (mg/L)	
PURGE WATER DISPOSAL				
On-site storage pending an	alveic			
Relinquished to licensed ha				
Discharge in sewer (previo				
Discharge on ground (prev	·			
Discharge on ground (prev	ious analysis completes	<u> </u>	•	
** The Project Manager will instru	uct the Field Team as t	o which disposa	method is appli	cable.
	5 to 1 to	•		. :
COMMENTS (difficulties, condit				
	90 m			
				_
				_
				_

(highest-lowest)/ ((highest + lowest)/2)

Well Sampling Data Sheet

Well Number: P2-1a

	Client: 1	sh/nasec	Site: N	project,	<u> </u>		
Personnel	: K6/2M6	Weathe	er: cold, flu	rritt	Date: (a) \$	105	
PUMPING PAR Casing inner diam 2" (0			5"	(1.02)	X_ Other	1" (0.04L)	
Height of casing and Depth of well from Water level from Feet of water in Control NAPL level from NAPL thickness	m top of casing top of casing casing top of casing	g (if present)	Previous Repor	·	16asured Depth 33,13 8.67 14.46 Type:	Ref. Location	
		;			V		
Purging Method: Sampling Method	7—	. Pump . Pump	Bailer Bailer		Pump (Grundfos) Pump (Grundfos)	Other Other	
Type of Tubing: Bailer Type:	Tygon Teflon Polyethy Teflon		Pumphead X ainless Steel	D 		$0.50 \frac{3}{3} \times \frac{3700 \text{ m}}{3} \times \frac{3700 \text{ m}}{3$: 150
CHEMICAL PA	RAMETERS	!	,			TBS = 1.6	
Time V 9:01 9:08 9:15 9:39 1.	olume gallons) 5 (0.30) 5 (0.40)	Eh (mV) 255 213 213 214	Turbidity (NTU) 999 999 200 000 000	Temp (°C) 4.8 11.6 10.8 12.3 12.1	pH (SU) 6.64 6.51 6.51 6.48 6.49	Conductivity (indicate units) 3.53 2.4a 2.46 2.40 2.39 2.39	5.24 5.24 5.34 5.18 5.09 5.01
% Difference bet	ween final 3 r	eadings:		0.8%.	0.5°/		

Well Number: PZ-12

SAMPLE APPE	CARANCE	Turbidity	Co	lor	Odor
Initial Volumes		bigh	_ <u>_ br</u>	Dwn_	slight NAPL
Final Volumes		1000		in/	nine
SAMPLES COI	LECTED	Sample Li	st: 9:45		
]	ID	Analysis	Quantity	Volume	
No	- bs13 -	TUL VOLS	d	40 mL	
		TCL SVOG	9	1800 mL	
		Cyanide	1	aso ml	
	(F. 1)	‡ <u> </u>			
	two to a	a			
PUMPING RAT	ΓES				
Average 1	Purge 150 m	L/min Av	erage Sampling_	150 mL/min	
Programme and the second					
OTHER READ	INGS				
DO (mg/	L)	PID (ppm))	CO ₂ (mg/L)	
* * * * · *					
PURGE WATE	R DISPOSAL				
On-site st	orage pending an	alysis			
Relinquis	hed to licensed ha	auler			
		ous analysis completed			
Discharge	e on ground (prev	ious analysis complet	ted)		
** The Project M	lanager will instr	uct the Field Team as	s to which disposa	d method is applic	able.
COMMENTS (difficulties, condi	tion of casing, etc.)			
			<i>,</i> /		
	. *				
· · · · · · · · · · · · · · · · · · ·	<u> </u>	s. 1	· ·	<u> </u>	
					•
	_				-
					•
	* :				

Well Sampling Data Sheet Well Number: Pとは

Client: Ish/MYSE	% Site:	vorwith		
Personnel: LMG Wear	ther: cold, cla	ear	Date: 12[8	<u> </u>
PUMPING PARAMETERS Casing inner diameter (gal/foot):2" (0.16)4" (0.6)	5)5"	(1.02)	X Other	1"(0.041)
Height of casing reference above grade Depth of well from top of casing Water level from top of casing Feet of water in casing NAPL level from top of casing(if present) NAPL thickness Min gallons of purge (feet of water X gal/		(4.3 (0.4 b : 3	7 7 Type:	
Purging Method: Sampling Method: Y Peris. Pump Peris. Pump	Bailer Bailer	Pos. Pump	(Grundfos) (Grundfos)	Other
Type of Tubing: Tygon Teflon Polyethylene	Pumphead	Downle	nole Yz vo	1= 0.179al 50 mulmin = ~4min
Bailer Type:Teflon	Stainless Steel	D	isposable	
CHEMICAL PARAMETERS Time Volume Eh (gallons) o (mV) 16:11 0(5-17) 137 16:15 1:5(0.17) 137 16:23 1:5(51) 1:42 10:27 2(0.68) 1:45	Turbidity (NTU) 25.8 10.7 11.5 8.9 6.8	Temp (°C) 7.3 7.7 8.0 8.1 8.2	pH (SU) 7.16 6.84 6.43 6.69 6.69	Conductivity (indicate units) 0.473 0.474 1.99 0.470 0.468 1.57 0.469 1.54
% Difference between final 3 readings: (highest-lowest)/ ((highest + lowest)/2)		2%	8%	4%

Well Number: PZ13

SAMPLE APPEARANCE	Turbidity	Col	or	Odor
Initial Volumes	<u>low</u>	cla	as	Slight
Final Volumes	_low_	cle	<u>~</u>	v. sligh
SAMPLES COLLECTED	Sample List	: 1630		
ID	Analysis	Quantity	Volume	
NO-PE13	TUVOS	2.	40 mi	
	TUSVOCS	_2_	14	
	Total Con		200 ml	_
·				
	·			
	4 6			
	7 .			
PUMPING RATES Average Purge 150 mL	/min Aver	rage Sampling /	5 D mI /min	
Average runge III.	AVC	rage Samping .	<u>20</u> IIIL/IIIII	
OTHER READINGS				
DO (mg/L)	PID (ppm)		CO ₂ (mg/L)	
	41 > -		(-2,-)	
PURGE WATER DISPOSAL				
On-site storage pending ana	alysis <u>X</u>			
Relinquished to licensed ha	uler			
Discharge in sewer (previous	us analysis completed)			
Discharge on ground (previ	ous analysis complete	d)		
	A A Section 2			
** The Project Manager will instru		_	method is appli	icable.
COMMENTS (difficulties, conditi	ion of casing, etc.)			
			in the graph of the second	. :
				_
				_
•				_
				_
	* 6			

Well Number: FEL4

Client: ISh MA	Site:_	Nonvio	<u>h</u>		
Personnel: We	ather: polch, s	moving	Date: 12	9 (0.5	
PUMPING PARAMETERS Casing inner diameter (gal/foot):2" (0.16)4" (0.					(i)
Height of casing reference above grade Depth of well from top of casing Water level from top of casing Feet of water in casing NAPL level from top of casing(if present NAPL thickness Min gallons of purge (feet of water X gal		5· 	29	Ref. Location	on
Purging Method: Sampling Method: Peris. Pump Peris. Pump	Bailer Bailer	Pos. Pum	ap (Grundfos) ap (Grundfos)	OtherOther	_
Type of Tubing: Tygon Teflon Polyethylene	Pumphead Silicon	Down	nhole Yz V C 1	50 = 0.23 $50 mL/m$ $= 5.6$	s cycl Ng min
Bailer Type:Teflon	_Stainless Steel]	Disposable	-	
CHEMICAL PARAMETERS Time Volume Eh (gallons) (mV) 14:41 0(0) 88 14:46 0.5(0.23) 52 14:52 1(0.46) 43 14:57 1.5 6.69) 41 15:03 2(0.92) 39	Turbidity (NTU) 11.2 0.0" 0.0" 10.0"	Temp (°C)	,	Conductivity (indicate uni 1.15 1.23 1.24 1.22	y Do-
% Difference between final 3 readings: (highest-lowest)/ ((highest + lowest)/2)		1.6%	<u>o'/·</u>	1.6%	

Initial	PLE APPEARANCE Volumes Volumes	Turbidity	Color	Odor V. Slige
SAMI	PLES COLLECTED	Sample List:_		
	ID NO-PZ14	Analysis TOL VOCS TOLSVCCS TOTAL CO	2	ne on L on
PUM	PING RATES Average Purge_150 mL	/min Avera	ge Sampling 15 On	nL/min
	ER READINGS DO (mg/L)	PID (ppm)	CO ₂ (r	ng/L)
PURC	GE WATER DISPOSAL On-site storage pending ana Relinquished to licensed had Discharge in sewer (previous Discharge on ground (previous)	nler ns analysis completed) _		
** Th	e Project Manager will instru	ct the Field Team as to	which disposal method	l is applicable.
COM	MENTS (difficulties, condition	on of casing, etc.)		
		· · · · · · · · · · · · · · · · · · ·		
				

Well Number: **P2 - 15**

	Client	Ishi Nysi	Site:_	Normich,	<i>N</i> ' y		
Person	nel: K61LA	<u>6</u> Wea	ther: (dd snow	~	Date: /2/9	105	
Casing inner of	ARAMETER diameter (gal/fo ' (0.16)	S			<u></u> \ Other	s" (o. o41)	
Depth of well Water level fr Feet of water NAPL level fr NAPL thickne	rom top of casi	sing ng ng(if present)	Previous Rep	19 5 13		Ref. Location	
Purging Meth		ris. Pump	Bailer Bailer	Pos. Pur	np (Grundfos) np (Grundfos)	OtherOther	
Type of Tubin	Tygor Teflor		Pumphead	Dow	nhole // va	1. = 0.2) g $7 \times \frac{3700 \text{ mL}}{3} = \frac{1}{2}$	1m
Bailer Type:	Teflon		_Stainless Steel		Disposable		
CHEMICAL Time 3:44 3:51 3:59 3:05 3:12	PARAMETE Volume (gallons) 0.5(0.37) 1 (0.54) 1.5 (0.81) 2 (1.08)	Eh (mV) 557 536 500 335 34	Turbidity (NTU) 290 2.9 3.7 2.6 2.2	Temp (°C) 7.7 8.5 8.4 8.7 8.7	pH (SU) 6.9k 6.68 6.65 6.65	1.79	D. 0 1.43 0.00 0.00 0.00
	between final :	_		1.19]	0.206		

Well Number: 72-15

SAMPLE APPEARANCE	Turbidity	Color	r	Odor	•
Initial Volumes	low	de	ler	MGP	Waste
Final Volumes		clear		MGP	Waste
SAMPLES COLLECTED	Sample List:	3:25			
ID	Analysis	Quantity	Volume		
NO - PZ15	JCL VOCS	2	HumL		
	TEL SVOKS		1000 ml		
	Lyanide		251 ml		
<u> </u>					
· · · · · · · · · · · · · · · · · · ·	the Control of the Co				
PUMPING RATES					
Average Purge /50 mL	min Avera	age Sampling 15	mL/min		
			 -		
OTHER READINGS					
DO (mg/L)	PID (ppm) _		CO ₂ (mg/L)		_
PURGE WATER DISPOSAL					
On-site storage pending ana	lysis				
Relinquished to licensed have	ıler				
Discharge in sewer (previous	s analysis completed)				
Discharge on ground (previ-	ous analysis completed)			
** The Project Manager will instru	ct the Field Team as to	which disposal	method is appli	cable.	
COMMENTS (difficulties, conditi	on of casing, etc.)	e de la companya de La companya de la co	v		
· · · · · · · · · · · · · · · · · · ·	,,				
	V 1		• • •		
				_	
				_	
	<u> </u>			_	
				_	

Well Number: PZ-6

	Client	: Igh/M5	E6 Site:_	Norwich N	<u> </u>	
Person	nnel: K6/LM	Wea	ther: Lold, Su	iny	Date: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	8105
Casing inner	PARAMETER diameter (gal/for (0.16)			' (1.02)	KOther_	" (Doni)
Depth of well Water level fi Feet of water NAPL level f NAPL thickne	rom top of casi	ising ng ng(if present)	Previous Report	14.0 10 4.	3D 69 Type	
Purging Meth Sampling Me	nod: <u>χ</u> Ρε	ris. Pump ris. Pump	Bailer Bailer	Pos. Pur	np (Grundfos) np (Grundfos)	Other Other
Type of Tubin	Tygor Teflor Polye		Pumphead X	<u></u>	nhole	0.00 g x 3700 ml : 150 ~ 2 n:ns.
Bailer Type: CHEMICAL Time 3:10 7:13 3:14 3:15 13:18	Teflon PARAMETE Volume (gallons) O(0) 0.5(0.00) 1.5(0.00) 1.5(0.00) 1.5(0.00)	Eh (mV) 336 336 339 340	Turbidity (NTU) 23.4 21.7 19.0 13.5	Temp (°C) 10,4 11.0 11.4 11.6	pH (SU) 6.85 6.54 6.50 6.48	Conductivity (indicate units) 3.32 7.97 2.31 6.36 3.40 6.18 3.43 6.09
	between final st)/ ((highest -	_		2.6%	0.3%	1.2010

Well Number: ما المالية

SAMPLE APPEARANCE	Turbidity	Colo	r	Odor
Initial Volumes	lav	clea	<u>-r</u>	None
Final Volumes	lan	Clear	<u>. </u>	NOM
SAMPLES COLLECTED	Sample List:	:_/2:30_		
ID	Analysis	Quantity	Volume	
NO-PZIB	TCL VOCA	`	40 ml	
	TLL SUDLS		1000 aL	
	<u>Cyanide</u>		aso al	
<u></u>	.			
	1- 3-4-7			
	•			
PUMPING RATES	·		•	
Average Purge mL/	min Aver	rage Sampling 1	mL/min	
OTHER READINGS				
DO (mg/L)	PID (ppm) _		CO ₂ (mg/L)	
DO (mg/D)	11D (ppin) _			
PURGE WATER DISPOSAL				
On-site storage pending anal	lysis			
Relinquished to licensed hau				
Discharge in sewer (previou				
Discharge on ground (previo				
		• • • • • • • • • • • • • • • • • • • •		`.;
** The Project Manager will instruc		o which disposal	method is applic	able.
COMMENTS (difficulties, condition	on of casing, etc.)	4.5		1, 4
	on ousning, cro.,			٠.
	1 . 3	Ç ^a		
				-
-	·			-
				-
				-

Well Sampling Data Sheet Well Number: PZ-17

	Client	Ish Myseg	Site:_	Norwich, N	ly		
Personi	nel: K6/LM6	<u>.</u> Weath	her: (1) 3 4	any _	Date: 12/9	<u> 155 </u>	
PUMPING PA Casing inner d	iameter (gal/fo		5)5'	' (1.02)	\(\frac{1}{N}\) Other	(inc. a) "(
Height of casir	ng reference ab	oove grade	Previous Repo	ort Meas	ured Depth	Ref. Location	
Depth of well	_	_	· · ·	<u> </u>	16		
Water level from	_	_	<u> </u>		<u>3</u> 2		
Feet of water i	•	- 6		<u> </u>			
NAPL level from	_	ng(if nresent)		<u></u>	<u>~</u> Турс	۵۰	
NAPL thickness	-	ng(ii present)					
Min gallons of	purge (feet of	water X gal/f	t X 3 well vols.	5.86 x 0	PG.0 =140.		
Purging Metho	vd∙ V De	ris. Pump	Bailer	Pos Pum	p (Grundfos)	Other	
Sampling Meth		ris. Pump	Bailer		p (Grundfos) p (Grundfos)		-
Type of Tubin	g: Tygon Teflor		Pumphead	Down	nhole % %	11. 20.123 12 x 3790 ml	150 m
	Polyet	hylene		<u></u>		- 3 mins.	
Bailer Type:	Teflon	;	Stainless Steel]	Disposable	~ J W. 113	
CHEMICAL	DAD AMETE	DC	,			TB =0.47	
Time	Volume	Eh	Turbidity	Temp	pН	Conductivity	Da
••	(gallons)	(mV)	(NTU)	(°C) 9.6	(SU)	(indicate units)
10:33	060	<u>258</u>	344		6.90	0 · 658	67
10:35	0.5 (0.12)	123	197		6.84	0.686	3.6
10:38	1 (1.24)	<u>69</u>	<u> </u>	10.6	687	<u>0.699</u>	8.6
10:41	1.5 (0.36)	<u>63</u>	68	10.6	6.88	0.697	7.90 2.90
10:44	· 2 (0.43)	<u> </u>	31.5	10.5	6.81	0.697	g.40
							
% Difference 1 (highest-lowes		_		0.9%	0.1%	<u> </u>	

Well Number: P2-17

SAMPLE APPEARANCE Initial Volumes Final Volumes	Turbidity	Col ule de	ar	Odor none
SAMPLES COLLECTED	Sample List			
ID NO- PZ)7	Analysis TUL 1965 TEL 54065	Quantity a l	Volume HO mL 1800 mL	
PUMPING RATES Average Purge_150 mL/n	nin Ave	rage Sampling_	150 mL/min	
OTHER READINGS DO (mg/L)	PID (ppm)		CO ₂ (mg/L) _	
PURGE WATER DISPOSAL On-site storage pending analy Relinquished to licensed haule Discharge in sewer (previous Discharge on ground (previous	eranalysis completed)			
** The Project Manager will instruct	the Field Team as t	o which disposa	l method is appl	
COMMENTS (difficulties, condition	n of casing, etc.)	e e e e e e e e e e e e e e e e e e e		19 . 7
	**************************************			* / - -
				_

Well Number: P2 18

	Clien	t: <u>Ish/ny</u> s	75 6 Site:_	Norwi	ch		
Person	nel: LMG	Wea	ather: cold, s	nowing	Date: 121	7105	
PUMPING PACasing inner d		S	•			<u>ı"(o.•</u> 41))
Height of casir Depth of well: Water level from Feet of water in NAPL level from NAPL thickness.	from top of come top of case on casing om top of cases	asing ing ing(if present	Previous Rep	17 5 11		Ref. Location much on Cnarth so	
Purging Metho Sampling Meth	od: 🔀 P	eris. Pump eris. Pump	Bailer Bailer	Pos. Pur	mp (Grundfos) mp (Grundfos)	OtherOther	_ _
Type of Tubin	Tygo Teflo		Pumphead Silicon	·	nhole	vol = 0.2 150 ml = ~6	5 gal /mig vir
Bailer Type:	Teflon		_Stainless Steel		_Disposable		_
CHEMICAL Time 9: 53 9: 59 10: 05 10: 11 10: 17	PARAMETI Volume (gallons) 0 (0) 0.5 (0.24 1 (0.5) 1.5 (0.4	Eh (mV) 18B 198 210	Turbidity (NTU) 11.2 7.1 6.8 5.0 4.2	Temp (°C) 9.6 9.7 9.6 9.6 9.3	pH (SU) 7.03 6.85 6.84 6.85	Conductivity (indicate unit I.17 I.16 I.15 I.15	/ .
% Difference l (highest-lowes		_		37.	17.	<u> </u>	

Well Sampling Data Sheet Well Number: Pそ18

SAMPLE APPEARANCE Initial Volumes Final Volumes	Turbidity Low	Cole	an i	Odor Non
SAMPLES COLLECTED	Sample List:	10.25		
ID 10-P7-18	Analysis TUL VOCS TUL SVOCS TOTAL CO	Quantity 2 2,	Volume AD mL 1 L 200 mL	
PUMPING RATES Average Purge 156 mL/	min Avera	age Sampling_ <i>L</i>	50 mL/min	
OTHER READINGS DO (mg/L)	PID (ppm)		CO ₂ (mg/L)	
PURGE WATER DISPOSAL On-site storage pending analy Relinquished to licensed hau Discharge in sewer (previous Discharge on ground (previous	lers analysis completed) _			
** The Project Manager will instruc	t the Field Team as to	which disposal	method is applic	able.
COMMENTS (difficulties, condition	on of casing, etc.)			
				-
· ·	w •			

Well Number: P2 19

	Client:_	Ish/nysø	G Site	:_Nor	with	-		
Personnel	: LM4	Weath	er: <u>cold</u> ,	<u>Snowi</u> r Ground	T 25 Date	12/9	1 <i>05</i>	
PUMPING PAR			J	7				
Casing inner diar				5" (1.02)	· ·	Othor	14 (0.04	,)
2" (0).10) _	4" (0.65)		3 (1.02)	<u> </u>	Omer_	(8.04)	,
			Previous R	eport	Measured D	epth	Ref. Location	
Height of casing	reference above	ve grade	* .			•		
Depth of well fro	m top of casin	ng	,		18.03			
Water level from	top of casing				5.58			
Feet of water in	casing				12.45			
NAPL level from	top of casing	(if present)				Type:		
NAPL thickness						• •		
Min gallons of p	urge (feet of w	ater X gal/ft	X 3 well vo	ls.) <u>12</u>	.45 x o. c	41=0).5gal	
Purging Method:		s. Pump	Bailer		s. Pump (Gru	•	Other	
Sampling Method	d: Peris	s. Pump	Bailer	Pos	s. Pump (Gru		Other	
Type of Tubing:	Tygon		Pumphead		Downhole	1/2 V	io(=0.25 150 ml/m =6 mi	Za
	Teflon						150 ml/m	int
	Polyethy	lene					-1	
Bailer Type:	Teflon	S	tainless Stee	1	Dispos		-6	
CHEMICAL PA	ARAMETER	S						
Time V	olume	Eh	Turbidity	Temp	p pF	I	Conductivity	
	gallons)	(mV)	(NTU)	(°C)	(SU	J)	(indicate units))
	(0)	$$ \forall \star t	er qua	Lity.	net-v	not u	norteing	•
	5(0.25)	—— Co	und		unable		help !	
	(0.5)		_ tro	>1° -	<u>wer</u>	<u> </u>		
•	1.5(0.75)							
	<u>2(1.0)</u>							
	<u>3 (1.5</u>) _							
8:55 Sa	mpled af	te rom	aring m	1.75	gallons			
% Difference better (highest-lowest)/								

Well Sampling Data Sheet Well Number: <u>₹19</u>

SAMPLE APPEARANCE Initial Volumes Final Volumes	Turbidity		or Lear	Odor <u>Slighe</u> Me
SAMPLES COLLECTED	Sample List:	8:55		
ID NO-PELT	TELVOG	Quantity 2 1	Volume 40ml 1L 200	
PUMPING RATES Average Purge 150 mL/m	nin Average	e Sampling_	150 mL/mi	n
OTHER READINGS DO (mg/L)	PID (ppm)		CO ₂ (mg/L)	
PURGE WATER DISPOSAL On-site storage pending analys Relinquished to licensed haule Discharge in sewer (previous Discharge on ground (previous	er analysis completed)			
** The Project Manager will instruct	the Field Team as to w	hich disposa	l method is ap	plicable.
COMMENTS (difficulties, condition	of casing, etc.)		W .	
·	; · · · · · · ·		٠.	_
	· · · · · · · · · · · · · · · · · · ·			

Well Number: P=20

Client: Ish/Mys	Site: NO	eurich
Personnel: LMG Weather	er: cold, blurries	Date: 12/7/05
PUMPING PARAMETERS Casing inner diameter (gal/foot):2" (0.16)4" (0.65)) <u>× Other 1 (0.041)</u>
Height of casing reference above grade Depth of well from top of casing Water level from top of casing Feet of water in casing NAPL level from top of casing(if present) NAPL thickness Min gallons of purge (feet of water X gal/ft	Previous Report	Measured Depth Ref. Location 18.74 9.65 9.09 Type:
Purging Method: Sampling Method: Peris. Pump Peris. Pump	BailerPo	os. Pump (Grundfos)Other os. Pump (Grundfos)Other
Type of Tubing: Tygon Teflon Polyethylene	Pumphead Silicon	Downhole $\frac{1}{2} \text{ vol} = 0.185 \text{ gzl}$ $\frac{2}{2} \text{ 150 mC/min}$ $= 4.5 \text{ min}$
Bailer Type:TeflonSt	tainless Steel	Disposable
CHEMICAL PARAMETERS Time Volume Eh (gallons) (mV) 9:20 6(0) 296 9:24 0.5(0.185) 295 9:33 1.5(0.555) 294 9:88 2(0.24) 293	5.0	$\begin{array}{c cccc} (SU) & \text{(indicate units)} & m_4 \\ 4 & 6.76 & 2.24 & 1.9. \\ \hline 0 & 6.76 & 2.19 & 0.5 \\ \hline 2 & 6.81 & 2.14 & 0.23 \\ \hline 3 & 6.81 & 2.14 & 0.23 \\ \hline \end{array}$
% Difference between final 3 readings: (highest-lowest)/ ((highest + lowest)/2)		8%. 0%. (.4%.

Well Sampling Data Sheet Well Number: P220

SAMPLE APPEARANCE Initial Volumes Final Volumes	Turbidity Low Low		olor leo <u>l</u>	Odor <u>scight</u> mag Very slight m
SAMPLES COLLECTED	Sample List:			·
NO- 65 50	Analysis TCL VOCS TCL SVOCS Total Ca	Quantity 2 1	Volume 40 nol 1 L 200 ml	• •
PUMPING RATES Average Purge 50 mL		age Sampling		n
OTHER READINGS DO (mg/L) PURGE WATER DISPOSAL On-site storage pending ana Relinquished to licensed had Discharge in sewer (previous Discharge on ground (previous pending and provide pending and pending	uler us analysis completed)		CO2 (mg/L)	
** The Project Manager will instru			al method is app	olicable.
COMMENTS (difficulties, conditi	Same of the same o			

Well Number: <u>P€21</u>

		Ish/Nys	Es Site:	Norwi	ch		
Person	nel: LMG	Weat	ther: cold,	50nn y	Date: 12	1=105	
PUMPING P. Casing inner of	ARAMETERS liameter (gal/fo	}				1" (0.04	,)
Depth of well Water level fr Feet of water NAPL level fr NAPL thickne	rom top of casir	sing g ng(if present)		 	. 23 . 61 . Type		
Min gallons of Purging Methods Sampling Methods	od: XPer	water X gal/ ris. Pump ris. Pump	ft X 3 well volsBailerBailer	Pos. Pur	mp (Grundfos) mp (Grundfos)	OtherOther	_ _ (v 0(.
Type of Tubir	ng: Tygon Teflon Polyetl		Pumphead Silicon	Dow	vnhole /z vo	50 nUmi $= 75 m$	al n vin
Bailer Type:	Teflon	, —	Stainless Steel		_Disposable		
CHEMICAL Time 10:21 10:26 10:31 10:41	PARAMETEI Volume (gallons) o(0) o.5(0.2) 1(0.4) 1.5(0.6) 2(0.8)	Eh (mV) -6 -55 -93 -120 -136	Turbidity (NTU) 37.7 (8.3 12.5 3.6 2.7	Temp (°C) 10.4 11.1 11.7	pH (SU) (0.94 (0.93 (0.93 (0.93	Conductivity (indicate uni 2.33 2.46 2.49 2.53 2.53	DO (ts) mg/(3.13 0.4 0.2 0.0
	between final 3 st)/ ((highest +	•		<u>3.67</u> .	<u>01·</u>	1.6%. 0.04 2.81	

Well Sampling Data Sheet Well Number: P22

SAM	PLE APPEARANCE	Turbidity	Co	olor	Odor
Initial	Volumes	" Wal " Law"	<u></u>	on	slight ma
Final	Volumes	COM			. slight mag
SAM	PLES COLLECTED	Sample List:	·		
	ID	Analysis	Quantity	Volume	
	NO- PEZI	TCL VOG	2	4 onl	
	2.00		2	16	
		Total Co		200 mL	

PUM:	PING RATES				
	Average Purge 150 m	L/min Avera	age Sampling_	150 mL/min	
ОТН	ER READINGS				
· .	DO (mg/L)	PID (ppm) _		CO ₂ (mg/L) _	
PUR	GE WATER DISPOSAL				
	On-site storage pending an				
	Relinquished to licensed h Discharge in sewer (previo				
	Discharge on ground (prev	- · ·			
				: ,	
** Th	e Project Manager will instr	ruct the Field Team as to	which dispos	al method is appl	icable.
СОМ	MENTS (difficulties, condi	tion of casing etc.)			<i>;</i>
001/1	TVIENTED (MINICULATION, CONTAIN	don or casing, cic.)			
	· · · · · · · · · · · · · · · · · · ·	•		* c. *	
					_
					_
					_
					_

Well Number: Pt ZZ

•						
	Client: Ish/arys	54 Site:_	NORWICH	4		
Personnel:	Lm6 Weat	her: Cold, 615	بدائح	Date: 12 7	05	
PUMPING PAR. Casing inner diam2" (0	neter (gal/foot):	5) 5	" (1.02)	X_Other_	1" (0.041))
Depth of well from Water level from Feet of water in c NAPL level from NAPL thickness	top of casing	Previous Rep	17. 6.5	13 Type	Ref. Location	
Purging Method: Sampling Method		Bailer Bailer		np (Grundfos) np (Grundfos)		-
Type of Tubing:	Tygon Teflon Polyethylene	Pumphead		nhole Yz w	50 mL/m $= \sim 5.0$	•
Bailer Type:	Teflon	Stainless Steel	<i>:</i>	Disposable		
+3·29 0. +3·33 1	olume Eh	Turbidity (NTU) "-5.6" 280 181 96.7	Temp (°C) 10.3 11.4 11.1 11.0	pH (SU) 6.95 6.90 6.90 6.89	Conductivity (indicate unit 2 · 29 2 · 47 2 · 48 2 · 49 2 · 49	
	ween final 3 readings: ((highest + lowest)/2)		0.97	1.5%	0.4%	

Well Number: P7-22

	8	ibbico as pu	oping (6 (ow as side side side side side side side sid
SAMPLE APPEARANCE	Turbidity /	Color	Odor
Initial Volumes	mod-high	1 11940	brown sugar
Final Volumes	Low	clear	V <u>·Sligthat</u> m
SAMPLES COLLECTED	Sample List:	13:50	
ID	Analysis	Quantity Vo	olume
NO- PZ 22	TUVOG	<u> 2 </u>	40 me
- v		<u>z </u>	<u>1 </u>
	Total Co		200 ml
· · · · · · · · · · · · · · · · · · ·	·		
	·		
			
The state of the s			
PUMPING RATES			
Average Purge 150 mL	/min Average	e Sampling 150	mL/min
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			
OTHER READINGS			
DO (mg/L)	PID (ppm)	CC	02 (mg/L)
PURGE WATER DISPOSAL			
On-site storage pending ana	alysis _ _		
Relinquished to licensed has	•		
Discharge in sewer (previous	us analysis completed)		
Discharge on ground (previ	ous analysis completed) _	<u> </u>	the state of the
** Th. D	**************************************	4.1.4. 41	1 11 11 11
** The Project Manager will instru		nich disposal met	nod is applicable.
COMMENTS (difficulties, conditi	on of casing, etc.)		and the second s
		*	
	· · · · · · · · · · · · · · · · · · ·		

Well Number: PZ23

	Client: Ish/n	(seg Site:_	Narwi	ch		
PUMPING PAR Casing inner diar	neter (gal/foot):	eather: Cold, Si	mal 30.	Date: <u> Z 9</u> F	_	
2" (0	4 (0	.65)5			<u> </u>	7
Depth of well from Water level from Feet of water in on NAPL level from NAPL thickness	top of casing casing top of casing top of casing(if present		15. 6. 8	9 2 9 4 . 78 Type	Ref. Location	l
	arge (feet of water X ga					
Purging Method: Sampling Method		Bailer Bailer		np (Grundfos) np (Grundfos)	Other Other	_
Type of Tubing:	Tygon Teflon Polyethylene	Pumphead		@ I	1= 0.189 50mb/min= 4.4 min	
Bailer Type:	Teflon	_Stainless Steel		Disposable		
3:39 3:43 3:47 3:52 3:57	ARAMETERS Volume Eh gallons) (mV) (D) 121 0.5(0.18) 135 (0.36) 144 5(054) 156 2.(0.32) 165 2.5(0.4) 137	Turbidity (NTU) 139 20.0 12.2 4.1 0.1	Temp (°C) 10.6 10.5 10.4 10.4	pH (SU) 7.04 6.86 6.68 6.64 (0.62	Conductivity (indicate unit 0.626 0.462 0.432 0.396 0.380 0.372	2.57 1.79 2.16 2.50 2.71 2.84
	ween final 3 readings: ((highest + lowest)/2)		1%	9%	6%	

Well Number: Pt23

SAMPLE APPEARANCE	Turbidity	Co	lor	Odor
Initial Volumes	LOW	Slig	htly cloudy	none
Final Volumes	***C1	_ c	why clouds	и
SAMPLES COLLECTED	Sample List	::1600		
ID			37 - 1	
1D	Analysis	Quantity	Volume	
No-PZZ3	TLL VOCS	_4_	40 mc	
	TU SUPCS	2 2 1	11	
	Total Cu		200 ml	
	": · · · · · · · · · · · · · · · · · · ·			
PUMPING RATES				
Average Purge 150	nL/min Ave	rage Sampling_	150 mL/min	
OTHER READINGS				
OTHER READINGS	PID (ppm)		CO ₂ (m a/I)	
DO (mg/L)	PID (ppin)		CO ₂ (mg/L)	
PURGE WATER DISPOSAL				
	malveie V			
On-site storage pending a Relinquished to licensed	•			
Discharge in sewer (prev				
Discharge on ground (pr				
Discharge on ground (pr	evious analysis complete	u)		
** The Project Manager will ins	truct the Field Team as t	o which disposa	l method is applie	cable.
			Ţ	
COMMENTS (difficulties, con-	dition of casing, etc.)			
	± . 1		1 - 1 - a - 1	
	A Company		en e	:
				-
	·			_
				-
				_
•				

Well Number: PZ-24

	Client:	IA/ 145E	Site:	Noswich, N	<u>y</u>		
Person	nel: K6/LM	Weat	her: wa, par	the cloudy.	Date: \\ \data \ \q	105	
PUMPING PA Casing inner d		3		5Nowy (1.02)	X_Other		
Height of casir Depth of well i Water level fro Feet of water i NAPL level fro NAPL thickness	from top of casing casing om top of casing om top of casing	sing ng ng(if present)	Previous Rep	<u>\alpha (</u> 9 10	sured Depth . 35		
Purging Metho Sampling Meth	od: X Per	ris. Pump ris. Pump	Bailer Bailer	Pos. Pur	np (Grundfos) np (Grundfos)	OtherOther	
Type of Tubing	g: Tygon Teflon Polyet		Pumphead		nhole 0.2	ol. = 0.202 dg x 3700 mL. ~ 5 mins	<u> mi</u> 150 m
Bailer Type:	Teflon		Stainless Steel		Disposable		
CHEMICAL Time 11:21 11:34 11:44 11:44	PARAMETE Volume (gallons) •[0) 0.5 (0.22) 1 (1.44) 1.5 (1.44) 2 (1.85)	Eh (mV) 594 597 598	Turbidity (NTU) 346 79.3 36.5 31.1	Temp (°C)	pH (SU) L.86 6.76 6.71 6.71	Conductivity (indicate units) 2.07 1.99 1.99 2.01	Dα
% Difference to thighest-lowest		_			O:30/P	1.0%	

Well Number: Pz-24

SAMPLE APPEARANCE	Turbidity	Co	lor	Odor
Initial Volumes	low	_ C	eal	MAPL
Final Volumes	low	<u>_ </u>	ear	NAPL
SAMPLES COLLECTED	Sample List:	12:00		
ID	Analysis	Quantity	Volume	
No-1224	TLL VOCS	3	40 mL	
	TCL SVOCS		1000 mL	
	<u>Cyanide</u>		250 ML	
· · ·				
PUMPING RATES	T / 1	G 1'	(r) x/:	
Average Purge 150 m	iL/min Aver	age Sampling_	158 mL/min	L
OTHER READINGS				
DO (mg/L)	PID (ppm)		CO ₂ (mg/L)	
DO (mg/L)	1 112 (ppin) _		CO2 (IIIg/L)_	
PURGE WATER DISPOSAL				
On-site storage pending a	nalysis			
Relinquished to licensed h				
Discharge in sewer (previ				
Discharge on ground (pre	vious analysis completed	i)		
			*	
** The Project Manager will inst	ruct the Field Team as to	o which dispos	al method is app	licable.
COMMENTS (difficulties, cond	ition of casing, etc.)			,
COMMITTIES (diminutes), cond	anon or enomy, erery		en e	
	,			. ,
				_
· ·	*			

Well Number: <u>PZ-25</u>

	Client	Ish /NYS	EG Site:_	Norwich,	<u>ry</u>	
Person	nel: <u>KG / LM</u>	<u>6</u> Wea	ther: <u>ಡ\ಶಿ</u> ಕ್ಷ	nowy	Date: 121	9/06
PUMPING P. Casing inner co			55)5			<u>. 1" (0.041)</u>
Height of casis Depth of well Water level freet of water NAPL level freet NAPL thickness	from top of casion top of casion casing	ng	Previous Rep	30	Sured Depth 0.15 5.54 1.31 Typ	Ref. Location ———— pe:
Min gallons of purge (feet of water X gal/f Purging Method: Sampling Method: Y Peris. Pump Peris. Pump			/ft X 3 well volsBailerBailer	Pos. Pu	mp (Grundfos) mp (Grundfos)	Other Other
Type of Tubing: Tygon Teflon Polyethylene		Pumphead	Downhole $ \begin{array}{c} $			
Bailer Type: CHEMICAL			_Stainless Steel		_Disposable	T05= .
Time 4:47	Volume (gallons) 0(0) 0.5(0.33) 1 (0.46) 1.5(0.63)	Eh (mV) 608 609 610 609	Turbidity (NTU) 949 577 74.3 26.8 21.7	Temp (°C) 7.5 8.1 8.1 9.3 9.3	pH (SU) 6.51 6.65 6.64 6.63	Conductivity (indicate units) 1.78 1.78 1.78 1.78 0.00 1.79 0.00
	between final st)/ ((highest	_		£436	0,3%	6.6%

Well Number: ρ_{2-25}

SAMPLE APPEARANCE Initial Volumes Final Volumes	Turbidity high how	Color light grow clear	Odor <u>NAPL</u> <u>NA</u> PL
SAMPLES COLLECTED	Sample List: \(\)	0:90	
ID NO-1225	Analysis TCL VUCS TCL SVUCS Cyanide	Quantity Volume A 1000 mL 1 A30 mL	
PUMPING RATES Average Purge 150 ml	Averag	e Sampling 150 mL/m	nin
OTHER READINGS DO (mg/L)	PID (ppm)	CO2 (mg/L)
PURGE WATER DISPOSAL On-site storage pending an Relinquished to licensed had Discharge in sewer (previous discharge on ground	nuler ous analysis completed)		
** The Project Manager will instr	uct the Field Team as to v	which disposal method is a	pplicable.
COMMENTS (difficulties, conditions)	tion of casing, etc.)		

Client: <u>Tsh/M</u> se	Site: N	orwich_	
Personnel: LMG Weath	Site: N er: Cold, Hurrin	2, Date: 1717/2	<u>5</u> _
PUMPING PARAMETERS Casing inner diameter (gal/foot): 2" (0.16) 4" (0.65)			1" (0.041)
Height of casing reference above grade Depth of well from top of casing Water level from top of casing Feet of water in casing NAPL level from top of casing(if present) NAPL thickness Min gallons of purge (feet of water X gal/ft	Previous Report	Measured Depth 23.02. 9.41 13.61 Type:	
Purging Method: Sampling Method: Peris. Pump Peris. Pump	Bailer Bailer	Pos. Pump (Grundfos) Pos. Pump (Grundfos)	Other Other
Type of Tubing: Tygon Teflon Polyethylene	Pumphead	Downhole 1/2 vo	1= 0.275 gzl 50 m/mm = 6.8 min
Bailer Type:TeflonS	tainless Steel	Disposable	
CHEMICAL PARAMETERS Time Volume Eh (gallons) (mV) 14:34		Pemp pH (SU) 12.6 (SU) 12.6 (6.75) 13.0 (6.70) 13.3 (6.67) 13.5 (6.67)	Conductivity (indicate units) my (indicate units) indicate
% Difference between final 3 readings: (highest-lowest)/ ((highest + lowest)/2)	_	51. 37.	<u> </u>

SAMPLE APPEARANCE Initial Volumes	Turbidity	Co اک	lor e 🕰	Odor
Final Volumes	low		en	none
SAMPLES COLLECTED	Sample List:			
Mo· beso	Analysis TUL VOG TUL STOGS TOTAL CA	Quantity Z I	Volume 40vnL 1L 200vnL	
PUMPING RATES Average Purge_150_ mL/n		ge Sampling_	15⊙ mL/min	
OTHER READINGS DO (mg/L) PURGE WATER DISPOSAL On-site storage pending analy Relinquished to licensed haule Discharge in sewer (previous Discharge on ground (previous) ** The Project Manager will instruct	analysis completed) analysis completed))	CO2 (mg/L) _	
COMMENTS (difficulties, condition	•	which dispose	ir mediod iş appı	icabic.
				-

	Client:	Ish/ny	Site:_	Norwich	<u> </u>		
Personn	el: LMG	_ Weat	her: cold, cl	ear (5°F	Date: 1218	05	
PUMPING PA Casing inner dia2"		ot):	5)5	" (1.02)	_× Other_	1"(0.04	J
Height of casing Depth of well for Water level from Feet of water in NAPL level from NAPL thicknes	rom top of casing casing om top of casing s	sing g ng(if present)		73 <u>8.</u> 14	Sured Depth -41 -8 Type		
Purging Method Sampling Method Type of Tubing	d: Yer od: Per	is. Pump	ft X 3 well vols. Bailer Bailer Pumphead	Pos. Pun	np (Grundfos) np (Grundfos)	Other	- -
Type of Tubing	Tygon Teflon Polyetl		<u>Silicon</u>			50 mu/m = 7.4	di.
Bailer Type:	Teflon		Stainless Steel		Disposable		
9:01 9:08 9:16 9:23 9:30	PARAMETEI Volume (gallons) o(o) os(o.≥) ((o.6) 1.5(o.9) 2(1.2) 2.5(15)	Eh (mV) 194 191 190 191 162 133	Turbidity (NTU) 81.4 51.7 13.3 3.3 1.5	Temp (°C) 3.5 10.3 11.3 11.4 11.3	pH (SU) 7.30 6.93 6.80 6.75 6.72 6.70	0.33 0.44 Conductivity (indicate unit 0.508 0.674 0.763 0.835 0.869 0.896	PO
% Difference b		_		2.6%	<u>च'/.</u>	7/.	

SAMPLE APPEARANCE	Turbidity	Co	lor	Odor
Initial Volumes	low		c,ht brown	none
Final Volumes	Low	<u></u>	lear	non-e
SAMPLES COLLECTED	Sample List:_	9:40		
ID	Analysis	Quantity	Volume	
NO-8527	TCL VOG	2	40ml	
	TUSVOG	2		
	Total Ca		200 M	
	·			
3 W W W	4 			15:45
DUMPING DATES R	th 1L jurs b	mpled or	1 12 12 (05 e in shipmen	J. (M)
Average Purge 150 ml			150 mL/min	
Average 1 urge_155_ III	L/IIIII Avoia	ge bampinig_		
OTHER READINGS				
DO (mg/L)	PID (ppm)		CO ₂ (mg/L)	
				
PURGE WATER DISPOSAL				
On-site storage pending an	alysis >			
Relinquished to licensed has	auler			
Discharge in sewer (previous	_			
Discharge on ground (prev	vious analysis completed)			
** The Project Manager will instr	uct the Field Team as to	which dispos	al method is appli	cable
The Hoject Manager will histi	det die 1 ieid 1 eani as to	wineir dispose	ar mediod is appir	caoic.
COMMENTS (difficulties, condi-	tion of casing, etc.)			
<u> </u>	· · ·		, in	_
			·	
	·			_
				_
· · ·		_		_
· · · · · · · · · · · · · · · · · · ·			<u> </u>	_

(highest-lowest)/ ((highest + lowest)/2)

Well Sampling Data Sheet

	Clien	I: ISW/NYS	E6 Site:_	Norwich, N	/Y		
Perso	onnel: KGL	№ Wes	ather: cold, sn	DW4	Date: \	a/15	
Casing inner	PARAMETER diameter (gal/f l" (0.16)	oot):	65)5"	(1.02)	_×_ Other	<u>: ['` (0.041</u>)	
Depth of wel Water level f Feet of water NAPL level i	from top of cas	asing ng ing(if present	Previous Repo			Ref. Location	on
Purging Metal Sampling Me	hod: <u>K</u> Pe	eris. Pump eris. Pump	Bailer Bailer	Pos. Pu	mp (Grundfos) mp (Grundfos)	Other_	
Type of Tubi	Tygor Teflor		Pumphead X		vnnoie	$\frac{1}{3}$ vol. = 0.8 $\frac{3700}{12}$ $\frac{1}{2}$ $\frac{1}{2}$	ml - 1,
Bailer Type:	Teflon		_Stainless Steel		_Disposable	7703-1,0	
	Volume (gallons) (b) 0.5 (1.35) 1.5 (0.78) 2.(1.00)	Eh (mV) 704 584 664 634	Turbidity (NTU) 29.1 10.5 8.1 5.3	Temp (°C) 8.1 8.3 8.5 8.6	pH (SU) 6.73 6.61 6.61	Conductivit (indicate un /.52 1.51 1.51 1.52	
% Difference	e between final	3 readings:		d ~ 10 %	8 th	6.7%	

SAMPLE APPEARANCE	Turbidity	Co	lor	Odor
Initial Volumes	_ low	_ 01	84)	NAPL
Final Volumes		de	<u> </u>	NAPL
SAMPLES COLLECTED	Sample List	t: <u>8:55</u>		
ID	Analysis	Quantity	Volume	
NO-1228	TLL NOG	_ a	40 mL	
	TCL SVOCS	a	1000 mL	
	TCL 510Cs Cyanide		250 mL	
 				
DATE CONTROL DA MEDIC	**			
PUMPING RATES Average Purge 150 mL/	/i A		15A /	_
	Tillii Ave	rage Samping_	mL/mii	1
OTHER READINGS				
DO (mg/L)	PID (ppm)		CO ₂ (mg/L)	
	()		00-(g, 2)	
PURGE WATER DISPOSAL				
On-site storage pending anal	ysis			
Relinquished to licensed hau				
Discharge in sewer (previou	s analysis completed))		
Discharge on ground (previous	ous analysis complete	ed)		
** The Project Manager will instruc	et the Field Team as	to which disposa	l method is app	olicable.
COMMENTS (difficulties, condition	on of casing, etc.)	ı		
	<i>3, 7</i>			
-				
	<u> </u>			

Client: Nyse 6	/Ish Site:_	NORW	1 CH		
Personnel: Lmg/Kg We	eather: cold , b	lurries	Date: 12	6/05	
PUMPING PARAMETERS Casing inner diameter (gal/foot): 2" (0.16) 4" (0	0.65)5	" (1.02)	Other_	1" (0.0	41)
Height of casing reference above grade Depth of well from top of casing Water level from top of casing Feet of water in casing NAPL level from top of casing(if present NAPL thickness Min gallons of purge (feet of water X ga			sured Depth 5.10 .05 0.05 Type 0.041	Ref. Locati	on
Purging Method: Sampling Method: Y Peris. Pump Peris. Pump	Bailer	Pos. Pur	mp (Grundfos) mp (Grundfos)	Other_Other_	<u>-</u>
Type of Tubing: Tygon Teflon Polyethylene	Pumphead	_	<u>ベ</u> (そ.0 ハヴィ	ol. = 0.21 $9 \times \frac{3700 \text{ min}}{1}$ $7 \times \frac{3700 \text{ min}}{1}$	
Bailer Type:Teflon	Stainless Steel	-	Disposable	- ۵ ه	. n a
CHEMICAL PARAMETERS Time Volume Eh (gallons) (mV) 1:08 0 (p) 2.02 1:13 0.5 (p.20) 201 1:18 1 (p.u2) 205 1:23 1.5 (p.p2) 2/3 1:23 1.5 (p.p2) 2/3 1:38 2/5 (1.05 2/2 1:38 3 (1.26) 2/2	Turbidity (NTU) 30.6 17.0 7.3 1.3 0.0 0.0	Temp (°C) 8.1 9.8 10.5 10.2 10.4 10.5	pH (SU) 700 6.99 6.87 6.77 6.73 6.67	Conductivit (indicate un 1.43 1.44 1.39 1.39 1.39	y Da
% Difference between final 3 readings: (highest-lowest)/ ((highest + lowest)/2)		1.9%	1.0%	9.90%	

	IPLE APPEARANCE	Turbidity	Col	or	Odor
Initia	1 Volumes	100 m	_ de	~	MAR
Fina	Volumes	_ low	_de	<u> </u>	None
SAM	IPLES COLLECTED	Sample List	: 1346 pm		
	ID	Analysis	Quantity	Volume	
	NO - P2299	TCL VOLS	3	40 mL	
		TCL SUDLS	_ 2	Ja Mol	
		Cyanike	1	330 m	
		- AMM			
	, a	-	·,		
PUN	IPING RATES	· ·			
	Average Purge \\ \ \ m	L/min Aver	rage Sampling	50 mL/min	
				·	
ОТЕ	IER READINGS				
	DO (mg/L)	PID (ppm)		CO ₂ (mg/L)	
,		(PP)		(mg, 2)	
25					
PI ÎR	GE WATER DISPOSAL				
PUR	GE WATER DISPOSAL On-site storage pending ar	alvsis			
	On-site storage pending an	-			
	On-site storage pending an Relinquished to licensed h	auler			
	On-site storage pending an Relinquished to licensed h Discharge in sewer (previo	aulerous analysis completed)			
	On-site storage pending an Relinquished to licensed h	aulerous analysis completed)		2.1	
	On-site storage pending an Relinquished to licensed h Discharge in sewer (previous Discharge on ground (previous)	aulerous analysis completed) vious analysis completed	d)	method is applic	able.
** T	On-site storage pending an Relinquished to licensed h Discharge in sewer (previo Discharge on ground (prev the Project Manager will instr	aulerous analysis completed) vious analysis completed ruct the Field Team as t	d)	method is applic	able.
** T	On-site storage pending an Relinquished to licensed h Discharge in sewer (previo Discharge on ground (previous project Manager will instruction)	aulerous analysis completed) vious analysis completed ruct the Field Team as t	d)	method is applic	
** T	On-site storage pending an Relinquished to licensed h Discharge in sewer (previo Discharge on ground (prev the Project Manager will instr	aulerous analysis completed) vious analysis completed ruct the Field Team as t	d)	method is applic	
** T	On-site storage pending an Relinquished to licensed he Discharge in sewer (previous Discharge on ground (previous Project Manager will instrument of the Project Manager will instrument (difficulties, conditions).	aulerous analysis completed) vious analysis completed ruct the Field Team as t	d)	method is applic	
** T	On-site storage pending an Relinquished to licensed he Discharge in sewer (previous Discharge on ground (previous Project Manager will instrument of the Project Manager will instrument (difficulties, conditions).	aulerous analysis completed) vious analysis completed ruct the Field Team as t	d)	method is applic	

	Clien	t: Jsh/mys	Site:_	NORWIC	H	
Perso	onnel: <u>Lw4 [&</u>	Wea	other: cold, 6	lurries	Date: 12(6	105
Casing inner	PARAMETER diameter (gal/1 2" (0.16)	foot):	55)5	" (1.02)	Other_	<u>ı" (o.041)</u>
Depth of well Water level to Feet of water NAPL level NAPL thicks	from top of cas	asing ing sing(if present		15 _5		Ref. Location Mark on pvc.
Min gallons	of purge (feet o	of water X gal	ft X 3 well vols	.) 10.14×1	0.041 = 0.4	<u>921 = Ivol</u>
Purging Met Sampling Me		eris. Pump eris. Pump	Bailer Bailer		np (Grundfos) np (Grundfos)	Other Other
Type of Tub	Tygo Teflo		Pumphead Silicon			1= 0.2 721 1=1 × 3700 ml, min 1721 150 m
Bailer Type:	Teflon		_Stainless Steel		Disposable	= 5 minutes
CHEMICAI Time 13:11 13:16 13:21 13:26 13:31	PARAMETI Volume (gallons) 0.5(0.2) 1 (0.4) 1.5 (0.6) 2 (0.8) 2.5 (1.0) 2 (1.2)	Eh (mV) 307 316 314 316	Turbidity (NTU) 29.8 27.1 12.1 10.9 11.2	Temp (°C) 10.8 10.4 10.3 10.5	pH (SU) 6.87 6.83 6.84 6.85	Conductivity (indicate units) 7/6 1.03 3.73 1.00 1.00 1.00 1.00
% Difference	between final	3 readings:		1.9%	1. °.	~ ~
	est)/ ((highest	_			weg	

SAMPLE APPEARANCE	Turbidity	Cole	or	Odor
Initial Volumes	Www !	<u> </u>	eon	none
Final Volumes	Low	_ cl	ear	none
SAMPLES COLLECTED	Sample List:	13:35		
ID	Analysis	Quantity	Volume	
1D 	TCLVOCS		40 mL	
	TCL SVOCE		500 mL	
	Total cn	1	200 mL	
		·		
				
	•			
PUMPING RATES				
Average Purge (< o mL/mi	n Aver	age Sampling 1	mL/min	
OTHER READINGS				
DO (mg/L)	PID (ppm) _		$CO_2 (mg/L)$	
PURGE WATER DISPOSAL				
On-site storage pending analysi				
Relinquished to licensed hauler				
Discharge in sewer (previous a	-			
Discharge on ground (previous	analysis completed	1)		
** The Project Manager will instruct t		which disposal	method is appli	icable
,		winen disposar	mediod is appli	Cabic.
COMMENTS (difficulties, condition	of casing, etc.)			
		*	r , ·	* " ; !
				*
-			6.1	_
				_
				_
		_		_

Client: Tsh/Ayso	Site: NOR	MICH	
Personnel: LMG Weath			<u>05</u>
PUMPING PARAMETERS Casing inner diameter (gal/foot):2" (0.16)4" (0.65)	5" (1.02)) <u>X</u> Other <u>1</u>	" (0.041)
Height of casing reference above grade Depth of well from top of casing Water level from top of casing Feet of water in casing NAPL level from top of casing(if present) NAPL thickness Min gallons of purge (feet of water X gal/ft	Previous Report		
Purging Method: Sampling Method: Y Peris. Pump Peris. Pump	BailerPo	s. Pump (Grundfos) s. Pump (Grundfos)	Other Other
Type of Tubing: Tygon Teflon Polyethylene	Pumphead		$1 = 0.18 gal$ $1 \times 3700 mC_{x} = \frac{n}{3}$ $1 \times 3700 mC_{x} = \frac{n}{3}$
Bailer Type:TeflonS	tainless Steel	Disposable	- 7.7 min
CHEMICAL PARAMETERS Time Volume Eh (gallons) (mV) 14:22 6(0) 330 14:26 0.5(0.18) 332 14:31 1(0.76) 333 14:35 1.5(0.54) 334 14:40 2 (0.72) 336	Turbidity Temp (NTU) (°C) 26.9 10.5 9.6 5.1 10.2 1.6 9.8	2 6.83 4 6.77 2 6.78 4 6.78	Conductivity Do (indicate units) 118 6.54 1.17 5.57 1.16 5.43 1.16 5.44
% Difference between final 3 readings: (highest-lowest)/ ((highest + lowest)/2)	5.9		<u>07.</u>

SAMPLE APPEARANCE	Turbidity	Color	Odor
Initial Volumes	LOW	clean	none
Final Volumes	<u>low</u>	clear	none
SAMPLES COLLECTED	Sample List:	14:45	
ID	Analysis	Quantity Volur	ne
No- P231	TLL VOCS	2 40.	n <u>L</u>
	TCL SVOCS	2 mg +500	mt 1L
· · · · · · · · · · · · · · · · · · ·	Total Cn		ml
	· —————————		
and the state of t	<u>v · </u>		
PUMPING RATES	T / •	a 11	T / ·
Average Purge 150	mL/min Avera	nge Sampling 150 n	ıL/mın
OTHER READINGS			
DO (mg/L)	PID (ppm)	CO ₂ /n	ng/L)
DO (mg/L)	1 112 (ppin) _		Ig/L)
PURGE WATER DISPOSAL			
On-site storage pending	analysis 🗶		
Relinquished to licensed	•		
	vious analysis completed)		
Discharge on ground (pr	evious analysis completed)	
** The Project Manager will ins	truct the Field Team as to	which disposal method	is applicable.
COMMENTS (difficulties, con-	dition of casing, etc.)		
CONTINUE (CITATION, COL	arion of dusing, coo.,		
, · · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
			
	* - 4		

	Client:	Ish/ny	Æ Site:_	NORMICE	<u> </u>	
Person	nel: LWG	_ Weat	ther: wed		Date: 12\-	HOS
Casing inner of	ARAMETERS liameter (gal/fo (0.16)		5)5	" (1.02)	× Other	1° (0.041)
Depth of well Water level from Feet of water NAPL level from NAPL thickness	om top of casin	sing g ng(if present)	Previous Rep		sured Depth	
Purging Methors Sampling Methors		is. Pump is. Pump	Bailer Bailer	Pos. Pur	mp (Grundfos) mp (Grundfos)	Other Other
Type of Tubin	ng: Tygon Teflon Polyetl		Pumphead Silicon		vnhole Yz v	150 m/min ~5 min
Bailer Type:	Teflon		Stainless Steel		_Disposable	
CHEMICAL Time 8:06 8:11 8:16 8:26	PARAMETEI Volume (gallons)	Eh (mV) 237 261 277 286 292	Turbidity (NTU) 154 41.0 14.5 9.2 8.0	Temp (°C) 11.4 11.4 11.2 11.1	pH (SU) 6.97 6.91 6.89 6.89	Conductivity DO (indicate units) mg/L 2.21
	between final 3 st)/ ((highest +	_		0.9%	1.4%	_07

Well Number: P232,

Initial Volumes Final Volumes LOW LOW Clear NONE SAMPLES COLLECTED Sample List: ID Analysis TCL VOCS TCL VOCS TCL VOCS TCL VOCS TCL VOCS TCL VOCS Analysis Volume TCL VOCS TCL VOCS Analysis Average Sampling Average Sampling ID Analysis Average Sampling Average Sampling ID Analysis Analysis Average Sampling ID Anal
SAMPLES COLLECTED Sample List: ID Analysis TCL VOCS
Analysis Quantity Volume NO-PE32 TCL VOCS TCL SVOCG TGHULCO TOTAL CO PUMPING RATES
NO-PE32 TCL VOCS TCL SVOCS TCL SVOCS TOTAL CO TOTAL CO PUMPING RATES
NO-PE32 TCL VOCS TCL SVOCS TCL SVOCS TOTAL CO TOTAL CO PUMPING RATES
TELSVOG 2 IL 200 ML Total Cn I 200 ML PUMPING RATES
PUMPING RATES
·
·
·
·
·
·
Average Purge mL/min Average Sampling DD mL/min
OTHER READINGS
DO (mg/L) PID (ppm) CO ₂ (mg/L)
DO (mg/L)
PURGE WATER DISPOSAL
On-site storage pending analysis
Relinquished to licensed hauler
Discharge in sewer (previous analysis completed)
Discharge on ground (previous analysis completed)
** The Project Manager will instruct the Field Team as to which disposal method is applicable.
COMMENTS (difficulties, condition of casing, etc.)
<u></u>

	Client:	ISW/MSE6	Site:_	Nary's d	n, MY		
Personn	el: K6/LM	<u> </u>	er: cold, flu	rri es	Date: \12/	1105	
PUMPING PA Casing inner di 2"			5	" (1.02)	Ł_ Other	1" (0.ou)	
Height of casing Depth of well for Water level from Feet of water in NAPL level from NAPL thickness	from top of casing casing om top of casing ss	sing g ng(if present)	Previous Rep		9.94 9.94 9.63	Ref. Location	
Purging Methor Sampling Meth	d: <u>*</u> Per		Bailer Bailer	Pos	. Pump (Grundfos) . Pump (Grundfos)	Other	
Type of Tubing	g: Tygon Teflon Polyetl		PumpheadX		Downhole	-5 mins	l min 150 mi
Bailer Type:	Teflon	s	tainless Steel		Disposable		
CHEMICAL I Time (0:17) (0:33 (0:33)	PARAMETEI Volume (gallons) 0 (b) 1.5 (1.74) 1.5 (1.66) 2.7 (0.86)	Eh (mV) 73% 73% 741 743	Turbidity (NTU) 1.6 1.7 1.7	Temp (°C) 18.9 11.1 10.9 11.1	(SU) 6:79 6:66	The 1.7 Conductivity (indicate units) 3.56 3.63 2.66 3.66 3.67	5.0. 6.46 5.73 5.8 5.6 5.6
% Difference b (highest-lowest)		•		1.9%		_ ૦.૫૧,	

Well Sampling Data Sheet

	William Nation			
SAMPLE APPEARANCE	Turbidity	Col	or	Odor
Initial Volumes	William Town	·	Car	1000
Final Volumes			<u>Cat</u>	None
SAMPLES COLLECTED	Sample Lis	st:		
ID	Analysis	Quantity	Volume	
WO-6533	TCL VOCS	<u> </u>	40 m	
	TCL SVOCS	<u> </u>	1000 ml	
	Total Cyanide		251 ML	
	* , į			
	1			
PUMPING RATES	1.7.4 .			
Average Purge 156	mI /min Av	erage Sampling	156 mL/min	
And the second s		erage sampinis_		
OTHER READINGS				
DO (mg/L)	PID (ppm)		CO ₂ (mg/L)	
PURGE WATER DISPOSA	L			
On-site storage pending	g analysis			
Relinquished to license	ed hauler			
Discharge in sewer (pr	evious analysis completed	l)		
Discharge on ground (previous analysis complet	ed)		
** The Duciest Manager will i	naturat the Field Toom on	to which dispose	1	inalia.
** The Project Manager will i	instruct the Fleid Team as	to which disposa	i meulod is appi	icable.
COMMENTS (difficulties, co	ondition of casing, etc.)	en e		
	*			
			÷	
				<u> </u>
				_
				
				_
	.9.4			
•	ì			

Client: 35h / NYSEE	Site:	Norwich,	MY	
Personnel: 196/LM6 Weath	ner: cold, Fla	Y;42	Date: 12/7	/ 05
PUMPING PARAMETERS Casing inner diameter (gal/foot): 2" (0.16) 4" (0.65)5"	(1.02)	Other	1" (0.041)
Height of casing reference above grade Depth of well from top of casing Water level from top of casing Feet of water in casing NAPL level from top of casing(if present) NAPL thickness	Previous Repo		asured Depth らい Type	Ref. Location
Min gallons of purge (feet of water X gal/ft	X 3 well vols.)	811 m.	0413 0.34	
Purging Method: Sampling Method: Y Peris. Pump Peris. Pump	Bailer Bailer		imp (Grundfos) imp (Grundfos)	Other Other
Type of Tubing: Tygon Teflon Polyethylene	Pumphead <u>k</u>	Dov	wnhole 1/2 4	ol= 0.17 6 ex 3700 ml : Lmin From Whins.
Bailer Type:TeflonS	Stainless Steel		_Disposable	
CHEMICAL PARAMETERS Time Volume Eh (gallons) (mV) 9: 06 0(0) 216 9: 10 0.5(0.17) 263 9: 14 1 (0.34) 361 9: 30 3 (0.14) 359	Turbidity (NTU) 136 36.9 16.9 7.0 2.b	Temp (°C) \$.6 8.7 9.2 9.5	pH (SU) 6.83 6.83 6.83 6.83	$705 = 1.6$ Conductivity (indicate units) $\frac{2.54}{2.55}$ $\frac{3.57}{2.56}$ $\frac{3.57}{3.57}$ $\frac{3.56}{3.57}$ $\frac{3.57}{3.57}$
% Difference between final 3 readings: (highest-lowest)/ ((highest + lowest)/2)		3.2%	00%	0.4%

Well Number: <u>P2-34</u>

SAMPLE APPEARANCE	Turbidity	Color		Odor
Initial Volumes	7 4 1 6 W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Clea	<i>:</i>	TOTE
Final Volumes	low	_ clea	<u>r</u>	MORC
SAMPLES COLLECTED	Sample List:			
ID	Analysis	Quantity	Volume	
NO-P234	TCL VOCS	9	40 mc	
	TCL GVOCS	2	190 ml	
<u> </u>	Total Lyanide	1	250 ML	
	and the second second			
PUMPING RATES				
Average Purge 160 ml	L/min Avera	age Sampling 150	mL/min	
		0 1 0 <u></u>		
OTHER READINGS				
DO (mg/L)	PID (ppm) _		CO ₂ (mg/L) _	
Section 1				
PURGE WATER DISPOSAL				
On-site storage pending an				
Relinquished to licensed ha				
Discharge in sewer (previo				
Discharge on ground (prev	ious analysis completed		, .	
** The Project Manager will instru	uct the Field Team as to	which disposal n	nethod is appli	icable .
The Project Wallager will history	ice the relational reality as to	winen disposar n	icuiou is appir	cabic.
COMMENTS (difficulties, condit	ion of casing, etc.)	• 1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
	***	·	ile, t	
				_
	· ·			_
	-			
				_

Well Sampling Data Sheet Well Number: P2-35

	Client:	IshIMSEG	Site:	Norwic	h, NY	
Person	nel: <u>K6/L</u> M6	Weath	er: cold, flurri	<u> </u>	Date: 12/7/	05_
Casing inner d	ARAMETERS liameter (gal/fo (0.16)		5"	(1.02)	_ 乂 Other_	(ابورو) ''ا
Depth of well Water level from Feet of water in NAPL level from NAPL thickne	om top of casin	sing ng ng(if present)	Previous Repo			:
	od: <u>X</u> Pe		Bailer Bailer	Pos	. Pump (Grundfos) . Pump (Grundfos)	Other
Type of Tubin	ig: Tygon Teflon Polyet		Pumphead			vo) = 0.15 g 5 g = 3700 mL - 150 n - 4 mins
Bailer Type:	Teflon	s	tainless Steel	\$	Disposable	T 0.4
7:59 8:03 8:07 8:11	PARAMETE Volume (gallons) 0(6) 0.5(6.15) 1 (0.36) 1.5(0.45) - 3 (0.66)	Eh (mV)	Turbidity (NTU) 0.0 0.8 0.1 0.3 0.6	Temp (°C) 9.7 4.8 4.9 9.9	pH (SU) 6.40 6.63 6.67 6.69 6.69	Conductivity 0.6 (indicate units) 3.63 3.67 2.70 4.44 3.71 4.19
	between final 3 st)/ ((highest +	•		0 %	0.3%	0.4%

SAMPLE APPEARANCE	Turbidity	Co	lor	Odor
Initial Volumes	low	_ دا	ear	None
Final Volumes			<u></u>	TIME
SAMPLES COLLECTED	Sample List:	8:25		
ID	Analysis	Quantity	Volume	
N 0 - PZ35	TCL VOLS	a	40 ml	
1 72:	TCL SVOCS		1000 mL	
· · · · · · · · · · · · · · · · · · ·	Total Cyaride		250 mL	
es a s y strain	10101 - 700			
	1			
PUMPING RATES				
Average Purge 150 mL/	min Aver	rage Sampling_	150 mL/min	
OTHER READINGS				
DO (mg/L)	PID (ppm)		CO ₂ (mg/L) _	
· · · · · · · · · · · · · · · · · · ·	<u>_</u>		_	
PURGE WATER DISPOSAL				
On-site storage pending anal	ysis			
Relinquished to licensed hau	ler			
Discharge in sewer (previous	s analysis completed)			
Discharge on ground (previous	ous analysis completed	d)		
** The Project Manager will instruc	et the Field Team as to	o which disposa	il method is appl	icable.
COMMENTS (difficulties, condition	on of casing, etc.)			
P				
•	2		, Section 1	
				_
				_
· · · · · · · · · · · · · · · · · · ·				

	Client	: Ish/MSEG	Site	: Norwich	M	_		
Perso	onnel: KG/LM	<u>و</u> Weath	ner: ()	flurries	Date	e: <u>18/6/</u>	05	
Casing inner	PARAMETER r diameter (gal/fi 2" (0.16)) · · · · · · · · · · · · · · · · · · ·	5" (1.02)		_ Other_	0.041 (1")	
Depth of we Water level Feet of wate NAPL level NAPL thick	from top of casi	nsing ng ing(if present)	Previous Ro		Measured I 15.60 7.87 7.73	Турс		on
Min gallons Purging Me Sampling M		f water X gal/fi eris. Pump eris. Pump	t X 3 well voBailerBailer	Pos	3 × 0.04* :. Pump (Gr :. Pump (Gr	undfos) undfos)	Other Other	
Type of Tub	Tygor Teflor		Pumphead		Downhole		nol.= 0.16g bg x <u>3700</u> ml ~4 mins	- <u>- 160</u>
Bailer Type	:Teflon	S	Stainless Stee	1	Dispos	sable		
CHEMICA Time 3:33 3:35 3:37 3:37 3:43 3:45	L PARAMETE Volume (gallons) 0 (0) 0.5 (0.16) 1 (0.33) 1.5 (0.16) 2.5 (0.80) 3 (1.06)	Eh (mV) 341 343 344 344 340	Turbidity (NTU) 338 122 58.3 35.1	Temp (°C) 9.9 10.6 10.6	(S 		T BS = 0.7 Conductivit (indicate un	y na
	ce between final vest)/ ((highest -	_		1.90	<u> </u> 0	.1°la	0 %	

Well Sampling Data Sheet Well Number: 12-36

SAMPLE APPEARANCE	Turbidity	Color	-	Odor
Initial Volumes	low	<u>clear</u>		slight MA
Final Volumes		clear		slight NAPL
SAMPLES COLLECTED	Sample Lis	st: 3: 00		
ID	Analysis	Quantity	Volume	
NO-7236	TU voca	<u> </u>	40 mL	
	TU 5/845	2	1000 mL	
	Total Garade	1	360 mr	

	•			
PUMPING RATES				
Average Purge \(\forall n\) m	L/min Ave	erage Sampling \(\frac{1}{2}\)	50 mL/min	
OTHER READINGS				
DO (mg/L)	PID (ppm)		CO ₂ (mg/L) _	
PURGE WATER DISPOSAL				
On-site storage pending an	alveic			
Relinquished to licensed ha				
Discharge in sewer (previo	<u> </u>	D		
Discharge on ground (prev				
		. ,		ϵ_{i}
** The Project Manager will instr	uct the Field Team as	to which disposal a	method is appl	cable.
COMMENTS (difficulties, condi	tion of casing, etc.)	8 1		1 + 1,
A Maria Cara Cara Cara Cara Cara Cara Cara	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			*
	Section 1985		a v	
		<u> </u>		<u> </u>
	·		· .	
				_
-				_

Well Sampling Data Sheet Well Number: <u>P737</u>

	Client:	ISH/AN	See Site:_	NORW	ICH	
Person	nnel: LMG	_ Wea	ther: cold, k	<u>Jurri</u> es	Date: 12	6/05
Casing inner	PARAMETERS diameter (gal/fo ' (0.16)		5	" (1.02)		1"(0.041)
Depth of well Water level fr Feet of water NAPL level fr NAPL thickne	rom top of casin	sing g ng(if present)	Previous Rep	(5 ·	sured Depth 51 63 8.82 Type	
Purging Meth Sampling Met	od: K Per	is. Pump is. Pump	Bailer Bailer	Pos. Pur	mp (Grundfos) mp (Grundfos)	Other Other
Type of Tubin	ng: Tygon Teflon Polyetl		Pumphead Silium			ol = 12 0.18 gel v= 150 mb/min ~ 4.4 min
Bailer Type:	Teflon		Stainless Steel	· · · .	Disposable	
CHEMICAL Time (5:21 (5:25 15:31 15:35 15:41	PARAMETEI Volume (gallons) o (o) o.5 (o.18) 1 (0.36) 1.5 (0.54) 2 (0.72)	Eh (mV) 281 272 258 243 237	Turbidity (NTU) 74.3 43.3 25.6 23.3 22.8	Temp (°C) 8.6 11.2 11.1 11.3	pH (SU) 6.94 6.84 6.82 6.82	Conductivity (indicate units) ws 1 1.89 1.77 1.77 0.4 1.78 0.06
	between final 3			1.8%	6%	<u> </u>

SAMPLE APPEARANCE	Turbidity	Co	lor	Odor
Initial Volumes	<u> low</u>		lean	none
Final Volumes	_Cow_	Clear		none
SAMPLES COLLECTED	Sample List:	15:45		
ID	Analysis	Quantity	Volume	
NO-P=37	POVIST	2	40 ml	
V 18	TCL SVOG		12_	
	Total (n	1	200ml	
				
· · · · · · · · · · · · · · · · · · ·				
PUMPING RATES				
Average Purge (50 mL/	min Aver	age Sampling	150 mL/min	
mentage range ve and	11101	и до Бишрин <u>ь</u> _	mily min	
OTHER READINGS				
DO (mg/L)	PID (ppm) _		CO ₂ (mg/L)	
PURGE WATER DISPOSAL				
On-site storage pending anal				
Relinquished to licensed hau				
Discharge in sewer (previous				
Discharge on ground (previous	ous analysis completed	1)		
** The Project Manager will instruc	t the Field Team as to	which dispose	al method is applie	anhla :
		winch disposa	ii metiod is appin	Laule.
COMMENTS (difficulties, condition	on of casing, etc.)			
				_
	<u>. </u>			-
				_
				_
	ф 			

Well Sampling Data Sheet Well Number: <u>\$2-38</u>

	Client	: IshIMSEG	Site:_	Nonich, 1	<u>/Y</u>		
Person	nel: KG (LMG	Weatl	ner: Cda, Flu	<u> </u>	Date: 17/6	,105	
PUMPING P. Casing inner co			5	" (1.02)	_X Other	1" (0.041)	
Height of casi	ng reference al	bove grade	Previous Rep	oort Mea	sured Depth	Ref. Location	
Depth of well	from top of ca	sing	· .	16.	55_		
Water level fre	om top of casi	ng		<u> 7</u> .	72		
Feet of water	in casing			4 ,	\$ 3		
NAPL level fr	om top of casi	ng(if present)			Тур	e:	
NAPL thickne	ess						
Min gallons of	f purge (feet o	f water X gal/f	t X 3 well vols	.) <u>8.83</u> × (0.36		
Purging Metho	nd· Pe	ris. Pump	Bailer	Pos Pur	np (Grundfos)	Other	
Sampling Met		ris. Pump	Bailer		np (Grundfos)		
		-				vol = 0.18 g	
Type of Tubin	•		Pumphead	Dow	nhole	0.18 g x 3 700 m2	·. 1
	Tygor Teflor		<u> </u>		`	17	150
		thylene				~4 mins.	
Bailer Type:	Teflon		Stainless Steel		Disposable	, ,,,	
	~				. •	TD5= 1.6	
CHEMICAL Time	Volume	Eh	Turbidity	Tomp	"U	•	
1 IIIIC	(gallons)	(mV)	(NTU)	Temp (°C)	pH (SU)	Conductivity (indicate units)	0.0
%: 83	g (9)	349	99	9.9	6.66	3.48	B:84
3:37	0.5(0.8)	839	999	11.1	6.66	3.47	1.33
3:31	1 (0.30%)	234	198	11.7	6.66	243	1.13
3:35	1.5 (0.50)	93	21.3	19.1	6.60	2.40	1.06
3-39	\$ (0.68	231	5.3	11.9	6.66	2.38	0.98
	between final (t)/ ((highest -	_		3,4%	_0°l•	1.7%	

SAMPLE APPEARANCE	Turbidity	Co	olor	Odor
Initial Volumes	high	<u> </u>	Dwn	1xpe
Final Volumes	<u>low</u>	_ 4	s ar	7006
SAMPLES COLLECTED	Sample List:	3,40		
ID	Analysis	Quantity	Volume	
No-1238	TCL VOCS	3	40 ml	
1	TUL SYOUS	3	In 0001	
	Total Cyanide		aso ml	
8.3				
	· ·			
			 	
Tag Marie Ma				
PUMPING RATES				
Average Purge \\ \forall forall mI	L/min Aver	age Sampling_	150 mL/mir	ı
British British Burney				
OTHER READINGS				
DO (mg/L)	PID (ppm) _		$CO_2 (mg/L)$	
PURGE WATER DISPOSAL On-site storage pending and Relinquished to licensed had Discharge in sewer (previous Discharge on ground (previous personne).	nuler ous analysis completed)			
** The Project Manager will instru	uct the Field Team as to	which dispos	al method is app	olicable.
	1	, er		
COMMENTS (difficulties, condit	tion of casing, etc.)			
180				· · · · · ,
	·			
	4			

(highest-lowest)/ ((highest + lowest)/2)

Well Sampling Data Sheet

	Client	: Ish/Mysec	Site:_	Norwich, M			:
Person	nel: KG/LM	Weatl	her: cold, flu	41105	Date: 1217	105	
PUMPING P. Casing inner c			5)5	" (1.02)	Other_	((40, 0) "ا	
Height of casi	ng reference a	hove grade	Previous Rep	ort Meas	sured Depth	Ref. Location	n
Depth of well	U	-		15.1	47	<u> </u>	
Water level fr	-				40		
Feet of water	•	ing			.07		
NAPL level fi	•	ing(if present)			Type	· .	
NAPL thickne	-	ing(ii present)			Type	·	
NAPL UIICKIIC	299				×		
Min gallons of	f purge (feet o	f water X gal/f	t X 3 well vols	.) _ 10.07 0	.041= 0.42	y	
Purging Methors Sampling Methors		eris. Pump eris. Pump	Bailer Bailer		np (Grundfos) np (Grundfos)	OtherOther	_
Type of Tubin	g: Tygoi	1	Pumphead	Dow		vol. = 0.21 g	<u>. mi</u>
	Teflor					12	150 m
	Polye	thylene			<u> </u>	~ 5 mins.	
Bailer Type:	Teflon		Stainless Steel		Disposable		
CHEMICAL	PARAMETE	ers				TOS=11	
Time	Volume	Eh	Turbidity	Temp	pН	Conductivity	/ D. 0
1	(gallons)	(mV)	(NTU)	(°C)	(SU)	(indicate uni	ts)
1:10	0(0)	599	311	7.6	6.93	1.71	6.1
1:15	0,5 (0.21)	614	76.3	68	6.78	1.88	6.5
1:90	1 (0,42)	623	26.9	7.0	6.75	8.08	6.7
1:95	1.5 (0.6)	136	18.5	7.2	6.74	2.07	6.78
1:30	· 7 (0.8H)	625	7.6_	7.1	6,74	3.86	6.7
	<u> </u>						
							
% Difference	between final	3 readings:		2.80)	0,10/0	1.9%	

SAMPLE APPEARANCE	Turbidity	Co	lor	Odor
Initial Volumes	low "		ear	_ None
Final Volumes	امد		las	7076
SAMPLES COLLECTED	Sample List:	1,45		
ID	Analysis	Quantity	Volume	
No- 8239	Tu Vois	3	40 ml	
	TLL SNOWS	3	1000 mL	
7	Cynnipe	1	Jm (126	
	- you take			
	- W 73			
PUMPING RATES				
Average Purge \50 mL	/min Aver	rage Sampling	60 mL/min	
		gpg_		
OTHER READINGS				
DO (mg/L)	PID (ppm)		CO ₂ (mg/L)	
	41>_			
PURGE WATER DISPOSAL				
On-site storage pending anal	lvsis			
Relinquished to licensed hav				
Discharge in sewer (previou				
Discharge on ground (previo				
Troining on Brown (Front	_			
** The Project Manager will instru	ct the Field Team as t	o which disposa	l method is appl	icable.
COMMENTS (difficulties, condition	on of casing, etc.)		1 No. 1	
**.	5 3		1 1 %	
	· · · · · · · · · · · · · · · · · · ·			_
			_	
	·			

E **SVI SITE SURVEY AND INVENTORY SHEETS**

NYSEG: Norwich SRI Report October 2006

NYSDOH CEH BEEI Soil Vapor Intrusion Guidance

PUBLIC COMMENT DRAFT February 2005

Appendix B

Indoor air quality questionnaire and building inventory

As discussed in Section 2.11, products in buildings must be inventoried every time indoor air is sampled to provide an accurate assessment of the potential contribution of volatile chemicals. In addition, the type of structure, floor layout and physical conditions of the building being studied must be noted to identify (and minimize) conditions that may interfere with the proposed testing. Toward this end, a blank copy of the NYSDOH Center for Environmental Health's Indoor Air Quality Questionnaire and Building Inventory is provided in this appendix. Also provided is an example that demonstrates how the form should be completed properly.

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name	er Crai	g Date/Tim	e Prepared 3/16/06
			. 617 923 466Z
Purpose of Investigation_	Norwin	svj	
1. OCCUPANT:			
Interviewed: (Y) N			
Last Name: Magistro)	First Name: Anthony	<u> </u>
Address: 12 Bala	dwin Ave	, Norwich, NY 13	815
County: Chenango			
Home Phone: <u>607-33</u>	4-9242 Offic	ce Phone:	
Number of Occupants/pers	sons at this locatio	n 2 Age of Occupa	ants 50-60
2. OWNER OR LANDLO	ORD: (Check if s	ame as occupant <u>×</u>)	
Interviewed: Y/N			
Last Name:	F	First Name:	<u>.</u>
Address:			
County:			
Home Phone:	Off	ice Phone:	
3. BUILDING, CHARAC	TERISTICS		
Type of Building: (Circle	appropriate respo	nse)	
Residential Industrial	School Church	Commercial/Multi-use Other:	

If the property is residentia	il, type? (Circle appropr	riate respons	se)
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	Townh	
If multiple units, how many	/? <u>1</u>		•
If the property is commerc	ial, type?		
Business Type(s)			<u></u>
Does it include residence	es (i.e., multi-use)? Y	/N	If yes, how many?
Other characteristics:			
Number of floors 2	. Bui	ilding age <u>/</u>	1940
Is the building insulated	N Ho	w air tight?	Tight / Average / Not Tight
4. AIRFLOW			
Use air current tubes or tra	icer smoke to evaluate	airflow pa	tterns and qualitatively describe:
Airflow between floors Little flow	When Stor	\sigma 5	
Airflow near source	Lusro		
Outdoor air infiltration No signific	ut thou from	n ont	dews
Infiltration into air ducts No infiltration	tion into ar	ducts	

	5
5.	BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction	on: wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other
c. Basement floor:	concrete	dîrt'	stone	other
d. Basement floor:	uncovered	covered	covered with	
e. Concrete floor:	unsealed	sealed	sealed with _	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with _	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially finis	hed
j. Sump present?	Y N			
k. Water in sump?	Y / N not applicable	\rightarrow		
Basement/Lowest level depth b	pelow grade: 45	_(feet)		
Identify potential soil vapor en	itry points and appro	ximate size (e.	g., cracks, utility	ports, drains)
Identify potential soil vapor en	ntry points and appro	ximate size (e.	g., cracks, utility	ports, drains)
Identify potential soil vapor en	ntry points and appro	oximate size (e.	g., cracks, utility	ports, drains)
Identify potential soil vapor en	ntry points and appro	ximate size (e.	g., cracks, utility	ports, drains)
Identify potential soil vapor en	ntry points and appro	ximate size (e.	g., cracks, utility	ports, drains)
				ports, drains)
6. HEATING, VENTING and	d AIR CONDITIONI	ING (Circle all	that apply)	
	d AIR CONDITIONI	ING (Circle all	that apply)	
6. HEATING, VENTING and Type of heating system(s) used Hot air circulation	d AIR CONDITIONI I in this building: (cir Heat pump	ING (Circle all	that apply) ply – note primar water baseboard	
6. HEATING, VENTING and Type of heating system(s) used	d AIR CONDITIONI	ING (Circle all cle all that appears that the thick that appears that appears the thick tha	that apply) ply – note primai	
6. HEATING, VENTING and Type of heating system(s) used Hot air circulation Space Heaters	d AIR CONDITIONI I in this building: (cir Heat pump Stream radiati Wood stove	ING (Circle all cle all that appears that the thick that appears that appears the thick tha	that apply) ply – note primar water baseboard iant floor	-y)
6. HEATING, VENTING and Type of heating system(s) used Hot air circulation Space Heaters Electric baseboard The primary type of fuel used Natural Gas	d AIR CONDITIONI I in this building: (cir Heat pump Stream radiati Wood stove is: Fuel Oil	ING (Circle all cle all that app Hot ion Rad Out	that apply) ply – note primar water baseboard iant floor door wood boiler osene	-y)
6. HEATING, VENTING and Type of heating system(s) used Hot air circulation Space Heaters Electric baseboard The primary type of fuel used Natural Gas Electric	d AIR CONDITIONI I in this building: (cir Heat pump Stream radiati Wood stove is: Fuel Oil Propane	I NG (Circle all cle all that app Hot ion Rad Oute	that apply) ply – note primar water baseboard iant floor door wood boiler osene	-y)
6. HEATING, VENTING and Type of heating system(s) used Hot air circulation Space Heaters Electric baseboard The primary type of fuel used Natural Gas Electric Wood	d AIR CONDITIONI I in this building: (cir Heat pump Stream radiati Wood stove is: Fuel Oil Propane Coal	NG (Circle all cle all that application Rad Out.	that apply) ply – note primar water baseboard iant floor door wood boiler osene	-y)
6. HEATING, VENTING and Type of heating system(s) used Hot air circulation Space Heaters Electric baseboard The primary type of fuel used Natural Gas Electric	d AIR CONDITIONI I in this building: (cir Heat pump Stream radiati Wood stove is: Fuel Oil Propane Coal	NG (Circle all cle all that application Rad Out.	that apply) ply – note primar water baseboard iant floor door wood boiler osene	-y)

Air	co	nd	liti	oni	ng:
	CU			V	

Central Air

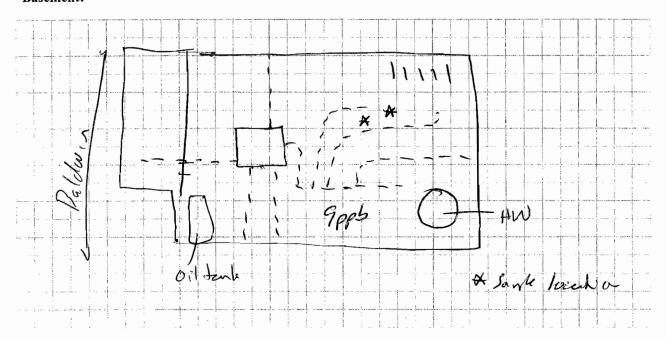
Window units Open Windows

4

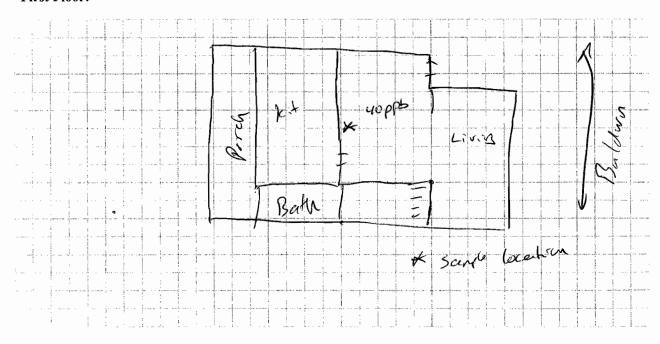
Are there air distribution ducts present?	(x)	ľ
---	-----	---

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram. 7. OCCUPANCY Is basement/lowest level occupied? Full-time Occasionally Almost Never Seldom Level General Use of Each Floor (e.g., familyroom, bedroom, laundry, workshop, storage) Basement 1st Floor 2nd Floor 3rd Floor 4th Floor 8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY a. Is there an attached garage? YN Y/N(NA) b. Does the garage have a separate heating unit? c. Are petroleum-powered machines or vehicles Y/N(NÃ stored in the garage (e.g., lawnmower, atv, car) Please specify_ d. Has the building ever had a fire? Y (N When?_____ e. Is a kerosene or unvented gas space heater present? Where & Type? 2 M How f. Is there a workshop or hobby/craft area? Y (N How frequently? _____ g. Is there smoking in the building? Y/N') When & Type? _____ h. Have cleaning products been used recently?

i. Have cosmetic products been used recently?	When & Type?
5	
j. Has painting/staining been done in the last 6 months?	Y / Where & When?
k. Is there new carpet, drapes or other textiles?	Y N Where & When?
l. Have air fresheners been used recently?	YN When & Type?
m. Is there a kitchen exhaust fan?	Y N If yes, where vented?
n. Is there a bathroom exhaust fan?	Y (N) If yes, where vented?
o. Is there a clothes dryer?	N If yes, is it vented outside? YN
p. Has there been a pesticide application?	Y/N When & Type?
Are there odors in the building? If yes, please describe:	Y (N
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or boiler mechanic, pesticide application, cosmetologist If yes, what types of solvents are used? If yes, are their clothes washed at work?	
Do any of the building occupants regularly use or work at response) Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	a dry-cleaning service? (Circle appropriate
Is there a radon mitigation system for the building/structu Is the system active or passive? Active/Passive	ire? Y 1/197 Date of Installation:
9. WATER AND SEWAGE	
Water Supply: Public Water Drilled Well Driv	ven Well Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Lead	ch Field Dry Well Other:
10. RELOCATION INFORMATION (for oil spill residen	tial emergency)
a. Provide reasons why relocation is recommended: _	
b. Residents choose to: remain in home relocate to	friends/family relocate to hotel/motel


- c. Responsibility for costs associated with reimbursement explained? Y/N
- d. Relocation package provided and explained to residents?

Y/N

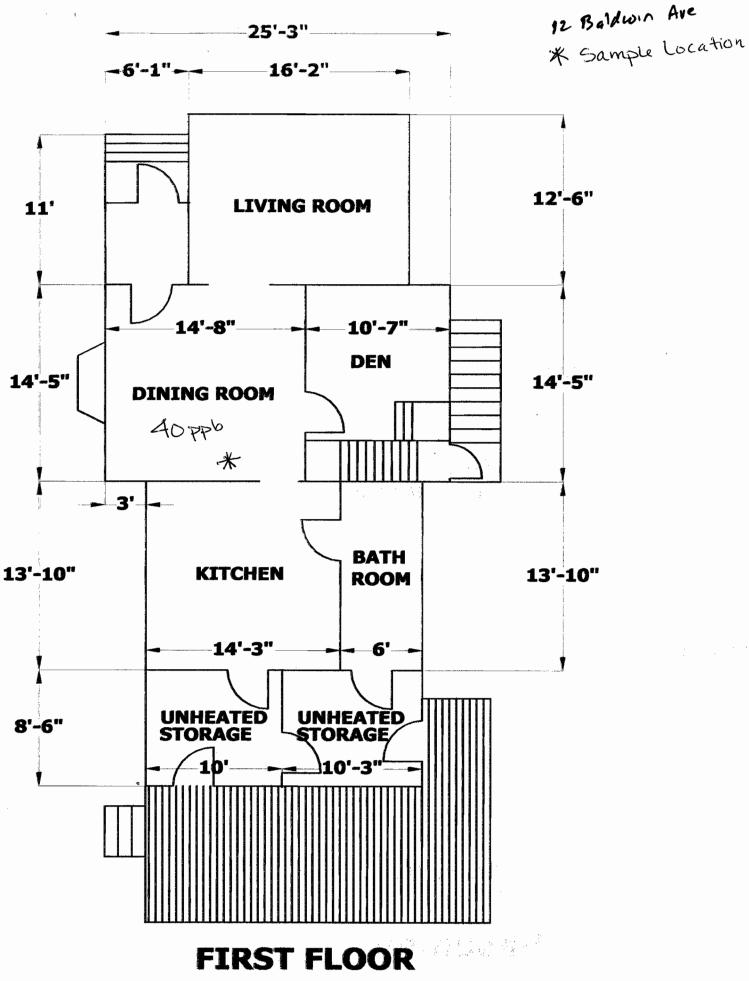

11. FLOOR PLANS

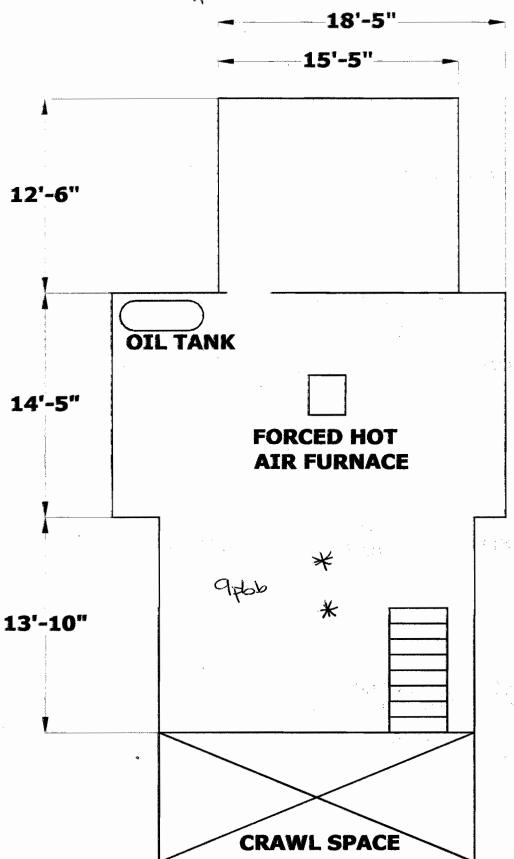
Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:

13. PRODUCT INVENTORY FORM


Make & Model of field instrument used	:
---------------------------------------	----------


List specific products found in the residence that have the potential to affect indoor air quality.

I	Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
	kit	Frame Free easy oft over cleaner Liguid Gold	1602	U	nut listed	37 ph	N
		Would cleaner	1602	ν	not listed	Jogds	N
		Viny/leather deaner	1602	U	ethoxylated linear dishals	11006	N
	baxmit	indication stor solution - photo	1602	UGId	acetic acid	19pps	\sim
		kodek Photo Ho	1602	U(da)	p-tertory oculphosy	800	N.
L		unnited per works	4L-mi	HA WUY	not listed	Mpg 18	N
		Conseed oil	19t.	uloid)	not listed	8 pps	N
above b	torage ausoment	Deck+ Fence cleaner	Igal	U	Soction metalsilicte, Peti-15 -> Chromium Chlorde, Alchand ethoxya	is Apph	N
		Amerall waterproof Senter x2	Igal	u	, , , , , , , , , , , , , , , , , , , ,	11005	N
		Rounder	240z	U_	5 lyposhede	Sppb	N
		deck stain	1541	U	Max voc 550s/L	22 pps	N
		cleck/phase	Iseal	U	unreadable Autorit mineral spirits	9	N
		Paul thinner	150,1	U		132 ppb	N
		exterior acrilie	16 F	U	ettyler glycol	8006	N
		Justex point.	lgt	U	not listed	17095	N
		spray sterch 2	×102	U	not listed	8ppb	N
		foot to -aluminum	581	D	not vieuns le	32	N
		latex perofaky	Isal		//	30	N

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Basement

NYSDOH CEH BEEI Soil Vapor Intrusion Guidance

PUBLIC COMMENT DRAFT February 2005

Appendix B

Indoor air quality questionnaire and building inventory

As discussed in Section 2.11, products in buildings must be inventoried every time indoor air is sampled to provide an accurate assessment of the potential contribution of volatile chemicals. In addition, the type of structure, floor layout and physical conditions of the building being studied must be noted to identify (and minimize) conditions that may interfere with the proposed testing. Toward this end, a blank copy of the NYSDOH Center for Environmental Health's Indoor Air Quality Questionnaire and Building Inventory is provided in this appendix. Also provided is an example that demonstrates how the form should be completed properly.

This page is intentionally blank.

mornings are not good

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Heir Craige	Date/Time Prepared _3/16/06
Preparer's Affiliation /sh Inc	Date/Time Prepared
Purpose of Investigation Norwich 5V1	
1. OCCUPANT:	
Interviewed: (Y) N	
Last Name: Cincotta First	Name: <u>Catherine</u>
Last Name: <u>Cincotta</u> First Address: <u>Ja Baldwin</u> Ave	
County:	
Home Phone: <u>607 334 3551</u> Office Ph	
Number of Occupants/persons at this location	Age of Occupants 85
2. OWNER OR LANDLORD: (Check if same	as occupant 🗾)
Interviewed: Y/N	
Last Name:First 1	Name:
Address:	
County:	
Home Phone: Office Pl	none:
3. BUILDING, CHARACTERISTICS	
Type of Building: (Circle appropriate response)	
	Commercial/Multi-use Other:

2	2
If the property is residential, type? (Circle appropriate	te response)
Ranch 2-Family Raised Ranch Split Level Cape Cod Contemporary Duplex Apartment House Modular Log Home	3-Family Colonial Mobile Home Townhouses/Condos Other:
If multiple units, how many?	,
If the property is commercial, type?	
Business Type(s)	
Does it include residences (i.e., multi-use)? Y/N	If yes, how many?
Other characteristics:	
Number of floors 2 Build	ng age 160415
Is the building insulated YN How a	air tight? Tight DAverage / Not Tight
4. AIRFLOW	6.* *
Use air current tubes or tracer smoke to evaluate ai	rflow patterns and qualitatively describe:
Airflow between floors 1:44 Act d air exchange bet	wein Hours.
Airflow near source No significant those from an accordant Moter would be I tent	oud furue or oil tak
Outdoor air infiltration Open cones when oil Cennes	nto tach - 1: He exchange voted

Infiltration into air ducts Not Jours

5. BASEMENT AND CONSTRUCTION CHARACT	TERISTICS (Circle all that apply)
--------------------------------------	-----------------------------------

a. Above grade construction	wood fram	concrete	stone	brick		
b. Basement type:	full	crawlspace	slab	other		
c. Basement floor:	doncrete de la concrete de la concre	dir	stone	other		
d. Basement floor:	uncovered	covered	covered with			
e. Concrete floor:	unsealed	sealed	sealed with _			
f. Foundation walls:	poured	block	stone	other		
g. Foundation walls:	unsealed	sealed	sealed with _			
h. The basement is:	wet	damp	dr	moldy		
i. The basement is:	finished	unfinished	partially finis	hed		
j. Sump present?	YO					
k. Water in sump?	/ / N / not applicat	ole				
Basement/Lowest level depth be	elow grade:	(feet)				
Identify potential soil vapor ent			a oracks utility	norte draine)		
- water in line (2 x2), some cracks in slub area, 6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply) Type of heating system(s) used in this building: (circle all that apply – note primary)						
Hot air circulation Space Heaters	Heat pump Stream rad		water baseboard iant floor			
Electric baseboard	Wood stov	e Out	door wood boiler	Other		
The primary type of fuel used is	5 :					
Natural Gas	Fuel Oil		osene			
Electric Wood	Propane	Sola	ar .			
Wood	('Aal	5016	••			
Domestic hot water tank fueled	by: electri					

Air	con	ditio	ning
4 ***	CUL	ULLIV	*****

Window units Open Windows

None

4

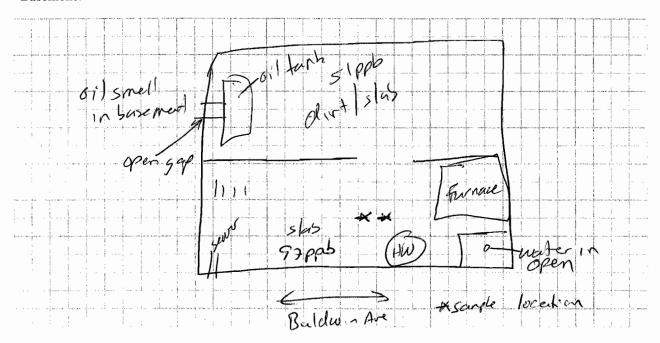
Are	there	air	distribution	ducts	present?
AIC	LIICIC	an	uistiivuttuii	uucis	DI COCIIL.

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

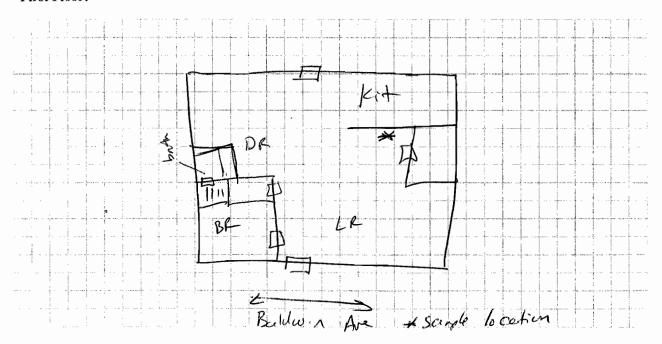
Joints tight Much water in Susa	count gary court all rentes
drew furnance	
7. OCCUPANCY	
Is basement/lowest level occupied? Full-time Occ	asionally Seldom Almost Never
Level General Use of Each Floor (e.g., familyro	om, bedroom, laundry, workshop, storage)
Basement storage	
·	
1st Floor Livers + bedroom 2nd Floor Bedrooms-pet used	
2nd Floor Bredrooms-retured	
3 rd Floor	
4 th Floor	
8. FACTORS THAT MAY INFLUENCE INDOOR AIR	QUALITY
a. Is there an attached garage?	YN
b. Does the garage have a separate heating unit?	Y/N/MA
c. Are petroleum-powered machines or vehicles	Y/NNA
stored in the garage (e.g., lawnmower, atv, car)	Please specify
d. Has the building ever had a fire?	YN When?
e. Is a kerosene or unvented gas space heater present?	YN Where?
f. Is there a workshop or hobby/craft area?	Y Where & Type?
g. Is there smoking in the building?	YN How frequently?
h. Have cleaning products been used recently?	(IN When & Type? furtue polish-win week

i. Have cosmetic products been used recently?	(D) N When & Type? Nacl polish-week y
5	harsprog - wary
j. Has painting/staining been done in the last 6 months?	YN Where & When?
k. Is there new carpet, drapes or other textiles?	Y Where & When?
I. Have air fresheners been used recently?	ON When & Type? Win week-febree 2000
m. Is there a kitchen exhaust fan?	(D/N If yes, where vented? outside
n. Is there a bathroom exhaust fan?	Y N If yes, where vented?
o. Is there a clothes dryer?	YN If yes, is it vented outside? YN
p. Has there been a pesticide application?	Y (N) When & Type?
Are there odors in the building? If yes, please describe: _e, smell in buseme	QN UT
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic of poiler mechanic, pesticide application, cosmetologist If yes, what types of solvents are used?	r auto body shop, painting, fuel oil delivery,
If yes, are their clothes washed at work?	Y (N)
Do any of the building occupants regularly use or work at response)	t a dry-cleaning service? (Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	No Unknown
Is there a radon mitigation system for the building/struct Is the system active or passive? Active/Passive	ure? Y(N)Date of Installation:
9. WATER AND SEWAGE	
Water Supply: Public Water Drilled Well Dri	ven Well Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Lea	ach Field Dry Well Other:
10. RELOCATION INFORMATION (for oil spill resider	ntial emergency) NA
a. Provide reasons why relocation is recommended: _	
b. Residents choose to: remain in home relocate to	friends/family relocate to hotel/motel

- c. Responsibility for costs associated with reimbursement explained? Y/N
- d. Relocation package provided and explained to residents?

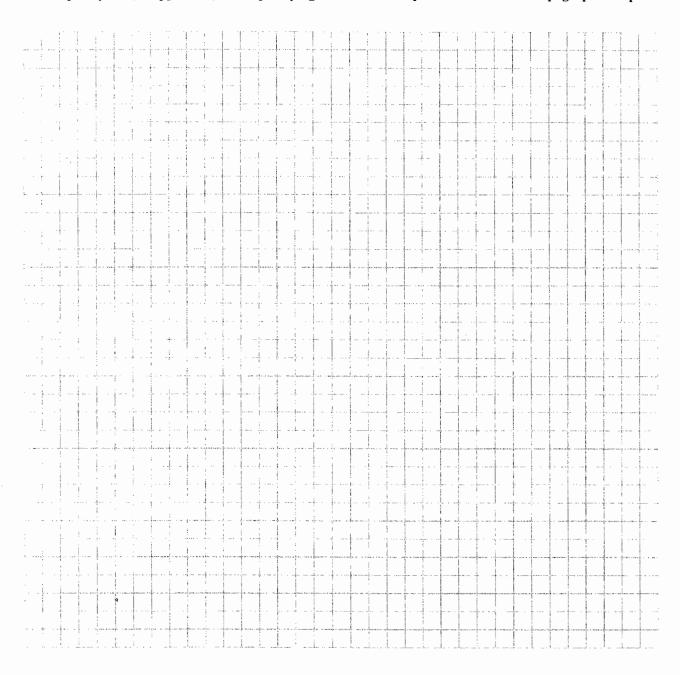

Y/N

6


11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:


First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used:	P	OBRAE
	/	7

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
beaut	Floor wax	1/25911	и	Polystyrene	18pps	N
	Chlargex- electer		и	not liked	18pps 34pps	N
J ¹ FJ	Agua net haw sprzy	1202	ļı.		33ppb	y
	No other	Pro	ducts f	ar potential chemic	ral	
			din	asement or 1st	floor	
	areas.					
		,				
						_
	9					
	9					

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

NYSDOH CEH BEEI Soil Vapor Intrusion Guidance

PUBLIC COMMENT DRAFT February 2005

Appendix B

Indoor air quality questionnaire and building inventory

As discussed in Section 2.11, products in buildings must be inventoried every time indoor air is sampled to provide an accurate assessment of the potential contribution of volatile chemicals. In addition, the type of structure, floor layout and physical conditions of the building being studied must be noted to identify (and minimize) conditions that may interfere with the proposed testing. Toward this end, a blank copy of the NYSDOH Center for Environmental Health's Indoor Air Quality Questionnaire and Building Inventory is provided in this appendix. Also provided is an example that demonstrates how the form should be completed properly.

NYSDOH CEH BEEI Soil Vapor Intrusion Guidance

PUBLIC COMMENT DRAFT February 2005

This page is intentionally blank.

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Keir Craige Date/Time Prepared 3/25/06
Preparer's Affiliation META Environmental Phone No. 617 927 4662
Purpose of Investigation Name of SVI
1. OCCUPANT:
Interviewed: Y (N) Access arranged through realter. No one prient during survey
Last Name: First Name: or all to
Address: answer guestion
County:
Home Phone: Office Phone:
Number of Occupants/persons at this location Age of Occupants
2. OWNER OR LANDLORD: (Check if same as occupant) Interviewed: Y N
Last Name:First Name:
Address:
County:
Home Phone: Office Phone:
3. BUILDING CHARACTERISTICS
Type of Building: (Circle appropriate response)
Residential School Commercial/Multi-use Industrial Church Other:

If the property is resident	ial, type? (Circle approp	riate response) NHT
Ranch Raised Ranch Cape Cod Duplex	2-Family Split Level Contemporary Apartment House	3-Family Colonial Mobile Home Townhouses/Condos
Modular	Log Home	Other:
If multiple units, how man	ny?	,
If the property is commer	cial, type?	b
Business Type(s) _ #	Inactive	
Does it include residen	ces (i.e., multi-use)? Y	If yes, how many?
Other characteristics:		
Number of floors	Bu	ilding age Mknown 250 years
Is the building insulated	d? Y (N) Ho	w air tight? Tight / Average Not Tight
4. AIRFLOW		
Use air current tubes or t	racer smoke to evaluate	airflow patterns and qualitatively describe:
Airflow between floors ——————————————————————————————————		
Airflow near source		
Outdoor air infiltration		
Infiltration into air ducts		

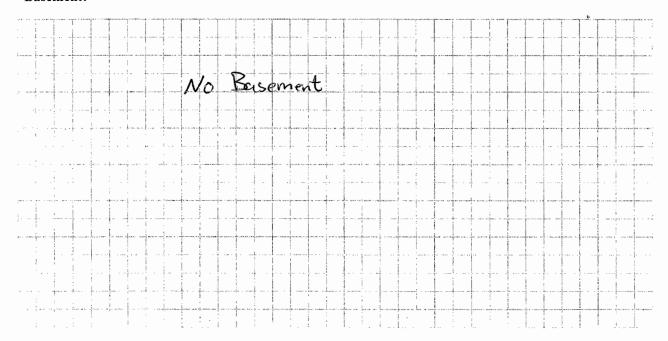
5.	BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construct	ion: wood f	rame conc	rete stone	brick	(ender block)
b. Basement type: NA	full	craw	Ispace slab	other	<u> </u>
c. Basement floor: NA	concret	e dirt	stone	other	
d. Basement floor: NA	uncove	red cove	red covere	ed with	
e. Concrete floor:	unseale	seale	d sealed	Lwith Portly 10	uned of coupeting (See
f. Foundation walls: NA	poured	block	stone stone	other	
g. Foundation walls: ~/	unseale	ed seale	d sealed	l with	
h. The basement is: NA	wet	damı	dry	moldy	7
i. The basement is: NA	finishe	d unfir	ished partia	lly finished	
j. Sump present? NA	Y / N				
k. Water in sump? NA	Y / N / not appl	licable			
Basement/Lowest level depth	below grade:	O (feet)			
6. HEATING, VENTING a Type of heating system(s) use		`	11.2	, ,	
Hot air circulation Space Heaters Electric baseboard	Heat p	ump radiation	Hot water bas Radiant floor Outdoor wood	eboard	tunknown
The primary type of fuel use	d is: unknown				
Natural Gas Electric Wood	Fuel O Propan Coal		Kerosene Solar		
Domestic hot water tank fue	led by: unkn	our_			
Boiler/furnace located in:	Basement	Outdoors	Main Floor	Other	enknown

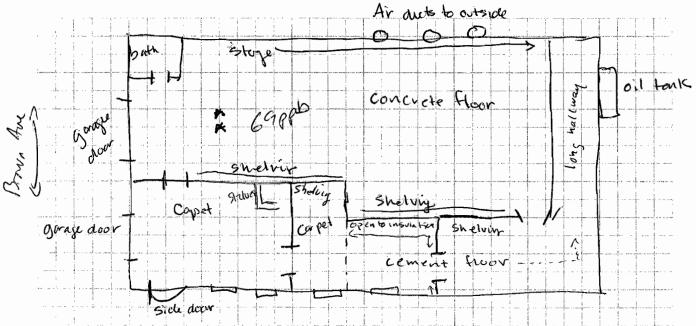
Air condition	ning: Central Air	Window units	Open V	Vindows	None Conkin	
Are there air	r distribution ducts present?	4 Ŷ)/ N				
	supply and cold air return ductwo					
						_
						<u> </u>
7. OCCUP	ANCY /lowest level occupied? Full-time	e Occasi	onally	Seldom	Almost Never	Current
Level	General Use of Each Floor (e.g		·			
Basement	ΝA					
st Floor	Uninhabited					
2 nd Floor		_				
3 rd Floor				_		
4 th Floor						
3. FACTOR	RS THAT MAY INFLUENCE IND	OOR AIR QI	UALITY			
a. Is there	an attached garage?			Y/N		
b. Does th	e garage have a separate heating u	ınit?		Y / N /(NA)		
	roleum-powered machines or vehion the garage (e.g., lawnmower, atv,			Y / N / NA Please specify_		
d. Has the	building ever had a fire?			Y/N When?	Unknown	
e. Is a ker	osene or unvented gas space heate	r present?		Y/Ø Where	?	
f. Is there	a workshop or hobby/craft area?		Y / N	Where & Type	?_ NA	
g. Is there	smoking in the building?		Y /(N)	How frequently	y?	
h. Have cl	eaning products been used recentl	y ?	Y / N	When & Type?	NA	

i. Have cosmetic products been used recently?	Y (N)	When & Type?	?				
5							
j. Has painting/staining been done in the last 6 month	s? Y/N	Where & When	n?				
k. Is there new carpet, drapes or other textiles?	Y/N	Where & Whe	n? _ <i>N/A</i>				
l. Have air fresheners been used recently?	Y/N	When & Type	?_ <i>N</i> A				
m. Is there a kitchen exhaust fan?	Y/N	If yes, where v	ented? NA				
n. Is there a bathroom exhaust fan?	Y/N	If yes, where v	ented?_\mathcal{A}				
o. Is there a clothes dryer?	Y (N)	If yes, is it ven	ted outside? Y / N				
p. Has there been a pesticide application?	Y/N	When & Type	?_NA				
Are there odors in the building? If yes, please describe: Smells damp and m	(D)/N						
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, cosmetologist							
If yes, what types of solvents are used?							
If yes, are their clothes washed at work? Y/N							
Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response)							
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less Yes, work at a dry-cleaning service	s)	No NA Unknown)				
Is there a radon mitigation system for the building/stru Is the system active or passive? Active/Passive	cture? Y/N	Date of Install	ation:				
9. WATER AND SEWAGE							
Water Supply: Public Water Drilled Well D	riven Well	Dug Well	Other:				
Sewage Disposal: Public Sewer Septic Tank L	each Field	Dry Well	Other:				
10. RELOCATION INFORMATION (for oil spill residential emergency)							
a. Provide reasons why relocation is recommended:							
b. Residents choose to: remain in home relocate to	to friends/fam	ily relocat	te to hotel/motel				

- c. Responsibility for costs associated with reimbursement explained? Y/N
- d. Relocation package provided and explained to residents?


Y/N

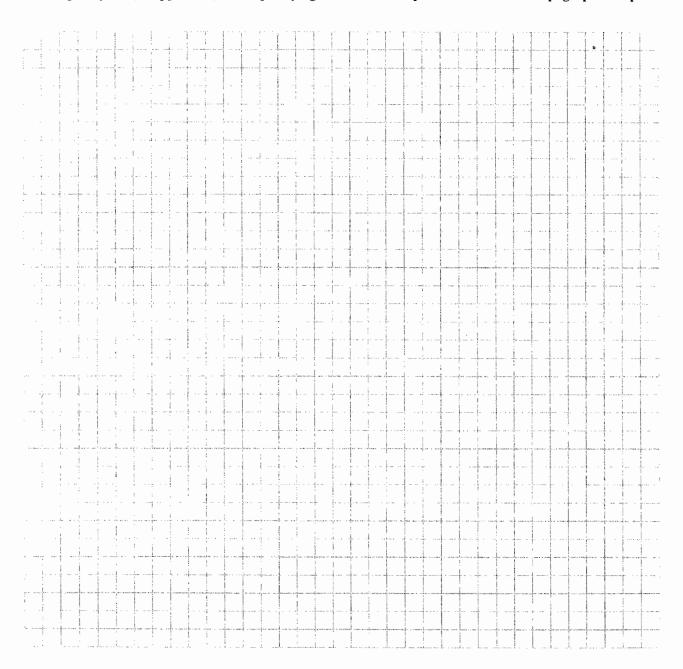
6


11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:



& sumple localion

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: _	QPBRAE
	11 1

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units) •	Photo ** Y/N
1st Floor	Raid	802	U			\mathcal{N}
	Hearth + Stove cleme	2202	U	no listing (2 both les)	25 ppb	\sim
	Cinch Z+1 chaner	6402	U		10 PPb	\mathcal{N}
	Denatured Alchohol	3202	u	no listing methanal/MIBK/Acctone/	2 ppis	N
	PVC Piping Cleaner	lle 0Z	u	MEK/ Actione	194 ppb	\vee
	Gun Treatment	1202	u	no listing (2 cans)	11+11 pp	Ν
	Pouf + Flashing Sealent	logal	UD	no listing (2 cans) minual spirits	2.PPb	\mathcal{N}
	Polywothan Oil Enamel	19+	u	poty workane No listing	12 ppb	\sim
	Gold Medallatex	150	u	No listing	20.ppb	\nearrow
	Liquid vails advise)		u	'No listing	7 pps	N
	Enamel Paint	lat	u	petroleum distollate	Прры	N
	Lutex Dant	lgul	u	vinyl acrylic (2 cons)	28 ppb	N
	Bushing Thunner	320z	u	Petroleum distollate mineral spirits/hapha	2164 ppb	Ν
	Zoundup	1561	u	no listing	12 ppb	N
	Gass Chaner	220 2	u	no listing	26 ppb	N
	Brake + Part Chaner	1902	u	PCE/ Kylene/Ethlybenzene	ZIPPO	~
	All purpose PVL umont	1602	и	tetrahydra finan/ MEX/ cyclonexanone	9,459 pp	<i>N</i>
	Purple Primer	802	u	MEK/ Ly Clohexanone/acctone tetrahydra firan	> 200 ppm	\mathcal{N}

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

NYSDOH CEH BEEI Soil Vapor Intrusion Guidance

PUBLIC COMMENT DRAFT February 2005

Appendix B

Indoor air quality questionnaire and building inventory

As discussed in Section 2.11, products in buildings must be inventoried every time indoor air is sampled to provide an accurate assessment of the potential contribution of volatile chemicals. In addition, the type of structure, floor layout and physical conditions of the building being studied must be noted to identify (and minimize) conditions that may interfere with the proposed testing. Toward this end, a blank copy of the NYSDOH Center for Environmental Health's Indoor Air Quality Questionnaire and Building Inventory is provided in this appendix. Also provided is an example that demonstrates how the form should be completed properly.

PUBLIC COMMENT DRAFT February 2005

This page is intentionally blank.

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

ı	
Preparer's Name <u>Amanda</u> B ₁ 55e11	Date/Time Prepared 3/16/06
Preparer's Affiliation 15h Inc.	Phone No. 417-923-4662
Purpose of Investigation SVI Evaluat	ion
1. OCCUPANT:	
Interviewed: Y/N	
Last Name: Wrightman First Name	: Earl
Address: 10 Columbia Ave	
County: Chenaugo	
Nome Phone: <u>607 334 9039</u> Office Phone: _	
Number of Occupants/persons at this location 2	Age of Occupants 84+88
2. OWNER OR LANDLORD: (Check if same as occ	upant X)
Interviewed: Y/N	
Last Name:First Name:	
Address:	
County:	,
Home Phone: Office Phone:	
3. BUILDING CHARACTERISTICS Type of Building: (Circle appropriate response)	
	nercial/Multi-use
Residential School Comm Industrial Church Other:	

If the property is residential, type? (Circle appropriate response)

Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment Hous Log Home	se <	Townh				
If multiple units, how many?	NA				,		
If the property is commercial,	type?						
Business Type(s)			_				
Does it include residences	(i.e., multi-use)?	Y / N		If yes, l	now many	?	
Other characteristics:							
Number of floors 2		Building	g age_	1905	~100	yearda	
Is the building insulated?)N	How air	tight?	Tight	Average /	Not Tight	
4. AIRFLOW Use air current tubes or trace Airflow between floors water lines above Airflow near source Little flow of air	e washing ,	mach	,,,,,	Hew	upstæ.,	v	
Outdoor air infiltration basemet window Infiltration into air ducts ho air infiltration						dryer to	

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Cir	ircle all t	that apply)
---	-------------	-------------

a. Above grade construction:	wood frame	concrete	stone	brick				
b. Basement type:	full	crawlspace	slab	other				
c. Basement floor:	concrete	dirt	stone	other				
d. Basement floor:	uncovered	covered	covered with 3	partially w/vg + lindeum				
e. Concrete floor:	unsealed	sealed	sealed with	Part				
f. Foundation walls:	poured	block	stone	other				
g. Foundation walls:	unsealed	sealed	sealed with	Pant				
h. The basement is:	wet	damp	dry	moldy				
i. The basement is:	finished	unfinished	partially finish	ed				
j. Sump present?	Y / 🕡							
k. Water in sump?	N /not applicable							
Basement/Lowest level depth belo	ow grade: ~ 3	(feet)						
Identify potential soil vapor entry	points and approx	cimate size (e.	g., cracks, utility	ports, drains)				
Part of basement has a crawl space								
6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply) Type of heating system(s) used in this building: (circle all that apply – note primary)								
Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radiation Wood stove	Hot on Rad	water baseboard iant floor door wood boiler	Other				
The primary type of fuel used is:								
Natural Gas Electric Wood	Fuel Oil Propane Coal	Ker Sola	osene ar					
Domestic hot water tank fueled b	y: <u>Electric</u>		-					
Boiler/furnace located in: Ba	sement Outdo	ors Mai	n Floor	Other				

A 2	aanditianing.	
Air	conditioning:	

Central Air

Window units Open Windows

4

Are	there	air	distribution	ducts	nresent?
Are	mere	all	aisa inamon	aucis	present:

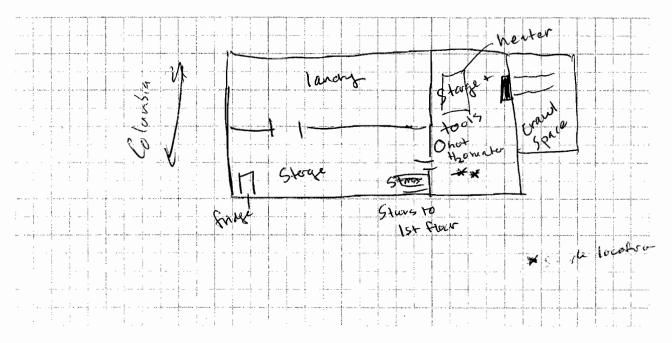
(V)/N-Fenrace ducts

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

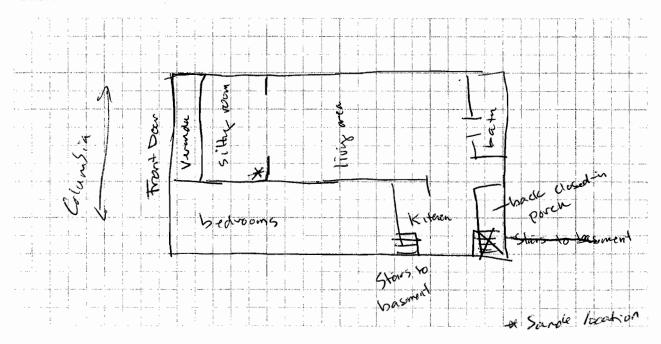
_ good	andition	
7. OCCUP	ANCY	we cruy lander
Is basement	/lowest level occupied? Full-time Occa	sionally Seldom Almost Never
Level	General Use of Each Floor (e.g., familyroo	om, bedroom, laundry, workshop, storage)
		, , , , , , , , , , , , , , , , , , ,
Basement	laundry	
1 st Floor		
2 nd Floor	- nothing weenty much	abited
3 rd Floor		
4 th Floor		
8. FACTOR	RS THAT MAY INFLUENCE INDOOR AIR (QUALITY
a. Is there	an attached garage?	Y /N
b. Does th	e garage have a separate heating unit?	Y/N/NA
	roleum-powered machines or vehicles in the garage (e.g., lawnmower, atv, car)	Y / N / NA Please specify
d. Has the	e building ever had a fire?	Y / When?
e. Is a ker	osene or unvented gas space heater present?	Y / Where?
f. Is there	a workshop or hobby/craft area?	Y N Where & Type?
g. Is there	e smoking in the building?	Y (N) How frequently?
h. Have cl	leaning products been used recently?	Y //N) When & Type?

i. Have cosmetic products been used recently?	Y (N) When & Type?
5	
j. Has painting/staining been done in the last 6 months?	Y N Where & When?
k. Is there new carpet, drapes or other textiles?	Y (N) Where & When?
1. Have air fresheners been used recently?	(Y) N When & Type? <u>Occaisonally</u>
m. Is there a kitchen exhaust fan?	N If yes, where vented? 105, de
n. Is there a bathroom exhaust fan?	(Y)/N If yes, where vented? autsde
o. Is there a clothes dryer?	N If yes, is it vented outside? N-w basemen
p. Has there been a pesticide application?	Y /(N) When & Type?
Are there odors in the building? If yes, please describe:	YOU
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or a boiler mechanic, pesticide application, cosmetologist If yes, what types of solvents are used?	
If yes, are their clothes washed at work?	Y/N
Do any of the building occupants regularly use or work at a response) Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less)	No
Yes, work at a dry-cleaning service Is there a radon mitigation system for the building/structur Is the system active or passive? Active/Passive	re? Y/N Date of Installation:
9. WATER AND SEWAGE	·
Water Supply: Public Water Drilled Well Drive	en Well Dug Well Other:
Sewage Disposal: Fublic Sewer Septic Tank Leach	h Field Dry Well Other:
10. RELOCATION INFORMATION (for oil spill resident	ial emergency) NA
a. Provide reasons why relocation is recommended:	
h. Residents choose to: remain in home relocate to fr	riends/family relocate to hotel/motel

- c. Responsibility for costs associated with reimbursement explained? Y/N
- d. Relocation package provided and explained to residents?

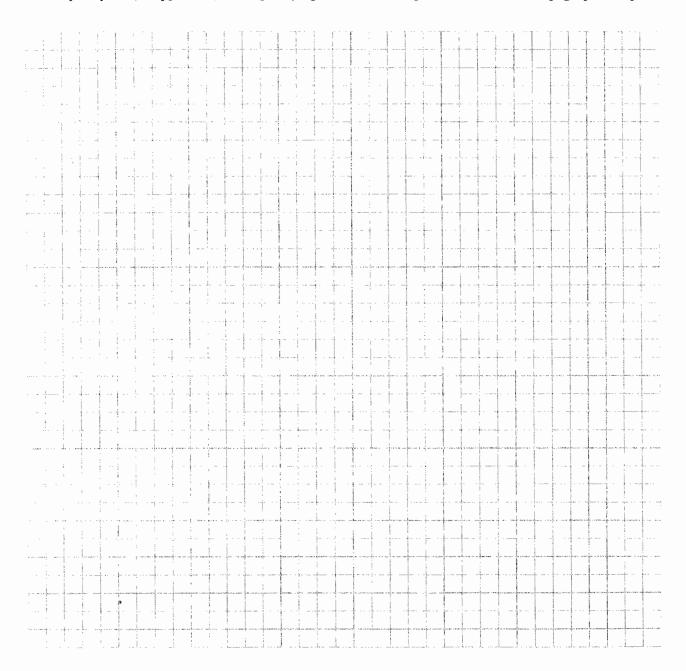

Y/N

6


11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:


First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: RAE	tu instrument useu.
--	---------------------

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
First Floor	- none for	und	Product	s present were general clearing products (soon	ns etc)	
Basement	Fire extinguisher Correpeilant	1602	u	none listed	25 ppb	N
	Aquay-liquid Seven 4F	8 02	u	Carbayl	8 ,000	
	Autobody indirioati	2002	U	none listed	8 pp	
	Raid	17.502	1	petroleum distillates	2 000	
	usect Spray	1202	U	Pyrethrins	1000	
	Two Cycle engine oil	lat	и	not listed	15 pp	
	CLR	12+	U		18 ppb	
	Prester Presessing	1402	u	more spirits, propure- n-butere, xilene petroleum diskilates	11000	
	Silien spray	1307	и	pétroléum distillates	4006	
	simone spreesuper polish-car polish	1802	и	not listed	8pp	
	engine vil	3.707	(L	net list of	101 ppb	
	house oil utility		u	not listed	8 pgs	
	rust-o-leam Varish (7)	802-16	· u	not listed ashpull, potash	20005	
	Vornish (7) drive way cruck sealer	Igall			11 ppb	
	Pothole patch	1 1	u	asphalt, petaleam distillates	22/16	
	turpatere unter applicant	1gt	1	point thinner	17ppb	
	WOUND OF SELVER W	lst	u	Zine naphthatere	1040ch	V
	Formys funitueration	ixe la	+ U	retheratechol, totrove, nec	113 660	

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

cent over next page

D-gloss liquid sender	/g+	u	petaleun distillate talno kl Kekne	132 pps	N
Shue polish	sm cans	и	nut listed	13006	N
Part thinker	137	и	mineral spirits	23ppb	N
Parks gun tuopentine	1p+	И	nut listed	7ppb	N
Coopet shanped	127	u	not listed	ZAPB	
riase vac Crept clean	lat	и		26ppb	

NYSDOH CEH BEEI Soil Vapor Intrusion Guidance

PUBLIC COMMENT DRAFT February 2005

Appendix B

Indoor air quality questionnaire and building inventory

As discussed in Section 2.11, products in buildings must be inventoried every time indoor air is sampled to provide an accurate assessment of the potential contribution of volatile chemicals. In addition, the type of structure, floor layout and physical conditions of the building being studied must be noted to identify (and minimize) conditions that may interfere with the proposed testing. Toward this end, a blank copy of the NYSDOH Center for Environmental Health's Indoor Air Quality Questionnaire and Building Inventory is provided in this appendix. Also provided is an example that demonstrates how the form should be completed properly.

PUBLIC COMMENT DRAFT February 2005

This page is intentionally blank.

no conflicts w/ schooling

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Ama	nda Bissell	Date/Time Prepared 3116/06
		Phone No. 417-923-4662
Purpose of Investigation	Norwich =	oVI
1. OCCUPANT:		
Interviewed: Y/N		
Last Name: Brown	1	First Name: Randy
Address: 16 Colum	nbia St., 1	Vorwich, NY 13815
County: Chenango		
Home Phone: <u>607-331</u>	<u>0-3454</u> Offic	e Phone:
Number of Occupants/pers	ons at this location	1 6 Age of Occupants 35,31, 16-9, 2
2. OWNER OR LANDLO		
Interviewed: Y/N		
Last Name:	F	irst Name:
Address:		
County:		
Home Phone:	Offic	ce Phone:
3. BUILDING CHARAC	TERISTICS	
Type of Building: (Circle	appropriate respor	nse)
Residential	School Church	Commercial/Multi-use

if the property is resident	ai, type? (Circle appropri	iate response)		
Ranch	2-Family	3-Family		
Raised Ranch	Split Level	Colonial		
Cape Cod	Contemporary	Mobile H		
Duplex	Apartment House		ises/Condos	
Modular	Log Home			
If multiple units, how mar			,	
If the property is commer				
			f yes, how many?	
Other characteristics:				
	n. 11	'R	wit 1896 -> 1104	were odd
Number of floors 4	•			
Is the building insulated		v air tight? T	Fight / Average Not Tight	>
4. AIRFLOW	Blown in			
Use air current tubes or tr	acer smoke to evaluate a	airflow patte	rns and qualitatively des	cribe:
Airflow between floors				
By backdoor in bou	sement-there is a	duct be	tween the busem	ent + 1st from
By backdoor in but	low of air ento a	batween	•	
	7			
Airflow near source				
1	Mari			
one una Hache	1 11 1 7 11	1	1	<u> </u>
one una Hache	er ouch w slow	into :	system toward.	> turnance
Outdoor air infiltration				
	id a mal to	done h	and flower lamb	. 6. 11a
A couple of the w	anciacos von la	OUSEN TI	are vous comu	-9 m
Infiltration into air ducts				
where bytem ("ree asove)			

5.	BASEMENT A	ND	CONSTRUCTION	CHARACTERISTICS	(Circle all that apply

a. Above grade constru	wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other
c. Basement floor:	portial concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with _	
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with _r	nortar - not all walks soule
h. The basement is:	wet	damp	dry	moldy - dirt floor damp
i. The basement is:	finished	unfinished	partially finish	ned
j. Sump present?	Y/N			
k. Water in sump?	Y/N/not applicable			
Basement/Lowest level dep	oth below grade: ~7	_(feet)		
	in slas, dwr w			not tally rected
Type of heating system(s)	used in this building: (circ	ele all that app	ly – note primar	y)
Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radiation Wood stove	on Radia	water baseboard ant floor oor wood boiler	Other
The primary type of fuel u	sed is:			
Natural Gas Electric Wood	Fuel Oil Propane Coal	Kero. Solar		
Domestic hot water tank f	uolod by 1/4 by a \ C	146		
	ueled by:	12.3	_	

Air	con	ditio	ning:
AIL	COII	aitio	ming:

Central Air

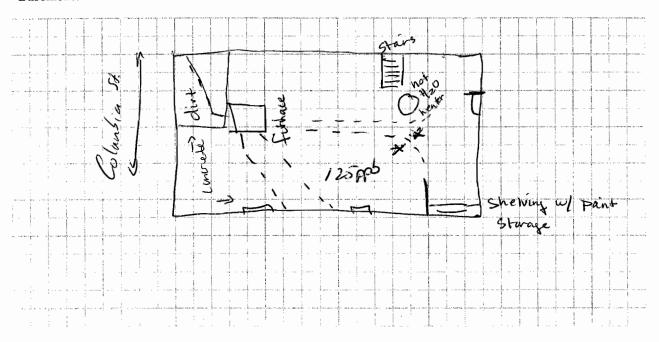
Window units Open Windows

N	one
(-,	

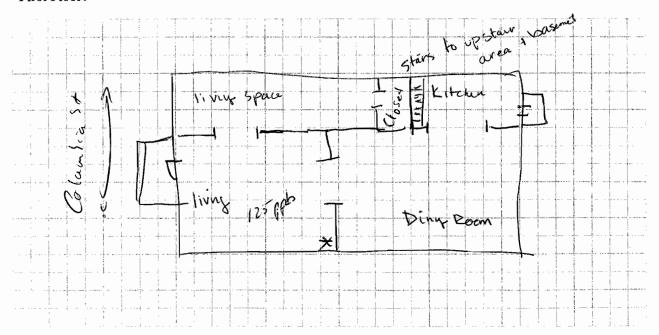
4

Are	there	air	distribution	ducts	present?
AIC	uncie	an	aisti ibutton	uucis	present.

Describe the supply and cold air return ductwork, and its here is a cold air return and the tightness of duct joints. I liagram.	
nagi am.	
OCCUPANCY	
s basement/lowest level occupied? Full-time Occ	asionally Seldom Almost Never
evel General Use of Each Floor (e.g., familyro	oom, bedroom, laundry, workshop, storage)
easement Storage	
1 2 500 600	
asement Storage The Thirty Space The Took Bedrooms	
d Floor	
h Floor	
FACTORS THAT MAY INFLUENCE INDOOR AIR	QUALITY
a. Is there an attached garage?	Y /(N)
b. Does the garage have a separate heating unit?	Y/N/NA)
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)	Y / N / NA Please specify
d. Has the building ever had a fire?	Y (N) When?
e. Is a kerosene or unvented gas space heater present?	Y /N Where?
f. Is there a workshop or hobby/craft area?	Y / (Where & Type?
g. Is there smoking in the building?	YN How frequently?
h. Have cleaning products been used recently?	Y) N When & Type? ~ 1 week/word polish window Clear

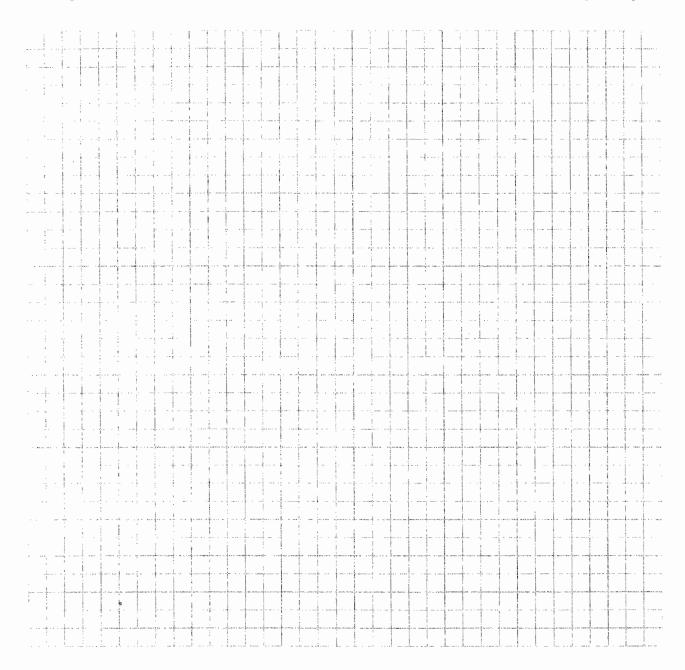

i. Have cosmetic p	products been used recently	? (Ý) N	When & Type?	
		5		
j. Has painting/st	aining been done in the last	6 months? (Y) N	Where & When? <u>K</u>	itchen in Octobe
k. Is there new ca	rpet, drapes or other textil	es? Y (N) Where & When?	
l. Have air freshe	ners been used recently?	$(Y)_N$	When & Type? Sc	ented condus
m. Is there a kitc	hen exhaust fan?	Y /(N) If yes, where vented	?
n. Is there a bath	room exhaust fan?	Y /(N) If yes, where vented	?
o. Is there a cloth	es dryer?	(Ý) / N	If yes, is it vented ou	tside?(Ŷ)/ N
p. Has there beer	a pesticide application?	Y/N	When & Type?	
Are there odors i	_	Y /🕅	>	
boiler mechanic, pes	afacturing or laboratory, auto sticide application, cosmetolo of solvents are used?	gist		
	ing occupants regularly use			
Yes, use dry	r-cleaning regularly (weekly) r-cleaning infrequently (mont t a dry-cleaning service		No Unknown	
Is there a radon mi Is the system active	itigation system for the built or passive? Active/F		Date of Installation:	
9. WATER AND S	EWAGE			
Water Supply:	Public Water Drilled	Well Driven Well	Dug Well Oth	er:
Sewage Disposal:	Public Sewer Septic T	ank Leach Field	Dry Well Oth	er:
10. RELOCATION	N INFORMATION (for oil s	spill residential emer	gency)	
a. Provide reas	ons why relocation is recom	ımended:		
b. Residents ch	oose to: remain in home	relocate to friends/far	mily relocate to h	otel/motel

- c. Responsibility for costs associated with reimbursement explained? Y/N
- d. Relocation package provided and explained to residents? Y/N


11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:


First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make	& Model	of field instrument	used:		
Make	& Model	of field instrument	usea:		

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
Basement	later point 6x	Igall	и		77-00	N
	latexpoint 11x latexpoint enantipoint 6x	Isall	D		77ppb	N
	enancipaint 6x	15411	D		33005	N
	salment alcohol	lat	,,	rethanol	45 woods	N
	watelox-cooking	12+	u	not listed	6 9 9 6	N
	watelos-coaking	1/2 sall	u	not readable	1005	N
1-0:						
PH	Paint Portex point 2	05.11	u		17006	N
	Portex punt 2	1/541	1 4		29	N
		,				
	4					

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

PUBLIC COMMENT DRAFT February 2005

Appendix B

Indoor air quality questionnaire and building inventory

As discussed in Section 2.11, products in buildings must be inventoried every time indoor air is sampled to provide an accurate assessment of the potential contribution of volatile chemicals. In addition, the type of structure, floor layout and physical conditions of the building being studied must be noted to identify (and minimize) conditions that may interfere with the proposed testing. Toward this end, a blank copy of the NYSDOH Center for Environmental Health's Indoor Air Quality Questionnaire and Building Inventory is provided in this appendix. Also provided is an example that demonstrates how the form should be completed properly.

anyhm -atto 9 Am

- second shift work

336-2757

PUBLIC COMMENT DRAFT February 2005

This page is intentionally blank.

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Keir Craigie Date/Time Prepared 3/17/06 1130
Preparer's Name <u>Keil Craigle</u> Date/Time Prepared 3/17/06 1130 Preparer's Affiliation <u>Ish Inc</u> Phone No. 617 923 4662
Purpose of Investigation_Norwich_SVI
I. OCCUPANT:
Interviewed Y/N
Last Name: Kellie First Name: Kellie
Address: 18 Columbia St, Newsch, NY 13815
County: Chenango
Home Phone: 607 236 2757 Office Phone:
Number of Occupants/persons at this location Age of Occupants 3-25
2. OWNER OR LANDLORD: (Check if same as occupant)
Interviewed: Y(N)
Last Name: Cleary First Name: Thomas
Address: 1331 County Road 31, Guilford, NY 13815
County:
Home Phone: <u>1001-895-4634</u> Office Phone:
3. BUILDING CHARACTERISTICS
Type of Building: (Circle appropriate response)
Residential School Commercial/Multi-use Industrial Church Other:

If the property is residential, type? (Circle appropriate response)
Ranch Raised Ranch Cape Cod Duplex Modular Cape Cod Contemporary Colonial Mobile Home Townhouses/Condos Other: Other:
If multiple units, how many?
If the property is commercial, type?
Business Type(s)
Does it include residences (i.e., multi-use)? Y/N If yes, how many?
Other characteristics:
Number of floors 2 Building age unknown
Is the building insulated? YN How air tight? Tight / Average Not Tight
4. AIRFLOW
Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:
Airflow between floors No significant How noted
Airflow near source 10 significant
Outdoor air infiltration Cot words > i revel Here
Infiltration into air ducts when ducts meet boundeton walls inward leak

5. BASEMENT AND CONSTRU	JCTION CHARA	CTERISTICS	(Circle all that ap	ply)
a. Above grade construction:	wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with _	
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially finish	ed
j. Sump present?	Y N			
k. Water in sump? Y /	N / not applicable			
Basement/Lowest level depth belo	w grade: 5	_(feet)		
Dict basement flow			g., cracks, utility	ports, drains)
6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply) Type of heating system(s) used in this building: (circle all that apply – note primary)				
Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radiati Wood stove	on Radi	water baseboard ant floor loor wood boiler	Other
The primary type of fuel used is:				
Natural Gas Electric Wood	Fuel Oil Propane Coal	Kero Sola	osene r	
Domestic hot water tank fueled by	y: Natural	Gas		
Boiler/furnace located in:	sement Outdo	oors Mai	n Floor	Other

Air	conditioning	; :
-----	--------------	------------

Central Air

None

4

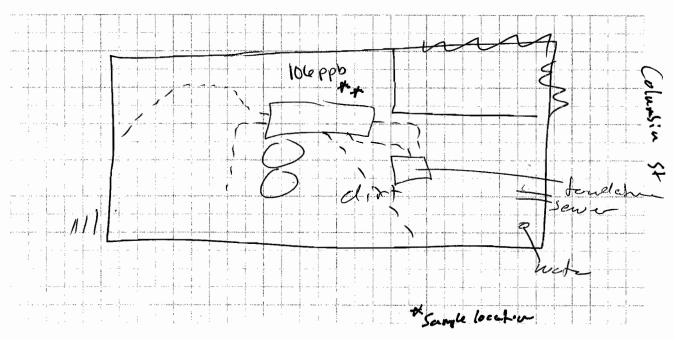
Are there air distribution ducts present?

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

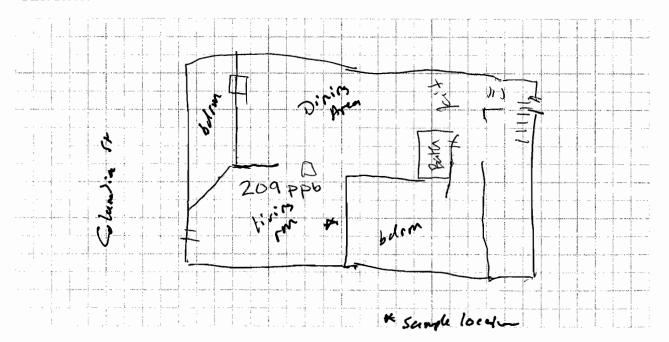
diagram.		
0	e	
Cluc	ts in soud condition	
7. OCCUPA	ANCV	
		sianally Saldom Almost Navor
Level	General Use of Each Floor (e.g., familyroo	sionally Seldom Almost Never
Basement	Strage	
1st Floor	Living	
2 nd Floor	Civing space	
3 rd Floor		
4 th Floor	·	
	S THAT MAY INFLUENCE INDOOR AIR (QUALITY
a. Is there	an attached garage?	Y/N)
b. Does the	e garage have a separate heating unit?	Y/N(NA)
	roleum-powered machines or vehicles 1 the garage (e.g., lawnmower, atv, car)	Y / N/NA Please specify
d. Has the	building ever had a fire?	Y/N When?
e. Is a kero	osene or unvented gas space heater present?	Where?
f. Is there a	a workshop or hobby/craft area?	Where & Type?
g. Is there	smoking in the building?	YN How frequently?
h. Have cle	eaning products been used recently?	Y N When & Type?

i. Have cosmetic products been used recently?	YNWhe	en & Type? _		
5				
j. Has painting/staining been done in the last 6 months?	YNWhe	ere & When?		
k. Is there new carpet, drapes or other textiles?			cren ruo	
l. Have air fresheners been used recently?			neutulai	
m. Is there a kitchen exhaust fan?	N If ye	es, where ver	nted? not co	ntside
n. Is there a bathroom exhaust fan?	N If ye	es, where ver	nted? not au	<u>at</u>
o. Is there a clothes dryer?	N If ye	es, is it vente	d outside? Y(N	D
p. Has there been a pesticide application?	Y) N Whe	en & Type?_	something not liver	VN Sasen
Are there odors in the building? If yes, please describe:	Y (N)			
If yes, what types of solvents are used? If yes, are their clothes washed at work? Do any of the building occupants regularly use or work at a response) Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	Y/N dry-cleaning No Unk	> known		
Is there a radon mitigation system for the building/structur Is the system active or passive? Active/Passive	e: YODDat	e of Installat	ion;	
9. WATER AND SEWAGE				
	n Well Dug	g Well	Other:	
Sewage Disposal: Public Sewer Septic Tank Leach	Field Dry	Well	Other:	-
10. RELOCATION INFORMATION (for oil spill residenti)		
a. Provide reasons why relocation is recommended:				-
b. Residents choose to: remain in home relocate to fr	ends/family	relocate	to hotel/motel	

- c. Responsibility for costs associated with reimbursement explained? Y/N
- d. Relocation package provided and explained to residents?

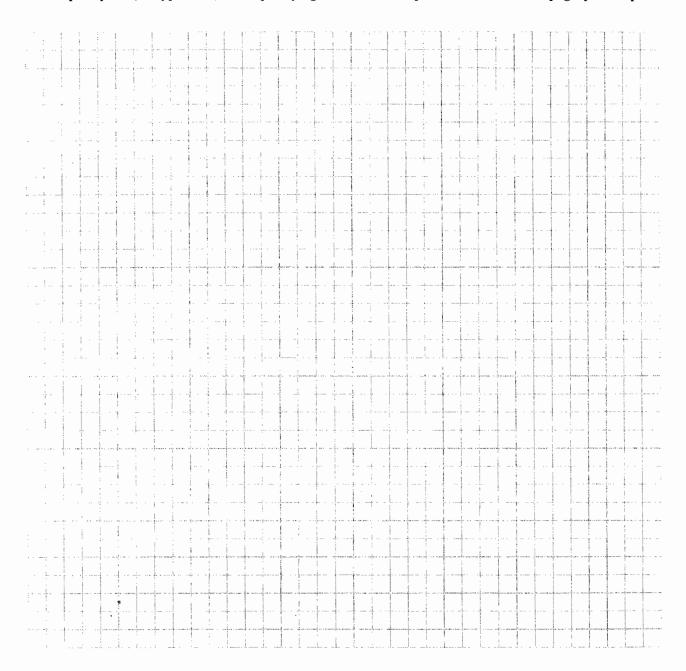

Y/N

6


11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:


First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used	
---------------------------------------	--

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
Stainer	Charcoul state	2×14	u	petrleand itilldes	Opps	N
kit	3 in one	242202	и	mothyl propene	Ордь	N
	Degreaser	2202	1	not listed	opph	N
	spray paint	1102	м	not listed	Оррь	N
	torch full		N	not listed	26 ppb	N
	Vacuum foam coopet	5252	M	not listed	Оррь	N
		'				
	4					

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

PUBLIC COMMENT DRAFT February 2005

Appendix B

Indoor air quality questionnaire and building inventory

As discussed in Section 2.11, products in buildings must be inventoried every time indoor air is sampled to provide an accurate assessment of the potential contribution of volatile chemicals. In addition, the type of structure, floor layout and physical conditions of the building being studied must be noted to identify (and minimize) conditions that may interfere with the proposed testing. Toward this end, a blank copy of the NYSDOH Center for Environmental Health's Indoor Air Quality Questionnaire and Building Inventory is provided in this appendix. Also provided is an example that demonstrates how the form should be completed properly.

- next week not sood - afternoons, early - trus lived.

PUBLIC COMMENT DRAFT February 2005

This page is intentionally blank.

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name	1. Craigi	Pate/Time Pi	repared 3/17/06
		Phone No	
Purpose of Investigation	Norwien.	<u> </u>	
1. OCCUPANT:			
Interviewed:🎸 / N			
Last Name: Tabs	I	First Name: Linda	
Address: 20 Columb	ia		
County:	_		
		e Phone:	
Number of Occupants/pers	ons at this location	Age of Occupants	30-60
2. OWNER OR LANDLO			
Interviewed: Y/N			
Last Name:	Fi	irst Name:	
Address:			
County:	_	,	
Home Phone:	Office	ce Phone:	_ _
3. BUILDING CHARAC			
Type of Building: (Circle	appropriate respon	nse)	
Residential Industrial	School Church	Commercial/Multi-use Other:	

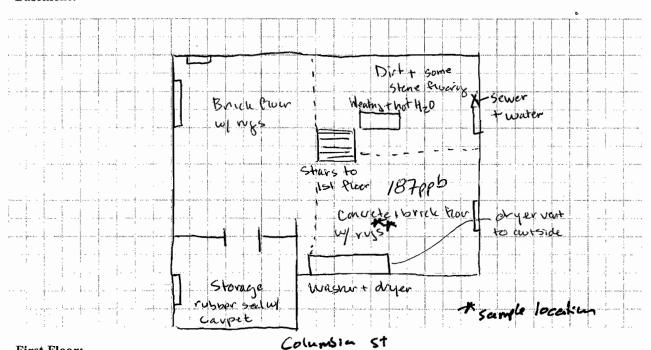
If the property is residential	type? (Circle appropria	te response)
Ranch	2-Family	3-Family
Raised Ranch	Split Level	Colonia
Cape Cod	Contemporary	Mobile Home
Duplex	Apartment House	
Modular	Log Home	Other:
If multiple units, how many?		•
If the property is commercia		
Business Type(s)		
Does it include residences	(i.e., multi-use)? Y/N	If yes, how many?
Other characteristics:		
Number of floors 2	Build	ing age_>100 4(>
Is the building insulated?	N How	air tight? Tight / Average Not Tight
4. AIRFLOW		Di Gu
Use air current tubes or trac	er smoke to evaluate a	irflow patterns and qualitatively describe:
Airflow between floors		
Upward How fre	n barrout to 1	at one end near furnace at
edge (well)		
Airflow near source	•	
No sondent br	w Crow	d terrace
0.1		
Outdoor air infiltration		(. 1 do
No significant flow	1) ments language	of daily (Raden)
1000 113 741	or reserve	of day (radia)
Infiltration into air ducts		

5. BASEMENT AND CONST	RUCTION CHARA	CTERISTICS	(Circle all that a	pply)	
a. Above grade construction	: wood frame	concrete	stone	brick	
b. Basement type:	full	crawlspace	slab	other	
c. Basement floor:	concrete	dirt	stone	other	
d. Basement floor:	uncovered	covered	covered with	carpets most area	2 ہ
e. Concrete floor:	unsealed	sealed	sealed with		
f. Foundation walls:	poured	block	stone	other	
g. Foundation walls:	unsealed	sealed	sealed with _		
h. The basement is:	wet	damp	dry	moldy	
i. The basement is:	finished	unfinished	partially finish	hed	
j. Sump present?	YN				
k. Water in sump?	/ / N / not applicable	>			
Basement/Lowest level depth be	elow grade:	_(feet)			
dist Hour, stone					
6. HEATING, VENTING and Type of heating system(s) used Hot air circulation		cle all that app		ry)	
Space Heaters	Stream radiat	ion Rad	ant floor		
Electric baseboard	Wood stove	Out	door wood boiler	Other	
The primary type of fuel used is	s;				
Natural Gas	Fuel Oil		osene		
Electric Wood	Propane Coal	Sola	r		
Domestic hot water tank fueled	1.	1 Ges			
Boiler/furnace located in:	Basement Outde	oors Mai	n Floor	Other	

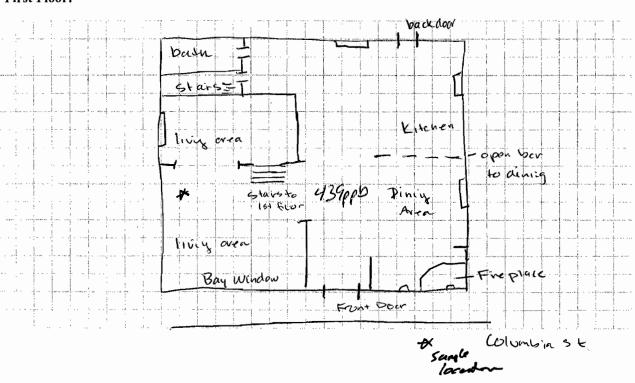
Air condition	ing: Central Air	Window units	Open Windows	None
		4	,	
Are there air	distribution ducts present?	YN		
	supply and cold air return duc d air return and the tightness o			
7. OCCUPA	ANCY			
Is basement/	lowest level occupied? Full-	ime Occasi	onally Seldom	Almost Never
<u>Level</u>	General Use of Each Floor	(e.g., familyroon	, storuse, clu n, bedroom, laund	ry, workshop, storage)
	Storage work San			
Basement	Storage, washing	<u> </u>		
1 st Floor	Liver			
2 nd Floor	Living bedroom			
3 rd Floor				
4 th Floor				
8. FACTOR	S THAT MAY INFLUENCE I	NDOOR AIR Q	UALITY	
a. Is there	an attached garage?		YN	í
b. Does the	e garage have a separate heatin	g unit?	Y/N/N	TA)
	roleum-powered machines or v n the garage (e.g., lawnmower, a		Y/N/N/Please sp	•
d. Has the	building ever had a fire?		ØN V	When? 74rs/cherred wove possible
e. Is a kero	sene or unvented gas space he	ater present?	YN	Where?
f. Is there	a workshop or hobby/craft are	a? 1	Y) N Where &	Type? hasen
g. Is there	smoking in the building?		YN How free	quently?
h. Have cle	eaning products been used rece	ntlv?	YN When &	Tyne?

.

i. Have cosmetic products been used recently?	ON When & Type? Mailpolish occasionally
5	
j. Has painting/staining been done in the last 6 months?	Y N Where & When?
k. Is there new carpet, drapes or other textiles?	Y Where & When?
l. Have air fresheners been used recently?	CD/N When & Type? dis infecent spray
m. Is there a kitchen exhaust fan?	Y N If yes, where vented?
n. Is there a bathroom exhaust fan?	(T)/N If yes, where vented? outsall
o. Is there a clothes dryer?	N If yes, is it vented outside? N/N
p. Has there been a pesticide application?	Y (N) When & Type?
Are there odors in the building? If yes, please describe:	Y (N)
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or boiler mechanic, pesticide application, cosmetologist If yes, what types of solvents are used?	
	Y / N
If yes, are their clothes washed at work?	1 / 1
Do any of the building occupants regularly use or work at response)	a dry-cleaning service? (Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	No Unknown
Is there a radon mitigation system for the building/structu Is the system active or passive? Active/Passive	ure? YN Date of Installation:
9. WATER AND SEWAGE	
Water Supply: Public Water Drilled Well Driv	ven Well Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Leave	ch Field Dry Well Other:
10. RELOCATION INFORMATION (for oil spill residen	itial emergency) MA
a. Provide reasons why relocation is recommended: _	
b. Residents choose to: remain in home relocate to	friends/family relocate to hotel/motel

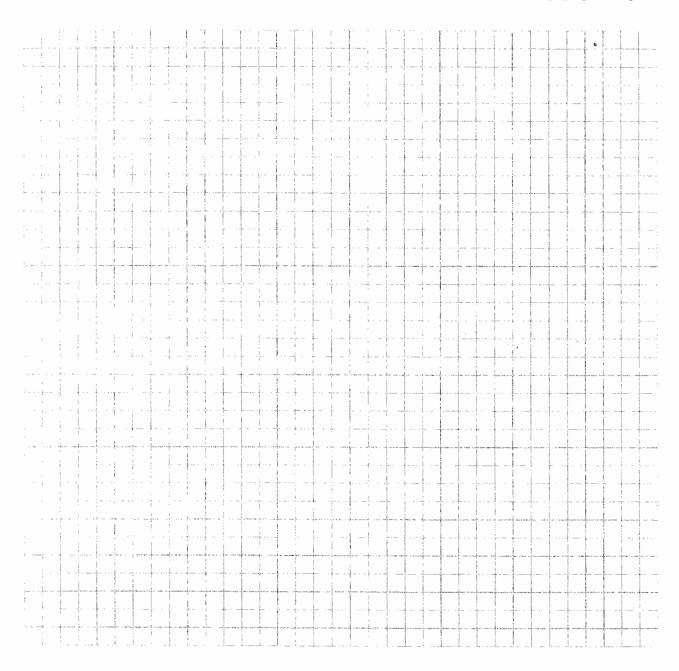

- c. Responsibility for costs associated with reimbursement explained? Y/N
- d. Relocation package provided and explained to residents?

Y/N


11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:


First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

1	3	PR	O	\mathbf{n}	CT	INVE	NTORY	FORM

Make & Model of field instrument used:	PPBRAE
	11

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units) •	Photo ** Y/N
Basement	Exterior latex part	lgal	и	Acrylic Polymer, Titantium Dioxide	15 pps	N
	Elastic Roof Sealer	1 gcd	u'.	Petroleum Distillate, asphatt,	Oppo	N
	Syperstrip Parit + Ucrish	Igal	u	methanoi, methlere chricle	40 ppb	N
	Min Wax wood Finsh	1at	u	aliphatic hydrocarbons	Oppb	N
	Wet Surface 1200 Cement	lat	u	Stoddard Solvent	Opplo	N
	Steam chand defamer	3202	u	no listing	Oppo	N
	Bissell Wall to Wall	320Z	ч	Formalin	Oppb	N
	Poly Evotnane	lat	и	Poly eurothane, napna, + 180020 petrol. distallatos, MEK (3 Cons)	OPPID	N
	Rust-oleum	802	u	Petroleum distollates	Oppb	N
	Latex Enamel Spray Paint Up	802	и	no listing	25 ppb	N
	Wasp + Hornst	1502	ч	Petraleum distollates	Oppb	N
	Water-Lox	1 qt	u	Mineral Spirits Phenolic visin	Oppb	N
	Wood Preen	lat	u	no listing	Oppb	N
	Gear lubricant	lat	u	no listing	Oppb	N
	Weed-Be-hone	194	u	24D, Silvex	0500	N
	Isotox Insect Spray	1-pht	u	no volatiles listed	OPPL	N
	Ashels 2-Cycle onl	802	uo	no listing	Oppb	\sim
	Brasso	802	Wup	Petroleum distollates (Zians)	O PPL/	N
	Hoppe's Moisture	802	u	no listing	Opph	N

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

cont. next page over

BTSA\Sections\SIS\Oil Spills\Guidance Docs\Aiproto4.doc

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

	, -				"Photo
Hoppes Vilvo-pover Solvent	202	Kerosene	u	oppo	<i>N</i>
Naval Jelly- Rust	802	No listy	u	OPPB	<i>N</i>
Auto spray Paint	502	tolulene, lectores	u	OPPB	~
Rain-X De-1cer	1901	methyl alchehol	u	000	\mathcal{N}
Pant + Vernish Romanum	Igal	no listing (2 jugs)	U	Opplo	N
Pal-Hove Paten	15 lbs	no listing	Ч	OPPO	N
					·
1st Floor =	No	chemical source	s for	d. 13	roducts
		ent included s	I		
		ring products	I		
***************************************					-
			İ		
q					
	The second secon				
	The state of the s				

30 Front St.

NYSDOH CEH BEEI Soil Vapor Intrusion Guidance

PUBLIC COMMENT DRAFT February 2005

Appendix B

Indoor air quality questionnaire and building inventory

As discussed in Section 2.11, products in buildings must be inventoried every time indoor air is sampled to provide an accurate assessment of the potential contribution of volatile chemicals. In addition, the type of structure, floor layout and physical conditions of the building being studied must be noted to identify (and minimize) conditions that may interfere with the proposed testing. Toward this end, a blank copy of the NYSDOH Center for Environmental Health's Indoor Air Quality Questionnaire and Building Inventory is provided in this appendix. Also provided is an example that demonstrates how the form should be completed properly.

weekends hest - downstairs open to outdoor.

B-1

PUBLIC COMMENT DRAFT February 2005

This page is intentionally blank.

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Kerr Craige Date/Time Prepared 3/17/06 1530
Preparer's Affiliation META Environment Phone No
Purpose of Investigation Norwich 5 VI
1. OCCUPANT:
Interviewed: Y N
Last Name: Rachael First Name: Rachael
Address: 30 Front St.
County:
Home Phone: 607 343 3204 Office Phone: NR
Number of Occupants/persons at this location 1/3-4 Age of Occupants <10-30 OWNER OR LANDI ORD: (Check if some as occupants)
2. OWNER OR LANDLORD: (Check if same as occupant)
Interviewed: Y (N)
Last Name: Stroh First Name:
Address: 120 W. Shore Rd
County:
Home Phone: 607 334 6530 Office Phone:
3. BUILDING CHARACTERISTICS
Type of Building: (Circle appropriate response)
Residential School Commercial/Multi-use Industrial Church Other:

If the property is resident	ial, type? (Circle appre	opriate re	esponse)		
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home) N T	-Family Colonial Mobile Home Cownhouses/Condos Other:	Units	2rd Ploor -1
If multiple units, how man	ny?		•		
If the property is commer	cial, type?				ь
Business Type(s)					
Does it include residen	ces (i.e., multi-use)?	Y/N	If yes, how many?		
Other characteristics:					
Number of floors_2	I	Building	age_unknown		
Is the building insulated	don N I	How air t	ight? Tight / Average	Not Tight	
4. AIRFLOW					
Use air current tubes or to	racer smoke to evalua	ite airflo	ow patterns and qualitat	ively describe:	
Airflow between floors			oil tank		
Outdoor air infiltration Over en 1 w OC 1055					
Infiltration into air ducts No flue of	ducts, sum	see U	d w insulation		

30 Front

5. BASEMENT AND CONS	5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)						
a. Above grade construction	on: wood frame	concrete	stone	brick			
b. Basement type:	full	crawlspace	slab	other			
c. Basement floor:	concrete	dirt	stone	other			
d. Basement floor:	uncovered	covered	covered with _				
e. Concrete floor:	unsealed	sealed	sealed with	b			
f. Foundation walls:	poured	block (stone	other			
g. Foundation walls:	unsealed	sealed	sealed with				
h. The basement is:	wet	damp	dry	moldy			
i. The basement is:	finished	unfinished	partially finish	ed			
j. Sump present?	YN						
k. Water in sump?	Y/N/not applicable	\geq					
Basement/Lowest level depth	below grade:	_(feet)					
Lobe in concrete		, -					
6. HEATING, VENTING an	6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply) Type of heating system(s) used in this building: (circle all that apply – note primary) Hot air circulation Heat pump Hot water baseboard						
Electric baseboard	Wood stove	Outdo	oor wood boiler	Other			
The primary type of fuel used	is:						
Natural Gas Electric Wood	Fuel Oil Propane Coal	Keros Solar					
Domestic hot water tank fuele	ed by: <u>Natural</u>	g Can	_				
Boiler/furnace located in:	Basement Outdo	oors Main	Floor	Other			

Air conditioning:

Central Air

Window units Open Windows

4

Are there	air	distribution	ducts	present?	(Y)N
-----------	-----	--------------	-------	----------	------

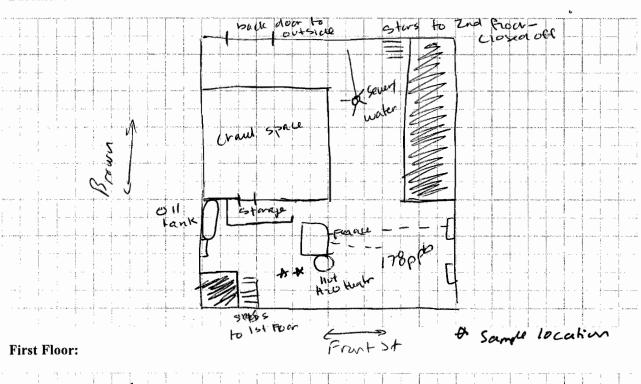
Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

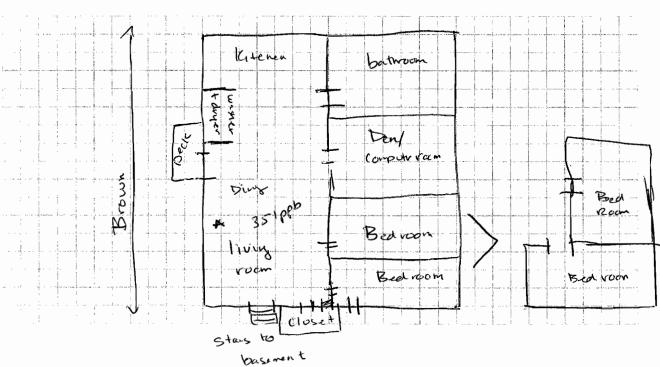
inoperative system in place. Gos Surnake in Samuel not used, ducto some not juined. Units upstairs with individual gas healing system (space heaters)					
7. OCCUPANCY Is basement/lowest level occupied? Full-time Occa	asionally Seldom Almost Never				
-	om, bedroom, laundry, workshop, storage)				
Basement 1st Floor 2nd Floor 2nd Floor 4th Floor					
8. FACTORS THAT MAY INFLUENCE INDOOR AIR	QUALITY				
a. Is there an attached garage?	YN				
b. Does the garage have a separate heating unit?	Y/N/NA				
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)	Y / N / NA Please specify				
d. Has the building ever had a fire?	Y N When?				
e. Is a kerosene or unvented gas space heater present?	(V)N Where? both with				
f. Is there a workshop or hobby/craft area?	Y N Where & Type?				
g. Is there smoking in the building?	Y N How frequently?				
h Haya cleaning products been used recently?	When & Type? And Bound China				

30 Front

i, mave cosmetic products been used recently:	1-2/w/e
5	7- 2700
j. Has painting/staining been done in the last 6 months?	? Y Where & When?
k. Is there new carpet, drapes or other textiles?	YN Where & When?
l. Have air fresheners been used recently?	6/N When & Type? Glade plusin
m. Is there a kitchen exhaust fan?	(Y) N If yes, where vented? Outstill
n. Is there a bathroom exhaust fan?	(Y)/N If yes, where vented? outside
o. Is there a clothes dryer?	YN If yes, is it vented outside? Y/N
p. Has there been a pesticide application?	YN When & Type?
Are there odors in the building? If yes, please describe:	Y /60
(e.g., chemical manufacturing or laboratory, auto mechanic oboiler mechanic, pesticide application, cosmetologist If yes, what types of solvents are used?	
If yes, are their clothes washed at work?	Y/N
Do any of the building occupants regularly use or work a response) Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less)	No
Yes, work at a dry-cleaning service Is there a radon mitigation system for the building/struct Is the system active or passive? Active/Passive	ture? Y/N Date of Installation:
9. WATER AND SEWAGE	
Water Supply: Public Water Drilled Well Dri	riven Well Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Lea	each Field Dry Well Other:
10. RELOCATION INFORMATION (for oil spill reside	ential emergency) N 🅅
a. Provide reasons why relocation is recommended: _	
b. Residents choose to: remain in home relocate to	

30 Front St

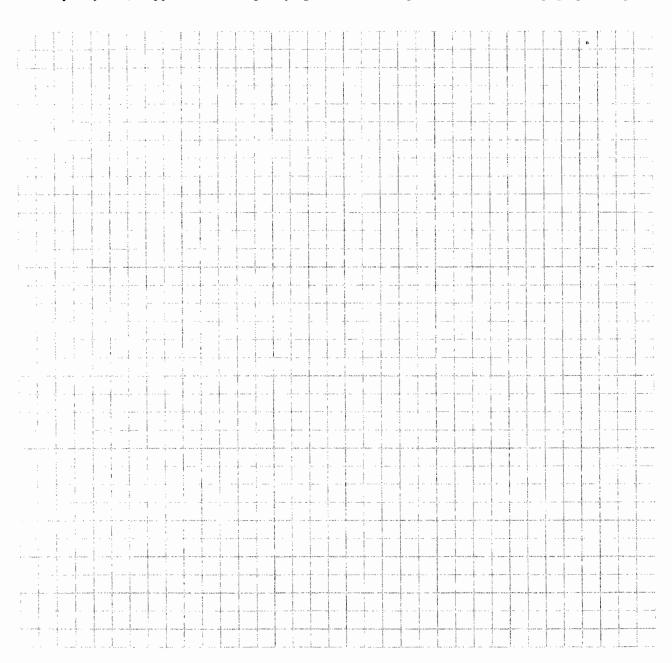

- c. Responsibility for costs associated with reimbursement explained? Y/N
- d. Relocation package provided and explained to residents?


 Y/N

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:


Front St. ** sample location

30 Front st

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used:

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)•	Photo ** Y/N
basemit	acrylic latex exterior punt	5 x lgg	NO	ethylene stycal	0 985	N
	Exterior paint		1,u	timethy/portal putyrate	Opps	N
	exterior acrylic	6x5301	134		Opps	\sim
	latex paint		3,00		opph	N
	Oil tak	2505	μ	0:1	Opp	N
	_					
15+ F1.	No chemica	501	rues J	ound in First Plu	·	
	apartment	. 6	eneral	landry end class	AS PUSON	nal
	cleaning p	rodo	icts.	,		
	,	,				

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

PUBLIC COMMENT DRAFT February 2005

Appendix B

Indoor air quality questionnaire and building inventory

As discussed in Section 2.11, products in buildings must be inventoried every time indoor air is sampled to provide an accurate assessment of the potential contribution of volatile chemicals. In addition, the type of structure, floor layout and physical conditions of the building being studied must be noted to identify (and minimize) conditions that may interfere with the proposed testing. Toward this end, a blank copy of the NYSDOH Center for Environmental Health's Indoor Air Quality Questionnaire and Building Inventory is provided in this appendix. Also provided is an example that demonstrates how the form should be completed properly.

PUBLIC COMMENT DRAFT February 2005

This page is intentionally blank.

pertuk a soud wk

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name KEIR	CRA 101E	Date/Time Prepared 3/16/06
Preparer's Affiliation/5	h Inc	Phone No. 617 923 466L
Purpose of Investigation	orwich SVI	·
1. OCCUPANT:		
Interviewed: N		
Last Name: CROSBY	Firs	t Name: DALFE
Address: 37 FRONT	ST, Norwi	ch, NY 13815
County: Chenango		
, ,		none:
Number of Occupants/persons	s at this location	2 Age of Occupants 50-60
2. OWNER OR LANDLOR	D: (Check if same	as occupant X)
Interviewed: N		' .
Last Name:	First	Name:
Address:		
County:		
Home Phone:	Office I	Phone:
3. BUILDING CHARACTE	RISTICS	
Type of Building: (Circle app	propriate response)	
ResidentiaD Industrial	School Church	Commercial/Multi-use Other:

If the property is residential	, type: (Chele app	nopriate respo	olise)	
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment Hou Log Home	Mob se Town	omial oile Home onhouses/Condos er:	
If multiple units, how many	?		,	
If the property is commercia	ıl, type?		6	
Business Type(s)				
Does it include residences	s (i.e., multi-use)?	Y/N	If yes, how many?	
Other characteristics:				
Number of floors 2		Building age	<u>, 186</u> 9	
Is the building insulated	УN	How air tight	nt? Tight / Average / Not Tight	
Airflow between floors		_	patterns and qualitatively describe:	
Airflow near source How who ducks	is dan			
Outdoor air infiltration				
Infiltration into air ducts 185 - Sen alove	store			_

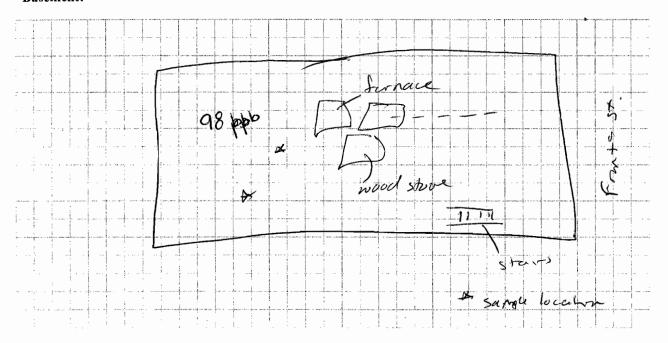
5.	BASEMENT	AND	CONSTRUCTION	CHARACTERISTICS (Circle all that apply
----	----------	-----	--------------	-------------------	-----------------------

a. Above grade construction:	wood frame	concrete	stone	brick
b. Basement type: (full	crawlspace	slab	other
c. Basement floor:	concrete	dir	stone	other
d. Basement floor:	uncovered	covered	covered with _	
e. Concrete floor:	unsealed	sealed	sealed with	<u> </u>
f. Foundation walls:	poured	block (stone	other
g. Foundation walls:	unsealed	sealed	sealed with	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially finish	ed
j. Sump present?	YN			
k. Water in sump? Y/N	not applicable	>		
Basement/Lowest level depth below	grade: <u>5-7</u>	_(feet)		
Identify potential soil vapor entry p				
6. HEATING, VENTING and AII Type of heating system(s) used in the Hot air circulation Space Heaters Electric baseboard		cle all that appl Hot won Radia		y) Other
The primary type of fuel used is:				
Natural Gas Electric Wood	Fuel Oil Propane Coal	Keros Solar	sene	
Domestic hot water tank fueled by:	Coas			
Boiler/furnace located in: Base	ment Outdo	ors Main	Floor	Other

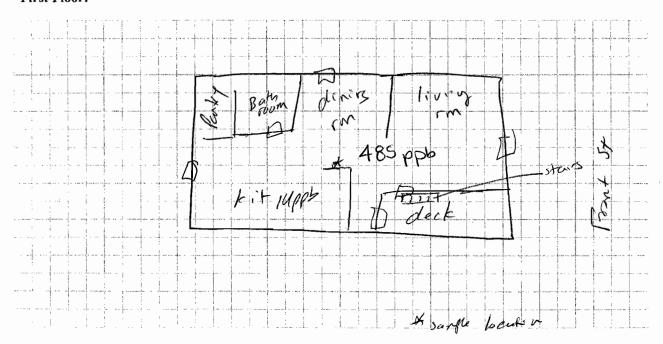
Air conditioning	g: Central Air	Window units	Open W	'indows	None
		4			
Are there air di	stribution ducts present?	Ŷ N			
	oply and cold air return duct ir return and the tightness of				
ye)					
7. OCCUPAN	CY				
Is basement/low	vest level occupied? Full-time	me Occasi	ionally	Seldom	Almost Never
<u>Level</u>	General Use of Each Floor (6	e.g., familyroon	n, bedroo	om, laundry,	workshop, storage)
Basement	Storage Livery space		_		_
1 st Floor	Living Space		_		_
2 nd Floor					_
3 rd Floor			_		
4 th Floor					_
8. FACTORS T	THAT MAY INFLUENCE IN	DOOR AIR O	UALITY		
	attached garage?			Y/(🖸	
b. Does the ga	arage have a separate heating	g unit?		Y/N/11	
	eum-powered machines or vel ne garage (e.g., lawnmower, at			Y / N /NA Please specia	> fy
d. Has the bu	ilding ever had a fire?			YNWhe	en?
e. Is a kerose	ne or unvented gas space hea	ter present?		YNWhe	ere?
f. Is there a w	orkshop or hobby/craft area	?	YN	Where & Ty	rpe?
g. Is there sm	oking in the building?		YN	How frequer	ntly?
h. Have clean	ing products been used recer	ntly?	ÝDN	When & Typ	pe? weekly

i. Have cosmetic products been used recently?	YN	When & Type?
5		
j. Has painting/staining been done in the last 6 months?	⊘ /N	Where & When? 1st hallway 3rde.
k. Is there new carpet, drapes or other textiles?	YN	Where & When?
l. Have air fresheners been used recently?	Ø N	When & Type? Glade plus in =
m. Is there a kitchen exhaust fan?	Ø N	If yes, where vented?
n. Is there a bathroom exhaust fan?	Ø/ N	*
o. Is there a clothes dryer?	CV/N	If yes, is it vented outside? Y / N
p. Has there been a pesticide application?	YN	When & Type?
Are there odors in the building? If yes, please describe:	Y / X **	>
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic o boiler mechanic, pesticide application, cosmetologist If yes, what types of solvents are used?		y shop, painting, fuel oil delivery,
If yes, are their clothes washed at work?	Y/N	
Do any of the building occupants regularly use or work as response)	t a dry-clea	eaning service? (Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	(No Unknown
Is there a radon mitigation system for the building/struct Is the system active or passive? Active/Passive	ure? Y	Date of Installation:
9. WATER AND SEWAGE		
Water Supply: Public Water Drilled Well Dri	ven Well	Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Lea	ich Field	Dry Well Other:
10. RELOCATION INFORMATION (for oil spill resider	itial emerg	gency)
a. Provide reasons why relocation is recommended: _	NA	
b. Residents choose to: remain in home relocate to		mily relocate to hotel/motel

- c. Responsibility for costs associated with reimbursement explained? Y/N
- d. Relocation package provided and explained to residents?

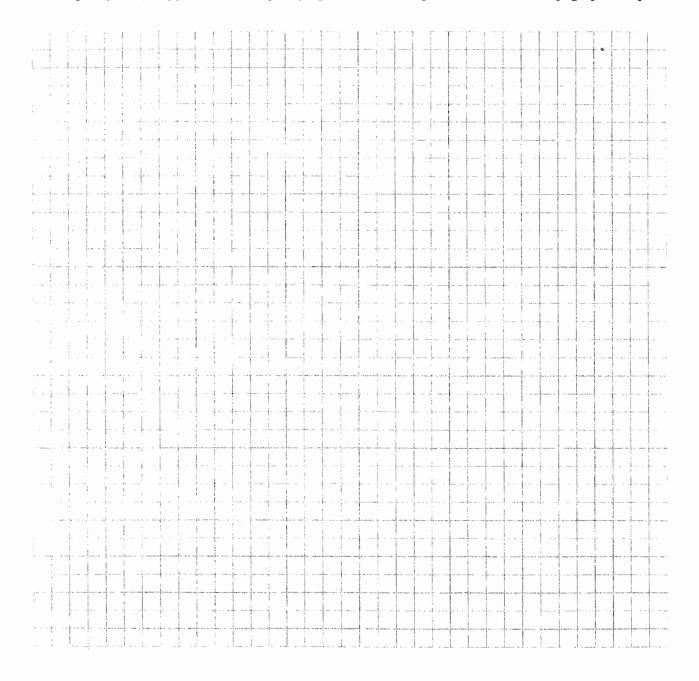

Y/N

6


11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:


First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: PID PAE PID

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units) .	Photo ** Y/N
leit	Foot Locke Sneaker Protection	10.502	U	Petuleum Distillates	unppb	N
	Comus Scenthoelows	12.501	. j Ö	Perpleus Diskillate	54ppb	N
	Spechacide Waspt hunt killer	2002	U	detran alleton	36 pps	N
		12 - 2			(7)	\mathcal{N}
	Please Fritan Polish Latex wall point	15011	\mathcal{U}	properie acid	47ppp 29ppb	<i>N</i>
	Catex wall paint semigloss examel	15411	U	viry polymer	59pb	N
Basemet	Butt Pring reals	10+	V	methylpopyl hetre	2614	
	John Deeve Paint	10+	U	Mineral spirits, neighbor,	27 ad.	
	Post O Leum	10+	V	xylane, ethylbenzena	27pd	
	Appropriately from	Igall	U	Soya akyd polymer, mineral spirits Calo, Iron oxicu, cobatt-2 cthy next next next	2000	
	TEC-adhesive for Ceramic HLL	1 gal	ч	VOC/ L & material =83.5 grams mineral = Pirts, alkya Polymer	1174	
	Exterior house paint	1 gal	U.	Fitanium dioxicle, Soya alkyd, Sioz,	595 ppb Xylene	
	Exterior house point	1 gri	WB	Mineral Spirits, alkyd vzšin, fg Silicate, titanium dioxide, yellowa	ride 35 Pp	
	Circase Muster	116.	u	pendicuk ngovbarean	10180	
	Exterior/Interior Floor Enamel	Igal	u	Mineral spirits, alkyd rosin, titenium dioxide, 31 liet, 7 ellow Fe.	38ppb oxide	
	Pure Silicon spray	1002	u		19 _{PP} 6	
	Rust-Oleum	1202	u	toluol, xylol	61 PP5	

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

List continued on back >

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Basement Products Cont.

Rust-Oleum Goss protective ename	11202	Ju	270ppb	
		1		

PUBLIC COMMENT DRAFT February 2005

Appendix B

Indoor air quality questionnaire and building inventory

As discussed in Section 2.11, products in buildings must be inventoried every time indoor air is sampled to provide an accurate assessment of the potential contribution of volatile chemicals. In addition, the type of structure, floor layout and physical conditions of the building being studied must be noted to identify (and minimize) conditions that may interfere with the proposed testing. Toward this end, a blank copy of the NYSDOH Center for Environmental Health's Indoor Air Quality Questionnaire and Building Inventory is provided in this appendix. Also provided is an example that demonstrates how the form should be completed properly.

Timing Friesat. late Fri til 600 pm

> Central and Name or worki

PUBLIC COMMENT DRAFT February 2005

This page is intentionally blank.

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

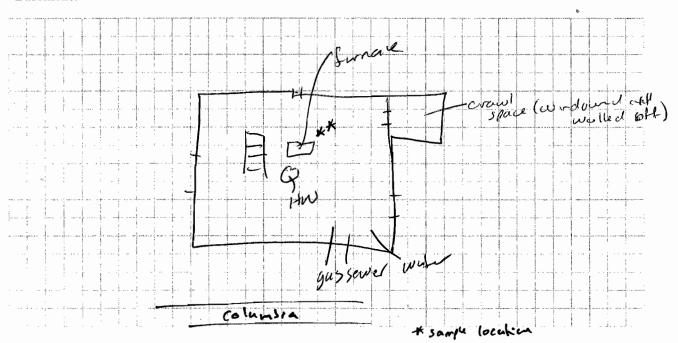
í	
Preparer's Name Kerr Cra	Date/Time Prepared 3/16/06
Preparer's Affiliation	Date/Time Prepared # 3/16/06 Phone No. 617 923 4662
Purpose of Investigation Norwell	SVI
1. OCCUPANT:	
Interviewed: Ø/N	
Last Name: Gonzalez	First Name: John and Jennie
Address: 41 Front St	
County:	
	Office Phone:
Number of Occupants/persons at this l	ocation 5/15 Age of Occupants 2 4,14,16,22, 40-50 dents devices
2. OWNER OR LANDLORD: (Che	ck if same as occupant 🗾)
Interviewed: Y/N	•
Last Name:	First Name:
Address:	
County:	
Home Phone:	Office Phone:
3. BUILDING CHARACTERISTIC	cs ·
Type of Building: (Circle appropriate	response)
Residential School Industrial Chur	

If the property is residential,	type? (Circle appropriate	response)
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	3-Family Colonial Mobile Home Townhouses/Condos Other:
If multiple units, how many?		,
If the property is commercial	, type?	b
Business Type(s) Day	Care	
Does it include residences	(i.e., multi-use)? 🕅 N	If yes, how many?
Other characteristics:		
Number of floors 2	Buildin	gage >100
Is the building insulated? Y	How ai	r tight? Tight Average Not Tight
4. AIRFLOW		
Use air current tubes or trace	r smoke to evaluate air	flow patterns and qualitatively describe:
Airflow between floors at old upon d	net location	flux dan basemut to 12 H.
Airflow near source 10 significant	flow cound f	wnace
Outdoor air infiltration In form wadus	v in toudat	m (3 wadows)
Infiltration into air ducts		

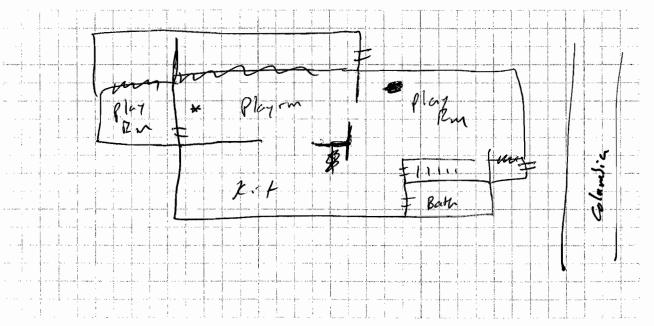
	3
5.	BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply

a. Above grade construction:	wood frame	concrete	stone	brick			
b. Basement type:	full	crawlspace	slab	other			
c. Basement floor:	concrete	dirt	stone	other			
d. Basement floor:	uncovered	covered	covered with				
e. Concrete floor:	unsealed	sealed	sealed with	<u> </u>			
f. Foundation walls:	poured	block	stone	other			
g. Foundation walls:	unsealed	sealed	sealed with _				
h. The basement is:	wet	damp	dry	moldy			
i. The basement is:	finished	unfinished	partially finish	hed			
j. Sump present?	YN						
k. Water in sump?	N not applicable	\geq					
Basement/Lowest level depth belo	w grade:	_(feet)					
Identify potential soil vapor entry	points and appro	ximate size (e.σ	. cracks utility	norts, drains)			
6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply) Type of heating system(s) used in this building: (circle all that apply – note primary) Hot air circulation Heat pump Hot water baseboard Space Heaters Stream radiation Radiant floor							
Electric baseboard	Wood stove	Outu	oor wood boiler	Other			
The primary type of fuel used is:							
Natural Gas	Fuel Oil	Keros	sene				
Electric	Propane	Solar					
Wood	Coal						
Domestic hot water tank fueled by							
Domestic not water tank rucleu by	:_ga>		_				

Air condition	ing:	Central Air	Window units	Open V	Vindows	None
			4			
Are there air	distribution duc	ets present?	YN?			
	supply and cold air return and					including whether the floor plan
7. OCCUPA	NCY					
Is basement/l	owest level occu	pied? Full-tin	me Occasi	ionally	Seldom	Almost Never
<u>Level</u>	General Use o	f Each Floor (e	e.g., familyroon	n, bedro	om, laundry, v	workshop, storage)
Basement	Some s	torage				
1 st Floor	Child D	on Care -	-leitehen			_
2 nd Floor	Living	torage by Core - spare				_
3 rd Floor		<u> </u>				_
4 th Floor						_
Q EACTODS	S THAT MAY I	NEI HENCE IN	IDOOD AID O	HAT ITV		
	in attached gara		DOON AIN Q	CALITI	Y /(N)	
b. Does the	garage have a s	eparate heating	unit?		Y/N/NA	
	oleum-powered the garage (e.g.				Y / N NA Please specify	y
d. Has the l	building ever ha	d a fire?			Y N When	1?
e. Is a kero	sene or unvente	d gas space hear	ter present?		Y N When	re?
f. Is there a	workshop or h	obby/craft area	?	Y ®	Where & Typ	pe?
g. Is there s	smoking in the b	uilding?		YN		tly?
h. Have cle	aning products	been used recen	itly?	Y)N	When & Type	e? 409 derity


i. Have cosmetic products been used recently?	Y / When & Type?
5	
j. Has painting/staining been done in the last 6 months?	Y (N) Where & When?
k. Is there new carpet, drapes or other textiles?	YN Where & When?
l. Have air fresheners been used recently?	(V) N When & Type? Lysul occusion
m. Is there a kitchen exhaust fan?	Y / If yes, where vented?
n. Is there a bathroom exhaust fan?	N If yes, where vented? outs. W
o. Is there a clothes dryer?	Y / If yes, is it vented outside? Y / N
p. Has there been a pesticide application?	Y (When & Type?
Are there odors in the building? If yes, please describe:	YN
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or boiler mechanic, pesticide application, cosmetologist If yes, what types of solvents are used?	
If yes, are their clothes washed at work?	Y / N
Do any of the building occupants regularly use or work at response) Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	a dry-cleaning service? (Circle appropriate
Is there a radon mitigation system for the building/structu Is the system active or passive? Active/Passive	re? Y Nate of Installation:
9. WATER AND SEWAGE	
Water Supply: Kublic Water Drilled Well Drive	en Well Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Leac	ch Field Dry Well Other:
10. RELOCATION INFORMATION (for oil spill resident	tial emergency) NA
a. Provide reasons why relocation is recommended:	
b. Residents choose to: remain in home relocate to fi	riends/family relocate to hotel/motel

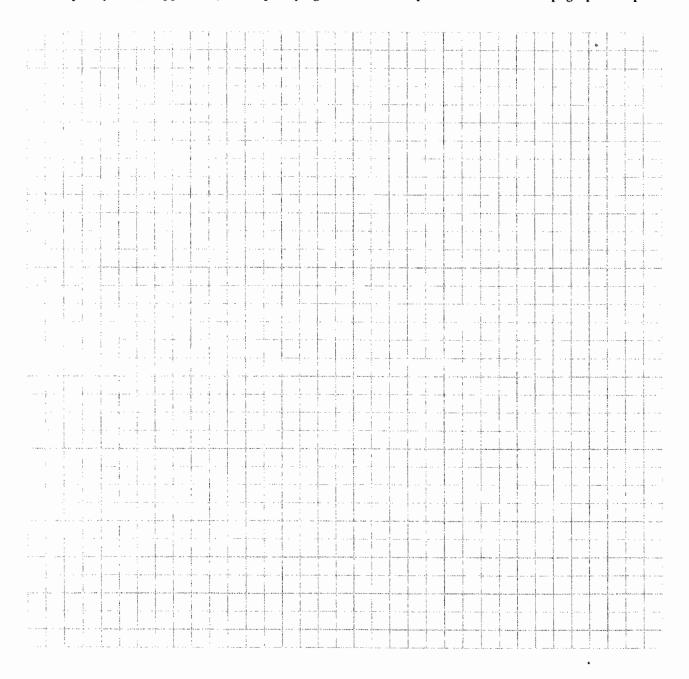
- c. Responsibility for costs associated with reimbursement explained? Y/N
- d. Relocation package provided and explained to residents? Y / N


11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:



+ sample location

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used:	0	ph	RAE	_	
	- 17				

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition	Chemical Ingredients	Field Instrument Reading (units) •	Photo ** Y/N
	No chemi	cal	centa	sement or her than hard soe applies.		
	locate	J	in Ba	sement or		
	15+	Flo	er of	her then hard soe	P	
	and	40	ilet s	upplies.		
		_				
		,				
						_

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

PUBLIC COMMENT DRAFT February 2005

Appendix B

Indoor air quality questionnaire and building inventory

As discussed in Section 2.11, products in buildings must be inventoried every time indoor air is sampled to provide an accurate assessment of the potential contribution of volatile chemicals. In addition, the type of structure, floor layout and physical conditions of the building being studied must be noted to identify (and minimize) conditions that may interfere with the proposed testing. Toward this end, a blank copy of the NYSDOH Center for Environmental Health's Indoor Air Quality Questionnaire and Building Inventory is provided in this appendix. Also provided is an example that demonstrates how the form should be completed properly.

As garde as possible

- Fr: I sat AM

- has rent certify IN

-Change in home trunership? need new address of cowent vesidents

PUBLIC COMMENT DRAFT February 2005

This page is intentionally blank.

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Kew Craige	Date/Time P	repared	3/17	106	
Preparer's Affiliation /sh Inc	Phone No	617	923	4662.	
Purpose of Investigation Norwice SVI			_		
1. OCCUPANT:					
Interviewed: (Y)N					
Last Name: Teff+ First Name:	Dawn			أن رم	e owner
Address: 42 Frent St					sold and
County:					of Merch 2001
Home Phone:336 -c/119 Office Phone:					
Number of Occupants/persons at this location	Age of Occupants	36	- 11		_
2. OWNER OR LANDLORD: (Check if same as occup	oant 🗾)				
Interviewed YN	•				
Last Name:First Name:					
Address:					
County:					
Home Phone: Office Phone:					
3. BUILDING CHARACTERISTICS					
Type of Building: (Circle appropriate response)					
Residential School Commer Industrial Church Other:	cial/Multi-use				

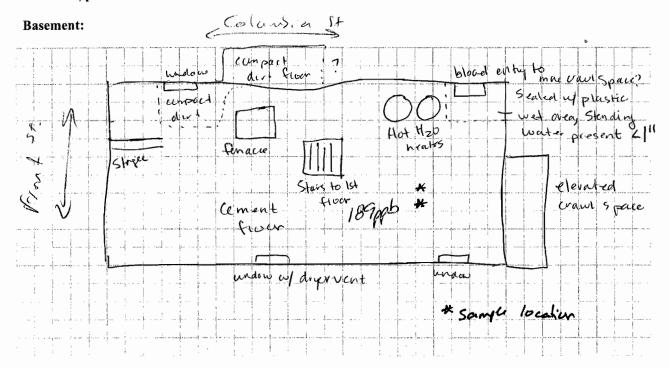
If the property is residential, type? (Circle appropriate response)

Ranch Raised Ranch Cape Cod Duplex Modular Cape Home 2-Family Colonial Mobile Home Townhouses/Condos Other:
If multiple units, how many?
If the property is commercial, type?
Business Type(s)
Does it include residences (i.e., multi-use)? Y/N If yes, how many?
Other characteristics:
Number of floors 2 Building age 160 +
Is the building insulated Y/N How air tight? Tight /Average Not Tight
4. AIRFLOW
Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:
Airflow between floors no significant exchange between floors
Airflow near source no significant from around furnace
Outdoor air infiltration no Significant infiltration/ exchange
Infiltration into air ducts no ufiltration

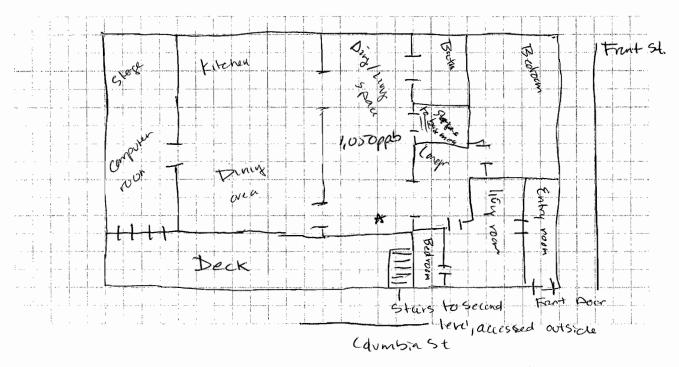
5. BASEMENT AND CONSTRU	CTION CHARACTER	ISTICS (Circle all that	appiy)			
a. Above grade construction:	wood frame conci	rete stone	brick			
b. Basement type:	full with craw	Ispace slab	other			
c. Basement floor:	concrete Same	stone	other			
d. Basement floor:	uncovered cover	red covered with	n			
e. Concrete floor:	unsealed seale	sealed with	ь			
f. Foundation walls:	poured block	stone (an	d other			
g. Foundation walls:	unsealed seale	d sealed with	(an crete plasto			
h. The basement is:	wet damp	dry	moldy			
i. The basement is:	finished unfin	ished partially fini	shed			
j. Sump present?	Y / 🕥					
k. Water in sump? Y /	N/not applicable					
Basement/Lowest level depth below	w grade: 4' (feet)					
Area where floor does not have concrety slab, compact dirt.						
6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply) Type of heating system(s) used in this building: (circle all that apply – note primary)						
Hot air circulation Space Heaters	Heat pump Stream radiation	Hot water baseboard Radiant floor	I			
Electric baseboard	Wood stove	Outdoor wood boile	r Other cast iron water			
The primary type of fuel used is:						
Natural Gas Electric	Fuel Oil Propane	Kerosene Solar				
Wood	Coal					
Domestic hot water tank fueled by	: natural gas					
Boiler/furnace located in: Bas	ement Outdoors	Main Floor	Other			

Air conditionin	g: Central Air V	/indow units Open	Windows	None
Are there air di	istribution ducts present? Y	4 (N)		
	pply and cold air return ductwo iir return and the tightness of du			
7. OCCUPAN	ICY			
Is basement/lov	vest level occupied? Full-time	Occasionally	Seldom	Almost Never
Level	General Use of Each Floor (e.g.	, familyroom, bedro	oom, laundry, w	orkshop, storage)
Basement	Storage			_
1 st Floor	Livin			
2 nd Floor	Storage Living bedroom	.5		-
3 rd Floor				_
4 th Floor				-
8. FACTORS	ΓΗΑΤ MAY INFLUENCE INDO	OOR AIR QUALIT	Y	
a. Is there an	attached garage?	(ON-oth	nched, direct access
b. Does the g	arage have a separate heating u		YNNA	
	eum-powered machines or vehic he garage (e.g., lawnmower, atv, o		N/NA Please specify	car, lawsmour
d. Has the bu	nilding ever had a fire?	(N When	?
e. Is a kerose	ne or unvented gas space heater	present?	YNWhere	e?
f. Is there a w	vorkshop or hobby/craft area?	YAN	Where & Type	e?
g. Is there sm	ooking in the building?	\bigcirc N	How frequently	y? reguler
h. Have clear	ning products been used recently	?	When & Type	?

i. Have cosmetic products been used recently?	(3/N When & Type? devily , har sprut
	? (Y)N Where & When? Front rm/3 munths
k. Is there new carpet, drapes or other textiles?	Y Where & When?
I. Have air fresheners been used recently?	Y(N) When & Type?
m. Is there a kitchen exhaust fan?	If yes, where vented? now from v form
n. Is there a bathroom exhaust fan?	Y N If yes, where vented?
o. Is there a clothes dryer?	Y N If yes, is it vented outside? Y N
p. Has there been a pesticide application?	YN When & Type?
Are there odors in the building? If yes, please describe:	YN
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic boiler mechanic, pesticide application, cosmetologist If yes, what types of solvents are used? Clear > Qca	
If yes, are their clothes washed at work?	VAN D
Do any of the building occupants regularly use or work response) Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less Yes, work at a dry-cleaning service	No
Is there a radon mitigation system for the building/structure. Is the system active or passive? Active/Passive	eture? VND ate of Installation:
9. WATER AND SEWAGE	
Water Supply: Public Water Drilled Well D	riven Well Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Lo	each Field Dry Well Other:
10. RELOCATION INFORMATION (for oil spill reside	ential emergency) MA
a. Provide reasons why relocation is recommended:	
b. Residents choose to: remain in home relocate to	o friends/family relocate to hotel/motel


- c. Responsibility for costs associated with reimbursement explained? Y/N
- d. Relocation package provided and explained to residents?

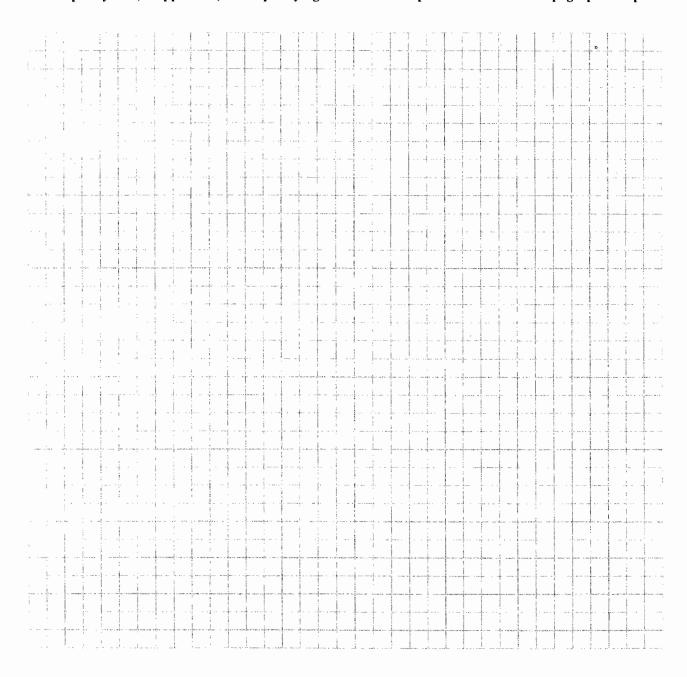
Y/N


6

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

First Floor:



& Sample location

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used:	ROBRAE
	- U U

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units).	Photo ** Y/N
Basement	Interior Calex paint	Igal	u	Propelere glycul, slylok Cans)	4 ppb	\sim
	Acrylic Latex anomal	12002	-plastic U	no listing (x5 jugs)		\mathcal{N}_{-}
	Mini wax gel stain	802	и	no listing	0990	Ν
	Acrylic Latex paint	lat	u	latex pant (x 3 cms)	Oppb	\mathcal{N}
	Mini wax-polyeurothand	lgt.	U.	aliopnatic nyorocobens (x3 (ons)	OPPb	\sim
	Mini wax wood finish	lat	u	aliophatic hydrocornas	0 226	N
	Driveway sealer	5 gal.	u	no listing	Opph	\sim
	Note: Owner	5/00	capats	in process of mo	ving	
	l .	I	l	in somes and un	I	2
				ing survey and		I
		1		ces found in 1st f		
				eving beas not see	l .	
	7					

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

PUBLIC COMMENT DRAFT February 2005

Appendix B

Indoor air quality questionnaire and building inventory

As discussed in Section 2.11, products in buildings must be inventoried every time indoor air is sampled to provide an accurate assessment of the potential contribution of volatile chemicals. In addition, the type of structure, floor layout and physical conditions of the building being studied must be noted to identify (and minimize) conditions that may interfere with the proposed testing. Toward this end, a blank copy of the NYSDOH Center for Environmental Health's Indoor Air Quality Questionnaire and Building Inventory is provided in this appendix. Also provided is an example that demonstrates how the form should be completed properly.

Schedule late afternom (after 3) Tues/Wed

NYSDOH CEH BEEI Soil Vapor Intrusion Guidance

PUBLIC COMMENT DRAFT February 2005

This page is intentionally blank.

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name <u>Heir Craige</u> Date/Time Prepared 3/12/06						
Preparer's Affiliation /sh lac Phone No						
Purpose of Investigation Norwich SVI						
1. OCCUPANT:						
Interviewed: 🕥 N						
Last Name: <u>Keven Lisa</u> Address: <u>43 Front St.</u> Norwich NY 13815						
Address: 43 Front St., Norwich, NY 13815						
County: Chenany O						
Home Phone: <u>407-316-1852</u> Office Phone:						
Number of Occupants/persons at this location 2 Age of Occupants 30-40						
2. OWNER OR LANDLORD: (Check if same as occupant)						
Interviewed: Y/N						
Last Name:First Name:						
Address:						
County:						
Home Phone: Office Phone:						
3. BUILDING CHARACTERISTICS						
Type of Building: (Circle appropriate response)						
Residential School Commercial/Multi-use Industrial Church Other:						

If the property is residential, type? (Circle appropriate response)

Ranch Raised Ranch	2-Family Split Level	3-Family Colonial
Cape Cod	Contemporary	Mobile Home
Duplex Modular	Apartment House Log Home	Townhouses/Condos Other:
	7	<u> </u>
If multiple units, how many	y?1	,
If the property is commerc	ial, type?	b
Business Type(s)		
Does it include residence	es (i.e., multi-use)? Y/	N If yes, how many?
Other characteristics:		
Number of floors 2	<u>.</u> Bui	lding age 100-(r)
Is the building insulated	B/N Hov	w air tight? Tight / Average Not Tight
4. AIRFLOW		
Use air current tubes or tra	acer smoke to evaluate	airflow patterns and qualitatively describe:
Airflow between floors		
Not completely	, defermine de	ilue to basemut andito
Airflow near source	. 0	
Not sisnifie.	if around to	nh
Outdoor air infiltration		
Not significan	as diferr	well
Infiltration into air ducts		,
Nut delemnis	k due to cene	like of Susement

		3	i		•			
5.	BASEMENT AND CONSTRU	CTION CHARA	CTERISTICS	(Circle all that ap	ply)			
	a. Above grade construction:	wood frame	concrete	stone	brick			
	b. Basement type:	full	crawlspace	slab	other			
	c. Basement floor:	concrete	dirt	stone	other			
	d. Basement floor:	uncovered	covered	covered with _				
	e. Concrete floor:	unsealed	sealed	sealed with				
	f. Foundation walls:	poured	block	stone	other			
	g. Foundation walls:	unsealed	sealed	sealed with				
	h. The basement is:	Wet	damp	dry	moldy			
	i. The basement is:	finished	unfinished	partially finish	ed			
	j. Sump present?	YN						
		N / not applicable						
Ba	sement/Lowest level depth below	grade: 4	(feet)					
Ide	entify potential soil vapor entry p	ooints and approx	kimate size (e.ş	g., cracks, utility	ports, drains)			
	dist floor							
	<u> </u>							
6.	6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)							
Ту	Type of heating system(s) used in this building: (circle all that apply - note primary)							
	Hot air circulation Space Heaters	Heat pump Stream radiation		water baseboard ant floor				
	Electric baseboard	Wood stove		loor wood boiler	Other			
Th	e primary type of fuel used is:			•				
	Natural Gas	Fuel Oil	Kero	sene				
	Electric Wood	Propane Coal	Sola	r				

Main Floor

Other_____

Basemen

Outdoors

Boiler/furnace located in:

					4	5 . 70-
Air conditionin	g: Cer	ntral Air	Window units	Open Windows	None	
Are there air di	istribution ducts p	resent? (ŶN			
	pply and cold air r air return and the t					
			<u>-</u>			
7. OCCUPAN	ICY					
Is basement/lov	west level occupied	? Full-	ime Occas	sionally Seldom	Almost Nev	ver
Level	General Use of Ea	ch Floor	(e.g., familyroo	m, bedroom, laun	dry, workshop, sto	rage)
Basement	not					
1st Floor	Living Sp	ace				
2 nd Floor	Living Sp Storage					
3 rd Floor						
4 th Floor		_				
8. FACTORS	THAT MAY INFL	UENCE I	NDOOR AIR Q	UALITY		
a. Is there an	attached garage?			YN		
b. Does the g	arage have a separ	rate heatin	g unit?	Y/N(1	VÃ	
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)				Y/N/Please s		
d. Has the bu	ıilding ever had a f	fire?		_	When?	
e. Is a kerose	ne or unvented gas	s space he	ater present?		Where?	
f. Is there a v	vorkshop or hobby	//craft are	a?	Y Where &	k Туре?	

Y) N How frequently?

YDN When & Type? weekaso winder Flour Polish

g. Is there smoking in the building?

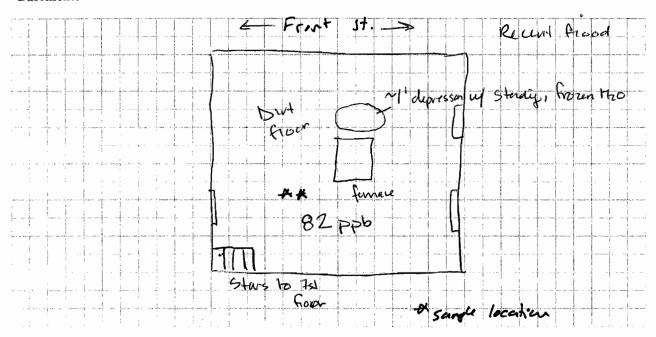
h. Have cleaning products been used recently?

i. Have cosmetic	products been used recently?	(Y)/N	When & Typ	oes has spray -c
		5		
j. Has painting/s	taining been done in the last 6 n	nonths? Y (Ñ	Where & Wi	nen?
k. Is there new c	arpet, drapes or other textiles?	YN	Where & Wl	nen?
l. Have air fresh	eners been used recently?	∑Y N	When & Typ	oe? thurs (Air Infe
m. Is there a kito	hen exhaust fan?	y (N	If yes, where	vented?
n. Is there a bat	hroom exhaust fan?	Y(N	If yes, where	vented?
o. Is there a clotl	nes dryer?	(D) N	If yes, is it ve	ented outside? YN
p. Has there bee	n a pesticide application?	YN	When & Typ	pe?
Are there odors If yes, please de	in the building? scribe:	YN	>	
(e.g., chemical man boiler mechanic, pe	ling occupants use solvents at was ufacturing or laboratory, auto med sticide application, cosmetologist of solvents are used?	chanic or auto bod		· •
If yes, are their cl	othes washed at work?	Y/N		
Do any of the build response)	ling occupants regularly use or	work at a dry-cle	aning service?	(Circle appropriate
Yes, use dr	y-cleaning regularly (weekly) y-cleaning infrequently (monthly at a dry-cleaning service	or less)	No Unknown	
Is there a radon m Is the system activ	itigation system for the building e or passive? Active/Pass		Date of Insta	Illation:
9. WATER AND S	EWAGE			
Water Supply:	Public Water Drilled Wel	l Driven Well	Dug Well	Other:
Sewage Disposal:	Public Sewer Septic Tank	Leach Field	Dry Well	Other:
10. RELOCATION	N INFORMATION (for oil spill	residential emer	gency)	
	ons why relocation is recomme		.	
b. Residents ch	noose to: remain in home rele	ocate to friends/far	nilv relo	cate to hotel/motel

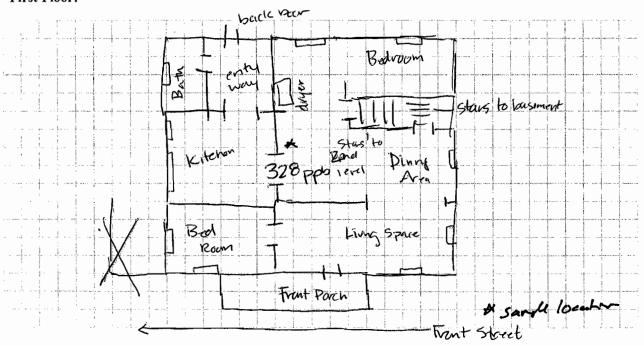
43 Front

c. Responsibility for costs associated with reimbursement explained? Y/N

d. Relocation package provided and explained to residents?

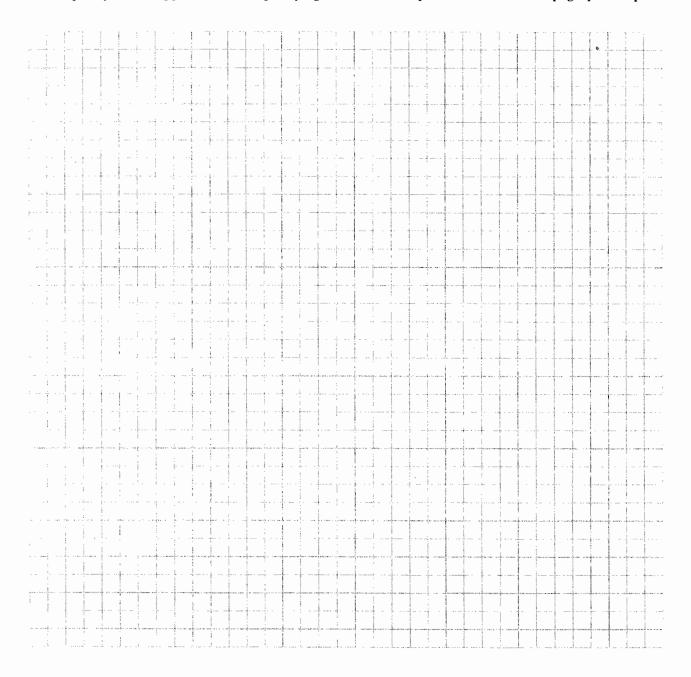

Y/N

11. FLOOR PLANS


Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

6

Basement:


First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument	used:
----------------------------------	-------

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units).	Photo ** Y/N
1st Flour	Raid-Aunt +	17.502	u	Petroleum Distollates	O ppb	\mathcal{N}
	Great Stuff-Insulating	1202	и	no listing	Ó ppb	~
	Easy-OC- Forme free	1602	U	no listing (Zeans)	Opplo	N
	1 2011	12.502	u	no listing	0000	N
1	Glade - air lision	902	u_	no listig	O PAPP	N
Basement	Latex Reduced Sten	1/41	<u>u</u>	Ethylere glycol, Vinyl Blymu	0 ppb	\sim
	Semi-Gloss enand	191	u	Vinyl Polymer	U PPD	N
	takx pant	Igal	u	(4 gast + lat)	Opph	N
		,				
						_
	·					

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

NYSDOH CEH BEEI Soil Vapor Intrusion Guidance

PUBLIC COMMENT DRAFT February 2005

Appendix B

Indoor air quality questionnaire and building inventory

As discussed in Section 2.11, products in buildings must be inventoried every time indoor air is sampled to provide an accurate assessment of the potential contribution of volatile chemicals. In addition, the type of structure, floor layout and physical conditions of the building being studied must be noted to identify (and minimize) conditions that may interfere with the proposed testing. Toward this end, a blank copy of the NYSDOH Center for Environmental Health's Indoor Air Quality Questionnaire and Building Inventory is provided in this appendix. Also provided is an example that demonstrates how the form should be completed properly.

Well not used since 89

anytime is good

no pid readings and cusing opening no connections to well

NYSDOH CEH BEEI Soil Vapor Intrusion Guidance

PUBLIC COMMENT DRAFT February 2005

This page is intentionally blank.

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name	Craige	Date/Time Prepared			
Preparer's Affiliation	lne	Phone No			
Purpose of Investigation	orwich S	5 ∀ (
1. OCCUPANT:					
Interviewed: YTN					
Last Name:	Firs	t Name:			
Address: 45 Frent St.	, Norwice	NY 13815			
County: Chenango					
Home Phone: 607-334-43	22 Office P.	hone:			
Number of Occupants/persons at	this location 5	// Age of Occupants $\frac{205/3}{3}$ 305			
2. OWNER OR LANDLORD:	(Check if same	as occupant)			
Interviewed: N		•			
Last Name: Murse	First	Name: Donny			
Address: 40 Division S	treet, No	orwich, My 13815			
Address: 40 Division Street, Norwich, My 13815 County: Chenango					
Home Phone: 607-334-4372 Office Phone:					
3. BUILDING CHARACTERISTICS					
Type of Building: (Circle appropriate response)					
The state of the s	School Church	Commercial/Multi-use Other:			

If the property is residential, ty	pe? (Circle appropriate	e response)	
Raised Ranch Cape Cod Duplex	2-Family Split Level Contemporary Apartment House Log Home	3-Family Colonial Mobile Home Townhouses/Condos Other:	
If multiple units, how many? _	2	,	
If the property is commercial,	type?		ù
Business Type(s)			
Does it include residences (i	.e., multi-use)? Y/N	If yes, how many?	
Other characteristics:			
Number of floors 2	Buildir	ng age 1940 2-17	
Is the building insulated?	/ N How a	ir tight Tight Average / Not Tight	
4. AIRFLOW			
Use air current tubes or tracer	smoke to evaluate air	flow patterns and qualitatively describ	e:
Airflow between floors 10 significant floor	sor between Alce	20 mm	
Airflow near source 10 sisned the	w crowd fe	ww	
Outdoor air infiltration - deer to Lasemer famil	t oper and	not sealed, no other sion.	fler
Infiltration into air ducts Duck Scaled well	nd wepped	(malahu)	

	3							
5.	BASEMENT AND CONSTRUC	CTION CHARA	CTERISTICS (Circle all that app	ply)			
	a. Above grade construction:	wood frame	concrete	stone	brick			
	b. Basement type:	full	crawlspace	slab	other			
	c. Basement floor:	concrete	din	stone	other			
	d. Basement floor:	uncovered	covered	covered with _				
	e. Concrete floor:	unsealed	sealed	sealed with				
	f. Foundation walls:	poured	block	stone	other			
	g. Foundation walls:	unsealed	sealed	sealed with				
	h. The basement is:	wet	damp	dry	moldy			
	i. The basement is:	finished	unfinished	partially finishe	ed			
	j. Sump present?	Y(N)						
	•	not applicable	Ò					
Ba	sement/Lowest level depth below	grade:	(feet)					
Ide	entify potential soil vapor entry p	oints and approx	imate size (e.g.	, cracks, utility p	ports, drains)			
	,							
	lunge couls - gaps in st	ine of flue	or, creas c	of dirt co	verage			
6.	HEATING, VENTING and AII	R CONDITIONIN	NG (Circle all the	nat apply)				
Ту	Type of heating system(s) used in this building: (circle all that apply - note primary)							
	Not air circulation Space Heaters	Heat pump Stream radiation		ater baseboard nt floor				
	Electric baseboard	Wood stove		or wood boiler	Other			
Th	e primary type of fuel used is:			·				
	Natural Gas	Fuel Oil	Keros	ene				
	Electric Wood	Propane Coal	Solar					

Domestic hot water tank fueled by: Natural Gas

Boiler/furnace located in:

Basement

Outdoors Main Floor

Other__

Air conditionin	g: Central Air	Window units	Open Windows	None
Are there air d	istribution ducts present?	Ø/N	,	
	pply and cold air return dair return dair return and the tightness			
7. OCCUPAN				
Is basement/lo	west level occupied? Ful	l-time Occasi	onally Seldom	(Almost Never
Level	General Use of Each Floor	r (e.g., familyroon	n, bedroom, laund	ry, workshop, storage)
Basement 1 st Floor 2 nd Floor	Storage Living Living			
3 rd Floor				
4 th Floor				
8. FACTORS	THAT MAY INFLUENCE	E INDOOR AIR Q	UALITY	
a. Is there a	attached garage?		YN	
b. Does the g	garage have a separate hea	ting unit?	Y / N /(ĪĀ.
	leum-powered machines or the garage (e.g., lawnmower		Y/N/ Please sp	IA) secify
d. Has the b	uilding ever had a fire?		ON .	When?
e. Is a keros	ene or unvented gas space	neater present?	YN	Where?
f. Is there a	workshop or hobby/craft a	rea?	Y (N) Where &	Type?

g. Is there smoking in the building?

h. Have cleaning products been used recently?

Y (N) How frequently? ___

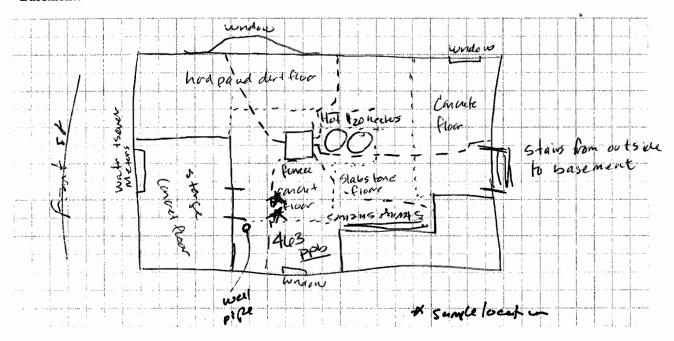
Y/N When & Type? _ unlen won

i. Have cosmetic p	roducts been used recently?	(y)/N	When & Type?			
	5					
j. Has painting/sta	ining been done in the last 6 months	? Y/N)	Where & When?			
k. Is there new car	rpet, drapes or other textiles?	Y/AN)	Where & When?			
l. Have air fresher	ners been used recently?	Y/N	When & Type? _ when M			
m. Is there a kitch	en exhaust fan?	Y (Ñ)	If yes, where vented?			
n. Is there a bath	room exhaust fan?		If yes, where vented?			
o. Is there a clothe	es dryer?	YN	If yes, is it vented outside? Y / N			
p. Has there been	a pesticide application?	Y(N)	When & Type?			
Are there odors in If yes, please desc	othe building? cribe: <u>Yes-Strong</u> aur freshn	Ø/N er Oder	Present			
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, cosmetologist						
	of solvents are used?					
If yes, are their clo	thes washed at work?	Y/N				
Do any of the buildi	ng occupants regularly use or work a	nt a dry-clea	ning service? (Circle appropriate			
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service						
Is there a radon mitigation system for the building/structure? Y N Date of Installation: Is the system active or passive? Active/Passive						
9. WATER AND SE	WAGE					
Water Supply:	Public Water Drilled Well Dr	iven Well	Dug Well Other:			
Sewage Disposal:	Public Sewer Septic Tank Le	ach Field	Dry Well Other:			
10. RELOCATION INFORMATION (for oil spill residential emergency)						
a. Provide reasons why relocation is recommended:						
b. Residents cho	ose to: remain in home relocate to	friends/fam	ily relocate to hotel/motel			

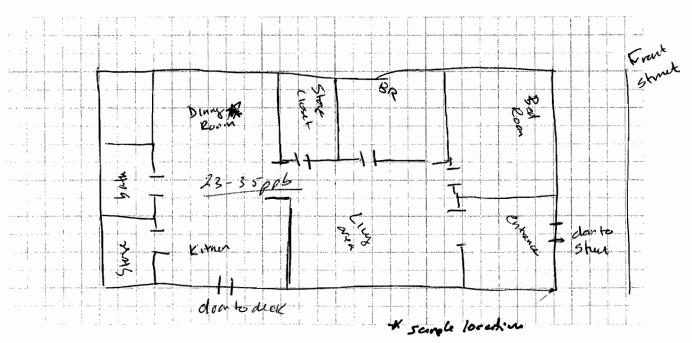
45 Frut

c. Responsibility for costs associated with reimbursement explained?

Y/N


d. Relocation package provided and explained to residents?

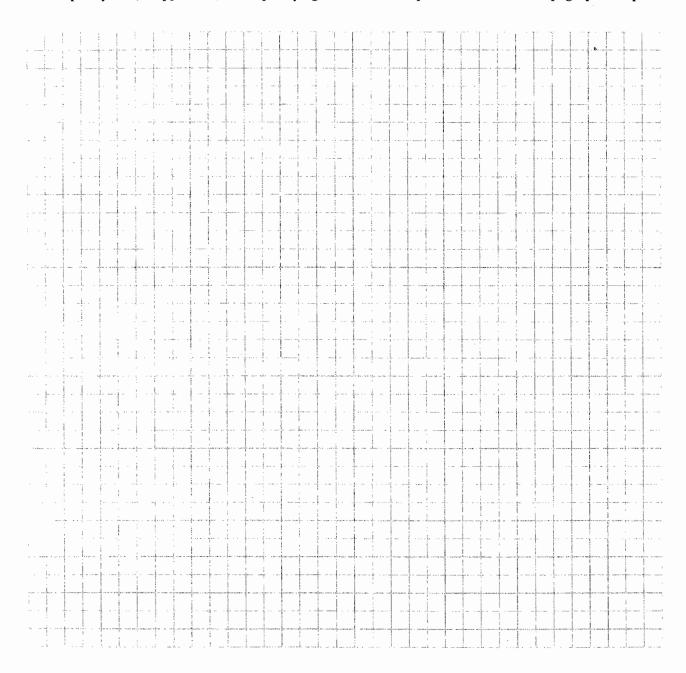
Y/N


11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:



us port

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units).	Photo ** Y/N
prit	(450/ it bleach	3002	и	not isted	71 006	N
	Spray wash stain remon	2007	и	surfactant solvent	Bupab	N
	temm orl	1602	м	petuleum distallates	40,006	N
	nr deen	22ot	u	diretty benty delorde	&-ppb	N
	Fabric febreite	330€	11	petune	97006	N
	Pleage clean endsinoe	12-562	μ	not listed	107ppb	N
	Februse		u	nut loted	5-1006	N
	Spot and Stein Clean	320t	м	nut loted	2900	N
Buxat	extrico latex	3×1s	u	not listed	e pds	N
	·	xls	D	unreadeble	pogb	N
		50	4	put listed	Foods	N
		<i>5</i> ·				
						_

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

NYSDOH CEH BEEI Soil Vapor Intrusion Guidance

PUBLIC COMMENT DRAFT February 2005

Appendix B

Indoor air quality questionnaire and building inventory

As discussed in Section 2.11, products in buildings must be inventoried every time indoor air is sampled to provide an accurate assessment of the potential contribution of volatile chemicals. In addition, the type of structure, floor layout and physical conditions of the building being studied must be noted to identify (and minimize) conditions that may interfere with the proposed testing. Toward this end, a blank copy of the NYSDOH Center for Environmental Health's Indoor Air Quality Questionnaire and Building Inventory is provided in this appendix. Also provided is an example that demonstrates how the form should be completed properly.

sus saple in realitable and of way since no replacement tile available.

Time somewe at 10AM Wed Mar 3029

NYSDOH CEH BEEI Soil Vapor Intrusion Guidance

PUBLIC COMMENT DRAFT February 2005

This page is intentionally blank.

Industrial

Church

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name KEIR CRAIGIE Date/Time Prepared 3/24/06
Preparer's Affiliation /sh Inc Phone No. 617 923 4662
Purpose of Investigation Norwich SVI
1. OCCUPANT: Little Ceasers
Interviewed: (I) N - Assistant manager-unable to provale many defails about building a
Last Name: First Name: occupents
Address:
County:
Home Phone: Office Phone:
Number of Occupants/persons at this location Age of Occupants
2. OWNER OR LANDLORD: (Check if same as occupant)
Interviewed: Y/N
Last Name: <u>Cammings</u> First Name: <u>Peter</u>
Address: Developers Diversified - Resimal Property Manager
County:
Home Phone: Office Phone: Office Phone:
3. BUILDING CHARACTERISTICS
Type of Building: (Circle appropriate response)
Residential School Commercial Multi-use

Other: _____

If the property is residential, type? (Circle appropriate response)	
Ranch 2-Family 3-Family Raised Ranch Split Level Colonial Cape Cod Contemporary Mobile Home Duplex Apartment House Townhouses/Condos Modular Log Home Other:	
If multiple units, how many?	
If the property is commercial, type?	
Business Type(s) Dizza lestaurent	
Does it include residences (i.e., multi-use)? Y N If yes, how many?	
Other characteristics:	
Number of floors Building age	
Is the building insulated Y/N How air tight? Tight Average Not Tight	
4. AIRFLOW	
Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:	
Airflow between floors WA	
Airflow near source	
Outdoor air infiltration Neve det detected	
Infiltration into air ducts MA	

5.	BASEMENT A	ND	CONSTRUCTION	CHARACTERISTICS ((Circle all that apply)

1.0					
b. Basement type:	ND	full	crawlspace	slab	other
c. Basement floor:	M	concrete	dirt	stone	other
d. Basement floor:	M	uncovered	covered	covered with _	
e. Concrete floor:	NA	unsealed	sealed	sealed with	
f. Foundation walls:	NP	poured	block	stone	other
g. Foundation walls:	MA	unsealed	sealed	sealed with	
h. The basement is:	My	wet	damp	dry	moldy
i. The basement is:	NB	finished	unfinished	partially finish	ned
j. Sump present?		Y / 245)			
k. Water in sump?	Y / N	/ not applicable	>		
asement/Lowest level de	nth below	grade: ()	(feet)		
Several draws	. ; ~ <i>1</i>	eiteben cu	al bathrow	or crea	
. HEATING, VENTING	G and AIR	CONDITION is building: (cir	ING (Circle all tecle all that app	that apply) ly – note primar	y)
. HEATING, VENTING	G and AIR	CONDITION	ING (Circle all to the color of	that apply)	y) Other
HEATING, VENTING ype of heating system(s) Hot air circulation Space Heaters Electric baseboard	G and AIR used in th	CONDITION is building: (cir Heat pump Stream radiat	ING (Circle all to the color of	that apply) ly – note primary water baseboard ant floor	• /
. HEATING, VENTING 'ype of heating system(s) Hot air circulation Space Heaters	G and AIR used in th	CONDITION is building: (cir Heat pump Stream radiat	ING (Circle all to the color of	that apply) ly – note primar water baseboard ant floor oor wood boiler sene	• /
. HEATING, VENTING Type of heating system(s) Hot air circulation Space Heaters Electric baseboard The primary type of fuel Natural Gas Electric	G and AIR used in th	Heat pump Stream radiat Wood stove Fuel Oil Propane Coal	ING (Circle all to the cle all that appoint in Radia Outd	that apply) ly – note primar water baseboard ant floor oor wood boiler sene	• /

Air conditioning: Central Air Window units Open Windows No	Air conditioning:	Central Air	Window units	Open Windows	None
--	-------------------	-------------	--------------	--------------	------

4

Are there air distribution ducts present?

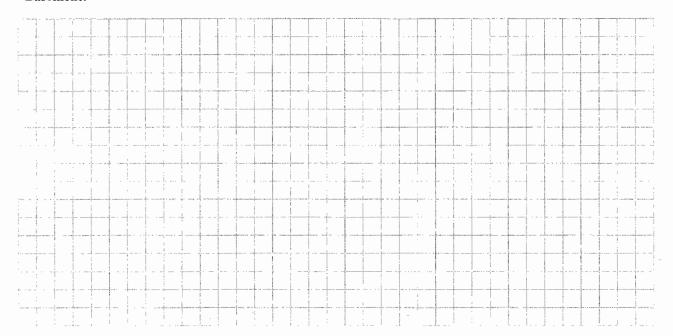
Y/80

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

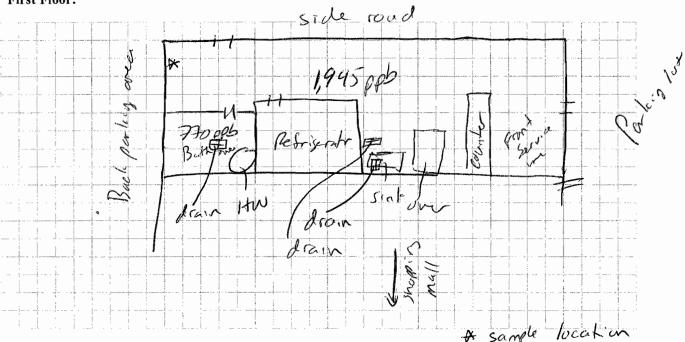
Overhee	and heat and our undition in	- drop Ceiling
7. OCCUP	PANCY	
Is basement		asionally Seldom Almost Never
Level	General Use of Each Floor (e.g., familyroo	om, bedroom, laundry, workshop, storage)
Basement	WP	
1 st Floor	Business	
2 nd Floor		
3 rd Floor		
4 th Floor		
8. FACTOR	RS THAT MAY INFLUENCE INDOOR AIR (OHALITY
	an attached garage?	Y (N)
b. Does th	e garage have a separate heating unit?	Y/N/NA
	roleum-powered machines or vehicles in the garage (e.g., lawnmower, atv, car)	Y / N NA Please specify
d. Has the	building ever had a fire?	Y/N When? unknown
e. Is a ker	osene or unvented gas space heater present?	Y (N) Where?
f. Is there	a workshop or hobby/craft area?	Y (N) Where & Type?
g. Is there	smoking in the building?	Y(N) How frequently?
h. Have cl	leaning products been used recently?	Y/N When & Type? <u>unknown</u> who or frequence

i. Have cosmetic	products been used recently?	YN	When & Type	e?
	5			
j. Has painting/st	aining been done in the last 6 mont	hs? Y	Where & Wh	en?
k. Is there new ca	arpet, drapes or other textiles?	Y /N	Where & Wh	en?
l. Have air freshe	eners been used recently?	Y/N	When & Type	e? unknuwn
m. Is there a kitc	hen exhaust fan?	(Ŷ) N	If yes, where	vented?
n. Is there a bath	room exhaust fan?	(Ý) N	If yes, where	vented?
o. Is there a cloth	es dryer?	Y (N)	If yes, is it ve	nted outside? Y / N
p. Has there beer	a pesticide application?	Y/N	When & Type	e? unknown
Are there odors i	n the building? scribe: <u>fizza, cooking</u>	Ø) N		
(e.g., chemical manu boiler mechanic, pes	ing occupants use solvents at work? Ifacturing or laboratory, auto mechanisticide application, cosmetologist of solvents are used?	ic or auto body		g, fuel oil delivery,
If yes, are their cle	othes washed at work?	YN)	
Do any of the build response)	ing occupants regularly use or wor	k at a dry-clea	nning service?	(Circle appropriate
Yes, use dry	r-cleaning regularly (weekly) r-cleaning infrequently (monthly or le t a dry-cleaning service	ss) (No Unknown	
Is there a radon mi Is the system active	tigation system for the building/stree or passive? Active/Passive	ucture? Y(N	Date of Instal	llation:
9. WATER AND S	EWAGE			
Water Supply:,	Public Water Drilled Well	Driven Well	Dug Well	Other:
Sewage Disposal:	Public Sewer Septic Tank	Leach Field	Dry Well	Other:
10. RELOCATION	INFORMATION (for oil spill resi	dential emerg	ency) NA	
a. Provide reas	ons why relocation is recommended	l:		
b. Residents ch	oose to: remain in home relocate	to friends/fam	ily reloc	ate to hotel/motel

- c. Responsibility for costs associated with reimbursement explained? Y/N
- d. Relocation package provided and explained to residents?

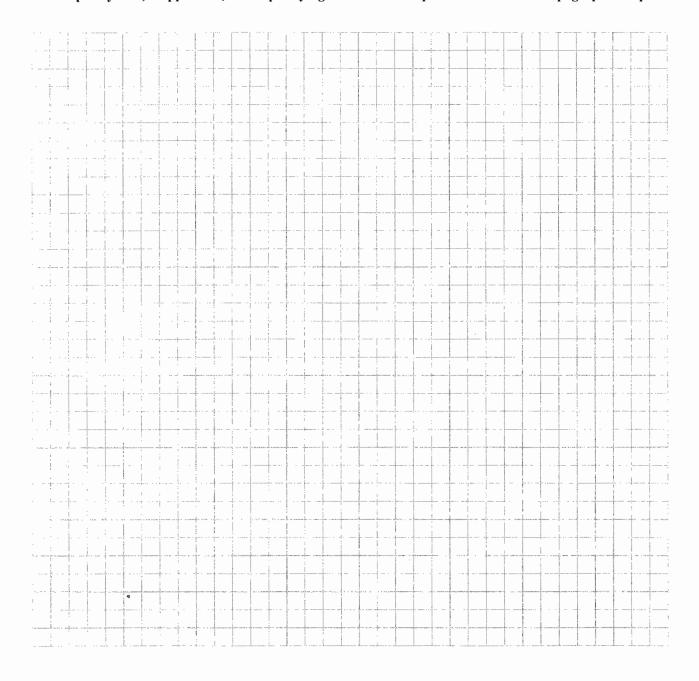

Y/N

6


11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:


First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used:	P	SBRAG	<u> </u>	
		_		

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
ki+	Steinless Steel Polish	2 x/gt	U	white minual oil	382 269pb	\sim
kit	Presto Allpupose decre			not specific	975	Ν
kit	Bio-Gel	1×10+	U	nut specific	428	N
kit	Unlabled (spray)	3a. (U	no luse!	722	N
Lit	Dishwasing designat	#	\mathcal{O}_{-}	**************************************	830	N
ELF	6 loss decrer	FL	U		7580	N
Bath	Disinfectat/Enitier	2402	U	nut listed	603	N
	Solia					
	Rost room deanses	164	U	nut listed	882	N
	unladeled spraybothe	_	U	Not light	641	N
V	Armstrong	10+	U	Not listed	1581	N
	Windows Cleaner	,	U	not liested	817	N
	-handlahllect					
				-		
	9					

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

SVI FIELD SAMPLING SHEETS

NYSEG: Norwich SRI Report October 2006

Site: Norwich Former MGP Samplers: KC + AB Date: 3/22/06

Sample #	NO-UP-062203	NO-18-061203 NO-AUL	NO-BK-06220) NO-A03		
Location	upwind	mid over	downwind		
Summa Canister ID (Lab ID, if provided)	6381 576-235	6382 K-108 (NOI)	4391 K122		
Additional Tubing Added	YES - How much	YES - How much	YES - How much	NO/ YES - How much	NO/ YES - How much
Purge Time (Start)	0	D	0		
Purge Time (Stop)	0	0	0		
Total Purge Time (min)	U	0	0		
Purge Volume	U	0	0		
Pressure Gauge - before sampling	28.5	25.5	27.0		
Sample Time (Start)	0750	0915	0925		
Sample Time (Stop)	0755	0915	0925		
Total Sample Time (min)	24hr	24 hrs	244		
Pressure Gauge - after sampling	1.5	3.0	5.0		
Sample Volume	6L	64	64		
Canister Pressure Went To Ambient Pressure?	YES (NO	YES / NÔ	YES KOO	YES / NO	YES / NO

General Comments:

upmind-located along fence at NYSEC area Mid- located at 10 Columbia

dornward located at 35 Brown along fine

Site: Novwich Former MGP site Samplers: KC + AB

Date: 3/72/06

Sample #	NO-12 BAB	WO-BA1256	NO BAIR SCICC.	NO-BAIZ FE	BAMB KC NO-12BAS
Location	12 Baldwin Basement	12 teatouin	12 Baldwin	12 Baldion	12 Baldwin
Flow (Unity) TD/ Summa Canister ID	KII3/	Sub-Stab	KIII/	Fust Floor K134/	500 51ab
(Lab ID, if provided)	6389	1/2587	6390 NO/	10392	6378 NO/
Additional Tubing Added	YES - How much	NO/ YES - How much	(ES) - How much	YES - How much	NO/ YES - How much
	<u> </u>	11811	~18"		~ 1811
Purge Time (Start)	0	<u> </u>	6	0	0
Purge Time (Stop)	0	Canister	0	0	0
Total Purge Time (min)	6	Failed	0	0	0
Purge Volume	0		0	0	0
Pressure Gauge - before sampling	27		27.5	28	27
Sample Time (Start)	01045	01035 W	01045 01035gs	1050	01045
Sample Time (Stop)					_
Total Sample Time (min)	1045		1045	1048	1045
Pressure Gauge - after sampling	0		5.5	8	57.25
Sample Volume					
Canister Pressure Went To Ambient Pressure?	TES NO	YES / NO	YES / NO	YES / NO	YES / NO
General Comments: 5	lo.slab?	CO2=0.4%	PID = 621	ic pp	
borometric pressue:	28,90 "Hg	02: 19.31.			
velative prassur"	0. 04 "H20	0 000	6	met Tool 11 5	

Methane/CHq = 0:01.

He= 2.27.

Post Test 14:0

Site: Novwich Former MGP Samplers: KC + AB

Date: 3/22/04

Sample #		NO-BA14 BA	NO BAIR BA	NO BAILTF	
	NO-14BAS	NO-14BAB	NO-14BABOUP	NO-14BAF	
Location	14 Baldwin	14 Baldwin	14 Baldwin	14 Baldwin	
	pasement	Sob basement	basement	living space	
Summa Canister ID	K210/	K178	K226/	K137/	
(Lab ID, if provided)	12458	6384	12346	6379	
Additional Tubing Added	NO/ YES- How much	YES - How much	YES - How much	YES - How much	NO/ YES - How much
	~ 12"	~			
Purge Time (Start)	0	0	0	0	
Purge Time (Stop)	0	0	0	0	
Total Purge Time (min)	0_	0	0	0	
Purge Volume	0	0	0	0	
Pressure Gauge - before sampling	28	27.5	30	28.5	
Sample Time (Start)	15:50	15:50	15:50	15:55	
Sample Time (Stop)	15.50	15:50	15:50	5:55	
Total Sample Time (min)	244	24hr	24h	24 hr	
Pressure Gauge - after sampling	0	6.0	7.0	9.5	
Sample Volume	64	6L	6L	6L	
Canister Pressure Went To Ambient Pressure?	YES NO	YES / NO	YES (ND)	YES / NO	YES / NO

General Comments: Sub-Slab. Methani CHq - 0.0%.

PID-4932 PP6

barometric pressure - 28.99" Hg CO2 - 0.97.

velative pressure - - 0.06" HzD He - 900 ppm 1/2 (peat) = 300ppm (bay Lull)

Site: Norwich Former MAP

Samplers: KC + AB Date: 3/22/2006

NO-1000B NO-10 COF NO-14 COS NO-COLD BA NO COINTE Sample # NO-COHOSS ke c 10 Columbia 10 Columbia 10 Columbia Location Flow K271 Flowbur K257 K243 Summa Canister ID 6374 6394 (Lab ID, if provided) NOV (NO) NO/ NO/ NO/ YES - How much Additional Tubing Added 8.55 5 Pc 200ke 8:558:50 Purge Time (Start) Purge Time (Stop) MA 8:5\$ NA 18mg Total Purge Time (min) NA NA Purge Volume 03 L Pressure Gauge - before 29 29 28 sampling Sample Time (Start) 9:00 8:55 8.55 Sample Time (Stop) 8:55 8:55 9:00 24 hrs 24 hr Total Sample Time (min) 24 hr Pressure Gauge - after 0 O sampling Sample Volume 66 6L 6 L Canister Pressure Went (ES) NO YES/NO (YES) NO YES / NO YES / NO

General Comments:

į....

To Ambient Pressure?

Sub-slab-baronetic pressur = 28.85 11 Hg Matike pressur = -0.03 11 HzO

Methane CH4 = 0.0%.

CO2 = 0.51.

PM= 68:6 ppb

02: 20.2%

tc = 50 ppm

3/23/06 - Post He OK

Site: Norwich Former MEIP

Samplers: KC+AB

Date: 3/22/05

Sample #	NO-CO 16 BA	NOCO16 55	NO CONTEST		
	NO-1600B	NO-16COS	NO-16COF		
Location	16 Columbia	16 Columbia	16 Columbia		
	Busement	Basement	First Floor		
Summa Canister ID	K093/	K255/	K241/		
(Lab ID, if provided)	6385	93055	11287		
Additional Tubing Added	YES - How much	NO/ ES)- How much	YES - How much	NO/ YES - How much	NO/ YES - How much
		~ 12"			
Purge Time (Start)	0	0	0		
Purge Time (Stop)	0	0	0		
Total Purge Time (min)	0	0	0		
Purge Volume	0	0	0		
Pressure Gauge - before sampling	29	29	29.5		
Sample Time (Start)	13:40	13:40	13:42		
Sample Time (Stop)	13:45	13:45	1342		
Total Sample Time (min)	24W	24W	24 W		
Pressure Gauge - after sampling	8.0	7.5	0		
Sample Volume	64	64	66		
Canister Pressure Went To Ambient Pressure?	YES MO	YES MO	(YES-PNO	YES / NO	YES / NO

General Comments: Sub-Slab:

Methane Chiq= 0.0%.

He= 1.5%

barometric pressure= 28.95" Hy COz= 0.3%.

Hc=1.21. He Post = 650ppm (fullby) PID=5451 ppb

Volatine pressure = - 0.05" Hzo

02= 19.3%.

Site: Norwich Former MGP Samplers: KC+AB

Date: 3/24/06

Sample #	NO-41FRS	NO-41FRB	NO-AIFR F	NO-41FR FDA	,
Location	41 Front st	11 Funt St	41 Frent 51	41 Front St	
	Basement	Basement	First Floor	First Floor	
Summa Canister ID	K134/	K243/	K113/	K271/	
(Lab ID, if provided)	0177	1273 d	D148	04419	,
Additional Tubing Added	NO/ YES How much	YES - How much	YES - How much	YES - How much	NO/ YES - How much
Purge Time (Start)	Ø 6:05	aps 06:05	0	0	
Purge Time (Stop)	0 6:01	06/07	0	0	
Total Purge Time (min)	Q 2	op	0	0	
Purge Volume	00.4L	40.41	0	0	
Pressure Gauge - before sampling	29.6	28,5	25.0	29	
Sample Time (Start)	Le 15	615	00 20.	620	
Sample Time (Stop)	1818	1818	1817	1817	
Total Sample Time (min)					
Pressure Gauge - after sampling	8	0	0	0	
Sample Volume					
Canister Pressure Went To Ambient Pressure?	YES / 160	ES/NO	(ES/NO	(ES) NO	YES / NO

General Comments:

besomed - L press: 25.00 relative pres: -0.03 02:19.8

CHy: 0.0 COz: 6.7

PID: > 10 ppm He = 0 ppn/oppm (bay full)

Site: Norwich Former MGP Samplers: Kier Craigle + Amanda Bissell Date: 3-24-06

Sample #	NO-42 FR B	NO-42 FR S	NO-42FR F		
Location	42 Front St	42 Front St	42 Frent St		
· · · · · · · · · · · · · · · · · · ·	Busement	Busement	1st Ploor		
Summa Canister ID (Lab ID, if provided)	K210/	kø93/	K252/		
(Lab ID, II provided)	0077	04407 NO/	0151		
Additional Tubing Added	YES - How much	NO/ YES- How much	YES - How much	NO/ YES - How much	NO/ YES - How much
_		~ 18"			
Purge Time (Start)	O	930	0		
Purge Time (Stop)	0	\$532	0		
Total Purge Time (min)	0	Ø2	0		
Purge Volume	0	80.41	0		
Pressure Gauge - before sampling	28,5	29.5	29.5		
Sample Time (Start)	935	935	0947		
Sample Time (Stop)	9.30	q 35	942		
Total Sample Time (min)	23hr 55 min	24hr	24 hr		
Pressure Gauge - after sampling	Ô	8.0	8.75		
Sample Volume	66	66	64		
Canister Pressure Went To Ambient Pressure?	YES / NO	YES / NO	YES / NO	YES / NO	YES / NO

General Comments: Sub-slab. Memon CHq = 0 barometric pressure 27.13"Hy CO2 = 0.4%. Memer CHq = 0,0% PID=6654ppb

Velatire pessu=0.01 1/Azo

02 = 19.0%. He = 325 ppm / oppm (Sull bay)

Basement 184 pps 1481 1020/169

Site: Norwich Former MGP

Samplers: KC + AB

Date: 3/24/2006

				
NU-30FKB	NO-30FRS	NO-30FRS DUP	NO-30FR F	
30 Front st	30 Frantst	30 Frent St	30 Fent St	
Basement	Basement	Basement	First two	
fr + 22 6/	K224 K1-781 40	K255/	STL-239/	
04719	703 p4399	93,000	04424	
YES - How much				NO/ YES - How much
	~ 29"	~24"		
0	Dr 11/25	O	6	
0	0117	0	0	<u> </u>
0	Orz	0	0	
0	Bour	0	0	
27	30	29	29.5	
1130	1130	1130	11 35	
1130	1730	1130	1135	
5.5	6.5	7. D	1.15	
61	6L	6 L	64	
YES / NO	YES / NO	YES / NO	YES / NO	YES / NO
	30 Front 4t Basement 104719 VES-How much 0 0 0 1130 5.5 61	Basement Basement K224 K+784 pp M4 719 PP M3999 NO/ YES-How much ~ 29" O Brill's O Br	30 Front 6t 30 Front 5t 30 Front 5t Basement Basement Basement Basement K256/ 04719 1903 04399 93000 900 900 900 900 900 900 900 90	30 Front st 30 Front st 30 Front st 30 Fort st Busement Busement First Food STL-239/ 84-78-78 K255/ STL-239/ 84-78-78 K255/ STL-239/ 84-78-78 K255/ STL-239/ 84-78-78 M0/ YES-How much PES-How much PES-

General Comments:

bosometric pressure 29.09 Oz = 19.7

Nel. pressure -0.04 He= Betppm /Oppm (Day full)

CH4 = 0.0

CO2 = 0.3

CH4 = 0.0 Co2 = 0.3

Basement : 178195 131 G = 351 ppt

Site: WORWICH FORMER MOP

Samplers: ko/AB

Date: 3/14/c6

Sample #	NO-BICO62403	NO-M2062403	NO-UP062403		
Location	Birdsull substak	42 Front St	35 Brown		
Summa Canister ID (Lab ID, if provided)	6373 K131	04742 K137	K122/		
Additional Tubing Added	YES - How much	YES - How much	YES - How much	NO/ YES - How much	NO/ YES - How much
Purge Time (Start)	NA	NA	NA		
Purge Time (Stop)			-		
Total Purge Time (min)			-		
Purge Volume		-	-		
Pressure Gauge - before sampling	26.5	28.0	28.0		
Sample Time (Start)	848	0950	1025		
Sample Time (Stop)	0955	947	1025		
Total Sample Time (min)					
Pressure Gauge - after sampling	5.0	5.5	4.0		
Sample Volume	6L	62	6L		
Canister Pressure Went To Ambient Pressure?	YES / NO	YES / NO	YES / NO	YES / NO	YES / NO
Total Sample Time (min) Pressure Gauge - after sampling Sample Volume Canister Pressure Went	5.D 6L	5.5 6L	4.0 6L	YES/NO	YES/I

Site: Norwich Former MAP Samplers: KC + AB

Date: 3/28/04

Sample #	NO-43FK5	NO-43FRB	NO-43PEF		
Location	43 Front Busement	43 Front Basement	43 Front		
Summa Canister ID (Lab ID, if provided)	K131/	K122/ 94618	U134/		
Additional Tubing Added	NO/ YES- How much	YES - How much	YES - How much	NO/ YES - How much	NO/ YES - How much
Purge Time (Start)	1720	_		-	
Purge Time (Stop)	1722				
Total Purge Time (min)	2	_			
Purge Volume	0.46	-			
Pressure Gauge - before sampling	28.5	30	27.5		
Sample Time (Start)	1729	1724	1730		
Sample Time (Stop)	1727	1727	1730		
Total Sample Time (min)	~ 24 W 3 mm	24hr+3min	24 hr		
Pressure Gauge - after sampling	Ь	6	//		
Sample Volume	6L	6 L	6 L		
Canister Pressure Went To Ambient Pressure?	YES / (10)	YES / NO	YES / NO	YES / NO	YES / NO
General Comments: Barometric pressure 29 Relative pressure - c	.05" 120 02	' ኃ ለ '/	D = 12.5 ppm PIDbasement = 07 PID,1+p1 = 08 ppm	pm 82 ppm n He L3/29/06)	=0ppm
			y 328pp	———— Н	

Site: Norwich Famer MGP

Samplers: Kick Crange + Amanda Bissell

Date: 3/28/2006

Sample #	NO-45 FR S	NO-45FR B	NO-45FR F	NJ-JTB25	NO 35BRF
Location	45 Front St	45 Front St	45 Front St	95 Brown Ave	25 Brown Ave
	basement	Basement	1st Floor	1st How	124
Summa Canister ID	STL-239/	K178/	K252/	12093	KZID
(Lab ID, if provided)	93001	1497	5-15#2	53176 - NO/	2960
Additional Tubing Added	NO/ MES - How much	YES - How much	NO/ YES - How much	YES - How much	YES - How much
	~ 18"			24"	
Purge Time (Start)		0	0	1625	
Purge Time (Stop)		0	0	1627	_
Total Purge Time (min)		0	0	2	_
Purge Volume		0	0	6.46	_
Pressure Gauge - before sampling	30	28.5	30	29	24
Sample Time (Start)	1429	1429	14 40	1630	1635
Sample Time (Stop)	1429	14.29	1440	1630	16/6
Total Sample Time (min)	24 Ws	24 Ws	24 hrs		
Pressure Gauge - after sampling	5.25,0.5	Dr5/kc	9	7.5	0
Sample Volume	61	64	6L	6L	64
Canister Pressure Went To Ambient Pressure?	YES / NO	YES / NO	YES / NO	YES / NO	VES) NO
General Comments: ()	1.1.		021	· Breeze 3 5 15	1.10 - 12002-1

He = 1700 ppm 3129100

Site: Norwich Former MGP site Samplers: Kier Craigie + Amanda Bissell Date: 3/28/2006

Sample #	NO-BKO42803	NO-13 90 NO-MIODEBO3	NO-UP002803	NO-07062803 DUP	
Location	Nowith/ NYSEM Sub- Staten 24 Birs.	Norwick/ NYSEH - Front St	Nonvicey 35 Brown	Nowich / 35 Brown	
Summa Canister ID (Lab ID, if provided)	K226 S-1491	K161/ Ø4337	K137/ S-1536	K120/ 1499	
Additional Tubing Added	YO/ YES - How much	YES - How much	YES - How much	YES - How much	NO/ YES - How much
Purge Time (Start)	1353 KC	47606,	757 pc	1757 KC	
Purge Time (Stop)			-	-	
Total Purge Time (min)			_	_	
Purge Volume			_	_	
Pressure Gauge - before sampling	30	29	28.5	27.5	
Sample Time (Start)	1353	1750	1757	1757	
Sample Time (Stop)	1354	1745	1757	1757	
Total Sample Time (min)	242	24h	244	244 5-5 xc	
Pressure Gauge - after sampling	5.5	0	6.5	57.5	
Sample Volume	64	6L	6 L	6 L	
Canister Pressure Went To Ambient Pressure? General Comments:	YES /MO	PES/ NO	YES MO	YES AND	YES / NO

Site: Norwich Former MGP Samplers: Kier Craigie + Amanan Bissell Date: 3/29/2006

Sample #	NO-3AFRS	NO-39FR B	NO-39 FR F		
Location	39 Front St Basement	39 Front St Basement	39 Front St. : 1st Floor		
Summa Canister ID (Lab ID, if provided)	K243/ Ø4397	K134/ 2992	K271/ Ø4747		
Additional Tubing Added	NO/ YES - How much	NOD YES - How much	NQ/	NO/ YES - How much	NO/ YES - How much
Purge Time (Start)	1	0	0		
Purge Time (Stop)		O	0		
Total Purge Time (min)		0	0		
Purge Volume	0.5L	0	0		
Pressure Gauge - before sampling	29	29	29		
Sample Time (Start)	953	950	956		
Sample Time (Stop)	956	956	955 1051		
Total Sample Time (min)	242	246	244		
Pressure Gauge - after sampling	6	10.5	0		
Sample Volume	6L	66	6L		
Canister Pressure Went To Ambient Pressure?	YES / MO	YES / MO	Æ S≯NO	YES / NO	YES / NO

General Comments: 506 516 5 Barometric pressure = 29.76" Hg

CH4-0.0% PID= 199 ppm (Over) CO2-1.6% Basenent O2-19.1% backgroud: 98 ppb He-0%/0 tot figur= 486 ppb

Relative pressur = - 0.03 "H20

Site: Norwich Former MGP

Samplers: Kier Craige + Amanda Bissell

Date: 3/29/2006

Sample #	NO-18CO S	NO-18CO B	NO-18LO F		
Location	18 Columbia Basement	18 Columbia	18 Columbia		
Flores (Or balland)		Basement			
Flow Contoller / Summa Canister ID	Atrom KIII	K257/	K113/		
(Lab ID, if provided)	93063 NOI	Ø4388	Ø4176		
			(Ó)	NO/	NO/
Additional Tubing Added	YES How much	YES - How much	YES - How much	YES - How much	YES - How much
	~41				
Purge Time (Start)	1130	0	0		
Purge Time (Stop)	1/23	0	0		
Total Purge Time (min)	~2.5 min	0	0		
Purge Volume	0.4-0.5 L	0	0		
Pressure Gauge - before sampling	28.0	29.D	25.5		
Sample Time (Start)	1138	1140	1149		
Sample Time (Stop)	1139	1139	1148		
Total Sample Time (min)	24/	zuh	246		
Pressure Gauge - after sampling	6.5	0	0		
Sample Volume	61	6 L	66		
Canister Pressure Went To Ambient Pressure?	YES (No.	(ES) NO	MES/NO	YES / NO	YES / NO

General Comments: 506 slab= CHq-0.01. PID= 106PPBR 151 61. 209PPB baronetric pressure=29.24"Hg COZ-0.71. Background relative pressure=40.01"H20 OZ-20.01.

He- 150 ppm, PID= 2321 ppm Backgard He= 225 ppm Soppy

the basement was ranning when scenples retrieved. Verlis to into

Site: Norwich Former 168 site
Samplers: Feir Craigie + Amanda Bissall
Date: 3/25/2006

Sample #	NO-BK062903	NO-MI062903	NO -UP06290)		
Location	Norwich NYSEG Sub- stetien Birdfell	Norwith MID LOCATION	Norwich Upwind 35-Brown Ave	_	
Summa Canister ID (Lab ID, if provided)	16226 6120	STL-239	K178		
Additional Tubing Added	YES - How much	YES - How much	2989 (NOD) YES - How much	NO/ YES - How much	NO/ YES - How much
Purge Time (Start)		_			
Purge Time (Stop)			_		
Total Purge Time (min)	_				
Purge Volume					
Pressure Gauge - before sampling	30	30	29.5		
Sample Time (Start)	1402	1450	1458		
Sample Time (Stop)	140201	1442	1458		
Total Sample Time (min)	24hr	2446.0	24hr		
Pressure Gauge - after sampling	5.5	D	6.5		
Sample Volume	64	61	64		
Canister Pressure Went To Ambient Pressure? General Comments:	YES /NO	(YES) NO	YES /(10)	YES / NO	YES / NO

Site: Norwich Former MEP Samplers: Ker Craigle + Amanda Bissell Date: 3/29/2006

Sample #	NO-26COS	NO-ZØCOB	NO-2¢cof		
Location	20 Columbia Basement	2¢ Columbia Bacement	Up Columbia		
Summa Canister ID (Lab ID, if provided)	8°K+107/K16 S-1493	Basement 08 K107/ 11367	K255/		
Additional Tubing Added	NO/	YES - How much	NO/ YES - How much	NO/ YES - How much	NO/ YES - How much
Purge Time (Start)	1	0	6		
Purge Time (Stop)		0	0		
Total Purge Time (min)	2.5 min	0	0		
Purge Volume	~0.5L	Ò	0		
Pressure Gauge - before sampling	30	30	29.5		
Sample Time (Start)	13350025	132527	1337		
Sample Time (Stop)	1325	1325	1337		
Total Sample Time (min)	24 hr	~24 hr			
Pressure Gauge - after sampling	9	9.5	24hr 8		
Sample Volume	66	6 L	6L		
Canister Pressure Went To Ambient Pressure?	YES (NO	YES I(NO)	YES (NO	YES / NO	YES / NO
General Comments: らら	6-5lab	Bacemen	at -107 PI	(Slale)	

General Comments: 500-61ab CHq-0.01. Basement = 187 pp PID = 276/1/20 CO2-0.8%. PID CO2-0.8%. UST FLOOR = 439 ppb He-500 ppm

He 13/30) = 0 ppm

Site: Norwich Former MGP site Samplers: Kier Craigie + Amanda Bissell Date: 3/29/2006

Sample #	NO-LC 5	NO-LCF			
Location	Namich/ Little 505- Crasus Slab	Nowical Little Class			
Flaw controller/ Summa Canister ID (Lab ID, if provided)	KZ19/ 2050	K224/			
Additional Tubing Added	NO/ YES How much	(NO)	NO/ YES - How much	NO/ YES - How much	NO/ YES - How much
Purge Time (Start)	1035	0		<u> </u>	
Purge Time (Stop)	1038	0			
Total Purge Time (min)	2.5	0			
Purge Volume	0.5L	0			
Pressure Gauge - before sampling	29.5	29			
Sample Time (Start)	1040	1040			
Sample Time (Stop)	1840	1835		•	
Total Sample Time (min)	84	74 STrik			
Pressure Gauge - after sampling	4.0	0			
Sample Volume	64	6L			
Canister Pressure Went To Ambient Pressure?	YES (NO)	(ES)/NO	YES / NO	YES / NO	YES / NO

General Comments: Sub-slab: CHq - 0.0%.

borometric pressure = 29.20"Hs CO2 - 0.4%.

velative pressure = 0.04"H20 Oz - 19.4%.

He - 0/0 PID= 34\$0 ppb PID, 1+6,= 97ppb

CHAIN OF CUSTODY RECORDS

NYSEG: Norwich SRI Report October 2006

CHAIN OF CUSTODY

495 TECHNOLOGY CENTER WEST BUILDING ONE
MARLBOROUGH, MA 01752

ACCUTEST JOB#:		
ACCUTEST QUOTE #:		

TEL: 508-481-6200 • FAX: 508-481-7753 Laboratories CLIENT INFORMATION **FACILITY INFORMATION** ANALYTICAL INFORMATION MATRIX CODES DW - DRINKING Morwich Former W WATER NAME PROJECT NAME GW - GROUND WATER Downlin - WASTE **ADDRESS** LOCATION WATER SOIL PROJECT NO. CITY. SL. SLUDGE OI - OIL LIQ . OTHER SEND REPORT TO: FAX#_1017-923-4610 (1)7-923-4(clo) **PHONE #** SOL - OTHER SOLID COLLECTION PRESERVATION **ACCUTEST** 8 SAMPLED SAMPLE # FIELD ID / POINT OF COLLECTION മ DATE TIME LAB USE ONLY BY: 110-DP56 (19-20) 11:00 13:30 2 NO-P729 10/13/05 LIME NO-P230 (0:3b NO- PZ 31 DATA TURNAROUND INFORMATION DATA DELIVERABLE INFORMATION COMMENTS/REMARKS ☐ 14 DAYS STANDARD APPROVED BY: ☐ STANDARD 7 DAYS RUSH ☐ COMMERCIAL "B" □ 48 HOUR EMERGENCY ☐ DISK DELIVERABLE OTHER STATE FORMS OTHER (SPECIFY) 14 DAY TURNAROUND HARDCOPY, EMERGENCY OR RUSH IS FAX DATA UNLESS PREVIOUSLY APPROVED SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESION, INCLUDING COURIER DELIVERY RELINQUISHED BY SAMPLER: DATE TIME: RECEIVED BY: RELINQUISHED BY: DATE TIME: RECEIVED BY: 10/13/05 13001. 1. ACCOUNTS DATE TIME RECEIVED BY: RELINQUISHED BY: DATE TIME: RECEIVED BY: 3. 3. RELINQUISHED BY: DATE TIME: RECEIVED BY: PRESERVE WHERE APPLICABLE SEAL # ON ICE TEMPERATURE 5.

CHAIN OF JUSTODY

495 TECHNOLOGY CENTER WEST • BUILDING ONE MARLBOROUGH, MA 01752 TEL: 508-481-6200 • FAX: 508-481-7753

ACCUTEST QUOTE #:

	CLIENT INFO	RMATION			FAC	LITY INFO	ORMA	TION						AN	ALYT	ICAL	INFO	ORMA	TION			MATRIX CODES
ADDRESS CITY, SEND REPORT	49 Clove Voctertor etr Do(le	STATE)	1 - 02 47 ZIP	PROJECT FAX #	NAME NO.	20 E	4	_	PRE	_	P Si		Hs)									DW - DRINKING WATER GW - GROUND WATER WW - WASTE WATER SO - SOIL SL - SLUDGE OI - OIL LIQ - OTHER LIQUID SOL - OTHER SOLID
SAMPLE #	FIELD ID / PO	DINT OF COLLECT	ION	DATE	TIME	SAMPLED BY:	MATRIX	# OF BOTILES	코 ^및	EQS	H2804 NONE	876 876	Z)					•				LAB USE ONLY
X	NO- P23	310		inlizio	14:30	146 146	نوایک	5	2		2	×	×									_
X	NO-PZ	3690b			J	シ	J	J	IJ		1	Ľχ	×		\ P	AH	Dal.	かめ) or	4		
X	NO-P2	35 		idialo	5 B:40	LME	مداء	n n	3		2	X	×	1		ф	W.	rep		13		
_	NO-782				9:50	1	1	-	Ī		1	λ	V									21
	NO- PZ			1	11:00		1	~	1	П	J	1	×									
	NO-PZ			udiulo	12:20		۵.	,_			2	1	1									
	NO- Priv			ipliale				1	1		11	ľ	\ \ \				\top			1	Ħ	
	NO- P23			1004105		X6	1	5	2	\sqcap	à	T _v	J				\top		1			
	NO- 87-3		_	10/14/10	-	156	600			\sqcup	Ja l	1~	\sim						1			
	NO-6239			10/14/15	7	1565	سري الدن		3	Ħ	3	†			Sav	~	46	102	و ب	عدم	UA	5
	100-1230			10,19(1),9	19700	1.32	0.0	1	1	11		\uparrow			_	7	Ť		†-	13		
			7 (A)	902013888889				. [in server		4085725729	U700588460					<u> </u>		
0.0000000000000000000000000000000000000					DATA DEL	VERABLI	E INFO	ORMA	TION								<u>OMN</u>	MENTS	REM	ARKS		
□ 7 DAYS	7 DAYS RUSH 48 HOUR EMERGENCY				☐ STANDARD ☐ COMMERCIAL "B" ☐ DISK DELIVERABLE ☐ STATE FORMS																	
	DAY TURNAROUND HARDCOPY. EMERGENCY OR RUSH IS FAX TA UNLESS PREVIOUSLY APPROVED				OTHER (SPECIFY)											_						
	SAMPLE CUSTODY MUST B			BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESION, INCLUDING COURIER DELIVERY																		
	INQUISHED BY SAMPLER: DATE TIME: RECEIVED I			IY:		RELIN	QUISHE	D BY:			1	DATE TW	IE:		REC	ZIVED	BY:					
RELINGUISHED	NOWISHED BY: DATE TIME: RECEIVED				-	RELIN	QUISHE	D BY:		-	- 1	DATE TIME: RECEIVED BY:										
3.	QUISHED BY: DATE TIME: RECEIVE				4. ED 87:							p.	ESEP	AE ANT	4.	PPLICA	N.F			N ICE	_	TEMPERATURE
5.			5.			SEAL!	-		1				التايب						·			C

CHAIN OF CUSTODY 495 TECHNOLOGY CENTER WEST * BUILDING ONE

495 TECHNOLOGY CENTER WEST • BUILDING ON MARLBOROUGH, MA 01752 TEL: 508-481-6200 • FAX: 508-481-7753

ACCUTEST JOB #:	 ,
ACCUTEST QUOTE #:	

Laboratorie.

	CLIENT INFO				FAC	ILITY INFO	DRMA	TION	3.25					ANA	YTIC	AL IN	FORM	ATION		MATRIX CODES
ADDRESS CITY, SEND REPORT TO PHONE #	TA Environ	acs	ZIP	PROJECT I	10.	303	33 - 4610 3 2 3 - 4610					Eχ	٠. ك						7	DW - DRINKING WATER GW - GROUND WATER WW - WASTE WATER SO - SOIL SL - SLUDGE OI - OIL LIQ - OTHER LIQUID SOL - OTHER SOL - OTHER SOLID
ACCUTEST SAMPLE #	FIELD ID / P	OINT OF COLLECT	ION	DATE	TIME	SAMPLED BY:	MATRIX	# OF		HI2804	NONE	BTE	H							LAB USE ONLY
	NO-DE NO-DE NO-DE NO-DE	52 (19- 53 (19 54 (9-21	20') - 20') - 20')	10/0/05	14:05 16:35	IMG.	V> V>	W> W>			W W	X	X		9				**************************************	
☐ 14 DAYS ☐ 7 DAYS ☐ 48 HOUR ☐ OTHER _ 14 DAY TURNA	AROUND HARDCOPY. PREVIOUSLY APPRIC	APPROVED BY:	SH IS FAX MUST BE I	STAND COMME DISK D STATE OTHER	ERCIAL "B ELIVERAE FORMS (SPECIFY	EACH TIME RELING 2. RELING 4.	IE SAI DUISHE DUISHE	MPLES D BY:		INGE F	POSSE	SION TE TIM	I, INC		G COL RECEIVI 2. RECEIVI 4.	IRIER ED 8Y:		/ERY	6	
5.		DAIE IIME.	5.			SALI	,		/	٠, ٠	·;	PR	ESERV			CABLE	,	O	N ICE	TEMPERATURE C

284 Sheffield Street, Mountains, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

1	CHE	MTECH	PROJI	ECT NO.	*		
	* - } *			··.			
•	~~~	Mariabas					

AIN OF COSTOD I RECORD	www.cne	emtecn.net		ľ	537:	90
CLIENT INFORMATION	PRO	OJECT INFORMATION			BILLING INFORMA	
PANY: META ENVIOUMENTAL, INC.	PROJECT NAME: NO	DRWICH	****	BILL TO:	·	PO#:
DRESS: 49 CLARENDON ST	PROJECT NO.: 10303	2 52 LOCATION: NO	TMICH NA	ADDRESS:	· · · · · · · · · · · · · · · · · ·	
TY: WATERTOWN STATE: MA ZIP: 07472	PROJECT MANAGER:			CITY:	STATE	≣: ZIP:
TENTION: PETER DELERCO	e-mail: PRECLERCO			ATTENTION:	PHON	E:
ONE: 617 923 4662 FAX: 617 923 4660 DATA TURNAROUND INFORMATION	PHONE: 617 972 445	- 4	23 4610 ON		ANALYSIS	
X: DAYS * JRD COPY: DAYS * D: DAYS * DO BE APPROVED BY CHEMTECH TANDARD TURNAROUND TIME IS 10 BUSINESS DAYS	☐ RESULTS ONLY ☐ RESULTS + QC ☐ New Jersey REDUCED ☐ New Jersey CLP ☐ EDD FORMAT	USEPA CLP New York State ASP ** New York State ASP ** Other	1 70 100°	SREA SEE 6 PRESERVATIVES	7/8/9	
HEMTECH		SAMPLE S		PRESERVATIVES		COMMENTS
SAMPLE PROJECT SAMPLE IDENTIFICATION	SAMPLE TYPE CO	SAMPLE DLLECTION IN THE TIME OF	1 2 3	4 5 6	7 8 9	← Specify Preservatives A-HCI B-HNO₃ C-H₂SO₄ D-NaOH E-ICE F-Other
NO- DP05 (15.0 - 16.0)	5011 × 10/26			4 3 6	7 0 5	E-IOE F-Oller
NO-1785 (19.0 - 20.0)	1 1	2. ×	(x			
NO-DPOG(150-160)	0177	04 2 ×	(×			
NO-DPO6 (19.0-700)			x			
NO-0906 (22.0-22.3)			×			
NO-0P08(12.6-14.0)		3 x	< x x	×		
NO- DP68 (14.7 -15.7)		2 ×	×			
NO - DP09 (15.0 - 16.0)	10/24	ou Z X	× ×			
NO - DPO9 (18.8 - 20.0)		2 ×	×			
NO - DPIO (19.0 - 20.0)		2 X	×			
SAMPLE CUSTODY MUST BE DO	CUMENTED BELOW EAC	H TIME SAMPLES CHAP	IGE POSSESSIC	ON INCLUDING COUR	IER DELIVERY	
NOUISHED BY: DATE/TIME: RECEIVED BY: 10/79/5/45 1. RECEIVED BY: DATE/TIME: RECEIVED BY: 2.		onditions of bottles or cooler MeOH extraction requires comments:		☐ Compliant ☐ to z jar for percent solid.		Cooler Temp
NOUISHED BY: DATE/TIME: RECEIVED FOR L 3.		age of	SHIPPED		DELIVERED OVERI	

284 Sheffield Street, Mountainsic AJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

CHEMTECH P	ROJECT NO.	_	,	
COC Number	5270g			

	OLIENT INCORNATION				BBO II	OT INFO	2010							-	1010 10			
_	CLIENT INFORMATION REPORT TO BE SENT TO:				PHO	CT INFOR	MATIC	, N			\			BIL	LING I	HORM	ATION	
AND ANIV		13'e	DDO:IEC	T NIANIE:	· · • · • · • · •						BILL T	Λ.			•		PO#:	
MEANT:	META ENVIRONMENTAL,	100		T NAME:	1	,	· Supplier of the supplier of	1			DILL.I	<u>U:</u>	- :				PO#:	
DRESS: L	19 (LARENDON ST		PROJEC	T NO.: 4	23032/	2 LOCA	TION:	WAWK	H.W	(<u>ADDR</u>	ESS:	<u>.</u> .	· ·	·			
Y: WATE	RTOWN STATE: MA	ZIP:02472	PROJEC	T MANA	ER: φε	TEK DE	LLER	(&			CITY:	· .	٠			STAT	TE: ZIP	<u>:</u>
FENTION:	PETER DECLERCO	·	I.			META					ATTEN	ITION:		·		PHO	NE:	
		9.7					ř									ALYSIS		
DNE: 67	923 <u>4662 FAX: 617 9</u> DATA TURNAROUND INFORMATI		PHONE:			7 F			3 461	۸			·/				77	
	DATA TORINAROUND INFORMATI	_						ATION				/ /	1.5		Y /	/ . /	/.//	//
X:		DAYS*		ILTS ONLY		USEPA CI						> / >	وملتلا	SILL		/	//	/
RD COPY:.	;	DAYS*		ILTS + QC Iersev REI		New York		-A=		MOL.	للكلاي	N	No.			. /		^ I
O RE APPR	OVED BY CHEMTECH	DAIS ,		lersey CLF		Other		_ /	712	حرير ح	.018	کره ک		/ /	/ /		///	
	TURNAROUND TIME IS 10 BUSINE	SS DAYS	□ EDD I	FORMAT_	· · · · · ·	 		1	<u> 72.</u>	<u> 73</u>	SPLA PRES	<u> 2×5</u>	<u>/ 6</u>	/7	/ 8	· / 9		
<u>.</u>				SAMPLE	SA	MPLE	S				PRES	SERVA	TIVES					MENTS
EMTECH AMPLE	PROJECT		SAMPLE	TYPE		ECTION] <u>F</u>										← Specify A−HCI	Preservatives B-HNO₃
. ID	SAMPLE IDENTIFICA	ATION	MATRIX -	GRAB	DATE	TIME	OF BOTTLES	<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	1	Ç-H₂so.	D-NaOH
	<u> </u>	· ·	,	S 5	_	<u> </u>	-#:	1	2	3 -	4	5	6	7	8	9	E-ICE	F-Other
	NO-DPIZ (22.6-24.0)	·	SOIL	×	10/28/04	<u> </u>	2_	_×_	×	ļ	<u>.</u>				<u> </u>	<u> </u>		
	NO-DP13 (145 - 16.0)				10/27/04	,	2	¥	×									
	NO -0013 (17.2 - 17.8)				1	<u> </u>		×					1.2.					
					10/26/04				\	1								,
	NO - DP16 (11.0 - 17.0)				no i se iod	-		_ x	X	_	1						<u> </u>	
٠. ا	MO-DPIB (MO-20.0)					*****	2	X	_ X _	}					 	_		
	NO-DP17 (115-120)	• • • • • • • • • • • • • • • • • • • •				-	1		×		1 .	<u>.</u>	<u>.</u>	,		ļ		
_	MO - DP17 (13.5 - 14.3)						1	× _	<u> </u>	-	· · -				 	<u> </u>		
	NO-DPI7 (189-200)	•					2	×	X		<u> </u>				-			
	NO-DP15 (8.7-8.8)				10/29/04		1	_	×				<u>:</u>					
	NO - DEIS (19.5 - 70.0)		J	.			· , _		×	· · · ·		,		· .	•			
	SAMPLE CUSTO	DY MUST BE DOC	UMENTE	D BELOW	EACH T	IME SAMP	LES C	HANGE	POSS	ESSIC	N INCL	UDING	COUR	IER DI	LIVER	Υ		· —
IQUISHED BY		RECEIVED BY:				tions of bott					Comp			Non Cor	npliant		Cooler Temp	
11h	10/29 15:45		·, · · · · · · · · · · · · · · · · · ·	· · ·	MeC	H extraction	n requ	ires an	addition	nal 4 oz	jar for j	percent	solid.		:			
IŒUISHED BY:	DATE/TIME:	RECEIVED BY:	}	1000	Com	ments:		<i>i</i> .					٠.	•	•			
QUISHED BY:	DATE/TIME:	2. RECEIVED FOR LAB	BV.		<u> </u>		<u> </u>	 		· · . · · ·		<u>i</u> _	· . :					
COLOR IED DT	DATE THATE.		,			. 1			St	IIPPED	VIA: CL						1114101111	ment Complete: /ES
	·	3.	-		Page		of_				CHEMTECH: PICKED UP OVERNIGHT							IES LINO

284 Sheffield Street, Mountainside, AJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

1	CHEMTECH P	ROJECT NO.	
1			
	COC Number	53797	

	CLIENT	NFORMATION					PROJE	CT INFOR	MATIC	NC						BiL	LING I	NFORM	IATION	
APPANIV.		TO BE SENT TO:		DDO:IE		\	. indi	use 11			· . ·		DULT					. :-	DO#-	
		ONMENTAL , IN	<u></u>	*		-	NOR		: -				BILL T						<u>PO#:</u>	
DRESS: 4	9 CLAREND	ON ST	·	PROJEC	T NC	<u>):10</u>	3032	2 LOCA	TION:	A/OLWI	H , N	/	ADDR	ESS:		-	• • • •	<u>.</u>		
Y: WATE	RTOWN	STATE: MA	ZIP:02472	PROJEC	T M	ANAG	ER: PE	GR DE	CLEPI	:Q			CITY:		_ .	· ·		STAT	TE: ZI	P:
<u>rention:</u>	PETER DEC	LERCO	<u> </u>	e-mail:	_00	٤(١٤	RIGH	METAEN	COM	-			ATTE	NTION:	<i>:</i>			PHO	NE:	_
ONF: 417	923 4667	FAX: 617 921	I WEIG	PHONE:		,			AX:	*						, ,		ALYSIS		
		OUND INFORMATION	SN	11.110.112.		ATA	DELIVE	RABLE IN		ATION					-/		/		//	
D:	OVED BY CHEN	DAYS *	☐ RESU ☐ RESU ☐ New ☐ New ☐ EDD	JLTS Jersey Jersey	+ QC / REDI / CLP	UCED [USEPA CL New York New York Other	State Al State Al	SP "B" SP "A"	7112	311.3 313.3	SPLA SPLA	5818	MS E	7	/8	9			
EMTECH		PROJECT			1	IPLE		MPLE	BOTTLES		1		PRE	SERVA	TIVES	1 2				MMENTS Preservatives
AMPLE ID	SA	TION	SAMPLE MATRIX	COMP	DE SE	DATE	TIME	# OF BOT	1	2	3	4	5	6	7	8	9	A −HCI C−H₂SC	B−HNO₃ D −NaOH F−Other	
	× 10 00	10/11/2 120)		SOIL			10/25/04		,	×						-			7 702	, Guier
		18 (11.5 - 12.0)		3010			1011210A		-	- "	×	İ			ļ. —	1	† .	ļ	1	
		(15.5-16.0)		▋▐			\neg			<u> </u>			<u> </u>	<u> </u>		-	-		+	
		(19.0 - 20.0)	* ***				-			X		-		-	7				 	
	NO - DP 18 (· · · · · · · · ·	 _	1			_₩_		 	 		X	X		 	 .			 	
	NO - DP 20	(NAPL ZONE)			:		(०)७५ ०५			<u> </u>	X	 	·	ļ	ļ.,	1	 	 	 	
	NO - DP 73	(22.6-22.8)		-V		V	0 28 04		1_	 	X		-	<u> </u>	<u> </u>	1			 	
	NO - RB 102	864	.	WATER	X		<u>.</u>	12:24	3	_X_	×	ļ	<u> </u>		" .	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
								<u> </u>			1.7	<u> </u>			· ·	<u> </u>	ļ · _		<u> </u>	·
]				· 						ŀ		_		
				<u> </u>			· ·	_		Ŀ			<u></u>						<u></u>	
OVISHENBY		DATE/TIME:	RECEIVED BY:	CUMENTE	D BE	LOW	Condi	ions of bott	les or c	oolers a	receipt	: E	Comp	liant		Non Co		_ -	Cooler Temp.	
QUISHED BY:		1. RECEIVED BY:	· · · · · · · · · · · · · · · · · · ·	· · · · ·			H extraction ments:	on requ	ires an	additio	nal 4 oz	jar for	percent	solid.	: : :					
QUISHED BY:		DATE/TIME:	RECEIVED FOR LAS	BY:	1. +,+, +.	• • • •	Page	· .	of		SI	IIPPED						□OVE		pment Complete:

Chain of **Custody Record**

Arriva Building 1 Severn Irent Laboratories, Inc.

<u>81 - 1990</u>	lar luor	06- Nr	Λ 1	A \bigcirc		حقے م											-						_	
A A	_														Date				C			Number	Į.	
Address		Tolonh	one Nu	mber (Area C	odel/	- 1 East Au	mbor	,	.=						5 Lab N		<u> </u>	<u> </u>	_	<u>_</u>	<u>.93</u>	<u> 194</u>	<u> </u>	
h		relepit	Une Nu	inder (Area C	·	-ax ivu . j	imber				4:				LAUN	niinei				Page _	1	of		1
City State Zip	Code	Site Co	ontact	<u> </u>	Li	ab Cor	ntact	-	1 2		,	15.		Anal	vsis (A	Attacl	h list if	-		Jage _				
Project Name and Location (State)	124 42	i									-		-				eeded			4				
	,	Carrier	/Waybil	l Number						-		4	M		1		Ì							
Contract/Purchase Order/Quote No.		<u> </u>									վ՝	8	Salas			'						l Instru		
Contract/Purchase Groef/Quote No.				Matrix			Cont Prese	taine erva	rs & tives	; ;		7	3		1	.				'	ionaiti	ons of I	чесе	ıpt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Air	Sed.	Honrae	H2SO4	HNO3	НСІ	NaOH	ZnAc/ NaOH	j	Total VOAS	Total											_
NO-DP37 (26.5-27.5)	5/19/05	18:25		3	\	4						X.	X											
NO-DP37 (31.5-32)		18:35		2	1	/					\1	4	X	\perp		_								
NO-DPAI (16-16-5)	,	10:50		2	_	1		_	\perp	·	_Lì	Χ,	X	_										
NO-DD41 (23-237)		11:20		3		1_						ΧĹ	<u> </u>			\downarrow		$\perp \perp$				· ·		
NO-DP43 (7.5-8)		13:35			\perp	1					_ ;	X	$\perp \perp$	_ _		_		$\perp \perp$	_					
NO-DP43 123-23.8)	<u> </u>	14:10		12		_	Ш	_		_		<u>X</u>	X						\perp					
NO-DP38 (19.6-20)	5120105	10:10		1	\perp	1					_\;	<u> </u>				_			_ _					
NO-DP 38 (27-28)		10:20		3	\perp				_ į			<u> </u>	X	_		_				_				
NO-DP40 (21.5-23.5)	1	13:45	_	3		Щ_		\dashv	4	_		牛	<u> </u>				_	$\perp \perp$		<u> </u>				
NO-DP40 (210.5-27.5)		14:00	_	2		V	-	_	_			نالا				4			\perp					
				\bot		<u> </u>		_	_	_	\downarrow	4	1.1		1-4		\perp							
<u> </u>									i_													, i.		
Possible Hazard Identification	_			ple Disposal		_				_	_					(A fee r	nay be a	ssess	ed if sai	nples åi	e retaine	1	
☐ Non-Hazard ☐ Flammable ☐ Skin Irritant Turn Around Time Required	Poison B	Unknown	<u> </u>	Return To Cli	ent		Dispos Reau		_	(Speci		chive	For _		. Mont	hs i	onger t	than 1 m	onth)		<u> </u>			
24 Hours 48 Hours 7 Days 14 Da	ys 🔲 21 Day	rs 🗆 Oth	er							(0,000.	,,		1			,				:				
1. Relinquished By	<u>. — —</u>	Date 512	_	Time 5 4: 0	>0	1. F	Receiv	red B	y	_	7	1		4	2-					Date	23/05	Time	14	
2. Refinquished By		Date	- 10.	Time	-	2. F	Receiv	red B	у		7	<i>F'</i>	an j	11 8						Date	-403	Time	' 	
3. Relinquished By		Date		. Time		3. F	Receiv	ed B	y									<u>_</u>		Date		Time		
Comments			•			1		_											1					

5.

CHAIN OF CUSTODY

MARLBOROUGH, MA 01752

ACCUTEST JOB #:			
ACCUTEST QUOTE #:	_	_	

TEL: 508-481-6200 . FAX: 508-481-7753 Laboratories FACILITY INFORMATION ANALYTICAL INFORMATION MATRIX CODES CLIENT INFORMATION META FINITALMENTAL NEVWICH FERMEN WOP SILE DW - DRINKING WATER PROJECT NAME GW - GROUND 79 (Twendon 57. Norwick, NU WATER WW - WASTE DRESS LOCATION T02032 WATER Nodertowia WAL MUAZ 0 SO - SOIL 0 STATE ZIP PROJECT NO. SL - SLUDGE J00 92 WARR GRAY Piede Dollerce OI - OIL 83 LIQ - OTHER 30 FAX# 617-927-41010 > 1017-973-4667. LIQUID SOL - OTHER SPC SOLID COLLECTION PRESERVATION 75 **CUTEST** SAMPLED FIELD ID / POINT OF COLLECTION IMPLE # DATE TIME LAB USE ONLY BY: LIME NO - DPZZ (11-5-12) 4125 11:00 601 XX 11:15 MO-DP22 (14.5-15.5) ΧĺΧ MO-DOZZ (21.5-22.5) 11:45 X × NO-DOB (15-16) 2:14 XX NO- DPØ1 (14-15) Z: 15 XX 7:30 NO-DERI (23-24 3:46 XX NO- DPM (15-16 $X|_{X}$ NO- DPBZ (18-19 $A:\infty$ NO- DOBZ (23-24 4:20 $\times \times$ 5:33 NO- DP 03 (15.16 NO- DP83 (23-24) 5:45 COMMENTS/REMARKS DATA TURNAROUND INFORMATION DATA DELIVERABLE INFORMATION Trip Flower 14 DAYS STANDARD APPROVED BY: ☐ STANDARD 7 DAYS RUSH ☐ COMMERCIAL "B" **48 HOUR EMERGENCY** □ DISK DELIVERABLE OTHER ☐ STATE FORMS ☐ OTHER (SPECIFY) DAY TURNAROUND HARDCOPY, EMERGENCY OR RUSH IS FAX **TA UNLESS PREVIOUSLY APPROVED** SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESION, INCLUDING COURIER DELIVERY INQUISHED BY SAMPLES: DATE TIME: 2 30 RECEIVED BY: RELINQUISHED BY: DATE TIME: RECEIVED BY: ROVANU TWOM 2. 2. INQUISHED BY: DATE TIME: RECEIVED BY: RELINCUISHED BY: DATE TIME: RECEIVED BY: DATE TIME: RECEIVED BY: INQUISHED BY: SEAL # PRESERVE WHERE APPLICABLE ON ICE TEMPERATURE

RELINQUISHED BY:

CHAIN OF CUSTODY

MARLBOROUGH, MA 01752

ACCUTEST JOB #:				
ACCUTEST QUOTE #:	-	_	_	_

PRESERVE WHERE APPLICABLE

ON ICE

TEMPERATURE

TEL: 508-481-6200 • FAX: 508-481-7753 Laboratories FACILITY INFORMATION MATRIX CODES ANALYTICAL INFORMATION CLIENT INFORMATION META Environmental Norwich Former WGP Site DW - DRINKING WATER PROJECT NAME GW - GROUND 49 Clovenden St. Norwich, NU WATER WW - WASTE **ADDRESS** Waterburn MA 02472 WATER SO - SOIL PROJECT NO. Do Clarca C CITY. STATE SL - SLUDGE Lova Graci OL- OIL LIQ - OTHER V. END REPORT TO: 17 - 923 - 41062 FAX# 617-928-4610 LIQUID **HONE #** SOL - OTHER SOLID COLLECTION PRESERVATION 0 ACCUTEST SAMPLED SAMPLE # FIELD ID / POINT OF COLLECTION DATE TIME LAB USE ONLY BY: NO- DF 27 (13-13.5 LMG 4 26 05 10:00 ه کنه $\times |_{\times}$ 144 NO - DAZT (17.5-18 2 16.15 10.15 NO- DP27 (18-18.5 × NO- DPZ7 (31-32) 2 × 11.30 2 MO - DP19 (14-15 X 3:15 NO-DP19 (18-19) 3:25 .5 NO- DPGC (13.5-145 6:00 χ \mathbf{Z} X NO- DPEAC (18 19) 6:15 NO- DP04C (23-24 $\times \times$ 6:20 NO-DP28 /7-5 477 05 9:00 LM (- 150 NO-DP28 (14-15) ΧX 1127 05 1M6 50 9:05 DATA DELIVERABLE INFORMATION COMMENTS/REMARKS DATA TURNAROUND INFORMATION ☐ STANDARD ☐ 14 DAYS STANDARD APPROVED BY: ☐ COMMERCIAL "B" 7 DAYS RUSH **3 48 HOUR EMERGENCY** □ DISK DELIVERABLE ☐ STATE FORMS OTHER ☐ OTHER (SPECIFY) 14 DAY TURNAROUND HARDCOPY, EMERGENCY OR RUSH IS FAX **DATA UNLESS PREVIOUSLY APPROVED** SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESION, INCLUDING COURIER DELIVERY DATE TIME: RECEIVED BY: RELINQUISHED BY: DATE TIME: RECEIVED BY: RELINQUISHED BY SAMPLER: of www that d 28 los 11.00 RECEIVED BY: RELINQUISHED BY: RECEIVED BY: RELINQUISHED BY: DATE TIME: DATE TIME:

SEAL #

RECEIVED BY:

5.

DATE TIME:

ACCUTEST.

CHAIN OF CUSTODY 495 TECHNOLOGY CENTER WEST - BUILDING ONE MARLBOROUGH, MA 01752

ACCUTEST JOB #:	
ACCUTEST QUOTE #:	

ν"	Laborato	ries			TEL: 50	18-481-620	10 • F	AX: 5	08-48	1-775	3 		_						
	CLIENT INFOR	MATION			FAC	LITY INFO	RMA	TION						ANA	LYTICA	LINFOR	OITAM	N	MATRIX CODES
	14 Environ		<u></u>	N 5V	Make .	Form	<u>_</u>	<u> </u>	0 9	jr_									DW - DRINKING WATER GW - GROUND
40	Clovendo	<u>~ ≤+</u>		PROJECT								1							WATER WW - WASTE
RESS	atertown	MA oru	72		03037	<u> </u>				_			بع						WATER SO - SOIL
' La	alertown s	TATE 	Z!P	PROJECT	NO.	cler						ري	2						SL - SLUDGE OI - OIL LIQ - OTHER
REPORT T	617-923	-4622		FAX #	612-9	67-2	46!	0				700/	M						SOL - OTHER
UTEST				č	DLLECTION		ZIX.	F LES	PRE	SER	VATION	7-	3	O.			1		SOLID
APLE #	FIELD ID / PO	INT OF COLLECTION	ON	DATE	TIME	SAMPLED BY:	MATRIX	BOTT	E S	HMOS	NONE NONE	۲	+						LAB USE ONLY
	NO- DPZ°	(22.5-23)	4/23/05	11:30	1.K/(-	56	2			×	×	X				$\downarrow \downarrow$		
	NO DPIG ((23-24)		Ì	11:35	,		2"				X	X						
	NO DP 33	1515.5		-	1:55	1	Ì	7.			1	χ	X						1.45° pr 1.45° pr 1.4
	NO-DP33	(8148)	}		5:92	1	1	1 "			Acceptance of	-	military.	χ					
	10. DE3Z			_	440	7	1	72				λ	×					h	
`:	NO. DP32			V	4.45	Ÿ	1	2		П	Ŵ	×	×					À÷.	
	Trip Blan			4 24 9	days at-			1		\Box	1	X							
							_	\vdash			7	T							
					-		_	_			$\top \top$	十					17		
					_		-	1			$\top \!$				\neg				
						-		+-		$\dagger \dagger$	++	\dagger	\dagger				$\dagger \dagger$	-	
					<u> </u>			<u> </u>		-		120 A120 MIO	WALKER CONTROL		AT SCANOT				PERSONAL PROPERTY OF STATE OF
	DATA TURNAROUNE	INFORMATION			DATA DEL	IVERABL	EINF	ORM	ATION					<u> </u>		COMME	NTS/RI	EMARKS	
7 DAYS 18 HOU! DTHER AY TURN	STANDARD REMERGENCY AROUND HARDCOPY. SPREVIOUSLY APPRO	EMERGENCY OR RUS		DISK I	IERCIAL "E DELIVERAL	BLE	.				_	- -					•		ή
		AMPLE CUSTODY	MUST BE	DOCUMENT	ED BELOW	EACH TH	ME SA	MPL	ES CH	ANG	E POS	SESIO	N, IN	CLUD	NG COL	RIER DE	LIVER	1	
IQUISHED	RY SAMPLER:	ATETIME: A12805 1000	RECEIVED E			RELIA	IQUISH	ED BY:				DATE TI	ME:		RECEIV	ED 8Y:			
IQUISHED	BY:	DATE TIME:	RECEIVED E	BY:		RELIA	IQUISH	ED 8Y:				DATE TI	ME;		RECEIV 4.	ED BY:			
IQUISHED	BY:	DATE TIME:	RECEIVED E	3Y:		SEAL		_				P	PRESE		ERE APPL	CABLE		ON ICE	TEMPERATURE C

CHAIN OF CUSTODY

495 TECHNOLOGY CENTER WEST • BUILDING ONE MARLBOROUGH, MA 01752 TEL: 508-481-8200 • FAX: 508-481-7753

ACCUTEST QUOTE #:

ACCUTEST JOB #:

Laboratories

CLIENT INFORMATION **FACILITY INFORMATION** ANALYTICAL INFORMATION MATRIX CODES META Environmental Norwich Former MCP Sike DW - DRINKING WATER PROJECT NAME 49 Clarendon 8A GW - GROUND Mornich, Ny WATER LOCATION TO 3 932 WW - WASTE DRESS . HOWN 07477 WATER O SO - SOIL 1 PROJECT NO. The Clercy M. LNa Gray STATE SL - SLUDGE 3V06. OI - OIL Š ġ LIQ - OTHER 60 REPORT TO: 617-923.41662 617-922.41610 LIQUID FAX # C. SOL - OTHER SOLID COLLECTION **PRESERVATION** PRESEFFICE HOON HE HANGS ٢ CUTEST V SAMPLED FIELD ID / POINT OF COLLECTION MPLE # DATE TIME LAB USE ONLY BY: 4 23 65 NO-DP36 (8.9-9.7) 9:10 1 W.6 50 NO-DP36 (13-13.9 9:25 NO - D835 (12-12-5 17:00 ومستحقه بر 2 NO-DP35 (23-24) X X 12: 25 2. NO- DP36 (10-11) 2:35 $\mathbf{x} | \mathbf{x}$ NO- Dez6 (20-21.5) 2 XX 3:50 2 Och (315.05) 2590.0N **≥**: 20 \mathbf{x} \times <u>3:36</u> X NO-DOZLO (23.24 × DATA TURNAROUND INFORMATION DATA DELIVERABLE INFORMATION COMMENTS/REMARKS **14 DAYS STANDARD APPROVED BY:** ☐ STANDARD Page 1092 7 DAYS RUSH ☐ COMMERCIAL "B" **48 HOUR EMERGENCY** ☐ DISK DELIVERABLE OTHER ☐ STATE FORMS ☐ OTHER (SPECIFY))AY TURNAROUND HARDCOPY, EMERGENCY OR RUSH IS FAX 'A UNLESS PREVIOUSLY APPROVED SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESION, INCLUDING COURIER DELIVERY NOUISHED BY SAMPLER: DATE TIME: RECEIVED BY RELINQUISHED BY: DATE TIME: RECEIVED BY: 5/2/05/4:50 Emade March 2. RELINQUISHED BY: NOUISHED BY: DATE TIME: RECEIVED BY: DATE TIME: RECEIVED BY: INQUISHED BY: DATE TIME: RECEIVED BY: SEAL # PRESERVE WHERE APPLICABLE ON ICE TEMPERATURE \Box

CHAIN OF CUSTODY 495 TECHNOLOGY CENTER WEST - BUILDING ONE

MARLBOROUGH, MA 01752

ACCUTEST JOB #:	-	
ACCUTEST QUOTE #:		

Laboratories

TEL: 508-481-6200 • FAX: 508-481-7753

	CLIENT INFO	RMATION			FAC	ILITY INF	ORMA	TION						ANA	LYTIC	AL INF	ORMA	TION			MATRIX CODES
15 49	4 EWIRDA CLARENDI	ON 57.		PROJECT	/ORUNL!	. <i>N</i> '		167	<u> </u>	178											DW - DRINKING WATER GW - GROUND WATER WW - WASTE
RESS VARE	RTOWN N	1A OZ	412 ZIP	PROJECT	1 1030 NO. DEC	332						-T-	6.5						, ,		WATER SO - SOIL SL - SLUDGE
	10 617-923	-4662			6 DEC						_	Voc	SNOC								OI - OIL LIQ - OTHER LIQUID SOL - OTHER
UTEST				С	OLLECTION		X	F 2		_	ATION	1 4	ر- ۱		-				.		SOLID
IPLE #	FIELD ID / P	OINT OF COLLECT	ION	DATE	TIME	SAMPLED BY:	MATRIX	# OF BOTTLES	E E	HW03	NONE	12	1								LAB USE ONLY
	WO-DP25 (7.8-8)		4/29/05	9:30	LMA	50				*	X									
	WO-DP25 (10-127		ممسم	9.35		· segment	3					X					,]			
	NO-DP25	(19-20)		المستفدق	10:10			2				X	Х				į				
	NO-DP30	(23-24)		٥٠٠٠	13:45			2			T Carrent	×	y .								
	WC-DF31	(6.5-7.5)	_	منيري	14:50			2				Х	Х								
	NO-DP31	(19-20)		- (FB/w	15:15		1	2			1	X	X								
	NO-FIELD B	SLAK Ø1			10:35		H20	2	X			X									-
	NO-FIELD	BLANK DI		->>	10:35	4	H20	2			X.		Х								
		_ _								$\downarrow \downarrow$		1_				\square	_	_		_[
				<u></u>		<u> </u>	_	<u> </u>		\coprod		1								_	
							Ì												}	1	ł
	DATA TURNAROUN	DINFORMATION			DATA DEL	IVERABL	E INFO	DRM/	TION							COMI	MENTS	REM	ARKS		
7 DAYS	S STANDARD S RUSH R EMERGENCY	APPROVED BY:	_	DISK !	IERCIAL "E DELIVERAE							-	7	۶ <u>مړ</u>	2	of i	<u></u>				V. (2)
THER	AROUND HARDCOPY.	FMFRGENCY OR BUIL	— SH IS FAY	☐ STATE	: FORMS R (SPECIFY	n					_	-	ور الم	ځٍځ	10	4 4	•				
	PREVIOUSLY APPRO	OVED																	- m/AS		
QUISHED	RY CAMPI FR	SAMPLE CUSTODY	MUST BE		ED BELOW		AE SA		S CH	ANGE		ESIOI		LUDII	IG COL	_	DELIV	ERY			
QUISHED	la Rocald	5/2/05 14:50 DATE TIME:	1. PECEIVÉ B			2. RELIN	OUISHE	D BY:			0	ATE TI	AE:		2. RECEIV 4.	ED BY:	 -				
QUISHED	BY:	DATE TIME:	RECEIVED 8	Y:		SEAL	•					PI	RESER		RE APPLI	CABLE		-	ON ICE		TEMPERATURE C

CHAIN OF CL TODY 495 TECHNOLOGY CENTER WEST • BUILDING ONE MARLBOROUGH, MA 01752

100		
ACCLITEST JOB #:	一,	
ACCUTEST QUOTE #:		

Laboratories

TEL: 508-481-6200 • FAX: 508-481-7753

	CLIENT INFO	DRMAIION	all the state of		FAC	ILITY INF	ORMA	TION							AN	ALYT	ICAL	INFO	RMA	ION			MATRIX CODES
RESS REPORT TO	ora Gra	mminde clon 87 MA 6 STATE Jelices	Q 52477. ZIP	PROJECT	T036 NO.	J.,	مان - ارو)			- 	— — —	. V OC.5	\$40Cc				4. Kg.					DW - DRINKING WATER GW - GROUND WATER WW - WASTE WATER SO - SOIL SL - SLUDGE OI - OIL LIQ - OTHER LIQUID SOL - OTHER
UTEST				CO	LLECTION		₩.	F F	PRI	-	VATIO	ON	3	79		1		- }					SOLID
IPLE#	FIELD ID / F	POINT OF COLLE	CTION	DATE	TIME	SAMPLED BY:	MATRIX	# OF BOTTLES	Ž Ž	HWO3	HZBOA		1	-							l		LAB USE ONLY
	NO-De49	(26-27)	}	6114105	17:05	LNG	<0	3			×		Ŋ	ربز			v						
l			,			~ , .			1						, a.								
																	· *5r.						
	_																					,	
				_		. 4																	
						7] 															
		··			_																342		
																							te v.
	<u> </u>									Ш											1	·	
				,					Ш	Ш		Ш										i	
,	•	· •				some a * *	1.							į									1
D	ATA TURNAROUN	ID INFORMATION			DATA DEL	IVERABL	E INFO	RM/	TION								C	OMM	ENTS	/REM	ARKS		
7 DAYS B HOUR THER Y TURNA	EMERGENCY ROUND HARDCOPY PREVIOUSLY APPR	OVED	RUSH IS FAX	STAND COMMIDISK D STATE OTHER	ERCIAL "B ELIVERAE FORMS I (SPECIFY)													•				
QUISHED B	Y SAMPLER:	SAMPLE CUSTO	DY MUST BE		D BELOW		IE SAN		_	ANG	E PO		SION TE TIM		LUDI		OUR		ELIVE	RY			
Lewis	Walterson	Action is	.1 نن ∕			2.				_	_					2.							
DUISHED B	ıv.	DATE TIME:	RECEIVED B	IY:		RELIN	QUISHE	D BY:				DA	TE TIM	돈:		REC	ENED	6Y:					
DUISHED E	BY:	DATE TIME:	RECEIVED B	IY:		SEAL	*	_					PR	ESER\	E WHE	ERE AP	PLICA	BLE		_	N ICE		TEMPERATURE C
	The second second								_	_						م <u>می</u> ۱۳۳۰ -	-	-				_	

495 TECHNOLOGY CENTER WEST • BUILDING ONE MARLBOROUGH, MA 01752

ACCUT	EST C	רסנוג	E#:

Laboratories

TEL: 508-481-6200 • FAX: 508-481-7753

ACCUTEST JOB #: 48.7 100

	CLIENT INFO	RMATION	, ,		FAC	LITY INFO	PMAT	ION	4		72				ANA	LYTI	CAL I	NFOR	MATH	ON			MATRIX CODES	3
IDRESS IV,	Ca Gray	MA MASTATE	ZÎP	PROJECT I	10,763 No.	23-41		\frac{5}{2}					VoCs	SVOCE								. 3	DW - DRINKING WATER GW - GROUND WATER WW - WASTE WATER SO - SOIL SL - SLUDGE OI - OIL LIQ - OTHER LIQUID SOL - OTHER	
CUTEST				CO	LLECTION		MATRIX	7.E8	<u> </u>	ESE	-		늰	7		ı	Ì						SOLID	
MPLE#	FIELD ID / P	OINT OF COLLECT	ION	DATE	TIME	SAMPLED BY:	MAT	#O# BOTTL	皇	HOH	H2804		21	}								- [LAB USE ONLY	
	110 - DP29	(17-175)		, list of	10:12	1Wim	\$	2			,	2	×	V										
· .	NO-7020	(21-25)			10:55			2						`_										
	AUD = 10020	(aun)			13:35			3						harmore										
	10-00/	(21-27)		-	14:35	4	*	2				,		Y										
	NO -DOL	(- (a -9 ()		الطاعام	9:2=	1.W()-	۸.	2				4	ا مرد	כא										
	117 - DP 41	(22-24)			8.50	+_	(λî				1	1	1										
	NO- DE 2	1/19-19 3			10.57			ر د					***************************************											
	NO-Dez	1 (22-28)	7		10:CO			R						Ì]
	NO- Ded	8 (18-19)			M:05			2																
	10-048	(26-22)	_		14:21	2		२						}										ı
	NO-DPA	9(17-18)		4	16:46	34%		2																
D	ATA TURNAROUN				DATA DEL	IVERABLE	INFO	RMA	TIO	N B		7					CO	MMEI	VTS/R	EMA	RKS			
7 DAYS 48 HOUR OTHER _	EMERGENCY	APPROVED BY:	_ 		ERCIAL "E ELIVERAE FORMS	BLE					(A) (A) (A) (A) (A) (A) (A) (A) (A) (A)													_
- UNLESS		SAMPLE CUSTODY	MUST BE	DOCUMENTE	D BELOW	EACH TIM	E SAN	(PLE	S C	HANC	E PO	SSE	SION	, INC	LUDIA	IG C	URIE	R DEI	IVER	Y				
	BY SAMPLER:	DATE TIME:	RECEIVED B			RELIN	QUISHE		`			_	TE TIM	•		RECE	IVED BY	_		<u> </u>			2022 20 2 587 4 to 7 h S	<u> 688</u>
LINGUISHED I	BY STATE OF THE ST	DATE TIME:	RECEIVED B	Y: E.			OUISHE	BY:	-		_	DA	TE TIM	E:			NED BY	<u>/:</u>						1
LINQUISHED I	BY:	DATE TIME:	3.			4. **** SEAL (ESFR	Æ WHE	4. RE APE	LICABI			Ow	ICE		TEMPERATURE	4
	·	_	5.				-	_															C	

5.,

CHAIN OF CL3TODY

495 TECHNOLOGY CENTER WEST . BUILDING ONE MARLBOROUGH, MA 01752

ACCUTEST JOB #:	•	-,	
ACCUTEST QUOTE #:			·

TEL: 508-481-6200 • FAX: 508-481-7753 Laboratories CLIENT INFORMATION FACILITY INFORMATION ANALYTICAL INFORMATION MATRIX CODES DW - DRINKING NORWICH MEP SITE WATER PROJECT NAME GW - GROUND WATER WW - WASTE RESS WATER 07477 SO - SOIL 0 PROJECT NO. STATE SL - SLUDGE OI - OIL ŏ LIQ - OTHER REPORT TO: LIQUID NE# FAX# 1017-97.3-46010 SOL - OTHER SÓLID COLLECTION PRESERVATION UTEST SAMPLED FIELD ID / POINT OF COLLECTION IPLE # DATE TIME LAB USE ONLY BY: ATR 13:15 9:32 13.35 13:35 13:5 DATA DELIVERABLE INFORMATION **DATA TURNAROUND INFORMATION** COMMENTS/REMARKS I DAYS STANDARD APPROVED BY: ☐ STANDARD 7 DAYS RUSH ☐ COMMERCIAL "B" 3 HOUR EMERGENCY DISK DELIVERABLE I STATE FORMS THER (SPECIFY) Y TURNAROUND HARDCOPY. EMERGENCY OR RUSH IS FAX UNLESS PREVIOUSLY APPROVED SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESION, INCLUDING COURIER DELIVERY DATE TIME: RECEIVED BY: RELINQUISHED BY: DATE TIME: WISHED BY SAMPLER: RECEIVED BY: 2. 2. 10/13 DATE TIME: RECEIVED BY: RELINQUISHED BY: DATE TIME: RECEIVED BY: 4. WISHED BY: DATE TIME: RECEIVED BY: SEAL # PRESERVE WHERE APPLICABLE ON ICE TEMPERATURE

284 Sheffield Street, Mountainside, 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

CHEMTECH PROJECT NO.									
COC Number	54204	-							

CLIENT INFORMATION		PROJECT INFORMA	TION		BILLING INFORMATION	
ANY: Meta Environmental	PROJECT NAME:	Norwich	MGP	BILL TO: San	e A Client PO#	
iss: 49 Clarendon St.	PROJECT NO.:	•	N. Norwish My	ADDRESS:		
Watertama STATE MAZIP: 02472	PROJECT MANAG	ER:		CITY:	STATE:	ZIP:
TION: PETEDE Clerca	e-mail:			ATTENTION:	PHONE:	
:617-923-4662 FAX: 923-4610	PHONE:	FAX:	·		ANALYSIS	
DATA TURNAROUND INFORMATION		DELIVERABLE INFO	RMATION	2110		
DAYS * COPY: DAYS * EAPPROVED BY CHEMTECH DARD TURNARQUIND TIME IS 10 BUSINESS DAYS	☐ RESULTS ONLY ☐ RESULTS + QC ☐ New Jersey RED ☐ New Jersey CLP ☐ EDD FORMAT	☐ USEPA CLP ☐ New York Stat UCED ☐ New York Stat ☐ Other	e ASP "B" e ASP "A"	other in	7 8 9	
TECH	SAMPLE	SAMPLE		PRESERVATIVES	- Cr	COMMENTS Decify Preservatives
PROJECT SAMPLE IDENTIFICATION	SAMPLE TYPE MATRIX ON THE SECOND SECO	COLLECTION DATE TIME	1 2 3	4 5 6	A-	HCI B−HNO₃ H-SO₄ D−NaOH
Norwish P203	Water X	112) 1240	22			
Norwich P204	water x	1 22/04/11/10 2	- 2			
Norwick PZO7	wenter x	162/04/25 7	2			
Norwith PZ08	water x		2 2			
TrioR knot.	Lester X		2 2			
						
SAMPLE CUSTODY MUST BE DOO HED BY SAMPLER! RECEIVED BY:	CUMENTED BELOW	-		• • • • • • • • • • • • • • • • • • • •		
HED BY: DATE/TIME: RECEIVED BY:		Conditions of bottles MeOH extraction r Comments:	or coolers at receipt: equires an additional 4 o		lon Compliant 🔲 Cooler T	emp
HED BY: DATE/TIME: RECEIVED FOR LAS	3 BY:	Page	SHIPPE		DELIVERED OVERNIGHT	Shipment Complete:

CHAIN OF ROJECT NAM OMPANY	ME M	No ETIA	nnli En	MG MAAA	renh	SRI						- -		i	МЕТА ∲	<) _F	nvii	ron	me	nta	i ir	nc.		V IT	9 Clarendon Street Vatertown, MA 02172 EL: (617) 923-4662 AX: (617) 923-4610
DDRESS HONE (_									<u>-</u>	_		<u> </u>		<u>_</u>		-		1110	1, 11				
AMPLED BY	(Prin	l Name)	De	Clerc	9		s	gnature gnature	L	/ い									A STATE OF THE STA	Jely .				ANAL	YSES	
SAMPLE NO.	DATE						TION	gnature	SIZE		GRAB	ပ	NO. OF CONTAINERS	SAMPLE MATRIX	तुन की प्रकार के हैं जिस होता			de la la la la la la la la la la la la la			/	/	/	/	/	COMMENTS
1	102	10:00	1 No-	<u>-WW</u>	Comp	(Ø29	104_		125	_	+	V	2	Ag	HCL		V	-					-		-	
	Ĭ.													7												
	<u> </u>	-							_	_	-					-		-		-	-				_	
					<u> </u>				+-	_	-						_					_	-			
																				_						
	_								4								-					_				-
									+							-				-				-		
									-		-					<u> </u>		_								
			<u> </u>				-		-					 			_		_			_				
					<u> </u>				1		-															
ayushed by			Date/Ti		5:30	Re	ceived by							Relinquis	ned by			Date	e/Tim	e			Re	ceive	d by	
nquished by	11/2 15:30				Re	ceived by	,						Relinquisi	ned by			Date	e/Tim	e e			Re	ceive	d for t	Laboratory by	
iod of Shipment	l of Shipment				Re	marks:			•								<u> </u>					_ _ •				
UPS Or	UPS Overnight																						N. C.			

CHAIN OF CUSTODY 495 TECHNOLOGY CENTER WEST • BUILDING ONE MARLBOROUGH, MA 01752 TEL: 508-481-6200 • FAX: 508-481-7753

ACCUTEST JOB #:	_		_	
ACCUTEST QUOTE #:				

Laboratories

	CLIENT INFO	RMATION			FAC	ILITY INFO	ORMA	TION						AN	ALYT	ICAL	INFOR	MATIC	N		MATRIX CODES
AME 49 () DDRESS	A Environment avendon S rrown or De Clean	2472 2143 219 96	PROJECT I	vich, 2 032 NO.	4/Y 			<u>G</u>	Ps	side		de Reger, PH	Vocs	57075	P.H.					DW - DRINKING WATER GW - GROUND WATER WW - WASTE WATER SO - SOIL SL - SLUDGE OI - OIL LIQ - OTHER LIQUID SOL - OTHER	
					LLECTION		_	_	PA	ESER	OITAV	N S	Suffee	ال	إسا	<_					SOLID
CCUTEST SAMPLE #	FIELD ID / P	OINT OF COLLECT	ION	DATE	TIME	SAMPLED BY:	MATRIX	# OF	HCI	HINOS	H2804 NONE	T,	[\sigma_{\sigma}	头	72	1					LAB USE ONLY
	NO-DR25		.;	7125105	18:42	73055	50°	4			Х	2	2								
_	NO-DRII			7125105		TJOSS	1	1			χ	2	2								,
	NO-18 PZ 1	Ø	المراجي السمرا	7126105	10:14	AIB	6W	4	2		2	T,		X	X						
	NO-PZIKI			7126105	10.14	ASB	GW	Žį.	2		2			У	X						
	NO-PZZ3			7/21-105	11:48	V7R	6W	Ä	2		2			Х	X						
	NO- P215	5%		7126105	13:17	AJ F	hw	4	Z.		2			χ	X						
tu.	NO-7228	 3		712-105	15/50	AJB	EIW	4	2		2			X	X						
3,	NO-72 19			7126105	Π:10	AZG	6W	4	Ž.		Z			X	Х						
	NO-DRAL			7126105	8:00	TJUSS	W	13	2		1	Х				X					
	NO-DROZ				18:10		WW	-				γ				ΧĹ					
45	NO 863				- 		-A-read					۷				X	-23	3			
	ATA TURNAROUN	DINFORMATION			DATA DEL		VUVV E INFC		TIOI	1			u sees			C	OMME	NTS/RI	MARK	<u></u>	
14 DAYS 7 DAYS 48 HOUF OTHER	STANDARD RUSH EMERGENCY AROUND HARDCOPY. PREVIOUSLY APPRO	APPROVED BY: EMERGENCY OR RU	SH IS FAX	☐ DISK D☐ STATE	ARD ERCIAL "B ELIVERAE FORMS I (SPECIFY	s= BLE ()														7-23-20-20-20-20-20-20-20-20-20-20-20-20-20-	
ELINQUISHED I	The second secon	SAMPLE CUSTODY DATE TIME:	MUST BE		D BELOW		HE SAN		S CI	IANG		SESIO DATE TI		LUD		ENED		LIVERY			
SI INCHESSES	1. MISHED BY: DATE TIME: RECEIVE					2.	QUISHE	n BV.				DATE TI	ME.		2.	EIVED I					
1//		3.	Tolley	es Gr	4.	www.	<i>,</i>				VAIS			,4.	-:IY CU (əf:					
ELINQUISHED	BY:	DATE TIME:	RECEIVED 8	Y: 7 5 5 5 5 5		SEAL	•					P	RESER		ERE AI	PLICAE	BLE		ON ICE		TEMPERATURE C
														_							

CHAIN OF CICTORY

495 TECHNOLOGY CENTER WEST • BUILDING ONE	ACCUTEST JOB #:
MARLBOROUGH, MA 01752	ACCUTEST QUOTE #:
TEL: 508-481-6200 • FAX: 508-481-7753	

	CLIENT INFO	ORMATION		F.	FAC	ILITY INF	ORMA	TION						ANAL	YTICAL	. INFO	RMATIC	M		MATRIX CODES
ADDRESS Out- CITY, SEND REPORT 1 PHONE #	ter lecti	Street MA 02. STATE	417 ZIP	PROJECT I	32 10.	UY	<u>م</u> 4	<u>,</u>			VATIO	SVOK							-	DW - DRINKING WATER GW - GROUND WATER WW - WASTE WATER SO - SOIL SL - SLUDGE OI - OIL LIQ - OTHER LIQUID SOL - OTHER SOLID
ACCUTEST SAMPLE #	FIELD ID / F	POINT OF COLLECT	ION	DATE		SAMPLED BY:	MATRIX	# OF BOTTLES	E HC	HNOS	H2804 NONE	7	101							LAB USE ONLY
	70-PZ12	<u> </u>		7 /25/05	12:15	ZILA	HZQ	4	2		2	_ 2	2							
	NO-P211				10:55	AJB	161	a i	La diber	\prod	9.04	1								
	NO- P203				13:15	TJOSS		8.4			a Participan									
	NO-PZZL				9:50			200		\prod										
	NO- PZ 27			diam'r	11:35	_		Ħ	-	1.			1		7 1					
	NO- P217		,		13:30												1			
6	NO-P220				15:50		/4W	À	U Same Prof	11		1					1			
	WO-P2 24					ALB	1	i		T					11					
_	NO-P216				15:10					11	111	lact was					1		1.	
	NO-PZZ				16:50					1		1	V							
ناهدر						1200	\	1/2			- *	 *			1 1	_				
<u> </u>	ATA TURNA DOUB	IN INCOMATION			DATA DEL	D/SDADL			TION	<u> </u>								- I		
ec. segic per consultation	DATA TURNAROUN STANDARD	APPROVED BY:		☐ STAND	DATA DEL ARD	IVERABL	EINF	OKMA	HOI	EVA	- <u>- 1</u>		:			COMMI	ENTS/R	EMAH	<u></u>	
☐ 7 DAYS				☐ COMMI	ERCIAL "B		ا سنايطو					—		-		- .				
OTHER				☐ STATE	FORMS							I -		<u> </u>			,·			
	AROUND HARDCOPY S PREVIOUSLY APPR	. EMERGENCY OR RUS	SH IS FAX	☐ OTHER	(SPECIFY)		_			_	-								
44		SAMPLE CUSTODY			D BELOW				S CH	ANGI	E POS						LIVER	Y		
IELINQUISHED		DATE TIME:	RECEIVED B	Y:		RELIN 2.	QUISHE	D BY:				DATE T	ME:		RECEIVED	BY:				
RELINGUISMED	BY:	DATE TIMES	RECEIVED B	Y:	<u> </u>	RELIN	QUISHE	D BY:				DATE T	ME:	7 7	RECEIVED	DY:				
IELINQUISHED	BY:	7/78/57/14:45 DATE TIME:	RECEIVED B	Y:	2	SEAL							RESER	VE WHERE		ABLE		ON IC		TEMPERATURE
j.	· 		5.							-,5		·								с
1. the	~	RECEIVED B	A STANDARY OF THE REAL PROPERTY.	2	RELIN		ED BY:						VE WHERE	RECEIVED I.				E		
. 17*									· 48	. 50				-						

CHAIN OF C JSTODY

495 TECHNOLOGY CENTER WEST . BUILDING ONE MARLBOROUGH, MA 01752

ACCUTEST JOB #:			
ACCUTEST QUOTE #:	 	 	 -

TEL: 508-481-6200 • FAX: 508-481-7753 Laboratories FACILITY INFORMATION CLIENT INFORMATION ANALYTICAL INFORMATION MATRIX CODES DW - DRINKING Norwich Former MAP -nvivonmenta WATER PROJECT NAME - GROUND Norwich WATER - WASTE LOCATION WATER 07477 103037 SOIL STATE PROJECT NO. SVOC SL . SLUDGE OI -OIL LIQ - OTHER SEND REPORT TO: LIQUID 617-923-4610 PHONE # SOL - OTHER SOLID PRESERVATION COLLECTION **ACCUTEST** SAMPLED SAMPLE # FIELD ID / POINT OF COLLECTION TIME DATE LAB USE ONLY NO-4W92-12 9:45 7126105 NO-PZ13 10:50 NO - PZ 14 100 12:25 17:50 NO-PZ18 16:15 NO-PZZ NO-7222 4:30 DATA TURNAROUND INFORMATION DATA DELIVERABLE INFORMATION COMMENTS/REMARKS 14 DAYS STANDARD APPROVED BY: ☐ STANDARD 7 DAYS RUSH ☐ COMMERCIAL "B" **48 HOUR EMERGENCY** DISK DELIVERABLE ☐ STATE FORMS ☐ OTHER (SPECIFY) 4 DAY TURNAROUND HARDCOPY. EMERGENCY OR RUSH IS FAX **ATA UNLESS PREVIOUSLY APPROVED** SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESION, INCLUDING COURIER DELIVERY ELINQUISHED BY SAMPLER: DATE TIME: RECEIVED BY: RELINQUISHED BY: DATE TIME: RECEIVED BY: 2. 1. ELINQUÍSHED BY: RECEIVED BY: DATE TIME RECEIVED BY: RELINQUISHED BY: DATE TIME: 7/18/17/14:45 ELINQUISHED BY: DATE TIME: RECEIVED BY: TEMPERATURE

SEAL #

5.

PRESERVE WHERE APPLICABLE

ON ICE

C

CHAIN OF CJSTODY

495 TECHNOLOGY CENTER WEST • BUILDING ON MARLBOROUGH, MA 01752 TEL: 508-481-6200 • EAY: 508-481-7753

ACCUTEST JOB #:		· · ·	
ACCUTEST QUOTE #:	<u>-</u>		-

TEL: 508-481-6200 • FAX: 508-481-7753 Laboratories FACILITY INFORMATION **CLIENT INFORMATION** ANALYTICAL INFORMATION MATRIX CODES Norwich Former MGP Site DW - DRINKING META Environmental WATER NAME PROJECT NAME GW - GROUND 49 Clarendon St. WATER Norwich NO 3 WW - WASTE **ADDRESS** LOCATION VOCS WATER 02472 Water town I03935 SO - SOIL CITY. STATE PROJECT NO. SL - SLUDGE iura Grau OI - OIL LIQ - OTHER SEND REPORT TO: LIQUID FAX: 617-923-4610 PHONE # 617-923-4602 SOL - OTHER SOLID COLLECTION PRESERVATION ACCUTEST SAMPLED FIELD ID / POINT OF COLLECTION SAMPLE # DATE TIME LAB USE ONLY 12/6/05 13:35 LWG NO-PE30 5 NO- PZ31 14:45 15:45 NO - PZ37 NO- PZ38 15:50 KG NO-PE36 15:00 13:45 NO- PZ29 NO-PE20 12/7/05 9:35 LMG NO-PEZ1 10:45 8:30 NO- PZ32 NO- PZ33 10:45 9:20 NO-PZ34 DATA TURNAROUND INFORMATION DATA DELIVERABLE INFORMATION COMMENTS/REMARKS 3 14 DAYS STANDARD APPROVED BY: ☐ STANDARD 7 DAYS RUSH ☐ COMMERCIAL "B" **48 HOUR EMERGENCY □ DISK DELIVERABLE** ☐ STATE FORMS] OTHER ☐ OTHER (SPECIFY) 4 DAY TURNAROUND HARDCOPY, EMERGENCY OR RUSH IS FAX IATA UNLESS PREVIOUSLY APPROVED SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESION, INCLUDING COURIER DELIVERY ELINQUISHED BY SAMPLER: DATE TIME: RECEIVED BY: RELINQUISHED BY: DATE TIME: RECEIVED BY: 12 7 05 430 1 Laure Aray ELINQUISHED BY: DATE TIME: RECEIVED BY: RELINQUISHED BY: DATE TIME: RECEIVED BY: 3. RECEIVED BY: ELINQUISHED BY: DATE TIME: SEAL # PRESERVE WHERE APPLICABLE ON ICE TEMPERATURE 5. C

CHAIN OF USTODY

495 TECHNOLOGY CENTER WEST • BUILDING ONE
MARLBOROUGH, MA 01752
TEL: 508-481-6200 • FAX: 508-481-7753

ACCUTEST JOB #:	_			
ACCUTEST QUOTE #:		_	 	

	O E DE LA CO		EACH FACI	PPV INE	2DMAT	TON	800000			MARK EL	_ 	200	MAIN	TOA	IME	OBM	TION	1000000	MATELY CODEC		
	CLIENT INFO				Series Se										INALI	TIÇA	LINE	-OHM/	MION		MATRIX CODES
MET NAME	rd Enviro 9 Clareno	rumental		PROJECT	NAME or wich	K 2001 3 (· M	61	_ 5	ite	<u></u> _	-									DW - DRINKING WATER GW - GROUND
	4 Clareno	yon 84.		$$ λ	אר מאינלת	1 NR	<u> </u>					_]			5		1 1	J			WATER WW - WASTE
ADDRESS	-ac-tono	MA O	2477	LOCATION	T 0303	ر د د	ب						1					1			WATER
CITY	110001	STATE	710	PROJECT								- [- ·	ٔ ایک	<u> </u>		l	1			SO · SOIL SL · SLUDGE
U11,	ara Gran	SIAIE	211	PHODECT	NO.								V 1	인.	3				- 1		OI - OIL
SEND REPORT T	10: 617-923-2							_					۷ اٽ	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ا(1	ΪI				LIQ - OTHER LIQUID
PHONE #	617-923-2	<u> </u>		FAX #	217-97								5.5	_ ا			1 1		- [SOL - OTHER
ACCUTEST				CC	LLECTION		ΙX	. 8	PRE	SER	OITAV	N	; انک	۔ إ	S		li				SOLID
SAMPLE #	FIELD ID / P	OINT OF COLLECT	ION	DATE	TIME	SAMPLED BY:	HATE	ē Ē	포	HMOS	HONE		127.		مدی						LAB USE ONLY
	NO- PE 3	35		12/7/0	5 8:25	KG	GW	<u> </u>	21		2	. Is	<i>.</i> .	\Box	∢		:				
				1 - () ()						 	17	₩		+	╁			_		_	
									-	╁┼	+		+-		_	╁			<u> </u>		
														Γ							
							\neg	+	1 1	\dashv	1	+	+	+			_	\top	+ -		
								_+	_	\vdash	\dashv	_	_		4	1-					
									Ì	l l	1 1							- (
												7				1 1					
					-			\dashv	+	++	++	╅			╅	┼╌┤		-	+		
·									_	1	$\dashv \dashv$		_	4	_	\sqcup				\bot	
								- 1				- 1	l		Ì				1		
			_					7													· ·
								-+	+	\vdash	+	\dashv	+	┿	+	╀╼┥	\vdash	-	+	+	
								- 1	1	\sqcup			:							1 1	
	DATA TURNAROUN	DINEORMATION			DATA DELI	/EDAR!	INFO	PMAT	ION								201	MENT	2/DEL	IARKS	
2000 Secure 250 (807) 40						VERABLI	INFO		IOA							M	COM	MENI	3/NEN	IANNO	
☐ 14 DAYS	STANDARD	APPROVED BY:		☐ STAND	ARD ERCIAL "B'	Ī						١.								_	
	REMERGENCY		_		ELIVERABI							- [
□ OTHER				☐ STATE								-						•		_	
	AROUND HARDCOPY. S PREVIOUSLY APPRO	. EMERGENCY OR RU	SH IS FAX	OTHER	(SPECIFY)			_			_	-									
		SAMPLE CUSTODY	MUST BE	DOCUMENTE	D BELOW E	ACH TIM	E SAN	IPLES	CH/	ANGE	POS	SESI	ON, I	NCLI	DING	COU	RIER	DELIV	ERY		
RELINQUISHED		DATE TIME:	RECEIVED B	Y:	-		QUISHED	BY:				DATE	TIME:			ECEIVE	D BY:			Proposition of the Party of the	The state of the s
	acr Hay	12/7 11:20	1.			2.									_ 2				_		
RELINQUISHED	8Y: ⁰	DATE TIME:	RECEIVED B	T:		RELIN	QUISHED	BY:				DATE	TIME:		4	ECEIVE	D BY:				i
RELINQUISHED	DV-	DATE TIME:	RECEIVED B			_					i										
5.	D1.	VALETIME.	5.			SEAL							PHES	EMAE,	MERE	arYLIC	ABLE			ON ICE	TEMPERATURE

CHAIN OF CUSTODY

495 TECHNOLOGY CENTER WEST . BUILDING ONE

MARLBOROUGH, MA 01752 TEL: 508-481-6200 • FAX: 508-481-7753

ACCUTEST JOB #:	
	<u> </u>
ACCUTEST QUOTE #:	

	CLIENT INFO	RMATION			FAC	ILITY INF	ORMA	TION							ANAL	YTICA	L INF	ORM	ATION	ı 🏻		MATRIX CODES
	FTA Envi			λ.	lovwic									SACORE SAC					T	- 300	**************************************	DW - DRINKING
NAME A	C CL	0	7	PROJECT								-			9			Ì				WATER GW - GROUND
ADDRESS	19 Clave Vater tor	$\frac{1}{\sqrt{2}}$	 -	LOCATION	Verwi	ch,	<u> </u>	4				-[-		A				}			WATER WW - WASTE
ADDHESS \	vater tor	on WA C	22472	LOCATION	T	3022	2)				- [Į	M	3	Ì	1]	-	- 1			WATER SO - SOIL
CITY,	ara Grai	STATE	ZIP	PROJECT	NO.							_	ÿ	SVOC	Clycon							SL - SLUDGE OI - OIL
SEND REPORT TO PHONE #	0.017-923	-4662		FAX#_	617-9	<u> 23 – .</u>	46	10				_	707	Ţ								LIQ - OTHER LIQUID SOL - OTHER
ACCUTEST				CC	LLECTION		×	. 8	PRE	SER	VATIO	N	-4	17	Total							SOLID
SAMPLE #	FIELD ID / PO	DINT OF COLLECT	ION	DATE	TIME	SAMPLED BY:	MATE	0 + 00 FT 00	HOH HO	E S	NONE ES		12	£	H							LAB USE ONLY
	NO-PZ 05			12/8/15	11:55	ime		_	2	Par. Land	2		X	X]	X							
	NO - PZO.	s dup		-	11:55	~>	3	1														
	NO - PE16	9			12:30	KG	-	- Company			**************************************			· Lamerage								
	NO- PZ1	7			10:55				Name of Street, or other Persons, or other Perso			Ī]				- T
	NO-9212			V	9:45	V	√	V	4	4	4		J	$U \mid$	4							
			-							\prod		T										
						_						1							r.			
										$\dagger \dagger$		T										
												T										
												T		7				\neg				· ·
										\Box			,					1				
	ATA TURNAROUNI	INFORMATION			DATA DEL	VERARI	FINE) RMA	TION								COM	VENT	'S/REI	MARI	KS	
CHICAGO CONTROL STATES	STANDARD	APPROVED BY:		☐ STAND									0100	- PA	ani Pagana	372						
D 7 DAYS	RUSH _			-	ERCIAL "B ELIVERAB							-										
OTHER_]	☐ STATE	FORMS													•				
	ROUND HARDCOPY. PREVIOUSLY APPRO		SH IS FAX	OTHER	R (SPECIFY)					_	-									_	
	S	AMPLE CUSTODY	MUST BE	DOCUMENTE	D BELOW	EACH TIM	IE SA	MPLE	S CH	ANG	E POS	SESI	ION,	INCL	UDIN	3 COU	RIER	DELI\	VERY			
RELINQUISHED E	SAMPLER VLY	DATE TIME:	RECEIVED B				QUISHE						TIME			RECEIVE 2.				#20E20GE	Town a self continue	COLOR A LOGIC TO ON THE OWNERS
RELINQUISHED E		DATE TIME:	RECEIVED B	Y:			QUISHE	D BY:				DATE	TIME			z. Receivé	D BY:					
3.			3.	·		4.				_						1.						
RELINQUISHED E	BY:	DATE TIME:	RECEIVED B	Y :		SEAL	•						PRE	SERVI	WHER	E APPLK	ABLE			ON IC		TEMPERATUREC

ACCUTEST JOB #:	_			
ACCUTEST QUOTE #:				

495 TECHNOLOGY CENTER WEST . BUILDING ONE MARLBOROUGH, MA 01752 TEL: 508-481-6200 • FAX: 508-481-7753 Laboratories **FACILITY INFORMATION CLIENT INFORMATION** ANALYTICAL INFORMATION MATRIX CODES

NAME 49 Clarendon St.	PROJECT NA	VOCS	نک	ch	Ì						GW-	ORINKING WATER GROUND								
ADDRESS Waterfoun WA 02472	NOYWICH, NU LOCATION I 03032 PROJECT NO.															ww-	WATER WASTE WATER SOIL			
Lara Gray									Cel mis							OI -	SLUDGE OIL OTHER			
SEND REPORT TO: 617 - 923 - 4662	FAX# _ (0)		3 - 4	_					ِ آ									SOL -	LIQUID OTHER	
ACCUTEST SAMPLE # FIELD ID / POINT OF COLLECTION		ECTION S.	AMPLED BY:	MATRIX			SERVA SONIH		127	TCL	12+	ļ							SOLID SE ONLY	
NO-P222	12/7/05	13: 50			_	2 1	= 2	2	X	×	X		+			\dashv		-	1	
NO-P226	\$	5:05	V	-	7	11			1		}								3	
NO-PE39	1	3:45	16,67							1									<u></u>	
NO-PZ11	Ý !	5:30	V	*	V	1	¥	4	√-	4	4									
NO- PZ27	12/8/05	9:35	LMG	54	5	ا 2		7	X.	χ	X		-							
		-			\dashv						l	-	+				_			
		_			_							1				_				
		+			+				-					+	_	-				
		- +			\dashv	+-			f			-	_			\dashv		_		
DATA TURNAROUND INFORMATION	D	ATA DELIV	'ERABLE	INFO	RMAT	ION		l					COI	MEN	TS/A	EMAR	KS			
14 DAYS STANDARD APPROVED BY: 7 DAYS RUSH	☐ STANDAR	CIAL "B"							_									· ———		
3 48 HOUR ÉMERGENCY ☐ DISK DELIVERABLE ☐ STATE FORMS					<u>;</u>															
4 DAY TURNAROUND HARDCOPY. EMERGENCY OR RUSH IS FAX DATA UNLESS PREVIOUSLY APPROVED																				
SAMPLE CUSTODY MUST BE		BELOW E				CHA	NGE P				LUD				VER	1				
ELINQUISHED BY SAMPLER: DATE TIME: DATE TIME: 12 8 0 5 100 1.				RELINQUISHED BY: DA						Æ:		RECE 2,	ECEIVED BY:							
ELINQUISHED BY: () DATE TIME: RECEIVED B	Y:	RELINK	RELINQUISHED BY:						ATE TIME:			RECEIVED BY:								

ELINQUISHED BY: DATE TIME: RECEIVED BY: PRESERVE WHERE APPLICABLE SEAL # ON ICE TEMPERATURE 5. C

5.

CHAIN OF CUSTODY

495 TECHNOLOGY CENTER WEST . BUILDING ONE MARLBOROUGH, MA 01752

ACCUTEST JOB #:			
ACCUTEST QUOTE #:			

TEL: 508-481-6200 • FAX: 508-481-7753 Laboratories FACILITY INFORMATION ANALYTICAL INFORMATION CLIENT INFORMATION MATRIX CODES Norwich Former DW - DRINKING Environmental O, WATER PROJECT NAME VAME GW - GROUND Clarendon St. WATER Norwich - WASTE ADDRESS LOCATION WATER 02472 T 03031 SO - SOIL PROJECT NO. SL - SLUDGE 0 OI - OIL > LIQ - OTHER **IEND REPORT TO:** 012P-85P-F10 LIQUID 617-973-4662 9 ***HONE #** SOL - OTHER SOLID COLLECTION PRESERVATION *ICCUTEST* SAMPLED FIELD ID / POINT OF COLLECTION SAMPLE # LAB USE ONLY NO-1181205,05-03 NO-PED9 dup COMMENTS/REMARKS DATA TURNAROUND INFORMATION DATA DELIVERABLE INFORMATION ☐ STANDARD] 14 DAYS STANDARD **APPROVED BY:** 7 DAYS RUSH COMMERCIAL "B" □ DISK DELIVERABLE **3 48 HOUR EMERGENCY** ☐ STATE FORMS OTHER ☐ OTHER (SPECIFY) 4 DAY TURNAROUND HARDCOPY, EMERGENCY OR RUSH IS FAX ATA UNLESS PREVIOUSLY APPROVED SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESION, INCLUDING COURIER DELIVERY RELINQUISHED BY: RECEIVED BY: ELINQUISHED BY SAMPLER: DATE TIME: RECEIVED BY: DATE TIME: woll House 1219 05 1730 RECEIVED BY: RELINQUISHED BY: RECEIVED BY: ELINOUISHED BY: DATE TIME: DATE TIME: 3. **ELINQUISHED BY:** DATE TIME: RECEIVED BY: SEAL # PRESERVE WHERE APPLICABLE ONICE

DATA TURNAROUND INFORMATION

APPROVED BY:

☐ 14 DAYS STANDARD

☐ 48 HOUR EMERGENCY

7 DAYS RUSH

☐ OTHER _

CHAIN OF CUSTODY

495 TECHNOLOGY CENTER WEST • BUILDING ONE MARLBOROUGH, MA 01752

ACCUTEST JOB #:	 		
ACCUTEST CHOTE &	 	 	

COMMENTS/REMARKS

_	Laboratories		TEL: 5	08-481-62	00 • F	AX:	508-48	1-775	છ			- 1							ı
<u> </u>	CLIENT INFORMATION			ILITY INFO								AN	ALYTIC	AL II	NFORMATIO	N		MATRIX CODE	5
	4 Environmental	No	rwith	Form	725 (\sim	4	2	te		1							DW - DRINKING WATER	
AME 40	i clarendon 87.	PROJECT /VOV LOCATION	NAME Wille	, 1	\						1	ಳ						GW - GROUND WATER	1
DDRESS	tertown NA 02472	LOCATION	T03	032)					ر (107	اسري خ. نام			{			WW - WASTE WATER SO - SOIL	
ПУ,	ra Gray	PROJECT								0	7	7	-					SL - SLUDGE OI - OIL	
ND REPORT T	10 Gray 21P	FAX#_								>	ر ا	<u> </u>						LIQ - OTHER LIQUID SOL - OTHER	
CCUTEST		CC	LLECTION		¥	# E	PRE	SER	ATION	ॗॗॗॗॗ	را	13ta					}	SOLID	l
AMPLE#	FIELD ID / POINT OF COLLECTION	DATE	TIME	SAMPLED BY:	MATI	# 08	를 를	HMOS	NOVE NOVE		7	<u>e</u>						LAB USE ONLY	
	NO-P207	12/8/05	1505	KE	GN	5	21		4	Х	X	入]
	NO- PZ08	, ,	1625	1 1	***	-	*******			200	*****	} }							
	NO-PEOG		1500	LMG		1	Agents of the same		Sales Sales	1		-						inotherso	0 2
	NO- PZ03		1530		Wilden State							See Orc.						silty	<u> </u>
	NO- PZ13	V	1630	√	47.0 0.4	₹/	4		J	1	6	*							
_	NO-TB120905-02	12975	12:00	hour	V	2	4			V									7
																			7
																			1
																			1
1	``,										1								7
														- 1	1 1 1	1 1			

14 DAY TURNAROUND HARDCOPY DATA UNLESS PREVIOUSLY APPR		SH IS FAX					
	SAMPLE CUSTODY	MUST BE DOCUMENTED BELOW EA	CH TIME SAMPLES CHANGE PO	SSESION, INCLUDI	NG COURIER DELIVERY		
RELINQUISHED BY SAMPLER:	DATE TIME:	RECEIVED BY:	RELINQUISHED BY:	DATE TIME:	RECEIVED BY:	·	
1.		1.	2.	•	2.		
RELINQUISHED BY:	DATE TIME:	RECEIVED BY:	RELINQUISHED BY:	DATE TIME:	RECEIVED BY:		
3.		3.	4.		4.		
RELINQUISHED BY:	DATE TIME:	RECEIVED BY:	SEAL #	PRESERVE WHE	RE APPLICABLE	ON ICE	TEMPERATURE
5. Jwell Hay	15/2/02/139	5.		Ĭ			c

.

DATA DELIVERABLE INFORMATION

☐ STANDARD

☐ COMMERCIAL "B"

☐ STATE FORMS ☐ OTHER (SPECIFY)

☐ DISK DELIVERABLE

495 TECHNOLOGY CENTER WEST • BUILDING ONE MARLBOROUGH, MA 01752

CCUTEST	JOB #:			
	_	_	_	

Laboratories *TEL: 508-481-6200 • FAX: 508-481-7753*

ACCUTEST QUOTE #:

	CLIENT INFO	ORMATION			FA	CILITY INF	ORMA	TION		17,54				AN/	LYTICA	L INF	ORM/	ATION		MATRIX CODES
ADDRESS CITY, SEND REPORT PHONE #	g Closend atertown. ara Gra		2472 zip	PROJECT NAME NOTWICK PROJECT NAME NOTWICK NU LOCATION TO 3032 PROJECT NO. FAX * (017-923-4610) COLLECTION DATE THAE SAMPLED & PRESERVATION OF THE SAMPLED & B B B B B B B B B B B B B B B B B B								۸٥٥	-7 < Voc.	اربه						DW - DRINKING WATER GW - GROUND WATER WW - WASTE WATER SO - SOIL SL - SLUDGE OI - OIL LIQ - OTHER LIQUID SOL - OTHER SOLID
ACCUTEST SAMPLE #	FIELD ID / F	POINT OF COLLECT	NOF	DATE			MATRIX	I높을	Ž Š		_	F	121	Tata						LAB USE ONLY
	NO-P219			1291	5 8:55	LNG	7 64	15	2 1		2	×	X	X						
	NO-P21			1	(0:25	3	l	1	11		11	Tì	X	`*			,			
	NO-PZC)9			1(: 30	1		П	\prod			П	X	K			Ì			, (A)
	NO-P20	9 due			11:30	- 1		V	U		V	П	X	7						1997
	NO-TBI	9 clup 20905-01			17:30			7	2			Ħ.								
	NO-655	4		√	17:0		V	5	21		1	V	X	7						
									1								1			
	_	_		_																
	DATA TURNAROUN	D INFORMATION			DATA DE	LIVERABL	E INFO	ORMA	TION						V 3 (COM	MENT	S/REM/	ARKS	
14 DAYS 7 DAYS 48 HOUI OTHER	S STANDARD S RUSH R EMERGENCY	APPROVED BY:	=	☐ COI	NDARD IMERCIAL ' K DELIVERA TE FORMS IER (SPECIF	'B" ABLE	,			No.	- And And And And And And And And And And						·			
		SAMPLE CUSTODY			NTED BELOV				CH/	NGE				LUDI			DELIV	/ERY		
RELINQUISHED	BY SAMPLER:	CATE TIME:	RECEIVED BY	Y:		2.	NQUISHE	D BY:			0/	ATE TI	ME:		RECEIV	ED BY:				
RELINQUISHED	ВУ:	DATE TIME:	RECEIVED B	Y:		RELI	NOUISHE	D BY:			D	ATE TI	ME:		RECEN 4.	ED 87:				
RELINQUISHED	BY:	DATE TIME:	RECEIVED BY	Y:		SEAL	. •					P	RESER		RE APPLI	CABLE		0	N ICE	TEMPERATUREC

195 TECHNOLOGY CENTER WEST . BUILDING ONE MARLBOROUGH, MA 01752

ACCUTEST JOB #:	•		
A COMPTOT ON OTE A			

ACCUTEST QUOTE #: TEL: 508-481-6200 • FAX: 508-481-7753 Laboratories CLIENT INFORMATION FACILITY INFORMATION ANALYTICAL INFORMATION MATRIX CODES Norwich Former MGP Site Environmenta DW - DRINKING WATER NAME PROJECT NAME GW - GROUND Clarendon SA Norwich, st WATER WW - WASTE 30VS **ADDRESS** LOCATION STATO WATER J03032 SO - SOIL PROJECT NO. SL · SLUDGE y OI - OIL LIQ - OTHER SEND REPORT TO: FAX # 617-923-4610 LIQUID PHONE # SOL - OTHER SOLID COLLECTION **ACCUTEST** SAMPLED FIELD ID / POINT OF COLLECTION SAMPLE # DATE TIME LAB USE ONLY NO - PZ15 12/9/05 图:75 NO-PZ10 16:45 NO- PZ14 15:10 2W6 NO-PE23 10:00 DATA TURNAROUND INFORMATION DATA DELIVERABLE INFORMATION COMMENTS/REMARKS 14 DAYS STANDARD APPROVED BY: ☐ STANDARD 7 DAYS RUSH COMMERCIAL "B" **48 HOUR EMERGENCY** ☐ DISK DELIVERABLE ☐ STATE FORMS OTHER ☐ OTHER (SPECIFY) 4 DAY TURNAROUND HARDCOPY, EMERGENCY OR RUSH IS FAX IATA UNLESS PREVIOUSLY APPROVED SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESION, INCLUDING COURIER DELIVERY ELINQUISHED BY SAMPLER: DATE TIME: RECEIVED BY: RELINQUISHED BY: DATE TIME: RECEIVED BY: 1219105 189 Haram Hran 2. ELINQUISHED BY: DATE TIME: RECEIVED BY: RELINQUISHED BY: DATE TIME: RECEIVED BY: ELINQUISHED BY: DATE TIME: RECEIVED BY: SEAL # PRESERVE WHERE APPLICABLE ON ICE **TEMPERATURE**

5.

ACCUTEST JOB #:			•	
ACCUTEST QUOTE #:				

Laboratories

495 TECHNOLOGY CENTER WEST • BUILDING ONE	
MARLBOROUGH, MA 01752	ACCUTEST QUOTE #:
TEL: 508-481-6200 • FAX: 508-481-7753	,
FACILITY INFORMATION	ANALYTICAL INFORMATION MATRIX CO

CLIENT INFO	RMATION			FAC	ILITY INFO	DRMA	MOIT							AN	ALYT	ICAL	INFO	RMAT	ON		MATR	X CODES
4 Environ Clarende	mental in 8t.							2	<u>5:1</u>	<u></u>	_	.		ત્રું							GW -	DRINKING WATER GROUND WATER
+ or times	01A 02	1-3-1	LOCATION	1203	027	_	į				1	ĺ	ب	٤٠٠ ا				1	1		WW-	WATER
ra Gran	STATE	ZIP									_	370	5V0C	ر ک	-						SL -	SLUDGE OIL
							ن) ف					> _i									SOL -	LIQUID OTHER
						X	TES					<u>.</u>	Σ	7							1	SOLID
FIELD ID / PC	DINT OF COLLECT	10N 	DATE	TIME	SAMPLED BY:		_	<u>ş</u>		H280			•	1							LAB	SE ONLY
NO-6W9Z	12		121205	14:40	FMP	(5)	5	2	1	2	4	<u>×</u>	×	\times								
NO-GW91	1-7			15:30	V		14	2	t	1		X	×	$\overline{\mathbf{x}}$							gw Ly	+11
				14:10	X6		5	2	1	7	2	X	×	X				1			7	
			V	15:45		1	_			1	2			•			1					
	•		13/12 105	+	1		-	3	1 .			V		V				╁┈				
				ا ــــ		1,	-	-	—		_	ک اند				$-\dagger$	+	 		$\neg \uparrow$	1	
-			10110115			tr	_	╀	1		1-1		$\overline{\bigcirc}$			\dashv	+	 		+	 	
					7	<u> </u>		-	;	\vdash		Ž V	$\frac{\Lambda}{}$				-	+	+			
							-	╂─┼	+	شَا ا	╁┼	$\frac{1}{2}$		^_	+	-		+		_	 	
NU- IDIO	<u>ن برو در</u>			11. 9.0	· · · ·			[4	+	╁┼	╁╂	4			-+	\dashv	-	-			 	
								\vdash	+			_	\dashv	_	_		\dashv	-		_	 	
ATA TURNIA BOUNE	INCORMATION			DATA DEL	D/CD A DI (· ME			<u> </u>		35.7 1 2	Tea.	S2556	- Car 200						240		
STANDARD RUSH EMERGENCY ROUND HARDCOPY.	APPROVED BY:		☐ COMM☐ DISK D☐ STATE	ARD ERCIAL "B ELIVERAE FORMS	BLE	·		41101									- MWE					
				ED BELOW				s c	HANC	E PO				LUD				LIVE	Υ			1/8/2
Y SAMPLER:	DATE TIME:	RECEIVED E	BY:			QUISHE	D BY:				DAT	E TIM	E:		REC	EIVED	BY:					
All Micas	12(13(75 1:00)	1 .			i 2 .						1				I ~.							
W. Jrag	DATE TIME:	1. RECEIVED E	3 Y :			DUISHE	D BY:			_	DAT	E TIM	E:		_	ENED	BY:					
	FIELD ID/PO FIELD	FIELD ID / POINT OF COLLECT NO-GW92-12 NO-GW91-7 NO-PZ01 NO-PZ01 NO-PZ03 NO-PZ03 NO-PZ03 NO-PZ03 NO-PZ03 NO-PZ03 ATA TURNAROUND INFORMATION STANDARD RUSH EMERGENCY ROUND HARDCOPY, EMERGENCY OF RUPREYIOUSLY APPROVED	Clarenten St. tertown MA 02472 STATE ZIP GAGNATE (177-923-4662 FIELD ID/POINT OF COLLECTION NO-6M92-12 NO-6M92-12 NO-PZOJ NO-PZOJ NO-PZOJ NO-FZOJ Clarentlan St. Clarentlan St. LOCATION LETTOWN NA 02472 STATE ZIP ACYCLIC FIELD ID/POINT OF COLLECTION DATE NO-GW92-12 NO-GW91-7 NO-PZ01 NO-PZ01 NO-PZ02 NO-CW91-6 NO-GW04-6 NO-TB121305 ATA TURNAROUND INFORMATION STANDARD APPROVED BY: EMERGENCY ROUND HARDCOPY. EMERGENCY OR RUSH IS FAX PREVIOUSLY APPROVED COMMISSION STATE OTHER OTHER	Environmental Clarentan St. Location To 3 Fretown MA 02472 STATE ZIP ROJECT NO. FAX # LOCATION FIELD ID / POINT OF COLLECTION PROJECT NO. FAX # LOTT COLLECTION DATE TIME NO-GW97-7 NO-GW97-7 NO-PZ04 NO-PZ04 NO-PZ05 NO-PZ06 NO-PZ06 NO-SW04-6 NO-SW04-6 NO-TS121305 ATA TURNAROUND INFORMATION STANDARD APPROVED BY: EMERGENCY ROUND HARDCOPY. EMERGENCY OR RUSH IS FAX PREVIOUSLY APPROVED OCHUMENT STANDARD DATA DEL STANDARD STANDARD STANDARD COMMERCIAL "E DISK DELIVERAGE STATE FORMS OTHER (SPECIFIC	Clarendan St. Hertown MA 02472 STATE ZIP MA GYANGE FIELD ID/POINT OF COLLECTION FIELD ID/POINT OF COLLECTION NO-GW92-12 NO-GW91-7 NO-PZ01 NO-PZ01 NO-PZ01 NO-GW04-6 NO-GW04-6 NO-GW04-6 NO-GW04-6 NO-GW04-6 NO-GW04-6 NO-TB121305 ATA TURNAROUND INFORMATION STANDARD APPROVED BY: ROUND HARDCOPY. EMERGENCY OR RUSH IS FAX PREVIOUSLY APPROVED ROUND HARDCOPY. EMERGENCY OR RUSH IS FAX PREVIOUSLY APPROVED PROJECT NAME NOWWICH, / LOCATION TO 30322 PROJECT NO. LOCATION JO30322 PROJECT NO. FAX ** LOCATION DATE TIME SAMPLED BY: 15:30 V 15:30 V 15:30 V 15:30 V 15:45 V 16:00 17:00 17:00 18:00 17:00 18:00	Environmental Clarentlen St. tertown NA 02472 STATE ZIP (G17-923-41062 FIELD ID/POINT OF COLLECTION NO-GW92-12 NO-GW91-7 NO-GW91-7 NO-P201 NO-P201 NO-P201 NO-P201 NO-SW04-6 NO-SW04-6 NO-SW04-6 NO-SW04-6 NO-SW04-6 NO-TB121305 ATA TURNAROUND INFORMATION STANDARD APPROVED BY: BY: OCATION TO 3032 PROJECT NO. FAX # 617-923-4 COLLECTION DATE TIME SAMPLED SWY: SAMPLED Y SAMPLED Y STANDARD NO-P201 NO-P201 NO-P201 NO-P201 NO-SW04-6 NO-SW04-6 NO-TB121305 DATA DELIVERABLE INFO STANDARD COMMERCIAL "B" DISK DELIVERABLE STANDARD OTHER (SPECIFY)	Clarent on St. Clarent on St. Lecture MA 02472 STATE ZIP COLLECTION DATE TIME SAMPLED BY: FIELD ID / POINT OF COLLECTION NO-GN92-12 NO-GN91-7 NO-P204 NO-P204 NO-P205 NO-GN04-6 NO-GN04-6 NO-GN04-6 NO-GN04-6 NO-GN04-6 NO-GN04-6 NO-GN04-6 NO-TB:21305 ATA TURNAROUND INFORMATION STANDARD APPROVED BY: EMERGENCY ROUND HARDCOPY: EMERGENCY OR RUSH IS FAX PREVIOUSLY APPROVED ATA TURNAROUND INFORMATION STANDARD APPROVED BY: GROUND HARDCOPY: EMERGENCY OR RUSH IS FAX PREVIOUSLY APPROVED NO-GNOCH COMMERCIAL "B" DISK DELIVERABLE STATE FORMS OTHER (SPECIFY)	Clarentian St. Levturn and 02472 STATE ZIP CLATTON TO 3032 PROJECT NO. FIELD ID/POINT OF COLLECTION NO-GN92-12 NO-GN91-7 NO-GN91-7 NO-P201 NO-P201 NO-P202 NO-P203 Clarentan St. Novwich Former MGP St.	HOLDON BY. Clarendon St. Hertown MA 02472 TO Gray Collection FIELD ID/POINT OF COLLECTION NO-GN92-12 NO-GN92-12 NO-GN91-7 NO-GN91-7 NO-PZ01 NO-PZ01 NO-PZ03 NO-PZ03 NO-GN04-6 Clarented St. Clarented St.	Clarenten St.	Environmental Novalich Former MGP Sile	Clarenten 8t. Clarenten 8t. Clarenten 8t. Clarenten 8t. Clarenten 8t. Clarenten 8t. Coation Jo 3032 FROJECT NAME Now. Ch., N.Y. Coation Jo 3032 FROJECT NO. FAX# (C) T - 923 - 4662 FROJECT NO. FAX# (C) T - 923 - 4660 FAX# (C)	Convenient Con	Convenient Con	Covering Dotalic Former MGP Sike PROJECT NAME Not with Not Dotalic Former MGP Sike PROJECT NAME Not with Not Dotalic Former MGP Sike PROJECT NAME Not with Not Dotalic Former MGP Sike PROJECT NAME Not Dotalic Former MGP Sike PROJECT NAME Not Dotalic Former MGP Sike PROJECT NAME Not Dotalic Former MGP Sike PROJECT NAME Not Dotalic Former MGP Sike PROJECT NAME Not Dotalic Former MGP Sike Not Dotalic Former MGP Sike Not Former MGP S	Covering St. Content No. EDVINORMENTAL CLICATION DOSOSZ PROJECT NAME LOCATION DOSOSZ PROJECT NO. FAX & GTT - 923 - 4662 F	Clarented St. Clarented St. terturn and ozate STATE ZIP FROJECT NO. FAX BUTT - 923 - 4662 FAX BUTT - 923 - 4660 DATE TIME SAMPLED ST. 15:30 V V 2 V X X X X V V 2 V X X X X V V 2 V X X X X	Color Colo				

5.

RELINQUISHED BY:

DATE TIME:

RECEIVED BY:

5.

MARLBOROUGH, MA 01752

ACCUTEST JOB #:		,
ACCUTEST QUOTE #:	_	

	Laboratories			TEL: 5	508-481-626	00 • F	AX: 50	8-481-	7753										
	CLIENT INFORMATION		7. 4	FAC	CILITY INFO	ORMA	TION					1	ANALY	TICAL	INFOR	MATI	ON		MATRIX CODES
	f Env.		Narm	rich F	Form	1 1 V	499	' <u>⊊</u> ₁'	4			_	ا ات						DW - DRINKING WATER
	3 Clorendon St.		DROJECT	MAME						_		1.	び						GW - GROUND WATER
ADDRESS	aterform MA	02472	LOCATION	N Inz	032-	ナ			<u> </u>	_		101 X	3						WW - WASTE WATER SO - SOIL
CITY,	STATE STATE	ZIP	PROJECT	NO.						_		9	싀 '					'	SL - SLUDGE OI - OIL
SEND REPORT T	10:617-3834662		FAX #(017-9	73 - 1	46	10			_	9	-	ر ای						LIQ - OTHER LIQUID SOL - OTHER
ACCUTEST				OLLECTION	N	×	gg 1		ERVATIO		- 3 :		ガ					'	SOLID
SAMPLE #	FIELD ID / POINT OF COLL	ECTION	DATE	TIME	SAMPLED BY:	MATRIX	POT C	Ne Ke	H2804 NONE			1	1_			'			LAB USE ONLY
	NO-6W91-6		12/14	3:45	LM6		7.4	2 1	2	-	XX	江	X						
	NO-6WOI-14			9:10	<u>/ </u>		1	1				<u>i</u>	1			'	\coprod	'	
	NO-GW92-8			17:30	3165				1									'	
	NO-EXSISTING WA	1		9:55	5 106		V	4	1			4	No.						
	NO TE121404-0		V	1:00	ing	J	2	4			4			\prod_{i}			\prod		
											\top	\top	77				\Box		
				1						\sqcap		1	17	\sqcap					
			·——	 							7	1	1	\sqcap			\Box		- व्यक्तिकी
				†					11			\top	17			1		1	
				 	 			11	1			+	17	\Box	1	1	\sqcap	_	;
					 		11	+	+			\top	+-	1	+	+	\sqcap	+1	
	TATA TANA TANAN MEADAATA			2274 25	72240	- :3:5/									1			لبلي	
MANUAL DISTRICT PROPERTY.	DATA TURNAROUND INFORMATIONS STANDARD APPROVED	230000000000000000000000000000000000000	STAND		LIVERABLI	EINTO	HMAII	ON						<u> </u>	OMME	NISH	EMAR	iks	
☐ 7 DAYS	s rush		□ COMM	MERCIAL "E						-									
	R EMERGENCY			DELIVERAE E FORMS	3LE					Į.		—							
	AROUND HARDCOPY. EMERGENCY OF	R RUSH IS FAX	OTHER	R (SPECIFY	o														
DAIA UNLESS	S PREVIOUSLY APPROVED	TODY MUST BE DO	CLIMENT	ED BELOW	FACH TH	ME CA	UDI ES	CHAR	IGE PO	SSES	ION I	NCI I	IDING	COLIBI	ER DE	IVE	V N		e file magale
	BY SAMPLER: DATE TIME:	RECEIVED BY:		ED DELO	RELIN	OUISHE		<u> </u>	di Fot		E TIME:	1020	RE	CEIVED E		<u> </u>	<u> 」</u> <u>」</u> <u>国</u>	A STATE OF THE STA	登客語版※2. # 2. # 2. #
1. A CONTRACT	DBY: DATE TIME:	RECEIVED BY:			2.	OUISHE				DATE	E TIME:		2.	CEIVED E	BY:				_ `
3.		3.			4.								4.						

SEAL #

PRESERVE WHERE APPLICABLE

ON ICE

TEMPERATURE

C

495 TECHNOLOGY CENTER WEST • BUILDING ONE MARLBOROUGH, MA 01752 TEL: 509-481-8220 • EAY: 508-481-7753

ACCUTEST JOB #:	_		_	
ACCUTEST QUOTE #:		_		

TEL: 508-481-6200 • FAX: 508-481-7753 Laboratories FACILITY INFORMATION MATRIX CODES CLIENT INFORMATION ANALYTICAL INFORMATION META Environmental Norwich Former My gitz DW - DRINKING WATER PROJECT NAME GW - GROUND Mornich, NU MOTOSO Z NOTES WATER WW - WASTE Matertown NA 02472 ŏ WATER SO - SOIL PROJECT NO. SL - SLUDGE OI - OIL LIQ - OTHER 617-923-4662 FAX + 617-923-4610 LIQUID PHONE # SOL - OTHER SOLID COLLECTION ACCUTEST SAMPLED SAMPLE # FIELD ID / POINT OF COLLECTION DATE TIME LAB USE ONLY NO-6W91-45H 121304 16:00 NO-GW91-AD 16:15 (< 6 NO-6W92-13 16:70 12/14/05/12:35 NO- GWSZ-11D LWG NO-6492-115H 12.20 NO-TB121405:01 13.00 DATA DELIVERABLE INFORMATION DATA TURNAROUND INFORMATION COMMENTS/REMARKS **14 DAYS STANDARD** APPROVED BY: ☐ STANDARD 7 DAYS RUSH ☐ COMMERCIAL "B" **48 HOUR EMERGENCY** ☐ DISK DELIVERABLE ☐ STATE FORMS ☐ OTHER (SPECIFY) 14 DAY TURNAROUND HARDCOPY, EMERGENCY OR RUSH IS FAX DATA UNLESS PREVIOUSLY APPROVED SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESION, INCLUDING COURIER DELIVERY RELINQUISHED BY SAMPLER: RECEIVED BY: DATE TIME: RELINQUISHED BY: DATE TIME: RECEIVED BY: 12/4/05 400 DATE TIME: RECEIVED BY: RELINQUISHED BY: DATE TIME: RECEIVED BY: 3. RELINQUISHED BY: RECEIVED BY: DATE TIME: SEAL # PRESERVE WHERE APPLICABLE ON ICE 5.

5815 Middlebrook Pike Knoxville, TN 37921 phone 865-291-3000 fax 865-584-4315

Canister Samples Chain of Custody Record

Client Contact Information	Project Mai	nager: $\mathcal{P}_{\boldsymbol{\ell}}$	TE D	ELLERC	8	SAMPLE	d by	ei	6	سنج	0	_/	of_	2	coc	\$			
Company: META ENVIRONHENTAL Address: 49 CLARENDON S City/State/Zip LUATERTOWN MA Phone: 617 923 4662 FAX: 617 923 4610 Project Name: NORWICH SVI Site: NORWICH FORMER MGP	Phone: Site Contac STL Contac	t: Scott	H ARR	nd Time				VUCS +-1EBE	Du	pll			specify in notes section)						y in notes section)
PO# Sample identification	Sample Date(s)	Rush (Spec	ify)Time Stop	Canister Vacuum in Fleld; "Hg (Start)	Canister Vacuum in Field, 'Hg (Stop)	Flow Controller	Canister ID	TO-15 MGP	TO-14A	EPA 3C	EPA 25C	ASTM D-1946	Other (Please specif		Indoor Air	Ambient Air	Soll Gas	Landfill Gas	Other (Please specify in notes section)
NO-UP-062203	3/22/06	0750	0755	×								X							
NO-CE-062203	-3/23/06	0915	6382	x								X							
NO-BK-\$62263	3	· -	0925	,	را ما	14122	6391	×					2000			×			
NO-16CO-B			0855		0	K257	6330	×							X				
No-100-F		0900			0	K243	6374	×							X				\Box
NO-14CO-S	70	0855			7.0	K271	6394	×					11				人		\neg
				, <u> </u>							. 2.2			- 1		ヿ			
		Interior																	
	Start			_									~	13					
	Stop																		_{
		Interior		Pressure (in	ches of Hg)														ı
	Start	Interior		Ambient															- 1
	Stop	_																	
Special Instructions/QC Requirements & Comments	:								•										
Canisters Shipped by:	Date/Time:	-	 -		Canisters	Received by:			_										—
Samples Relinquished by	Date/Time: 3/23/0 Date/Time:	6 /3	30		Received	<u>.</u>													
Kelinquished by:	Date/Time:				Received	by:													

5815 Middlebrook Pike Knoxville, TN 37921 phone 865-291-3000 fax 865-584-4315

Canister Samples Chain of Custody Record

Severn Trent Laboratories, Inc. (STL) assumes no liability with respect to the collection and shipment of these samples.

BANGER 1 P

Client Contact Information	Project Ma	nager: PE	TE DEL	CLERCQ		SAMPled	ov the		1	<u></u>		2	of_	2	COC	s			
Company: META ENVIRONMENTAL	Phone:6/	79234	662	_			Anus	13	iñi	<u>IL</u>									
Address: 45 CLALENDON ST	Site Contac	it: KEIK	CFAIG	E				li.						8					
City/State/Zip WATERTOWN MA 02172	STL Contac	t: <i>\$C071</i>	HARL	<u>. </u>		_		<i>3€74/+</i>					e l	e section					æ
Phone: 617 923 4662	<u> </u>					•		≱					section)						월]
FAX: 6/3 423 46/0	<u> </u>					•		1])		en inc	.	i			88
Project Name: Norwich SV/			Turnarou			_		ડ		,			in notes	Z (*)	- 1	ļ			혈
Site: NORWICH FORMER MGP	s	tandard (Sp	pecify) 2	1 day				2					ž i			ļ			. <u>e</u>
PO#	F	Rush (Speci	ify)					9					specify	itre) seg		Į			ğ
Sample Identification	Sample Date(s)	Time Start	Time Stop	Canister Vacuum in Field, "Hg (Start)	Canister Vacuum in Field, 'Hg (Stop)	Flow Controller	Canister ID	10-15 MG	TO-14A	EPA 3C	EPA 25C	ASTM D-1946	Other (Please s		Indoor Air	Ambient Air	Soll Gas	Landfill Gas	Other (Please specity in notes section)
NO-12BAB	3/22/56- 3/23/66	1045	1045	6389	×							X							
NO-12BAF		1045	1045	27.5	5.5	KIII	6390	×						22321			人		
NO-12BAF		1050	1048	28	8_	K134	6392	×						(400 m)	×				
NO-12BAS		1045	1045	27	5.25	K126	6378	×					9				*		_
														Ad or					
	J)	•	ı	}	ļ	j			J		ļ	į.			Į	}		ı
			<u>-</u>	Temperature															
		Interior		Ambient													1		
	Start																		ı
	Stop				·														- }
		_		Pressure (in	ches of Hg)			_	_				:				_		\exists
		Interior		Ambient															Ì
	Start																		-
	Stop																		1
Special instructions/QC Requirements & Comments	::	•			-														
Canisters Shipped by:	Date/Time:				Canisters	Received by:		_											
Comples Belinguished has	Dete Circ				Dec Said	L													
Samples Relinquished by:	Date/Time: 3/22/0.	<u> 13</u>	34		Received														
Relinquished by:	Date/Time:				Received	by:													

5815 Middlebrook Pike Knoxville, TN 37921 phone 865-291-3000 fax 865-584-4315

Canister Samples Chain of Custody Record

Client Contact Information	Projec	t Ma	nager: P_i	ETE DO	ECLER	् द्	SAMPled	by: Ke	ر بد		2	i.		of	2 (COC	s			_
Company: HETA ENVIRONMENTAL	_1		7 923 4		*	:		Amend	la E	25;5	ell									
Address: 49 CLARENDON ST	Site C	ontac	a: KEIR	CRAI	GIE											\top			\neg	
City/State/Zip WATERTOWN MA 02172	STL C	ontac	t: 5<077	HARR	<u>ں</u>		_		เก					÷ 1		- 1		-		اء
Phone: 617 523 4662	1						•		+++BE					notes section)	2.	- 1	ļ			흏
FAX: 617 923 4610	 						-		4		1			es s				1	Ì	ě
Project Name: NoRWKH SVI			<u>Analysis</u>	Turnarou	nd Time		_		1		1		1 (iote		ľ	ı	ì	ı	ğ
Site: NORWEH FORMER MGP		S	tandard (Sp	pecify) 2	dous		_		2					.S 🕮			1		- 1	٤
PO#			Rush (Spec				•		3					secify.		- 1		-		흏
Sample Identification	Sam Date	ple		Time Stop	Canister Vacuum in Fleid, "Hg (Start)	Canister Vacuum in Field, 'Hg (Stop)	Flow Controller	Canister ID	10.15 MG	TO-14A	EPA 3C	EPA 25C	ASTM D-1946	Other (Please sp		Indoor Air	Ambient Air	Soil Gas	Landfill Gas	Other (Please specify in notes section)
NO-16COB -	3/22/	05 3/06	1340	1345	29	8.0	K093	6385	X		2.00 00.00 000 .00					×		THE RESERVED VALUE		司
NO-16COS			1340	1345	29	7.5	K255	93055	X						376 W		,	K		\neg
NO-16COF			1342	1342	29.5	0	K241	11287	X							×				
NO-14BAS			1550	1550	28	٥	KLIO	12458			_						7	~		乛
NO-14BAB		<i>(</i>	1550	1550	23.5	6.0	K138	6384	×							$\overline{\lambda}$	_			\neg
NO - 14BAB DUP			1550	1550	30	7.0	K226	12346	X						70.00	X				ヿ
-				-	Temperature	(Fahrenheit)													_	-
			Interior		Ambient															I
	Sta	-																		1
•	Sto					<u> </u>	-													- [
	_				Pressure (in	ches of Hg)										_				ㅓ
			Interior		Ambient															- 1
	Sta	rt																		
	Sto	P				-								•						- 1
Special Instructions/QC Requirements & Comments	3 :																			
Canisters Shipped by:	Date/Ti	ime:	_			Canisters F	Received by:		-					· .						
Samples Relinquished by:	Date/Ti	me:	1700	>		Received	by:					ᅱ								
Relinquished by:	Date/Ti	me:	,,,,,,,		- 1	Received I	by:			_		\dashv					•			
	Continue Co	STANKA CHECK	2545 944 XW144-1-1	a Subject that the	*** TANKS TO THE TO BE	GGAGGGGGGGGGGGGGGGGGGGG	procure the contract of the	. Collection of the consequences	501 / 61 11 m			A	et. 158						_	_

5815 Middlebrook Pike Knoxville, TN 37921 phone 865-291-3000 fax 865-584-4315

Canister Samples Chain of Custody Record

Cllent Contact Information	Project Ma	nager: PE	TE DE	CLERCO		55 Amplea	Mby Ke	1		<u>-</u>	,	2	of	2	coc	s			
Company: META ENVILONMENTAL Address: 49 CLALENDON ST City/State/Zip WATELTOWN MA 02172 Phone: 617 923 4662 FAX: 617 923 4610	Phone: 6/	2 923 46	(()				Amer	da	Be	nel									
Address: 49 CLARENDON ST	Site Conta	ct: KEIR	CLAIG	ietz.										S. Sheet					<u> </u>
City/State/Zip WATERTOWN MA 02172	STL Conta	ct: Seon	HARAI	<u></u> _ر		_		W		!		(l	3						Ē
Phone: 6/7 923 4662	-					-		8					흟						景
FAX: 6/7 923 96/0						-		HEBE			1	l ì	86		- 1				8
Project Name: Notwich SV/ Site: NORWICH FORMER MGP PO#		Analysis	Turnatou			_		💠		1		\	힐			. I	1	.	ğ
Site: NORWICH FORMER MGP	s	tandard (S	pecify)	21 day		_		الإ	<u> </u>				e.						Z E
PO#		Rush (Spec	ify)		· -			16PV&1				_	speci	2					speci
Sample Identification	Sample Date(s)	Time Start	Time Stop	Canister Vacuum in Field, "Hg (Start)	Canister Vacuum in Field, 'Hg (Stop)	Flow Controller	Canister ID	TO-15 176	TO-14A	EPA 3C	EPA 25C	ASTM D-1946	Other (Please specify in notes section)		Indoor Air	Ambient Air	Soll Gas	Landfill Gas	Other (Please specify in notes section)
NO-14BAF	3/23/06	1555	1555	28.5	9.5	K137	6379	X							×				
																	-		
					<u> </u>														
							Ļ												
			,		ľ										Ì				. 1
			_	Temperature	(Fahrenheit)													
		Interior		Ambient				1											
	Start																		
	Stop							<u> </u>											
				Pressure (in	ches of Hg)														
		Interior		Amblent															
	Start																		ſ
Special Instructions/QC Requirements & Commen			-				<u> </u>		_	. -					_		_		
Canisters Shipped by:	Date/Time:	-			Canisters	Received by:													
Samples Relinquished by:	Date/Time:	1700	<u> </u>		Received														
Relinquished by:	Date/Time:				Received	•													
	Same S			2000000			and the same	2	A STATE OF THE STA	10.00		c	1 16.19	A	W. 85/6 X		and the same		

5815 Middlebrook Pike Knoxville, TN 37921 phone 865-291-3000 fax 865-584-4315

Canister Samples Chain of Custody Record

Client Contact Information	Project Mar Phone: Site Contac STL Contac	nager: P	te D	eclero	<u>a</u>	Sampled.	by: Kier	- C	raic	ie.			of		COCs	<u> </u>			_
Company: META Environmental INC Address: 49 (Igrendon St City/State/Zip Watertown, MA 0247Z Phone: (617) 923-4662 FAX: (617) 923-4662 Project Name: Norwich Farmer MEP Site: Norwich, NY PO#	Phone:				Y		Aman	da	Bus	نحرا	1								
Address: 49 Clarendon St	Site Contac	et:					<u> </u>	E L			_					- 1			
City/State/Zip Watertown, MA 02472	STL Contac	*: <u>5 しつ</u>	H Ha	<u>rvis</u>				۲			- 1		ê		- 1			-	ᇎ
Phone: (617) 923-4662	ļ		_			•		MBTE		,		ļ	Sc.					- 1	section)
Paint Name 413-4610						•		+		.			98 80			_ l.	.		š S
Project Name: Norwich Former MhP	<u> </u>		Turnarou			•		νί					20						Ž
Site: Norwick NY		tandard (Sp		1 Day		-		Š		- 1			ry in			1		Ì	돌
PO#	F	Rush (Speci	fy)					آھ ا					peci		- }		1		specify in notes
Sample Identification	Sample Date(s)	Time Start	Time Stop	Canister Vacuum in Field, "Hg (Start)	Canister Vacuum in Field, 'Hg (Stop)	Flow Controller	Canister ID	TO-15 MG	TO-14A	EPA 3C	EPA 25C	ASTM D-1946	Other (Please specify in notes section)		Indoor Air	Ambient Air	Soil Gas	Landfill Gas	Other (Please a
NO-BKØ624Ø3	3/24-25/	9:48	9:55	76.5	5.0	K131	6373	X								X			
NO-MI 062403		9:50	9:47	28.0	5.5	K137	\$4742	χ								X			
NO-UPØ62403	<u> </u>	10:25	10:25	28,0	4.0	K122	6395	Х								X			_[
NO-42FR B		9:35	9:30	28.5	0	K218	BØ77	χ				Ì				X			
NO-42 FR S		9:35	9:35	29.5	8.0	KØ93	04407	X	l					es a Sada		χ			╝
NO-42 FR F	1	9:42	9:42	29.5	8.75	K252	\$151	X								X			
				Temperature	(Fahrenheit)						_								コ.
		Interior		Ambient															
	Start		_				_												- 1
	Stop			-	_														
· ·		-	_	Pressure (in	ches of Hg)														7
		interior		Ambient															
	Start)
	Stop																		
Special Instructions/QC Requirements & Comments	s:																		
Canisters Shipped by:	Date/Time:				Canisters	Received by:	-									_			_
Samples Relinquished by:	Date/Time: 3-25-	06/1	2:05		Received	by:													
Relinquished by:	Date/Time:	7			Received	by:													
Application of the second of t	100000000000000000000000000000000000000	and the second second	Total Control	and the state of the state of the state of	200 Maria (1990)	Service Commence of the Commen	3000				American Company		www. 25. 05.		alles a				

STL Knoxviiie

5815 Middlebrook Pike Knoxville, TN 37921 phone 865-291-3000 fax 865-584-4315

Canister Samples Chain of Custody Record

Client Contact Information	Projec	ct Man	t:	te De	Clercq		S Banya Plad b	W. Kier	CVI	الإنجار	c +			of_		cocs	<u> </u>			
Company: META Environmental, Inc. Address: 49 Clarendon St City/State/Zip Water town MA 02472 Phone: (617) 923-4662 FAX: (617) 923-4610 Project Name: Norwich Former MGP Site: Norwich, NY PO#	Site C	St	t: 500f	Turnarou ecify)	ris		-		P Vous + MBTE	DIS	1			Other (Please specify in notes section)						Other (Please specify in notes section)
Sample Identification	San Date	nple	Time Start		Canister Vacuum In Field, "Hg (Start)	Canister Vacuum in Field, 'Hg (Stop)	Flow Controller	Canister ID	TO-15 MG	TO-14A	EPA 3C	EPA 25C	ASTM D-1946	Other (Please sp		Indoor Air	Ambient Air	Soli Gas	Landfill Gas	Other (Please sp
NO-3ØFRB	3/24-	25/06	11:30	11:30	27	5,5	K178	04719	X							X				
NO-36FRS			11:30	11:30	30	615	K226	04399						2 E S 2 E S 2	End of the second			Х		
NO-36 FRS DUP			11:30	11:30	29	7.0	K255	93668	T						Cai May			X		
"NO-30 FR F	1	/	11:35	11:35	19.5	1.75	239	Ø4 42Ø	J											\Box
		_	·	i												+	1	-	+	4
			_		Temperature	(Fahrenheit								jàs	ensie					\dashv
			Interior		Ambient															- 1
	Sta	art																		-
	Sto	ор																		4
			Interior		Pressure (in Ambient	ches of Hg)														J
·	Sta		HILLERICH		Ambient			_												
	Ste	ор																		ſ
Special Instructions/QC Requirements & Comments	5 :								•	-			-							
Canisters Shipped by:	Date/1	ime:				Canisters	Received by:					ļ		_						—
anda Knull		- 25	-06/	12:00	>	Received														
Relinquished by:	Date/T	ime:	,			Received	by:													

5815 Middlebrook Pike Knoxville, TN 37921 phone 865-291-3000 fax 865-584-4315

Canister Samples Chain of Custody Record

Client Contact Information	Project Mar	nager: P	ete De	Clevia		SAMPled	by K	ier	(vo	(140	2		of	C	OCs			_
Company: META FINITOMMENTAL Address: 49 (lavendon St City/State/Zip Watertown MA 02472 Phone: (617) 923-4662 FAX: (617) 923-4662 Project Name: Norwich Famer MAP City	Phone: Site Contac STL Contac	Analysis	Turnarou	nd Time			Py	MGP VOCS +MBTE	ia e	54.55			in notes section)					notes section)
Site: Namach, NY		tandard (Sp	_	-1 Day		-		4					specify in		1			cify ir
Sample Identification	Sample Date(s)	Rush (Speci		Canister Vacuum in Field, "Hg (Start)	Canister Vacuum in Field, 'Hg (Stop)	Flow Controller	Canister ID	TO-15 MG	TO-14A	EPA 3C	EPA 25C	ASTM D-1946	Other (Please spe	Indoor Air	Ambient Air	Soil Gas	Landfill Gas	Other (Please specify in notes section)
NO-41FR S	3/24-25/0	18:15	1816	29	8	K134	Ø177	X								X		
NO-41FRB		18:15	1816	28.5	0	K243	12736	X						×				
NO-41 FR F		18:20		25	0	K113	0148	人						×				
NO-41 FR F DUP	1		1818	29	0	K271	04419	¥						7	٤,			
											-			iet vil				
			,										loov-	er in				
				Temperature	(Fahrenheit				•	•								\neg
		Interior		Ambient .														ı
	Start											•	,					
	Stop			<u> </u>				_										_
		<u> </u>		Pressure (in	ches of Hg)													
	Start	Interior		Ambient														
	Stop																	1
Special Instructions/QC Requirements & Comment														-			_	
Canisters Shipped by:	Date/Time:				Canisters	Received by:			-									
Samples Relinquished by: Umanala Finall Relinquished by:	Date/Time:	3-27-	06/1	10:00	Received				-									•
Relinquished by:	Date/Time:		7	, et s	Received	by:						1011		minn. W. 100			: * · · · · ·	a

5815 Middlebrook Pike Knoxville, TN 37921 phone 865-291-3000 fax 865-584-4315

Canister Samples Chain of Custody Record

Company AJPTA ELDUDAMEATTALL.		nager: 🗡	ETE U	PECLER	<u> చ</u>	SAMPled	by: Re	<u> بنہ د</u>	, 2	<u></u>			of (co	Cs		_	
Address: 49 CLARENDON St	Phone: Site Contac STL Contac	at: <i>FEIR</i> et: SCO 77	CRAIG HARAI	E S		 :	Ama	4716BC	205	e [[section)			34.3		section)
Project Name: NOCWICH FORMER MGP	 -	Analysis	Turnarou	nd Time		•		+					in notes :					selo
Site: WORWICH, NY	Si	andard (Sp			·	-		Û					ě		1.	. : 1		٤
PO#	R	tush (Spec	ify)			<u> </u>		2					specify			Ì 1		peci
Sample Identification	Sample Date(s)	Time Start	Time Stop	Canister Vacuum in Field, "Hg (Start)	Canister Vacuum in Field, 'Hg (Stop)	Flow Controller	Canister ID	TO-15 MC/	TO-14A	EPA 3C	EPA 25C	ASTM D-1946	Other (Please s	Indoor Air	Ambient Air	Soil Gas	Landfill Gas	Other (Please specify in notes section)
NO-BK062803	3/28-3/29	1353	×		1,72,000	A				X								
NO-45 FRS		1429									X							
NO-45 FRB		1429	1429	285	1457							×						
NO-45 FRF		1440							×									
NO-35 BRS		1630									×							
NO-35BRF		1635	1616	1960						2.00	×							
				Temperature							Villa **					\neg		
		Interior		Ambient														
	Start																	
	Stop		Elec 🏙 leader	. <u></u>	(11.)								-					
-		Interior			cnes or ng)													
	Start					 -												Ì
	Stop																	
Special Instructions/QC Requirements & Comments	Stop Start Stop	Interior		Pressure (in	ches of Hg)										· · · · · · · · · · · · · · · · · · ·			
Canisters Shipped by:	Date/Time: Canisters Received by:														_			
Thursd Orenan	3-8-00	16:00		neceived by:														
Samples Refinquished by:	Date/Time: 3/29/06	16:50	>	by:														
Relinquished by:	Date/Time:		by:			_		\neg										

STL Knoxvine

5815 Middlebrook Pike Knoxville, TN 37921 phone 865-291-3000 fax 865-584-4315

Canister Samples Chain of Custody Record

Client Contact Information	_		nager; PS	TE DA	ECLERCO		SAMPLES	by: Kei		, re:	جاد		1	of_	L	coc	:s			
Company: META ENVIRONMENTAL Address: 49 CLARENDON ST City/State/Zip WATERTOWN MA 02472 Phone: 617 923 466 FAX: 617 923 4610 Project Name: NORWKH FORMER MG! Site: NORWKH FORMER MG! PO#	Phoi Site STL	Contac	andard (S	Turnarou pecify) 2	nd Time			Amen	3+H4BE	<u> </u>	*e [[Other (Please specify in notes section)				:		Other (Please specify in notes section)
Sample Identification		imple	Rush (Spec	Time Stop	Canister Vacuum in Field, "Hg (Start)	Canister Vacuum in Field, 'Hg (Stop)	Flow Controller	Canister ID	TO-15 MGPVC	TO-14A	EPA 3C	EPA 25C	ASTM D-1946	Other (Please spec		Indoor Air	Ambient Air	Soil Gas	Landfill Gas	Other (Please spe
NO - 39 FRS	3/29	3/30	0953	0956	29	6	14243	#1397	X									×		
NO-39 FEB			0950	0956	29	105	K134	2992	×						1900	X				
NO-18COS			0956	0955	29_	0	14271	44747	×							*				
NO-18C05			1138	1139	28	6.5	KIII	93063	Х									X		
NO-18COB			1140	1139	29	0	K257	04388	X						****	X				\Box
NO-18COF		0	1149	1148	29.5	0	KII3	04176	Х						204 N	X				
						(Fahrenheit			_						manus meneralis.		_			
			Interior		Ambient									ş.						ď
·	s	tart																		
	s	top																		_
	<u> </u>				Pressure (in	ches of Hg)														
		tart	Interior		Ambient															1
		top					<u> </u>													- 1
Special Instructions/QC Requirements & Comments		•																		
Canisters Shipped by:	Date	Time:			-	Canisters	Received by:													
Samples Relinquished by:	Date	Time: 30/06	5 11	30		Received	by:													
Relinquished by:	Date	Time:				Received	by:													

STL Knoxvine

5815 Middlebrook Pike Knoxville, TN 37921 phone 865-291-3000 fax 865-584-4315

Canister Samples Chain of Custody Record

Client Contact Information	Project Mai	nager: P£	TE D	ecienc	6 2	SAmpled:	ovike:	7	i Tai	4e			of	CO	Cs			
Company: META ENVIRONMENTAL INC	Phone:			_			Aman	Ru	<u>د: 8</u>	sell								
Address: 49 CLARENDON ST	Site Contac	it: <i>FEI</i>	CRAIG	1/2									35					
City/State/Zip / MATERTOWN -14 02477	STL Contac	it: Scott	HARA	<u> 15 </u>				$ \mathcal{U} $					î		Ì			Ē
Phone: 6/7 923 4662	<u> </u>				-	•		€6			ı		section)					iğ
FAX: 617 923 4610	}					-		7				ì l	38 86		1			88
Project Name: NORWICH FORMER MGP	<u> </u>		Turnarou			-		JOYH-7010	1				specify In notes		1	ļ l		ğ
Site: NORWICH, NY	S	tand <u>ar</u> d (Sp	pecify) Z	<u> </u>		•		5	'				ry In	100	1			.₹ E
PO#	F	Rush (Spec	ify)					, <u> </u>	!				peci					, 25 6
Sample Identification	Sample Date(s)	Time Start	Time Stop	Canister Vacuum in Field, "Hg (Start)	Canister Vacuum in Field, 'Hg (Stop)	Flow Controller	Canister ID	TO-15 MG	TO-14A	EPA 3C	EPA 25C	ASTM D-1946	Other (Please	Indoor Air	Ambient Air	Soll Gas	Landfill Gas	Other (Please specify in notes section)
- Northwest Park (March St., April 17) and the St. (March St.) and the St. (Ma					(0.04)								9907		+			Ħ
NO-43FRS	3/28-3/29	1724	1727		6	K131	1330	*							-	×		
NO-43 FRB		1724	1727	30	6	K122	9461B							\times	<u>L</u>			
NO-43 FRF		1730	1730	27.5	11_	K108	6134							×				
NO-MI\$628\$3		1750	1745	29	0		Ø4337	П							×			
NO-UP\$628\$3		1757	1757	28.5	6.5	K137	5-1530	\mathcal{T}							×			
NO-UP0628\$3 DUP	V	1757	145.7		5.5	KIZB		∜							×			
				Temperature									-					\neg
·		Interior		Ambient														1
!	Start																	
-	Stop						_											ŀ
				Pressure (in	ches of Hg/A			_	_			_	_					\dashv
		Interior		Ambient														- 1
	Start																	
	Stop												٠,					Ì
Special Instructions/QC Requirements & Comments	s:												٠.٠		_			
Canisters Shipped by:	Date/Time:				Canisters	Received by:									_			
Samples Relinquished by: Limanda Rines	Date/Time: 3/30/	2006/	930	_	Received	by:												
Relinquished by:	Date/Time:				Received	by:					7							
		granite was	and the second			7478		2 to 17 5 \$	1987		and have		100	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		W. Shining	vi serieni	

5815 Middlebrook Pike Knoxville, TN 37921 phone 865-291-3000 fax 865-584-4315

Canister Samples Chain of Custody Record

Client Contact Information Company: META Environmental	Project Mai	nager: Po	te De	Clercy		SAMPLED	by: K	cir	(r.	a igi	<u>e</u>		of_	 coc	s		_	
	Site Contac	:t: 5007	Turnarou		5	-	- 111/4) 					in notes section)					in notes section)
PO# Sample Identification		Rush (Spec		Canister Vacuum in Field, "Hg (Start)	Canister Vacuum in Field, 'Hg (Stop)	Flow Controller	Canister ID	10-15	TO-14A	EPA 3C	EPA 25C	ASTM D-1946	Other (Please specify in notes section)	Indoor Air	Ambient Air	Soil Gas	Landfill Gas	Other (Please specify in notes section)
NO-LCS	3/29-3/29	10 40	1840	29.5	4.0	KZ19	2050	Χ			A MINISTER				Ample . Wilder	χ		
NO-LCS NO-LCF	V	1040	1835	29	0	K224	1144	χ						X				
																	_	
	<u> </u>																	_
							<u> </u>											
		Interior		Temperature Ambient	(Fahrenheit))												- 1
÷	Start	Interior		Ambient														
• .	Stop											r	i.					}
				Pressure (in	ches of Hg)		_											コ
		Interior		Ambient														l
·	Start Stop			L														
Special Instructions/QC Requirements & Comments	·													_				
Canisters Shipped by:	Date/Time:		_		Canisters	Received by:							_	 		-		—
Samples, Relinquished by: Monda Runch Relinquished by:	Date/Time: 3/30/0 Date/Time:	6/9-	30		Received	by:												
Relinquished by:	Date/Time:	7			Received	by:			On the state of th					Sec. 2000	Marian W. Free			

STL Knoxviue

5815 Middlebrook Pike Knoxville, TN 37921 phone 865-291-3000 fax 865-584-4315

Canister Samples Chain of Custody Record

Client Contact Information	Project Mar	ager:	Sampled By: Keir Craigie Amanda Bissell							of cocs									
Company: META Environmental, Inc. Address: 99 Clarendon St City/State/Zip Watrytoun, MA 02422 Phone: (617) 923-4662 FAX: (617) 923-4610 Project Name: Norwich Former METP Site: Norwich, NY PO#	Analysis Turnaround Time Standard (Specify) 21 Day					- - -	MGP VOCS+MOTES		155	11		specify in notes section)						afy in notes section)	
Sample Identification	Sample Date(s)	tush (Speci		Canister Vacuum in Fleid, "Hg (Start)	Canister Vacuum in Field, 'Hg (Stop)	Flow Controller	Canister ID	TO-15 MGP	TO-14A	EPA 3C	EPA 25C	ASTM D-1946	Other (Please spec		Indoor Air	Amblent Air	Soil Gas	Landfill Gas	Other (Please specify in notes section)
NO-10 COS	3129-3130	1325	1325	30	9	K168	5-1493	Х			The second of the second						Х		
NO-ZØCEB		1327	1325	30	9.5	KIØT	11367	Х							X				
NO-ZØCOF		1337	1337	29.5	8_	K255	Ø2700	Х	L				4		X				
NO-BK 062903		1402	1401	30	5.5	KZZb	6120	X								\times			
NMI 062903		1450	1442	30	0	STL- 239	1115	X					0.70.00			X			
NO-UP \$62963	V	1458	1458	24.5	6.5	K178	2989	Х					0.000			X			
	Temperature (Fahrenheit)																		
	Start	Interior		Ambient															
	Stop		-																
	Pressure (inches of Hg)								_			_				_			\neg
		Interior	Interior																1
·	Start			<u> </u>										,					
Special Instructions/QC Requirements & Comments	Stop									_				8.					
Canisters Shipped by:	Date/Time: Canisters					Received by:									_				
Samples Relinquished by:	Date/Time: Recei 3/3.06 /5/5 Date/Time: Recei					ed by:													
Relinquished by:	Date/Time: Received					i by:													

H LABORATORY ANALYTICAL DATA PACKAGES AND DUSRs (CD)

NYSEG: Norwich SRI Report

October 2006