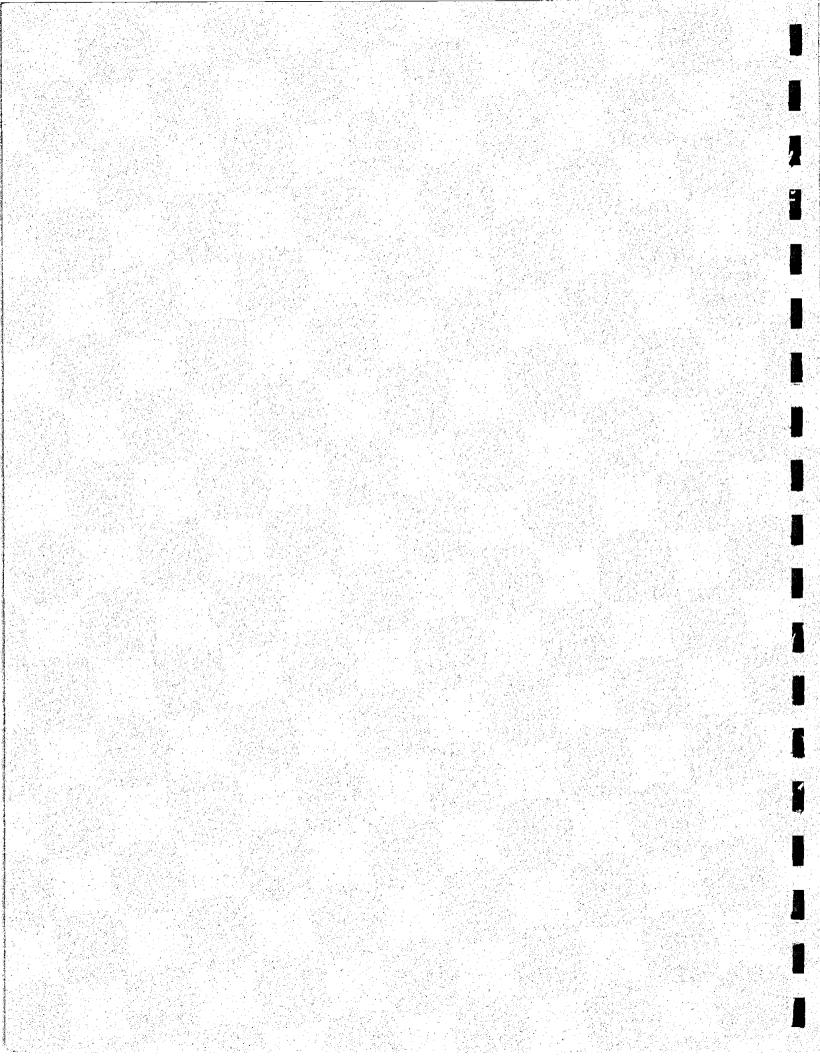
CORTLAND COUNTY LANDFILL REMEDIAL ACTION LANDFILL CLOSURE

TOWNLINE ROAD CORTLAND COUNTY, NEW YORK

CONSTRUCTION CERTIFICATION REPORT


VOLUME I OF III


JUNE, 2002

290 Elwood Davis Road Box 3107 Syracuse, New York 13220

TABLE OF CONTENTS

SECT	<u>ION</u>		<u>PAGE</u>				
CERT	IFICAT	TION STATEMENT	C-1				
1.0	INTRODUCTION						
2.0	PROJ	ECT PARTICIPANTS	3				
	2.1	Organizations	3				
		2.1.1 Owner 2.1.2 Regulator	3 3				
	2.2	Consultants	3				
		2.2.1 Design and Construction Administration	3				
	2.3	Contractors	4				
		2.3.1 General Construction – Contract No. 1A2.3.2 Subcontractors	4 4				
		2.3.2.1 Geosynthetic Installation 2.3.2.2 LFG Well & Vent Drilling 2.3.2.3 Geosynthetic Testing 2.3.2.4 Soil Testing 2.3.2.5 Electrical 2.3.2.6 Survey 2.3.2.7 Health and Safety 2.3.2.8 Concrete	4 4 5 5 5 5 6 6				
	2.4	Materials, Manufacturers, and Suppliers	6				
3.0	CONS	STRUCTION SUMMARY	8				
	3.1	Final Cover System	8				
		3.1.1 Subgrade Preparation3.1.2 Waste Relocation3.1.3 Gas Venting System3.1.4 LLDPE Geomembrane Barrier3.1.5 Lateral Drainage Layer	8 8 9 10 11				

TABLE OF CONTENTS – Continued

SEC [*]	ΓΙΟΝ				PAGE
			Barrier P Seeding	rotection and Topsoil Layers & Mulch	13 14
	3.2 3.3		ce Water M	Management ads	14 15
4.0	QUA	LITY AS	SSURANC	E/QUALITY CONTROL	16
	4.1	Soils			16
		4.1.1	Select Fi	lls	16
			4.1.1.1 4.1.1.2	~ ·	16 17
		4.1.3 4.1.4	Commor Topsoil Granular Riprap		18 19 19 19
	4.2	Geos	ynthetics		20
		4.2.2		les ite Geonet Geomembrane	20 21 22
	APP	ENDIC	<u>ES</u>		
	Appe Appe Appe Appe	endix B endix C endix D endix E	Well andInspectorConstru	et Results thetic Test Results (Bound Separately, Volu d Vent Installation Logs (Bound Separately, or's Reports (Bound Separately, Volume III) ection Photographs (Bound Separately, Volu ted Construction Drawings (Bound Separate	Volume III) me III)

CERTIFICATION STATEMENT

Barton & Loguidice, P.C. herein provides the Construction Certification Report for the Cortland County Landfill Remedial Action Landfill Closure, located at the Cortland County Landfill, Town Line Road, McGraw, New York.

Barton & Loguidice, P.C., certifies that the Cortland County Landfill Remedial Action Landfill Closure Project has been constructed in substantial compliance with the Construction Plans and Specifications prepared by Barton & Loguidice, P.C., dated September 2000 and approved by the New York State Department of Environmental Conservation during September, 2000.

Paul F. Dudden, P.E.

Principal

Date:

	•	
·		
		k.
	•	•

1.0 INTRODUCTION

This Construction Certification Report for the Cortland County Landfill Remedial Action Landfill Closure is written in compliance with the New York State Department of Environmental Conservation (NYSDEC) 6NYCRR Part 360 regulations. This construction phase was completed in substantial compliance to the Construction Plans and Specifications prepared by Barton & Loguidice, P.C., dated September 2000

The 40-acre capping system is comprised of two distinct capping sections.

These two sections are the County Landfill Capping system, which covers approximately 38 acres, and the City Landfill Capping system that covers the remaining 2 acres. The City Landfill capping system also incorporated the connection of the capping system to the existing maintenance building that remained in place.

The County Landfill Capping System has been designed with a modified 6NYCRR Part 360 final cover system comprised of a gas venting system, geomembrane barrier layer, a composite geonet lateral drainage layer, a barrier protection layer, and a topsoil layer. Details on the construction of each layer of the capping system are included herein.

Adjacent to the County Landfill portion of the closure, the City Landfill Capping system was designed with a slightly different section from the County Landfill Capping system. The City Landfill Capping system is comprised of a gas venting system adjacent to the maintenance building, geomembrane barrier layer, protective geotextile, granular fill, and a shale wearing surface. Details on the construction of each layer of the capping system are included herein.

Construction Plans and Specifications were prepared by Barton & Loguidice, P.C. and approved by the NYSDEC during September, 2000. Construction commenced in April 2001 and was substantially completed on December 18, 2001. The construction was performed by Marcy Excavation Company Incorporated and construction administration and inspection of the landfill closure was performed by Barton & Loguidice, P.C.

Completed Construction Drawings have been prepared by Barton & Loguidice, P.C. and have been included as Appendix F of this report.

2.0 PROJECT PARTICIPANTS

2.1 Organizations

2.1.1 Owner

Cortland County County Office Building 60 Central Avenue Box 5590 Cortland, New York 13045

W. Stephen Harrington – Legislature Chairman Ralph K. Pitman - Director of Solid Waste Roger Stanton - Landfill Operations Supervisor

2.1.2 Regulator

New York State Department of Environmental Conservation Division of Environmental Remediation Bureau of Construction Services 625 Broadway Albany, New York 12233-7013 (518) 402-9814

Joseph Yavonditte, PE - Environmental Engineer 2

2.2 Consultants

2.2.1 Design and Contract Administration

Barton & Loguidice, P.C. 290 Elwood Davis Road Box 3107 Syracuse, New York 13220 (315) 457-5200 Paul F. Dudden, P.E. – Principal Paul R. Czerwinski, P.E. – Vice President Doug A. Miller, P.E. – Managing Engineer Rodd C. Brinkmann - Engineer Chad W. Hutton, I.E. – Assistant Engineer

2.3 Contractors

2.3.1 General Construction - Contract No. 1A

Marcy Excavation Company, Inc. 2256 Broad Street Frankfort, New York 13390 (315) 724-4062

Phil Hale, Owner Chris Hale, Superintendent Kathy Delaney, Project Coordinator

2.3.2 Subcontractors

2.3.2.1 Geosynthetic Installation

Antana Linings Inc. 1 School Street Latham, New York 12110 (518) 785-0652

2.3.2.2 LFG Well & Vent Drilling

Moretrench Environmental Services, Inc. 100 Stickle Avenue Rockway, New Jersey 07866 (973) 627-2100

2.3.2.3 Geosynthetic Testing

Geotesting Express of Texas, Inc 2004 East Randol Mill Suite 512 Arlington, Texas 76011 (800) 247-6030

AGP Laboratories, Inc. 2004 East Randol Mill Suite 512 Arlington, Texas 76011 (800) 247-6030

2.3.2.4 Soil Testing

SJB Services, Inc. Central New York Office 2415 North Triphammer Road Ithaca, New York 14850 (607) 226-0147

2.3.2.5 Electrical

Bagnell Electric, Inc. PO Box 577 45 Classic Street Sherburne, New York 13460-9783 (607) 674-9460

2.3.2.6 Survey

S.J. Harris Land Surveying PO Box 319 Bridgewater, New York 13313 (315) 822-6637

2.3.2.7 Health and Safety

Woodward Miller & Associates

5806 Innsbruck Road

East Syracuse, New York 13057

(315) 656-8247

2.3.2.8 Concrete

Keystone Construction

125 Clark Street

Illion, New York, 13357

2.4 Materials, Manufacturers, and Suppliers

<u>Material</u>	Manufacturer	Supplier
Geomembrane	Polyflex, Inc. 2000 W. Marshall Drive Grand Prairie, Texas 75051	Pavilion Drainage Supply Box 219 Pavilion, New York 14525
Composite Geonet	ESP Inc. 405 Hood Road Lilburn, Georgia 30047	Babcock Highway Supply 565 County Route 51A Oswego, New York 13126
Geotextile	ESP Inc. 405 Hood Road Lilburn, Georgia 30047	ESP Inc. 405 Hood Road Lilburn, Georgia 30047
Type B & D Select Fill	Suit-Kote Asphalt PO Box 5160 Cortland, New York 13045	Suit-Kote Asphalt PO Box 5160 Cortland, New York 13045
Granular Fill	Suit-Kote Asphalt PO Box 5160 Cortland, New York 13045	Suit-Kote Asphalt PO Box 5160 Cortland, New York 13045
Riprap	Marcy Excavation Company, Inc. 2256 Broad Street Frankfort, New York 13390	Marcy Excavation Company, Inc. Heath Road Pit Cortlandville, New York 13101

Common Fill	Marcy Excavation Company, Inc. 2256 Broad Street Frankfort, New York 13390	Marcy Excavation Company, Inc. Heath Road Pit Cortlandville, New York 13101
Topsoil	Marcy Excavation Company, Inc. 2256 Broad Street Frankfort, New York 13390	Marcy Excavation Company, Inc. Heath Road Pit Cortlandville, New York 13101
PVC Pipe	National Pipe & Plastics PO Box 174 Binghamton, New York 13920	American Indian Builders and Suppliers Inc. 1162 Ridge Road Lewiston, New York 14092
PVC Fittings	Multi Fittings 4607 LeSaint Court Fairfield, Ohio 45014	American Indian Builders and Suppliers Inc. 1162 Ridge Road Lewiston, New York 14092
Culvert Pipe	Lane-Bath May Street Bath, New York 14810	MS Unlimited, Inc. PO Box 577 Syracuse, New York 13206
Corrugated PE Pipe	Advanced Drainage Systems 3300 Riverside Drive Columbus, Ohio 43221	Martisco Corporation PO Box 2067 Syracuse, New York 13220
Grass Seed	Merritt Seed Company 7880 Gates Road Baldwinsville, New York 13027	Merritt Seed Company 7880 Gates Road Baldwinsville, New York 13027
Turf Reinforcement Matting (TRM)	North American Green 14649 Highway 41 North Evansville, Indiana 47725	Everett J. Prescott, Inc. 198 Ushers Road Round Lake, New York 12151
Precast Concrete Tanks	Binghamton Precast Phelps Street Binghamton, New York 13901	MS Unlimited, Inc. PO Box 577 Syracuse, New York 13206
Concrete	Cortland Ready-Mix 6 Locust Avenue Cortland, New York 13045	Cortland Ready-Mix 6 Locust Avenue Cortland, New York 13045

			2 T

3.0 CONSTRUCTION SUMMARY

3.1 Final Cover System

3.1.1 Subgrade Preparation

The Remedial Action Landfill Closure encompasses approximately 40 acres of landfill capping system. In preparation of the final cover system construction, all vegetation from the landfill slopes was removed by stripping the upper sod layer of the existing intermediate cover layer. This material was stockpiled for later use as on- site topsoil. The landfill side slopes were graded to a minimum slope of 5 percent to a maximum slope of 25 percent. In general, the existing grades established at the site during waste placement were sufficient and met the grading requirements. Minor flat and low areas within the intermediate cover were filled using common fill material and abrupt grade changes were removed. Once stripped of vegetation and graded the intermediate cover layer outside of the waste relocation area was compacted with a vibratory smooth drum roller to provide a smooth surface for geosynthetic installation, and oversized stones were removed.

3.1.2 Waste Relocation

To minimize the footprint of the capping system, waste was relocated from the areas south and west of the existing maintenance building along with an isolated area near the sediment ponds to the disposal area located on the southern slope of the existing landfill.

Following the removal of the topsoil from the waste disposal area, shown on Sheet G-3 of the Completed Construction Drawings, the remaining intermediate cover was progressively removed to provide an area for the relocation. The waste was excavated and hauled from the removal areas, shown on Sheet G-3 of the Completed Construction Drawings, and placed in lifts perpendicular to the landfill slope. Each lift was graded and tracked with a bulldozer, then compacted with a vibratory roller. Upon completion of the waste relocation to the final grade, the intermediate cover was re-established.

Excavation continued on the waste removal areas until acceptable soil was encountered and visually verified by Barton and Loguidice, P.C.. Typically a waste depth of 8 to 12 feet was encountered south and west of the maintenance building, and 4 to 6 feet near the sediment ponds. Within this excavation, the existing sanitary sewer system and floor drainage system was removed and replaced with two 1,000 gallon concrete underground storage tanks. No intact drums were encountered in the waste removal areas and continuous air monitoring did not yield any hazardous conditions.

Common fill was placed in the areas to the west of the maintenance building and near the sediment ponds following the excavation until the original grade was reestablished. In the area to the south of the maintenance building, the excavation was graded to promote positive drainage.

3.1.3 Gas Venting System

A series of deep gas wells and shallow vents were installed to passively vent the landfill gas contained within the closure area. The installation frequency typically consisted of 1 deep well and three shallow vents per acre. A summary of the well and vent drilling data can be found in Appendix C.

The deeper gas wells were constructed by rotary excavating a 36-inch diameter hole approximately ¾ of the total depth of the waste mass utilizing a drill rig with a bucket auger bit attached. Once the final depth was reached, a 12-inch diameter schedule 80 PVC perforated casing and Type D Select Fill was placed into the excavation. Coupled to the casing, a solid 12-inch schedule 80 PVC riser was installed along with a flanged tee at each location. Following this, perforated PVC plates were attached to the open ends at the tees.

Each shallow gas vent consisted of a 6-inch diameter PVC schedule 40 perforated casing extending five feet into the waste mass, surrounded by Type D Select Fill. Following the subsurface installation a solid 6-inch PVC riser pipe and gooseneck was attached. All vents were then fitted with bird screens.

3.1.4 LLDPE Geomembrane Barrier

A 40 mil Linear Low Density Polyethylene (LLDPE) textured geomembrane was used as the capping system hydraulic barrier. The LLDPE geomembrane was textured on both sides for all applications. The geomembrane was deployed directly over the prepared subgrade. In general, geomembrane panels were oriented parallel to the landfill side slopes in accordance to the approved panel layout drawing and as shown on the geomembrane as-built drawing (Appendix B). Typically, the geomembrane panels were deployed from the top portion of the landfill and pulled down slope.

The geomembrane was anchored at the toe of the slopes within an anchor trench excavated into the existing soil four feet outward from the limits of waste. In areas where additional waste was encountered during the

excavation of the anchor trench, the anchor trench was realigned to contain the waste within the capping system.

Most final cover system geomembrane seams were fusion welded using a double wedge welder. This method provides an air channel that can easily be tested using the air pressure test method. The remaining seams were welded using an extrusion welder that requires testing using a vacuum box. Extrusion welding was performed at repairs, destructive tests, cap strips or tie-in seams where a wedge welder could not be used. Patches were installed by cleaning the area to be seamed, tacking down the patch with a Leister, grinding the seam edge and finally extrusion welding the patch to the geomembrane panel.

Placement of the LLDPE geomembrane required the construction of a LLDPE pipe boot at each LFG well and vent location. To construct the penetration boots, a hole slightly larger than the pipe was cut in the geomembrane. Scrap LLDPE geomembrane material was then wrapped around the pipe allowing excess material at the base to form the boot tail. The scrap geomembrane material was then welded together to form the boot. The boot tails were extrusion welded to the LLDPE geomembrane panels a minimum of one foot away from the pipe and the top of the boot was clamped to the pipe itself. A detail of the penetration boot can be found on the Completed Construction Drawings (Appendix F).

3.1.5 Lateral Drainage Layer

A composite geonet was installed as the lateral drainage layer of the final cover system. The composite geonet was installed directly over the textured LLDPE geomembrane barrier.

The composite geonet was deployed parallel to the landfill side slopes. The composite geonet was fastened using ties for the geonet every 5-feet on the landfill side slopes, every two feet on butt seams and every 6-inches on repairs. The lower geotextile was overlapped while the upper geotextile was secured by heat laminating the geotextiles together. At the butt seams, an additional piece of geotextile, typically 2-feet wide by the width of the roll, was installed over the seam and heat laminated into place.

To remove the water collected by the lateral drainage layer of the final cover system, an underdrain system was installed just above the side slope diversion berm. The composite geonet was cut and a five-foot wide section was removed. The composite geonet was then brought directly to a 4-inch diameter perforated corrugated polyethylene drainpipe covered by Type B Select Fill. The Type B Select Fill was covered with a Type 1 Geotextile. The underdrain outlets to the side slope diversion berm every 100-feet through the use of 4-inch diameter solid corrugated polyethylene pipe. The end of the side slope diversion berms outlet to the riprap down chute located on the southern slope. Refer to Sheet No. G-5 for lateral drainage layer termination details.

In addition to the mid-slope underdrain, a toe of slope drain consisting of Type B Select Fill was constructed to relieve water collected at the toe of the landfill slopes. An 8 oz/yd² geotextile was placed between the Select Fill and the barrier protection soils to minimize any migration of fines. Refer to Sheet No. G-4 for lateral drainage layer termination details.

3.1.6 Barrier Protection and Topsoil Layers

Local glacial tills were used as common fill for the barrier protection layer. The barrier protection layer was installed directly over the lateral drainage layer composite geonet. The material was mined and processed through a 6-inch screen to meet the 6-inch maximum stone size required by the project specifications. After processing, the material was loaded into articulated haulers and transported to the closure area. The material was dumped at the toe of the slope and pushed up-slope by low ground pressure buildozers. To improve access to the capping area 3-foot thick haul roads were constructed over the lateral drainage layer. Following the completion of the barrier protection installation these haul roads were removed. The barrier protection layer was placed in one 12-inch lift. The lift was compacted with a smooth drum roller after placement. Cardboard tubes placed at the specified 100-foot by 100-foot grid along with the use of modified wooden grade stakes controlled lift thickness. The grade tubes and stakes were marked with the appropriate lift thickness and removed upon completion of soil placement and visual verification by Barton and Loguidice, P.C. The remaining holes from the tubes were filled with compacted common fill. Approximately 65,100 in-place cubic yards of common fill were installed as the barrier protection layer.

Following the completion of the barrier protection layer, a six-inch layer of topsoil was installed to promote an adequate seedbed. Topsoil removed during the grubbing stage of the landfill was screened to meet the specified maximum size requirements and reinstalled. Due to the insufficient quantity of the on-site material, topsoil was required from off-site sources. The amount of area that was covered by topsoil that was taken from on-site and processed was approximately 13.5 acres. Over the remaining area of 31.5 acres, off-site topsoil was utilized. These areas included the forty (40) acres of capping system and five (5) acres of disturbance from consolidating the footprint.

Adjacent to the county landfill portion of the closure, within the Old City Landfill area, the closure system above the hydraulic barrier was designed to accommodate heavy vehicle traffic. This design includes the use of a Type II Geotextile (16 oz/yd²) installed directly above the geomembrane, two feet of granular fill and a shale wearing surface. Refer to Sheet G-4 of the Completed Construction Drawings for the City Landfill Details.

3.1.7 Seeding & Mulch

Prior to seeding of the final cover system, the topsoil layer was fine graded, scarified using bulldozer tracks and back bladed to eliminate ridges or other depressions that may have held water. Seeding of the final cover system was performed through the use of a Brillion Seeder by Marcy Excavation Company, Inc. Following the seeding, mulch was installed in an effort to retain moisture for germination and also control erosion and sediment loss until the vegetation becomes established.

3.2 Surface Water Management

As discussed in Section 3.1.5 of this report, an underdrain system and toe of slope drains were constructed as part of the lateral drainage layer to prevent excessive head buildup on the LLDPE geomembrane. These drains outlet to the surface water collection system on the site.

As part of the closure, a series of drainage swales and a down chute was constructed to aid in the removal of storm water runoff from the final cover system. Six side slope diversion berms were constructed on the southern landfill slope to decrease the storm water runoff length and divert stormwater to the downchute. The diversion berms were lined with Turf Reinforcement Mat (TRM), a permanent synthetic erosion control product.

The down chute at the site was constructed using Type II geotextile and Type III riprap, and outlets to the existing storm water management system at the site. Existing perimeter swales were cleaned and re-graded to the dimensions shown on the Completed Construction Drawings. Perimeter swales were either grass or riprap lined after re-grading. The riprap lining material was produced from the processing of the common fill material. All storm water collected at the site is routed through the existing series of sediment ponds before being released from the site.

Refer to Sheet Nos. G-4 and G-8 of the Completed Construction Drawings for storm water management details.

3.3 Site Access Roads

After further review during closure construction, the access road that was scheduled to be replaced over the southern slope was not installed. Instead, a road crossing was installed south of the Area 1 waste removal area, which included two 36" diameter culverts. With this road in place the perimeter of the landfill along with all of the monitoring wells can be accessed.

4.0 QUALITY ASSURANCE / QUALITY CONTROL

The following is a summary of the QA/QC testing program provided for the Remedial Action Landfill Closure construction. A summary of all testing data may be reviewed in Appendices A and B. The QA/QC data is grouped according to the specific construction element, i.e. common fill, select fills, geosynthetics, etc.

4.1 Soils

4.1.1 Select Fills

4.1.1.1 Type B Select Fill

Pre-qualification quality assurance testing of Type B select fill included a grain size analysis. Grain size specifications for Type B select fill material are summarized below:

Type B Select Fill	% Passing by Weight	Sieve
	100	2"
	90-100	1-1/2"
	0-15	1"
	0-3	No. 200

The pre-qualification sample obtained from the Type B select fill source was tested for gradation and found to be acceptable.

Approximately 974 cubic yards of Type B select fill was installed during the project. Quality control testing for Type B select fill included one grain size analysis for every 1,000 cubic yards of in-place material. The test results demonstrate that the materials met the project requirements. Type B select fill test results have been included in Appendix A.

In addition to the quality control testing above, visual inspections were made to ensure the material was free from excessive moisture, roots and other unsuitable materials. The in-place density of the select fills was also visually inspected.

4.1.1.2 Type D Select Fill

Pre-qualification quality assurance testing of Type D select fill included grain size analyses, permeability testing and relative density testing. A calcium carbonate content test was also performed to ensure that the material contained less that 30% calcium carbonate. Grain size specifications for Type D select fill material are summarized below:

Type D Select Fill	% Passing by Weight	Sieve
	100	1-1/2"
	90-100	1"
	0-15	1/2"
	0-3	No. 200

The pre-qualification test results met the project specifications.

Approximately 350 cubic yards of Type D select fill were installed during the project. Quality control testing for Type D select fill included one grain size analysis for every 1,000 cubic yards of in-place material and one min/max relative density test for each stockpile of Type D select fill to be pre-qualified. The test results demonstrate that the materials met the project requirements. Type D select fill test results have been included in Appendix A.

In addition to the quality control testing above, visual inspections were made to ensure the material was free from excessive moisture, roots and other unsuitable materials. The in-place density of the select fills was also visually inspected.

4.1.2 Common Fill

Quality control testing for common fill included performing Atterberg Limits, grain size analyses and Modified Proctor compaction tests for every 5,000 cubic yards of in-place material. The test results demonstrate that the common fill met the grain size requirements for a maximum of 50 percent passing the No. 200 sieve and stones not exceeding 6-inches in the greatest dimension.

Quality assurance testing consisted of testing the in-place density of the common fill material at a minimum frequency of one test for every 10,000 square feet per lift. Tests were performed on a 100' grid. All test results met the minimum 90% Modified Proctor dry density compaction requirement.

The results of the QA/QC testing for the common fill are presented in Appendix A.

4.1.3 Topsoil

As discussed in Section 3.1.6 of this report, screened on-site and off-site topsoil was used for the final cover system. The material was placed following the barrier protection layer. The intent of the topsoil layer is to permit development of substantial and sustainable vegetative cover over the final cover system and the topsoil at the site has proven to support vegetative growth on other projects.

Prequalification tests on the topsoil were taken to determine the ph and organic content. The material was found to be acceptable and the results are shown in Appendix A.

4.1.4 Granular Fill

Granular fill used on the city landfill capping system met the requirements for the specified NYSDOT Type 2 Subbase Coarse. A certified grain size analysis was submitted by the material supplier to verify the material met NYSDOT specifications. The grain size analysis report was found to be acceptable and is included in Appendix A.

4.1.5 Riprap

Gradation of the riprap utilized at the project for lining of the storm water management swales was controlled by visual inspection. Prior to installation of the riprap, the material was stockpiled on-site and mechanically sorted to produce the acceptable gradation.

4.2 Geosynthetics

4.2.1 Geotextiles

In accordance with the project specifications, the geotextile manufacturer provided QA/QC roll certificates for each roll of material delivered to the project. All manufacturers' QA/QC roll certificates met the project specification requirements. The manufacturer's data is included in Appendix B.

Conformance testing was performed on the Type 1 (6 oz/sy) and Type 2 (16 oz/sy) geotextile for the project. Geotextile samples were taken for every 100,000 square feet of material that arrived at the site and tested for the following:

- Mass Per Unit Area
- Burst Strength
- Grab Strength
- Puncture Strength
- Trapezoidal Tear Strength

The results of conformance testing for the composite geonet indicated that the initial sample of the Type II geotextile did not meet the specified mass per unit area. Therefore, the material was not used in Type II applications and additional material was brought to the site. Conformance test results for the additional 16 oz/yd² material brought to the site and the Type I geotextile were found acceptable. All conformance test results can be found in Appendix B.

No quality assurance testing was performed on the geotextiles for the project other than a visual inspection of the condition of the material, material placement and material seaming.

4.2.2 Composite Geonet

The composite geonet manufacturer provided QA/QC roll certifications of the material properties for each roll of material delivered to the project. All manufacturers' QA/QC roll certificates met the project specification requirements. The manufacturer's data is included in Appendix B.

Conformance testing was performed on the composite geonet for the project. Composite geonet samples were taken for every 100,000 square feet of material that arrived at the site and tested for the following:

HDPE Geonet Core:

Mass per Unit Area (ASTM D5261)

Specific Gravity (ASTM D1505)

Thickness (ASTM D5199)

Melt Flow Index (ASTM D1238)

Geotextile:

Apparent Opening Size (ASTM D4751)

Mass per Unit Area (ASTM D5261)

Grab Strength (ASTM D4632)

Composite Geonet:

Ply Adhesion (ASTM D413)

Index Transmissivity (ASTM D4716)

The results of conformance testing for the composite geonet indicated that all composite geonet samples met the specification requirements.

Conformance test results for the composite geonet are included in Appendix B.

No quality assurance testing was performed on the composite geonet for the project other than a visual inspection of the condition of the material, material placement and material seaming.

Following the placement of the overlying barrier protection and topsoil layers, an additional visual inspection was performed on the composite geonet seams. This inspection included excavating through the soil layers in two locations on the southern slope and exposing approximately 200 linear feet of the seams. In all of the excavated areas the seams were found to be acceptable and no damage was caused to the composite geonet or geomembrane during the investigations activities. Following the acceptance of the seams, the barrier protection and topsoil layers were re-constructed, and the areas were seeded.

4.2.3 LLDPE Geomembrane

In accordance with the project specifications, the LLDPE geomembrane manufacturer provided QA/QC roll certificates for each roll of material delivered to the project. All manufacturers' QA/QC roll certificates met the project specification requirements. The manufacturer's data is included in Appendix B.

In addition to the manufacturer's data, conformance testing was performed on the LLDPE geomembrane for the project. Geomembrane samples were taken for every 100,000 square feet of material that arrived at the site and tested for:

- Thickness (ASTM D1593)
- Specific gravity (ASTM D1505)
- Carbon black content (ASTM D1603)
- Carbon black dispersion (ASTM D3015)
- Tensile properties (ASTM D638).

The results of this testing indicated that LLDPE geomembrane met the specification requirements. All conformance test results for the LLDPE geomembrane are included in Appendix B.

Geomembrane quality assurance testing included performing trial seams and non-destructive seam testing. In addition, destructive testing was performed for each 500 lineal feet of seam constructed.

At the start of each seaming session (in both the morning and the afternoon) a trial seam was constructed and tested for peel adhesion as well as shear strength to ensure that the equipment was operating at the correct temperature and rate to produce acceptable seam results. Trial seams were performed for each seaming machine and each operator. If trial seam results were found to be unacceptable, the operator adjusted the machine's rate and temperature until acceptable seam results were obtained. Trial seam test results have been included in Appendix B.

Non-destructive testing of the seams was performed by either an air pressure test on the double wedge welded seams or a vacuum box test on all other seams and repairs. Air pressure testing consisted of pressurizing the air channel of each seam to a minimum of 25 psi and monitoring the pressure over 3 minutes. The test was considered passing if the pressure drop over three minutes was less than 3 psi. If tests did not initially pass, the seam was visually

inspected for leaks using a soapy water solution when necessary. Typically leaks were found around the gauge needle at the ends of seams. Repairs were made and the seam was re-tested until acceptable results were achieved. Where the air pressure test could not be conducted, vacuum box testing was performed. Vacuum box testing consisted of wetting the seam with soapy water, placing a vacuum box over the seam, creating a vacuum to a minimum 5 psi, and monitoring the seam for air bubbles. If an air bubble was detected, the area was marked and later repaired and re-tested until acceptable results were achieved. Non-destructive testing logs have been included in Appendix B.

Destructive testing of the seams was performed by cutting out a 3-foot long section of the seam for every 500 lineal feet of seam constructed. These samples were cut into thirds with one sample sent to an independent laboratory, one given to the Contractor and one given to the Owner. The samples that were sent to the laboratory were tested for shear strength and peel adhesion. Samples DS-39, DS-71, DS-79, DS-88, DS-122, DS-122A, DS-130, DS-130, DS-130B, DS-131, DS-132, DS-134, DS-135, DS-135A, DS-142, DS-151, and DS-156 did not meet the project requirements for peel adhesion. In all of the failure cases during the peel tests the film tear bond was not established. Additional samples were taken from the seams at the specified ten-foot separation on both sides of the failure and sent to an independent laboratory. Ultimately, acceptable test results were obtained from each seam that contained a destructive sample failure, and the area between the additional samples was repaired using an extrusion welder to weld a "cap strip" and nondestructively tested with a vacuum box apparatus. Destructive sample testing logs have been included in Appendix B.

The LLDPE geomembrane panel layout, location of repairs and destructive samples are shown on the geomembrane as-built drawing (Appendix B).

CORTLAND COUNTY LANDFILL REMEDIAL ACTION LANDFILL CLOSURE

TOWNLINE ROAD CORTLAND COUNTY, NEW YORK

APPENDIX A SOIL TEST RESULTS

JUNE, 2002

290 Elwood Davis Road Box 3107 Syracuse, New York 13220

en en en					Ų M						Market 150
											and a consen
											A CONTRACTOR
											All schools were
											happanet Conference of a
											4
											outsign errors
											100
											y.
											1189
											Ţ,
											ا د اعمال
											i.
											i Hili
											.+0 [
ng Albai	4.51 2384 	e più strophi i si L		ala di Kabupatèn Salah Managaran		er en de de est	v	v of state	1 H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	general de la completação	-

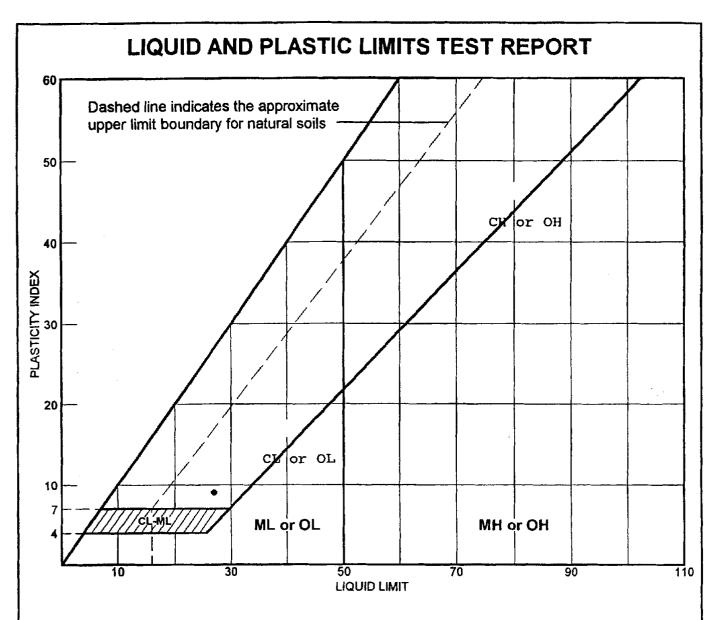
Appendix A Soil Test Results

Table of Contents

Section 1.0	Common Fill Test Results				
	A. Common Fill Material Quality Control Testing				
	B. Common Fill Material Quality Assurance Testing				
Section 2.0	Select Fill Material Test Results				
	A. Type B Select Fill Test Results				
	B. Type D Select Fill Rest Results				
Section 3.0	Granular Fill Prequalification Test Results				
Section 4.0	Cover Soil Thickness Verification Results				
	A. In-Place Layer Thickness				
	B. Final Layer Elevation				
Section 5.0	Topsoil Pregualifiaction Test Results				

Appendix A

Section: 1.0

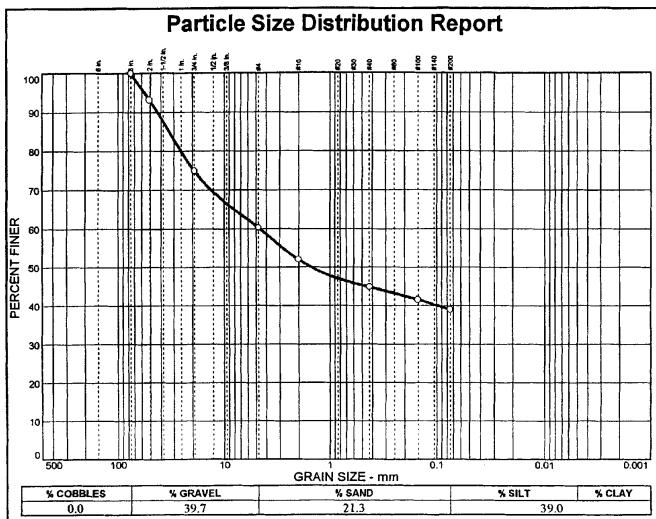

Common Fill Material Test Results

Appendix A
Section: 1.A
Common Fill Material
Quality Control Testing

COMMON FILL (SECTION 02255) TEST RESULTS SUMMARY

Cortland County Landfill Remedial Action Lanfill Closure 331.035

SAMPLE	DATE	CUMULATIVE	A	TTERBER	G	GRAIN SIZE ANALYSIS		MODIFIED PROCTOR	OPTIMUM MOISTURE
NO.	SAMPLED	VOLUME (cy)	LL	LIMITS PL	PJ	%PSG 6"	%PSG 200	(pcf)	(%)
TEST METHO	 D		D4318	D4318	D4318	D422	D422	D1557	
SAMPLE FRE		>	5,000 cy	5,000 су	5,000 cy	5,000 cy	5,000 cy	5,000 cy	5,000 cy
SPECIFICATI	ONS (8" lifts)	─	NA	NA	NA	100	25 (min)	NA	NA
209,CF-2	5/3/01	Prequalification / 5000	27	18	9	100	39	139.3	7.5
217, CF-3	5/11/01	10,000	28	16	12	100	43.6	136.3	8.1
225, CF-4	5/14/01	15,000	27	16	11	100	40.2	134.3	7.7
242,CF-5	5/17/01	20,000	28	16	12	100	42.7	138.5	7.0
252,CF-6	5/25/01	25,000	24	17	7	100	55.9	140.2	8.5
256,CF-7	6/5/01	30,000	25	17	8	100	40.4	140	6.9
266,CF-8	6/7/01	35,000	25	18_	7	100	48.2	136.4	7.0
267,CF-9	6/7/01	40,000	24	17	7	100	44.3	135.7	7.4
285,CF-10	6/18/01	45,000	28	16	12	100	43.6	136.3	8.1
298,CF-11	6/30/01	50,000	12	NP	NP	100	51	136.8	8.4
325,CF-12	7/5/01	55,000	29	21	8	100	45.2	132.4	9.2
326,CF-13	7/5/01	60,000	30	22	8	100	49.5	128.9	8.5
373,CF	7/27/01	65,000	28	20	8	100	45.2	134.2	8.1
352,CF	7/18/01	70,000	24	17	7	100	43.7	137.4	7.0
374,CF	7/27/01	75,000	27	20	7	100	47.4	133.3	8.0
378,CF	8/1/01	80,000	23	16	7	100	46.5	138.4	7.6
415	8/15/01	85,000	25	17	8	100	43.2	133.5	7.2
438	8/28/01	90,000	24	18	6	100	45	130.1	8.9
439	8/29/01	95,000	23	18	5_	100	47.2	131.2	8.3
452	9/7/01	100,000	24	17	7	100	46	132.4	8.8
453	9/7/01	105,000	25	18	7	100	42.9	135.7	8.1
454	9/7/01	110,000	23	17	6	100	43.9	136	7.9


	SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS	
•	Common Fill	209, CF-2			18	27	9	GC	

SJB SERVICES, INC. Client: Marcy Excavation

Project: Cortland Landfill Cover

Project No.: 2009053

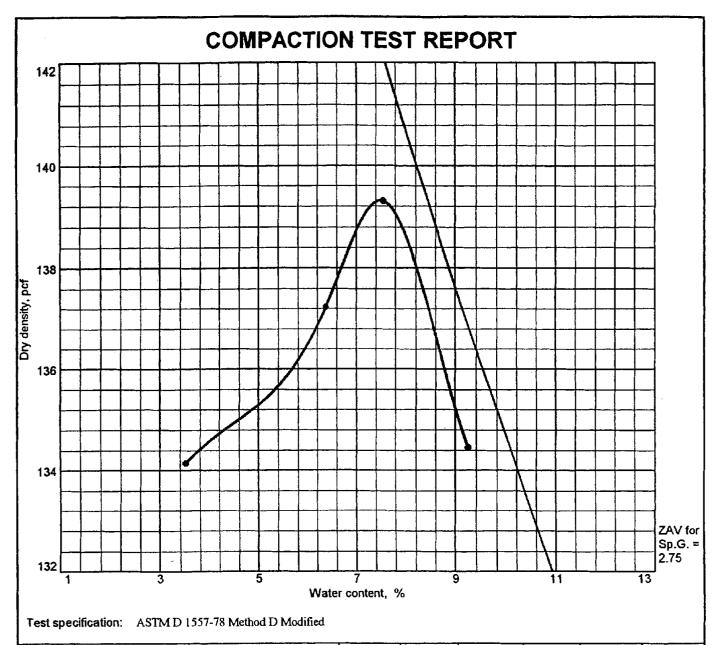
'late

% COBBLES	% GRAVEL	% SAND	% SILT	% CLAY
0.0	39.7	21.3	39.0	
<u> </u>			· · · · · · · · · · · · · · · · · · ·	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X≃NO)
3 in. 2 in. .75 in. #4 #10 #40 #100 #200	100.0 93.2 74.9 60.3 52.0 44.8 41.5 39.0		(2.89)

Clayey gravel with sand PL= 18	
PL= 18	
PL= 18	
Coefficients D ₈₅ = 33.1 D ₆₀ = 4.60 D ₅₀ =	
D ₈₅ = 33.1 D ₆₀ = 4.60 D ₅₀ =	
D ₈₅ = 33.1 D ₆₀ = 4.60 D ₅₀ = D ₁₀ = D ₁₀ =	
~05	1.52
c _u = c _c =	
Classification	
USCS= GC AASHTO=	
<u>Remarks</u>	
CF-2	

Sample No.: 209, CF-2 Location: Pile #5


Source of Sample: Common Fill

Date: 5/4/01

Elev./Depth:

SJB SERVICES, INC. Project No: 2009053

Client: Marcy Excavation Project: Cortland Landfill Cover

Elev/	Classi	fication	Nat.	Sp.G.	LL	Pi	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	-	Pi	3/4 in.	No.200
	GC				27	a	25.1	39.0
1	300		<u> </u>		21		25.1	37.0

TEST RESULTS

Maximum dry density = 139.3 pcf

Optimum moisture = 7.5 %

Project No. 2009053 Client: Marcy Excavation
Project: Cortland Landfill Cover

Location: Pile #5

COMPACTION TEST REPORT

SJB SERVICES, INC.

MATERIAL DESCRIPTION

Clayey gravel with sand

Remarks:

Project No. 2009053 Client: Marcy Excavation
Project: Cortland Landfill Cover

Project: Cortland Landfill Cover

Plate

PERMEABILITY TEST REPORT

TEST DATA:

Specimen Height (cm): 11.81 Specimen Diameter (cm): 10.16 Dry Unit Weight (pcf): 124.0 Moisture Before Test (%): 8.4

Moisture After Test (%): 11.6 Run Number: 1 ●

Cell Pressure (psi): 90.0

Sat. Pressure (psi): 80.0 Diff. Head (psi): 4.8

Perm. (cm/sec): 4.89 x 10^-8

SAMPLE DATA:

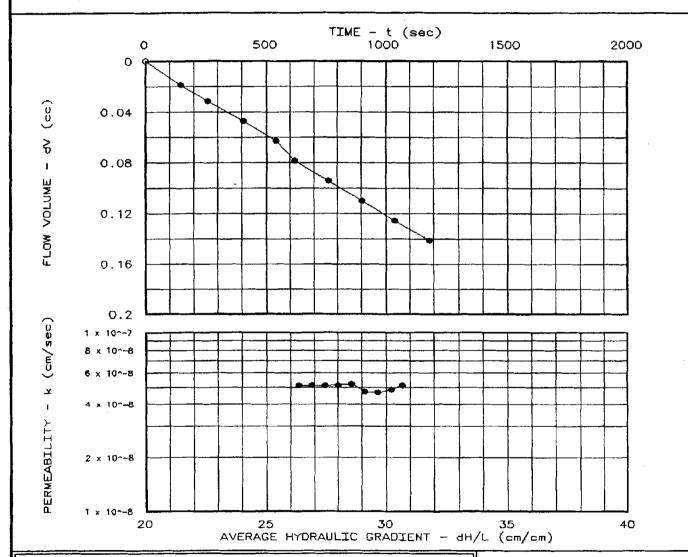
Sample Identification: Common Fill, On

site, Pile # 5.

Visual Description: Clayey gravel with sand

Remarks:

2 4


Maximum Dry Density (pcf): 139.3 Optimum Moisture Content (%): 7.5

ASTM(1557)

Percent Compaction: 89.0%

Permeameter type: Flexible Wall

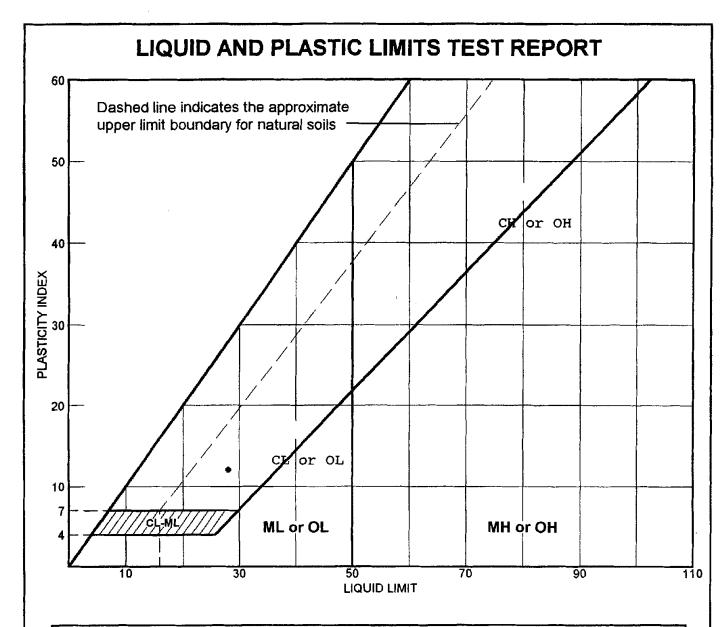
Sample type: Remolded

Project: Cortland Landfill Cover

Location: Cortlandville, NY

Date: 5/9/01

PERMEABILITY TEST REPORT

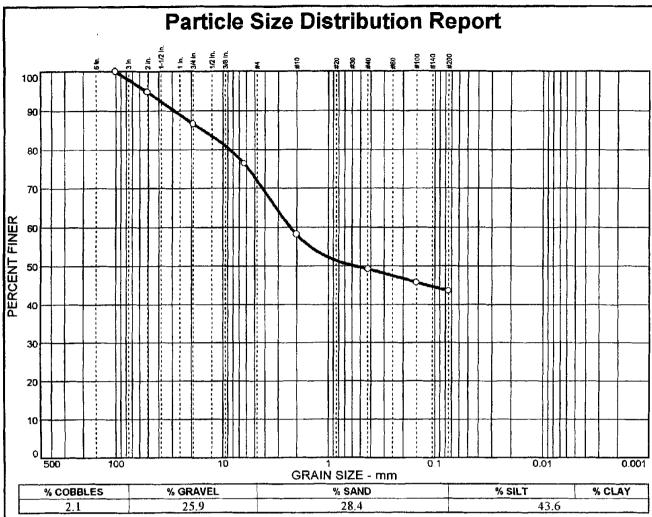

SJB SERVICES, INC.

Project No.: 2009053

File No.: 209 Lab No.: 209

Tested by: AM Checked by: TH

Test: CV - Constant volume


	SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS	
•	Common Fill	217, CF-3			16	28	12	SC	

SJB SERVICES, INC. Client: Marcy Excavation

Project: Cortland Landfill Cover

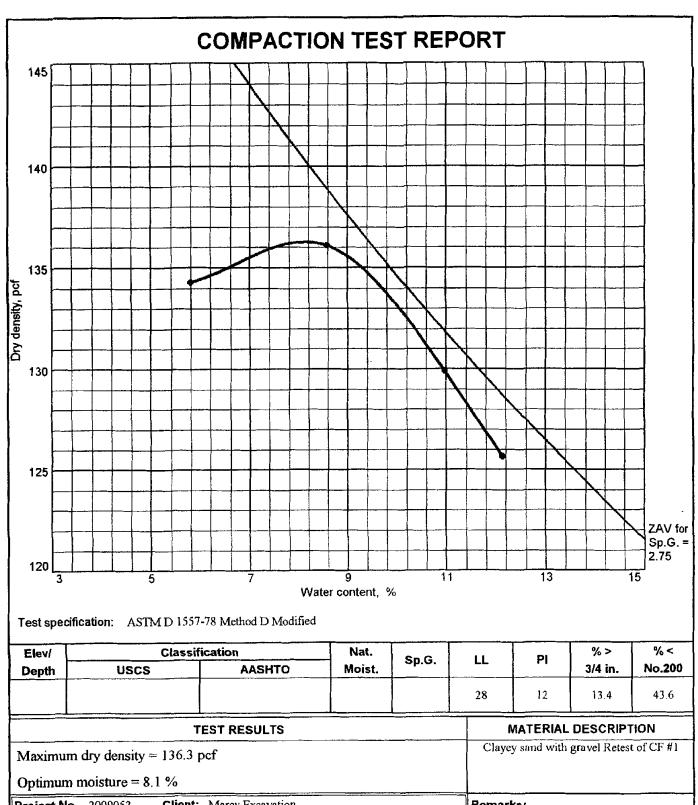
Project No.: 2009053

<u>Plate</u>

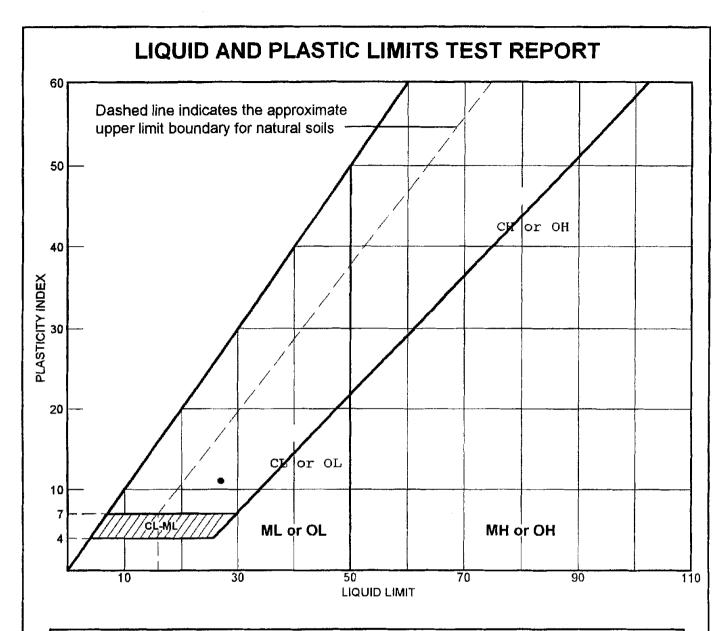
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4 in. 2 in. .75 in. .25 in. #10 #100 #200	100.0 94.8 86.6 76.4 58.2 49.2 45.8 43.6		

Clayey sand with	Soil Description Clayey sand with gravel Retest of CF #1								
PL= 16	Atterberg Limit	<u>s</u> Pl= 12							
D ₈₅ = 15.5 D ₃₀ = C _u =	Coefficients D60= 2.28 D15= Cc=	D ₅₀ = 0.565 D ₁₀ =							
USCS= SC	<u>Classification</u> AASH								
	Remarks								

Sample No.: 217, CF-3 Location: Pile #3 Source of Sample: Common Fill


Date: 5/11/01

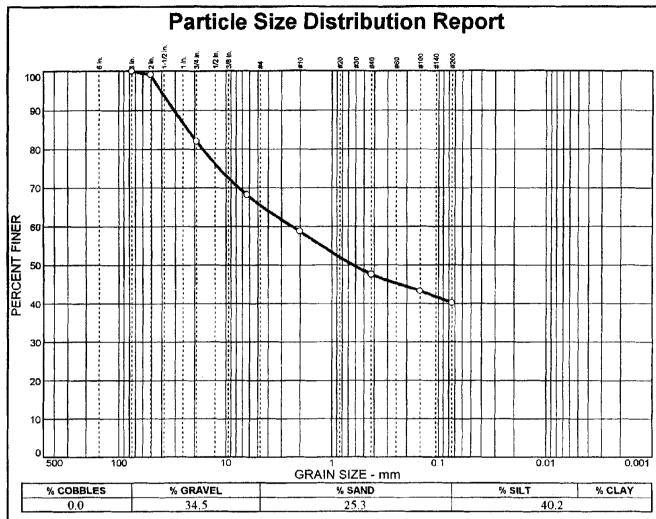
Elev./Depth:


SJB SERVICES, INC. Client: Marcy Excavation

Project: Cortland Landfill Cover

Project No: 2009053

TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 136.3 pcf	Clayey sand with gravel Retest of CF #1
Optimum moisture = 8.1 %	
Project No. 2009053 Client: Marcy Excavation	Remarks:
Project: Cortland Landfill Cover	
● Location: Pile #3	
COMPACTION TEST REPORT	
SJB SERVICES, INC.	Plate


	SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS	
•	Common Fill	225, CF-4			16	27	11	GC	

LIQUID AND PLASTIC LIMITS TEST REPORT | Client: Marcy Excavation

SJB SERVICES, INC.

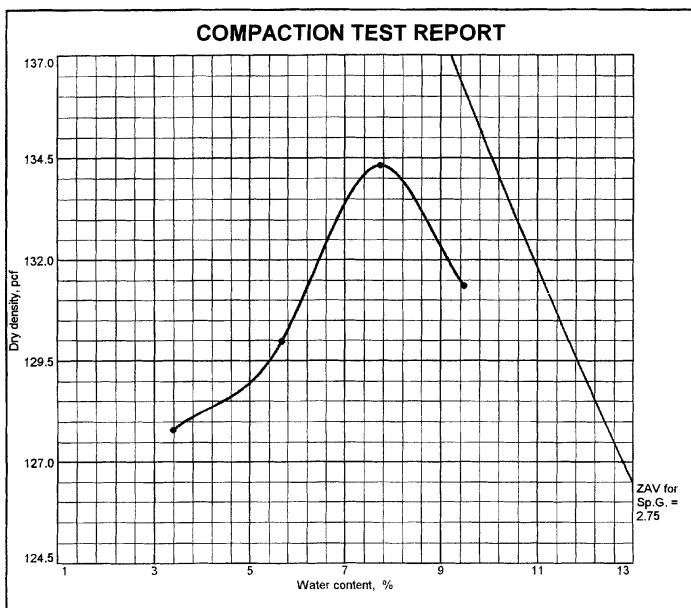
Project: Cortland Landfill Cover

Project No.: 2009053

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 2 in. .75 in. .25 in. #10 #100 #200	100.0 99.2 82.1 68.2 58.7 47.6 43.3 40.2		

	Soil Description	
Clayey gravel wi Common Fill	th sand	
PL= 16	Atterberg Limits	PI= 11
D85= 22.8 D30= Cu=	Coefficients D60= 2.37 D15= Cc=	D ₅₀ = 0.633 D ₁₀ =
USCS= GC	Classification AASHT	·O=
	<u>Remarks</u>	

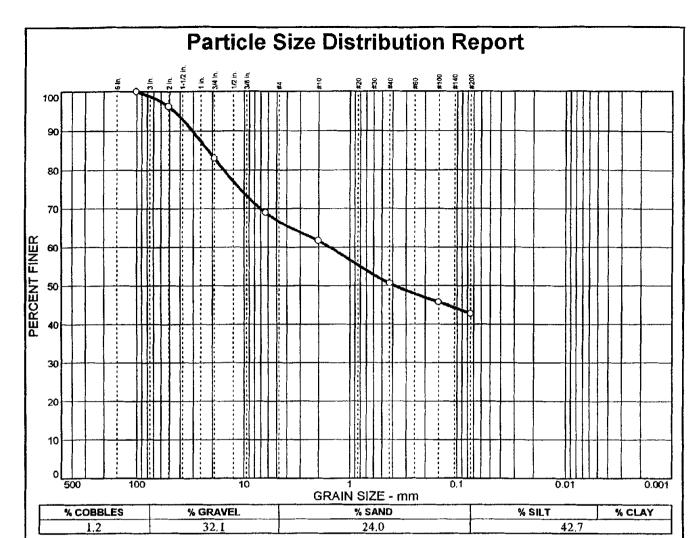
Sample No.: 225, CF-4 Location: 5/10/01, S-1 Source of Sample: Common Fill


Date: 5/14/01

Elev./Depth:

SJB SERVICES, INC. Client: Marcy Excavation

Project: Cortland Landfill Cover


Project No: 2009053

Test specification: ASTM D 1557-78 Method D Modified

Elev/	Classification		Nat.	5-0		Б	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL.	Pi	3/4 in.	No.200
	GC				27	11	17.9	40.2

TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 134.3 pcf	Clayey gravel with sand Common Fill
Optimum moisture = 7.7 %	
Project No. 2009053 Client: Marcy Excavation	Remarks:
Project: Cortland Landfill Cover	
• Location: 5/10/01, S-1	
COMPACTION TEST REPORT	
SJB SERVICES, INC.	Plate

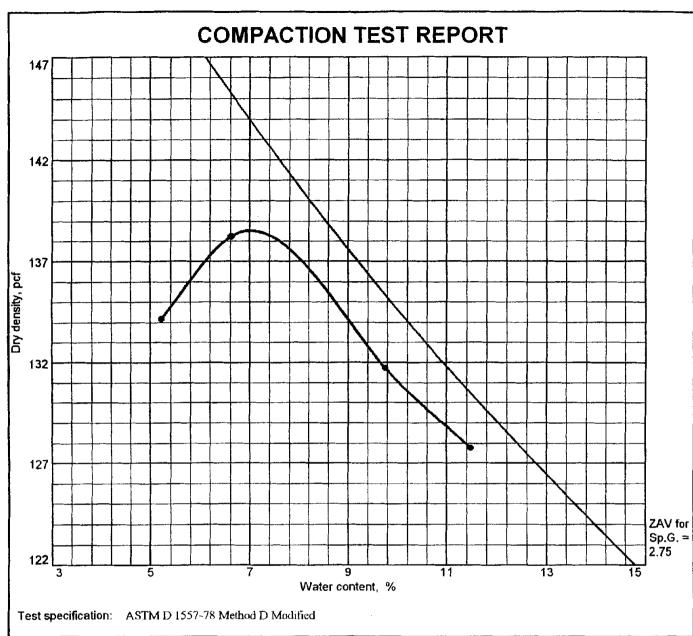
SIEVE	PERCENT FINER	SPEC.* PERCENT	PASS? (X=NO)
4 in. 2 in. 75 in. 25 in. #10 #40 #100 #200	100.0 96.1 83.0 69.0 61.6 50.6 45.8 42.7		

	Soil Description)
Common Fill, 51 Clayey gravel wi		
PL= 16	Atterberg Limits	<u>s</u> Pl≃ 12
D ₈₅ = 21.7 D ₃₀ = C _u =	Coefficients D ₆₀ = 1.57 D ₁₅ = C _c =	D ₅₀ = 0.382 D ₁₀ =
USCS= GC	Classification AASH	TO≃
	<u>Remarks</u>	

Sample No.: 242, CF-5

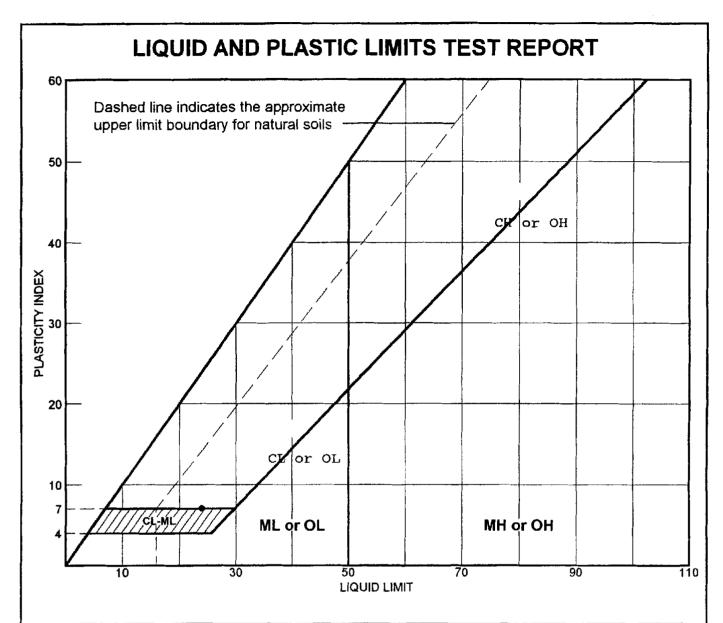
Source of Sample: Common Fill

Date: 5/18/01


Location: Pile 5, Sampled on 5/17/01

Elev./Depth:

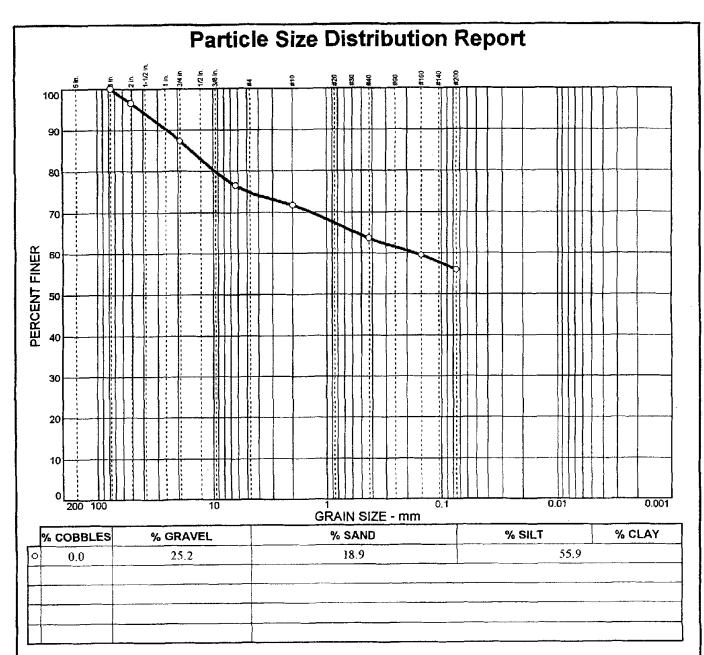
SJB SERVICES, INC. Client: Marcy Excavation


Project: Cortland Landfill Cover

Project No: 2009053

Elev/	Classification		Nat.	E - C		DI DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	3/4 in.	No.200
	GC				28	12	33.3	42.7
ļ	1						55.5]

TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 138.5 pcf	Common Fill, 5K Clayey gravel with sand
Optimum moisture = 7.0 %	
Project No. 2009053 Client: Marcy Excavation	Remarks:
Project: Cortland Landfill Cover	
♦ Location: Pile 5, Sampled on 5/17/01	
COMPACTION TEST REPORT	
SJB SERVICES, INC.	Plate

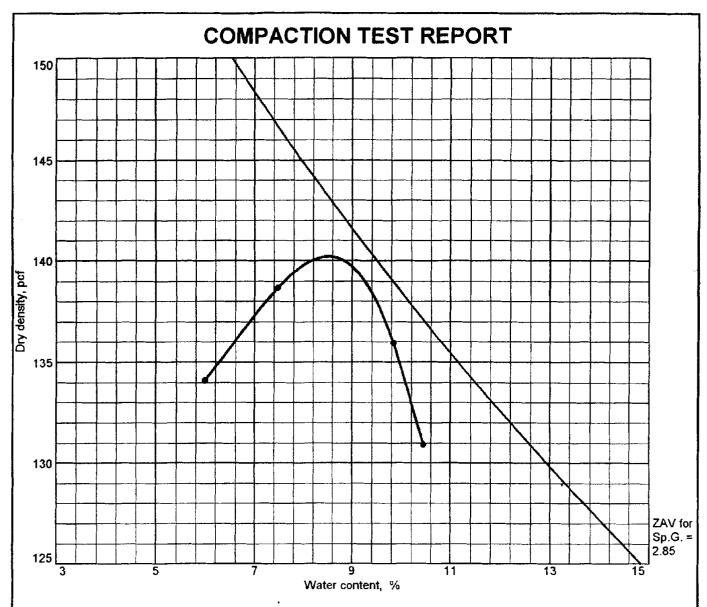


	SOIL DATA									
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS		
•	Common Fill	252, CF #6	Loc, B-74		17	24	7	CL-MIL		

SJB SERVICES, INC. Client: Marcy Excavation

Project: Cortland Landfill Cover

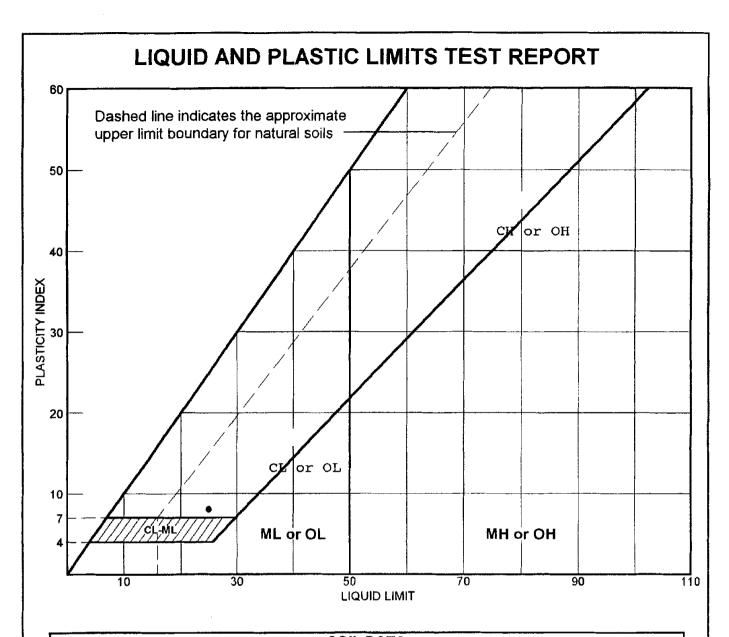
Project No.: 2009053


SOIL DATA						
SYMBOL SOURCE SAMPLE NO.			DEPTH (ft.)	DESCRIPTION	uscs	
0	Common Fill	252, CF #6	Loc. B-74	Common Fill, Gravelly silty clay with sand	CL-ML	
				B-74, Sampled on 5/25/01		

Particle Size Distribution Report

SJB SERVICES, INC. Client: Marcy Excavation

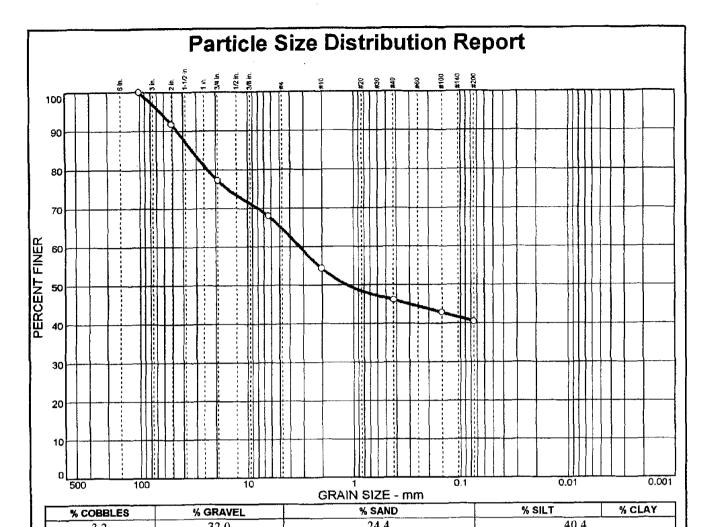
Project: Cortland Landfill Cover


Project No.: 2009053

Test specification: ASTM D 1557-78 Method D Modified

Elev/ Classification	ication	Nat.	Sp.G.		DI	%>	% <	
Depth	USCS	AASHTO	Moist.	5p.G.	LL	PI	3/4 in.	No.200
	CL-ML				24	7	25.2	55.9

TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 140.2 pcf	Common Fill, Gravelly silty clay with sand B-74, Sampled on 5/25/01
Optimum moisture = 8.5 %	
Project No. 2009053 Client: Marcy Excavation	Remarks:
Project: Cortland Landfill Cover	
● Location: 5-10K cy, B-74	
COMPACTION TEST REPORT	
SJB SERVICES, INC.	Plate



	SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS	
•	Common Fill	256			17	25	8	GC	

SJB SERVICES, INC. Client: Marcy Excavation

Project: Cortland Landfill Cover

Project No.: 2009053

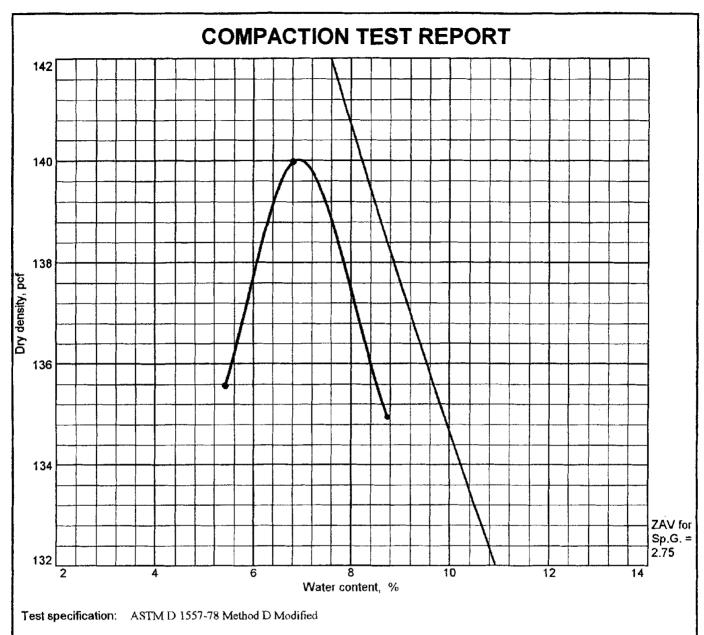
IEVE	PERCENT	SPEC."	PASS?
SIZE	FINER	PERCENT	(X≂NO)
4 in. 2 in. 5 in. 5 in. #10 #100 #200	100.0 91.7 77.2 68.0 54.3 46.1 42.8 40.4		

<u> </u>	40.4				
Conumon Fill, Sa Clayey gravel wi					
PL = 17	Atterberg Limits LL= 25	PI= 8			
D85= 32.8 D30= C _u =	Coefficients D60= 3.24 D15= C _c =	D ₅₀ ≂ 1.16 D ₁₀ =			
USCS= GC	Classification AASHT	D=			
F.M.=0.80	Remarks				

Sample No.: 256

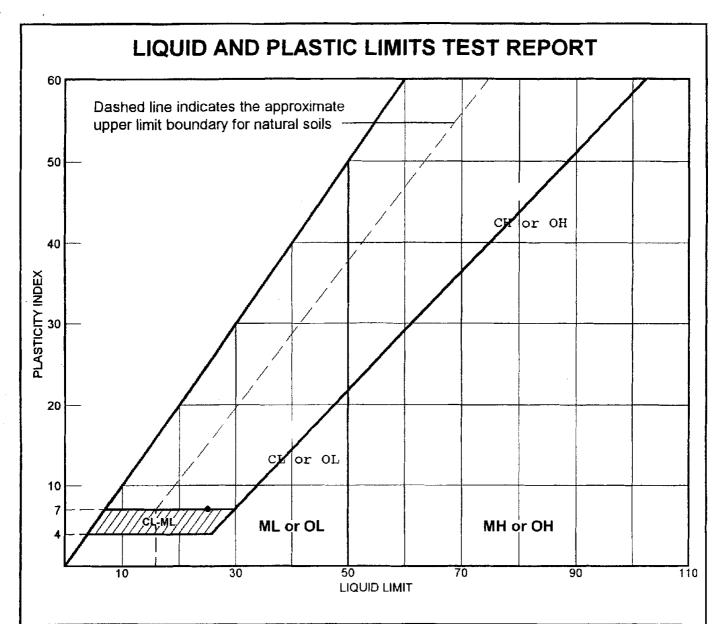
Source of Sample: Common Fill

Date: 6/5/01


Location: CF-7, BGV 97, 15K

Elev./Depth:

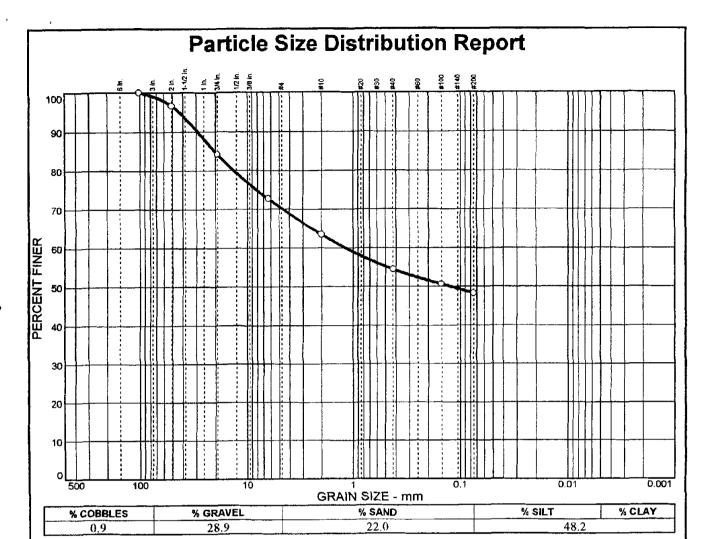
SJB SERVICES, INC. Client: Marcy Excavation


Project: Cortland Landfill Cover

Project No: 2009053

Elev/	Classification		Nat.	Nat.	Nat. S-C		DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	3/4 in.	No.200	
	.GC				25	8	22.8	40.4	

TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 140.0 pcf	Common Fill, Sampled 6/1/01 Clayey gravel with sand
Optimum moisture = 6.9 %	
Project No. 2009053 Client: Marcy Excavation	Remarks:
Project: Cortland Landfill Cover	
• Location: CF-7, BGV 97, 15K	
COMPACTION TEST REPORT	
SJB SERVICES, INC.	Plate


SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ft.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs
•	Common Fill	266, CF-8			18	25	7	GC-GM

SJB SERVICES, INC. Client: Marcy Excavation

Project: Cortland Landfill Cover

Project No.: 2009053

Piate

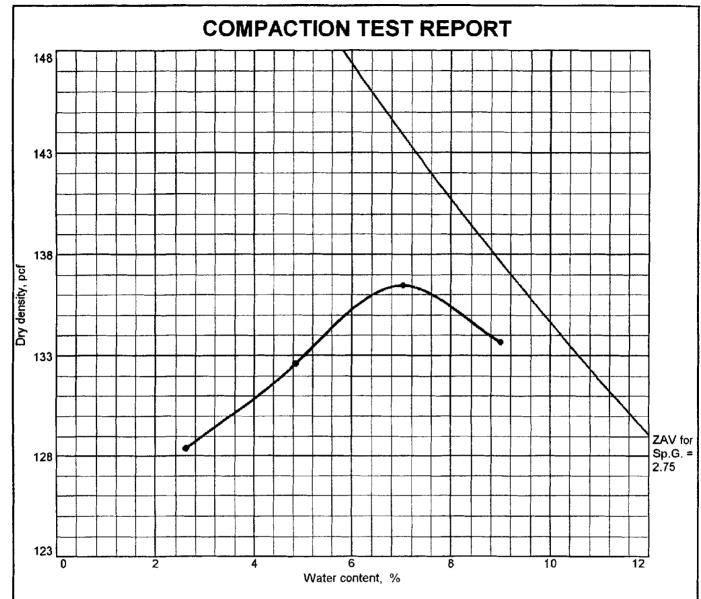
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4 in. 2 in. .75 in. .25 in. #10 #40 #100 #200	100.0 96.7 84.2 72.7 63.5 54.5 50.6 48.2		

	Soil Description Common Fill CF-8, @ AV-10, Sampled 6-6-01 Silty clayey gravel with sand.					
PL= 18	Atterberg Limits LL= 25	Pi= 7				
D ₈₅ = 20.2 D ₃₀ = C _u =	Coefficients D60= 1.19 D15= C _c =	D ₅₀ = 0.126 D ₁₀ =				
USCS≈ GC-G	Classification AASHT	O=				
F.M.=0.65	Remarks					
	_ .					

Sample No.: 266, CF-8

Location: AV-10, 20K

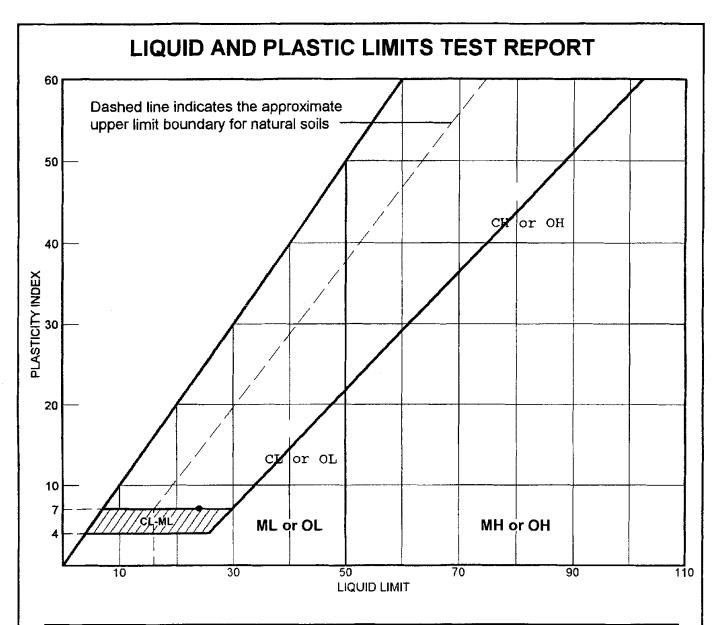
Source of Sample: Common Fill


Date: 6/7/01

Elev./Depth:

SJB SERVICES, INC. Client: Marcy Excavation

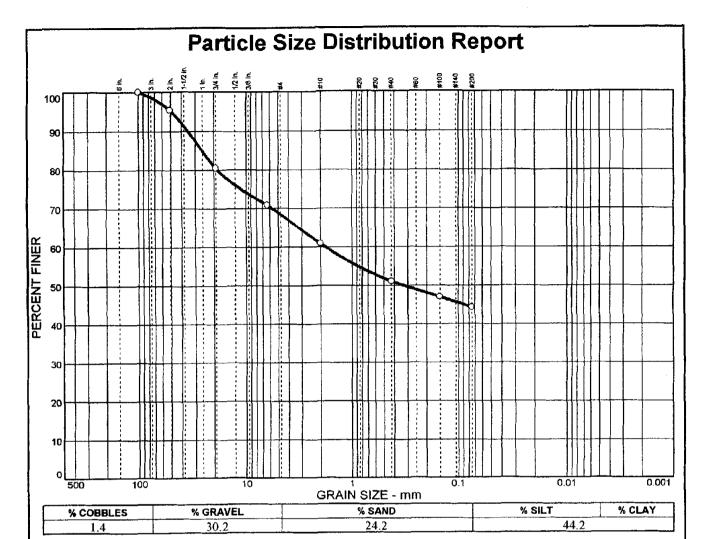
Project: Cortland Landfill Cover


Project No: 2009053

Test specification: ASTM D 1557-78 Method C Modified

Elev/	Classi	fication	Nat.		1.1	DI.	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	3/4 in.	No.200
	GC-GM				25	7	15.8	48.2

TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 136.4 pcf	Common Fill CF-8, @ AV-10, Sampled 6-6-
Optimum moisture = 7.0 %	Silty clayey gravel with sand.
Project No. 2009053 Client: Marcy Excavation	Remarks:
Project: Cortland Landfill Cover	Common Fill CF-8, @ AV-10, Sampled 6-6-01.
• Location: AV-10, 20K	
COMPACTION TEST REPORT	
SJB SERVICES, INC.	Plate



	SOIL DATA							
SYMBOL	SOURCE	SAMPLE NO.	DEPTH (ff.)	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
•	Common Fill	267, CF-9			17	24	7	GC-GM

SJB SERVICES, INC. Client: Marcy Excavation

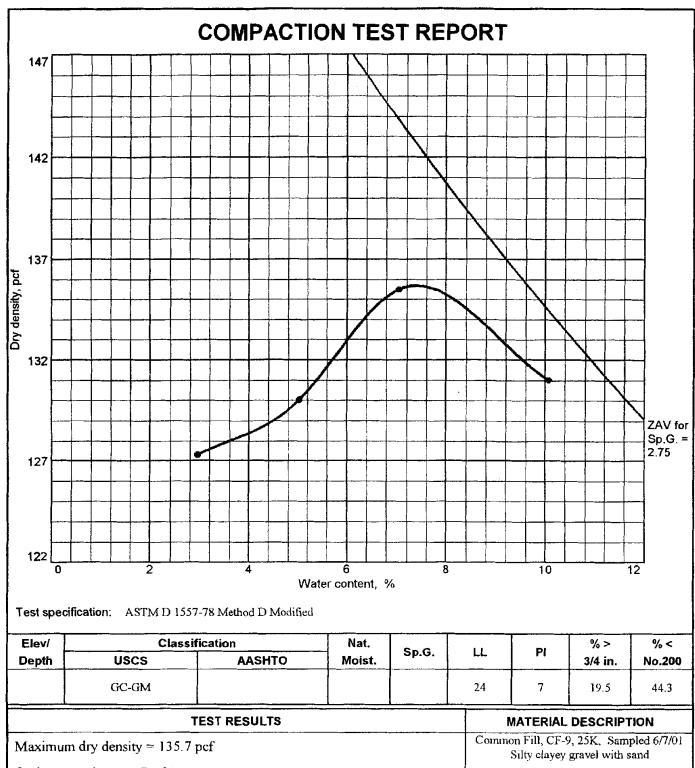
Project: Cortland Landfill Cover

Project No.: 2009053

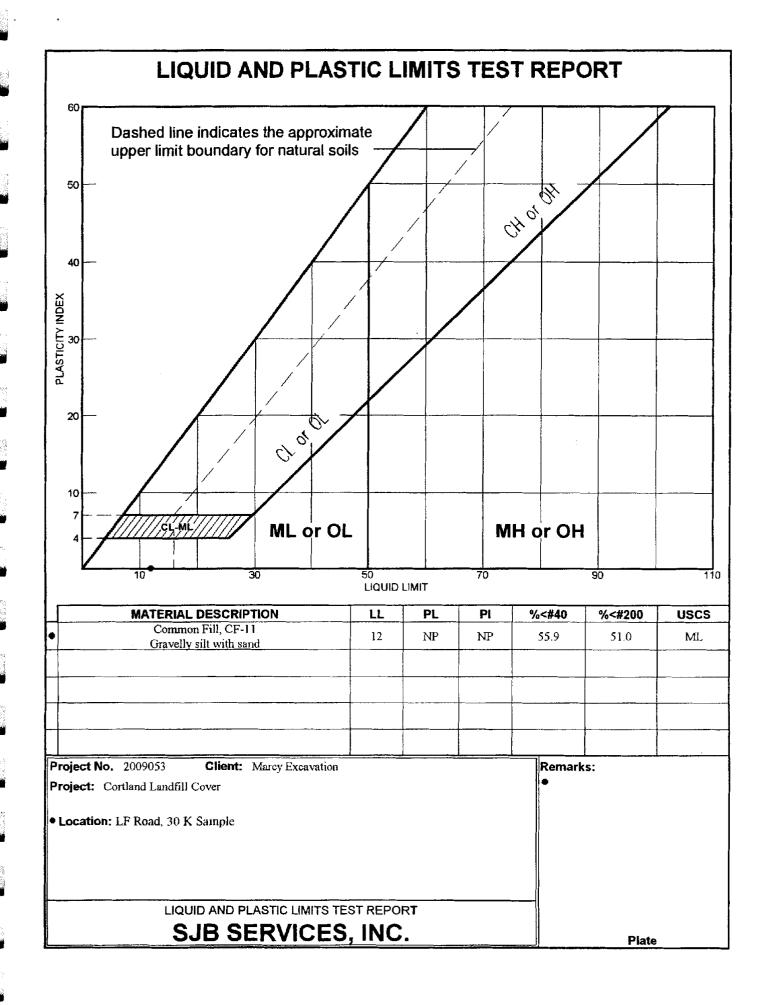
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4 in. 2 in.	100.0 95.4		
.75 in.	80.5		
.25 in. #10	70.8 60.9		
#40	51.1		
#100	47.0		
#200	44.3		
}			
1			
1			
		1	<u> </u>

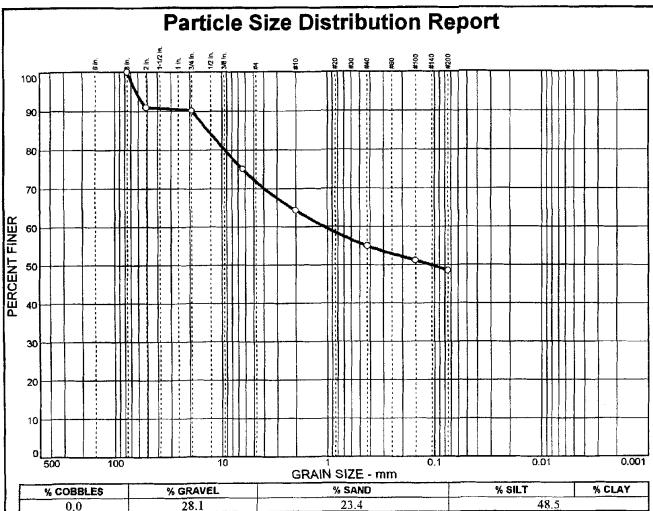
	Soil Description Common Fill, CF-9, 25K, Sampled 6/7/01 Silty clayey gravel with sand					
PL= 17	Atterberg Limits	<u>s</u> Pi= 7				
D ₈₅ = 25.6 D ₃₀ = C _u =	<u>Coefficients</u> D ₆₀ = 1.79 D ₁₅ = C _c =	D ₅₀ = 0.329 D ₁₀ =				
USCS= GC-C	Classification AASH	TO=				
F.M.=0.73	<u>Remarks</u>					

Sample No.: 267, CF-9 Location: 25K Source of Sample: Common Fill


Date: 6/11/01

Elev./Depth:


SJB SERVICES, INC. Client: Marcy Excavation


Project: Cortland Landfill Cover

Project No: 2009053

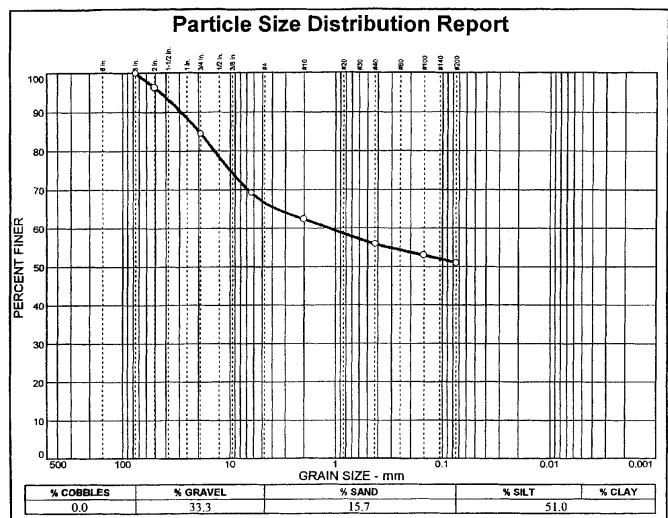
TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 135.7 pcf	Common Fill, CF-9, 25K, Sampled 6/7/01 Silty clayey gravel with sand
Optimum moisture = 7.4 %	
Project No. 2009053 Client: Marcy Excavation	Remarks:
Project: Cortland Landfill Cover	
Location: 25K	
COMPACTION TEST REPORT	
SJB SERVICES, INC.	Plate

SIEVE SIZE	PERCENT	SPEC.* PERCENT	PASS? (X=NO)
3 in. 2 in. 75 in. 25 in. #10 #40 #100 #200	100.0 90.9 90.1 75.1 64.3 54.9 51.1 48.5		

Common Fill, 1	Soil Description N. Garage #3 P	
PL=	Atterberg Limits	PI=
D ₈₅ = 13.4 D ₃₀ = C _u =	Coefficients D60= 1.09 D15= Cc=	D50= 0.111 D ₁₀ =
USCS= GC-G	Classification GM AASHT	O=
Performed Grain F.M.=0.59	Remarks n Size only.	

Sample No.: 285

Source of Sample: Common Fill


Date: 6/18/01

Location: CF-10, #3P

Elev./Depth:

SJB SERVICES, INC. Client: Marcy Excavation Project: Cortland Landfill Cover

Project No: 2009053

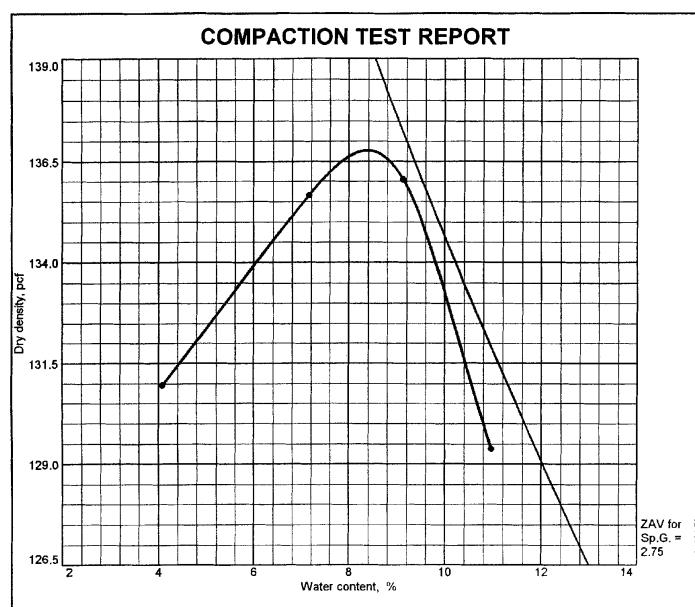
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	{X=NO}
3 in. 2 in. 75 in. 25 in. #10 #40 #100 #200	100.0 96.3 84.5 69.2 62.4 55.9 53.0 51.0		

Common Fill, C	Soil Description	<u>n</u>
Gravelly silt with	n sand	
PL= NP	Atterberg Limit	<u>s</u> PI= NP
D ₈₅ = 19.7 D ₃₀ = C _u =	Coefficients D ₆₀ = 1.15 D ₁₅ = C _c =	D ₅₀ ≠ D ₁₀ =
USCS= ML	Classification AASH	ITO=
	<u>Remarks</u>	

Sample No.: 298

Source of Sample: Common Fill

Date: 6/30/01


Location: LF Road, 30 K Sample

Elev./Depth:

SJB SERVICES, INC. Client: Marcy Excavation

Project: Cortland Landfill Cover

Project No: 2009053

Test specification: ASTM D 1557-78 Method D Modified

Elev/	Classif	ication	Nat.	6-6	Nat.	1.1	D.	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	3/4 in.	No.200	
	ML				12	NP	33.3	51.0	

TEST RESULTS

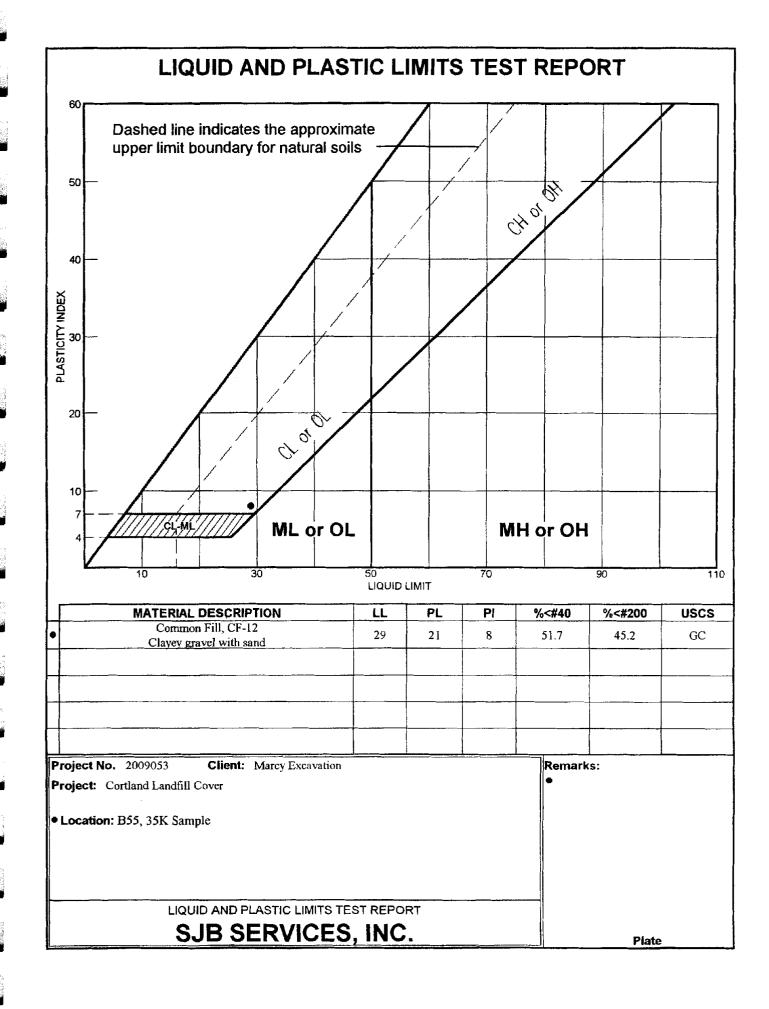
Maximum dry density = 136.8 pcf
Optimum moisture = 8.4 %

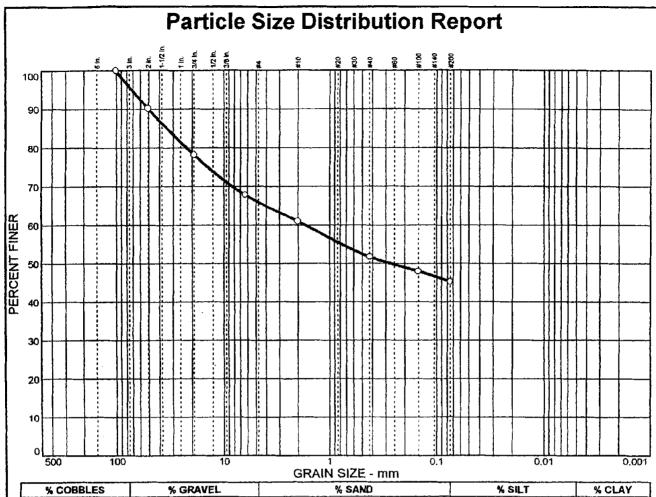
Project No. 2009053 Client: Marcy Excavation
Project: Cortland Landfill Cover

• Location: LF Road, 30 K Sample

COMPACTION TEST REPORT

SJB SERVICES, INC.


MATERIAL DESCRIPTION


Common Fill, CF-11
Gravelly silt with sand

Remarks:

Project No. 2009053 Client: Marcy Excavation

Remarks:

% COBBLES	% GRAVEL	% SAND	% SILT	% CLAY
4.1	30.0	20.7	45.2	

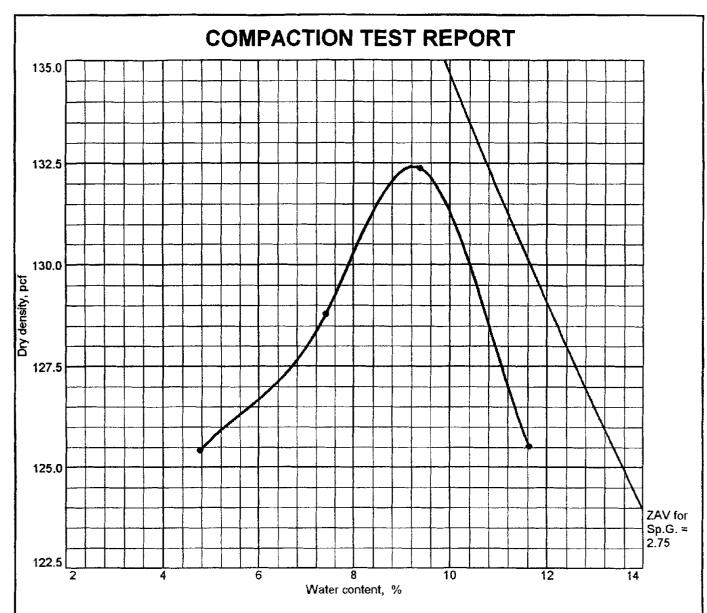
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4 in. 2 in. .75 in. .25 in. #10 #40 #100 #200	100.0 90.2 78.2 67.8 61.0 51.7 48.0 45.2		
<u> </u>	<u> </u>	<u> </u>	

	Soil Description	<u>1</u>
Common Fill, C	F-12	
Clayey gravel w	ith sand	
	Atterberg Limits	s
PL= 21	LL= 29	PI= 8
D ₈₅ = 34.0 D ₃₀ = C _u =	Coefficients D ₆₀ = 1.69 D ₁₅ = C _c =	D ₅₀ = 0.275 D ₁₀ =
USCS= GC	Classification AASH	TO=
	<u>Remarks</u>	

Sample No.: 325

Location: B55, 35K Sample

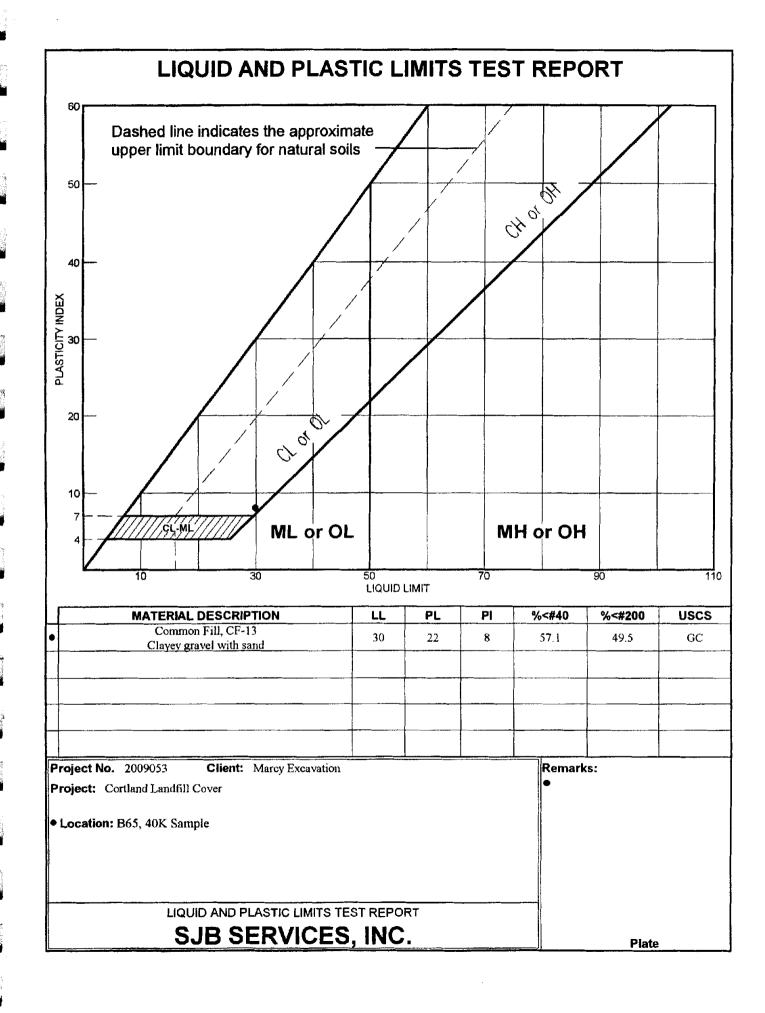
Source of Sample: Common Fill

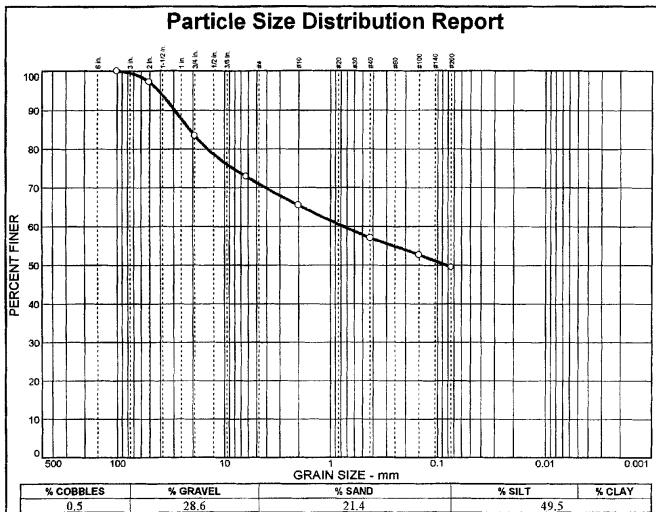

Date: 7/5/01

Elev./Depth:

SJB SERVICES, INC. Client: Marcy Excavation

Project: Cortland Landfill Cover


Project No: 2009053



Test specification: ASTM D 1557-78 Method D Modified

Elev/	Class	ification	Nat.	Nat.	<u> 1</u>		% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	3/4 in.	No.200
1	GC				29	8	21.8	45.2

TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 132.4 pcf	Common Fill, CF-12 Clayey gravel with sand
Optimum moisture = 9.2 %	
Project No. 2009053 Client: Marcy Excavation	Remarks:
Project: Cortland Landfill Cover	
• Location: B55, 35K Sample	8
COMPACTION TEST REPORT	
SJB SERVICES, INC.	

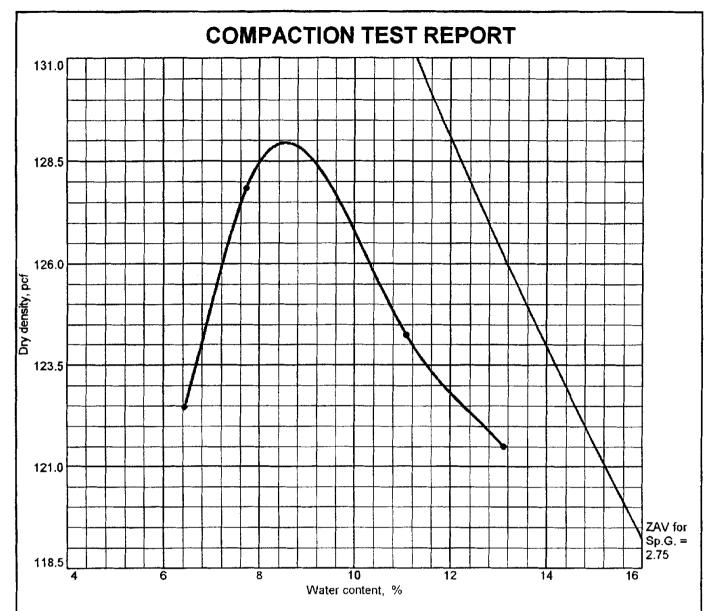
SIZE FINE	R PERCENT	1 00 000
SIZE FINE		(X=NO)
4 in. 100.0 2 in. 97 75 in. 83 25 in. 72 #10 65 #100 57. #100 52 #200 49	3 5 9 1 7	

21.4	······	47.7				
Soil Description						
Common Fill, CF-13						
Clayey gravel wit	th sand					
Atterberg Limits						
PL= 22	LL= 30	PI= 8				
	Coefficients					
D ₈₅ = 21.1	D ₆₀ = 0.763	D ₅₀ = 0.0833				
D30=	D ₁₅ =	D ₁₀ =				
D30= Cu=	Cc≟	10				
	Classification					
USCS= GC	AASHTO=					
	<u>Remarks</u>					

Sample No.: 326

Location: B65, 40K Sample

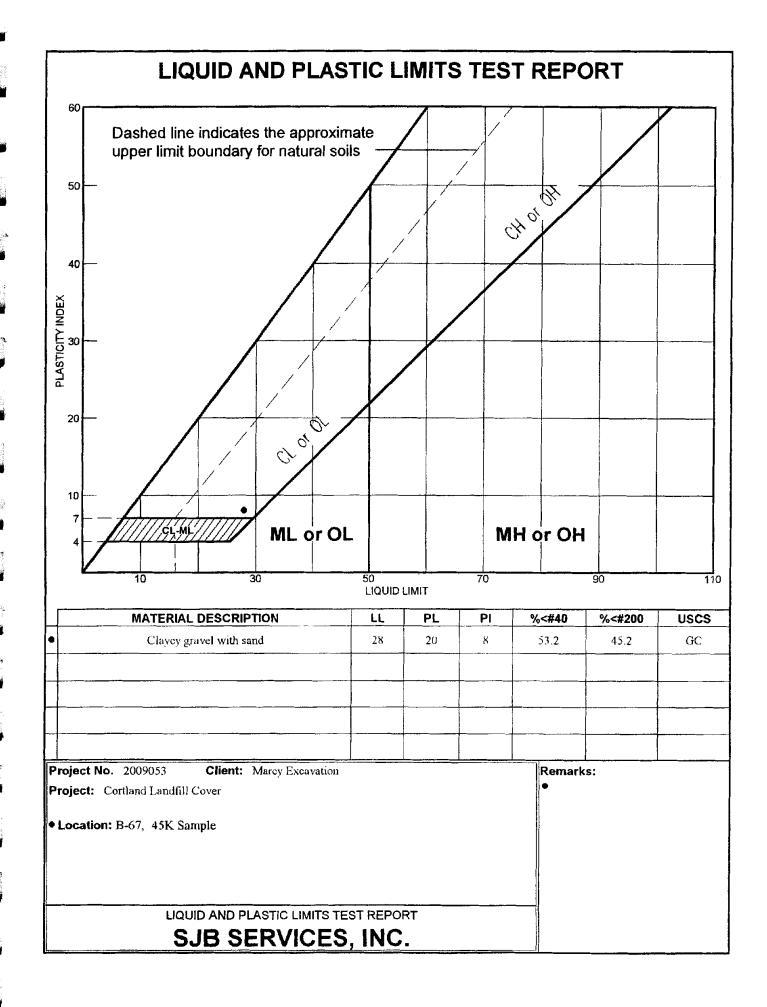
Source of Sample: Common Fill

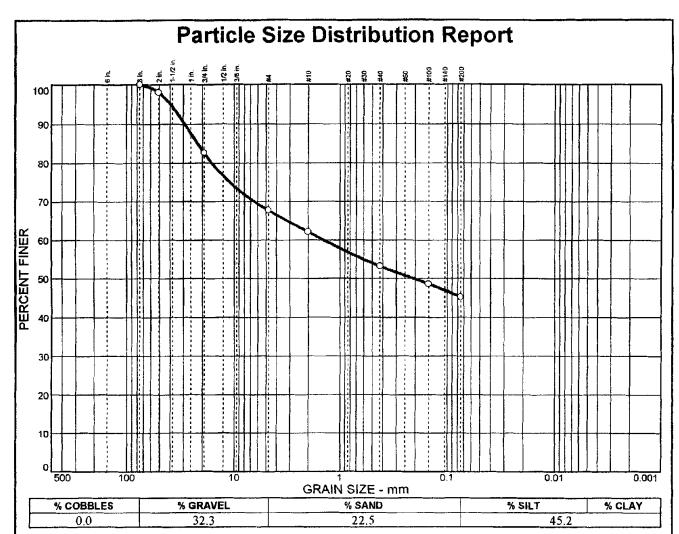

Date: 7/5/01

Elev./Depth:

SJB SERVICES, INC. Client: Marcy Excavation

Project: Cortland Landfill Cover


Project No: 2009053



Test specification: ASTM D 1557-78 Method D Modified

Elev/	Classification		Nat.	C= C		-	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	3/4 in.	No.200
	GC				30	8	16.5	49.5
-	GC				30	8	16.5	

TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 128.9 pcf	Common Fill, CF-13 Clayey gravel with sand
Optimum moisture = 8.5 %	
Project No. 2009053 Client: Marcy Excavation	Remarks:
Project: Cortland Landfill Cover	
● Location: B65, 40K Sample	
COMPACTION TEST REPORT	
SJB SERVICES, INC.	Plate

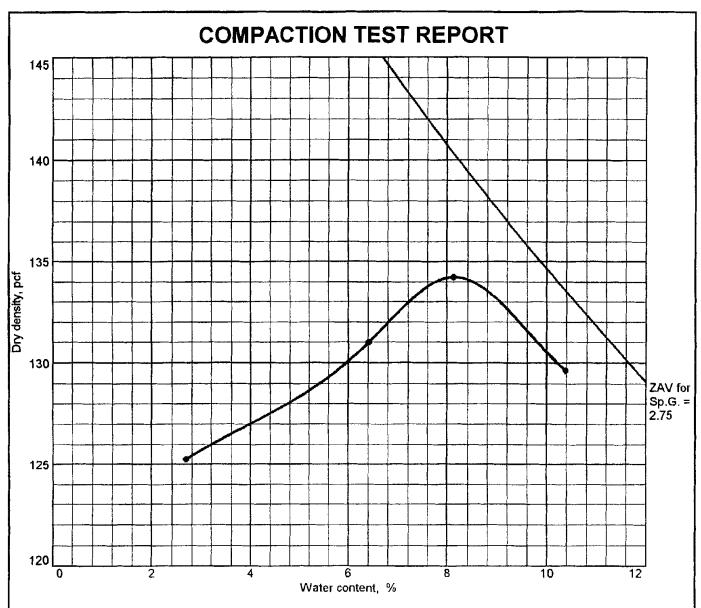
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 2 in. .75 in. #4 #10 #40 #100 #200	100.0 98.1 82.6 67.7 62.1 53.2 48.6 45.2		(x no)

	Soil Descriptio	<u>n</u>
Clayey gravel wi	th sand	
	Atterberg Limit	:S
PL= 20	LL= 28	PI≈ 8
_	Coefficients	
D ₈₅ ≈ 21.9	D ₆₀ = 1.42 D ₁₅ =	D ₅₀ = 0.206 D ₁₀ =
D30= C _u =	C_{12}^{c}	210
	Classification	
USCS= GC	AASH	ITO≃
	<u>Remarks</u>	
Sampled on 7/25	5/01	

Location: B-67, 45K Sample

Sample No.: 373

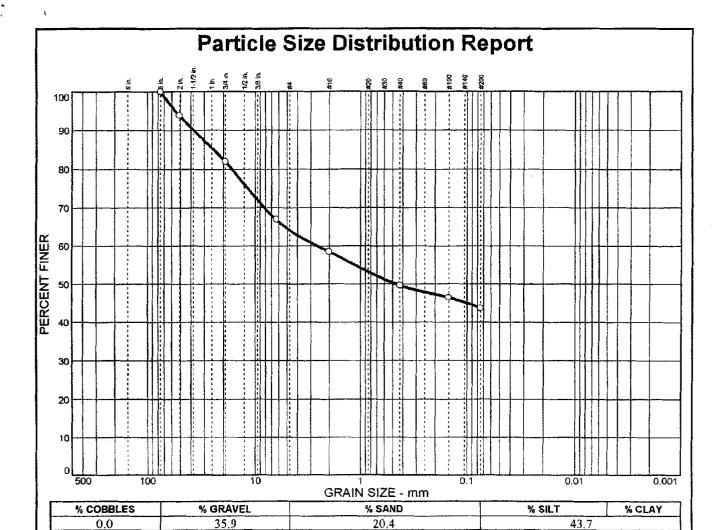
Source of Sample: Common Fill


Date: 7/27/01

Elev./Depth:

SJB SERVICES, INC.

Client: Marcy Excavation Project: Cortland Landfill Cover


Project No: 2009053

Classific	cation	Nat.	S- C		DI	% >	% <
uscs	AASHTO	Moist.	3p.G.	LL	PI	3/4 in.	No.200
GC				28	8	17.4	45.2
	uscs	USCS AASHTO	USCS AASHTO Moist.	USCS AASHTO Moist. Sp.G.	USCS AASHTO Moist. Sp.G. LL	USCS AASHTO Moist. Sp.G. LL PI	USCS AASHTO Moist. Sp.G. LL PI 3/4 in.

TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 134.2 pcf	Clayey gravel with sand
Optimum moisture = 8.1 %	
Project No. 2009053 Client: Marcy Excavation	Remarks:
Project: Cortland Landfill Cover	
● Location: B-67, 45K Sample	
COMPACTION TEST REPORT	
SJB SERVICES, INC.	

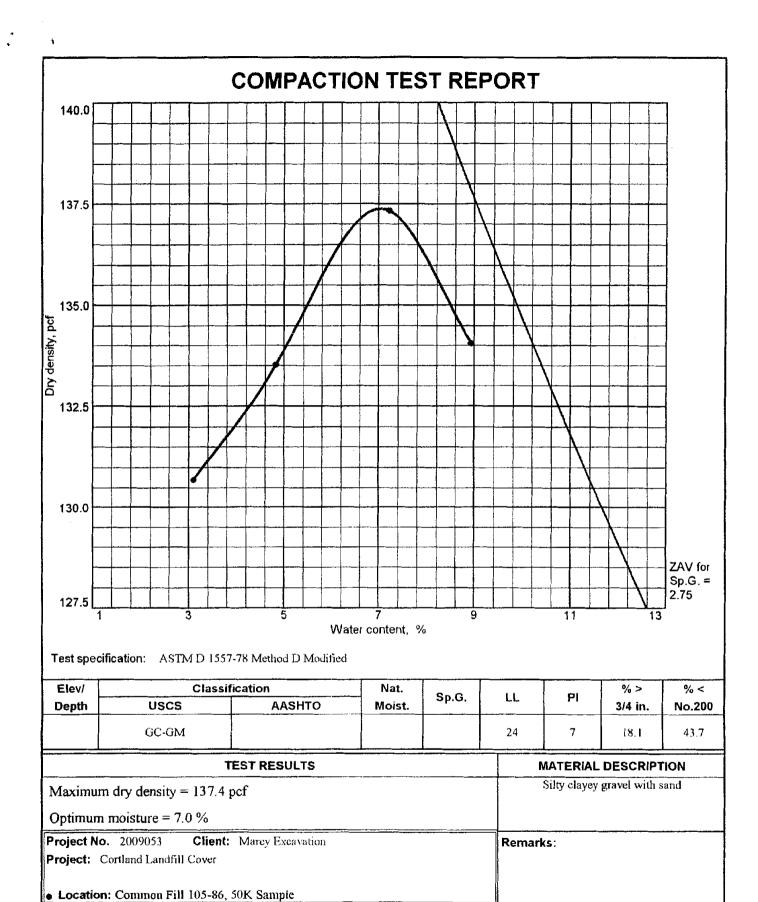
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X≃NO)
3 in. 2 in. 75 in. 75 in. 125 in. #10 #40 #100 #200	100.0 93.9 81.9 66.9 58.5 49.6 46.4 43.7		

	Soil Description				
Silty clayey gravel with sand					
PL= 17	Atterberg Limits	PI= 7			
PL- 17	LL- 24	P)- /			
D ₈₅ = 24.5	Coefficients D ₆₀ = 2.59	D ₅₀ = 0,467			
D ₃₀ = C _u =	D ₆₀ - 2.39	D ₁₀ = 0,407			
C _u =	C _c =				
	<u>Classification</u>				
USCS≃ GC-C	M AASHT	O=			
	<u>Remarks</u>				

Sample No.: 352

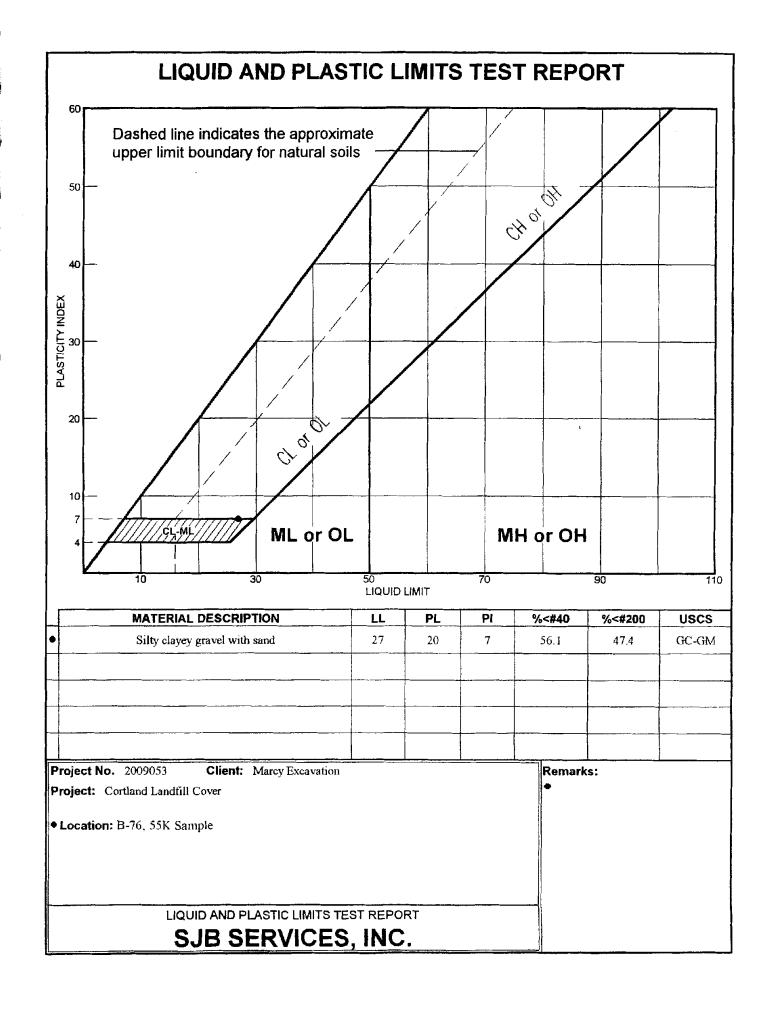
Source of Sample: Common Fill

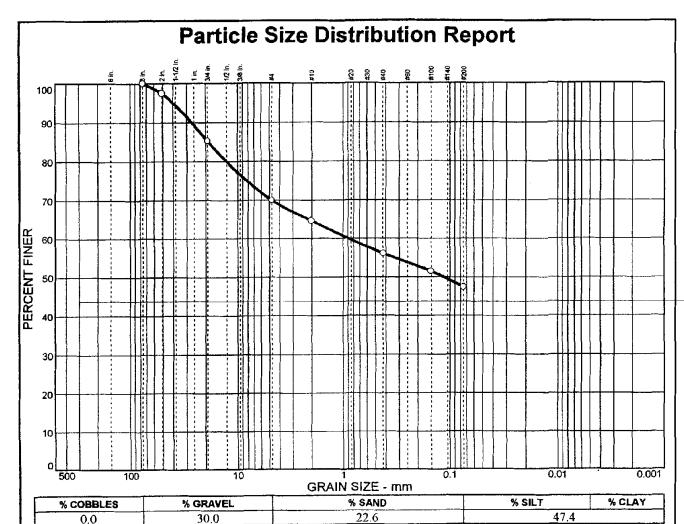
Date: 7/18/01


Location: Common Fill 105-86, 50K Sample

Elev./Depth:

SJB SERVICES, INC. Client: Marcy Excavation


Project: Cortland Landfill Cover


Project No: 2009053

COMPACTION TEST REPORT

SJB SERVICES, INC.

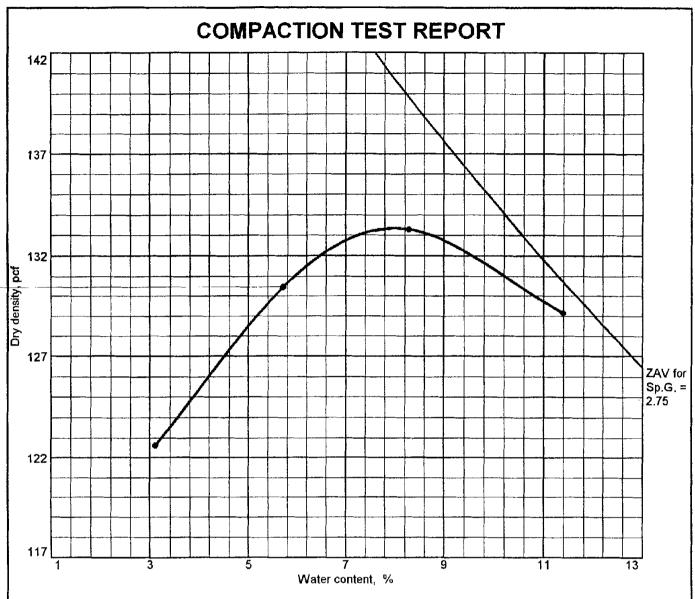
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 2 in. 75 in. #4 #10 #40 #100 #200	100.0 97.5 85.3 70.0 64.6 56.1 51.4 47.4		

1 	Soil Description	
Silty clayey grav	vel with sand	
	Atterberg Limits	
PL= 20	LL= 27	PI= 7
	Coefficients	
$D_{85} = 18.6$	$D_{60} = 0.895$	$D_{50} = 0.116$
D ₈₅ = 18.6 D ₃₀ = C _u =	D15=	D ₁₀ =
∪u-	O _C -	
11 55 0 000	Classification	_
USCS= GC-C	M AASHT	O=
	Remarks	
Sampled on 7/2	5/01	

Sample No.: 374

Source of Sample: Common Fill

Date: 7/27/01


Location: B-76, 55K Sample

Elev./Depth:

SJB SERVICES, INC. Client: Marcy Excavation

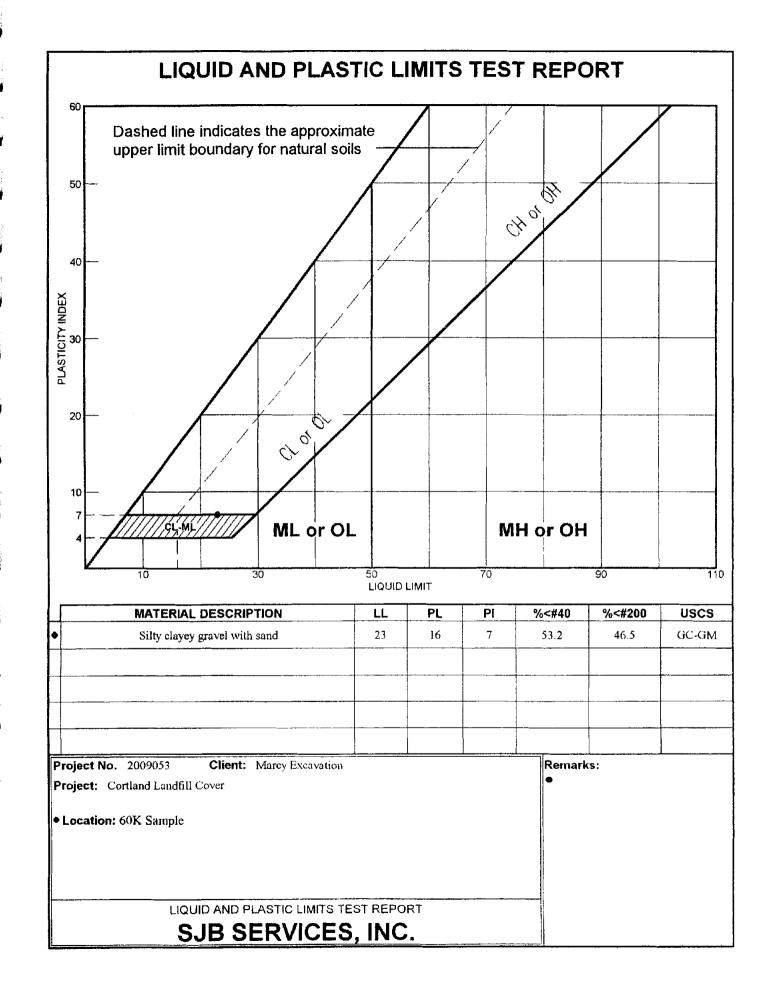
Project: Cortland Landfill Cover

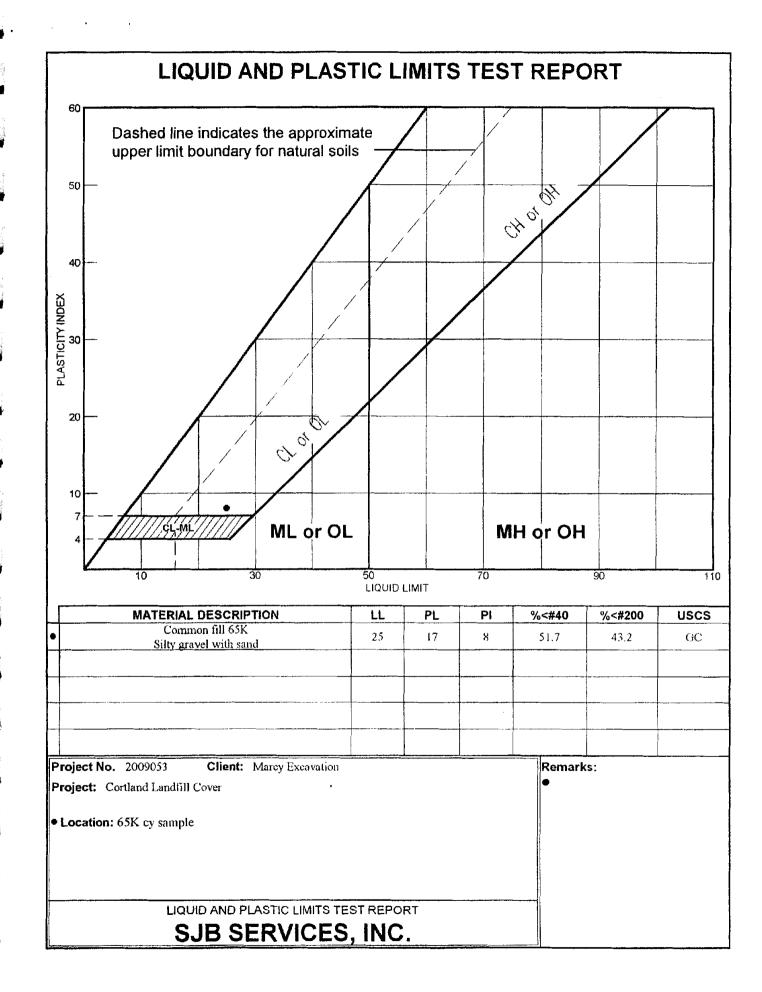
Project No: 2009053

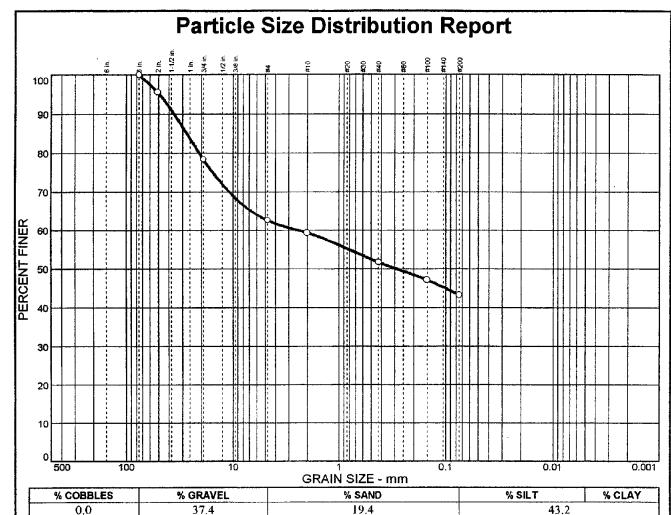
Elev/	Classification		Nat.	C C		DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	3/4 in.	No.200
	GC-GM				27	7	14.7	47.4

TEST RESULTS

Maximum dry density = 133.3 pcf


Optimum moisture = 8.0 %


Project No. 2009053 Client: Marcy Excavation
Project: Cortland Landfill Cover


Location: B-76, 55K Sample

COMPACTION TEST REPORT

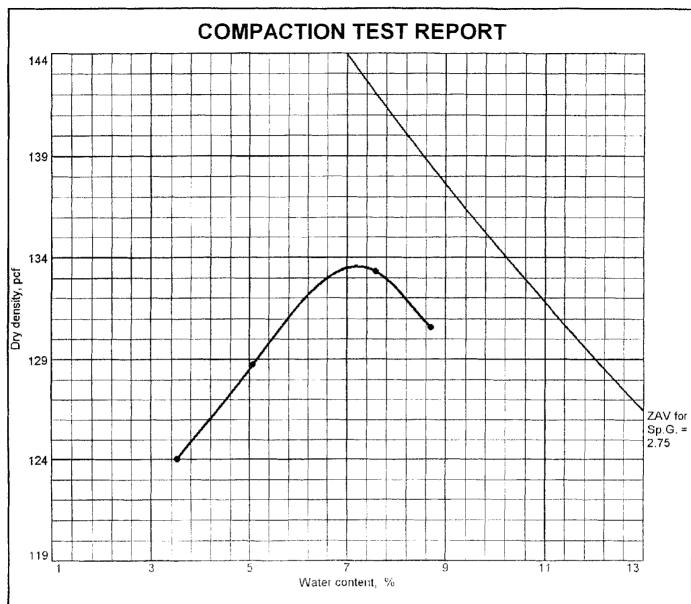
SJB SERVICES, INC.

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 2 in. .75 in. #4 #10 #40 #100 #200	100.0 95.6 78.4 62.6 59.3 51.7 47.1 43.2		

19,4		43.2
Common fill 65k Silty gravel with	=	
PL= 17	Atterberg Limits LL= 25	PI= 8
D ₈₅ = 27.2 D ₃₀ = C _u =	Coefficients D ₆₀ = 2.46 D ₁₅ = C _c =	D ₅₀ = 0.289 D ₁₀ =
USCS≃ GC	Classification AASHT	'O=
	<u>Remarks</u>	

Sample No.: 415 Location: Source of Sample: Common Fill

Date: 8/15/01


Elev./Depth:

SJB SERVICES, INC. Client: Marcy Excavation

Project: Cortland Landfill Cover

Project No: 2009053

415

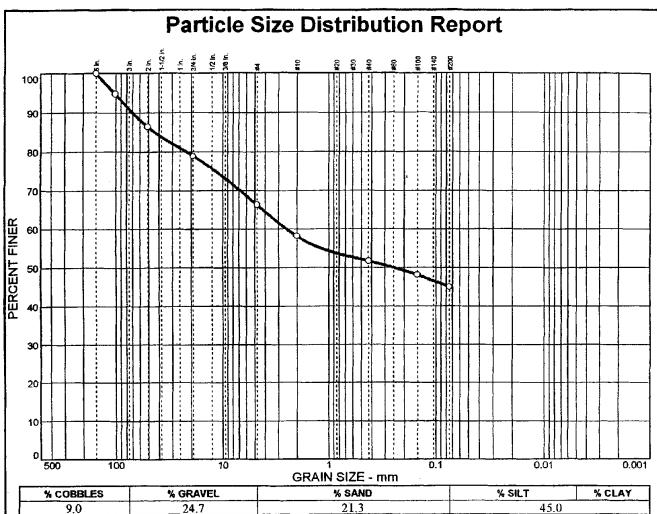
Elev/	Elev/ Classification	fication	Nat. Sp.G.		nı	% >	% <	
Depth	USCS	AASHTO	Moist.	δρ.G.	LL	PI	3/4 in.	No.200
	GC				25	· ·	21.6	.12.3
i	l GC				23		21.0	43.2

TEST RESULTS

Maximum dry density = 133.5 pcf

Optimum moisture = 7.2 %

Project No. 2009053 Client: Marey Excavation


Project: Cortland Landfill Cover

Location: 65K cy sample

COMPACTION TEST REPORT

SJB SERVICES, INC.

LIQUID AND PLASTIC LIMITS TEST REPORT 60 Dashed line indicates the approximate upper limit boundary for natural soils CHO! 50 40 PLASTICITY INDEX 8 20 or of 10 ML or OL MH or OH LIQUID LIMIT **MATERIAL DESCRIPTION** LL PL ΡI %<#40 %<#200 uscs 6 24 18 51.7 GC-GM Silty clayey gravel with sand 45.0 23 18 5 Silty clayey gravel with sand 55.8 47.2 GC-GM Client: Marcy Excavation Project No. 2009053 Remarks: Project: Cortland Landfill Cover ◆ Location: Common Fill, 70 K Sample N106E91 ■ Location: Common Fill, 75K Sample, N10 E84 LIQUID AND PLASTIC LIMITS TEST REPORT SJB SERVICES, INC.

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
6 in. 4 in. 2 in. 75 in. #4 #10 #40 #100 #200	100.0 94.7 86.4 78.9 66.3 58.1 51.7 48.1 45.0		

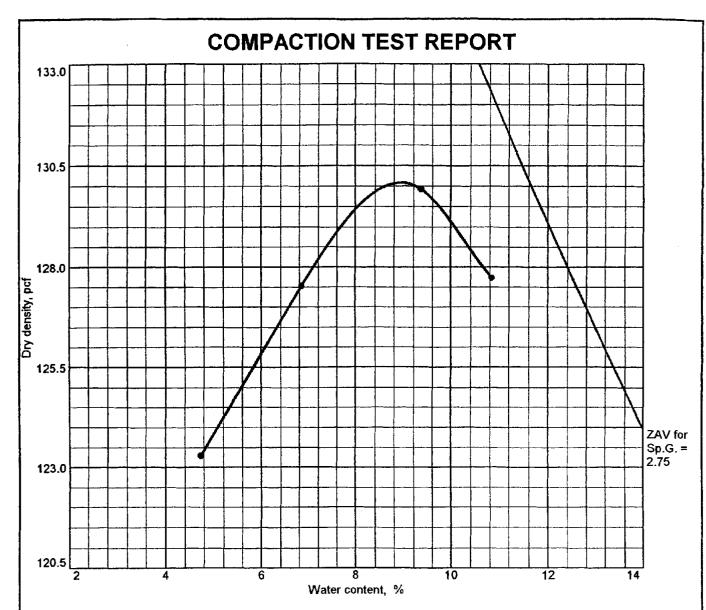
21,3		43.0
Silty clayey gra	Soil Description vel with sand	
PL= 18	Atterberg Limits LL= 24	PI= 6
D ₈₅ = 43.7 D ₃₀ = C _u =	Coefficients D60= 2.52 D15= Cc=	D ₅₀ = 0.247 D ₁₀ =
USCS= GC-0		O=
	Remarks	

Sample No.: 438

Source of Sample: Common Fill

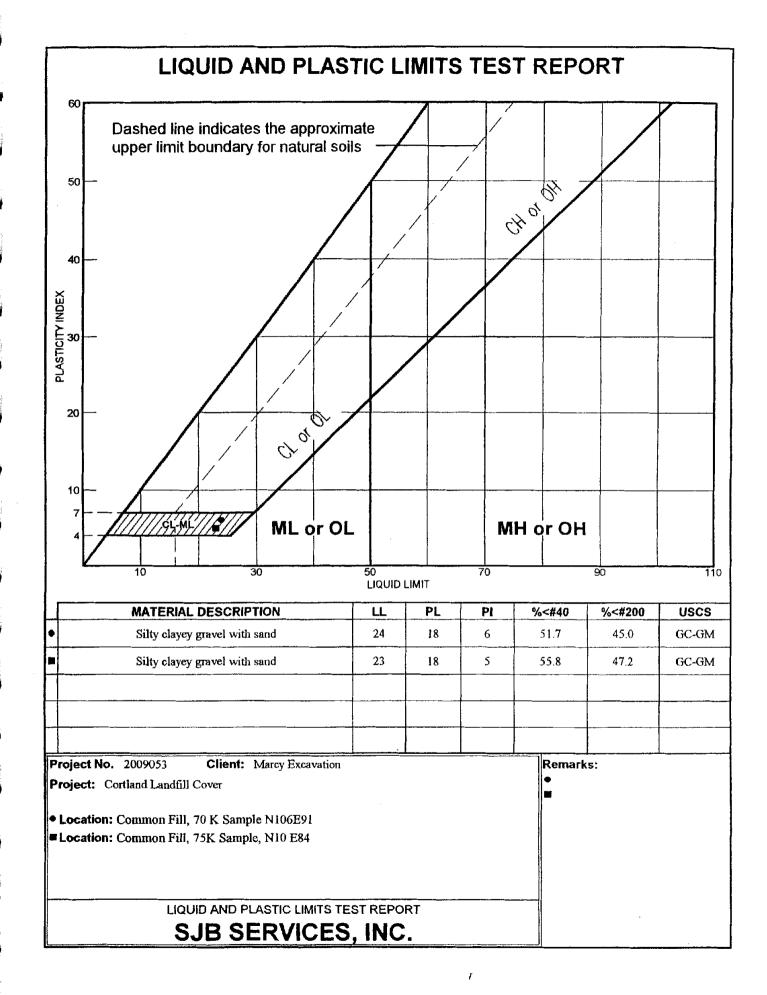
Date: 8/28/01

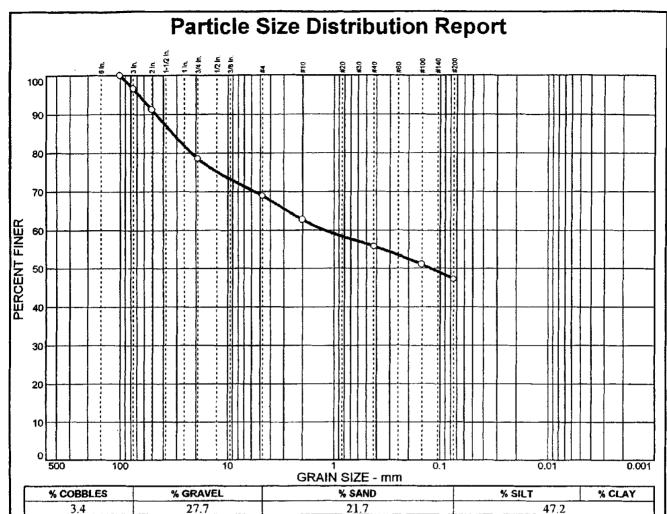
Location: Common Fill, 70 K Sample N106E91


Elev./Depth:

SJB SERVICES, INC. Client: Marcy Excavation

Project: Cortland Landfill Cover


ŗ


Project No: 2009053

Elev/	Classi	fication	Nat.	Sp.G.	1.1	PI	%>	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	Fi	3/4 in.	No.200
	GC-GM /				24	6	21.1	45.0

TEST RESULTS	MATERIAL DESCRIPTION			
Maximum dry density = 130.1 pcf	Silty clayey gravel with sand			
Optimum moisture = 8.9 %				
Project No. 2009053 Client: Marcy Excavation	Remarks:			
Project: Cortland Landfill Cover				
• Location: Common Fill, 70 K Sample N106E91				
COMPACTION TEST REPORT				
SJB SERVICES, INC.				

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4 in. 3 in. 2 in. 75 in. #10 #100 #200	100.0 96.6 91.2 78.6 68.9 62.7 55.8 51.0 47.2		

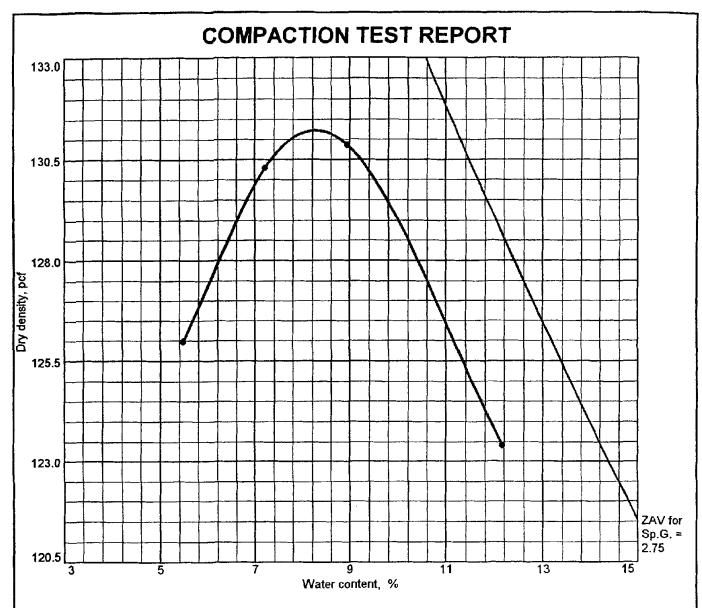
	Soil Description		
Silty clayey gra	Soil Description Silty clayey gravel with sand		
PL= 18	Atterberg Limits LL= 23	PI= 5	
D ₈₅ = 32.4 D ₃₀ = C _U =	Coefficients D ₆₀ = 1.22 D ₁₅ = C _c =	D ₅₀ = 0.124 D ₁₀ =	
USCS= GC-G	Classification GM AASHT	O=	
	<u>Remarks</u>		

Sample No.: 439

Source of Sample: Common Fill

Date: 8/29/01

Location: Common Fill, 75K Sample, N10 E84


Elev./Depth:

SJB SERVICES, INC. Client: Marcy Excavation

Project: Cortland Landfill Cover

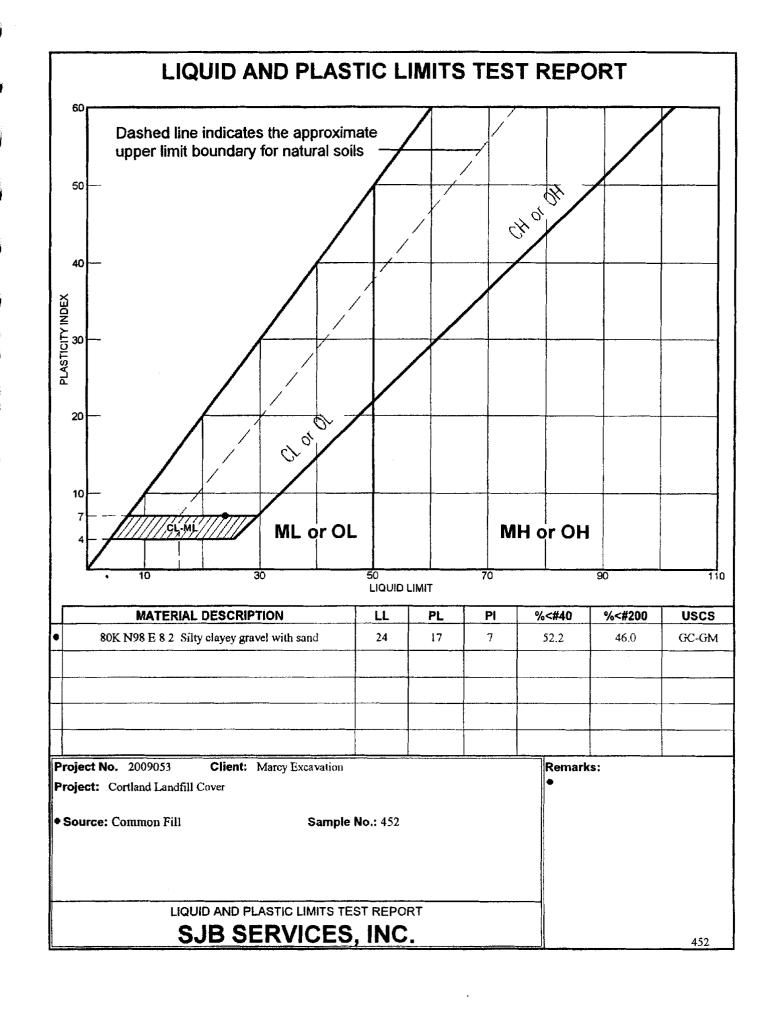
Project No: 2009053

ŗ

Elev/	Class	ification	Nat,	Sp.G.		PI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	P1	3/4 in.	No.200
	GC-GM				23	5	21.4	47.2

TEST RESULTS

Maximum dry density = 131.2 pcf


Optimum moisture = 8.3 %

Project No. 2009053 Client: Marcy Excavation
Project: Cortland Landfill Cover

• Location: Common Fill, 75K Sample, N10 E84

COMPACTION TEST REPORT

SJB SERVICES, INC.

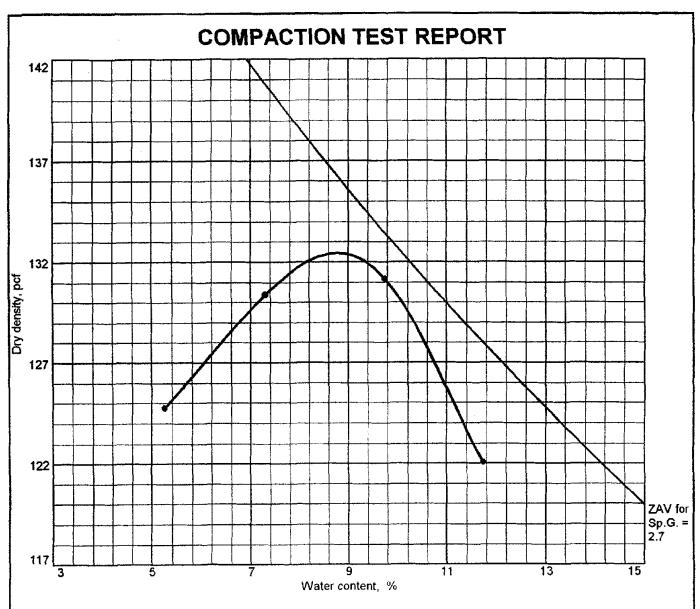
% COBBLES	% GRAVEL	% SAND	% SILT	% CLAY
0.0	33.5	20.5	46.0	

i	SIEVE	PERCENT	SPEC.*	PASS?
	SIZE	FINER	PERCENT	(X=NO)
	3 in. 2 in. .75 in. #4 #10 #40 #100 #200	100.0 89.7 80.8 66.5 60.2 52.2 48.7 46.0		
	Ī		l	

	Soil Description	
80K N98 E 8 2 S	Silty clayey gravel wi	•
	Atterberg Limits	
PL= 17	LL= 24	PI≍ 7
D ₈₅ = 36.8 D ₃₀ = C _u =	<u>Coefficients</u> D ₆₀ ≈ 1.93 D ₁₅ = C _c =	D ₅₀ = 0.222 D ₁₀ =
USCS= GC-GN	Classification AASH1	TO=
	<u>Remarks</u>	

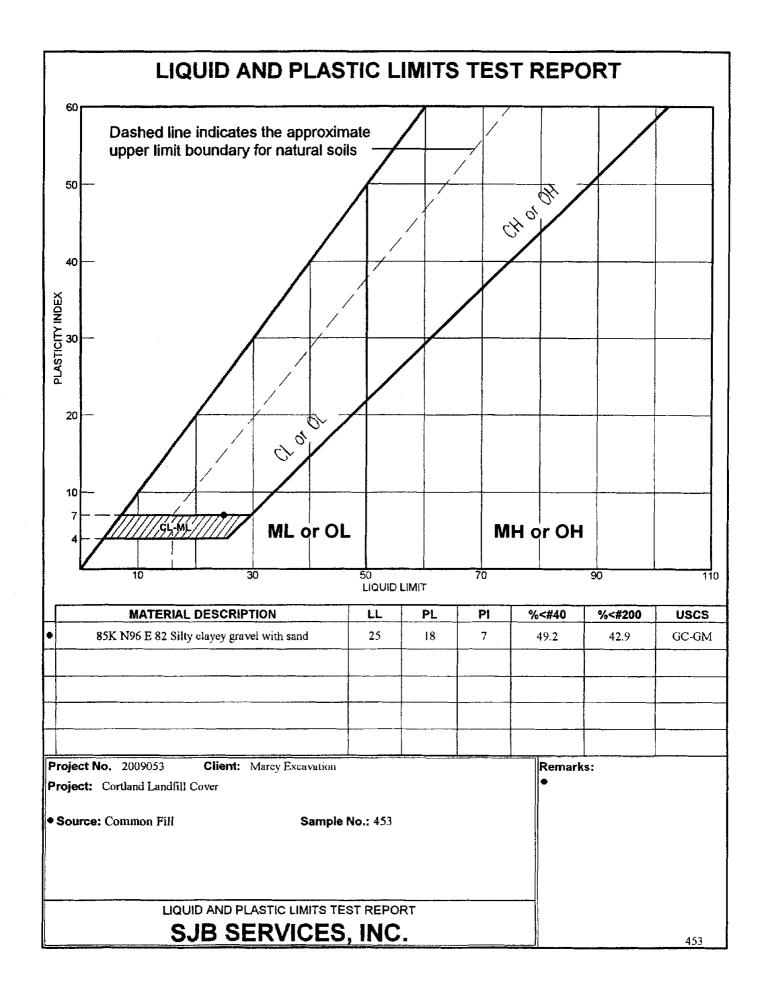
Sample No.: 452 Location: Source of Sample: Common Fill

Date: Sept. 7, 2001


Elev./Depth:

SJB SERVICES, INC. Client: Marcy Excavation

Project: Cortland Landfill Cover


Project No: 2009053

452

Elev/	Classit	fication	Nat.	Sp.G.	L,L	PI	% >	% <
Depth	uscs	AASHTO	Moist.	3p.0.	Bay Bay	• •	3/4 in.	No.200
	GC-GM			2.7	24	7	19.2	46.0

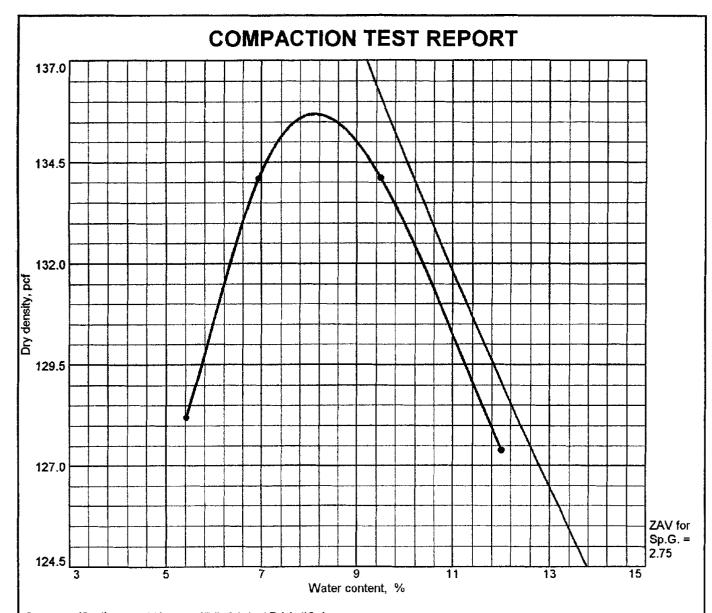
TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 132.4 pcf	80K N98 E 8 2 Silty clayey gravel with sand
Optimum moisture = 8.8 %	
Project No. 2009053 Client: Marcy Excavation	Remarks:
Project: Cortland Landfill Cover	
Source: Common Fill Sample No	: 452
COMPACTION TEST REPOR	Т
SJB SERVICES,	INC. 452

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 2 in. 75 in. #44 #100 #200	100.0 89.7 80.8 66.5 60.2 52.2 48.7 46.0		

	Soil Description		
80K N98 E 8 2	Silty clayey gravel wi	th sand	
	Atterberg Limits		
PL= 17	LL= 24	PI= 7	
D ₈₅ = 36.8 D ₃₀ = C _u =	Coefficients D60= 1.93 D15= Cc=	D ₅₀ = 0.222 D ₁₀ =	
USCS= GC-G	Classification AASHI	O=	
	Remarks		

Sample No.: 452 Location: Source of Sample: Common Fill

Date: Sept. 7, 2001


Elev./Depth:

SJB SERVICES, INC. Client: Marcy Excavation

Project: Cortland Landfill Cover

Project No: 2009053

453

Elev/	Classification		Nat.	e- c	1 1	Pi	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL		3/4 in.	No.200
	GC-GM			2.75	25	7	27.4	42.9

TEST RESULTS

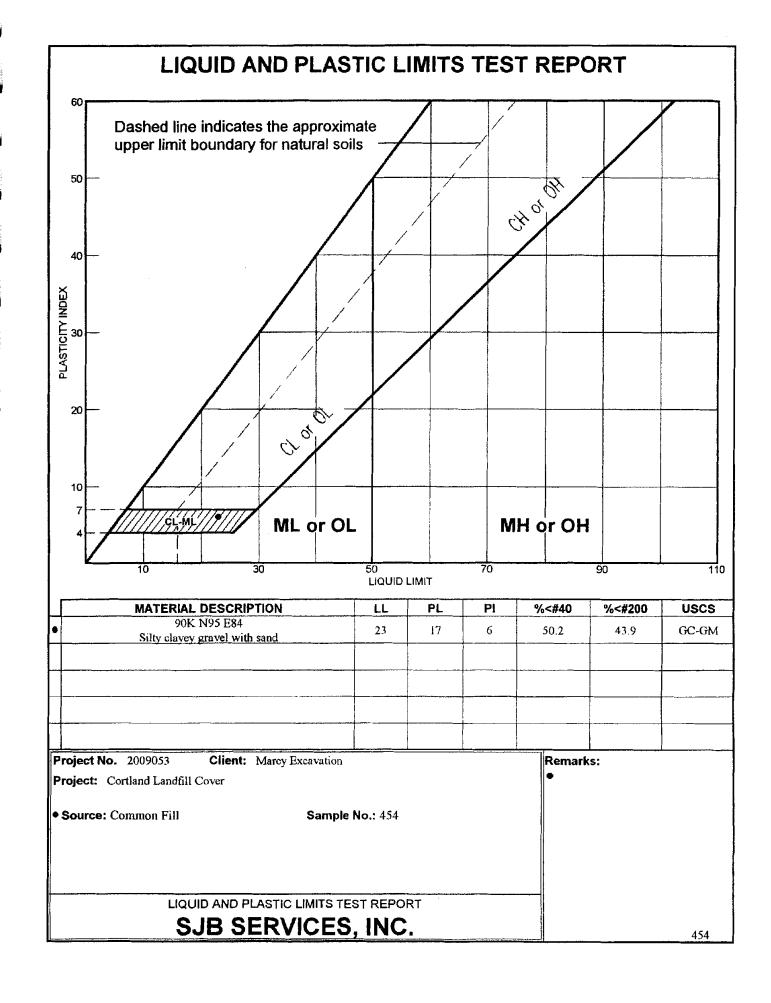
Maximum dry density = 135.7 pcf

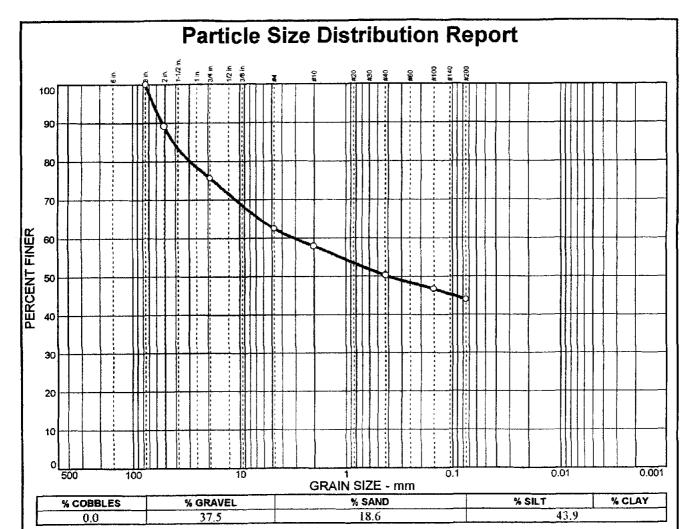
Optimum moisture = 8.1 %

Project No. 2009053 Client: Marcy Excavation
Project: Cortland Landfill Cover

Source: Common Fill Sample No.: 453

COMPACTION TEST REPORT


SJB SERVICES, INC.


MATERIAL DESCRIPTION

85K N96 E 82 Silty clayey gravel with sand

Remarks:

Remarks:

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3 in. 2 in. 75 in. #4 #10 #40 #100 #200	100.0 89.1 75.6 62.5 57.9 50.2 46.7 43.9		

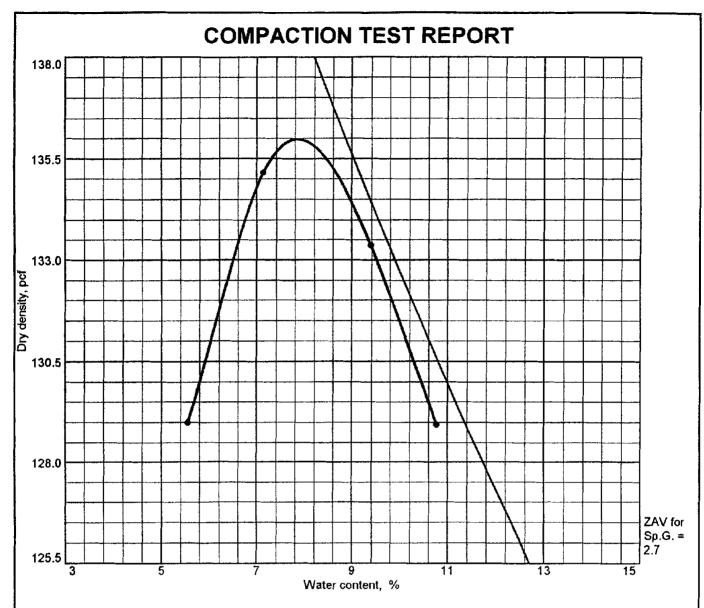
	Soil Description	1
90K N95 E84		
Silty clayey grav	el with sand	
PL= 17	Atterberg Limits	<u>s</u> PI= 6
D ₈₅ = 41.5 D ₃₀ = C _u =	Coefficients D60= 3.10 D15= Cc=	D ₅₀ = 0.404 D ₁₀ =
USCS= GC-G	Classification AASH	TO=
•	Remarks	

Sample No.: 454

Location:

Source of Sample: Common Fill

Date: Sept. 7, 2001


Elev./Depth:

SJB SERVICES, INC.

Client: Marcy Excavation

Project: Cortland Landfill Cover

Project No: 2009053

Elev/	Classification		Nat.	Sp.G.	1	PI	% >	% <
Depth	USCS	AASHTO	Moist.	3p.G.	LL	PI	3/4 in.	No.200
	GC-GM			2.7	23	6	24.4	43.9

TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 136.0 pcf	90K N95 E84 Silty clayey gravel with sand
Optimum moisture = 7.9 %	
Project No. 2009053 Client: Marcy Excavation	Remarks:
Project: Cortland Landfill Cover	
Source: Common Fill Sample No.: 454	
COMPACTION TEST REPORT	
SJB SERVICES, INC.	454

Appendix A Section: 1.B Common Fill Material Quality Assurance Testing

2415 N. Triphammer Rd., Suite 3 Ithaca, New York 14850 Telephone: (607) 266-0147 Fax: (607) 266-6409

FIELD IN-PLACE DENSITY TEST REPORT

Project:	Cortland County Landfill	Report No.	S052501	
Client:	Marcy Excavation Co. Inc.	Date:	05-25-01	
Contractor	Marcy Excavation Co. Inc.	Project No.	2009053	
Weather	Cloudy			

Test			In-place		Density		% compact
No.	Elevation	Location and Comments	moisture	Wet (pcf)	Dry (pcf)	Maxim (pcf)	
1	1st Lift	50' East of West Driveway & 100' North of East Hill	12.0%	147.2	135.2	139.7	96.8%
2	1st Lift	95' East of West Driveway & 60' North of East Hill	12.6%	145.4	132.8	139.7	95.1%
3	1st Lift	30' East of West Driveway & 25' North of East Hill	9.3%	146.0	136.7	139.7	97.9%
4	1st Lift	25' North of East Hill & 100' East of North Driveway	12.1%	148.1	132.1	139.7	94.6%
5	1st Lift	90' East of West of Driveway & 100' West of East Hill	10.5%	144.3	133.8	139.7	95.8%
_							
<u> </u>							

Max Density	Optimum Moisture	Material Type and Source	Method
139.7	6.8	Screened On Site Material	ASTM D 1557

REMARKS:

Gauge Model: Troxler 3411 B

Serial Number: 12455

Std. Counts:

2743-632

Technician:

T. Wheeler

Respectfully submitted, SJB Services, Inc.

Thomas A. Hamilton Central Region Manager

2415 N. Triphammer Rd., Suite 3 Ithaca, New York 14850 Telephone: (607) 266-0147 Fax: (607) 266-6409

FIELD IN-PLACE DENSITY TEST REPORT

Project:	Cortland County Landfill	Report No.	S052901	
Client:	Marcy Excavation Co. Inc.	Date:	05-29-01	
Contractor	Marcy Excavation Co. Inc.	Project No.	2009053	
Weather	Suppy 60°			

Test			(n-place	Density			
No.	Elevation	Location and Comments	moisture	Wet (pcf)	Dry (pcf)	Maxim (pcf)	% compact
1	2nd Lift	135' North & 150' West of Existing Garage	9.0%	149.8	137.4	138.5	99.2%
2	2nd Lift	235' North & 150' West of Existing Garage	8.7%	144.9	133.3	138.5	96.2%
3	2nd Lift	310' North & 150' West of Existing Garage	6.6%	155.4	145.8	138.5	105.3%
4	2nd Lift	310' North & 80' West of Existing Garage	8.6%	141.0	129.7	138.5	93.6%
5	2nd Lift	400' North & 80' West of Existing Garage	6.9%	150.4	140.6	138.5	101.5%
6	3rd Lift	60' North & 80' West of Existing Garage	10.3%	142.6	129.3	138.5	93.4%
7	3rd Lift	60' North & 150' West of Existing Garage	10.9%	148.9	134.3	138.5	97.0%
8	3rd Lift	130' North & 120' West of Existing Garage	8.5%	149.1	137.4	138.5	99.2%
9	3rd Lift	140' North & 80' West of Existing Garage	8.1%	148.8	137.7	138.5	99.4%
10	3rd Lift	170' North & 150' West of Existing Garage	8.5%	144.2	132.8	138.5	95.9%
		· ·					
					Ī		

Max Density	Optimum Moisture	Material Type and Source	Method
139.7	6.8	Screened On Site Material	ASTM D 1557
138.5	7.0	Common Fill	ASTM D 1557

REMARKS:

Gauge Model:

Troxler 3411 B

Serial Number: 10654

Std. Counts :

494-2405

Technician:

R. Truex

Respectfully submitted,

SJB Services, Inc.

Thomas A. Hamilton

Central Region Manager

Hamu

2415 N. Triphammer Rd., Suite 3 Ithaca, New York 14850 Telephone: (607) 266-0147 Fax: (607) 266-6409

FIELD IN-PLACE DENSITY TEST REPORT

Project:	Cortland County Landfill	Report No.	S053101	
Client:	Marcy Excavation Co. Inc.	Date:	05-31-01	
Contractor	Marcy Excavation Co. Inc.	Project No.	2009053	
Weather	Partly Cloudy			

Test	[In-place		Density		
No.	Elevation	Location and Comments	moisture	Wet (pcf)	Dry (pcf)	Maxim (pcf)	% compact
1	4th Lift	17' West of East Bank & 37' Southeast of West Parking Lot	7.3%	141.3	131.7	139.7	94.3%
2	4th Lift	17' West of East Bank & 150' North of Garage	9.3%	139.1	127.2	139.7	91.1%
3	4th Lift	90' East of Job Trailer & 150' North of Garage	7.6%	139.7	129.8	139.7	92.9%
4	4th Lift	65' East of Road Way & 125' North of Garage	7.5%	142.1	132.2	139.7	94.6%
5	4th Lift	80' East of Road Way & 95' North of Garage	6.5%	146.2	137.3	139.7	98.3%
**							
	-						

Max Density	Optimum Moisture	Material Type and Source	Method
139.7	6.8	Screened On Site Material	ASTM D 1557
	 		

REMARKS:

Gauge Model:

Troxler 3411 B

Serial Number: 14833 Std. Counts: 2713-6

14833

Technician:

2713-611 T. Wheeler Respectfully submitted, **SJB Services, Inc.**

T. Hamulton
Thomas A. Hamilton
Central Region Manager

2415 N. Triphammer Rd., Suite 3 Ithaca, New York 14850 Telephone: (607) 266-0147 Fax: (607) 266-6409

FIELD IN-PLACE DENSITY TEST REPORT

Project:	Cortland County Landfill	Report No.	S061201_	
Client:	Marcy Excavation Co. Inc.	Date:	06-12-01	
Contractor	Marcy Excavation Co. Inc.	Project No.	2009053	
Weather	Partly Sunny			

Test				Density			
No.	Elevation	Location and Comments	In-place moisture	Wet (pcf)	Dry (pcf)	Maxim (pcf)	% compact
1	1st Lift	40' North of South Driveway & 50' West of East Pond	9.2%	138.3	126.6	139.7	90.6%
2	1st Lift	80' North of S Driveway & 40' West of E Pond	11.5%	133.1	119.4	139.7	85.5%
3	1st Lift	40' North of S Driveway & 60' West of E Pond	8.5%	132.4	122.0	139.7	87.3%
4	6th Lift	50' North of South Driveway & 140' West of East Garage	8.2%	137.5	127.1	139.7	91.0%
5	6th Lift	50' North of South Driveway & 135' West of East Garage	7.9%	136.3	126.3	139.7	90.4%
6	6th Lift	70' North of South Driveway & 125' West of East Garage	8.3%	141.0	130.1	139.7	93.1%
7	6th Lift	80' North of South Driveway & 120' West of East Garage	8.9%	140.2	128.8	139.7	92.2%_
8	6th Lift	50' North of South Driveway & 115' West of East Garage	7.3%	141.7	132.1	139.7	94.6%
9	1st Lift	Retest of # 2	8.1%_	137.6	127.2	139.7	91.1%
10	1st Lift	Retest of # 3	9.2%	138.7	126.9	139.7	90.8%

Max Density	Optimum Moisture	Material Type and Source	Method
139.7	6.8	Screened On Site Material from County Pile	ASTM D 1557

REMARKS:

Gauge Model:

Troxler 3411 B

Serial Number: 13429 Std. Counts:

2259-637

Technician:

T. Wheeler

Respectfully submitted,

SJB Services, Inc.

Thomas A. Hamilton Central Region Manager

Ham

2415 N. Triphammer Rd., Suite 3 Ithaca, New York 14850 Telephone: (607) 266-0147 Fax: (607) 266-6409

FIELD IN-PLACE DENSITY TEST REPORT

Project:	Cortland County Landfill	Report No.	S061401	
Client:	Marcy Excavation Co. Inc.	Date:	06-14-01	
Contractor	Marcy Excavation Co. Inc.	Project No.	2009053	
Weather	Partly Cloudy			

Test			In-place		Density		
No.	Elevation	Locations and Comments	moisture	Wet (pcf)	Dry (pcf)	Maxim (pcf)	% compact
1	7th Lift	20' South of North Driveway & 90' West of East Road Way	5.8%	142.2	134.5	139.7	96.3%
2	7th Lift	48' South of North Driveway & 95' West of East Road Way	6.5%	143.7	134.9	139.7	96.6%
3	7th Lift	71' South of North Driveway & 85' West of East Road Way	6.6%	142.3	133.5	139.7	95.6%
4	7th Lift	150' North of South Garage & 90' West of East Road Way	8.4%	141.1	130.2	139.7	93.2%
5	7th Lift	138' North of South Garage & 88' West of East Road Way	7.1%	143.3	133.8	139.7	95.8%
6	7th Lift	118' North of South Garage & 93' West of East Road Way	7.8%	144.2	133.8	139.7	95.8%
7	7th Lift	108' North of South Garage & 103' West of East Road Way	8.5%	143.8	132.5	139.7	94.8%
8	7th Lift	88' North of South Garage & 108' West of East Road Way	7.4%	143.4	133.5	139.7	95.6%
9	2nd Lift	50' West of East Road Way & 90' East of West Pond	6.6%	149.6	140.3	139.7	100.4%
10	2nd Lift	73' West of East Road Way & 40' East of West Pond	8.3%	141.1	130.2	139.7	93.2%
11	2nd Lift	60' West of East Road Way & 50' East of West Pond	10.7%	143.5	129.6	139.7	92.8%
12	3rd Lift	50' West of East Road Way & 90' East of West Pond	9.8%	144.0	131.1	139.7	93.8%
13	3rd Lift	60' West of East Road Way & 50' East of West Pond	9.8%	138.9	126.5	139.7	90.6%
14	3rd Lift	70' West of East Road Way & 45' East of West Pond	10.5%	145.0	131.2	139.7	93.9%
							_

Max Density	Optimum Moisture	Material Type and Source	Method
139.7	6.8	Screened On Site Material from County Pile	ASTM D 1557

REMARKS:

Gauge Model: Troxler 3411 B Serial Number: 13428

Std. Counts: 2190-596
Technician: T. Wheeler

Respectfully submitted,

Ham

SJB Services, Inc.

Thomas A. Hamilton Central Region Manager

2415 N. Triphammer Rd., Suite 3 Ithaca, New York 14850 Telephone: (607) 266-0147 Fax: (607) 266-6409

FIELD IN-PLACE DENSITY TEST REPORT

Project:	Cortland County Landfill	Report No.	S061801	
Client:	Marcy Excavation Co. Inc.	Date:	06-18-01	···
Contractor	Marcy Excavation Co. Inc.	Project No.	2009053	
Weather	Sunny			

Test			In-place moisture	Density			
No.	Elevation	Locations and Comments		Wet (pcf)	Dry (pcf)	Maxim (pcf)	% compact
1	8th Lift	50' North of South Road Way & 115' West of East Garage	8.8%	144.4	132.7	139.7	95.0%
2	8th Lift	45' North of South Road Way & 125' West of East Garage	9.4%	142.9	130.6	139.7	93.5%
3	8th Lift	65' North of South Road Way & 120' West of East Garage	7.7%	142.1	132.0	139.7	94.5%
4_	8th Lift	70' North of South Road Way & 115' West of East Garage	7.6%	142.1	132.1	139.7	94.6%
5	8th Lift	35' North of South Road Way & 225' West of East Garage	7.2%	142.4	132.7	139.7	95.0%
6	4th Lift	50' West of East Pond & 80' East of West Roadway	8.8%	146.4	134.6	139.7	96.3%
7	4th Lift	40' West of East Pond & 95' East of West Roadway	7.7%	143.9	133.6	139.7	95.6%
8	4th Lift	70' West of East Pond & 35' East of West Roadway	8.2%	145.6	134.6	139.7	96.3%

Max Density	Optimum Moisture	Material Type and Source	Method
139.7	6.8	Screened On Site Material from County Pile	ASTM D 1557

REMARKS:

Gauge Model:

Troxler 3411 B

Serial Number: 13428 Std. Counts:

2179-603

Technician:

T. Wheeler

Respectfully submitted,

SJB Services, Inc.

Thomas A. Hamilton Central Region Manager

2415 N. Triphammer Rd., Suite 3 lthaca, New York 14850 Telephone: (607) 266-0147 Fax: (607) 266-6409

FIELD IN-PLACE DENSITY TEST REPORT

Project:	Cortland County Landfill	Report No.	\$061901	
Client:	Marcy Excavation Co. Inc.	Date:	06-19-01	
Contractor	Marcy Excavation Co. Inc.	Project No.	2009053	
Weather	Clear			

Test No.	Elevation	Locations and Comments	in-place moisture	Density			
				Wet (pcf)	Dry (pcf)	Maxim (pcf)	% compact
1	9th Lift	180' North & 89' West of Utility Building Northwest Corner	5.8%	136.6	129.1	136.4	94.6%
2	9th Lift	102' North & 93' West of Utility Building Northwest Corner	6.0%	137.0	129.2	136.4	94.7%
3	9th Lift	81' North & 63' West of Utility Building Northwest Corner	6.7%	145.3	136.1	136.4	99.8%
4	9th Lift	36' North & 63' West of Utility Building Northwest Corner	6.4%	139.3	131 <u>.</u> 0	136.4	96.0%
5	9th Lift	33' North & 96' West of Utility Building Northwest Corner	5.3%	138.4	131.4	136.4	96.3%
6	5th Lift	28' North & 37' West of Northwest Corner of Pond	8.4%	146.8	135.4	136.4	99.3%
7	5th Lift	10' North & 52' West of Northwest Comer of Pond	6.6%	133.1	124.9	136.4	91.6%
8	5th Lift	31' South & 66' West of Northwest Corner of Pond	6.2%	138.6	130.5	136.4	95.7%
	<u> </u>						
				1			
				 		 	
	İ			<u> </u>			

Max Density	Optimum Moisture	Material Type and Source	Method
136.4	7.0	Common Fill	ASTM D 1557
L			

REMARKS:

Gauge Model: Serial Number: 12455

Troxler 3411 B

Std. Counts:

2751-610

Technician:

D. Jennings

Respectfully submitted,

SJB Services, Inc.

Thomas A. Hamilton

Central Region Manager

2415 N. Triphammer Rd., Suite 3 Ithaca, New York 14850 Telephone: (607) 266-0147 Fax: (607) 266-6409

FIELD IN-PLACE DENSITY TEST REPORT

Project:	Cortland County Landfill	Report No.	S070501	
Client:	Marcy Excavation Co. Inc.	Date:	07-05-01	
Contractor	Marcy Excavation Co. Inc.	Project No.	2009053	
Weather	Sunny			

Test		la aloca		Density			
No.	Elevation	Locations and Comments	In-place moisture	Wet (pcf)	Dry (pcf)	Maxim (pcf)	% compact
1	1st Lift	100' West of Southwest Comer of 3 Stall Garage	8.7%	147.6	135.7	139.3	97.4%
2	1st Lift	100' West of Center Line of South Garage Door	8.5%	148.6	137.0	139.3	98.3%
3	1st Lift	100' West of Center Line of Middle Garage Bay Door	8.2%	143.5	132.6	139.3	95.2%
4	2nd Lift	50' West of Southwest Corner of 3 Stall Garage	10.2%	146.3	132.7	139.3	95.3%
5	2nd Lift	50' West of Center Line of Middle Garage Door	10.1%	150.4	136.6	139.3	98.1%
6	2nd Lift	50' West of Center Line of South Garage	10.3%	147.9	134.1	139.3	96.3%
					1		
,						<u> </u>	
				1			
	<u> </u>		****		1		
				1	1		
							<u> </u>
*					<u> </u>		_

Max Density	Optimum Moisture	Material Type and Source	Method
139.3	7.5	Existing On Site Material	ASTM D 1557

REMARKS:

Gauge Model:

Troxler 3411 B

Serial Number: 10654 Std. Counts:

2386-492

Technician:

R. Truex

Respectfully submitted,

SJB Services, Inc.

Thomas A. Hamilton

Central Region Manager

2415 N. Triphammer Rd., Suite 3 Ithaca, New York 14850 Telephone: (607) 266-0147 Fax: (607) 266-6409

FIELD IN-PLACE DENSITY TEST REPORT

Project:	Cortland County Landfill	Report No.	S071901	
Client:	Marcy Excavation Co. Inc.	Date:	07-19-01	
Contractor	Marcy Excavation Co. Inc.	Project No.	2009053	
Weather	Sunny			

Test			In-place		Density		% compact
No.	Elevation	Locations and Comments		Wet (pcf)	Dry (pcf)	maxim (pcf)	
1	4th Lift	20' West of North Garage Door & 100' East of W Driveway	8.4%	143.8	132.7	139.3	95.3%
2	4th Lift	30' West of Center Garage Door & 90' East of W Driveway	6.9%	144.7	135:4	139.3	97.2%
3	4th Lift	24' West of South Garage Door & 96' East of W Driveway	8.6%	145.0	133.5	139.3	95.8%
4	3rd Lift	47' West of S Corner of Garage & 72' East of W Driveway	9.0%	148.2	137.2	139.3	98.5%
5	3rd Lift	50' West of South Garage Door & 60' East of W Driveway	8.3%	144.5	133.4	139.3	95.8%
6	3rd Lift	55' West of Center Garage Door & 50' East of W Driveway	8.3%	140.6	129.9	132.4	98.1%
7	-1.0	N 10 500 E 8900	5.9%	133.4	125.9	128.9	97.7%
						_	
]			
			·				
			 				
				 			

Max Density	Optimum Moisture	Material Type and Source	Method
139.3	7.5	Existing On Site Material	ASTM D 1557
128.9	8.5	Common Fill	ASTM D 1557
132.4	9.2	Common Fill	ASTM D 1557

REMARKS:

Gauge Model: Troxler 3411 B

Serial Number: 13428

Std. Counts:

2188-604

Technician:

T. Wheeler

Respectfully submitted,

SJB Services, Inc.

Thomas A. Hamilton

Central Region Manager

2415 N. Triphammer Rd., Suite 3 Ithaca, New York 14850 Telephone: (607) 266-0147 Fax: (607) 266-6409

FIELD IN-PLACE DENSITY TEST REPORT

Project:	Cortland County Landfill	Report No.	S072601	
Client:	Marcy Excavation Co. Inc.	Date:	07-26-01	·
Contractor	Marcy Excavation Co. Inc.	Project No.	2009053	
Weather	Cloudy			

Test	Foet		to obser	Density			
No.	Elevation	Locations and Comments	In-place moisture	Wet (pcf)	Dry (pcf)	maxim (pcf)	% compact
1	FG	7' West of Center Line Middle Door of Garage	3.8%		140.1	145.6	96.2%
	<u> </u>						
						•	
			<u> </u>				
			<u> </u>				
	<u></u>		<u> </u>				
	<u> </u>						
			<u> </u>				
						L	
			<u> </u>				

Max Density	Optimum Moisture	Material Type and Source	Method
145.6	4.6	Granular Fill	ASTM D 1557
	<u> </u>		

REMARKS:

Gauge Model: Troxler 3411 B

Serial Number: 10654

Std. Counts:

494-2835

Technician:

R. Truex

Respectfully submitted, SJB Services, Inc.

Thomas A. Hamilton Central Region Manager

2415 N. Triphammer Rd., Suite 3 Ithaca, New York 14850 Telephone: (607) 266-0147 Fax: (607) 266-6409

FIELD IN-PLACE DENSITY TEST REPORT

Project:	Cortland County Landfill	Report No.	S090601
Client:	Marcy Excavation Co. Inc.	Date:	09-06-01
Contractor	Marcy Excavation Co. Inc.	Project No.	2009053
Weather			

Test			In-place		Density		-
No.	Elevation	Locations and Comments	moisture	Wet (pcf)	Dry (pcf)	maxim (pcf)	% compact
1	FG	11850, 8850 #1	4.8%	129.8	123.8	135.7	91.2%
2	FG	11850, 885 #2	4.8%	134.4	128.3	135.7	94.5%
3_	FG	11850, 8850 #3	4.6%	134.1	128.3	135.7	94.5%
4	FG	11850, 8850 #4	5.8%	135.6	128.1	135.7	94.4%
5	FG	11850, 8850 #5	5.0%	128.8	122.7	135.7	90.4%
6	FG	11850, 8850 #6	5.8%	131.0	123,9	135.7	91.3%
7	FG	11850, 8850 #7	5.0%	143.7-	136.9	140.2	97.6%
8	FG	11850, 8850 #8	4.6%	141.4	135.1	140.2	96.4%
9	FG	11850, 8850 #9	4.6%	135.6	129.8	140.2	92.6%
10	FG	11850, 8850 #10	4.6%	130.1	124.4	135.7	91.7%
11	FG	11850, 8850 #11	5.6%	133.2	126.2	135.7	93.0%
12_	FG	11850, 8850 #12	4.6%	134.7	128.8	135.7	94.9%
13	FG	11850, 8850 #13	4.3%	132.7	127.2	135.7	93.7%
14	FG	11850, 8850 #14	3.7%	132.0	127.3	135.7	93.8%
15	FG	11850, 8850 #15	5.2%	138.4	131.5	135.7	96.9%
16	FG	11850, 8850 #16	4.3%	137.5	131.9	135.7	97.2%
17	FG	11850, 8850 #17	4.0%	130.7	125.6	135.7	92.6%
18	FG	11850, 8850 #18	5.5%	133.3	126.4	135.7	93.1%
19	FG	11850, 8850 #19	5.0%	135.3	128.9	135.7	95.0%
20	FG	11850, 8850 #20	4.4%	132.4	126.9	135.7	93.5%

Max Density	Optimum Moisture	Material Type and Source	Method
140.2	8.5	Common Fill	ASTM D 1557
135.7	7.4	Common Fill	ASTM D 1557

REMARKS: FG: Finish Grade

Gauge Model: Troxler 3440 Serial Number: 14656 Std. Counts:

Technician:

2696-521 R. Terwillegar Respectfully submitted, SJB Services, Inc.

2415 N. Triphammer Rd., Suite 3 Ithaca, New York 14850 Telephone: (607) 266-0147 Fax: (607) 266-6409

FIELD IN-PLACE DENSITY TEST REPORT

Project:	Cortland County Landfill	Report No.	S090601	
Client:	Marcy Excavation Co. Inc.	Date:	09-06-01	
Contractor	Marcy Excavation Co. Inc.	Project No.	2009053	

Weather

Test			In-place	Density			
No.	Elevation	Locations and Comments	moisture	Wet (pcf)	Dry (pcf)	maxim (pcf)	% compact
21	FG	11850, 8850 #21	4.8%	129.8	123.8	135.7	91.2%
22	FG	11850, 8850 #22	4.4%	139.4	133.5	135.7	98.4%
23	FG	11850, 8850 #23	4.9%	129.9	123.8	135.7	91.2%
24	FG	11850, 8850 #24	4.4%	139.1	133.2	135.7	98.2%
25	FG	11850, 8850 #25	5.4%	135.4	128.5	135.7	94.7%
26	FG	11850, 8850 #26	5.3%	131.0	124.5	135.7	91.7%
27	FG	11850, 8850 #27	6.0%	132.9	125.5	135.7	92.5%
28	FG	11850, 8850 #28	4.1%	128.5	123.5	135.7	91.0%
29	FG	11850, 8850 #29	4.2%	135.6	130.2	135.7	95.9%
30	FG	11850, 8850 #30	4.1%	133.2	127.9	135.7	94.3%
31	FG	11850, 8850 #31	5.6%	131.0	124.1	135.7	91.5%
32	FG	11850, 8850 #32	4.1%	130.0	124.9	135.7	92.0%
33	FG	11850, 8850 #33	4.6%	137.3	131.4	135.7	96.8%
34	FG	11850, 8850 #34	4.5%	128.0	122.4	135.7	90.2%
35	FG	11850, 8850 #35	4.3%	130.9	125.5	135.7	92.5%
			 				
			 	-	-		

Max Density	Optimum Moisture	Material Type and Source	Method
140.2	8.5	Common Fill	ASTM D 1557
135.7	7.4	Common Fill	ASTM D 1557

REMARKS:

FG: Finish Grade

Gauge Model:

Troxler 3440

Std. Counts: Technician:

Serial Number: 14656 2696-521 R. Terwillegar

Respectfully submitted, SJB Services, tac.

2415 N. Triphammer Rd., Suite 3 Ithaca, New York 14850 Telephone: (607) 266-0147 Fax: (607) 266-6409

FIELD IN-PLACE DENSITY TEST REPORT

Project:	Cortland County Landfill	Report No.	S091201	
Client:	Marcy Excavation Co. Inc.	Date:	09-12-01	
Contractor	Marcy Excavation Co. Inc.	Project No.	2009053	
Weather	Partly Sunny			

Test			in-place moisture	Den:			
No.	Elevation	Locations and Comments		Wet (pcf)	Dry (pcf)	maxim (pcf)	% compact
1	FG	North 10900 & East 9100 #36	4.8%	138.6	133.2	140.2	95.0%
2	FG	North 10500 & East 9200 # 37	9.0%	146.2	134.1	140.2	95.6%
3	FG	North 10500 & East 9300 #38	8.4%	138.5	127.8	140.2	91.2%
4	FG	North 10500 & East 9100 #39	8.5%	139.5	128.6	140.2	91.7%
5	FG	North 10600 & East 9300 #40	5.7%	134.2	126.9	140.2	90.5%
	ľ						
							

Max Density	Optimum Moisture	Material Type and Source	Method
140.2	8.5	Common Fill	ASTM D 1557

REMARKS: FG: Finish Grade

Gauge Model: Troxler 3411B Serial Number: 13428 Std. Counts: 2186-586

Technician: T. Wheeler

Mike Warner Testing Manager

SJB Services,\Inc.

Respectfully submitted,

2415 N. Triphammer Rd., Suite 3 Ithaca, New York 14850 Telephone: (607) 266-0147 Fax: (607) 266-6409

FIELD IN-PLACE DENSITY TEST REPORT

Project:	Cortland County Landfill	Report No.	S091401
Client:	Marcy Excavation Co. Inc.	Date:	09-14-01
Contractor	Marcy Excavation Co. Inc.	Project No.	2009053
Weather			

Test			In-place	Density			
No.	Elevation	Locations and Comments	moisture	Wet (pcf)	Dry (pcf)	maxim (pcf)	% compact
41		50' North & 30' East of Station N10300 E8200	6.6%	136.5	128.0	140.2	91.3%
42		4' North & 30' East of Station N10300 E8400	7.4%	134.6	125.3	135.7	92.3%
43		27' North & 38' East of Station N10300 E8500	6.3%	134.2	126.2	135.7	93.0%
44		30' North & 47' West of Station N10300 E8500	6.8%	131.4	128.6	135.7	94.8%
45		21' North & 69' West of Station N10300 E8600	8.2%	137.5	127.1	135.7	93.7%
46		18' South & 39' West of Station N10500 E9000	8.7%	135.2	124.4	135.7	91.7%
47		21' North & 33' West of Station N10400 E9100	10.1%	143.8	130.6	135.7	96.2%
48		15' North & 39' West of Station N10400 E9200	10.3%	135.7	123.0	135.7	90.6%
49		41' South & 15' East of Station N10300 E8200	7.9%	136.8	126.8	135.7	93.4%
50		31' North & 36' East of Station N10200 E8300	7.1%	133.3	124.5	135.7	91.7%
51		24' North & 42' West of Station N10200 E8400	7.6%	138.1	128.4	135.7	94.6%
52		18' North & 27' West of Station N10200 E8400	5.8%	131.1	123.9	135.7	91.3%
53		33' North & 39' West of Station N10100 E8300	6.9%	136.1	127.3	135.7	93.8%
54		45' North & 2' West of Station N10100 E8300	7.3%	138.7	129.3	135 <u>.</u> 7	95.3%
55	,	57' North & 15' West of Station N10100 E8200	6.2%	144.9	136.5	140.2	97.4%
56		30' North & 30' West of Station N10100 E8100	6.4%	138.3	130.0	140.2	92.7%
57		60' North & 33' West of Station N10000 E8100	5.9%	135.4	127.8	140.2	91.2%
58		45' North & 39' West of Station N10000 E8200	6.2%	140.5	132.2	140.2	94.3%
59		43' North & 42' West of Station N10000 E8300	6.1%	135.5	127.7	140.2	91.1%
60		33' North & 54' West of Station N10000 E8400	5.7%	142.8	135.0	140.2	96.3%

Max Density	Optimum Moisture	Material Type and Source	Method
140.2	8.5	Common Fill	ASTM D 1557
135.7	7.4	Common Fill	ASTM D 1557

REMARKS:

Gauge Model:

Troxler 3411B

Serial Number: 12475

12475

Std. Counts:

2721-603

Technician:

D. Jennings

Respectfully submitted,

SJB Services, Inc.

Mike Warner

Testing Manager

2415 N. Triphammer Rd., Suite 3 Ithaca, New York 14850 Telephone: (607) 266-0147 Fax: (607) 266-6409

FIELD IN-PLACE DENSITY TEST REPORT

Project:	Cortland County Landfill	Report No.	S091401	
Client:	Marcy Excavation Co. Inc.	Date:	09-14-01	
Contractor	Marcy Excavation Co. Inc.	Project No.	2009053	

Weather

Test				Density			
No.	Elevation	Locations and Comments	In-place moisture	Wet (pcf)	Dry (pcf)	maxim (pcf)	% compact
61		51' North & 33' East of Station N10000 E8400	6.0%	145.8	137.6	140.2	98.1%
62	<u></u>	60' North & 27' East of Station N9900 E8400	5.4%	142.6	135.4	140.2	96.6%
63		63' North & 26' West of Station N9900 E8400	6.5%	141.3	132.7	140.2	94.7%
64		12' North & 12' West of Station N9900 E8300	6.1%	139.8	131.8	140.2	94.0%
65		18' North & 24' West of Station N9900 E8200	6.0%	147.4	139.0	140.2	99.1%
66		54' North & 21' West of Station N9900 E8100	5.6%	134.1	126.9	140.2	90.5%
<u> </u>							
						<u> </u>	
							
		` .					
							

Max Density	Optimum Moisture	Material Type and Source	Method
140.2	8.5	Common Fill	ASTM D 1557
135.7	7.4	Common Fill	ASTM D 1557

REMARKS:

Gauge Model:

Troxler 3411B

Serial Number: 12475

Std. Counts: Technician:

2721-603 D. Jennings Respectfully submitted, S.IB Services, Inc.

Mike^LWarner

Testing Manager

2415 N. Triphammer Rd., Suite 3 hthaca, New York 14850 Telephone: (607) 266-0147 Fax: (607) 266-6409

FIELD IN-PLACE DENSITY TEST REPORT

Project:	Cortland County Landfill	Report No.	S092801	
Client:	Marcy Excavation Co. Inc.	Date:	09-28-01	
Contractor	Marcy Excavation Co. Inc.	Project No.	2009053	
Weather	Cloudy 40°			

Test			In-place	Density			
No.	Elevation	Locations and Comments		Wet (pcf)	Dry (pcf)	maxim (pcf)	% compact
1	FL	# 67	9.3%	134.3	122.9	135.7	90.6%
2	FL	# 68	7.6%	132.9	123.6	135.7	91.1%
3	FL	# 69	8.6%	140.0	128.9	140.2	91.9%
4	FL	# 70	8.5%	136.4	125.7	135.7	92.6%
5	FL	# 71	7.3%	142.3	132.6	140.2	94.6%
6	FL	# 72	8.5%	132.5	122.1	135.7	90.0%
7	FL	# 73	9.0%	142.9	131.1	140.2	93.5%
8	FL	# 74	8.2%	137.2	126.8	140.2	90.4%
9	FL	# 75	8.9%	135.6	124.5	135.7	91.7%
10	FL	# 76	8.6%	137.6	126.7	135.7	93.4%
11	FL	# 77	8.6%	136.7	125.8	135.7	92.7%
12	FL	# 78	7.1%	136.5	127.6	135.7	94.0%
13	FL	# 79	6.8%	139.7	130.8	140.2	93.3%
14	FL	# 80	8.6%	138.1	127.1	140.2	90.7%
15	FL	# 81	7.8%	145.2	134.6	140.2	96.0%
16	FL	# 82	7.7%	143.9	133.6	140.2	95.3%
17	FL	# 83	8.4%	136.2	125.7	135.7	92.6%
18	FL	# 84	7.8%	143.3	132.9	140.2	94.8%
19	FL	# 85	6.7%	139.7	130.9	140.2	93.4%
20	FL	# 86	8.3%	139.0	128.4	140.2	91.6%

Max Density	Optimum Molsture	Material Type and Source	Method
140.2	8.5	Common Fill	ASTM D 1557
135.7	7.4	Common Fill	ASTM D 1557

REMARKS: FL: Final Lift

Gauge Model: Troxler 3440
Serial Number: 14656
Std. Counts: 524-2672
Technician: R. Terwillegar

Respectfully submitted, SJB Services, Inc.

2415 N. Triphammer Rd., Suite 3 Ithaca, New York 14850 Telephone: (607) 266-0147 Fax: (607) 266-6409

FIELD IN-PLACE DENSITY TEST REPORT

Project: Cortland County Landfill Report No. S092801

Client: Marcy Excavation Co. Inc. Date: 09-28-01

Contractor Marcy Excavation Co. Inc. Project No. 2009053

Weather Cloudy 40°

Test			In-place		Density		
No.	Elevation	Locations and Comments	moisture	Wet (pcf)	Dry (pcf)	maxim (pcf)	% compact
21_	FL	# 87	6.7%	144.3	135.3	140.2	96.5%
22	FL	# 88	9.5%	135.1	123,4	135.7	90.9%
23	FL_	# 89	7.9%	134.7	124.9	135.7	92.0%
24	FL	# 90	8.1%	133.3	123.4	135.7	90.9%
25	FL	# 91	9.5%	137.8	125.8	135.7	92.7%
26	FL	# 92	7.4%	140.1	130.5	140.2	93.1%
27	FL	# 93	7.0%	141.8	132.6	140.2	94.6%
28	FL	# 94	8.7%	138.6	127.5	140.2	90.9%
29	FL	# 95	7.8%	137.0	127.5	140.2	90.9%
30	FL	# 96	8.3%	139.8	129.0	140.2	92.0%
31	FL	# 97	7.9%	135.7	125.8	135.7	92.7%
32	FL	# 98	7.0%	141.7	132.4	140.2	94.4%
33	FL	# 99	7.6%	143.9	133.7	140.2	95.4%
34	FL	# 100	6.7%	145.5	136.3	140.2	97.2%
35	FL	# 101	8.1%	140.1	129.5	140.2	92.4%
36	FL	# 102	8.3%	145.4	134.3	140.2	95.8%
37_	FL	# 103	8.6%	142.8	131.5	135.7	96.9%
38	FL	# 104	8.9%	137.9	126.6	135.7	93.3%
39	FL	# 105	9.4%	137.3	125.5	135.7	92.5%
40	FL	# 106	8.4%	139.7	128.9	135.7	95.0%

Max Density	Optimum Moisture	Material Type and Source	Method
140.2	8.5	Common Fill	ASTM D 1557
135.7	7.4	Common Fill	ASTM D 1557

REMARKS:

FL: Final Lift

Gauge Model: Serial Number: Troxler 3440 14656

Std. Counts:

524-2672

Technician:

R. Terwillegar

Respectfully submitted, SJB Services, Inc.

Mike Warner

Testing Manager

2415 N. Triphammer Rd., Suite 3 Ithaca, New York 14850 Telephone: (607) 266-0147 Fax: (607) 266-6409

FIELD IN-PLACE DENSITY TEST REPORT

Project:	Cortland County Landfill	Report No.	S092801	
Client:	Marcy Excavation Co. Inc.	Date:	09-28-01	
Contractor	Marcy Excavation Co. Inc.	Project No.	2009053	
Weather	Cloudy 40 ⁰			

Test				Density			
No.	Elevation	Locations and Comments	in-place moisture	Wet (pcf)	Dry (pcf)	maxim (pcf)	% compact
41	FL	# 107	8.3%	144.1	133.0	140.2	94.9%
42	FL	# 108	9.7%	140.0	127.7	140.2	91.1%
43	FL	# 109	7.9%	144.4	133.8	140.2	95.4%
44	FL	#110	8.2%	140.5	129.9	140.2	92.7%
45	FL	# 111	9.0%	137.4	126.0	135.7	92.9%
46	FL	#112	8.2%	140.9	130.2	140.2	92.9%
47	FL	# 113	9.4%	134.4	122.9	135.7	90.6%
48	FL	# 114	8.8%	140.6	129.2	140.2	92.2%
49	FL	# 115	9.0%	133.8	122.7	135.7	90.4%
50	FL	# 116	8.8%	134.5	123.6	135.7	91.1%
51	FL	# 117	8.1%	139.3	128.7	135.7	94.8%
····							
					1	1	1

Max Density	Optimum Moisture	Material Type and Source	Method
140.2	8.5	Common Fill	ASTM D 1557
135.7	7.4	Common Fill	ASTM D 1557

REMARKS: FL: Final Lift

Gauge Model: Troxler 3440
Serial Number: 14656
Std. Counts: 524-2672
Technician: R. Terwillegar

Respectfully submitted, SJB Services, Inc.

2415 N. Triphammer Rd., Suite 3 Ithaca, New York 14850 Telephone: (607) 266-0147 Fax: (607) 266-6409

FIELD IN-PLACE DENSITY TEST REPORT

Project:	Cortland County Landfill	Report No.	S100301	
Client:	Marcy Excavation Co. Inc.	Date:	10-03-01	
Contractor	Marcy Excavation Co. Inc.	Project No.	2009053	

w	lο	at	h٤	31

Test			In-place	Density			
No.	Elevation	Locations and Comments	moisture	Wet (pcf)	Dry (pcf)	maxim (pcf)	% compact
118		#118	7.7%	144.2	133.9	140.2	95,5%
119		#119	8.2%	141.6	130.8	140.2	93.3%
120		#120	7.1%	139.5	130.2	140.2	92.9%
121		#121	8.1%	137.6	127.3	140.2	90.8%
122	<u> </u>	#122	8.1%	131.3	126,1	135.7	92.9%
123		#123	7.3%	132.2	123.2	135.7	90.8%
124		#124	9.2%	134.5	123.2	135.7	90.8%
125		#125	8.2%	132.5	122.4	135.7	90.2%
126		#126	6.7%	136.1	127.6	135.7	94.0%
127		#127	6.6%	141.7	132.9	140.2	94.8%
128	<u></u>	#128	7.3%	141.7	132.1	140.2	94.2%
129	<u> </u>	#129	7.8%	139.1	130.1	140.2	92.8%
130		#130	8.2%	144.1	133.2	140.2	95.0%
131		#131	8.2%	138.3	127.8	140.2	91.2%
132		#132	6.9%	134.5	126.2	140.2	90.0%
133		#133	7.6%	137.5	127.7	140.2	91.1%
134		#134	6.5%	131.1	123,1	135.7	90.7%
135		#135	6.5%	135.3	127.1	135.7	93.7%
136	<u> </u>	#136	6.5%	131.3	123.3	135.7	90.9%
			<u> </u>				

Max Density	Optimum Moisture	Material Type and Source	Method
135.7	7.4	Common Fill	ASTM D 1557
140.2	8.5	Common Fill	ASTM D 1557

REMARKS:

Gauge Model:

Troxler 3440

Serial Number: 14656

Std. Counts:

Technician:

528(1.1) 2688(0.4) R. Terwilligar

Respectfully submitted,

SJB Services, Inc.

2415 N. Triphammer Rd., Suite 3 Ithaca, New York 14850 Telephone: (607) 266-0147 Fax: (607) 266-6409

FIELD IN-PLACE DENSITY TEST REPORT

Project:	Cortland County Landfill	Report No.	S101901	
Client:	Marcy Excavation Co. Inc.	Date:	10-19-01	
Contractor	Marcy Excavation Co. Inc.	Project No.	2009053	
Weather	Cloudy			

Test			In-place	Density			
No.	Elevation	Locations and Comments		Wet (pcf)	Dry (pcf)	maxim (pcf)	% compact
1	FL	#136	9.3%	144.8	132.5	135.7	97.6%
2	FL	#137	9.0%	143.9	132.0	135.7	97.3%
3	FL	#138	8.0%	135.7	125.6	135.7	92.6%
4	FL	#139	9.2%	140.4	128.6	135.7	94.8%
5	FL	#140	8.9%	138.6	127.2	135.7	93.7%
6	FL	#141	8.1%	134.8	124.7	135.7	91.9%
7	FL	#142	8.5%	142.9	131.7	135.7	97.1%
8	FL	#143	8.6%	142.7	131.4	135.7	96.8%
9	FL	#144	9.8%	144.9	131.9	135.7	97.2%
10	FL	#145	9.0%	145.9	133.8	135.7	98.6%
11	FL	#146	10.0%	140.4	127.7	135.7	94.1%
12	FL	#147	8.8%	142.6	131.0	135.7	96.5%
.13	FL	#148	11.2%	146.1	131.4	135.7	96.8%
14	FL	#149	10.1%	142.3	129.2	135.7	95.2%
15	FL	#150	9.2%	141.5	129.6	135.7	95.5%
16	FL	#151	7.1%	149.9	140.0	140.2	99.9%
17	FL	#152	7.6%	146.3	135.9	140.2	96.9%
18	FL	#153	8.3%	143.0	132.0	140.2	94.2%
19	FL	#154	9.5%	140.4	128.2	140.2	91.4%
20	FL	#155	8.8%	141.8	130.3	140.2	92.9%

Max Density	Optimum Motsture	Material Type and Source	Method
135.7	7.4	Common Fill	ASTM D 1557
140.2	8.5	Common Fill	ASTM D 1557

REMARKS: FL=Final Lift

Gauge Model: Troxler 3411-B

 Serial Number:
 13428

 Std. Counts:
 2167/595

Technician: T. Wheeler

Respectfully submitted,

SJB Services, Inc.

2415 N. Triphammer Rd., Suite 3 Ithaca, New York 14850 Telephone: (607) 266-0147 Fax: (607) 266-6409

FIELD IN-PLACE DENSITY TEST REPORT

Project:	Cortland County Landfill	Report No.	S101901
Client:	Marcy Excavation Co. Inc.	Date:	10-19-01
Contractor	Marcy Excavation Co. Inc.	Project No.	2009053
Weather	Cloudy		

Test			to elece	Density			
No.	Elevation	Locations and Comments	In-place moisture	Wet (pcf)	Dry (pcf)	maxim (pcf)	% compact
21	FL	#156	7.6%	140.0	130.1	140.2	92.8%
22	FL	#157	7.3%	142.5	132.8	140.2	94.7%
23	FL	#158	8.7%	144.1	132.5	140.2	94.5%
24	FL	#159	7.3%	143.1	133.3	140.2	95.1%
							F
ļ	i 						
 							
-							
						`	

Max Density	Optimum Moisture	Material Type and Source	Method
135.7	7.4	Common Fill	ASTM D 1557
140.2	8.5	Common Fill	ASTM D 1557

REMARKS: FL=Final Lift

Gauge Model:

Troxler 3411-B

Serial Number: 13428

Std. Counts:

2167/595

Technician:

T. Wheeler

Respectfully submitted,

SJB Services, Inc.

Mike Warner

Testing Manager

2415 N. Triphammer Rd., Suite 3 Ithaca, New York 14850 Telephone: (607) 266-0147 Fax: (607) 266-6409

FIELD IN-PLACE DENSITY TEST REPORT

Project:	Cortland County Landfill	Report No.	S102301	
Client:	Marcy Excavation Co. Inc.	Date:	10-23-01	
Contractor	Marcy Excavation Co. Inc.	Project No.	2009053	
Weather	Windy			

Test			in-place	Density			
No.	Elevation	Locations and Comments		Wet (pcf)	Dry (pcf)	maxim (pcf)	% compact
160	FG	N 9600 E 8600 SE	10.0%	138.8	126.2	140.2	90.0%
161	FG	N 9600 E 8600 NE	10.0%	143.4	130.4	140.2	93.0%
162	FG	N 9700 E 8600 NE	10.4%	135.6	122.9	135.7	90.6%
163	FG	N 9800 E 8600 NE	11.2%	138.8	124.8	135.7	92.0%
164	FG	N 9900 E 8600 NE	8.3%	142.8	131.8	140.2	94.0%
165	FG	N 10,100 E 9100 NE	8.8%	134.8	123.9	135.7	91.3%
166	FG	N 10,100 E 9200 NE	10.0%	140.1	127.3	140.2	90.8%
167	FG	N 10,100 E 9200 SE	9.9%	139.7	127.1	140.2	90.7%
168	FG	N 10,100 E 9100 SE	8.7%	139.3	128.4	140.2	91.6%
169	FG	N 10,000 E 9100 SE	9.3%	139.6	127.8	140.2	91.2%
170	FG	N 10,000 E 9200 SE	7.5%	141.8	131.9	140.2	94.1%
171	FG	N 9900 E 9200 SE	7.7%	137.6	127.8	140.2	91.2%
172	FG	N 9900 E 9100 SE	11.3%	141.3	127.0	140.2	90.6%
173	FG	N 9800 E 9100 SE	9.1%	141.4	129.5	140.2	92.4%
174	FG	N 9700 E 9100 SE	9.1%	144.2	134.7	140.2	96.1%
175	FG	N 9500 E 8100 SW	7.7%	145.4	135.0	140.2	96.3%
176	FG	N 9500 E 8100 SE	9.2%	138.2	126.5	140.2	90.2%
177	FG	N 9500 E 8200 SE	7.2%	137.5	128.3	140.2	91.5%
178	FG	N 9500 E 8300 SE	8.5%	139.3	128.3	140.2	91.5%
1			l	1			

Max Density	Optimum Moisture	Material Type and Source	Method
135,7	7.4	Common Fill	ASTM D 1557
140,2	8.5	Common Fill	ASTM D 1557

REMARKS: FG=Final Grade

Gauge Model: Troxler 3411-B

Serial Number: 13414 Std. Counts: 2178/631 Technician: D. Jennings Respectfully submitted, SJB Services, Inc.

Dave Verdon Testing Manager

Appendix A

Section: 2.0

Select Fill Material Test Results

Appendix A
Section: 2.A
Type B Select Fill Test Results

TYPE B SELECT FILL MATERIAL (SECTION (02225) TEST RESULTS SUMMARY

Codland County Landfill Remedial Action Landfill Closure

KET DEN =60%

			·	,					,	
						-				
			ļ							
·										
					-					
									<u> </u>	
				<u> </u>			· · · · · · · · · · · · · · · · · · ·			
				-					-	
										
-	_									
 					******		······································			
			<u></u>						<u> </u>	}
										ļ
·										
100.5	8.78	3.6	7.0	8.11	0.26	0.001	1000	etia-no	10/11/9	215, B-1
			0.0	6.71	7.26	0.001	Prequalification	Suit-Kote Pit	10/8/9	AN
	20% BET	> 1 x 10 cm/s	£-0	G1-0	001-06	100	4	SNOITA:	SPECIFIC	<u></u>
ОСУ	2009	AN		0 cy			4	EGUENCY	SAMPLE FR	
D4523	D4523	ASTM D2434	D4SS	D452	D455	D4SS			TEST M	
(lod)	(pct)	(s/ws)	(% Passing)	(gnisse9 %)	(gnisss9 %)	(Brisse9 %)	(cA)			
XAM	NIM	PERMEABILITY	No. 200		"2/1-r		AOCUME AOCUME		SAMPLED	ON.
DENSILL	RELATIVE	COEFFICIENT OF		SISYJANA	GRAIN SIZE		CUMULATIVE	LOCATION	3TAQ	SAMPLE

TYPE B

SELECT

FILL

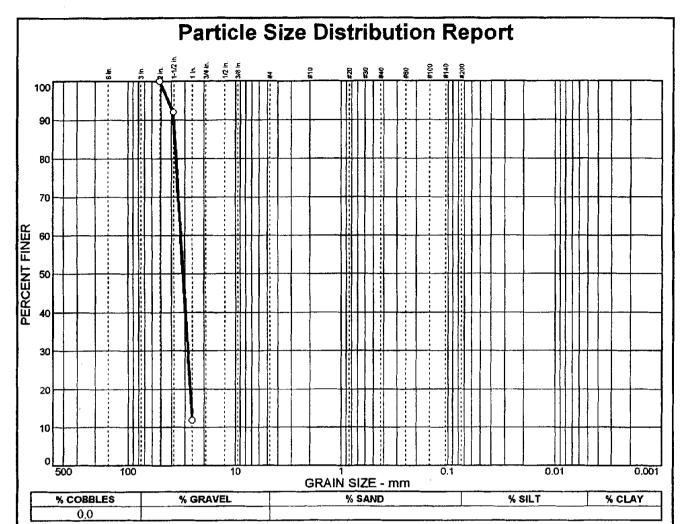
6077539424

Stone Stockpile sample sheet Location Policyille Date 4/15/01 3'\$) %ret %pass Spec wgt 100.0 0.0 Ð 92.7 90-100 1 1/2 7.3 0,874 17.9 9.016 74.8 0-15 2.004 3/4 16.6 7.3 0.5 0.7 1/2 0.064 0.7 0.0 0.09 pan 100.0 total 12.048 CRUSH COUNT ONE FACE 100 TWO FACE 95 3966.2 Round wt 1 Face wt 220.2 2 Face wt (2°s) 1 1/2 0.0 100 0 5.0 95.0 90-100 0.456 3/4 4,168 46.3 48.7 46.4 2.2 0-15 1/2 4.202 1.4 3/8 0.8 0.13 1/4 0.2 9,6 0,018 0.6 0.0 pan 0,056 9.048 100.0 tota 98 TWO FACE CRUSH COUNT ONE FACE 94 2 Face wt 63 Round wi I Face wi 101.6 2409.4 1'3 3/4 0.0 100.0 ٥ 1/2 0,726 8,8 91.2 90-100 3/8 2,808 34.0 57.2 1/4 3,742 45.3 11.8 0-15 #4 7.8 0.548 4.0 1/8 0.196 2.4 1.6 pan 0.138 1,6 0,0 tolal 8,256 100 CRUSH COUNT ONE FACE 97 TWO FACE 94 31.9 Round wt 1 Face wi 2 Face wt 43,4 1151 1 A's 3/8 0.0 100.0 1/4 1.628 14.9 B5.1 90-100 14 6.164 56,3 28.9 1/8 2.748 25.1 3.8 0.15 #8 0.276 2.5 1.3 #16 0.082 0.7 0.5 pan 0.056 0,5 0.0 kotal 10.954 100 CRUSH COUNT ONE FACE

Page 1

1 Face wt

5 Round wa


.98 TWO FACE

9.7

2 Face wt

95

298,3

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
2 in. 1.5 in. 1 in.	100.0 92.0 11.8		

	Soil Description	
Gravel Aggregate	е	
PL=	Atterberg Limits	PI=
D ₈₅ = 36.8 D ₃₀ = 27.8 C _u =	Coefficients D60= 32.4 D15= 25.8 Cc=	D ₅₀ = 30.8 D ₁₀ =
USCS= GP	Classification AASH	ro=
#200 Wash: 0.7%	Remarks	

(no specification provided)

Sample No.: 215, B-1 Location:

Source of Sample: Type B Select Fill

Date: 5/11/01

Elev./Depth:

SJB SERVICES, INC. Project No: 2009053

Client: Marcy Excavation

Project: Cortland Landfill Cover

Plate

PERMEABILITY TEST ON GRANULAR SOIL **ASTM D2434**

2009053 Project No.:

Date Sampled: May 2001

Project Name: Cortland Landfill Cover

Client: Marcy Excavation

Sample No. #1 (Lab No. 215)

Date Tested: June 7, 2001

Sample Description: Type B Select Fill, Crushed Gravel

Unit Weight Determination:

Moisture Content:

After

Diameter, D, cm.: 22.91

Height of cylinder, cm: ____29.8

Wet Wt.

Area, A, cm2:

412.23

Height of Void, cm: ____2.54

Dry Wt. Tare Wt.

Length, I, cm.:

27.3

Sample Height, cm: ____27.3

Moisture %

8.8

Sample Wt., g:

17826.0

Manometer, L, cm.:____23.5

W (max):

100.5 pcf

W (Min):

87.8 pcf

Before

Dry Unit Wt.: 99.0 pcf

Relative Dens: 90 %

Test Run No.

k=QL/Ath

2

Head, h, cm.

0.053

0.132

Flow @	#1	#2	Total
30	254.3		254.3
60		281	535.3
90	266.6		801.9
120		272	1073.9
150	267.6		1341.5
180		269.1	1610.6
210	268.3		1878.9
24 0		270.2	2149.1
270	267.2		2416.3
300		271.8	2688.1
330	268.6		2956.7
360		271.8	3228.5
Tare:			

#1	#2	Total
670.9		670.9
	645.9	1316.8
659.5		1976.3
	638.7	2615
644.9		3259.9
	675.7	3935.6
633.7		4569.3
	676	5245.3
635.6		5880.9
	675.2	6556.1
636.5		7192.6
	675.5	7868.1

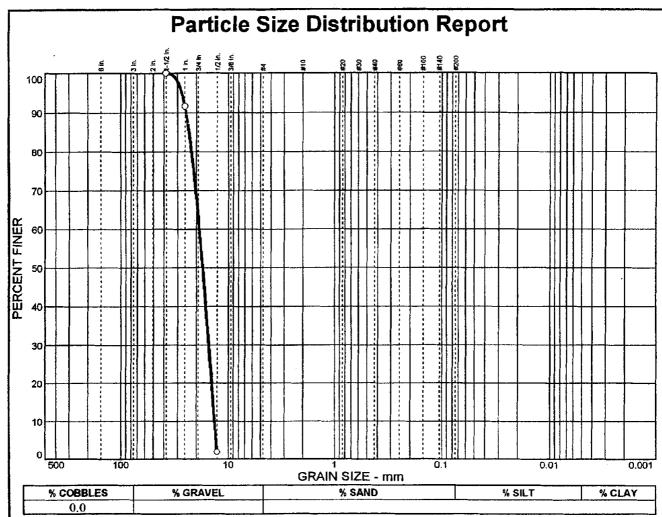
Permeability: 9.6 cm./sec.

9.4 cm./sec.

Tested by:

A. Marks

Calculations by: T. Hamilton


Appendix A Section: 2.B Type D Select Fill Test Results

TYPE D SELECT FILL MATERIAL (SECTION (02225) TEST RESULTS SUMMARY

Cortland County Landfill
Remedial Action Landfill Closure

REL. DEN =90%

									REL. DEN =90%		
SAMPLE	DATE	LOCATION	CUMULATIVE	CALCIUM			e Analysis		COEFFICIENT OF	RELATIVE	
NO.	SAMPLED	;	VOLUME	CARBONATE CONTENT	1-1/2"	1"	1/2 "	No. 200	PERMEABILITY	MIN	MAX
<u> </u>	ii		(cy)	(%)	(% Passing)	(% Passing)	(% Passing)	(% Passing)	(cm/s)	(pcf)	(pcf)
	TEST MI	ETHOD		D3042	D422	D422	d422	D422	ASTM D2434	D4253	D4253
	SAMPLE FR	EQUENCY		PREQUALIFICATION			0 су		NA	5000	Осу
	SPECIFIC	ATIONS		Less than 30%	100	90-100	0-15	0-3	> 1 x 10 ⁻¹ cm/s	50% REL	
NA	5/11/01	Suit-Kote Pit	Prequalification	25.7	100.0	91.6	1.9	0.3	2.85	84.2	99.7
466	9/12/01	on-site	1000		100.0	94.5	5.0	0.5	2.47	89.2	94.3
				İ							
				1							
								· · · · · · · · · · · · · · · · · · ·			
					<u> </u>						
<u> </u>				ļ						ļ	
			}								
							'	_			
											
	ļ				ļ						
						ļ <u>.</u>					
ļ											
						 					
					<u> </u>			<u> </u>			
				 						<u> </u>	
i			<u>}</u>	[<u> </u>	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5 in. 1 in. .5 in.	100.0 91.6 1.9		[K. Ito]

Gravel Aggregat	Soil Description	
Giaron rippingar	•	
PL=	Atterberg Limits	PI=
D ₈₅ = 23.2 D ₃₀ = 15.1 C _u = 1.39	Coefficients D60= 18.5 D15= 13.8 C _C = 0.92	D ₅₀ = 17.3 D ₁₀ = 13.3
USCS= GP	Classification AASHT	O≃
#200 Wash: 0.39	<u>Remarks</u>	

(no specification provided)

Sample No.: 216, D-1

Location: 1st 1,000 cy

Source of Sample: Type D Select Fill

Date: 5/11/01

Elev./Depth:

SJB SERVICES, INC. Client: Marcy Excavation Project: Cortland Landfill Cover

Project No: 2009053

Plate

PERMEABILITY TEST ON GRANULAR SOIL **ASTM D2434**

Project No.:

9902753

Date Sampled: July 1, 1999

Project:

Material Testing

Client: Suit-Kote, Inc.

Sample No.

99389

Date Tested: July 2, 1999

Sample Description:

NYSDOT #2 Aggregate

Unit Weight Determination:

Diameter,

Moisture Content:

After

D, cm.:

22.91

Height of cylinder, cm:

29.8 Wet Wt.

Area.

Dry Wt.

A, sq.cm.:

412.23

Height of Void, cm:

2.54 Tare Wt.

Before

Length of sample,cm:

27.26

Sample Vol.,cc:

11,237 Moisture %

Sample Weight, g:

17,622

Manometer, L, cm.:

23.5

#1

99.7 pcf

Dry Unit Wt

97.9

W (max):

84.2 pcf

W (min): Rel. Dens. 89.9 %

Q

Test Run No.

1

k=QL/Ath

2

Head, h, cm.

0.27

0.44

#2

Flow, t @	#1	#2	Q
30	386		386
60		408	794
90	386		1180
120		408	1588
150	386	22.7	1974
180		408	2382
210	386		2768
240		408	3176
270	386		3562
30 0		408	3970
330	386		4356
360		408	4764
Tare:			

658		658
	680	1338
658		1996
	680	2676
658		3334
	680	4014
658		4672
	680	5352
658		6010
	680	6690
658		7348
	680	8028
	1	

Permeability: 2.8 cm./sec.

Permeability:

2.9 cm./sec.

Tested by: A. Marks

Calculations by:

T. Hamilton

441 V V 4

AUG-26-1999 THU DE:26 AM MAKIM TECHNOLOGIES, INC.

FAX NO. 6072668409

P. 05

August 25, 1999

Empire Salis investigations, Inc., Division
2415 N. Tripharmer Sci., Sinc. 2
Linca., New York 14850

Telephore: (607) 266.0147 Fax: (607) 266-6409

REPORT OF MATERIAL TESTING

Project:

Material Testing

Client:

Suit-Kote Corporation

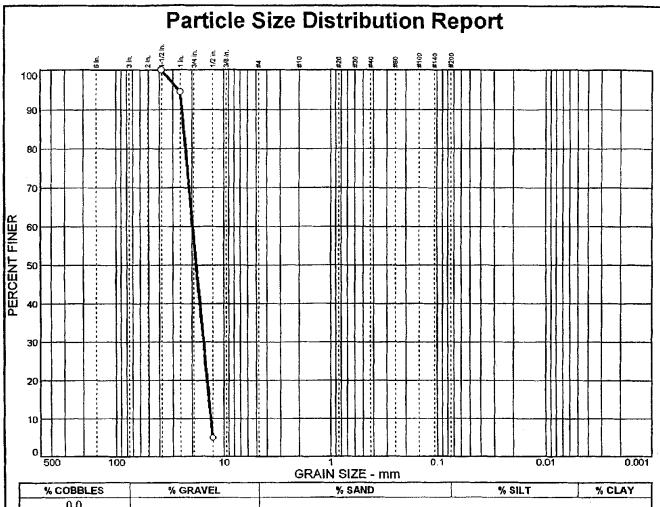
Material:

Proposed "Type A - Select Fill" Fine Gravel, sampled by client and tested for Carbonate Content in accordance with ASTM D 3042.

Stockpile No. 5, Polkville Pit.

	Trial #1	Trial#2	Trial_#3	<u>Avetaes</u>
Initial Weight (gms.)	500,54	\$04.57	306.60	
Residue Weight (Rms.)	368,62	390,70	363.75	
Weight Loss (gms.)	131.92	113.87	142.85	
Loss (%)	Z6.4	22.6	28.2	25.7

Respectfully submitted,


MAXIM TECHNOLOGIES OF NEW YORK, INC.

Jeffrey Trunk

Construction Services Manager

F:\Public\Data\Carbahaté.

"Providing Cost-Effective Salutions to Clients Nationwide"

		010111110100		
% COBBLES	% GRAVEL	% SAND	% SILT	% CLAY
0.0				

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5 in. 1 in. .5 in.	100.0 94.5 5.0		ĮX KGJ
•			

Select Fill, Type #200 Wash 0.5		
PL=	Atterberg Limits LL=	PI=
D ₈₅ = 23.6 D ₃₀ = 15.4 C _u = 1.47	Coefficients D60= 19.4 D15= 13.7 Cc= 0:93	D ₅₀ = 18.0 D ₁₀ = 13.2
USCS=	Classification AASHT	`O=
	<u>Remarks</u>	
		····

(no specification provided)

Sample No.: 466 Location:

Source of Sample: Type D Select Fill

Date: 9/12/2001

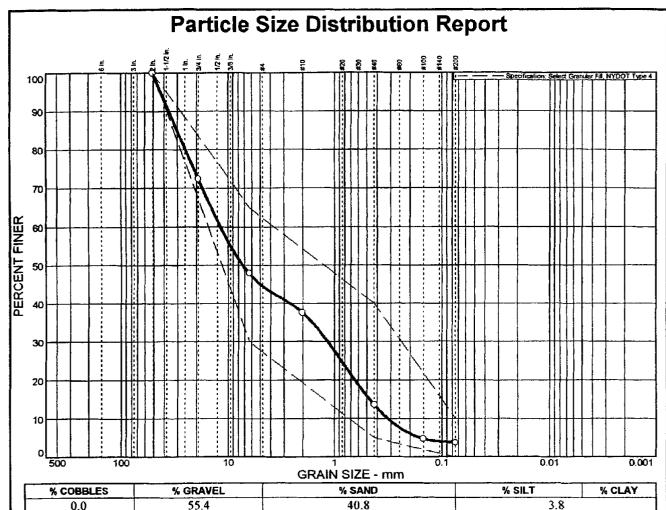
Elev/Depth:

SJB SERVICES, INC. Client: Marcy Excavation

Project: Cortland Landfill Cover

Project No: 2009053

466


PERMEABILITY TEST REPORT

Cortland County Landfill					
SERVICES, INC.	вү: дм	CK'D: W	s	DATE: 10-16-01	PROJ. NO: 2009053
TEST DATA: Specimen Height (cm): Specimen Diameter (cm) Dry Unit Weight (pcf): Moisture Content Before Moisture Content After To): 22.254 Min dry Test (%):	density :		Type D Visual Description : _ C	466, Select Fill rushed Stone #2
Permeameter Type:F Differential Head (cm): Flow Rate (Δ V/t) (cm Permeability (cm/sec):	.1016				
FLOW VOLUME - AV(cm³)	,00 200	300 4	TIME	-t(sec) ΔV/t RI	ELATIONSHIP
PERMEABILITY - K(Cm/sec)	0.002	o.e HYDRAUI	•	ENT - Δ h/L(cm/cm	PERMEABILITY Only

Appendix A

Section: 3.0

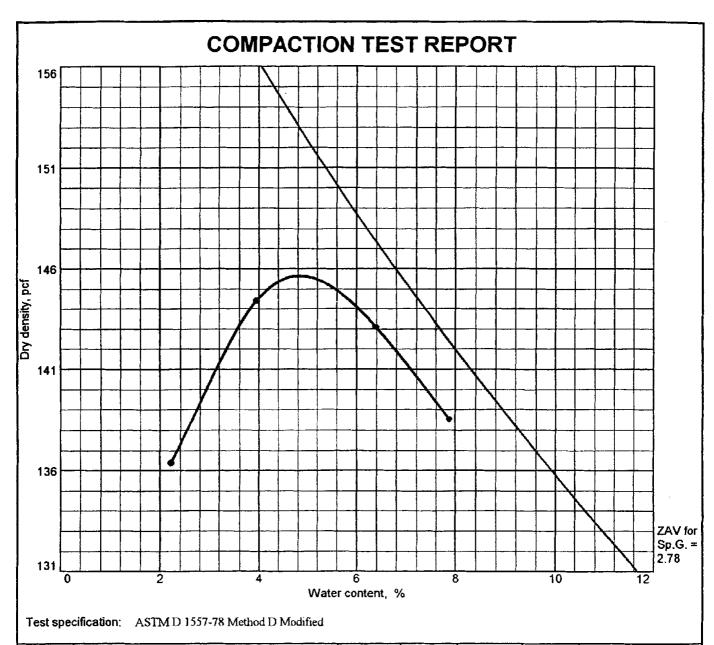
Granular Fill Prequalification Test Results

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
2 in. .75 in. .25 in. #10 #40 #100 #200	100.0 72.4 47.9 37.6 13.6 4 8 3 8	100 - 100.0 30.0 - 65.0 5.0 - 40.0 0.0 - 10.0	
Select	Granular Fill NY	DOT Type 4	

Soil Description Granular Fill Poorly graded gravel with sand				
PL=	Atterberg Limits LL=	PI=		
D ₈₅ = 30.0 D ₃₀ = 1.16 C _u = 37.31	D ₆₀ = 11.8 D ₁₅ = 0.469 C _c = 0.36	D ₅₀ = 7.27 D ₁₀ = 0.316		
USC\$= GP	Classification AASHT	*O=		
Granular Fill	Remarks			

Select Granular Fill, NYDOT Type 4

Sample No.: 244 Location: Suite Kote Source of Sample: Granular Fill


Date: Elev/Depth:

SJB SERVICES, INC. Client: Marcy Excavation

Project: Cortland Landfill Cover

Project No: 2009053

Plate

Elev/	Classi	fication	Nat.	l Sp.G. l	Nat.	0-0	% >	% <
Depth	USCS	AASHTO	Moist.		LL	PI	3/4 in.	No.200
	GP						27.6	3.8
1		1	1					

TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 145.6 pcf	Granular Fill Poorly graded gravel with sand
Optimum moisture = 4.8 %	
Project No. 2009053 Client: Marcy Excavation	Remarks:
Project: Cortland Landfill Cover	
Location: Suite Kote	
COMPACTION TEST REPORT	
SJB SERVICES, INC	Plate

Appendix A

Section: 4.0

Cover Soil Thickness Verification Results

Appendix A Section: 4.A In-Place Layer Thickness

Cortland County Landfill Remedial Action Landfill Closure Protective Cover Thickness

Coord	linates	Ma	aterial Thickn	ess
North:	East:	Barrier:	Topsoil:	Final:
(feet)	(feet)	(inches)	(inches)	(inches)
961000	639000	12.5	6.0	18.48
961000	638900	12.5	6.2	18.70
961000	638800	12.6	6.5	19.10
960900	639100	12.2	6.3	18.54
960900	639000	12.1	6.0	18.12
960900	638900	12.4	6.2	18.56
960900	638800	12.0	6.5	18.50
960800	639200	12.5	6.5	19.00
960800	639100	12.6	6.3	18.90
960800	639000	12.8	6.5	19.34
960800	638900	12.5	6.7	19.18
960800	638800	13.2	6.8	20.00
960700	639200	12.0	6.5	18.50
960700	639100	13.0	6.2	19.20
960700	639000	12.6	6.1	18.70
960700	638900	12.4	6.7	19.06
960700	638800	12.8	7.0	19.84
960600	639300	12.2	5.7	17.90
960600	639200	12.4	6.8	19,20
960600	639100	12.8	6.8	19.60
960600	639000	12.5	7.0	19.50
960600	638900	12.2	6.5	18.70
960600	638800	12.7	6.8	19.52
960600	638700	. 12.5	6.4	18.88
960500	639300	12.2	6.0	18.20
960500	639200	12.3	6.3	18.60
960500	639100	12.8	6.7	19.50
960500	639000	12.5	6.5	19.00
960500	638900	12.4	6.5	18.90
960500	638800	12.5	6.0	18.48
960500	638700	12.7	6.1	18.82
960500	638600	12.5	6.0	18.50
960400	639300	12.2	6.5	18.70
960400	639200	12.1	6.3	18.40
960400	639100	12.6	6.5	19.10
960400	639000	12.6	6.2	18.80
960400	638900	12.3	6.7	19.00
960400	638800	12.6	6.2	18.80
960400	638700	12.4	6.0	18.36
960400	638600	12.6	6.7	19.30
960400	638500	13.2	6.5	19.70
960400	638400	13.8	6.3	20.10
960300	639200	12.4	6.5	18.86
960300	639100	13.2	6.3	19.50
960300	639000	12.2	7.2	19,44

Coord	inates	Material Thickness		ess
North:	East:	Barrier:	Topsoil:	Final:
(feet)	(feet)	(inches)	(inches)	(inches)
		·		
960300	638900	12.0	6.8	18.80
960300	638800	12.1	6.2	18.32
960300	638700	12.4	6.2	18.56
960300	638600	12.6	6.2	18.80
960300	638500	12.0	6.5	18.50
960300	638400	14.4	6,5	20.90
960300	638300	12.6	6.5	19.10
960300	638200	12.6	6.0	18.60
960200	639200	12.4	6.3	18.66
960200	639100	12.6	6.2	18.80
960200	639000	12.6	6.2	18.80
960200	638900	12.6	5.0	17.60
960200	638800	12.2	6.2	18.44
960200	638700	13.8	6.2	20.00
960200	638600	14.4	6.2	20.60
960200	638500	12.6	6.5	19.10
960200	638400	14.4	6.5	20.90
960200	638300	12.8	6.5	19.34
960200	638200	12.6	6.0	18.60
960200	638100	12.1	6.0	18.12
960100	639200	12.6	6.3	18.90
960100	639100	12.6	6.4	19.00
960100	639000	12.4	6.3	18.66
960100	638900	12.6	6.5	19.10
960100	638800	12.2	6.7	18.94
960100	638700	12.1	6.5	18.62
960100	638600	12.6	6.3	18.90
960100	638500	12.6	6.0	18.60
960100 960100	638400 638300	12.6 12.0	6.4	19.00 18.60
960100	638200	13.8	6.5	20.30
960100	638100	12.2	5.7	17.94
960000	639200	12.4	6.2	18.56
960000	639100	12.6	6.4	19.00
960000	639000	13.8	6.4	20.20
960000	638900	13.2	6.6	19.80
960000	638800	12.6	6.2	18.80
960000	638700	12.6	6.1	18.70
960000	638600	13.2	6.5	19.70
960000	638500	14.4	6.5	20.90
960000	638400	14.4	6.5	20.90
960000	638300	14.4	6.8	21.20
960000	638200	13.8	6.3	20.10
960000	638100	12.6	6.3	18.90
959900	639200	12.6	6.5	19.10
959900	639100	12.6	6.5	19.10
959900	639000	12.2	6.2	18.44
959900	638900	12.8	6.7	19.54
959900	638800	13.8	6.2	20.00
959900	638700	14.4	24.0	38.40
959900	638600	13.8	6.5	20.30

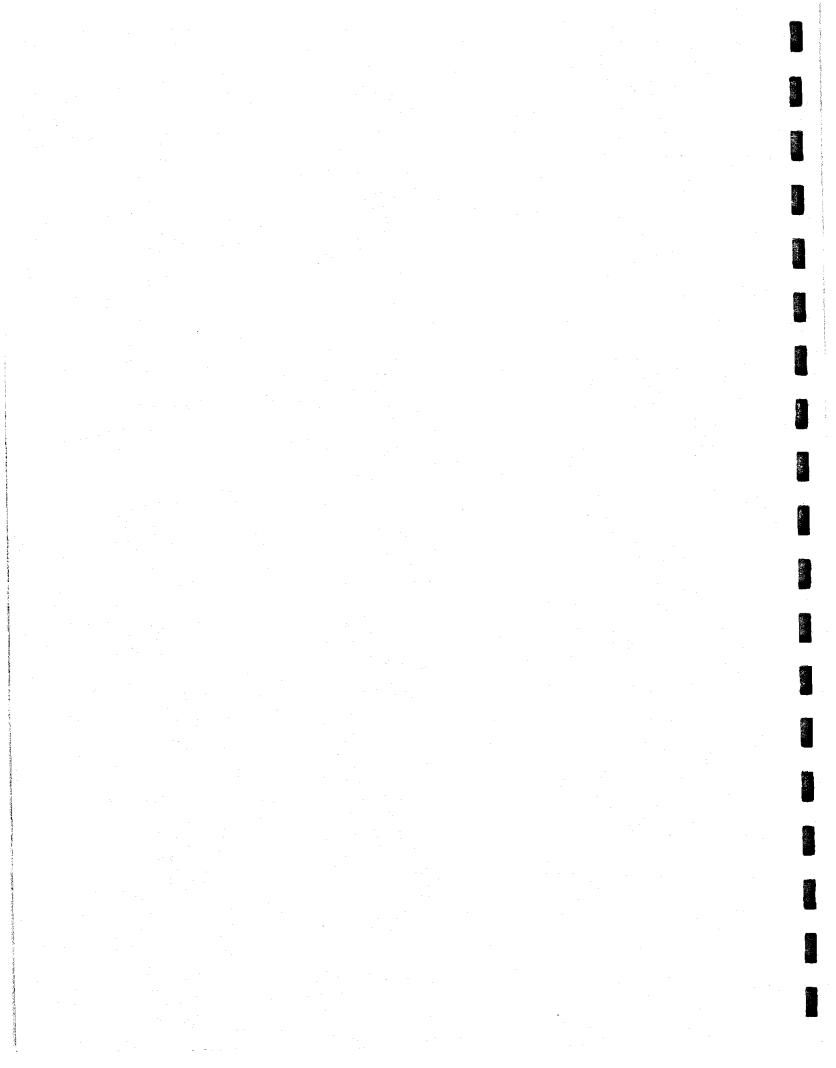
Coord	inates	Material Thickness		ess
North:	East:	Barrier:	Topsoil:	Final:
(feet)	(feet)	(inches)	(inches)	(inches)
959900	638500	13.2	7.0	20.20
959900	638400	12.2	6.0	18.24
959900	638300	13.2	6.3	19.50
959900	638200	12.1	6.5	18.62
959900	638100	13.2	8.0	21.20
959800	639400	13.8	7.0	20.80
959800	639300	12.6	6.0	18.60
959800	639200	12.4	6.3	18.66
959800	639100	12.1	6.3	18.42
959800	639000	12.2	6.2	18.44
959800	638900	12.6	6.2	18.80
959800	638800	13.2	6.5	19.70
959800	638700	13.8	24.0	37.80
959800	638600	12.6	6.0	18.60
959800	638500	12.6	6.5	19.10
959800	638400	12.7	6.3	19.02
959800	638300	13.2	6.3	19.50
959800	638200	14.4	6.8	21.20
959800	638100	12.6	6.4	19.00
959700	639500	12.1	6.5	18.62
959700	639400	12.2	6,5	18.74
959700	639300	12.0	8.0	20.00
959700	639200	12.6	6.8	19.40
959700	639100	12.6	6.5	19.10
959700	639000	12.1	6.2	18.32
959700	638900	12.2	6.2	18.44
959700	638800	12.0	7.2	19.20
959700	638700	13.2	24.0	37.20
959700	638600	13.2	4.5	17.70
959700	638500	12.6	6.2	18.80
959700	638400	12.6	6.8	19.40
959700	638300	14.4	6.0	20.40
959700	638200	12.6	6.0	18.60
959700 959600	638100 639500	12.1 13.2	6.2	18.32 21.20
959600	639400	13.2	8,0 6,5	19.70
959600	639300	12.6	6.5	19.10
959600	639200	13.2	7.0	20.20
959600	639100	13.2	6.5	19.70
959600	639000	13.8	6.0	19.80
959600	638900	12.2	6.0	18.24
959600	638800	13.2	7.0	20.20
959600	638700	12.6	6.5	19.10
959600	638600	12.6	7.0	19.60
959600	638500	12.6	6.3	18.90
959600	638400	12.6	6.0	18.60
959600	638300	13.2	6.1	19.30
959600	638200	12.0	7.0	19.00
959600	638100	12.2	6.5	18.74
959500	639500	13.8	7.5	21.30
959500	639400	12.4	8.0	20.36

Coordinates		Material Thickness		
North:	East:	Barrier:	Topsoil:	Final:
(feet)	(feet)	(inches)	(inches)	(inches)
959500	639300	12.2	8.0	20.24
959500	639200	12.2	6.0	18.24
959500	639100	12.1	7.0	19.12
959500	638600	13.2	6.3	19.50
959500	638500	12.6	7.0	19.60
959500	638400	12.6	6.5	19.10
959500	638300	12.2	6.5	18.74
959500	638200	12.6	6.2	18.80
959500	638100	12.6	6.8	19.40
959400	639500	13.0	7.5	20.46
959400	639400	12.0	6.5	18.50
959400	638400	18.0	6.7	24.70
959400	638300	20.4	6.2	26.60
	L		L	

Note: 24" Topsoil thickness refers to RipRap thickness in downchute.

Appendix A

Section: 4.B


Final Layer Elevation

		'전문화가를 변화하는 경우를 받았다. 그 사를 다 다 보다 다른 다른 다음이 다른 다른 다른 다른 다른 다른 다른 다른 다른 다른 다른 다른 다른
		- Maragara (1986) - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 -
그리얼왕 [학세일] 그리다 하는 것 같아.	시청 회사회 가능성 시작하는 그들 수 있을까?	
		가 많이 출시되는 것이 되는 것이 되는 것이 되었다. 그 생생은 모습이다. 소문을 가게 하는 것이 되는 것이 되는 것이 되는 것이 되었다. 그 것이 없는 것이다.
일어 없는 사람들이 그렇게 되었다면 되었다.	하실이 그 가는 이 가는 이번째 말했다. 모르네요	
	인경 이번이 그는 그녀를 취임하다고요.	
	되면 하다 그는 그는 그리는 전략으로 되었다.	항공성은 그 그는 사이를 관계되었다.
	역사회 그는 그런 그런 전환화화되었다.	
		흥빛하다 이 오늘 생활 얼마나, 생각하였다.
그는 일반이 되는데 생길이 되었다면요?		사는 사용하는 사람들은 사용한 글로 통해 있는 보 네 를
	이 그렇게 들었다. 그는 작가 없는 사람이 없다.	아이트를 살아내다고를 하셨다면 그리고 있다.
		그리 생생님이 되는 아이들을 때 없는데 그 🗯 1
	그리고 있는 기술을 받는 것이 되었다. 수비 가는 것으로 되었다. 그리고 있는데, 일시, 일시, 하는데 보다를 가장하는 것이다.	
	요즘 얼마 마음을 하는 사람이 되었다는 하는 모모다	
		공명소원들은 환경하시 하게 어떻게 되었다.
	요. 그는 사용 사용 가는 100 전 한 100 분들은 보이 하는 것이 되었다. 요. 그 사용 100 분들은 100 분들은 100 분들은 100 분들은 100 분들은 100 분들은 100 분들은 100 분들은 100 분들은 100 분들은 100 분들은 100 분들은 100 분들은	
	성성은데 이 그는 사이는 얼마는 화학회를	"공격장이로 그는 이 그 이 시간 [2] [2] [2]
	그래요 집 하는 그는 그 그 아무리의 하고 있는	
	도 없었다. 1 사람들은 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
	불통하다 나는 등이 그 경우 사람이 되다.	
	하지 않아난 제 속했다. 얼굴하다 하는 그 하는데	
		하는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들이 되었다.
	그리는 현존을 잃어 여름하는 그 맛없다.	
	불발 발생, 된 시작들은 보호들이 기사를 밝혀 받죠?	
	병하다 있는 사람들은 사람들이 살아 되었다.	
	흥합 경화 등에 보다는 그리고 학교 환경화 있는	일류하다면 그 그 그는 그 그래를
		상황, 열리하는 모르 그리고 있다면?
	공연 사람은 보다 하다 나는 바람들이 되었다.	
[설립: 18] - 18 - 18 - 18 - 18 - 18 - 18 - 18	엄마 경험 화학 보는 그리고 그는 그는 그리고 하고 있었다.	
	이렇게 살고 그는 그 그는 그는 점속이 없었다.	[편화장조] (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	용성적 취업 강 그는 그동사들은 사람들 목록을 다	상대 등 보기 시간 등 없는 말이 되는 것이 되었다.
를 시계하는 이 이 그들은 얼마는 나를 된 것입다.	여자는 경기를 모르는데 살 살아왔다며 하는데 되는데	
를 보고 왕성했다는 생각하는 일보다 그 모르는		
· 基础的基础的编码是1000000000000000000000000000000000000		
	[] 그리는 작용이 많은 종일 관리 회사회 개최	사람들 아이는 사람들은 그 생활을
를 보면 중요하다 다시하는 학교 관측 ::		
and the second s		

Appendix A

Section: 5.0

Topsoil Prequalification Test Results

Contract Drilling and Testing

Central New York Office

2415 N. Triphammer Road Suite 3 Ithaca, NY 14850

Phone: (607) 266-0147 Fax: (607) 266-6409

Buffalo, NY

(716) 649-8110 (518) 899-7491

Albany, NY Falconer, NY 518) 899-7491 (716) 487-1481

Gilbert, PA

(610) 681-8500

REPORT OF MATERIAL TESTING

Project:

Cortland Landfill, Cover

Client:

Marcy Excavation

Material:

Topsoil for Landfill Cover sampled on July 25, 2001 from the East Side

(Pile #1) Stockpile, and South End (County Pile #1).

Test Performed	Pile #1, East Side <u>S-1</u> <u>S-2</u>		County Pile #1 South End	
Ph	8.4	7.6	7.8	
Loss on Ignition	6.4 %	7.0%	3.9%	

Respectfully submitted,

SJB Services, Inc.

Thomas A. Hamilton

Central Region Manager

homas Hamilton

Contract Drilling and Testing

Central New York Office

2415 N. Triphammer Road Suite 3 Ithaca, NY 14850

Phone: (607) 266-0147 Fax: (607) 266-6409

Buffalo, NY

Albany, NY

Falconer, NY

Gilbert, PA

(716) 649-8110

(518) 899-7491

(716) 487-1481

(610) 681-8500

REPORT OF MATERIAL TESTING

Project:

Cortland Landfill, Cover

Client:

Marcy Excavation

Material:

Topsoil for Landfill Cover sampled on July 19, 2001 from the Southern On

Site Stockpile.

Test Performed

<u>S-1</u>

<u>S-2</u>

Ph

7.9

8.4

Loss on Ignition

5.2 %

6.0%

Respectfully submitted,

SJB Services, Inc.

Thomas A. Hamilton Regional Manager

