

February 6, 2007

Joe Yavonditte Chief, Remedial Section B Remedial Bureau A Div. of Environmental Remediation 625 Broadway Albany, NY 12233-7015

Dear Mr. Yavonditte:

Enclosed is a report summarizing groundwater monitoring activities at the Towslee Landfill in Cortland County. The report covers data collected in Quarters 1 through 4 of 2006. Cortland County Soil and Water Conservation District prepared this report for Don Chambers, Superintendent of Cortland County Highway Department. We plan to conduct the same scope of monitoring in 2007 as was conducted in 2006.

Please contact our office at (607) 753-0851 x3, or Don Chambers at (607) 753-9377, if you have any questions.

Sincerely,

Patrick Reidy Water Quality Specialist

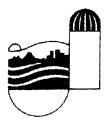
cc: Don Chambers Tim DiGiulio, NYSDEC Region 7 Jim Burke, NYSDEC Region 7 Amanda Barber, SWCD/files

w/ report w/ report w/out report w/out report

Environmental Monitoring Report 2006 Quarters 1 through 4

Cortland County Towslee Landfill

Town Line Road Cortland County, New York


NYSDEC Region 7

Prepared for:

Cortland County Highway Department Traction Drive Cortland, NY 13045

Prepared by:

Cortland County Soil and Water Conservation District 100 Grange Place Cortland, NY 13045

TABLE OF CONTENTS

PAGE

1.0	Introduction1
2.0	, ' Site History1
3.0	Monitoring Schedule and Locations2
4.0	Assessment of Monitoring Results
5.0	Quality Control
Figures	<u>3</u>
1 2 3	Groundwater Monitoring Well Locations 1997 and 2006 Average Concentrations for Conventional Parameters 1997 and 2006 Average Concentrations for Total Metals
Tables	
1 2 3 4 5 6 7 8 9 10 11	Quarter 1 – Contraventions of Water Quality Standards- Field/Inorganic Parameters Quarter 1 – Contraventions of Water Quality Standards- Metals Quarter 2 – Contraventions of Water Quality Standards- Field/Inorganic Parameters Quarter 3 – Contraventions of Water Quality Standards- Metals Quarter 3 – Contraventions of Water Quality Standards- Field/Inorganic Parameters Quarter 3 – Contraventions of Water Quality Standards- Metals Quarter 4 – Contraventions of Water Quality Standards- Metals Quarter 4 – Contraventions of Water Quality Standards- Field/Inorganic Parameters Quarter 4 – Contraventions of Water Quality Standards- Metals Water Quality Trends from 1997 to 2006 – Well MW-1A Water Quality Trends from 1997 to 2006 – Well MW-1B Water Quality Trends from 1997 to 2006 – Well MW-2A
12	Water Quality Trends from 1997 to 2006 – Well MW-2A Water Quality Trends from 1997 to 2006 – Well MW-2B

Water Quality Trends from 1997 to 2006 - Well MW-3A 13

Water Quality Trends from 1997 to 2006 - Well MW-6B 14

Water Quality Trends from 1997 to 2006 - Well MW-7A 15

Appendices

Α Correspondence

Quarter 3 - Analytical Laboratory Report, Internal Quality Control Summary and Field Notes В

Quarter 4 - Analytical Laboratory Report, Internal Quality Control Summary and Field Notes Historical Analytical Data С

D

1.0 Introduction

Cortland County is the current owner of the inactive Towslee landfill located at the county's solid waste disposal site in the Towns of Cortlandville and Solon, near the center of the county. The Towslee landfill has previously been called the Old County Landfill, and the Town Line Landfill. It is referred to as the Towslee landfill in this report. This report summarizes groundwater quality monitoring activities at the Towslee Landfill for 2006, including Quarters 1, 2, 3 and 4.

The Towslee landfill is designated by New York State Department of Environmental Conservation (NYSDEC) as a Class 2 inactive hazardous waste disposal site, and has been listed in the Registry of Inactive Hazardous Waste Disposal Sites (#7-12-001). NYSDEC issued an Order of Consent (#B7-0486-12-95), effective May 31, 1996, making it the responsibility of Cortland County to develop and enact a remedial investigation plan towards the closure and cleanup of the facility.

Barton & Loguidice (B&L) completed a remedial investigation report in March 1998 that included the results of a hydrogeologic investigation and a "limits of waste" investigation, among other things. Groundwater monitoring wells were installed and tested as part of this investigation.

In a letter dated November 7, 2005, NYSDEC outlined minimum sampling requirements for the Towslee landfill. As a result, Cortland County initiated quarterly monitoring in 2006 at seven groundwater monitoring wells. Proposed monitoring locations were identified by Cortland County Soil and Water Conservation District, and submitted to NYSDEC for review in a letter dated February 17, 2006. These letters are included in Appendix A.

Buck Laboratories, Inc. (herein referred to as Buck Labs) conducted all sample collection activities, and performed all laboratory analyses for Quarters 1 through 4. Water quality analyses were conducted in accordance with 1998 Part 360 regulations. SWCD performed data analysis and prepared this report.

2.0 Site History

The site was a private disposal facility starting in the 1940s. The City of Cortland leased the site for municipal disposal in the mid-1960s in the portion of the site now referred to as the Abandoned City of Cortland Landfill. Cortland County purchased the site in 1972. In April 1972 the County began landfill operations north of the Abandoned City operation. The County stopped disposing of municipal solid waste at this site in 1987, but continued to dispose of construction debris until early 1992.

Based on landfill records, hazardous wastes were believed to have been deposited at the site. The wastes were believed to have been generated by one or more local industries. B&L delineated the limits of hazardous waste associated with the site. Figure 1 shows well locations monitored for this program, and approximate limits of hazardous waste.

Cortland County SWCD

The B&L Remedial Investigation concluded that in 1997 there was mild landfill leachate contamination of groundwater in the vicinity of Wells MW-2A/B and MW-7A. Very mild impacts from leachate contamination occurred in the vicinity of Well MW-1A. Groundwater contamination occurred primarily in the overburden, and extended downgradient of the site for a distance of about 450 feet.

Based on 1997 monitoring, B&L identified the following parameters that were indicative of mild leachate impacts to groundwater:

Conventionals - chloride, COD, ammonia, alkalinity, TKN, TOC, and hardness

<u>Metals</u> - aluminum, arsenic, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, potassium, sodium, vanadium, and zinc

3.0 Monitoring Schedule and Locations

3.1 Schedule

Quarter	<u>Analyses</u>	Date Sampled
First Quarter:	Routine	April 11, 2006
Second Quarter:	Routine	May 31, 2006
Third Quarter:	Baseline	August 9, 2006
Fourth Quarter:	Routine	October 10, 2006

3.2 Groundwater Monitoring Locations

Seven downgradient wells were sampled as part of the Towslee monitoring program. Well locations are shown on Figure 1. Four of the wells are finished in bedrock, and three are finished in overburden, as described below:

Bedrock	<u>Overburden</u>
MW-1B	MW-1A
MW-2B	MW-2A
MW-3A	MW-7A
MW-6B	

4.0 Assessment of Monitoring Results

This section provides an evaluation of groundwater monitoring results for Quarters 1 through 4 of 2006. Groundwater quality data are compared to NYS water quality standards to assess current conditions. Recent data are also compared to past data to evaluate trends.

- Appendix B contains the Quarter 3 laboratory analytical report.
- Appendix C contains the Quarter 4 laboratory analytical report.
- Appendix D contains tables of historical water quality data through the latest monitoring round.

(note that the laboratory reports for Quarters 1 and 2 were provided in a previous report)

4.1 Contraventions of Water Quality Standards

This subsection compares 2006 groundwater quality data to NYS water quality standards.

Tables 1 and 2 summarize water quality results for Quarter 1. Tables 3 and 4 summarize water quality results for Quarter 2. Tables 4 and 5 summarize water quality results for Quarter 3. Tables 6 and 7 summarize water quality results for Quarter 4.

Available NYS water quality standards are included in these tables, and contraventions of standards are highlighted.

<u>pH</u> - 2006 contraventions were as follows:

Quarter 1 - MW-2A (6.4) and MW-2B (6.4). Quarter 2 - MW-2A (6.4), MW-2B (6.4) and MW-7A (6.4). Quarter 3 - MW-2A (6.15), MW-2B (6..35) and MW-7A (6.34). Quarter 4 - MW-2A (6.41).

These results are slightly outside the range of the NYS water quality standard for pH (6.5 to 8.5).

Color - Color for MW-2A in Quarter 3 was 33, above the NYS water quality standard of 5.

<u>Turbidity</u> – Turbidity for all seven wells exceeded the NYS standard of 5 NTU in all four Quarters in 2006. Quarter 1 results ranged from 17.3 to 660 NTU. Quarter 2 results ranged from 11.9 to 73 NTU. Quarter 3 results ranged from 5.2 to 195 NTU. Quarter 4 results ranged from 7.2 to 42 NTU. Based on separate monitoring conducted at the closed Pine Tree Landfill, and the active West Side Landfill, these exceedances appear to be related to natural groundwater conditions in this area.

<u>Total Dissolved Solids (TDS)</u> - The TDS standard of 500 mg/l was exceeded for the same two wells in each Quarter in 2006. TDS for MW-2B ranged from 980 to 1,040 mg/l in 2006. TDS for MW-7A ranged from 949 to 967 mg/l in 2006.

<u>Ammonia</u> - The ammonia standard of 2 mg/l was exceeded at a single well (MW-2A) in all four Quarters of 2006. Ammonia at MW-2 ranged from 10.6 to 18.4 mg/l in 2006.

<u>Total Phenol</u> - Phenol was below the detection limit for all wells during all four Quarters, with two exceptions: in Quarter 2 phenol was detected at 0.007 mg/l for MW-7A, and in Quarter it was detected at 0.1 mg/l for MW-2B. Each of these is above the NYS standard of 0.001 mg/l.

<u>Total Barium</u> - The NYS standard for barium is 1 mg/l. This was slightly exceeded for one well (MW-2B at 1.22 mg/l) in Quarter 3.

Total Iron - The NYS standard for iron is 0.3 mg/l.

In Quarter 1 all seven wells exceeded the standard, ranging from 0.339 to 19.4 mg/l. In Quarter 2 all seven wells exceeded the standard, ranging from 0.551 to 24 mg/l.

In Quarter 3, six of seven wells exceeded the standard, ranging from 0.306 to 6.5 mg/l.

In Quarter 4, four of seven wells exceeded the standard, ranging from 1.06 to 10.1 mg/l.

Due to turbidity levels above 50 NTU, dissolved metals testing was conducted at one or more wells in Quarters 1, 2 and 3. Dissolved iron levels were significantly lower than total iron. This suggests that elevated levels are at least in part due high turbidity levels and associated solids in the samples. Also note that the NYS standard for iron is based on the dissolved form.

<u>Total Lead</u> - In Quarter 2, total lead at Well MW-2A was 0.019 mg/l, slightly exceeding the water quality standard for lead of 0.015 mg/l. Total lead at MW-2A was below the detection limit of 0.005 mg/l for the other three Quarters. No other contraventions of the lead standard were observed in 2006.

Total Manganese - The NYS standard for manganese is 0.3 mg/l.

In Quarter 1 six of seven wells exceeded the standard, ranging from 0.534 to 12.2 mg/l. In Quarter 2 three of seven wells exceeded the standard, ranging from 5.69 to 11.5 mg/l. In Quarter 3, five of seven wells exceeded the standard, ranging from 0.38 to 12 mg/l. In Quarter 4, four of seven wells exceeded the standard, ranging from 0.306 to 13.6 mg/l.

Due to turbidity levels above 50 NTU, dissolved metals testing was conducted at one or more wells in Quarters 1, 2 and 3. Dissolved manganese levels were somewhat lower than total manganese.

<u>Sodium</u> - The NYS sodium standard of 20 mg/l was exceeded at the same three wells (MW-2A, MW-2B and MW-7A) in all four Quarters in 2006. Results were consistent from Quarter to Quarter, with MW-2A about 25-30 mg/l, MW-2B about 50 mg/l, and MW-7A about 120-130 mg/l. Elevated sodium may be partially related to road salting in winter months.

<u>Volatile Organic Compounds (VOCs)</u> - VOCs were analyzed for each well during Quarter 3. All results were below the detection limit except:

MW-2B	cis-1,2-Dichloroethene	6.2 mg/l
MW-7A	cis-1,2-Dichloroethene	7.1 mg/l
MW-7A	1,1-Dichloroethane	6.1 mg/l

Each of these slightly exceeds the NYS water quality standard of 5 mg/l.

There were no other contraventions of NYS water quality standards during the four monitoring rounds conducted in 2006.

4.2 Trends

The seven wells that are monitored as part of this program were previously sampled by B&L twice in 1997. To track water quality trends, SWCD has compiled a historical database for these seven wells that contains the two rounds conducted in 1997, and the four rounds conducted in 2006. The historical database is included in Appendix D.

In general, groundwater quality has improved downgradient of the Towslee landfill between 1997 and 2006. For most water quality parameters, there has been a significant decrease in concentration in 2006 compared to 1997 monitoring. There continues to be evidence of mild landfill leachate contamination, but less so than in the past.

4.2.1 Trends for Conventionals

Figure 2 compares groundwater quality data for conventional parameters for the seven monitoring wells tested in 2006 to results for the same wells measured in 1997. The data represent the average concentration of two sampling events conducted in 1997 and the average concentration of the four events conducted in 2006. For results that were below the detection limit, the average concentration assumes the result is equal to the detection limit. In some cases, a comparison is not feasible because all or most results were below the detection limit, or there is a significant difference in detection limits, or data was unavailable for one of the years. Tables 9 through 15 present the data used to prepare Figure 2. A summary of the findings are presented below.

<u>Color</u> - There was a significant decrease in color in 2006 for the five wells for which a comparison was feasible.

<u>Alkalinity</u> - Wells MW-2A and MW-6B showed significant decreases in alkalinity in 2006. The remaining wells showed relatively small increases or decreases.

<u>Hardness</u> - All seven wells showed a decrease in hardness from 1997 to 2006. Most results were significantly lower.

<u>Total Dissolved Solids (TDS)</u> - Five of seven wells showed a significant decrease in TDS in 2006. The remaining two wells showed similar results in 2006, but also showed the lowest average concentrations.

<u>Chloride</u> - Six of seven wells showed a significant decrease in chloride level in 2006. The remaining well had similar low chloride concentrations in 1997 and 2006.

<u>COD</u> - Results for all seven wells showed a significant decrease from 1997 to 2006.

<u>Sulfate</u> - Three wells showed significant decreases in sulfate level in 2006. Two wells had similar levels in both years. For the remaining two wells, a comparison was not feasible.

<u>Bromide</u> - Five of six wells showed a significant decrease in bromide level in 2006. Average bromide level was somewhat higher for Well MW-7A in 2006. A comparison was not feasible for Well MW-1B.

<u>Nitrate</u> - Three wells showed a moderate to large decrease in nitrate concentration in 2006. One well showed a moderate increase in nitrate. For the remaining two wells, a comparison was not feasible.

<u>Ammonia</u> - All five wells for which a comparison was feasible showed decreased ammonia levels in 2006.

<u>Total Kjeldahl Nitrogen (TKN)</u> - The two wells (MW-1A and MW-2A) with elevated TKN levels in 1997 showed significant decreases in 2006. The remaining five wells generally showed decreased levels in 2006.

<u>Chemical Oxygen Demand (COD)</u> - All five wells for which a comparison was feasible showed significant reductions in COD in 2006 compared to 1997.

<u>Biochemical Oxygen Demand (BOD)</u> - Well MW-1A showed a moderate decrease in BOD in 2006 compared to 1997. Wells MW-2A, MW-2B and MW-6B showed significant increases in BOD in 2006. A comparison was not feasible for the remaining three wells.

Total Organic Carbon (TOC) - For all wells, TOC decreased in 2006 compared to 1997.

Total Phenol - A comparison was feasible for a single well (MW-2A), which showed a decrease in 2006 compared to 1997.

4.2.2 Trends for Total Metals

Figure 3 compares groundwater quality data for total metals, and was developed in the same manner as Figure 2. Tables 9 through 15 present the data used to prepare Figure 3. Below is a summary for the findings for total metals (note that for antimony, selenium, silver, and thallium, a comparison was not feasible for any of the seven wells).

<u>Aluminum</u> - In general there was a large decrease in total aluminum levels in 2006 compared to 1997.

<u>Arsenic</u> - For three wells a comparison was feasible. Each showed a significant decrease in total arsenic in 2006 compared to 1997.

<u>Barium</u> - In general there was a large decrease in total barium levels in 2006 compared to 1997. Well MW-1B showed a slight increase in 2006, but levels were relatively low in both years.

<u>Beryllium</u> – A significant decrease was observed in 2006 compared to 1997, for the single well for which a comparison was feasible.

<u>Boron</u> - Four of seven wells showed a decrease in boron in 2006. Two wells showed an increase in boron. A comparison was not feasible for MW-1B.

<u>Calcium</u> - Average calcium levels decreased for all seven wells in 2006 compared to 1997.

<u>Chromium</u> – Average chromium levels decreased for all six wells for which a comparison was feasible.

<u>Cobalt</u> – A significant decrease was observed in 2006 for three wells. A slight increase was observed for one well. A comparison was not feasible for the remaining three wells.

<u>Copper</u> – A significant decrease in total copper was observed for the three wells with the highest levels in 1997. A slight increase was observed for three wells. A comparison was not feasible for Well MW-6B.

<u>Iron</u> – A significant decrease in iron was observed for six of seven wells. Well MW-1B showed an increase in 2006 compared to 1997.

<u>Lead</u> - For three wells, total lead levels were significantly lower in 2006 compared to 1997. For the remaining four wells, a comparison was not feasible.

<u>Magnesium</u> - Six of seven wells showed moderate to large decreases in total magnesium between 1997 and 2006. Well MW-1B showed a small increase in 2006.

<u>Manganese</u> - Six of seven wells showed moderate to large decreases in total manganese between 1997 and 2006. Well MW-1B showed an increase in total manganese in 2006, but the levels at this well were low compared to other wells.

<u>Mercury</u> – A significant decrease in mercury was observed at Well MW-1A in 2006 compared to 1997. A comparison was not feasible for the other six wells.

<u>Nickel</u> – A large decrease in total nickel was observed at three wells, and a moderate decrease was observed at two others. A comparison was not feasible for the remaining two wells.

<u>Potassium</u> - All seven wells showed moderate to large decreases in total potassium between 1997 and 2006.

<u>Sodium</u> – Six of seven wells showed moderate to large decreases in total sodium between 1997 and 2006. A slight increase in sodium was observed at Well MW-7A.

<u>Vanadium</u> – Vanadium levels decreased for all four wells for which a comparison was feasible.

 \underline{Zinc} – Total zinc decreased significantly in 2006 compared to 1997 for six of seven wells. An increase in zinc was observed at Well MW-1B.

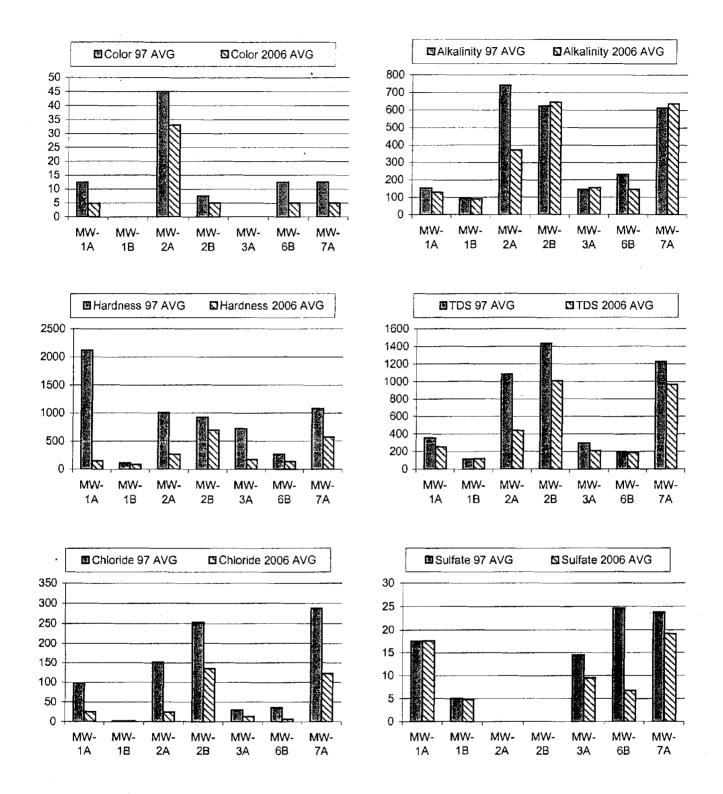
4.2.3 Trends for Organics

Organics were analyzed in the two monitoring rounds conducted in 1997, and in Quarter 3 of 2006. In 1997, 12 different organic chemicals were detected in one or more of the seven wells that were monitored in 2006. All 1997 results were less than or equal to 10 ug/l. In 2006, only two organics were detected. Cis-1,2-dichloroethene was detected at MW-2B (6.2 ug/l) and MW-7A (7.1 ug/l), and 1,1-dichloroethane was detected at MW-7A (6.1 ug/l). The 2006 results are slightly higher than 1997 results for these wells.

5.0 Quality Control

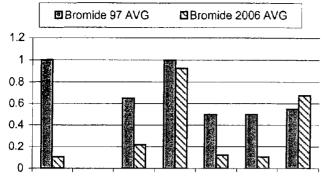
Buck Labs performed internal quality control procedures on the Quarter 1 through 4 analytical data. Reporting on internal quality control for Quarters 3 and 4 is included in laboratory reports that are provided in Appendices B and C. Lab reports for Quarters 1 and 2 were presented in a previous report. Below is a summary of the internal quality control for all four Quarters in 2006.

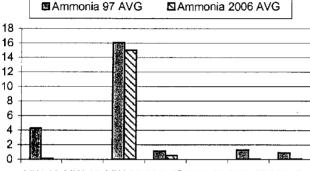
<u>Quarter 1</u> – Analytical methods, preservatives, and containers for all laboratory analytes complied with requirements of the NYS Health Department ELAP program. Instrument calibrations and blanks met laboratory quality control protocols, with one exception - the matrix spike and matrix spike duplicate (MS/MSD) results for TKN analyses were below the lower recovery limit. We believe the Quarter 1 data are adequate to characterize groundwater quality downgradient of the Towslee the landfill.

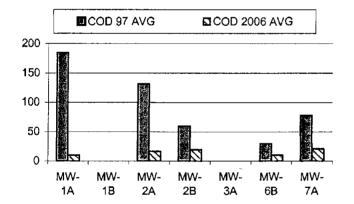

<u>Quarter 2</u> – Analytical methods, preservatives, and containers for all laboratory analytes complied with requirements of the NYS Health Department ELAP program. Instrument calibrations and blanks met laboratory quality control protocols. TKN analysis was performed past the required hold time. The recoveries for matrix spike/ matrix spike duplicates were outside the quality control criteria for the following analytes: BOD, ammonia, TKN, and iron. We believe the Quarter 2 data are adequate to characterize groundwater quality downgradient of the Towslee landfill.

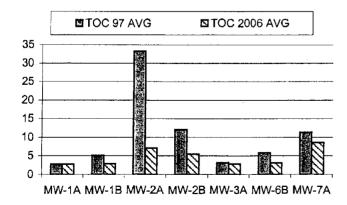
<u>Quarter 3</u> – Analytical methods, preservatives, and containers for all laboratory analytes complied with requirements of the NYS Health Department ELAP program. Instrument calibrations and blanks generally met laboratory quality control protocols. The MS/MSD recoveries for aluminum, iron and manganese on the total metals samples were outside QC criteria. The MS/MSD recoveries for dissolved metals for these three metals met QC criteria. Buck Labs concluded that particulate in the unfiltered samples affected spike recoveries for total metals. We believe the Quarter 3 data are adequate to characterize groundwater quality downgradient of the Towslee landfill.

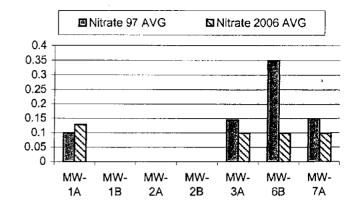
<u>Quarter 4</u> – Analytical methods, preservatives, and containers for all laboratory analytes complied with requirements of the NYS Health Department ELAP program. Instrument calibrations and blanks met laboratory quality control protocols. We believe the Quarter 4 data are adequate to characterize groundwater quality downgradient of the Towslee landfill.

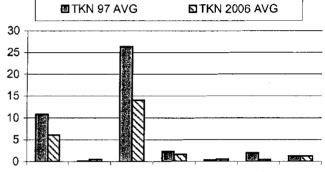

9



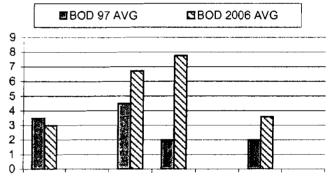

continued




MW-1A MW-1B MW-2A MW-2B MW-3A MW-6B MW-7A

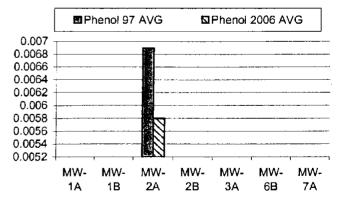
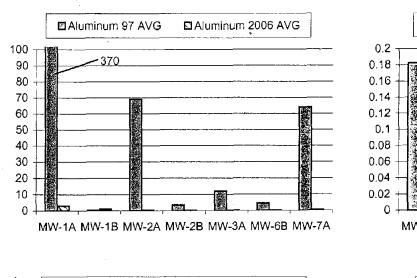
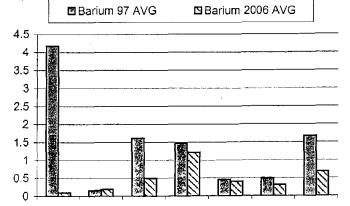
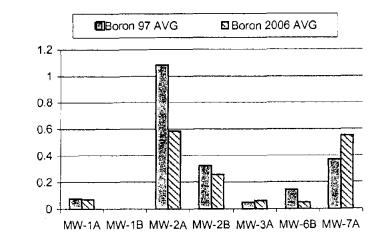


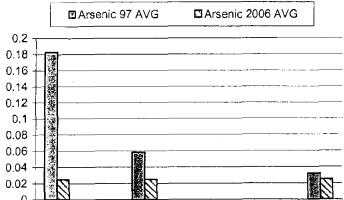
MW-1A MW-1B MW-2A MW-2B MW-3A MW-6B MW-7A

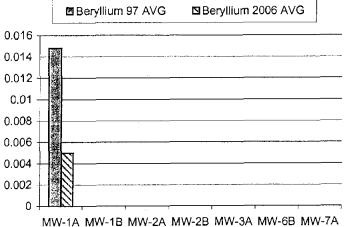


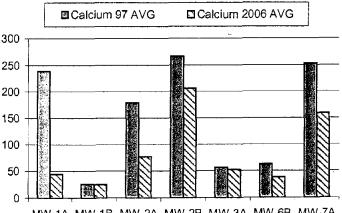
MW-1A MW-1B MW-2A MW-2B MW-3A MW-6B MW-7A

MW-1A MW-1B MW-2A MW-2B MW-3A MW-6B MW-7A


Figure 2 cont'd. 1997 and 2006 Average Concentrations for Conventional Parameters




MW-1A MW-1B MW-2A MW-2B MW-3A MW-6B MW-7A

MW-1A MW-1B MW-2A MW-2B MW-3A MW-6B MW-7A

MW-1A MW-1B MW-2A MW-2B MW-3A MW-6B MW-7A

Figure 3. 1997 and 2006 Average Concentrations for Total Metals

continued

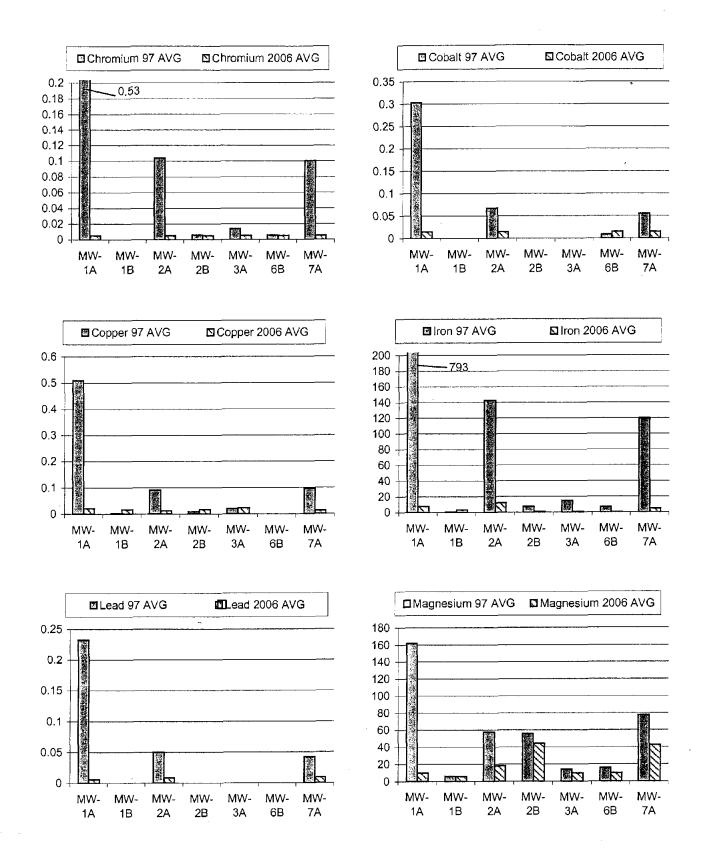
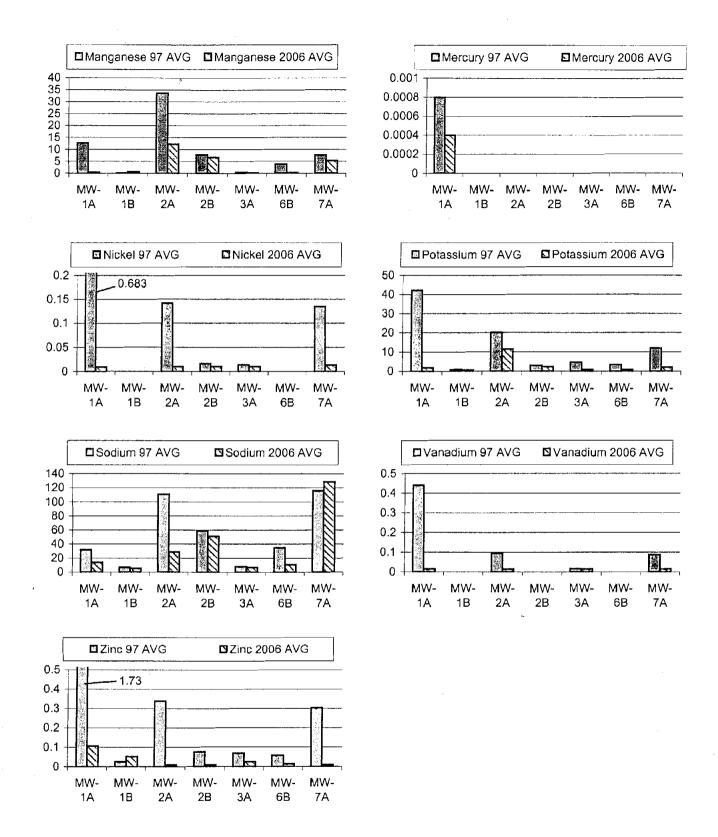



Figure 3 cont'd. 1997 and 2006 Average Concentrations for Total Metals

,

Table 1 Contraventions of NYS Water Quality Standards for Field and Inorganic Parameters Towslee Landfill - Quarter 1 2006

· · ·		NYS Wat	or	Monitoring Well								
		Quality		Over-		Over-	,			Over-		
		Standar		burden	Bedrock	burden	Bedrock	Bedrock	Bedrock	burden		
Parameter	Units			MW-1A	MW-1B	MW-2A	MW-2B	MW-3A	MW-6B	MW-7A		
Temperature	(deg. C)			8.5	5	4.4	4.5	6.4	7.9	4.5		
Eh	(mV)			700	385	140	175	215	250	215		
рН	(Std Units)	6.5 - 8.5	а	7.8	7.7	6,4	6.4	7.2	6.7	6.5		
Specific Conductance	(uS/cm)			306	157	621	1350	286	347	1360		
Color	NTU	15	a,b									
Turbidity	(NTU)	5	а	660	187			- 58	40	- 244		
Alkalinity, Total (As CaCO3)	(mg/l)			127	92	330	652	162	131	648		
Hardness (As CaCO3)	(mg/l)			167	97.6	241	697	153	135	627		
Total Dissolved Solids	(mg/l)	500	a	340	120	381	982	215	209	981		
Chloride	(mg/l)	250	a, b	21.3	2.55	23.3	145	14	21.1	144		
Sulfate	(mg/l)	250	a, b	27.3	4.72	4.22	1.18	9.14	13.8	20.6		
Bromide	(mg/i)	2	а	< 0.1	< 0.1	0.189	0.878	< 0.1	< 0.1	0.753		
Nitrogen, Nitrate (As N)	(mg/l)	10	a, b	< 0.1	< 0.1	0.228	< 0.1	< 0.1	< 0.1	< 0.1		
Nitrogen, Ammonia (As N)	(mg/i)	2 (c)	а	0.276	0.0938	10.6	0.389	0.0969	0.0549	0.34		
Nitrogen, Kjeldahl, Total	(mg/l)		1	23.3	0.54	10.6	1.31	0.455	0.392	1.5		
Chemical Oxygen Demand	(mg/i)			< 10	< 10	< 10	< 10	< 10	< 10	21.2		
Biochemical Oxygen Demand	(mg/l)			< 3	< 3	16	9.3	< 3	< 3	< 3		
Organic Carbon, Total	(mg/l)			4.76	5.41	10.1	< 2	5.58	5.22	12.8		
Phenolics, Total Recoverable	(mg/l)	0.001	а	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		
Cyanide	(mg/l)	0.2	a, b									

a - Part 703 Water Quality Standard (assumes Class GA waters)

b - Part 5 Drinking Water MCL

c - Standard is for NH4+ and NH3 combined, as is the laboratory analysis

1.23 indicates contravention of standard.

-- Testing only required for Baseline monitoring

Table 2 Contraventions of NYS Water Quality Standards for Metals Towslee Landfill - Quarter 1 2006

	NYS W	ator			Tot	al Meta	ls			Γ	Dissove	d Metals	s ·]
	Quali	-	Over-		Over-				Over-	Over-			Over-
	Standa	-	burden	Bedrock	burden	Bedrock	Bedrock	Bedrock	burden	burden	Bedrock	Bedrock	burden
Parameter	Otarida		MW-1A	MW-1B	MW-2A	MW-2B	MW-3A	MW-6B	MW-7A	MW-1A	MW-1B	MW-3A	MW-7A
Aluminum	*						-						
Antimony	0.003	а											
Arsenic	0.025	а					¹						
Barium	1	а			-								
Beryllium	0.004	b											
Boron	1	а											
Cadmium	0.005	a, b	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005
Calcium	*		46.2	26.8	69.1	203	46.3	39.3	171	40.7	22.8	44.3	158
Chromium	0.05	а											
Chrom, Hex	0.05	а											
Cobalt	*												
Copper	0.2	а											
Iron	0.3	a, b	SELEX.	XY	建設 (1)	XQL)E		604 , EOD			0889	0.168	0.0637
Lead	0.015	ь	0.00716	<0.005	<0.005	<0.005	< 0.005	<0.005	0.0175	< 0.005	< 0.005	<0.005	<0.005
Magnesium	*		12.6	7.46	16.6	46.1	9.13	8.94	48.6	10.4	5.15	8.7	43.6
Manganese	0.3	a, b	0.534		創業とと	10-10	0.208	0,559	6.08	0.238	0.0136	0.0963	5.35
Mercury	0.0007	a						1			_		
Nickel	0.1	а											
Potassium	*		2.72	0.973	9.29	2.42	0.938	1.15	3.06	2.52	0.487	0.803	1.9
Sodium	20	a, b	17.1	6.31	26.3	53.8	5.66	14.9	134	14.7	4.75	4.83	126
Selenium	0.01	а	-			-			-				
Silver	0.05	а							-				
Thallium	0.002	b											
Vanadium	*								-				
Zinc	5	b									_		

all units are mg/l

a - Part indicates value exceeded the standard.

ومرودات المادة والمحافظة والمحاور ومرادك المتروك والأراك والمراجع ومتحجون المادة المتحاد المحاد

b - Part 5 Drinking Water MCL

* - No standard available

1.23 indicates contravention of standard.

-- Testing only required for Baseline monitoring

Table 3 Contraventions of NYS Water Quality Standards for Field and Inorganic Parameters Towslee Landfill - Quarter 2 2006

		NYS Wat	tor		··· · · · · · · · · · · · · · · · · ·	Мо	nitoring	Well		
		Quality		Over-		Over-				Over-
		Standar		burden	Bedrock	burden	Bedrock	Bedrock	Bedrock	burden
Parameter	Units		-	MW-1A	MW-1B	MW-2A	MW-2B	MW-3A	MW-6B	MW-7A
Temperature	(deg. F)			12.8	11.4	11.6	10.5	11.7	10.5	11.6
Eh	(mV)			105	45	Thereis manine arrange south	110	45	85	120
рH	(Std Units)	6.5 - 8.5	а	7.7	7.8	6.4	6.4	6.9	7.4	6,4
Specific Conductance	(uS/cm)			355	257	767	1560	299	287	1520
Color	(Units)	15	a, b							
Turbidity	(NTU)	5	а	78	- 45	18.3	19.0	11.9	19.9	18
Alkalinity, Total (As CaCO3)	(mg/i)			139	94	355	670	170	148	675
Hardness (As CaCO3)	(mg/l)			140	81.9	260	726	179	144	599
Total Dissolved Solids	(mg/l)	500	а	213	111	397	1020	208	175	967
Chloride	(mg/l)	250	a, b	22.2	2.28	25.7	154	12.7	2.33	143
Sulfate	(mg/l)	250	a, b	12.3	5.51	5.5	2.96	11	3.95	22.5
Bromide	(mg/l)	2	а	<0.1	<0.1	0.18	1.01	<0.1	<0.1	0.633
Nitrogen, Nitrate (As N)	(mg/l)	10	a, b	0.217	<0.1	<0.1	0.216	<0.1	<0.1	<0.1
Nitrogen, Ammonia (As N)	(mg/l)	2*	а	<0.02	<0.02	18.4	0.824	<0.02	<0.02	<0.02
Nitrogen, Kjeldahl, Total	(mg/i)			0.529 H	0.755 H	14 H	1.78 H	1.09 H	0.904 H	1.68 H
Chemical Oxygen Demand	(mg/l)			<10	<10	13.8	17.2	<10	<10	16.5
Biochemical Oxygen Demand	(mg/i)			<3	<3	4.5	5.1	<3	5.1	<3
Organic Carbon, Total	(mg/l)			. 2.61	2.34	7.18	7.76	<2	3.14	8.19
Phenolics, Total Recoverable	(mg/l)	0.001	а	<0.005	<0.005	0.008	<0.005	<0.005	<0.005	0.007
Cyanide	(mg/l)	0.2	a, b							

a - Part 703 Water Quality Standard (assumes Class GA waters)

b - Part 5 Drinking Water MCL

* Standard is for NH4+ and NH3 combined, as is the laboratory analysis

1.23 indicates contravention of standard.

H - exceeded laboratory holding time

-- sampling opnly required for Baseline monitoring

Table 4 Contraventions of NYS Water Quality Standards for Metals Towslee Landfill - Quarter 2 2006

	NYS W	/ater			T	otal Meta	als			Dissovled Metals
	Qual		Over-		Over-		· · ·		Over-	Over-
	Stand	ard	burden	Bedrock	burden	Bedrock	Bedrock	Bedrock	burden	burden
Parameter	ļ		MW-1A	MW-1B	MW-2A	MW-2B	MW-3A	MW-6B	MW-7A	MW-1A
Aluminum										
Antimony	0.003	а								
Arsenic	0.025	а								
Barium	1	а								
Beryllium	0.004	b								
Boron	1	а								
Cadmium	0.005	a, b	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Calcium			41.8	23.9	74.1	216 E	55.3	39.6	165	38.9
Chromium										
Chrom, Hex										
Cobalt										
Copper										
Iron	0.3	a, b	2.99	1.48	24	0.836	0.626	0.511	163	0.315
Lead	0.015	ъ	0.007	<0.005	0.019	0.009	0.005	<0.005	0.009	0.005
Magnesium			8.67	5,39	18.3	45.3	10	10.9	45.5	8.12
Manganese	0.3	a, b	0.194	0.191	11.5	6.8	0.175	0.12	5.69	0.127
Mercury	0.0007	а				<u> </u>				
Nickel	0.1	а								
Potassium			1.6	0.468	11.2	2.25	0.829	0.825	1.91	1.38
Sodium	20	a, b	13	5.22	25.2	49.7	6.4	9.93	129	12.3
Selenium	0.01	а							<u> </u>	
Silver	0.05	а								
Thallium	0.002	ь								
Vanadium										
Zinc	5	b				[[

all units are mg/l a - Part 703 Water Quality Standard (assumes Class GA waters) b - Part 5 Drinking Water MCL

1.23 indicates contravention of standard.

- sampling only required for Baseline monitoring

Table 5 Contraventions of NYS Water Quality Standards for Field and Inorganic Parameters Towslee Landfill - Quarter 3 2006

		NYS W	otor	,	<u> </u>	Mor	nitoring	Well		
		Quali		Over-		Over-				Over-
Deremeter	11*6.	Standa	•	burden	Bedrock	burden	Bedrock	Bedrock	Bedrock	burden
Parameter	Units			MW-1A	MW-1B	MW-2A			MW-6B	MW-7A
Temperature	(deg. F)			19.5	16.4	17.2	15.9	15. 3	12.2	17.4
Eh	(mV)			190	. 155	120	125	115	225	245
рН	(Std Units)	6.5 - 8.5	а	7.52	7.69	615	635	7.01	7.52	6.34
Specific Conductance	(uS/cm)			353	244	784	1420	342	304	1440
Color	(Units)	15	a, b	<5	<5	- 33	<5	<5	<5	<5
Turbidity	(NTU)	5	a	181	70	- 195		52	15.8	
Alkalinity, Total (As CaCO3)	(mg/l)			122	91	384	612	140	154	595
Hardness (As CaCO3)	(mg/i)			148	89	265	686	191	131	531
Total Dissolved Solids	(mg/l)	500	a	236	142	491	1040	207	190	963
Chloride	(mg/l)	250	a, b	34.2	3.47	23.5	122	13.5	2.32	119
Sulfate	(mg/l)	250	a, b	16.5	5.33	3.43	<1	9.98	3.28	19.7
Bromide	(mg/l)	2	a	<0.1	<0.1	0.237	0.902	0.152	0.122	0.822
Nitrogen, Nitrate (As N)	(mg/l)	10	a, b	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Nitrogen, Ammonía (As N)	(mg/l)	2*	a	0.161	<0.02	6.46	0.786	<0.02	0.096	<0.02
Nitrogen, Kjeldahl, Total	(mg/l)			0.366	0,497	16.5	1.64	0.239	0.214	0.75
Chemical Oxygen Demand	(mg/i)			<10	<10	27	24.6	13	1 1.6	26.4
Biochemical Oxygen Demand	(mg/l)	 .		<3	<3	3.4	3.7	<3	3.2	< <3
Organic Carbon, Total	(mg/l)			<2	<2	5.67	4.82	<2	<2	6.12
Phenolics, Total Recoverable	(mg/l)	0.001	а	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Cyanide	(mg/l)	0.2	a, b	<0.01	<0.01	<0.01	0.024	<0.01	<0.01	<0.01

a - Part 703 Water Quality Standard (assumes Class GA waters)

b - Part 5 Drinking Water MCL

* Standard is for NH4+ and NH3 combined, as is the laboratory analysis

1.23 indicates contravention of standard.

Table 6 Contraventions of NYS Water Quality Standards for Metals Towslee Landfill - Quarter 3 2006

				<u> </u>	Т	otal Met	als			Dis	sovied Me	etals
Parameter	NYS W Quali Standa	ity	Over- burden MW-1A	Bedrock MW-1B	Over- burden MW-2A	Bedrock MW-2B	Bedrock MW-3A	Bedrock MW-6B	Över- burden MW-7A	Over- burden MW-1A	Bedrock MW-1B	Over- burden MW-2A
Aluminum			2.96	1.09	0.43	0.18	0.078	0.115	0.415	0.066	0.195	0.044
Antimony	0.003	а	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Arsenic	0.025	а	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Barium	1	а	0.104	0.194	0.502	1.22	0.41	0.313	0.684	0.066	0.162	0.427
Beryllium	0.004	ь	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Boron	1	а	0.073	<0.05	0.584	0.256	0.063	<0.05	0.55	<0.07	<0.07	0.562
Cadmium	0.005	a, b	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Calcium			43.2	25.8	77.3	203 E	57.9	36.1	150	38.6	24.4	77.6
Chromium	0.05	a	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Chrom, Hex	0.05	а	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	N/A	N/A	N/A
Cobalt			<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015
Copper	0.2	a	0.022	0.017	0.012	0.017	0.023	0.016	0.013	0.013	0.013	0.015
Iron	0.3	a, b	6.03	1.84	6.5	1.2	0.104	0.306	0 722	0.125	0.339	0.204
Lead	0.015	ь	<0.005	<0.005	<0.005	<0.005	0.005	<0.005	0.006	<0.005	<0.005	<0.005
Magnesium			9.7	6.05	17.5	43.5	11.2	9.86	38	8.18	5.54	17.1
Manganese	0.3	a, b	0.38	0.251	2	6.63	0.416	0.297	4.4	0.248	0.135	12,1
Mercury	0.0007	а	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
Nickel	0.1	а	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.013	<u><0.01</u>	<0.01	<0.01
Potassium		_ (1.7	0.523	12.3	2.28	1.09	0.634	1.81	1.31	0.403	12.5
Sodium	20	a, b	13.6	6.35	31.4	51.1	8.92	10.1	124	13	5.31	29.6
Selenium	0.01	а	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Silver	0.05	а	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015
Thallium	0.002	ь	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Vanadium			<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015
Zinc	5	Ь	0.106	0.052	<0.01	<0.01	0.025	0.014	<0.01	0.033	0.029	0.013

all units are mg/l

a - Part 703 Water Quality Standard (assumes Class GA waters)

b - Part 5 Drinking Water MCL

1.23 indicates contravention of standard.

N/A not analyzed

E - Estimated; exceeds upper quantitation limit

Table 7 Contraventions of NYS Water Quality Standards for Field and Inorganic Parameters Towslee Landfill - Quarter 4 2006

			atór			Mor	nitoring '	Well		YS Water Monitoring Well									
		Qualit		Over-		Over-				Over-									
		Standa	•	burden	Bedrock	burden	Bedrock	Bedrock	Bedrock	burden									
Parameter	Units			MW-1A	MW-1B	MW-2A	MW-2B	MW-3A	MW-6B	MW-7A									
Temperature	(deg. F)			15.9	15.8	14.2	14.5	15.7	14.3	13.9									
Eh	(mV)			170	115	90	115	220	180	190									
рH	(Std Units)	6.5 - 8.5	а	7.69	7.9	6.41	6.52	6.84	7.11	6.62									
Specific Conductance	(uS/cm)			369	200	1100	1540	397	329	1480									
Color	(Units)	15	a, b	N/A	N/A	N/A	N/A	N/A	N/A	N/A									
Turbidity	(NTU)	5	а	- 29	-156	27	- 28	62	162	- 42									
Alkalinity, Total (As CaCO3)	(mg/l)			132	89	423	646	152	153	635									
Hardness (As CaCO3)	(mg/l)			148	82	301	675	158	133	526									
Total Dissolved Solids	(mg/l)	500	а	229	120	487	- <u>(</u> 980)	207	187	949									
Chloride	(mg/i)	250	a, b	26.7	0.611	25.7	121	12.7	3.39	85									
Sulfate	(mg/l)	250	a, b	14.9	3.76	3.18	<1	8.01	6.14	14.1									
Bromide	(mg/l)	2	а	0.117	<0.1	0.261	0.912	0.143	<0.1	0.483									
Nitrogen, Nitrate (As N)	(mg/l)	10	a, b	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1									
Nitrogen, Ammonia (As N)	(mg/l)	2 *	а	<0.1	<0.1	161	0.282	<0.1	<0.1	<0.1									
Nitrogen, Kjeldahl, Total	(mg/l)			<0.2	<0.2	15	1.9	0.266	0.279	1.11									
Chemical Oxygen Demand	(mg/l)			<10	<10	15.6	27	<10	<10	20.5									
Biochemical Oxygen Demand	(mg/l)			<3	<3	<3	13	<3	<3	. <3									
Organic Carbon, Total	(mg/l)			<2	<2	5.68	7.49	<2	<2	7.46									
Phenolics, Total Recoverable	(mg/l)	0.001	а	<0.005	<0.005	<0.005	0.1	<0.005	<0.005	<0.005									
Cyanide	(mg/l)	0.2	a, b	N/A	N/A	N/A	N/A	N/A	N/A	N/A									

a - Part 703 Water Quality Standard (assumes Class GA waters)

b - Part 5 Drinking Water MCL

* Standard is for NH4+ and NH3 combined, as is the laboratory analysis

1.23 indicates contravention of standard.

Table 8 Contraventions of NYS Water Quality Standards for Metals Towslee Landfill - Quarter 4 2006

			Total Metals											
	NYS W		Over-	Over- Over- C										
Parameter	Qual Stand	•	burden MW-1A	Bedrock MW-1B	burden MW-2A	Bedrock MW-2B	Bedrock MW-3A	Bedrock MW-6B	burden MW-7A					
Aluminum			N/A	N/A	N/A	N/A	N/A	N/A	N/A					
Antimony	0.003	а	N/A	N/A	N/A	N/A	N/A	N/A	N/A					
Arsenic	0.025	а	N/A	N/A	N/A	N/A	N/A	N/A	N/A					
Barium	1	a	N/A	N/A	N/A	N/A	N/A	N/A	N/A					
Beryllium	0.004	Ъ	N/A	N/A	N/A	N/A	N/A	N/A	N/A					
Boron	1	- a	N/A	N/A	N/A	N/A	N/A	N/A	N/A					
Cadmium	0.005	a, b	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005					
Calcium		-1-	43.9	24.1	88.5	200	48.3	37.4	148					
Chromium	0.05	а	N/A	N/A	N/A	N/A	N/A	N/A	N/A					
Chrom, Hex	0.05	- a	N/A	N/A	N/A	N/A	N/A	N/A	N/A					
Cobalt		-	N/A	N/A	N/A	N/A	N/A	N/A	N/A					
Copper	0.2	а	N/A	N/A	N/A	N/A	N/A	N/A	N/A					
Iron	0.3	a, b	2.11	0.273		1.07	0.283	0.195	2.78					
Lead	0.015	b	<0.005	<0.005	0.006	<0.005	<0.005	<0.005	<0.005					
Magnesium			9.43	5.31	19.4	42.7	9.2	9.71	38					
Manganese	0.3	a, b	0.306	0.126	13.6	6.46	0.176	0.185	4.85					
Mercury	0.0007	а	N/A	N/A	N/A	N/A	N/A	N/A	N/A					
Nickel	0.1	а	N/A	N/A	N/A	N/A	N/A	N/A	N/A					
Potassium			1.62	0.374	12.7	2.38	0.937	0.69	2.03					
Sodium	20	a, b	13.5	5.92	31.4	51	6.03	10.7	128					
Selenium	0.01	а	N/A	N/A	N/A	N/A	N/A	N/A	N/A					
Silver	0.05	а	N/A	N/A	.N/A	N/A	N/A	N/A	N/A					
Thallium	0.002	ь	N/A	N/A	N/A	N/A	N/A	N/A	N/A					
Vanadium			N/A	N/A	N/A	N/A	N/A	N/A	N/A					
Zinc	5	b	N/A	N/A	N/A	N/A	N/A	N/A	N/A					

all units are mg/l a - Part 703 Water Quality Standard (assumes Class GA waters) b - Part 5 Drinking Water MCL

1.23 indicates contravention of standard.

N/A not analyzed

Table 9. Water Quality Trends - 1997 to 2006 Well MW-1A - Overburden

Conventio	nals		_					Averag	Average Concentration			
	3	Γ	_							Percent		
Parameter	Units	Aug-97	Oct-97	3/22/06	5/31/06	8/9/06	10/10/06	1997	2006	Change '		
Color	(Units)	5	20			<5		12.5	5	-60%		
ALK as CaCO3	(mg/l)	160	145	127	139	122	132	153	130	-159		
HARD as CaCO3	(mg/l)	4000	240	167	140	148	148	2120	151	-93%		
TDS	(mg/l)	494	214	340	213	236	229	354	255	-28%		
Chloride	(mg/l)	152	46	21.3	22.2	34.2	26.7	99	26.1	-749		
Sulfate	(mg/l)	20.6	14.6	27.3	12.3	16.5	14.9	17.6	17.75	19		
Bromide	(mg/i)	1.2	0.8	< 0.1	<0.1	<0.1	0.117	1	0.104	-90%		
NO3 (As N)	(mg/l)	<0.1	<0.1	< 0.1	0.217	<0.1	<0.1	0.1	0.129	29%		
NH4 (As N)	(mg/l)	6	2.6	0.276	<0.02	0.161	<0.1	4.3	0.139	-97%		
TKN (as N)	(mg/l)	18	3.8	23.3	0.529 H	0.366	<0.2	10.9	6.1	-44%		
COD	(mg/l)	305	64	< 10	<10	<10	<10	185	10	-95%		
BOD	(mg/l)	5	<2	< 3	<3	<3	<3	3.5	3	-14%		
ТОС	(mg/i)	4.2	1.6	4.76	2.61	<2	<2	2.9	2.84	-2%		
Phenolics, Tot	(mg/l)	0.003	0.0015	< 0.005	<0.005	<0.005	<0.005	n/a	n/a	n/a		
Cyanide	(mg/l)	< 0.01	<0.01			<0.01		n/a	n/a	n/a		
Total Metals								Averag	e Conce	ntration		
								ĭ		Percent		
Parameter	Units	Aug-97	Oct-97	3/22/06	5/31/06	8/9/06	10/10/06	1997	2006	Change *		
Aluminum	(mg/l)	724	16.9			2.96		370.45	2.96	-99%		
Antimony	(mg/l)	< 0.003	< 0.003			< 0.05		n/a	n/a	n/a		
Arsenic	(mg/l)	0.353	0.0134			<0.025		0.1832	0.025	-86%		
Barium	(mg/l)	8.11	0.258			0.104		4.184	0.104	-98%		
Beryllium	(mg/l)	0.0287	0.00083			<0.005		0.0148	0.005	-66%		
Boron	(mg/l)	0.0873	0.0665			0.073		0.077	0.073	-5%		
Cadmium	(mg/l)	< 0.0003	< 0.0003	<0.005	<0.005	<0.005	<0.005	n/a	n/a	n/a		
Calcium	(mg/l)	430	48.6	46.2	41.8	43.2	43.9	239	44	-82%		
Chromium	(mg/i)	1.04	0.0265			<0.005		0.5333	0.005	-99%		
Cobalt	(mg/i)	0.59	0.0168			<0.015		0.3034	0.015	-95%		
Copper	(mg/i)	0.996	0.0254			0.022		0.5107	0.022	-96%		
ron	(mg/l)	1550	35.7	19.4	2.99	6.03	2.11	792.85	7.63	-99%		
.ead	(mg/l)	0.454	0.0123	0.00716	0.007	< 0.005	< 0.005	-0.2332	0.006	-97%		
Magnesium	(mg/l)	309	15.6	12.6	8.67	9.7	9.43	162.3	10.1	-94%		
Manganese	(mg/l)	24.6	0.783	0.534	0.194	0.38	0.306	12.7	0.4	-97%		
Mercury	(mg/l)	0.0014	<0.0001			<0.0004		0.0008	0.0004	-50%		
vickel	(mg/l)	1.33	0.0364			<0.01		0.683	0.01	-99%		
Potassium	(mg/l)	77.5	6.97	2.72	1.6	1.7	1.62	42.2	1.9	-95%		
Sodium	(mg/i)	37.3	26	17.1	13	13.6	13.5	32	14	-56%		
Selenium	(mg/l)	<0.028	<0.0028			<0.02		n/a	n/a	n/a		
Silver	(mg/l)	<0.009	<0.0009	••		<0.015		n/a	n/a	n/a		
hallium	(mg/l)	<0.026	<0.0026			<0.03		n/a	n/a	n/a		
/anadium	(mg/l)	0.856	0.0243			<0.015		0.44	0.015	-97%		
linc	(mg/l)	3.36	0.0874			0.106		1.724	0.106	-94%		

H - exceeded hold time

• the percent increase or decrease of the average concentration measured in 2006 compared to the average concentration measured in 1997. Averages assume not-detect values = the detection limit.

Conventio	nals							Avera	ge Conce	ntration
······	T	Γ	· · · · · ·	r					í	Percent
Parameter	Units	Aug-97	Oct-97	3/22/06	5/31/06		10/10/06	1997	2006	Change *
Color	(Units)	<5				<5		n/a	n/a	n/a
ALK as CaCO3	(mg/l)	94.8	93.6	92	94	91	89	94	92	-2%
HARD as CaCO3	(mg/l)	88	140	97.6	81.9	89	82	114	88	-23%
TDS	(mg/l)	143	86	120	111	142	120	115	123	7%
Chloride	(mg/l)	<2	<2	2.55	2.28	3.47	0.611	2	2.2	10%
Sulfate	(mg/i)	5.2	<5	4.72	5.51	5.33	3.76	5.1	4.83	-5%
Bromide	(mg/l)	<0.5	<0.5	< 0.1	<0.1	<0.1	<0.1	n/a	n/a	n/a
NO3 (As N)	(mg/l)	0.2	<0.1	< 0.1	<0.1	< 0.1	<0.1	n/a	n/a	n/a
NH4 (As N)	(mg/l)	< 0.02	0.04	0.0938	<0.02	<0.02	<0.1	n/a	n/a	n/a
TKN (as N)	(mg/ł)	<0.2	<0.2	0.54	0.755 H	0.497	<0.2	0.2	0.5	150%
COD	(mg/l)	<15	<15	< 10	<10	<10	<10	n/a	n/a	n/a
BOD	(mg/l)	<2	<2	< 3	<3	<3	<3	n/a	n/a	n/a
ТОС	(mg/l)	9.3	<1	5.41	2.34	<2	<2	5.15	2.94	-43%
Phenolics, Tot	(mg/l)	< 0.001	<0.001	< 0.005	<0.005	<0.005	< 0.005	n/a	n/a	n/a
Cyanide	(mg/l)					< 0.01		n/a	n/a	n/a
Total Metals								Averao	e Concer	tration
									1	Percent
Parameter	Units	Aug-97	Oct-97	3/22/06	5/31/06	8/9/06	10/10/06	1997	2006	Change *
Aluminum	(mg/l)	0.662	0.134			1.09		0.4	1.09	173%
Antimony	(mg/l)	< 0.003	< 0.003			<0.05		n/a	n/a	n/a
Arsenic	(mg/l)	<0.0024	<0.0024			<0.025		n/a	n/a	n/a
Barium	(mg/l)	0.168	0.154			0.194		0.161	0.194	20%
Beryllium	(mg/i)	0.0001	< 0.0001			<0.005		n/a	n/a	n/a
Boron	(mg/i)	0.0197	0.0247			<0.05		n/a	n/a	n/a
Cadmium	(mg/l)	< 0.0003	< 0.0003	< 0.005	<0.005	< 0.005	<0.005	n/a	n/a	n/a
Calcium	(mg/l)	26.7	24.7	26.8	23.9	25.8	24.1	26	25	-4%
Chromium	(mg/l)	0.002	< 0.0004			< 0.005		n/a	n/a	n/a
Cobalt	(mg/l)	< 0.0011	<0.0011			<0.015		n/a	n/a	n/a
Copper	(mg/l)	0.004	0.0025			0.017		0.0033	0.017	415%
ron	(mg/l)	1.33	0.226	9.42	1.48	1.84	0.273	0.78	3.25	317%
ead	(mg/i)	< 0.001	< 0.001	< 0.005	< 0.005	< 0.005	< 0.005	n/a	n/a	n/a
Magnesium	(mg/l)	6.47	5.84	7.46	5.39	6.05	5.31	6.2	6.1	-2%
Manganese	(mg/l)	0.195	0.146	2.28	0.191	0.251	0.126	0.2	0.7	250%
Mercury	(mg/l)					< 0.0004		n/a	n/a	n/a
Nickel	(mg/i)	< 0.0013	< 0.0013			< 0.01		n/a	n/a	n/a
otassium	(mg/l)	1.56	0.529	0.973	0.468	0.523	0.374	1	0.6	-40%
Sodium	(mg/l)	7.38	6.18	6.31	5.22	6.35	5.92	7	6	-14%
Selenium	(mg/l)					<0.02		n/a	n/a	n/a
Silver	(mg/l)					<0.015		n/a	n/a	n/a
hallium	(mg/l)	<0.0026	<0.0026			< 0.03		n/a	n/a	n/a
/anadium	(mg/l)		< 0.0012			<0.015		n/a	n/a	n/a
linc	(mg/l)	0.0351	0.0163	l. 	l. 	0.052		0.026	0.052	100%

Table 10. Water Quality Trends - 1997 to 2006 Well MW-1B - Bedrock

H - exceeded hold time

• the percent increase or decrease of the average concentration measured in 2006 compared to the average concentration measured in 1997. Averages assume not-detect values = the detection limit.

Conventio	nals							Avera	ge Conce	ntration
				I		1			1	Percent
Parameter	Units	Aug-97		3/22/06	5/31/06	8/9/06	10/10/06	1997	2006	Change *
Color	(Units)	30	60			33		45	33	-27%
ALK as CaCO3	(mg/l)	702	784	330	355	384	423	743	373	-50%
HARD as CaCO3	(mg/l)	1300	720	241	260	265	301	1010	267	-74%
TDS	(mg/i)	1180	986	381	397	491	487	1083	439	-59%
Chloride	(mg/l)	156	149	23.3	25.7	23.5	25.7	152.5	24.6	-84%
Sulfate	(mg/l)	<5	<5	4.22	5.5			n/a	n/a	n/a
Bromide	(mg/l)	0.8	<0.5	0.189	0.18	0.237	0.261	0.65	0.217	-67%
NO3 (As N)	(mg/l)	<0.1	0.14	0.228	<0.1	<0.1	<0.1	n/a	n/a	
NH4 (As N)	(mg/l)	23	9.1	10.6	18.4	16	15.1	16.05		-6%
TKN (as N)	(mg/l)	31.5	21.2	10.6	14 H		15	26.35	14.03	-47%
COD	(mg/l)	127	136	< 10	13.8		15.6	132	17	-87%
BOD	(mg/l)	6	3	16	4.5	1	<3	4.5	6.73	50%
тос	(mg/l)	42.5	24.1	10.1	7.18	5.67	5.68	33.3	7.16	-78%
Phenolics, Tot	(mg/l)	0.0071	0.0066	< 0.005	0.008	<0.005	<0.005	0.0069	0.0058	-16%
Cyanide	(mg/l)	<0.01	<0.01			<0.01		n/a	n/a	n/a
Total Metals								Averag	e Conce	ntration
· · · · · · · · · · · ·										Percent
Parameter	Units	Aug-97	Oct-97	3/22/06	5/31/06	8/9/06	10/10/06	1997	2006	Change *
Aluminum	(mg/l)	79.3	59.1			0.43		69.2	0.43	-99%
Antimony	(mg/l)	0.0049	< 0.003			<0.05		n/a	n/a	n/a
Arsenic	(mg/l)	0.0631	0.0537			<0.025		0.0584	0.025	-57%
Barium	(mg/l)	1.75	1.49			0.502		1.62	0.502	-69%
Beryllium	(mg/l)	0.0037	0.0025			< 0.005		n/a	n/a	n/a
Boron	(mg/i)	1.21	0.961			0.584		1.086	0.584	-46%
Cadmium	(mg/l)	<0.0003	0.0016	<0.005	<0.005	<0.005	<0.005	n/a	n/a	n/a
Calcium	(mg/l)	186	172	69.1	74.1	77.3	88.5	179	77	-57%
Chromium	(mg/l)	0.112	0.0967	1		< 0.005		0.1044	0.005	-95%
Cobalt	(mg/l)	0.0719	0.0628			<0.015		0.0674	0.015	-78%
Copper	(mg/i)	0.104	0.0779			0.012		0.091	0.012	-87%
ron	(mg/l)	154	131	8.29	24	6.5	10.1	142.5	12.22	-91%
_ead	(mg/l)	0.0561	0.0436	<0.005	0.019	< 0.005	0.006	0.0499	0.0088	-82%
Magnesium	(mg/l)	61.6	53.6	16.6	18.3	17.5	19.4	57.6	18	-69%
Manganese	(mg/l)	35.7	31.6	12.2	11.5	12	13.6	33.7	12.3	-64%
Mercury	(mg/l)	<0.0001	<0.0001			<0.0004		n/a	n/a	n/a
Nickel	(mg/l)	0.151	0.132			<0.01		0.142	0.01	-93%
Potassium	(mg/l)	23.4	17	9.29	11.2	12.3	12.7	20.2	11.4	-44%
Sodium	(mg/l)	119	102	26.3	25.2	31.4	31.4	111	29	-74%
Selenium	(mg/l)	<0.0028	<0.0028			<0.02		n/a	n/a	n/a
Silver	(mg/i)	0.0024	0.0014			<0.015		n/a	n/a	n/a
hallium	(mg/l)	0.004	<0.0026			<0.03	••	n/a	n/a	n/a
/anadium	(mg/l)	0.102	0.0866			<0.015		0.094	0.015	-84%
linc	(mg/l)	0.4	0.278			<0.01		0.339	0.01	-97%

Table 11. Water Quality Trends - 1997 to 2006 Well MW-2A - Overburden

H - exceeded hold time

• the percent increase or decrease of the average concentration measured in 2006 compared to the average concentration measured in 1997. Averages assume not-detect values = the detection limit.

Conventio	nals				8			Avera	Average Concentration			
Parameter	Units	Aug-97	Oct-97	3/22/06	5/31/06	8/9/06	10/10/06	1997	2006	Percent Change *		
Color	(Units)	5	10			<5		7.5	5	-33%		
ALK as CaCO3	(mg/l)	577	673	652	670	612	646	625	645	3%		
HARD as CaCO3	(mg/l)	960	900	697	726	686	675	930	696	-25%		
TDS	(mg/l)	1640	1230	982	1020	1040	980	1435	1006	-30%		
Chloride	(mg/l)	267	238	145	154	122	121	252.5	135.5	-46%		
Sulfate	(mg/l)	<5	<5	1.18	2.96	<1	<1	n/a	n/a	n/a		
Bromide	(mg/l)	1.1	0.9	0.878	1.01	0.902	0.912	1	0.926	-7%		
NO3 (As N)	(mg/l)	<0.1	<0.1	< 0.1	0.216	<0.1	<0.1	n/a	n/a	n/a		
NH4 (As N)	(mg/l)	0.95	1.3	0.389	0.824	0.786	0.282	1.125	0.57	-49%		
TKN (as N)	(mg/l)	2.6	2	1.31	1.78 H	1.64	1.9	2.3	1.66	-28%		
COD	(mg/l)	58	61	< 10	17.2	24.6	27	60	20	-67%		
BOD	(mg/l)	2	2	9.3	5.1	3.7	13	2	7.78	289%		
тос	(mg/l)	12.3	11.9	< 2	7.76	4.82	7.49	12.1	5.52	-54%		
Phenolics, Tot	(mg/l)	0.0044	0.0039	< 0.005	< 0.005	<0.005	0.1	n/a	n/a	n/a		
Cyanide	(mg/l)				•-	0.024		n/a	n/a	n/a		
Total Metals								Averag	e Conce	otration		
	1			· · · · ·						Percent		
Parameter	Units	Aug-97	Oct-97	3/22/06	5/31/06	8/9/06	10/10/06	1997	2006	Change *		
Aluminum	(mg/l)	2.03	5.31			0.18		3.67	0.18	-95%		
Antimony	(mg/l)	< 0.003	< 0.003			< 0.05		n/a	n/a	n/a		
Arsenic	(mg/l)	0.007	0.0083			<0.025		n/a	n/a	n/a		
Barium	(mg/l)	1.59	1.36			1.22		1.475	1.22	-17%		
Beryllium	(mg/l)	0.00023	0.00037			< 0.005		n/a	n/a	n/a		
Boron	(mg/l)	0.355	0.292			0.256		0.324	0.256	-21%		
Cadmium	(mg/l)	0.0003	< 0.0003	<0.005	< 0.005	< 0.005	<0.005	n/a	n/a	n/a		
Calcium	(mg/l)	288	245	203	216 E	203 E	200	267	206	-23%		
Chromium	(mg/l)	0.004	0.0086			<0.005		0.0063	0.005	-21%		
Cobalt	(mg/l)	0.0091	0.0141			<0.015		n/a	n/a	n/a		
Copper	(mg/l)	0.0069	0.0118			0.017		0.0094	0.017	81%		
ron	(mg/l)	4.3	10.7	0.913	0.836	1.2	1.07	7.5	1	-87%		
Lead	(mg/i)	0.0044	0.0058	<0.005	0.009	<0.005	< 0.005	n/a	n/a	n/a		
Magnesium	(mg/l)	61.7	49.9	46.1	45.3	43.5	42.7	55.8	44.4	-20%		
Manganese	(mg/i)	8.24	7.43	6.98	6.8	6.63	6.46	7.8	6.7	-14%		
Mercury	(mg/l)			1		< 0.0004		n/a	n/a	n/a		
Nickel	(mg/l)	0.0129	0.0188			<0.01		0.016	0.01	-38%		
otassium	(mg/l)	3	2.9	2.42	2.25	2.28	2.38	3	2.3	-23%		
Sodium	(mg/i)	64.1	53.9	53.8	49.7	51.1	51	59	51	-14%		
Selenium	(mg/l)					<0.02		n/a	n/a	n/a		
Silver	(mg/l)					<0.015		n/a	n/a	n/a		
Thallium .	(mg/l)	0.0037	<0.0026			<0.03		n/a	n/a	n/a		
/anadium	(mg/l)	0.0029	0.0075			<0.015		n/a	n/a	n/ a		
Zinc	(mg/l)	0.103	0.0484			<0.01		0.076	0.01	-87%		

Table 12. Water Quality Trends - 1997 to 2006 Well MW-2B - Bedrock

H - exceeded hold time

* the percent increase or decrease of the average concentration measured in 2006 compared to the average concentration measured in 1997. Averages assume not-detect values = the detection limit.

Table 13.	Water Quality Trends - 1997 to 2006
	Well MW-3A - Bedrock

Conventio	nals							Avera	ge Conce			
Parameter	Units	Aug-97	Oct-97	3/22/06	5/31/06	8/9/06	10/10/06	1997	2006	Percent Change *		
Color	(Units)	<5	<5			<5		n/a	n/a			
ALK as CaCO3	(mg/l)	145	146	162	170	140	152	146	156	1		
HARD as CaCO3	(mg/l)	1250	200	153	179	191	158	725	170	-77%		
TDS	(mg/l)	320	269	215	208	207	207	295	209	-29%		
Chloride	(mg/l)	31.4	28.7	14	12.7	13.5	12.7	30.1	13.2	-56%		
Sulfate	(mg/l)	16	13	9.14	11	9.98	8.01	14.5	9.53	-34%		
Bromide	(mg/l)	0.5	<0.5	< 0.1	<0.1	0.152	0.143	0.5	0.124	-75%		
NO3 (As N)	(mg/l)	<0.1	0.19	< 0.1	<0.1	<0.1	<0.1	0.145	0.1	-31%		
NH4 (As N)	(mg/l)	<0.02	0.09	0.0969	<0.02	<0.02	<0.1	n/a	n/a	n/a		
TKN (as N)	(mg/l)	0.4	0.24	0.455	1.09 H	0.239	0.266	0.32	0.51	59%		
COD	(mg/l)	19	<15	< 10	<10	13	<10	n/a	n/a	n/a		
BOD	(mg/l)	<2	<2	< 3	<3	<3	<3	n/a	n/a	n/a		
тос	(mg/l)	4.5	1.9	5.58	<2	<2	<2	3.2	2.9	-9%		
Phenolics, Tot	(mg/l)	0.0027	<0.001	< 0.005	< 0.005	<0.005	<0.005	n/a	n/a	n/a		
Cyanide	(mg/l)					<0.01		n/a	n/a	n/a		
Total Metals								Average Concentration				
	1									Percent		
Parameter	Units	Aug-97	Oct-97	3/22/06	5/31/06	8/9/06	10/10/06	1997	2006	Change *		
Aluminum	(mg/l)	21.7	2.39			0.078		12.05	0.08	-99%		
Antimony	(mg/l)	< 0.003	0.0034			< 0.05		n/a	n/a	n/a		
Arsenic	(mg/l)	0.0127	<0.0024			<0.025		n/a	n/a	n/a		
Barium	(mg/l)	0.567	0.343			0.41		0.455	0.41	-10%		
Beryllium	(mg/l)	0.001	0.00013			<0.005		n/a	n/a	n/a		
Boron	(mg/l)	<0.0709	0.0286			0.063		0.05	0.063	26%		
Cadmium	(mg/l)	< 0.0003	< 0.0003	< 0.005	< 0.005	<0.005	<0.005	n/a	n/a	n/a		
Calcium	(mg/l)	57.8	53.7	46.3	55.3	57.9	48.3	56	52	-7%		
Chromium	(mg/l)	0.0249	0.0022			<0.005	-*	0.0136	0.005	-63%		
Cobalt	(mg/l)	0.0121	0.0019			< 0.015		n/a	n/a	n/a		
Copper	(mg/l)	0.0315	0.0076			0.023		0.0196	0.023	17%		
ron	(mg/l)	26.6	3.58	1.88	0.626	0.104	0.283	15.09	0.72	-95%		
Lead	(mg/l)	0.0077	<0.001	<0.005	0.005	0.005	<0.005	n/a	n/a	n/a		
Magnesium	(mg/l)	17	11	9.13	10	11.2	9.2	14	9.9	-29%		
Manganese	(mg/l)	0.732	0.174	0.208	0.175	0.416	0.176	0.5	0.2	-60%		
Mercury	(mg/i)					<0.0004		n/a	n/a	n/a		
Nickel	(mg/l)	0.0248	0.0038			<0.01		0.014	0.01	-29%		
Potassium	(mg/l)	7.43	1.87	0.938	0.829	1.09	0.937	4.7	0.9	-81%		
Sodium	(mg/l)	10.4	6.54	5.66	6.4	8.92	6.03	8	7	-13%		
Selenium	(mg/l)					<0.02		n/a	n/a	n/a		
Silver	(mg/l)					<0.015		n/a	n/a	n/a		
Fhallium	(mg/l)	<0.0026	<0.0026			<0.03		n/a	n/a	n/a		
/anadium	(mg/l)	0.0296	0.0039			<0.015		0.017	0.015	-12%		
Zinc	(mg/l)	0.112	0.0265			0.025		0.069	0.025	-64%		

H - exceeded hold time

* the percent increase or decrease of the average concentration measured in 2006 compared to the average concentration measured in 1997. Averages assume not-detect values = the detection limit.

Conventio	nals							Avera	ge Conce	
Parameter	Units	Aug-97	Oct-97	3/22/06	5/31/06	8/9/06	10/10/06	1997	2006	Percent Change *
Color	(Units)	<5	20			<5		12.5	5	-60%
ALK as CaCO3	(mg/l)	240	224	131	148	154	153	232	147	-37%
HARD as CaCO3	(mg/l)	300	240	135	144	131	133	270	136	-50%
TDS	(mg/l)	98	280	209	175	190	187	189	190	1%
Chloride	(mg/l)	38.2	35	21.1	2.33	2.32	3.39	36.6	7.3	-80%
Sulfate	(mg/l)	27.1	22.2	13.8	3.95	3.28	6.14	24.65	6.79	-72%
Bromide	(mg/l)	<0.5	<0.5	< 0.1	<0.1	0.122	<0.1	0.5	0.106	-79%
NO3 (As N)	(mg/l)	0.6	<0.1	< 0.1	<0.1	<0.1	<0.1	0.35	0.1	-71%
NH4 (As N)	(mg/l)	0.09	2.5	0.0549	<0.02	0.096	<0.1	1.295	0.068	-95%
TKN (as N)	(mg/l)	0.6	3.3	0.392	0.904 H	0.214	0.279	1.95	0.45	-77%
COD	(mg/l)	40	19	< 10	<10	11.6	<10	30	10	-67%
BOD	(mg/l)	<2	2	< 3	5.1	3.2	<3	2	3.58	79%
TOC	(mg/l)	6	5.8	5.22	3.14	<2	<2	5.9	3.09	-48%
Phenolics, Tot	(mg/l)	0.0032	<0.001	< 0.005	<0.005	<0.005	< 0.005	n/a	n/a	n/a
Cyanide	(mg/i)				~	< 0.01		n/a	n/a	n/a
Total Metals								Averag	e Conce	ntration
· · · · ·										Percent
Parameter	Units	Aug-97	Oct-97	3/22/06	5/31/06	8/9/06	10/10/06	1997	2006	Change *
Aluminum	(mg/l)	8.59	0.642			0.115		4.62	0.12	-97%
Antimony	(mg/l)	< 0.003	<0.003	· · ·		<0.05		n/a	n/a	n/a
Arsenic	(mg/l)	0.009	0.0084			<0.025		n/a	n/a	n/a
Barium	(mg/l)	0.521	0.48			0.313		0.501	0.313	-38%
Beryllium	(mg/l)	0.0004	0.0001			<0.005		n/a	n/a	n/a
Boron	(mg/l)	0.145	0.145			< 0.05		0.145	0.05	-66%
Cadmium	(mg/l)	< 0.0003	< 0.0003	<0.005	<0.005	<0.005	<0.005	n/a	n/a	n/a
Calcium	(mg/l)	70.5	55.6	39.3	39.6	36.1	37.4	63	38	-40%
Chromium	(mg/l)	0.0092	0.0017			<0.005		0.0055	0.005	-9%
Cobalt	(mg/l)	0.0112	0.0056			<0.015		0.0084	0.015	79%
Copper	(mg/l)	0.0116	0.0051			0.016		n/a	n/a	n/a
ron	(mg/l)	10.6	3	1.09	0.511	0.306	0.195	6.8	0.53	-92%
ead	(mg/l)	0.0044	<0.001	<0.005	<0.005	<0.005	<0.005	n/a	n/a	n/a
Magnesium	(mg/i)	19	12.7	8.94	10.9	9.86	9.71	15.9	9.9	-38%
Manganese	(mg/l)	3.43	4.17	0.559	0.12	0.297	0.185	3.8	0.3	-92%
Mercury	(mg/l)	**				<0.0004		n/a	n/a	n/a
Nickel	(mg/i)	0.0144	0.0059			<0.01		n/a	n/a	n/a
otassium	(mg/l)	4.08	2.72	1.15	0.825	0.634	0.69	3.4	.0.8	-76%
Sodium	(mg/l)	38	31.4	14.9	9.93	10.1	10.7	35	11	-69%
Selenium	(mg/l)					<0.02		n/a	n/a	n/a
Silver	(mg/i)					<0.015		n/a	n/a	n/a
Fhallium	(mg/l)	<0.0026	<0.0026			<0.03		n/a	n/a	n/a
/anadium	(mg/l)	0.0083	0.0012			<0.015		n/a	n/a	n/a
Zinc	(mg/i)	0.0894	0.0248			0.014		0.057	0.014	-75%

Table 14. Water Quality Trends - 1997 to 2006 Well MW-6B - Bedrock

H - exceeded hold time

* the percent increase or decrease of the average concentration measured in 2006 compared to the average concentration measured in 1997. Averages assume not-detect values = the detection limit.

Conventio	nals							Avera	Average Concentration			
Parameter	Units	Aug-97	Oct-97	3/22/06	5/31/06	8/9/06	10/10/06	1997	2006	Percent Change *		
Color	(Units)	20	5			<5		12.5	5	-60%		
ALK as CaCO3	(mg/t)	569	660	648	675	595	635	615	638	4%		
HARD as CaCO3	(mg/l)	1010	1150	627	599	531	526	1080	571	-47%		
TDS	(mg/l)	1220	1240	981	967	963	949	1230	965	-22%		
Chloride	(mg/l)	300	276	144	143	119	85	288	122.8	-57%		
Sulfate	(mg/l)	27.4	20.2	20.6	22.5	19.7	14.1	23.8	19.23	-19%		
Bromide	(mg/l)	0.6	< 0.5	0.753	0.633	0.822	0.483	0.55	0.673	22%		
NO3 (As N)	(mg/l)	<0.1	0.2	< 0.1	<0.1	< 0.1	<0.1	0.15	0.1	-33%		
NH4 (As N)	(mg/l)	0.93	0.89	0.34	<0.02	<0.02	<0.1	0.91	0.12	-87%		
TKN (as N)	(mg/i)	1.1	1.4	1.5	1.68 H	0.75	1.11	1.25	1.26	1%		
COD	(mg/l)	43	112	21.2	16.5	26.4	20.5	78	21	-73%		
BOD	(mg/l)	<2	2	< 3	<3	<3	<3	n/a	n/a	n/a		
TOC	(mg/i)	10.1	12.6	12.8	8.19	6.12	7.46	11.35	8.64	-24%		
Phenolics, Tot	(mg/l)	0.0051	0.0027	< 0.005	0.007	< 0.005	<0.005	n/a	n/a	n/a		
Cyanide	(mg/l)	<0.01	<0.01			<0.01		n/a	n/a	n/a		
Total Metals								Averac	e Conce	ntration		
										Percent		
Parameter	Units	Aug-97	Oct-97	3/22/06	5/31/06	8/9/06	10/10/06	1997	2006	Change *		
Aluminum	(mg/l)	40	88.4			0.415		64.2	0.42	-99%		
Antimony	(mg/l)	< 0.003	< 0.003			<0.05		n/a	n/a	n/a		
Arsenic	(mg/l)	0.0176	0.0459			<0.025		0.0318	0.025	-21%		
Barium	(mg/l)	1.36	1.99			0.684	*-	1.675	0.684	-59%		
Beryllium	(mg/l)	0.0015	0.0037			<0.005		n/a	n/a	n/a		
Boron	(mg/l)	0.332	0.41	••		0.55		0.371	0.55	48%		
Cadmium	(mg/i)	0.00047	0.002	<0.005	<0.005	<0.005	< 0.005	n/a	n/a	n/a		
Calcium	(mg/l)	234	271	171	165	150	148	253	159	-37%		
Chromium	(mg/l)	0.0556	0.146			<0.005		0.1008	0.005	-95%		
Cobalt	(mg/i)	0.0311	0.0791			<0.015		0.0551	0.015	-73%		
Copper	(mg/l)	0.0637	0.129			0.013		0.0964	0.013	-87%		
ron	(mg/l)	65.9	174	- 14.5	1.33	0.722	2.78	119.95	4.83	-96%		
_ead	(mg/l)	0.0251	0.0585	0.0175	0.009	0.006	<0.005	0.0418	0.0094	-78%		
Magnesium	(mg/l)	67	88.3	48.6	45.5	38	38	77.7	42.5	-45%		
Manganese	(mg/l)	5.87	9.55	6.08	5.69	4.4	4.85	7.7	5.3	-31%		
Mercury	(mg/l)	< 0.0001	< 0.0001			< 0.0004		n/a	n/a	n/a		
Vickel	(mg/l)	0.0783	0.192			0.013		0.135	0.013	-90%		
Potassium	(mg/l)	10.4	13. 5	3.06	1.91	1.81	2.03	12	2.2	-82%		
Sodium	(mg/l)	118	113	134	129	124	128	116	129	11%		
Selenium	(mg/l)	0.0041	0.0047			<0.02		n/a	n/a	n/a		
Silver	(mg/l)	<0.0009	<0.0009			<0.015		n/a	n/a	n/a		
Thallium	(mg/l)	<0.0026	<0.0026			< 0.03		n/a	n/a	n/a		
/anadium	(mg/l)	0.0487	0.127			<0.015		0.088	0.015	-83%		
linc	(mg/l)	0.2	0.408			<0.01		0.304	0.01	-97%		

Table 15. Water Quality Trends - 1997 to 2006 Well MW-7A - Overburden

H - exceeded hold time

* the percent increase or decrease of the average concentration measured in 2006 compared to the average concentration measured in 1997. Averages assume not-detect values = the detection limit.

Appendix A

.•

Correspondence

Cortland County Towslee Landfill

New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau A

25 Broadway, 11th Floor Albany, New York 12233-7015 Phone: (518) 402-9625 • Fax: (518) 402-9022 Website: www.dec.state.ny.us

November 7, 2005

Mr. Donald R. Chambers, Superintendent Department of Highways County of Cortland 60 Central Avenue Cortland, NY 13045

Re:

Cortland County Landfill Site No. 7-12-001 Solon (T), Cortland Co.

Dear Mr. Chambers:

I am responding to your October 13, 2005 letter to Ms. Mary Jane Peachey, Region 7 Regional Engineer, regarding the status of the Cortland County Landfill Site.

After a significant delay, I am in the process of reviewing the Post Closure Operations and Maintenance (O&M) Manual and several other documents for which you and your consultant need formal responses from the Department.

The March 1999 Record of Decision requires quarterly sampling of, as a minimum, the seven groundwater monitoring wells that existed at that time on the south (down gradient) side of the landfill. If sampling results (after several sampling events) indicate that quarterly sampling is unnecessary, the frequency of sampling may be reduced. Detailed comments on the O&M Manual will be provided shortly to you and Barton and Loguidice. I will also be completing the other correspondence which will allow you to start the close-out of the County's State Assistance Contract for this project.

Future correspondence regarding this site should be sent to me at the above address. If you have any questions, please contact me at 518-402-9622.

Sincerely,

Joseph A. Yavonditte, P.E. Chief, Remedial Section B Remedial Bureau A

ecc:

M.J. Peachey, Reg 7 J. Burke, Reg 7 D. Smith C. Vasudevan

Cortland County Soil and Water Conservation District

Room 202, 100 Grange Place • Conland, New York 13045 Phone: 607-753-0851 Ext. 3 • Fax: 607-756-0029

/SWCD \ldots established to promote the conservation and wise use of our county's natural resources.

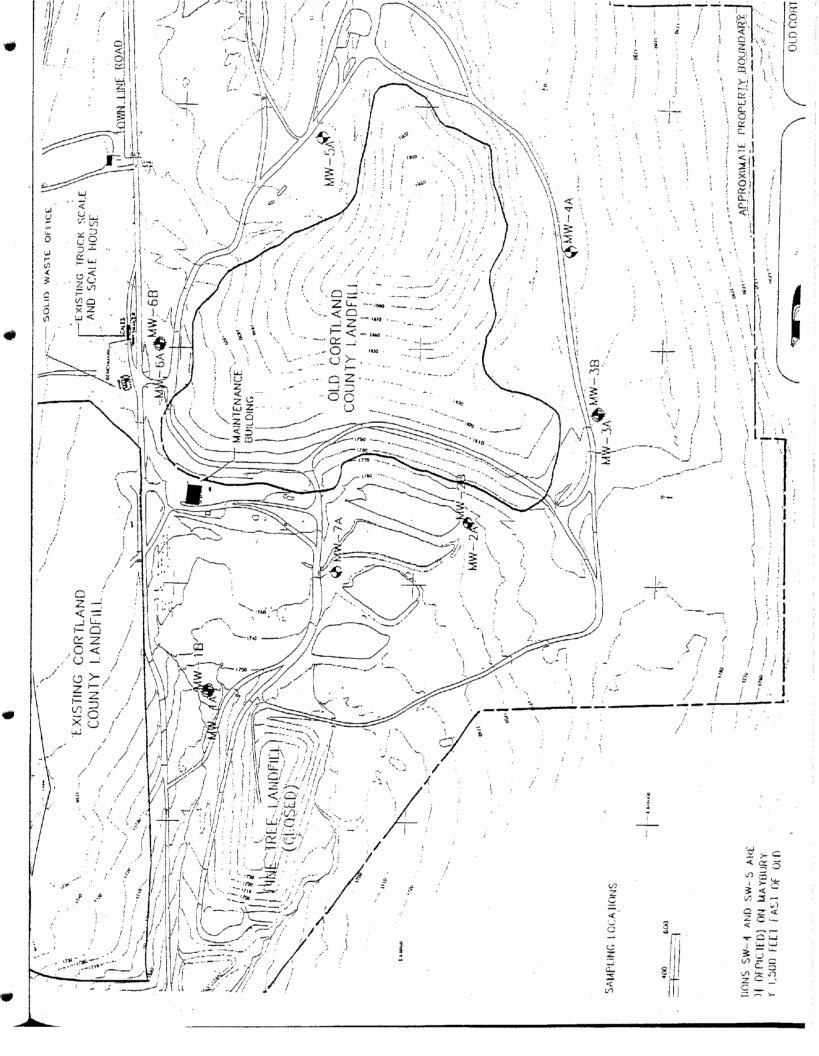
February 17, 2006

Joe Yavonditte Chief, Remedial Section B Remedial Bureau A Div. of Environmental Remediation 625 Broadway Albany, NY 12233-7015

Dear Mr. Yavonditte:

Cortland County Soil and Water Conservation District (SWCD) will be overseeing monitoring of the old county landfill for Cortland County. SWCD will begin monitoring seven (7) downgradient groundwater monitoring wells, as described in your November 7, 2005 letter to Don Chambers. This monitoring will be an interim measure until the monitoring plan for the old county landfill is finalized.

As we discussed over the phone, SWCD has identified three (3) overburden wells and four (4) bedrock wells to serve as the locations for monitoring. These locations were selected to best represent downgradient conditions based on a review of groundwater flow patterns described in the Remedial Investigation Report prepared by Barton & Loguidice in 1998.


We propose to monitor overburden weils MW-1A, MW-2A, and MW-7A. We propose to monitor bedrock wells MW-1B, MW-2B, MW-3A, and MW-6B. The attached map shows the locations of these wells.

Monitoring will begin in the first quarter of 2006. Let us know if you have any questions or concerns with the selection of wells.

Sincerely. Patrick Reidv

Water Quality Specialist

cc: Don Chambers, Cortland County Highway Department Paul Dudden, Barton & Loguidice Amanda Barber, SWCD/files

Appendix B

Analytical Laboratory Results and Internal Quality Control Summary Quarter 3 2006

Cortland County Towslee Landfill

BUCK ENVIRONMENTAL LABORATORIES, INC.

Laboratory Narrative Cortland County Landfill Towsley Site

Lab Log No. 0608066

October 25, 2006

Mr. Patrick Reidy Cortland County Soil and Water Conservation District Room 204 100 Grange Place Cortland, NY 13045

Re: Cortland County Landfill – Towsley Site Third Quarter - 2006

The data in this package represent results of analysis of the Part 360 Baseline Parameters for samples from seven wells from the Towsley site of the Cortland County Landfill. Ernest Spencer and Kevin Reagan of Buck Environmental Laboratories, Inc. (BEL) purged the wells on August 8, 2006. BEL employees, Eric Monsen, Ernest Spencer, Kevin Reagan and Christine Rhodes, sampled the wells on August 9, 2006.

Following water depth measurement (from top of casing to water), a minimum of three well volumes was purged using manual bailers or the well was purged to dryness. Field measurements of temperature, depth, pH, Eh, conductivity and turbidity were made. Three of the seven sites sampled, MW-1A, MW-1B, and MW-2A, were found to have turbidity in excess of 50 NTU. The non-preserved samples were filtered and analyzed for dissolved metals for comparison purposes.

Analytical methods, preservatives, hold times and containers for all laboratory analytes complied with requirements of the New York State Department of Health ELAP program. Instrument calibrations and blanks met the Laboratory's QC protocol. All analytical results were reviewed for compliance with the Laboratory QA/QC Manual, the NYSDOH-ELAP Certification Manual and the contractual requirements with Cortland County Soil & Water Conservation District. The laboratory QA/QC forms enclosed in this volume include those for a fortified sample ("spike," labeled "MS") and a duplicate fortified sample ("dup," labeled "MSD"). The MS/MSD recoveries for aluminum, iron and manganese on the total sample were outside QC criteria. The MS/MSD recoveries on the filtered sample for these metals met QC criteria. It is assumed that the particulate matter in the unfiltered sample precluded accurate measurement of these three analytes.

Thank you for the opportunity to provide this information and please let me know if there are any questions.

/ John H. Buck, P.E. Laboratory Director

n;\office\barb\landfill\cortland-ccswcd\Towsley 3_2006 narrative.doc

3821 Buck Drive, P.O. Box 5150, Cortland, NY 13045 • 607.753.3403 fax 607.753.3415 Branch Office: 14 Smith Avenue, Binghamton, NY 13904 • 607.771.0866 fax 607.771.0966

<u>Qual</u> <u>Units</u> mg/L rng/L mg/L **FinalVal** ND ND 2.96 8.18 0.248 g 0.02 0.04 0.05 0.045 0.045 0.025 0.045 0.025 0.025 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.025 0.0 0.015 0.005 0.01 0.005 0.32 POL Analyte Chromium, Hexavalent Magnesium Manganese Vagnesium Manganese Chromium otassium Chromium Aluminum /anadium Aluminum Antimony Beryllium Cadmium **3eryllium** Selenium Cadmium Antimony hallium Mercury Calcium Calcium Mercury Sodium Barium Copper Arsenic Barium Arsenic Cobalt Cobalt Copper Boron Boron[.] Nickel Silver -ead Zinc ead ron L 0 1 08/10/06 09/01/06 10/23/06 0/23/06 0/23/06 0/23/06 0/23/06 0/23/06 0/23/06 0/23/06 0/23/06 0/23/06 0/23/06 90/10/60 0/23/06 AnalDate 0/23/06 0/23/06 0/23/06 TestNo SW6010A SW7470 SW7196 SW7470 TestCode HGNPWDISS Samplers: EM, ES, KR, CR CR6L HGNPW ICPDISS ICPDISS CPDISS (CPDISS ICPDISS CPDISS 999 5 Ч d O Ъ 66666 СР СP СЬ СР 5 СЬ СЬ СP 90 СР ClientSampID MW-1A WW-1A MW-1A MW-1A MW-1A

Lab Log #0608066

CORTLAND COUNTY LANDFILL

Sampled: 08/09/06

TOWSLEY SITE

1 of 21

.

-

Tel 607.753.3403 FAX 753.3415

BUCK ENVIRONMENTAL LABORATORIES, INC.

PO Box 5150

Cortland, NY 13045

3 #0608066

۲

Qual

30																																									
Lab Log		Units		mg/L	mg/L	mg/L	mg/∟ ™≈/'	mg/L	ma/l	mg/l	ug/L	ug/L	µg/L	µg/L	hg/L	µg/L	hg/L	° µg/L	µg/L	µg/L	µg/L	µg/L	hg/L	µg/L	µg/L	µg/L	µg/L	hg/L	- /9:1	ч6' с Ц2/	hg/L	hg/L	J∕gu	hg/L	µg/L	μΒ/ L	H8/L	чы с ug/L	hg/L	hg/L	µg/L
Hereafter 10 - 1 - 1		FinalVal			1.31 NIN		2 ND 0 F			0.033	QN	ND	ŊŊ	QN	DN	QN	DN	ND	QN	DN	QN	QN	QN	ND	QN	QN	Q A			Q	ND	QN	QN	ON 2			QN	DN	QN	ŊŊ	QN
		PQL				0.02	0.013	0.03	0.015	0.01	5	5	5	5	5	5	ഹ	ß	2	വ	S	5	2	5	25	25	52 10	С7 Ц	ישנ	പറ	5	വ	വ	лı	n u	ז נ	2 10	2	2	5	n
		Analyte		Dotacrium	Selentitum	Scientum	Sodium	Thallium	Vanadium	Zinc	1,1,1,2-Tetrachioroethane	1,1,1-Trichloroethane	1,1,2,2.Tetrachloroethane	 1, 1, 2-Trichloroelhane 	1,1-Dichloroethane	1,1 Dichloroethene	1,2,3.Trichloropropane	1,2-Dibromo-3-chloropropane	1,2 Dibromoethane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3 Dichlorobenzene	1,4 Dichlorobenzene	2-Butanone	Z-Hexanone	4-IVIetnyl-Z-pentanone	Acrulonitrile	Benzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	Carbon disultide	oal built tett actition de Phiorohenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Dibromochloromethane
		AnalDate	10/23/06		10/23/06			10/23/06	-			08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/1//06	08/17/06	08/17/06	08/17/06	08/1//06	00/11/20	90/1/20	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	90/1/20	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06
		TestNo	SW60100	VOTODIOS	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW826UA	SW8260A	SWR260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SVV826UA	SWR260A	SWR260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A
UNTY LANDFII	9/06 ES, KR, CR	TestCode	CPNICC				ICPDISS	ICPDISS	ICPDISS	ICPDISS	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_3601	M8260_3601	M8260 3601	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260 3601	MR260 3601	M8260_3601	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L
CORTLAND COUNTY LANDFILL TOWSI EV SITE	Sampled: 08/09/06 Samplers: EM, ES, KR,	ClientSampID	MW-1A	MW.1 A	MW,1A	MW-1A	MW-1A	MW-1A	MW-1A	MW-1A	MW-1A	MW-1A	MW-1A	MW-1A				MW-1A	MW-IA	MW-IA	MW-TA	MW-JA	MW-1A	MW-1A	MW-TA	ALL VIV								VI VVV	MW-1A	MW-1A	MW-1A	MW-1A			MW - LA

PO Box 5150 BUCK ENVIRONMENTAL LABORATORIES, INC. Cortland, NY 13045 Tel 607.753 3403 FAX 753.3415

2 of 21

	Qual																																			ATORIES, INC.	PU BOX 3130 Cortland, NY 13045 2402 EAV 752 2415	
	Units	hg/L	µg∕∟ ⊔g∕L	µg∕L	µg/L	hg/L	µg/L	нв/с ug/L	hg/L	hg/L	hg/L	µg∕∟ /I	нв/с ug/с	hg/L	mg/L CaCO3	mg/L	mg/l	units	hmhos/cm	feet	. Vm	mg/L	mg/L mg/l	mg/L	mg/L	mg/L	rng/L nuite	pri unus mg/L	mg/L	°.	mg/L	mg/L NTU) :	mg/L mg/l	111B/ L	BUCK ENVIRONMENTAL LABORATORIES, INC.	PU Box 3130 Cortland, NY 13045 Tol FOT TF2 2402 EAY TF2 3415	1 CI 101 100 101
	FinalVal	QN	n n	QN	ND			DN N	QN	QN	QN			ND	122	QN		C N	353	2.97	190	148	0 M E	QN	QN	16.5	0.161	DN D	236	19.5	0.366	131 131		Q Q	2	UCK ENVIRON		
	POL	ۍ ۱	വ വ	10	ъ	u ۱	n r	n n	210	5	ı ما		מ מ	5	2	e c	10.01		a a	0.01			1.0	0.1	0.1		0.02	0.005	10	0.1	0.2	2 0.05		0.02	1000.0	G		÷
	<u>Analyte</u>		6 Ethylbenzene 6 lodomethane				6 Styrene 6 Tatrachlornathana	- ,-	4	+	+ '		6 Vinvl acetate	_			6 Cyanide 6 Chamical Occasio Domand			_			6 Chloride		_			o pri 6 Phenolics. Total Recoverable		-	_	6 Organic Carbon, Total 6 Turhidity		6 Chromium, Hexavalent 6 Mercury			3 of 21	
	<u>AnalDate</u>	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/1//00	08/17/06	08/17/06	08/17/06	08/17/06	08/1/00	08/17/06	08/17/06	08/14/06	08/10/06	08/21/00	08/10/06 08/10/06	08/09/06	08/09/06	08/09/06	10/24/06	08/10/06	08/10/06	08/10/06	08/10/06	08/21/06	00/60/20	08/15/06	90/60/80	08/21/06	08/16/06 08/09/06		08/10/06	0/10/00			de s
	TestNo	SW8260A	SW8260A SW8260A	SW8260A	SW8260A	SW8260A	SW826UA	SWR260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	E310.1	.405.1	E335.2	F110.2	E120.1	depth	D1498	E130.2	E300	E300	E300	E300	E350.1	E150.1 F420.1	E160.1	E170.1	E351.3	E415.1 F180.1		SW7196 SW7770	0/+///0			
9/06 ES, KR, CR	TestCode	M8260_360L	M8260_360L M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	MR260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L M8260_360L	M8260_360L	WALK	WBOD5	WCN	WCOLOR	WCOND	WDEPTH	WEH	WHARD_CALC		WIC N	WIC	WIC	WNH3	WPHFNOI	WTDS	WTEMP	WTKN	WTOC WTURR FIFLD		CR6L Hendw				
Samplers: EM, ES, KR, CR	<u>ClientSampID</u>	MW-1A	MW-1A MW-1A	MW-1A	MW-1A	MW-1A	MW-LA		MW-1A	MW-1A	MW-1A	MW-1A	MW-1A	MW-1A	MW-1A	MW-1A	MW-1A	AUW-LA	MW-1A	MW-1A	MW-1A	MW-1A	VIIV - TH	MW-1A	MW 1A	MW-1A	MW-1A	MW-1A	MW-1A	MW-1A	MW-1A .	MW-1A MW-1A		MW-1B				

•

Lab Log #0608066

Antonio antono antono 1911 - 1911 - 1914 1914 - 1914 - 1914

······

....

CORTLAND COUNTY LANDFILL TOWSLEY SITE

CORTLAND COUNTY LANDFILL

Qual

<u>Jnits</u> ng/L ng/L ng/L ng/L ng/L mg/L mg/L mg/L mg/L ng/L mg/Ľ mg/L ng/L ng/L ng/L ng/L mg/L mg/L mg/L mg/L mg/L mg/L ng/L FinalVal 00.1 00.1 00 0.0004 0.04 0.05 0.025 0.045 0.005 0.005 0.21 0.005 0.015 0.015 $\begin{array}{c} 0.035 \\ 0.035 \\ 0.05 \\ 0.01 \\ 0.026 \\ 0.026 \\ 0.015 \\ 0.015 \\ 0.015 \\ 0.015 \\ 0.015 \\ 0.015 \\ 0.015 \\ 0.015 \\ 0.015 \\ 0.015 \\ 0.015 \\ 0.015 \\ 0.015 \\ 0.015 \\ 0.015 \\ 0.005 \\ 0$ 0.005 0.21 0.005 0.015 0.05 <u>POL</u> 0.01 Analyte Magnesium Manganese Chromium Chromium otassium Aluminum /anadium Aluminum Cadmium Cadmium Antimony Selenium Antimony **3eryllium Beryllium Fhallium** Calcium Calcium Sodium Mercury Barium Barium Arsenic Arsenic Boron Cobalt Copper Boron Cobalt Copper Nickel Silver -ead Zinc ron 09/01/06 0/23/06 0/23/06 0/23/06 0/23/06 0/23/06 0/23/06 0/23/06 10/23/06 0/23/06 10/23/06 0/23/06 0/23/06 0/23/06 0/23/06 10/23/06 AnalDate <u>TestNo</u> SW6010A SW7470 TestCode **HGNPWDISS** Samplers: EM, ES, KR, CR ICPDISS ICPDISS ICPDISS CPDISS ICPDISS ICPDISS CPDISS CPDISS ICPDISS CPDISS CPDISS Sampled: 08/09/06 699999 СЬ 799999999999999999 СРС СР **TOWSLEY SITE** ClientSampID WW-1B MW-1B MW-1B MW-1B MW-1B MW-1B MW-1B MW-1B MW-1B MW-1B WW-1B WW-1B MW-1B MW-18 MW-1B MW-1B WW-1B MW-1B MW-1B MW-1B MW-1B MW-1B MW-1B

4 of 21

PO Box 5150 BUCK ENVIRONMENTAL LABORATORIES, INC.

mg/L

mg/L rng/L

mg/L mg/L mg/L

0.01

0.135 ND 0.403

0.005 0.32 0.005

Vanganese

Nickel

Potassium

Vlagnesium

-ead

ron

0/23/06 0/23/06 0/23/06 0/23/06 0/23/06 0/23/06

SW6010A SW6010A

> CPDISS ICPDISS

> > **MW-1B**

WW-1B MW-1B MW-1B

CPDISS

WW-1B MW-1B CPDISS

CPDISS

CPDISS

SW6010A SW6010A SW6010A SW6010A

0.035

Cortland, NY 13045 Tel 607.753.3403 FAX 753.3415

ი მ 0.015 0.001 0.00000000	ClientSampID TestCod	TestCode	TestNo	AnalDate	<u>Analyte</u>	POL	FinalVal	<u>Units</u>	Qual	-
CPDISS SWEULIA 10/23/06 Fallum 0.012 CPDISS SWE010A 10/23/06 Fallum 0.013 MS200_5601 SWE260A 68/17/06 11.1.1.7it/infuncethane 0.013 MS200_5601 SWE260A 68/17/06 1.1.1.1.0100000000 0.017 MS200_5601 SWE260A 68/17/06 1.1.1.010000000000 0.017 MS200_5601 SWE260A 68/17/06 1.2.10100000000000000000000000000000000							!	:		
CFDISS SW6010h 10/23/06 Solution 0.057 CFDISS SW6010h 10/23/06 Failum 0.001 CFDISS SW6010h 10/23/06 Failum 0.001 MS260_3601 SW2506 61/7/06 1.11. Firchorathane 0.001 MS260_3601 SW2505 68/17/06 1.11.2. Firehorathane 0.013 MS260_3601 SW2505 68/17/06 1.11.2. Firehorathane 0.013 MS260_3601 SW2505 68/17/06 1.11.2. Firehorathane 0.015 MS260_3601 SW2505 68/17/06 1.12. Firehorathane 0.015 MS260_3601 SW2705 68/17/06 1.2. Firehorathane 0.015 MS260_3601 SW2705 68/17/06 1.2. Encincorpropare 0.015 MS260_3601 SW2705 68/17/06 1.2. Encincorpropare 0.015 MS260_3601 SW2705 68/17/06 1.2. Encincorpropare 0.025 MS260_3601 <	MW-1B MW-1B	ICPDISS	SW6010A	10/23/06	Selenium Silver	0.02		mg/L mg/l		
CPDISS Swedion 10/23/06 Traillium 0.0315 CPDISS Swedion 10/23/06 Traillium 0.0315 CPDISS Swedion 10/23/06 Traillium 0.0315 M28260_3601 SW8260A 08/17/06 11.1.1.2.Tetrachlocrethane 0.0315 M28260_3601 SW8260A 08/17/06 11.1.1.2.Tetrachlocrethane 0.031 M2860_3601 SW8260A 08/17/06 11.1.1.2.Tetrachlocrethane 0.031 M2860_3601 SW8260A 08/17/06 11.1.0.Entororethane 0.031 M2860_3601 SW8260A 08/17/06 1.2.Dichrocrethane 0.031	MW-1B	ICPDISS	SW6010A	10/23/06	Sodium	0.67	5.31	" mg/l		
CFDISS SW6010A 10/23/05 Vanadium 0.001 CFDISS SW6010A 10/23/05 Waradium 0.001 M2560_3601 SW8260A 08/17/06 11.1.1.7.Finkthorethane 0 M2560_3601 SW8260A 08/17/06 11.1.2.7.Finkthorethane 0 M2560_3601 SW8260A 08/17/06 1.1.2.Finkthorethane 0 M2560_3601 SW8260A 08/17/06 1.1.2.Finkthorethane 0 M2560_3601 SW8260A 08/17/06 1.1.2.Finkthorethane 0 M2560_3601 SW8260A 08/17/06 1.2.2.Etherotethane 0 M2560_3601 SW8760A 08/17/06 1.2.2.Etherotethane 0 M2560_3601 SW8260A 08/17/06 1.2.2.Etherotethere 0 M2560_3601 SW17	MW-1B	ICPDISS	SW6010A	10/23/06	Thallium	0.03	DND .	mg/ L		
ICP/DISS SW6010h IO/23/06 Zinc 0.001 M8260_3601 SW8260h 08/17/06 11.1.1.2.7 interactioncentane 5 M8260_3601 SW8260h 08/17/06 11.1.1.2.7 interactioncentane 5 M8260_3601 SW8260h 08/17/06 11.1.1.2.7 interactioncentane 5 M8260_3601 SW8260h 08/17/06 11.1.2.7 interactioncentane 5 M8260_3601 SW8260h 08/17/06 11.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	MW-1B	ICPDISS	SW6010A	10/23/06	Vanadium	0.015	QN	mg/L		
M8260_360L SW8260A 08/17/06 11.1.1.2.Tefrachtorecthane 5 M8260_360L SW8260A 08/17/06 11.1.2.Tefrachtorecthane 5 M8260_360L SW8260A 08/17/06 11.1.2.Tefrachtorecthane 5 M8260_360L SW8260A 08/17/06 11.1.2.Tefrachtorecthane 5 M8260_360L SW8260A 08/17/06 1.1.1.2.Tefrachtorecthane 5 M8260_360L SW8260A 08/17/06 1.2.3.Treducopropane 5 M8260_360L SW8270A 08/17/06 1.2.Dichtorecthane 5 <td< td=""><td>MW-1B</td><td>ICPDISS</td><td>SW6010A</td><td>10/23/06</td><td>Zinc</td><td>0.01</td><td>0.029</td><td>mg/L</td><td></td><td></td></td<>	MW-1B	ICPDISS	SW6010A	10/23/06	Zinc	0.01	0.029	mg/L		
MB260_360L SW2260A 08/17/06 1.1.1. Trichlorcethane 5 MB260_360L SW2260A 08/17/06 1.1.2. Trichlorcethane 5 MB260_360L SW2260A 08/17/06 1.1.2. Trichlorcethane 5 MB260_360L SW2260A 08/17/06 1.1.2. Trichlorcethane 5 MB260_360L SW2260A 08/17/06 1.2. Ditronopropane 5 MB260_360L SW2706A 08/17/06 1.2. Ditronopropane 5 MB260_360L SW2706A 08/17/06 1.2. Ditronopropane 5 MB260_360L SW2260A 08/17/06 1.2. Ditronopropane 5 MB260_360L SW2706A 08/17/06 1.2. Ditronopropane 5 MB260_360L SW2260A 08/17/06 1.2. Ditronopropane 5 MB260_360	MW-1B	M8260_360L	SW8260A	08/17/06	1,1,1,2.Tetrachloroethane	5	QN	µg∕L		
M8260_360L SW8260A 08/17/06 1.1.7.17.11.41 1.1.2.17.11 M8260_360L SW8260A 08/17/06 1.1.1.2.17.11 1.1.2.2.17.11 1.1.2.17.11 1.1.2.17.11 1.1.2.17.11 1.1.2.17.11 1.1.2.17.11 1.1.2.17.11 1.1.2.17.11 1.1.2.17.11 1.1.2.17.11 1.1.2.17.11 1.2.2.	MW-1B	M8260_360L	SW8260A	08/17/06	1,1,1.Trichloroethane	5	ΩN	µg/L		
W8260_3601 SYM250A 08/17/06 1,1,1 Enchoroethane 5 M8260_3601 SYM250A 08/17/06 1,1,1 Enchoroethane 5 M8260_3601 SYM250A 08/17/06 1,1,2 Enchoroethane 5 M8260_3601 SYM250A 08/17/06 1,2,2 Enchoroethane 5 M8260_3601 SYM250A 08/17/06 1,4,1 Enchoroethane 5 M8260_3601 SYM250A 08/17/06 1,4,1 Enchoroethane 5 M8260_3601 SYM250A 08/17/06 1,4,1 Enchoroethane 5 M8260_3601 SYM250A 08/17/06 Enchoroethane 5 M8260_3601 SYM250A 08/17/06 Enchoroethane 5 M8260_3601 SYM25	MW-1B	M8260_360L	SW8260A	08/17/06	1,1,2,2.Tetrachloroethane	ı م	QN	hg/L		
Wiszelo. 3601 SWS260A 08/17/06 1,1-Unfortentiante 5 Wiszelo. 3601 SWS260A 08/17/06 1,2-Unbronostiane 5 Wiszelo. 3601 SWS260A 08/17/06 1,4-Unbronostiane 5 Wiszelo. 3601 SWS260A 08/17/06 2-Hexanote 2 Wiszelo. 3601 SWS2	MW-1B	M8260_360L	SW8260A	08/17/06	1,1,2.Trichloroethane	n u	QN	hg/L		
M8250_360L SW8260A 08/17/06 1,1-Unchronerthere 5 M8260_360L SW8260A 08/17/06 1,2.3 Tricharopropriate 5 M8260_360L SW8260A 08/17/06 1,2.3 Tricharopropriate 5 M8260_360L SW8260A 08/17/06 1,2.2 Dicharopropriate 5 M8260_360L SW8260A 08/17/06 1,2.2 Dicharopropriate 5 M8260_360L SW8260A 08/17/06 1,2.2 Dicharopropriate 5 M8260_360L SW8260A 08/17/06 1,2.0 Dicharopropate 5 M8260_360L SW87706 1,2.4 Dicharopropate 5 M8260_360L SW17/06 1,4.4 Dicharopropate 5 M8260_360L SW17/06 1,4.4 Dicharopropate 5 M8260_360L SW877/06 2.8 Litanone 25 M8260_360L	MW-1B	M8260_360L	SW8260A	08/1//06	1,1-Dichloroethane	ה נ		µg/L		
M82260_360L Sw8260A 06/17/06 1,2.2 Dibromosthae 5 M82260_360L Sw8260A 08/17/06 1,2 Dibromosthae 5 M8260_360L Sw8260A 08/17/06 1,4 Dibromosthae 5 M8260_360L Sw8260A 08/17/06 1,4 Dibromosthae 5 M8260_360L Sw8260A 08/17/06 2 Hexanone 25 M8260_360L Sw8260A 08/17/06 <			SW820UA	90//1/200	1,1-Ulchioroethene	ດມ		hg/L		
M8260_3601 SW2260A 08/17/06 1.2. Dichloroberizene 5 M8260_3601 SW8260A 08/17/06 1.4. Dichloroberizene 5 M8260_3601 SW8260A 08/17/06 1.4. Dichloroberizene 5 M8260_3601 SW17/06 1.4. Dichloroberizene 5 M8260_3601 SW17/06 2.4. Mathyl-2.pendtanone 25 M8260_3601 SW17/06 2.4. Mathyl-2.pendtanone 25 M8260_3601 SW17/06 2.4. Mathyl-2.pendtanone 25 M8260_3601 SW17/06 Branone 25		M8260_360L	SWR260A	08/17/06	1,2,3-1 ficfiloropropane 1,2,Dibromo,3,chloropropane	nυ		µ8/ L		
M8260_3601 SW8260A 08/17/06 1.2 Dichloroperate 5 M8260_3601 SW8260A 08/17/06 1.4 Dichloroperate 5 M8260_3601 SW8260A 08/17/06 1.4 Dichloroperate 5 M8260_3601 SW17/06 1.4 Dichloroperate 5 M8260_3601 SW17/06 Akmanne 8 25 M8260_3601 SW17/06 Action 8 25 M8260_3601 SW17/06 Action 8 25 M8260_3601 SW17/06 Romochintrie 5 5 M8260_3601 </td <td>MW-1B</td> <td>M8260_3601</td> <td>SWR260A</td> <td>08/17/06</td> <td>1,2.Dihromoethane</td> <td>יש ה</td> <td></td> <td>µ₿/ L LIG/ I</td> <td></td> <td></td>	MW-1B	M8260_3601	SWR260A	08/17/06	1,2.Dihromoethane	יש ה		µ₿/ L LIG/ I		
M8260_3601 Sw8260A 08/17/06 1.2 Dichloroethane 5 M8260_3601 Sw8260A 08/17/06 1.4 Dichlorobenzene 5 M8260_3601 Sw8260A 08/17/06 1.4 Dichlorobenzene 5 M8260_3601 Sw8260A 08/17/06 1.4 Dichlorobenzene 5 M8260_3601 Sw8260A 08/17/06 2.4 Hexanone 5 M8260_3601 Sw8260A 08/17/06 Aretrone 5 M8260_3601 Sw8260A 08/17/06 Bernzene 25 M8260_3601 Sw8260A 08/17/06 Bernzene 25 M8260_3601 Sw8260A 08/17/06 Bernzene 25 M8260_3601 Sw8260A 08/17/06 Bernzene 26 M8260_3601 Sw8260A 08/17/06 Bernzene	MW-1B	M8260 360L	SW8260A	08/17/06	1.2.Dichlorobenzene) LC	QN	РБ/ с Ш⊄/		
M8260_360L SW8260A 08/17/06 1,2-Dichlorobenzene 5 M8260_360L SW8260A 08/17/06 1,3-Dichlorobenzene 5 M8260_360L SW8260A 08/17/06 1,4-Dichlorobenzene 5 M8260_360L SW8260A 08/17/06 2-Butanone 25 M8260_360L SW8260A 08/17/06 2-Hexanone 25 M8260_360L SW8260A 08/17/06 2-Hexanone 25 M8260_360L SW8250A 08/17/06 2-Hexanone 25 M8260_360L SW8250A 08/17/06 4-Atmet 25 M8260_360L SW8250A 08/17/06 Actmet 25 M8260_360L SW8250A 08/17/06 Bromocharane	MW-1B	M8260 360L	SW8260A	08/17/06	1.2 Dichloroethane	പ	QN	ug/L		
M8260_360L SW8260_360L SW17/06 2.Butanone 25 25 M8260_360L SW8260A 08/17/06 2.Butanone 25 25 M8260_360L SW8260A 08/17/06 2.Butanone 25 M8260_360L SW8260A 08/17/06 4.Methyl.2.pentanone 25 M8260_360L SW8260A 08/17/06 Bromochloromethane 25 M8260_360L SW8260A 08/17/06 Bromochloromethane 5 M8260_360L SW8260A 08/17/06 Chromethane 5	MW-1B	M8260_360L	SW8260A	08/17/06	1,2-Dichloropropane	5	QN	ng/L		
M8250_360L SW8260A 08/17/06 1,4-Dichlorobenzene 5 M8260_360L SW8260A 08/17/06 2.Hutanone 25 M8260_360L SW8260A 08/17/06 Actione 25 M8260_360L SW8260A 08/17/06 Actione 25 M8260_360L SW8260A 08/17/06 Actione 5 M8260_360L SW8260A 08/17/06 Bromochnomethane 5 M8260_360L SW8260A 08/17/06 Bromochnomethane 5 M8260_360L SW8260A 08/17/06 Carbon tetrachloride 5 M8260_360L SW8260A 08/17/06 Carbon tetrachloride 5 M8260_360L SW8260A 08/17/06 Carbon tetrachloride 5 M8260_360L SW8260A 08/17/06 Chloropenze	MW-1B	M8260_360L	SW8260A	08/17/06	1, 3. Dichlorobenzene	5	QN	hg/t		
M8260_360L SW8260A 08/17/06 2-Butanone 25 M8260_360L SW8260A 08/17/06 Acrylonitrile 25 M8260_360L SW8260A 08/17/06 Benzene 25 M8260_360L SW8260A 08/17/06 Benzene 25 M8260_360L SW8260A 08/17/06 Benzene 25 M8260_360L SW8260A 08/17/06 Bromochnormethane 25 M8260_360L SW8260A 08/17/06 Bromochnormethane 5 M8260_360L SW8260A 08/17/06 Bromochnormethane 5 M8260_360L SW8260A 08/17/06 Bromochnormethane 5 M8260_360L SW8260A 08/17/06 Bromochnormethane	MW-1B	M8260_360L	SW8260A	08/17/06	1,4-Dichlorobenzene	, Q	ND	µg∕L		
M3260_360L SW3260A 08/1//06 2-Hexanone 25 M3260_360L SW3260A 08/1//06 4-Methyl/2-pentanone 25 M3260_360L SW3260A 08/17/06 4-Methyl/2-pentanone 25 M3260_360L SW3260A 08/17/06 Acctone 25 M3260_360L SW3260A 08/17/06 Acctone 25 M3260_360L SW3260A 08/17/06 Benzene 25 M3260_360L SW3260A 08/17/06 Benzene 25 M3260_360L SW3260A 08/17/06 Benzene 25 M3260_360L SW3260A 08/17/06 Bromotichloromethane 25 M3260_360L SW3260A 08/17/06 Carbon distilide 5 M3260_360L SW3260A 08/17/06 Carbon distilide 5 M3260_360L SW3260A 08/17/06 Carbon distilide 5 M3260_360L SW3260A 08/17/06 Chrotochane 5 M3260_360L SW3260A 08/17/06 Chrotochane	MW-1B	M8260_360L	SW8260A	08/17/06	2 Butanone	25	QN	hg/L		
M8260_360L SW8260A 08/17/06 A methyli-2 pentranone 25 M8260_360L SW8260A 08/17/06 A methyli-2 pentranone 25 M8260_360L SW8260A 08/17/06 A convertine 25 M8260_360L SW8260A 08/17/06 A convertine 25 M8260_360L SW8260A 08/17/06 Bercylonitrile 5 M8260_360L SW8260A 08/17/06 Bercylonitrile 5 M8260_360L SW8260A 08/17/06 Bromochloromethane 5 M8260_360L SW8260A 08/17/06 Bromodorm 5 M8260_360L SW8260A 08/17/06 Bromodorm 5 M8260_360L SW8260A 08/17/06 Bromodorm 5 M8260_360L SW8260A 08/17/06 Chlorobenzene 5 M8260_360L SW8260A 08/17/06 Chlorobenzene 5 M8260_360L SW8260A 08/17/06 Chlorobenzene 5 M8260_360L SW8260A 08/17/06 Chlor	MW-1.8	M8260_360L	SW8260A	08/1//06	Z-Hexanone	25	Q !	µg/L		
M8260_360L SW8260A 06/17/06 Accrotion	MW-1B	M8260_360L	SW8260A	08/1//06	4.Methyl.2.pentanone	25		µg/L		
Mazzon Swazon Osymonutus Mazzon 3601 Swazon 0371706 Benzen 5 M8260_3601 Swazon 08/17/06 Bromodinten 5 M8260_3601 Swazon 08/17/06 Carbon tetrachloride 5 M8260_3601 Swazon 08/17/06 Carbon tetrachloride 5 M8260_3601 Swazon 08/17/06 Carbon tetrachloride 5 M8260_3601 Swazon 08/17/06 Chlorobrane 5 M8260_3601 Swazon 08/17/06 Chlorobrane 5 M8260_3601		M8260_360L	SVVB2BUA	00/11/00	Acetone	C7		µg/L		
M8260_360L 3002000 0517/06 Bromochloromethane M8260_360L 30817/06 Bromochloromethane 55 M8260_360L SW8260A 08/17/06 Bromochloromethane M8260_360L SW8260A 08/17/06 Bromochloromethane M8260_360L SW8260A 08/17/06 Carbon tetrachloride 55 M8260_360L SW8260A 08/17/06 Chlorobenzene 55 M8260_360L SW8260A 08/1		M0260_3601	AUD20VC	00/11/00	Benzene	лu		µ8/∟		
M8260_360L SW8260A OB/17/06 Bromotomethane M8260_360L SW8260A 08/17/06 Bromotom M8260_360L SW8260A 08/17/06 Carbon tetrachloride M8260_360L SW8260A 08/17/06 Carbon tetrachloride M8260_360L SW8260A 08/17/06 Chlorobenzene M8260_360L SW8260A 08/17/06 Chlorobenzene <		M8260 3601	SWR260A	08/17/06	Bromochloromathana Bromochloromathana	nư				
W8260_360L SW8260A 08/17/06 Bromotorm 5 M8260_360L SW8260A 08/17/06 Carbon tetrachloride 5 M8260_360L SW8260A 08/17/06 Chlorobenzene 5 M8260_360L SW8260A 08/17/06 Chlorobenzene 5 M8260_360L SW8260A 08/17/06 Chlorobenzene 5 M8260_360L SW8260A 08/17/06 Chloroform 5	MW-1B	M8260_360	SW8260A	08/17/06	Bromodichloromethane	n n	QN CN			
M8260_360L SW8260A 08/17/06 Brunomethane 5 M8260_360L SW8260A 08/17/06 Brunomethane 5 M8260_360L SW8260A 08/17/06 Carbon disulfide 5 M8260_360L SW8260A 08/17/06 Carbon disulfide 5 M8260_360L SW8260A 08/17/06 Chlorobenzene 5 M8260_360L SW8260A 08/17/06 Chlorobenzene 5 M8260_360L SW8260A 08/17/06 Chloroform 5 M8260_360L SW8260A 08/17/06 Chloroform 5 M8260_360L SW8260A 08/17/06 Chloroform 5 M8260_360L SW8260A 08/17/06 Chloropene 5 M8260_360L SW8260A 08/17/06 Chloropene 5 M8260_360L SW8260A 08/17/06 Dibromochhane 5 M8260_360L SW8260A 08/17/06 Dibromochhane 5 M8260_360L SW8260A 08/17/06 Dibromochhane 5 M8260_360L SW8270A 08/17/06 Dibromochhane	MW-1B	M8260_360L	SW8260A	08/17/06	Bromotorm	വ	QN	ug/L		
M8260_360L SW8260A 08/17/06 Carbon disulfide 5 M8260_360L SW8260A 08/17/06 Carbon tetrachloride 5 M8260_360L SW8260A 08/17/06 Chlorobenzene 5 M8260_360L SW8260A 08/17/06 Chlorobenzene 5 M8260_360L SW8260A 08/17/06 Chlorobenzene 5 M8260_360L SW8260A 08/17/06 Chloroform 5 M8260_360L SW8260A 08/17/06 Chloropropene 5 M8260_360L SW8260A 08/17/06 Cis-1,2-Dichloropropene 5 M8260_360L SW8260A 08/17/06 Cis-1,3-Dichloropene 5 M8260_360L SW8260A 08/17/06 Dibromochloromethane 5 M8260_360L SW8260A 08/17/06 Dibromochloromethane 5 M8260_360L SW8260A 08/17	MW-1B	M8260_360L	SW8260A	08/17/06	Brornomethane	сл	QN	hg/L		
M8260_360L Sw8260A 08/17/06 Carbon tetrachloride 5 M8260_360L Sw8260A 08/17/06 Chlorobenzene 5 M8260_360L Sw8260A 08/17/06 Chlorobenzene 5 M8260_360L Sw8260A 08/17/06 Chlorobenzene 5 M8260_360L Sw8260A 08/17/06 Chloroform 5 M8260_360L Sw8260A 08/17/06 Chloroform 5 M8260_360L Sw8260A 08/17/06 Chloroform 5 M8260_360L Sw8260A 08/17/06 cis-1,3-Dichloropene 5 M8260_360L Sw8260A 08/17/06 cis-1,3-Dichloropene 5 M8260_360L Sw8260A 08/17/06 Eithylbenzene 5 M8260_360L Sw8260A 08/17/06 Eithylbenzene 5	MW-1B	M8260_360L	SW8260A	08/17/06	Carbon disulfide	2	QN	µg∕L		
M8260_360L SW8260A 08/17/06 Chlorobenzene 5 M8260_360L SW8260A 08/17/06 Chloroform 5 M8260_360L SW8260A 08/17/06 Chloromethane 5 M8260_360L SW8260A 08/17/06 Cis-1,2-Dichloropene 5 M8260_360L SW8260A 08/17/06 Dibromochloromethane 5 M8260_360L SW8260A 08/17/06 Dibromochloromethane 5 M8260_360L SW8260A 08/17/06 Ethylbenzene 5	MW-1B	M8260_360L	SW8260A	08/17/06	Carbon tetrachloride	ŋ	DN	µg/L		
M8260_360L SW8260A 08/17/06 Chloroform 5 M8260_360L SW8260A 08/17/06 Chloroform 5 M8260_360L SW8260A 08/17/06 Chloroform 5 M8260_360L SW8260A 08/17/06 Chloromethane 5 M8260_360L SW8260A 08/17/06 Chloromethane 5 M8260_360L SW8260A 08/17/06 Cis-1,3-Dichloropene 5 M8260_360L SW8260A 08/17/06 Dibromochloromethane 5 M8260_360L SW8260A 08/17/06 Dibromochloromethane 5 M8260_360L SW8260A 08/17/06 Dibromochloromethane 5 M8260_360L SW8260A 08/17/06 Ethylbenzene 5	MW.1B		SW8260A	08/17/06	Chlorobenzene	ı ما	QN	, µg/L		
M8260_360L SW8260A 08/17/06 Chloromethane 5 M8260_360L SW8260A 08/17/06 Chloromethane 5 M8260_360L SW8260A 08/17/06 Cis-1,2-Dichloroethene 5 M8260_360L SW8260A 08/17/06 Cis-1,3-Dichloroptopene 5 M8260_360L SW8260A 08/17/06 Dibromochloromethane 5 M8260_360L SW8260A 08/17/06 Dibromochloromethane 5 M8260_360L SW8260A 08/17/06 Dibromochloromethane 5 M8260_360L SW8260A 08/17/06 Ethylbenzene 5	MW-1B	M8260_360L	SW8260A	08/1//06	Chloroethane	ເດ ເ	QN	hg/L		
M8260_360L SW8260A 08/17/06 cis-1,2-Dichloroethene 5 M8260_360L SW8260A 08/17/06 cis-1,3-Dichloroptopene 5 M8260_360L SW8260A 08/17/06 cis-1,3-Dichloroptopene 5 M8260_360L SW8260A 08/17/06 Dibromochloromethane 5 M8260_360L SW8260A 08/17/06 Dibromochloromethane 5 M8260_360L SW8260A 08/17/06 Dibromomethane 5 M8260_360L SW8260A 08/17/06 Ethylbenzene 5	MW-1B	M8260_360L	SW8Z6UA	90/1/200	Chlorotorm	ΩL	ON N	hg/L		
M8260_360L SW8260A 08/17/06 cis-1,3-Dichloropropene M8260_360L SW8260A 08/17/06 cis-1,3-Dichloropropene M8260_360L SW8260A 08/17/06 Dibromochloromethane M8260_360L SW8260A 08/17/06 Ethylbenzene 55		MR260_300L	SWR260A	08/17/06	VIIIOTOTIETUALIE vis.1-3.Dichlorvathana	nư		HB/ L		
M8260_360L SW8260A 08/17/06 Dibromochloromethane 5 M8260_360L SW8260A 08/17/06 Dibromochloromethane 5 M8260_360L SW8260A 08/17/06 Ethylbenzene 5		TOOP DECOM	CINIDDEDA	00/11/00	ole 1 2 Dickloroweners	ט כ		1/2/L		
M8260_360L SW8260A 08/17/06 Ethylbenzene 5 M8260_360L SW8260A 08/17/06 Ethylbenzene 5		MR260_3601	SW8260A	08/17/06	Cise 1, 3- Dicrition oproperte Dibromochloromethane	сı		µg∕∟		
M8260_360L SW8260A 08/17/06 Ethylbenzene 5	MW-1B	M8260_3601	SW8260A	08/17/06	Dibromomethane	מיני	C N	не/ с Ш0/		
	MW-1B	M8260_360L	SW8260A	08/17/06	Etinylbenzene	വ	QN	hg/L		
						g	BUCK ENVIRONMENTAL LABORATORIES, INC.	MENTAL LABO	RATORIES	s, INC
e	x							č	PO Box 5150	4 5 1 5 1 2 0 4
5 of 21		£			5 of 21			Tel 607.753.3403 FAX 753.3475	03 FAX 753	1341
			148							

.

і 8. г.

CORTLAND COUNTY LANDFILL TOWSLEY SITE

Lab Log #0608066

Contraction of the second s

Sampled: 08/09/06 Samplers: EM, ES, KR, CR

Qual		
<u>Units</u>	нв/г нв/г нв/г нв/г нв/г нв/г нв/г нв/г нв/г нв/г mg/г	NTU mg/L mg/L mg/L
FinalVal	ND ND ND ND ND ND ND ND ND ND ND ND ND N	70 ND ND 0.43
POL	0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.05 0.02 0.0004 0.004
Analyte	lodomethane m.pXylene Methylene chloride oXylene Styrene Styrene Tetrachloroethene Tetrachloroethene Toluene trans-1,2-Dichloroopropene trans-1,3-Dichloroopropene trans-1,3-Dichloroo-2-butene Trichloroftuoromethane trans-1,3-Dichloroo-2-butene Trichloroftuoromethane Vinyl acetate Vinyl acetate Vinyl chloride Alkalinity, Total (As CaCO3) Biochemical Oxygen Demand Cyanide Cyanide Cyanide Concreate Cyanide Concreate Concreate Concreate Concreate Concreate Concreate Concreate Concreate Concreate Concreate Concreate Depth EH Hardness (As CaCO3) Bromide Concreate Depth EH Hardness (As CaCO3) Bromide Concreate Concreate Concreate Concreate Concreate Depth EH Hardness (As CaCO3) Bromide Concreate Conc	Turbidity Chromium, Hexavalent Mercury Aluminum
AnalDate		08/09/06 08/10/06 09/01/06 09/01/06 10/23/06
TestNo	SW8260A SW8260	E180.1 SW7196 SW7470 SW7470 SW6010A
TestCode	M8260_360L W20D W20D W20D W20D W20D W20D W20D W20D	WTURB_FIELD CR6L HGNPW HGNPWDISS ICP
ClientSampID	MWV-18 MW	MW-1B MW-2A MW-2A MW-2A MW-2A

BUCK ENVIRONMENTAL LABORATORIES, INC. PO Box 5150 Cortiand, NY 13045 Tel 607.753.3403 FAX 753.3415

677

NTX-11

) • 44

	 and the second	
CORTLAND COUNTY LANDFILL		
TOWSLEY SITE		
Sampled: 08/09/06		
Samplers: EM, ES, KR, CR	-	

<u>Qual</u>																								:	,														
Units	mg/L mg/L	mg/L	mg/L	mg/L mg/l	mg/L	mg/L	mg/l.	mg/L	mg/L	mg/l.		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	، mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
FinalVal	ON N	0.502	ND		77.3	ND	DN	0.012	6.5	ND	17.5	12	QN	12.3	ND	QN	31.4	QN	DN	QN	0.044	QN	DN	0.427	ND	0.562	ŊŊ	77.6	ND	QN	0.015	0.204	DN	17.1	12.1	QN	12.5	QN	QN
POL	0.05 0.025	0.045	0.005	0.05	0.21	0.005	0.015	0.01	0.035	0.005	0.32	0.005	0.01	0.26	0.02	0.015	0.67	0.03	0.015	0.01	0.04	0.05	0.025	0.045	0.005	0.07	0.005	0.21	0.005	0.015	0.01	0.035	0.005	0.32	0.005	0.01	0.26	0.02	0.015
Analyte																																							
	Antimony Arsenic	Barium	Beryllium	Dorori Cadmium	Calcium	Chromium	Cobalt	Copper	lron	Lead	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	Aluminum	Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver
<u>Ana!Date</u>	10/23/06 10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06	10/23/06
TestNo	SW6010A SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A	SW6010A
TestCode	ICP ICP	ICP	ICP ICP		CP	CP	ICP .	ICP	ICP	ICP .	ICP	СР	СР	ICP	ICP	СР	ICP	ICP	СР	CP	CPDISS	CPDISS	CPDISS	CPDISS	CPDISS	CPDISS	CPDISS	CPDISS	CPDISS	CPDISS	CPDISS	CPDISS	CPDISS	CPDISS	CPDISS	CPDISS	CPDISS	CPDISS	CPDISS
ClientSampID	MW-2A IG MW-2A IG					MW-2A			_	-		-			_		MW-2A	MW-2A		MW-2A	MW-2A	_	MW-2A	_	_	-	_	MW-2A	MW-2A	MW-2A	MW-2A	·	MW-2A						

A STATE OF A

1257

TOWSLEY SITE	Sampled: 08/09/06	Samplers: EM, ES, KR, CR	

.

Qual																																									
<u>Units</u>	/	IIIB/ L	ting/L	mg/L	1/8/1	µg∕ L ⊔a∕I	HB/L UG/L	ч6/ L	ug/L			ug/L	ug/L	ug/L	ug/L	ng∕L	ng/L	ug/L			ne/L		ng/L	- I/JI	ng/l	ug/L	ng/L	ug/L	ug/L	ug/L	ng∕L	ug/L	ug/L	ug/L	l/dn		ue/l		ue/L	ug/L	hg/L
FinalVal	20 C	0.62					C N	ÛN	QN	ND	ND	ND	ND	QN	QN	QN	ND	ND	QN	QN	QN	QN	QN	ND	ND	QN	ND	ND	QN	ND	ND	DN	ND	ND	ND	ND	ND	QN	QN	QN	ŊŊ
PQL	0.67		0.03	CT0.0	۲. 0.0	י ני	בו מ) LC	വ	വ	<u>n</u>	IJ	D	J D	2	Ð	Ð	വ	25	25	25	25	ŋ	D	ŋ	Ð	പ	IJ	5	ъ	5	5	5	5	ŋ	5	പ	ŋ	5	ſ	10
													hu																												
Analyte	Sodium	Thallium	/anadium		L 1 2 Tetrachloroethane	1.1.1.Trichloroethane	1,1.2.2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1.Dichloroethene	1,2,3-Trichloropropane	1,2 Dibromo 3-chloropropane	1,2-Dibromoethane	1,2-Dichlorobenzene	1,2 Dichloroethane	1,2-Dichloropropane	1, 3-Dichlorobenzene	1,4-Dichlorobenzene	2-Butanone	2-Hexanone	4-Methyl-2-pentanone	Acetone	Acrylonitrile	Benzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Dibromochloromethane	Dibromomethane	Ethylbenzene	odomethane	n,p.Xylene
AnalDate	10/23/06	10/23/06	10/23/06	-	•	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/,17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06
TestNo	SW6010A	SW6010A	SW6010A	SW6010A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A
TestCode	ICPDISS	CPDISS	CPDISS	ICPDISS	M8260 360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_3601.	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L
<u>ClientSampID</u>	MW-2A	MW 2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A				MW-2A	MW-2A																MW-2A	MW-2A .	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A				MW-2A

8 of 21

BUCK ENVIRONMENTAL LABORATORIES, INC. PO Box 5150 Cortland, NY 13045 Tel 607.753.3403 FAX 753.3415

				HIIBING	2	FINALVAL		
MW-2A	M8260 3601	SW8260A	08/17/06	Methylene chloride	ſ	ÛN	1/01	
MW-2A	M8260 360L	SW8260A	08/17/06	o-Xvlene) LC	D N	H6/ L	
MW-2A	M8260 360L	SW8260A	08/17/06	Stvrene		QN	e.	
MW-2A	M8260_360L	SW8260A	08/17/06	Tetrachloroethene	o ur		10/1	
MW-2A	M8260 360L	SW8260A	08/17/06	Toluene) LC	C N		
MW-2A	M8260_360L	SW8260A	08/17/06	trans-1.2-Dichloroethene) LC		10/1	
MW-2A	M8260_360L	SW8260A	08/17/06	trans: 1.3-Dichloropropene	о цо	QN	112/	
MW-2A	M8260 360L	SW8260A	08/17/06	trans-1.4-Dichloro-2-butene	о IC	DN	1/0/1	
MW-2A	M8260 360L	SW8260A	08/17/06	Trichloroethene) LC	CN N	187 L	
MW-2A	M8260_360L	SW8260A	08/17/06	Trichlorofluorornethane) LC	QN	۲6' - ۱۱۵/	
MW-2A	M8260_360L	SW8260A	08/17/06	Vinvl acetate) LO	QN	ug/L	
MW-2A	M8260_360L	SW8260A	08/17/06	Vinvl chtoride) LC	QN	- 16/J	
MW-2A	WALK	E310.1	08/14/06	Alkalinity. Total (As CaCO3)) (384	me/L CaCO3	
MW-2A	WBOD5	405.1	08/10/06	Biochemical Oxvgen Demand	10	3.4	me' = caaco	
MW-2A	WCN	E335.2	08/21/06	Cvanide	0.01	QN	mg/l	
MW-2A	WCOD	E410.1	08/17/06	Chemical Oxygen Demand	10	27	l/am	
MW-2A	WCOLOR	E110.2	08/10/06	Color	LC)	ŝ	units	
MW-2A	WCOND	E120.1	08/09/06	Specific Conductance	5	784	umhos/cm	
MW-2A	WDEPTH	depth	08/09/06	Depth	0.01	6.1	feet	
MW-2A	WEH	D1498	08/09/06	H	-	120	λ	
MW-2A	WHARD_CALC	E130.2	10/24/06	Hardness (As CaCO3)	1	265	mg/L	
MW-2A	WIC	E300	08/11/06	Bromide	0.1	0.237	, mg/L	.*
MW-2A	WIC	E300	08/11/06	Chloride	0.1	23.5	mg/L	
MW-2A	WIC	E300	08/11/06	Fluoride	0.1	QN	mg/L	
MW-2A	WIC	E300	08/11/06	Nitrogen, Nitrate (As N)	0.1	QN	mg/L	
MW-2A	WIC	E300	08/11/06	Nitrogen, Nitrite	0.1	QN	rng/L	
MW-2A	WIC	E300	08/11/06	Sulfate	1	3.43	mg/L	
MW-2A	WNH3	E350.1	08/21/06	Nitrogen, Ammonia (As N)	0.2	16	mg/L	
MW-2A	WPH_FIELD	E150.1	08/09/06	pH	0.1	6.15	pH units	
MW-2A	WPHENOL	E420.1	08/28/06	Phenolics, Total Recoverable	0.005	ND	mg/L	
MW-2A	WTDS	E160.1	08/15/06	Total Dissolved Solids (Residue, Filterable)	10	491	mg/L	
MW-2A	WTEMP	E170.1	08/09/06	Temperature	0.1	17.2	°	
MW-2A	WTKN	E351.3	08/21/06	Nitrogen, Kjeldahl, Total	2	16.5	mg/L	
MW-2A	WTOC	E415.1	08/16/06	Organic Carbon, Total	2	5.67	mg/L	
MW-2A	WTURB_FIELD	E180.1	08/09/06	Turbidity	0.05	195	NTU	
MW-2B	CR6L	SW7196	08/10/06	Chromium, Hexavalent	0.02	ND	mg/L	
MW-2B	HGNPW	SW7470	09/01/06	Mercury	0.0004	DN	mg/L	
MW-2B	ICP	SW6010A	10/23/06	Aluminum	0.04	0.18	mg/L	
MW-2B	ICP	SW6010A	10/23/06	Antimony	0.05	QN	mg/l.	
MW-2B	ICP	SW6010A	10/23/06	Arsenic	0.025	DN	mg/L	

Lab Log #0608066 .

CORTLAND COUNTY LANDFILL TOWSLEY SITE

.

Sampled: 08/09/06 Samplers: EM, ES, KR, CR

9 of 21

NIMENTAL LABORATORIES, INC. PO Box 5150 Cortland, NY 13045 Tel 607.753.3403 FAX 753.3415

Activity	
Bartum 0.045 1.22 mg/l Beryflum 0.005 ND mg/l Beryflum 0.005 ND mg/l Beryflum 0.005 ND mg/l Beryflum 0.015 ND mg/l Beryflum 0.015 ND mg/l Cadmium 0.011 0.011 mg/l Cobatt 0.011 0.011 mg/l Cobatt 0.011 0.011 mg/l Cobatt 0.011 0.011 mg/l Cobatt 0.012 ND mg/l Cobatt 0.012 ND mg/l Nanganese 0.011 ND mg/l Nickt 0.025 ND mg/l Nickt 0.025 ND mg/l Nickt 0.015 ND mg/l Nickt 0.015 ND mg/l Stear 0.015 ND mg/l Stear 0.015 ND	<u>lestCode</u> <u>lestNo</u> Ar
Bodynamic Bodynamic <thbodynamic< th=""> <thbodynamic< th=""> <thb< td=""><td>SW6010A 10/23/06 SW6010A 10/23/06</td></thb<></thbodynamic<></thbodynamic<>	SW6010A 10/23/06 SW6010A 10/23/06
Cadmum 0.005 ND mg/l Cadmum 0.015 ND mg/l Cronnum 0.005 ND mg/l Coball 0.005 ND mg/l Mangaresium 0.005 Stass mg/l Mangaresium 0.005 ND mg/l Mangaresium 0.005 ND mg/l Mangaresium 0.005 Stass mg/l Mangaresium 0.005 ND mg/l Stenum 0.005 ND mg/l Stenum 0.015	
Calcium 0.21 203 mg/l Construct 0.005 ND mg/l Copper 0.001 ND mg/l Copper 0.005 ND mg/l Copper 0.005 ND mg/l Icon 0.005 ND mg/l Magnesium 0.005 ND mg/l Magnese 0.001 ND mg/l Magnese 0.001 ND mg/l Magnese 0.002 ND mg/l Nickei 0.01 ND mg/l Steinum 0.015 ND mg/l Tallum 0.015 ND mg/l Tanor 1.1.1.1.2.trethoroethane 5	
Chromium 0.005 ND mg/L Cohont 0.015 ND mg/L Copper 0.011 0.017 mg/L Copper 0.005 ND mg/L Ragresium 0.011 0.017 mg/L Magresium 0.012 ND mg/L Narganese 0.0105 ND mg/L Narganese 0.011 0.017 mg/L Narganese 0.015 ND mg/L Nickei 0.015 ND mg/L Steriuum 0.025 ND mg/L Sterium 0.015 ND mg/L Sterium 0.015 ND mg/L Sterium 0.015 ND mg/L Sterium 0.015 ND mg/L Sterium 0.011 ND mg/L Sterium 0.011 ND mg/L Sterium 0.011 ND mg/L Vanadium 0.015	
Decide OUD ND MB Icone 0.013 0.017 mg/L Icon 0.005 ND mg/L Nagenesium 0.013 0.017 mg/L Nagenesium 0.013 0.017 mg/L Nagenesium 0.016 ND mg/L Nagenesium 0.015 ND mg/L Nagenesium 0.015 ND mg/L Nagenesium 0.015 ND mg/L Nandum 0.015 ND mg/L Silver 0.015 ND mg/L Socium 0.015 ND mg/L Vanadum 0.011 <td< td=""><td>SW6010A 10/2</td></td<>	SW6010A 10/2
Induction Induction <t< td=""><td>_</td></t<>	_
Nargenesium 0.005 ND mg/L Margenesium 0.005 6.63 mg/L Nargenesium 0.005 6.63 mg/L Nickel 0.005 6.63 mg/L Nickel 0.015 ND mg/L Selenium 0.015 ND mg/L Sodium 0.011 ND mg/L Sodium 0.015 ND mg/L Sodium 0.01 ND	
Magnesium 0.32 43.5 mg/L Magnese 0.005 6.63 mg/L Magnese 0.015 ND mg/L Magnese 0.015 ND mg/L Selenum 0.25 2.28 mg/L Solum 0.015 ND mg/L Solum 0.011 ND mg/L Solum 0.011 ND mg/L Solum 0.011 ND mg/L Solum 0.011 ND mg/L J.1.1.7.Trichloroethane 5 ND mg/L J.1.1.1.2.Tetrachloroethane 5 ND mg/L J.1.1.1.1.1.2.Tetrachloroethane 5 ND mg/L J.1.1.1.1.2.Tetrachloroethane 5 ND mg/L J.1.1.1	
Marganese 0.005 6.63 mg/L Nickel 0.01 ND mg/L Nickel 0.015 ND mg/L Nickel 0.02 ND mg/L Selenium 0.02 ND mg/L Soldassim 0.015 ND mg/L Soldium 0.015 ND mg/L Soldichoroethane 5 ND	
Nickel 0.01 ND mg/L Polassium 0.25 2.28 mg/L Seletum 0.015 ND mg/L Solatum 0.02 ND mg/L Solatum 0.015 ND mg/L Solatum 0.016 ND mg/L Solatum 0.015 ND mg/L Solatum 0.016 ND mg/L Solatum 0.016 ND mg/L Solatum 0.011 ND mg/L Solatum 0.016 ND mg/L Solatum 0.016 ND mg/L Solatum 0.015 ND mg/L Solatum 0.016 ND mg/L Solatum 0.011.2.17tichtorethane 5 ND mg/L Solatum 1.1.2.17tichtorethane 5 ND mg/L Solatum 1.2.21tichtorethane 5 ND mg/L Solatum 1.2.21tichtorothane 5<	
Totassum 0.22 2.28 mg/L Solum 0.015 ND mg/L Solum 0.015 ND mg/L Solum 0.015 ND mg/L Solum 0.015 ND mg/L Silver 0.015 ND mg/L Tablium 0.015 ND mg/L Tinl.1.2.Fracthoroethane 5 ND mg/L Tinl.2.Fracthoroethane 5 ND mg/L Tinl.2.Fracthoroethane 5 ND mg/L Tinl.2.Fracthoroethane 5 ND mg/L Tinl.2.Fracthoroethane 5 ND mg/L Tinl.2.5richoroethane 5 ND mg/L Tinl.2.6richoroethane 5 ND mg/L <	SW6010A 10/23/06
Silver 0.015 ND mg/L Thallium 0.015 ND mg/L Vanadium 0.015 ND mg/L Vanadium 0.015 ND mg/L Sodium 0.015 ND mg/L Vanadium 0.011 ND mg/L 0.11.1.1.2.Tetrachloroethane 5 ND ug/L 11.1.2.Tetrachloroethane 5 ND ug/L 11.1.2.2.Tetrachloroethane 5 ND ug/L 11.1.2.2.Tetrachloroethane 5 ND ug/L 11.1.2.2.Tetrachoroethane 5 ND ug/L 11.1.2.2.Tetrachoroethane 5 ND ug/L 11.2.3.Trichoroethane 5 ND ug/L 11.2.3.Trichoroethane 5 ND ug/L 11.2.2.Dichoroethane 5 ND ug/L 12.2.Dichoroethane 5 ND ug/L 12.2.Dichoroethane 5 ND ug/L 12.2.Dichoroethane 5 ND ug/L 12.2.Dichoroethane </td <td></td>	
Socium 0.67 51.1 $mg/1$ Vanadium 0.015 ND $mg/1$ Vanadium 0.01 ND $mg/1$ Zinc 0.01 ND $mg/1$ $1,1,2.7$ Trichloroethane 5 ND $ug/1$ $1,1,2.7$ Trichlorophane 5 ND $ug/1$ $1,2.7$ Dichnorophane 5 ND $ug/1$ $1,2.7$ Dichnorobenzene 5 ND $ug/1$ 2.8 Latanone 2.8 ND $ug/1$ $ug/1$ 2.8 Latanone	
Thallium 0.03 ND mg/L Zinc Vanadium 0.015 ND mg/L 1.1.1.2.Tetrachloroethane 5 ND mg/L 1.1.2.Trichloroethane 5 ND mg/L 1.1.2.Fichloroethane 5 ND mg/L 1.2.3.Trichloroethane 5 ND mg/L 1.2.0ichloroptopane 5 ND mg/L 1.2.0ichloroptopane 5 ND mg/L 1.2.0ichloroptopane 5 ND mg/L 1.2.0ichloroptoropane 5 ND mg/L 1.2.0ichloroptoropane 5 ND mg/L 1.2.0ichloroptoropane 5 ND mg/L 2.2.0ichloroptoropane 5<	
Vanadium 0.015 ND mg/L 2 Zinc 0.011 ND mg/L $1.1.1.2$:Trichtoroethane 5 ND \mug/L $1.1.1.2$:Trichtoroethane 5 ND \mug/L $1.1.2.2$:Trichtoroethane 5 ND \mug/L $1.2.3$:Trichtoroethane 5 ND \mug/L $1.2.3$:Trichtoroethane 5 ND \mug/L $1.2.2$:Dichtoroethane 5 ND \mug/L $2.2.5$:Nucone 2.5 ND \mug/L $2.2.4$:Nanone 2.5 ND \mug/L $2.2.4$:Nanone 2.5 ND \mug/L 2.4 :Methyl-2 pentanone 2.5 ND \mug/L $3.2.0$:Informethane 5 ND \mug/L 4.4 :Methyl-2 pentanone 2.5 ND \mug/L 6.4 :Methyl-2 pentanone 5 ND \mug/L 6.6 :Norther 5 ND \mug/L 6.7 :Norther 5 ND \mug/L 6.7 :Norther 5 <	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1,1,1,2.7 Intraduction definition of the form of th	SW6UIUA 10/23/04 SW8260A 08/17/06
1.1.2.2. Trachtorothane 5 ND µg/L 1.1.1.2.1.1.2. Trachtorothane 5 ND µg/L 1.1.2.2. Trachtorothane 5 ND µg/L 1.2.3. Trichtorothane 5 ND µg/L 1.2.1.5.Dibromoethane 5 ND µg/L 1.2.1.2.Dibromoethane 5 ND µg/L 1.2.2.Dibromoethane 5 ND µg/L 1.2.1.2.Dibromoethane 5 ND µg/L 1.2.2.Dibromoethane 5 ND µg/L 1.2.Dichtorothane 5 ND µg/L 2.2.Butanone 25 ND µg/L 2.2.Haxanone 25 ND µg/L 2.4.Methyl 2.pentanone 5 ND µg/L 5 ND µg/L µg/L <	SWR760A
1,1,2:Trichloroethane 5 ND ug/L 1,1.Dichloroethane 5 ND ug/L 1,1.Dichloroethane 5 ND ug/L 1,1.Dichloroethane 5 ND ug/L 1,2.Dibromoethane 5 ND ug/L 1,2.Dichloropropane 5 ND ug/L 1,2.Dic	
1,1.Dickloroethane 5 ND ig/L 1,1.Dickloroethane 5 ND ig/L 1,2.3.Trickloroethane 5 ND ig/L 1,2.3.Trickloropropane 5 ND ig/L 1,2.2.Dibromoethane 5 ND ig/L 1,2.Dichloroethane 5 ND ig/L 1,2.Dichloropropane 5 ND ig/L 1,3.Dichloropersene 5 ND ig/L 1,4.Dichlorobenzene 5 ND ig/L 2.Butanone 25 ND ig/L 6 4.Methyl-2 pentanone 25 ND ig/L 6 4.Methyl-2 pentanone 5 ND ig/L 6 Acetone 5 ND ig/L 6	SW8260A
1,1-Dichloroethene5ND $\mu g/L$ 1,2-Dibronoethane5ND $\mu g/L$ 1,2-Dibromoethane5ND $\mu g/L$ 1,2-Dibromoethane5ND $\mu g/L$ 1,2-Dichlorobenzene5ND $\mu g/L$ 1,4-Dichlorobenzene5ND $\mu g/L$ 2-Butanone25ND $\mu g/L$ 5-Hexanone25ND $\mu g/L$ 5-Hexanone25ND $\mu g/L$ 6 Acrylonitrile5ND $\mu g/L$ 6 Benzene5ND $\mu g/L$ 7 Lenonchloromethane5ND $\mu g/L$ 9 Lornochloromethane5ND $\mu g/L$ 10 of 2110 of 21Tel 607.753.3403 I	
1,2.3Trichloropropane5ND $\mu g/L$ 1,2.Dibromoethare5ND $\mu g/L$ 1,2.Dibromoethare5ND $\mu g/L$ 1,2.Dibromoethare5ND $\mu g/L$ 1,2.Dichlorobenzene5ND $\mu g/L$ 1,2.Dichloropropane5ND $\mu g/L$ 1,2.Dichloropropane5ND $\mu g/L$ 1,2.Dichlorobenzene5ND $\mu g/L$ 1,2.Dichlorobenzene5ND $\mu g/L$ 1,2.Dichlorobenzene5ND $\mu g/L$ 1,2.Dichlorobenzene5ND $\mu g/L$ 2.Butanone25ND $\mu g/L$ 2.Hexanone25ND $\mu g/L$ 5.Hexanone25ND $\mu g/L$ 6.Acrylonitrile5ND $\mu g/L$ 6.Benzene5ND $\mu g/L$ 7.Ordiat5ND $\mu g/L$ 7.0 of 2110 of 21Tel 607.753.3403 I	
1,2-Dichomoethane 5 ND µg/L 1,2-Dichloroethane 5 ND µg/L 1,2-Dichloropropane 5 ND µg/L 1,2-Dichlorobenzene 5 ND µg/L 1,2-Dichlorobenzene 5 ND µg/L 2.Butanone 25 ND µg/L 2.Hexanone 25 ND µg/L 5 ND µg/L µg/L 6 Arthoritile 5 ND µg/L 6 Arthoritile 5 ND µg/L 6 Benzene 5 ND µg/L 710 of 21 10 of 21 Tal 607.753.3403 I	
1,2-Dichlorobenzene 5 ND µg/L 1,3-Dichlorobenzene 5 ND µg/L 1,3-Dichlorobenzene 5 ND µg/L 2:Butanone 25 ND µg/L 2:Hexanone 25 ND µg/L 5 ND µg/L µg/L 6 Artylonitrile 5 ND µg/L 6 Benzene 5 ND µg/L 710 of 21 10 of 21 Tel 607.753.3403 I Tel 607.753.3403 I	
5 ND μg/L 6 1,2-Dichloropane 5 ND μg/L 6 1,3-Dichloropane 5 ND μg/L 6 1,3-Dichloropane 5 ND μg/L 6 1,4-Dichloropane 5 ND μg/L 6 1,4-Dichlorobenzene 5 ND μg/L 6 1,4-Dichlorobenzene 5 ND μg/L 6 2-Butanone 25 ND μg/L 6 2-Hexanone 25 ND μg/L 6 4-Methyl-2 pentanone 25 ND μg/L 6 A-Methyl-2 pentanone 25 ND μg/L 6 Acrylonitrile 5 ND μg/L 6 Berzene 5 ND μg/L 6 Bromochloromethane 5 ND μg/L 10 of 21 10 of 21 Tel 607.753.3403 H Tel 607.753.3403 H	
5 ND µg/L 6 1,2-Dichloropane 5 ND µg/L 6 1,3-Dichlorobenzene 5 ND µg/L 6 1,4-Dichlorobenzene 5 ND µg/L 6 1,4-Dichlorobenzene 5 ND µg/L 6 1,4-Dichlorobenzene 25 ND µg/L 6 2-Butanone 25 ND µg/L 6 2-Hexanone 25 ND µg/L 6 4-Methyl-2-pentanone 25 ND µg/L 6 Acrylonitrile 5 ND µg/L 6 Acrylonitrile 5 ND µg/L 7 Benzene 5 ND µg/L 10 of 21 10 of 21 Tel 607.753.3403 H Tel 607.753.3403 H	SW8260A
1,3-Dichlorobenzene 5 ND µg/L 1,4-Dichlorobenzene 5 ND µg/L 2-Butanone 25 ND µg/L 2 -Butanone 25 ND µg/L 2 -Butanone 25 ND µg/L 2 -Hexanone 25 ND µg/L 2 -Hexanone 25 ND µg/L 5 - Korone 25 ND µg/L 6 Acrylonitrile 5 ND µg/L 6 Benzene 5 ND µg/L 6 Benzene 5 ND µg/L 7 I o of 21 10 of 21 Tel 607.753.3403 H	
1,4-Dichlorobenzene 5 ND µg/L 2-Butanone 25 ND µg/L 2-Hexanone 25 ND µg/L 5 Acetone 25 ND µg/L 6 Acrylonitrile 5 ND µg/L 6 Benzene 5 ND µg/L 7 Homochloromethane 5 ND µg/L 10 of 21 10 of 21 Tel 607.753.3403 H Cortian	SW8260A
5 25 ND Hg/L 6 2-Hexanone 25 ND Hg/L 6 4-Methyl-2 pentanone 25 ND Hg/L 6 4-Methyl-2 pentanone 25 ND Hg/L 6 Acetone 25 ND Hg/L 6 Acrylonitrile 5 ND Hg/L 6 Benzene 5 ND Hg/L 6 Bromochloromethane 5 ND Hg/L 10 of 21 10 of 21 Tel 607.753.3403 H	SW8260A
2 2-Hexanone 25 ND μg/L 6 4-Methyl-2 pentanone 25 ND μg/L 6 Acetone 25 ND μg/L 6 Acrylonitrile 5 ND μg/L 6 Benzene 5 ND μg/L 6 Benzene 5 ND μg/L 7 Burck Environmethane 10 of 21 Tel 607.753.3403 I	
0 4- Methyl-Z-pentanone 25 ND µg/L 5 Acetone 25 ND µg/L 6 Acrylonitrile 5 ND µg/L 6 Benzene 5 ND µg/L 6 Benzene 5 ND µg/L 7 Buck Environmethane 10 of 21 Tel 607.753.3403 I	
Accelone 25 ND μg/L 5 Acrylonitrile 5 ND μg/L 5 Benzene 5 ND μg/L 6 Burck Environmentane 5 ND μg/L 10 of 21 10 of 21 753.3403 H Tel 607.753.3403 H	
a Acrylomitrile b ACrylomitrile b ACrylomitrile b Acrylomitrile b Homochloromethane b Homochloromethane b BUCK ENVIRONMENTAL LABORA BUCK ENVIRONMENTAL LABORA Tel 607.753.3403 I	
Bromochloromethane 5 ND Hg/L bg/L bg/L bg/L bg/L bg/L bg/L bg/L b	SW8260A 08/17/06
10 of 21 Tel 607.753.3403 I	
BUCK ENVIRONMENTAL LABORA Cortiar Tel 607.753.3403	
Cortiar Tel 607.753.3403	

Ì.

17-3

CORTLAND COUNTY LANDFILL TOWSLEY SITE

CORTLAND COUNTY LANDFILL TOWSLEY SITE _ Sam| Sam|

Lab Log #0608066

l.....

Qual

Units

<u>FinalVal</u>

<u>POL</u>

OWSLEY SITE sampled: 08/09/06 samplers: EM, ES, KR, CR	19/06 ES, KR, CR			
<u>ClientSampID</u>	TestCode	TestNo	<u>AnalDate</u>	Analyte
4W-2B	M8260_360L	SW8260A	08/17/06	08/17/06 Bromodichloromethane
MW-2B	M8260_360L	SW8260A	08/17/06	08/17/06 Brornoform
MW-2B	M8260_360L	SW8260A	08/17/06	08/17/06 Bromomethane
MW-2B	M8260_360L	SW8260A	08/17/06	08/17/06 Carbon disulfide
MW-2B	M8260 360L	SW8260A	08/17/06	08/17/06 Carbon tetrachloride

ug/l.	μg/L .		ug/L	ug/L	ng/L	ug/L	Hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	ng∕L	hg/L	hg/L	hg/L	hg/L	µg∕L	hg/L	hg/L	hg/L	hg/L	ng/L	hg/L	µg∕ L	mg/L CaCO3	mg/L	mg/l	mg/L	units	µrnhos/cm	feet	μV	mg/L	mg/L	mg/L	mg/L	mg/L
QN	QN	QN	ND	ND	QN	DN	QN	DN	6.2	DN	ND	QN	ND	QN	ND	ND	QN	QN	DN	QN	DN	ΠN	ND	ND	ΩN	QN	QN	612	3.7	0.024	24.6	ND	1420	6.83	125	686	0.902	122	QN	ND
2	£	- LO	ۍ ما	Ð	2	വ	5	J.	5	2	Ð	5	2	5	10	5	വ	5	ъ	ŋ	Ð	5	5	5	5 2	5	5	2	2	0.01	10	5	5	0.01	Ţ		0.1	1	0.1	ц т
Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2.Dichloroethene	cis-1, 3-Dichloropropene	Dibromochloromethane	Dibromomethane	Ethylbenzene	lodomethane	m.p.Xylene	Methylene chloríde	o-Xylene	Styrene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene.	trans-1,3 Dichloropropene	trans-1,4-Dichloro-2-butene	Trichloroethene	Trichlorofluoromethane	Vinyl acetate	Vinyl chloride	Alkalinity, Total (As CaCO3)	Biochemical Oxygen Demand	Cyanide	Chemical Oxygen Demand	Color	Specific Conductance	Depth	EH	Hardness (As CaCO3)	Bromide	Chloride	Nitrogen, Nitrate (As N)	Nitrogen, Nitrite
08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/14/06	08/10/06	08/21/06	08/17/06	08/10/06	08/09/06	08/09/06	08/09/06	10/24/06	08/11/06	08/11/06	08/11/06	08/11/06
SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	E310.1	405.1	E335.2	E410.1	E110.2	E120.1	depth	D1498	E130.2	E300	E300	E300	E300
M8260 360L	M8260_360L	M8260 360L	M8260 360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260 <u>-</u> 360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	WALK	WBOD5	WCN	WCOD	WCOLOR	WCOND	WDEPTH	· WEH	WHARD_CALC	WIC	WIC	MIC	MIC
MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW 2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B	MW-2B

BUCK ENVIRONMENTAL LABORATORIES, INC. PO Box 5150 Cortland, NY 13045 Tel 607.753.3403 FAX 753.3415

CORTLAND COUNTY LANDFILL TOWSLEY SITE Sampled: 08/09/06 Samplers: EM, ES, KR, CR

Qual		•
Units	mg/L mg/L mg/L mg/L mg/L mg/L MTU	した。 していた。 していた。 していた。 していた。 していた。 していた。 していた。 していた。 していた。 したいた した
FinalVal	ND 0.786 6.35 ND 15.9 1.64 4.82 18.7	ND ND ND ND ND ND ND 0.063 0.416 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.000 0.000 0.000000
TÕd	1 0.02 0.1 0.005 0.1 0.2 2 2 0.05	0.02 0.045 0.05 0.05 0.05 0.05 0.015 0.005
Analyte	Sulfate Nitrogen, Ammonia (As N) pH Phenolics, Total Recoverable Total Dissolved Solids (Residue, Filterable) Temperature Nitrogen, Kjeldahl, Total Organic Carbon, Total Turbidity	Chromium, Hexavalent Mercury Aluminum Antimony Arsenic Barlum Beryllium Boron Cadmium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Calcium Chromium Chromium Calcium Chromium Chromium Calcium Chromium Chromium Calcium Chromium Chromium Calcium Chromium Chromium Chromium Calcium Chromium Chromium Calcium Chrom
AnalDate	08/11/06 08/21/06 08/09/06 08/15/06 08/15/06 08/09/06 08/16/06 08/09/06	08/10/06 09/01/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 0/20/23/06 0/23/06 0/23/06 0/23/06 0/23/06 0/23/06 0/23/06 0/23/06 0/23/06 0/23/06 0/23/06 0/23/06 0/23/06 0/23/06 0/23/06 0/23/06 0/20/23/06 0/23/06 0/23/06 0/20/23/06 0/23/06 0/20/23/06 0/23/06 0/23/06 0/23/06 0/20/200 0/23/06 0/20/200 0/20/200 0/20/2000 0/20/2000 0/20/2000 0/20/2000 0/20/2000 0/20/2000 0/20/2000 0/20/2000 0/20/2000 0/20/2000 0/20/2000 0/20/2000 0/20/2000 0/20/200000000
TestNo	E300 E350.1 E150.1 E420.1 E160.1 E160.1 E351.3 E415.1 E180.1	SW7196 SW7470 SW6010A SW8260A SW8260A SW8260A SW8260A SW8260A SW8260A
TestCode	WIC WNH3 WPH_FIELD WPHENOL WTDS WTEMP WTKN WTOC WTOC	CR6L HGNPW ICP ICP ICP ICP ICP ICP ICP ICP ICP ICP
ClientSampID	MW 2B MW 2B MW 2B MW 2B MW 2B MW 2B MW 2B MW 2B	MW 3A MW 3A MM 3A

BUCK ENVIRONMENTAL LABORATORIES, INC. PO Box 5150 Cortiand, NY 13045 Tel 607.753.3403 FAX 753.3415

2

.

100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100

Qual

I UWSLEY SI I E Sampled: 08/09/06 Samplers: EM, ES, KR, CR	19/06 ES, KR, CR							•	
<u>ClientSampID</u>	<u>TestCode</u>	TestNo	AnalDate	Analyte		POL	FinalVal	<u>Units</u>	U,
MW-3A	M8260_360L	SW8260A	08/17/06	1,2,3-Trichloropropane		5 L	DN	ug/L	
MW-3A	M8260_360L	SW8260A	08/17/06	1,2-Díbromo-3-chloropropane		Б I	DN D	hg/L .	
AC-VVIV	MACOU_SOUL	SW620UA	00/11/00	1,2-Dibromoethane		ΩL		µg/L	
MW-3A	M8260_360L	SWR260A	08/17/06	1,2-UICHIOTOBENZENE		n u		µg∕L ™a∕I	
MW-3A	M8260_360L	SW8260A	08/17/06	1.2-Dichloropropane		ר ור	QN	нв/ г 110/	
MW-3A	M8260_360L	SW8260A	08/17/06	1,3-Dichlorobenzene		പ	QN	ны с µg/L	
MW-3A	M8260_360L	SW8260A	08/17/06	1,4 Dichlorobenzene		5	ON N	µg/L	
MW-3A	M8260_360L	SW8260A	08/17/06	2-Butanone		25	QN	hg/L	
MW-3A	M8260_360L	SW8260A	08/17/06	2-Hexanone		25 21	QN	µg∕L	
MW.3A	MR260 360L	SWR2604	08/17/06	4-IMetnyi-∠-pentanone ∆cetone		CZ 30		µg/L ∼/I	
MW-3A	M8260 360L	SW8260A	08/17/06	Acrybnitrile		ر م		µB∕∟ ua∕l	
MW-3A	M8260_360L	SW8260A	08/17/06	Benzene		о С	QN	ug/L	
MW-3A	M8260_360L	SWB260A	08/17/06	Bromochloromethane		പ	QN	J/L	
MW-3A	M8260_360L	SW8260A	08/17/06	Bromodichloromethane		5	ND	hg/L	
MW-3A	M8260_360L	SW8260A	08/17/06	Bramaform		َ ک	ND	hg/L	
MW-3A	M8260_360L	SW8260A	08/17/06	Bromomethane	-	5 2	ND	hg/L	
MW 3A	M8260_360L	SW8260A	08/17/06	Carbon disulfide		ı ع	ON STREET	hg/L	
MW-3A	M8260_360L	SW826UA	00/11/00	Carbon tetrachloride		LO I	ON D	μg/∟	
MW-3A	M8260_360L	SW8260A	08/17/06 08/17/06	Chlorobenzene Chloroethane		റം		hg/L	
MW-3A	M8260_360L	SW8260A	08/17/06	Chloroform		ז נר		וימ/ן וימ/ן	
MW-3A	M8260_360L	SW8260A	08/17/06	Chloromethane		2 C	DN	µ6∕∟ ⊔g/L	
MW-3A	M8260_360L	SW8260A	08/17/06	cis-1,2-Dichloroethene		5	ND	hg/L	
MW-3A	M8260_360L	SW8260A	08/17/06	cis-1,3-Dichloropropene		5	ND	hg/L	
MW-3A	M8260_360L	SW8260A	08/17/06	Dibromochloromethane		5	ON N	µg/L	
N/W-3A	M8260_360L M8260_360L	SW826UA SW8260A	00/11/00	Ulbromomethane		n u		µg/L	•
MW 3A	M8260_360L	SW8260A	08/17/06	Luiyivenzene lodomethane		лц		р8/г Па/I	
MW-3A	M8260 360L	SW8260A	08/17/06	m.p-Xvlene		, 10	D N	۲6/ L	
MW-3A	M8260_360L	SW8260A	08/17/06	Methylene chloride		2	0N N	ug/L	
MW-3A	M8260_360L	SW8260A	08/17/06	o-Xylene		5	ND	ug/L	
MW-3A	M8260_360L	SW8260A	08/17/06	Styrene		5	ND	hg/L	
MW-3A	M8260_360L	SW8260A	08/17/06	Tetrachloroethene		5	DN	µg/L	
MW-3A	M8260_360L	SW8260A	08/17/06	Toluene		5 L	DN	µg/L	
MW-3A	M8260_360L	SW8260A	08/17/06	trans-1,2.Dichloroethene		5	ND	hg/L	
MW-3A	M8260_360L	SW8260A	08/17/06	trans-1, 3. Dichloropropene		5	QN	ug/L	
MW-3A	M8260_360L	SW8260A	08/1//06	trans-1,4-Dichloro-2-butene		. 2	QN	hg/L	
MW-3A	M8260_360L	SW8260A	08/17/06	Trichloroethene		ы Го	QN	hg/L	
NW - 3A	Miszou_sour	SW8Z6UA	08/1//06	Irichlorofluoromethane		ç	QN	hg/L	

Cortland, NY 13045 BUCK ENVIRONMENTAL LABORATORIES, INC. PO Box 5150 Tel 607.753.3403 FAX 753.3415

13 of 21

CORTLAND COUNTY LANDFILL Sampled: 08/09/06 Samplers: EM, ES, KR, CR TOWSLEY SITE

.*		
<u>Units</u>	ug/L µg/L µg/L mg/L	日本、「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」
FinalVal	ND 140 ND 140 ND 115 115 115 115 115 115 115 115 115 11	ND ND ND ND ND ND ND ND ND ND ND ND ND N
POL	5 5 10 10 10 1 1 0.1 0.1 0.1 0.1	0.02 0.0004 0.05 0.05 0.05 0.005 0.005 0.01 0.01 0.
	Je, Filterable)	
Analyte	Vinyl acetate Vinyl cetate Vinyl chloride Alkalinity, Total (As CaCO3) Biochemical Oxygen Demand Cyanide Color Specific Conductance Depth EH Hardness (As CaCO3) Bromide Chloride Nitrogen, Nitrate (As N) Nitrogen, Nitrite Sulfate Nitrogen, Nitrite Sulfate Nitrogen, Ammonia (As N) Nitrogen, Nitrite Sulfate Nitrogen, Nitrite Sulfate Nitrogen, Ammonia (As N) Phenolics, Total Recoverable Temperature Nitrogen, Kjeldahl, Total Organic Carbon, Total Organic Carbon, Total Curbicity	Chromium, Hexavalent Mercury Aluminum Antimony Arsenic Barium Beryllium Beryllium Beryllium Calcium Calcium Calcium Calcium Copper Copper Iron Lead Magnesium
AnalDate	08/17/06 08/17/06 08/14/06 08/11/06 08/10/06 08/10/06 08/09/06 08/09/06 08/11/06 08/11/06 08/11/06 08/11/06 08/11/06 08/11/06 08/11/06 08/11/06 08/11/06 08/11/06 08/11/06 08/11/06 08/11/06 08/11/06 08/11/06 08/09/06 08/09/06 08/09/06 08/09/06 08/09/06 08/09/06 08/09/06 08/06 08/09/06 08/09/06 08/09/06 08/09/06 08/09/06 08/09/06 08/09/06 08/09/06 08/06 08/09/06 08/00 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00 08/00/06 00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 00/06 08/00/06 00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 08/00/06 00/06 08/00/06 000/06 08/00/06 08/00/06 08/00/06 00/00/06 00/00/06 00/00/06 00/00/06 00/00/06 00/00/06 00/00/06 00/00/06 00/06 00/00/06 00/00/06 00/00/06 00/00/06 00/00/06 00/00/06 00/00/06 00/00/06 00/00/06 00/00/06 00/00000000	08/10/06 09/01/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06
TestNo	SW8260A SW8260A E310.1 405.1 E335.2 E110.2 E120.1 depth 01498 E130.2 E300 E300 E300 E300 E300 E300 E300 E30	SW7196 SW7470 SW6010A SW6010A SW6010A SW6010A SW6010A SW6010A SW6010A SW6010A SW6010A SW6010A SW6010A SW6010A SW6010A SW6010A
TestCode	M8260_360L M8260_360L WALK, WBOD5 WCN WCN WCN WCOND WC	CR6L HGNPW ICP ICP ICP ICP ICP ICP ICP ICP ICP ICP
<u>ClientSampID</u>	MW 3A MW 3A MM 3A	MW -68 MW -68 WW -68 WW -68 WW -68 WW -68 WW -68 WW

Lab Log #0608066

ſ

1.11.11.11.11

an a su a su a su a

· · · · · · · · · · · ·

· · · · · ·

Qual

14 of 21

Lab Log #0608066	Qual		BUCK ENVIRONMENTAL LABORATORIES, INC. PO Box 5150 Cortland, NY 13045 Tel 607.753.3403 FAX 753.3415
Lab I	Units	したいしたした。 「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	MENTAL LAB
	FinalVal	0.297 0.00 0.014 0.014 0.014 0.00 0.014 0.00 0.00	UCK ENVIRON
	POL	0.00 0.00 0.01 22 22 22 22 22 22 22 22 22 22 22 22 22	
(** - -			
	Analyte	Manganese Nickel Potassium Selenium Selenium Silver Sodium Thallium Vanadium Zinc 1,1,1,2.Tetrachloroethane 1,1,2.Tetrachloroethane 1,1,2.Trichloroethane 1,1,2.Trichloroethane 1,1,2.Dichloroethane 1,2.Dichloroptopane 1,2.Dichloroptopane 1,2.Dichloroptopane 1,2.Dichloroptopane 1,2.Dichloroptopane 1,2.Dichloroptopane 1,2.Dichloroptopane 1,2.Dichloroptopane 1,2.Dichloroptopane 1,2.Dichloroptopane 1,2.Dichloroptopane 1,2.Dichloroptopane 1,2.Dichloroptopane 1,2.Dichloroptopane 1,2.Dichloroptopane 2.Hexanone 2.Hexanone 2.Hexanone 2.Hexanone 2.Hexanone 2.Hexanone 2.Horobenzene 1,3.Dichloroptopane 1,2.Dichloroptopane 1,2.Dichloroptopane 1,2.Dichloroptopane 1,2.Dichloroptopane 1,2.Dichloroptopane 1,2.Dichloroptopane 1,2.Dichloroptopane 1,2.Dichloroptopane 1,2.Dichloroptopane 1,2.Dichloroptopane 2.Hexanone 2.Hexanone 2.Hexanone 2.Hexanone 2.Hexanone 2.Horobenzene 2.Ho	15 of 21
	AnalDate	10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 10/23/06 08/17/06	
	TestNo	SW8010A SW6010A SW6010A SW6010A SW6010A SW6010A SW6010A SW6010A SW6010A SW8010A SW8260	٩
CORTLAND COUNTY LANDFILL TOWSLEY SITE Sampled: 08/09/06 Samplers: EM, ES, KR, CR	TestCode	ICP ICP ICP ICP ICP ICP ICP ICP ICP ICP	
CORTLAND COUNTY LAN TOWSLEY SITE Sampled: 08/09/06 Samplers: EM, ES, KR, CR	ClientSampID	MW -68 MW	

Lab Log #0608066	<u>Units</u> Qual	 µg/L 	BUCK ENVIRONMENTAL LABORATORIES, INC. PO Box 5150 Cortland, NY 13045 Tel 607.753.3403 FAX 753.3415
	FinalVal	ND ND ND ND ND ND ND ND ND ND ND ND ND N	JUCK ENVIRONIN T
	POL	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ш.
	<u>Analyte</u>	Dibromochloromethane Dibromoethane Ethylbenzene Iodomethane m.p. Xylene m.p. Xylene m.p. Xylene m.p. Xylene m.p. Xylene Methylene chloride o. Xylene Styrene Styrene Tetrachloroethene trans. 1, 2. Dichloropropene trans. 1, 2. Dichloropropene trans. 1, 3. Dichloropropene trans. 1, 3. Dichloropropene trans. 1, 4. Dichloro. 2. butene trans. 1, 3. Dichloropropene trans. 1, 4. Dichloropropene trans. 1, 4. Dichloropropene trans. 1, 3. Dichloropropene trans. 1, 4. Dichloropropene tra	16 of 21
	AnalDate	08/17/06 08/11/06 08/100 08/1000 08/100 08/100 08/100 00 08/100 00 08/100 00 08/100 00 08/100 00 08/100 00 08/100 00 00 08/100 00 08/100 00 08/100 00 00 00 08/100 00 08/100 00 00 00 00 00 00 00 00 00 00 00 00	
	TestNo	SW8260A SW8260	
CORTLAND COUNTY LANDFILL TOWSLEY SITE Sampled: 08/09/06 Samplers: EM, ES, KR, CR	TestCode	M8260_360L M8260_360L	
CORTLAND COUNTY LANI TOWSLEY SITE Sampled: 08/09/06 Samplers: EM, ES, KR, CR	<u>ClientSampID</u>	MW-68 MWV	

. بر ا

0.015 0.01 5	sthane ee sthane	/anadium Zinc 1,1,1,2.Tetrachloroeth 1,1,1,2.Tetrachloroethane 1,1,2.Tetrachloroethane 1,1.Dichloroethane 1,1.Dichloroethane	10/23/06 Vanadium 10/23/06 Zinc 08/17/06 1,1,1,2-Tetrachloroethane
	טע מרמי מרמי מרמי מר מי מרמי מרמי מרמי מרמ	ne ppropane	 7.1.1.2.2 Tetrachloroethane 1.1.2.2 Tetrachloroethane 1.1.2.2 Tetrachloroethane 1.1.2.1 Trichloroethane 1.1.2.1 Trichloroptopane 1.2.2 Dibromo - 3chloropropane 1.2.2 Dibromoethane 1.2 Dichlorobenzene 1.2 Dichloroptopane 1.2 Dichlorobenzene 1.4 Dichlorobenzene 1.4 Dichlorobenzene
	08/17 08/17 08/17 08/17 08/17 08/17 08/17 08/17 08/17 08/17	SW8260A SW8260A SW8260A SW8260A SW8260A SW8260A SW8260A SW8260A SW8260A	
08/17/06 08/17/06 08/17/06 08/17/06 08/17/06 08/17/06 08/17/06 08/17/06 08/17/06 08/17/06 08/17/06 08/17/06 08/17/06	SW8260A 08/17 SW8260A 08/17		M8260_360L M8260_360L M8260_360L M8260_360L M8260_360L M8260_360L M8260_360L M8260_360L M8260_360L M8260_360L M8260_360L

ет 1

Ŀ

CORTLAND COUNTY LANDFILL TOWSLEY SITE

CORTLAND COUNTY LANDFILL TOWSLEY SITE Sampled: 08/09/06 Samplers: EM, ES, KR, CR

Lab Log #0608066

1

į

1070 1

Qual

<u>Units</u>	наст наст	mg/L
FinalVal	ND ND ND ND ND ND ND ND ND ND ND ND ND N	531
POL	- 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1
Analyte	Acetone Acrylonitrile Benzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromoform Bromonethane Carbon tetrachloride Carbon tetrachloride Carbon tetrachloride Chlorobenzene Color Specific Conductance Depth EH	Hardness (As CaCO3)
AnalDate	08/17/06 08/17/06	10/24/06
TestNo	SW8260A SW8260	E130.2
<u>TestCode</u>	M8260_360L W8260_360L W800L W800L W800L W800L W800L W800L W800L W800L W800L W800L W800L W800L W800L W800L W800	WHARD_CALC
ClientSampID	MW-7A MM-7A MM-7A	MW-7A

BUCK ENVIRONMENTAL LABORATORIES, INC. PO Box 5150 Cortland, NY 13045 Tel 607.753.3403 FAX 753.3415

Lab Log #0608066	<u>Units</u> <u>Qual</u>	mg/L	mg/L · ·	mg/L	mg/L	mg/L nH units	mg/L	. mg/L	°.		NTU	hg/L		ug/L	hg/L	hg/L	µg/L	нв/ с цв/ с	ug/L	hg/L	µg/L	hg/L	нб/с ШД/С	hg/L	µg/L	hg/L	ug/L	ug/L	hg/L	pg/L	µg/L		, µg/L	5	BUCK ENVIRUNMENTAL LABURATORIES, INC. PD Box 5150	Cortland, NY 13045	lei 601.153.3403 FAX 153.3415
	FinalVal	0.822	CT ON	ND	19.7	NU 6.34	DND	963	17.4	c/.0	13.6	QN		D D N	QN	QN			QN	DN	QN		QN	QN	O I		D D D	ND	ND	ON 2			ND		CK ENVIKONM	,	-
	POL	0.1	0.1	1	1	0.02	0.005	10	0.1	×.0	0.05	<u>ש הי</u>	ייר	סו ה י	5	ى م	с и	ט ע	о LO	Û	ۍ ۱	ז נ	25	25	25	с <u>7</u>	מ נ	2	Q.	ı م	ഹഗ	2 2 2	Ŷ	Ĭ	BU		ŵ
	Analyte	Bromide Chloride		Nitrogen,	Sulfate	Nitrogen, Ammonia (AS N)		•	Temperature	Nitrogen, Njelgani, Total Oraznio Oschon, Total	organic carbon, rotar Turbidity	1,1,1,2.Tetrachloroethane					1,2,3+1richioropropane 1-2.Dihromo.3.chlorooropane				- -	1,3-Dichlorobenzene 1.4. Dichlorobenzene			•	Acetone		_	_		Bromomethane Carbon disulfide		-			10 06 01	T7 10 ET
	AnalDate	08/11/06	08/11/06	08/11/06	08/11/06	08/09/06	08/28/06	08/15/06	08/09/06	00/17/00	08/06/80	08/17/06	08/17/00	08/17/06	08/17/06	08/17/06	08/1//06	08/17/06	08/17/06	08/17/06	08/17/06	08/1//06 08/17/06	08/17/06	08/17/06	08/17/06	08/17/06 08/17/06	08/17/06	08/17/06	08/17/06	08/17/06	08/1//06 08/17/06	08/17/06	08/17/06				
Port a	TestNo	E300 E300	E300	E300	E300	E150.1	E420.1	E160.1	E170.1	E301.3 E4161	E180.1	SW8260A	SMR260A	SW8260A	SW8260A	SW8260A	SW8260A SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A	SW8260A SW8260A	SW8260A	SW8260A				Ű
CORTLAND COUNTY LANDFILL TOWSLEY SITE Sampled: 08/09/06 Samplers: EM, ES, KR, CR	TestCode	WIC		WIC	WIC	WPH FIFLD	WPHENOL	WTDS	WTEMP.	WI NN	WTURB_FIELD	M8260_360L M8260_360L	MR260 3601	M8260 360L	M8260_360L	M8260_360L	M8260_360L M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260 360L	M8260_360L	M8260_360L	M8260_360L M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L	M8260_360L M8260_360L	M8260 360L	M8260_360L				
CORTLAND COUNTY LANI TOWSLEY SITE Sampled: 08/09/06 Samplers: EM, ES, KR, CR	ClientSampID	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	NIV-7A	MW-7A	TRIP BLANK TRIP BLANK		TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK TRIP RLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK TRIP RLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK TRIP BLANK	TRIP BLANK	TRIP BLANK				

A second s

FinalVal

Analyte

cis-1,3-Dichloropropene Dibromochloromethane

Dibromomethane

Ethylbenzene

Iodomethane

SW8260A SW8260A SW8260A SW8260A

SW8260A

M8260_360L M8260_360L

M8260 360L M8260_360L

M8260_360L

m,p-Xylene

cis-1,2-Dichloroethene

Chloromethane

Chloroethane

08/17/06 08/17/06 08/17/06 08/17/06 08/17/06 08/17/06 38/17/06 08/17/06 08/17/06 08/17/06 08/17/06 08/17/06 08/17/06 08/17/06 08/17/06 08/17/06 08/17/06 08/17/06 08/17/06 08/17/06 08/17/06 08/17/06

SW8260A

SW8260A SW8260A

SW8260A

M8260_360L

M8260_360L M8260_360L M8260 3601 M8260_3601

M8260_3601

TRIP BLANK **FRIP BLANK FRIP BLANK** FRIP BLANK **FRIP BLANK RIP BLANK FRIP BLANK FRIP BLANK FRIP BLANK -RIP BLANK** RIP BLANK **FRIP BLANK FRIP BLANK FRIP BLANK** RIP BLANK RIP BLANK **FRIP BLANK "RIP BLANK** RIP BLANK

SW8260A SW8260A

SW8260A

AnalDate

TestNo

TestCode

ClientSampID

Chloraform

Qual

Units

Q â

J/₿/ µg/L µg/Ļ µg/L µg/L µg/L µg/L µg/L

µg/L

µg/L µg/L ug/L

µg/L

hg/L

trans-1,4-Dichloro-2-butene

Frichlorofluoromethane

Vinyl chloride

Vinyl acetate

Frichloroethene

SW8260A

M8260_3601

SW8260A SW8260A SW8260A

M8260_360L M8260_360L M8260_360L

FRIP BLANK FRIP BLANK

FRIP BLANK

SW8260A SW8260A

trans-1, 3-Dichloropropene :rans-1,2-Dichloroethene

µg/L µg/L

HB/L HB/L HB/L

POL ß LО ດດວດເດດ

Methylene chloride

o-Xylene

Styrene

Tetrachloroethene

SW8260A SW8260A SW8260A

M8260_360L M8260_360L M8260_360L M8260_360L M8260_360L M8260_360L M8260_360L M8260_360L

SW8260A

Toluene

Lab Log #0608066

PO Box 5150 BUCK ENVIRONMENTAL LABORATORIES, INC. Cortland, NY 13045 Tel 607.753.3403 FAX 753.3415

Lab Log #06080	lits Oual
	ŋ
	FinalVal
	_
	PO
	vte
	Anal
	Date
	AnalDat
	TestNo
NDFILL	<u>ode</u>
NTY LAI /06 S, KR, C	TestCode
CORTLAND COUNTY LANDFILL TOWSLEY SITE Sampled: 08/09/06 Samplers: EM, ES, KR, CR	ClientSampID
CORT TOW: Samp Samp	Clie

. L. :

Department of Health ELAP Program. Buck Environmental Laboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any action or the consequence of any action taken in connection with this This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State report.

Qual

Units

FinalVal

<u>PQL</u>

Analyte

Qualifiers:

ND ... > Not detected at the PQL indicated

PQL --->Laboratory Practical Limit of Quantitation

J ...>Result is estimated, reported value is less than PQL

B ...> Result is estimated, analyte detected in blank S ...> Result is estimated, surrogate or spike recovery outside of acceptance limits

R ...> Results is estimated, RPD outside of acceptance limits E ...> Result is estimated, reported value exceeds upper quantitation limit

Laboratory Director John H. Buck, P.E.

Buck Environmental Labs, Inc.	Labs, Inc.			-					Date: 25-Oct-06	90-10Q	
CLIENT: CORTLAN Work Order: 0608066	CORTLAND CO SOIL & WATER 0608066					ANALY	TICAL	QC SUI	ANALYTICAL QC SUMMARY REPORT	REPOR	E-r
	~						Batcl	BatchID: R	R20505		
Sample ID: 0608065-06BMS Client ID: ZZZZZ	SampType: MS Batch ID: R20505	TestCode: WALK TestNo: E310.1	stCode: WALK TestNo: E310.1	Units: mg/L CaCO3		Prep Date: Analysis Date: 08/14/06	08/14/06		Run ID: WET CHEM-123_060814 SeqNo: 384783	CHEM-123_06	50814
Analyte Alkalinitv Tntal (As CaCO3)	Result	2 DD	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPI	RPD Ref Val	%RPD F	RPDLimit QI	Qual
Sample ID: 0608066-02BMS	SampType: MS	TestCode:	e: WALK	Units: mg/L CaCO3		Prep Date:	0014100		Run ID: WET CHEM-123_060814	CHEM-123_06	60814
Analyte	Result	PQL	dL SPK value	SPK Ref Val	%REC	Analysis Date: LowLimit Hig	uarra/un ght.imit	e RPD Ref Val	SeqNo: 3848UZ %RPD RP	DLimit	Qual
Alkatinity, Total (As CaCO3)	189	2.00	100	91	98	82.7	115	0	0		
Sample ID: 0608065-06BMSD Client ID: ZZZZ	SampType: MSD Batch ID: R20505	TestCode	e: WALK o: E310.1	Units: mg/L CaCO3		Prep Date: Analysis Date: 08/14/06	08/14/06		Run ID: WET CHEM-123_060814 SeqNo: 384784	CHEM-123_06 34	60814
Analyte	Result	Par	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPI	RPD Ref Val	%RPD F	RPDLimit Q	Qual
Alkalinity, Total (As CaCO3)	917	2.00	100	813	104	82.7	115	915	0.218	20	
Sample ID: 0608066-02BMSD Client ID: MW-1B	SampType: MSD Batch ID: R20505	TestCode	le: WALK lo: E310.1	Units: mg/L CaCO3		Prep Date: Analysis Date:	08/14/06		Run ID: WET CHEM-123_060814 SeqNo: 384803	CHEM-123_06 13	60814
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RP	RPD Ref Val	%RPD F	RPDLimit Q	Qual
Alkalinity, Total (As CaCO3)	190	2.00	100	91	66	82.7	115	189	0.528	20	
v							t.				

8

:

....

ma share

S - Spike Recovery outside accepted recovery limits
 R - RPD outside accepted recovery limits

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

Page 1 of 1

B - Analyte detected in the associated Method Blank

Buck Environmental Labs, Inc.	al Labs, Inc.	•					Date: 25-Oct-06
: rder:	CORTLAND CO SOIL & WATER 0608066				ANALYT	ICAL QC SU	ANALYTICAL QC SUMMARY REPORT
rioject:							C0+07
11	SampType: MSD	TestCode: WBOD5	Units: mg/L		11		Run ID: WET CHEM-124_060810
Client ID: ZZZZ Analyte	Batch ID: R20483 Result	TestNo: 405.1 PQL SPK value	SPK Ref Val	A %REC	Anatysis Date: 0 LowLimit High	e: 08/10/06 HighLimit RPD Ref Val	SeqNo: 384257 %RPD RPDLimit Quai
Biochemical Oxygen Demand	17.51		8.61	89		192 0	• 0 •
Sample ID: 0608065-06DMSD) SampType: MSD	TestCode: WBOD5	Units: mg/L		Prep Date:		Run ID: WET CHEM-124_060810
Client ID: ZZZZ	Batch ID: R20483	TestNo: 405.1		4	Analysis Date: 0	08/10/06	SeqNo: 384258
Analyte	Result	PQL. SPK value	SPK Ref Val	%REC	LowLimit High	HighLimit RPD Ref Val	%RPD RPDLimit Qual
Biochemical Oxygen Demand	17.88	2.0 10	8.61	92.7	49.4	192 0	0
Sample ID: 0608066-02DMS Client ID: MW-1B	SampType: MSD Batch ID: R20483	TestCode: WBOD5 TestNo: 405.1	Units: mg/L	<	Prep Date: Analvsis Date: 0	08/10/06	Run ID: WET CHEM-124_060810 SecNo: 384272
	Result	PQL SPK value	SPK Ref Val	%REC	<u>.</u> a	Limit RPD Ref Val	%RPD RPDLimit Qual
Biochemical Oxygen Demand	12.65	2.0 10	0	126	49.4		
Sample ID: 0608066-02DMSD) SampTvpe: MSD	TestCode: WBOD5	Units: ma/L		Prep Date:		Run ID: WET CHEM-124 060810
Client ID: MW-1B		TestNo: 405.1	b	<		08/10/06	SeqNo: 384273
Anaiyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit High	HighLimit RPD Ref Val	%RPD RPDLimit Qual
Biochemical Oxygen Demand	13.85	2.0 10	0	139	49.4	192 0	O
Qualifiers: ND - Not D	ND - Not Detected at the Reporting Limit	S - Spi	S - Spike Recovery outside accepted recovery limits	ccepted recov	rery limits	B - Analyte detec	B - Analyte detected in the associated Method Blank

:

• • • • • • •

terre active the

. . . .

Page I of I

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

Buck Environmental Labs, Inc.	onmental]	Labs, Inc.								Date: 25-Oct-06	0c1-06	
CLIENT: Work Order	CORTLAN 0608066	CORTLAND CO SOIL & WATER D608066					ANAL	YTICA	r qc su	ANALYTICAL QC SUMMARY REPORT	REPO	RT
Project:	TOWSLEY							Ä	BatchID: H	R20466		
Sample ID: 0608066-02BMS	066-02BMS	SampType: MS	TestCode: WIC	le: WIC	Units: mg/L		Prep Date:	ch.		Run ID: LAC	Run ID: LACHAT 8000_060811A	60811A
Client ID: MW-1B		Batch ID: R20466	Testh	TestNo: E300			Analysis Date:	e: 08/11/06	10	SeqNo: 383944	944	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit		RPD Ref Val	0d8%	RPDLimit	Qual
Bromide		19.43	0.100	20	0	97.2	70	114	0	0		
Chloride		10.94	0.100	80	3.468	93.4	41	133	0	0		
Nitrogen, Nitrate (As N)	(As N)	3.838	0.100	4 (0 (96 96	202	116	0	0		
Nutrogen, Nutrue Sulfate		1.934	0.100	20	U 5.333	93.8	73.6 67.6	121 121	0 0	00		
Sample ID: 0608066-02BMSD	066-02BMSD	SampType: MSD	TestCot	TestCode: WIC	Units: mg/L		Prep Date:	e:		Run ID: LAC	LACHAT 8000_060811A	60811A
Client ID: MW-1B	B	Batch ID: R20466	Testh	TestNo: E300			Analysis Date:	e: 08/11/06	9	SeqNo: 383945	945	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromide		19.47	0.100	20	0	97.4	20	114	19.43	0.200	5.66	
Chloride		10.88	0.100	8	3.468	92.7	41	133	10.94	0.513	7.89	
Nitrogen, Nitrate (As N)	(As N)	3.84	0.100	4	0	96	70	116	3.838	0.0521	4.37	
Nitrogen, Nitrite		1.948	0.100	2	0	97.4	73.6	110	1.934	0.721	5.05	
Sulfate		24.01	1.00	20	5.333	93.4	67.6	121	24.1	0.378	8.05	
										·		
Qualifiers:	ND - Not Delet	ND - Not Detected at the Reporting Limit		S - Spi	S - Spike Recovery outside accepted recovery limits	accepted rect	overy limits	-	3 - Analyte detec	B - Analyte detected in the associated Method Blank	tted Method B	ank
	J - Analyte dett	J - Analyte detected below quantitation limits		R - RP	R RPD outside accepted recovery limits	covery limit.	S				Page 1 of 1	of I

an an Arth Turbert B

an hanna

ta a ta ta

adar san san ar

1.

•

Buck Environmental Labs, Inc.	Labs, Inc.						Date: 25-Oct-06
CLIENT: CORTLAN Work Order: 0608066	CORTLAND CO SOIL & WATER 0608066				ANALY	TICAL QC SU	ANALYTICAL QC SUMMARY REPORT
	Y					BatchID:	R20624
Sample ID: 0608066-02CMS Client ID: MW-1B	SampType: MS Batch ID: R20624	TestCode: WCOD TestNo: E410.1	0 Units: mg/L		Prep Date: Analysis Date: 08/17/06	08/17/06	Run ID: WET CHEM-123_060817 SeqNo: 387163
Analyte	Result	PQL SPK value	ltue SPK Ref Val	%REC	LowLimit F	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chemical Oxygen Demand	55.8	10.0	50 4.63	102	79.5	131 0	0
Sample ID: 0608066-02CMSD Client ID: MW-1B	SampType: MSD Batch ID: R20624	TestCode: WCOD TestNo: E410.1	0 Units: mg/L	1	Prep Date: Analysis Date: 08/17/06	08/17/06	Run ID: WET CHEM-123_060817 SeqNo: 387164
Analyle	Result	PQL SPK value	Ilue SPK Ref Val	%REC	LowLimit F	HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chemical Oxygen Demand	57.38	10.0	50 4.63	106	79.5	131 55.8	2.79 16
ć	,			**			
		-					

Page 1 of 1

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

L

			1				7			
		E	60810	Qual	16081	Qual		•		
<u>, </u>		OR	-123_0		-123_(20			
•	ct-06	REI	CHEM.	RPDLimit	CHEM	RPDLimit				
:	25-0	RY	WET (38405		WET (38405		10			
:	Date: 25-Oct-06	MA 472	Run ID: WET CHEM-123_060810 SeqNo: 384054	%RPD 0	Run ID: WET CHEM-123_060810 SeqNo: 384055	%RPD	0.810			
		UMM/4 R20472		o ai	ά Υ	-	6			
, ,		E S		RPD Ref Val		RPD Ref Val	0.246			
		AL QC 3 BatchID:	9	RPD	ω					
•		ICA B	8/10/0	115	08/10/06	ıLimit	115			
		TY	ate 0	Higt		High		-		
		ANALYTICAL QC SUMMARY REPORT BatchID: R20472	Prep Date: Analysis Date: 08/10/06	LowLimit HighLimit 85 115	Prep Date: Analysis Date:	LowLimit HighLimit	85			
		Y			Ana		2			
n Bartana Bartana				%REC 98.4		%REC	99.2			
			ng/L	al 0	, ng/L	_	0			
الاردى الاردى ئەربىيەر مەربىيە مەربىيەر مەربىيە			Units: mg/L	SPK Ref Val 0	Units: mg/L	SPK Ref Val				
				SPK						
			6L 7196	SPK value 0.25	6L 77196	SPK value	0.25			
			stCode: CR6L TestNo: SW7196	SPK	stCode: CR6L TestNo: SW7196	SPK				
			TestCode: CR6L TestNo: SW71	PQL 0.0200	TestCode: CR6L TestNo: SW71	PQL	0.0200			
		×		0.0	F		0.0			
		CORTLAND CO SOIL & WATER 0608066 TOWSLEY	472	Result 0.246	D 1472	Result	0.248			
	JC.	IL & J	ie: MS D: R20	Re 0.	e: MS D: R20	Re	0			
	os, Iı	O SO	SampType: MS Batch ID: R20472		SampType: MSD Batch ID: R20472					
	l Lal	ND CN	S. –		, vi					
	lenta	CORTLAN 0608066 TOWSLEY	BMS		BMSD					
	Buck Environmental Labs, Inc.	10 10	Sample ID: 0608066-02BMS Client ID: MW-1B	valent	Sample ID: 0608066-02BMSD Client ID: MW-1B		avalent			
	invii	rder:): 060806 MW-1B	Analyte Chromium, Hexavalent	D: 0608066 MW-1B		Chromium, Hexavalent			
	ıck I	CLAENT: Work Order: Project:	Sample ID Client ID:	Analyte Chromium	Sample ID: Client ID:	Analyte	ıromiur			
÷	Б	Pré CI	Cli	с А	Sa Cli	An	ð			

1.2

Page 1 of 1

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

		1		i			
- 		ORT	Run ID: LACHAT 8000_060821E SeqNo: 385507 %RPD RPDLimit Qual		Run ID: LACHAT 8000_060821E SeqNo: 385508	t Qual	
	Date: 25-Oct-06	Y REP	ACHAT 8000 6507 RPDLimit		CHAT 800 5508	RPDLimit	· · ·
	Date: 2.	UMMAR 7265	Run ID: LACHA SeqNo: 385507 %RPD RF	0	Run ID: LACHA SeqNo: 385508	%RPD	
		AL QC SUI BatchID: 72	D Ref Val	0		D Ref Val	0.0028
		[] ICAL Bate	08/17/06 08/21/06 ghLimit RPI	125	08/17/06 08/21/06	HighLimit RPD Ref Val	125
		ANALYTICAL QC SUMMARY REPORT BatchID: 7265	High	70.1	Prep Date: 08/17/06 Analysis Date: 08/21/06	LowLimit Hig	
		Y		92.8	Ana	%REC L	
and a second and a s			Units: mg/l (E335.2) SPK Ref Val	0	Units: mg/l (E335.2)	SPK Ref Val	O
			2 alue	0.1	sstCode: WCN TestNo: E335.2	SPK value	0.1
			TestCode: WCN TestNo: E335, PQL SPK ve	0.0100	TestCode: WCN TestNo: E335.	PQL	0.0100
	abs, Inc.	CORTLAND CO SOIL & WATER 0608066 TOWSLEY	SampType: MS Batch ID: 7265 Result	0.0928	SampType: MSD Batch ID: 7265	Result	0.09124
• • • • • • • • • • • • • • • • • • •	Buck Environmental Labs, Inc.		Sample ID: 0608066-02EMS Client ID: MW-1B Analyte		Sample ID: 0608066-02EMSD Client ID: MW-1B		
	Buck En	CLJENT: Work Order: Project:	Sample ID: 0 Client ID: A Analyte	Cyanide	Sample ID: 0 Client ID: N	Analyte	Cyanide

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

B - Analyte detected in the associated Method Blank

Page I of I

CLIENT: CORTLAND CO SOIL & WATER Work Order: 0608066 Project: TOWSLEY . Sample ID: 0608066-02AMS SampType: MS Client ID: MW-1B Batch ID: R20635											
TOWSLEY - D: 0608066-02AMS S: MW-1B	LU SUIL & WALE	R				ANAL	YTICA	ANALYTICAL QC SUMMARY REPORT	MMARY	/ REPO	RT
ŭ							B	BatchID: R	R20635		
MW-1B	SampType: MS	TestCode: HGNPW	HGNPW	Units: mg/L		Prep Date:	0		Run ID: PE2	Run ID: PE2380_060901A	×
	Batch ID: R20635	TestNo	TestNo: SW7470		A	Analysís Date:	e: 09/01/06		SeqNo: 387320	320	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.00184	0.000400	0,002	0	92	75	125	0	0		
Sample ID: 0608066-02AMSD Si Client ID: MW-1B	SampType: MSD Batch ID: R20635	TestCode: HGNPW TestNo: SW7470	sstCode: HGNPW TestNo: SW7470	Units: mg/L	A	Prep Date: nalysis Date:	Prep Date: Analysis Date: 09/01/06		Run ID: PE2380 SeqNo: 387321	Run ID: PE2380_060901A SeqNo: 387321	4
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit	Quai
Mercury	0.00192	0.000400	0.002	D	96	75	125	0.00184	4.26	20	
									,	•	
ć											
					-						

Page I of I

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

nan na bhailtean

CLIENT: CORTLAN Work Order: 0608066	CORTLAND CO SOIL & WATER	R				ANAL	YTICA	L QC SU	ANALYTICAL QC SUMMARY REPORT	ORT
	~						£	BatchID: R	R20536	
Sample ID: 0607175-02CMS Client ID: ZZZZZ	SampType: MS Batch ID: R20536	TestCod TestN	le: WNH3 lo: E350.1	Units: mg/L		Prep Date: Analysis Date:	e: 08/21/06	6	Run ID: LACHAT 8000_060821C SeqNo: 385407	0_060821C
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	HighLimit RPD Ref Val	%RPD RPDLimit	it Qual
Nitrogen, Ammonia (As N)	1.046	0.0200	1	0.01008	104	, 65	105	0	0	
Sample ID: 0608066-02CMS Client ID: MW-1B	SampType: MS Batch ID: R20536	TestCod TestN	le: WNH3 lo: E350.1	Units: mg/L	1	Prep Date: Analysis Date:	e: e: 08/21/06	6	Run ID: LACHAT 8000_060821C SeqNo: 385444	0_060821C
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	HighLimit RPD Ref Val	%RPD RPDLimit	it Qual
Nitrogen, Ammonia (As N)	0.8796	0.0200	-	0.01269	86.7	65	105	0	0	
Sample ID: 0607175-02CMSD Client ID: ZZZZ	SampType: MSD Batch ID: R20536	TestCod TestN	le: WNH3 lo: E350.1	Units: mg/L	4	Prep Date: Analysis Date:	e: e: 08/21/06	3	Run ID: LACHAT 8000_060821C SeqNo: 385408	0_0608210
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	tt Qual
Nitrogen, Ammonia (As N)	1.023	0.0200	-	0.01008	101	65	105	1.046	2.19 13.2	2
Sample ID: 0608066-02CMSD Client ID: MW-1B	SampType: MSD Batch ID: R20536	TestCod TestN	TestCode: WNH3 TestNo: E350.1	Units: mg/L	1	Prep Date: Analysis Date: 08/21/06	e: e: 08/21/06	6	Run ID: LACHAT 8000_060821C SeqNo: 385445	0_0608210
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	it Qual
Nitrogen, Ammonia (As N)	0.9433	0.0200	-	0.01269	93.1	65	105	0.8796	6.99 13.2	2

111

R - RPD outside accepted recovery limits

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

ND - Not Detected at the Reporting Limit

Qualifiers:

B - Analyte detected in the associated Method Blank

Page 1 of 1

	Inc.
,	Jabs,
,	
	uvironmenta
	IVITO
	ck Er

CORTLAND CO SOIL & WATER Work Order: **CLIENT:** Buc

0608066

TOWSLEY

Project:

ANALYTICAL QC SUMMARY REPORT

Date: 25-Oct-06

BatchID: 7255

Sample ID: 0608065-06CMS	SampType: MS	TestCod	TestCode: WTKN	Units: mg/L		Prep Date:	Prep Date: 08/14/06		Run ID: LACHAT 8000_060821A	000_060821A
Client ID: ZZZZZ	Batch ID: 7255	TestN	TestNo: E351.3	(E351.3)		Analysis Date: 08/21/06	08/21/06		SeqNo: 385157	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RP	RPD Ref Val	%RPD RPDLimit	imit Qual
Nitrogen, Kjeldahl, Tofal	3.849	0.200	2.5	1.435	96.6	66.2	118	0	0	
Sample ID: 0608066-02CMS	SampType: MS	TestCod	TestCode: WTKN	Units: mg/L		Prep Date:	Prep Date: 08/14/06		Run ID: LACHAT 8000_060821A	000_060821A
Client ID: MW-1B	Batch ID: 7255	TestN	TestNo: E351.3	(E351.3)		Analysis Date: 08/21/06	08/21/06		SeqNo: 385181	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RP	RPD Ref Vał	%RPD RPDLimit	imit Qual
Nitrogen, Kjeldahl, Total	2.61	0.200	2.5	0.4968	84.5	66.2	118	ο	0	
Sample ID: 0608065-06CMSD	SampType: MSD	TestCad	TestCode; WTKN	Units: mg/L		Prep Date:	08/14/06		Run ID: LACHAT 8000_060821A	000_060821A
Client ID: ZZZZ	Batch ID: 7255	TestN	TestNo: E351.3	(E351.3)		Analysis Date:	08/21/06		SeqNo: 385158	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	D Ref Val	%RPD RPDLimit	imit Qual
Nitrogen, Kjeldahl, Total	4.358	0.200	2.5	1.435	117	66.2	118	3.849	12.4	21.4
Sample ID: 0608066-02CMSD	SampType: MSD	TestCod	TestCode: WTKN	Units: mg/L		Prep Date:	08/14/06		Run ID: LACHAT 8000_060821A	000_060821A
Client ID: MW-1B	Batch ID: 7255	TestN	TestNo: E351.3	(E351.3)		Analysis Date:	08/21/06		SeqNo: 385182	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit		RPD Ref Val	%RPD RPDLimit	imit Qual
Nitrogen, Kjeldahl, Total	2.717	0.200	2.5	0.4968	88.8	66.2	118	2.61	4.05	21.4

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits Qualifiers:

Page I of I

B - Analyte detected in the associated Method Blank

	Buck Environmental Labs, Inc.							Date: 25-Oct-06	- <i>Oct-06</i>	
CLIENT: CORTLAN Work Order: 0608066 Project: TOWSLEY	CORTLAND CO SOIL & WATER 0608066 TOWSLEY				ANAL	YTICA B	ANALYTICAL QC SUMMARY REPORT BatchID: R20502	UMMAR) R20502	Y REPO)RT
Sample ID: 0608066-02CMS Client ID: MW-1B	SampType: MS Batch ID: R20502	TestCode: WTOC TestNo: E415.1	Units: mg/L	A	Prep Date: Analysis Date:	e: 08/16/06		Run ID: TOC_060816A SeqNo: 384736	C_060816A 4736	
Analyte Organic Carbon, Total	Result 16.62	PQL SPK value 2.00 20	lue SPK Ref Val 20 0	%REC 83.1	LowLimit 75	HighLimit 125	RPD Ref Val	%RPD 0	RPDLimit	Qual
Sample ID: 0608066-02CMSD Client ID: MW-1B	SampType: MSD Batch ID: R20502	TestCode: WTOC TestNo: E415.1	Units: mg/L		Prep Date: Anatysis Date:	e: 08/16/06		Run ID: TOC_0 SeqNo: 384737	TOC_060816A 384737	
Allalyte Organic Carbon. Total	17.61			2011 88		підпыли 125	75 125 126 16.0	5.78		uual
				-						
Qualifiers: ND - Not Detected at the Reporting Limit	ND - Not Detected at the Reporting Limit	S - S	S - Spike Recovery outside accepted recovery limits	scepted recor	very limits	B	B - Analyte detected in the associated Method Blank	ed in the associa	ated Method B	31ank
] - Analute de										

in the

Buck Environmental Labs, Inc.	al Labs, Inc.								Date: 25-Oct-06	Oct-06	
CLIENT: CORTLAN Work Order: 0608066 Project: TOWSLEY	CORTLAND CO SOIL & WATER 0608066 TOWSLEY					ANAL	ANALYTICAL QC SUMMARY REPORT BatchID: 7285	AL QC SUMN BatchID: 7285	MMARY 285	REPO	RT
Sample ID: 0608066-02CMS Client ID: MW-1B	SampType: MS Batch ID: 7285	TestCod TestN	TestCode: WPHENOL TestNo: E420.1	. Units: mg/L ()		Prep Date: Analysis Date:	Prep Date: 08/25/06 Ilysis Date: 08/28/06		Run ID: LACHAT 8000_060828A SeqNo: 386248	HAT 8000_0 248	60828A
Analyte Dhenolice Total Becoverate	Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	D Ref Val	%RPD	%RPD RPDLimit	Qual
		00000.0	0.1	n	09.0	2.5C	118	o	0		
Sample ID: 0608066-02CMSD Client ID: MW-1B	D SampType: MSD Batch ID: 7285	TestCod TestN	TestCode: WPHENOL TestNo: E420.1	. Units: mg/L ()		Prep Date Analysis Date	Prep Date: 08/25/06 Analysis Date: 08/28/06		Run ID: LACHAT 8000_060828A SeqNo: 386249	:HAT 8000_0 249	60828A
Analyte	Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	D Ref Val	%RPD	RPDLimit	Qual
Phenolics, Total Recoverable	0.07519	0.00500	0.1	0	75.2	53.2	118	0.0698	7.43	19.5	

Street Street

provinsi ^{tang}ing ya Kanan yanan m

e and a straight

· · · · · ·

S - Spike Recovery outside accepted recovery limits
 R - RPD outside accepted recovery limits

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

Page 1 of 1

B - Analyte detected in the associated Method Blank

1101							ANAL	X TICAL	r Ac sn	ANALY HCAL QC SUMMARY REPORT	Y REPU	KT.
Project:		,						\mathbf{Ba}	BatchID: 7	7251		
Sample ID: 0608066-02AMS	8066-02AMS	SampType: MS	TestCo	TestCode: ICP	Units: mg/L		Prep Date:	ie: 08/14/06		Run ID: PE	Run ID: PE3000_061023A	¥.
Client ID: MW-1B	/-1B	Batch ID: 7251	Test	TestNo: SW6010A	(SW3010A)		Analysis Date:	ie: 10/23/06		SeqNo: 394340	1340	
Analyte		Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPOLimit	Qual
Aluminum		2.266	0.0400	2	1.088	58.9	75	125	0	0		s
Antimony		0.3907	0.0500	0.5	0	78.1	75	125	0	0		
Arsenic		1.903	0.0250	7	0	95.1	75	125	0	0		
Barium		2.16	0.0450	ы	0.1942	98.3	75	125	0	0		
Beryllium		0.04432	0.00300	0.05	0	88.6	75	125	0	0		
Boron		0.9349	0.0500	-	0.04408	89.1	75	125	0	0		
Cadmium		0.04556	0.00500	0.05	0	91.1	75	125	0	0		
Calcium		44.15	0.210	20	25.79	91.8	75	125	0	0		
Chromium		0.1907	0.00500	0.2	0	95.4	75	125	0	0		
Cobalt		0.4607	0.0150	0.5	0	92.1	75	125	0	0		
Copper		0.2383	0.0300	0.25	0.0174	88.4	75	125	0	0		
Iron		5.373	0.0350	-	1.836	354	75	125	0	0		S
Lead		0.4648	0.00500	0.5	0.003	92.4	75	125	0	0		
Magnesium		24.81	0.320	20	6.046	93.8	75	125	0	0		
Manganese		0.9465	0.00500	0.5	0.2508	139	75	125	0	0		ŝ
Nickel		0.4678	0.0100	0.5	0.002818	93	75	125	0	0		
Potassium		16.91	0.260	20	0.523	81.9	75	125	0	0		
Selenium		1.765	0.0200	2	0	88.3	75	125	0	0		
Silver		° 0.04301	0.0150	0.05	0	86	75	125	0	0		
Sodium		24.61	0.670	20	6.346	91.3	75	125	0	0		
Thallium		1.8	0.0300	2	Ð	06	75	125	0	0		
Vanadium		0.4644	0.0150	0.5	0	92.9	75	125	0	0		
Zinc		0.5009	0.0200	0.5	0.05199	89.8	75	125	0	0		
Sample ID: 0608066-02AMSD	8066-02AMSD	SampType: MSD	TestCode: ICP	fe: ICP	Units: mg/L		Prep Date:	e: 08/14/06		Run ID: PE	Run ID: PE3000_061023A	A
Client ID: MW-1B	/-1B	Batch ID: 7251	Test	No: SW6010A	(SW3010A)		Analysis Date:	e: 10/23/06		SeqNo: 394341	1341	
Analyte		Result	POL	SPK value	SPK Ref Val	%REC	LowLimít	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum		5.114	0.0400	2	1.088	201	75	125	2.266	77.2	20	SR
Antimony		0.3788	0.0500	0.5	0	75.8	75	125	0.3907	3.10	20	

-

A constraint of the second second second

1...i

CORTLAND CO SOIL & WATER -----**CLIENT:**

TOWSLEY 0608066 Work Order:

ANALYTICAL QC SUMMARY REPORT

•

and a second of the second of the second of the second sec

Project: TOWSLEY	ľ,						Ba	BatchID: 7251	1251		
Sample ID: 0608066-02AMSD	SampType: MSD	TestCo	TestCode: ICP	Units: mg/L		Prep Date:	e: 08/14/06		Run ID: PE	Run ID: PE3000_061023A	3A
Client ID: MW-1B	Batch ID: 7251	Test	TestNo: SW6010A	(SW3010A)	1	Analysis Dat	Analysis Date: 10/23/06		SeqNo: 394341	1341 ·	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	1,849	0.0250	2	0	92.4	75	125	1.903	2.90	20	
Barium	2.099	0.0450	2	0.1942	95.2	75	125	2,16	2.86	20	
Berytlium	0.04433	0.00300	0.05	ο	88.7	75	125	0.04432	0.0246	20	
Boron	0.9199	0.0500	-	0.04408	87.6	75	125	0.9349	1.61	20	
Cadmium	0.04566	0.00500	0.05	0	91.3	75	125	0.04555	0.206	20	
Calcium	44.2	0.210	20	25.79	92	75	. 125	44.15	0.115	20	
Chromium	0.1846	0.00500	0.2	0	92.3	75	125	0.1907	*3.26	20	
Cobalt	0.448	0.0150	0.5	0	89.6	75	125	0.4607	2.80	20	
Capper	0.2331	0.0300	0.25	0.0174	86.3	75	125	0.2383	2.21	20	
Iron	5.207	0.0350	-	1.836	337	75	125	5.373	3.13	20	S
Lead	0.4505	0.00500	0.5	0.003	89.5	75	125	0,4648	3.12	20	
Magnesium	24.17	0.320	20	6.046	90.6	75	125	24.81	2.58	20	
Manganese	0.9211	0.00500	0.5	0.2508	134	75	125	0.9465	2.72	20	S
Nickel	0.462	0.0100	0.5	0.002818	91.8	75	125	0.4678	1.25	20	
Potassium	16.59	0.260	20	0.523	80.3	75	125	16.91	1.89	20	
Selenium	1.714	0.0200	2	0	85.7	75	125	1.765	2.92	20	
Silver	0.04181	0.0150	0.05	0	83.6	75	125	0.04301	2.84	20	
Sodium	23.51	0.670	20	6.346	85.8	75	125	24.61	4.57	20	
Thallium	1.751	0.0300	2	0	87.6	75	125	1.8	2.72	20	
Vanadium	0.4524	0.0150	0.5	0	90.5	75	125	0.4644	2.61	20	
Zinc	0.4973	0.0200	0.5	0.05199	89.1	75	125	0.5009	0.724	20	

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

ND - Not Detected at the Reporting Limit

Qualifiers:

Page 2 of 2

Wark Order: 0608066	LUKTLANU LU SUIL & WATEK nanang	ł				ANALY	TICAL	, QC SU	ANALYTICAL QC SUMMARY REPORT	REPOR	Ľ
	X						Ва	BatchID: 7	7252		
Sample ID: 0608066-02BMS	SampType: MS	TestCoo	TestCode: HGNPWDISS	ISS Units: mg/L		Prep Date:	08/14/06		Run ID: PE23	PE2380_060901A	
Client ID: MW-1B	Batch ID: 7252	Testh	TestNo: SW7470	(SW3010A)		Analysis Date:	09/01/06		SeqNo: 387333	33	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit R	RPD Ref Val	%RPD	RPDLimit 0	Qual
Mercury	0.00192	0.000400	0.002	0	96	75	125	0	0		
Sample ID: 0608066-02BMSD	SampType: MSD	TestCoo	TestCode: HGNPWDISS	ISS Units: mg/L		Prep Date:	: 08/14/06		Run ID: PE23	PE2380_060901A	
Client ID: MW-1B	Batch ID: 7252	Test	TestNo: SW7470	(SW3010A)		Analysis Date:	: 09/01/06		SeqNo: 387334	34	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit P	HighLimit R	RPD Ref Val	%RPD	RPDLimit 0	Qual
Mercury	0.00193	0.000400	0.002	0	96.5	75	125	0.00192	0.519	20	
Sample ID: 0608066-02BMS	SampType: MS	TestCor	TestCode: ICPDISS	Units: mg/L		Prep Date:	: 08/14/06		Run ID: PE3000_061023A	00_061023A	
Citent ID: MW-1B	Batch ID: 7252	Test	TestNo: SW6010A	(SW3010A)		Analysis Date:	10/23/06		SeqNo: 394343	43	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit R	RPD Ref Val	%RPD	RPDLimit C	Qual
Aluminum ,	2.064	0.0400	2	0.195	93.4	75	125	0	0		
Antimony	0.4593	0.0500	0.5	0	91.9	75	125	0	0		
Arsenic	1.913	0.0250	2	0	95.7	75	125	0	0		
Barium	2.062	0.0450	2	0.1621	95	75	125	0	0		
Beryllium	0.04444	0.00500	0.05	0	88.9	22	125	0	0	.*	
Boron	0.9353	0.0500		0.03405	90.1	15	125	0 0	0 0		
Cadmium	P00400	00900.0	c0.0 0c	0 11	91.3 80.4	6) 75	125		0 0		
Chromium	0.1857	0.00500	0.2	0.001125	92.3	75	125		0 0		
Cobalt	0.4512	0.0150	0.5	0	90.2	75	125	0	0		
Copper	0.2358	0.0100	0.25	0.01295	89.2	75	125	0	0		
Iron	1.173	0.0350	-	0.3394	83.4	75	125	0	0		
Lead	0.163	0.00500	0.5	0	32.6	75	125	0	0		S
Magnesium	23.7	0.320	20	5,541	90.8	75	125	0	0		
Manganese	0.5971	0.00500	0.5	0.1346	92.5	75	125	0	0		
Nickel	0.4663	0.0100	0.5	0.004115	92.4	75	125	0	0		
Potassium	16.08	0.260	20	0.4027	78.4	75	125,	0	0		

and a second sec

en angeler e

And a second sec

the set of second

......

CLIENT: C(CORTLAND CO SOIL & WATER	ιR				A N A I					E
Work Order: 06	0608066					ALMAL	I IICA	ה ער טר	ANALI HUAL UU SUMMAKI KEFUKI	(KEFV	Y
Project: T(TOWSLEY						B	BatchID: 7	7252		
Sample ID: 0608066-02BMS	ZBMS SampType: MS	TestCo	TestCode: ICPDISS	Units: mg/L		Prep Date:	e: 08/14/06		Run ID: PE:	PE3000_061023A	A
Client ID: MW-1B	Batch ID: 7252	Test	TestNo: SW6010A	(SW3010A)		Analysis Date:	e: 10/23/06		SeqNo: 394343	343	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Selenium	1.824	0.0200	2	0.008069	90.8	75	125	0	0		
Silver	0.04363	0.0150	0.05	0	87.3	75	125	0	0		
Sodium	24.03	0.670	20	5.314	93.6	75	125	0	0		
Thallium	1.841	0.0300	7	0	92.1	75	125	0	0		
Vanadium	0.4591	0.0150	0.5	0	91.8	75	125	0	•		
Zinc	0.4776	0.0100	0.5	0.02848	89.8	75	125	0	0		
Sample ID: 0608066-02BMSD	2BMSD SampType: MSD	TestCo	TestCode: ICPDISS	Units: mg/L		Prep Date:	e: 08/14/06		Run ID: PE	Run ID: PE3000_061023A	A
Client ID: MW-1B	Batch ID: 7252	Test	TestNo: SW6010A	(SW3010A)		Analysis Date:	ie: 10/23/06		SeqNo: 394344	344	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	2.092	0.0400	2	0.195	94.8	75	125	2.064	1.35	20	
Antimony	0.4748	0.0500	0.5	0	96	75	125	0.4593	3.32	20	
Arsenic	1.954	0.0250	2	0	97.7	75	125	1.913	2.12	20	
Barium	2.101	0.0450	2	0.1621	96.9	75	125	2.062	1.85	20	
Beryllium	0.04521	0.00500	0.05	0	90.4	75	125	0.04444	1.72	20	
Boron	0.9528	0.0500	-	0.03405	91.9	75	125	0.9353	1.85	20	
Cadmium	0.0459	0.00500	0.05	0	91.8	75	125	0.04564	0.570	20	
Calcium	42.82	0.210	20	24,41	92	75	125	42.29	1.25	20	
Chromium	0.189	0.00500	0.2	0.001125	93.9	75	125	0.1857	1.75	20	
Cobalt	0.4632	0.0150	0.5	0	92.6	75	125	0.4512	2.63	20	
Copper	0.2381	0,0100	0.25	0.01295	06	75	125	0.2358	0.937	20	
Iron	1.205	0.0350	.	0.3394	86,5	75	125	1.173	2,66	20	
Lead	0.4757	0.00500	0.5	0	95.1	75	125	0.163	97.9	20	ц
Magnesium	24.07	0.320	20	5.541	92.6	75	125	23.7	1.54	20	
Manganese	0.6079	0.00500	0.5	0.1346	94.7	75	125	0.5971	1.79	20	
Nickel	0.4766	0.0100	0.5	0.004115	94.5	75	125	0.4663	2.18	20	
Potassium	16.64	0.260	20	0.4027	81.2	75	125	16.08	3.45	20	
Selenium	1.876	0.0200	2	0.008069	93.4	75	125	1.824	2.81	20	
Silver	0.04516	0.0150	0.05	0	90.3	.75	125	0.04363	3.43	20	
Sodium	24.35	0.670	20	5.314	95.2	75	125	24.03	1.31	20	
Qualifiers: ND	ND - Not Detected at the Reporting Limit		S - Spil	S - Spike Recovery outside accepted recovery limits	accepted ree	overy limits	8	- Analyte detee	 B - Analyte detected in the associated Method Blank 	ited Method B	ank
-	A nakota datantad halam mushinini din		100 a	antoide nanataire C							
•	ז - אוופולוכ מכוככיכם וזכזיזיא למשווויומווסון וזוזיוני	5	IN - N	N - NLD OUSIGE SCEEPIER LECOVERY HURLS	COVERY INDUA	s				Page 2 of 3	of 3

n de la composition de la comp

And the second

CLIENT: CORTLAN Work Order: 0608066	CORTLAND CO SOIL & WATER D608066	R			A	LYJAN	TICAL	QC SUM	ANALYTICAL QC SUMMARY REPORT	Y REPORT	RT
٩		-					BatchID:		7252		
Sample ID: 0608066-02BMSD Client ID: MW-1B	SampType: MSD Batch ID: 7252	TestCode TestNo	TestCode: ICPDISS TestNo: SW6010A	Units: mg/L (SW3010A)	Ana	Prep Date: 08/14/06 Analysis Date: 10/23/06	08/14/06 10/23/06		Run ID: PE3000 SeqNo: 394344	Run ID: PE3000_061023A SeqNo: 394344	V
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC Lo	LowLimit Hig	HighLimit RPD Ref Val) Ref Val	%RPD	RPDLimit	Qual
Thalilum Vanadium Zinc	1.88 0.4677 0.4854	0.0300 0.0150 0.0100	0.5	0 0 0 0 0 0	94 91.4 91.4	75 75 75	125 125 125	1.841 0.4591 0.4776	2.06 1.61	50 50 50	
· · ·				· ·					ø	• •	

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

ND - Not Detected at the Reporting Limit S - Spik. J - Analyte detected below quantitation limits R - RPD

Qualifiers:

Puge 3 of 3

B - Analyte detected in the associated McIlrod Blank

FlatChOID: Main SND, Jobin Units: Jupin Ratch ID: NLDD: NED30_00000000000000000000000000000000000	CLRENT: CORTLA Work Order: 0608066	CORTLAND CO SOIL & WATER 0608066					ANAL	YTICA	ANALYTICAL QC SUMMARY REPORT	IMMAR	Y REPO	RT
SampType: TestCode: Math 2.02.00. Units: Page Date: Run ID: NSD3_000017A Baten ID: RZADS2 TestNo: SWR260A Analysis Date: Bol1706 Run ID: MSD3_000017A Ratent: POL SPFK value SFF Ref Val XFREC Low/Unit High Lunit RPD Ratent: Run ID: MSD3_000017A Ratent: 2154 25 20 0 106 2121 0		LEY						E		R20524		
Witch (K) Batch (L): R2042. Teshbor. SWA23.0A. Analysis Date Off (R) Serplor. Serplo	3ample ID: 0608066-03A	SampType: MS	TestCo	de: M8260_36	1		Prep Dat	e.			SD3_060817A	
Result POL SFK Ref Yai SREE Low, Imm Right imp Right imp Signed Right imp Signed Right imp Signed		Batch ID: R20524	Test	No: SW8260A			Analysis Dal		6	SeqNo: 38	5112	
1:54 25 20 0 103 10 21:1 0 0 1:1 5:0 20 0 0 5:0 10 0 0 0 1:1 5:0 20 0 0 11:1 0 0 0 1:1 5:0 20 0 11:1 68/1 13:0 0 0 1:1 5:0 20 0 11:1 68/1 13:0 0 0 1:1 5:0 20 0 11:1 68/1 13:0 0 0 0 1:1 5:0 20 0 12:1 0	malyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
e ND 50 20 0 50 50 73 60 60 60 internation 1341 50 20 0 10 73 60 0 0 internation 17.28 50 20 0 116 64 63 116 0 0 internation 21.23 50 20 0 116 64 134 0 0 0 internation 21.23 50 20 0 116 64 134 0 0 0 0 internation 20.33 50 20 0 101 83 22.21 0 0 0 0 0 0 internation 13.3 50 20 0 13.3 13.3 0 0 0 0 0 internation 13.4 50 20 13.4 80.1 13.3 0 0 0 0<	cetone	21.54	25	20	0	108	10	212.1	0	0		-
18,41 5.0 2.0 0 9.7 2.7.4 0 0 0 incretination 17.23 5.0 2.0 0 86.7 150.6 0 0 0 incretination 17.23 5.0 2.0 0 86.7 130.7 0 0 0 incretination 21.33 5.0 2.0 0 110 66.7 130.7 0	crylonitrile	CIN	5.0	20	0	0	50	150	0	0		S
$ \mbox model \mb$	enzene	19.41	5.0	20	0	67	80.7	127.4	0	0		
1 1 1 2 2 2 0 15 6 15 15 0 0 Indicit 213 50 20 0 115 65 134.4 0 0 achtridit 203 50 20 0 111 66 134.4 0 0 0 achtridit 2033 50 20 0 92.4 80.1 132.8 0 0 0 achtridit 2035 50 20 0 92.4 80.1 132.8 0 0 0 achtridit 193 50 20 0 92.4 80.1 132.8 0 0 0 achtridit 193 50 2	romodichloromethane	20.38	5.0	20	0	102	73.6	140.5	0	0		
mate. 2123 50 20 10 111 64 134.4 0 0 indict 2133 50 20 0 111 64 134.4 0 0 indict 2033 50 20 0 111 64 133.3 0 0 0 indict 2033 50 20 0 103 83.7 133.3 0 0 0 indictor 184.7 50 20 0 104 38.7 131.2 0 0 0 indictor 184.7 50 20 0 93 85.5 166.1 0 0 0 0 0 indictor 2033 50 20 20 0 93 131.2 0 0 0 0 0 inditorestrue 2033 50 20 20 20 20 20 20 20 20 20 <tr< td=""><td>romoform</td><td>17.28</td><td>5.0</td><td>20</td><td>0</td><td>86.4</td><td>66.9</td><td>115.6</td><td>0</td><td>0</td><td></td><td></td></tr<>	romoform	17.28	5.0	20	0	86.4	66.9	115.6	0	0		
e 215 25 20 0 111 687 1307 0 0 refloride 2053 50 20 0 94 430 0 0 0 refloride 193 50 20 0 924 607 123 0 0 0 refloride 193 50 20 0 924 607 123 0 </td <td>romomethane,</td> <td>21.23</td> <td>5.0</td> <td>20</td> <td>0</td> <td>106</td> <td>64.6</td> <td>134.4</td> <td>0</td> <td>0</td> <td></td> <td></td>	romomethane,	21.23	5.0	20	0	106	64.6	134.4	0	0		
Indication 2033 5.0 2.0 0 103 89.4 14.3.8 0 0 0 Rethonde 18.47 5.0 20 0 97 60.1 123.8 0 0 0 0 Rethonde 18.47 5.0 20 0 92.4 60.1 123.8 0 0 0 0 Rethone 18.47 5.0 20 0 92.4 60.7 123.3 0	-Butanone	22.15	25	20	0	111	68.7	130.7	0	0		7
action de 13.3 5.0 20 0 97 80.1 122.8 0 0 0 cene 18.47 5.0 20 0 97 80.1 122.8 0 0 0 nee 192 5.0 20 0 94.5 131.2 0 0 0 nee 192 5.0 20 0 144 31.7 22.1 0 0 0 nee 192 5.0 20 0 94.5 131.2 0 0 0 nee 192 5.0 20 0 143 31.7 123.5 0 0 0 hororbrene 15.47 5.0 20 0 133.2 0 <td>arbon disultide</td> <td>20.63</td> <td>5.0</td> <td>20</td> <td>0</td> <td>103</td> <td>89.4</td> <td>143.8</td> <td>0</td> <td>0</td> <td></td> <td></td>	arbon disultide	20.63	5.0	20	0	103	89.4	143.8	0	0		
cente 18.47 5.0 20 0 92.4 80.7 12.3.3 0 0 ine 20.66 5.0 20 0 104 38.7 32.12 0 0 0 ine 19.2 5.0 20 0 104 38.7 12.2 0 0 0 inforce > buttone 18.6 5.0 20 0 0 93 85.5 106.1 0 <t< td=""><td>arbon tetrachloride</td><td>19.39</td><td>5.0</td><td>20</td><td>0</td><td>67</td><td>80.1</td><td>132.8</td><td>0</td><td>0</td><td></td><td></td></t<>	arbon tetrachloride	19.39	5.0	20	0	67	80.1	132.8	0	0		
Intent 20.66 5.0 2.0 0 104 38.7 2.2.1 0 0 Intent 19.2 5.0 2.0 0 96 84.5 131.2 0 0 0 Intent 19.2 5.0 2.0 0 96 84.5 131.2 0 0 0 Inclineerbrane 18.7 5.0 2.0 0 92.4 67.8 133.2 0	hlorobenzene	18.47	5.0	20	0	92.4	80.7	123.3	0	0		
1 192 50 20 0 96 84.5 131.2 0 0 0 neme 186 5.0 20 0 93 85.5 106.1 0 0 0 lichtorectome 18.6 5.0 20 0 100 50 15.0 0 0 lichtorectome 18.4 5.0 20 0 101 80.5 133.2 0 0 0 lichtorectome 17.1 5.0 20 0 101 80.5 133.5 0 0 0 licerropropene 17.51 5.0 20 0 80.5 135.5 0 0 0 licerropropene 17.82 5.0 20 0 90.5 135.5 0 0 0 0 licerropropene 17.82 5.0 20 0 90.5 134.5 0 0 0 othorectorect 18.4 13.5	hloroethane	20.86	5.0	20	0	104	38.7	232.1	0	0		
Imate 18.6 5.0 2.0 0 9.3 6.5. 106.1 0 0 0 Dichlore-2-buttime ND 5.0 20 0 5.0 5.0 0<	hlorotorm	19.2	5.0	. 20	0	96	84.5	131.2	0	0		
$ \mbox S \ \mb$	hloromethane	18.6	5.0	20	0	63	85.6	106.1	0	0		
ND-Not Detected 20 20 20 0 102 80.7 129.9 Not oethene 15.47 5.0 20 0 101 80.6 133.2 Intorotropene 15.47 5.0 20 0 101 80.6 133.5 Intorotropene 17.51 5.0 20 0 0 80.1 55.6 134.5 Intorotropene 17.51 5.0 20 0 0 80.1 80.5 134.5 Intorotropene 18.77 5.0 20 0 0 89.1 55.7 134.5 Intorotropene 18.45 5.0 20 0 9 9.4.5 70.3 122.5 Intorethane 17.82 5.0 20 0 9 9.4.5 70.3 122.5 Intane 17.92 5.0 20 0 9 9.4.5 70.3 122.5 Intane 17.81 5.0 20 20 0	ans1,4-Dichloro2-butene	ND	5.0	20	0	0	50	150	0	0		S
Introductor opene 15 47 5.0 20 0 01 82.4 67.8 133.2 Introcethene 20.28 5.0 20 0 101 80.5 136.5 Introcethene 17.51 5.0 20 0 87.6 43.5 131.5 Intropropene 17.51 5.0 20 0 93.8 70.6 136.5 Intropropene 18.77 5.0 20 0 93.8 70.6 136.5 Intropropene 18.77 5.0 20 0 92.2 77.8 127.3 Intropropropene 18.45 5.0 20 0 94.5 70.3 127.3 Intropropropene 17.82 5.0 20 0 94.5 70.3 127.3 Intropropropene 17.85 5.0 20 0 94.5 70.3 127.3 Intropropene 17.85 5.0 20 0 94.5 70.3 127.3 <td< td=""><td>ans-1,2-Dichloroethene</td><td>20.33</td><td>5.0</td><td>20</td><td>0</td><td>102</td><td>80.7</td><td>129.9</td><td>0</td><td>0</td><td></td><td></td></td<>	ans-1,2-Dichloroethene	20.33	5.0	20	0	102	80.7	129.9	0	0		
hloroethene 20.28 5.0 20 0 101 80.5 135.5 hloroptopene 17.51 5.0 20 0 87.6 43.5 131.5 hloroptopene 17.51 5.0 20 0 89.1 55.7 134.5 foromethane 18.77 5.0 20 0 93.8 70.6 136.5 foromethane 18.45 5.0 20 0 93.8 70.5 134.5 co-3-chloropropane 18.45 5.0 20 0 94.5 70.3 127.3 obtarzene 18.45 5.0 20 0 94.5 70.3 127.3 obtarzene 17.78 5.0 20 0 93.6 66.8 76.2 123.3 obtarzene 17.78 5.0 20 0 93.6 69.6 78.4 138.3 obtarzene 17.51 5.0 20 0 93.6 78.4 138.3 <t< td=""><td>ans-1,3-Dichloropropene</td><td>16.47</td><td>5.0</td><td>20</td><td>0</td><td>82.4</td><td>67.8</td><td>133,2</td><td>0</td><td>0</td><td></td><td></td></t<>	ans-1,3-Dichloropropene	16.47	5.0	20	0	82.4	67.8	133,2	0	0		
Inforceropene 17.51 5.0 20 0 $B7.6$ 43.5 131.5 Inforceropene 18.77 5.0 20 0 93.8 70.6 136.5 Informethane 18.77 5.0 20 0 93.8 70.6 134.5 Informethane 18.45 5.0 20 0 92.2 77.8 125.5 Interpretere 18.45 5.0 20 0 94.5 70.3 127.3 Interpretere 18.45 5.0 20 0 94.5 70.3 127.3 Interpretere 18.45 5.0 20 0 94.5 70.3 127.3 Interpretere 17.78 5.0 20 0 94.5 70.3 127.3 Interpretere 17.78 5.0 20 0 94.5 70.3 127.3 Interpretere 17.78 5.0 20 0 96.9 69 126.3 Interene 17	s-1,2-Dichloroethene	20.28	5.0	20	0	101	80.6	136.6	0	0		
Interface 18.77 5.0 20 0 93.8 70.6 136.5 toramethane (7.82) 5.0 20 0 99.1 55.7 134.5 torathonopropane (7.82) 5.0 20 0 99.1 55.7 134.5 torathonopropane (7.82) 5.0 20 0 99.5 70.3 132 torathonopropane 18.45 5.0 20 0 94.5 70.3 132 obenzene 17.92 5.0 20 0 94.5 70.3 127.3 obenzene 17.61 5.0 20 0 88.9 66.8 127.3 obenzene 17.78 5.0 20 0 88.9 76.2 123.3 obenzene 17.78 5.0 20 0 88.9 76.2 123.3 obenzene 17.61 5.0 20 0 98.8 76.2 123.3 obenzene	s-1,3-Dichloropropene	17.51	5.0	20	0	87.6	43.5	131.5	0	0		
too-3-chloropropane $(7,82)$ 5.0 20 00 89.1 55.7 134.5 toethane 18.45 5.0 20 0 92.2 77.8 125.5 otethane 18.9 5.0 20 0 94.5 70.3 132.5 othane 17.92 5.0 20 0 89.6 66.8 127.3 obenzene 17.92 5.0 20 20 0 88.9 76.2 123.3 obenzene 17.73 5.0 20 0 88.9 76.2 123.3 obenzene 17.73 5.0 20 0 88.9 76.2 123.3 obenzene 17.73 5.0 20 0 88.9 76.2 123.3 othane 17.73 5.0 20 20 0 98.6 76.2 123.3 othane 17.73 5.0 20 20 93.6 78.4 138.3 74.9 134.5 74.9	ibromochloromethane		5.0	20	0	93.8	70.6	136.5	0	0		
Image: Normal contrant for the set of the	2-Dibromo-3-chloropropant		5.0	20	0	89.1	55.7	134.5	0	0		
ethane 18.9 5.0 20 0 94.5 70.3 132 obenzene 17.92 5.0 20 0 89.6 66.8 127.3 obenzene 17.78 5.0 20 0 88.9 69.6 127.3 obenzene 17.78 5.0 20 0 88.9 69 122.5 obenzene 17.78 5.0 20 0 88.9 69 123.3 obenzene 17.61 5.0 20 0 93.6 78.4 138.3 oethane 19.76 5.0 20 0 93.6 73.4 134.5 oethane 21.56 5.0 20 0 93.6 73.3 134.5 orthane 21.56 5.0 20 0 93.6 73.3 134.5 orthane 18.76 5.0 20 0 93.8 84.3 134.5 orthene 18.76 5.0 20	2-Dibromoethane	18.45	5.0	20	0	92.2	77.8	125.5	0	0		
obenzene 17.92 5.0 20 0 89.6 66.8 127.3 obenzene 17.78 5.0 20 0 88.9 69 127.5 obenzene 17.78 5.0 20 0 88.9 69 122.5 obenzene 17.61 5.0 20 0 88.9 76.2 123.3 oethane 17.61 5.0 20 0 93.6 78.4 138.3 oethane 19.76 5.0 20 0 98.8 85.8 144 oethane 19.76 5.0 20 0 93.6 72.3 134.5 optopane 18.76 5.0 20 0 93.8 84.3 135.5 or 19.61 5.0 20 0 93.8 74.9 135.5 or 19.61 5.0 20 0 93.8 74.9 135.5 or 19.61 5.0 20 0	ibromomethane	18.9	5.0	20	0	94.5	70.3	132	0	0		
obenzene 17.78 5.0 20 0 88.9 69 125.5 obenzene 17.61 5.0 20 0 88.9 76.2 123.3 obenzene 17.61 5.0 20 0 88 76.2 123.3 oethane 18.73 5.0 20 0 98.6 76.4 138.3 oethane 18.73 5.0 20 0 93.6 78.4 138.3 oethane 18.73 5.0 20 0 93.6 78.4 138.3 oethane 19.76 5.0 20 0 10.8 85.8 134.5 optopane 18.76 5.0 20 0 93.8 84.3 135.5 one 19.61 5.0 20 0 93.8 74.9 130 one 19.61 5.0 20 0 98.8 74.9	2-Dichlorobenzene	17.92	5.0	20	0	89.6	66.8	127.3	0	0		
obenzene 17.51 5.0 20 0 88 76.2 123.3 oethane 18.73 5.0 20 0 93.6 78.4 138.3 oethane 18.73 5.0 20 0 93.6 78.4 138.3 oethane 19.76 5.0 20 0 93.6 78.4 138.3 oethane 21.56 5.0 20 0 08.8 85.8 144.5 oethene 21.56 5.0 20 0 $0.83.8$ 84.3 134.5 opropane 18.76 5.0 20 0 93.8 84.3 135.5 one 19.61 5.0 20 0 93.8 74.9 130.5 one 19.61 5.0 20 0 93.8 74.9 130.5 one 10.61 5.0 20 0 93.8 74.9	3-Dichlorobenzene	17.78	5.0	20	0	88.9	69	122.5	0	0 ,		
oethane 18.73 5.0 20 0 93.6 78.4 138.3 oethane 19.76 5.0 20 0 98.8 85.8 144 oethane 19.76 5.0 20 0 70 98.8 85.8 144 oethane 21.56 5.0 20 0 108 72.3 134.5 opropane 18.76 5.0 20 0 93.8 84.3 135.5 opropane 19.61 5.0 20 0 93.8 74.9 130. one 19.61 5.0 20 0 98 74.9 130. ND - Not Detected at the Reporting Limit S Spike Recovery outside accepted recovery limits N-Not	4-Dichlorobenzene	17.61	5.0	20	0	8 8	76.2	123.3	0	0	•	
oethane 19.76 5.0 20 0 98.8 85.8 144 oethene 21.56 5.0 20 0 108 72.3 134.5 opropane 18.76 5.0 20 0 93.8 84.3 135.5 opropane 18.76 5.0 20 0 93.8 84.3 135.5 one 19.61 5.0 20 0 98 74.9 130 sne 19.61 5.0 20 0 98 74.9 130 ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits Not	1-Dichioroethane	18.73	5.0	20	0	93.6	78.4	138.3	0	0		
oethene 21.56 5.0 20 0 108 72.3 134.5 opropane 18.76 5.0 20 0 93.8 84.3 135.5 sne 19.61 5.0 20 0 93.8 84.3 135.5 sne 19.61 5.0 20 0 98 74.9 130 ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits S - Spike Recovery outside accepted recovery limits	2-Dichloroethane	19.76	5.0	20	0	98.8	85.8	144	0	0		
opropane 18.76 5.0 20 0 93.8 84.3 135.5 one 19.61 5.0 20 0 98 74.9 130 one 19.61 5.0 20 0 98 74.9 130 ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits	1-Dichloroethene	21.56	5.0	20	0	108	72.3	134.5	0	0		
ene 19.61 5.0 20 0 98 74.9 130 ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits	2-Dichloropropane	18.76	5.0	20	0	93.8	84.3	135.5	0	0		
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits	thylbenzene	19.61	5.0	20	0	98	74.9	130	0	0		
	an a share you wanted to a	Detected at the Reporting Limit		C . Chi	la Deconent outride o	and read	tionine.				and the second system is a second second second	
A valute detected before a surger of the second secon					AC NELUYELY UNISIDE 20		CITERIA CONC	1	4 - Analyte deter	tart in the second	And Mathod RI	- mlr

Contactor Contactor Cont

and the second second

genter Bandare et Annote at 1997.000

V Car

And a second second second

CLIENT: C Work Order: 0	CORTLANI	CORTLAND CO SOIL & WATER					ANAL	VTICA	ANALYTICAL QC SUMMARY REPORT	MMARY	Y REPC	ЯТ
	TOWSLEY	-			- - -			Ba	BatchID: F	R20524	<u>,</u>	
Sample ID: 0608066-03A	03A	SampType: MS	TestCoc	TestCode: M8260_360L	Units: µg/L		Prep Date			Run ID: MS	Run ID: MSD3_060817A	-
Client ID: MW-1B MS	S	Batch ID: R20524	Test	TestNo: SW8260A			Analysis Date:	e: 08/17/06		SeqNo: 385112	5112	
Analyte		Result	PQL	SPK vatue SF	SPK Ref Val	%REC	LowLimit	HighLímit	RPD Ref Val	%RPD	RPDLimit	Qual
2-Hexanone		18.58	25	20	0	92.9	609	135.5	0	0		-
lodomethane		20.43	5.0	20	0	102	50	150	0	0		
Methylene chloride		19.74	5.0	20	0	98.7	76.8	136.4	0	O		
4-Methyl-2-pentanone		19.25	25	20	0	96.2	71.1	143.4	0	0		Ļ
Styrene		18.52	5.0	20	0	92.6	71.7	137.6	0	0		
1,1,1,2-Tetrachloroethane	iane	18.41	5.0	20	0	92	70.4	130.9	0	0		
1,1,2,2-Tetrachioroethane	lane	18.25	5.0	20	0	91.3	63.4	127.5	0	0		
Tetrachtoroethene		18.36	5.0	20	0	91.8	78.7	121.2	0	0		
Toluene		19.11	5.0	20	0	95.6	82.3	124.6	0	0		
Trichloroethene		18.88	5.0	20	0	94.4	79.3	129.2	0	0		
1,1,1-Trichloroethane		19.55	5.0	20	0	97.8	79.7	133.1	0	0		
1,1,2-Trichloroethane		18.71	5.0	20	0	93,6	81.2	130.8	0	0		
Trichlorofluoromethane	e	19.15	5.0	20	0	95.8	75	130	0	0		
1,2,3-Trichloropropane	0	18.97	5.0	20	0	94.8	51.8	113.9	0	D		
Vinyl acetate		12.67	5.0	20	0	63.4	29.1	180.1	0	0		
Vinyl chloride		19.23	5.0	20	0	96.2	61.2	139	0	0		
m,p-Xylene		37.16	10	40	0	92.9	77	133.6	0	0		
o-Xylene		18.61	5.0	20	0	93	7.77	132.9	0	0		
Surr: 1,2-Dichloroethane-d4	thane-d4	52.98	0	50	0	106	62	118	0	0		
Surr: 4-Bromofiuorobenzene	benzene	50.3	5.0	50	0	101	89	112	0	0		
Surr: Dibromofluoromethane	methane	50.21	5.0	50	0	100	84	118	0	0		
Surr: Toluene-d8		50.23	5.0	50	0	100	87	112	0	0		
Sample ID: 0608066-04A	04A	SampType: MSD	TestCoc	TestCode: M8260_360L	Units: µg/L	ta.	Prep Date:			Run (D: MS	MSD3_060817A	
Client ID: MW-1B MSD	ISD	Batch ID: R20524	Test	TestNo: SW8260A			Analysis Date:	9. 08/17/06		SeqNo: 385113	5113	
Analyte		Result	PQL	SPK value SF	SPK Ref Val	%REC	LowLimit	HighLimit I	RPD Ref Val	%RPD	RPDLimit	Qual
Acetone		21.52	25	20	0	108	10	212.1	21.54	0	30	~
Acrylonitrile		QN	5.0	20	0	0	50	150	0	0	30	S
Benzene		21.38	5.0	20	0	107	80.7	127.4	19.41	9.66	30	
Bromodichloromethane	Ð	22.23	5.0	20	0	111	73.6	140.5	20.38	8.68	30	
Qualifiers: ND) - Not Delect	ND - Not Detected at the Reporting Limit		S - Spike R	- Spike Recovery outside accepted recovery limits	iccepted reco	very limits	В	 B - Analyte detected in the associated Mcthod Blank 	ed in the associa	aled Method F	llank
-	Analyte detec	1 - Analyte detected helow onantitation limits		R - RPD ou	R - RPD outside accented recovery limits	covery limits						1.7. 6
				1							1.uge	rage z of 4

and the second se

an an ann an

ja ja ja Nationa (k) universitä (k) kij Nationa (k) universitä (k) kij

James I in a contract domain.

CLIENT: CORTLAND CO SOIL & WATER Work Order: 0608066

TOWSLEY

Project:

ANALYTICAL QC SUMMARY REPORT BatchID: R20524 Prep Date: Run ID: MSD3_060817A

......

and the state of t

7

her;

Sample ID: 0608066-04A	SampType: MSD	TestCo	TestCode: M8260_360L	0L Units: µg/L		Prep Date	 a>		Run ID: MSD3_060817A	03_060817/	-
Client ID: MW-1B MSD	Batch ID: R20524	Test	TestNo: SW8260A			Analysis Date:	e: 08/17/06		SeqNo: 385113	113	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromoform	18.35	5.0	20	0	91.8	6.99	115.6	17.28	6.01	30	
Bromomethane	23.89	5.0	20	0	119	64.6	134.4	21.23	11.8	30	
2-Butanone	19.97	25	20	0	99.8	68.7	130.7	22.15	0	30	٦.
Carbon disulfide	23.25	5.0	20	0	116	89.4	143.8	20.63	11.9	30	
Carbon tetrachloride	21.47	5.0	20	0	107	80.1	132.8	19.39	10.2	30	
Chlorobenzene	19.91	5.0	20	0	99.6	80.7	123.3	18.47	7.50	30	
Chloroethane	23.43	5.0	20	0	117	38.7	232.1	20.86	11.6	30	
Chloroform	20.87	5.0	20	O	104	84.5	131.2	19.2	8.34	30	
Chloromethane	20.48	5.0	20	0	102	85.6	106.1	18.6	9.62	30	
trans-1,4-Dichloro-2-butene	QN	5.0	20	0	0	50	150	0	0	30	ഗ
trans-1,2-Dichloroethene	22.57	5.0	20	0	113	80.7	129.9	20.33	10.4	30	
trans-1,3-Dichloropropene	17.99	5.0	20	0	06	67.8	133.2	16.47	6,82	30	
cis-1,2-Dichloroethene	22.32	5.0	20	0	112	80.6	136.6	20.28	9.58	30	
cis-1,3-Dichloropropene	19.81	5.0	20	0	66	43.5	131.5	17.51	12.3	30	
Dibromochloromethane	20.49	5.0	20	0	102	70.6	136.5	18.77	8.76	30	
1,2-Dibromo-3-chloropropane	18.82	5.0	20	0	94.1	55.7	134.5	17.82	5.46	30	
1,2-Dibromoethane	19.44	5.0	20	0	97.2	77.8	125.5	18.45	5.23	30	
Dibromomethane	21	5.0	20	0	105	70.3	132	18.9	10.5	30	
1,2-Dichiorobenzene	19.88	5.0	20	0	99.4	66.8	127.3	17.92	10.4	30	
1,3-Dichlorobenzene	19.29	5.0	20	0	96.5	69	122.5	17.78	8.15	30	
1,4-Dichlorobenzene	19.17	5.0	20	0	95.8	76.2	123.3	17.61	8.48	30	
1,1-Dichioroethane	20.95	5.0	20	0	105	78.4	138.3	18.73	11.2	30	
1,2-Dichloroethane	20.76	5.0	20	0	104	85.8	144	19.76	4.94	30	
1,1-Dichloroethene	23.5	5.0	20	0	118	72.3	134.5	21.56	8.61	30	
1,2-Dichloropropane	20.57	5.0	20	0	103	84.3	135.5	18.76	9.20	30	
Ethylbenzene	21.45	5.0	20	0	107	74.9	130	19.61	8.96	30	
2-Hexanone	20.17	25	20	0	101	60.9	135.5	18.58	0	30	ر.
lodomethane	23.06	5.0	20	0	115	50	150	20.43	~12.1	ðе	
Methylene chloride	21.97	5.0	20	0	110	76.8	136.4	19.74	10.7	30	
4-Methyl-2-pentanone	20.39	25	20	0	102	71.1	143.4	19.25	0	30	ŗ
Styrene	19.72	5.0	20	0	98.6	7.1.7	137.6	18.52	6.28	30	
a de server - a sue la havie d'an tan an - a montemperatura come e -			 an assessment of a statistical statistical statistics 								
Qualifiers: ND - Not De	ND - Not Detected at the Reporting Limit		S - Spil	- Spike Recovery outside accepted recovery limits	ccepted reco	wery limits	3	- Analyte detect	B - Analyte detected in the associated Method Blank	ted Method I	Hank

Page 3 of 4

and another an addition of the second s

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

Provide the second provide the provide the second sec

:

нализите и произволять произволять произволять по политических политических политических политических и политич На политических политических политических политических политических политических политических политических полит ANALYTICAL QC SUMMARY REPORT . BatchID: R20524 CORTLAND CO SOIL & WATER TOWSLEY 0608066 Work Order: **CLIENT:** Project:

Client ID: NW-1B MSD Batch ID: R2054 TestNo: SW8260A Analysis Date: OBT7/06 SeqNo: 386113 Analyte Result PQL SPK value SPK Ret Val %/REC LowLinit RPD Ret Val %/RPD RPD Linit Qu Analyte Result PQL SPK value SPK Ret Val %/REC LowLinit RPD Ret Val %/RPD RPD Linit Qu 1,1,1.2-Tetrachloroethane 19,51 5.0 20 0 97.2 70.4 130.9 184.1 5.9 30 1,1,1.2-Tetrachloroethane 20.25 5.0 20 0 101 73 127.5 18.26 9.64 30 Tokhoroethane 20.25 5.0 20 0 101 73 127.5 18.86 10.4 30 Tichhoroethane 21.52 5.0 20 0 101 73 121.2 133.1 19.65 30 Tichhoroethane 21.52 5.0 20 0<	Sample ID: 0608066-04A	SampType: MSD	TestCo	TestCode: MB260_360L	Units: µg/L		Prep Date:	60		Run ID: MS	Run ID: MSD3_060817A	
Result PQL SPK value SPK Kar Val SAFEC Low Limit HgD Ret Val SKPD RPD Limit retrachlorethane 19.43 5.0 20 0 97.2 70.4 130.9 18.41 5.39 30 retrachlorethane 19.43 5.0 20 0 97.2 70.4 130.9 18.41 5.39 30 retrachlorethane 19.43 5.0 20 0 97.5 70.4 130.9 18.41 5.39 30 retrachlorethane 20.26 5.0 20 0 101 76.3 121.2 18.36 96.6 30 chlorethane 20.36 5.0 20 0 1016 73.3 124.6 19.11 92.3 30 chlorethane 21.25 5.0 20 0 1016 73.1 133.1 19.55 9.59 30 chlorethane 21.3 5.0 20 0 1016 71 133.1 1	Client ID: MW-1B MSD	Batch ID: R20524	Test	No: SW8260A			Analysis Dat	e: 08/17/C	96	SeqNo: 38	5113	
etrachloroethane19.435.020097.270.4130.918.415.39etrachloroethane19.515.020097.663.4127.518.266.62roethane20.225.020010178.7121.218.369.64roethane20.235.020010178.7121.218.369.64forethane20.265.020010678.7121.218.369.64forethane21.525.020010579.3129.218.8810.4folorethane21.525.020010679.7133.119.559.56folorethane21.525.020010679.7133.119.559.22folorethane21.525.020010679.7133.119.559.22folorethane21.525.020010679.7133.119.559.22folorethane21.525.020010677133.919.159.22folorethane21.535.020010451.813.919.559.56folorethane21.535.020010451.813.919.5711.5folorethane21.535.02001047713.919.6711.5folorethane-d451.125.0<	Anaiyte	Result	Pal		⊃K Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
etrachlore19.515.0200 97.6 6.34 127.5 18.26 6.62 roethene20.225.0200101 78.7 121.2 18.36 9.64 roethene20.225.0200101 78.7 121.2 18.36 9.64 roethene20.265.0200106 79.3 129.2 18.88 10.4 shlore21.525.0200108 79.7 133.1 19.55 9.59 shlore21.325.0200108 79.7 133.1 19.55 9.22 shlore21.325.0200108 79.7 133.1 19.55 9.22 shlore21.325.0200102 81.2 13.61 8.71 8.59 shlore21.525.0200102 81.2 13.61 9.22 shlore21.235.0200104 71 219.1 9.75 9.22 hloropropane21.455.0200104 71 219.1 9.75 9.22 shlore21.235.0200104 71 239.1 9.23 731.1 ne21.335.0200104 77 133.6 9.23 731.1 ne21.335.0200104 77 133.6 9.23 731.1 ne21.33<	1,1,1,2-Tetrachloroethane	19.43	5.0	20	0	97.2	70.4	130.9	18.41	5.39	30	
coefficient 20.22 5.0 20 0 101 76.7 121.2 18.36 9.64 100 20.96 5.0 20 0 105 82.3 124.6 19.11 9.23 10 interestinane 20.96 5.0 20 0 105 79.3 129.2 18.88 10.4 100 orbitane 21.52 5.0 20 0 108 79.7 133.1 19.55 9.59 100 orbitane 21.52 5.0 20 0 100 102 81.2 130.8 18.71 8.59 100 orbitane 21.52 5.0 20 0 100 102 81.2 19.55 9.22 100 orbitane 21.6 5.0 20 0 100 102 81.2 19.55 9.22 100 orbitane 21.6 5.0 20 0 100 102 81.2 19.55 9.22 100 orbitane 112.6 11.3 113.9 118.71 8.59 9.22 100 orbitane 112.6 112.6 113.9 118.71 9.22 100 orbitane 112.6 112.6 11.5 11.5 9.22 100 orbitane 112.6 112.6 11.5 11.5 9.22 100 orbitane 112.6 112.6 11.5 11.5 11.5 100 orbitane 112.6 112.6 11.5 11.5 11.5 100 orbitane 10.6 10.6	1,1,2,2-Tetrachloroethane	19.51	5.0	20	0	97.6	63.4	127.5	18.26	6.62	30	
20965.020010582.3124.619.119.23althene20.965.020010579.3129.218.8810.4Altorothane21.525.020010879.7133.119.559.59Altorothane21.525.020010879.7133.119.559.59Altorothane21.525.020010879.7133.119.559.59Altorothane215.020010879.7133.119.559.59Altorothane215.020010675130.818.718.59Altorothane215.020010451.8133.119.559.20Altorothane215.02020010451.8133.119.559.30Altorothane215.0200010451.8133.637.1611.5Altorothane20.335.0200010277.7133.637.1611.3Altorothane-d45.1125.02020010277.7133.637.1611.3Altorothane-d45.1125.05.020010277.7133.637.1611.3Altorothane-d45.125.05.05.05.05.05.05.05.05.05.05.0<	Tetrachloroethene	20.22	5.0	20	0	101	78.7	121.2	18.36	9.64	30	
ne 20.96 5.0 20 20 105 79.3 129.2 18.88 10.4 oethane 21.52 5.0 20 0 108 79.7 133.1 19.55 9.59 oethane 21.52 5.0 20 0 108 79.7 133.1 19.55 9.59 oethane 21.52 5.0 20 0 0 108 79.7 133.1 19.55 9.59 oethane 20.39 5.0 20 0 0 102 81.2 130.8 18.71 8.59 oppone 20.32 5.0 20 20 0 102 81.2 130.8 18.71 8.59 oppone 14.21 5.0 20 20 0 104 51.8 113.9 18.97 9.30 oppone 14.21 5.0 20 20 0 104 77 13.96 18.97 9.30 oppone 14.21 5.0 20 20 0 104 77 133.6 37.16 11.3 14.52 5.0 20 20 0 102 777 132.9 18.61 8.83 100 102 777 132.9 136.1 8.83 100 102 777 132.9 18.61 8.83 100 102 777 132.9 18.61 8.83 100 102 777 132.9 10.6 0 100 102 </td <td>Toluene</td> <td>20.95</td> <td>5.0</td> <td>20</td> <td>0</td> <td>105</td> <td>82.3</td> <td>124.6</td> <td>19.11</td> <td>9.23</td> <td>30</td> <td></td>	Toluene	20.95	5.0	20	0	105	82.3	124.6	19.11	9.23	30	
oethane 21.52 5.0 20 0 108 79.7 13.1 19.55 9.59 oethane 20.39 5.0 20 0 102 81.2 130.8 18.71 8.59 omethane 21 5.0 20 0 102 81.2 130.8 18.71 8.59 ornethane 21 5.0 20 0 102 81.2 130.8 18.71 8.59 ornethane 20.82 5.0 20 0 104 51.8 113.9 18.97 9.22 opropane 14.21 5.0 20 0 104 51.8 113.9 18.97 9.30 14.21 5.0 20 20 0 104 77 29.1 18.97 9.30 14.21 5.0 20 0 104 77 29.1 18.07 11.5 20.69 5.0 20 0 104 77 133.6 37.16 11.3 14.51 20.33 5.0 20 0 102 777 132.9 18.61 8.83 10 contrane-d4 53.19 0 0 50 0 0 102 777 132.9 18.61 8.83 10 contrane-d4 53.12 5.0 50 0 102 777 132.9 18.61 8.83 10 contrane-d4 51.12 5.0 50 0 102 777 132.9 10 0 10 c	Trichloroethene	20.96	5.0	20	0	105	79.3	129.2	18.88	10.4	30	
oethane 20.39 5.0 20 0 102 81.2 130.8 18.71 8.59 omethane 21 5.0 20 0 105 75 130 19.15 9.22 opropane 14.21 5.0 20 0 104 51.8 113.9 18.97 9.30 opropane 14.21 5.0 20 0 104 71 29.1 18.97 9.30 14.21 5.0 20 20 0 71 29.1 18.01 12.67 11.5 20.69 5.0 20 0 71 29.1 180.1 12.67 11.5 20.69 5.0 20 0 104 77 133.6 37.16 11.3 20.33 5.0 20 0 104 77 132.9 18.61 8.83 $1chlorethane-d4$ 53.19 0 50 0 102 77.7 132.9 18.61 8.83 $motluorobenzene51.125.0500010277.7132.918.618.83motluorobenzene51.125.0500010277.7132.9000010289112000000000000000000000$	1,1,1-Trichloroethane	21.52	5.0	20	0	108	79.7	133.1	19.55	9.59	30	
ornethate 21 5.0 20 0 105 75 130 19.15 9.22 opropane 20.82 5.0 20 0 104 51.8 113.9 18.97 9.30 opropane 14.21 5.0 20 0 71 29.1 18.97 9.30 14.21 5.0 20 0 71 29.1 18.01 12.67 11.5 20.69 5.0 20 0 71 29.1 18.01 12.67 11.5 41.59 10 40 0 104 77 133.6 37.16 11.3 20.33 5.0 20 0 102 77.7 132.9 18.61 8.83 ichloroethane-d4 53.19 0 50 0 102 77.7 132.9 18.61 8.83 ichloroethane-d4 51.12 5.0 50 0 102 77.7 132.9 18.61 8.83 ichloroethane-d4 51.12 5.0 50 0 102 77.7 132.9 18.61 8.83 ichloroethane 50.45 5.0 50 0 102 77.7 132.9 0 0 molluorobenzene 50.45 5.0 50 0 1012 77.7 112 0 0 inducromethane 50.45 5.0 50 0 102 89 112 0 0 ine-d8 49.62 5.0 50 0	1,1,2-Trichloroethane	20.39	5.0	20	0	102	81.2	130.8	18.71	8.59	30	
opropane 20.82 5.0 20 0 104 51.8 113.9 18.97 9.30 14.21 5.0 20 0 0 71 29.1 18.97 9.30 14.21 5.0 20 0 0 71 13.6 11.5 20.69 5.0 20 0 103 61.2 139 19.23 7.31 41.59 10 40 0 104 77 133.6 37.16 11.3 20.33 5.0 20 0 102 777 132.9 18.61 8.83 ichloroethane-d4 53.19 0 50 0 102 777 132.9 18.61 8.83 ichloroethane-d4 51.12 5.0 50 0 1006 77 132.9 18.61 8.83 motiluorobenzene 51.12 5.0 50 0	Trichlorofluoromethane	21	5.0	20	0	105	75	130	19.15	9.22	30	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1,2,3-Trichloropropane	20.82	5.0	20	0	104	51.8	113.9	18.97	9.30	30	
le 20.69 5.0 20 0 103 61.2 139 19.23 7.31 41.59 10 40 0 104 77 133.6 37.16 11.3 20.33 5.0 20 0 104 77 133.6 37.16 11.3 Dichloroethane-d4 53.19 0 20 20 0 102 77.7 132.9 18.61 8.83 Dichloroethane-d4 53.19 0 50 50 0 100 77.7 132.9 18.61 8.83 Comofluorobenzene 51.12 5.0 50 0 100 102 89 112 0	Vinyl acetate	14.21	5.0	20	0	71	29.1	180.1	12.67	11,5	30	
41.59 10 40 0 104 77 133.6 37.16 11.3 20.33 5.0 20 0 0 102 77.7 132.9 18.61 8.83 Dichloroethane-d4 53.19 0 50 50 0 106 77.7 132.9 18.61 8.83 cmofluorobenzene 51.12 5.0 50 0 0 106 79 118 0 0 0 omofluorobenzene 51.12 5.0 50 0 0 101 84 118 0<	Vinyl chlaride	20.69	5.0	20	0	103	61.2	139	19.23	7.31	30	
20.33 5.0 20 0 102 77.7 132.9 18.61 8.83 2-Dichloroethane-d4 53.19 0 50 0 106 79 118 0 0 Bromofluorobenzene 51.12 5.0 50 0 102 89 112 0 0 bromofluorobenzene 50.45 5.0 50 0 101 84 118 0 0 oluene-d8 49.62 5.0 50 0 99.2 87 112 0 0	m,p-Xylene	41.59	10	40	0	104	17	133.6	37.16	11.3	30	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	o-Xylene	20.33	5.0	20	0	102	7.77	132.9	18.61	8.83	30	
51.12 5.0 50 0 102 89 112 0 0 0 102 84 118 0 0 10 10 10 10 112 0 10 10 10 10 10 112 0 10 10 10 112 10 10 10 10 10 10 10 10 10 112 10 <th< td=""><td>Surr: 1,2-Dichloroethane-d4</td><td>53,19</td><td>0</td><td>50</td><td>0</td><td>106</td><td>62</td><td>118</td><td>0</td><td>0</td><td>0</td><td></td></th<>	Surr: 1,2-Dichloroethane-d4	53,19	0	50	0	106	62	118	0	0	0	
50.45 5'.0 50 0 101 84 118 0 0 10 <th< td=""><td>Surr: 4-Bromofluorobenzene</td><td></td><td>5.0</td><td>50</td><td>0</td><td>102</td><td>89</td><td>112</td><td>0</td><td>0</td><td>30</td><td></td></th<>	Surr: 4-Bromofluorobenzene		5.0	50	0	102	89	112	0	0	30	
49.62 5.0 50 0 99.2 87 112 0 0	Surr: Dibromofluoromethane		5.0	50	0	101	84	118	0	0	30	
	Surr: Toluene-d8	49.62	5.0	50	0	99.2	87	112	0	0	30	

ND - Not Detected at the Reporting Limit J - Analyte detected gelow quantitation limits

Qualifiers:

S - Spike Recovery outside accepted recovery limits
 R - RPD outside accepted recovery limits

OTE: The information on this file reverse side of this chain of	ENVIRONMENTAL LABORATORIES INC	CHAIN OF C	CHAIN OF GUSTODY RECORD			0 (e C	0108000	0608000
	NOTE: The information on this form was supplied by the client and authorizes the Laboratory to proceed with analysis according to the <u>Standard Terms and Conditions</u> of Buck Environmental Laboratories, Inc. provided on the reverse side of this chain of cristory. The client authorization simulations that the terms and according to the <u>Standard Terms and Conditions</u> of Buck Environmental Laboratories, Inc. provided on	ratory to proceed with analysis acc	conding to the <u>Standard Te</u>	Time and Condition	<u>is</u> of Buck Environ	nental Laboralc	iries, Inc. provi	ded on
CLIENT	CLIENT COTTIAND COUNTY HIGHWAN	$D^2\mathcal{O}^1$. and		MAL		×		
MAILING ADDRESS				MAL		TE		
		CLIENT AI	CLIENT AUTHORIZ. SIGN.					
PHONE NO.					,		x	
REPORT TO ATTN:			ANALYSIS REQUESTED	ESTED			9 .	
PROJECT/ SAMPLING SITE TOWS/PV	Towsley		****		"Bi			ΕD
PO NO.				1		SOGM		NE NS
SAMPLED BY	SAMPLED BY EM, ES, KR, CR	/25			RIX (AIR,	OD AO E	E OF CO	ITAVA3
DATE TIME	SAMPLE DESCRIPTION	200	**************************************	900 900 90 90 40 100 000 90 90 90	TAM	1471 D		Sang
819106 9:54	MWI-IA		-		14/	5		1/m/
	9:48 MW-1B		•	-	M	ء 2	NUV 1	101
) I	MW-IBMS	· · · · · · · · · · · · · · · · · · ·	•	:	23	5 -T	I VAY	Vor
	MW-IBMSD	~			2	, UU	1 VAY	Var
11 : QI	MW-2A	×			M	5	I Vov	101
50.0	MW-3B.	X	• • • •		R	G	YON T	Vav
0:33	MW-3.4				M	G	T VOV	Var
0.30	MW-4B				3	J	1 Var	VGr
8/9/01/ 10:15	MW-7A 22			- F	2	l. P	1 Var	Var
DATE TIME	RELINGUISHED BY	ACCEPTED	ED BY		ADDITIONAL	17		
8/9/66 11:45	1 Carley	1 /all de	Den					
	2	2						
	3	3						
	4	4						
OR LAB USE ONLY	FOR LAB USE ONLY- CONDITIONS AT RECEIPT	TEMP				CUSTODY SEALS	S	

BRANCH OFFICE - 14 SMITH AVE, BINGHAMTON, NY 13904 (607)771-0866 FAX 771-0966

and the second second

3821 BUCK DRIVE, PO BOX 5150, CORTLAND, NY 13045 (607)753-3403 FAX 753-3415 INFO@BUCKLABS.COM

NOTE: The information on this form was supplied by the client and authorizes the Laboratory to proceed with analysis according to the Standard Terms and Conditions of Buck Environmental Laboratories, Inc. provided on the reverse side of this chain of-custody. The client authorization sionature acknowledges that the terms are according to the Standard Terms and Conditions of Buck Environmental Laboratories, Inc. provided on the reverse side of this chain of-custody.				
	pratory to proceed with analysis according to the rare that the terms are according to the	e <u>Standard Terms and Con</u> In hythe client	ditions of Buck Environmental Labor	atories, Inc. provided on
CLIENT Cortland County Highway	I Drot awac			
	1			•
PHONE NO.				
REPORT TO ATTN:	ANALY	ANALYSIS REQUESTED		
PROJECTI SAMPLING SITE TOWSIEN				
			(0	
SAMPLED BY EM, E3, KR, UR			RIX (AIR, SOLII SOCII	וב סד ככ וא סד ככ
DATE TIME SAMPLE DESCRIPTION	27			
Trip Blank				
	· · · · · · · · · · · · · · · · · · ·			
			•	
				And An Party of
	ACCEDTED BV		ADDITIONAL COMMENTS	ENTC
	1 Dall Derry			
2	2 1 1 2			
3	3			
4	4			
FOR LAB USE ONLY- CONDITIONS AT RECEIPT	TEMP D COOLER	ER DICE	CUSTODY SEALS	LS

Sample Login Summary

oumpe togen oummers 0608066 WorkOrder

Edited

Ŷ

. .

and the second second

			-	-					
Javia	Uldungung Acceived Ullenthampo	CollectionDate Matrix	Matrix	Bottle	AYO A	<u>Oty</u> Storage	Ηd	Temp	pH Temp COOLER
0608066-01A 08/09/06	MW-1A	08/09/06 9:54:00 AM Aqueous	Aqueous		-	WALK-IN	\$	4.9	51
Temperature acceptable 0608066-01B 08/09/06	Temperature acceptable, seals intact, SS 6-01B 08/09/05 MW-1A	08/09/06 9:54:00 AM	Aqueous		-	WALK-IN	9	4.9	51
s accept 09/06	l emperature acceptable, seals intact, SS 0608066-01C 08/09/06 MW-1A Temmerature accentable seals intact SS	08/09/06 9:54:00 AM Aqueous	Aqueous		≁ -	WALK-IN	\$	4:9	51 .
/09/06 e accept	0608066-01D 08/09/06 MW-1A Temperature acceptable, seals intact, SS	08/09/06 9:54:00 AM Aqueous	Aqueous		-	WALK-IN	Q	4.9	51
0608066-01E 08/09/06 Temperature accortable	6-01E 08/09/06 MW-1A Tamparature accordable contained SC	08/09/06 9:54:00 AM Aqueous	Aqueous		~~	WALK-IN	>10	4.9	51
ום מרכבה.	able, seals fillact, oo								

ВЧ			<u>.</u> д			E E	PB	Bd	ßď	PB	ЪВ	РВ	Вd
51	51		, ,	, v	51	45	45	45	45	45	45	45	45
4.9	6.4	0,4	0 0	5 0	6.6	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3
4	9	Ŷ	ي <u>ب</u>	, ¹		8	Q	4	Q	>10			
WALK-IN	WALK-IN	WALK-IN	WALK-IN	WALK-IN	REF01	WALK-JN	WALK-IN	WALK-IN	MALK-IN	WALK-IN	REF01	REF01	REF01
-	←	÷		· . ·	5	ť	ŝ	c,	ę	ę	2	0	5
									•			<u>a</u>	ā
Aqueous	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous	Aqueous	Qc Sample	Qc Sample
08/09/06 9:54:00 AM	08/09/06 9:54:00 AM	08/09/06 9:54:00 AM	08/09/06 9:54:00 AM	08/09/05 9:54:00 AM	08/09/06 9:54:00 AM	08/09/06 9:48:00 AM	08/09/06 9:48:00 AM	08/09/06 9:48:00 AM	08/09/06 9:48:00 AM	08/09/06 9:48:00 AM	08/09/06 9:48:00 AM	08/09/08	08/09/06
0608066-01A 08/09/06 MW-1A	Temperature acceptable, seals intact, SS 0608066-01B 08/09/05 MW-1A	Temperature acceptable, seals intact, SS 0608066-01C 08/09/06 MW-1A	Temperature acceptable, seals intact, SS 0608066-01D 08/09/06 MW-1A	Temperature acceptable, seals infact, SS 0608066-01E 08/09/06 MW-1A	Temperature acceptable, seats intact, SS 0608066-01F 08/09/06 MW-1A	Temperature acceptable, seals intact, SS 0608066-02A 08/09/06 MW-1B	Temperature acceptable, seals intact, SS 0608066-02B 08/09/06 MW-1B +MS/MSD	Temperature acceptable, seats intact, SS 0608066-02C 08/09/06 MW-1B +MS/MSD	Temperature acceptable, seals intact, SS 0608066-02D 08/09/06 MW-1B +MS/MSD	Temperature acceptable, seals intact, SS 0608066-02E 08/09/06 MW-1B +MS/MSD	Temperature acceptable, seals intact, SS 0608066-02F 08/09/06 MW-1B	Temperature acceptable, seals intact, SS 0608066-03A 08/09/06 MW-1B MS MS	Temperature acceptable, seals intact, SS 0608066-04A 08/09/06 MW-1B MSD MSD

Thursday, August 10, 2006

Temperature acceptable, seals intact, SS

a station of the second second second

Page I of 3

an on branche estimated and a source of the first first first and and and a source of the	and the second	 and the state of t	entre de la constante de la consta			£"			
	08/09/06 10:11:00 AM	Aqueous		۲ ۲	WALK-IN	5	4.9	51	РВ
Temperature acceptable, seals intact, SS 0608066-05B 08/09/06 Mvv-2A 08/09/06 10:11:00 AM		Aqueous		N N	WALK-IN	9	4.9	51	ЪВ
Temperature acceptable, seals intact, SS 0608066-05C 08/09/06 MW-2A 08/09/06 10:11:00 AM		Aqueous		2	WALK-IN	₽	4.9	51	РВ
Temperature acceptable, seals intact, SS 0608066-05D 08/09/06 MW-2A 08/09/06 10:11:00 AM		Aqueous		- F	WALK-IN	9	4.9	51	РВ
Temperature acceptable, seals intact, SS 0608066-05E 08/09/06 MW-2A 08/09/06 10:11:00 AM		Aqueous		ž.	WALK-IN	~10	4.9	51	PB
ntact, SS		Aqueous		2 RI	REF01		4.9	51	ВВ
Temperature acceptable. seals intact, SS 0608066-06A 08/09/06 MW-2B 08/09/06 10:05:00 AM		Aqueous		1 V	WALK-IN	ç	2.3	45	ВЧ
Temperature acceptable, seals intact, SS 0608066-06B 08/09/06 MW-2B 08/09/06 10:05:00 AM		Aqueous		2	WALK-IN	9	2.3	45	В
rature acceptable, seals intact, SS						ç			
uo/us/uo rature acceptable		Aqueous		×	VVALK-IN	2	2.3	45	ЧH
· 0608066-06D 08/09/06 MW-2B 08/09/06 10:05:00 AM		Aqueous		1 W	WALK-IN	9	2.3	45	РВ
Temperature acceptable, seals intact, SS		Autocure Mancoure		141			c c	ŗ	
uovusivo srature acceptable		Aqueous			VVAL.K-IN	01<	Z.3	45	22
0608066-06F 08/09/06 MW-2B 08/09/06 10:05:00 AM		Aqueous		2 RE	REF01		2.3	45	РВ
rature acceptable, seals intact, SS								ļ	1
uououoo-ur.A uovusivuo Iur.za.uu Aim Temperature acceptable: seals intact: SS		Aqueous		Š	WALK-IN	7	2.3	45	n L
0608066-07B 08/09/06 MW-3A 08/09/06 10:28:00 AM		Aqueous		Ň	WALK-IN	9	2:3	45	BB
Temperature acceptable, seals intact, SS 0608066-07C 08/09/06 MW-3A 08/09/06 10:28:00 AM		Aqueous		Ň	WALK-IN	\$	2.3	45	РВ
rature acceptable, seals intact, SS									
0608066-07D 08/09/06 MW-3A 08/09/06 10:28:00 AM		Aqueous		N N	WALK-IN	9	2.3	45	ЪВ
Temperature acceptable, seals intact, SS 0608066-07E 08/09/06 MW-3A 08/09/06 10:28:00 AM		Aqueous		N N	WALK-IN	~10	2.3	45	РВ
rature acceptable, seals intact, SS			14	i				!	
Ubudubb-U/F Udvug/Ub MWV-3A UdvUg/Ub 10:28:UU AM Temperature accentable: seals intact: SS		Aqueous		Z K	KEF01		2.3	45	БВ
0608066-08A 08/09/06 MW-6B 08/09/06 10:20:00 AM		Aqueous		Ň	WALK-IN	ç	4.9	51	PB
rature acceptable, seals intact, SS						t	0		
Ubudubb-UBB UB/U9/Ub MWV-bB UB/U9/Ub 10:20:00 AM Tammaratitra accantabla soals intact SS		Aqueous		2	WALK-IN	9	4.9	51	ЪВ
0608066-08C 08/09/06 MWV-6B 08/09/06 10:20:00 AM		Aqueous		Ň	WALK-IN	Ş	4.9	51	РВ
Temperature acceptable, seals intact, SS 0608066-08D 08/09/06 MVV-6B 08/09/06 10:20:00 AM		Anneous		M	WAI K-IN	ų	0 4	5.1 2	ad
Temperature acceptable, seals intact, SS						0	2	5	2 -
weather and an address of the states manufacture of the states were all and the states and and and and an and a Thursday, August 10, 2006							Page 2 of 3	e 2 of 3	

	ц Г	5	51		ŗ.	5	Т	5	51	5	51		, LC	5	ъ.1		45	2
	0	ŗ	4.9		4.9		4.9	2	4.9	1	4.9		4.9		4.9		53	2
	1 0	2			\$		y	1	\$	I	9		>10					
	WAI K-IN		REF01		WALK-IN		WALK-IN		WALK-IN	-	WALK-IN		WALK-IN		REF01		REF01	
	-		2		-		-		-		-		*		2		-	
	,																	
an a																		
	Aqueous		Aqueous		Aqueous		Aqueous		Aqueous		Aqueous		Aqueous		Aqueous		Trip Blank	
	08/09/06 10:20:00 AM		08/09/06 10:20:00 AM Aqueous		08/09/06 10:15:00 AM		08/09/06 10:15:00 AM Aqueous		08/09/06 10:15:00 AM Aqueous		08/09/06							
	MW-6B	Temperature acceptable, seals intact, SS	MW-6B	Temperature acceptable, seals intact, SS	MW-7A	Temperature acceptable, seals intact, SS	MW-7A	Temperature acceptable, seals intact, SS	MW-7A	Temperature acceptable, seals intact, SS	MW-7A	Temperature acceptable, seals intact, SS	MW-7A	Temperature acceptable, seals intact, SS	MW-7A	Temperature acceptable, seals intact, SS	TRIP BLANK	Temperature acceptable, seals intact, SS
	08/09/06	rature accept	08/09/06	rature accept:	08/09/06	rature accept	08/09/06	rature accepts	08/09/06	ature accepts	08/09/06	ature accepts	90/60/80	ature accepts	08/09/06	ature accepts	08/09/06	ature accepts
	0608066-08E 08/09/06	Temper	0608066-08F 08/09/06	Temper	0608066-09A 08/09/06 MW-7A	Temper	0608066-09B 08/09/06 MWV-7A	Temper	0608066-09C 08/09/06	Temper	0608066-09D 08/09/06	Temper	0608066-09E 08/09/06	Temper	0608066-09F 08/09/06	Temper	0608066-10A 08/09/06	Temper

БЧ

ВВ

РВ

ЪВ

ЪВ

РΒ

РВ

ВЧ

ВЧ

oro-vortantestationalistication vortantestation variable to the second of the second se

Page 3 of 3

CORTLAND COUNTY LANDFILL -- TOW SLEY SITE FIELD SAMPLING DATA SHEETS i)

QUARTER 3

.

2006

BEL LOG # 060 8066

DATES(S) PURGED: $\Re |\mathfrak{C}| \mathfrak{o}_{\mathcal{O}}$

57 - 10 - 13

র ব

TECHNICIANS:

DATE(S) SAMPLED: C/q/0)

TECHNICIANS: È MÀ

TESTING:

SDG #

Well #	Depth to Water	Well Depth	Purge Volume	Temp. (c)	Hd	÷	Cond.	Turb.	Calor Sheen/Ma	Color/Odor Sheen/Maintenance	Time Sampled
MW-1A 	2.97	30	81/a	19.5 7.53	7.52	190 353	353	ß	Clocky /	100/815/AB	hsib
MW-1B -02	3.24	51	24	16.4	P.U.7	155 244	त्रपत	QL.	doetly / pro	douty proper men	Side
MW-2A - 05	<i>b.</i> [0	اع	Ŀ	51.9 2:21		120		195	May /Sin /000/ Jead)	may/Sw	10-11
うら - つつ	b.83	39	0	15.9	6.35	195 1416	1416	18.7	Clerr/100	Me / well and	10:05
MW-3A - 07	9.13	18	4/12	5:51	15.3 7.01	115	342	5.3	Close NO	5.3 Close 1, 100 per 5/ Nuch 10:28	10:28
MW-6B - 08	1979	36	3	12.2	13.2 7.52 225 304	225	304	15,8	Orav Ino/	15.8 CLERTINO/NS/NM	10:20
MW-7A - 09	378	81	/L	4.71	17.4 6.34 245 1437	245	1437	13.6	13.6 Moudu/NoiNSINM	NS N W	0:15
(sm/sm 2)-mW									6		
									-		
									2		
										6	
Legend: NO= No Odor/NS= No Sheen/NM= No maintenance required/NNL=Needs new lock	S= No Sheen/NM= I	No maintenance	required/NN	IL=Needs	new lock						

'n

Appendix C

Analytical Laboratory Results and Internal Quality Control Summary Quarter 4 2006

Cortland County Towslee Landfill

.

PP

CORTLAND COUNTY LANDFILL TOWSLEY SITE

Fourth Quarter 2006

Routine Analyses

Prepared for:

CORTLAND COUNTY SOIL & WATER CONSERVATION DISTRICT 100 GRANGE PLACE, ROOM 204 CORTLAND, NY 13045

Prepared by:

BUCK ENVIRONMENTAL LABORATORIES, INC. PO BOX 5150 3821 BUCK DRIVE CORTLAND, NY 13045

1

1.2

TABLE OF CONTENTS

1.	Laboratory Narrative
2.	Laboratory Reports
3.	Quality Control Data
4.	Field Data

5. Chains of Custody

÷

an the second

(n. 1997) Antoneous mil

فرينية

Laboratory Narrative Cortland County Landfill Towsley Site

Lab Log No. 0610083

December 20, 2006

Mr. Patrick Reidy Cortland County Soil and Water Conservation District Room 204 100 Grange Place Cortland, NY 13045

Re: Cortland County Landfill – Towsley Site Fourth Quarter - 2006

The data in this package represent results of analysis of the Part 360 Routine Parameters for samples from seven wells from the Towsley site of the Cortland County Landfill. Eric Monsen and Ernest Spencer of Buck Environmental Laboratories, Inc. (BEL) purged the wells on October 9, 2006 and sampled the wells on October 10, 2006.

Following water depth measurement (from top of casing to water), a minimum of three well volumes was purged using manual bailers or the well was purged to dryness. Field measurements of temperature, depth, pH, Eh, conductivity and turbidity were made.

Analytical methods, preservatives, hold time, and containers for all laboratory analytes complied with requirements of the New York State Department of Health ELAP program. Instrument calibrations and blanks met the Laboratory's QC protocol. All analytical results were reviewed for compliance with the Laboratory QA/QC Manual, the NYSDOH-ELAP Certification Manual and the contractual requirements with Cortland County Soil & Water Conservation District. The laboratory QA/QC forms enclosed in this volume include those for a fortified sample ("spike," labeled "MS") and a duplicate fortified sample ("dup," labeled "MSD").

Thank you for the opportunity to provide this information and please let me know if there _____ are any questions.

John H. Buck, P.E. Laboratory Director

n:\office\barb\landfill\cortland-ccswcd\Towsley 4_2006 narrative.doc

3821 Buck Drive, P.O. 80x 5150, Cottland, NY 13045 • 607.753.3403 fax 607.753.3415 Branch Office: 14 Smith Avenue, Binghamton, NY 13904 • 607.771.0866 fax 607.771.0966

610083	Qual		PO Box 5150 nd, NY 13045 FAX 753.3415
Lab Log #0610083	U,	BB 3 03 BBRATOR	PO Box 5150 Cortland, NY 13045 .3403 FAX 753.3415
Lab	<u>Units</u>	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	PO Box 5150 Cortland, NY 13045 Tel 607.753.3403 FAX 753.3415
	FinalVal	ND mg/L 43.9 mg/L 43.9 mg/L 8.11 mg/L 9.43 mg/L 13.5 mg/L 13.5 mg/L 13.2 mg/L 13.3 mg/L 13.3 mg/L 13.3 mg/L 13.4 mg/L 13.5 mg/L 14.9 mg/L 170 mg/L 14.9 mg/L 170 mg/L 14.9	
e T	TOA	0.005 0.035 0.005 0.005 0.005 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	(
		ilterable)	
	Analyte	Cadmium Cadrium Cadrium Iron Lead Magnesium Manganese Potassium Sodium Sodium Sodium Manganese Potassium Sodium Specific Conductance Depth Hardness (As CaCO3) Biochemical Oxygen Demand Specific Conductance Depth Hardness (As CaCO3) Bromide Chloride Depth Hardness (As CaCO3) Bromide Chloride Sulfate Nitrogen, Nitrite Sulfate Nitrogen, Nitrite Sulfate Nitrogen, Nitrite Sulfate Nitrogen, Nitrite Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Carbon, Total Cral Dissolved Solids (Residue, Filterable) Temperature Nitrogen, Kjeldahl, Total Cradmium Cadmium Cadmium Cadmium Cadmium Sodium Manganese Potassium Manganese Potassium Sodium Sodium Conductance Depth	1 of 6
2		Cadmium Cadmium Iron Lead Magnesium Magnesium Manganese Potassium Sodium Sodium Sodium Sodium Sodium Hardness (As CaCO3) Biochemical Oxygen Demand Specific Conductance Depth Hardness (As CaCO3) Bromide Chloride Nitrogen, Nitrite Sulfate Nitrogen, Nitrite Chloride Nitrogen, Nitrite Sulfate Nitrogen, Nitrite Sulfate Nitrogen, Nitrite Chloride Nitrogen, Nitrite Calcium Total Dissolved Solids (Rei Sulfate Nitrogen, Kjeldahl, Total Organic Carbon, Total Dissolved Solids (Rei Sulfate Nitrogen, Kjeldahl, Total Cradmium Calcium Iron Lead Magnesium Manganese Potassium Sodium Specific Conductance Depth Depth	
a	AnalDate	12/14/06 12/14/06 12/14/06 12/14/06 12/14/06 12/14/06 10/11/06/06 10/11/06/06 10/10/10/06 10/10/10/06 10/12/06 10/12/06 10/12/06 10/12/06 10/12/06 10/12/06 10/12/06 10/12/06 10/12/06 10/11/06 10/11/06 12/14/06 12/14/06 12/14/06 12/14/06 12/14/06 12/14/06 12/14/06 12/14/06 12/14/06 12/14/06 12/14/06 12/14/06 12/14/06 12/14/06 12/14/06 12/14/06 12/14/06 12/14/06 12/14/06 12/11/06 10/11/06 10/10/10/06	
	TestNo	Sw6010A Sw6010A Sw6010A Sw6010A Sw6010A Sw6010A Sw6010A Sw6010A Sw6010A Sw6010A E310.1 405.1 6470.1 6130.2 6300 6300 63000 63000 63000 63000 6350.1 6120.1 6120.1 6010A 63000 60000 60000 60000 60000 60000 60000 60000 60000 60000 60000 60000 600000 6000000	١
CORTLAND COUNTY LANDFILL Towsley Site Sampled: 10/10/06	IM, ES ID <u>TestCode</u>	ICP ICP ICP ICP ICP ICP ICP ICP ICP WALK WCOND WCCOND	
CORTLAND COUNTY Towsley Site Sampled: 10/10/06	sampler: EHM, ES <u>ClientSampID</u>	MW-14 MW-14 MW-14 MW-14 MW-14 MW-14 MW-14 MW-14 MW-14 MW-14 MW-14 MW-14 MW-18 MW MW-18 MW-18 MW-18 MW-18 MW-18 MW-18 MW-18 MW-18 MW-18 MW-18 MW-18 MW-18 MW-	•

Contract of the second

N. Comment

The strength of the strength o

Che un der seiner der s

. .

.

CORTLAND COUNTY LANDFILL Towsley Site

Sampled: 10/10/06 Sampler: EHM, ES

_1		
Units	mg/r mg/r mg/r mg/r mg/r mg/r mg/r mg/r	NTU mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L
FinalVal	115 82 82 82 82 82 82 82 81 82 82 82 82 82 82 82 82 82 82 82 82 82	15.6 ND 88.5 10.1 0.006 13.6 13.6 12.7 81.4 823 81.4 823 81.4 823 81.4 801 85.8 90 801 85.1 801 85.1 801 81.2 81.1 81.1 81.1 81.1 81.1 81.1 81.
PQL	1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.05 0.005 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.005 0.1 0.1 0.1 0.1 0.01 0.01 0.01 0
Analyte	EH Hardness (As CaCO3) Bromide Chloride Nitrogen, Nitrate (As N) Nitrogen, Nitrite Sulfate Nitrogen, Ammonia (As N) PH Nitrogen, Ammonia (As N) Phenolics, Total Recoverable Temperature Nitrogen, Kjeldahl, Total Nitrogen, Kjeldahl, Total Nitrogen, Kjeldahl, Total Draganic Carbon, Total	Turbidity Cadmium Cadmium Calcium Iron Lead Magnesium Manganese Potassium Sodium Sodium Sodium Sodium Alkalinity, Total (As CaCO3) Biochemical Oxygen Demand Chemical Oxygen Nitrite Suffate Nitrogen, Nitrite Suffate Nitrogen, Nitrite Suffate Nitrogen, Nitrite Suffate Nitrogen, Nitrite Suffate Nitrogen, Kieldahl, Total Chemical Oxygen Chemical Oxygen Demande Chemical Oxygen Demand
AnalDate	10/10/06 12/19/06 10/12/06 10/12/06 10/12/06 10/12/06 10/12/06 10/12/06 10/10/06 10/10/06 10/12/06	10/10/06 12/14/06 12/14/06 12/14/06 12/14/06 12/14/06 12/14/06 12/14/06 12/14/06 12/14/06 10/11/06/06 10/10/06 10/10/06 10/12/06 10/10/100 10/10/06 10/10/06 10/10/06
TestNo	D1498 E130.2 E300 E300 E300 E300 E300 E300 E300 E350.1 E150.1 E150.1 E150.1 E150.1 E150.1 E150.1 E150.1 E150.1 E150.1 E150.1 E150.1	E180.1 Sw6010A Sw6010A Sw6010A Sw6010A Sw6010A Sw6010A E310.1 405.1 E310.1 depth D1498 E120.1 E300 E300 E300 E300 E300 E300 E300 E30
mpiD <u>TestCode</u>	WEH WHARD_CALC WIC WIC WIC WIC WIC WIC WIC WTB WTERP WTEMP WTKN WTIRB FIFLD	WIURB_FIELD ICP ICP ICP ICP ICP ICP ICP ICP ICP ICP
ClientSampID	MW-1B MWW-1B MWW-1B MWW-1B MWW-1B MWW-1B MWW-1B MWW-1B MWW-1B MWW-1B MWW-1B MWW-1B	MW 2A MW 2A

Lab Log #0610083

S.

and a second

17.34 C

٣

Qual

2 of 6

			AND TOTAL STATES					
CORTLAND CC	CORTLAND COUNTY LANDFILL						Lab Log	Lab Log #0610083
Sampled: 10/10/06	10/06 EC			-				
Sampler: Entw, ES <u>ClientSampID</u>	l, E3 <u>TestCode</u>	TestNo	<u>AnalDate</u>	Analyte	POL	FinalVal	Units	Qual
MW 2A MW 2A	WTOC WTURB_FIELD	E415.1 E180.1	10/24/06 10/10/06	Organic Carbon, Total Turbidity	2 0.05	5.68 27	mg/L NTU	
MW-2B MW-2B	CP CP	SW6010A	12/14/06	Cadmium	0.005	ON O	mg/L	
MW-2B	ICP ICP	SW6010A	12/14/06	Calcial I	0.035	2007	mg/L	
MW-2B	ICP	SW6010A	12/14/06	Lead	0.005	QN	mg/L	
MW-2B	ICP	SW6010A	12/14/06	Magnesium	0.32	42.7	mg/L	
MW-2B	ICP	SW6010A	12/14/06	Manganese	0.005	6.46	mg/L	
MW-2B	ICP	SW6010A	12/14/06	Potassium	0.26	2.38	mg/L	
MW-ZB	ICP WALK	SW6010A	12/14/06	Sodium Albeitaite Tetal (Ac CoCO3)	0.67	51	mg/L	
MW-2B		105 1 105 1	10/11/0E	Alkalillity, Futat (As CacCus) Riochamical Ovvren Demand	NC	13	mg/L cacus	
MW-2B	WCOD	E410.1	11/06/06		10	27	mg/L	
MW-2B	WCOND	E120.1	10/10/06	Specific Conductance	5	1540	umhos/cm	
MW-2B	WDEPTH	depth	10/10/06	Depth	0.01	6.33	feet	
MW-2B	WEH	D1498	10/10/06	EH : : : : : : : : : : : : : : : : : : :	1	115	Ъ	
MW-ZB MW-2B	WHARD_CALC WIC	E130.2 F300	12/19/06	Hardness (As CaCO3) Rromide		675 0 012	rng/L	
MW-2B	MIC	E300	10/12/06	Chloride	1.0	121	mg/ L mg/l	
MW-2B	WIC	E300	10/12/06	Nitrogen, Nitrate (As N)	0.1	QN	mg/L	
MW-2B	WIC ,	E300	10/12/06	Nitrogen, Nitrite	1	ND	mg/L	
MW-2B	WIC	E300	10/12/06	Sulfate	1	ND	mg/L	
MW-2B	WNH3	E350.1	10/24/06	Nitrogen, Ammonia (As N)	0.1	0.282	mg/L	
		E150.1	11/02/06	pH Dhenolios Total Doomorable	0.1	6.52	pH units	
MW-2B	WTDS	E160.1	10/16/06	Trienorius, Total Necoverable Total Dissolved Solids (Residue Filterable)	c00.0	0.1 980	mg/L mg/l	
MW-2B	WTEMP	E170.1	10/10/06		0.1	14.5	ШБ/ L С	
MW-2B	WTKN	E351.3	10/17/06	Nitrogen, Kjeldahl, Total	0.2	1.9	mg/L	
MW-2B	WTOC	E415.1	10/24/06	Organic Carbon, Total	2	7.49	mg/L	
MW-2B	WTURB_FIELD	E180.1	10/10/06	Turbidity	0.05	28	NTU	
MW-3A	ICP	SW6010A	12/14/06	Cadmium	0.005	ND	mg/L	
MW-3A	C 4	SW6010A	12/14/06	Calcium	0.21	48.3	mg/L	
MW-3A MW-3A	CP D	SW6010A	12/14/06	Iron Lead	0.035	0.283 ND	mg/L	
MW-3A	ICP	SW6010A	12/14/06	Magnesium	0.32	0	mg/l	
MW-3A	ICP	SW6010A	12/14/06	Manganese	0.005	0.176	mg/L	
MW 3A	ICP	SW6010A	12/14/06	Potassium	0.26	0.937	mg/L	
MW 3A	ICP MALK	SW6010A	12/14/06	Sodium Alkaliaity Total (Ac Corrig)	0.67	6.03	mg/L	
MW-3A	WBOD5	405.1	10/11/06	Biochemical Oxygen Demand	νm	DN 251	mg/L mg/L	
				2			0	
					BL	ICK ENVIRON	BUCK ENVIRONMENTAL LABORATORIES, INC.	TORIES, INC.
							Contra-	PO Box 5150
				3 of 6	•		Tel 607.753.3403 FAX 753.3415	FAX 753.3415

No. - - No.

ha an anna an Artaine Na haonn an Artaine Na haonn an Artaine Na haonn an Artaine

t and the second

· · · · · · · · · · · · ·

.

Qual	•		IBORATORIES, INC. PO Box 5150 Cortland, NY 13045 3403 FAX 753.3415
<u>Units</u>	mg/L feet mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	BUCK ENVIRONMENTAL LABORATORIES, INC. PO Box 5150 Cortland, NY 13045 Tel 607.753.3403 FAX 753.3415
FinalVal	ND 397 8.74 8.74 158 0.143 12.7 ND ND ND 8.01 ND 8.01 ND 0.266 ND 207 15.7 ND 7.2	ND 37.4 0.195 0.195 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.133 12.7 12.7 12.7 12.7 12.7 12.7 ND ND ND ND ND ND ND ND ND ND ND ND ND	UCK ENVIRON
IOI	$\begin{array}{c}10\\5\\0.01\\1\\1\\0.1\\0.1\\0.1\\0.1\\0.1\\0.2\\2\\0.05\\0.05\end{array}$	$\begin{array}{c} 0.005\\ 0.21\\ 0.035\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.01\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.$	ũ
Analyte	Cherrical Oxygen Demand Specific Conductance Depth EH Hardness (As CaCO3) Bromide Chloride Nitrogen, Nitrate (As N) Nitrogen, Nitrite Sulfate Nitrogen, Nitrite Sulfate Nitrogen, Ammonia (As N) PH Nitrogen, Ammonia (As N) Phenolics, Total Recoverable Total Dissolved Solids (Residue, Filterable) Temperature Nitrogen, Kjeldahl, Total Organic Carbon, Total Turbidity	Cadmium Calcium Iron Lead Magnesium Magnesium Magnese Potassium Sodium Sodium Sodium Specific Conductance Chemical Oxygen Demand Chemical Oxygen Demand Chemical Oxygen Demand Specific Conductance Depth EH Hardness (As CaCO3) Bromide Chloride Nitrogen, Nitrate (As N) Nitrogen, Mitrate (As N) Nitrogen, Total Recoverable	4 of 6
AnalDate	11/06/06 10/10/06 10/10/06 10/12/06 10/12/06 10/12/06 10/12/06 10/12/06 10/12/06 10/10/06 10/10/06 10/10/06 10/10/06 10/10/06	12/14/06 12/14/06 12/14/06 12/14/06 12/14/06 12/14/06 10/11/06 10/11/06 10/11/06 10/11/06 10/11/06 10/12/06 10/12/06 10/12/06 10/12/06 10/12/06 10/12/06 10/12/06 10/12/06 10/12/06 10/12/06 10/12/06 10/12/06 10/12/06	
TestNo	E410.1 depth depth D1498 E130.2 E300 E300 E300 E3001 E150.1 E150.1 E150.1 E150.1 E150.1 E150.1 E150.1 E150.1 E180.1	SW6010A SW6010A SW6010A SW6010A SW6010A SW6010A SW6010A SW6010A E310.1 E410.1 E410.1 E120.1 depth D1498 E1300 E300 E300 E300 E300 E300 E300 E30	
/10/06 M, ES <u>1 estCode</u>	WCOND WCOND WEH WEH WEH WIC WIC WIC WIC WIC WIC WIC WIC WIC WIC	ICP ICP ICP ICP ICP ICP ICP ICP WALK WALK WALK WALK WALK WALK WALK WALK	
Sampled: 10/10/06 Sampler: EHM, ES <u>ClientSamplD</u>]	MW-3A MM-3A MM-3A	MW-68 MW-68 MWV-	

National States

Mary out of the second

gint of the state

an the second second

an na marana. Para sa marana

and the second

CORTLAND COUNTY LANDFILL Towsley Site

.

Strategy (1) (1)

.....

<u>Qual</u>

CORTLAND COUNTY LANDFILL Towsley Site

Sampler: EHM. ES	ES						
ClientSamplD	TestCode	TestNo	<u>AnalDate</u>	Analyte	TOd	FinalVal	<u>Units</u>
MW-6B	WTDS	E160.1	10/16/06	Total Dissolved Solids (Residue, Filterable)	10	187	mg/L
MW-6B	WTEMP	E170.1	10/10/06	Temperature	0.1	14.3	°.
MW-6B	WTKN	E351.3	10/17/06	Nitrogen, Kjeldahl, Total	0.2	0.279	mg/L
MW-6B	WTOC	E415.1	10/24/06	Organic Carbon, Total	2	QN	mg/L
MW-6B	WTURB FIELD	E180.1	10/10/06	Turbidity	0.05	14.2	NTU
MW-7A	ICP	SW6010A	12/14/06	Cadmium	0.005	QN	, mg/L
MW-7A	ICP	SW6010A	12/14/06	Calcium	0.21	148	mg/L
MW-7A	ICP	SW6010A	12/14/06	Iron	0.035	2.78	mg/L
MW-7A	ICP	SW6010A	12/14/06	Lead	0.005	QN	mg/L
MW-7A	ICP	SW6010A	12/14/06	Magnesium	0.32	38	mg/L
MW-7A	ICP	SW6010A	12/14/06	Manganese	0.005	4.85	mg/L
MW-7A	ICP	SW6010A	12/14/06	Potassium	0.26	2.03	mg/L
MW-7A	ICP	SW6010A	12/14/06	Sodium	0.67	128	mg/L
MW-7A	WALK	E310.1	10/19/06	Alkalinity, Total (As CaCO3)	2	635	mg/L CaCO3
MW-7A	WBOD5	405.1	10/11/06	Biochemical Oxygen Demand	Ð	QN	mg/L
MW-7A	WCOD	E410.1	11/06/06	Chemical Oxygen Demand	10	20.5	mg/L
MW-7A	WCOND	E120.1	10/10/06	Specific Conductance	ഹ	1480	µmhos/cm
MW-7A	WDEPTH	depth	10/10/06	Depth	0.01	3.48	feet
MW-7A	WEH	D1498	10/10/06	EH	1	190	m/
MW-7A	WHARD_CALC	E130.2	12/19/06	Hardness (As CaCO3)	-1	526	mg/L
MW-7A	WIC	E300	10/12/06	Bromíde	0.1	0.483	mg/L
MW-7A	WIC	E300	10/12/06	Chloride	1	85	mg/L
MW-7A	WIC	E300	10/12/06	Nitrogen, Nitrate (As N)	0.1	QN	mg/L
MW-7A	WIC	E300	10/12/06	Nitrogen, Nitrite	0.1	QN	mg/L
MW-7A	WIC	E300	10/12/06	Sulfate	1	14.1	mg/L
MW-7A	WNH3	E350.1	10/24/06	Nitrogen, Ammonia (As N)	0.1	QN	mg/L
MW-7A	WPH_FIELD	E150.1	10/10/06	pH	0.1	6.62	pH units
MW-7A	WPHENOL	E420.1	11/02/06	Phenolics, Total Recoverable	0.005	QN	mg/L
MW-7A	WTDS	E160.1	10/16/06	Total Dissolved Solids (Residue, Filterable)	10	949	rrig/L
MW-7A	WTEMP	E170.1	10/10/06	Temperature	0.1	13.9	°.
MW-7A	WTKN	E351.3	10/17/06	Nitrogen, Kjeldahl, Total	0.2	1.11	mg/L
MW-7A	WTOC	E415.1	10/24/06	Organic Carbon, Total	2	7.46	mg/L
MW-7A	WTURB_FIELD	E180.1	10/10/06	Turbidity	0.05	42	NTU

BUCK ENVIRONMENTAL LABORATORIES, INC. PO Box 5150 Cortland, NY 13045 Tel 607.753.3403 FAX 753.3415

5 of 6.

CORTLAND COUNTY LANDFILL Sampled: 10/10/06 Towsley Site

TestCode Sampler: EHM, ES ClientSampID

AnalDate TestNo

<u>Analyte</u>

FinalVal <u>Por</u>

Qual

Units

Lab Log #0610083

Department of Health ELAP Program. Buck Environmental Laboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any action or the consequence of any action taken in connection with this This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State report.

Qualifiers:

PQL --->Laboratory Practical Limit of Quantitation ND Not detected at the PQL indicated

J ... > Result is estimated, reported value is less than PQL

B ---> Result is estimated, analyte detected in blank

S ---> Result is estimated, surrogate or spike recovery outside of acceptance limits

R ...> Results is estimated, RPD outside of acceptance limits E ...> Result is estimated, reported value exceeds upper quantitation limit

NYSDOH ELAP #10795 Laboratory Director John H. Buck, P.E.

Cortland, NY 13045 BUCK ENVIRONMENTAL LABORATORIES, INC. PO Box 5150

Tel 607.753.3403 FAX 753.3415

Buck Environmental Labs, Inc.	Labs, Inc.								Date: 20-Dec-06	Dec-06	
CLIENT: CORTLAN Work Order: 0610083	CORTLAND CO SOIL & WATER 0610083	R				ANAL	YTIC/	ANALYTICAL QC SUMMARY REPORT	MMAR	Y REPO	RT
	Y SITE							TestCode:]	ICP		
Sample ID: 0610083-02AMS	SampType: MS	TestCode: ICP	le: ICP	Units: mg/L		Prep Date:	e: 10/12/06	96	Run ID: PE:	Run ID: PE3000_061214B	B
Client ID: MW-1B	Batch ID: 7406	TestN	TestNo: SW6010A	(SW3010A)		Analysis Date:	e: 12/14/06	90	SeqNo: 401659	1659	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cadmium	0.04517	0.00500	0.05	0	90.3	75	125	0	0		
Calcium	41.84	0.210	20	24.13	88.5	75	125	0	0		
Iron	1.098	0.0350	-	0.2733	82.5	75	125	0	0 ,		
Lead	0.4451	0.00500	0.5	0	89	75	125	0	0	•	
Magnesium	22.37	0.320	20	5.31	85.3	75	125	0	0		
Manganese	0.581	0.00500	0.5	0.1263	6.06	75	125	0	0		
Potassium	16.65	0.260	20	0.3742	81.4	75	125	0	0		
Sodium	22.98	0.670	20	5.916	85.3	75	125	0	0		
Sample ID: 0610083-02AMSD	SampType: MSD	TestCode: ICP	le: ICP	Units. mg/L	-	Prep Date:	e: 10/12/06	96	Run ID: PE	Run ID: PE3000_061214B	
Client ID: MW-1B	Batch ID: 7406	TestN	TestNo: SW6010A	(SW3010A)		Analysis Date:	e: 12/14/06	96	SeqNo: 401660	660	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cadmium	0.04651	0.00500	0.05	0	93	75	125	0.04517	2.92	20	
Calcium	42.93	0.210	20	24.13	94	75	125	41.84	2.56	20	
Iron.	1.536	0.0350	-	0.2733	126	75	125	1.098	33.3	20	SR
Lead	0.4635	0.00500	0.5	0	92.7	75	125	0.4451	4.06	20	
Magnesium	23.37	0.320	20	5.31	90.3	75	125	22.37	4.37	20	
Manganese	0.6646	0.00500	0.5	0.1263	108	75	125	0.581	13.4	20	
Polassium	17.08	0.260	20	0.3742	83.5	75	125	16.65	2.57	20	
Sodium	23.81	0.670	20	5.916	89.5	75	125	22.98	3.54	20	
		-									

ŗ.

13

1. .

1

Manufacture of the second state

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 1 of 1

	Inc.
	Labs,
	Environmental
,	Buck

.

Date: 22-Nov-06

1

Supervised and

provide a second se

Andrew market

and the second secon

1.0

۲

 CLIENT: CORTLAND CO SOIL & WATER Work Order: 0610083 Project: TOWSLEY SITE

ANALYTICAL QC SUMMARY REPORT TestNo: E310.1

AnalyteResultPQLSPK vAlkalinity, Total (As CaCO3)1902.00Sample ID: 0610083-02BMSD × SampType: MSDTestCode: WALClient ID:WW-1BBatch ID:RSDTestNo:E31th ID:ResultPQLSPK v	TestUode: WALN TestNo: E310.1	Units: mg/L CaCO3	Prep Date: Analysis Date: 10/19/06	/19/06	Run ID: WET CHEM-123_061019 SeqNo: 394769
190 2.00 D SampType: MSD TestCode Batch ID: R21003 TestNo Result PQL	PQL SPK value SPK Ref Val		%REC LowLimit HighLimit RPD Ref Val	imit RPD Ref Val	%RPD RPDLimit Qual
ID: 0610083-02BMSD 、 SampType: MSD TestCode): MW-1B Batch ID: R21003 TestNo Result PQL	2.00 100	89 101	82.7	115 0	0
Result PQL	TestCode: WALK TestNo: E310.1	Units: mg/L CaCO3	Prep Date: Analysis Date: 10/19/06	/19/06	Run ID: WET CHEM-123_061019 SeqNo: 394770
	PQL SPK value SPK Ref Val		%REC LowLimit HighLimit RPD Ref Val	imit RPD Ref Val	%RPD RPDLimit Qual
Alkalinity, Totai (As CaCO3) 188 2.00	2.00 100	66 68	82.7	115 190	1.06 20

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

Page 1 of 1

B - Analyte detected in the associated Method Blank

and a second

Sec.

Buck Environmental Labs, Inc.	Labs, Inc.						Date: 22-Nov-06
CLIENT: CORTLAN Work Order: 0610083	CORTLAND CO SOIL, & WATER 0610083			7	ANALY	TICAL QC SU	ANALYTICAL QC SUMMARY REPORT
	SITE					TestNo:	E410.1
Sample ID: 0610082-17CMS Client ID: ZZZZ	SampType: MS Batch ID: R21089	TestCode: WCOD ^T estNo: E410.1	Units: mg/L	×	Prep Date: Analysis Date:	11/06/06	Run ID: WET CHEM-123_061106 SeqNo: 396235
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chemical Oxygen Demand	307.2	20.0 100	216.8	90.4	79.5	131 0	0
Sample ID: 0610083-02CMS Client ID: MW-1B	SampType: MS Batch ID: R21089	TestCode: WCOD TestNo: E410.1	Units: mg/L	Ä	Prep Date: Analysis Date:	11/06/06	Run ID: WET CHEM-123_061106 SeqNo: 396247
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chemical Oxygen Demand	53.77	10. 0 50	0	108	79.5	131 0	0
Sample ID: 0610082-17CMSD Client ID: ZZZZ	SampType: MSD Batch ID: R21089	TestCode: WCOD TestNo: E410.1	Units: mg/L	<	Prep Date: Analysis Date:	11/06/06	Run ID: WET CHEM-123_061106 SeqNo: 396236
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chemical Oxygen Demand	304	20.0 100	216.8	87.2	79.5	131 307.2	1.05 16
Sample ID: 0610083-02CMSD Client ID: MW-1B	SampType: MSD Batch ID: R21089	TestCode: WCOD TestNo: E410.1	Units: mg/L	Ä	Prep Date: Analysis Date:	11/06/06	Run ID: WET CHEM-123_061106 SeqNo: 396248
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chemical Oxygen Demand	47.01	10.0	D	9	79.5	131 53.77	13.4 16
Qualifiers: ND - Not Detec	ND - Not Detected at the Reporting Limit	S - Spi	S - Spike Recovery outside accepted recovery limits	cepted recov	ery limits	B - Analyte detec	B - Analyte detected in the associated Method Blank

ter and the second

and strength of the

griften in tra

Hard and the second second

777

Page 1 of 1

5 R - RPD outside accepted recovery limits 1 5 1

J - Analyte detected below quantitation limits 191 Inda Not Dete

Work Urder: 0610083		0610083				ANALY	ILCAL	AC DU	ANALY HUAL UC SUMMARY REPORT	KEFUF	.
	SITE						Tes	TestNo: E	E300		
Sample ID: 0610083-02BMS	SampType: MS	TestCode: WIC	le: WIC	Units: mg/L		Prep Date:			Run ID: LACHAT 8000_061012A	AT 8000_06	1012A
Client ID: MW-1B	Batch ID: R20964	Test	TestNo: E300			Analysis Date:	10/12/06		SeqNo: 393764	4	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RI	RPD Ref Val	%RPD RI	RPDLimit	Qual
Broimide	20.16	0,100	20	0	101	20	114	0	0		
Chloride	9.04	0.100	8	0.611	105	41	133	0	0		
Nitrogen, Nitrate (As N)	3.936	0.100	4	0	98.4	70	116	0	0		
Nitrogen, Nitrite	1.998	0.100	7	0	99.9	73.6	110	0	0		
Sulfate	23.72	1.00	20	3.762	99.8	67.6	121	0	0		
Sample ID: 0610082-17BMS	SampType: MS	TestCode: WIC	te: WIC	Units: mg/L		Prep Date:			Run ID: LACH	LACHAT 8000_061012A	31012
Client ID: ZZZZ	Batch ID: R20964	Test	TestNo: E300			Analysis Date:	10/12/06		SeqNo: 393775	5	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RI	RPD Ref Val	%RPD RI	RPDLimit	Qual
Chloride	360.1	1.00	80	362.5	-3.02	41	133	0		0	<i>v</i> .
Nitrogen, Nitrite	17.92	1.00	20	0	89.6	73.6	110	0	. 0		1
Sample ID: 0610083-02BMSD	SampType: MSD	TestCor	TestCode: WIC	Units: mg/L		Prep Date:			Run ID: LACH	LACHAT 8000 061012A	1012
Client ID: MW-1B	Batch ID: R20964	Test	TestNo: E300			Analysis Date:	10/12/06		SeqNo: 393765	- 40	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RI	RPD Ref Val	%RPD R	RPDLimit	Oual
Bromide	20	0.100	20	0	100	02	114	20.16	1		
Chloride	8.853	0.100	8	0.611	103	41	133	9.04	2.09	7.89	
Nitrogen, Nitrate (As N)	3.911	0.100	. 4	0	97.8	70	116	3.936	0.637	4.37	
Nitrogen, Nitrite	1.991	0.100	2	0	<u> 9</u> .6	73.6	110	1.998	0.351	5.05	
Sulfate	23.62	1.00	20	3.762	99.3	67.6	121	23.72	0.414	8.05	
Sample ID: 0610082-17BMSD	SampType: MSD	TestCor	TestCode: WIC	Units: mg/L		Prep Date:			Run ID: LACHAT 8000_061012A	AT 8000_00	51012/
Client ID: ZZZZ	Batch ID: R20964	Test	TestNo: E300			Analysis Date:	10/12/06		SeqNo: 393776	9	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit +	HighLimit RI	RPD Ref Val	%RPD R	RPDLimit	Qual
Chloride	356.2	1.00	80	362.5	-7,84	41	133	360.1	1.07	7.89	s
Nitrogen, Nitrite	17.86	1.00	20	0	89.3	73.6	110	17.92	0.335	5.05	

and the second second

.

Buck Environn	Buck Environmental Labs, Inc.						Date: 22-Nov-06	
CLIENT: CC Work Order: 06	CORTLAND CO SOIL & WATER 0610083				ANALYT	ICAL QC SU	ANALYTICAL QC SUMMARY REPORT	F
	TOWSLEY SITE					TestNo:	E350.1	
Sample ID: 0610083-02CMS Client ID: MW-1B	2CMS SampType: MS Batch ID: R20989	TestCode: WNH3 TestNo: E350.1	Units: mg/L		Prep Date: Analysis Date: 1	10/24/06	Run ID: LACHAT 8000_061024A SeqNo: 394423	024A
Analyte	Result	PQL SPK value	lue SPK Ref Val	%REC	LowLimit High	HighLimit RPD Ref Val	%RPD RPDLimit Q	Qual
Nitrogen, Ammonia (As N)	N) 0.8289	0.100	1	82.9	65	105 0	0	
Sample ID: 0610082-17CMS Client ID: ZZZZ	7CMS SampType: MS Batch ID: R20989	TestCode: WNH3 TestNo: E350.1	Units: mg/L		Prep Date: Analysis Date: 1	10/24/06	Run ID: LACHAT 8000_061024A SeqNo: 394429	024A
Analyte	Result	PQL SPK value	lue SPK Ref Val	%REC	LowLimit Higt	HighLimit RPD Ref Val	%RPD RPDLimit Q	Qual
Nitrogen, Ammonia (As N)	N) 277	10.0	100 175	102	65	105 0	0	ш
Sample ID: 0610123-04CMS Client ID: ZZZZ	4CMS SampType: MS Batch ID: R20989	TestCode: WNH3 TestNo: E350.1	Units: mg/L		Prep Date: Analysis Date: 1	10/24/06	Run ID: LACHAT 8000_061024A SeqNo: 394451	024A
Analyte	Result	PQL SPK value	lue SPK Ref Val	%REC	LowLimit High	HighLimit RPD Ref Val	%RPD RPDLimit Q	Qual
Nitrogen, Ammonia (As N)	N) 0.6205	0.100	1 0	62	65	105 0	o	s
Sample ID: 0610083-02CMSD	S.	TestCode: WNH3	Units: mg/L		1	a su a constante da la constant	Run ID: LACHAT 8000_061024A	0244
Client ID: MW-1B	Batch ID: R20989	TestNo: E350.1	_		Analysis Date: 1	10/24/06	SeqNo: 394424	
Analyte	Result	PQL SPK value	lue SPK Ref Val	%REC	LowLimit High	HighLimit RPD Ref Val	%RPD RPDLimit Q	Qual
Nitrogen, Ammonia (As N)	N) 0.7945	0.100	1 0	79.4	65	105 0.8289	4.24 13.2	
	Š	TestCode: WNH3	Units: mg/L		1		Run ID: LACHAT 8000_061024A	024A
Client ID; ZZZZ Analvte	Batch ID: R20989 Result	TestNo: E350.1 POI SPK value	l Lie SPK Ref Val	%RFC	Analysis Date: 1 LowI imit Hint	e: 10/24/06 Hinhl imit RPD Ref Val	SeqNo: 394430 %RPD RPDI imit Or	
Nitrogen, Ammonia (As N)	N) 275.2			100	1	1	13.2	Ш
Qualifiers: ND -	ND - Not Detected at the Reporting Limit	S -	S - Spike Recovery outside accepted recovery limits	ccepted reco	very limits	B - Analyte detee	B - Analyte detected in the associated Method Blank	
J - J	J - Analyte detected below quantitation fimits	ц Ц	R - RPD outside accented recovery limits	overy limits				5

Autor 1111

3. Jack 1997 - 1997 - 1

A considerant of the second

and the second second

in the second second

in the second

print and

.

Page 1 of 2

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

d Blank	e associated Mcthoo	B - Analyte detected in the associated Method Blank	- B	covery limits	e accepted rec	S - Spike Recovery outside accepted recovery limits	S - Sp		ND - Not Detected at the Reporting Limit	ND - Not Detected a	Qualifiers:
5000 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1										
						,					
											•
					**						
							·				
				6-2				-			
2 S	3.21 13.2	0.6205	105	65	64.1	0	-	0.100	0.6407	ia (As N)	Nitrogen, Ammonia (As N)
tt Qual	%RPD RPDLimit		LowLimit HighLimit RPD Ref Val		%REC	SPK Ref Val	SPK value	PQL	Result		
0_061024A	Run ID: LACHAT 8000_061024A	Run		Prep Date:		Units: mg/L	TestCode: WNH3	TestCo	SampType: MSD	S	Sample ID: 0610123-04CMSD
		TestNo: E350.1	Test						E	TOWSLEY SITE	Project:
ORT	ARY REP	ANALYTICAL QC SUMMARY REPORT	YTICAL	ANAL					CORTLAND CO SOIL & WATER 0610083	CORTLAND CC 0610083	CLIENT: Work Order:

Buck Environmental Labs, Inc.	Labs, Inc.				-	-			Date: 22-Nov-06	ov-06	
CLIENT: CORTLAN Work Order: 0610083	CORTLAND CO SOIL & WATER 0610083	R				ANALY	ANALYTICAL QC SUMMARY REPORT	SUN	IMARY	REPO	RT
Project: TOWSLEY SITE	ł site						TestNo:		E420.1		-
Sample ID: 0610082-17CMS Client ID: ZZZZZ	SampType: MS Batch ID: 7445	TestCode: WPHENOL TestNo: E420.1	VPHENOL 420.1	Units: mg/L ()	ď	Prep Date: Analysis Date:	10/27/06 11/02/06		Run ID: LACHAT 8000_061102A SeqNo: 395629	AT 8000_0 9	61102A
Analyte	Result	PQL SP	SPK value Sł	SPK Ref Val	%REC	LowLimit Hiç	HighLimit RPD Ref Val	f Val	%RPD R	RPDLimit	Qual
Phenolics, Total Recoverable	0.5088	0.0250	0.5	0.07216	87.3	53.2	118	0	0		
Sample ID: 0610083-02CMS Client ID: MW-1B	SampType: MS Batch ID: 7445	TestCade: WPHENOL TestNo: E420.1	VPHENOL 420.1	Units: mg/L ()	4	Prep Date: Analysis Date:	10/27/06 11/02/06		Run ID: LACHAT 8000_061102A SeqNo: 395640	AT 8000_0	61102A
Analyte	Result	PQL SP	SPK value Sł	SPK Ref Val	%REC	LowLimit Hig	HighLimit RPD Ref Val	f Val	%RPD R	RPDLimit	Quał
Phenolics, Total Recoverable	0.07376	0.00500	0.1	0.002425	71.3	53.2	118	0	0		
Sample ID: 0610082-17CMSD Client ID: ZZZZ	SampType: MSD Batch ID: 7445	TestCode: WPHENOL TestNo: E420.1	VPHENOL 420.1	Units: mg/L ()	4	Prep Date: Analysis Date:	10/27/06 11/02/06		Run ID. LACHAT 8000_061102A SeqNo: 395630	AT 8000_0 0	61102A
Analyte	Result	POLSP	SPK value SF	SPK Ref Val	%REC	LowLimit Hig	HighLimit RPD Ref Val	f Val	%RPD R	RPDLimit	Qual
Phenolics, Total Recoverable	0.393	0.0250	0.5	0.07216	64.2	53.2	118 0.5	0.5088	25.7	19.5	2
Sample ID: 0610083-02CMSD Client ID: MW-1B	SampType: MSD Batch ID: 7445	TestCade: WPHENOL TestNo: E420.1	VPHENOL 420.1	Units: mg/L ()	4	Prep Date: Analysis Date:	10/27/06 11/02/06		Run ID: LACHAT 8000_061102A SeqNo: 395641	AT 8000_0	61102A
Analyte	Result	POL SP	SPK value SF	SPK Ref Val	%REC	LowLimit Hig	HighLimit RPD Ref Val	f Val	%RPD R	RPDLimit	Qual
Phenolics, Total Recoverable	0.07468	0.00500	0.1	0.002425	72.3	53.2	118 0.07	0.07376	1.24	19.5	

100 X X 110

the provide states

R - RPD outside accepted recovery limits

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

B - Analyte detected in the associated Method Blank

Page 1 of 1

Inc.	
Labs.	
ental	
Environmenta	
Envii	
Buck	

Date: 22-Nov-06

2

Same in

and a second second

the second second

the design of the local states

CORTLAND CO SOIL & WATER CLIENT:

TOWSLEY SITE

0610083

Work Order:

Project:

TestNo: E160.1

ANALYTICAL QC SUMMARY REPORT

Sample ID: 0610082-17D	SampType: DUP	TestCod	TestCode: WTDS	Units: mg/L		Prep Date:			Run ID: WET CHEM-122_061016	T CHEM-122	2_061016
Client ID: ZZZZZ	Batch ID: R20935	TestN	TestNo: E160.1			Analysis Date: 10/16/06	3: 10/16/0	9	SeqNo: 393380	380	
Analyte	Result	PQL	SPK value	SPK value SPK Ref Vat	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Total Dissolved Solids (Residue, Filtera	le, Filtera 1857	10.0	0	0	0	0	0	1848	0.486	12.9	
Sample ID: 0610083-02D	SampType: DUP	TestCad	TestCade: WTDS	Units: mg/L		Prep Date:	i.		Run ID: WE	Run ID: WET CHEM-122_061016	2_061016
Client ID: MW-1B	Batch ID: R20935	TestN	TestNo: E160.1			Analysis Date: 10/16/06	a: 10/16/0	9	SeqNo: 393381	1381	
Analyte	Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	ĤighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Total Dissolved Solids (Residue, Filtera	ue, Filtera 118	10.0	0	0	0	0	0	120	1.68	12.9	

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

R - RPD outside accepted recovery limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Melhod Blank

Page 1 of 1

A CONTRACTOR OF											
CLIENT: CORTLA Work Order: 0610083	CORTLAND CO SOIL & WATER 0610083					ANALY	TICAL	QC SU	ANALYTICAL QC SUMMARY REPORT	REPO	RT
	Y SITE						Test	TestNo: E	E351.3		
Sample ID: 0610083-02CMS Client ID: MW-1B	SampType: MS Batch ID: 7416	TestCod	TestCode: WTKN TestNo: E351.3	Units: mg/L (E351.3)		Prep Date: 10/16/06 Analysis Date: 10/17/06	Prep Date: 10/16/06 Ilysis Date: 10/17/06		Run ID: LACHAT 8000_061017B SeqNo: 393280	CHAT 8000_0)61017B
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	%REC LowLimit HighLimit RPD Ref Val	HighLimit RF	D Ref Val	ачя%	%RPD RPDLimit	Qual
Nitrogen, Kjeldahi, Total	2.534	0.200	2.5	0	101	66.2	118	0	0		
Sample ID: 0610083-02CMSD Client ID: MW-1B	SampType: MSD Batch ID: 7416	TestCod	TestCode: WTKN TestNo: E351.3	Units: mg/L (E351.3)		Prep Date: 10/16/06 Analysis Date: 10/17/06	Prep Date: 10/16/06 Ilysis Date: 10/17/06		Run ID: LACHAT 8000_061017B SeqNo: 393281	CHAT 8000_(061017B
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	%REC LowLimit HighLimit RPD Ref Val	HighLimil RF	D Ref Val	%RPD	%RPD RPDLimit	Qual
Nitrogen, Kjeldahl, Total	2.684	0.200	2.5	o	107	66.2	118	2.534	5.75	21.4	

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

Page 1 of 1

B - Analyte detected in the associated Method Blank

Galeria (Ma 1.5

101 J.1.14

F

1.84

Buck Environmental Labs, Inc.	nmental	Labs, Inc.								Date: 22-Nov-06	Nov-06	
CLJENT: Work Order: Project:	CORTLAND CO 0610083 TOWSLEY SITE	CORTLAND CO SOIL & WATER 0610083 TOWSLEY SITE					ANAL	YTICA. Ta	ANALYTICAL QC SUMMARY REPORT TestNo: E415.1	UMMAR}	(REPO	RT
Sample ID: 0610083-02CMS Client ID: MW-1B	83-02CMS 3	SampType: MS Batch ID: R21005	TestCod TestN	TestCode: WTOC TestNo: E415.1	Units: mg/L		Prep Date: Analysis Date:	Prep Date: Analysis Date: 10/24/06		Run ID: TOC_061024A SeqNo: 394791	C_061024A 791	
Analyte Organic Carbon, Total	otal	Result 16.67	Pal 2.00	SPK value 20	SPK value SPK Ref Val 20 0	%REC 83.4	LowLimit 75	HighLimit 125	%REC LowLimit HighLimit RPD Ref Val 83.4 75 125 0	%RPD 0	%RPD RPDLimit Qual 0	Qual
Sample ID: 0610083-02CMSD Client ID: MW-1B	83-02CMSD B	SampType: MSD Batch ID: R21005	TestCod TestN	TestCode: WTOC TestNo: E415.1	Units: mg/L		Prep Date: Analysis Date:	Prep Date: Analysis Date: 10/24/06		Run ID: TOC_061024A SeqNo: 394792	C_061024A 792	
Analyte		Result	Pal	SPK value	SPK vafue SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit	Qual
Organic Carbon, Total	otal	16.71	2.00	20	O	83.6	75	125	16.67	0.240	20	

Pictor - - - -

and the second

to an in state

Beener zwanie N

and the second

Security States

1.1.7.1

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

Page I of I

B - Analyte detected in the associated Method Blank

				tanan ara-sarah Najirahar maringan ara-sarah		an and a second and a	a si					
			r men ser i de se sen ser ser se				影響影響電影響					
Sampl	le Logi	Sample Login Summary										
WorkOrder	er	0610083					·					
SampID	Received	SampID Received ClientSampID	CollectionDate	e M	atrix	Bottle	Oty	Storage	Hq	Тетр	COOLER	Edited
-												and a start of the
0610083-01A 10/11/06	10/11/06	MW-1A	10/10/06 10:55:00 AM		Aqueous		~	WALK-IN	2	2.9	88	РВ
Tempe 0610083-01B	Temperature acceptabl 0610083-01B 10/11/06	Temperature acceptable, seals intact 3-01B 10/11/06 MW-1A	10/10/06 10:55:00 AM		Anneons		*	WA! K_IN	ų	0 0	ä	10 10
Temper	rature acceptat	0					-	×	0	1	0	2 -
0610083-01C	0610083-01C 10/11/06	MW-1A	10/10/06 10:55:00 AM		Aqueous		۰	WALK-IN	<2	2.9	88	ЪВ
Tempe	Temperature acceptable, seals in D610083_01D10/11/06MM_10	Temperature acceptable, seals intact	10/10/06 10:5E:00 AM						c	c	c	

SampID Received ClientSampID	CollectionDate	Matrix	Bottle	0th	Storage	Ha	Temu (COOLER	Edited
							ł		an - Andrea and Andrea
0610083-01A 10/11/06 MW-1A	10/10/06 10:55:00 AM	Aqueous		~	WALK-IN	\$	2.9	88	РВ
Temperature acceptable, seals intact 0610083-01B 10/11/06 MW-1A	10/10/06 10:55:00 AM	Aqueous	·	*-	WALK-IN	9	2.9	88	БВ
Temperature acceptable, seals intact 0610083-01C 10/11/06 MW-1A	10/10/06 10:55:00 AM	Aqueous		~~	WALK-IN	Ş	2.9	88	PB
Temperature acceptable, seals intact 0610083-01D 10/11/06 MW-1A	10/10/06 10:55:00 AM	Aqueous		f ~~	WALK-IN	9	2.9	88	В
Temperature acceptable, seals intact 0610083-02A 10/11/06 MW-1B	10/10/06 11:02:00 AM	Aqueous		e	WALK-IN	\$	4.3	Σ	РВ
MS/MSD Temperature acceptable, seals intact 0610083-02B 10/11/06 MW-1B MS/MSD	10/10/06 11:02:00 AM	Aqueous		e	WALK-IN	Q	4.3	Σ	PB
Temperature acceptable, seals intact 0610083-02C 10/11/06 MW-1B MS/MSD	10/10/06 11:02:00 AM	Aqueous		ñ	WALK-IN	2	4.3	Σ	ВЯ
Temperature acceptable, seals intact 0610083-02D 10/11/06 MW-1B MS/MSD	10/10/06 11:02:00 AM	Aqueous		т	MALK-IN	9	4.3	Σ	РВ
Temperature acceptable, seals intact 0610083-03A 10/11/06 MW-2A	10/10/06 10:24:00 AM	Aqueous		-	WALK-IN	\$	2.9	88	Bd
Temperature acceptable, seals intact 0610083-03B 10/11/06 MW-2A	10/10/06 10:24:00 AM	Aqueous		. 	WALK-IN	9	2.9	88	ЪВ
Temperature acceptable, seals intact 0610083-03C 10/11/06 MW-2A	10/10/06 10:24:00 AM	Aqueous		-	WALK-IN	\$	2.9	88	PB
Temperature acceptable, seals intact 0610083-03D 10/11/06 MW-2A	10/10/06 10:24:00 AM	Aqueous	n .	-	MALK-IN	9	2.9	88	ΡB
Temperature acceptable, seals intact 0610083-04A 10/11/06 MW-2B	10/10/06 10:29:00 AM	Aqueous		-	WALK-IN	\$	2.9	88	PB
Temperature acceptable, seals intact 0610083-04B 10/11/06 MW-2B	10/10/06 10:29:00 AM	Aqueous		←	WALK-IN	9	2.9	88	BB
Temperature acceptable, seals intact 0610083-04C 10/11/06 MW-2B	10/10/06 10.29:00 AM	Aqueous			WALK-IN.	₹ 2	2.9	88	Bd
Temperature acceptable, seals intact 0610083-04D 10/11/06 MWV-2B	10/10/06 10:29:00 AM	Aqueous		. 	WALK-IN	Q	2.9	88	Bd
тепретацие ассертают, seas пласт теп. Мо. 2006 Monday, November 06, 2006	and the second second solution and second						in the second second	Page I of 2	

Page 1 of 2

88 88 88 88 88 88 88 88 ≥ ≥ Σ Σ 2.9 2.9 2.9 2.9 2,9 2.9 2.9 2.9 4.3 4.3 4 0 4.3 Ŷ ₽ Ŷ 7 Ŷ Ϋ́ g ω ဖ G G G WALK-IN 10/10/06 10:09:00 AM Aqueous 10/10/06 10:09:00 AM Aqueous 10/10/06 10:09:00 AM Aqueous 10/10/06 10:02:00 AM Aqueous 10/10/06 10:02:00 AM Aqueous 10/10/06 10:02:00 AM Aqueous 10/10/06 10:02:00 AM Aqueous 10/10/06 10:42:00 AM Aqueous 10/10/06 10:42:00 AM Aqueous 10/10/06 10:42:00 AM Aqueous 10/10/06 10:42:00 AM Aqueous 10/10/06 10:09:00 AM Aqueous Temperature acceptable, seals intact MW-6B MW-6B MW-6B MW-6B MW-7A MW-7A MW-3A MW-3A MW-3A MW-7A MW-7A MW-3A 0610083-05B 10/11/06 0610083-05C 10/11/06 0610083-05D 10/11/06 0610083-06A 10/11/06 0610083-06B 10/11/06 0610083-06C 10/11/06 0610083-06D 10/11/06 0610083-07B 10/11/06 0610083-07C 10/11/06 0610083-07D 10/11/06 10/11/06 10/11/06 0610083-07A 0610083-05A

antrovin eductor sedentito statedutesee of supervention of the set of a state of the set of the set

Page 2 of 2

医外腺炎的现在分词的 人名马马克 医生物学 医胃肠管胃 医外侧

Page 2 of 2

ЪВ

÷ ;

S. S. S. S.

1

.....

В

m

Ē

BB

РВ

E

Ë

Ë

B

B

Ш

		CITAIN OF CUSIOD T RECORD					
<u>NOTE:</u> The information on this form was supplied by the client and authorizes the Laboratory to proceed with analysis according to the <u>Standard Terms and Conditions</u> of Buck Environmental Laboratories, Inc. provided on the reverse side of this chain-of-custody. The client authorization signature acknowledges that the terms are acceptable and agreed to by the client. CLIENT Cont PerMILIM	nizes the Laboratory to p ire acknowledges that th S_{ω} , $(T - U/c)$	to proceed with analysis according to the at the terms are acceptable and agreed to the second second second to the second se	e <u>Standard Terms and Con</u> to by the client.	Iditions of Buck Environme	onmental Labora II IM	atories, Inc. pro	vided on
MAILING ADDŘESS					DITE		
PHONE NO.			Noid.				
REPORT TO ATTN:		ANAL	ANALYSIS REQUESTED				
SAMPLING SITE TOWS PRY STEN			1945 - 484 - 48 4844 - 4 1946 - 484 484 - 494 - 4 1946 - 484 484 - 494 - 4	EB.	, IIIE		
		14 M	اللاستخاب العالم المحالي المحا المحالي المحالي	там <i>д</i>	SOdWO	NATNO:	
SAMPLED BY E. Spewer / E. M.	lonseu: /0						
DATE TIME SAMPLE DESCRIPTION		· · · · · · · · · · · · · · · · · · ·		TAM	AAD	· · · · · · · · · · · · · · · · · · ·	* 10 ¹⁰ a.e. 1 al in cel
10/10 10:55 MW-1A			hr a surrenne de se	\mathcal{M}	I	16	Ict
10/10 11:02 MW-1B	~~			M	S	y Var	· 4
11:04	X			M	0	4 Var	The
19/10 11:06 MIW-18 MSD	A X			Å	Q	4 Cm	the
10, 10:24 MW-24				M	୬	4 Var	to
10/10 10:20 MW-2B	X			M	0	4 Van	ICE .
10:09 MW-3	X			<i>M</i>	9	4 Var	RE
"YIO 10:02 MW- 6B	X			\mathcal{M}	S	4 Var	Lite
1%10 10:42 MW - ZA	X			M	Ś	4 Var	T.F.
DATE TIME RELANAUISHEB'BY	37	ACCEPTED BY		ADDITIONAL	AL COMMEN	TS	·
" PIO 1:15 1 to to la	-	B Hrukeno					
2	2	A					
°,	m						
4	4						
FOR LAB USE ONLY- CONDITIONS AT RECEIPT	T TEMP		ER DICE		CUSTODY SEALS	s,	

.

BRANCH OFFICE - 14 SMITH AVE, BINGHAMTON, NY 13904 (607)771-0668 FAX 771-0966

3821 BUCK DRIVE, PO BOX 5150, CORTLAND, NY 13045 (607)753-3403 FAX 753-3415 INFO@BUCKLABS.COM

CORTLAND COUNTY LANDFILL – TOWNSLEY SITE FIELD SAMPLING DATA SHEETS BEL LOG # 06 10 083

QUARTER 4 2006

- 112 - .

Edda - Dag

ź

iki saraw 🔮 kadaa na

DATES(S) PURGED: 10/9/06 TECHNICIANS: E.Spencer/E.Monsen DATE(S) SAMPLED: 10/10/06

SDG #

	שב									
Well #	Depth to Water	Well Depth	Purge Volume	Temp. (c)	Hd	Eh	Cond.	Turb.	Color/Odor Sheen/Maintenance	Time Sampled
MW-1A	3,31	20	5 22	15.9	7.69 JTO 369	aLI	369	39	CLEAN	10:55
MW-1B	3.54	51	24		06.T	15	200	15.60	7.90 115 200 15.6 URIT	CQ:11
MW-2A	5.82	12	52 24	14.2	(P. J)	90	105 27	27	CLEOK NOVARANN	hcini Ini de
MW-2B	6,33	29	11	14.5	LC.D	115	115 1537	38	Clear AD/NS/MM	9C.01
MW-3A	8,74	18	4 1/2	15.7	10.04		797	2.2	220 397 7,2 Clear MD/MS/MM	50:01
MW-6B	12.73	36	12	14.3	111		339	14.2	CIEUR MD/NS MM	
MW-7A	3,48	18	7/2	13,9	10.63	190	190 1475 413	42	190 1475 42 Clear	10,410
SINGD MW-IB				>	5			5	IN NUCHTON	11:04 14
á,										20-11
									a	
Legend: NO= No Odor/NS= No Sheen/NM= No maintenance required/NNL=Needs new lock	= No Sheen/NM= N	o maintenance	required/NN	L=Needs r	new lock		_			

7

NUTAND)

Appendix D

Historical Analytical Data

Cortland County Towslee Landfill

Historical Data Page Index Cortland County Towslee Landfill

Well	Field/ Inorganic Parameters	Total Metals	Dissolved Metals	Organics
MW-1A	2	9	16	23
MW-1B	3	10	17	24
MW-2A	4	11	18	25
MW-2B	5	12	19	26
MW-3A	6	13	20	27
MW-6B	7	14	21	28
MW-7A	8	15	22	29

Historical Water Quality Database - Towslee Landfill Field and Inorganic Parameters Well MW-1A - Overburden

Parameter	Units	Aug-97	Oct-97	3/22/06	5/31/06	8/9/06	10/10/06
Temp	(deg C)	1	ľ	8.5	12.8	19.5	15.9
Eh	(mV)	1	-	700	105	190	170
рН	(Std Units)	ł	ł	7.8	7.7	7.52	7.69
Sp. Cond	(uS/cm)	1	-	306	355	353	369
Color	(Units)	5	20	1	1	<5	
Turbidity	(NTU)	}	-	660	73	131	29
ALK as CaCO3	(mg/l)	160	145	127	139	122	132
HARD as CaCO3	(Vgm)	4000	240	167	140	148	148
TDS	(I/gm)	494	214	340	213	236	229
Chloride	(I/gm)	152	46	21.3	22.2	34.2	26.7
Sulfate	(l/gm)	20.6	14.6	27.3	12.3	16.5	14.9
Bromide	(I/ĝm)	1.2	0.8	< 0.1	<0.1	<0.1	0.117
NO3 (As N)	(Vôu)	<0.1	<0.1	< 0.1	0.217	<0.1	<0.1
NH4 (As N)	(//ĝu)	9	2.6	0.276	<0.02	0.161	<0.1
TKN (as N)	(I/gm)	18	3.8	23.3	0.529 H	0.366	<0.2
coD	(I/gm) -	305	64	< 10	<10	<10	<10
BOD	(I/gm)	5	<2	< 3	-3	ŝ	3
TOC	(I/ĝn)	4.2	1.6	4.76	2.61	Q	\$
Phenolics, Tot	(l/ĝn)	0.003	0.0015	< 0.005	<0.005	<0.005	<0.005
Cyanide	(l/gm)	<0.01	<0.01	1	1	<0.01	ł

H - exceeded hold time

Historical Water Quality Database - Towslee Landfill Field and Inorganic Parameters Well MW-1B - Bedrock

Parameter	Units	Aug-97	Oct-97	3/22/06	5/31/06	8/9/06	10/10/06
Temp	(deg C)	1	ł	5	11.4	16.4	15.8
Eh	(mV)	1	1	385	45	155	115
Н	(Std Units)	1	1	7.7	7.8	7.69	7.9
Sp. Cond	(uS/cm)	1	ŧ	157	257	244	200
Color	(Units)	55	€5	I	-	<5	1
Turbidity	(NTU)	1	1	187	45	70	15.6
ALK as CaCO3	(I/ɓɯ)	94.8	93.6	92	94	91	68
HARD as CaCO3	(I/ɓɯ)	88	140	97.6	81.9	89	82
TDS	(Ing/I)	143	86	120	111	142	120
Chloride	(Ingri)	\$	8	2.55	2.28	3.47	0.611
Sulfate	(I/ɓɯ)	5.2	<5	4.72	5.51	5.33	3.76
Bromide	(I/ĝm)	<0.5	<0.5	< 0.1	<0.1	<0.1	<0.1
NO3 (As N)	(Ing/I)	0.2	<0.1	< 0.1	<0.1	<0.1	<0.1
NH4 (As N)	(I/gm)	<0.02	0.04	0.0938	<0.02	<0.02	<0.1
TKN (as N)	(mg/l)	<0.2	<0.2	0.54	0.755 H	0.497	<0.2
coD	(I/Bm)	<15	<15	< 10	<10	<10	<10
BOD	(I/gn)	₽	₽	< 3	3	<3	3
TOC	(l/ĝm)	9.3	₽	5.41	2.34	3	<2
Phenolics, Tot	(I/gm)	<0.001	<0.001	< 0.005	<0.005	<0.005	<0.005
Cyanide	(I)gn)	1	ł	ł	1	<0.01	

H - exceeded hold time

က

Historical Water Quality Database - Towslee Landfill Field and Inorganic Parameters Well MW-2A - Overburden

Parameter	Units	Aug-97	Oct-97	3/22/06	5/31/06	8/9/06	10/10/06
Temp	(deg C)		!	4.4	11.6	17.2	14.2
Eh	(mV)	1	1	140	-5	120	06
Н	(Std Units)	1	1	6.4	6.4	6.15	6.41
Sp. Cond	(uS/cm)	l	3	621	767	784	1100
Color	(Units)	30	60	1	I	33	1
Turbidity	(NTU)	1	1	18.6	18.3	195	27
ALK as CaCO3	(I/gm)	702	784	330	355	384	423
HARD as CaCO3	(l/gm)	1300	720	241	260	265	301
TDS	(l/gm)	1180	986	381	397	491	487
Chloride	(l/gm)	156	149	23.3	25.7	23.5	25.7
Sulfate	(I/gm)	<5	<5	4.22	5.5	3.43	3.18
Bromide	(l/ĝm)	0.8	<0.5	0.189	0.18	0.237	0.261
NO3 (As N)	(l/ɓɯ)	<0.1	0.14	0.228	<0.1	<0.1	<0.1
NH4 (As N)	(l/ĝm)	23	9.1	10.6	18.4	16	15.1
TKN (as N)	(l/ĝm)	31.5	21.2	10.6	14 H	16.5	15
coD	(l/ĝu)	127	136	< 10	13.8	27	15.6
BOD	(I/gm)	6	3	16	4.5	3.4	ŝ
TOC	(I)gm)	42.5	24.1	10.1	7.18	5.67	5.68
Phenolics, Tot	(ygm)	0.0071	0.0066	< 0.005	0.008	<0.005	<0.005
Cyanide	(l/gm)	<0.01	<0.01	1	1	<0.01	-

H - exceeded hold time

Historical Water Quality Database - Towslee Landfill Field and Inorganic Parameters Well MW-2B - Bedrock

Parameter	Units	Aug-97	Oct-97	3/22/06	5/31/06	8/9/06	10/10/06
Temp	(deg C)	ł	1	4.5	10.5	15.9	14.5
Eh	(mV)	I		175	110	125	115
F	(Std Units)	1	-	6.4	6.4	6.35	6.52
Sp. Cond	(uS/cm)	1	1	1350	1560	1420	1540
Color	(Units)	5	10	:	1	<5	1
Turbidity	(NTU)	1	-	17.3	19.8	18.7	28
ALK as CaCO3	(mg/l)	577	673	652	670	612	646
HARD as CaCO3	(I/gm)	960	906	697	726	686	675
TDS	(I/gm)	1640	1230	982	1020	1040	980
Chloride	(l/gm)	267	238	145	154	122	121
Sulfate	(mg/l)	<5	<5	1.18	2.96	<1	4
Bromide	(l/ɓɯ)	1.1	0.9	0.878	1.01	0.902	0.912
NO3 (As N)	(I/gm)	<0.1	<0.1	< 0.1	0.216	<0.1	<0.1
NH4 (As N)	(I/gm)	0.95	1.3	0.389	0.824	0.786	0.282
TKN (as N)	(mg/l)	2.6	2	1.31	1.78 H	1.64	1.9
coD	(i/g/l)	58	61	< 10	17.2	24.6	27
BOD	(mg/l)	2	2	9.3	5.1	3.7	13
TOC	(MgM)	12.3	11.9	< 2	7.76	4.82	7.49
Phenolics, Tot	(mg/l)	0.0044	0.0039	< 0.005	<0.005	<0.005	0.1
Cyanide	(l/gm)	ł	1	1	1	0.024	

H - exceeded hold time

ŝ

Historical Water Quality Database - Towslee Landfill Field and Inorganic Parameters Well MW-3A - Bedrock

Parameter	Units	Aug-97	Oct-97	3/22/06	5/31/06	8/9/06	10/10/06
Temp	(deg C)	ł	1	6.4	11.7	15.3	15.7
Ē	(mV)	I	•	215	45	115	220
Hd	(Std Units)	ł	1	7.2	6.9	7.01	6.84
Sp. Cond	(uS/cm)	1	1	286	299	342	397
Color	(Units)	55	<5	1	1	<5	
Turbidity	(NTU)	I	1	58	11.9	5.2	7.2
ALK as CaCO3	(I/gm)	145	146	162	170	140	152
HARD as CaCO3	(mg/l)	1250	200	153	179	191	158
TDS	(l/6w)	320	269	215	208	207	207
Chloride	(Ingri)	31.4	28.7	14	12.7	13.5	12.7
Sulfate	(l/6ш)	16	- 13	9.14	11	9.98	8.01
Bromide	(mg/l)	0.5	<0.5	< 0.1	<0.1	0.152	0.143
NO3 (As N)	(mg/l)	<0.1	0.19	< 0.1	<0.1	<0.1	<0.1
NH4 (As N)	(mg/l)	<0.02	60.0	0.0969	<0.02	<0.02	<0.1
TKN (as N)	(mg/l)	0.4	0.24	0.455	1.09 H	0.239	0.266
coD	(mg/l)	19	<15	< 10	<10	13	<10
BOD	(l/gm)	~ 2	3	د ۲	3	Ŷ	3
TOC	(mg/l)	4.5	1.9	5.58	\$	\$	2
Phenolics, Tot	(l/gm)	0.0027	<0.001	< 0.005	<0.005	<0.005	<0.005
Cyanide	(l/gm)	ł	1	ł	1	<0.01	

H - exceeded hold time

ø

Historical Water Quality Database - Towslee Landfill Field and Inorganic Parameters Well MW-6B - Bedrock

Parameter	Units	Aug-97	Oct-97	3/22/06	5/31/06	8/9/06	10/10/06
Temp	(deg C)	1	:	7.9	10.5	12.2	14.3
Eh	(mV)	1	1	250	85	225	180
РН	(Std Units)	ł	1	6.7	7.4	7.52	7.11
Sp. Cond	(uS/cm)		ł	347	287	304	329
Color	(Units)	<5	20	ł	- 1-	<5	3
Turbidity	(NTU)	ł	I	40	19.9	15.8	14.2
ALK as CaCO3	(ugn)	240	224	131	148	154	153
HARD as CaCO3	(l/ĝm)	300	240	135	144	131	133
TDS	(I)gm)	98	280	209	175	190	187
Chloride	(I/gm)	38.2	35	21.1	2.33	2.32	3.39
Sulfate	(l/ĝm)	27.1	22.2	13.8	3.95	3.28	6.14
Bromide	(l/ôw)	<0.5	<0.5	< 0.1	<0.1	0.122	<0.1
NO3 (As N)	(l/ĝm)	0.6	<0.1	< 0.1	<0.1	<0.1	<0.1
NH4 (As N)	(I/Gm)	0.09	2.5	0.0549	<0.02	0.096	<0.1
TKN (as N)	(I/gm)	0.6	3.3	0.392	0.904 H	0.214	0.279
COD	(l/ĝii)	40	19	< 10	<10	11.6	<10
BOD	(l/6m)	⊲	2	< 3	5.1	3.2	Ŷ
TOC	(l/gm)	9	5.8	5.22	3.14	3	8
Phenolics, Tot	(Mgm)	0.0032	<0.001	< 0.005	<0.005	<0.005	<0.005
Cyanide	(l/gm)	1	1	1	1	<0.01	1

H - exceeded hold time

7

Historical Water Quality Database - Towslee Landfill Field and Inorganic Parameters Well MW-7A - Overburden

(deg C) 4.5 11.6 (m') 215 120 (m') 215 120 $(std Units)$ 1360 1520 $(ustcm)$ 1360 1520 $(ustm)$ 20 569 660 648 675 $(ustm)$ 569 660 648 675 $(ustm)$ 1010 1150 627 599 667 (mgn) 1020 1240 981 967 (mgn) 1220 1240 981 967 (mgn) 300 27.4 20.2 20.6 22.5 (mgn) 0.69 0.75 0.63 (mgn) 0.72 20.6 22.5 0.63 $N) (mgn) 0.74 20.2 20.6 20.6 N) (mgn) 0.74 $	Parameter	Units	Aug-97	Oct-97	3/22/06	5/31/06	8/9/06	10/10/06
(m/) - - 215 120 (Std Units) 6.5 6.4 (Std Units) 1360 1520 (Units) 20 5 - (Units) 20 5 - 1360 1520 acC03 (mg/) 569 660 648 675 599 acC03 (mg/) 1010 1150 627 599 667 (mg/) 569 660 648 675 599 667 (mg/) 1220 1240 981 967 599 (mg/) 300 276 144 143 143 (mg/) 277.4 20.2 20.6 22.5 143 N) (mg/) 0.6 -0.7 0.03 143 143 N) (mg/) 0.1 0.2 20.1 20.1 143 N) (mg/) 0.1 0.1 1.1	Temp	(deg C)	1	1	4.5	11.6	17.4	13.9
(std Units) 6.5 6.4 (us/cm) - 1360 1520 (Units) 20 5 - (Units) 20 5 - (Units) 20 5 214 18 (NTU) (mg/n) 569 660 648 675 (ang/n) 1010 1150 627 599 (mg/n) 1220 1240 981 967 (mg/n) 1220 1240 981 967 (mg/n) 27.4 20.2 20.6 22.5 (mg/n) 0.6 <0.5	Eh	{mV)	1	1	215	120	245	190
I (usitem) 1360 1520 (Units) 20 5 2 (Units) 20 5 214 18 5 (Units) 569 660 648 675 5 acC03 (mg/n) 569 660 648 675 img/n) 569 660 648 675 img/n) 1010 1150 627 599 img/n) 1220 1240 981 967 img/n) 3300 274 981 967 img/n) 27.4 20.2 20.6 22.5 N) (mg/n) 27.4 20.2 20.6 22.5 N) (mg/n) 0.6 0.753 0.633 2.5 N) (mg/n) 0.9 0.753 0.633 2.5 N) (mg/n) 0.9 0.753 0.634 2.6 N) <td>Hd</td> <td>(Std Units)</td> <td>4</td> <td>1</td> <td>6.5</td> <td>6.4</td> <td>6.34</td> <td>6.62</td>	Hd	(Std Units)	4	1	6.5	6.4	6.34	6.62
(Units) 20 5 (NTU) - - 214 18 (NTU) 569 660 648 675 (mg/n) 569 660 648 675 (mg/n) 1010 1150 627 599 (mg/n) 1220 1240 981 967 (mg/n) 1220 1240 981 967 (mg/n) 300 276 144 143 (mg/n) 27.4 20.2 20.6 22.5 N) (mg/n) 27.4 20.2 20.6 66.8 N) (mg/n) 27.4 20.2 20.6 66.3 N) (mg/n) 27.4 20.2 20.6 66.3 N) (mg/n) 6.01 0.2 6.01 6.01 N) (mg/n) 0.14 1.5 16.8 N) (mg/n) 0.93 0.34 6.02	Sp. Cond	(uS/cm)	1	1	1360	1520	1440	1480
(NTU) 214 18 aCO3 (mg/h) 569 660 648 675 aCO3 (mg/h) 1010 1150 627 599 (mg/h) 1220 1240 981 967 (mg/h) 300 276 144 143 (mg/h) 0.6 <0.5	Color	(Units)	20	5	I	I	<5	
acco3 (mg/l) 569 660 648 675 acco3 (mg/l) 1010 1150 627 599 (mg/l) 1220 1240 981 967 (mg/l) 300 276 144 143 (mg/l) 27.4 20.2 20.6 22.5 (mg/l) 0.6 <0.1	Turbidity	(NTU)	1	1	214	18	13.6	42
CaCO3 (mg/h) 1010 1150 627 599 (mg/h) 1220 1240 981 967 (mg/h) 300 276 144 143 (mg/h) 27.4 20.2 20.6 22.5 (mg/h) 27.4 20.2 20.6 22.5 N) (mg/h) 0.6 <0.5	ALK as CaCO3	(mg/l)	569	660	648	675	595	635
(mg/l) 1220 1240 981 967 (mg/l) 300 276 144 143 (mg/l) 27.4 20.2 20.6 22.5 (mg/l) 0.6 <0.5	HARD as CaCO3	(l/Gw)	1010	1150	627	599	531	526
(mg/l) 300 276 144 143 (mg/l) 27.4 20.2 20.6 22.5 (mg/l) (mg/l) 0.6 <0.5	TDS	(mg/l)	1220	1240	981	967	963	949
(mg/l) 27.4 20.2 20.6 22.5 (mg/l) 0.6 <0.5	Chloride	(mg/l)	300	276	144	143	119	85
(mg/l) 0.6 <0.5 0.753 0.633 N) (mg/l) <0.1	Sulfate	(mg/l)	27.4	20.2	20.6	22.5	19.7	14.1
N) (mg/l) <0.1 0.2 <0.1 <0.1 N) (mg/l) 0.93 0.89 0.34 <0.02	Bromide	(I/gm)	0.6	<0.5	0.753	0.633	0.822	0.483
N) (mg/l) 0.93 0.89 0.34 <0.02 N) (mg/l) 1.1 1.4 1.5 1.68 H (mg/l) 43 112 21.2 16.5 (mg/l) <	NO3 (As N)	(mg/l)	<0.1	0.2	< 0.1	<0.1	<0.1	<0.1
N) (mg/l) 1.1 1.4 1.5 1.68 H (mg/l) 43 112 21.2 16.5 (mg/l) <22	NH4 (As N)	(mg/l)	0.93	0.89	0.34	<0.02	<0.02	<0.1
(mg/l) 43 112 21.2 16.5 (mg/l) <2	TKN (as N)	(mg/l)	1.1	1.4	1.5	1.68 H	0.75	1.11
(mg/l) <2 2 <3 <3 (mg/l) 10.1 12.6 12.8 8.19 s, Tot (mg/l) 0.0051 0.0027 <0.005	COD	(mg/l)	43	112	21.2	16.5	26.4	20.5
(mg/l) 10.1 12.6 12.8 8.19 s, Tot (mg/l) 0.0051 0.0027 < 0.005	BOD	(mg/l)	\$	2	< 3	Q	ŝ	3
s, Tot (mg/) 0.0051 0.0027 < 0.005 0.007 (mg/) <0.01 < 0.01	TOC	(l/gm)	10.1	12.6	12.8	8.19	6.12	7.46
(mail) <0.01 <0.01	Phenotics, Tot	(l/Gm)	0.0051	0.0027	< 0.005	0.007	<0.005	<0.005
	Cyanide	(Vgm)	<0.01	<0.01	:	ł	<0.01	

H - exceeded hold time

ω

Historical Water Quality Data - Towslee Landfi	Total Metals
<u>ö</u> .	4
Ę	<u>V-1</u>
lis	2
T	_

Parameter	Aug-97	Oct-97	3/22/06	5/31/06	8/9/06	10/10/06
Aluminum	724	16.9		1	2.96	ł
Antimony	<0.003	<0.003	1	1	<0.05	1
Arsenic	0.353	0.0134	1	1	<0.025	
Barium	8.11	0.258	1	1	0.104	-
Beryllium	0.0287	0.00083 B	1	1	<0.005	-
Boron	0.0873 B	0.0665 B	1	1	0.073	
Cadmium	<0.0003	<0.0003	<0.005	<0.005	<0.005	<0.005
Calcium	430	48.6	46.2	41.8	43.2	43.9
Chromium	1.04	0.0265	1	ł	<0.005	1
Chromium, Hex	-	1	I	1	<0.02	
Cobalt	0.59	0.0168 B	ł	1	<0.015	
Copper	0.996	0.0254	1	!	0.022	
Iron	1550	35.7	19.4	2.99	6.03	2.11
Lead	0.454	0.0123	0.00716	0.007	<0.005	<0.005
Magnesium	309	15.6	12.6	8.67	9.7	9.43
Manganese	24.6	0.783	0.534	0.194	0.38	0.306
Mercury	0.0014	<0.0001	1	1	<0.0004	1
Nickel	1.33	0.0364 B	1	-	<0.01	1
Potassium	77.5	6.97	2.72	1.6	1.7	1.62
Sodium	37.3	26	17.1	13	13.6	13.5
Selenium	<0.028	<0.0028	1	. 1	<0.02	-
Silver	<0.09	<0.0009	1	-	<0.015	1
Thallium	<0.026	<0.0026	1	1	<0.03	ł
Vanadium	0.856	0.0243 B	ł	1	<0.015	
Zinc	3.36	0.0874	1	1	0.106	1

о

Historical Wa	Water Quality Data - Towslee Landfill
MW-1B	Total Metals

Parameter	79-97	Oct-97	3/22/06	5/31/06	8/9/06	10/10/06
Aluminum	0.662	0.134 B	-	ł	1.09	
Antimony	<0.003	<0.003	ł	I	<0.05	Ĩ
Arsenic	<0.0024	<0.0024	1	1	<0.025	
Barium	0.168 B	0.154 B	1	1	0.194	
Beryllium	0.0001 B	<0.0001	1	1	<0.005	
Boron	0.0197 B	0.0247 B	ł	1	<0.05	
Cadmium	<0.0003	<0.0003	<0.005	<0.005	<0.005	<0.005
Calcium	26.7	24.7	26.8	23.9	25.8	24.1
Chromium	0.002 B	<0.0004	ł	ł	<0.005	1
Chromium, Hex	-	1	I	1	<0.02	!
Cobalt	<0.0011	<0.0011	1	1	<0.015	
Copper	0.004 B	0.0025 B	-	1	0.017	-
Iron	1.33	0.226	9.42	1.48	1.84	0.273
Lead	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005
Magnesium	6.47	5.84	7.46	5.39	6.05	5.31
Manganese	0.195	0.146	2.28	0.191	0.251	0.126
Mercury	1	-		1	<0.0004	1
Nickel	<0.0013	<0.0013	1	ł	<0.01	1
Potassium	1.56 B	0.529 B	0.973	0.468	0.523	0.374
Sodium	7.38	6.18	6.31	5.22	6.35	5.92
Selenium	1	1	I	1	<0.02	1
Silver	I	1	I	1	<0.015	1
Thallium	<0.0026	<0.0026	I	1	<0.03	ł
Vanadium	<0.0012	<0.0012	ł	1	<0.015	1
Zinc	0.0351	0.0163 B	ł	Ì	0.052	1

 Towslee Landfil 	etals
Historical Water Quality Data	Total Metal
Historical	MW-2A

Parameter	Aug-97	Oct-97	3/22/06	5/31/06	8/9/06	10/10/06
Aluminum	79.3	59.1	1	1	0.43	**
Antimony	0.0049 B	<0.003	1	l	<0.05	;
Arsenic	0.0631	0.0537	1	1	<0.025	1
Barium	1.75	1.49	1	1	0.502	Ĭ
Beryllium	0.0037 B	0.0025 B	1	I	<0.005	1
Boron	1.21	0.961	1	1	0.584	
Cadmium	<0.0003	0.0016 B	<0.005	<0.005	<0.005	<0.005
Calcium	186	172	69.1	74.1	77.3	88.5
Chromium	0.112	0.0967	1	1	<0.005	1
Chromium, Hex	-	l	I	1	<0.02	;
Cobalt	0.0719	0.0628	ł	I	<0.015	1
Copper	0.104	0.0779	1	1	0.012	1
Iron	154	131	8.29	24	6.5	10.1
Lead	0.0561	0.0436	<0.005	0.019	<0.005	0.006
Magnesium	61.6	53.6	16.6	18.3	17.5	19.4
Manganese	35.7	31.6	12.2	11.5	12	13.6
Mercury	<0.0001	<0.0001	1	1	<0.0004	1
Nickel	0.151	0.132	1	1	<0.01	1
Potassium	23.4	17	9.29	11.2	12.3	12.7
Sodium	119	102	26.3	25.2	31.4	31.4
Selenium	<0.0028	<0.0028	ł	1	<0.02	1
Silver	0.0024 B	0.0014 B	1		<0.015	1
Thallium	0.004 B	<0.0026	1	ł	<0.03	1
Vanadium	0.102	0.0866	ł	ł	<0.015	
Zinc	0.4	0.278	1	1	<0.01	1

Ξ

Quality Data - Towslee Landfill	Total Metals
Historical Water Qualit	MW-2B

Parameter	Aug-97	Oct-97	3/22/06	5/31/06	8/9/06	10/10/06
Aluminum	2.03	5.31	1	1	0.18	1
Antimony	<0.003	<0.003	I	4	<0.05	1
Arsenic	0.007 B	0.0083 B	I	•]	<0.025	1
Barium	1.59	1.36	1	1	1.22	
Beryllium	0.00023 B	0.00037 B	ł]	<0.005	1
Boron	0.355	0.292	-	1	0.256	1
Cadmium	0.0003 B	<0.0003	<0.005	<0.005	<0.005	<0.005
Calcium	288	245	203	216 E	203 E	200
Chromium	0.004 B	0.0086 B	-	1	<0.005	
Chromium, Hex		3	1	1	<0.02	-
Cobalt	0.0091 B	0.0141 B	1	1	<0.015	-
Copper	0.0069 B	0.0118 B	1	ŀ	0.017	-
Iron	4.3	10.7	0.913	0.836	1.2	1.07
Lead	0.0044	0.0058	<0.005	0.009	<0.005	<0.005
Magnesium	61.7	49.9	46.1	45.3	43.5	42.7
Manganese	8.24	7.43	6.98	6.8	6.63	6.46
Mercury	•	-	ł	1	<0.0004	
Nickel	0.0129 B	0.0188 B		1	<0.01	1
Potassium	3 B	2.9 B	2.42	2.25	2.28	2.38
Sodium	64.1	53.9	53.8	49.7	51.1	51
Selenium	. †		1	1	<0.02	ł
Silver	***			;	<0.015	ł
Thallium	0.0037 B	<0.0026	ł	1	<0.03	-
Vanadium	0.0029 B	0.0075 B	1	1	<0.015	1
Zinc	0.103	0.0484	ł	ł	<0.01	-

Historical Water Quality Data	ter Qual	ity Data	- Tow	- Towslee Landfill	andfill	
MW-3A	•	Total Metals	tals			
Parameter	Aug-97	Oct-97	3/22/06	5/31/06	8/9/06	10/10/06
Aluminum	21.7	2.39		-	0.078	1
Antimony	<0.003	0.0034 B	;	1	<0.05	1
Arsenic	0.0127	<0.0024	1	1	<0.025	1
Barium	0.567	0.343	-	1	0.41	-
Beryllium	0.001 B	0.00013 B		1	<0.005	1
Boron	<0.0709	0.0286 B	1	1	0.063	-
Cadmium	<0.0003	<0.0003	<0.005	<0.005	<0.005	<0.005
Calcium	57.8	53.7	46.3	55.3	57.9	48.3
Chromium	0.0249	0.0022 B	1	1	<0.005	1
Chromium, Hex	-	1	1	1	<0.02	1
Cobalt	0.0121 B	0.0019 B	ł	1	<0.015	1
Copper	0.0315	0.0076 B	1	1	0.023	1
Iron	26.6	3.58	1.88	0.626	0.104	0.283
Lead	0.0077	<0.001	<0.005	0.005	0.005	<0.005
Magnesium	17	11	9.13	10	11.2	9.2
Manganese	0.732	0.174	0.208	0.175	0.416	0.176
Mercury	1	***			<0.0004	1
Nickel	0.0248 B	0.0038 B	-		<0.01	L T
Potassium	7.43	1.87 B	0.938	0.829	1.09	0.937
Sodium	10.4	6.54	5.66	6.4	8.92	6.03
Selenium	1	1	1	1	<0.02	
Silver	ł	ł	ł	1	<0.015	1
Thallium	<0.0026	<0.0026	l	1	<0.03	1
Vanadium	0.0296 B	0.0039 B	I	1	<0.015	1
Zinc	0.112	0.0265	-	1	0.025	1

All units in mg/l

<u>5</u>

Historical W	Historical Water Quality Data - Towslee Landfill
20-7/1/	I otal Metals

Parameter	Aun-97	Oct-97	3/22/06	5/31/06	8/0/DF	10/10/06
Aluminum	8.59	0.642			0.115	
Antimony	<0.003	<0.003	1	1	<0.05	
Arsenic	0.009 B	0.0084 B	1	1	<0.025	1
Barium	0.521	0.48	1	1	0.313	1
Beryllium	0.0004 B	0.0001 B	1	1	<0.005	1
Boron	0.145	0.145	ł	1	<0.05	1
Cadmium	<0.0003	<0.0003	<0.005	<0.005	<0.005	<0.005
Calcium	70.5	55.6	39.3	39.6	36.1	37.4
Chromium	0.0092 B	0.0017 B	1	1	<0.005	1
Chromium, Hex	1	1	1	1	<0.02	1
Cobalt	0.0112 B	0.0056 B	ł	-	<0.015	1
Copper	0.0116 B	0.0051 B	1	1	0.016	ł
Iron	10.6	3	1.09	0.511	0.306	0.195
Lead	0.0044	<0.001	<0.005	<0.005	<0.005	<0.005
Magnesium	19	12.7	8.94	10.9	9.86	9.71
Manganese	3.43	4.17	0.559	0.12	0.297	0.185
Mercury	1	ł	ł	ł	<0.0004	1
Nickel	0.0144 B	0.0059 B	ł	1	<0.01	-
Potassium	4.08 B	2.72 B	1.15	0.825	0.634	0.69
Sodium	38	31.4	14.9	9.93	10.1	10.7
Selenium	ł		ł	1	<0.02	1
Silver	1	1	I	1	<0.015	-
Thallium	<0.0026	<0.0026	I	1	<0.03	-
Vanadium	0.0083 B	0.0012 B	I	ł	<0.015	-
Zinc	0.0894	0.0248	;	١	0.014	1

- Towslee Landfill	
Historical Water Quality Data	Total Matale
Historical Wat	M///-7A

I otal Metals

Parameter	Aug-97	Oct-97	3/22/06	5/31/06	8/9/06	10/10/06
Aluminum	40	88.4	ł	1	0.415	
Antimony	<0.003	<0.003	1	1	<0.05	1
Arsenic	0.0176	0.0459	1	1	<0.025	
Barium	1.36	1.99	1	ł.	0.684	1
Beryllium	0.0015 B	0.0037 B	1	1	<0.005	ł
Boron	0.332	0.41	1	ł	0.55	ł
Cadmium	0.00047 B	0.002 B	<0.005	<0.005	<0.005	<0.005
Calcium	234	271	171	165	150	148
Chromium	0.0556	0.146	1	1	<0.005	ł
Chromium, Hex	-	1	1	1	<0.02	
Cobalt	0.0311	0.0791	1	1	<0.015	1
Copper	0.0637	0.129	ł	1	0.013	1
Iron	65.9	174	14.5	1.33	0.722	2.78
Lead	0.0251	0.0585	0.0175	0.009	0.006	<0.005
Magnesium	67	88.3	48.6	45.5	38	38
Manganese	5.87	9.55	6.08	5.69	4.4	4.85
Mercury	<0.0001	<0.0001	ł	1	<0.0004	1
Nickel	0.0783	0.192	1	1	0.013	1
Potassium	10.4	13.5	3.06	1.91	1.81	2.03
Sodium	118	113	134	129	124	128
Selenium	0.0041 B	0.0047 B	ł	1	<0.02	1
Silver	<0.0009	<0.0009	ł	1	<0.015	-
Thallium	<0.0026	<0.0026	ł	1	<0.03	1
Vanadium	0.0487 B	0.127	1	1	<0.015	ł
Zinc	0.2	0.408	-	I	<0.01	1

All units in mg/l

Historical Water Quality Database - Towslee Landfill MW-1A Dissolved Metals

Parameter	Aug-97	Oct-97	3/22/06	5/31/06	8/9/06
Aluminum	0.0163 B	0.0407 B	:	I	0.066
Antimony	1	1	1	I	<0.05
Arsenic	<0.0024	<0.0024	ł	I	<0.025
Barium	0.137 B	0.068 B	1	ł	0.066
Beryllium	<0.0001	<0.0001	1	1	<0.005
Boron	0.0631 B	0.0561 B	I	t	<0.07
Cadmium	<0.0003	<0.0003	<0.005	<0.005	<0.005
Calcium	67.6	40.3	40.7	38.9	38.6
Chromium	<0.0004	<0.0004	ł	!	<0.005
Chrom, Hex	1	1	I	1	ľ
Cobalt	<0.0011	<0.0011	1	1	<0.015
Copper	0.0008 B	<0.0007	l	ł	0.013
Iron	0.0348 B	0.0471 B	13.5	0.315	0.125
Lead	0.0052	<0.001	<0.005	0.005	<0.005
Magnesium	15.4	8.69	10.4	8.12	8.18
Manganese	0.22	0.174	0.238	0.127	0.248
Mercury	0.0014	<0.0001	-	1	<0.0004
Nickel	<0.0013	<0.0013	ł	1	<0.01
Potassium	10.6	4.92 B	2.52	1.38	1.31
Sodium	59.3	27.1	14.7	12.3	13
Selenium	1	1	I	!	<0.02
Silver	l	1	1	1	<0.015
Thallium	<0.0026	<0.0026	-	ł	<0.03
Vanadium	<0.0012	<0.0012	1	ł	<0.015
Zinc	0.12	0.0161 B	ł	I	0.033

All units are mg/l

Historical Water Quality Database - Towslee Landfill MW-1B Dissolved Metals

Parameter	Aug-97	Oct-97	3/22/06	8/9/06
Aluminum	0.0146 B	0.0209 B	1	0.195
Antimony	<0.003	<0.003	1	<0.05
Arsenic	<0.0024	<0.0024	ł	<0.025
Barium	0.151 B	0.155 B	J	0.162
Beryllium	<0.0001	<0.0001	1	<0.005
Boron	0.0195 B	0.0162 B	ł	<0.07
Cadmium	<0.0003	<0.0003	<0.005	<0.005
Calcium	24.8	24.5	22.8	24.4
Chromium	0.0008 B	0.00073 B	1	<0.005
Chrom, Hex	1	1	1	1
Cobalt	<0.0011	<0.0011	1	<0.015
Copper	<0.0007	<0.0007	1	0.013
Iron	0.0172 B	0.0141 B	0.339	0.339
Lead	:	1	<0.005	<0.005
Magnesium	6.62	5.88	5.15	5.54
Manganese	0.141	0.134	0.0136	0.135
Mercury		1	1	<0.0004
Nickel	<0.0013	<0.0013	1	<0.01
Potassium	1.63 B	0.514 B	0.487	0.403
Sodium	7.53	6.59	4.75	5.31
Selenium	1	-	1	<0.02
Silver	-	1	1	<0.015
Thallium	-	1	-	<0.03
Vanadium	1		1	<0.015
Zinc	0.0396	0.0152 B	1	0.029

All units are mg/l

Historical Water Quality Database - Towslee Landfill MW-2A Dissolved Metals

Parameter	Aug-97	Oct-97	8/9/06
Aluminum	<0.0083	0.0482 B	0.044
Antimony		1	<0.05
Arsenic	0.0123	0.0139	<0.025
Barium	0.787	0.786	0.427
Beryllium	0.00017 B	0.0001 B	<0.005
Boron	1.21	0.992	0.562
Cadmium	0.00053 B	<0.0003	<0.005
Calcium	183	183	77.6
Chromium	0.0035 B	0.0057 B	<0.005
Chrom, Hex	1	1	1
Cobalt	0.0107 B	0.0095 B	<0.015
Copper	0.0162 B	<0.0007	0.015
lron	5.4	11.5	0.204
Lead	<0.001	0.0011 B	<0.005
Magnesium	41	38.5	17.1
Manganese	30.4	30.9	12.1
Mercury	<0.0001	<0.0001	<0.0004
Nickel	0.0179 B	0.0162 B	<0.01
Potassium	17.5	14.2	12.5
Sodium	121	115	29.6
Selenium		1	<0.02
Silver	1	1	<0.015
Thallium	0.003 B	<0.0026	<0.03
Vanadium	<0.0012	<0.0012	<0.015
Zinc	0.117	0.0207	0.013

All units are mg/l

Historical Water Quality Database - Towslee Landfill MW-2B Dissolved Metals

Parameter	Aug-97	Oct-97
Aluminum	0.0179 B	0.0154 B
Antimony	<0.003	<0.003
Arsenic	0.0036 B	<0.0024
Barium	1.55	1.45
Beryllium	<0.0001	<0.0001
Boron	0.334	0.321
Cadmium	<0.0003	<0.0003
Calcium	281	274
Chromium	0.0009 B	0.0014 B
Chrom, Hex	1	
Cobalt	0.0067 B	0.0061 B
Copper	0.0022 B	<0.0007
Iron	0.582	0.595
Lead	-	1
Magnesium	61.7	55
Manganese	8.07	8
Mercury	:	1
Nickel	0.0093 B	0.0097 B
Potassium	2.8 B	2.34 B
Sodium	62.5	62.8
Selenium	1	1
Silver	1	1
Thallium	1	1
Vanadium	:	1
Zinc	0.0635	0.023

All units are mg/l

Historical Water Quality Database - Towslee Landfill MW-3A Dissolved Metals

	Aug-9/	Oct-97	3/22/06
Aluminum	<0.0083	0.0158	1
Antimony	0.0038 B	<0.003	ł
Arsenic	<0.0024	<0.0024	1
Barium	0.242	0.276	1
Beryllium	<0.0001	<0.0001	ł
Boron	0.0324 B	0.0275 B	1
Cadmium	<0.0003	<0.0003	<0.005
Calcium	57.9	54.6	44.3
Chromium	<0.0004	<0.0004	ł
Chrom, Hex		1	1
Cobalt	<0.0011	<0.0011	ł
Copper	0.0024 B	0.00083 B	1
Iron	0.0061 B	0.0114 B	0.168
Lead	1	1	<0.005
Magnesium	12.9	10.9	8.7
Manganese	0.123	0.0941	0.0963
Mercury	1		t
Nickel	<0.0013	0.0017 B	1
Potassium	2.75 B	1.42 B	0.803
Sodium	10.2	7.98	4.83
Selenium			ł
Silver	-	-	1
Thallium	1	-	ł
Vanadium	1	-	ł
Zinc	0.0249	0.0387	I

All units are mg/l

Historical Water Quality Database - Towslee Landfill MW-6B Dissolved Metals

Parameter	Aug-97	Oct-97
Aluminum	<0.0083	0.0132 B.
Antimony	<0.003	<0.003
Arsenic	0.0048 B	0.0073 B
Barium	0.396	0.478
Beryllium	<0.0001	<0.0001
Boron	0.125	0.14
Cadmium	<0.0003	<0.0003
Calcium	67.7	56.3
Chromium	<0.0004	0.00087 B
Chrom, Hex	1	
Cobalt	0.0052 B	0.0041 B
Copper	0.0011 B	<0.0007
lron	0.346	1.42
Lead	1	1
Magnesium	17.3	12.9
Manganese	3.3	3.99
Mercury	1	1
Nickel	0.0046 B	0.0048 B
Potassium	2.97 B	2.77 B
Sodium	38.2	33.3
Selenium	1	1
Silver	L	1
Thallium	;	-
Vanadium	1	
Zinc	0.0651	0.0207

All units are mg/l

Historical Water Quality Database - Towslee Landfill MW-7A Dissolved Metals

Parameter	Aug-97	Oct-97	3/22/06
Aluminum	<0.0083	0.0755 B	t
Antimony	1	1	1
Arsenic	<0.0024	<0.0024	1
Barium	0.822	0.887	1
Beryllium	0.0001 B	<0.0001	ł
Boron	0.331	0.396	1
Cadmium	0.0003 B	<0.0003	<0.005
Calcium	220	255	158
Chromium	0.0008 B	0.0011 B	1
Chrom, Hex	1	ł	1
Cobalt	0.0017 B	0.0031 B	ł
Copper	0.0086 B	<0.0007	1
Iron	0.009 B	0.753	0.0637
Lead	<0.001	<0.001	<0.005
Magnesium	56.2	59.9	43.6
Manganese	4.53	7.12	5.35
Mercury	<0.0001	<0.0001	ł
Nickel	0.0129 B	0.0196 B	1
Potassium	5.28	3.98 B	1.9
Sodium	120	129	126
Selenium	:	1	;
Silver	1	1	ł
Thallium	<0.0026	<0.0026	:
Vanadium	<0.0012	<0.0012	1
Zinc	0.0455	0.0186	ł

All units are mg/l

Historical Water Quality Database - Towslee Landfill Organics (includes only compounds detected) Well MW-1A - Overburden

Parameter	ТҮРЕ	Aug-97	Oct-97	8/9/06
Vinyt Chloride	VOC	<10	<10	3
Chloroethane	VOC	<10	<10	\$°
Acetone	VOC	10	<10	<25
Methylene Chloride	voc	<10	<10	\$
trans-1,2-Dichloroethene (1)	VOC	<10	<10	₩
cis-1,2-Dichloroethene (1)	voc	<10	<10	55
1,1-Dichloroethane	VOC	<10	<10	\$
Benzene	VOC	<10	<10	₽
Toluene	VOC	<10	<10	\$>
Chlorobenzene	VOC	<10	<10	<u></u> 2>
Ethytbenzene	VOC	<10	<10	\$5
Xylenes(total)	VOC	<10	<10	<10
1,4-Dichlorobenzene	SVOC	<10	<10	\$5
Diethylphthalate	SVOC	<10	<10	AN
bis(2-Ethylhexyl)phthalate	SVOC	<10	<10	AN
All units are ug/				

J - estimated

B - analyte also detected in blank
(1) 1997 results are for total 1,2-DCE - total has been applied to each compound
NA - not analyzed

Historical Water Quality Database - Towslee Landfill Organics (includes only compounds detected) Well MW-1B - Bedrock

Parameter	түре	Aug-97	Oct-97	8/9/06
Vinyl Chloride	VOC	<10	<10	<5
Chloroethane	VOC	<10	<10	<5
Acetone	voc	<10	<10	<25
Methylene Chloride	VOC	<10	<10	₹5
trans-1,2-Dichloroethene	VOC	<10	<10	5
cis-1,2-Dichloroethene	VOC	<10	<10	<5
1,1-Dichloroethane	VOC	<10	<10	<5
Benzene	VOC	<10	<10	<5
Toluene	VOC	<10	<10	\$
Chlorobenzene	VOC	<10	<10	<5
Ethylbenzene	VOC	<10	<10	\$5
Xylenes(total)	VOC	<10	<10	~10
1,4-Dichlorobenzene	SVOC	<10	<10	<5
Diethylphthalate	SVOC	<10	<10	AN
bis(2-Ethylhexyl)phthalate	SVOC	<10	<10	NA
All units are un/l				

All units are ug/l

J - estimated

B - analyte also detected in blank

1997 results are for total 1,2-DCE - total has been applied to each compound NA - not analyzed

Historical Water Quality Database - Towslee Landfill Organics (includes only compounds detected) Well MW-2A - Overburden

Parameter	ТҮРЕ	79-97	Oct-97	8/9/06
Vinyl Chloride	VOC	<10	<10	\$
Chloroethane	VOC	5 J	4 J	\$
Acetone	voc	<10	<10	<25
Methylene Chloride	VOC	1 JB	<10	€5
trans-1,2-Dichloroethene	VOC	<10	<10	<5.
cis-1,2-Dichloroethene		<10	<10	€5
1,1-Dichloroethane	VOC	<10	<10	€5
Benzene	VOC	5 J	6.0	€5
Toluene	VOC	1 J	<10	€5
Chlorobenzene	VOC	5 J	<10	<5
Ethylbenzene	VOC	2 J	<10	€5
Xylenes(total)	VOC	۲ <u>۶</u>	<10	<10
1,4-Dichlorobenzene	SVOC	<u>ل</u> 1	2 J	<5
Diethylphthalate	SVOC	<10	L L	NA
bis(2-Ethylhexyl)phthalate	SVOC	<10	<10	NA
All units are ug/l				

All units are ug/l J - estimated

J - estimated

B - analyte also detected in blank

 1997 results are for total 1,2-DCE - total has been applied to each compound NA - not analyzed

Historical Water Quality Database - Towslee Landfill Organics (includes only compounds detected) Well MW-2B - Bedrock

Parameter	TYPE	Aug-97	Oct-97 8/9/06	8/9/06
Vinyl Chloride	VOC	<10	<10	<5
Chioroethane	VOC	4 J	ЧЗJ	<5 <5
Acetone	VOC	<10	<10	<25
Methylene Chloride	VOC	1 JB	<10	<u></u> \$>
trans-1,2-Dichloroethene	VOC	L 1	<10	<u></u> 2>
cis-1,2-Dichloroethene	VOC	L L	<10	6.2
1, 1-Dichloroethane	VOC	1 J	1 J	€5
Benzene	VOC	<10	2 J	\$
Toluene	VOC	<10	<10	<5
Chlorobenzene	VOC	<10	L 1	\$>
Ethylbenzene	voc	<10	<10	€2
Xylenes(total)	voc	<10	<10	<10
1,4-Dichlorobenzene	svoc	<10	<10	<5
Diethylphthalate	svoc	<10	<10	NA
bis(2-Ethythexyl)phthalate	SVOC	<10	1 JB	NA
All units are uo/l				

All units are ug/l J - estimated

B - analyte also detected in blank
(1) 1997 results are for total 1,2-DCE - total has been applied to each compound NA - not analyzed

Historical Water Quality Database - Towslee Landfill Organics (includes only compounds detected) Well MW-3A - Bedrock

Parameter	туре	Aug-97	Aug-97 Oct-97 8/9/06	8/9/06
Vinyl Chloride	VOC	<10	<10	\$
Chloroethane	VOC	<10	<10	\$>
Acetone	VOC	2 J	<10	<25
Methylene Chloride	VOC	5 JB	<10	\$
trans-1,2-Dichloroethene	VOC	<10	<10	\$5
cis-1,2-Dichloroethene	X0C	<10	°10	<u> </u> 2>
1,1-Dichloroethane	VOC	<10	<10	\$° ∽
Benzene	VOC	<10	<10	\$>
Toluene	VOC	<10	<10	°5
Chlorobenzene	VOC	<10	<10	\$
Ethylbenzene	voc	<10	<10	\$>
Xylenes(total)	Voc	<10	<10	<10
1,4-Dichlorobenzene	svoc	<10	<10	<5
Diethylphthalate	SVOC	<10	<10	AN
bis(2-Ethylhexyl)phthalate	SVOC	<10	<10	AN
All units are ug/l				

J - estimated

B - analyte also detected in blank
 (1) 1997 results are for total 1,2-DCE - total has been applied to each compound
 NA - not analyzed

Historical Water Quality Database - Towslee Landfill Organics (includes only compounds detected) Well MW-6B - Bedrock

	14,11	20 T V	<u>20</u> 17 0	
rarameter	I Y PE	Aug-9/	OCI-8/	0/1/00
Vinyl Chloride	VOC	<10	<10	\$
Chloroethane	VOC	<10	<10	\$
Acetone	voc	<10	<10	<25
Methylene Chloride	VOC	<10	<10	\$
trans-1,2-Dichloroethene	VOC	<10	<10	€5
cis-1,2-Dichloroethene		<10	<10	\$
1,1-Dichloroethane	VOC	<10	<10	\$ >
Benzene	VOC	<10	<10	\$>
Toluene	VOC	<10	<10	\$≎
Chlorobenzene	VOC	<10	<10	\$
Ethylbenzene	VOC	<10	<10	\$5
Xylenes(total)	VOC	<10	<10	<10
1,4-Dichlorobenzene	SVOC	<10	<10	<5 <5
Diethylphthalate	SVOC	<10	<10	NA
bis(2-Ethylhexyl)phthalate	SVOC	<10	<10	NA
All units are ug/l				

þ

J - estimated B - analyte also detected in blank

1997 results are for total 1,2-DCE - total has been applied to each compound NA - not analyzed

Historical Water Quality Database - Towslee Landfill Organics (includes only compounds detected) Well MW-7A - Overburden

Parameter	түре	Aug-97 Oct-97 8/9/06	Oct-97	8/9/06
Vinyl Chloride	VOC	2 J	5 J	55
Chloroethane	VOC	<10	L 1	<5
Acetone	VOC	<10	<10	<25
Methylene Chloride	VOC	1 JB	<10	55
trans-1,2-Dichloroethene	VOC	1 J	2 J	<5
cis-1,2-Dichloroethene		L 1 .	2 J	7.1
1,1-Dichloroethane	VOC	٢٤	4 J	6.1
Benzene	VOC	<10	<10	¢5 م5
Toluene	VOC	<10	<10	55
Chlorobenzene	VOC	<10	<10	<5
Ethylbenzene	VOC	<10	<10	<5.
Xylenes(total)	VOC	<10	<10	<10
1,4-Dichlorobenzene	SVOC	<10	<10	<5<
Diethyiphthalate	SVOC	<10	<10	AN ,
bis(2-Ethylhexyl)phthalate	SVOC	<10	<10	AN
All units are ug/l				

J - estimated

B - analyte also detected in blank

1997 results are for total 1,2-DCE - total has been applied to each compound NA - not analyzed

