FILE COPY BY

## **RECORD OF DECISION**

Rosen Brothers Site Cortland, New York

U.S. Environmental Protection Agency Region II New York, New York March 1998

## DECLARATION FOR RECORD OF DECISION

### SITE NAME AND LOCATION

Rosen Brothers Site, Cortland, New York

### STATEMENT OF BASIS AND PURPOSE

This Record of Decision (ROD) documents the U.S. Environmental Protection Agency's (EPA's) selection of a remedy for the Rosen Brothers Superfund Site (the "Site") in accordance with the requirements of the Comprehensive Environmental Response, Compensation and Liability Act of 1980, as amended (CERCLA), 42 U.S.C. §9601-9675, and to the extent practicable, the National Oil and Hazardous Substances Pollution Contingency Plan, 40 CFR Part 300. This decision document explains the factual and legal basis for selecting the remedy for the Site. The attached index (Appendix III) identifies the items that comprise the Administrative Record upon which the selection of the remedial action is based.

The New York State Department of Environmental Conservation (NYSDEC) was consulted on the proposed remedial action in accordance with CERCLA §121(f), 42 U.S.C. §9621(f), and it concurs with the selected remedy (see **Appendix IV**).

#### ASSESSMENT OF THE SITE

Actual or threatened releases of hazardous substances from the Rosen Site, if not addressed by implementing the response action selected in this ROD, may present an imminent and substantial endangerment to public health, welfare, or the environment.

#### DESCRIPTION OF THE SELECTED REMEDY

The major components of the selected remedy include the following:

 Excavation of all 1,1,1-trichloroethane (TCA)-contaminated soils above 1 milligram per kilogram (mg/kg) in two hot spot areas (one immediately downgradient of the former cooling pond in the monitoring well W-06 area and the other corresponding with test pit T-02) and PCB-contaminated soils above 10 mg/kg in two hot spot areas (the northeast portion of the Site and the area of the gantry crane in the central portion)<sup>1</sup>. The actual extent of the excavations and the volume of the excavated material will be based on post-excavation confirmatory sampling. Clean or treated material will be used as backfill in the excavated areas.

- Consolidation of all excavated soils with PCB concentrations less than 50 mg/kg onto the former cooling pond. Those soils with PCB concentrations above 50 mg/kg will be sent off-site for treatment/disposal at a Toxic Substances Control Act (TSCA)compliant facility. All excavated TCA-contaminated soils will either be sent off-site for treatment/disposal or treated on-site to 1 mg/kg for TCA and used as backfill in the excavations.
- Removal and consolidation onto the former cooling pond of nonhazardous debris located on surface areas where the site-wide surface cover will be installed and/or is commingled with the excavated soil.
- Placement of a cap meeting the requirements of New York State 6
  NYCRR Part 360 regulations over the three-acre former cooling
  pond. Prior to the construction of the cap, the consolidated soils,
  non-hazardous debris, and existing fill materials will be regraded
  and compacted to provide a stable foundation and to promote
  runoff.
- Construction of a chain-link fence around the former cooling pond after it is capped.
- Placement of a surface cover over the remaining areas of the Siteto prevent direct contact with residual levels of contaminants in Site soils. The nature of the surface cover will be determined during the remedial design phase.
- Monitored natural attenuation to address the residual groundwater contamination in downgradient areas. As part of a long-term groundwater monitoring program, sampling will be conducted in order to verify that the level and extent of groundwater contaminants are declining from baseline conditions and that conditions are protective of human health and the environment.

See Figure 3 for locations of the areas to be remediated.

- Implementation of regrading and storm-water management improvements to protect the integrity of the cap/surface cover.
- Employment of dust and VOC control/suppression measures during all construction and excavation activities, as necessary, pursuant to state and federal guidance.
- Long-term monitoring to evaluate the remedy's effectiveness. The
  exact frequency, location, and parameters of groundwater
  monitoring will be determined during remedial design. Monitoring
  will include a network of groundwater monitoring wells, including the
  installation of new monitoring wells (as necessary). Monitoring will
  also include several sediment sampling stations.
- Taking steps to secure institutional controls, such as deed restrictions and contractual agreements, as well as local ordinances, laws, or other government action, for the purpose of, among other things, restricting the installation and use of groundwater wells at and downgradient of the Site, restricting excavation or other activities which could affect the integrity of the cap/site-wide surface cover, and restricting residential use of the property in order to reduce potential exposure to site-related contaminants.
- Reevaluation of Site conditions at least once every five years to determine if a modification to the selected alternative is necessary.

It is anticipated that excavation of the two PCB hot spot areas and the installation of the site-wide surface cover on a portion of the Site will be performed pursuant to a Unilateral Administrative Order issued by EPA in early March 1998.

Data indicate that the groundwater contamination in the monitoring well W-06 area is of an intermittent nature and that TCA levels in groundwater along the Site's downgradient perimeter are present at relatively low levels. These conditions, combined with the removal of the TCA source areas, extremely high groundwater flow, and the presence of intrinsic conditions favorable to contaminant degradation, is expected to lead to the timely groundwater restoration via monitored natural attenuation (in approximately 10 years) without relying on a costly groundwater extraction and treatment system.

If, however, monitored natural attenuation does not appear to be successful in remediating the groundwater, then more active remedial measures would be considered. EPA may also invoke a waiver of groundwater Applicable or Relevant and Appropriate Requirements (ARARs) if the remediation program and further monitoring data indicate that reaching Maximum Contaminant Levels (MCLs) in the aquifer is technically impracticable.

The selected alternative will provide the best balance of trade-offs among alternatives with respect to the evaluating criteria. EPA and NYSDEC believe that the selected alternative will be protective of human health and the environment, will comply with ARARs, will be cost-effective, and will utilize permanent solutions to the maximum extent practicable.

### **DECLARATION OF STATUTORY DETERMINATIONS**

The selected remedy meets the requirements for remedial actions set forth in CERCLA §121, 42 U.S.C. §9621 in that it: (1) is protective of human health and the environment; (2) attains a level or standard of control of the hazardous substances, pollutants and contaminants, which at least attains the legally applicable or relevant and appropriate requirements under federal and state laws; (3) is cost-effective; (4) utilizes alternative treatment (or resource recovery) technologies to the maximum extent practicable; and (5) satisfies the statutory preference for remedies that employ treatment to reduce the toxicity, mobility, or volume of the hazardous substances, pollutants or contaminants at a site.

Because this remedy will result in contaminants remaining on the Site above health-based limits until the contaminant levels in the aquifer are reduced below MCLs, a review of the remedial action, pursuant to CERCLA §121(c), 42 U.S.C. §9621(c), will be conducted five years after the commencement of the remedial action and every five years thereafter, to ensure that the remedy continues to provide adequate protection to human health and the environment.

Jeanne M. Fox

Regional Administrator

3/23/98

Date

## **DECISION SUMMARY**

Rosen Brothers Site Cortland, New York

U.S. Environmental Protection Agency Region II New York, New York

# TABLE OF CONTENTS

| L      | pag                                                                                                                                                      | <u>e</u> |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|        | SITE LOCATION AND DESCRIPTION                                                                                                                            | 1        |
| [ ·    | SITE HISTORY AND ENFORCEMENT ACTIVITIES                                                                                                                  | 2        |
| L      | HIGHLIGHTS OF COMMUNITY PARTICIPATION                                                                                                                    | 4        |
|        | SCOPE AND ROLE OF OPERABLE UNIT OR RESPONSE ACTION                                                                                                       | 4        |
|        | SUMMARY OF SITE CHARACTERISTICS                                                                                                                          | 4        |
|        | SUMMARY OF SITE RISKS                                                                                                                                    | 9        |
| L      | REMEDIAL ACTION OBJECTIVES                                                                                                                               | 3        |
|        | SUMMARY OF REMEDIAL ALTERNATIVES                                                                                                                         | 4        |
| -<br>{ | COMPARATIVE ANALYSIS OF ALTERNATIVES 1                                                                                                                   | 8        |
| L      | DESCRIPTION OF THE SELECTED REMEDY 2                                                                                                                     | 25       |
|        | STATUTORY DETERMINATIONS 2                                                                                                                               | 28       |
|        | DOCUMENTATION OF SIGNIFICANT CHANGES                                                                                                                     | 0        |
| {      | ATTACHMENTS                                                                                                                                              |          |
|        | APPENDIX I FIGURES APPENDIX II TABLES APPENDIX III ADMINISTRATIVE RECORD INDEX APPENDIX IV STATE LETTER OF CONCURRENCE APPENDIX V RESPONSIVENESS SUMMARY |          |
|        |                                                                                                                                                          |          |

### SITE LOCATION AND DESCRIPTION

The Rosen Brothers Site (the Site), located on relatively flat terrain, is an abandoned scrap-metal processing facility which occupies approximately 20 acres on the southern side of the City of Cortland, New York (see Figure 1). Access to the Site is restricted from the surrounding environs by a seven-foot-high fence with two locked gates. To the east of the Site is the building and parking lot of the former Kirby Company, Pendleton Street, a vacant lot, a small residential area consisting of approximately 13 apartment buildings, and GT Auto Finishers. To the north is Perplexity Creek (an eastward flowing, seasonally intermittent stream), railroad tracks associated with the New York, Susquehanna & Western Railroad. several industries (Acorn Products, Tuscarora Plastics, and Marietta Packaging), Huntington Street, a small residential area consisting of approximately 20 houses, and the Randall Elementary School. To the west is a vacant lot, several industries (GS Heavy Duty Electric, JTS Lumber, and Cortland Wholesale Lumber and Plywood), and South Main Street. To the south is Perplexity Creek Tributary, a former City of Cortland dump site, Valley View Drive, and the Cortland City Junior and Senior High Schools (see Figure 2).

Perplexity Creek Tributary, which flows northeast, converges with Perplexity Creek at the northeast corner of the Site. Both are seasonally intermittent streams. At this point, Perplexity Creek continues through a culvert for approximately 2,000 feet, then flows freely for approximately a one-half mile interval before emptying into the Tioughnioga River. Surficial geology at the Site (hereinafter referred to as overburden) is comprised of glacial sand and gravel overlain by a silt unit and a fill unit. The silt unit appears to overlay the sand and gravel unit across most ofthe Site, ranging from two to six feet in thickness. For most of the Site, the fill ranges in thickness from one to six feet, typically consisting of gravels, sands, and silts mixed with various materials such as slag, cinders, and ash. Other materials observed in the fill consist of metal, wire, brick, wood, glass, railroad ties, pipes, tar, plastics, and concrete. Construction and, to a lesser extent, municipal wastes, ranging from four to twenty-five feet in thickness, are present in a three-acre former cooling pond. The eastern portion of the cooling pond has been filled in to an estimated fifteen feet above grade.

The Site overlies the Cortland-Homer-Preble aquifer, a sole source aquifer used as a supply of potable water for the City of Cortland. The potable water supply well for the entire City is located approximately two miles upgradient of the Site. Officials from both the City of Cortland and Cortland County have indicated that there are no known users of groundwater in areas downgradient of the Site.

### SITE HISTORY AND ENFORCEMENT ACTIVITIES

The area currently occupied by the Site is the eastern half of a forty-acre parcel of land which was originally referred to as "Randall's Vacant Fields." In the late 1800's, the forty-acre parcel was developed by Wickwire Brothers, Inc. (Wickwire) as an industrial facility for the manufacture of wire, wire products, insect screens, poultry netting, and nails. The eastern half of the property was used, primarily, as a scrap yard by Wickwire, supplying scrap metal for the steel mill. An on-site pond was dammed and used as a cooling pond in the manufacture of raw steel. This pond was approximately three acres in size and had an estimated capacity of one million gallons. The entire facility was sold to Keystone Consolidated Industries, Inc. (Keystone) in 1968. Keystone closed the facility in 1971. Shortly thereafter, the facility was destroyed by fire.

In the early 1970's, Phillip and Harvey Rosen (Rosen Brothers) transferred their existing scrap-metal processing operation to the eastern portion of the property. At this time, Rosen Brothers began the demolition of the Wickwire buildings on the western portion of the property. The demolition debris (allegedly over a million and a half square feet of buildings) was used to fill in most of the cooling pond to or above grade, hence the cooling pond is hereinafter referred to as "the former cooling pond". In exchange for this work, Rosen Brothers was granted title to the eastern portion of the property. The western portion of the Wickwire property was cleared for the development of new industry in 1979, and has since been known as the Noss Industrial Park.

Rosen Brothers' scrap metal operations included scrap metal processing and automobile crushing. The Site was used to stage large quantities of abandoned vehicles, appliances, steel tanks, drums, truck bodies, and other scrap materials. Municipal waste, industrial waste, and construction waste were allegedly intermittently disposed of in or on the former cooling pond. Drums were routinely crushed on-site, the contents spilling onto the ground surface. Philip Rosen and Rosen Brothers were cited for various violations throughout this period, including illegally dumping into Perplexity Creek Tributary, improperly disposing of waste materials, and operating a refuse disposal area without a permit. Operations on the Site ceased in 1985 and the Site was abandoned.

In 1986, NYSDEC conducted a Phase II investigation, which included a site inspection, geophysical studies, installation of soil borings and monitoring wells, and sampling and analysis of groundwater, soils,

sediments, and waste materials. The site inspection concluded that hazardous materials were present on the Site, including several hundred full and/or leaking drums, transformers filled with polychlorinated biphenyls (PCBs), and pressurized cylinders of unknown content. The results of sampling efforts indicated elevated levels of trichloroethane (TCA), PCBs, anthracene, pyrene, lead, and chromium, in Site soil, sediment, and groundwater.

EPA performed a removal action at the Site in 1987 to address immediate threats to the public health and the environment. This removal action included fencing the Site, sampling, excavating visibly-contaminated soil, and securing and temporary staging of drums, tanks, cylinders, transformers, and the excavated soil.

Based on materials observed on the Site and other evidence, EPA issued Administrative Orders to Keystone and several additional potentially responsible parties in 1988 and 1989, namely Monarch Machine Tool Company (Monarch), Niagara Mohawk Power Corporation (Niagara Mohawk), and the Dallas Corporation (later called Overhead Door Corporation and hereinafter referred to as Overhead Door), requiring them to remove the materials previously staged by EPA. This work was completed in April 1990.

On March 30, 1989, the Site was added to the Superfund National Priorities List. Overhead Door, Monarch, and Niagara Mohawk agreed to conduct a remedial investigation/feasibility study (RI/FS) in accordance with an Administrative Order on Consent (Index Number II CERCLA-00204) with EPA in January 1990. Keystone, Cooper Industries, Inc., and Potter Paint Co., Inc. assisted in the performance or funding of the RI/FS pursuant to the terms of a Unilateral Administrative Order (Index Number II CERCLA-00205) issued in February 1990. The companies completed the RI/FS in 1997. On March 6, 1998, EPA issued a Unilateral Administrative Order to the companies noted above and several other entities to perform a removal action in anticipation of planned on-site redevelopment activities.

These companies voluntarily undertook the demolition and removal of structurally unsound buildings and a 150-foot high smoke stack in December 1992. They also removed and recycled 200 tons of scrap materials in December 1993. In November 1994, the companies emptied and disposed of the contents of an abandoned underground storage tank and removed a small concrete oil pit. In August 1997, EPA removed and

recycled over 500 tons of scrap metal and more than 20 tons of tires from the Site.

### HIGHLIGHTS OF COMMUNITY PARTICIPATION

The RI report, dated May 1994, which describes the nature and extent of the contamination at and emanating from the Site, the Risk Assessment, dated January 1995, which discusses the risks associated with the Site. the FS report, dated April 1997, which identifies and evaluates various remedial alternatives, and the November 1997 Proposed Plan were made available to the public in both the Administrative Record and information repositories maintained at the EPA Docket Room in the Region II New York City office and at the City of Cortland Public Library located at 32 Church Street, Cortland, New York. The notice of availability for these documents was published in the Cortland Standard on November 17. 1997. A public comment period was held from November 17 through January 16, 1998<sup>1</sup>. A public meeting was held on December 9, 1997 at the New York State Grange Building in Cortland, New York. At this meeting, representatives from EPA presented the findings of the RI/FS and answered questions from the public about the Site and the remedial alternatives under consideration.

Responses to the comments received at the public meeting and in writing during the public comment period are included in the Responsiveness Summary (see Appendix V).

### SCOPE AND ROLE OF OPERABLE UNIT OR RESPONSE ACTION

The primary objectives of this action, the first and only remedial action planned for the Site, are to address contaminated soils and groundwater and to minimize any potential future health and environmental impacts.

### SUMMARY OF SITE CHARACTERISTICS

During the RI, air, surface water, sediments, surface soils, subsurface soils, and groundwater were sampled. The results from these samples are summarized below.

<sup>&</sup>lt;sup>1</sup> A thirty-day extension of the comment period was granted.

#### Air

Five air samples were collected downwind of the Site and analyzed for VOCs. In addition, potential concentrations of constituents on dust particulates were evaluated. The results did not indicate any significant site-related impacts to air quality.

#### Surface Water

Contaminant levels in the surface water were found to be generally insignificant.

#### Sediments

Although semi-volatile organic compounds (SVOCs), PCBs, and metals were detected in sediments, they were present at levels that do not represent a significant impact.

### Surface Soil

Surface soils were sampled for SVOCs and metals at forty-three locations. PCB samples were collected at thirty-one locations. SVOCs were generally detected at low to moderate levels at almost every location sampled. Surface soil sampling data are included in Table 1. The SVOCs that were detected were predominantly polyaromatic hydrocarbons (PAHs) and phthalates. The highest concentrations (up to 2,300 milligram/kilogram (mg/kg) of total SVOCs) were detected in surface soil samples in the vicinity of the former cooling pond. Four PAHs, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene, were detected wherever SVOCs were present. The PAH compounds are believed to be associated with petroleum products, coal, and combustion byproducts from both Wickwire and Rosen Brothers operations. The phthalates are typically associated with plastic materials.

Elevated concentrations of metals were detected in multiple locations across the Site, including cadmium, chromium, lead, manganese, mercury, and zinc. Elevated metal concentrations include manganese at approximately 19,100 mg/kg and lead at approximately 3,000 mg/kg.

Surface-soil samples collected in the northeast portion of the Site contained PCBs with concentrations exceeding 25 mg/kg. PCB sampling data from this event are included in Table 2. PCBs were detected

sporadically and at low levels (generally less than 1 mg/kg) in other areas of the Site, including an area where an overhead Gantry crane operated to load and unload scrap during both Wickwire and Rosen Brothers operations.

#### Subsurface Soil

Samples from twenty-one subsurface-soil locations were collected from test pits and borings. These samples were analyzed for volatile organic compounds (VOCs), SVOCs, PCBs/pesticides, and metals. Subsurface soil sampling data are included in Table 3. VOCs were generally detected at relatively low concentrations (i.e., below 1 mg/kg), with the exception of TCA at 44 mg/kg in a single location, two to three feet below the surface in the south-central portion of the Site (i.e., sample collected from test pit T-02). Most of the SVOCs detected in subsurface soil samples collected at the Site were PAHs. Total SVOC concentrations were generally low across the Site (i.e., below 1 mg/kg). The highest concentration detected was approximately 330 mg/kg in the northeastern portion of the Site. Consistent with surface soil sampling data, PCBs in subsurface soil samples were generally confined to the northeastern area of the Site, at concentrations exceeding 25 mg/kg. Pesticides were either not detected or present at extremely low levels. Metals in subsurface soils were generally detected at levels well below those detected in surface soils. The maximum concentrations of manganese and lead were detected at approximately 8,000 mg/kg and 1,100 mg/kg, respectively.

A suspected area of subsurface drum disposal in the southwestern portion of the Site was investigated by test pitting during the RI in 1993. No drums were located during this effort. In addition, a geophysical testing program was conducted in 1996 to explore discrete subsurface areas of the Site where drum disposal was suspected. Using several remote sensing technologies, suspected areas were defined, including three locations within the former cooling pond. A test-pitting program did not locate any drums.

#### Groundwater

There are two primary hydrogeologic units beneath the Site -- the upper outwash unit and the lower sand and gravel unit. In the southern portion of the Site, the upper unit directly overlies the lower unit and they tend to act as one unit. In the northern portion of the Site, the upper outwash and lower sand and gravel units become separated by a lower-permeability lacustrine unit, forming two distinct hydrogeologic units. The

lacustrine unit also restricts the downward migration of contaminants from the upper outwash unit to the lower sand and gravel unit. The upper outwash unit is about 40 feet thick and the general direction of groundwater flow is toward the northeast (see Figure 3).

During the RI, several groundwater sampling events were conducted using twenty-four monitoring wells. Samples were analyzed for VOCs. SVOCs, PCBs/pesticides, and metals. Groundwater sampling data are included in Table 4. The results of these RI sampling activities indicated the presence of elevated levels of VOCs in the groundwater beneath the Site. The primary groundwater contaminants were determined to be TCA and its degradation products, 1,1- dichloroethane (1,1-DCA) and 1,1dichloroethene (1,1-DCE). The highest concentrations of contaminants were detected in the south-central portion of the Site, in monitoring well W-06, located immediately downgradient of the former cooling pond. A concentration of 3,400 micrograms per liter ( $\mu$ g/I) of TCA was detected in this well. Subsequent groundwater monitoring over the next several years showed a significant decline of TCA concentrations. Much lower concentrations of these and other VOCs were detected at wells throughout the Site, downgradient of the Site, and to a lesser extent. upgradient of the Site. The data indicate that there is a general decline in groundwater contaminant levels in seven upper outwash wells along the northern (downgradient) perimeter of the Site. The highest concentrations were detected in the central portion of the northern perimeter, located hydraulically downgradient of monitoring well W-06 and test pit T-02, with a high concentration of 390  $\mu$ g/l detected in February 1992. By March 1996, the last full round of groundwater sampling conducted, the high concentration had declined to 88  $\mu$ g/l. Consistent with the northern-perimeter wells, the data indicate that there is a general decline in groundwater contaminant levels in four off-site, upper-outwash wells located downgradient of the northern-perimeter wells. Average TCA concentrations ranged from 8  $\mu$ g/l to 135  $\mu$ g/l. The highest concentrations were detected hydraulically downgradient of monitoring well W-11 (see Figure 2), with a high concentration of 260  $\mu g/l$ , detected in February 1992, which declined to 83 $\mu g/l$  by March 1996.

Post-RI quarterly groundwater samples were collected from April 1995 through August 1996 to assess the nature and degree of decline in the levels of TCA immediately downgradient of the former cooling pond. A summary of all groundwater sampling data for TCA is included in Table 5. Levels of TCA continued to decline until December 1995, when an elevated level of  $5,000~\mu g/l$  was observed. The conclusion drawn from these data was that there was an intermittent source of TCA present in

the soils/fill in the vicinity of or upgradient from monitoring well W-06 (See Figure 4).

In response, EPA conducted an investigation in the vicinity of monitoring well W-06 and the former cooling pond. Groundwater, soil, and soil gas samples were collected and test pits were excavated into the former cooling pond and in the monitoring well W-06 area in an attempt to identify the source of the intermittent TCA contamination. The data collected led to the conclusion that there was a localized source of TCA in the soils/fill in the monitoring well W-06 area and that the former cooling pond was not a source of TCA. The estimated volume of contaminated soil in the monitoring well W-06 area is 500 to 1,000 cubic yards, based on elevated soil concentrations from four to eight feet deep overlying the silt unit. A similar volume is assumed to be present in the test pit T-02 area.

PCBs were detected in groundwater in a single well in the northeastern portion of the Site. The highest concentration reported was 11  $\mu$ g/l. The PCBs at this location can be correlated directly with the PCBs detected in the soil in the vicinity of this well. No PCBs were detected in nearby downgradient monitoring wells. Pesticides were not detected in the groundwater.

The data indicate that elevated levels of metals are present in the groundwater. Metals with elevated concentrations include antimony, arsenic, cadmium, lead, chromium, and manganese. Manganese was often detected above 5,000  $\mu$ g/l in unfiltered samples and above 1,000  $\mu$ g/l in filtered samples. While it is difficult to correlate these groundwater contaminants solely with the Site, it appears that the Site does contribute to the presence of metals in groundwater.

Overall, data from on- and off-site monitoring wells indicate a narrow, relatively low-level and stable groundwater-contaminant plume migrating from the Site to the northeast and extending almost to the Tioughnioga River. The groundwater data indicate that contaminants are confined to the upper outwash unit and have not migrated to the lower sand and gravel unit. This is likely due to both the extremely high horizontal groundwater flow velocity in the Cortland aquifer as well as to the presence of the less-permeable lacustrine unit between the upper outwash and lower sand and gravel units across the northern portion of the Site. The data collected, including the collection of data confirming the presence of conditions favorable for natural attenuation, indicate that there continues to be a general decline in the levels of contaminants over

time downgradient of the source areas (i.e., at the northern perimeter and areas downgradient of the Site).

Pump testing conducted after the RI concluded that a flow rate of 1,000 to 1,500 gallons per minute would be necessary to create a hydraulic barrier along the downgradient edge of the Site in order to prevent contaminated groundwater from leaving the Site.

### SUMMARY OF SITE RISKS

Based upon the results of the RI, a baseline risk assessment was conducted to estimate the risks associated with current and future Site conditions. The baseline risk assessment estimates the human health and ecological risk which could result from the contamination at the Site, if no remedial action were taken.

### Human Health Risk Assessment

A four-step process is utilized for assessing site-related human health risks for a reasonable maximum exposure scenario: Hazard Identification--identifies the contaminants of concern at the Site based on several factors such as toxicity, frequency of occurrence, and concentration. Exposure Assessment--estimates the magnitude of actual and/or potential human exposures, the frequency and duration of these exposures, and the pathways (e.g., ingesting contaminated well-water) by which humans are potentially exposed. Toxicity Assessment--determines the types of adverse health effects associated with chemical exposures, and the relationship between magnitude of exposure (dose) and severity of adverse effects (response). Risk Characterization--summarizes and combines outputs of the exposure and toxicity assessments to provide a quantitative assessment of site-related risks.

The baseline risk assessment began with selecting contaminants of concern which would be representative of Site risks. Contaminants were identified based on factors such as potential for exposure to receptors, toxicity, concentration, and frequency of occurrence. Contaminants of concern are presented in Table 6. Several of the SVOCs (particularly the PAHs), as well as the PCBs, are known to cause cancer in laboratory animals and are suspected or known to be human carcinogens. Many of the metals, particularly manganese, are noncarcinogenic compounds with strong potential for adverse health effects.

The baseline risk assessment evaluated the health effects which could result from exposure to contaminated Site media (i.e., soil, groundwater, etc.) through ingestion, dermal contact, or inhalation. The assessment evaluated risks to potential trespassers, potential future off-site residents, potential future excavation workers, and potential future industrial workers. Exposure routes are presented in Table 7.

Noncarcinogenic risks were assessed using a Hazard Index (HI) approach, based on a comparison of expected contaminant intakes and safe levels of intake (Reference Doses or RfDs). RfDs have been developed by EPA for indicating the potential for adverse health effects. RfDs, which are expressed in units of mg/kg-day, are estimates of daily exposure levels for humans which are thought to be safe over a lifetime (including sensitive individuals). Estimated intakes of chemicals from environmental media (e.g., the amount of a chemical ingested from contaminated drinking water) are compared with the RfD to derive the hazard quotient for the contaminant in the particular medium. The hazard index is obtained by adding the hazard quotients for all compounds across all media that impact a particular receptor population. The RfDs for the compounds of concern are presented in Table 8.

Potential carcinogenic risks were evaluated using the cancer slope factors developed by EPA for the contaminants of concern. Cancer slope factors (SFs) have been developed by EPA's Carcinogenic Risk Assessment Verification Endeavor for estimating excess lifetime cancer risks associated with exposure to potentially carcinogenic chemicals. SFs, which are expressed in units of (mg/kg-day)<sup>-1</sup>, are multiplied by the estimated intake of a potential carcinogen, in mg/kg-day, to generate an upper-bound estimate of the excess lifetime cancer risk associated with exposure to the compound at that intake level. The term "upper bound" reflects the conservative estimate of the risks calculated from the SF. Use of this approach makes the underestimation of the risk highly unlikely. The SFs for the compounds of concern are presented in Table 9.

Current federal guidelines for acceptable exposures are an individual lifetime excess carcinogenic risk in the range of 10<sup>-4</sup> to 10<sup>-6</sup> (e.g., a one-in-ten-thousand to a one-in-a-million excess cancer risk) and a maximum health HI (which reflects noncarcinogenic effects for a human receptor) equal to 1.0. A HI greater than 1.0 indicates a potential of noncarcinogenic health effects.

The results of the baseline risk assessment indicate that the contaminated surface soils and groundwater at the Site pose an unacceptable risk to human health due, primarily, to the presence of VOCs, SVOCs, PCBs, and metals. HI data are summarized in Table 10. Cancer risk data are summarized in Table 11.

Potential trespassers and potential future excavation workers were not found to be at risk from exposure to contaminated Site media, primarily due to the assumed short duration of potential exposure. In addition, the risk assessment concluded that there was no significant risk attributable to the Site when evaluating current scenarios. The noncarcinogenic HI for exposure to groundwater and wind-borne soil contaminants by potential future off-site residents is 69, attributable primarily to groundwater ingestion, which is well above the acceptable level of 1. As wasnoted previously, the water supply for the City of Cortland is located two miles upgradient of the Site and there are no known users of groundwater downgradient of the Site. The carcinogenic risks related to ingestion, dermal contact, and/or inhalation of vapors from groundwater and surface soils at the Site are outside the acceptable range at 9 x 10-4 (i.e., a nine-in-ten-thousand excess cancer risk) for potential future industrial workers. For potable groundwater ingestion by potential future off-site residents, the risk was 2 x 10<sup>-3</sup> (i.e., a two-in-one-thousand excess cancer risk), which is outside the acceptable risk range.

For potential future industrial workers, the noncarcinogenic HIs for ingestion of groundwater and ingestion and inhalation of surface soils (dust) are above the acceptable level of 1. The HI for ingestion of groundwater by future industrial workers is 9 and the HI for ingestion and inhalation of surface soils by future industrial workers is 2.

# **Ecological Risk Assessment**

A four-step process is utilized for assessing Site-related ecological risks for a reasonable maximum exposure scenario: Problem Formulation - a qualitative evaluation of contaminant release, migration, and fate; identification of contaminants of concern, receptors, exposure pathways, and known ecological effects of the contaminants; and selection of endpoints for further study. Exposure Assessment--a quantitative evaluation of contaminant release, migration, and fate; characterization of exposure pathways and receptors; and measurement or estimation of exposure point concentrations. Ecological Effects Assessment--literature reviews, field studies, and toxicity tests, linking contaminant

concentrations to effects on ecological receptors. Risk Characterization—measurement or estimation of both current and future adverse effects.

The ecological risk assessment began with evaluating the contaminants associated with the Site in conjunction with the site-specific biological species/habitat information. The baseline risk assessment concluded that the Site has low value as a wildlife habitat, while surrounding areas provide some limited alternative, preferred habitats. The degree of physical disturbance at the Site and lack of continuous quality habitat in the area are conditions which restrict the extent of use by wildlife. Perplexity Creek and its tributary generally provide low habitat value for aquatic biota due to the intermittent nature of the stream flow.

Raccoons and deer mice were chosen to represent terrestrial receptors potentially exposed to site-related contaminants of concern. For raccoons, estimated doses of cadmium, mercury, and lead exceed the available Lowest-Observed-Adverse-Effect Levels (LOAELs) and No-Observed-Adverse-Effect-Levels (NOAELs). For deer mice, the estimated dose for PCBs exceeds both NOAELs and LOAELs. Estimated doses for mercury, nickel, lead, and barium exceed their respective NOAELs, but not their LOAELs. The primary route of exposure was bioaccumulation of contaminants through the food chain.

# Summary of Human Health and Ecological Risks

Based on the results of the baseline risk assessment, EPA has determined that actual or threatened releases of hazardous substances from the Site, if not addressed by the selected alternative or one of the other active measures considered, may present a current or potential threat to public health, welfare, or the environment.

### <u>Uncertainties</u>

The procedures and inputs used to assess risks in this evaluation, as in all such assessments, are subject to a wide variety of uncertainties. In general, the main sources of uncertainty include:

- environmental chemistry sampling and analysis
- environmental parameter measurement
- fate and transport modeling
- exposure parameter estimation
- toxicological data

Uncertainty in environmental sampling arises in part from the potentially uneven distribution of chemicals in the media sampled. Consequently, there is significant uncertainty as to the actual levels present. Environmental chemistry analysis uncertainty can stem from several sources including the errors inherent in the analytical methods and characteristics of the matrix being sampled.

Uncertainties in the exposure assessment are related to estimates of how often an individual will actually come in contact with the chemicals of concern, the period of time over which such exposure will occur, and in the models used to estimate the concentrations of the chemicals of concern at the point of exposure.

Uncertainties in toxicological data occur in extrapolating both from animals to humans and from high to low doses of exposure, as well as from the difficulties in assessing the toxicity of a mixture of chemicals. These uncertainties are addressed by making conservative assumptions concerning risk and exposure parameters throughout the assessment. As a result, the Risk Assessment provides upper bound estimates of the risks to populations near the Site, and is highly unlikely to underestimate actual risks related to the Site.

#### REMEDIAL ACTION OBJECTIVES

Remedial action objectives are specific goals to protect human health and the environment. These objectives are based on available information and standards, such as applicable or relevant and appropriate requirements (ARARs), to-be-considered guidance (TBCs), and site-specific risk-based levels.

The following remedial action objectives were established for the Site:

- Prevent human contact with contaminated soils, sediments, and groundwater;
- Prevent ecological contact with contaminated soils and sediments;
- Mitigate the migration of contaminants from soils/fill to groundwater;
- Mitigate the off-site migration of contaminated groundwater;

- Restore groundwater quality to levels which meet federal and state drinking-water standards (see Tables 12 and 13); and
- Control surface water runoff and erosion.

### SUMMARY OF REMEDIAL ALTERNATIVES

CERCLA requires that each selected Site remedy be protective of human health and the environment, be cost-effective, comply with other statutory laws, and utilize permanent solutions and alternative treatment technologies and resource recovery alternatives to the maximum extent practicable. In addition, the statute includes a preference for the use of treatment as a principal element for the reduction of toxicity, mobility, or volume of the hazardous substances.

This ROD evaluates, in detail, four remedial alternatives for addressing the contamination associated with the Site. The four alternatives for the Site are discussed below in detail.

The construction time for each alternative reflects only the time required to construct or implement the remedy and does not include the time required to design the remedy, negotiate the performance of the remedy with the responsible parties, or procure contracts for design and construction.

The alternatives are:

#### Alternative 1: No Action

Capital Cost: \$0
Annual Operation and Maintenance Cost: \$60,000
Present-Worth Cost: \$440,000

Construction Time: 1 Month

The Superfund program requires that the "no-action" alternative be considered as a baseline for comparison with the other alternatives. The no-action remedial alternative does not include any physical measures to address the problem of contamination at the Site.

This alternative would, however, include a long-term groundwater monitoring program. Under the monitoring program, water quality samples would be collected semi-annually from upgradient, on-site, and downgradient groundwater monitoring wells. The specifics of monitoring locations, frequency, and parameters would be determined during the remedial design.

The no-action response also includes the development and implementation of a public awareness and education program for the residents in the area surrounding the Site. This program would include the preparation and distribution of informational press releases and circulars and convening public meetings. These activities would serve to enhance the public's knowledge of the conditions existing at the Site. This alternative would also require the involvement of local government, various health departments, and environmental agencies.

Because this alternative would result in contaminants remaining on-site above health-based levels, CERCLA requires that the Site be reviewed every five years. If justified by the review, remedial actions may be implemented to remove or treat the wastes.

### Alternative 2: Institutional Controls

| Capital Cost:                          | \$0       |
|----------------------------------------|-----------|
| Annual Operation and Maintenance Cost: | \$60,000  |
| Present-Worth Cost:                    | \$440,000 |
| Construction Time:                     | 2 Months  |

This alternative is identical to Alternative 1, but would also include taking steps to secure institutional controls, including, but not limited to, the placement of restrictions on the installation and use of groundwater wells at and downgradient of the Site, restrictions on excavation, and restrictions on residential use of the property.

It was assumed that the implementation of institutional controls included under this alternative would not add to the overall costs as outlined in Alternative 1.

Alternative 3: Contaminated Soil Hot Spots Excavation and Disposal, Installation of Cap on Former Cooling Pond, Site-Wide Surface Cover, and Monitored Natural Attenuation of Residual Groundwater Contamination

Capital Cost: \$2,720,000

Annual Operation and Maintenance Cost: \$60,000

Present-Worth Cost: \$3,140,000

Construction Time: 1 Year

This alternative includes excavating all TCA-contaminated soils above the NYSDEC recommended soil cleanup objective of 1 mg/kg identified in the Technical and Administrative Guidance Memorandum (TAGM) in two hot spot areas (one immediately downgradient of the former cooling pond in the area around monitoring well W-06 and the other corresponding with test pit T-02) and PCB-contaminated soils above the TAGM objective of 10 mg/kg in two hot spot areas (the northeast portion of the Site and the area of the gantry crane in the central portion). All of these areas are shown on Figure 3. TAGM objectives may be found on Table 14. It is estimated that 2,000 cubic yards of TCA-contaminated soil and 3,000 cubic yards of PCB-contaminated soil would be excavated.

All excavated soils with PCB concentrations less than 50 mg/kg would be consolidated onto the former cooling pond. Those soils with PCB concentrations above 50 mg/kg would be sent off-site for treatment/disposal at a Toxic Substances Control Act (TSCA)-compliant facility. All excavated TCA-contaminated soils would either be sent off-site for treatment/disposal or treated on-site to 1 mg/kg for TCA and used as backfill in the excavations. For cost-estimating purposes, it was assumed that the TCA-contaminated soils would be treated/disposed of off-site.

Nonhazardous debris that is located on the surface of the areas where the site-wide surface cover would be installed and/or is commingled with excavated soil would be removed and consolidated onto the former cooling pond.

A cap meeting the requirements of New York State 6 NYCRR Part 360 regulations would be placed over the 3-acre former cooling pond. Prior to the construction of the cap, the consolidated soils, nonhazardous debris,

and existing fill materials would be regraded and compacted to provide a stable foundation and to promote runoff.

As potential risks remain even after excavation of the contaminant hot spots, a surface cover (e.g., asphalt, soil, crushed stone, etc.) would be placed over the remaining areas of the Site to prevent exposure to residual levels of contaminants in Site soils. The nature of the surface cover would be determined during the remedial design phase.

Under this alternative, monitored natural attenuation would be allowed to address the residual groundwater contamination at and downgradient of the excavated source areas. Natural attenuation of organic contaminants dispersion, volatilization, sorption, biodegradation. biological and chemical stabilization, transformation, or destruction. Natural attenuation of inorganic contaminants is similar to that of organic contaminants, except that there is not a volatilization or biological component. It is estimated that it would take approximately ten years to meet drinking water standards by monitored natural attenuation. As part of a long-term groundwater monitoring program, samples from upgradient. on-site, and downgradient groundwater monitoring wells would be collected and analyzed semi-annually in order to verify that the level and extent of groundwater contaminants are declining from baseline conditions and that conditions are protective of human health and the environment. The specifics of monitoring locations, frequency, and parameters would be determined during the design of the selected If monitored natural attenuation does not appear to be successfully remediating the groundwater, then more active remedial measures would be considered.

This alternative would also include taking steps to secure institutional controls, including, but not limited to, the placement of restrictions on the installation and use of groundwater wells at and downgradient of the Site, restrictions on excavation or other activities which could affect the integrity of the cap/site-wide surface cover, and restrictions on residential use of the property.

Because this alternative would result in contaminants remaining on-site above health-based levels, CERCLA requires that the Site be reviewed every five years. If justified by the review, remedial actions may be implemented to remove or treat the wastes.

Alternative 4: Contaminated Soil Hot Spots Excavation and Disposal, Installation of Cap on Former Cooling Pond, Site-Wide Surface Cover, and Groundwater Extraction and Treatment

Capital Cost: \$11,755,000

Annual Operation and Maintenance Cost: \$1,970,000

Present-Worth Cost: \$19,830,000

Construction Time: 2 Years

This alternative is identical to Alternative 3, except that it would address site-wide groundwater contamination through the installation of a groundwater extraction and treatment system in order to provide a hydraulic barrier between the Site and downgradient areas. It is assumed that groundwater recovery would be achieved through the installation of six recovery wells (pumping 1,200 to 1,500 gpm) located along the northern, hydraulically downgradient, boundary of the Site (just south of Perplexity Creek). The scope of the extraction system would be determined during remedial design. Following pretreatment for solids and inorganic contaminant removal (as necessary), the extracted groundwater would be treated by air-stripping (or other appropriate treatment) to address organic contamination and then be discharged to the Tioughnioga River. Monitored natural attenuation would be allowed to address the low-level contamination in groundwater that has migrated to downgradient areas. It is estimated that it would take approximately five years of groundwater extraction and treatment to meet drinking water standards.

Because this alternative would result in contaminants remaining on-site above health-based levels, CERCLA requires that the Site be reviewed every five years. If justified by the review, remedial actions may be implemented to remove or treat the wastes.

### **COMPARATIVE ANALYSIS OF ALTERNATIVES**

During the detailed evaluation of remedial alternatives, each alternative is assessed against nine evaluation criteria, namely, overall protection of human health and the environment, compliance with applicable or relevant and appropriate requirements, long-term effectiveness and permanence, reduction of toxicity, mobility, or volume through treatment,

short-term effectiveness, implementability, cost, and state and community acceptance.

The evaluation criteria are described below.

- Overall protection of human health and the environment addresses
  whether or not a remedy provides adequate protection and
  describes how risks posed through each exposure pathway (based
  on a reasonable maximum exposure scenario) are eliminated,
  reduced, or controlled through treatment, engineering controls, or
  institutional controls.
- Compliance with ARARs addresses whether or not a remedy would meet all of the applicable or relevant and appropriate requirements of other federal and state environmental statutes and requirements or provide grounds for invoking a waiver.
- Long-term effectiveness and permanence refers to the ability of a remedy to maintain reliable protection of human health and the environment over time, once cleanup goals have been met. It also addresses the magnitude and effectiveness of the measures that may be required to manage the risk posed by treatment residuals and/or untreated wastes.
- Reduction of toxicity, mobility, or volume through treatment is the anticipated performance of the treatment technologies, with respect to these parameters, a remedy may employ.
- Short-term effectiveness addresses the period of time needed to achieve protection and any adverse impacts on human health and the environment that may be posed during the construction and implementation period until cleanup goals are achieved.
- Implementability is the technical and administrative feasibility of a remedy, including the availability of materials and services needed to implement a particular option.
- Cost includes estimated capital and operation and maintenance costs, and net present-worth costs.
- State acceptance indicates whether, based on its review of the RI/FS reports and the Proposed Plan, the State supports, opposes, and/or has identified any reservations with the selected alternative.

• Community acceptance refers to the public's general response to the alternatives described in the Proposed Plan. Factors of community acceptance to be discussed include support, reservation, and opposition by the community.

A comparative analysis of the remedial alternatives based upon the evaluation criteria noted above follows.

### Overall Protection of Human Health and the Environment

Since Alternative 1 (no action) would not address the risks posed through each exposure pathway, it would not be protective of human health and the environment. Alternative 2 (institutional controls) would be marginally more protective than the no-action alternative.

Alternative 3 (soil hot spots excavation, former cooling pond cap, site-wide surface cover, and monitored natural attenuation of residual groundwater contamination) and Alternative 4 (soil hot spots excavation, former cooling pond cap, site-wide surface cover, and groundwater extraction and treatment) would be significantly more protective than Alternative 1, in that the risk of incidental contact with waste by humans and ecological receptors would be reduced by excavation and disposal of the contaminated soils in the four hot spot areas, installing a cap on the former cooling pond, and installing a site-wide surface cover.

As part of Alternatives 2, 3, and 4, institutional controls would limit the intrusiveness of future activity that could occur on the Site.

Alternatives 1 and 2 would rely upon monitored natural attenuation alone to restore groundwater quality. Alternative 3 would include the removal of source areas (hot spots) in conjunction with monitored natural attenuation. This would result in the restoration of water quality in the aquifer more quickly than monitored natural attenuation alone, but not as expeditiously as Alternative 4, which would include site-wide extraction and treatment of contaminated groundwater. Alternative 4 would mitigate the off-site migration of low-level TCA-contaminated groundwater and would likely lead to a more expeditious groundwater cleanup than the other alternatives, which employ monitored natural attenuation.

# Compliance with ARARs

A 6 NYCRR cap is an action-specific ARAR for landfill closure. Therefore, Alternative 3 (soil hot spots excavation, former cooling pond

cap, site-wide surface cover, and monitored natural attenuation of residual groundwater contamination) and Alternative 4 (soil hot spots excavation, former cooling pond cap, site-wide surface cover, and groundwater extraction and treatment) would satisfy this action-specific ARAR. Alternatives 1 and 2 would not meet this ARAR, since they do not include any provisions for a cap on the former cooling pond.

Since Alternatives 3 and 4 would involve the excavation of PCB-contaminated soils, their disposition would be governed by the requirements of TSCA. Under these alternatives, those excavated soils which equal or exceed 50 mg/kg PCB would be sent off-site for treatment/disposal at a TSCA-compliant facility.

Alternatives 1 and 2 do not provide for any direct remediation of groundwater or source removal and, therefore, would not comply with chemical-specific ARARs. Although Alternative 3 does not include any active groundwater remediation, the excavation of contaminated soils would significantly reduce the migration of contaminants to the groundwater, thereby enabling Maximum Contaminant Levels (MCLs) and New York State drinking-water standards (chemical-specific ARARs) to be met in the groundwater in a faster time frame than Alternatives 1 and 2. Alternative 4, which includes active groundwater treatment, would be the most effective alternative in reducing groundwater contaminant concentrations.

# Long-Term Effectiveness and Permanence

Alternatives 1 (no action) and 2 (institutional controls) would not provide reliable protection of human health and the environment over time. Alternative 3 (soil hot spots excavation, former cooling pond cap, sitewide surface cover, and monitored natural attenuation of residual groundwater contamination) and Alternative 4 (soil hot spots excavation, former cooling pond cap, site-wide surface cover, and groundwater extraction and treatment) would be more effective over the long-term than Alternatives 1 and 2, because they would remove the hot-spot areas of contamination. Alternative 4 would have the greatest effectiveness in restoring groundwater quality. Alternative 3, which includes a hot-spot excavation component, is expected to restore the aquifer to drinking water quality in approximately ten years. Alternative 4, with both hot-spot excavation and groundwater extraction and treatment components, is expected to restore the aquifer to drinking water quality in approximately five years.

The institutional controls associated with Alternatives 2 through 4 would provide an additional element of effectiveness in preventing exposure of on-site and downgradient receptors to contaminated groundwater.

Under Alternatives 3 and 4, excavating the contaminated soil hot spots, the installation of a cap over the former cooling pond, and the installation of a site-wide surface cover would substantially reduce the residual risk of untreated waste on the Site by essentially isolating it from contact with human and environmental receptors. The adequacy and reliability of the cap and site-wide surface cover to provide long-term protection from waste remaining at the Site should be excellent.

The 6 NYCRR Part 360 cap and site-wide surface cover would require routine inspection and maintenance to ensure long-term effectiveness and permanence. Routine maintenance, as a reliable management control, would include mowing, fertilizing, reseeding and repairing any potential erosion or burrowing rodent damage.

## Reduction of Toxicity, Mobility, or Volume through Treatment

Alternatives 1 (no action) and 2 (institutional controls) would rely solely on monitored natural attenuation to reduce the levels of groundwater contamination. Alternative 3 (soil hot spots excavation, former cooling pond cap, site-wide surface cover, and monitored natural attenuation of residual groundwater contamination) would rely on monitored natural attenuation after excavation of the hot-spot areas of contamination to reduce the levels of groundwater contamination. Therefore, these alternatives would not actively reduce the toxicity, mobility, or volume of groundwater contaminants through treatment. Treating contaminated groundwater under Alternative 4 (soil hot spots excavation, former cooling pond cap, site-wide surface cover, and groundwater extraction and treatment) would reduce the toxicity, mobility, and volume of contaminants through treatment.

Excavation and disposal of the contaminated soil hot spots, the installation of a cap on the former cooling pond, and a site-wide surface cover under Alternatives 3 and 4 would prevent further migration of and potential exposure to these materials. In addition, under these alternatives, all excavated TCA-contaminated soils would either be sent off-site for treatment/disposal or treated on-site to 1 mg/kg for TCA and used as backfill in the excavations.

### Short-Term Effectiveness

Alternatives 1 (no action) and 2 (institutional controls) do not include any physical construction measures in any areas of contamination and, therefore, do not present a risk to the community as a result of their implementation. Alternatives 3 (soil hot spots excavation, former cooling pond cap, site-wide surface cover, and monitored natural attenuation of residual groundwater contamination) and 4 (soil hot spots excavation, former cooling pond cap, site-wide surface cover, and groundwater extraction and treatment) involve excavating, moving, placing, and regrading contaminated soils. Since Alternative 4 includes ex-situ treatment of the extracted groundwater, it would generate quantities of treatment byproducts that would have to be handled by on-site workers and removed off-site for treatment/disposal. Alternative 4 also includes the installation of extraction wells through potentially contaminated soils and groundwater. While both of the action alternatives present some risk to on-site workers through dermal contact and inhalation, these exposures can be minimized by utilizing proper protective equipment. The vehicle traffic associated with the cap and surface cover construction, and the off-site transport of contaminated soils could impact the local roadway system and nearby residents through increased noise Under Alternatives 3 and 4, disturbance of the land during construction could affect the surface water hydrology of the Site. There is a potential for increased stormwater runoff and erosion during excavation and construction activities that would be properly managed to prevent excessive water and sediment loading.

It is estimated that Alternative 1 would require one month to implement, since developing a long-term groundwater monitoring program would be the only activity required. It is estimated that the implementation of institutional controls under Alternative 2 would take an additional month to implement. Alternative 3 could be implemented in about one year. Alternative 4 would take an estimated two years to implement.

# Implementability

Performing routine groundwater monitoring and effecting institutional controls are all actions that can be readily implemented. These actions are technically and administratively feasible and require readily available materials and services. Excavating and relocating the contaminated soil, transporting materials to an off-site treatment/disposal facility, installing a cap and site-wide surface cover (Alternatives 3 and 4), and installing extraction wells (Alternative 4), although more difficult to implement than

the no-action alternative, can be accomplished using technologies known to be reliable and can be readily implemented. Equipment, services and materials for this work are readily available. These actions would also be administratively feasible.

Air stripping (Alternative 4) is a process through which VOCs are transferred from the aqueous phase to an air stream. Air stripping has been effectively used to remove over 99 percent of VOCs from groundwater at numerous hazardous waste and spill sites.

Alternative 4 involves the extraction of over one million gallons per day and, in order to handle this volume of water, installation of a pipeline to the Tioughnioga River. Alternative 4 also would involve the generation of sludge requiring off-site disposal. These considerations make Alternative 4 more difficult to implement in comparison to the other alternatives.

#### Cost

The present-worth costs for Alternatives 1 through 3 are calculated using a discount rate of 7 percent and a ten-year time interval. The results of modeling indicate that groundwater could be reasonably expected to be restored to drinking water standards via monitored natural attenuation in ten years. The present-worth cost for Alternative 4 is calculated using a discount rate of 7 percent and a five-year time interval. It is estimated that groundwater could be reasonably expected to be restored to drinking water standards via extraction and treatment in five years. The estimated capital, annual O&M, and present-worth costs for each of the alternatives are presented below.

| Alternative<br>No. | Capital<br>Cost | Operation and Maintenance Cost | Present-Worth<br>Cost |
|--------------------|-----------------|--------------------------------|-----------------------|
| 1                  | \$0             | \$60,000                       | \$440,000             |
| 2                  | \$0             | \$60,000                       | \$440,000             |
| 3                  | \$2,720,000     | \$60,000                       | \$3,140,000           |
| 4                  | \$11,755,000    | \$2,000,000                    | \$19,830,000          |

As can be seen by the cost estimates, Alternatives 1 and 2 (No Action and Institutional Controls, respectively) are the least costly remedies at

\$440,000. Alternative 4 (Downgradient Perimeter Groundwater Recovery and Treatment) is the most costly remedy at \$19,830,000.

### State Acceptance

NYSDEC concurs with the selected remedy.

## Community Acceptance

Comments received during the public comment period indicate that the public generally supports the selected remedy. Comments received during the public comment period are summarized and addressed in the Responsiveness Summary, which is attached as **Appendix V** to this document.

### DESCRIPTION OF THE SELECTED REMEDY

Based upon an evaluation of the various alternatives, EPA and NYSDEC have determined that Alternative 3 (contaminated soil hot spot excavation and disposal, installation of a cap on the former cooling pond, a site-wide surface cover, and groundwater monitored natural attenuation) is an appropriate remedy for the Site. Specifically, this would involve the following:

- Excavation of all 1,1,1-trichloroethane (TCA)-contaminated soils above 1 milligram per kilogram (mg/kg) in two hot spot areas (one immediately downgradient of the former cooling pond in the monitoring well W-06 area and the other corresponding with test pit T-02) and PCB-contaminated soils above 10 mg/kg in two hot spot areas (the northeast portion of the Site and the area of the gantry crane in the central portion)<sup>2</sup>. The actual extent of the excavations and the volume of the excavated material will be based on post-excavation confirmatory sampling. Clean or treated material will be used as backfill in the excavated areas.
- Consolidation of all excavated soils with PCB concentrations less than 50 mg/kg onto the former cooling pond. Those soils with PCB concentrations above 50 mg/kg will be sent off-site for treatment/disposal at a Toxic Substances Control Act (TSCA)-

See **Figure 3** for locations of the areas to be remediated.

compliant facility. All excavated TCA-contaminated soils will either be sent off-site for treatment/disposal or treated on-site to 1 mg/kg for TCA and used as backfill in the excavations.

- Removal and consolidated onto the former cooling pond of nonhazardous debris located on surface areas where the site-wide surface cover will be installed and/or is commingled with the excavated soil.
- Placement of a cap meeting the requirements of New York State 6
  NYCRR Part 360 regulations over the three-acre former cooling
  pond. Prior to the construction of the cap, the consolidated soils,
  non-hazardous debris, and existing fill materials will be regraded
  and compacted to provide a stable foundation and to promote
  runoff.
- Construction of a chain-link fence around the former cooling pond after it is capped.
- Placement of a surface cover over the remaining areas of the Site to prevent direct contact with residual levels of contaminants in Site soils. The nature of the surface cover will be determined during the remedial design phase.
- Monitored natural attenuation to address the residual groundwater contamination in downgradient areas. As part of a long-term groundwater monitoring program, sampling will be conducted in order to verify that the level and extent of groundwater contaminants are declining from baseline conditions and that conditions are protective of human health and the environment.
- Implementation of regrading and storm-water management improvements to protect the integrity of the cap/surface cover.
- Employment of dust and VOC control/suppression measures during all construction and excavation activities, as necessary, pursuant to state and federal guidance.
- Long-term monitoring will evaluate the remedy's effectiveness. The
  exact frequency, location, and parameters of groundwater
  monitoring will be determined during remedial design. Monitoring
  will include a network of groundwater monitoring wells, including the

installation of new monitoring wells (as necessary). Monitoring will also include several sediment sampling stations.

- Taking steps to secure institutional controls, such as deed restrictions and contractual agreements, as well as local ordinances, laws, or other government action, for the purpose of, among other things, restricting the installation and use of groundwater wells at and downgradient of the Site, restricting excavation or other activities which could affect the integrity of the cap/site-wide surface cover, and restricting residential use of the property in order to reduce potential exposure to site-related contaminants.
- Reevaluation of Site conditions at least once every five years to determine if a modification to the selected alternative is necessary.

It is anticipated that excavation of the two PCB hot spot areas and the installation of the site-wide surface cover on a portion of the Site will be performed pursuant to a Unilateral Administrative Order issued by EPA in early March 1998.

Data indicate that the groundwater contamination in the monitoring well W-06 area is of an intermittent nature and that TCA levels in groundwater along the Site's downgradient perimeter are present at relatively low levels. These conditions, combined with the removal of the TCA source areas, extremely high groundwater flow, and the presence of intrinsic conditions favorable to contaminant degradation, is expected to lead to the timely groundwater restoration via monitored natural attenuation (in approximately 10 years), without relying on a costly groundwater extraction and treatment system.

If, however, monitored natural attenuation does not appear to be successful in remediating the groundwater, then more active remedial measures would be considered. EPA may also invoke a waiver of groundwater Applicable or Relevant and Appropriate Requirements (ARARs) if the remediation program and further monitoring data indicate that reaching Maximum Contaminant Levels (MCLs) in the aquifer is technically impracticable.

The selected alternative will provide the best balance of trade-offs among alternatives with respect to the evaluating criteria. EPA and NYSDEC believe that the selected alternative will be protective of human health

and the environment, will comply with ARARs, will be cost-effective, and will utilize permanent solutions to the maximum extent practicable.

#### STATUTORY DETERMINATIONS

As was previously noted, CERCLA §121(b)(1), 42 U.S.C. §9621(b)(1), mandates that a remedial action must be protective of human health and the environment, cost-effective, and utilize permanent solutions and alternative treatment technologies or resource recovery technologies to the maximum extent practicable. Section 121(b)(1) also establishes a preference for remedial actions which employ treatment to permanently and significantly reduce the volume, toxicity, or mobility of the hazardous substances, pollutants, or contaminants at a site. CERCLA §121(d), 42 U.S.C. §9621(d), further specifies that a remedial action must attain a degree of cleanup that satisfies ARARs under federal and state laws, unless a waiver can be justified pursuant to CERCLA §121(d)(4), 42 U.S.C. §9621(d)(4).

For the reasons discussed below, EPA has determined that the selected remedy meets the requirements of CERCLA §121, 42 U.S.C. §9621.

## Protection of Human Health and the Environment

The selected remedy protects human health and the environment by reducing levels of contaminants in the groundwater and soil through extraction and treatment, respectively, as well as through the implementation of institutional controls. The selected remedy will provide overall protection by reducing the toxicity, mobility, and volume of contamination and by meeting federal and state MCLs.

Compliance with Applicable or Relevant and Appropriate Requirements of Environmental Laws

While there are no federal or New York State soil ARARs for VOCs, one of the remedial action goals is to meet TAGM objectives. The selected remedy will meet soil TAGM objectives in the soil source areas.

As the aquifer is usable, federal MCLs and state drinking water standards are ARARs. The selected remedy will be effective in meeting these

ARARs, since it includes excavation of the source areas in combination with monitored natural attenuation of the groundwater<sup>3</sup>.

A summary of action-specific, chemical-specific, and location-specific ARARs which will be complied with during implementation is presented below. A listing of the individual chemical-specific ARARs is presented in **Tables 11 and 12**.

### Action-specific ARARs:

- 6 NYCRR Part 257, Air Quality Standards
- 6 NYCRR Part 373, Fugitive Dusts
- 40 CFR 50, Air Quality Standards
- Resource Conservation and Recovery Act

## Chemical-specific ARARs:

- Safe Drinking Water Act (SDWA) MCLs and MCL Goals (MCLGs) 40 CFR Part 141
- 6 NYCRR Parts 700-705 Groundwater and Surface Water Quality Regulations
- 10 NYCRR Part 5 State Sanitary Code

# Location-specific ARARs:

- Clean Water Act Section 404, 33 U.S.C. 1344
- National Historic Preservation Act

Because data indicate that TCA contamination in the groundwater is intermittent, the removal of TCA source areas, extremely high groundwater flow, and the presence of intrinsic conditions favorable to contaminant degradation, is expected to lead to timely groundwater restoration via monitored natural attenuation.

# Other Criteria, Advisories, or Guidance To Be Considered:

- New York Guidelines for Soil Erosion and Sediment Control
- New York State Air Cleanup Criteria, January 1990
- New York State Technical and Administrative Guidance Memorandum (TAGM)
- New York State Air Guide-1

## Cost-Effectiveness

The selected remedy provides for overall effectiveness in proportion to its cost and in mitigating the principal risks posed by contaminated soil and groundwater. The estimated cost for the selected remedy has a capital cost of \$2,720,000, annual operation and maintenance of \$60,000, and a 10-year present-worth cost of \$3,140,000.

Utilization of Permanent Solutions and Alternative Treatment Technologies to the Maximum Extent Practicable

The selected remedy utilizes permanent solutions and alternative treatment technologies to the maximum extent practicable by the excavation and disposal of source area soils.

# Preference for Treatment as a Principal Element

The selected remedy's utilization of on- or off-site treatment/disposal of the TCA-contaminated source area soils and off-site treatment/disposal of source area soils exceeding 50 mg/kg PCBs satisfies the statutory preference for remedies employing treatment that permanently and significantly reduces the toxicity, mobility, or volume of hazardous substances.

# DOCUMENTATION OF SIGNIFICANT CHANGES

There are no significant changes from the selected alternative presented in the Proposed Plan.

APPENDIX I FIGURES

# **FIGURES**

FIGURE 1 SITE LOCATION MAP

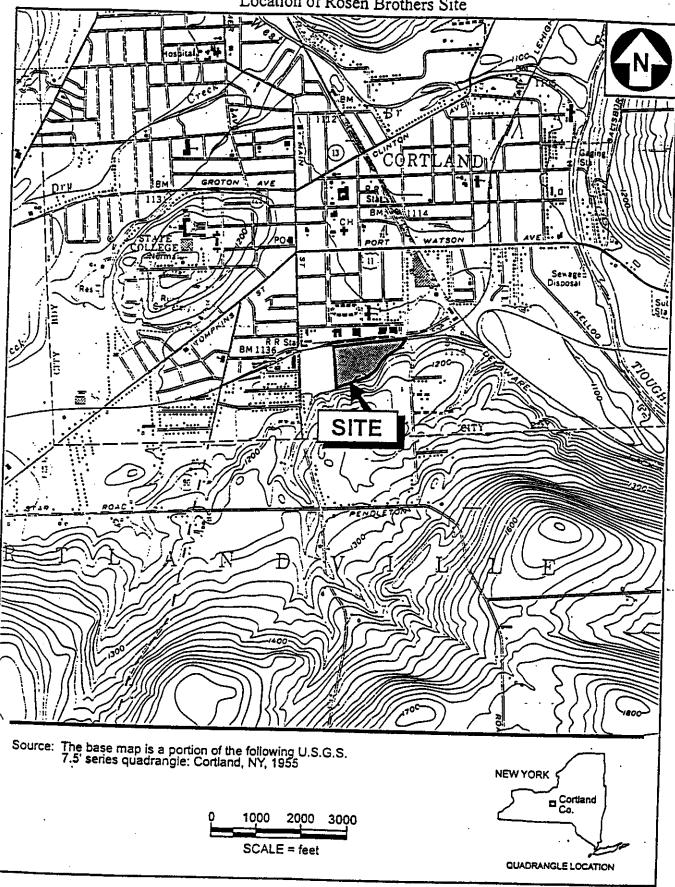

FIGURE 2 SITE LAYOUT MAP WITH MONITORING WELL LOCATIONS

FIGURE 3 AREAS OF CONCERN

FIGURE 4 DISTRIBUTION OF 1,1,1-TCA IN GROUNDWATER

Figure 1.

Location of Rosen Brothers Site



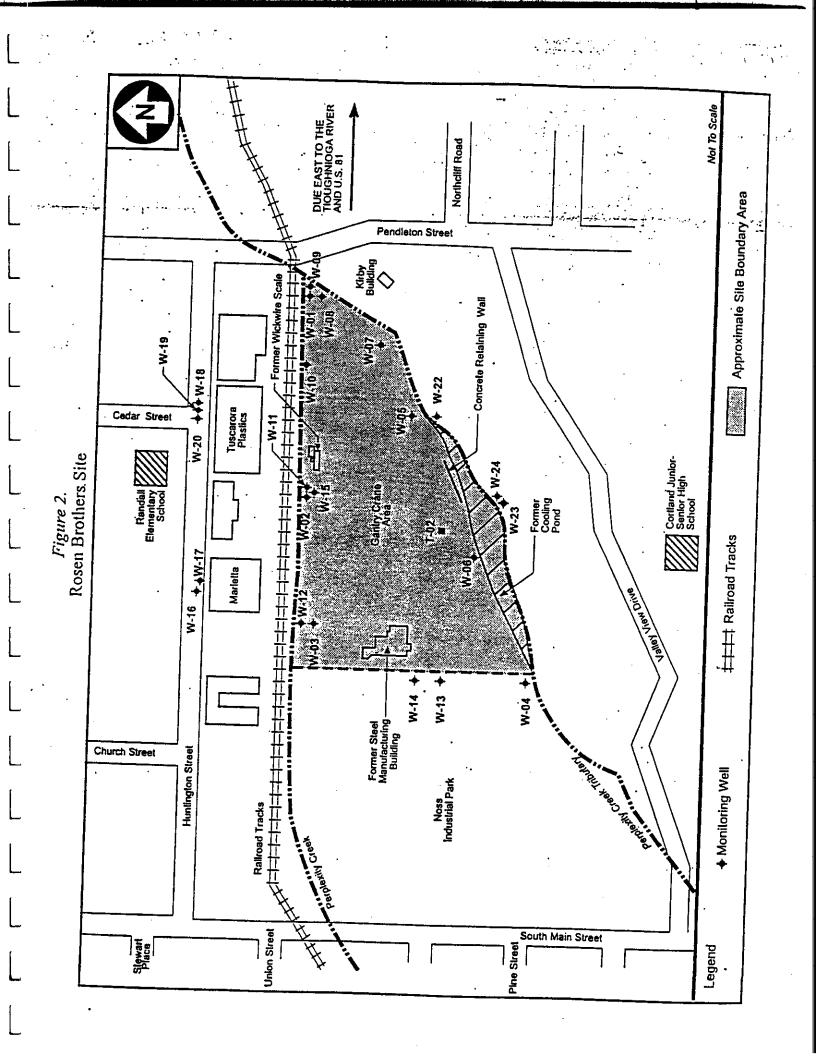
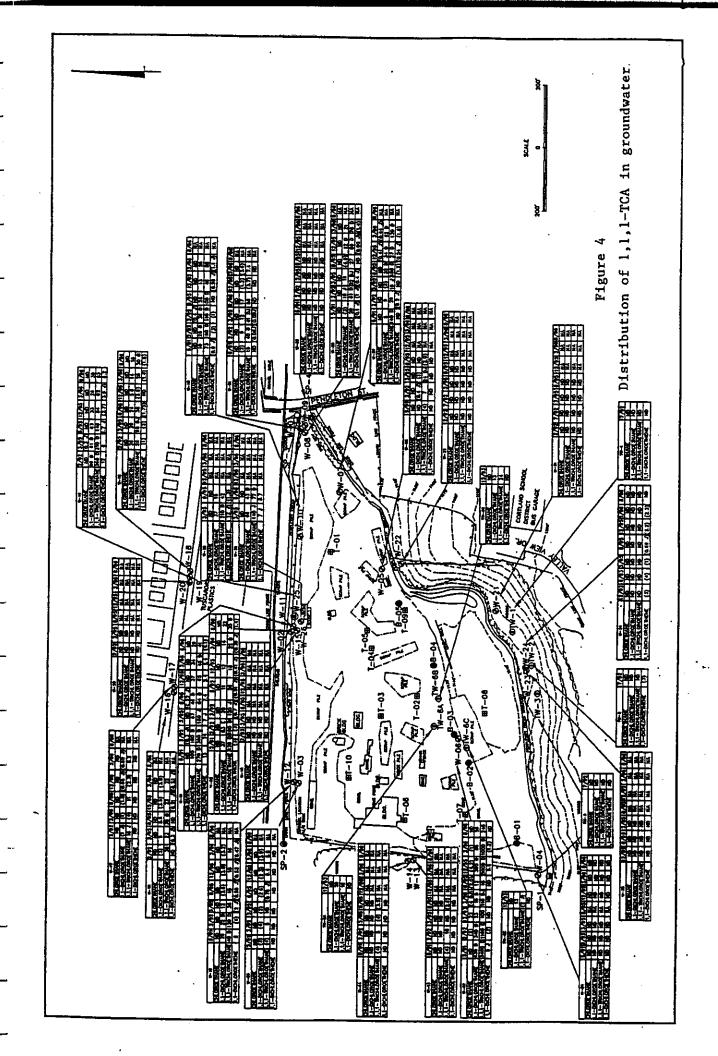




Figure 3. Rosen Brothers Site Mariella **Tuscarora Plastics** Railroad Tracks Perplexity Creek -W-12 · W-03 -🏟 Former W-15 Wickwire Scale Direction of Ground Water Flow PCB AREAS Kirby Building Former Steel Manufacturing Building Gahlry Crane Area Pendleton Street W-05 -W-14-TCA AREAS W-13-Concrete Retaining Wall W-23 Asher Aiem Dura Former W-04-Cooling Perplexity Creek Tributary Pond Not To Scale Legend **♦** Monitoring Weil #### Railroad Tracks Approximate Remediation Area



APPENDIX II

TABLES

# TABLES

| TABLE 1  | SURFACE SOIL SAMPLING DATA                            |
|----------|-------------------------------------------------------|
| TABLE 2  | PCB SOIL SAMPLING DATA (NORTHEAST PORTION OF SITE)    |
| TABLE 3  | SUBSURFACE SOIL SAMPLING DATA                         |
| TABLE 4  | GROUNDWATER SAMPLING DATA                             |
| TABLE 5  | SUMMARY OF ALL GROUNDWATER SAMPLING DATE FOR TCA      |
| TABLE 6  | CONTAMINANTS OF CONCERN                               |
| TABLE 7  | SUMMARY OF EXPOSURE ROUTES                            |
| TABLE 8  | REFERENCE DOSES FOR COMPOUNDS OF CONCERN              |
| TABLE 9  | SLOPE FACTORS FOR COMPOUNDS OF CONCERN                |
| TABLE 10 | SUMMARY OF NON-CARCINOGENIC RISKS (HI DATA)           |
| TABLE 11 | SUMMARY OF CARCINOGENIC RISKS                         |
| TABLE 12 | FEDERAL MAXIMUM CONTAMINANT LEVELS FOR DRINKING WATER |
| TABLE 13 | STATE MAXIMUM CONTAMINANT LEVELS FOR DRINKING WATER   |
| TABLE 14 | NYSDEC TAGM OBJECTIVES FOR VOLATILE ORGANICS IN SOIL  |
|          |                                                       |

| - | -4- | - | _ |  |
|---|-----|---|---|--|
|   |     |   |   |  |

|               |               |                 |                |          |                          |                                                    |        |             | •         |                          |                 |                |                                                  |
|---------------|---------------|-----------------|----------------|----------|--------------------------|----------------------------------------------------|--------|-------------|-----------|--------------------------|-----------------|----------------|--------------------------------------------------|
|               |               |                 |                |          |                          |                                                    |        |             |           | -                        |                 |                | Ċ                                                |
| लाउ           |               |                 | 0.1>           | 0.1>     | 0.1>                     |                                                    | 0.15   |             |           |                          |                 |                |                                                  |
| OSP           | 500           | 300             | 0.1>           | 0.1>     | 0,15                     | - <del>                                     </del> |        | 0,1>        | 0.1>      | <1.3                     | £.1>            | P8'0>          |                                                  |
| (C) 09        |               | 000'9           | C \$1.0        | 761.0    | 1.2                      | rapit                                              | 0.1>   | 0.1>        | 0.1>      | 6.1>                     | 5.1>            | 69.0>          | <del>                                     </del> |
| 1990          |               | <del></del>     | 01>            | 0.1>     | 0.12                     | G>                                                 | 1.2    | L 810.0     | . r.290'0 | 0.12.1                   | LLO             | rio            | 7                                                |
| -             | छ।            | <del></del>     | <0.43          | <0.43    | 100>                     | - 45.1                                             | 0.1>   | 0.1>        | 0.1>      | 6.1>                     | 6.1>            | B6.0>          | 1                                                |
| 17            | 1             | 300             | <0.43          | L 650.0  | C 600.0                  | - 1.5><br>- 2.1                                    | 110>   | 11.0>       | 170>      | <0.52                    | <0.52           | <b>*'0&gt;</b> | 1—                                               |
| 3             | 1             | 000'08          | 15000          | L KGO.O  | 1000                     | 421                                                | L 10.0 | 11:0>       | L 050.0   | <0.52                    | 0.042 J         | 1.0>           | ╅                                                |
| 0 13 (1)      | 1             |                 | 0.1>           | 0'1>     | 0.1>                     | 9>                                                 | 11.0>  | (1/0>       | 170>      | LILO                     | · L 680.0       | L 770.0        | -                                                |
|               |               | <del> </del>    | <043           | Ero>     | 15.0>                    |                                                    | 0.1>   | 0.1>        | 0.1>      | <1.3                     | <1.3            | 96:0>          | -                                                |
| 10            | 000,8         | 000,8           | 0.1>           | 0.1>     | 0.1>                     | <2.1                                               | (110>  | 14.0>       | 14.0>     | 55.0>                    | <0.52           | <b>≯</b> ·0>   | +-                                               |
| · ·           | O+            | 10              | <0.43          | C) (3)   | 15.0>                    | <b>C&gt;</b>                                       | 0.1>   | 0.1>        | 0,\$>     | 6.1>                     | 6,1>            | 96:0>          | +                                                |
|               | 000           | 000             | C) (0>         | C) (3)   | -1                       | <2.1                                               | 11.0>  | 11.0>       | 170>      | 29.0>                    | <0.52           | \$·0>          | <del>- </del>                                    |
| 1.0C          | <del></del>   | <del>- </del>   | Latio          | Lar.o    | 13.0>                    | 1.5>                                               | 11.0>  | (1.0>       | 1+.0>     | \$6.0>                   | <0.52           | *0>            | <del>  -</del>                                   |
| 0.24 6        | <del> </del>  | <del>- </del>   | C)*0>          | <0.43    | 1970                     | tace.a                                             | 58.0   | 211.0       | LSIA      | 0.45J                    | 0.36J           | 0.25.1         | 1                                                |
|               | OB            | 06              | CYO>           |          | 11:0>                    | 12>                                                | 17:0>  | 11.0>       | 15,0>     | 0.143                    | LELO            | £ 190.0        | ╁╌                                               |
| 0.22 M        | <del></del> - | <del>  ~~</del> | CA.0>          | <0.43    | (170>                    | 1.5>                                               | (B.6)  | 11.0>       | 17'0>     | <0.52                    | <0.52           | 1/0>           | ╁╌                                               |
| CL            | <del> </del>  | 300             |                | C1.0>    | 11.0>                    | <5.1                                               | 15.0>  | 11.0>       | 19'0>     | <0.62                    | \$9.0>          | 10>            | ╂─                                               |
| 3.4           | 2,000         |                 | Latio          | LAFO     | 1.1                      | 1.300                                              | 1.8    | 0.063.1     | L 6/0.0   | 0.25J                    | 0347            | 1710           |                                                  |
| 1.0           | 300           | 2,000           | C1.0>          | C+'0>    | 11.0>                    | 1.2>                                               | 110>   | 110>        | 110>      | <0.52                    | <0.52           | P.0>           | -                                                |
|               |               | 500             | <0.43          | £1.0>    | f\$.0>                   | <2.1                                               | <0.41  | 11/0>       | 11/0>     | 59.0>                    | <0.52           | 105            | -                                                |
|               | ļ             | <del> </del>    | C+.0>          | E>.0>    | 11.0>                    | <2.1                                               | 11:0>  | 110>        | 11/0>     | <0.62                    | <0.52           | 10>            |                                                  |
| 0 22 6        |               | \$'000          | C)*U>          | C)*(0>   | 11.0>                    | <21                                                | 170>   | 11/0>       | 15.0>     | <0.52                    | <0.52<br>0.52   | 10>            | <b>.</b>                                         |
| 14 00 0       | <del></del>   |                 | £1.0>          | £4.0>    | 11.0>                    | <2.j                                               | 17:0>  | 11.0>       | 11:0>     | <0.62                    | \$8.0>          |                |                                                  |
| 036           | \$,000        | coe,r           | £1.0>          | CP (Q>   | 14.0>                    | <2.1                                               | 17'0>  | 11.0>       | 150>      | <0.02                    | <0.52           | 1.0>           |                                                  |
| 1760          | Of            | 01              | £\$.0>         | <0.43    | 110>                     | <\$1                                               | <0.41  | 13.0>       | 11.0>     | <0.62                    | <0.52           | 1.0>           |                                                  |
|               | 00            | 08              | £4.6>          | <0.43    | 170>                     | <5.1                                               | 110>   | 19:0>       | 190>      | <0.52                    | <0.52           | 1.0>           |                                                  |
|               | 10            | 0.1             | C1.0>          | <0.43    | 110>                     | <51                                                | 11:0>  | 15.0>       | <0.41     | <0.52                    |                 | <b>▶.0&gt;</b> |                                                  |
| 6.0           | (000,)        | 000,₺           | C+.0>          | C1.0>    | <0.41                    | <5.1                                               | 170>   | 11.0>       | 11/0>     | <0.0>                    | \$8.0>          | 1.0>           |                                                  |
|               |               |                 | E>.G>          | L61.0>   | 11.0>                    | (21J                                               | 170>   | 19.0>       | L13.0>    | 50.0>                    | <0.52           | 1.0>           |                                                  |
| 10            | 000,₽         | €,000           | C+.0>          | C\$.G>   | 11.0>                    | <5.1                                               | 170>   | 15.0>       | 11/0>     |                          | <0.52.J         | 1.0>           |                                                  |
| 0.7           |               | 000,5           | C1.0> .        | <0.43    | 17:0>                    | 1.2>                                               | 110>   | 11.0>       | 110>      | <0.62                    | <0.62           | <b>≯.0&gt;</b> | L_ '                                             |
| 8.8           |               | 59              | <0.43          | C+.0>    | 110>                     | <51                                                | 170>   | 11.0>       | 11/0>     | <0.62                    | <0.62           | <b>+</b> :0>   | ]                                                |
| 9.f           |               |                 | <0.43          | £1.0>    | 13.0>                    | (21                                                | 11.0>  | 11.0>       |           | <0.62                    | <0.62           | 1.0>           |                                                  |
| 0.0           | 400           | 00+             | <0.43          | <0.43    | 17'0>                    | 451                                                | 14.0>  | <del></del> | 170>      | \$0.0>                   | <0.52           | <b>∳.</b> 0>   | -                                                |
|               | 9.0           | 19.0            | <0.43          | <0.43    | 170>                     | 1.2>                                               | 13.0>  | 14.0>       | 110>      | 56.0>                    | \$5.0>          | <b>6.0&gt;</b> | ,                                                |
| ₩ 60.0        | 90,000        | 000'09          | £\$*0>         | £1.0>    | 170>                     | 12>                                                |        | 11.0>       | 150>      | <0.52                    | <0.52           | <b>₽</b> '0>   | ,                                                |
| 9 emerit      | Sp.AF T       | - समान          | (1948 to : 68) | 22765-51 | 88888: <b>(</b> ) 10 000 | 3270 - 17 June 1                                   | 19:0>  | 17:0>       | 14.0>     | <0.52                    | <0.62           | 1.0>           | ,                                                |
| NE PROFESSION | Asia Ardes    | ses Herd        |                |          | CAND 84 - 84             | ( ALL) 21-84                                       | ( CD   | AW 25-38-   | -80-01    | (BA)<br>( Bayes US - See | क्षान्त्र हान्य | (10 K = 15     | - I                                              |
|               |               | Maid Tal moli   |                |          |                          |                                                    |        |             |           |                          |                 |                |                                                  |

SEMINOLATILE ORGANICS ANALYTICAL, RESULTS

SECURIOR 1993

SEMINOLATILE ORGANICS ANALYTICAL, RESULTS

SECURIOR 1993

SEMINOLATILE ORGANICS ANALYTICAL, RESULTS

SECURIOR 1993

SECURIOR 199

BUPPLEMENTAL BURFACE SOIL BAMPLING

T.BLE 1

# BLPPLEMENTAL BLIFFACE BONL BAMPLING BEMINOLATILE OPGANICS ANALYTICAL FEISALTB NOVEMBER 1883 ROSEN BITE CORTLAND, NEW YORK

|                | CS2 10-81 | RE-D Dra. 15 | L COL    | .8-8    | - 00 AN     |             | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 7 m m m  |         | 0.86         | 1000    |         | 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------|-----------|--------------|----------|---------|-------------|-------------|-----------------------------------------|----------|---------|--------------|---------|---------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.11.7         | 0.11.5    | 0.13.1       | <0.14J   | 7.200   | 0.000       | 1           | . 1                                     |          | - 66    | CHO NO.      | Stern   | 9       | 0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9              | <0.4      | <0.52        | 40.32    | 2041    |             | *           | 12900                                   | 12       | 7900    | 0.005        |         | ш.      | -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9              | 0.034 BJ  | <0.52        | 0.033 BJ | 207     | 1000        | <b>CD C</b> | 8                                       | -0.41    | <0.43   | <0.43        | -       |         |       | THE REPORT OF THE PROPERTY OF  |
| 70             | <0.4      | <0.62        | <0.62    | 1707    | 1           | 18 CMO      | 125                                     | 0.000 EV | <0.43   | <0.031 BJ    | 000,000 | 000.000 | 7     | The second secon |
| 0.12.          | 0.1.1     | 0.13.5       | 0.12.3   | 1 200   | 1000        | 40.41       | 120                                     | 40.41    | <0.43   | <0.43        | 2,000   |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>60.0</b>    | <0.96     | 6.1>         | <13      |         | C Section 1 | 9.1         | 260                                     | 97       | 0.15.J  | 0.14.3       | 3,000   |         | 20 03 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>96.0</b> >  | <0.90     | <1.3         | 6.0      |         |             | 61.0        | ŧ                                       | 41.0     | <1.0    | . <1.0       |         |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.046 J        | 0.1.3     | 0.16.        | 0.18.    | 1900    | 2000        | 61.0        | 9                                       | <1.0     | <1.0    | 41.0         | •       |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>40.4</b>    | <0.4      | <0.52        | 29.05    | 150     |             | 40.41       | <21.7                                   | <0.41    | <0.43.J | <0.43        | 140     | 8       |       | The fact that the state of the  |
| \$ 0.4<br>10.4 | <0.4      | <0.62        | <0.52    | \$641   |             | 50.41       | 42.1                                    | <0.41    | <0.43   | <0.43        |         |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8<br>8         | ×0.88     | <1.3         | <1.3     | 01.0    |             | 1000        | 42.1                                    | 40.41    | <0.43   | <0.43        | 0.41    |         | 5     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 860            | =         | 1.2          | 12       | 89.0    | 2 0         | 0.05        | 790                                     | 410      | 61.0    | 410          | 2,000   | 2,000   | 3     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.16.7         | 0.17.3    | 0.21.J       | 0.2.)    | 0.16.J  | 100         | 380         | 110                                     | 5.6E     | 2       | 1.3          |         |         | 90    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.13           | 0.11.0    | 0.10         | 0.12.7   | -110    | 200         |             | 270                                     | =        | 0.31.3  | 0.26.3       | 20,000  |         | 200   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.10.7         | 0.16.J    | 0.21 J       | 0.19     | 0.24.5  | 1000        | 9 1         | 22D                                     | 9,1      | 0.17.3  | 0.12.1       | 6.3     | T       | - ''  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\dashv$       | 0.00      | 1.2          | 90       | 3       | 200         | 200         | 0.650                                   | 0.67     | 0.26 J  | 0.23 J       | 00.9    | 000     | i i   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\dashv$       | 2.7       | 243          | 2.8      | 4       |             | 3.06        |                                         | 3.0€     | 1.5     | 0.90         | 3,000   |         | - E   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1              | 1.4       | 1.4.4        | 1.0      |         |             | 38.8        | 6.3D                                    | 0.0E     | 2.5     | 4.3E         | 2,000   | -       | 2 5   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <0.4 A         | <0.4      | <0.52.1      | <0.62    | 1702    |             | p.3E        | 8.10                                    | 5.16     | 2.1     | 3.1          | 20,000  | 20.00   | 2 2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | 5.0       | (780         | 0.90     | 99.0    |             | \$0.41      | <2.1                                    | <0.41    | <0.43   | <0.43        | 0.1     | 7       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.633          | 0.0       | 1.13         | 1.2      | 40      | 100         | 10.0        | 4.90                                    | 4.4E     | 11      | 1.2          | 220     |         | 198   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| +              | 118       | 1.283        | 1.08     | - 11.0> | D AND       | 200         | 4.60                                    | <b>4</b> |         | 1.3          |         |         | 1 3   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| T ATOM         | Ç         | C 28.0>      | <0.52    | 0.004.3 | 40.41       | CD 41       | 25.5                                    | 1.28     | 0.00 EU | 1.08         | 8       | 8       | 8     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 70/3           | 3         | 7 11         | 1.0      | 67.0    | 250         | 100         |                                         | 40.43    | 027     | <b>c0.43</b> | 2,000   | -       | 2000  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | 1.0       | 10.1         | 1.2      | 0.52.1  | 0.70        | 300         |                                         | 3.1      | 123     | <u>2</u>     | 0.22    |         | =     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| +              | 0.63      | 0.79.)       | 0.77     | . P. C  |             |             |                                         | 3.2      | 0,1     | 1.6          | 0.22    | -       | =     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| +              | 280       | 1.3.1        | **       | 0.04.5  | 770         |             | 0.00                                    | 3.5      | 2       | 1.2          | 0.01    |         | 300   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100            | \$00      | <0.52.J      | <0.52    | <0.41R  | <0.41       | 1767        |                                         | 2.0      | =       | <u>0</u>     |         |         | 3.2   | のでは、「これのでは、これのでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| +              | *         | D.06.J       | 1.1      | 0.46 J  | 190         |             |                                         | 40.41    | \$0.43  | <0.43        | 0.014   | -       | 0.014 | 在1900年中的日本中的中国的中国的中国的中国的中国的中国的中国的中国的中国的中国的中国的中国的中国                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\dashv$       | 6.14      | 12.40        | 10.0     | 6.838   |             |             |                                         | 2:2      | 0.68    | 0.7          | -       |         | 8     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                |           |              |          |         |             |             | 17.08                                   | 9.0      | 10.04   | 16.71        |         | -       | 2     | and the control of the second property of the control of the contr |

स्तरिक पार्क राज्या (प्राप्तक स्थान कर विकास का प्राप्तक कर कर के दिन है। अने कर के स्वरंग के स्वरंग के स्वरंग जिल्हा के प्राप्तक के अपूर्ण के अपूर्ण के में किस के अपूर्ण के अपूर्ण के स्वरंग के स्वरंग के स्वरंग के अपूर्ण क

TABLE 1.

各种教育工作者 医对外的 人名阿里克斯 经有人的

The commence of the second of

# BLPPLEMENTAL BLFFACE BOIL BALLPLING NOVEMBER 1883 ROSEM BITE CORTILAND, NEW YORK

| Feid         | 80           | 1         |             | ·          | <b>T</b> | 1           | 7     | ī            | _;      |             |                |       |             | _                                     |       | <b>.</b> | <del>-</del>                            | •      |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |        | _     |          | ,       |       |       |       |       |         |         |         |       |             |          |        |          |        |
|--------------|--------------|-----------|-------------|------------|----------|-------------|-------|--------------|---------|-------------|----------------|-------|-------------|---------------------------------------|-------|----------|-----------------------------------------|--------|------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|-------|----------|---------|-------|-------|-------|-------|---------|---------|---------|-------|-------------|----------|--------|----------|--------|
|              | German Del   | ₩<br>0.00 |             | 90         | 2        | 1           |       |              | 0.15    |             | 0.0            |       |             | 0.2 161                               |       |          | ( S ( S ( S ( S ( S ( S ( S ( S ( S ( S |        |            | 5           | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13      | 0.22 E |       | 0.24 (b) | ž       |       |       | 9     |       | 0.43.64 | •       | 1       | -     | -           | 0.5<br>E | 8      | 0.2 (a)  | 0.166  |
| NCM<br>belon | Lereis       | 90,000    | 0.6         | 90         |          |             |       |              | 9       |             | 80             | 91    | 8           | \$                                    | 200   |          |                                         |        |            | 8           | 2,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |        | 8     |          |         | 8     | \$    | 0,000 |       |         | -       |         |       | +           | +        |        | 8        |        |
|              | Sittente     | 90,000    | 0.64        | 400        |          | 8           | 7,000 | 8            |         |             |                | -     | 8           | \$                                    | 1,600 |          | 2000                                    |        | 8          | 3 2         | Br.'s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8       |        | 8     | _        |         | 000   | 3     | 000'8 |       |         | 000,000 | 900     | -     |             | 1        | m, a   | 8        | _      |
|              | - A D .      | 43.6      | 63.6        | <3.0       | <3.0     | <3.0        | <3.6  | <3.0         | ,,      |             | 27             | 989   | 979         | <3.6                                  | <3.6  | <3.0     | 9.6                                     |        | 23.0       |             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.42100 | 63.0   | 43.6  | <3.6     | 0.48 D. | <3.0  | <3.0  | <6.6  | <3.6  | <6.0    | <3.0    | <3.0    | <3.0  | <b>68.8</b> | 970      | 3      | V0.0     | <8.6.7 |
| 2            |              | 3         | V0.30       | 40.38      | \$6.0    | <0.36       | <0.36 | <0.38        | ×0.34   | V0.36       | 2              | 8 6   | 80.70       | ×0.36                                 | 80.00 | <0.36    | <0.36                                   | \$0.30 | \$0.0v     | \$6.36      | 273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200     | 80 1   | ×0.38 | 40.36    | 9.6     | 40.3d | <0.36 | <0.86 | 80.00 | \$0.66  | <0.36   | 0.063 J | <0.36 | <0.06       | 2.5      | 40 GA  | 100      | 40.66  |
| 30 st -48.   | 5565         |           | *           | ×0.42      | <0.42    | 25.00       | <0.42 | <0.42        | <0.42   | <0.42       | <0.42          | 200   |             | <0.42                                 | ¢0.42 | <0.42    | <0.42                                   | <0.42  | <0.42      | <0.42       | 0.2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.63   | 100    | *     | 20.00    | 0.387   | <0.42 | <0.42 | 0 T   | C0.42 | 0.0     | 2120    | 0.043 J | <0.42 | <1.0        | 0.080 J  | 41.0   | 610      | 2      |
| 45-10 68.)*  | <2.1<br><2.1 | +62       | 100         |            | 3        | 3           | 75    | <2.1         | <2.1.3  | <21         | 421            | <2.1  | ç           | -   -   -   -   -   -   -   -   -   - | 72.1  | 421      | (21                                     | <2.1   | <2.1       | <2.1        | 0.18<br>CO 118<br>CO 1 | 150     | 50     | Š     | 2220     | 1       | 13,   | (2)   | Ve.   |       | 0       | 7       | 25.1    | 42.1  | \$ 1        | <2.1     | 45.1   | <5.1.3   |        |
| M-24         | <0.42        | <0.42     | <0.42       | 1          |          |             | 2042  | <b>60.42</b> | <0.42   | <0.42       | <0.42          | <0.42 | <0.42       | 20.00                                 |       | <0.42    | <0.42                                   | <0.42  | <0.42      | <0.42       | 0.21.J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.42   | <0.42  | <0.42 | 0.35.1   | 2040    | 2000  | 3 5   | 5,00  | +     |         |         | 0.000   | V0.42 | 010         | 0.089 J  | <1.0   | · 0.1>   |        |
| 88-14 P.C.   | <0.4         | <0.4      | \$6.        | <b>204</b> | 700      | 1           |       | Š            | \$0.5   | Ş           | <b>*0</b> *    | <0.4  | <b>50.4</b> | 700                                   | į     | ,        | <0.4                                    | 40.4   | <b>*0</b>  | <b>70</b>   | 0.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.4    | <0.4   | \$0.4 | 0.14.3   | 40.4    | 707   | ×0.86 | \$0.4 | ×0.96 | 0 034.1 | 707     |         |       | A0.00       | 0.032    | \$0.9g | <0.98    |        |
| FE-PI DAY    | <0.8         | <0.8      | <0.6        | <0.6       | <0.8     | 800         |       | 3            | C 90.6. | <b>60.8</b> | \$0.0<br>\$0.0 | <0.8  | <0.8        | \$0°                                  | 40.8  |          | 900                                     | 40.0   | <b>6.0</b> | <b>40.6</b> | 0.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.6    | <0.0   | <0.0  | 0.1422   | \$0.6   | 40.0  | 8     | 40.8  | ç     | <0.6    | 10,000  | 809     |       | +           | +        | 6      | 25       |        |
|              | <b>\$</b>    | ₹0.4      | <b>*0.4</b> | <0.4       | \$.0×    | <b>*0</b> * | 465   |              | *       | ė           | ě              | 60    | 50.4        | :0.4                                  | å     | ğ        |                                         | 1      | *0         | +           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2       | 2      | 3     | LE:      | 9.4     | 7.4   | 8     | 7     | 8,    | 7,7     | 6.81    | 3       | 8     |             |          | 8 1    | <b>2</b> |        |

JABLE 1.

# BUPPLEMENTAL BUFFACE BOLL BAMPLING BEMIYOLATHE OFBANICS ANALYTICAL FEBLATB NOVEMBER 1883 ROSEN BITE CORTLAND, NEW YORK

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 T        | O. 22                                       |             | _            | <del>,</del> | _      | ,      |              | _     |        |       |       |            |                 |        |           |        |           |        |       |      |           |          |      |     | ,      |          |      |      |      |           |       |          |      |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------|-------------|--------------|--------------|--------|--------|--------------|-------|--------|-------|-------|------------|-----------------|--------|-----------|--------|-----------|--------|-------|------|-----------|----------|------|-----|--------|----------|------|------|------|-----------|-------|----------|------|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and gard     | No seemed                                   | 9.2         |              | 7.1          |        | Š      | 2            |       |        |       |       | 0.41       | 3               | 50     | 200       |        |           | 3      | £     | £    | £ 02      |          | 388  |     | 2      | 2 5      | 1    | ;    | 1.1  | 0.081 (a) | 3.2   | 0.0 M    | 8    | ľ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2            | 1                                           |             |              | 00,00        |        |        |              |       |        | 3     |       |            | 2,000           |        |           |        |           | 334    |       |      | 20,000    | ~        |      |     | 2      |          |      |      | †    |           |       |          | +    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | And You Wall | Chlerie                                     |             | . 1          | 000'000      | 2,000  | 3,000  |              |       | , 5    |       |       | 2          | 2,000           |        | 20,000    | 6.3    | W 000     |        | 30.0  | 200  | 20,000    | 1.0      | 220  |     | 8      | 200      | 200  | 28   | +    | 0.01      | 1     | D.014    | +    | - |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 48-PE (B)                                   | 260         | <3.6         | <3.0         | <3.6   | 90     | <8.8         | <8.8  | 1987   |       |       | 336        | <b>₹8.8</b> 7   | 240    | 7.1D      | 2300   | <3.0      | C ox   |       | 230  | 0.75<br>D | <3.6     | 140  | 120 | <3.0.1 | <3.6     | 1000 | Q II |      | 100       | 080   | 9.62     | 3.7D | 2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 14-04                                       | 9.          | <b>60.38</b> | 0.041 BJ     | e0.38  | 36     | <0.68        | <0.50 | <0.36  | ×0.36 | 95    | 8          | 20.00<br>00.000 | 13.6   | 4.0€      | 3.15   | 0.14.5    | 315    | 200   | 1    | 1.6       | ×0.36    | 16E  | 10E | 1.18   | <0.36    | 8.3E | 6.1E | 826  | 100       | 300   | ×10.50   | 3.95 | 8 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 10 M 10 10 10 10 10 10 10 10 10 10 10 10 10 | 017         | <0.42        | 0.048 BJ     | <0.42  | 0.12.1 | <1.0         | <1.0  | <0.42  | <0.42 | <0.40 |            | 9717            | 7      | 0237      | 0.19   | 0.00      | =      | 8     |      | 0.40      | <0.42    | 20   | 12  | 6.2 BE | 0.29.1   | 9    | 0.75 | 98.0 | =         |       |          | 2 2  | - |
| **** *** *****************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 100 B-8                                     | \$ 5        | 175          |              | 1.5    | 0.12DZ | <b>c</b> 6.1 | <6.1  | <2.1.3 | <2.1  | <2.1  | - KA - I   |                 | 32     | 3         | 0.21D  | 0.78<br>2 | 2      | 202   | 840  |           | 7        | 1.5  | 120 |        | 0.150.0  | 7300 | 110  | മജന  | 0.8374    | 120   | 0.660.1  | 200  |   |
| A STATE OF THE STA |              | 1 600 0                                     | 2000        | 10000        |              |        |        | 910          | 0.50  | <0.42  | <0.42 | <0.42 | 41.0       | 5               | 1 70 0 | 200       | C 197  | 900       | =      | 6     | 5.8E | 2000      | 30.0     | 3    | 2/1 | 0.7 35 |          | 1.6  | 90.0 |      | 1.2       | ×0.42 | 0.62     | 28   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 1.000                                       | <b>*D</b>   | 0.038.8.1    | 707          | - 9000 |        | 20.00        | 20.00 | \$     | 700   | <0.4  | ×0.96      | 0.48            | 0.13.1 | - 100     |        | 6.5       | 0.37.3 | 12    | 9.3E | 700       | 0.47     | 2    | 200 |        |          | 700  | 9    | 0.48 | 0.41      | <0.4  | 0.33.J   | 6.70 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - FE EU.     | 0.001<br>CO                                 | \$0.6       | <0.8         | 8.08         | 0000   | 9      |              |       | 000    | 90.0  | 40.8  | <b>787</b> | 0.4800          | 0.16DJ | 0.074 D.J | 0.7501 | 3         | 300    | 0.050 | 4.10 | <0.0      |          | OBL  | 800 | \$0°   | D. ABOUT | 0480 |      | 7182 | 0.44 D    | ×0.8  | 0.34 [27 | 5.12 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M = M        | 1.042 J                                     | <b>40.4</b> | .00 BJ       | <0.4         | 2      | 40 BG  | 30 0         |       |        |       | \$ 0  | 8          | 0.48            | 18.    | 788       | ş      | 25        |        | = !   | 39.  | 70        | <b>*</b> | 1.52 | 88  | 38     | 38.      | 9    | •    |      | <u>.</u>  | 2     | 46       | 8    |   |

# SUPPLEMENTAL BUTFACE BOIL BANFLING NOVELIBER 1863 NOSEN BITE CONTLAND, NEW YORK

TYBLE 1.

| (INS ege4 no setof) eq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •          |                    |            |        | •         |                 |                   |              |                       |          |                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|------------|--------|-----------|-----------------|-------------------|--------------|-----------------------|----------|-----------------------|
| - ykrobyeuoj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99:0>      | 6.0>               | C6.0>      | <5.2   | . <557    | 16.0>           | L 16.0>           | <5           |                       |          | (41.0                 |
| foneriophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88.0>      | 8'0>               | C0.0.1     | <5.5   | <2.2J     | <b>▶</b> 8.0>   | L \$6.0>          | <5           | 500                   | 200      | 0.2 (म)               |
| enephinene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.4        | L 6250.0           | L 120.0    | LS.O   | 051       | 66.25>          | L 05.0>           | CELO         | 000,8                 |          | (c) 0g                |
| Minophile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 99.0>      | 870>               | L.0.0>     | <2.2   | <5.2 J    | 10.0>           | <0.94.1           | <\$          |                       |          | (4) 8.0               |
| -Christololiuene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.36      | 75.0>              | C15.0>     | 65.0>  | (88.0>    | 96.0>           | L 65.0>           | 8.0>         |                       | छ।       |                       |
| euebpgikjeue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L (20.0    | ₹£ 0>              | L TE.0>    | 69.0>  | 1,68.0>   | ec.0> .         | L-0c.0>           | B.0>         | 006                   |          | 1>                    |
| elalatitid lythem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 66.0>      | 45.0>              | L \c.0>    | 68.0>  | 1 60.0>   | 96.0>           | L 0C.0>           | C 041 J      | 000,08                |          | Z                     |
| - MilneouilM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28.0>      | 8.0>               | L 0.0>     | <53    | <551      | 10.0>           | C #6 D>           | <\$          |                       |          | (Mich to              |
| Chloronephilhelene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.36      | <b>76.0&gt;</b>    | LTE.0>     | 68.0>  | L 98.0>   | 66.0>           | <0.38.1           | 8.0>         |                       |          |                       |
| localtorophani - č.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88.0>      | 8:0>               | L6.0>      | <5.2   | <551      | 10 0>           | L +6.0>           | <2>          | 000'9                 | 000,0    | 1.0                   |
| f.e. Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.36      | ₹ <u>£.</u> 0>     | LTE.0>     | 66.0>  | L 68.0>   | 9£.0>           | L 66.0>           | 0.0>         | 799                   | 0>       |                       |
| precisionocyclopentaclene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 86.0>      | \$E.0>             | L \6.0>    | <0.39  | L 88.0>   | 66.0>           | L 66.0>           | 8.0>         | 000                   | 000      |                       |
| <b>อบอาสะบุนต่อง</b><br>เลืองสาราชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชานุการาชาน | 6>0        | L890.0             | L 180.0    | LBI.D  | Lar.0     | L8S.0           | 0.28 J            | 0.23.1       |                       |          | 1.0C                  |
| Chloro-3-Mathyphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.36      | 76.0>              | L76.0>     | 68.0>  | 1, 88.0>  | ec.0>           | C0.39.J           | 8.0>         |                       |          | ( ) St ( )            |
| sercial or countries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.36      | <b>\\ \C.0&gt;</b> | L16.0>     | 69.0>  | L 68.0>   | QC.0>           | L.es.0>           | D.O>         | 06                    | 06       |                       |
| Chloroanline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 86.0>      | ZE 0>              | LTE.D>     | 98.0>  | 1.66.0>   | 6E.D>           | L 0C.0>           | 8.0>         |                       |          | 0.22 (4)              |
| • Upitytių d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 643        | L850.0             | L 850.0    | 0.13.1 | FELD      | 6143            | L br.a            | C.12J        | 300                   |          | C1                    |
| eneznedovoldoh T P. S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.36      | 76.0>              | L1£.0>     | 69.0>  | 1,68.0>   | 66.0>           | <0.39J            | 6.0>         | 2,000                 | \$,000   | 7.6                   |
| I - Dichistophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BC.0>      | TE.0>              | £ 46.0>    | 60.0>  | L86.0>    | <0.39           | L 0C.0>           | 8.0>         | 500                   | 200      | 10                    |
| (S-Chloroethoxy) Methens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 86.0>      | 7E.0>              | L16.0>     | 69.0>  | 1,68.0>   | 8£.0>           | Lec.0>            | B.0>         |                       |          |                       |
| (-Ofmethy lahenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60.0>      | 76.0>              | £ 7£.0>    | 68.0>  | L 88.0>   | <b>66.0&gt;</b> | L 66.0>           | 8.0>         | 3,000                 |          |                       |
| Micophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60.0>      | <0.37              | L16.0>     | 66.0>  | ( 68.0>   | &C.O>           | <0.39.1           | 8.0>         |                       |          | (A) 55.0              |
| - uovoudo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 86.0>      | ₹£.0>              | L76.0>     | 84.0>  | L 68.0>   | &E.0>           | (96.0>            | 8.0>         | 006,1                 | \$,000   |                       |
| n.cpcuzeue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 86.0>      | TE.0>              | L16.0>     | 80.0>  | 1.88.0>   | <0.39           | (.00.0>           | 8.0>         | OÞ                    | 01       | 0.2 (4)               |
| enachoroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.38      | <b>₹6.0&gt;</b>    | L76.0>     | 69.0>  | 1.68.0>   | 6£.0>           | L6E.0>            | 8.0>         | 00                    | 0.0      |                       |
| - Mitroso - Di n-Propylemine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 86.0>      | 16.0>              | L15.0>     | <0.65  | (.66.0>   | 6E.0>           | , ec.a>           | 0.0>         | 1.0                   | 1.0      |                       |
| - Mothylytend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95.0>      | <0.37              | L76.0>     | 68.0>  | r 69 0>   | <b>6</b> 6.0>   | L 9E.0>           | 8.0>         | 000,4                 | 000°₽    | 8.0                   |
| sox/ple(1-Cylorobros)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.36      | <b>ΥΕ.Δ&gt;</b>    | L\E.0>     | <0.05  | L 68.0>   | 8£.0>           | L 86.0>           | 8.0>         |                       |          |                       |
| - Μείμλίρμουσί                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9C.0>      | ₹£. <u>0</u> >     | L76.0>     | 68.0>  | L 66.0>   | <b>6</b> E.0>   | L 0.5.0>          | 8.0>         | 4,000                 | 4,000    | (A) (.0               |
| S-Dichbiobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.36      | 76.0>              | L \&.0>    | 68.0>  | L 68.0>   | €£.0>           | L96.0>            | <b>₽</b> '0> | 000,T                 |          | 9.7                   |
| 4 — Пстрогорензеве                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.38      | <b>ΥΕ.0&gt;</b>    | L/6.0>     | 89 0>  | L 65.0>   | <0.36           | 1.66.0>           | B.G>         | 59                    |          | 9.8                   |
| 3-Dichiptobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 96.0>      | \$5.0>             | L\6.0>     | 68.0>  | L@8.0>    | 8E 0>           | CO.39J            | 8.0>         |                       |          | 0.1                   |
| -Сијогориелој                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >0.36      | <031               | <0.37.3    | €₽'Ū>  | L 88.0>   | <0.39           | L-9C.0>           | 8.0>         | 400                   | 00)      | 6.0                   |
| (S-Chlorodhyllethar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90.0>      | <0.37              | L/C.0>     | 68.0>  | L 68 0>   | ec.0>           | L 86.0>           | <0.8         | 190                   | 9.0      | •                     |
| lono/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 86.0>      | \£.0>              | L/6.0>     | 69.0>  | L 68.0>   | <0.39           | L00.0>            | 6.0>         | 000,03                | 60,000   | ( <del>4</del> ) 50'0 |
| \$ LEADERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | क्षा सन्तर | 19-49              | -GIS 18-85 | H:0    | ्रवण भन्छ | B-11            | - GE - 65 EE - 55 | 61:99        | ३०६ स्टब्स<br>सम्बद्ध | 944 1444 | MOAT.                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                    |            |        |           |                 |                   |              | MAR YOU WAY           | WCWY     | NAS ANY BAN           |

| | See Motes on Page 24

TABLE 1

SLPPIENENTAL SUFFACE BOUL BAAPLING BEMIYOLATILE OPGANICS ANALYTICAL PESULTS NOVEMBER 1083 ROSEN SITE CORTLAND, NEW YORK

| Seggenet                                | 55-04 FIET | 70-98   | 68+17 ME. |                    |                |          |                                        |            | Ann Sales | 1     | 10.12.1   |
|-----------------------------------------|------------|---------|-----------|--------------------|----------------|----------|----------------------------------------|------------|-----------|-------|-----------|
| Dhenzolum                               | 97         | L       | 0.025     | 71.0               | 200            |          | - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 0 | 01-1       | Collects  | 1     | Senso on  |
| 2,4-Dintrotoluene                       | 8.93       | 76.97   |           |                    |                |          | 0.000                                  | 0.074 J    |           |       | 6.2       |
| Olethylohthalata                        | 10000      | 1000    |           | 20.00              | 7.000          | <0.39    | <0.05                                  | <0.0       | -         |       |           |
| 4-Chlorohand-phandatha                  |            | 20120   | ×0.3/.1   | 0.03<br>160<br>160 | <0.80 J        | 0.033 BJ | <0.30 J                                | 40.B       | 90,00     | 00,00 | 17        |
|                                         | CU.30      | <0.37   | <0.37.J   | <b>40.80</b>       | <0.69.3        | <0.39    | <0.30                                  | 40.0       | 2000      |       |           |
| r instant                               | 3.06       | 0.03    | 0.033 J   | 0.19 J             | 0.22.0         | f 220'0  | L 020.0                                | 1110       | 1 2       |       |           |
| 4 Nitroenline                           | <0.88      | <0.0    | <0.03     | <2.2               | <2.2.)         | ×0.04    | 1                                      | ,          | 3         |       | 8         |
| 4,6-Dintro-2-Methylphenal               | <0.88      | <0.0    | C0.0 >    | <2.2               | <22.1          | 9        |                                        | ,          |           |       |           |
| N-Nitrosodiphenylamine (1)              | <0.36      | <0.37   | <0.37.5   | <0.0>              | - 00 O>        |          |                                        | 2          | •         |       |           |
| 4 - Bromophenyl - phenylathar           | <0.36      | <0.37   | <0.37.1   | <0 Ap              | 900            |          | 3                                      | 800        | 9         | ã     |           |
| Herachlorobenzene                       | <0.36      | <0.37   | 1400      | 9                  |                | 3        | 7870                                   | 40.8       |           |       |           |
| Pentachlorophenol                       | ×0.86      | 000     |           |                    |                | 8.0      | <0.30 J                                | <0.8       | 0.41      |       | 0.41      |
| Phenenthrene                            | 35         |         | Can's     | 42.2               | <223           | 200      | <0.04J                                 | <b>4</b> 5 | 2,000     | 2,000 | -         |
| Anthoreson                              |            | n to    | 0.48.3    | 2.4                | 24.7           | 0.63     | 0.67J                                  | 1.2        |           |       | 2         |
| Cathernia                               | 4.45       | 0.072.3 | 7/200     | 0.47.3             | 0.47.1         | 0.08B J  | 0.003 J                                | 0.26.1     | 20 000    |       | E 8       |
|                                         | 27/        | 1800    | 0.062 J   | 0.21.J             | 0.21           | 0.044.3  | F BEXD 0                               |            |           |       | 2 2       |
| U-n-Butyphthelete                       | 0.12.)     | 0.050.0 | 0.068 J   | 1.0                | 1.7.1          | 0.045.1  | 1 7500                                 |            | 2         |       |           |
| Fluoranthene                            | 9.8E       | 0.63    | 0.73      | 1.0                | 2.1.2          | 70.0     |                                        | 2          | 900       | 8     | -         |
| Pyrene                                  | 19.5       | *:      | 1.4.1     | -                  |                |          | 70.1                                   |            | 906       |       | 50 (3)    |
| Butylbenzylphthelate                    | 97         | 0.62    | 0.55.1    |                    | 200            |          | 2.2                                    | 5.0        | 2,000     | •     | 55 03     |
| 3,3*-Dichlorobenzidine                  | <0.36      | <0.37   | 1 40 07   | 2 4                | 70/m           | 0.17.3   | 0.18                                   | 116        | 20,000    | 20,00 | 50.00     |
| BenzolalAnthracene                      | 18.        | 8       |           | - CO. DO           | C 65 0 >       | 800      | C0:30 J                                | <0.8       | 1.0       | ~     |           |
| Chromos                                 | J C        | 2       | 7000      | 21                 | 2,1,3          | 0.61     | 0.83                                   | 1.2        | 220       |       | 17220     |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 305        | 800     | 7890      | 2.4                | 8.64           | 0.7      | C900                                   | 7          |           |       | 1         |
| tweety — Emily way yet and a man a      | 1.08       | 0.47    | 0.40.3    | 1.4                | 1,4.1          | c0.30    | 0.12.3                                 | =          | 4         |       | 4         |
| U-nOctyl Prititalete                    | <0.36      | <0.37   | <0.37.J   | <0.89              | <b>40.09</b> H | 8 6      | 0000                                   | 2          | 8         | 8     | 200       |
| Benzoth)Fluoranthene                    | 9.05       | 0.60    | 1.40      |                    |                |          | HAT O                                  | 90.0       | 2,000     |       | 5         |
| Benzo (IdFluoranthene                   | 5.7E       | 280     | 10.0      |                    |                | 700      | 730                                    | 1.2        | 0.22      | -     | 7         |
| BenzolalPyrane                          | # Y        |         |           | 3                  | 2.6 3          | 033.1    | 0.48                                   | 1.4        | 0.22      | -     | 3         |
| Indeno(1,2,3-cdPyrene.                  | 2 2        | 1 200   | 200       | 4                  | 27             | 0.20     | 033                                    | 1.3        | 0.61      |       | 0.001 tes |
| Otbergo(a,h) Anthracene                 | 200        | 200     | Con C     | *                  | 1.6.1          | 0.28.J   | 0.3.1                                  | 1.0        |           |       | 32        |
| Benzo(g,h,l)Perylane                    | 200        | 1 2 2   | C/03/3    | <0.00 cm           | <0.88 A        | <0.39    | <0.38 R                                | <0.60      | 0.014     |       | 19 100    |
| Total TiCa                              |            |         | 0.37.3    | . 680              | 1.0.           | 0.23.1   | 0.22.0                                 | 11         |           |       | 8         |
|                                         | 2          | 70.7    | 7.01      | 8.78               | 8.4            | 9.46     | 22                                     |            |           |       |           |

# TABLE 1

BUPPLEMENTAL BI SFACE BOIL BAMPLING BEMIYOLATILE OPGANICS ANALYTICAL PESIALTB NOVEMBER 1883 FOSEN BITE CORTLAND, NEW YORK

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               | 1       |            |             |                 |              |                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |             |         | •              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|---------|------------|-------------|-----------------|--------------|-----------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|---------|----------------|
| Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |               |         |            |             |                 |              |                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | Her Yet bub | S. Mark | New York State |
| Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 11-11         |         | .21.       |             | 11 Per          | GW           | 0.1             | <u> </u>      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | ī           |         | Table 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7            | 20.02         | <0.62   | <0.42.3    | <0.42       | <0.42           | <0.42        | <0.84.1         | 300           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |             |         |                |
| ais (2-Chloroelly/)Ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <4.J         | <0.62         | <0.62J  | <0.42.J    | <0.42       | \$ 65           |              |                 | 5             | VII.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40.86         | 8           | 000     | 300            |
| 2-Chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C 4 J        | <0.62         | <0.82 J | <0.42.3    | 2005        |                 | 20.00        | 7400            | ¥0.0¥         | <0.00 Ω>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.86         | 700         | 0.0     |                |
| 1,3-Dichbrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ۲۲)          | <0.82         | <0.62.1 | 1070       |             | 7.7.            | ×0.42        | ×0.85           | <b>70°</b>    | <b>~0.00</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.60         | 400         | 9       |                |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.5          | <0.62         | 1.040>  | 1 67 67    |             | <0.42           | <0.42        | <0.04 J         | ×0.04         | <0.86J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.64         |             |         | 2              |
| 1,2-Dichbrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5          | 59.65         | 1000    |            | 70.45       | <0.42           | <0.42        | C 00.0          | <0.B4         | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.86         | 8           |         | 1              |
| 2-Methylohanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1            | 3             | 1000    | CU.42.1    | ×0.42       | <0.42           | <0.42        | <0.64.J         | <b>19</b> .0> | CO.0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.80         | 7,000       |         | -              |
| 2.2"-ambieit-Chimmonal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 20.00         | <0.823  | <0.42 )    | <0.42       | <0.42           | <0.42        | <0.84.1         | <0.64         | <0.66J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>SD 86</b>  | 8           | 8       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | <0.02         | <0.82 J | <0.42 J    | <0.42       | <0.42           | <0.42        | <0.64.J         | 20            | 1 98 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |             |         |                |
| - Annual Vision in the Control of th | 747          | <0.62         | <0.62J  | <0.42 J    | <0.42       | <0.42           | <0.42        | 1 100           | 26            | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8             |             |         |                |
| N-MICSO-LI-n-1-100ylamina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C \$ 2       | <0.62         | <0.82 J | <0.42.J    | <0.42       | <0.42           | 200          |                 | 5             | COMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80.8          | 80,         | 8       | 6              |
| Hexachlorothane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C 4.7        | <0.82         | <0.82J  | <0.42.3    | <0.40       |                 |              | V 00 00         | <b>40.14</b>  | <0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × 0.00 × | 98.00         | 9           | 0.1     |                |
| Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C \$>        | <0.82         | <0.62.1 | <0.40>     | 155         |                 | 747          | V0.64.5         | 40.64         | <0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.80         | 90          | 2       |                |
| Isopharone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24.3         | <0 k2         | /0.80 J | - 6        |             | V Control       | <b>20.42</b> | <b>40.84.</b> J | <0.84         | <0.80.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40.00         | <b>\$</b>   | 3       | 0.2 6.1        |
| 2-Vitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7            | CD 63         | - 60    | 1          | 40.42       | <b>C0.42</b>    | <0.42        | <0.64 J         | <0.64         | <0.80J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.88         | 08.1        | 2,000   |                |
| 2.4 - Omethylohenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ļ            | 300           | 70.00   | CD-457     | <b>42</b>   | <0.42           | <0.42        | <0.84J          | ×0.64         | <0.66.J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40 86         |             |         | 171.00         |
| Bis (2 - Chlomethows Methers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 200           | <0.623  | <b>427</b> | <b>6.42</b> | <0.42           | <0.42        | <0.04.J         | 40.04         | <0.86J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A0 AM         | ave.        |         | 22             |
| 24 Dichement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | <b>V</b> 0.82 | <0.623  | <0.42.1    | <0.42       | <0.42           | <0.42        | ×0.64.1         | 700           | 7 98 0/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |             | 1       |                |
| E. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.7         | <0.62         | <0.02.1 | <0.42.3    | <0.42       | <0.42           | <0.42        | 1400            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00.00         |             |         |                |
| 1,2,4 - Inchlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7            | <0.62         | <0.82.J | <0.42.J    | \$ 65       | <0.42           | 50.00        |                 | 8 7           | 7807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>98</b> 0   | g           | 8       | 70             |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C4.)         | 0.15J         | 0.16.1  | 0.26.      | 0.26.1      | 1 96 0          | 70.46        | CO.04           | ×0.04         | <b>79.0</b> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>20.00</b>  | 2,000       | 2,000   | 3.4            |
| 4Chloroantine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7+>          | <0.82         | <0.82.J | 1 67 67    |             | 707.0           | 0.60         | 0.25D           | 024D          | 0.1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.11.         | 300         |         | 2              |
| Herachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3            | 20.62         | 1 59 67 |            | , n. 45     | <0.42           | <0.42        | <0.04.3         | ×0.84         | <0.66J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>20.0</b> 5 |             |         | 1922           |
| 4-Chlore-3-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2            | 200           | 300     | 200        | <0.42       | <0.42           | <0.42        | <0.04.1         | <0.04         | <0.863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$9.0×        | 8           | 8       |                |
| 2-Methyleaphthatene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000         | 1 35          | 2000    | 77.0       | <0.42       | <0.42           | <0.42        | <0.04J          | ×0.84         | <b>1990&gt;</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8000          |             |         | 17.00          |
| Hesechiocochoonadiese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |               | 0.14.3  | 0.36       | 0.37.3      | 0.36            | 0.39.1       | 0.30 DJ         | 0.30          | 0.17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1910          |             |         |                |
| 2.4.8-Techlorophana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | ×0.05         | V0.62 J | <0.42      | <0.42       | . <0.42         | <0.42        | <0.04J          | 40.84         | V MOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28 67         | 1           |         | -00            |
| 2.4.8. Tabellocont and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (45)         | <0.62         | <0.82 J | <0.42.1    | · <0.42     | <0.42           | <0.42        | ×0.04.J         | 7000          | 1 98 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 3           | 3       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79.3         | 8             | <2 J    | <1.0.1>    | <1.0        | 41.0            | 6.1.0        | -60             | ,             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3             | 5           | ₽       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 <b>*</b> 7 | <0.62         | <0.62.J | <0.42      | <0.42       | \$0.42<br>20.42 | 50.63        |                 |               | 251.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42.1          | 89          | 800     | 9.1            |
| 2-Nitroanline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.03        | <2            | <2.J    | <1.0.1     | 0.15        | 1017            |              |                 | 40.04         | C0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40. <b>86</b> |             |         |                |
| Dimethyl Phihalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <4.J         | <0.82         | <0.62 J | <0.42.1    | 500         |                 |              | 3               | 8             | <2.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <2.1          |             |         | 0.43 W         |
| Acenschibytene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C \$>        | <0.82         | <0.62.5 | 1 67 07    |             | 2               | 200          | 40.64J          | ×0.84         | <0.06.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.0>         | 90,000      | <b></b> | 8              |
| 2,8-Dintrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.43         | , CO 82       | 1 20 60 |            |             | V V             | <b>CO.42</b> | ×0.04.1         | ×0.64         | <0.00 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ×0.86         | 000         |         |                |
| 3-Vitroanine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < B 8.1      | 1             |         |            | <0.42       | <0.42           | <b>60.42</b> | <0.04.1         | ×0.64         | <0.66.J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.80         | -           | 9.      | -              |
| Acenephthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.4.         | 1 160         | 7.50    |            | 0.15        | 41.0            | 41.0         | <2.1            | <2            | <2.1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42.1          |             |         | 100            |
| 2,4-Dintrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 60         | 1             | 3       | 7          | 2000        | 0.12.1          | 0.12.J       | 0.1<br>C        | 0.100         | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7900          | 8 000       |         | 1              |
| 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -            | ,,            |         | 70.02      | 41.0        | <1.0            | <1.0         | <2 J            | 8             | <21.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42.1          | ٤           | 8       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 78.6         |               |         | 1000       | 41.0        | 41.0            | <1.0         | <2 J            | 2             | 21.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,             | +           |         | 1              |

COULTYND' NEW YORK
NOVEMBER 1993
SEMIVOLATILE ORGANICS ANALTROS
SUPPLEMENTAL SUFFENCE SOIL SAMPLING
SUPPLEMENTAL SUFFENCE SOIL SAMPLING

LVBIE 1

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |         | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                            |                                        | 1.27     | 10.11                            | 91.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8'95          |                                       |                                                  |                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------|----------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------|--------------------------------------------------|-----------------------------------------------|
| 58.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.7            | 93 Ot   | 65.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | £8.6                                                                       | 98.0                                   |          | 91.1                             | rei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.1           | <del> </del>                          | <del> </del> -                                   | <b>E</b> 00                                   |
| 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L 78.0         | Ler     | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/1                                                                        | ¥4.0                                   | LGO.I    |                                  | L88.0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 98'0>         | N0.0                                  |                                                  | (4) 000                                       |
| <0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L S8.0>        | (S) (O) | S1.0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.42                                                                      | <0.42                                  | L. H&.0> | 10'0>                            | 1.89.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ei            |                                       | <del>                                     </del> | 2:                                            |
| 1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rei.           | LIJ     | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.1                                                                        | 0.1                                    | LOO.1    | (166.0                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - ii          | 19'0                                  | <del> </del> -                                   | (4 e00                                        |
| 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CZ1            | ( tr    | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O'C                                                                        | PL                                     | MAN      | 971                              | CE I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 81            | 22.0                                  |                                                  | <u>    1                                 </u> |
| 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 689            | 1.24    | 8.f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E,t                                                                        | 8.1                                    | Laar     | Gå I                             | re.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5           | 22.0                                  |                                                  | 1                                             |
| 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | £8.f           | r.e.r   | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.1                                                                        | 3                                      | LOT.I    | Ga.t                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | \$'000                                |                                                  | <del>(2</del> )12                             |
| <0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C.622.J        | <0.42.1 | <0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.42                                                                      | SF.0>                                  | C #8.0>  | 180>                             | LB6.0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99.0>         |                                       |                                                  | 13 10                                         |
| 127.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L87.0          | LT&A    | 91.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L.EE.0                                                                     | Lac.o                                  | <0.86.1  | LC186.0                          | LEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1           | 20                                    |                                                  | <u> </u>                                      |
| <u>s</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P UZ           | r2'i    | LI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.2                                                                        | 2                                      | tos      | 91.2                             | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.2           | <u> </u>                              |                                                  | N 220                                         |
| S Gri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (16.1          | ret.    | PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1                                                                        | <i>L</i> '1                            | tda,r    | 09.1                             | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8,r           | 0.22                                  |                                                  | 17 42 0                                       |
| <0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.623         | <0.42   | <0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.42                                                                      | <0.42                                  | L 98.0>  | 19'0>                            | LB8.0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>98</b> 0>  | Ü, f                                  | 8                                                | (c) eg                                        |
| C/90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.401          | 537     | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L 86.0                                                                     | LYO                                    | L 16.0>  | LOYELO                           | 0.22.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.10.1        | 20,000                                | 90,000                                           | (c) 4g                                        |
| 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 297            | 201     | 36.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4:1E                                                                       | 36.8                                   | LOSE     | 01.0                             | LOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.3           | 2,000                                 |                                                  |                                               |
| 1 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 537            | rri     | E.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.1                                                                        | <b>P1</b>                              | 1,500    | (18.1                            | LT.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LI            | 000,6                                 |                                                  | (6) 49                                        |
| 0.28.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.38.1         | 0.63.1  | L 56.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.16.J                                                                     | LTIO                                   | 10171.0  | LOBILO                           | 0.069.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L 600.0       | 000'9                                 | 000,8                                            | 17                                            |
| Lero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.84.3         | OST     | O.S.J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.25.1                                                                     | 0.25.J                                 | 0.250J   | 0.260J                           | 0'54'1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0317          | 6.0                                   |                                                  |                                               |
| L + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 041            | 0.29.1  | 0.29.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0397                                                                       | LTE.0                                  | LOSSOL   | LOSEO                            | 0.32.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.03          | 20,000                                |                                                  | (0) 40                                        |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 537            | PZ'I    | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <\$1                                                                       | 12                                     | SD1      | 08                               | LT.I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1           |                                       |                                                  | (c) eg                                        |
| < <u>s</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <57            | L0.1>   | 0.1>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1>                                                                       | 0.1>                                   | <31      | <5                               | <21J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <51           | 2,000                                 | 2,000                                            | <b>(4)</b>                                    |
| <0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.823         | <0.42J  | <0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.42                                                                      | <0.42                                  | L 16.0>  | <b>90</b> .0>                    | L 56.0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>99</b> '0> | 100                                   |                                                  | 177                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.623         | <0.42.1 | <0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.42                                                                      | <0.42                                  | L Ma.0>  | 19.0>                            | C00.0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>99</b> 0>  |                                       |                                                  |                                               |
| <0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | <0.42.1 | <0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.42                                                                      | <0.42                                  | L180>    | 18.0>                            | L88.0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 98'0>         | 140                                   | 001                                              |                                               |
| <0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.62J         |         | 0.1>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,1>                                                                       | 0.1>                                   | <57      | <5                               | <517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <51           |                                       |                                                  |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |                                        | - cs 1.  | <\$                              | <\$17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <5.1          |                                       |                                                  |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del> </del>   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |                                        |          | ดารเท                            | פווז                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rio           | 000'6                                 |                                                  | 60                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |                                        |          | M(0>                             | L 66.0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99.0>         | 5,000                                 | ***                                              |                                               |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |                                        |          |                                  | C 98 T) >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46.0>         | 000,00                                | 000,00                                           | 1.5                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L S8.0>        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |                                        |          |                                  | L 00.0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99'0>         |                                       |                                                  |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L SB.0>        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |                                        |          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.062         |                                       |                                                  | <b>e</b> 3                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cira           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |                                        |          | XXXX                             | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SOUTHERN      |                                       |                                                  | AN EMPTO                                      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -15'01(C-10')  | +4r-68  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            | (************************************* |          | ( <b>44)</b>                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                       |                                                  | PROVI                                         |
| - 0.02<br>- | .11.0<br>SB.0> | ,<br>,  | 10 0.142<br>10 0.066<br>10 0.0 | 7 6743 675<br>1 60831 6043<br>1 60431 6043<br>1 60431 6043<br>1 60431 6043 | 7                                      | 7        | C101   C110   C110   C110   C51. | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | 1000          | 1   1   1   1   1   1   1   1   1   1 | 1                                                |                                               |

LYBIE 1.

### SUPPLEMENTAL BURFACE SON, BAMPLING NOVEMBER 1993 HOSEN BITE CORTILER 1993 HOSEN BURFACE SON, BAMPLING

| -Mirophenot                      | 6.1>    | 0.1>     | <\$             | <57             | £ 6.1>   | 8,1>      | <5.3   | 6.8>   |                |        | <b>10</b>        |
|----------------------------------|---------|----------|-----------------|-----------------|----------|-----------|--------|--------|----------------|--------|------------------|
|                                  | 0.1>    | 0.1>     | <\$             | <2.1            | Ler>     | 6;f>      | 6.8>   | £.8>   | 500            | 300    | 0.2 (a)          |
| - enerthtqunest                  | LILO    | CILO     | 1011.0          | สแบ             | 0.24.1   | L25.0     | 361    | Oi     | 6,000          |        | E) 02            |
| enikaoutiv-t                     | 0.1>    | 0.1>     | <3              | <b>₹</b> \$     | 1.0.1>   | 0'i>      | £.ā>   | 6.6>   |                |        | (4) 9.0          |
| eneulototiniC)−8,5               | 11-0>   | 17:0>    | <0.62           | CS9.0>          | L97.0>   | 87.0>     | <55    | <5.2   | 1              | स्र    | ı                |
| y cenephibylene                  | L #60.0 | 1850.0   | <0.82           | L <u>58.0</u> > | L 67.0>  | 97.0>     | LELD   | C 16.J | 900            |        | 17               |
| atalarlin'il lychemic            | 11.0>   | (†*U>    | <0.62           | <0.B2J          | L 07.0>  | 67.0>     | <8.2   | <3.2   | 000,06         |        | \$               |
| - Mitrosoffine                   | 0.1>    | 0.1>     | <3              | <51·            | £0.1>    | 6't>      | £.8>   | 6.8>   |                |        | (M E) (I)        |
| enelecticique con disconsistence | 170>    | 14.0>    | <0.62           | L. SB.O>        | L07.0>   | 87.0>     | <2.2   | <5.2   |                |        |                  |
| lonedqoroldakT~&.>,              | 0.1>    | 0.1>     | <5              | <57             | Le.t>    | 6.1>      | £.ā>   | £.3>   | 000,8          | 000,8  | 1.0              |
| loned-goodd-hT~8,5,5             | 11-0>   | 11.0>    | <0.62           | <0.62J          | £ 07.0>  | 67.0>     | <2.2   | <5.2   | 10             | 0+     |                  |
| -leaschlorocyclopentacliene      | 110>    | 19:0>    | <0.82           | <0.62J          | L97.0>   | 87.0>     | <2.2   | <5.2   | 009            | 009    |                  |
| enelectriquativities - 5         | C 54.1  | LELO     | 0.12DJ          | LGCLO           | LS1.0    | 0.13.1    | 8.4    | 27     |                |        | <b>5.86</b>      |
| -Chloro-3-Methylphenol           | 0.036 J | 0.04.1   | <0.62           | LS8.0>          | L 67.0>  | <0.79     | <5'5   | <55    |                |        | 054 🖹            |
| enalbatudoroirt.apart            | 19-0>   | 110>     | <0.62           | C0.02J          | L97.0>   | 97.0>     | <2.2   | <55    | 08             | 06     |                  |
| -Chloroariline                   | 11.0>   | 170>     | <0.62           | <0.62.1         | L07.0>   | 67.0>     | <2.2   | <5.2   |                |        | 035 (4)          |
| 6nelaritriqat                    | ช์เรา   | 0117     | Oin             | O.I.D.          | L \$1.0> | Lar.o     | 12     | 11     | 300            |        | £1               |
| eneunedmohibhT~A,S,              | 110>    | 11.0>    | <0.82           | <0.62.1         | <0.79.J  | 62.0>     | <5.2   | <53    | 2,000          | 2,000  | 1.5              |
| 2,4-Dichbrophenol                | 19:0>   | 110>     | <0.62           | <0.62J          | Leta>    | 87.0>     | <52    | <5.2   | 200            | 900    | +0               |
| Sie (2 - Chlorothoxy) Methana    | 110>    | i#0>     | <0.62           | <0.62.0         | L67.0>   | 67.0>     | <5.2   | <2.2   |                |        |                  |
| konecký výbernící – Þ., S        | 100>    | (0.41    | <0.02           | C 60.0>         | L65.0>   | 64.0>     | <5.2   | <5.5   | S'000          |        |                  |
| - Nitrophenol                    | (4.0>   | 11-0>    | <0.82           | CSE.0>          | L87.0>   | 97.0>     | <5.2   | <3.2   |                |        | 0.33 (4)         |
| ecopyoione                       | 1970>   | 19:0>    | SB.0>           | (S0.0>          | Let.0>   | QT.0>     | <55    | <5.2   | 008,f          | 2,000  |                  |
| enezneckout.                     | <0.41   | 19:0>    | <0.62           | LS8.0>          | L97.0>   | 84.0>     | <5.2   | <55    | 010            | 0>     | 03(4)            |
| - ferencial contracts            | 15.0>   | 11.0>    | <0.62           | <0.82.1         | Ľ67.0>   | 84.0>     | <5.2   | <55    | OB             | . 00   |                  |
| # - Nitroso-Di-n-Propylanna      | 15-0>   | 11-0>    | <0.82           | <0.02J          | L07.0>   | 67.0>     | <5.2   | <22    | 10             | 10     |                  |
| lonadqiyrilahi-1                 | (D*0>   | 11.0>    | <0.62           | C8.0>           | LOT.D>   | 67.0>     | <5.2   | <3.2   | 000'>          | 000,≯  | 80               |
| S'S,-ox/pje(1-Chloropropine)     | 14.0>   | 14:0>    | <0.82           | <0.82.1         | L 67.0>  | 87.0>     | <5.8   | <55    | ·              |        |                  |
| S-Methylphenol                   | (F)     | 11.0>    | S0.0>           | <0.62.1         | L67.0>   | 0£'0>     | Lar.0  | L 61.0 | 000'≠          | (000,≯ | (F10             |
| 1,2—Dichlorobenzene              | 11.0>   | 11.0>    | <0.62           | L S8.0>         | LOTA>    | 64.0>     | <5.2   | <2.2   | 000'₹          |        | 6.7              |
| eneznedowicki- p.1               | <0.41   | 11.0>    | <0.82           | <0.62J          | <0.79J   | -0.7g     | <5.2   | <55    | 58             |        | 9.8              |
| eneznedordhiQ-6,1                | 110>    | 1+0>     | <0.62           | <0.62.1         | LQTD>    | 66.0>     | <5.2   | <55    |                |        | ₹ i              |
| S-Cylotobyevol                   | <0.41   | 110>     | <b>20.0&gt;</b> | L S8.0>         | L07.0>   | 87.4>     | <5.2   | <5.2   | 001            | 001    | #0               |
| Bist2-ChloroethylEther           | 110>    | 110>     | <0.62           | <0.62J          | L.87.0>  | 87.0>     | <53    | <53    | 0.64           | 00     |                  |
| lonerie                          | 170>    | 13.0>    | <0.02           | L S8.0>         | 1.07.0>  | <0.79     | <5.2   | <35    | 000,03         | 900'09 | (H 000           |
| риналист                         | F(=#6   | GM FIRST | तिस्र ११-इस     | (SV 70          | all=81   | Gið EI-AE | 51:-88 |        | PH IPE         |        | 140 mares        |
|                                  |         |          |                 |                 |          |           |        |        | olds in Y well | Veces  | orang said lands |

(NS agert no astoli east)

TABLE ("

BLEPPLEMENTAL BLIFFACE BORL BAMPLING BEMBYCLATILE OPIGANICS ANALYTICAL FEBILTB NOVEMBER 1083 ROSEN BITE CORTLAND, NEW YORK

| Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |               |         |                |              |               |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|---------|----------------|--------------|---------------|-------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|
| Diberzofum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.11.0       | 200           |         |                |              |               | 31-34       |                | e de la companya de l |        |          |
| 2.4-Dintrotoksene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |               | 3       | 3              | 0.73         | 0.12.1        | Z           | 2              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | •        |
| Plathydrobits late                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |               | 2       | <b>40.62</b> J | <0.79 J      | <0.70         | <2.2        | <2.2           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50.41        | \$0.41        | <0.62   | <0.62 J        | C0.78J       | <0.79         | 665         | 667            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |          |
| + - Chloropheny - phenyether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>60.41</b> | <0.41         | <0.62   | <0.82          | - 07 0×      | 20,00         |             |                | DOM:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90,000 | 7        |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.12         | 0.17          | 0.000   | 3              |              |               | 2.25        | <b>42.2</b>    | 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |          |
| 4-Nikroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 917          | ;             |         | 3              | 0.23         | 022           | 10 E        | 10             | 3,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 200      |
| 4.6-Olukro-2-Methylahand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | ,             | 8       | <b>757</b>     | <1.B.J       | <1.0          | <6.3        | <6.3           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |
| Attachment of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2            | 0.15          | 8       | <2 J           | <1.0.1>      | · 6.1.»       | 56.3        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |
| II — IAMI CANCARTAMENTINE (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.41        | <0.41         | <0.62   | <0.62          | 0.11.0       | 1             |             |                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |          |
| 4 Bromopheny1 phenylether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.41        | <b>60.4</b> 1 | 20 O>   | 1.0802         | 1 80         |               | -           | 275            | 991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8      |          |
| Herachiorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.41        | 1000          | 3       |                |              | <0.78         | <2.2        | <2.2           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |
| Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 410          |               | ¥ .     | VOIEK 2        | - 40.79.J    | <0.70         | <2.2        | <b>&lt;2.2</b> | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | .,,      |
| Phononthum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 0,10          | Ş       | 757            | <1.9.1       | <1.0          | <63         | 682            | woo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0000   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,70         | 1,6           | 1.50    | 1.60           | 1.0.1        | 6             | 9000        | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z'm    | 7        |
| Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3          | 0.31.J        | 0280    | 0.270.         | 1 1 1 1      |               | 100         | 1001           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 50 (3)   |
| Carbezole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.17.J       | 0.17.1        | 9450    | 100            |              | 7 100         | 47.5        | 38E            | 20,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 2        |
| Ol-n-Butytohthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.37.1       | 780           | 1000    |                | Tale to      | 0.17.3        | 20 E        | 28E            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |          |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4            |               | 3       | 0.3100         | 0.14.1       | 0.11.0        | <22         | 0.2.1          | 9,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 808    | -        |
| Pwene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |               | 130     | 1.0<br>1.0     | 1.6.1        | 1.5           | 1001        | BSE            | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |          |
| Red Accomplished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | B/E           | 3.10    | 3.80           | 3.7.)        | 77            | 200         | a sec          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 3        |
| Design of the latest of the la | 2.0          | 22            | 1.80    | 1.60           | 16.0         | 1 820         |             |                | W. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 8        |
| 3,3 - Dichbrobenzidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.41        | <0.41         | <0.62   | 40 R2 B        | 9,0          |               |             | 222            | 200,020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20,000 | 28       |
| Benzolaj Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0          | 1.8           | 9       |                |              | 40.70<br>0.70 | 222         | <2.2           | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | æ      |          |
| Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a            | 9.            |         | 3              | 787          | 3,            | 120E        | 130E           | 22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 0.22 64  |
| Bis (2 - Ethytheryflighthalato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.           | :             |         | M              | 29.          | Ţ.            | 120E        | 130E           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 70       |
| Di-n-Octyl Phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,,,,,        |               | ואַרוּ  | 7.1<br>2.1     | 0.36.1       | 0.27.J        | <b>42.2</b> | <2.2           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S      | 5        |
| Berzo(b) Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | cut)          | <0.62   | <0.82J         | <0.79A       | <0.79         | <2.2        | <2.2           | 2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 2 5      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 2             | 1.80    | 1500           |              | 1.4           | 367         | 20.00          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 2        |
| conzologimente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.5          | 1.0           | 1.6D    | 170            |              |               |             | 4 1            | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1      | 1.       |
| o(e)Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.1          | 1.6           | 285     | , and          |              | ė             | 300         | 76 E           | 022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 1.1      |
| Indeno(1,2,3-cd/Pynene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -            | 5             | ٩       |                | C            | ē.            | 386         | <b>36</b> E    | 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | D.061 61 |
| Oberzoja, hj Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.41        | 2             |         | 1.3[27         | <u> 1</u> 0. | 1.1           | 47E         | 90E            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 3.5      |
| Benzola h Mendene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |               | VAL. GZ | <0.62 J        | <0.70R       | <0.79         | 255         | <2.2           | 410.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 13 000   |
| Total DCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | 3             | 1.10    | 1.502          | 1.1.1        |               | <b>1</b>    | 35.            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | †      | L        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100          | 12.05         | 12.11   | 12.62          | 29.07        | 216           | Ė           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +      | 8        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |         |                |              |               |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •      |          |

TABLE 1/

# SUPPLEMENTAL SUFFACE BON, BAMPLING SEMINOLATILE CHRANCS ANALYTICAL PESTLITS NOVEMBER 1003 NOVEMBER 1003 CORTLAND, MEW YORK

| Content                        | 66-16 EM.)* | 71-98       | GE 41-98     | -120 41-28  | 1            | 28-126      |               |              | 1      | 1     | 1          |
|--------------------------------|-------------|-------------|--------------|-------------|--------------|-------------|---------------|--------------|--------|-------|------------|
| Phenol                         | L /8>       | 42.1        | <2.1         | L112        | <b>₹0.42</b> | \$23        | 112           | 7702         | KO 000 | 1000  |            |
| Bis(2—Chloroethy#Ether         | c 487 J     | 42.1        | 42.1         | 211.7       | <0.42        | 565         | ļ             | ***          | 3      | aniaa |            |
| 2-Chlorophenol                 | L /9>       | <2.1        | <2.1         | L112        | <0.42        | <23<br>23   | Į             | 7707         | 5 6    | 900   |            |
| 1,3-Dichtorobenzene            | £ 28>       | <2.1        | <2.1         | <11.3       | <0.42        | <23         | ŧ             | 20.44        |        | 3     | 973        |
| 1,4 Dichlorbenzene             | <67.3       | <2.1        | <2.1         | 1112        | CV (2)       | /23         | į             |              |        |       | 2          |
| 1,2-Dichiprobenzane            | L 78>       | 23.1        | 100          | 7177        | 1 670/       | 2           |               | ×0.0         | 3      |       | 99         |
| 2-Methylphanol                 | 1.00        | į           |              |             | 2000         | 200         | 5             | <0.44J       | 7,000  |       | 97         |
| of the block Chicago           | 700         | <b>CZ.1</b> | 5            | 7117        | <0.42.J      | <23         | Ę             | c0.44.J      | 4,000  | 4,000 | 0.1<br>1.0 |
| Z.z -cwyors(1 - Craciopropane) | <67.3       | <2.1        | 42.1         | C11.2       | <0.42        | <23         | 112           | <0.44        |        |       |            |
| 4 Methyphenol                  | 7.8×        | 621         | 421          | <11.7       | <0.42        | <2.3        | <11           | <0.44        | 00,4   | 4.000 | 90         |
| N-Nitroso-Di-n-Propylastine    | <87.J       | <2.1        | 42.1         | 411.7       | <0.42        | <2.3        | 111>          | ×0.44        | 5      | 0.1   |            |
| Herachloroethane               | F 2027      | <2.1        | 42.1         | C11.J       | <0.42        | <2.3        | ¢11           | 400          | 8      | 2     |            |
| Attrichenzene                  | <67.3       | 42.1        | <2.1         | <11.J       | <0.42        | <2.3        | <b>11&gt;</b> | ×0×          | \$     | 9     | 1400       |
| Isophorone                     | C 292 J     | 42.1        | <2.1         | <11.7       | <0.42        | <2.3        | 115           | 40.44        | 1.800  | 500   | E e        |
| 2-Nitrophenol                  | c07.J       | 421         | <2.1         | <11.3       | <0.42        | <2.3        | 112           | <0.44        |        |       | 14 25 0    |
| 2,4-Dimethylphenol             | <67J        | <2.1        | <2.1         | <11.3       | <0.42        | <2.3        | ī             | <0.44        | 2,000  |       | 0          |
| Bis(2-Chioroethoxy) Methans    | £ 282.5     | <2.1        | <2.1         | L11>        | <0.42        | <2.3        | 115           | <0.44        |        |       |            |
| 2,4 - Dichlorophenot           | <87.1       | <2.1        | <2.1         | L112        | <0.42        | <2.3        | 112           | <b>50.44</b> | ą      | ag    | 1          |
| 1,2,4 - Trichlorobenzene       | C87.J       | <2.1        | <2.1         | L11.2       | <0.42        | <2.3        | 11>           | \$0.44       | 2,000  | 2.000 | 1          |
| Naphthalone                    | I BD        | 5.6         | 5.6          | 142         | <0.42        | 1.20        | 140           | 40.4         | g      |       | :          |
| 4Chlorogniline                 | ₹85 J       | 421         | <2.1         | C11.2       | <0.42        | <2.3        | F             | 40.44        |        |       | 1766       |
| Herachlorobutedlene            | <87.J       | <2.1        | <2.1         | <11.3       | <0.42        | <23         | ₽             | 400          | a      | 8     |            |
| 4-Chloro-3-Methylphenal        | C 29>       | 42.1        | <2.1         | L11.        | <0.42        | <2.3        | ₹             | 17.00        |        |       | 17.00      |
| 2-Methylnephthalene            | 5.602       | 1967        | 0.96.J       | 1.203       | <0.42        | 0.483       | ₹             | ×0.44        |        |       | 1 3        |
| Herachlorocyclopentacliene     | C (8)       | <2.1        | <21          | <11.J       | <0.42        | <2.3        | F             | ×0.44        | 009    | 8     | <b>V</b>   |
| 2,4,8Trichlorophenol           | <87.J       | 9           | <2.1         | L11>        | <0.42        | <2.3        | 115           | \$0.4        | 2      | 4     |            |
| 2,4,5-Trichlorophenol          | <210.J      | <b>66.1</b> | < <u>6.1</u> | <28.∫       | <1.0         | <6.6        | <b>428</b>    | c1.1         | 6,000  | 900   | ē          |
| 2-Chloronaphthalene            | C 202       | <2.1        | <2.1         | C11.7       | <0.42        | <2.3        | 411           | ×0.44        |        |       | •          |
| 2 Miroaniina                   | <210.J      | c6.1        | <6.1         | <20 J       | <1.0         | <5.6        | <28           | c1.1         |        |       | 0.43 64    |
| Lenedly Phonese                | <67.J       | 42.1        | <2.1         | L11.        | <0.42        | <2.3        | <11           | <b>*0.4</b>  | 000'08 |       | -          |
| Acenaphthylene                 | <87.J       | <b>42.1</b> | <2.1         | ,<11.J      | <0.42        | <2.3        | <11           | <0.44        | 99     |       | =          |
| Z.oLinkrotowene                | <87.3       | 1.22        | 42.1         | <b>117</b>  | <0.42        | <2.3        | 411           | <0.44        | -      | 2     | -          |
| 3                              | <210J       | V 20.1      | <5.1         | - KS        | 41.0         | <6.6        | <28           | <1.1         |        |       | 0.5 (4)    |
| Acenephinene                   | 37DJ        | •           | 4            | 67 <u>2</u> | <0.42        | 3.2         | 3.800         | <0.44        | 6,000  |       | 3          |
| z.4 – Unitrophenol             | <210.J      | \$6.1       | - 2          | <28.J       | 61.0         | <5.0        | <28           | 61.1         | 88     | 900   | 0.2 (m)    |
| 4 - Mitophenol                 | <210.3      | <5.1        | <5.1         | 787         | 0.10         | <b>66.6</b> | 889           | 1            |        |       |            |

### (NS agail no aoidh ae8

|                                | <del></del>  |                                                    |                                        | 512    | 4 85           | 35.60  | 6.19      | 12'6             |           |            |           |
|--------------------------------|--------------|----------------------------------------------------|----------------------------------------|--------|----------------|--------|-----------|------------------|-----------|------------|-----------|
| a)TT last                      | 929          | 16.01                                              | 99'11                                  |        | r 190'0        | 89     | rae       | L 25.0           |           | l          | E) 09     |
| enelype*ip.rl,g)cs:ne          | 1010         | 67                                                 | 9.9                                    | LOOL   |                | <2.3   | 113       | <0.44            | HOT       |            | (M M0.0   |
| benzo(e,h) Anthencene          | L 78>        | <2.1                                               | <2.1                                   | T11>   | <0.43          |        | LG8.8     | 0.2.1            |           |            | 3.2       |
| eneyfi(po6,2,1)oneb            | 10.56        | 77                                                 | 6.0                                    | PO B   | 0.034.J        | 074    | 021       | 7 18 U           | 1970      |            | (H) 190'D |
| anan(Hajosne                   | La con 1     | 9.6                                                | 10                                     | COEL   | L 160.0        | *1     | Q 01      | 0517             | 22.0      |            | 171       |
| enerthyapou/7(4) osna          | LOW          | Or                                                 | 4.0                                    | (OII   | L 950.0        | •      |           | 0.85.1           | 22'0      |            | 11        |
| enerthysions7(chosine          | Ladir        | ÿ.D                                                | 9.6                                    | তেও    | L 950.0        | 41     | Gat       | ##*O>            | 2000      |            | (c) 00    |
| -n-Octyl Phthalate             | L 78>        | <5.1                                               | 1.2>                                   | LII>   | <0.42          | 6.5>   | 11>       | NO>              | 09        | Öğ         | 6000      |
| s (2—Ethythenyf) hithelete     | L 78>        | <5.1                                               | <2.1                                   | L11>   | <0.42          | 6.2>   | LOB & I   |                  | - 09      |            | 10        |
| Disease.                       | (e) (f)      | Of                                                 | 11                                     | របាត   | L 10.0         | 5      | 022       | LTSA             | 22.0      |            | (4 ZZ 0   |
| ĕUB⊃MAŅUY(€)0ZIA               | 10081        | 21                                                 | 11                                     | COSI   | L 850.0        | छ। इ   | SID       | 1,65.0           |           |            | 14 62 0   |
| 3.—Dichloropeus kajue          | L78>         | <2.1                                               | 1.2>                                   | LII>   | <0.42          | 6.2>   | 11>       | <b>****</b> 0>   | 91        | 8          | lc) os    |
| alaladitiqiysuodiyti           | L 76>        | 1. <u>S&gt;</u>                                    | <5.1                                   | L11>   | L 320.0        | <2.3   | 11>       | LHOO             | \$0,000   | \$0,000    |           |
| elle?                          | races        | 39E                                                | 30E                                    | 1G BC  | 1, 860.0       | Q16    | a i e     | 17.0             | 2,000     |            | (c) 0g    |
| - Building                     | Laore        | gi                                                 | PI.                                    | LCIOE  | LTOD           | 000    | COV       | 1,4,0            | 3,000     |            | (c) 00    |
| elalarliriqiying—u—            | L 1/8>       | <2.1                                               | (2)                                    | LII>   | LYSO           | 0.32.1 | 11>       | 031              | 000,8     | 000,8      | 1.6       |
| elozacha                       | rcios        | 35                                                 | 35                                     | LG8.4  | S≯.0>          | 97     | US.8      | 0.022 J          | 6.0       |            |           |
| ngyaceue                       | ruse         | 0.0                                                | 6.8                                    | LO9.7  | <0.42          | 6.0    | 1,038.8   | L 110.0          | 20,000    |            | (c) 0g    |
| euengneue)                     | LEIOGE       | 10 E                                               | 361                                    | 90.01  | LVEO.0         | 320    | OSE       | 0.25.1           |           |            | (c) 0g    |
| fonerigorolitatine             | <210.1       | 1.6>                                               | 1.6>                                   | C88.1  | 0.1>           | 0.2>   | <26       | 1.1>             | 3,000     | 2,000      | (e) t     |
| <b>EURCHOLOPENZAUE</b>         | L/6>         | <5.1                                               | <2.1                                   | řii>   | SF.0>          | 6.2>   | 11>       | ******           | 110       |            | 110       |
| - From opposite - prosition of | L/6>         | <2.1                                               | (2)                                    | Lf1>   | <0.42          | 6.2>   | 11>       | <b>99'0&gt;</b>  |           |            |           |
| - Viltoscotiphenylandre        | Γ48>         | <5.1                                               | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | CII>   | <0.42          | 6.2>   | 11>       | <b>*****</b>     | Ohl       | . 00t      |           |
| lone/diviseM-S-oth/lO-8,       | -5101        | 1.g>                                               | 1.0>                                   | <\$81  | 0.1>           | B.G>   | <50       | 1,1>             |           |            |           |
| -Minacoliti-                   | <210.7       | 1'9>                                               | 1.8>                                   | <\$0.1 | 0.1>           | 8.5>   | <58       | 1.1>             |           |            | ,         |
| #URADIT                        | ra++         | <u> </u>                                           | - 2                                    | LG 9.4 | <0.42          | La.c   | 1014      | <b>****</b> 0>   | 000,6     |            | E) 09     |
| -Chlorophersyl-phenylether     | L78>         | - <del>                                     </del> | <2.1                                   | 711>   | <0.42          | LE.S>  | 11>       | <b>&gt;0&gt;</b> | 2,000     |            |           |
| etalartiriqiyribi              | L78>         | <51                                                | \<br>\<br>\                            | r 11>  | <0.42          | <53    | 11>       | <b>*****</b>     | 000,00    | 000,00     | 12        |
| eneulatoránici - 4,            | L78>         | <21                                                | -12>                                   | 711>   | <0.42          | <2.3   | 11>       | <b>31</b> 0>     | ı.        |            |           |
| Unanyozuech                    | Wies .       | 54                                                 | 53                                     | race   | <0.42          | Lar    | SD1       | <b>****</b> 0>   |           |            | 62        |
|                                | 3(10 s) = 36 | 881 E 800                                          |                                        |        | 200 d l 200 mg | 161-53 | COUNTY OF | (A) 16           | 4,445     | 423.5      | श्र काम्य |
|                                |              |                                                    |                                        |        |                |        |           |                  | eled test | And Anders | MAN T     |

CONTILLE CONTILLE

CONTILLE CAGEN BITE

BELLINOLATUE CAGENUCS ANALYTICAL RESULTS

SUPPLIE CAGENUCS ANALYTICAL RESULTS

SUPPLIE CHARACTE SON SAMPLING

TABLE 1.

Page 13 of 24

T.-BLE 1
BUPPLEMENTAL BLYFACE BOR. BAMPLING
SEMIVOLATHE OPGARACS ANALYTICAL FEBILITS
NOVELIBEST 1863
ROSSEN BITTE
COSTILAND, NEW YORK

| Symposis                       |              | M-16 (0.0) | 22-58   |         | 96 - 82 EUL 19 | 30.00  |             | 12.00          | 10,00   | ij     | and park    |
|--------------------------------|--------------|------------|---------|---------|----------------|--------|-------------|----------------|---------|--------|-------------|
| Phenol                         | <2.2         | ē          | \$0.43  | <0.43   | ×0 86          | ***    | 30/         |                |         | - Lane | General Ori |
| Bls/2 - ChloroethyllEther      | 200          | ;          |         |         |                |        | 3           | 3              | 000,000 | 00000  | 200         |
| 2-Chlorophenol                 | 665          |            | 2 9     | 20.00   | 20.00          | 4.2.D  | <b>42.0</b> | <4.0           | 3       | 90     |             |
| 1,3-Dichibrobenzene            | 665          |            | 9       | 200     | 200            | 25.0   | 42.0        | <4.9           | 8       | â      | 0.6         |
| 1.4Dichlorobenzene             | ,            |            | - CO.42 | <0.43   | V0.66          | <2.5   | <25         | 4.0            |         |        | 1.0         |
| 1 9 - Netherham                | 2.55<br>2.55 | 1          | <0.43   | <0.43   | <0.86          | <2.5   | <2.5        | 4.0            | 82      |        | 9.6         |
|                                | ci<br>Ci     | 15         | <0.43   | <0.43   | <0.86          | <2.6.1 | <2.6        | <4.8           | 7,000   |        | 2.0         |
|                                | <2.2         | 5          | <0.43   | <0.43   | <0.86          | <2.5.J | <2.5        | 6.45           | 86,4    | 400    | 1           |
| s.scoycos (1Chloropine)        | <2.2         | 411        | <0.43   | <0.43   | <0.68          | <26.1  | <2.6        | 6.6            |         |        |             |
| 4 - Methydraenal               | <2.2         | ¥          | <0.43   | <0.43   | <0.86          | <2.6   | <2.5        | 44.0           | 887     | 200.4  |             |
| N-Ntroso-DI-n-Propylamine      | <22          | <b>11</b>  | <0.43   | <0.43   | \$0.0×         | 42.5   | <2.6        | 64.0           |         |        | 3           |
| Herachloroethane               | <22          | 11>        | <0.43   | <0.43   | <0.86          | <2.6   | <2.5        | 97             | 8       | 5      |             |
| Mirchenzene                    | <2.2         | 11         | <0.43   | <0.43   | <0.86          | <2.5   | <2.5        | 64.9           | 9       | ş      | 1700        |
| Rephonen                       | <2.2         | £14        | <0.43   | <0.43   | <b>60.8</b> 0  | <2.5   | <2.5        | <4.0           | 1.800   | woo    |             |
| 2-Mirophenol                   | <22          | <b>411</b> | <0.43   | <0.43   | <0.86          | <2.5   | <2.5        | <4.0           |         |        | 17 000      |
| 2,4-Dimethylphanol             | <222         | <11        | <0.43   | <0.43   | <0.66          | <2.5   | <2.5        | 6 <b>7</b> > . | 2 nm    |        |             |
| Bis (2 - Chloroethowy) Methans | <2.2         | <b>11</b>  | <0.43   | <0.43   | <0.86          | <2.6   | <2.5        | <4.0           |         |        |             |
| 2,4 - Dichiprophenot           | <2.2         | <11        | <0.43   | <0.43   | <0.68          | <2.5   | <2.5        | <4.9           | 200     | ş      | į           |
| 1,2,4 -Trichtorobenzene        | <2.2         | <11        | <0.43   | <0.43   | <0.00          | <2.6   | <2.6        | <4.0           |         | 0000   | *           |
| Naphthalene                    | 0.11.3       | <11        | 0.054 J | 0.054 J | 0.046 [2.1     | 0.17.0 | 0.17.0      | <b>649</b>     | 300     |        |             |
| 4 - Chlorografine              | <2.2         | <11        | <0.43   | <0.43   | <0.88          | <2.5   | <2.6        | 44.0           |         |        |             |
| Herachlorobutacliene           | <2.2         | <11        | <0.43   | <0.43   | <0.86          | 42.6   | 800         | 977            | 8       |        | 0.22 (8)    |
| 4 - Chloro - 3 - Methylphanol  | <2.2         | <11        | <0.43   | <0.43   | <0.86          | 42.B   | 100         | 1              |         | 3      |             |
| 2-Methyinephthelene            | 0.16.)       | 111>       | 0.06.J  | 0.05.1  | 200            | 1 61 0 |             |                |         |        |             |
| Heachlorocyclopentadiene       | <2.2         | 112        | <0.43   | <0.43   | <b>20.86</b>   | 200    | 1           |                |         |        | * 20        |
| 2,4,8—Trichlorophenol          | <2.2         | 111        | <0.43   | <0.43   | . <0.86        | 42.6   | 228         |                | 3       | 3 4    |             |
| 2,4,5-Trichlorophanol          | <6.3         | <27        | < 0.1>  | 0.15    | 120            |        | 5           | 2              |         | 2 2    |             |
| 2-Chloronaphthalene            | <2.2         | <11        | <0.43   | <0.43   | <0.06          | 42.5   | 2           | 449            |         | 330    | ā           |
| 2-Nitrosoffine                 | c6.3         | <27        | <1.0    | <1.0    | 42.1           | 8      | 9           | ×12            |         |        | 17070       |
| Directory Pothelists           | <b>422</b>   | <b>C11</b> | <0.43   | <0.43   | 80.08          | 6.6.5  | <2.5        | 64.8           | 00000   |        | 1           |
| Acenephinylene                 | 033.1        | 117        | 0.11.4  | 0.11.5  | 0.083 D.I      | <2.0   | <2.5        | ×4.0           | 900     |        |             |
| c,o-Chatrolouene               | <2.2         | Į          | <0.43   | <0.43   | <0.60          | <2.5   | <25         | 64.0           | -       | 2      | •           |
| -1-Marcon 18-10                | <6.3         | 63         | 61.0    | 61.0    | <2.1           | 9      | 9           | <12            |         |        | 3           |
| 2.4 Clebrochesol               | 0.623        | 411        | 0.062.J | 0.082.J | 0.078/0.0      | 0.41.J | 0.421       | 0.41DJ         | 5,000   |        | 50 03       |
|                                | <b>65.3</b>  | 424        | 61.0    | 61.0    | 42.1           | <6.J   | 6>          | <12            | 982     | 200    | 0.244       |
|                                | <6.3         | <27        | <1.0    | <1.0    | <2.1           | 99     | - O>        | <12            |         |        | 3           |

T.BLE 1

# BLIPPLEMENTAL BLIFFACE BOIL BAMPLING BEMNOLATHE OPBANICS AMALYTICAL FEBILTB NOVELIBER 1683 FOSEN BITE CORTLAND, NEW YORK

| Compensis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3        |                                          |            |             |               |        |             |           | May Valent | TROPA . | *** /*/ *** |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------|------------|-------------|---------------|--------|-------------|-----------|------------|---------|-------------|
| Dibenzohman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5.1    | 1000                                     |            |             | 2 2           | .60    |             | 11-11-11  |            |         |             |
| 2.4-Dintrototuene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 33                                       | 0.023      | C 170.0     | 0,056 0.1     | 0.35   | r 26 0      | 10380     |            |         |             |
| - Philippin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 5                                        | <0.43      | <0.43       | ×0.86         | 4.05 K | 36/         |           |            |         | 7           |
| The state of the s | <22      | ₹                                        | <0.43      | 2073        | 20 07         |        |             | 3         | -          |         |             |
| 4 - Chlorophenyl - phenylather                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <2.2 €   | V                                        | 6,0        |             | B             | 820    | <b>426</b>  | <4.9      | 90,000     | 000'04  | 1.7         |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 200      | 1000                                     | Cabrillo I | ×4.43       | <0.66.5       | <2.5   | <2.6        | 4.0       | 2000       |         |             |
| 4-Ntroenthe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | CT C | 0.12J      | 0.12.J      | 0.1D          | D.5.J  | 0.65.3      | 1080      | 900        |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V0.3     | <27                                      | 41.0       | <1.0        | <2.1          | ŧ      |             |           | -          |         | 3           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <5.3     | <27                                      | <1.0       | 017         |               |        | ,           | 20        |            |         |             |
| M-Nitrosodiphenylamine (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <2.2.3   | 411                                      | CD 43      |             |               | 8      | 9           | <12       | a          |         |             |
| 4 - Bromophenyl -phenylother                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <22.2    | ì                                        |            | 26.00       | <0.00         | 25     | <2.5        | 4.0       | 140        | 100     |             |
| Herachlorobarzena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | ,                                        | <0.43      | 6043        | <0.88         | <2.5   | <2.5        | 3         |            |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <2.2     | - 41                                     | <0.43      | <0.43       | 800           | 1      |             |           |            |         |             |
| rentschlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <6.3     | 427                                      | 910        |             |               | 2      | <b>42.0</b> | 4.0       | 0.41       |         | 5           |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 47       | 2                                        |            | 3 :         | <b>221</b>    | 97     | 9>          | <12       | 2,000      | 2,000   | 4.          |
| Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.6      |                                          |            | 9.          | 1.60          | 7      | 8.0         | 082       |            |         |             |
| Carbazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | Met                                      | 28.0       | 0.33 J      | 0.3103        | 1.0.1  | 1.8.1       | - 6       | 200        |         | 3           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 173      | 200                                      | 0.25.3     | 0.25        | 10120         | 1 000  |             | 3         | omine.     |         | 3           |
| CR-n-Butyphthelate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.28     | 112                                      | 0.18.1     | 1 92 9      |               | 2800   | 0.00        | 0.97<br>D | 6.3        |         |             |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 380      | Cas                                      |            | 100         | 0.455         | 0.58   | 0.62.1      | 0.74 DJ   | 000        | 800     |             |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                          | 2          | ¥.          | 3.1D          | 2      | 8.7         | 130       | į          |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3        | 910                                      | 4.2E       | 4.2E        | 280           | Cat    | 2           | 2         | 3          |         | 8           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <2.2     | F                                        | 0.37.J     | 1 82 0      | . 0           |        | 22          | 220       | 2000       |         | 200         |
| 3,3"-Dichbrobenzidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <2.2     | 10                                       | 7          | 1           | C-60-12       | 0.65.  | 0.71.J      | <4.8      | 30,00      | 20,020  | 80          |
| Benzo (a) Anthercene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18       | ٩                                        |            | CU.43       | <b>90</b> .09 | <25.1  | <2.5        | <4.6      | 9.1        | •       |             |
| Chreens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                          | 3          | <br>        | 1.00          | 787    | 1.4         | 4         | 8          |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6        | 082                                      | 2.3        | 63          | 111           |        |             |           | Ž          |         | 0.23<br>E   |
| CONT. CONTRACTOR CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <2.2     | Q-BI-BO                                  | 0.25 B.    | O SKB I     |               |        |             | 7,80      |            |         | 3           |
| DI-n-Octy/ Phthelete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <2.2     | 15                                       | CD 43      | 4           | OC TO         | 3      | 2.88        | 2.000     | 2          | 8       | 50 CM       |
| Benzo(b)Fluoranthane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71       | 180                                      | 1          | 2           | <b>20.08</b>  | <2.6J  | <2.5        | 64.0      | 2,000      |         | 2           |
| Benzo@Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                          | 3          | 222         | 240           | 7.03   | 9.0         | 7.10      | 80         |         | 1           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •        | 3                                        | 1.6        | 9.          | 120           |        | :           |           | •          |         | =           |
| State Amborate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 11 × × | 140                                      | 1.7        | -           |               |        | ŝ           | 5.8D      | 27         |         | ==          |
| Indeno(1,2,3-cd/Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.3      | 82D                                      | 9-         |             | 78.           | 720    | 6.0         | 5.00      | 0.01       |         | 141 1900    |
| Dibenzo(a, h) Anthacene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <2.2     | Ę                                        |            | 9           |               | 613    | 5.6         | 5.20      |            |         | 0.6         |
| Benzo(g,h,hPenyene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9        | 7601                                     | ?          | <0.43       | 00.00         | <2.6.1 | <2.5        | 4.0       | 0.07       |         | 17 700      |
| Total TiCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 88       |                                          |            | •           | 1.00          | 6.7.1  | 5.3         | 90        |            |         | 1           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                          | 243        | <b>6.13</b> | 50.50         | 12.30  | 30 50       | :         |            |         | 2           |

| (NS egafi no soloti es           |                   |              |              |         | <u> </u> |                 |                 |               |          |             |               |
|----------------------------------|-------------------|--------------|--------------|---------|----------|-----------------|-----------------|---------------|----------|-------------|---------------|
| -Mirophenol                      | <15               | 6.5>         | 6.4>         | 0.1>    | 0.1>     | <2.1            | 1.5>            | 1.1>          |          | <del></del> | 0.16          |
| 4-Dinkophand                     | <15               | 8.5>         | 16.4>        | 0.1>    | 0.1>     | <51             | <5.1            | 1.1>          | 300      | 800         | 054)          |
| eueupydeue:                      | 1010              | LTLO         | Lar.o        | L1S.D   | LES.O    | Laso            | LOSO            | LILO          | 000,8    | <u> </u>    | (c) 09        |
| -Mitoeniine                      | <15               | 6.1>         | 8.4>         | 0.1>    | 0.1>     | <2.1            | (2.1            | 1.1>          |          | <u> </u>    | (4) 9 0       |
| g-Dinitrataluene                 | 0.6>              | <2>          | <2>          | <0.42   | <0.42    | <0.85           | <0.65           | SÞ.0>         | 1        | 101         | ı             |
| ouejAggdeue:                     | 0.1>              | <2>          | <5           | <0.42   | <0.42    | 59.0>           | <0.85           | L 870.0       | 900      |             | 19            |
| elalatist'i kytlom               | 0.4>              | <3           | <5           | <0.42   | <0.42    | 59.0>           | <0.05           | <0.45         | 000,00   |             | 3             |
| -Mitreculin-                     | <15               | 61>          | LQ.4>        | 0.1>    | 0.1>     | <5.1            | <b>1.</b> 2≯    | 13>           | <u> </u> | <u> </u>    | (Hetro        |
| -Chloronephthelene               | 5'}>              | <5           | <2>          | <0.42   | <0.42    | <b>28.0&gt;</b> | <b>26.0&gt;</b> | 81-0>         |          |             |               |
| fonerlonophanol - 2,+            | <15               | 6.4>         | 8.4>         | 0.1>    | 0.1>     | <5.1            | <2.1            | 171>          | 000,6    | (000,0      | 1.0           |
| loneriquoiditanī B, è            | 0.5>              | <5           | ₹>           | <0.42   | <0.42    | <0.85           | <b>66.0&gt;</b> | . 21-0>       | 10       | 01          |               |
| marcujouochcjobeuprajeue         | 6.4>              | <3           | <2>          | <0.42   | <0.42    | 29.0>           | <b>₹8.0&gt;</b> | 81.0>         | 000      | 009         |               |
| -Methylnaphthalinene             | 6.4>              | <5           | <\$          | CILO    | CILO     | UC) 660.0       | LO V60.0        | מוצו          |          |             | 28.4          |
| -Chloro-3-Meiltylphenol          | 6.5>              | <5           | <5           | <0.42   | <0.42    | <b>29.0&gt;</b> | \$8.0>          | S1-0>         |          |             | 0'S4  #       |
| execujos oproprientieno          | 8.4>              | <5           | <\$          | <0.42   | <0.42    | <0.65           | <0.85           | \$₽·0>        | 06       | 09          |               |
| -Chlorosofilna                   | 6.5>              | <3           | <5           | <0.42   | <0.42    | <0.85           | <b>₹8.0&gt;</b> | <0.45         |          |             | 0.22 (4)      |
| enoladistiga                     | 0.1>              | <5           | <5           | L 160.0 | L #60.0  | LG 550.0        | LCI 8Y0.0       | LELO          | 900      |             | El            |
| S.4 — Trichlorobenzene           | 8.4>              | <5           | <5           | <0.42   | <0.42    | 89.0>           | 88.0>           | <0.45         | \$'000   | 2,000       | 24            |
| 4—Dichlorophanol                 | 9.5>              | <b>8&gt;</b> | ₹>           | <0.42   | <0.42    | 28.0>           | <b>28.0&gt;</b> | S1.0>         | 800      | 800         | <b>)</b> 0    |
| *(2 -Chloroethoxy)Methana        | 6.1>              | <b>5&gt;</b> | <۶           | <0.42   | <0.42    | <0.65           | <0.85           | S)*O>         |          |             |               |
| ioneity/phemici – k              | 6.4>              | <5           | <b>Z&gt;</b> | <0.42   | <0.42    | \$0.0>          | <b>68.0&gt;</b> | <0.45         | \$'000   |             |               |
| lone/double-                     | 8.4>              | <3           | <2>          | <0.42   | <0.42    | Z8.0>           | <b>28.0&gt;</b> | <0.45         |          |             | (4) 55.0      |
| •uosoydo                         | 6.4>              | <5           | <b>2&gt;</b> | <0.42   | <0.42    | 28.0>           | 38.0>           | <0.45         | 008,f    | 2,000       |               |
| 9Uezueqoaji                      | 6.4.9             | <5           | <\$          | <0.42   | <0.42    | €8.0>           | <0.05           | <0.45         | 01       | 07          | 03 M          |
| enechlosoethans                  | 0.4>              | <\$          | <5           | <0.42   | <0.42    | <0.65           | 29.0>           | <0.45         | COR      | COS)        |               |
| entralyqorf - n - KI - osobi i - | 87>               | <5           | <57          | <0.42   | <0.42    | - 68.0>         | 28.0>           | <b>2</b> ▶.0> | 1.0      | 10          |               |
| -Methyphenol                     | 87>               | <b>5&gt;</b> | <5           | <0.42   | <0.42    | <0.65           | <b>28.0&gt;</b> | 21·0>         | 4,000    | 000'9       | 6.0           |
| S'-onybis(1-Chloropropane)       | 6.4>              | <\$          | <\$1         | <0.42   | <045     | č8.0>           | <0.85           | <0.45         |          |             |               |
| - Neuhykulaki                    | 6.1>              | <5           | <\$ 7        | <0.42.1 | <0.42    | č8.0>           | <b>26.0&gt;</b> | <0'42         | 4,000    | 4,000       | (4 t.o        |
| S.—Okthodolodia (G. S.)          | 8.4>              | <5           | <\$1         | <0.42J  | <0.42    | <b>29.0&gt;</b> | 20.0>           | SP'0>         | 000,7    |             | €£            |
| 4-Dichbrobenzene                 | 649               | <2           | <5           | <0.42   | <0.42    | C0.0>           | \$8.0>          | ₹1.0>         | 58       |             | 99            |
| eneznedoridhild-6,               | 6.5>              | <3           | <2           | <0.42   | <0.42    | <0.05           | 29.0>           | 8F.0>         |          |             | ri            |
| -Chlorophanal                    | 0.5>              | <8>          | <5           | <0.42   | <0.42    | 26.0>           | <0.05           | 84.0>         | 001      | 400         | 9.0           |
| ILE & - Chloroethy TEther        | 8.5>              | <\$          | <5           | <0.42   | <0.42    | <b>28.0&gt;</b> | \$8.0>          | 2þ.0>         | 19'0     | 9.0         |               |
| loner                            | 67>               | <b>2&gt;</b> | <5           | <0.42   | <0.42    | <0.85           | \$8.0>          | SP:0>         | 000'09   | 000,03      | (a) 60.0      |
| Person                           | <b>छ। १७ स</b> −स | P4=88        | :GU 14:56    | .#:H:   | GU # - # | ात्रत स्थ≕स     | 30 TO 10 - 44   | 4             |          |             | Act told sold |

(see Hotee on Page 24)

TABLE 1.

# BUPPLEMENTAL BUPPACE BON BAMPLING BEMINOLATIKE CHRANNES ANALYTICAL PESULTS NOVEMBER 1803 NOVEMBER CONTLAND, NEW YORK

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |            |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200000000000000000000000000000000000000 |        |       |        |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|------------|---------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------|-------|--------|--------------|
| Cresonni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20 CT RES     | 1      | 100 10-10  |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |        |       |        |              |
| Dibenzofum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3204        | 1810   | 10.00      |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |        |       | •      | Challes (tel |
| 2,4 - Dintrololuene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1             | 3      | 2          | C 14.   | 0.16.      | 0.14 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.14DJ                                  | 0.11.5 |       |        | -            |
| Olothylohthalata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | y      | ٥          | <0.42   | <0.42      | <0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.45                                   | <0.45  | -     |        |              |
| Chicagonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <4.9          | ₹5     | ٧          | <0.42   | <0.42      | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$0 GE                                  | 50.45  | 2     | 900    |              |
| Commence of the Commence of th | <4.9          | <2     | 8          | <0.42   | <0.42      | A8 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                       |        |       |        | 3            |
| FLOCIANO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4800        | 0.23 J | 022        | 0.10    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | CO.40  | 2,000 |        |              |
| 4 Nitroanline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <12           | 44.0   |            |         | 1          | 11917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10                                    | 0.12.) | 3,000 |        | 20           |
| 4.8-Dinbro-2-Methylohenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,             |        | 8.8        | 0,12    | <1.0       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52.1                                    | <1.1   |       |        |              |
| N-Nitrosodiohemdemine (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7,            | 8.5    | <4.0       | 41.0    | <1.0       | <b>42.1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <2.1                                    | <1.1   | •     |        |              |
| 4 - Brown board - short -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.6          | Ÿ      | 8          | <0.42   | <0.42      | <0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$0.05                                  | <0.45  | 44    | Ş      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64.0          | 8      | 25         | <0.42   | <0.42      | <0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO 85                                   | 70.4E  | 2     | 3      |              |
| PERESTRUCTURE STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.8           | 8      | 7          | <0.42   | \$6.42     | 70 BR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                       | 20.00  |       |        |              |
| Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <12           | <6.0   | 97         | 1       |            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                       | <0.4b  | 0.41  |        | 0.41         |
| Phenenthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27.0          | 86     |            | 3       | 0.15       | <b>42.1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 231                                     | <1.1   | 2,000 | 2,000  | 3            |
| Anthercene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | 960 1  | ,,,        | 1.7     | 1.7        | 1.7D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.60                                    | 1.0    |       |        | 80 CB        |
| Carbezole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |        | 603        | 0.38 J  | 0.38.J     | 0.34[0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.36 DJ                                 | 0.42.J | 80.00 |        | 2            |
| Ol-n-But-dochthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 6           | G G    | 0.32.1     | 0.27J   | 0.28.J     | 0.27DJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.27 DJ                                 | 0.17.J | 6.8   |        |              |
| Flioranthana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Alexa Control | 3      | 0.36       | 0.12J   | 0.11.0     | D.12DJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12DJ                                  | 0.19.1 | 400   | 8      |              |
| Pyrana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 3.3    | 3.2        | 1.7     | 1.5        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                    | 7.1    | 3,000 |        | 1 2          |
| Patrickerschaftering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 6.7    | <b>0.9</b> | 4       | 4.7E       | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.80                                    | 426    | 8     |        | 3            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.0           | 8      | 787        | 0.69.1  | 98.0       | 10,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |        |       |        | 200          |
| 3,3'-Dichbrobenzidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <6.8          | 8      | 1.62       | 1 67 97 |            | COLUMN TO THE PARTY OF THE PART | 844E                                    | 0.31 J | 8     | 20,000 | 50 (3)       |
| Berzolaj Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.80          | 80     |            |         | Z N N      | 20.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$0.85                                  | 40.45  | 1.0   | Ĉi.    |              |
| Chrysine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 910           |        |            | 28      | -          | 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1300                                    | 2.7    | 0.22  |        | 0.22 (m)     |
| Bis(2-Ethythenyt)Phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28801         | ,      |            | 787     | 1.8        | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.300                                   | 2.4    | -     |        | 70           |
| Di-n-Octyl Phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44.0          | 7 8    |            | <0.42   | 0.31 BJ    | 0.28 80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02380                                   | 3.2B   | 8     | 8      | 50 53        |
| Berzofo) Fluoranthone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.60          | 2.0    | 7          | <0.423  | \$0.42<br> | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.85                                   | <0.45  | 2,000 |        | 50 CS        |
| BerzodoFucianthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9             |        | 203        | 7.      | <u> </u>   | 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.30D                                   | 2.8    | 0.22  |        | 1.1          |
| BerzojajPyrana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8             |        | 182        | 1.8.1   | 1.1        | 0.670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.020                                   | 1.4    | 0.22  |        | 1            |
| Indeno(1,2,3-cd/Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18            | 2 6    | 613        | Ca.     | 1.2        | 1.0D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.980                                   | 2.1    | 0.61  |        | (4) 190'0    |
| Dibenzo(e,h) Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 979           |        |            | 1.2.    | Ċļ.        | 0.89D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.02.00                                 | 2.3    |       |        | 3.2          |
| Benzoig,h, il-Penylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28.4          | 900    |            | <0.42J  | <0.42      | <0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.65                                   | <0.45  | 0.0M  |        | 0.0 H (E)    |
| Total TiCa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.1          | 8      |            | 74.     | 97         | 1.2D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.10                                    | 2.2    |       |        | 200          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        | •          | 00.0    | 2          | 2.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77.7                                    | 22     | -     |        |              |

TABLE 1:

# BLPPLEMENTAL SI PFACE BOLL BAMPLING BONDOLATILE CORGANICS ANALYTICAL PESILLTB NOVEMBER 1883 CORTLAID, NEW YORK

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |                |         |              |               |              |         | New York Bale | A POST  |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|----------------|---------|--------------|---------------|--------------|---------|---------------|---------|-----------|
| Сетреныя                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18-28 P.C.   |             | 10-91          | 10-01   |              |               |              |         | 1110          | 1       |           |
| Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 45         | ₽-          | 200            | 9       |              |               | GN TO HE TO  | ₹.      | Printe        | Londs   | Genera Ob |
| Bls (2 - Chloroethyf)Ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6            | 9           |                |         | 200          | 9/00<br>V0./8 | <0.78        | <0.36   | 60,000        | 60,000  | 0.03 (4)  |
| 2-Chlorophanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,            |             |                | CO.30   | 98.00        | <0.78         | <0.78        | <0.30   | 0.04          | 0.0     |           |
| 3-Debhohanzana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | 800         |                | C0.08   | 800          | <0.78         | <0.78        | <0.30   | 9             | 400     | 90        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CU.45        | <0.89       | <b>&lt;2.2</b> | ×0.36   | <0.36        | <0.78         | <0.78        | <0.30   |               |         | :         |
| I.4 - Lischibropenzena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.45        | <0.60       | <2.2           | <0.38   | <0.39        | <0.78         | <0.78        | 92.00   |               |         |           |
| 1,2-Dichtschenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.45        | <0.69       | <2.23          | <0.39.1 | <0.39        | 67.0>         | 87.07        | 1 00 07 | 8             |         | 9.2       |
| 2-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.45        | <0.00       | <2.2.3         | - 08.0> | 9,02         | 47.07         | 1            | 2000    | OM'/          |         | 7.0       |
| 2,2'-oxybis(1-Chloropropend)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.45        | ×0.80       | 665            | 9. 0    |              | 20.78         | KU./8        | C0.00   | 4,000         | 4 000   | 0.14      |
| 4 - Methyphanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>C0.45</b> | CO 80       | 730            | 9       | AU.38        | <0.78         | <0.78        | <0.30   |               |         |           |
| N-Nitroso-Di-n-Propylamina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×0.46        | 98 67       |                | 87.7    | CO. OR       | <0.78         | <0.78        | <0.30   | 4,000         | 4,000   | 9.0       |
| Hexachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 3           | 7              | ×0.26   | <0.36        | <0.78         | <0.76        | <0.36   | 0.1           | 1.0     |           |
| Minobeogene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2            | CO.BU       | <b>42.2</b>    | CO.30   | <0.36        | <0.78         | <0.70        | <0.30   | 9             | 8       |           |
| konhomna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.40        | - CD. 686   | <2.2           | <0.30   | <0.36        | <0.78         | <0.78        | \$0.0×  | \$            | 4       | 1460      |
| 2. March 400.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.45        | <0.60       | <22            | <0.36   | <0.39        | <0.78         | <0.78        | ×0.38   | 1.600         | uo 8    |           |
| The state of the s | <0.45        | 40.60       | <2.2           | <0.39   | <0.30        | <0.78         | 60.78        | ¢0.36   |               |         | 177.00    |
| C.4 -Lansacriy promote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.45        | <0.86       | <22            | <0.39   | <0.39        | <0.78         | <0.78        | 800     | 800           |         | in one    |
| trajz - Croonemony Methana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.45        | <0.00       | <2.2           | <0.36   | <0.38        | <0.78         | AC 0.20      | 9       | 2             |         |           |
| 2,4 - Dichbrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.45        | 40°0>       | <2.2           | <0.38   | 96.00        | <0.78         | <0.76        | 8       | 500           |         |           |
| 1,2,4 - I fichioroberzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.45        | <0.00       | <2.2           | <0.39   | \$0.30       | <0.78         | <0.78        | 98.00   | 2000          | and the | 70        |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.18.1       | Q.11DJ      | 0.2.1          | 0.052   | 7,200        | 10,480        | 10000        | ,,,     | 3             | KOKID   | 3         |
| 4-Chlorosoffine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.45        | <0.89       | <222           | 8,00    | 8            |               |              | 7       | 2             |         | 13        |
| Herachtorobutacliene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.45        | 890         | 200            | 9,00    |              | 20.00         | <b>CD.78</b> | <0.30   |               |         | 0.22 (4)  |
| 4-Chloro-3-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.46        | 860         | 66             | 800     | 800          | CO.70         | <0.78        | 80.00   | 8             | 8       |           |
| 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.18.1       | 10770       | 7 200          | 100     | ×0.38        | <0.78         | <0.78        | <0.39   |               |         | 0.24 (4)  |
| Heachlorocyclopenindlene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20.45        | 98          | 200            | 700     | 0.072.3      | 0.063 (2)     | 0.005 DZ     | 0.18.   |               |         | 787       |
| 2,4,8-Trichlorophanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50.65        | 8 6         | ,              | VD:36   | 96 O>        | <0.78         | <0.76        | 40.30   | 600           | 900     |           |
| 2,4,5-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ;            | 300         | ,              | VII.38  | 80 G         | <0.78         | <0.78        | CO.30   | 14            | \$      |           |
| 2-Chloronaphinatena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 25.5        | V 0.3          | ¥0.04   | 200          | 41.B          | <1.9         | <0.05   | 0,000         | 000     | ā         |
| 2-Nitropoline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 20.00       | <22            | <0.30   | <0.39        | <0.76         | <b>60.78</b> | <0.36   |               |         |           |
| Dimethyl Phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110          | 222         | <b>60.3</b>    | ¥0.0    | 200          | 41.B          | <1.0         | <0.0>   |               |         | 1100      |
| Acerechtivdene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200          | 40 ES       | <b>622</b>     | <0.30   | \$0.30       | <0.78         | <0.76        | <0.30   | 90,00         |         |           |
| 2.8-Diobrototrans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ciento       | 0.000       | 0.32           | <0.30   | 800          | <0.78         | <0.78        | <0.39   | 900           |         | 1         |
| 3-Nitrosoffne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |             | <b>422</b>     | CD:30   | <b>40.30</b> | <0.78         | <0.78        | <0.39   | -             | 100     | -         |
| Acenerithene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | <b>42.2</b> | <6.3           | A 0.0   | 200          | <1.0          | <1.0         | <0.95   |               |         | 1380      |
| 2.4 - Dintrophanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COO.         | 00000       | 280            | 2000    | 0.060 j      | 0.0690.0      | 0.07DJ       | 0.074.3 | 9,000         |         | 8         |
| 4-Ntroopenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 222         | <8.3           | 200     | <b>₹0.0</b>  | <1.9          | <1.0         | <0.05   | 500           | 200     | 100       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 755         | ×63            | ×0.04   | ×0.94        | <1.0          | 6.1>         | <0.05   |               |         |           |

7.316.7

# BLPPLENENTAL BURFACE SOIL SALIFUNG SEMIVOLATILE CHEAKINGS ALMUTTICAL REBILTS HOSEN BITE CONTLAND, NEW YORK

| pustus                                                       | (Si) 14 = 8 | A. 10 M - 24 | 2/E-99     | -48=93   | av Hat          | C100 F# ### | (SU 10 M = 64  | A8-11           | and the Yest<br>and had<br>and s |               | MOAT<br>MOAT<br>MOMENT |
|--------------------------------------------------------------|-------------|--------------|------------|----------|-----------------|-------------|----------------|-----------------|----------------------------------|---------------|------------------------|
| Unanyozuecji                                                 | CIIO        | 0.060.1      | F150       | L 650.0  | D.D84.J         | . LG 480.0  | LC] 160.0      | LS1.0           |                                  |               | 62                     |
| eneutolorital(1-)                                            | \$1.0>      | 98.0>        | <23        | 8E.0>    | <0.30           | 87.0>       | 87.0>          | <0.39           | 1                                | ,             |                        |
| ethylphania handania                                         | 31.0>       | 68.0>        | <5.5       | <0.38    | 86.0>           | 87.0>       | 87.0>          | <b>66.0&gt;</b> | 000'09                           | 000,00        | 17                     |
| -Chiorophanyl-phanylather                                    | SF 0>       | 1.08.0>      | <5'5       | 96.0>    | 66.0>           | 87.0>       | 87.0>          | 66.0>           | \$,000                           | ···           |                        |
| - Gueron                                                     | 0.13.1      | 0.1200       | L 95.0     | L 850.0  | £ 490.0         | 10 830.0    | 1/3 250,0      | L 080.0         | 3,000                            |               | (c) 0g                 |
| enilneositis - S-oniniG-8                                    | 112         | <2.2         | 6.6>       | 16.0>    | 16.0>           | 8.1>        | 6.1>           | 29.0>           |                                  |               |                        |
| lonaridystals = - outrici = a<br>(1) estmelymerchicacritis - | 1.15        | <\$22        | 6.3>       | 140.0>   | M9.0>           | 6.1>        | 61>            | >0.85           | •                                | <del></del>   |                        |
| - Nitroecchiphenylemine (1)                                  | 21.0>       | L98.0>       | <2.2       | 9E.0>    | 66.0>           | 84.0>       | 94.0>          | L 680.0         | 0 <del>1</del> 1                 | ooi           |                        |
| eachlorobartane                                              | 25.0>       | 98.0>        | <55        | 60.0>    | 96.0>           | 67.0>       | 87.0>          | <0.39           |                                  | <del></del>   |                        |
| ntechlorophanol                                              | 21.0>       | <0.0>        | <2.2       | 9C.0>    | 66.0>           | 87.0>       | 9/.0>          | 86.0>           | 170                              |               | 110                    |
| emphilininan                                                 | 1.1>        | 140          | 6.6>       | 160>     | MS:0>           | 6.1>        | 815            | <0.05           | 2,000                            | 2,000         | (e) i                  |
| #Unaceute                                                    | L86.0       | 0.350J       | 191        | 820      | 8.0             | 0320        | 1007.0         | 9'1             | <del></del>                      |               | (c) og                 |
| alozada                                                      | Laro        | LGBLG        | LOI        | L71.0    | Laro            | OTED        | 0.1613         | 0.25J           | 000,05                           |               | (c) 00                 |
| etalerlindy/aufi n                                           | 0.18.1      | osion        | L17.0      | 1° 280°0 | 613             | LG 290.0    | raio           | C 91.0          | 6.0                              |               |                        |
| eneuthneon                                                   | g-l         | Q7.S         | *1         | C 250 0  | Lia             | U3 660.0    | LG 580.0       | Lar.o           | 000,8                            | 000, <b>0</b> | 1.6                    |
| eue!                                                         | 36,4        | ge.e         | Ei         | 1.2      | 37.6            | avi         | 020            | 13.             | 3,000                            |               | (c) 09                 |
| eielerlińchyznechy                                           | L 55.0      | 0.25 DJ      | <22        | 0.83     | LS.0            | 0.16(3.1    | 07.2           | LCIO.P          | 2,000                            | 000 00        | 10 09                  |
| 3, -Djeppopensjqine                                          | 0)·0>       | 98.0>        | <5.2       | L06.0>   | 66.0>           | B/ 0>       | 1051.0         | L/8.0           | 20,000                           | 20,000        | (c) 0g                 |
| epecantinA(e)osn                                             | 2.5         | 09.5         | 7.6        | CEP      | 1.2             | G0.1        | 87.0><br>(10,1 | H06.0>          | 039                              | - 3           | 17000                  |
| dieskr                                                       | 5.4         | Ges          | 01         | 151      | 1.2             | Q1.1        | 01.1           | 121             | 0.22                             |               | 035 M                  |
| estelartis/fytas/fyt/t3=S)a                                  | a r.c       | CB12         | <\$ 5      | L0£.0>   | U328U           | 0.28 80.1   | LOS 25.0       | A.B.NC.O        | 09                               | 06            | 9·0                    |
| elaladid McOn-                                               | S\$:0>      | 69.0>        | <5.2       | 1.06.0>  | <u>@£.0&gt;</u> | 87.0>       | 67.0>          | Hec.0>          | 2,000                            |               | 09                     |
| enerthmout?(d)oxy                                            | 8           | SD           | Ol         | r (i     | 9.1             | 01.1        | US I           | Le.r            | 0.22                             |               | 11                     |
| enerthinourill(h)osse                                        | 5.1         | Sp           | 4.7        | 01.1     | 89.0            | 0.65()      | 0.80           | 181             | 52.0                             |               | 1.1                    |
| aneny <sup>c</sup> i(a)osn                                   | S           | 190          | 972        | CU       | 371             | G89.0       | G.ea.D         | 66.0            | 10.0                             |               | (4) 190.0              |
| enewPlp3-6,8,1 Jonet                                         | 5.2         | 09.1         | <b>2</b> V | Lt.r     | 1.2             | arı         | 01.1           | LT.I            | <u> </u>                         |               | 3.2                    |
| peuso(a'p) yulpusceue                                        | S):0>       | 68.0>        | <5.2       | L86.0>   | 6E.0>           | 67.0>       | 87.0>          | F0.39.F         | M0.0                             |               | ( <del>4</del> ) H0.0  |
| analyas (g, h, g) osm                                        | 2.1         | oc i         | 17         | 131      | 8.1             | ds.r        | 1.20           | 337             | <u> </u>                         |               | (c) 09                 |
| PR 11C#                                                      | TE.T        | 6.28         | 48.27      | 941.7    | 8,988           | ar.er .     | 64.01          | 57.21           |                                  |               |                        |

TABLE 1.

BUPPLEMENTAL BUFFACE BOLL BAMPLING
BEMIYOLATUE ORGANICS ANALYTICAL HEBLETS
NOVEMBER 163
POSEN BITE
CONTLAND, MAW YORK

| Sampound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | It with         | B-800     |                |                  | (10 to -10                             |                   |       |          |             | THE PARTY OF THE P | 31       | 10.00      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|----------------|------------------|----------------------------------------|-------------------|-------|----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.39           | <0.79     | _              | 200              |                                        |                   |       | Nava H   |             | 444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - Ferrit | Steams 944 |
| Bis(2Chloroethyl)Ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.38           | 67 0>     | 100            | 2                | B                                      |                   | 21    | <b>1</b> | 9           | 20,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50,000   | 0.03 (4)   |
| 2-Chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95.05           | 9         |                | SO SO            | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 9.12              | 212   | Ş        | 41          | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0      |            |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8               |           | 2/6/4          | - CO.            | 80.00                                  | 41.0              | <12   | 111>     | Į.          | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 007      | 70         |
| 1.4 - Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | VIII.     | \$0.79         | \$0.00<br>\$0.00 | \$6.00<br>36                           | <1.0              | <12   | <11>     | , <11       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 91         |
| 1 9 Christmann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | \$0.78    | 60.00<br>60.00 | <0.38            | <0.38                                  | <1.0              | <12   | ₹        | <11         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 1          |
| 0 destinate to a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80.00           | \$ 0.00   | <0.78          | <0.38            | 40.3 <b>8</b>                          | <1.0.1            | <12   | 117      | ~11         | 2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |            |
| 2 - Metalyphores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.30           | 60.78     | <0.79          | <0.38            | <0.38                                  | 615               | <12   | ţ        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
| Z.Z Cryotel I Chloropropana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$0.00<br>50.00 | <0.70     | <0.79          | <0.38            | ×0.38                                  | <10.              | 5     |          |             | 200,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,00     | 2          |
| 4-Methylohanoi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.30           | <0.79     | \$6.79         | ×0.36            | SC 03                                  | ,                 | 3     | 6113     | 15          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
| N-Nitrasa-DI-a-Propylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.36           | <0.79     | <0.70          | <0.38            | 86.0>                                  |                   | 4     |          | 100         | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,000    | 8          |
| Hosethoroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.30           | <0.79     | <0.70          | ×0.38            | 92.00                                  |                   |       |          | Į.          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.0      |            |
| Nitrobertzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.39           | <0.79     | 40.78          | ac 0>            | 3                                      |                   | 215   | 5        |             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8        |            |
| sophorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.30           | <0.70     | 07.02          | 98 0             | 900                                    | 91.0              | Z   V | Į        | Į.          | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$       | 0.2 (e)    |
| 2-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.30           | e7.0>     | 92.07          | 900              | <b>8</b>                               | 61.0              | 412   | ŧ        | C11         | 1,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,000    |            |
| 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.39           | 92.00     | 2              | 40.38            | ×0.36                                  | 41.0              | <12   | 150      | 113         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0.33 E     |
| Bis (2 Chloroethom) Methens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.00           | 4         |                | CO.3E            | <b>8</b> 0.38                          | 61.0              | <12   | -        | 411         | 2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |            |
| 2,4-Dichlorophanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9,0             | , a. / a. | Z              | <0.36            | <0.38                                  | 6,12              | <12   | 411      | <11         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
| 1.2.4 - Trichlorobenzane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 900             | 20.78     | <0.70          | <0.38            | ×0.38                                  | 61.0              | <12   | <11      | 115         | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 900      | 70         |
| Nachthalane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3               | 200       | 60.70<br>27.00 | <0.38            | <0.36                                  | <1.0              | <12   | 411      | ₹           | 2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2000     | 7          |
| 4-Chlomaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | 4 13 17   | G.13D          | 0.07 J           | 0.07.3                                 | 6.1.9             | <12   | 11>      | 15          | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 5          |
| Hencehlombidedlesse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - T             | <0.70     | 40.79          | 40.38            | <0.36                                  | <1.0              | < 12  | 11>      | 115         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 11000      |
| 4-Chlom-3-Methylphona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 800             | <0.70     | 60.00          | <0.36            | <0.38                                  | 61.0              | <12   | <11>     | 5           | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a        | 2          |
| 2-Mathatrachthalana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90 TO           | 60.70     | 8,00           | <0.36            | <0.36                                  | <1.0              | <12   | 11>      | 115         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 17.00      |
| - Indiana - Indi | 20.00           | 0.17D     | a.180          | 0.12.3           | 0.12J                                  | 0.12 DJ           | 4.1.3 | 613      | 7.9         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80.00           | 60.70     | <0.79          | <0.36            | <0.36                                  | <1.0              | <12.1 | <11.1    |             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |            |
| C. 4.8 — Inchiotophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.38           | <0.79     | <0.79          | <0.38            | <0.38                                  | 61.5              | C12.7 |          |             | 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3        |            |
| 2,4,5 - Inchordoneno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×0.05           | <1.0      | 41.9           | <0.82            | 800                                    | 44.B              | 5     |          |             | <b>S</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3        |            |
| 2-Chlororaphthalana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.30           | <0.79     | <0.79          | 40.38            | 9                                      |                   |       |          | 200         | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8        | 5          |
| 2-Nitroeniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.05           | 61.0      | 419            | 200              | 3                                      |                   | 721>  | 717      | 5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
| Directly/ Phthelate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.30           | <0.70     | - 0.7 O.>      | 3 6              | N S                                    | 24.6              | 8     | <27.3    | 427         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0.43 (m)   |
| Acenephinylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . C200          | e/ 0>     | 20.00          | 3                | Ring                                   | \$  <br>          | <12.7 | 411.7    | <b>11</b> 2 | 000'08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 04         |
| 2,6-Dintrotokuene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.36           | e7.0>     | 97.6           | 8 9              | VC.38                                  | 91                | 327   | 1117     | 115         | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | Ŧ          |
| 3-Nitroaniine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.85           | 910       | 2 7            | S C              | <b>8</b> 0.00                          | 41.6              | <12.3 | 4117     | \$15        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2        | -          |
| Acenephthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 80 0          | 0000      |                | ZA T             | \$0.00<br>\$0.00                       | ×4.0              | 7062  | <27.1    | <27         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0.5 (m)    |
| 2,4-Dinbrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50.05           |           | T MONTH        | 96 O             | \$0.36<br>\$0.36                       | 41.9              | <12.1 | L112     | <11         | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 50 (3)     |
| 4 Nitrophanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 800             |           |                | 28 00            | 28.0                                   | <4.0J             | COE>  | <27.J    | (Z)         | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 902      | 0.2 (4)    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           | 2              | ×0.92            | <0.62                                  | 8. <del>1</del> . | <30.J | 1.702    | 707         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |

# SUPPLEMENTAL BLEFFACE BOIL BAMPLING SEMIYOLATHE OFFANICS AUALYTICAL REBIA.TB HOSEN BITE FOSEN BITE CONTILAND, NEW YORK

ALBITONIA.

| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 23.21     |             | ge ii           | 13.H       | 25 BL     | 890 i  | 0811         | 9269          | 1              | ı           |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|-------------|-----------------|------------|-----------|--------|--------------|---------------|----------------|-------------|----------------|
| 90tt (#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.37           | 15.22     | 28.01       |                 | 21.0       | LOSEO     | LEI    | 11>          | 11>           |                |             | (c) os         |
| eneknerie, d.p. osr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5             | G0.1      | 1.6 D       | 110             |            | 6.1>      | 2i>    | 11>          | 11>           | HO.0           |             | M HOO          |
| euzo(e/p)yuthecene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>66.0&gt;</b> | 87.D>     | 67.0>       | <0.36           | 86.0>      | LOEO      | 612    | 11>          | 11>           | ·              | <del></del> | 33             |
| enen(f)(2,2,1)one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3               | 021       | Q8.f        | 0.29.1          | L 8C.0     |           |        | 11>          | 11>           | 190            |             | 190'0          |
| enery 4(e) ozr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.1             | ()96.0    | go.r        | บรอา            | 0.28.1     | LO 85.0   | 851    | 115          | 11>           | 0.22           | <del></del> | 11             |
| Spirit Turning Telephone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.1             | 01.1      | G0.1        | 0.23.1          | LYSO       | rales     |        | Pii>         | 0.56.1        | 0.22           | <del></del> | 11             |
| Scienting of The State of The S | 0.1             | Ga.r      | G5.1        | 96.0            | 11.0       | Lavea     | 0.15   | 711>         | 11>           | 3,000          |             | tel og         |
| -n-Octyl Philhelete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.39           | 87.0>     | 67.0>       | 86.0>           | 86.0>      | L0.1>     | <15.1  | 111>         | TEPI          | 09             | 09          | (c) og         |
| (S-Ethythenyt)Phthete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.28 BJ         | 97.0>     | 97.0>       | 0.34 8.1        | 0.32 8.1   | (1.9.1    | (1S1)  | F 99 O       | CIT           | <del>  "</del> |             | 10             |
| puedi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3               | Q7.1      | 07.1        | 96.0            | 038        | Lawo      | 1,6.3  | 112          | 7100          | 6.22           |             | (4 22 O        |
| # <b>Je</b> 5#(p) <b>y</b> (#)02i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.1             | Q+1       | Og i        | LSE.0           | LIEO       | (Gero     | 191    |              | 11>           | 1 000          | ž           |                |
| (Dichlorobenzidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 66.0>           | 84.0>     | 67.0>       | 86.0>           | 66.0>      | 6.1>      | <15    | 11>          |               | 30,000         | 000,05      | tc) og         |
| (Appendiction)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99'0            | 0.65.0J   | CGDJ        | 92.6            | 7.6E       | LC) B     | res    | የነን          | r++           | 2,000          | 00006       | (c) 02         |
| 608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39              | (16.≯     | 077         | 0.94            | 171        | MATA      | LTS    | Lo.1         | 121           |                |             | IC 09          |
| •เจนสนายาด                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11              | GE.I      | aei         | 11/0            | 1.8E.0     | LG 12.0   | La     | SI           | 16.6          | 2'000          | 000'8       | 170            |
| -u-graytoppere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.14.1          | 0.150J    | 10010       | 0.25.1          | 0.24.1     | 106.0     | AS1>   | LED          | Lag           | 000,0          | 000 9       | •••            |
| ejozeqi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C+10            | 0.14(0.1  | פולנות      | L 60.0.0        | L #0.0     | 6.1>      | <128   | Ait>         | 11>           | 6.9            | <del></del> | 65 00          |
| gueceue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.25.1          | 0.24 DJ   | 0.24(0.1    | L SB0.0         | L 780.0    | 6.1>      | A21>   | A11>         | 11>           | 20,000         |             | 60 00<br>60 00 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91              | G8.1      | 05.1        | 11.0            | 0.42       | LOTA      | S2 1   | <341         | 56            | <u></u>        |             | ,              |
| umchlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.65           | 8.15      | 9.1>        | <0.62           | <0.62      | 0.4>      | F) 06> | 87\$>        | /t>           | \$,000         | 2,000       | (4) i          |
| euezuegojujuwa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 66.0>           | 97.0>     | 82'0>       | <0.38           | 86.0>      | 0.1>      | RSt>   | HII>         | 11>           | 100            |             | 170            |
| -Bromophanyl-phenyleiter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9E.0>           | 6/.0>     | 82.0>       | <b>96.0&gt;</b> | 66.0>      | 61>       | Ast>   | Air>         | II>           |                |             |                |
| (f) enimalymental baseous A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 017             | 64.0>     | 82.0>       | L 150.0         | L 650.0    | 6.1>      | RSt>   | AII>         | 11>           | Ohr            | 001         |                |
| P-Dintro-2-Methylphenal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C6.0>           | 01>       | 81>         | <0.62           | S9:0>      | 0.5>      | Fice>  | A \S>        | (Z)           | •              |             |                |
| Mineonine Sandohride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.0>           | 01>       | 6.1>        | 28.0>           | S8:0>      | 9'b>      | <201   | L75>         | (Z>           |                |             |                |
| enerous<br>pallocatild-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L 680.0         | LCI EYO O | 1.0 850.0   | 86.0>           | L 250.0    | 6.1>      | LEI    | LSI          | £1            | 6,000          |             | <b>(c)</b> 09  |
| -Chlorophenyl-phenylether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.39           | 64.0>     | 97.0>       | 96.0>           | 90.0>      | 6°1>      | <13.1  | 7117         | II>           | 2,000          |             |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.39           | 64.0>     | 62'0>       | 86.0>           | 86.0>      | 6.1>      | <15.7  | r 11>        | 11>           | 000,00         | 60,000      | 172            |
| etalecticitycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.39           | 67.0>     | 97.0>       | <0.38           | <0.36      | e:i>      | <15.1  | řii>         | 11>           | i .            |             |                |
| 4-Dintyolohene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7510            | 0.1207    | g is co     | L 9EO.0         | 0.043.1    | 6.1>      | Le.f   | <u> (11)</u> | 11>           |                |             | 6.2            |
| persoluen<br>means                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |           | GW 70 45-88 |                 | (5G PK =43 | CO OF THE | 10-60  |              |               |                | (2007) N    | desire of the  |
| puneauc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |           |             |                 |            |           |        |              | ( may 16 - 16 | Add hed        |             | A TOTAL        |

# BUPPLEMENTAL BUPFACE SOIL BAMPING NOVEMBER 1903 POSEN BITE CORTLAND, NEW YORK

TABLE 1

| (NG eges no select eet         | •       |         |                                                                                                                        |                   |                 |            |          |                            |             |             |
|--------------------------------|---------|---------|------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|------------|----------|----------------------------|-------------|-------------|
| -Mirophenol                    | LO.1>   | .0.1>   | 0.1>                                                                                                                   | L0S>              | 16.0>           | 8.4>       | 6.3>     |                            |             | (4) 1.0     |
| y-Dintophenol                  | 0.1>    | 0.1>    | 0.1>                                                                                                                   | <20               | 16'0>           | 8.4>       | L 6.3>   | 500                        | 200         | ₩ 2.0       |
| constitutions                  | f 190'0 | 82.0    | 68.0                                                                                                                   | ดอยา              | 66.0>           | 1.68.0     | 1.2.1    | 6,000                      |             | 10 09       |
| enitractii/-E                  | 0.1>    | 0.1>    | 0.1>                                                                                                                   | <\$0              | <b>98'0&gt;</b> | 8.4>       | 6.6>     |                            |             | (M) 970     |
| eneutototal(1-8,5              | <0.42   | <0.42   | <0.42                                                                                                                  | 4.6>              | <0.38           | <2         | <5.2     |                            | 8:          |             |
| усельрійційеле                 | L 860.0 | L 170.0 | L 260.0                                                                                                                | ₱' <b>9</b> > .   | <0.39           | <2         | <2.2     | 200                        |             | 19          |
| etalectist lystemic            | <0.42   | <0.42   | <042                                                                                                                   | 19>               | <0.39           | <5         | <53      | 000,00                     |             | - s         |
|                                | 0.1>    | 0.1>    | 0.t>                                                                                                                   | <20               | 18.0>           | 8.1>       | L.6.B>   |                            |             | (4 C+ O     |
| S-Chloronaphthalana            | <0.42   | <0.42   | <0.42                                                                                                                  | FB>               | <0.0>           | <22        | <5.5     |                            |             |             |
| lonadqoiothah T ~ 2, 4, 5      | (0,1>   | 0.1>    | . 01>                                                                                                                  | <30               | 16.0>           | 87>        | 6.3>     | 000,6                      | 000'e       | 0.1         |
| ionerigonophonol.              | \$1.0>  | <0.42   | <0.42                                                                                                                  | 1.6>              | 66.0>           | <\$        | <5.2     | 10                         | 017         |             |
| Hemichlorocyclopenhadiene      | <0.42   | <0.42   | <0.42                                                                                                                  | <b>4.0&gt;</b>    | <0.0>           | <5         | <2.2     | 009                        | 009         |             |
| S-Methylnephilaelene           | 0.24.3  | ดระา    | 0.25.1                                                                                                                 | 4.8>              | <0.39           | Cat.G      | Laro     | - I                        |             | 1-26        |
| 1-Chloro-3-Methylphenol        | r 290°0 | <0.42   | <0.42                                                                                                                  | <b>4.6&gt;</b>    | <0.59           | ح2         | <2.2     |                            |             | (M) 148 (D) |
| - Jenachion bullene            | <0.42   | <0.42   | <0.42                                                                                                                  | <b>P.B&gt;</b>    | <0.39           | ₹>         | <2.2     | 08                         | 06          |             |
| 1-Chloroshilise                | <042    | <0.42   | <0.42                                                                                                                  | <b>9'8</b> >      | ec.0>           | <5         | <58      |                            |             | 0.32 (a)    |
| - enalishingsin                | 61.0    | 0.22.1  | LISA                                                                                                                   | <b>P'0&gt;</b>    | <0.39           | ₹ 1£.0     | LT1.0    | 900                        |             | C1          |
| S.4 – Tachlorobenzane          | <0'45   | <0'45   | <0.42                                                                                                                  | \$'B>             | 95.0>           | <3         | <2.2     | 2,000                      | 2,000       | 14          |
| 9.4-Dichlophenoi               | <0.42   | <0.42   | <0.42                                                                                                                  | 1/0>              | -0.3 <u>0</u>   | <b>₹</b>   | <\$3     | 300                        | 008         | <b>∌</b> :0 |
| Bis (2 - Chloroethory) Methens | \$>.0>  | <0.42   | <0.42                                                                                                                  | <b>₽₽&gt;</b>     | <0°39           | <2>        | <2.2     |                            |             |             |
| lonariqi yritemi() — e,S       | S>:0>   | <0.42   | <0.42                                                                                                                  | \$*B>             | <0.36           | <5         | <5.2     | 2,000                      |             |             |
| s-Altrophenol                  | <0.42   | <0.42   | <0.42                                                                                                                  | 1.0>              | <0.39           | <5         | <2.2>    |                            |             | G 33 🗐      |
| enotorique                     | <0.42   | <0.42   | <0.42                                                                                                                  | 1/8>              | <0.39           | <2>        | <5.2     | 008,1                      | 000,8       |             |
| @UP ZUP GO THE                 | <0.42   | <0.42   | <0.42                                                                                                                  | 1.8>              | <0.30           | <3         | <53      | DIF                        | OÞ          | 03 PM       |
| - Immchloroethana              | <0.42   | <0.42   | <0.42                                                                                                                  | <b>▶.8&gt;</b>    | <0.39           | <8         | <55      | CHE                        | 06          |             |
| enimalyqor9-n-M-osovity-N      | SP:0>   | <0.42   | <d:45< td=""><td>P'8&gt;</td><td>&lt;0.39</td><td>&lt;3</td><td>&lt;551</td><td>LO.</td><td>0.1</td><td>•</td></d:45<> | P'8>              | <0.39           | <3         | <551     | LO.                        | 0.1         | •           |
| e-MeityPhenot                  | <0.42   | <0.42   | <042                                                                                                                   | V8>               | <0.39           | <\$        | <53      | 4,000                      | 000,5       | 8.0         |
| 2,2"-cxyble(1-Chloropropane)   | <0.42J  | <0.42   | <045                                                                                                                   | (° † ° 1)         | <0.30           | <5         | <5.2.1   |                            |             |             |
| S-Ментурреној                  | <0.42   | <0.42   | <0.42                                                                                                                  | <b>₽'8&gt;</b>    | <0.39           | <2         | <\$31    | 000,≯                      | 4,000       | (4) (10)    |
| 1,2—Dichbirdenzene             | <0.42   | <0.42   | <0.42                                                                                                                  | <b>18</b> >       | 96.0>           | <\$        | <2.2.1   | 000,7                      |             | 6.T         |
| 1,4-Okhbiobentene              | <0.42   | <0.42   | <0.42                                                                                                                  | 18>               | <0.38           | <\$        | <5.2     | 58                         |             | ge          |
| eneznedordriaki-6,1            | <043    | <0.42   | <0.42                                                                                                                  | <b>+'8&gt;</b>    | -0.39           | <\$        | <2.2     |                            |             | Ø1          |
| S-Chlorophenel                 | <0.42   | <0.42   | <0.42                                                                                                                  | 1.8>              | 66.0>           | <2>        | <5.2     | 000                        | 900         | \$10        |
| Bla(2—ChloroethyllEthat        | 57.0>   | <0.42   | <0.42                                                                                                                  | 4.6>              | <b>6</b> E.0>   | <5         | <2.2     | 190                        | 0.0         |             |
| Phenol                         | <0.42   | <0.42   | <0.42                                                                                                                  | 1.6>              | <0.39           | -28        | <5.2     | 000'09                     | 000'09      | (H 2070     |
| puna a mag                     |         | i i     | GIJ 12-64                                                                                                              | COLUMN TO SERVICE |                 | - CA - 5.0 | 77. E 11 | 44416                      |             | والسندورة   |
|                                |         |         |                                                                                                                        |                   |                 |            |          | state for well<br>but herd | Arring to a | Anny Town   |

TABLE 1.

# SUPPLEMENTAL BUFFACE BON, BAMPLING BONGENBER 1003 HOSEN BITE CORTLAND, NEW YORK

| Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18-25-  | 2        |        |              |         |        |        |        | !      |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|--------|--------------|---------|--------|--------|--------|--------|-----------|
| Dibenzohen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - P     | 0.3.4    | 1.180  | 787          | 9       |        |        |        | Hatel  | Care OF   |
| 2.4 - Dintrotokiena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.40×  | 67.07    | 9      |              |         | 0.47.5 | 7/80   |        |        | 62        |
| Diethylotytalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20,07   | 10.000   | 2000   | <b>VB.4</b>  | 9       | 8      | <22    | -      |        | i         |
| Only on the same of the same o | 2017    | 655      | C (2)  | <b>7.8</b> 7 | 90.00   | ç      | <2.2   | 000,08 | 000'00 | 7.1       |
| 4 — Charle Demy — phenylether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c0.42   | <0.42    | <0.42  | <8.4         | <0.30   | <2.5   | <2.2   | 200    |        |           |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.002   | 90       | 0.51   | 0.5eDJ       | <0.30   | 0.00   | 17.1   | 300    |        | 2 23      |
| 4 - Nitroenline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1,0    | <1.0     | C1.0   | ą            | ago     | 1      |        |        |        | 3         |
| 4.8-Dintro-2-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1.0A   | <1.0     | 41.0   | 80           | 36      |        | 3      | ,      |        |           |
| N-Mitrosodiphenylemine (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.42R  | <0.42    | <0.42  | <84.1        | 1.0%    | ,      | 800    |        |        |           |
| 4-Bromophanyl-phanylether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.42R  | <0.42    | SQ42   | - C8.4       | 8       | ,      | 3 3    | 2      | 3      |           |
| Heachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.42R  | <0.42    | 6702   |              | 8 6     | ,      | 275    |        |        |           |
| Pertechlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2108    | 1        |        |              | 879     | 8      | <2.2   | 170    |        | 0.41      |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |          | 2 1    | 200          | \$      | C4.8   | <6.3   | 2,000  | 2,000  | 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1757    | 3.65     | 3.6E   | 5.90         | 0.22.1  | 7.3    | 8.2    |        |        | 127 OS    |
| Antivacens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | G.18    | 980      | 0.95   | 1.2 DJ       | 0.038 J | 1.4.1  | 3.3    | 20,000 |        | 20        |
| Camazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.42R  | 0.65     | 0.62   | 1.20         | r 2000  | 1.2.1  | 13.1   | 6.0    |        |           |
| Di-n-Butytohthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.42R  | 0.14.5   | 0.15J  | <8.4         | 0.046 J | 7      | 7 6 0  | W. 6   | w •    |           |
| Fixonthere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.52 J  | 1.5      | 1.3    | 0.7D         | 0.37.J  | 9.6    | ٤      | 2000   |        |           |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.64.3  | 5.2E     | 4.6    | 12D          | 0.35.1  | 7.6    | 5      |        |        | 3         |
| Butytberzyphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.42B  | 0.48     | 7.     | Dean         |         |        |        | 2,440  |        | 8         |
| 3.3'Dichbrobenzidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0.49.B | 40.49    | , ,    | 7            | 0.044.5 | 25     | 297    | 90,00  | 20,000 | 5000      |
| Berzolal Anthracens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 200      | 200    | <b>48.4</b>  | <0.38   | <2     | <2.2   | 1.6    | 64     |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | ,        | 7      | 6307         | 0.18.   | 0.3    | 7.7    | 0.22   |        | 0.22 (4)  |
| D Cardina District                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | D.1E     | 36     | 8.3D         | 0.23 J  | 8.8    | 6.6    |        |        | 2         |
| Control of the Contro | 1.865   | 22<br>22 | 8      | 42 BD        | <0.30.j | 63     | <22.3  | 28     | 8      | 100 CS    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CU42H   | 0.18     | 0.17.2 | <6.4.J       | <0.39J  | 8      | <2.2.3 | 2,000  |        | 80 63     |
| Description I (dozza o con con con con con con con con con c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.     | 0.2E     | 5.1E   | <b>1010</b>  | 023.1   | 6.8    | •      | 22.0   |        | 1         |
| diamirazois finicanas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7880    | 3.0€     | 4.15   | 2006         | 0.16.J  | 4.5    | 9.7    | 220    |        | =         |
| tiertzo jejtrymene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1220    | 96       | 4.06   | Sel          | 415.5   | (10    | 8.8    | 0.61   |        | 0.061 (6) |
| indenci'l 2 3-cdi-yene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1:17    | 4.76     | 4.BE   | 430          | 0.14.J  | 3      | 4.8    |        |        | 3.2       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.42H  | <0.42    | <0.42  | <8.4         | <0.39   | <2     | <2.2   | 0.014  |        | 0.014     |
| Denico (g. n. ur aryan ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.02    | 6        | 2.0    | 2703         | 0.065.J | 60     | 3.6    |        |        | 80 68     |
| IOM IX.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.17    | 6.5      | 6.50   | 0.3          | 1.37    | 29.41  | 28.58  |        |        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |        |              |         |        |        |        |        |           |

16 to 52 ed 54

TABLE 1

BLPPLEMENTAL BLIFFACE BOR. BAUPLING
BEMIYOLATHE CHOANICB ANALYTICAL REBULTB
NOVEMBER 1903
FOSEN BITE
CORTLAND, NEW YORK

| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 K-14     | 2/5 - 51 | S 277 3      |         |         | - 68 - 40¢ | - TO 10 10 10 10 10 10 10 10 10 10 10 10 10 |        |        |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|--------------|---------|---------|------------|---------------------------------------------|--------|--------|----------|
| Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <4.3        | <0.79    | <0.79        | <0.43   | <0.43   | <0.43      | 1                                           | 000 03 |        |          |
| Bis(2—Chloroethyf)Ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <4.3        | 60.70    | <0.79        | <0.43   | 50.43   |            | 2                                           | 000    | 00,000 | 3        |
| 2-Chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <4.3        | <0.79    | <0.70        | <0.43   | 50.63   | 1          | 2 6                                         | 100    | 90     |          |
| 1,3Dichbrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <4.3        | <0.79    | <0.79        | <0.43   | \$ 65   |            |                                             | 2      | 8      | a        |
| 1.4-Dichbrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <43         | 92.02    | 2.0          |         |         |            | 247                                         |        |        | 9.       |
| 2-Dichbrohanyana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ;           |          |              | 3       | <0.43   | <0.43      | <043                                        | 8      |        | 6.5      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | Ca. /6.7 | SG 75        | <0.43.1 | <0.43.1 | <0.43.J    | <0.43                                       | 7,000  |        | 9.7.     |
| S TOWNS THE STATE OF THE STATE | 43          | C0.79.J  | \$0.70       | <0.43J  | <0.43.  | <0.43.5    | <0.43                                       | 4,000  | 4,000  | 0.164    |
| 2.2 - oxyole(1-Chloropropena)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <4.3        | C0702    | ca.70        | <0.43   | <0.43   | <0.43.1    | <0.43                                       |        |        |          |
| 4-Methyphenal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 543         | <0.79    | <0.79        | <0.43   | <0.43   | <0.43      | <0.43                                       | 400    | W 7    |          |
| N-Nitroeo-Di-a-Propylectine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C4.3        | <0.79    | <0.79        | <0.43   | <0.43   | <0.43      | <0.43                                       | 2      |        | 3        |
| ierachlorosthane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <4.3        | <0.70    | <0.79        | <0.43   | <0.43   | <0.43      | <0.43                                       | 8      |        |          |
| Machenae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <4.3        | . <0.70  | <0.79        | <0.43   | <0.43   | <0.43      | 878                                         | \$     | 3      |          |
| aphorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <4.3        | <0.70    | <0.79        | <0.43   | <0.43   | <0.43      | 2000                                        |        |        | 0.2 60   |
| 2-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <4.3        | <0.79    | <0.79        | <0.43   | <0.43   | <0.43      |                                             | 3      | ann's  |          |
| 2,4-Dimethylphanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <4.3        | 67.0>    | <0.79        | <0.43   | <0.43   | <0.43      |                                             |        |        | 22.5     |
| Bis (2 - Chloroethony) Methens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <4.3        | <0.70    | <0.79        | <0.43   | <0.43   |            |                                             | Pin's  |        |          |
| 2,4-Dichlorophanol .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <4.3        | <0.70    | <0.79        | <0.43   | \$ 0.43 | 50.43      | 200                                         |        |        |          |
| 1,2,4 - Trichlorobenzane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <4.3        | <0.79    | 60.70        | <0.43   | cb 43   | 5043       |                                             | 3 8    | B.     | 8        |
| Naphthalena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <4.3        | 0.065.J  | F 990'0      | <0.43   | <0.63   | 5          |                                             | mny    |        | 2        |
| -Chloroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <4.3        | 67.0>    | 60.70        | <0.43   |         |            | 2                                           | 200    |        | 5        |
| emchlorobutediene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44.3        | 67.0>    | <0.79        | 2702    | 2 6     | 200        | CD-42                                       |        |        | 0.22 (4) |
| -Chloro-3-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 64.3        | <0.70    | 87.00        | 20 63   |         | 2          | <0.43                                       | 8      | 8      |          |
| 2-Methylraphthelene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 643         | 1110     | 1 61 0       |         | 2       | CH43       | 6043                                        |        |        | 0.24 (m) |
| latechiosocricosopylane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |          |              | 2       | 20.02   | <0.43      | <0.43                                       |        |        | 30.4     |
| 248 Tablement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | CU./0    | Sa.          | <0.43   | cb 43   | <0.43      | <0.43                                       | 909    | 008    |          |
| C. C. C. T. A. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <4.3        | <0.78    | 67.0<br>0.70 | <0.43   | <0.43   | <0.43      | <0.43                                       | 2      | đ      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 9.5      | 41.0         | 41.0    | <1.0    | <1.0       | c1.0                                        | 000'9  | 900    | 10       |
| Z-Cheromanana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <4.3        | \$ 50    | 40.70        | <0.43   | <0.43   | <0.43      | <0.43                                       |        |        |          |
| Z-Mittagenine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15          | 6.15     | <1.0         | <1.0    | <1.D    | <1.0       | 61.5                                        |        |        | 14540    |
| Dimetry I Triments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <4.3        | <0.79    | <0.79        | <0.43   | <0.43   | <0.43      | \$0.43                                      | 900 00 |        |          |
| Acerephthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>64.3</b> | <0.70    | <0.79        | <0.43   | <0.43   | <0.43      | <0.43                                       | g      |        |          |
| 2,6-Dintrototuene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$4.3       | <0.79    | <0.70        | <0.43   | <0.43   | <0.43      | <0.43                                       | -      | 5      |          |
| 3-Miroanline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>11</b> > | <1.9     | <1.9         | <1.0    | . <1.0  | 61.0       | 015                                         |        |        |          |
| Acenephibene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,6<br>12   | 0.2.)    | 0.2.1        | <0.43   | <0.43   | \$0.43     | ¢0.43                                       | 8      |        |          |
| 2,4 -Dinbrohend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ĸ           | <1.9.1   | 415          | <1.0    | 0.12    | 10.15      | 617                                         | 1 8    | 18     | 7 3      |
| A Miller Hanne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |              |         |         |            |                                             |        |        |          |

Jim nell said bedon sell to MEAT set evods helseleb ed los bloods demeganes seed! - (4)

, element at three temples and establish  $-\Pi$ 

B — Indicates example found in accordated blents as well as in the dempie.

(i) — indicates shapehed season to superated from 2.3—Disclosed the appropriate shapehed season for the appropriate shapehed from 2.3—Disclosed.

(ii) — the part proposed Tablak Total POCs < 10 pptas, Total SVOCs < 10 ppm; and individual SVOCs < 80 ppm.

(iii) — indicates Totalahviry Indicated Compounds.

en a history controvers BMA.0.0 and the against an bentiline of the bentiline states and empressed in 2000 and the second of the compounds and posters of the compounds of the compound of the compound

(Dup.) - Indicates the compound was enabled for but not detected.

neviscojde quensie bing "sievojn evolen, geng eminela, action jevojn, pad okarano de jevojn servojn en likino gengino.

\*\*Ali mande se designa per antikan per amiliana gengin.

\*\*\*Ali — industrato se o-calizardan per a camplo,

\*\*\*Ali — industrato de la camplo,

\*\*\*Ali — industrato de la camplo,

\*\*\*Ali — industrato de la camplo de la camplo,

\*\*\*Ali — industrato de la camplo del la camplo de la camplo del la camplo del la camplo de la camplo de la camplo del la camplo

• — All that we district the particular of the consequence of the control of the purious of the purious smalls.—

The district of the particular mass consorted: white soil entirely, sinks resonanced elements obligations,
or bedeen sevelar investe.

Sold unter its Sold which we bood on directlymans ingredon. These which are from HTDEC first Chemis Folloy and Ontdelloug Document Outsbur 1881, derived from the HEAST Sport extrent first unter processing 1888.

RCPA Soil As Sonk and and the Federal Register, Vol. 35, Ma. 1 46, 144; 27, 1890. How York State Chicket Chamap Objectivenes from the NYTOCC Chicket 1884. Determinations of Set Chamap Objective and Cheanup Lovek, January 1884.

| oOIT lefo                          | <b>9</b> °99 | 10.52          | छ।।        | 19'11 -    | 88.86   | 19.11   | 12.83    |                                | l      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------|--------------|----------------|------------|------------|---------|---------|----------|--------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ecologi, fighter feet              | ระเท         | Le.o           | C \$4.0    | <0.43      | <0.43   | LE1.0>  | C1.0>    |                                |        | (c) 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Moenzo(e, h) Anthracene            | <4.3         | L67.0>         | 04.0>      | <0.43      | <0.43   | L64.0>  | CI.0>    | 110.0                          |        | MO.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| nanc(1,2,5–6,4) yene               | Me.e         | 0.93           | L+1.0      | £1.0>      | C)*(3)  | L64.0>  | £1.0>    |                                |        | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>⊕ueu</b> K <sub>e</sub> (e)ozud | Q P B        | C 000 T        | 0.1        | £1.0>      | <0.43   | LEA.D>  | £4.0>    | 19'0                           |        | (4) 190.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| edenjihaton jejoj oznaj            | G8.8         | etu            | 96'0       | <0.43      | C1-0>   | LENO>   | £1.0>    | 0.22                           |        | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ensiting (dostrei                  | (18.6        | 181            | 6.1        | <0.43      | C+ 0>   | L6≯.0>  | £Þ.0>    | 52.0                           |        | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N-n-Octyl Phihelete                | 6.4>         | L67.0>         | 97.0>      | £1.0>      | C).0>   | LE4.0>  | £1.0>    | 2,000                          |        | (c) 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| He(2-Ethylhery)Phthalate           | 6.4>         | L67.0>         | Oiler      | <0.43      | 21°0>   | <0.43   | €8 9€.0  | 09                             | 09     | (c) 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Arjeetie                           | 06.7         | £1             | 5.1        | CP'0>      | <0.43   | €Þ.0>   | <0.43    |                                |        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| #Usorthiguty(s)62Us                | GID          | e tra          | 6.1        | EF.0>      | E) 0>   | <0.43   | £\$:0>   | 0.22                           |        | (4 SZ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| .3.—Dichbrobenzkaine               | £.4>         | 67. <u>0</u> > | 67.0>      | E) O>      | £4.0>   | 61.0>   | EÞ10>    | 8.1                            | 3      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| elelacity bithelete                | 2.101        | L 67.0>        | 97.0>      | <0.43      | L 0£0.0 | LE1.0>  | <043     | 20,000                         | 20,000 | (c) 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| · evaix                            | an l         | 6.4            | 0.4        | L 150.0    | L 130.0 | L 10.0  | L 590.0  | 2,000                          |        | (c) 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| enechanous.                        | Q 9 t        | 54             | 5.6        | £ 520.0    | L 7E0.0 | 0.033.1 | L 160.0  | 3,000                          |        | (c) 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| eleletiniqiytuB-n-K                | 0.260.0      | 0.16.1         | 617.0      | 0157       | L ##G.G | 0.23.1  | 0.24.1   | 6,000                          | 6,000  | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9(0290)/42                         | เลรา         | 0.26.1         | L7S.0      | <0.43      | £1.0>   | E) (0>  | £4.0>    | 6.8                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ANTI-COLO                          | านธะ         | L88.0          | 0.66.1     | E1.G>      | C>.0>   | <0.43   | £1.0>    | 20,000                         |        | (E) 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| enertificanett                     | 150          | 5.4            | 54         | <0.43      | EÞ.0>   | <0.43   | £4.0>    |                                |        | (2) 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| entachiotophanel                   | -11>         | 6.1>           | 6.1>       | 0.1>       | 0.1>    | <1.1    | 1.1>     | \$'000                         | 2,000  | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Jerechlorobenzene                  | 6.4.3        | 92.0>          | 67.0>      | <0.43      | <0.43   | <0.43   | <0.43    | iro                            |        | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| - дюшобрен/с-ррен/једлег           | <4:3         | 67.0>          | 84.0>      | <0.43      | <0.43   | <0.43   | £4.0>    |                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4-Nitrosodiphenylamine (1)         | £.h>         | 64.0>          | 64.0>      | EÞ.0>      | <0.43   | <0.43   | <0.43    | 0)-1                           | 60 r   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6-Dintro-2-Methylphanol            | 11>          | 6.1>           | 9:1>       | 0.1>       | 0.1>    | 112>    | <u> </u> |                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| - Mitroeniin-                      | 11>          | 9.1>           | 6.1>       | 0.1>       | 0'1>    | 171>    | 1'1>     |                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -Protein                           | raei         | LYE.O          | L 96.0     | <0.43      | <0.43   | <0.43   | <0.43    | 3,000                          |        | (c) 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -Chlorophenyl-phenylether          | E.3>         | 67.0>          | 64.0>      | £1.0>      | £1.0>   | £\$.0>  | C+0>     | 2,000                          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| atalactic/cyclinic                 | <4.3         | 62:0>          | 64.0>      | <0.43      | C)*(0>  | <0.43   | <0.43    | 000,08                         | 000,08 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| e,4 Diribololiume                  | £.4>         | 97.0>          | 64.0>      | <0.43      | £1.0>   | <0.43   | <0.43    | 1                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| niturioznediC                      | 0.61.00      | 0.29.1         | 0.29.1     | <0.43      | EF-0>   | <0.43   | EF 0>    |                                |        | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ) pursues                          | तिस्म म      | JE-60          | (813 Z2=89 | <b>#</b> H | -245-55 | 244-58  | 63 H - H | See fact<br>See fact<br>Angles | 2 t t  | ARAN<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MAR<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET<br>MARKET |

COULTYNO' NEW YORK NOVEMBER 1983 ROBEN SITE **BENIVOLATILE ORGANICS ANALYTICAL RESULTS** BUPPLEMENTAL BURFACE BOIL BAMPLING

ANDREAS

# TABLE 1

## NOVEMBER 1993 PCB ANALYTICAL RESULTS SUPPLEMENTAL SURFACE SOIL SAMPLING

# CORTLAND, NEW YORK ROSEN SITE

| 60.0                   | 0r-r                                                       | -1                                          | A916.0           | H963.0  | ਜ <b>਼</b> 4\$7.0 | R948.0 | FI487.0     | A973.0 | Aroclor (260 |
|------------------------|------------------------------------------------------------|---------------------------------------------|------------------|---------|-------------------|--------|-------------|--------|--------------|
| 60.0                   | 01-1                                                       | •ŀ                                          | 9.2              | NL9ea.0 | 1.5               | 1.2    | NL988.0     | 0.T    | Arocior 1254 |
| 60.0                   | 01-1                                                       | •1                                          | NL90.1           | A92.0   | 75.0              | 93.0   | 1,58.1      | \$.0>  | Aroclor 1248 |
| 60.0                   | 01-1                                                       | -1                                          | <b>₽</b> E.0>    | 12.0>   | S.0>              | A12.0> | <0.26       | L922.0 | Aroclor 1242 |
| 60.0                   | 01-1                                                       | e.l                                         | <b>4</b> E.0>    | 12.0>   | \$.0>             | A15.0> | <0.26       | S.0>   | Aroclor 1232 |
| 60.0                   | 01-1                                                       | -L                                          | 69.0>            | £4.0>   | 14.0>             | A>+.0> | £6.0>       | 14.0>  | Aroclor 1221 |
| 60.0                   | 01-1                                                       | -1                                          | <b>\$6.0&gt;</b> | <0.21   | S.0>              | A12.0> | <0,26       | 2.0>   | Aroclor 1016 |
| Fevela<br>Soli<br>PCHA | New York<br>State TAGM<br>Cleanup<br>Chantup<br>Objectives | New York<br>Siste<br>Draft Soll<br>Ortheria | 82-35            | 90-88   | ¥0÷88             | E0-55  | (dny, to-ss | 10-58  | punodwog     |

## NOISE:

All concentrations, defection levels, draft soll criteria, action levels, and clearup objectivessie in mgAg equivalent to parts per million (ppm).

Dup. - Indicates held duplicate.

The < eign indicates the compound was analyzed for but not detected.

the two GC columns. The lower of the two values is reported. P - This flag is used for an Arociortarget analyte when there is guester than 25 percent difference for detected concentrations between

1 - Indicates an estimated value.

N - Presumptive evidence of the compound.

H — Indicates the associated value is unusable.

\* - Indicates the sum of Aroclor (PCB) compounds.

Shading indicates at teast one of the following was exceeded: state criteria, cleanup objective, or tederal action level. New York State TAGM PCB Cleanup Objectives are 1.0 ppm for surface solls and 10.0 ppm for subsurface solls.

## Heretenes:

October 1991, derived from the HEAST Report current through December 1990. 80g cifels see based on diect human Ingeston. These cifels are from the NYSDEC Draft Cleanup Policy and Guidelines Document,

New York State TACM Recommended Soit Cleanup Objectives are from the NYSDEC Division Technical and Administrative Guidance Memorandum:

Determination of Soil Cleanup Objectives and Cleanup Levels, January 1994.

HCRA SON Action Levels are from the Federal Register, Vol. 55, No. 145, July 27, 1990.

Page 1 of 7

TABLE 1

SUPPLEMENTAL SURFACE SOIL SAMPLING INORGANIC ANALYTICAL RESULTS NOVEMBER 1983

ROSEN SITE CORTLAND, NEW YORK

|   | ow York State     |              | ) lections                            | ε        | •           |        | Co./                                   | 3000  | 0.16 P.) | Ξ        | ε        | 100    | (A) (A) | 3    | 28      | 2,000-7  | ε         | ε         | ε       | 15     | 13/4)     | 1               | 200    | ε      | ε        | 5        | 15071     | 200        |                                                                                              |
|---|-------------------|--------------|---------------------------------------|----------|-------------|--------|----------------------------------------|-------|----------|----------|----------|--------|---------|------|---------|----------|-----------|-----------|---------|--------|-----------|-----------------|--------|--------|----------|----------|-----------|------------|----------------------------------------------------------------------------------------------|
|   | 3                 | . ·          |                                       | _        |             | -      | +                                      | _     |          |          |          |        |         | +    | +       | ~        |           |           |         |        |           |                 |        |        |          |          |           |            | 1                                                                                            |
|   | HCRA              | Action       | S S S S S S S S S S S S S S S S S S S |          | 8           | 5      | 8                                      | 4.000 | 62       | 40       |          | 400    |         |      |         |          |           |           |         | 2      | 2,000     |                 |        | 500    |          |          |           |            | 2.000                                                                                        |
|   | New York<br>State | Draft Boat   | Cylinde                               |          | 8           | 2      |                                        | non's | 0.16     | 8        |          | 400+   |         |      |         |          | 250       |           | 20,000  | 20     | 2,000     |                 |        | 200    |          | 9        | 000       | 20,000     | 2,000                                                                                        |
|   |                   | 20.00        |                                       | 4,930    | <13.7J      | 8.2BSR | 146                                    |       | 00.00    | 1.8BA    | 135,000  | 51.PR  | 7.68    | 1974 | 200.00  | AW bd    | ZZZEH     | 7,660     | 3,190   | 0.49   | 69.3      | 624B            | <0.89J | <2.31  | 4468     | <0.09.   | 20.6J     | MZEJ       | <1.1                                                                                         |
| į |                   | 89-06        | 20. 1                                 | (,43U    | <16.21      | 19.6H  | 20%                                    | 18 07 |          | 0.4BH    | 30,800   | 84.2R  | 12.98   | 218  | 156 000 | Denima . | Harrion 1 | 7,070     | 2,280   | 0.88   | 60.3      | 702B            | <0.84  | <2.7J  | 372B     | A0.62    | 21.51     | 2,800E.1   | <1.3                                                                                         |
|   |                   | BS04         | A 880                                 |          | 4.5<br>14.5 | 12BSR  | 241                                    | <0.72 | 7 000    | Una:     | 45,000   | H/OT   | 11.48   | 623  | 172.000 | 1 ARACED | STORE OF  | 10,/00    | 2,350   | 0.58   | 802       | 434B            | <0.74J | <2.40  | 3798     | <0.74J   | 4.8       | 1,850€-1   | <b>~12</b>                                                                                   |
|   |                   | 88-03        | 9.840                                 |          | 200         | 118A   | 263                                    | <0.79 | 7 + AB   | 90       | 200,00   | H-11   | 13.7    | 136J | 63,900  | 541FR    | 7 300     | DEO.      | 1,280   |        | 7         | 7008            | <0.623 | V2.60  | 200      | <0.823   | 300       | N-OOAA     | <1.3                                                                                         |
|   |                   | \$5-02 (Dup) | 9,190                                 | 26.57    | 7/70        | 7990   | 146                                    | <0.74 | 6.2BJ    | 21.600   |          | 100    | 12.0    | 128  | 77,200  | 1.040    | 6 890     | 1070      | 0/0.1   | 170    | 06.0      | 6/28            | <0.72  | . 9000 | 20 701   | 3 6      | FB.       | 1000       | <12<br>2<br>12<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13 |
|   |                   | 8502         | 0,550                                 | <14.01   |             | 11.48H | 223                                    | <0.75 | 5.1BR    | 37.100   | 1:368    | 2 \$1  | 301     | 700  | 92,700  | 753ER    | 10,400    | 25.5      | 3       | 020    | 9000      | cone de la cone | 3 5    | 3068   | 187.02   | 10 95    | 13031.1   | 7          |                                                                                              |
|   |                   | 8801 (Dup)   | 8,560                                 | <0.77    | 1000        | TOP OF | 283                                    | <0.77 | 0.888    | 114,000J | 170      | 16.3   | 0.00    | 200  | 06.400  | 347      | 7,040     | 1.450     | 0.00    | 110    | 9040      | 200             | 200    | 4298   | <0.77.u  | 19.6     | 1.150     | <12        |                                                                                              |
|   |                   | 85-01        | 5,660                                 | 17.51    | 10 100      | 10.01  | 293                                    | 0.968 | 7.5BR    | 75,900J  | 1378     | 24.9   | 75.61   |      | 90,400  | 2,360ER  | 6,960     | 1,640     | 7.1     | 136    | BRZB      | <0.87.1         | A2.B   | 4218   | <0.873   | 20.52    | 201,000ER | <b>414</b> |                                                                                              |
|   |                   | Compound     | Auminum                               | Anthrony | Arsanic     | Bartim | ii |       | Cadmikim | Calcium  | Chromkim | Cobalt | copper  | 201  | in it   | Dest     | Magnesium | Manganese | Mercury | Nickel | Potasslum | Selentum        | Silver | Sodkim | Thaillum | Vanadium | Zind      | Cyanide    |                                                                                              |

20 - May - 94

TABLE 1:

SUPPLEMENTAL SURFACE SOIL SAMPLING INORGANIC ANALYTICAL RESULTS NOVEMBER 1983

ROSEN SITE CORTLAND, NEW YORK

| New York State TAGA | Cheene      |                   |           |         | Us.     | Clock     | 0.1673  | Ē       | 3        | 101         | 30.        | 95/8    | Panner C | A James a |           | - 1       |          |       | 2             | 100                     |               | 1           | 2 8        | 1500      |          |
|---------------------|-------------|-------------------|-----------|---------|---------|-----------|---------|---------|----------|-------------|------------|---------|----------|-----------|-----------|-----------|----------|-------|---------------|-------------------------|---------------|-------------|------------|-----------|----------|
| HCP4                | Action      |                   | 5         | 3 3     | 8       | 4,000     | 0.2     | \$      |          | 400         |            |         |          |           |           |           | 8        | 28    |               |                         | 500           |             |            |           |          |
| New York<br>State   | See See     |                   | ş         |         | 3       | *'nor     | 0.16    | 3       |          | <b>*</b> 00 |            |         | 7000     | 250       |           | 20,000    | 8        | 2,000 |               |                         | 200           |             | 0          | 98        |          |
|                     | 8813        | 006; <del>+</del> | <15.7J    | 9       | Up: 17  | ni oʻz    | K/0>    | 7.815.7 | 88,100   | 141B        | 11.3B      | 702     | 119,000  | 4.280ER   | 18,600    | 2,090     | 0.46     | 94.5  | 4628          | <0.76J                  | <2.60         | 3518        | <0.78J     | 108.1     |          |
|                     | 88-12 (Dup) | 5,850             | <0.78     | BAI     | 707     | 3 4       | B) (0)  | 0.400   | 21,700   | 100         | 9.58       | 523     | 79,700   | 543       | 6,300     | 3,450     | 69'0     | 8.07  | 562B          | <0.76J                  | <2.8          | 3888        | <0.78J     | 52.6      |          |
|                     | 68-12       | 5,190             | <15.51    | 15 4 SR | 128     | 75.57     | 1000    | Logo.   | 18,000   | 102R        | 10.88      | 629     | 00400    | H3509     | 4,910     | 2,950     | 0.65     | 55.7  | 5188          | <0.76J                  | <2.64         | 514B        | <0.76J     | 40.6J     | ) Book   |
|                     | 88-11       | 4,830             | 22.1J     | 37.78R  | 405     | £0.27     | 94 980  | 11.000  | 08,71    | 137R        | 14.6       | 4,290.1 | 200,000  | 1,680ER   | 4,090     | 1,970     | 4        | 117   | 381B          | <7.5.1                  | 3.31          | 331B        | 0.75BJ     | <5.1J     | 4.340E1  |
|                     | 85-10       | 5,210             | 18.23     | 17.8SR  | 359     | ×0.74     | 2 9RB   | 90 400  | 36,100   | 134H        | 13.6       | 3240    | 160,000  | 1,060ER   | 10,600    | 2,060     | 0.84     | 125   | 432B          | . <0.74J                | A2.62         | 427B        | <0.74J     |           | 6.970E.1 |
|                     | 88+08       | 7,960             | <14.1J    | 23.8SR  | 141     | <0.71     | 16.5BR  | 2, 19   | 200      | 10.0d       | 6.48       | 31.5    | 60,400   | 716ER     | 6,800     | 2,740     | 2.1      | 67.9  | 607B          | 188                     | <2.41         | 451B        | <0.71J     | 28.4∪     | 2710EJ   |
|                     | 88-08       | 6,030             | <15.2J    | 43.7SR  | 486     | <0.76     | 13.9BA  | 19 000  | 4400     | 6           | 23.4       | 3,220.  | 107,000  | 2,710ER   | 5,100     | 1,740     | 136      | 241   | 763B          | <0.76J                  | <2.5J         | 626B        | 0.76RJ     | 25.13     |          |
|                     | 8807        | 5,700             | <13.BJ    | 19SR    | 109     | <0.69     | 2.3BR   | 65,300  | 1120     |             | er c       | 243     | 12,200   | 255ER     | 5,950     | 1,730     | 1.1      | 61.5  | 5496          | ×0.69J                  | <2.31         | 3318        | ×0.69U     | ×4.6J     | 831EJ    |
|                     | Compound    | Atminum           | Antimorry | anic    | Bertuim | Barytlium | Cadmium | Calctum | Chromkun | Cohat       | a constant | 22.     |          |           | Magnesium | Manganeso | Market J |       | Consistential | Direction of the second | Source Convey | Destination | I TRANSLIT | Variacium |          |

## SUPPLEMENTAL SURFACE SOIL SAMPLING INORGANIC ANALYTICAL RESULTS NOVEMBER 1993

## ROSEN SITE CORTLAND, NEW YORK

|            |         |         |          |         |         |        |        | New York            | ACRA           | New York State  |
|------------|---------|---------|----------|---------|---------|--------|--------|---------------------|----------------|-----------------|
|            |         |         |          |         |         |        |        | State<br>Draft Soli | Soll<br>Action | TAGM<br>Cleanup |
| Compound   | 88+14   | 85-15   | 89-16    | 88+17   | 8810    | 68-19  | 68-20  | Criteria            | Levels         | Objectives      |
| Aluminum   | 4,200   | 6,430   | 7,600    | 7,010   | 11,100  | 3,530  | 4,760  |                     |                | (*)             |
| Antimony   | 22.23   | 16.0.j  | <15.5J   | <17.6J  | <14.8J  | <16.8J | <17.33 | 30                  | 30             | (*)             |
| Arsenic    | 84.7R   | 33.5 SR | 17.98R   | 14.48R  | 4.98R   | 4.48R  | 3.48R  | 80                  | 80             | 7.5(*)          |
| Bartum     | 227     | 138     | 114      | 75.2    | 434     | 154    | 64.4   | 4,000               | 4,000          | 300(*)          |
| Beryfflum  | <0.77   | <0.75   | <0.78    | < 0.88  | <0.74   | <0.84  | <0.86  | 0.16                | 0.2            | 0.16(*)         |
| Cadmium    | 11.2BR  | 14.9BR  | 3.9BR    | 2.6BR   | 0.58BSR | 1.18R  | 0.72BR | 80                  | 40             | 1(*)            |
| Calcium    | 71,000  | 35,200  | 53,700   | 255,000 | 3,200   | 24,000 | 3,690  |                     |                | (7)             |
| Chromium   | 105R    | 2,880R  | 50.1R    | 1198    | 17.7R   | 12,1R  | 9.9R   | 400°                | 400            | 10(*)           |
| Cobalt     | 40.6    | 14.6    | 8.4B     | 7.88    | 9.1B    | <5.6   | 5.8B   |                     |                | 30(*)           |
| Copper     | 1,070   | 34BJ    | 1430     | 22.j    | 14.9J   | 677    | 20.1   |                     |                | 25(*)           |
| Iron       | 239,000 | 127,000 | 46,800   | 24,700  | 22,600  | 13,600 | 12,000 |                     |                | 2,000(*)        |
| Lead       | 1,660ER | 734ER   | 498ER    | 60.5ER  | 1,190ER | 681ER  | 62.5ER | 250                 |                | (*)             |
| Magnesium  | 5,480   | 6,470   | 14,200   | 11,400  | 3,680   | 5,530  | 1,3208 |                     |                | £               |
| Manganese  | 2,890   | 2,720   | 894      | 7,520   | . 458   | 657    | 886    | 20,000              |                | (1)             |
| Mercury    | 2       | 1,0     | 0.42     | 0:42    | 0.24    | 0.49   | 0.14   | 20                  | 20             | 0.1             |
| Nickel     | 170     | 119     | 45.1     | 81.8    | 19.7    | 20.5   | 15.9   | 2,000               | 2,000          | 13(*)           |
| Potasskum  | 421B    | 606B    | 6788     | 7958    | 517B    | 358B   | 5918   |                     |                | . (2)           |
| Selenium   | 1.59J   | <7.5J   | <0.78J   | <0.91J  | <0.77J  | <0.53J | <0.85J |                     |                | 2(*)            |
| Silver     | <2.63   | <2.5J   | <2.6J    | <2.9J   | <2.5J   | <2.8J  | <2.9J  | 200                 | 200            |                 |
| Sodium     | 3858    | 412B    | 342B     | 501B    | <247    | 3088   | <288   |                     |                | (*)             |
| Thallum    | <0.75J  | <0.75J  | <0.78J   | <0.91J  | <0.77J  | <0.83J | <0.85J | 6                   |                | (?)             |
| Vanadium , | <5.1J   | 60.1J   | 35.1J    | 74.6J   | 13.6J   | 25.BJ  | 9.5BJ  | 600                 |                | 150(*)          |
| Zina       | 3,910EJ | 3,090EJ | 12,500EJ | 128EJ   | 564EJ   | Batel  | 186EJ  | 20,000              |                | 20(*)           |
| Cyankle    | <1.3    | <1.2    | <1.3     | 1.8     | <1.3    | <1.4   | <1.4   | 2,000               | 2,000          |                 |

(See Notes on Page 7)

## SUPPLEMENTAL SURFACE SOIL SAMPLING INORGANIC ANALYTICAL RESULTS NOVEMBER 1993

## ROSEN SITE CORTLAND, NEW YORK

| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |           |          |           |          |                                         |               | New York<br>Since<br>Draft Soll | RCRA<br>Sol<br>Action | New York Blate<br>TAGM<br>Cleanup                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|----------|-----------|----------|-----------------------------------------|---------------|---------------------------------|-----------------------|--------------------------------------------------|
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85-21    | 88-22     | 89-23    | 68-24     | 89-25    | 8826                                    | 88-27         | Criteria                        | Levels                | Objectives                                       |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6,910    | 5,590     | 8,880    | 5,110     | 10,100   | 6,900                                   | 7,040         |                                 |                       | (*)                                              |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <16.1J   | <15.5J    | <17.8J   | <15.1J    | <15.3J   | <15.6J                                  | <18.3J        | 30                              | 50                    | (*)                                              |
| Contract Con | 12.5SR   | 11.6R     | 14.56R   | 26.75R    | 9.98R    | 13.58A                                  | 22.38A        | 80                              | 50                    | 7.5(*)                                           |
| Bartum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 127      | 4,890     | 286      | 155       | 127      | 274                                     | 834           | 4,000                           | 4,000                 | 300(*)                                           |
| Beryikum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.80    | <0.77     | <0.89    | <0.75     | <0.77    | <0.78                                   | <0.81         | 0.16                            | 0.2                   | 0.16(*)                                          |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.48     | 1.5B      | 789      | 7B\$      | 2.789    | 5.2B                                    | 11.18         | 80                              | 40                    | 1(*)                                             |
| Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25,000   | 67,800    | 17,200   | . 52,600  | 21,600   | 62,100                                  | 18,400        |                                 | <del> </del>          | (-)                                              |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 58.6R    | 74.3R     | 102R     | 474R      | 76.7R    | 128A                                    | 89.2R         | 4001                            | 400                   | 10(*)                                            |
| Cobalt .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.7B     | 7.18      | 9.68     | 9.2B      | 11.7B    | 7.4B                                    | 12.3B         | <del></del> -                   |                       | 30(*)                                            |
| Соррег                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 112      | 751       | 297      | 398       | 142      | 270                                     | 720           |                                 |                       | 25(*)                                            |
| ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | £9,000£J | 112,000EJ | 71,600BJ | 123,000EJ | 46,200EJ | 59,500EJ                                | 96,800EJ      |                                 |                       | 2,000(*)                                         |
| ead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 244      | B13       | 1,320    | 400       | 459      | 589                                     | 1,560         | 250                             |                       | (2,000,5                                         |
| Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,900    | 10,900    | 5,180    | 17,500    | 6,420    | 9,270                                   | 5,190         | - 230                           | <del></del>           |                                                  |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 971      | 809       | 1,860    | 18,400    | 1.650    | 4,580                                   | 2,440         | 20,000                          |                       | <u> </u>                                         |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.68     | 0.94      | 2.4      | 0.19      | 0.49     | 0.53                                    | 0.15          | 20,000                          | 20                    | <u> </u>                                         |
| <b>Vickel</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26.9J    | 20.74     | 67.5J    | 2003      | 45.5J    | 70.1J                                   | 58.6J         |                                 |                       | 0.1                                              |
| otasakım                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 750B     | 840B      | 731B     | 4338      | 621B     | 7108                                    | 760B          | 2,000                           | 2,000                 | 13(*)                                            |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.83J   | <0.76     | <0.89J   | <0.74J    | <0.78J   | <0.77J                                  | <0.83J        |                                 |                       | <del>                                     </del> |
| Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <2.7     | <2.6      | <3.0     | <2.5      | <2.6     | <2.6                                    | <2.7          | ^~~                             |                       | 5(4)                                             |
| Socium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 973B     | 1,990     | 648B     | 3248      | 3208     | 3668                                    |               | 200                             | 200                   | (*)                                              |
| hellum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.83J   | <0.76J    | L98.0>   | <0.74J    | <0.78J   | <0.77J                                  | 351B          |                                 |                       | (7)                                              |
| /anadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28.7     | 30.5      | 33.1     | 161       | 33.1     | 57.3                                    | <0.83J        |                                 |                       | <u> </u>                                         |
| ling:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 525      | 1,500     | 3,330    | 3,150     | 35,200   | 000000000000000000000000000000000000000 | 75.7          | 600                             |                       | 150(*)                                           |
| yankie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1.4     | <1.3      | <1.5     | <1.2      | · <1.3   | 3,730<br><1.3                           | 3,730<br><1.4 | 20,000                          | 2,000                 | 20(*)                                            |

(See Notes on Page 7)

## SUPPLEMENTAL SURFACE SOIL SAMPLING INORGANIC ANALYTICAL RESULTS NOVEMBER 1993

## ROSEN SITE CORTLAND, NEW YORK

|                 |          |                                        |          |            |                      |           |          | New York   | HCHA<br>SO | New York State  |
|-----------------|----------|----------------------------------------|----------|------------|----------------------|-----------|----------|------------|------------|-----------------|
| <u>Compound</u> | 85-28    | 88-29                                  | 88+30    | 8831       |                      |           |          | Draft Boll | Action     | TAGM<br>Cleanup |
| Akıminum        | 5,940    | 5.620                                  | 6,350    | 7.380      | 58~31 (Dup)<br>6,760 |           | 69-33    | Criteria   | Levels     | Objectives      |
| Antimony        | <13.9J   | 19.1J                                  | <13.AJ   | <14.5J     |                      | 4,510     | 7,140    |            |            | (*)             |
| Arsenic         | 10.5SR   | 21,48R                                 | 15.4SR   | 10.9R      | <0.71                | 22.4J     | <15.3J   | 30         | 30         | (*)             |
| Bartum          | 355      | 111                                    | 91.9     |            | 8.29J                | 40.1R     | 8.2R     | 80 .       | 80         | 7.5(*)          |
| Beryllium       | <0.7     | <0.72                                  |          | 241        | 191                  | 315       | 432      | 4,000      | 4,000      | 300(*)          |
| Cadmium         | 3.28     | T0000000000000000000000000000000000000 | <0.69    | <0.73      | <0.73                | <0.77     | <0.77    | 0.16       | 0.2        | 0.16(*)         |
| Calcium         | 115,000  | 9.88                                   | 7.988    | 17.0B8     | 2.8B9                | 8.88      | 10.2B    | 80         | 40         | 1(*)            |
| Chromium        | 346A     | 112,000                                | 75,600   | 25,500     | 27,800               | 36,200    | 27,400   |            |            | (*)             |
| Cobalt          |          | 87.5R                                  | 209A     | 73.8A      | 44.7                 | 138R      | 363R     | 400°       | 400        | 10(*)           |
| Copper          | 9.4B     | 7.5B                                   | 8.3B     | 14.7       | 15                   | 18.5      | 11.4B    |            |            | 30(*)           |
| ion             | 99.9     | 807                                    | 261      | 172        | 165                  | 1,160     | 675      |            |            | 25(*)           |
| Lead            | 71,700EJ | 85,700EJ                               | 48,000EJ | _146,000EJ | 102,000              | 181,000@1 | 61,800EJ |            |            | 2,000(*)        |
| 2               | 296      | 679                                    | 367      | 457        | 554                  | 2,9406    | 1,570    | 250        |            | (*)             |
| Magnesium       | 16,800   | 29,200                                 | 13,700   | 5,860      | 4,750                | 7,150     | 5,680    |            |            | (2)             |
| Manganese       | 11,700   | 2,230                                  | 4,030    | 2,490      | 1,000                | 1,740     | 3,770    | 20,000     |            | <del></del>     |
| Mercury         | <0.1     | <0.11                                  | 0.14     | 0.2        | 0.13                 | 8.8       | 0.34     | 20         | 20         | 0.1             |
| <b>Vickel</b>   | 181      | 18,68                                  | 10.08    | 60.83      | 47.4                 | 117J      | 82.6J    | 2,000      | 2,000      | 13(*)           |
| otassium        | 708B     | 526B                                   | 724B     | 635B       | 5838                 | 349B      | 583B     |            |            | <u> </u>        |
| seiel (fr)1)    | <0.69.1  | <0.74J                                 | <0.68J   | <0.74      | <1.4J                | <0.75J    | <0.77J   |            |            |                 |
| Silver          | <2.3     | <2.4                                   | <2.3     | <2.4       | <2.4                 | <2.6      | <2.6     | 200        | 200        | <u> </u>        |
| Sodium          | 364B     | 404B                                   | 3768     | 473B .     | 372B                 | 335B      | 414B     |            |            |                 |
| halikum         | <0.69J   | <0.74J                                 | <0.68J   | <0.74J     | <0.71J               | <0.75J    | <0.77J   | 6          |            | <u> </u>        |
| /anadium        | 288      | 31.1                                   | 36.9     | 22.9       | 18.4                 | <5.1      | 62.2     | 600 .      |            | <u>(*)</u>      |
| lnc .           | 1,250    | 2,210                                  | 2,740    | 1,220      | 803                  | 2,170     | 6,140    | 20,000     |            | 150(*)          |
| yankie          | <1.1     | <1.2                                   | <1.1     | <1.2       | <1.2                 | 3.9       | <1.2     | 2,000      | 2,000      | 20(*)           |

(See Notes on Page 7)

SUPPLEMENTAL SURFACE SOIL SAMPLING INORGANIC ANALYTICAL RESULTS NOVEMBER 1993

ROSEN SITE CORTLAND, NEW YORK

|               |             |          |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          | New York   | PCRA<br>BOB | New York State<br>TAGM |
|---------------|-------------|----------|----------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|------------|-------------|------------------------|
| Compound      | 85-34       | 85-35    | 88+36    | 5537            | 88-38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 06-88   | 0.00     | Dreft Soll | Action      | Cleanup                |
| Aluminum      | 161         | 000'8    | 10,300   | 10.800          | 10.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20,400  | D\$ 200  | ZINGUE     | - Pavols    | Objectives             |
| Antimony      | <14.1       | <15.24   | <15.RI   | 18 757          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | my'n:    |            |             | ε                      |
| Arsenic       | 460         | 000      |          |                 | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 N     | <15.8V   | 30         | 8           | ε                      |
| Borlem        | 5           | UR O     | 4.55R    | 15.8SR          | 4.48R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.4SR   | 4.8R     | 2          | 96          | 7.50                   |
|               | 23.013      | 102      | 3        | 181             | 388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40.78   | 41.38    | 4 600      | 1 890       |                        |
| Beryflum      | <0.71       | <0.76    | <0.78    | <0.72           | <0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EZ 0>   | 97.07    | 3 2 3      | Day's       | (L)one                 |
| Cadmitum      | 0.26BJ      | 1.58     | 0.67BS   | 6.188           | 81.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ç       |          | 2          | 0.2         | 0.16(1)                |
| Calcium       | <235        | 25.400   | 24 900   | 22.00           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.10    | 0.138    | 8          | 40          | £                      |
| Chrombem      | 9           |          | One of   | me'a2           | 1,610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,1108  | 2,150    |            |             | ٤                      |
| Cobat         | LS:81       | HC.82    | 20.2H    | 31.4R           | 15.1R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.1R   | 14.3R    | 400        | 400         | 100                    |
| Windows .     | <b>44.7</b> | 7.88     | 9.98     | 98              | 9.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.18   | 10.7R    |            |             |                        |
| Copper        | 24.6        | 91.6     | 106      | 263             | 18.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.5     | •        |            |             | (L)OR                  |
| ion           | 268,000EJ   | 16,900EJ | 22 BOOK! | 30 SWE!         | 12007.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 2        |            |             | 25(*)                  |
| pag           | 144         | 181      | Ş        | in and a second | A CONTRACTOR OF THE PARTY OF TH | rame to | 22,600EJ |            |             | 2,000(*)               |
| Macnestum     | 799R        | 1        | 900      | 8               | 999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.18    | 12       | 520        |             | ε                      |
| 4000000       | 200         | ner',    | 5,350    | 5,600           | 3,790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,610   | 3,620    |            |             | ٤                      |
| And the first | ₽           | 694      | 1,150    | 605             | 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 552     | 475      | 20,000     |             |                        |
| Aercury       | <0.11       | <0.12    | <0.13    | 71.0            | <0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40 45   | 4.4      | and a      |             |                        |
| Nickel        | <7.13       | 20.64    | 251      | 31.7.1          | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000    | <0.12    | 20         | જ્ઞ         | 0.1                    |
| Potassken     | 8968        | 822B     | 9838     | 741B            | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.50   | 7        | 2,000      | 2,000       | 13(*)                  |
| Selentum      | <0.734      | <0.78.1  | 1907     |                 | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2000    | 296B     |            |             | ε                      |
| Silver        | 201         | 800      | 200      | , u. (ea        | A0./EX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.73J  | <0.76J   |            |             | 2(*)                   |
| Sodium        | 100.7       | 0000     | . 0.2.2  | 42.4            | <2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <2.4    | <2.6     | 200        | 200         | ε                      |
| Dallien       | no.         | 2002     | 280B     | 3358            | <261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <242    | 2858     |            |             | ε                      |
|               | SU/32       | <0.78J   | <0.8J    | <0.72J          | <0.78J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.73J  | <0.76J   | 9          |             |                        |
| Variakcielim  | .<4.7       | 15.9     | 23.9     | 19.2            | 15.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.5    | 14.2     | S          |             |                        |
| ZING          | 64.2        | 330      | 189      | 123             | 6.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.2 R   |          | 38         |             | (_)net                 |
| Cyanide       | <12         | <12      | <13      | 213             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 96       | 20,000     |             | 207)                   |
|               |             |          |          |                 | ?!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Z12     | <1.3     | 2,000      | 2,000       |                        |

(See Notes on Page 7)

Page 8 of 7

## TABLE 1.

## SUPPLEMENTAL SURFACE SOIL SAMPLING INOPGANIC ANALYTICAL RESULTS NOVEMBER 1993

## COFFILAND, NEW YORK **ROSEN SITE**

All concentrations, detection levets, draft soli critaria, action levets, and cleanup objectives are in mg/kg equivalent to parts per million (ppm). intervals referenced are in feet below ground level.

 $\mathsf{E}-\mathsf{Indicates}$  a value estimated or not reported due to the presence of interference.

 $\mathsf{B}$  — Indicates a value greater than or equal to the instrument detection. Unit but less than the contract required detection limit.

 S – Indicates value determined by Method of Standard Addition. J - Indicates an estimated value.

R – Indicates the sample result is unusable.

The < eign indicates the compound was analyzed for but not detected.

Applies to hexavalent chromium.

(\*) New York State TAGM Recommended Boll Cleanup Objective is the value listed or the site background level. Shading indicates that one of the following was exceeded: state draft soll criteria, state recommended cleanup objectives, or federal action levels.

## References:

Soil critaria are based on direct human ingestion. These critaria are from the NYSDEC Draft Cleanup Policy and Guidelines,

October 1991, derived from the HEAST Report current through December 1990.
New York State TAGM Recommended Cleanup Objectives are from the NYSDEC Division Technical & Administrative Quidance Memorandum: Determination of Soil Cleanup Objectives & Cleanup Levels. January 1992.
RCRA Soil Action Levels are from the Federal Register, Vol. 55, No. 145, July 27, 1990.

## SUPPLEMENTAL SOIL CHARACTERIZATION OF POTENTIAL PCB AREA NOVEMBER/DECEMBER 1993 ROSEN SITE CORTLAND, NEW YORK

## PCB FIELD SCREENING RESULTS

| Boring<br>Identification    | P             | -1           | P             | -2           | P             | -3           | Р             | -1           | P             | 5            |
|-----------------------------|---------------|--------------|---------------|--------------|---------------|--------------|---------------|--------------|---------------|--------------|
|                             | Interval (ft) | Result (ppm) |
|                             | 0 – 1         | >1, <25      | 0 – 1         | >1, <25      | 0 - 1         | >1, <25      | 0 – 1         | >1, <25      | 0 – 1         | >1, >25      |
| ]                           | 1 – 2         | >1, <25      | 1 – 2         | <1           | 1 – 2         | <1           | 1 - 2         |              | 0 - 1 (Dup)   | >1, >25      |
|                             | 2 – 3         | >1, >25      | 2 ~ 3         | <1           | 2 - 3         | <1           | 2 - 3         | <1           | 1-2           | >1, >25      |
| i                           | 3 4           | <1           |               |              |               |              |               |              | 2 - 3         | >1, >25      |
| ļ                           | 4 – 5         | <1           |               |              |               |              |               |              | 3 - 4         | No Recovery  |
| }                           | <u></u>       |              |               |              |               |              |               |              | 4 - 5         | No Recovery  |
|                             |               |              | <u> </u>      |              |               |              |               |              | 5 – 6         | >1, >25      |
| i i                         |               | <u> </u>     | ·             |              |               |              |               |              | 6 - 7         | >1, <25      |
|                             |               | <u> </u>     |               |              |               |              |               |              | 7 - 8         | >1, <25      |
| Total Depth<br>Drilled (ft) | 5             | .0           | 3.            | 0            | 3             | .0           | 3.            | 0            | 10            | 1.0          |

| Boring<br>Identification    | P.            | -6           | P.            | -7           | P             | -8           | P             | -9           | P-                                               | -10          |
|-----------------------------|---------------|--------------|---------------|--------------|---------------|--------------|---------------|--------------|--------------------------------------------------|--------------|
|                             | interval (ft) | Result (ppm) |                                                  |              |
|                             | 0 - 1         | >1, >25      | 0-1           | <1           | 0 – 1         | >1, >25      | 0 ~ 1         | >1, >25      | 0 – 1                                            | <1           |
|                             | 1 – 2         | >1, >25      | 1 ~ 2         | <1           | 1 - 2         | >1, >25      | 1-2           | <1           | 1-2                                              | . <1         |
|                             | 2 – 3         | >1, <25      | 2 - 3         | NR           | 2 - 3         | <1           | 2 - 3         | <1           | <del> :=</del>                                   | <del> </del> |
| •                           | 3 – 4         | <1           | 3 - 4         | <1           | 3 - 4         | <1           |               | ·            | <del> </del>                                     | <del> </del> |
|                             | 4 - 5         | NR ·         | 4 - 5         | . <1         | 4 - 5         | <1           |               |              | <del>                                     </del> |              |
|                             | 5 – 6         | <1           | 4 - 5 (Dup)   | <1           |               |              |               | <del></del>  | · · · · - · · · · · · · · · · · · · ·            | <del> </del> |
|                             | 6 – 7         | <1           |               |              | <del></del>   | <del> </del> |               | <del> </del> | <del> </del>                                     | ·            |
|                             | 6 - 7 (Dup)   | <1           | · <del></del> | <u> </u>     |               | <del> </del> |               | ·            |                                                  | <del> </del> |
| Total Depth<br>Drilled (ft) |               | 0.0          | 8             | .0           | 16            | D.O          | 11            | ).0          | 14                                               | 0.0          |

(See Notes on Page 2)

## SUPPLEMENTAL SOIL CHARACTERIZATION OF POTENTIAL PCB AREA **NOVEMBER/DECEMBER 1993 ROSEN SITE** CORTLAND, NEW YORK

## PCB FIELD SCREENING RESULTS

| Boring<br>Identification    | P-            | 11           | P-            | -12          | P-    | -13          |
|-----------------------------|---------------|--------------|---------------|--------------|-------|--------------|
|                             | Interval (ft) | Result (ppm) | Interval (ft) | Result (ppm) |       | Result (ppm  |
| :                           | 0 1           | >1, <25      | 0 - 1         | >1, <25      | 0 – 1 | <1           |
|                             | 1-2           | >1, <25      | 1 – 2         | <1           | 1-2   | <1           |
|                             | 1 – 2 (Dup)   | >1, <25      | 2 - 3         | <1           | 2 – 3 | <1           |
|                             | 2-3           | <1           | 3'-4          | <1           |       | <del> </del> |
|                             | 3 – 4         | <1           | 4 - 5         | >1, <25      |       | <del></del>  |
|                             | 3 ~ 4 (Dup)   | <1           | 5 - 6         | <1           |       |              |
|                             | 4 – 5         | <1           | 6 - 7         | <1           |       | <del></del>  |
| İ                           | 4 - 5 (Dup)   | <1           | 6 - 7 (Dup)   | <1           |       | <del></del>  |
|                             | 5 ~ 6         | <1           | 7 - 8         | <1           | ·     | <del></del>  |
| Total Depth<br>Drilled (ft) | 10.           | 0            | 9.            | 0            | 10    | ^            |

## Notes:

ppm = Parts per million.

Dup = Duplicate sample.

>1 = Greater than 1 ppm.

<25 = Less than 25 ppm.

NR = No recovery of soil in the split barrel sampler.

## TABLE 3 TEST BORING SOIL ANALYTICAL RESULTS VOLATILE ORGANICS JANUARY/FEBRUARY 1991

## ROSEN SITE CORTLAND, NEW YORK

| Compound                   | B01       | B02       | B03       | B04       | 805       | New York State<br>Draft Soil | New York State TAGM Cleanup | RCRA Bolt     |
|----------------------------|-----------|-----------|-----------|-----------|-----------|------------------------------|-----------------------------|---------------|
|                            | (4-6 FT.) | (4-6 FT.) | (2-4 FT.) | (6-8 FT.) | (6-8 FT.) | Critoria                     | Objectives                  | Action Levele |
| Chloromethane              | <0.014    | <0.013    | <0.011    | < 0.012   | <0.051    | 540                          |                             |               |
| Bromomethane               | <0.014    | <0.013    | <0.011    | <0.012    | <0.051    | 80                           |                             | 100           |
| Vinyl Chloride             | <0.014    | <0.013    | <0.011    | <0.012    | < 0.051   | 0.36                         | 0.2                         |               |
| Chloroethane               | <0.014    | <0.013    | <0.011    | <0.012    | <0.051    | 540                          | 1.9                         |               |
| Methylene Chloride         | <0.007    | <0.007    | 0.002J    | <0.008    | < 0.025   | 93                           | 0.1                         | 90            |
| Acetone                    | 0.099B    | 0.188     | 0.021     | <0.012    | 0.085     | 6,000                        | 0.2                         | 8,000         |
| Carbon Disulfide           | <0.007    | <0.007    | <0.008    | <0.008    | <0.025    | 8,000                        | 2.7                         | 8.000         |
| 1,1-Dichloroethene         | <0.007    | <0.007    | <0.006    | <0.006    | < 0.025   | 12                           | 0.4                         | 10            |
| 1,1-Dichloroethane         | 0.04      | <0.007    | <0.006    | 0.012     | <0.025    | 8,000                        | 0.2                         |               |
| 1,2-Dichloroethene (total) | <0.007    | <0.007    | <0.006    | <0.006    | < 0.025   | 800°                         |                             |               |
| Chloroform .               | <0.007    | <0.007    | < 0.006   | <0.006    | < 0.025   | 110                          | 0.3                         | 100           |
| 1,2-Dichloroethane         | <0.007    | <0.007    | <0.006    | <0.008    | <0.025    | 7.7                          | 0.1                         | B 100         |
| 2-Bulanone                 | 0.039     | 0.083     | <0.011A   | <0.012    | <0.051    | 4,000                        | 0.3                         | 4,000         |
| 1,1,1-Trichloroethane      | 0.012     | <0.007    | 0.027     | 0.028     | 0.027     | 7,000                        | 0.8                         | 7,000         |
| Carbon Tetrachloride       | <0.007    | <0.007    | <0.008    | <0.006    | <0.025    | 5.4                          | 0.6                         | 5             |
| Vinyl Acetate              | <0.014    | <0.013    | <0.011    | <0.012    | <0.051    | 80,000                       |                             |               |
| Bromodichloromethane       | <0.007    | <0.007    | <0.006    | <0.006    | <0.025    | 5.4                          |                             | 0.5           |
| 1,2-Dichloropropane        | <0.007    | <0.007    | <0.006    | <0.006    | <0.025    | 10                           |                             | 0.0           |
| cis-1,3-Dichloropropene    | <0.007    | <0.007    | <0.006    | <0.006    | <0.025    | 20                           |                             | 20 (1)        |
| Trichloroethene            | <0.007    | <0.007    | 0.002J    | <0.006    | 0.004J    | 64                           | 0.7                         | 20 (1)<br>60  |
| Dibromochloromethane       | <0.007    | <0.007    | <0.006    | <0.006    | <0.025    | 8,3                          | 0.7                         |               |
| 1,1,2-Trichloroethane      | <0.007    | <0.007    | <0.006    | <0.006    | <0.025    | 120                          |                             | 100           |
| Benzene                    | <0.007    | <0.007    | <0.006    | <0.006    | <0.025    | 24                           | 0.06                        | 100           |
| Irans-1,3-Dichloropropene  | <0.007    | <0.007    | <0.006    | <0.006    | <0.025    | 20                           | 0.00                        | 00 (1)        |
| Bromoform                  | <0.007    | <0.007    | <0.006    | <0.006    | <0.025    | 89                           |                             | 20 (1)        |
| 4-Methyl-2-Pentanone       | <0.014    | <0.013    | <0.011    | <0.012    | <0.023    | 4,000                        |                             | 2,000         |
| 2-Hexanon <del>a</del>     | <0.014    | . <0.013  | <0.011R   | <0.012    | <0.051    | 4,000                        | 1.0                         | 4,000         |

Notes on Page 2 of 2

4/20/94 0194062C

## TEST BORING SOIL ANALYTICAL RESULTS TABLE 3 (Cont.)

## TEST YRAUREST/YRAUNAL VOLATILE ORGANICS

## CORTLAND, NEW YORK **HOSEN SILE**

| RCRA Boll<br>Action Level | Mow York State MDAT quasel3 equivel40 | New York Biele<br>Dreft Boll<br>Criterie | 308<br>(119 a-b) | BO6<br>(TH 8-8) | B03<br>(2-4 FT.) | BD2<br>(4-6 FT.) | (deli)<br>Bos | Сотроила                |
|---------------------------|---------------------------------------|------------------------------------------|------------------|-----------------|------------------|------------------|---------------|-------------------------|
| 01                        | F1                                    | <b>bl</b>                                | <0.025           | 900.0>          | 800.0>           | <b>700.0&gt;</b> | 700.0>        | Telrachloroethene       |
|                           |                                       | <u>se</u>                                | <0.025           | 800.0>          | 800.0>           | 700.0>           | 100.0>        | 1,2,2-Tetrachloroethane |
| 0+                        | 8.0                                   |                                          | 970.0            | 900.0>          | 800.0>           | 700.0>           | 10.0          | anaulo                  |
| 20,000                    | S.1                                   | 20,000                                   | 650.0>           | 900.0>          | 900.0>           | 700.0>           | 700.0>        | anasnadorolri           |
| 2,000                     | 21                                    | 2,000                                    |                  |                 | 900.0>           | 700.0>           | 700.0>        | ənəsnədiyri             |
| 000,8                     | 6.8                                   | 000,8                                    | \$20.0>          | 900.0>          | 800.0>           | 700.0>           | 700.0>        | jķieu <b>e</b>          |
| 2,000                     |                                       | 53                                       | <0.025           | L800.0>         |                  | 700.0>           | 700.0>        | zenely Xylenes          |
| 200,000                   | 2.1                                   | 200,000                                  | 920.0            | 800.0>          | 900.0>           | 100:0>           | LBTO.0        | эл лато                 |

## :SƏJON

intervals referenced are in feet below ground level. All concentrations, detection levels, draft soll criteria, action levels, and cleanup objectives are in mg/kg equivalent to parts per million (ppm).

The < sign indicates the compound was snalyzed for but not detected.

 $oldsymbol{eta}$  - indicates the analyte was found in the associated blank as well as in the sample. TIC - Indicates Tentatively Identified Compounds.

J - Indicates an estimated value.

enegorgotohold-8,1 tot al betneseng sulaV - (1) A - Indicates the sample result is unusable.

\*- The soil criteria applies to cis-1,2-Dichloroethene only,

## yejeleuces:

RCRA Soil Action Levels are from the Federal Register, Vol. 55, No. 145, July 27, 1990. New York State TAGM Recommended Cleanup Objectives are from the NYSDEC Division Technical and Administrative Guidance Memorendum: Determination of Soil Cleanup Objectives and Cleanup Levels, January 1994. Soil criteria are based on direct human ingestion. These criteria are from MYSDEC Draft Cleanup Policy and Guidelines Document, October, 1991, derived from the HEAST Report current though December, 1990. TARLE 3
TEST BORING SOIL ALALYTICAL RESULTS
SEMPOLATILE ORGANICS
JANUARY/FEBRUARY 1891

ROSEN SITE COFFLAND, NEW YORK

| Compound                     | Bol<br>(46 FT.) | B02<br>(4.8 FT.) | BOS COMPS<br>PAS ETT | Ma           | SE SE   | Tana da | May York Buy | A MANAGE |
|------------------------------|-----------------|------------------|----------------------|--------------|---------|---------------------------------------------|--------------|----------|
| Phenoi                       | <0.83           | 1007             | 0.0                  |              |         |                                             |              |          |
| Bis(2-Chloroethyf)Ether      | 8               |                  | AJ:05                | <0.81        | <0.73.1 | 20,000                                      | 0.03*        | 20,000   |
| 2-Chlomoband                 | 20.83           | T8.0>            | <0.79                | <0.61        | <0.73J  | 0.64                                        |              | 9.0      |
| reinvitation of              | <0.93           | <0.91            | <0.79                | <0.81        | <0.73J  | \$                                          | 80           | \$       |
| I.a-Lichlorobenzene          | \$0 V>          | <0.91            | <0.79                | <0.81        | <0.73J  |                                             | =            |          |
| 1,4-Dichlorobenzene          | <0.93           | <0.91            | <0.79                | <0.81        | <0.73   | 20                                          | 2 4          |          |
| Benzył Alcohol               | <0.93           | <0.91            | <0.79                | <0.81J       | <0.73J  | 20,000                                      |              |          |
| 1,2-Dictionobenzene          | <0.93           | <0.91            | <0.70                | <0.81        | <0.73J  | 2,000                                       | 9,           |          |
| 2-Methytphenol               | <0.93           | <0.91            | <0.79                | <0.81        | 187.07  |                                             |              |          |
| Bis(2-Chlorolsopropyl) Ether | <0.93           | <0.91            | 0.79<br>0.79         | 10 6         |         | non's                                       | 0.1          | 4,000    |
| 4-Methylphenol               | <0.93           | 16:0>            | S-0.79               | 10.07        | 50.73U  | 90                                          |              |          |
| N-Nitroso-DI-n-Propylamina   | <0.93           | <0.91            | 8,00                 |              | 20,00   | 4,000                                       | 0.0          | 4,000    |
| Hexachioroethene             | <0.03           | 1007             | 97.07                | <b>40.61</b> | <0.73   | 0.1                                         |              | 0.1      |
| Nitrobenzene                 | 8007            | 300              | 87.05                | <0.81        | <0.73.1 | 98                                          |              | 8        |
| isophorone                   | 30.0            | LAins            | <0.79                | <0.81        | <0.73J  | 40                                          | 0.2*         | 9        |
| 2. Mitrospania               | Su.B3           | <0.91            | <0.79                | <0.81        | <6.73∪  | 1,800                                       |              | 2,000    |
| Common meno                  | <0.93           | <0.91            | <0.79                | <0.81        | \$6.73  |                                             | 1,50         |          |
| Z,4-Dimethylphenol           | <0.93           | <0.91            | <0.79                | <0.81        | <0.73.1 | 2000                                        |              |          |
| Benzoic Acid                 | <4.5            | 0.1.0            | 0.058.1              | 8.65         | 13.65   | 900                                         |              |          |
| Bis(2-Chloroethoxy) Methene  | <0.93           | <0.91            | <0.78                | <0.81        | 2       | aviana<br>a                                 |              |          |
| 2,4-Dichlorophenal           | <0.93           | . <0.91          | 62 0>                | 100/         |         |                                             |              |          |
| 1,2,4-Trichlorobenzene       | <0.93           | <0.91            | <0.79                | 10.07        | <0.73J  | 500                                         | 6.4          | 88       |
| Naphthalene                  | 60.0            | 1000             |                      | D'A          | 70.70   | 2,000                                       | 3.4          | 2,000    |
| 4-Chloroaniline              |                 | 180              | 60.79                | <0.81        | <0.73J  | 300                                         | 5            |          |
| Havachtern                   | <0.93           | 16.05            | <0.79                | <0.81        | <0.73J  |                                             | 0.22         |          |
|                              | <0.93           | <0.81            | <0.79                | <0.81        | <0.73J  | 8                                           |              | 8        |
| 4-Chloro-S-Methylphenol      | <0.83           | 16'0>            | <0.79                | <0.81        | <0.73.1 |                                             | ****         | 8        |
| 2-Methylnaphthalene          | <0.93           | . <0.91          | 67.0>                | <0.81        | 12.0    |                                             | 0.24         |          |
|                              |                 |                  |                      | 100          | 30.05   |                                             | 36.4         |          |

1 of 3

Notes on Page 3 of 3

421,84 6794T013G

## 1681 YFAURLIBRYTRAUMAL SEMINOLATILE ORGANICS TEST BORING SOIL ANALYTICAL RESULTS

COHTLAND, NEW YORK HOSEN SILE

| - Storantinene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 140                 | <del></del>    |                      | 18.0>          | LET.O>          | 000,6                                            | j t.a                                        | 000.8                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|----------------------|----------------|-----------------|--------------------------------------------------|----------------------------------------------|------------------------|
| etelartirick/tuß-n-K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LS.0                | LT1.0          | L730.0               | 18.0>          | LET.0>          | 20,000                                           | (c) 09                                       |                        |
| ундлясеце                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.93               | 16.0>          | 67.0>                | -              | LET.0>          | <del>                                     </del> | 20 (3)                                       |                        |
| - enavitrenari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LS3.0               | 16:0>          | 67.0>                | 18.0>          | 165.6>          | 2,000                                            | ,1                                           | 2,000                  |
| Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.4>                | P.P>           | 8.6>                 | <3.9           | <del></del>     | 11.0                                             | 11.0                                         |                        |
| Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | £6.0>               | 16.0>          | 8₹.0>                | 19.0>          | LET.0>          |                                                  |                                              |                        |
| 4-Bromophenyl-phenylether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.83               | 16.0>          | 67.0> ·              | 19.0>          | LET.0>          | 140                                              | <del></del>                                  | 100                    |
| N-Nitrosodiphenylemine (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | £6.0>               | 16'0>          | 67.0>                | 18.0>          | LET.0>          |                                                  |                                              |                        |
| konarkityttiaM-S-oukritG-8,h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.4>                | <b>p.b&gt;</b> | 8.6>                 | 6.6>           | Lā.e>           | 8                                                | <del> </del>                                 | <del></del>            |
| enlineouline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G.4>                | <b>b'b&gt;</b> | 8.6>                 | 9.2>           | L3.5>           |                                                  | (c) 0.03                                     | · ·                    |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68.0>               | 16.0>          | 67.0>                | 18.0>          | LET.0>          | 3,000                                            | 16 0 03                                      |                        |
| 4-Chlorophenyl-phenylether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | £6.0>               | 16.0>          | 67.0>                | 18.0>          | LET.0>          | 2,000                                            | 12                                           | 000,00                 |
| StellaritrityrihaiO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 68.0>               | · 16.0>        | 87.0>                | f 8.0>         | LET.0>          | 000,00                                           | 12                                           | 000 08                 |
| S.s Sindicordinal - S.s | £6.0>               | 16:0>          | 8L'0>                | 18.0>          | . LET.0>        | 1                                                | <del> </del>                                 |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 66.0>               | f 8.0>         | 6₹.0>                | 18.0>          | LET.0>          |                                                  | 6.2                                          | <del></del>            |
| Dipenzoluan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g*>>                | <b>*</b> 'b>   | 0.6>                 | 6.6>           | L3.E>           |                                                  | .1.0                                         |                        |
| ionariqouili-i-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | g.⊧>                | <b>b.b&gt;</b> | 8.6>                 | · 6.8>         | L3.6>           | 500                                              | 5.0                                          | 200                    |
| lonartqovliniG-P,S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | £8.0>               | 16.0>          | 67.0>                | 18.0>          | LET.0>          | 6,000                                            | (2) 09                                       |                        |
| Acensphinene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G.4>                | <b>5.</b> p>   | 8.6>                 | 6.6>           | L3.E>           |                                                  | *8.0                                         | <del></del>            |
| enillineoniW-E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | £8.0>               | 18.0>          | 6Z.0>                | 18.0>          | LET.0>          |                                                  | <u> </u>                                     | (2) (                  |
| S.6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | £8.0>               | 16.0>          | 87.0>                | 18.0>          | LET.0>          | 006 -                                            | 11                                           |                        |
| Acensphihyene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | £6.0>               | 18.0>          | 67.0>                | 18.0>          | LET.0>          | 000,08                                           | 5                                            |                        |
| State Physical States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | 1002           | 8.6>                 | 6.6>           | L2.6>           | ·                                                | *64.0                                        |                        |
| S-Nitroanii/-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$.p>               | 18.0>          | 87.0>                | 18.0>          | LET.0>          |                                                  |                                              |                        |
| S-Chloronaphihalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | £6.0>               |                | 8.6>                 | 6.2>           | L3.£>           | 000,6                                            | 1.0                                          | 000,8                  |
| S,4,5-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>6.</b> Þ>        | <b>b.p&gt;</b> | 67.0>                | 18.0>          | LET.0>          | 19                                               |                                              | OF                     |
| S.A.B. Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 68.0>               | 16'0>          |                      | 18.0>          | <b>L</b> εγ.0>  | 009                                              |                                              | 009                    |
| Hexachiorocyclopentacliene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.93               | 16'0>          | 67.0>                |                |                 |                                                  |                                              | 63000000               |
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (13 <del>8 t)</del> | POS<br>(+e LL) | Box COAFT*<br>R4 FT) | F00<br>(13 F9) | 208<br>(19 0-0) | enest and weld<br>lost havi<br>electri           | Hew York Stein<br>TAGAI Cleanup<br>Objective | Bog ARDRI<br>Bog ARDRI |

C lo 6 aga9 no aaloN

Faoranthene

DE1019670

87.0>

18.0>

**LT.0** 

(8) 09

1.8

000,8

3,000

LET.0>

18.0>

## 1661 YFAUREERNYFAUNAL SEMIYOLATILE OFICALICS JEST BORING SOIL ANALYTICAL RESULTS TABLE 3(Cont.)

## COULTYIND' NEW YORK HOSEN SILE

|                                      |                 |                  | <del>,</del>   |                 | <del>                                     </del> |                                                | <del> </del>                                 |                      |
|--------------------------------------|-----------------|------------------|----------------|-----------------|--------------------------------------------------|------------------------------------------------|----------------------------------------------|----------------------|
| OIT JATO                             | L&P.0S          | L80.6            | 2.61.1         |                 |                                                  |                                                |                                              | <u> </u>             |
| ensive(g,f,g)Perylene                | £6.0>           | 16.0>            | <b>6</b> ₹.0>  | 18.0>           | Lef.0>                                           |                                                | (5) 03                                       |                      |
| Moenz (a, h) Antivacene              | £8.0>           | 16'0>            | 6T.D>          | 18.0>           | LET.0>                                           | +10.0                                          | *10.0                                        |                      |
| enery9(bo-£,S,1)onebn                | LP1.0           | 16'0>            | 6 <b>7.</b> 0> | 18.0>           | LET.0>                                           |                                                | S.E                                          |                      |
| anaiyi(a)ozna                        | 0.243           | 16.0>            | 0.26J          | 18.0>           | LET.0>                                           | 190'0                                          | *180.0                                       |                      |
| ecacilinasoui <sup>-</sup> T(x)oznec | L81.0           | 16:0>            | 67.0>          | 18.0>           | LEY.0>                                           | 0.22                                           | 1.4                                          |                      |
| eclerithe)oul7(d)osne                | CAR.O           | 16.0>            | 67.0>          | 18.0>           | LET.0>                                           | SS.0                                           | 111                                          |                      |
| Pi-n-Octyl Philiplete                | 56.0>           | 18.0>            | 67.0>          | 18.0>           | LET.0>                                           | 2,000                                          | (හ ගු                                        |                      |
| esterting (Nyachyrtt3-S)el8          | LAS.0           | L260.0           | 0.15J          | 18.0>           | L86.0>                                           | 09                                             | (6) 05                                       | 09                   |
| Chrysene                             | L86.0           | 16.0>            | 8Y.0>          | 18.0>           | LET.O>                                           |                                                | >∙0                                          |                      |
| Senzo(e)Anthracens                   | rge 0           | 16.0>            | 6₹.0>          | 18.0>           | LET.0>                                           | 52.0                                           | 0.22                                         |                      |
| 3,-Pichlorobenzidine                 | 6'1>            | 8.1>             | 8.1>           | 9't>            | 13.1>                                            | 8.f                                            |                                              | 2                    |
| Bullyloenzylphinalete                | £6.0>           | 18:0>            | 87.0>          | 18.0>           | LET.O>                                           | 20,000                                         | (6) 03                                       | 20,000               |
| Pyrene<br>Pyrene                     | LE8.0           | 16.0>            | 67.0>          | 18.0>           | LET.0>                                           | \$'000                                         | (c) 0g                                       |                      |
| panoduoy                             | 100<br>(19 4-4) | SNG<br>(17: 8-4) | Post (COMP)    | Pod<br>(TT 8-0) | SOE<br>(T18-8)                                   | planing short world<br>to a short<br>alreaded. | Hew York State<br>TASAL Cleaning<br>watcold! | Ros AVCH<br>Resulted |

Intervals referenced are in feet below ground level. All concentrations, detection levels, draft soil criteria, action levels, and cleanup objectives are in mg/kg equivalent to parts per million (ppm).

The < sign indicates the compound was analyzed for but not detected. \*Due to the coerseness of the material, an exite sample was submitted and composited for analysis from soil boring B-03.

J - Indicates an estimated value.

\* These compounds should not be detected above the TAGM or the method detection limit.

(1) - Indicates this compound cannot be separated from Diphenylamine.

(S) - Indicates this compound cannot be separated from 2,3-Dinitrotoluene.

TiC - Indicates Tentatively Identified Compounds. (3) - As per proposed TAGM, total VOCs < 10 ppm, total SVOCs < 500 ppm, and individual SVOCs < 50 ppm.

Shading indicates at least one of the following was exceeded: state criteria, cleanup objective, or federal action level.

New York State TASM Recommended Soil Cleanup Objectives are from the NYSDEC Division Technical and Administrative Guidence Memorandum: Determination of Soil Cleanup Objectives and Cleanup Levels, Soil criteria are based on direct human ingestion. These criteria are from the NYSDEC Draft Cleanup Policy and Guidelines Document, October, 1991, derived from the HEAST Report current through December, 1990. Helerences:

RCRA Soil Action Levels are from the Federal Register, Vol. 55, No. 145, July 27, 1990.

TABLE 3
TEST BORING SOIL AWALYTICAL RESULTS
PESTICILES/PCBs
JANUARY/FEBRUARY 1991

ROSEN SITE CORTLAND, NEW YORK

| Compound           | 801<br>(4-6 FT.) | B02<br>(4-6 FT.) | 893 COMP*<br>(2-8 FT.) | 804<br>(6-8 FT.) | 805      | New York State<br>Dreft Soll | New York State<br>TAGM Cleanup | RCRA BAIL     |
|--------------------|------------------|------------------|------------------------|------------------|----------|------------------------------|--------------------------------|---------------|
| alpha-BHC.         | <0.021           | <0.022           | <0.019                 | 2000             | 313 S    | e inserio                    | Objectives                     | Action Levete |
| beta-BHC           | <0.021           | <0.022           | <0.019                 | 010              | BIOO     | 0.11                         | 0.11                           | 0.1           |
| delta-BHC          | <0.021           | <0.022           | <0.019                 | 81000            | Algra>   | 3.8                          | 0.2                            | -             |
| gamma-BHC(Lhdane)  | <0.021           | <0.022           | <0.019                 | 9100             | \$10.01g |                              | 0.3                            |               |
| Heptachlor         | <0.021           | <0.022           | <0.019                 | 910.0>           | BIOON    | 9.4                          | 90'0                           | 0.5           |
| Aktiin             | <0.021           | 600.07           |                        | ALC:O            | \$10.0>  | 0.16                         | 0.1                            | 0.2           |
| Hentachlor enoxide |                  | 726.6            | 80.0>                  | <0.019           | . <0.019 | 0.041                        | 0.041                          | 90.0          |
| Fordowska          | 20.021           | <0.022           | <0.019                 | <0.019           | <0.019   | 0.77                         | 0.02                           | 90.0          |
| Lincolnia          | <0.021           | <0.022           | <0.019                 | <0.019           | <0.019   |                              | 6.0                            | \$            |
| Dieparin           | <0.042           | <0.043           | <0.038                 | <0.039           | <0.038   | 0.044                        | 0044                           | 2             |
| 4,4*-DDE           | <0.042           | <0.043           | <0.038                 | <0.039           | \$\$0 0> |                              |                                |               |
| Endrin             | <0.042           | <0.043           | 850.02                 | 0000             |          | ij                           | 2.1                            | 2(3           |
| Endosulian II      | - PO 02          | 00000            |                        | SU.USB           | <0.036   | 500                          | 0.1                            | æ             |
| 44:000             | 71000            | <0.043           | <0.038                 | <0.039           | <0.038   |                              | 0.0                            | 5             |
|                    | <0.042           | <0.043           | <0.038                 | <0.039           | <0.038   | 2.9                          | 2.9                            | 3 (4          |
| Endosultan sulfate | <0.042           | <0.043           | <0.038                 | <0.039           | <0.038   |                              | 9-                             |               |
| 4,4-DDT            | <0.042           | <0.043           | . <0.038               | <0.038           | 80.00    |                              | 2                              |               |
| Methoxychlor       | <0.21            | <0.22            | <0.19                  | 91.0>            | 9        | 1.7                          | 2.1                            | Ø.            |
| Endrin ketone      | <0.042           | <0.043           | <0.038                 | <0.039           | - CO 620 | 2                            | 10.0 (6)                       |               |
| alpha-chlordane    | <0.21            | <0.22            | <0.19                  | 91.07            | grana.   |                              |                                |               |
| gamma-chlordane    | <0.21            | <0.5             | 9                      |                  | AU. TA   |                              |                                | 0.5 (2)       |
| Toxaobene          | 4 4              |                  | A .                    | <0.19            | <0.19    |                              | 0.54                           | 0.5 (2)       |
|                    | ×0.42            | <0.43            | .<0.36                 | <0.39            | <0.38    | 0.64                         |                                | 9.0           |

Notes on Page 2 of 2

42094 06941013G

## TEST BORING SOIL ANALYTICAL RESULTS TABLE 3 (Cont.)

### **1661 YRAURBEHIYRAUNAL** PESTICIDE/PCB\*

### CONTLAND, NEW YORK **BOSEN SITE**

|                            | <u> </u>                               |                                          |                  |                   |          |                  |                 | . isəloM     |
|----------------------------|----------------------------------------|------------------------------------------|------------------|-------------------|----------|------------------|-----------------|--------------|
| 600                        | (l) .01 '.1                            | ,l                                       | BE.0>            | 92.0>             | 8c.o>    | £4.0>            | <0.42           | Aroclor-1260 |
| 600                        | (t) *01 ,*1                            | al .                                     | 88.0> .          | <b>6</b> 2.0>     | 82.0>    | £p.0>            | \$6.0>          | Aroclor-1254 |
| 600                        | (7) "01 ,"1                            | •1                                       | 61.0>            | 81.0>             | er.a>    | <0.22            | 12.0>           | Aroclor-1248 |
| 60-0                       | (t) +01 ,*1 ·                          |                                          | 61.0>            | €1.G>             | 81.0>    | \$2.0>           | <0.21           | Arockor-1242 |
| 60.1                       | () .01 '.1                             | ٠ ,١                                     | 61.0>            | 61.0>             | £1.0>    | <0.22            | 12.0>           | Arocky-1232  |
| 60.4                       | (t) "ot ,"t                            | . ,;                                     | 61.0>            | 61.0>             | 91.0>    | <0.22            | 12:0>           | Aroclor-1221 |
| 80.0                       | 1, 10, (A)                             | ,l                                       | 61'0>            | 61.0>             | 61.0>    | <0.22            | <0.21           | A10t-1016    |
| RCRA Bolt<br>Action Levels | New York State TAGM Cleanup Objectives | New York State<br>Diell Soll<br>Criteria | 805<br>(8-8 FT.) | 908<br>(.T.) e-e) | (S-9 EL) | 802<br>(4-6 FT.) | 108<br>(+4 FT.) | Compound     |

intervals referenced are in feet below ground level. All concentrations, detection levels, draft soil criteria, action levels, and cleanup objectives are in markg equivalent to parts per million (ppm).

"Due to the coarseness of the material, an extra sample was submitted and composited for analysis from soil boring B-03.

- Indicates the sum of Aroctor (PCB) compounds. The < sign indicates the compound was analyzed for but not detected.

(1) - Value presented is for Endosullan,

(2) - Value presented is for Chlordane.

(3) - Value presented is for DDE,

(4) - Value presented is for DDD.

(5) - Value presented is for DDT.

(1) - 1.0 is the surface soil cleanup objective; 10.0 is the subsurface soil cleanup objective. (6) - As per proposed TAGM, total pesticide < 10 ppm.

Shading indicates at least one of the following was exceeded: state criteria, cleanup objective, or federal action level.

## Helerences:

ACRA Soil Action Levels are from the Federal Register, Vol. 55, No. 145, July 27, 1990. New York State TAGM Recommended Soil Cleanup Objectives are from the NYSDEC Division Technical and Administrative Guidence Memorandum: Determination of Soil Cleanup Objectives and Cleanup Levels, January 1994. Soit criteria are based on direct human ingestion. These criteria are from the NYSDEC Draft Cleanup Policy and Guidelines Document, October, 1991, derived from the HEAST Report current through December, 1990.

TABLE (3 TEST BORING SOIL ANALYTICAL RESULTS INORGANICS JANUARY/FEBRUARY 1891

ROSEN SITE CORTLAND, NEW YORK

| Composite     | B01<br>(4-8 FT.) | B42<br>(19 FT.) | Bos (COMP)*<br>(2-8 FT.) | B04<br>(0-4 FT.) | BoS<br>(6-8 FT.) | New York State<br>Datt Sol | New York State<br>Recommended | PCRA Sa       |
|---------------|------------------|-----------------|--------------------------|------------------|------------------|----------------------------|-------------------------------|---------------|
| Aluminum      | 11,000€          | 14,800E         | 13,500E                  | 6,740E           | 12.600E          |                            |                               | Action Leaple |
| Antimony      | 1.28             | <0.68           | £19:0>                   | <0.61            | <0.58            | 8                          | C E                           | \$            |
| Arsenic       | 10.0             | 9.7             | 808                      | 514              | 7.9              | 8                          | 12.87                         | 8 8           |
| Bartum        | 150              | 119.7           | 121                      | 120              | 95               | 7000                       |                               | 8             |
| Beryllikm     | <0.77            | <0.67J          | 11                       | <0.61            | <0.57            |                            | Come                          | 4,000         |
| Cadmium       | <0.77            | <0.67           | 080/                     |                  |                  | 2                          | 0.16 C)                       | 0.2           |
| Celcium       | 11 0005          |                 | 0000                     | <0.61            | 0.57             | 98                         | 1.0 (*)                       | 9             |
| Chornium      | 3000011          | 2,540E          | 39,200E                  | 1,740E           | 2,910€           |                            | £                             |               |
| Cobalt        | 26.450           | 25,7E.J         | 169E                     | 16.6E            | 35.22            | 400*                       | 10(3)                         | 00            |
| Conner        | 11.0             | 9.00            | 11.2                     | 5.68             | 11.1             |                            | 30 (3)                        |               |
| llan          | ልሹ               | 33.1ER          | 75.1E                    | 44.4E            | 20.1E            |                            | 25 (3)                        |               |
| Lead          | #DO#   d         | 32,500€         | 62,400Ę                  | 78,900E          | 29,700€          |                            | 2,000 (*)                     |               |
| Macnesium     | 1961             | 73.4.1          | 36.1                     | 18.47            | 19.13            | 250                        | ε                             |               |
|               | 3,830E           | 3,330E          | 9,260E                   | 2,620E           | 4,040E           |                            | ε                             |               |
| months as     | 2,510E           | 730E            | 8,020E                   | 242E             | 1,400EJ          | 20,000                     | ε                             |               |
| Michel        | <0.13            | <0.12           | <0.01                    | <0.09            | 0.25             | 8                          | 0.1                           | 8             |
| Protocolory   | 54.8E            | 34.4EJ          | 123EJ                    | 20,7EJ           | 39.9E            | 2,000                      | 13.3                          | 2 fron        |
| Selection     | 1,090            | 1,130           | 1,160                    | 1,620            | 1,450            |                            | ε                             |               |
|               | <0.77J           | <0.66J          | <0.61                    | <0.61            | <0.56J           |                            | E                             |               |
| onwer<br>Code | <0.77            | <0.67           | 1:1                      | <0.61            | <0.57            | 500                        | ε                             | 8             |
| The life con  | · 2778           | 1758            | . 2128                   | 712              | 98.38            |                            | ε                             |               |
|               | <0.77            | <0.66           | <0.61                    | <0.61J           | <0.56            | 6.0                        | ε                             |               |
|               |                  |                 |                          |                  |                  |                            |                               |               |

Notes on Page 2 of 2

4/26/84 D4841013

### JANUARIYAFEBRUARY 1891 INOHEANICS TEST BORING SOIL ANALYTICAL RESULTS TABLE 3 (Cont.)

### COLUTYIND' NEW YORK ROSEN SITE

| 2,000                    |                                                      | 2,000                                   | 1:1>            | <1.2     | <12                       | <b>)</b> '1>    | g′1>           | Oyanide  |
|--------------------------|------------------------------------------------------|-----------------------------------------|-----------------|----------|---------------------------|-----------------|----------------|----------|
|                          | (*) os                                               | \$0,000                                 | 36.66           | 35,57    | 4SEE                      | 351E1           | 3018,1         | SVIZ     |
|                          | (*) oë1                                              | 009                                     | 1.61            | en       | 918                       | L1.1E           | 3.66           | malagray |
| RCRA 868<br>dova.1 golov | Mow York State<br>Reconstruction<br>Season Objective | May York State<br>Draft Soll<br>Calente | 606<br>(TT 6-B) | (TH 6-0) | (S-B ELT)<br>BOD (CCOMB). | 508<br>(TR 8-9) | 100<br>(TE 8+) | Compound |

### SOION

Intervals referenced are in feet below ground level. \*Due to the coerseness of the materiel, an exire semple was submitted and composited for analysis from soil bothing B-03. All concentrations, detection levels, draft soil criteria, action levels, and cleanup objectives are in mg/kg equivalent to parts per million (opmy-

 ${\cal S}$  - indicates a value determined by Method of Standard Addition. .  $\pm$  - indicates a value estimated or not reported due to the presence of interference.

J - indicates an estimated value.

B - indicates a value greater than or equal to the instrument detection limit but less than the contract required detection limit. The < sign indicates the compound was analyzed for but not detected.

"Applies to hexavelant Chromium." A - Indicates the sample result was rejected.

Shading indicates at least one of the following was exceeded: state criteria, cleanup objective, or federal action level. (\*) - New York State TAGM Recommended Soil Cleanup Objective is the value listed or the site background level.

## References:

RCRA Soil Action Levels are from the Federal Register, Vol. 55, No. 145, July 27, 1990. New York State TAGM Recommended Soil Cleanup Objectives are from the NYSDEC Division Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives and Cleanup Levels, January 1994 Soll criteria are based on direct human ingestion. These criteria are from the WYSDEC Draft Cleanup Policy and Guidelines Document, October, 1991, derived from the HEAST Report current involugh December, 1990.

## TABLE 3 TEST PIT SOIL ANALYTICAL RESULTS VOLATILE ORGANICS JANUARY/FEBRUARY 1991

## ROSEN SITE CORTLAND, NEW YORK

|                          |                |                  |                    |                   |          |            |              |              |             |          |                           |                          | <del></del> |
|--------------------------|----------------|------------------|--------------------|-------------------|----------|------------|--------------|--------------|-------------|----------|---------------------------|--------------------------|-------------|
| <u> </u>                 | <del></del>    |                  | 670:0-             | 1,800.0>          | L750.0>  | £7.0>      | 8.1>         | 800.0>       | L800.0>     | L800.0>  | 2.8                       |                          | ~           |
| ornochloromethane        | 900.0>         | L800.0>          | 620.0>             |                   |          | £7.0>      | 0.1>         | L100.0       | 1,800.0>    | LE00.0   | 19                        | 7.0                      | 09          |
| anadisovolri             | 800.0>         | La00.0>          | . 650.0>           | L100.0            | L7S0.0>  |            |              |              | L800.0>     | L800.0>  |                           |                          | (t) os      |
| 1,3-Dichloropropene      | 900.0>         | Laoo.o>          | <0.029             | L800.0>           | L750 0>  | £7.0>      | 2.1>         |              |             | L800.0>  | 01                        |                          |             |
| Dichloropropana          | 900.0>         | Laco.o>          | <0.029             | L800.0>           | L7S0.0>  | £7.0>      | g:1>         |              | L800.0>     |          | ) 'g                      |                          | 8.0         |
| modichloromethane        | 900.0>         | L800.0>          | <0.029             | L800.0>           | L7S0.0>  | £7.0>      | 8.1>         | 800.0>       | L800.0>     | L800.0>  | - <del> </del>            | <del></del>              | <del></del> |
|                          | \$10.0>        | \$210.0>         | 950.0>             | LS10.0>           | L#30.0>  | 91>        | <2.9         | 110.0>       | LS10.0>     | LS10.0>  | 000,08                    |                          | g           |
| yl Acetate               |                | L800.0>          | 6Z0.0>             | L800.0>           | L\S0.0>  | £7.0>      | g:1>         | 800.0>       | La00.0>     | L800.0>  | þ.č                       | 8.0                      | <del></del> |
| thon Tetrachlodde        | 800.0>         |                  |                    | U39.0             | 1308 b   | #98        | dit          | L>00.0       | LIO.0       | LS0.0    | 000,7                     | 8.0                      | 000,7       |
| .i-Trichloroethane       | 900.0>         | La00.0>          | <0.029             |                   |          | č.f>       | . 6'7>       | 110.0>       | LS10.0>     | LS10.0>  | 000,1                     | 2.0                      | 4'000       |
| anonalut                 | <b>8</b> 60.0  | L210.0           | 820.0>             | LS10.0>           | LÞ&0.0>  | ·          | <del> </del> | 900.0>       | Laco.o>     | (a00.0>  | EL                        | 1.0                      | 8           |
| -Dichloroethane          | 800.0>         | L800.0>          | 620.0>             | L800.0>           | LTS0.0>  | ET.0>      | 8.1>         | <del> </del> | <del></del> | 1,800.0> | 011                       | 6.0                      | 100         |
| molorol                  | 800.0>         | L800.0>          | 620.0>             | L800.0>           | LTS0.0>  | £7.0>      | 8.1>         | 900.0>       | L800.0>     |          | *008                      | <del> </del>             | <del></del> |
| (tator) enerthemodribio. | 900.0>         | 1,300.0>         | <0.029             | Laco.o>           | LTS0.0>  | £7.0>      | 2.1>         | 800.0>       | La00.0>     | L800.0>  | 000,8                     | 62                       |             |
|                          | 900.0>         | L800.0>          | 620.0>             | L720.0            | LOTE, Q  | 8.0        | rai e o      | 900.0>       | L800.0>     | L800.0>  |                           | - <del> </del>           | OL          |
| l-Okhloroelhane          |                | L800.0>          | 620.0>             | L800.0>           | LG10.0   | £7.0>      | 8.1>         | 800.0>       | L800.0>     | 1,800.0> | SI                        | 1.0                      |             |
| 1-Dichloroethene         | 900.0>         |                  |                    | L800.0>           | L750.0>  | £7.0>      | 3.1>         | 900.0>       | 1,800.0>    | L800.0>  | 000,8                     | 7.5                      | 000,8       |
| ebiliusiQ noche          | 800.0>         | L800.0>          | 620.0>             |                   |          | 5.1>       | <2.9         | 110.0>       | LSSO.0      | L610.0   | 000,8                     | 2.0                      | 000,8       |
| évojeo                   | 396.0          | 0.248.1          | 881.0              | LEO.O             | LG280.0  |            | G.1>         | 900.0>       | LESO.0      | LT10.0   | 68                        | 1.0                      | 08          |
| ethylene Chloride        | 800.0>         | Laco.o>          | 620.0>             | L8000.0           | LG800.0  | £7.0>      |              |              | LS10.0>     | LS10.0>  | 0+9                       | 6.f                      |             |
| hioroethane              | £10.0>         | LS10.0>          | 880.0>             | LS10.0>           | Lp20.0>  | 3.1>       | <2.9         | 110.0>       |             |          | 96.0                      | 5.0                      |             |
| Inyl Chloride            | \$10.0>        | LS10.0>          | 680.0>             | LS10.0>           | L+20.0>  | 9°1>       | <2.9         | 110.0>       | LS10.0>     | LS10.0>  |                           |                          | 001         |
|                          | \$10.0>        | LS10.0>          | 880.0>             | <0.012J           | L620.0>  | 2.1>       | <2.9         | 110.0>       | LS10.0>     | LS10.0>  | 08                        |                          |             |
| eneritemornon            |                | LS10.0>          | 850.0>             | LS10.0>           | LF20.0>  | <1.5       | <2.9         | 110.0>       | LS10.0>     | CS10.0>  | 240                       |                          |             |
| hloromethene             | £10.0>         |                  |                    | <u></u>           |          | (.T.T.E-S) | (In 6-S)     | (14 F2)      | (13 21)     | (148·II) | Schletta                  | Cleanup Objective        | HORY ROM    |
| punodiuo                 | 10T<br>(.TR E) | (3A) (OT (.TR 6) | (Ja) rot<br>(J4 6) | SOT<br>(.T=1 G-S) | (34 E-S) | (JM) SOT   | Tos (ML/DL)  | *AEOT        | POT         | (BR) NOT | New York Blate Draft Boll | olinis troy well<br>MOAT | n-9 7808    |
|                          | ***            |                  |                    |                   |          |            |              |              |             |          |                           |                          |             |

A lo h agad no satoM

16/63

## TABLE 3 (CONI.) TEST PIT SOIL AVALYTICAL RESULTS VOLATILE ORGANICS JANUARY/FEBRUARY 1991

## COULTAND, NEW YORK

| OTAL TIC                 | L110.0                    | £0.1     | l        |          |          |             |             | <u> </u> | <del> </del> | <u> </u> |          | 1.5                 | 200,00S       |
|--------------------------|---------------------------|----------|----------|----------|----------|-------------|-------------|----------|--------------|----------|----------|---------------------|---------------|
| sansky kalo              | L38.0                     | L368.0   | S8.0     | LE30.0   | LGar.0   | 6.4         | G8.2        | 900.0>   | L300.0>      | La00.0>  | 200,000  | 61                  |               |
| ener <b>(</b>            | La00.0>                   | L800.0>  | <0.029   | L800.0>  | LQTS0.0> | £7.0>       | 6.1>        | 800.0>   | La00.0>      | La00.0>  | 23       |                     | 2,000         |
|                          | LS30.0                    | Lr.o     | 690.0    | L\$00.0  | Lato.o   | L21.0       | LG81.0      | 800.0>   | L800.0>      | L800.0>  | 000,8    | <b>č.</b> 3         | 000,6         |
| aneznediyiti             |                           | L800.0>  | 620.0>   | L800.0>  | L750.0>  | £7.0>       | g'1>        | 800.0>   | L800.0>      | L800.0>  | 2,000    | 21                  | 2,000         |
| horobenzene              | L800.0>                   |          |          |          |          | <b>6</b> 15 | 06.8        | 900.0>   | L800.0>      | L800.0>  | 000,0S   | 8.1                 | 20,000        |
| øUeryo<br>•              | LS20.0                    | LÞEO.O   | LSS0.0   | LISO     | LCIY 2.0 |             |             |          |              | 1.800.0> | 96       | 9.0                 | 0)            |
| enartieoroldostaT-S,S,f, | L800.0>                   | L800.0>  | <0.029   | L800.0>  | L7S0.0>  | £T.0>       | 5.1>        | 900.0>   | L800.0>      |          |          |                     | 01            |
| enschloroethene          | La00.0>                   | L800.0>  | <0.029   | Lf00.0   | LGY00.0  | £T.0>       | 6.1>        | 800.0>   | L800.0>      | LS00.0   | ÞI       | 1.1                 | VI.           |
| -Hexanone                | LE10.0>                   | AS10.0>  | H820.0>  | LS10.0>  | LÞ20.0>  | 6.1>        | <2.9        | 110.0>   | LS10.0>      | LS10.0>  | <u></u>  |                     |               |
| enonatna9-S-lyritaM-     | LE10.0>                   | LS10.0>  | 820.0>   | <0.0121  | LÞ20.0>  | g:1>        | <2.9        | 110.0>   | LS10.0>      | LS10.0>  | 000′₽    | o.r                 | 000'}         |
|                          |                           |          | 620.0>   | L800.0>  | L7S0.0>  | £7.0>       | 5.1>        | 900.0>   | La00.0>      | L800.0>  | 69       |                     | 2,000         |
| molomon                  | 800.0>                    | L800.0>  |          |          |          |             |             | 900.0>   | La00.0>      | 1,000.0> |          | 1                   | SO (1)        |
| ana-qorqorohiold-8,1-ana | 900.0>                    | £800.0>  | 620.0>   | L800.0>  | L7S0.0>  | ET.0>       | 8.1>        |          |              |          | A-2      | 8.0                 |               |
| auazua                   | LS00.0                    | L£00.0   | <0.029   | 1.800.0> | L7S0.0>  | £7.0>       | 3.1>        | 800.0>   | L800.0>      | L8000.0  | 54       |                     | <del></del>   |
| anaritaorolrioi T.S.f.   | 900.0>                    | L800.0>  | <0.029   | L800.0>  | LTS0.0>  | £7.0>       | g:1>        | 900.0>   | L800.0>      | L800.0>  | 150      |                     | 001           |
|                          | Section of the section of | (:13.6)  | (116)    | (13 62)  | (136-5)  | (11 63)     | (11 6-5)    | (1161)   | (15 5 11)    | (Tris-I) | elteli 2 | Cleanup Objective   | leve.l nollo. |
| punoduid                 | 107<br>(19.6)             | (3A) FOT | (na) ios | SOT      | tial sof | TOS (MIT)   | (Jayan) sor | *AcoT    | MT           | (BR) NOT | Dean Bon | Mew York Blate TAGM | Nos Anon      |

Notes on Page 4 of 4

16/23/4 (C1011930 TABLE 3(Cont.)
TEST PIT SOIL ANALYTICAL RESULTS
VOLATILE ORGANICS
JANUARY/FEBRUARY 1991

ROSEN SITE CORTLAND, NEW YORK

| Compound                   | T05<br>(1.2 FT.) | 105 (FE) | 108<br>(4-5 FT.) | T06 Dup.<br>(4-5 FT.) | To7<br>(2-3-FT.) | T08<br>(10-12 FT.) | T09<br>(0-1 FT.) | T09 (FF)    | TIGA<br>(7.8 FT.) | Tick part<br>(7-8 FT) | New York Stage<br>Dark Sol<br>Calente | New York State<br>TASA<br>Clearup Objective | RCRA Soil<br>Action Levale |
|----------------------------|------------------|----------|------------------|-----------------------|------------------|--------------------|------------------|-------------|-------------------|-----------------------|---------------------------------------|---------------------------------------------|----------------------------|
| Chloromethane              | <0.012J          | <0.012.1 | <0.066           | <0,066                | <0.014           | <0.015             | <0.011J          | <0.0113     | <0.05             | <2.7                  | 540                                   |                                             |                            |
| Bromomethane               | <0.012.1         | <0.012J  | <0.066           | <0.068                | <0.014           | <0.015             | <0.011J          | <0.011J     | <0.05             | <2.7                  | 98                                    |                                             | 91                         |
| Vinyl Chloride             | <0.012.1         | <0.012J  | <0.066           | <0.086                | <0.014           | <0.015             | C110.0>          | <0.011.1    | <0.05             | 42.7                  | 0.36                                  | 0.2                                         |                            |
| Chloroethane               | <0.012J          | <0.012J  | <0.066           | <0.068                | <0.014           | <0.015             | <0.011J          | <0.0113     | <0.05             | 42.7                  | 540                                   | 1.9                                         |                            |
| Methylene Chloride         | 0.013J           | 0.005.1  | <0.033           | <0.033                | <0.007           | <0.007             | <0.006J          | 0.031.1     | <0.025            | \$15<br>\$15          | 88                                    | p.1                                         | 8                          |
| Acetone                    | 0.046J           | <0.012J  | 0.071            | 0.079                 | 0.1              | 0.014J             | <0.011           | <0.011J     | 0.046             | 42.7                  | 000'9                                 | 0.2                                         | 8,000                      |
| Carbon Disulfide           | <0.006J          | <0.006J  | <0.033           | <0.033                | <0.007           | <0.007             | <0.006J          | <0.00£      | <0.025            | 412                   | 8,000                                 | 2.7                                         | 8.000                      |
| 1,1-Dichloroethene         | <0.006J          | 0.0007J  | <0.033           | <0.033                | <0.007           | <0.007             | <0.006J          | <0.006J     | <0.025            | 4.12                  | 12                                    | 0.4                                         | 02                         |
| 1,1-Dichlaroethane         | ×0.006J          | <0.006J  | 0.016J           | 0.016J                | 0.01             | <0.007             | <0.006J          | <0.00&      | <0.025            | 4.5                   | 8,000                                 | 0.2                                         |                            |
| 1,2-Dichloroethene (total) | <0.006J          | <0.006J  | <0.033           | <0.033                | <0.007           | <0.007             | <0.006J          | <0.006J     | <0.025            | 4.15                  | 9006                                  |                                             |                            |
| Chloroform                 | <0.006J          | <0.006J  | <0.033           | <0.033                | <0.00>           | <0.007             | <0.006J          | <0.006J     | <0.025            | 2.5                   | 110                                   | 0.3                                         | 90                         |
| 1,2-Dichloroethane         | <0.006J          | <0.006J  | <0.033           | <0.033                | <0.007           | <0.007             | <0.006J          | <0.006J     | <0.025            | V.1.0                 | 1.7                                   | 0.1                                         | •                          |
| 2-Butanone                 | <0.012.1         | <0.012J  | <0.066           | ×0.068                | <0.014           | <0.015             | <0.011J          | <0.011.5    | <0.05             | 42.7                  | 4,000                                 | 0.3                                         | 4,000                      |
| 1,1,1-Trichloroethane      | 0.008.1          | 0.007J   | 0.28             | 0.24                  | 10.0             | <0.007             | 0.044J           | 0.0043      | <0.025            | 4.14                  | 7,000                                 | 0.8                                         | 7,000                      |
| Carbon Tetrachloride       | <0.0063          | <0.006J  | <0.033           | <0.033                | <0.007           | <0.007             | <0.006J          | <0.006⊥     | <0.025            | 4.15                  | 5.4                                   | 0.6                                         | 10                         |
| Viny Acetate               | <0.012.1         | <0.012J  | <0.068′          | <0.066                | <0.014           | <0.015             | <0.011J          | <0.011J     | \$0.05            | 42.7                  | 000'08                                |                                             |                            |
| Bromodichloromethane       | <0.006J          | <0.006J  | <0.033           | <0.033                | <0.007           | <0.007             | <0.006J          | <0.006J     | <0.025            | ¥; <b>V</b>           | 5.4                                   |                                             | 0.5                        |
| 1,2-Dichloropropane        | <0.006           | <0.006J  | <0.033           | <0.033                | <0.007           | <0.007             | <0.006∪          | <0.00€<br>1 | <0.025            | 4.1                   | 9                                     |                                             |                            |
| cis-1,3-Dichloropropene    | <0.00&J          | <0.006.1 | <0.033           | <0.033                | <0.007           | <0.00              | <b>∠0.006</b> J  | <0.006      | <0.025            | 4.10                  | 2                                     |                                             | 20 (1)                     |
| Trichloroethene            | ×0.006J          | <0.006J  | <0.033           | <0.033                | 0.001J           | <0.007             | 0.002.1          | 0.001J      | <0.025            | ₹.                    | 16                                    | 0.7                                         | 8                          |
| Dibromochloromethane       | <0.006J          | <0.006.  | <0.033           | <0.033                | <0.007           | <0.007             | <0.00¢J          | <0.006J     | <0.025            | 4.5                   | . 8.3                                 |                                             |                            |
| 1,1,2-Trichloroethane      | <0.006J          | <0.006J  | - <0.033         | <0.033                | <0.007           | <0.007             | <0.006J          | <0.006      | <0.025            | \$15                  | 120                                   |                                             | 901                        |
| Benzene                    | 0.001            | 0.002J   | <0.033           | <0.033                | <0.007           | <0.007             | <0.006J          | <0.008.1    | 0.003J            | <1.4<br>4.1.4         | 24                                    | 90.0                                        |                            |

3 of 4

Notes on Page 4 of 4

4/25/94

## TABLE 3 (Cont.) TEST PIT SOIL ANALYTICAL RESULTS JANUARY/FEBRUARY 1991 VOLATILE ORGANICS

## CORTLAND, NEW YORK ROSEN SITE

|                           |                  |                       |                  |                       |                  |         | The second second second |               |                  |             |                                         |                     |               |
|---------------------------|------------------|-----------------------|------------------|-----------------------|------------------|---------|--------------------------|---------------|------------------|-------------|-----------------------------------------|---------------------|---------------|
| Compound                  | T05<br>(1-2 FT.) | TUS (RE)<br>(1-2 FT.) | TOS<br>(4-5 FT.) | 706 Dup,<br>(4-6 FT.) | T07<br>(2.3.FT.) | TOB     | T09<br>(0.1.FT.)         | TOP (RE)      | T10Å             | T10A (ML)   | New York Blate<br>Draft Bod<br>Criterie | New York State TAGM | RCRA Boll     |
| trans-1,3-Dichloropropens | <0.006J          | <0.006J               | <0.033           | <0.033                | <0.007           | <0.00>  |                          | <0.0061       | 3000             |             |                                         | Alexandrian         | Action Levels |
| Bromoform                 | C900'0>          | <0.006∪               | <0.033           | <0.033                | <0.007           | <0.007  | 9000                     | 1900          | 3000             | ;           |                                         |                     | (E) 02        |
| 4-Methyl-2-Pentanone      | <0.012J          | <0.012J               | >0.066           | <0.066                | <0.014           | <0.015  | ×0.011.1                 | 1100          | 2000             |             |                                         |                     | 2,000         |
| 2-Hexanone                | <0.012J          | <0.012J               | <0.086           | <0.066                | <0.014           | <0.015  | 1100                     | 2 7           | 8.0              | 3 3         | 4,000                                   | 1.0                 | 4,000         |
| Tetrachloroethene         | <0.0061          | <0.00€J               | <0.033           | <0.033                | <0.007           | <0.007  | 00 00v                   | 2 8           |                  |             | ;                                       |                     |               |
| 1,1,2,2-Tetrachloroethane | <0.006J          | <0.006J               | <0.033           | <0.033                | <0.000           | C0002   | 18000                    | 19000         |                  | ;           | <u>.</u>                                | 1.4                 | 10            |
| Tolluene                  | 0.002.1          | 0.003.1               | 988              | 8867                  | 18               |         |                          | 3             | COUNCE<br>COUNCE | ¥15         | g                                       | 9.0                 | 40            |
| Chlorobenzene             | 1980             |                       | 2                | 2000                  | /00'00           | /00.00  | Clo.0                    | 0.00          | 9.26             | 22          | 20,000                                  | 1.5                 | 20,000        |
|                           | ZONOO N          | 70.00E                | \$0.08<br>\$0.08 | <0.033                | <0.007           | <0.00   | <0.006J                  | <0.006J       | <0.025           | <b>₹</b> 1> | 2,000                                   | 1.7                 | 2000          |
| Enylperzene               | <0.006J          | <b>€0.006J</b>        | <0.033           | <0.033                | <0.007           | <0.007  | <0.006J                  | <b>~0.00£</b> | 0.59             | 32          | 8 000                                   | 14 15               |               |
| Styrene                   | <0.006J          | <0.006.1              | <0.033           | <0.033                | <0.007           | <0.007J | 20.006Z                  | <0.00£J       | \$2000           | 1           | 8                                       | 3                   | 8,000         |
| Total Xylenes             | <0.006J          | <0.006J               | <0.033           | <0.033                | <0.007           | <0.00>  | <0.00€                   | 0.025.1       | 200              |             | 200,000                                 |                     | 2,000         |
| TOTAL TIC                 |                  | 0.007J                | 2.81.1           | 8.45                  | 0.478.1          | 5110.0  | <u>1</u>                 | 0.0254        | 1800             | 1           | om'm                                    | Z                   | 200,000       |
|                           |                  |                       |                  |                       |                  |         |                          |               |                  |             |                                         |                     |               |

All concentrations, detection tevels, draft soit criteria, action tevels, and clearup objectives are in mg/kg equivalent to parts per million (ppm).

(RE) - Indicates re-extraction of sample.

(DL) - Indicates dilution.

(ML) - Indicates medium level extraction of sample. Dup. - Indicates field duplicate sample.

The < sign indicates the compound was analyzed for but not detected. Intervals referenced are in feet below ground level.

B - Indicates analyte was found in associated blank as well as in sample.

J - Indicates an estimated value.

- E Identifies compounds whose concentrations exceeded the calibration range of the GCAMS instrument for that specific analysis.
  - D Identifies all compounds Identified in an analysis at a secondary dilution factor.
    - R Indicates the associated value is unusable.
- TIC Indicates Tentatively Identified Compounds.
- (1) Value presented is for 1,3-Dichloropropane.
- "Test pit sample T-03 (5-8.3) was broken in transit to the laboratory. A replacement sample T-03A (7-8) was submitted,
  - \* The soil criteria applies to cis-1,2-Dichloroethene only.

Shading Indicates at least one of the following was exceeded: State criteria, cleanup objective, or federal action level.

New York State TASM Recommended Soil Cleanup Objectives are from the NYSDEC Division Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives and Cleanup Levels, January 1894.

RCRA Soil Action Levels are from the Federal Register, Vol. 55, No. 145, July 27, 1999. References: Soli crisera are based on direct human ingestion. These criteria are from the NYSDEC Draft Cleanup Policy and Guidelines Document, October, 1991, derived from the HEAST Report current through December, 1990.

TABLE 3
TEST PIT SOIL, ABALYTICAL, RESULTS
SEMVOLATE E ORGANICS
JANUARY/FEBRUARY 1891

# ROSEN SITE CORTLAND, NEW YORK

| Campound                     | 101<br>(3.FT.) | TO (PE)       | To 100, 101, 101, 101, 101, 101, 101, 101 | Tog<br>(2-3 FT.) | TOSA     | 103<br>173 e 27 | TO           | 305       | New York State<br>Deaft Soil | New York State<br>TAGM Chanup |          |
|------------------------------|----------------|---------------|-------------------------------------------|------------------|----------|-----------------|--------------|-----------|------------------------------|-------------------------------|----------|
| Phenal                       | <0.84          | <0.84         | C#>                                       | 7.8              | 20.00    |                 |              | (1-2 )(1) | Cilleria                     | Objective                     | Levels   |
| Bis(2-Chloroethyf)Ether      | ×0.84          | 1807          |                                           | 3                | 26.0     | <0.62           | <0.8         | <1.6J     | 20,000                       | 0.03*                         | 20.080   |
| 2-Chlorophenol               | 28 6           | 100           | 245                                       | <1.67            | <0.74    | <0.82           | <0.8         |           | 0.64                         |                               | 86       |
| 1.3-Dichtorchanzana          | P0.07          | <0.04         | <42                                       | <1.6J            | <0.74    | <0.82           | 8.0>         | 21.62     | 1                            |                               | 3        |
| 1 4 Dichloroby               | ×0.84          | <0.84         | <42                                       | <1.6J            | <0.74    | <0.62           | 40×          | <181      |                              | 8                             | 3        |
|                              | 0.051J         | 0.052J        | <42                                       | <1.6J            | <0.74    | <0.82           | 8            |           |                              | 9.                            |          |
| Benzyi Acohol                | <0.64          | <0.84         | <42                                       | ∆<br>1.6∪        | <0.74    | 5               | 3            | GilV      | 58                           | <b>6</b> .5                   |          |
| 1,2-Dichlorobenzene          | <0.84          | <0.84         | <42                                       | ×1.60            | 72.0>    | 20.00           | 50.8         | <1.60     | 20,000                       |                               |          |
| 2-Methylphenol               | 0.28.1         | 0.32.1        | <42                                       | ×1.8.            | 70.07    | 0.05            | 20.8         | ~         | 7,000                        | 7.9                           |          |
| Bis(2-Chlorolsopropyt) Ether | <0.84          | <0.84         | 653                                       | 1                |          | <0.02           | <0.8         | <1.6J     | 4,000                        | 0.1                           | <b>7</b> |
| 4-Methylphenol               | <0.84<br><0.84 | ×0.84         |                                           | 3 ;              | <0.74    | <0.82           | <0.8         | <1.6J     | 92                           |                               |          |
| N-Nitroso-Di-n-Propylamine   | 70.84          | 100           | 245                                       | 7.0              | <0.74    | <0.82           | <b>9</b> '0> | 1.A.1     | 4,000                        | 9.0                           | 84       |
| Hexachlocoethana             |                | V0.84         | 25                                        | <1.6J            | <0.74    | <0.82           | <0.6         | <16.      | 3                            |                               | ann's    |
|                              | <b>V0.84</b>   | <0.84         | <42                                       |                  | <0.74    | <0.82           | 800          |           | 5                            |                               | 0.1      |
| NIII COBUZED®                | <0.84          | <0.84         | <42                                       | 1.62             | 7,00     | 68.07           |              | 6.17      | 88                           |                               | 90       |
| Isophorone                   | <0.84          | \$0.0<br>78.0 | 243                                       | 187              |          | 20.02           | <0.B         | <1.64     | 9                            | 0.2"                          | \$       |
| 2-Nitrophenot                | <0.84          | <b>0.84</b>   | . 45                                      | 3                | , CO.74  | <0.82           | <0.8         | <1.60     | 1,800                        |                               | 2,000    |
| 2,4-Dimethylphenol           | <0.84          | <0.84         | 1                                         | 3 3              | rvon.    | <0.82           | <0.6         | <1.6      |                              | 0.33*                         |          |
| Benzolc Actd                 | 150            |               |                                           | 76.1v            | <0.74    | <0.82           | <0.8         | <1.6.1    | 2,000                        |                               |          |
| Bis(2-Chloroethoxy) Methans  | 20.0           | <0.84         | S S S                                     | 47.6             | <3.6     | ₹               | <3.9         | <7.8J     | 300,000                      |                               |          |
| 2,4-Dichlorophenol           | ×0.84          | 0 84          | 3/15/                                     | 3 3              | <0.74    | <0.82           | 6,0>         | <1.6J     |                              |                               |          |
| 1,2,4-Trichlorobenzene       | <0.84          | <0.84         | 2 C/V                                     | 8 2              | <740     | <0.62           | <0.8         | <1.6J     | 200                          | 10                            | 200      |
| Naphthalene                  | 57E            | SAF           | 400                                       | NI'N             | <0.74    | <0.82           | <0.8         | <1.6J     | 2,000                        | 3.4                           | 2,000    |
| 4-Chloroaniline              | <b>70.84</b>   | 78.07         | Pagi i                                    | 0.440            | <0.74    | <0.82           | <0.8         | 1.43      | 300                          | 61                            |          |
| Hexachlorobutacliene         | <b>60.6</b> 4  | <0.50 PA      | 2 5                                       | 3                | <0.74    | <0.82           | <0.8         | <1.6J     |                              | 0.22*                         |          |
| 4-Chloro-3-Methylphenol      | <0.84          | 6.84          | \$   \$                                   | 2 2              | <0.74    | <0.82           | <0.8         | <1.6.     | 08                           |                               | 8        |
| 2-Methylnaphthalene          | 26E            | 27E           | 320.1                                     | 1 190            | , CO. 74 | 20.62           | <0.8         | <1.63     |                              | 0.24*                         |          |
| Hexachlorocyclopentacliene   | <0.84          | <0.84         | <42                                       | 1977             | 50.74    | <0.62           | <0.8         | 2.1.1     |                              | 86.4                          |          |
|                              |                |               | !!!                                       | 3.1              | <0./4    | <0.82           | <0.8<br><    | 4.6       | 099                          |                               | 3        |

Notes on Page 6 of 6

2 of 6

TABLE 3 (CONL)
TEST PIT SOIL ANALYTICAL RESULTS
SEMINOLATILE ORGANICS
JANUARY/FEBRUARY 1891

## ROSEN SITE COFFLAND, NEW YORK

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |                |        | •                          |                |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|----------------|--------|----------------------------|----------------|----------|
| Ourpound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tot    |             | Tol Ion      | TRZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TO3A   | SOL      | TOM            | 785    | New York State<br>Date Sol | New York State | ROM Soil |
| 2.4 6. Trichbrookens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F 3 A  | 7.14        | 67.5         | Res III)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (78FT) | (583FT)  | (142 FT.)      | (12FL) | Callerie                   | 3,833          | 1804     |
| Late management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.84  | <0.84       | <42          | <1.6J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.74  | <0.62    | <0.8           | <1.6.1 | 5                          |                | ,        |
| 2,4,5-1 richlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <4.1   | <4.1        | <200         | <7.6J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <3.6   | 2        | 88             |        | 5                          |                | 5        |
| 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.84  | <0.84       | <42          | 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 72.07  |          | 2              | 7 Y    | 000's                      | 0.1            | 9,000    |
| 2-Nitroanline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24     |             | 100          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.79  | <0.02    | <0.8           | ×1.6J  |                            |                |          |
| Dimethyl Phihalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 7.57        | A CAN        | <7.6J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <3.6   | *        | <3.9           | <7.BJ  |                            | 0.43*          |          |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V0.04  | A0.64       | <42          | <1.6J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.74  | <0.82    | <0.8           | A.15   | 90,000                     | •              |          |
| wedelpringsene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.5    | 3.6         | 2.6DJ        | <1.6J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.74  | <0.82    | <0.8           | 0.37.1 | 8                          | •  -           |          |
| z,6-Dhitrotokaene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.84  | <0.64       | <42          | \doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo\doldo | <0.74  | <0.82    | 807            |        | 3                          | 7              |          |
| 3-Nitroanitine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <4.1   | <4.1        | <200         | <7.6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -38 B  |          | 90             | 3.15   | -                          | -              | _<br>2   |
| Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19E    | 196         | 240.1        | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200    | P.       | 43.B           | <7.8   |                            | 0.5            |          |
| 2,4-Dinitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 4.1  | 177         | 3            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.74  | <0.82    | <b>40.8</b>    | 6.6J   | 5,000                      | 50 (3)         |          |
| 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | -           | B S          | <7.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <3.6   | <4       | <3.0           | <7.8J  | 500                        | 2.0            | 200      |
| Observed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | <b>C4.1</b> | ~200<br>~200 | <7.6J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <3.6   | <b>*</b> | 6.6>           | <7.8J  |                            | .10            |          |
| 2 4. Dicitoral second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19E    | 30E         | 2100         | ×1.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.74  | <0.82    | <b>6.0&gt;</b> | 72.1   |                            |                | T        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.84  | <0.84       | <42          | <b>3,1</b> €                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.74  | <0.62    | 808            | -181   | •                          | !              | Ţ.       |
| Diethylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.84  | <0.84       | <42          | . A.1.6J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.74  | C0 82    |                | 3      | -                          |                |          |
| 4-Chlorophenyl-phenyleither                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.84  | <0.84       | <42          | 1877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 79.0     | 20.0           | V.1.62 | 000'09                     | 7.1            | 00'00    |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22E    | 23E         | icke         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V0.7   | <0.82    | <0.0>          | <1.6J  | 2,000                      |                |          |
| 4-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 10.         | S. C.        | V9.[5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.74  | <0.82    | <0.6           | P.8.1  | 3,000                      | (E) 03         |          |
| 4.6-Dinitro-2-Methyloperol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.7    | C4: 1       | 2025         | <7,60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <3.6   | 5        | <3.9           | <7.BJ  |                            |                |          |
| N-Nitrosodiohemdamine (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.1.7  | - T         | 80%          | <7.6J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <3.6   | <4       | <3.8           | <7.8J  | •                          |                |          |
| A Promise of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C.G.S. | 0.523       | 2 <b>7</b> > | ~1.62<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.74  | <0.82    | 8:0>           | △1.6J  | 97                         |                | 1        |
| - complete in the management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×0.84  | <0.84       | <42          | <1.6J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.74  | <0.82    | 40.8           | 1810   |                            |                | 3        |
| nexacinological participation of the participation | <0.84  | <0.84       | <42          | <1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.74  | <0.82    | <0.8           | 1812   | 17.0                       |                |          |
| rentachorphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <4.1   | <4.1        | <200         | <7.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <3.6   | 2        | 100            |        |                            | · i            |          |
| Phenanthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 92E    | 309         | OL.          | <7.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72.00  | 8        | ,              |        | z'mno                      | -              | 2,00     |
| Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16E    | 146         | 18D          | 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.50   | 70.06    | 40.8           | 286    |                            | 50 (3)         |          |
| Di-n-Bulyiphthiaisis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24E    | 246         | 26n.i        | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VG. 74 | <0.82    | <0.6           | 6.13   | 20,000                     | 50 (3)         |          |
| Fkloranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 386    | 416         | 9            | Party of the state | 877    | <0.62    | <0.8           | <1.6J  | 8,000                      | 8.1            | 900'9    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |             | Clear        | - P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.74  | <0.82    | <0.0           | 11.7   | 3,000                      | (E) 03         | }        |

# TABLE 3 (Cont.) TEST PT SOIL ANALYTICAL RESULTS SEMIVOLATIIE ORGANICS JANUARY/FEBRUARY 1891

## ROSEN SITE CORTLAND, NEW YORK

| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T01.    | TO1 (745) | Tol puj<br>(3 FT.) | Tide<br>R 3 FT.) | TOSA<br>(F.B.FT.) | 80 B  | T94<br>0.2.57.1 | TIS<br>(19 FF) | New York State<br>Dealt Soil | New York Subs<br>TAGAI Cheanage | ROW Sol |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|--------------------|------------------|-------------------|-------|-----------------|----------------|------------------------------|---------------------------------|---------|
| Pyrane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42E     | 38E       | 45D                | 3.9.1            | <0.74             | <0.82 | 800             | 761            |                              |                                 | LEVOR   |
| Bulylbenzylphthatate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16E     | 14E       | 12DJ               | 0.26.1           | 1.6               | 20 0/ |                 |                | מ'ממם                        | (2)                             |         |
| 3,3'-Dichlorobenzidina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1.7    | <1.7      | <84                | 7                | 5 7               | -0.0¢ | \$0.8           | <1.6U          | 20,000                       | 50 (3)                          | 20,000  |
| Benzo(a) Anthracana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 195     | 207       |                    | 27.77            | 6,15              | 8,15  | v1.6            | <3.2J          | 1.6                          |                                 | N       |
| Chysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.5     | 30.       | TO/L               | £43              | <0.74             | <0.82 | <0.8            | F*8            | 0.22                         | 0.22*                           |         |
| Die Charles de Land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 361     | 145       | <b>1691</b>        | 788              | <0.74             | <0.82 | 8.0>            | 2.2.1          |                              | 70                              |         |
| cycle-curymoxyr runalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17E     | 15E       | 18DJ               | 0.61BJ           | 0.33J             | <0.82 | \$ 0 B          | <181           | Ş                            | 18 03                           |         |
| D-n-Octyl Phihalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.84J  | <0.84J    | <42                | 1.6⊔             | <0 74B            | 68 0/ | 9 6             |                | 3                            | 2                               | 8       |
| Benzo(b)Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 396.1   | 26F.I     | 1010               |                  |                   | 70.05 | 20.0            | ZI.62          | 2,000                        | 50 (3)                          |         |
| Benzoftk/Fluoranthera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 196     | 1 3       | 3                  | 41.9             | <0.74H            | <0.82 | <0.8            | 7.1            | 0.22                         | 1.1                             |         |
| BenzolalPyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 6     | 3         | 420                | A1.6J            | <0.74R            | <0.82 | <0.8            | L78.0          | 0.22                         | ==                              |         |
| Indeno(1.2 3-x48Pyrana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 164     | 22        | 6.103              | 123              | <0.74R            | <0.82 | <0.8            | 7960           | 0.61                         | 0.061*                          |         |
| Otherwood by Anderson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.04J  | <0.84J    | <42                | 1.2.1            | <0.74R            | <0.82 | <0.8            | 0.63           |                              | 3.5                             |         |
| and the second of the second o | <0.84.  | <0.84J    | <42                | 0.55J            | <0.74R            | <0.82 | <0.8            | 0.123          | 7100                         | 17.00                           |         |
| Delizolg, it, jir etylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.84.1 | <0.84J    | <42                | 3.13             | <0.74R            | <0.82 | <b>40.8</b>     | 0.47.1         |                              | E S                             |         |
| TOTAL TICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33.65.1 | 55.43.1   | 237                | 48.17.1          | 16 95             | 27.6  |                 | ALL:           |                              | (?)<br>(2)                      |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |                    |                  | 20.00             | ?     | 2,82            | 10.15.         |                              |                                 |         |

TABLE 3 (Cont.)
TEST PIT SOIL ANALYTICAL RESULTS
SEMNOLATII E ORGANICS
JANUARY/FERRUARY 1891

ROSEN SITE CORTLAND, NEW YORK

| Compound                     | T05 (01)<br>(1-2 FT.)           | T06<br>(4-5 FT.)      | T06 Dup.<br>(4-5 FT.) | 78 P.P.<br>1997<br>158 F.D. | To7<br>(2.9 FT.) | T08<br>(10-12 FT.) | 100      | Tiok        | New York State<br>Draft Sod | New York State<br>TACM | ROPA SOL      |
|------------------------------|---------------------------------|-----------------------|-----------------------|-----------------------------|------------------|--------------------|----------|-------------|-----------------------------|------------------------|---------------|
| Phenol                       | ₹                               | C\$1:0                | <0.94                 | \$60×                       | 002              | 2000               | <u> </u> |             |                             | Central Oxforting      | Action Levels |
| Bis(2-Chloroethyl)Ether      | \<br>\<br>\<br>\<br>\<br>\<br>\ | >0.96                 | 70.07                 | 196                         |                  | 06.0               | <0.723   | G0.782      | 20,000                      | 0.03                   | 20,000        |
| 2-Chlorophenol               |                                 | an o                  |                       | 5 6                         | R'O'S            | BR:0>              | <0.72J   | <0.78J      | 0.64                        |                        | 9.0           |
| 1 3-Dichlorohenzene          |                                 | 200                   | <b>40.84</b>          | <0.94                       | <0.9             | <0.98              | <0.72.1  | <0.78J      | 400                         | 0.8                    | 904           |
| A Diskland Control of        | <47                             | 96.0>                 | <0.94                 | <0.94                       | €0.9             | <0.98              | <0.72J   | 20.78       |                             | 1.8                    |               |
| A-Lucikoloenzene             | ₹                               | ×0.96                 | <0.94                 | <0.94                       | <0.9             | <0.98              | <0.72J   | <0.78.1     | 83                          | 8.5                    |               |
| Den Zyr Auconol              | <b>^</b>                        | <0.96                 | <0.94                 | <0.94                       | <0.9J            | <0.96J             | <0.72    | <0.78.1     | 20,000                      |                        |               |
| ,2-Dichlorobenzene           | ₹                               | <0.98                 | <0.94                 | \$0.94                      | 6.6              | 0.08<br>0.08       | 46,72.1  | <0 78.      | 2,000                       | 9.5                    |               |
| 2-Methylphenol               | ₹                               | <0.96                 | <0.94                 | <0.94                       | 6.0>             | <0.98              | <0.72    | 187 0×      | 700                         | 877                    |               |
| Bis(2-Chlorolsopropyf) Ether | \$                              | <0.96                 | <0.94                 | <0.94                       | 6.0°             | 0.96<br>0.96       | 22.00    | 3 2         | 9                           | 1.0                    | 4,000         |
| 4-Methylphenol               | <4J                             | <0.96                 | <0.94                 | <b>20.94</b>                | 6.05             | 86.05              | 122.05   | 1 82 0      | 804                         |                        |               |
| N-Nitroso-Di-n-Propylamine   | ₹                               | >0.96                 | <0.94                 | <0.94                       | <0.0>            | <0.98              | \$ 22.0  | 1 8 C       | 3                           | A.O.                   | 4,000         |
| Hexachloroethane             | <4.1                            | >0.96                 | <0.94                 | ×0.94                       | 80               | 88.0               | 200      | 2 0         | 3 8                         |                        | 0.1           |
| Nitrobenzene                 | <4J                             | >0.96                 | <0.94                 | <0.94                       | <0.0>            | 86 O>              | 107.0    | 20,00       | 3                           |                        | 980           |
| Isophorone                   | <4.1                            | 96:0>                 | <0.94                 | <0.94                       | 0.0              | 800                | 2 6      | 3 6         |                             | 2.0                    | \$            |
| 2-Nitrophenal                | (4)                             | ×0.96                 | <0.94                 | 20.02                       | 00/              | 800                | 21.0     | 70.70       | 000'                        |                        | 2,000         |
| 2,4-Dimethylphenot           | \<br><b>6</b> €1                | ×0.96                 | 7000                  | ×0.0×                       |                  | 06.0               | <0.721   | 0.7€        |                             | 0.33°                  |               |
| Benzoic Acid                 | ×180                            | <4.6                  | 972                   | 1                           |                  | 08:0               | <0.721   | \$<br>180   | 2,000                       |                        |               |
| Bis(2-Chloroethoxy) Methane  | 140                             | 8                     |                       |                             | *                | 0.0630             | <3.5     | ₹3.62       | 300,000                     |                        |               |
| 2.4-Dichkrophenol            | 1                               | 3 8                   | , O. P.               | <0.84                       | 6.0>             | ×0.98              | \ZV.0>   | <0.78J      |                             |                        |               |
| 124-Tdehloschanzana          | , ,                             | R.O.                  | 40.84                 | ×0.94                       | <0.9             | <0.98              | <0.72J   | <0.78J      | 200                         | 4.0                    | 200           |
| Narhhalasa                   | 3                               | 98.<br>0.<br>0.<br>0. | <0.94                 | \$0.94<br>46.05             | <0.9             | <0.98              | <0.72.1  | <0.78J      | 2,000                       | 3.4                    | 2000          |
| 4-Chlorophine                | ni);                            | ×0.196                | <0.94                 | 40.09                       | <0.9             | <0.98              | 0.84J    | <0.78∪      | 800                         | 13                     |               |
| Haveophysical                | 3                               | \$6.05<br>\$1.00      | ×0.94                 | <0.94                       | <0.9             | <0.98              | <0.72    | <6.78∠      |                             | 0.22*                  |               |
|                              | 7                               | ×0.96                 | <0.94                 | <0.94                       | <0.9             | <0.98              | <0.72    | <0.78J      | 8                           |                        | 8             |
|                              | <b>₹</b>                        | >0.96                 | <0.94                 | <0.94                       | 6.0>             | 96.0V              | \$0.727  | \$<br>26.78 |                             | 0.946                  | 2             |
| Z-Methymaphthalena           | Z                               | <0.96                 | <0.94                 | <0.94                       | 6.05             | 0.86<br>0.86       | 0.52.1   | 187.0>      |                             | P.5.0                  |               |
| Hexachlorocyclopentadiene    | <4J                             | ><0.96                | ×94                   | <0.94J                      | 600              | SO DA              | 25 6     |             |                             | 50.4                   |               |
| 2,4,6-Trichlorophenol        | 77>                             | . <0.96               | <0.94                 | 20.94.3                     | a e              | 8                  | 1 2 4    | 3 3         | 200                         |                        | 009           |
| 2,4,5-Trichlorophenol        | × 19.                           | ¢4.6                  | <4.5                  | <4.51                       | \$ \$ \$         | ₹ 8<br>8 4 8       | 19 P     | 3 6         | 3                           |                        | 9             |
| 2-Chloronaphthalene          | ? <b>*</b> >                    | >0.96                 | ×0.94                 | 0.94.1                      | ١                | 800                |          | 3           | 900'8                       | 0.1                    | 9,000         |
| 2-Nitroaniline               | ğ                               | ×4.6                  | <4.5                  | 145                         |                  | 06.0               | <0.721   | <0.76J      |                             |                        |               |
|                              |                                 |                       |                       | AN                          | 4.4              | 2.4.8              | <3.5.1   | <3.8J       |                             | 0.43                   |               |

Notes on Page 6 of 6

4/22/84 0684T013

TABLE 3 (CONL)
TEST PIT SOIL ANALYTICAL RESULTS
SEMIVOLATILE ORGANICS
JANUARY/FEBRUARY 1991

ROSEN SITE CORTILANID, NEW YORK

|                              |                       |        |                |                  |                | į             |                |                                                                      |                |                    |             |
|------------------------------|-----------------------|--------|----------------|------------------|----------------|---------------|----------------|----------------------------------------------------------------------|----------------|--------------------|-------------|
| Compound                     | 105 RDL<br>175 C. 175 | Tod    | TOB Dup.       | 106 Dup.<br>(PC) | 707            | Tow.          | 200000         |                                                                      | New York State | New York State     |             |
| Dimethal Phthelete           | 200                   |        | (4-5 FT.)      | (+6FT)           | (RSFI)         | (10-12円)      | (C) ET.)       | 778 571                                                              | Death Soll     | TAGAT              | PCPA Sel    |
|                              | <b>₹</b>              | <0.96  | <0.94          | <0.94.1          | 987            |               | 1              | W 7 W 2 W 2 W 2 W 2 W 2 W 2 W 2 W 2 W 2                              |                | Cleaning Objective | Acton Leads |
| Acenaphiliylane              | 0.35DJ                | \$0.96 | ×0 94          | 1700             | and the second | 86            | ₹9.25<br>12.05 | <0.78J                                                               | 80,000         | 2                  |             |
| 2,6-Dinitrotokene            | <b>747</b>            | ×0.96  | 7007           |                  | 60.8           | 98.0          | 0.32.1         | <0.78J                                                               | 300            | =                  |             |
| 3-Nitroaniine                | A18.                  | 24 B   | 5              | 760              | 6.0>           | <b>88</b> .0  | <0.72.1        | <0.78J                                                               | -              | -                  |             |
| Acenaphthene                 | 3,                    | 20 67  | 200            | 3                | \$             | <4.0          | <3.5J          | \$3.82                                                               |                | 930                | 3           |
| 2,4-Dinitrophenol            | 1017                  |        | ¥6.94          | <0.947           | <0.9           | <0.98         | 0.16           | <0.78.1                                                              | 5,000          | 200                |             |
| 4-Nitrophenol                |                       | 24.0   | <4.5           | <4.5J            | <4.4           | <4.8          | \$3.84         |                                                                      |                | (S) OC             |             |
| Olbenzohen                   | A C                   | <4.6   | <4.5           | <4.51            | <4.4           | 8.5           | 198            | 3 6                                                                  | 98             | 0.2°               | 500         |
|                              | <b>26</b>             | <0.96  | <0.94          | <0.94J           | 002            | 200           | 3              | 23.62<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.03<br>2.03<br>2.0 |                | 0.1                |             |
| 2,4-Untitrototuene           | <4.1                  | >0.96  | <0.94          | <0.84.1          | 900            | 80            | 0.423          | <0.78J                                                               |                | 6.2                |             |
| Diethylphthalate             | ~<br>₹*               | \$0.0V | 200            |                  | A.O.           | <0.08         | <0.72J         | <0.78J                                                               | -              |                    |             |
| 4-Chlorophenyl-phenylether   | ₹                     | 8 9    | 500            | <0.943           | <0.0>          | <0.98         | <0.72.1        | <0.78J                                                               | 90,000         |                    |             |
| Fluorene                     | gg                    | 8 0    | 40.04          | <0.943           | 8.00           | <0.98         | <0.72          | <0.78⊥                                                               | 2.000          |                    | 000'09      |
| 4-Nitroaniline               | ŝ                     | 64.8   |                | \$0.94.J         | \$0.9<br>8.09  | <0.98         | <0.72J         | <0.78J                                                               | 3,000          | 50 (3)             |             |
| 4,6-Dinitro-2-Methylphenoi   |                       | 24.0   | 2 3            | ×.50             | <4.4           | <4.8          | 3.5            | <3.8€                                                                |                | 2                  |             |
| N-Nitrosodiphenylamine (1)   | 3                     | 800    | 24.0           | 25               | C4.4           | <4.8          | \<br>3.8.      | 3.8                                                                  |                |                    | •           |
| 4-Bromophenyf-phenylether    | 4                     | 8 8    | VO.84          | <0.94J           | <0.9           | <0.98         | \$0.72J        | <0.78J                                                               | 975            |                    |             |
| Hexachlorobenzena            | *                     | 8000   | 40.84<br>40.84 | \$<br>\$         | <0.0           | <0.98         | L27.02         | \$6.78L                                                              |                |                    | 92          |
| Pentachlorophenol            | , te                  | 3      | ¥              | <0.84J           | <0.0>          | <b>86.0≻</b>  | <0.72          | <0.78J                                                               | 170            |                    |             |
| Phenanthrena                 | 330.1                 | 100    | 6.4.5          | 3.5              | <4.4           | <4.8          | 26.52          | 3.0                                                                  | 88.            | 1,000              |             |
| Anthracene                   | 100                   | 3 3    | 0.227          | <u>8</u>         | 0.11J          | 0.98<br>60.08 | 35.            | <0.78.1                                                              |                | -                  | 2,000       |
| Ol-n-Butytchthalate          |                       | VO'NO  | ×0.94          | <0.94J           | <0.0>          | <b>88.0</b> ∨ | =              | -0 Za i                                                              |                | SS (S)             |             |
| Fluoranthere                 | 3                     | <0.96  | <0.94          | . <0.94J         | · (1900        | 86.6          | 2 6            | 3 3                                                                  | 20,000         | 50 (3)             |             |
| Pyrane                       | 200                   | 96.0>  | 0.197          | 0.23.0           | 0.072.0        | SO OV         | 107 %          | 3/6/6                                                                | 8,000          | 8.1                | 8,000       |
| Richard Ash de ale           | 787                   | 0.26J  | 0.987          | 0.46.1           | 0.08.1         | 8             |                | να/να.                                                               | 3,000          | (5) 03             |             |
| אריייייני אין או ווי ומוקווס | < <u>(</u> )          | <0.96  | <0.94J         | ×0.94            | 1              |               | 3              | <0.78J                                                               | 2,000          | 50 (3)             | }           |
| 3,3 -Uchlorobenzidine        | 78>                   | 6.15   | S. A.          | 8.<br>V          |                | \$0.98        | ~0.72<br>√0.72 | <0.78J                                                               | 20,000         | (6) 05             | 20,000      |
| Bénzo(a) Anthracene          | 2.407                 | >0.96  | <0.94.1        | 200              | 2              | 8             | 7.5            | 1.6J                                                                 | 1.6            |                    |             |
| Chysene                      | 7 Table               | 0.23.  | 17007          |                  | NO/070         | <0.98         | T A            | <0.78J                                                               | 0.22           | 0.00               |             |
| Bis(2-Ethythexyt) Phithalate | ₹<br>2                | 88.00  | 100%           | 50.84            | 0.150          | 88.05         | 336            | <b>6.78</b> 2                                                        |                | 70                 |             |
| Di-n-Octyl Phthelate         | 3                     | 96.0>  | 900            |                  | 0.055.         | 0.98<br>0.98  | <0.72.1        | .6.7€.                                                               | 8              | # G                |             |
| Benzo(b)Flucranthens         | 1.00                  | 11.0   | 900            | - CO. B-4        | <0.0           | <0.98         | <0.72.1        | <0.78.                                                               | 2,000          | E E                | 8           |
|                              |                       |        | NO.394H        | <0.94            | 0.092.1        | >0.98         | 282            | .6.78.<br>∑8.7                                                       | 0.50           | (2)                |             |
| Dear 6 - 6 o                 |                       |        | •              |                  |                |               |                |                                                                      |                |                    |             |

Notes on Page 6 of 6

4/22/84 009410138

## TARIES (CONL) TEST PIT SOIL AIALYTICAL RESULTS SEMIVOLATILE ORGANICS JANUARYFEBRUARY 1991

## COULIVAND' NEM LOUK BOSEN SILE

| OTAL TICE                    | 28.53     | LET.84           | Lf.08                | LP.88                            | L7.8h           | LAT.ET            | LEB.11          | LEB.S            |                                         | <b></b>                                     |                           |
|------------------------------|-----------|------------------|----------------------|----------------------------------|-----------------|-------------------|-----------------|------------------|-----------------------------------------|---------------------------------------------|---------------------------|
| enakne¶i,n,g)osneš           | LG82.0    | 96.0>            | A)+8.0>              | 14.0>                            | 6.0>            | 84.0>             | L£87.0          | L87.0>           |                                         | (2) 02                                      |                           |
| ensolviju (d. h) Antintaceng | LA>       | 96.0>            | R16.0>               | <b>P6.0&gt;</b>                  | 6.0>            | 86.0>             | LISO            | LBT.0>           | 110.0                                   | .b10°0                                      |                           |
| enaty9(bɔ-ɛ,S,1)onabn        | LG18.0    | 96.0>            | A48.0>               | <b>№</b> 6.0>                    | 6.0>            | 86.0>             | L8S.1           | L87.0>           |                                         | 3.2                                         |                           |
| ansı√1(a)o≤n∋c               | POPE 0    | 96:0>            | FI)-8:0>             | <b>≯</b> 6:0>                    | 6.0>            | 86.0>             | CBLS            | LBT.0>           | 190.0                                   | •180.0                                      |                           |
| enedinasou/7(V)osned         | 0 601     | LAO.Q            | FIÞ6.0>              | 16.0>                            | L1 PO.0         | 88.0>             | rez i           | L87.0>           | 0.22                                    | 1.1                                         |                           |
| planokuog                    | (171 S-1) | 00T<br>(374 č.P) | 106 Dup.<br>(13 8-1) | .0401 00T<br>(±14)<br>(±14) 6-9) | 507<br>(19.8-%) | 807<br>(TH ST-01) | 80T<br>(TT 1-0) | A017<br>(TR &-S) | New York State<br>Draft Solf<br>Cileate | alata yiny wali<br>Man<br>awiisajdo ganasio | Son Archi<br>eleval match |

### Notes:

All concentrations, detection levels, dreft soil criteria, action levels, and cleanup objectives are in mg/kg equivalent to parts per million (ppm). (RE) - indicates re-extraction of sample.

(DL) - Indicates dilution.

Dup. - indicates field duplicate.

Intervals referenced are in feet below ground level.

The < sign indicates the compound was snalyzed for but not detected.

D - Identifies all compounds identified in an analysis at a secondary dilution factor.

D - Identifies all compounds identified in an analysis at a secondary dilution factor.

J - indicates an estimated value.

B - Indicates analyte was found in associated blank as well as in the warrple.

N - Presumptive evidence of the compound,

R - Indicates the associated value is unusable.

(1) - indicates this compound cannot be separated from Diphenylemine.

(2) - Indicates this compound cannot be separated from 2,3-Dinitrotoluene.

(3) - As per proposed TAGM, Total VOCs < 10 ppm, Total SVOCs < 500 ppm, and Individual SVOCs < 50 ppm.

These compounds should not be detected above the TAGM or the method detection limit.

TIC - Indicates Tentatively Identified Compounds.

Shading indicates that at least one of the following was exceeded: State criteria, cleanup objective, or federal action levels.

## Releiences:

Soit criterie are based on direct human ingestion. These criteria are from the NYSDEC Division Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives and Cleanup Levets, January 1994.

ACRA Soil Action Levets are from the Federal Register, Vol. 55, No. 145, July 27, 1990.

## TABLE .3 TEST PIT SOIL ANALYTICAL RESULTS PESTICIDES/PCBs JANUARY/FEBRUARY 1991

## ROSEN SITE CORTLAND, NEW YORK

| Compound           | 701<br>(3 FT.) | T02<br>(2-3 FT.) | T03<br>(5-8.3<br>FT.) | T03A<br>(7-8 FT. | T04<br>(1-2<br>FT.)                              | T05<br>(1-2<br>FT.) | T06<br>(4-5 FT.) | T06 Dup.<br>(4-5 FT.) | 707<br>(2-3 FT.) | T08<br>(10-12 FT.) | T09<br>(0-1<br>FT.) | TIOA<br>(7-8 FT.) | New York<br>State<br>Draft Soll<br>Criteria | New York<br>State<br>TAGM<br>Cleanup | RCRA Soli<br>Action Leve |
|--------------------|----------------|------------------|-----------------------|------------------|--------------------------------------------------|---------------------|------------------|-----------------------|------------------|--------------------|---------------------|-------------------|---------------------------------------------|--------------------------------------|--------------------------|
| alpha-BHC          | <0.019         | <0.019           | <0.02                 | <0.017           | <0.018                                           | <0.017              | <0.026           | <0.026                | <0.022           | <0.024             |                     |                   |                                             | Objective                            |                          |
| beta-BHC           | <0.019         | <0.019           | <0.02                 | <0.017           | <0.018                                           | <0.017              | <0.026           | <0.026                | <0.022           |                    | <0.02               | <0.019            | 0.11                                        | 0.11                                 | 0.1                      |
| delta-BHC          | <0.019         | <0.019           | <0.02                 | <0.017           | <0.018                                           | <0.017              | <0.026           |                       |                  | <0.024             | <0.02               | <0.019            | 3.9                                         | 0.2                                  | 4                        |
| gamma-BHC(Lindane) | <0.019         | <0.019           | <0.02                 | <0.017           | <0.018                                           |                     |                  | <0.026                | <0.022           | <0.024             | <0.02               | <0.019            |                                             | 0.3                                  |                          |
| Heptachlor         | <0.019         | <0.019           | <0.02                 | <0.017           | <del>                                     </del> | <0.017              | <0.026           | <0.026                | <0.022           | <0.024             | <0.02               | <0.019            | 5.4                                         | 0.06                                 | 0.5                      |
| Ndrin .            | <0.019         | <0.019           |                       |                  | <0.018                                           | <0.017              | <0.026           | <0.026                | <0.022           | <0.024             | <0.02               | <0.019            | 0.16                                        | 0.1                                  | 0.2                      |
| leptachlor epoxide | <0.019         |                  | <0.02                 | <0.017           | <0.018                                           | <0.017              | <0.026           | <0.026                | <0.022           | <0.024             | <0.02               | <0.019            | 0.041                                       | 0.041                                | 0.04                     |
| ndosulian I        |                | <0.019           | <0.02                 | <0.017           | <0.018                                           | <0.017              | <0.026           | <0.026                | <0.022           | <0.024             | <0.02               | <0.019            | • 0.77                                      | 0.02                                 |                          |
| Dieldrin           | <0.019         | <0.019           | <0.02                 | <0.017           | <0.018                                           | <0.017              | <0.026           | <0.026                | <0.022           | <0.024             | <0.02               | <0.019            |                                             | 0.9                                  | 0.08                     |
|                    | <0.039         | <0.037           | <0.04                 | <0.034           | <0.037                                           | <0.035              | <0.052           | <0.051                | <0.044           | <0.048             | <0.039              | <0.038            | 0.044                                       |                                      | 4 (1)                    |
| ,4'-DDE            | <0.039         | 0.016J           | <0.04                 | <0.034           | <0.037                                           | <0.035              | <0.052           | <0.051                | <0.044           | <0.048             | <0.039              | <0.038            |                                             | 0.044                                | 0.04                     |
| ndrin              | <0.039         | <0.037           | <0.04                 | <0.034           | <0.037                                           | <0.035              | <0.052           | <0.051                | <0.044           | <0.048             | <0.039              |                   | 2.1                                         | 2.1                                  | 2 (3)                    |
| ndosulian (I       | <0.039         | <0.037           | <0.04                 | <0.034           | <0.037                                           | <0.035              | <0.052           | <0.051                | <0.044           | <0.048             |                     | <0.038            | 200                                         | 0.1                                  | 20                       |
| 4'-DDD             | <0.039         | <0.037           | <0.04                 | <0.034           | <0.037                                           | <0.035              | <0.052           | <0.051                |                  |                    | <0.039              | <0.038            |                                             | 0.9                                  | 4 (1)                    |
| ndosulfan sulfate  | <0.039         | <0.037           | <0.04                 | <0.034           | <0.037                                           | <0.035              | <0.052           |                       | <0.044           | <0.048             | <0.039              | <0.038            | 2.9                                         | 2.9                                  | 3 (4)                    |
| 4'-DDT             | <0.039         | <0.037           | <0.04                 | <0.034           | <0.037                                           | <0.035              | <del></del> -    | <0.051                | <0.044           | <0.048             | <0.039              | <0.038            |                                             | 1.0                                  |                          |
| ethoxychlor        | <0.19          | 0.066.J          | <0.2                  | <0.17            |                                                  |                     | <0.052           | <0.051                | <0.044           | <0.048             | <0.039              | <0.038            | 2.1                                         | 2.1                                  | 2 (5)                    |
| ndrin ketone       | <0.039         | <0.037           | <0.04                 | <del></del> -    | <0.18                                            | <0.17               | <0.26            | <0.26                 | <0.22            | <0.24              | <0.2                | <0.19             | 80                                          | 10.0 (6)                             |                          |
| oha-chlordane      | <0.19          | <0.19            |                       | <0.034           | <0.037                                           | <0.035              | <0.052           | <0.051                | <0.044           | <0.048             | <0.039              | <0.038            |                                             |                                      |                          |
| mma-chiordane      | <del> </del> - |                  | <0.2                  | <0.17            | <0.18                                            | <0.17               | <0.26            | <0.26                 | <0.22            | <0.24              | <0.2                | <0.019            |                                             | <del></del>                          | 0.5 (2)                  |
|                    | <0.19          | <0.19            | <0.2                  | <0.17            | <0.18                                            | <b>≤0.17</b>        | <0.26            | <0.26                 | <0.22            | <0.24              | <0.2                | <0.019            |                                             | 0.54                                 |                          |
| xaphene '          | <0.39          | <0.37            | <0.4                  | <0.34            | <0.37                                            | <0.35               | <0.52            | <0.51                 | <0.44            | <0.48              | <0.39               | <0.38             | 0.64                                        | U.54                                 | 0.5 (2)                  |

Notes on Page 2 of 2

4/20/94 0694T013G

## TABLE 3 (Cont.) TEST PIT SOIL ANALYTICAL RESULTS PESTICIDES/PCB: JANUARY/FEBRUARY 1991

### ROSEN SITE CORTLAND, NEW YORK

| Compound     | T01<br>(3 FT.) | T02<br>(2-3 FT.) | T03<br>(5-4.3<br>FT.) | T03A<br>(7-0 FT.) | 104<br>(1-2<br>FT.) | T05<br>(1-2<br>FT.) | T08<br>(4-5 FT.) | T06 Dup.<br>(4-5 FT.) | T07<br>(2-3 FT.) | TQ#<br>(10-12 FT.) | T09<br>(0-1<br>FT.) | T10A<br>(7-0 FT.) | New York<br>Blate<br>Draft Soll<br>Criteria | New York<br>Blale<br>TAGM<br>Cleanup<br>Objective | ACRA Soll<br>Action Level |
|--------------|----------------|------------------|-----------------------|-------------------|---------------------|---------------------|------------------|-----------------------|------------------|--------------------|---------------------|-------------------|---------------------------------------------|---------------------------------------------------|---------------------------|
| Aroclor-1016 | <0.19          | <0.19            | <0.2                  | <0.17             | <0.18               | <0.17               | <0.28            | <0.26                 | <0.22            | <0.24              | <0.2                | <0.19             | 1*                                          | 1*, 10* (7)                                       | 0.09                      |
| Aroclor-1221 | <0.19          | <0.19            | <0.2                  | <0.17             | <0.18               | <0.17               | <0.26            | <0.26                 | <0.22            | <0.24              | <0.2                | <0.19             | 1*                                          | 1*, 10* (7)                                       | 0.09                      |
| Aroclor-1232 | <0.19          | <0.19            | <0.2                  | es.17             | <0.18               | <0.17               | <0.26            | <0.26                 | <0.22            | <0.24              | <0.2                | <0.10             | 1*                                          | 1°, 10° (7)                                       | 0.09                      |
| Aroclor-1242 | <0.19          | <0.19            | <0.2                  | <0.17             | <0.18               | <0.17               | <0.26            | <0.26                 | <0.22            | <0.24              | <0.2                | <0.19             | 1*                                          | 1*, 10* (7)                                       | 0.09                      |
| Aroclor-1248 | <0.19          | <0.19            | <0.2                  | <0.17             | <0.18               | <0.17               | <0.26            | <0.28                 | <0.22            | <0.24              | <0.2                | <0.19             | 1*                                          | 1°, 10° (7)                                       | 0.09                      |
| Aroclor-1254 | <0.39          | <0.37            | <0.4                  | <0.34             | <0.37               | <0.35               | <0.52            | <0.51                 | <0.44            | <0.48              | <0.39               | <0.38             | 14                                          | 1°, 10° (7)                                       | 0.09                      |
| Aroclor-1260 | 0.61           | <0.37            | <0.4                  | <0.34             | <0.37               | <0.35               | <0.52            | <0.51                 | <0.44            | <0.48              | <0.39               | <0.38             | l.                                          | 1", 10" (7)                                       | 0.09                      |

### Notes:

All concentrations, detection levels, draft soil criteria, action levels, and cleanup objectives are in mg/kg equivalent to parts per mittion (ppm). Dup. - Indicates field duplicate.

intervals referenced are in feet below ground level.

The < sign indicates the compound was analyzed for but not detected.

- J Indicates an estimated value.
- \* Indicates the sum of Aroclor (PCB) compounds.
- (1) Value presented is for Endosulfan.
- (2) Value presented is for Chlordane.
- (3) Value presented is for DDE.
- (4) Value presented is for DDD.
- (5) Value presented is for DDT.
- (6) As per proposed TAGM, total pesticide <10 ppm.
- (7) 1.0 is the surface soil cleanup objective; 10.0 is the subsurface soil cleanup objective.

Shading indicates at least one of the following was exceeded: state criteria, cleaning objective, or federal action level.

### References:

Soit criteria are based on direct human ingestion. These criteria are from the NYSDEC Draft Cleanup Policy and Guidelines Document, October, 1991, derived from the HEAST Report current through December, 1990.

New York State TAGM Recommended Soil Cleanup Objectives are from the NYSDEC Division Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives and Cleanup Levels, January 1995.

RCRA Soil Action Levels are from the Federal Register, Vol. 55, No. 145, July 27, 1990.

TABLE 3
TEST PIT SOIL ANALYTICAL RESULTS
INORGANICS
LANUARY/FERIJARY 1891

ROSEN SITE CORTLAND, NEW YORK

|           | _             |                  |                    |                   |                | 000000000000000000000000000000000000000 |                  |              |                    |                |         | •                          |                        |             |
|-----------|---------------|------------------|--------------------|-------------------|----------------|-----------------------------------------|------------------|--------------|--------------------|----------------|---------|----------------------------|------------------------|-------------|
| Compound  | TOI<br>G FT.) | T02<br>(2.3 FT.) | 703<br>(5-8-3 FT.) | T03A<br>(7-e FT.) | 104<br>(12.FL) | T05<br>(1-2 FT.)                        | T06<br>(4-5 FT.) | 107<br>RSFTJ | TOB<br>(10-12 FT.) | 109<br>D.1 F.1 | Tion    | New York State<br>Deat Sol | New York State<br>TACM | ROSA Sed    |
| Auminum   | 6,480E        | 4,230E           | 10.900E            | 11,500EJ          | 1,240E         | 2,800€                                  | 15,400EJ         | 18.900E      | 5.540F             | <u> </u>       | 31 000  |                            |                        | total lives |
| Antimony  | 5.68          | 15.2J            | <0.56              | <0.57J            | 11.5J          | 5.2BJ                                   | <0.82            | <0.72        | \$7.0×             | 1 80           | 9 6     |                            | ε :                    |             |
| Arsenic   | 24.3          | 15.25.1          | 6.0                | 6.13              | 67.6           | 22.9                                    | 5.15             | 5.6          | 4.6                | 3              |         | 8 3                        | ε                      | 8           |
| Barium    | 263           | 162              | 61.6               | 45.28             | 28.3           | 2                                       | 15.0             | 981          |                    | 761            |         | 08                         | 7.5 (7)                | 8           |
| Berylkum  | <0.62         | 0.75             | 85.05              | <0.57             | 93.07          | 2 6                                     | 3                | 3            | 24.85              | 169            | 84.3    | 000,                       | 300 (T)                | 4,000       |
| Cadmim    | 8             |                  |                    |                   | 3              | NO.                                     | 20.82            | Q.70         | <0.74              | <0.62          | <0.58   | 0.16                       | 0.16 (*)               | 0.2         |
| lifetima  | 20.02         | 40.5g            | <0.56              | 10.8.1            | <0.58          | \$0.54                                  | <0.82            | <0.72        | <0.74              | 1.7            | <0.58   | 06                         | 5                      | \$          |
| Calctum   | 36,600E       | 66,300E          | 2,410E             | 1,290J            | 4,850E         | 26,300E                                 | 3,540E           | 1,800E       | 4,030E             | 60,800EJ       | 1,240E  |                            | ε                      |             |
| Chromium  | 90 4EJ        | 126E             | 16.65              | 79 <b>6</b> 1     | 15.BE          | 68.1E                                   | 17.86.1          | 27.BE        | 6.5E               | 2825.1         | 23.65   | 1007                       | 5                      | 24          |
| Cobalt    | 12.9          | 8.1              | 8.1                | 10.48             | 0.0            | 15.3                                    | 10.7             | 6.7          | <3.0               | 10.4           | 64      |                            |                        | 3           |
| Copper    | 272€          | 149E             | 29.4E              | 22.4              | 38,78          | 168E                                    | 22 1E.           | 20.00        | 10.05              |                |         |                            | C                      |             |
| Iron      | 1000          |                  |                    |                   |                |                                         |                  |              | 10.0C              | r-anne         | 4       |                            | 28<br>3                |             |
|           | 37 (190       | 3000'67          | 30,200             | 28.800EJ          | 94.100€        | 173,000E                                | 23,400E.1        | 35.400E      | 13,400E            | 68,200E.1      | 54,100E |                            | 2,000 (")              |             |
| beát      | 1,150         | 823              | 17.0               | 17.5.1            | 64.4           | S. S.                                   | 29.5.1           | 25.8J        | 23.97              | 1729           | 24.83   | 922                        | ε                      |             |
| Magnesium | 5,770E        | 5,800E           | 3,970E             | 4,150EJ           | 1,510E         | 3,960E                                  | 2,890E           | 4,180E       | 1.120E             | 10 800E.1      | A PANE  |                            |                        |             |
| Manganese | 1,620E        | 4,660€           | 558E               | 801EJ             | 1,070E         | 4.360E                                  | 2.020EJ          | 1070         | 58.45              | 1,000          |         |                            |                        |             |
| Mercury   | 0.33          | 250              | <0.09              | <0.11             | 0.26           | 0.64                                    | 41.00            | 5            |                    | e' lorg        | 0/453   | 000'02                     | ε                      |             |
| Nickel    | 3615          | 90.9F.I          | 137.02             | 98.91             | . 200          |                                         |                  | *            | 21.0               | 170            | <0.11   | 8                          | 0.1                    | 82          |
| Potessium |               |                  |                    |                   | 7              | 00 MC-1                                 | 48.6EJ           | 67.2E.I      | 6.5E.J             | 219E.I         | 31.26   | 2,000                      | 13 CJ                  | 2,000       |
|           |               | 20 A             | £                  | 675BJ             | 127B           | 234B ·                                  | 1,180            | 1,270        | 805                | 1,090,1        | 1,350   |                            | ε                      | }           |
| Selenum   | <0.613        | <0.59            | <0.58              | <0.57             | <0.58          | 0.54                                    | <0.82            | <0.72        | <0.75              | <u>8.</u>      | 0.50    |                            | Đã                     |             |
| Silver    | <0.61         | <0.59            | <0.56              | <0.57J            | <0.58          | <0.54                                   | <0.82            | <0.72        | <0.74              | 3.7            | 8, 6    | 1 6                        |                        |             |
| Sodium    | 2548          | 169B             | 10,900             | 1228              | 1068           | 1218                                    | 81.01            | agc+         | 9                  |                | 2007    | No.                        | C                      | 88          |
| ,         |               |                  |                    |                   |                |                                         |                  | 1007         | CR:16              | 750B           | 96.0B   |                            | £                      |             |

Notes on Page 2 of 2

## **JANUARY TEBRUARY 1991** INOPIGANICS TEST PIT SOIL ANALYTICAL RESULTS TABLE 3 (Cont.)

## COULTAND, NEW YORK. HOSEN SILE

| :88                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>,                                    </u> |                  |           | A:on                                                   | 9:1>    | 1/1>     | 6.1>             | <12                        | <1.2                                    | 2,000          | }                      | 2,000          |
|--------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------|-----------|--------------------------------------------------------|---------|----------|------------------|----------------------------|-----------------------------------------|----------------|------------------------|----------------|
| abina\                   | <1.2           | <1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1'1>                                         | 1"1> .           | P.I       | 28.4                                                   |         |          | discours and the | State of the second second | 100000000000000000000000000000000000000 | 20,000         | So (L)                 |                |
| first Name of the second | 3026,1         | 3019'1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36.77                                        | r32'40           | SSPE      | S'\$30E                                                | . Liven | 3611     | 35.35            | \$.160E.J                  | 30 99                                   | 30 000         |                        |                |
| ou<br>-                  | 5020 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                  | 810       | 158                                                    | 1.15    | 1.52.    | 8.8f             | 1991                       | 8.11                                    | 009            | (4) 051                |                |
| mulbene                  | <b>\$.0</b> \$ | SB4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.ÞT                                         | T.hr             | 8.8       | 961                                                    | 7.10    |          |                  |                            | 45:0>                                   | 0.8            | - G                    |                |
| ******                   | 19.0>          | Le2.0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L86.0>                                       | 78.0>            | L83.0>    | LF2.0>                                                 | LS8.0>  | しなて.0>   | <b>L</b> 27.0>   | S9:0>                      | 62.0>                                   |                |                        |                |
| ruilleri                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | adalah a a                                   | SOMEONIO SOCIETA | 37 Terres | 3 <b>6 63 63 7</b> 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | Pine as | (Apresia | (IQ-12 FT.)      | (F1 F.)                    | (19.67)                                 | Shalis         | chueato fos            | Well indicated |
| punoduo                  | (11.6)         | Contract Con | (Ti c.e-a)                                   | APOT<br>(TH 0-7) | (1-2-FT)  | 713.51)                                                |         | 201      | 80T              | €0Ţ                        |                                         | No2 Men()      | New York State<br>TAGM | os Affor       |
|                          | fof            | SOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20T                                          | APOT             |           |                                                        |         |          |                  |                            |                                         | Mew York State | 7.5.7.                 |                |

All concentrations, detection levels, draft soll critical levels, and cleanup objectives are in mg/kg equivalent to parts per million (ppm). Linervals referenced are in feet below ground level.

 $\mathsf{E}$  - indicates a value estimated or not reported due to the presence of interference.

S - Indicates value determined by Method of Standard Addition. B - indicates a value greater than or equal to the instrument detection limit but less than the contract required detection limit.

J - Indicates an estimated value.

\*Applies to hexavelant Chromium. The < sign indicates the compound was analyzed for but not detected.

Shading indicates at least one of the following was exceeded: state criteria, cleanup objective, or federal action level. (\*) - Mew York State TAGM Recommended Soil Cleanup Objective is the value listed or the site background level.

## <del>Jejelelices</del>:

New York State TAGM Recommended Soil Cleanup Objectives are from the NYSDEC Division Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives and Cleanup Levels, January 1454. Soil criteria are based on direct human ingestion. These criteria are from the NYSDEC Draft Cleanup Policy and Guidelines Document, October, 1991, derived from the NEAST Report current through December, 1990.

## SUPPLEMENTAL SOURCE CHARACTERIZATION NEAR WELL W-06 SOIL ANALYTICAL RESULTS VOLATILE ORGANICS DECEMBER 1993

## ROSEN SITE CORTLAND, NEW YORK

|                            |                      |                      |                       |                                    | New York State        |                         |
|----------------------------|----------------------|----------------------|-----------------------|------------------------------------|-----------------------|-------------------------|
|                            | <b></b>              |                      |                       |                                    | TAGM                  | Done o. T               |
| Compound                   | TW-6A<br>(4 - 6 ft.) | TW-68<br>(4 - 6 ft.) | TW-6C*<br>(4 - 6 ft.) | New York State Draft Soil Criteria | Cleanup<br>Objectives | RCRA Solt Action Levels |
| cetone                     | 0.3 B                | 0.027 B              | 4.4 B                 | 8.000                              | 0.2                   | 8,000                   |
| lenzene                    | <0.007               | <0.007               | <0.86                 | 24                                 | 0.06                  |                         |
| romodichloromethene        | <0.007               | <0.007               | <0.86                 | 5.4                                |                       | 0.5                     |
| romoform                   | <0.007               | <0.007               | <0.86                 | 89                                 |                       | 2,000                   |
| romomethane                | <0.015               | <0.014               | <1.7                  | 80                                 |                       | 100                     |
| - Butanone                 | 0.1                  | <0.014               | <1.7                  | 4,000                              | 0.3                   | 4,000                   |
| arbon Disulfide            | 0.003 J              | <0.007               | <0.86                 | 8,000                              | 2.7                   | 8.000                   |
| Carbon Tetrachloride       | <0.007               | < 0.007              | <0.86                 | 5.4                                | 0.6                   | 5                       |
| hiorobenzene               | <0.007               | <0.007               | <0.86                 | 2,000                              | 1.7                   | 2,000                   |
| hioroethane                | 0.03                 | <0.014               | <1.7                  | 540                                | 1.9                   |                         |
| Chloroform                 | <0.007               | <0.007               | <0.86                 | 110                                | 0.3                   | 100                     |
| Chloromethane              | <0.015               | <0.014               | <1.7                  | 540                                |                       |                         |
| Dibromochloromethane       | <0.007               | <0.007               | <0.86                 | 8.3                                |                       |                         |
| .1 -Dichloroethane         | 0.052                | <0.007               | <0.86                 | 8,000                              | 0.2                   |                         |
| ,2-Dichioroethane          | <0.007               | <0.007               | <0.86                 | 7.7                                | 0.1                   | 8                       |
| :1 -Dichlorgethere         | <0.007               | <0.007               | < 0.86                | 12                                 | 0.4                   | 10                      |
| ,2-Dichloroethene (Total)  | <0.007               | <0.007               | <0.86                 | 800*                               |                       | - '3                    |
| .2-Dichloropropane         | <0.007               | <0.007               | <0.86                 | 10                                 |                       |                         |
| is-1,3-Dichigropropene     | <0.007               | <0.007               | <0.86                 | 20                                 |                       | 20 (1)                  |
| rans-1,3-Dichioropropene   | <0.007               | <0.007               | <0.86                 | 20                                 |                       | 20 (1)                  |
| thylbenzene                | <0.007               | <0.007               | 1.2                   | 8,000                              | 5.5                   | 8,000                   |
| 2-Hexanone                 | <0.015               | <0.014               | <1.7                  | 2,242                              |                       |                         |
| Mathylene Chloride         | 0.032 B              | 0.023 B              | 11                    | 93                                 | 0.1                   | 90                      |
| - Methyl-2-Pentanone       | <0.015               | <0.014               | <1.7                  | 4,000                              | 1.0                   | 4,000                   |
| Styrene                    | <0.007               | <0.007               | <0.86                 | 23                                 |                       | 2,000                   |
| .1.2.2 - Tetrachlorcethane | <0.007               | <0.007               | <0.86                 | 35                                 | 0.6                   | 40                      |
| etrachloroethene           | <0.007               | <0.007               | <0.86                 | .14                                | 1.4                   | 10                      |
| ciuene                     | <0.007               | 0.006 J              | 24                    | 20,000                             | 1.5                   | 20,000                  |
| .1,1-Trichloroethane       | 0.017                | 0.003 J              | <0.86                 | 7.000                              | 0.8                   | 7.000                   |
| .1.2-Trichloroethane       | <0.007               | <0.007               | <0.86                 | 120                                |                       | 100                     |
| <u>Frichloroethene</u>     | <0.007               | < 0.007              | < 0.86                | 64                                 | 0.7                   | . 60                    |
| /inyl Acetate              | <0.015               | <0.014               | <1.7                  | 80,000                             |                       |                         |
| /inyl Chloride             | <0.015               | < 0.014              | <1.7                  | 0.36                               | 0.2                   |                         |
| Total Xylenes              | <0.007               | <0.007               | 13                    | 200,000                            | 1.2                   | 200,000                 |

## Notes:

All concentrations, detection levels, draft soil criteria, action levels, and cleanup objectives are reported as mg/kg equivalent to parts per million (ppm).

Results of the analyses of soil samples have been corrected for moisture content, and are reported on a dry weight basis. Intervals referenced are in feet below ground level.

The < sign indicates the compound was analyzed for but not detected.

- \* Sample TW-6C was analyzed at a medium level due to elevated levels of several target compounds.
- 5 Indicates the analyte was found in the associated blank as well as in the sample.
- J Indicates an estimated value.
- (1) Value presented is for 1,3-Dichloropropene.

Data has not been validated. Shading indicates State and/or Federal Standards exceeded.

\* - The soil criteria applies to cis-1,2-Dichloroethene only.

## References:

Soil criteria are based on direct human ingestion. These criteria are from the NYSDEC Draft Cleanup Policy and Guidelines Document, October, 1991, derived from the HEAST Report current through December 1990.

RCRA Soil Action Levels are from the Federal Register, Vol. 55, No. 145, July 27, 1990.

New York State TAGM Recommended Soil Cleanup Objectives are from the NYSDEC Division Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives and Cleanup Levels, January 1994.

TAZIE 3,
PERIMETER SOIL BORING ANALYTICAL RESULTS
VOLATILE ORGANICS
JANUARY/FEBRUARY 1891

ROSEN SITE CORTLAND, NEW YORK

| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V07           | W/VB    | W10             | Wit                     | Wi2         | Wi2 Dup.        | Wish        | New York<br>State Draft | New York           | 0.000         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|-----------------|-------------------------|-------------|-----------------|-------------|-------------------------|--------------------|---------------|
| Chlomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |         | 114-10 [13]     | (14.16 FT.)             | (14-18 FT.) | ((4-16 円)       | (14-16 FT.) | Soil Citienta           | Cleaning Objective | Action Levels |
| Promomethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | C0.011J | <0.01           | <0.051                  | <0.048      | <1.3            | <0.013      |                         |                    |               |
| Mord Orlegide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5             | <0.011J | <0.01           | <0.051                  | <0.048      | <1.3            | <0.013      | 98                      |                    | 100           |
| Virgi Carolice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.1           | <0.011J | <0.01           | <0.051                  | <0.048      | <1.3            | <0.013      | 0.36                    | 00                 |               |
| Calcologinario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>~1.1</b>   | <0.011J | <0.01           | < 0.051                 | <0.048      | <1.3            | <0.013      | 540                     | . 0 -              |               |
| Methylene Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×0.54         | <0.005J | <0.005          | <0.025                  | <0.027      | <0.73           | 9000V       | 88                      | 9.4                |               |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1.1          | C110.0> | 0.009J          | <0.051                  | <0.048      | 2               | 61007       | 200                     | 0.1                | 2             |
| Carbon Disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.54         | <0.005  | <0.005          | ×0.0%                   | 7000        | 200             | 2000        | om'o                    | 0.2                | 9,000         |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.54         | <0.005  | <0.005          | \$000<br>\$000<br>\$000 | 12002       | , O. O.         | 20.00       | 8,000                   | 2.7                | 9,000         |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.54         | <0.005J | <0.005          | 20 0×                   | 7000        | 5 6             | 9000        | 12                      | 0.4                | 10            |
| 1,2-Dichloroethene (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.54         | <0.005  | <0.005<br>0.005 | 800                     | 2000        | 0.00            | 20,000      | 8,000                   | 0.2                |               |
| Chioroform -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.54         | <0.005  | <0.005          | 36007                   | 20.00       | 5               | ×0.006      | -008                    |                    |               |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.54         | <0.005  | ×0005           | 2000                    | 1000        | VO.04           | <0.006J     | 110                     | 0.3                | 100           |
| 2-Butanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -<br> -<br> - | 1000    | 200             | 20.063                  | <0.024      | <0.64           | ×0.006      | 7.7                     | 0.1                | 83            |
| 1.1.1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 2000    | 10:07           | CO.05                   | ×0.048      | <1.3            | <0.013      | 4,000                   | 0.3                | 4,000         |
| Carbon Tetrachtoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1307          | Con o   | OSOO I          | <0.025                  | <0.024      | <0.64           | <0.006      | 000'2                   | 0.8                | 7,000         |
| Vind Aminto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$0.0V        | 700.0V  | <0.005          | <0.025                  | <0.024      | <0.64           | <0.006      | 5.4                     | 90                 | 4             |
| אואו איניאין                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <1.1          | <0.011J | <0.01           | <0.051                  | <0.048      | £,7             | <0.013      | 90.000                  |                    | ,             |
| a Distriction of the property | <0.54         | <0.0051 | <0.005          | <0.025                  | <0.024      | ×0.64           | <0.006      | 5.4                     |                    | 9.0           |
| I,2-Lichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.54         | <0.005J | <0.005          | <0.025                  | <0.024      | <0.64           | 90000       | ٤                       |                    | 6.0           |
| cls-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0.54        | <0.005  | <0.005          | <0.025                  | <0.024      | \$0.64<br>60.64 | 900°V       | 2 8                     |                    | 17 00         |
| lifchioroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×0.54         | <0.005J | 0.0006J         | <0.025                  | 0.012J      | ×0.64           | ×0.006      | 2                       | 20                 | E 8           |
| Ulbromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.54         | <0.005J | <0.005          | <0.025                  | <0.024      | ×0.64           | 90000       | 68                      | 3                  | 8             |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.54         | <0.005J | <0.005          | <0.025                  | <0.024      | ×0.64           | 9000        | 25                      |                    |               |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.54         | <0.005J | <0.005          | <0.025                  | ×0.024      | 100             | 3 88        | 3 2                     |                    | 100           |
| trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.54         | <0.005J | <0.005          | \$0.05<br>50.05         | <0.024<br>< | 200             | 900         | <b>3</b> 8              | 90.0               |               |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.54         | <0.005J | ×0.005          | 3000                    | 7000        | 5,00            | 000.0       | R                       |                    | SO (3)        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |         |                 | .V.02.                  | >0.024      | <0.04           | <0.006      | 68                      |                    | 2.000         |

Notes on Page 2 of 2

## TABLE \$\frac{3}{2}\((\cont.)\) PERIMETER SOIL BORING AVALYTICAL RESULTS VOLATILE ORGANICS JANUARY/FEBRUARY 1991

## GORTLAND, NEW YORK

| FICHA Soil<br>Action Levels | New York<br>MacAT eleig<br>eviloe(AC quinee(C) | New York<br>State Draff<br>Sof Citeria | MISA<br>(14-16 FT.) | ANS Dup.<br>(TH 81-M) | Wis (14-16-FL) | 11W<br>(14 81-41) | (14 8f ±1) | MOB<br>(江刊 F-S) | 70W<br>(开 0S-81) | punodiuog                |
|-----------------------------|------------------------------------------------|----------------------------------------|---------------------|-----------------------|----------------|-------------------|------------|-----------------|------------------|--------------------------|
| 000'1                       | 0.1                                            | 000'1                                  | £10.0>              | 6.1>                  | 8+0.0>         | 190.0>            | 10.0>      | L110.0>         | 1.1>             | -Methyl-2-Penlanone      |
|                             |                                                |                                        | £10.0>              | 6.1>                  | 840.0>         | 120.0>            | 10.0>      | L110.0>         | 1.1>             | 9000EX9H-5               |
| <u>or</u>                   | 9'1                                            | +1                                     | 900.0>              | 5.9                   | 84.0           | <0.025            | 200.0>     | L200.0>         | <b>₽</b> \$:0>   | elrachloroelhane         |
| 01                          | 8.0                                            | 32                                     | 900.0>              | <b>\$9.0&gt;</b>      | <0.024         | <0.025            | 200.0>     | L200.0>         | <b>PS:0&gt;</b>  | ,1,2,2-Tetrachloroethane |
| 20,000                      | <b>3.1</b>                                     | 20,000                                 | 900.0>              | <b>+9.0&gt;</b>       | <0.024         | C250.0>           | L100.0     | L200.0>         | <b>1</b> 9'0>    | euenjo                   |
| 2,000                       | L1                                             | 2,000                                  | 900.0>              | <b>+</b> 8.0>         | <0.024         | <0.025            | 200.0>     | L200.0>         | <0.54            | euezueqojojų             |
| 000,8                       | <b>6.</b> è                                    | 000,8                                  | 900.0>              | 1-0.0>                | >0.024         | <0.025            | 900.0>     | L200.0>         | <b>19:0&gt;</b>  | euezueql⁄uj:             |
| 2,000                       |                                                | 23                                     | 800.0>              | <b>\$9.0&gt;</b>      | <0.024         | <0.025            | 200.0>     | L200.0>         | <b>P</b> 9'0>    | эцугеле                  |
| 200,000                     | 1.2                                            | 000,00S                                | 900.0>              | 1-0.0>                | >0.024         | <0.025            | 200.0>     | L200.0>         | <b>1</b> 9:0>    | otal Xylenes             |
|                             | ·                                              |                                        |                     | 12.32.1               | L123.1         | 0.504.1           | <u> </u>   | L600.0          | LS8.81           | OTAL TIC                 |

### Noies:

All concentrations, detection levels, draft soil criteria, action levels, and cleanup objectives are in mg/kg equivalent to parts per million (ppm).

Dup, - indicates field duplicate.

intervals referenced are in feet below ground level.

The < eign indicates compound was analyzed for but not detected.

J - indicates an estimated value.

R - indicates the sample result is unusable.

TIC - indicates Tentatively Identified Compounds.

anagorgoldbid-6,t tol si beineserg eulev - (f)

· the soil criteria applies to cis-1,2-Dichloroethene only.

### 

Soil criteria are based on direct human ingestion. These criteria are from MYSDEC draft Cleanup Policy and Guidelines Document, October, 1991, derived from the HEAST Report current and Cleanup Levels, January, 1994.

HCRA Soil Action Levels are from the Federal Register, Vol. 55, No. 145, July-27, 1990.

5/1/82 5/21/82

## TABLE 3 PERIMETER SOIL BORING ANALYTICAL RESULTS SEMIVOLATILE ORGANICS JANUARY/FEBRUARY 1991

## ROSEN SITE CORTLAND, NEW YORK

| Compound                     | W07<br>(18-20 FF.) | W08<br>(2-4 FT.) | W10<br>(14-16 FT.) | WI1<br>(14-16-FT.) | W12<br>(14-16 FT.) | W12 Dup.<br>(14-16 FT.) | WISA       | New York<br>State Draft | New York State<br>TAGM Cleanup | RCRA Soll                             |
|------------------------------|--------------------|------------------|--------------------|--------------------|--------------------|-------------------------|------------|-------------------------|--------------------------------|---------------------------------------|
| Phenol                       | <22                | <0.76            | <0.71              | <0.73              | <0.68              |                         | (14-16 FT) | Soil Criteria           | Objective                      | Action Level                          |
| Bis(2-Chloroethyl)Ether      | <22                | <0.76            | <0.71              | <0.73              | <0.68              | <0.73                   | <0.82      | 50,000                  | 0.03°                          | 50,000                                |
| 2-Chlorophenol               | <22                | <0.76            | <0.71              | <0.73              |                    | <0.73                   | <0.82      | 0.64                    |                                | 0.6                                   |
| 1,3-Dichlorobenzene          | <22                | <0.76            | <0.71              | <0.73              | <0.68              | <0.73                   | <0.82      | 400                     | 0.8                            | 400                                   |
| 1,4-Dichlorobenzene          | <22                | <0.76            | <0.71              | <0.73              | <0.68              | <0.73                   | <0.82      |                         | 1.6                            |                                       |
| Benzyl Alcohol               | <22                | <0.76            | <0.71              |                    | <0.68              | <0.73                   | <0.82      | 29                      | 8.5                            |                                       |
| 1,2-Dichlorobenzene          | <22                | <0.76            | <0.71              | <0.73              | <0.68              | <0.73                   | <0.82      | 20,000                  |                                |                                       |
| 2-Methylphenol               | <22                | <0.76            | <0.71              | <0.73              | <0.68              | <0.73                   | <0.82      | 7,000                   | 7.9                            |                                       |
| Bis(2-Chloroisopropyl) Ether | <22                | <0.76            | <0.71              | <0.73              | <0.68              | <0.73                   | <0.82      | 4,000                   | 0.1*                           | 4,000                                 |
| 4-Methylphenol               | <22                | <0.76            |                    | <0.73              | <0.68              | <0.73                   | <0.82      | 100                     |                                |                                       |
| N-Nitroso-Di-n-Propylamine   | <22                | <0.76            | <0.71              | <0.73              | <0.68              | <0.73                   | <0.82      | 4,000                   | 0.9                            | 4,000                                 |
| Hexachloroethane             | <22                | <0.76            | <0.71              | <0.73              | <0.68              | <0.73                   | <0.82      | 0.1                     |                                | 0.1 -                                 |
| Nitrobenzene                 | <22                | <0.76            | <0.71              | <0.73              | <0.68              | <0.73                   | <0.82      | 80                      |                                | 80                                    |
| Isophorone                   | <22                | <0.76            | <0.71              | <0.73              | <0.68              | <0.73                   | <0.82      | 40                      | 0.24                           | 40                                    |
| 2-Nitrophenot                | <22                | <0.76            | <0.71              | <0.73              | <0.68              | 0.73                    | <0.82      | 1,800                   |                                | 2,000                                 |
| 2,4-Dimethylphenol           | <22                | <0.76            | <0.71              | <0.73              | <0.68              | <0.73                   | <0.82      |                         | 0.33*                          | <del></del>                           |
| Benzoic Acid                 | <110               |                  | <0.71              | <0.73              | <0.68              | <0.73                   | <0.82      | 2,000                   |                                |                                       |
| Bis(2-Chloroethoxy) Methane  | <22                | <0.76            | <3.4               | <3.8               | <3.3               | <3.5                    | <4         | 300,000                 |                                |                                       |
| 2,4-Dichlorophenol           | <22                |                  | <0.71              | <0.73              | <0.68              | <0.73                   | <0.82      |                         | -                              | · · · · · · · · · · · · · · · · · · · |
| 1,2,4-Trichlorobenzene       | <22                | <0.76            | <0.71              | · <0.73            | <0.68              | <0.73                   | <0.82      | 200                     | 0.4                            | 200                                   |
| Naphthalene ·                | . <22              | <0.76            | <0.71              | <0.73              | <0.68              | <0.73                   | <0.82      | 2,000                   | 3.4                            | 2,000                                 |
| 4-Chloroeniline              | <22                | <0.76<br><0.78   | <0.71              | <0.73              | <0.68              | <0.73                   | <0.82      | 300                     | 13                             | <del></del> :                         |
| -texachiorobutadiene         | <22                |                  | <0.71              | <0.73              | <0.68              | <0.73                   | <0.82      |                         | 0.224                          |                                       |
| I-Chloro-3-Methylphenol      | <22                | <0.76            | <0.71              | <0.73              | <0.68              | <0.73                   | <0.82      | 90                      |                                | 90                                    |
| -Methylnaphthalene           |                    | <0.76            | <0.71              | <0.73              | <0.68              | <0.73                   | <0.82      |                         | 0.24*                          |                                       |
| lexachiorocyclopentadiene    | <22                | <0.76            | <0.71              | <0.73              | <0.68              | <0.73                   | <0.82      | <del></del>             | 36.4                           |                                       |
|                              | <22                | <0.76            | <0.71              | <0.73              | <0.68              | <0.73                   | <0.82      | 600                     |                                | 600                                   |

Notes on Page 3 of 3

TABLE 3 (CONT.)
PERIMETER SOIL BORING ANALYTICAL RESULTS
SEMIVOLATILE ORGANICS
JANUARY/FEBRUARY 1891

ROSEN SITE COFITLAND, NEW YORK

| Composind                  | W07<br>(18-20 FT.) | was<br>2-4 FT.) | W10<br>(14-16 FT.) | W11<br>(14-16 FT.) | WI2<br>(14-16-FE) | WIR Dup.<br>(14-18 ET) | WISA<br>(14:18 EF) | State Deal  | Now York State<br>TAGM Change           | IPS VECIL     |
|----------------------------|--------------------|-----------------|--------------------|--------------------|-------------------|------------------------|--------------------|-------------|-----------------------------------------|---------------|
| 2,4,6-Trichlorophenal      | <22                | <0.76           | <0.71              | £7.0>              | <0.68             | \$2.02                 | 60 07              |             | - Anna de la constanta                  | Action Levels |
| 2,4,5-Trichlorophenol      | <110               | <3.7            | <3.4               | <3.6               | 683               | 9 6/                   | 7000               | 4           |                                         | 9             |
| 2-Chloronaphthatene        | <22                | <0.76<br>7.078  |                    | 2                  |                   | 6.5.5                  | >                  | 8,000       | 0°.                                     | 8,000         |
| 2-Nimaniina                |                    | 2               | 17:07              | <0.73              | <0.68             | <0.73                  | <0.82              |             |                                         |               |
| Dimetral Districtor        | Oliv               | ) is            | <3.4               | <3.6               | <3.3              | <3.5                   | *                  |             | 0.43*                                   |               |
| Currenty Friedrick         | 22,                | <0.76           | <0.71              | <0.73              | <0.68             | <0.73                  | <0.82              | 90,000      | ~                                       |               |
| Acenaphthylene             | <22                | <0.76           | <0.71              | <0.73              | <0.68             | <0.73                  | <0.82              | Ş           |                                         |               |
| 2,6-Dinitrotokuene         | <22                | <0.76           | <0.71              | <0.73              | <0.68             | <0.73                  | -0 B2              | 3           | -                                       |               |
| 3-Nitroaniine              | <110               | 7.8>            | <3.4               | \$\$\$             | <33               | 3 8                    |                    | -           | -                                       | - B           |
| Acensphthene               | 25                 | <0.76           | 12.0>              | 2                  |                   | 97                     | V                  |             | 0.5                                     |               |
| 2,4-Dinitrophenoi          | 4130               | 197             | , ,                | 20.02              | \$0.00            | <0.73                  | <0.82              | 5,000       | 50 (3)                                  |               |
| 4-Nitropenol               |                    | 200             | 3                  | 63.6               | <3.3              | <3.5                   | 7                  | 200         | 0.2                                     | 200           |
| Otherst                    | 2                  | ).              | <3.4               | <3.6               | <3.3              | <3.5                   | 7                  |             | .1.0                                    |               |
|                            | ZZ>                | <0.76           | <0.71              | <0.73              | <0.68             | <0.73                  | <0.82              |             | 6.2                                     |               |
| Z,1-Dirutiologicane        | Ş                  | <0.76           | <0.71              | <0.73              | <0.68             | <0.73                  | <0.82              | -           |                                         |               |
| Dietryphthalate            | <22                | <0.76           | <0.71              | <0.73              | <0.68             | 200                    | 54.0               | 188         |                                         |               |
| 4-Chlorophenyl-phenylether | <b>22</b> >        | <0.76           | <0.71              | <0.73              | <0.68             | <0.23                  | 2                  | Services of | 3                                       | 900'09        |
| Fluorene                   | <22                | <0.76           | <0.71              | 0.12J              | \$0°C             | \$0.78                 | 5                  | 3 8         |                                         |               |
| 4-Nitroaniine              | <110               | <3.7            | <3.4               | <3.6               | 68.3              | 23.6                   | 7                  | mo'e        | 20.0 (3)                                |               |
| 4,6-Dinito-2-Methylphenol  | <110               | <3.7            | <3.4               | <3.6               | 6.8.9             | 13.6                   | ,                  |             |                                         |               |
| N-Nitrosodiphenylamine (1) | 25                 | <0.76           | <0.71              | ×0.73              | \$0 68            | 2.00                   | 5 4                | s           |                                         |               |
| 4-Bromophenyl-phenylether  | <22                | <0.76           | <0.71              | <0.73              | \$0.08<br>\$0.08  | 2 6                    | 200                | ₽           |                                         | ē             |
| Hexachlorobenzene          | . <22              | <0,76           | <0.71              | <0.73              | <0.68             | <0.73                  | 200                | 15          | ;                                       |               |
| Pentachlorophenol          | <110               | <3.7            | 43.4               | <3.6               | <3.3              | <3.5                   | 1                  | 100         | •                                       |               |
| Phenanthrene               | <22.               | 0.11.3          | 12.0>              | <0.73              | ×0.68             | <0.73                  | 68.07              | 7           |                                         | 2,000         |
| Anthracene                 | <22                | <0.76           | <0.71              | <0.73              | <0.68             | 2 6                    | 3 8                |             | (c) |               |
| Di-n-Butyiphthelete        | <22>               | <0.78           | <7.5               | <7.6               | <0.68.1           | 70.78                  | 3                  | ZO,UUU      | (2)<br>(2)                              |               |
| Fluoranthene               | 72>                | 0.048.1         | <0.71              | 2 0                | 200               | 31.3                   | V0.02              | 000,9       | 8.1<br>1                                | 9,000         |
|                            |                    |                 |                    | 21.0               | <0.00             | <0.73                  | 29.0>              | 3,000       | 25<br>20                                |               |

Notes on Page 3 of 3

### JANUARY/FEBRUARY 1991 SEMINOLATILE OFICANICS PERIMETER SOIL BORING AVALYTICAL RESULTS TABLE 3 (Cont.)

### COULTYIND, NEW YORK HOSEN SILLE

| School Covale<br>School South | New York State<br>TAGM Cleanup<br>Chleckep | Mew York<br>State Draft<br>Sof Calents | MISA<br>(I4-16 FT.) | AMI SIW<br>(17 al +!) | (14 b( +1) | NIA<br>(THEFT) | 01W<br>(TH at-b1) | MOM<br>(TRIPA)  | 70W<br>(19-20-FT) | Compound                       |
|-------------------------------|--------------------------------------------|----------------------------------------|---------------------|-----------------------|------------|----------------|-------------------|-----------------|-------------------|--------------------------------|
|                               | (c) 09                                     | 2,000                                  | 16.0                | <b>ደ</b> ፕ.0>         | 89.0>      | £7.0>          | 17.0>             | L&0.0           | <22               | enety                          |
| 20,000                        | (6) 03                                     | 20,000                                 | \$8.0>              | L71.0                 | 89.0>      | L≯£.0          | <b>28.0</b>       | 87.0>           | <22               | etalertirkplyznedkytu          |
| 3                             |                                            | 91                                     | 9'1>                | g.1>                  | F1>        | g't>           | 1.1>              | g:1>            | Sh>               | enibisnedotoldbid-'6,          |
|                               | 0.22°                                      | 0.22                                   | \$8.0>              | £7.0>                 | 88.0>      | £7.0>          | 17.0>             | <b>8</b> ₹.0>   | <22               | епезайлич(в)охиз               |
|                               | ₽.0                                        |                                        | 141.0               | LST0.0                | 89.0>      | £7.0>          | 17.0>             | L1.0            | <22               | anasyd                         |
| 09                            | (6) 09                                     | 09                                     | S8.0>               | LT1.0                 | 8.0        | 11             | टा                | LET.0           | <22               | estalartiri (tyxariiyrit3-S)ai |
|                               | (2) 09                                     | 2,000                                  | S8.0>               | £7.0>                 | 66.0>      | £T.0>          | 11.0>             | <b>∂</b> ₹.0>   | <22               | -in-Octyl Phthalate            |
|                               | l't                                        | 0.22                                   | \$8.0>              | £7.0>                 | 89.0>      | £7.0>          | 17.0>             | L.B.B.D.O       | <22               | enzo(b)Fluoranthene            |
|                               | t't                                        | SS.0                                   | \$8.0>              | £7.0>                 | 69.0>      | £7.0>          | IT.0>             | 87.0>           | <22               | enso(k)Fkoranihene             |
|                               | *190.0                                     | 180.0                                  | S8.0>               | £7.0>                 | 88.0>      | £7.0>          | IT.0>             | <b>87.0&gt;</b> | <22               | senzo(a)Pyrene                 |
|                               | S.8                                        |                                        | \$8.0>              | £7.0>                 | 88.0>      | £7.0>          | 17.0>             | 9₹.0>           | <22               | anary(lb3-£,2,1)onabn          |
| <del></del>                   | ,+10'0                                     | 110.0                                  | S8.0>               | £7.0>                 | 88.0>      | £7.0>          | 17.0>             | <b>87.0&gt;</b> | <22               | enecatilnA(d,e)snedi(          |
|                               | 20 (3)                                     | <u> </u>                               | S8.0>               | ET.0>                 | 88.0>      | £7.0>          | 17.0>             | 87.0>           | <22               | ensive¶i,i,ig)exne             |
|                               | ļ                                          |                                        | L60.8h              | L33.81                | 35.36J     | L82.7S         | LZO.f             | Lar.e           | L361              | OTAL TICE                      |

Dup. - indicates field duplicate. All concentrations, detection levels, draft soil criteria, action levels, and cleanup objectives are in mg/kg equivalent to perts per million (ppm).

Intervals referenced are in feet below ground level.

The < sign indicates compound was analyzed for but not detected.

J - Indicates an estimated value.

TIC - Indicates Tentatively Identified Compounds.

 $^{\circ}$  - These compounds should not be detected above the TAGM or the method detection limit.

(1) - Indicates this compound cannot be separated from Dipherylamine.

(2) - indicates this compound cannot be separated from 2,3-Dinitrotoluene.

Shading indicates at least one of the following was exceeded: state criteria, cleanup objective, or federal action levels. (3) - As per proposed TAGM, total VOCs <10 ppm, total SVOCs <50v , pm, and individual SVOCs <50 ppm.

HCRA Soil Action tevels are from the Federal Register, Vol. 55, No. 145, July 27, 1990. New York State TAGM Recommended Soil Cleanup Objectives are from the NYSDEC Division Technical and Administrative Guidence Memorandum: Determination of Soil Cleanup Objectives and Cleanup Lavels, January 1994. Soil criteria are based on direct human ingestion. These criteria are from the MYSDEC Draft Cleanup Policy and Guideline Document, October, 1991, derived from the HEAST Report current through December, 1990.

## TABLE 3 PERIMETER SOIL BORING ANALYTICAL RESULTS. PESTICIDES/PCBs JANUARY/FEBRUARY 1991

#### ROSEN SITE CORTLAND, NEW YORK

| Compound           | W07<br>(18-20 FT.) | W08<br>(2-4 FT.) | W10<br>(14-16 FT.) | W11<br>(14-16 FT.) | W12<br>(14-16 FT.) | W12 Dup.<br>(14-16 FT.) | WISA                | New York<br>State Draft | New York<br>Blate Cleanup | ACRA Sol     |
|--------------------|--------------------|------------------|--------------------|--------------------|--------------------|-------------------------|---------------------|-------------------------|---------------------------|--------------|
| alpha-BHC          | <0.13              | <0.018           | <0.017             | <0.017             | <0.018             | <0.017                  | 14:16 FT.<br><0.021 | Boll Critieria<br>0.11  | Objective                 | Action Level |
| beta-BHC           | <0.13              | <0.018           | <0.017             | <0.017             | <0.018             | <0.017                  | <0.021              |                         | 0.11                      | 0.1          |
| delta-BHC          | <0.13              | <0.018           | <0.017             | <0.017             | <0.018             | <0.017                  | <0.021              | 3.9                     | 0.2                       | 4            |
| gamma-BHC(Lindane) | <0.13              | <0.018           | <0.017             | <0.017             | <0.018             | <0.017                  | <0.021              | -                       | 0.3                       | ···          |
| Heptachlor         | <0.13              | <0.018           | <0.017             | <0.017             | <0.018             | <0.017                  | <0.021              | 5.4                     | 80.0                      | 0.5          |
| Aldrin             | <0.13              | <0.018           | <0.017             | <0.017             | <0.018             | <0.017                  | <0.021              | 0.16                    | 0.1                       | 0.2          |
| Heptachlor epoxide | <0.13              | <0.018           | <0.017             | <0.017             | <0.018             | <0.017                  | <0.021              | 0.041                   | 0.041                     | 0.04         |
| Endosulian I       | <0.13              | <0.018           | <0.017             | <0.017             | <0.018             | <0.017                  | <0.021              | 0.77                    | 0.02                      | 0.08         |
| Dieldrin           | <0.26              | <0.037           | <0.034             | <0.034             | <0.035             | <0.034                  | <0.043              |                         | 0.9                       | 4 (1)        |
| 4,4'-DDE           | <0.26              | <0.037           | <0.034             | <0.034             | <0.035             | <0.034                  | <0.043              | 0.044                   | 0.044                     | 0.04         |
| Endrin             | <0.26              | <0.037           | <0.034             | <0.034             | <0.035             | <0.034                  | <0.043              | 2.1                     | 2.1                       | 2 (3)        |
| Endosulfan II      | <0.26              | <0.037           | <0.034             | <0.034             | <0.035             | <0.034                  | <0.043              | 200                     | 0.1                       | 20           |
| 4,4'-DDD           | <0.26              | <0.027           | <0.034             | <0.034             | <0.035             | <0.034                  | <0.043              | 2.9                     | 0.9                       | 4 (1)        |
| Endosulian sullate | <0.26              | <0.037           | <0.034             | <0.034             | <0.035             | <0.034                  | <0.043              | 2.9                     | 2.9                       | 3 (4)        |
| 4,4'-DDT           | <0.26              | <0.037           | <0.034             | <0.034             | <0.035             | <0.034                  | <0.043              | 2.1                     | 1.0                       |              |
| Methoxychlor       | <1.3               | <0.18            | <0.17              | <0.17              | <0.18              | <0.17                   | <0.21               | 80                      | 2.1                       | 2 (5)        |
| Endrin ketone      | <0.26              | <0.037           | <0.034             | <b>&lt;0.034</b>   | <0.035             | <0.034                  | <0.043              | - 50                    | <b>\$0 (6)</b>            |              |
| alpha-chlordane    | <1.3               | <0.18            | <0.17              | <0.17              | <0.18              | <0.17                   | <0.21               |                         |                           |              |
| gamma-chlordene    | <1.3               | <0.18            | <0.17              | <0.17              | <0.18              | <0.17                   | <0.21               |                         |                           | 0.5 (2)      |
| Toxaphene          | <2.6               | <0.37            | <0.34              | <0.34              | <0.35              | <0.34                   | <0.43               | 0.64                    | 0.54                      | 0.5 (2)      |

Notes on Page 2 of 2

8/21/82 09941126A

#### 1661 YRAURBERYRAUNAL PESTICIDES/PCBs PERIMETER SOIL BORING ANALYTICAL RESULTS TABLE 3 (Cont.)

#### CORTLAND, NEW YORK ROSEN SILE

| 60.0                      | (Z) .01 '.1                            | •1                        | Eh.0>             | he.o>    | <b>26.0&gt;</b>  | h£.0>            | h£.0>            | ₹£.0>            | 6.S>              | Aroclor-1260 |
|---------------------------|----------------------------------------|---------------------------|-------------------|----------|------------------|------------------|------------------|------------------|-------------------|--------------|
| 60.0                      | (7) *or ,*r                            | ,l                        | Lac.0             | L780.0   | LSI.O            | <b>\$6.0&gt;</b> | <b>\$6.0&gt;</b> | 78.0>            | 8.0               | Avodor-1254  |
| 60.0                      | (7) *01, °1                            | ,t                        | 12.0>             | 71.0>    | 81.0>            | <b>T1.0&gt;</b>  | 71.0>            | 81.0>            | £.1>              | Aroclor-1248 |
| 60.0                      | 19, 10, (7)                            | •1                        | 12.0>             | 71.0>    | 81.0>            | 71.0>            | T1.0>            | 81.0>            | £.1>              | Aroclor-1242 |
| 60.0                      | (N) *01 ,*1                            | . •l                      | 12.0>             | T1.0>    | 81.0>            | 71.0>            | 71.0>            | 81.0>            | £.1>              | Aroclor-1232 |
| <b>60</b> .0              | (f) *01 ,*1                            | •1                        | 12.0>             | T1.0>    | 81.0>            | T1.0>            | 71.0>            | 81.0>            | 6.1>              | Aroclor-1221 |
| 60.0                      | (7) *or ,*r                            | .1                        | 12.0>             | T1.0>    | 81.0>            | 71.0>            | 71.0>            | 81.0>            | 6.1>              | Aroclor-1018 |
| HCRA goll<br>Pellon Layel | New York<br>State Cleanup<br>Objective | Hew York<br>Boll Critetie | A CIW<br>TH BI-AT | Wis Dup. | STW<br>(THOT-FI) | (TM ar-hr)       | arW<br>(TRIOTAL) | MOW<br>(374 P-S) | TOW<br>(17 05-01) | pimbdinog    |

Dup. - Indicates field duplicate. All concentrations and detection levels are in mg/kg equivalent to parts per million (ppm).

Intervals referenced are in feet below ground level.

The < sign indicates compound was analyzed for but not detected.

J - Indicates an estimated value.

.\* - Indicates the eum of Aroclor (PCB) compounds.

(1) - value presented is for Endosulian.

(2) - value presented is for Chlordane.

.3GC not al betnessing surev - (¢)

(4) - value presented is for DDD.

.TOO rol al bainasanq autav - (2)

(6) - as per proposed TAGM, total pesticide <10 ppm.

(1) - 1.0 is the surface soil cleanup objective; 10.0 is the subsurface soil cleanup objective.

Shading Indicated at least one of the following was exceeded: state criteria, cleanup objective, or lederal action level.

#### Heleiences:

Soil criteria are based on direct human ingestion. These criteria are from the NYSDEC Draft Cleanup Policy and Guidelines Document, October, 1991, derived from the HEAST Report current through December,

January 1994. New York State TAGM Recommended Soil Cleanup Objectives are from the NYSDEC Division Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives and Cleanup levels,

ROAA Soil Action Levels are from the Federal Register, Vol. 55, No. 145, July 27, 1990.

£2.0>

1.15

8867

**₽**2:0>

11>

**849**B

₹5.1>

. <1.2

alib

Lf.f>

1.1>

**B888** 

(J)

S (L)

(J)

(m) er

500

2,000

L1.1>

11>

8087

L1.1>

1.1>

7238

**S00** 

2,000

#### V92111601

19vii2

Selentum

## TABLE 3 PERIMETER SOIL BORING ANALYTICAL RESULTS INORGANICS LANUARY/FEBRUARY 1991

ROSEN SITE

|             |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.94     | LEES      | 218             | 2.01            | LE.14     | 22.2              | Aicket                                |
|-------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------------|-----------------|-----------|-------------------|---------------------------------------|
| SO          | 1.0                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | £1.0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LZE.0     | L1.0>     | 60.0>           | 10>             | 1.0>      | 10.0>             | yercuty                               |
|             | ω.                      | 20,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 968EJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 942E1     | 613E1     | 3818            | 316F            | 099'1     | -                 | · · · · · · · · · · · · · · · · · · · |
|             | (,)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,450EJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3009,6    | 3056,8    | 3001'11         | ·               |           | 37.61             | Asansgansk                            |
|             | <del>U</del>            | 560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ĽĽ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LO.SI     |           | -  <u>-</u>     | 3006,68         | 3,200€J   | 2'480E            | muksangaN                             |
|             | (°) 000,S               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | LS.Ef     | 12.42           | LP.6            | La.rs     | LE.F.I            | pear                                  |
|             |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L30.8.0£                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3009 à l  | \$0'000€  | 32,100E         | 12,800E         | 007,8\$   | \$3°,700€         | ligh                                  |
|             | S2 (J)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lt.St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ≥0.4      | 8.61      | č.91            | 8.51            | L8.8¢     | i et              | Jéddon                                |
|             | (+) OE .                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 86.8      | 616.Y     | Br.e            | 87.4            | L82.8     | 7.81              |                                       |
| 001         | (L) OI                  | #00 <del>1</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.5      | irei      | (a.kr           | Le.t            | 1201      |                   | Cobalt                                |
|             | w                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,2508J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L003,FE   | £6,500J   | 001,88          | 138,000         |           | (E)               | mulmoyD                               |
| 01-         | ω,                      | 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U.I.>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LI.I>     | , tr.1>   | Q'Y             | -               | L00+,01   | 000,21            | Ceiclum                               |
| 5.0         | (°) at.0                | 81.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |           |                 | 54              | L8.0>     | 29                | njuimbaO                              |
|             |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,1>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.1>      | 1.1>      | £3.0>           | <b>F</b> 2.0>   | L78.0>    | \$5.0>            | Beryllium                             |
| 000,4       | (*) ooe                 | 000,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 87.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58.9      | 83.83     | 87.SE           | 19:48           | L8.68     | 33.28             | muhad                                 |
| 08          | (*) č.T                 | 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ∏≽.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21·1      | La.c      | 9.6             | 86.1            | 128.0     | <b>P</b>          | y zeruje:                             |
| 20          | (J)                     | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LA,1>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lt.1>     | Lt.f>     | 1'1>            | 1.1>            | (5.1>     |                   |                                       |
|             | (L)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13,800 EJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,9006,7  | L3081,8   | 30cc,7          |                 |           | 0.1>              | ynomitnA                              |
| plove.1     | diusejj                 | SOUTH PROPERTY OF THE PROPERTY | CONTROL BOOK AND ADDRESS OF THE PARTY OF THE |           |           | 3066.2          | L3070,h         | 2,250     | 3081,8            | munimula                              |
| RCHA Action | Mew York State Mos MDAT | New York<br>State Draft<br>Solf Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ActW<br>Tablas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (IA-16FL) | (Tagi-bi) | riw<br>(ingrai) | OTW<br>(TRATAL) | (S-4 ET.) | WO7<br>(T3-80-81) | Compound                              |

Notes on Page 2 of 2

\$6.0>

0.1>

**4327** 

#### 1661 YAAUABET\YRAUNAL INOHERNICS PERIMETER SOIL BORING ANALYTICAL RESULTS TABLE 3 (Cont.)

#### COBITYND, NEW YORK **BOSEN SILE**

| 2,000           |                                       | 2,00                                     | <b>1</b> '1>    | r.r>                   | 1.1>             | g.f              | 2.1              | ८।>              | 2.1               | Cyanide ( |
|-----------------|---------------------------------------|------------------------------------------|-----------------|------------------------|------------------|------------------|------------------|------------------|-------------------|-----------|
|                 | (°) os                                | - 20,000                                 | (7 <b>36</b> 19 | \$20E1                 | Laore            | 28 SE            | 31,00            | Lraf             | 3601              | . ×az     |
|                 | (+) ost                               | 009 .                                    | 818             | 1.E1                   | 1.21             | 0.čf             | 80.6             | ATTI             | 12.0              | mulbaneV  |
|                 | w                                     | 0.8                                      | rı>             | 1'1>                   | 1.1>             | 1'1>             | 1.1>             | (১১)             | 0.1>              | muliteriT |
|                 | (J.)                                  |                                          | 1248            | 87.81                  | acai .           | 1228             | 8581             | 2098             | Bior              | mulbos    |
| February Police | New York State<br>TAGM BOR<br>Cleanup | New York<br>State Draft<br>Solf Criteria | MisA<br>14-16FT | Wis Dup.<br>(14-16F-L) | SIW<br>(Tagl-kr) | riW<br>(,ī⊴āt⊕i) | OIW<br>(ITARIAI) | MOM<br>(P-4 FT.) | VOV<br>(Talos-er) | Compound  |

#### NOISE:

All concentrations, detection levels, draft soil criteria, action levels, and cleanup objectives are in mg/kg equivalent to parts per million (ppm).

Liservals referenced are in feet below ground level. Dup. - indicates duplicate semple.

E - Indicates a value estimated or not reported due to the presence of interference.

The < sign indicates the compound was analyzed for but not detected.

B - indicates a value greater than or equal to the instrument detection limit but tess than the contract required detection limit.

S - Indicates value determined by Method of Standard Addition.

J - indicates an estimated value.

R - indicates the sample result is unusable.

applies to hexavelant Chromlum.

Shading indicates that at least one of the following was exceeded: state criteria, cleanup objective, or federal action level. (\*) - New York State TAGM Recommended Soil Cleanup Objective is the value listed or the site background level.

ACAA Soll Action Levels are from the Federal Register, Vol. 55, No. 145, July 27, 1990. New York State TAGM Recommended Soil Cleanup Objectives are from the NYSDEC Division Technical and Administrative Guidence Memorandum: Determination of Soil Cleanup Objectives and Cleanup Lavels, January 1994. Soil criteria are based on direct human ingestion. These criteria are from the NYSDEC Draft Cleanup Policy and Guidelines Document, October, 1991, derived from the HEAST Report current through December, 1990. References:

## TABLE 4 GROUND-WATER ANALYTICAL RESULTS - EVENT 1 VOLATILE ORGANICS MAY 1991

#### ROSEN SITE CORTLAND, NEW YORK

| Compaund                   | W-01 | W-02  | M-05DF | W-03 | W-64          | W-05 | W-de  | W-06DL | W-07 | W-97DL | New York State<br>Standards/<br>Guidance Values | MCLs/MCLGs   |
|----------------------------|------|-------|--------|------|---------------|------|-------|--------|------|--------|-------------------------------------------------|--------------|
| Chloromethane ·            | <2   | <2    | <20    | <2   | <2            | <2   | <20   | <200   | <2   | <20    | 5                                               |              |
| Bromomethane               | <2   | <2    | <20    | <2   | <2            | <2   | <20   | <200   | <2   | <20    | 5                                               |              |
| Vinyl Chloride             | <2   | <2    | <20    | <2   | <2            | <2   | <20   | <200   | <2   | <20    | 2                                               | 2/0 (G)      |
| Chloroethane               | <2   | <2    | <20    | <2   | <2            | <2   | <20   | <200   | <2   | <20    | 5                                               |              |
| Methylene Chloride         | <1   | <1    | <10    | <1   | <1            | <1   | <10   | <100   | <1   | <10    | 5                                               | 5/0 (G)      |
| Acetona                    | <2   | <2    | <20    | <2   | <2            | <2   | <20   | <200   | . <2 | <20    | 50 (G)                                          | 3/2 (4/      |
| Carbon Disulfide           | <1   | <1    | <10    | <1   | <1            | <1   | <10   | <100   | <1   | <10    |                                                 |              |
| 1,1-Dichloroethene         | <1   | 3     | 2DJ    | <1   | <1            | <1   | Le    | <100   | <1   | <10    | 5                                               | 7/7 (G)      |
| 1,1-Dichloroethane         | 2    | 37    | 28D •  | 2    | <1            | <1   | 420E  | 430D   | 6    | 15D    | 6                                               |              |
| 1,2-Dichloroethene (total) | <1   | 0.1J  | <10    | <1   | <1            | <1   | 56    | <100   | <1   | <10    | 5*                                              | 70/100       |
| Chloroform                 | <1   | 0.04J | <10    | <1   | <1            | <1   | <10   | <100   | <1   | <10    | 7                                               | 100°/100 (G) |
| 1,2-Dichloroethane         | <1.  | <1    | <10    | <1   | <1            | <1   | <10   | <100   | <1   | <10    | 5                                               | 5/0 (G)      |
| 2-Butanone                 | <2   | <2    | <20    | <2   | <2            | <2   | <20   | <200   | <2   | <20    | 50 (G)                                          |              |
| 1,1,1-Trichloroethane      | 19   | 180E  | 120D   | . 4  | <1 .          | 4    | 2800E | 3400D  | 70E  | 140D   | 5                                               | 200/200 (G)  |
| Carbon Tetrachlorida       | <1   | <1    | <10    | <1   | <1            | <1   | <10   | <100   | <1   | <10    | 5                                               | 5/0 (G)      |
| Vinyl Acetate              | <2   | <2    | <20    | <2   | <2            | <2   | <20   | <200   | <2   | <20    |                                                 |              |
| Bromodichioromethane       | <1   | <1    | <10·   | <1   | <1            | <1   | <10   | <100   | <1   | <10    | 50(G)                                           | 100°/0 (G)   |
| 1,2-Dichloropropane        | <1   | <1    | <10    | <1   | <1            | <1   | <10   | <100   | <1   | <10    | 5                                               | 5/0 (G)      |
| cis-1,3-Dichloropropene    | ·<1  | <1    | <10    | <1   | <1            | · <1 | <10   | <100   | <1   | <10    | 5                                               |              |
| Trichloroethene            | 0.2J | 0.5J  | <10    | 0.3J | ·<1           | . 1  | 45    | 42DJ   | <1   | 1DJ    | 5                                               | 5/0 (G)      |
| Dibromochloromethane       | <1   | <1 .  | <10    | <1   | <1            | <1   | <10   | <100   | <1   | <10    | 50(G)                                           | (/           |
| 1,1,2-Trichloroethane      | <1   | <1    | <10    | <1   | <b>&lt;</b> 1 | <1   | <10   | <100   | <1   | <10    | 6                                               | 5/3(G)       |

Notes on Page 4 of 4

Notes on Page 4 of 4

| MCF*/MCF@            | Gilldance Values<br>Standards/<br>New York State | 1020-M | Za-W | "IOPO-M | 90-M | \$0-M | YO-M | E0-W | JOSO-W | 20-M | 10-M | punodiuo                 |
|----------------------|--------------------------------------------------|--------|------|---------|------|-------|------|------|--------|------|------|--------------------------|
| (5) 0/3              | T.0                                              | 01>    | 1>   | 001>    | 01>  | I>    | l>   | l>   | 01>    | L>   | 1>   | <b>9</b> U <b>9</b> Zua  |
|                      | 9                                                | 01>    | 1>   | 001>    | 01>  | 1>    | L>   | 1>   | 01>    | L>   | l>   | ana-1,3-Dichlotopropane  |
| 100.\0 (a)           | (5)03                                            | 01>    | 1>   | 001>    | 01>  | 1>    | 1>   | 1>   | 01>    | 1>   | L1.0 | molomor                  |
|                      |                                                  | <20    | <2   | <200    | <50  | <2>   | <2   | <2>  | <20    | <5   | <2   | -Methyl-2-Pentanone      |
|                      | (D)0G                                            | <50    | <2>  | <200    | <20  | <5    | <۶   | <5   | <50    | <2   | <5   | Hexanone                 |
| (9) 0/9              | 9                                                | 01>    | l>   | 001>    | 01>  | t>    | l>   | +    | 01>    | 1>   | 1>   | etrachioroethene         |
|                      | 9                                                | 01>    | l>   | 001>    | 01>  | 1>    | l>   | 1>   | 01>    | 1>   | 1>   | anadteoroldparteT-S,S,f, |
| D)000,1\000,1        | 9                                                | 01>    | t>   | <100    | รา   | 1>    | 1> , | 1>   | 01>    | 1>   | 1>   | enaulo                   |
| (D) 001/001          | 9                                                | 01>    | l>   | 001>    | 01>  | l>    | t>   | L>   | 01>    | 1>   | 1>   | hlorobenzene             |
| (D) 00Y\00T          | 9                                                | 01>    | l>   | -001>   | 01>  | l>    | I>   | 1>   | 01>    | 1>   | 1>   | ihylbenzene              |
| (a) 001\001          | g                                                | 01>    | 1>   | 001>    | 01>  | 1>    | L>   | 1>   | 01>    | i>   | t>   | lyrene                   |
| 000,01\000,01<br>(2) | ,g                                               | 01>    | l>   | <100    | 01>  | 1>    | t>   | ,t>  | <10    | . t> | ; t> | seneitX lafo             |
|                      |                                                  |        |      |         |      |       |      |      |        |      |      | DIAL TIC                 |

COULTVID' NEM LOUK

TABLE 4' (Cont.)
GROUND-WATER ANALYTICAL RESULTS - EVENT 1
VOLATILE ORGANICS
MAY 1891

## TABLE '4 (Cont.) GROUND-WATER ANALYTICAL RESULTS - EVENT 1 VOLATILE ORGANICS MAY 1991

#### ROSEN SITE CORTLAND, NEW YORK

| Compound                   | W-08  | Was dup.                                                                                                                                                                   | W-00          | W-09 dup. | W-10 | W-11 | W-110L | W-12 | W-1204.       | W-13 | W-14 | New York State<br>Standard<br>Guidence Volume | MCLeMCLGe           |
|----------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|------|------|--------|------|---------------|------|------|-----------------------------------------------|---------------------|
| Chloromethana              | <2    | <2                                                                                                                                                                         | <2            | <2        | <4   | <10  | <20    | <2   | <20           | <2   | <2   | 5                                             |                     |
| Bromomethane               | \$    | <2                                                                                                                                                                         | <2            | <2        | <4   | <10  | <20    | ₹    | <20           | <2   | <2   | 5                                             |                     |
| Vinyt Chloride             | <2    | <2                                                                                                                                                                         | <2            | <2        | <4   | <10  | <20    | <2   | <20           | <2   | <2   | 2                                             | 2/0 (G)             |
| Chloroethane               | <2    | <2                                                                                                                                                                         | <2            | <2        | <4   | <10  | <20    | <2   | <20           | <2   | <2   | 6                                             |                     |
| Methylene Chloride         | <1    | <1                                                                                                                                                                         | <1            | <1        | <2   | <5   | <10    | <1   | <10           | <1   | <1   | 5                                             | 5/0.0(G)            |
| Acetone                    | <2    | <2                                                                                                                                                                         | <2            | <2        | <4   | <10  | <20    | <2   | <20           | <2   | <2   | 50 (G)                                        |                     |
| Carbon Disulfide           | <1    | <1                                                                                                                                                                         | <1            | <1        | <2   | <5   | <10    | <1   | <10           | <1   | <1   |                                               |                     |
| 1,1-Dichloroethene         | 0.1J  | <1                                                                                                                                                                         | _<1_          | <1        | L9.0 | 13   | 190    | 5    | 4DJ           | <1   | _<1_ | 5                                             | 7/7.(G)             |
| 1,1-Dichloroethane         | 3     | 3                                                                                                                                                                          | <1            | <1        | 10   | 100  | 987)   | _ 29 | 260           | <1   | <1   | 5                                             |                     |
| 1,2-Dichloroethene (total) | <1    | <1                                                                                                                                                                         | <1            | <1        | <2   | <5   | <10    | <1   | <10           | <1_  | <1   | 5°                                            | 70/100 <sup>b</sup> |
| Chloroform                 | <1    | <1                                                                                                                                                                         | <1            | <1        | <2   | <5   | <10    | _<1_ | <10           | <1   | <1   | 7                                             | 100*/100 (G)        |
| 1,2-Dichloroethane         | <1    | <1                                                                                                                                                                         | <1            | <1 .      | <2 · | 0.7J | <10    | 0.4J | <10           | <1   | <1   | 5                                             | 5/0 (G)             |
| 2-Butanone                 | <2    | <2                                                                                                                                                                         | <2            | <2        | <4   | <10  | <20    | <2   | <20           | _<2_ | <2   | 50 (G)                                        | ·                   |
| 1,1,1-Trichlorcethane      | 20    | 19                                                                                                                                                                         | <1            | <1 ·      | 73   | 260E | 2700   | 200E | 1400          | 4    | 4    | 5                                             | 200/200 (G)         |
| Carbon Tetrachloride       | <1    | <1                                                                                                                                                                         | <1            | <1        | <2   | <5   | <10    | <1_  | <10           | <1   | <1   | <u>5</u>                                      | 5/0 (G)             |
| Vinyi Acetate              | <2    | <2                                                                                                                                                                         | <2            | <2        | <4   | ≤10  | <20    | <2   | <20           | <2   | <2   |                                               |                     |
| Bromodichloromethane       |       | <1                                                                                                                                                                         | <1            | <1        | <2   | <5   | <10    | <1   | <10           | <1   | <1   | 50(G)                                         | 100°/0 (G)          |
| 1,2-Dichloropropane        | <1    | <1                                                                                                                                                                         | <1            | <1        | <2   | <5   | <10    | _<1_ | <10           | <1   | <1   | 5                                             | 5/0 (G)             |
| cls-1,3-Dichloropropene    | <1    | <1                                                                                                                                                                         | · <1          | <1        | <2   | <5   | <10_   | <1   | <u>&lt;10</u> | <1   | <1_  | 5                                             |                     |
| Trichloroethene            | 0.03J | ·<1                                                                                                                                                                        | _<1           | · <1      | 0.7J | <5   | 0.4DJ  | 11   | aDJ           | <1   | <1   | 5                                             | 5/0 (G)             |
| Dibromochloromethane       | <1    | <1                                                                                                                                                                         | <u>`&lt;1</u> | <1        | <2   | <5   | <10    | <1   | <10           | <1   | <1   | 50(G)                                         |                     |
| 1,1,2-Trichloroethane      | <1    | - <i< td=""><td>&lt;1</td><td>&lt;1</td><td>&lt;5</td><td>&lt;5</td><td>&lt;10</td><td>&lt;1</td><td>&lt;10</td><td>&lt;1</td><td>&lt;1</td><td>6</td><td>5/3(G)</td></i<> | <1            | <1        | <5   | <5   | <10    | <1   | <10           | <1   | <1   | 6                                             | 5/3(G)              |
| Benzene                    | <1    | <1_                                                                                                                                                                        | <1            | <1        | <2   | <5   | <10    | <1   | <10           | <1   | <1   | 0.7                                           | 5/0 (G)             |

#### **1681 YAM** VOLATILE ORGANICS. GROUND-WATER ANALYTICAL RESULTS - EVENT 1 TABLE 4 (Cont.)

#### CORTLAND, NEW YORK HOSEN SITE

|                   |                     |                                       |        |                                                   |               |               |                |                                       |         |       |                | 100                      |
|-------------------|---------------------|---------------------------------------|--------|---------------------------------------------------|---------------|---------------|----------------|---------------------------------------|---------|-------|----------------|--------------------------|
| 19                |                     | 41                                    | Lâ     | · ·                                               |               |               |                | LTOI                                  | Lþ.     |       |                |                          |
| 1>                | 1>                  | 1>                                    | 1>     | <2>                                               | <b>\$&gt;</b> | 01>           | 1>             | 01>                                   | 1>      | 1>    | 9              | (2),000,01\000,01        |
| 1>                | 15                  | 1>                                    | 1>     | <2>                                               | <b>\$&gt;</b> | 015           | 1>             | <10                                   | 1>      | 1>    | 9              | (D) 001\001              |
| >- <del>-</del> - | 1>                  | 1>                                    | L>     | <5                                                | g>            | <b>01&gt;</b> | 1>             | 01>                                   | 1>      | 1>    | 9              | (D) 001/001              |
|                   | l> i>               | L>                                    | i>     |                                                   | 9>            | 01>           | 1>             | 01>                                   | 1>      | 1>    | g              | (E) 001/001              |
|                   | - <del>i&gt;-</del> | 1>                                    | i>     | -<5                                               | <u>ç&gt;</u>  | 01>           | 1>             | 01>                                   | <u></u> | 1>    | 9              | (5) 000,1/000,1          |
|                   | 1>                  | 1>                                    | 1>     | <2                                                | Ç>            | 01>           | Ţ>             | OI>                                   | L>      | L>    | ŷ.             |                          |
|                   | 1>                  |                                       | 1>     | 6.13                                              | Ç>            | -0i>          | 1>             | 01>                                   | 1>      | <1    | g              | ( <u>5</u> ) 0/ <u>9</u> |
|                   | - z>                | <5                                    | <5     | <b>*&gt;</b>                                      | Ó1>           | <20           | ₹>             | <20                                   | <5      | <5    | (5)09          |                          |
|                   |                     | - <del>5</del> >                      | <5     | <del>                                      </del> | 01>           | <20           | ₹>             | <50                                   |         | <5    | 09             |                          |
|                   |                     | L1.0                                  | 1>     | - < <u>5</u>                                      | <b>G&gt;</b>  | 01>           | LS.0           | 01>                                   | 1>      | 1>    | (5)09          | (5) 0/,001               |
|                   | 1>                  | 1>                                    | - 1>   | ₹>                                                | 9>            | 01>           | 1>             | <10                                   | 1>      | l>    | 9              |                          |
|                   |                     | ********                              |        | **********                                        |               | SCOTT PATES   | Signal Control | TE LANGE                              | e ea    | STENE | SURPA COURTERS | MCI PARCIES              |
| BO-M              | Ab 80-W             | 60-M                                  | nd abw | VI-7A                                             | 63-7M         | KII. K        | 64.78          | RLOC JA                               |         |       | Vinehnelä      |                          |
|                   | i> i>               | C   C   C   C   C   C   C   C   C   C |        | <1                                                |               |               |                | C   C   C   C   C   C   C   C   C   C |         |       |                |                          |

- All concentrations and detaction levels are reported as ugAL equivalent to parts per bitton (ppb). DL indicates field duplicate,
- Duty. Indicates the analyse was found in the associated blank as well as in the sample.

  1 Indicates are analyse was found in the associated blank as well as in the sample.

  B Indicates the analyse was found in an analyse at a secondary district range of the GC/MS instrument for that specific analyse.

  E Identifies compounds whose concentrations axceeded in calibration range of the GC/MS instrument for that specific analyse is compound was analyzed for but not detected.

  The cation indicates the compound was analyzed for but not detected.

  The MCL of 70 ug/L applies to the cat-isomer; the MCL of 100 ug/L applies to the trans-isomer.

  S In the MCL of 70 ug/L applies to the cat-isomer; the MCL of 100 ug/L applies to the trans-isomer.

  S Applies to the total of trinsformer accepted; shading indicates federal MCLs exceeded.

Standard and guidence values are according to New York State Department of Environmental Conservation (NYSDEC), Division of Water Technical and Operation Guidence Series (1.1.1), Ambient Meter Conservation of Water Technical and Operation Guidence Series (1.1.1), Ambient Oneilly Standards and Guidence Values (designated by (G)), October 1993.

MCLs [Maximum Conteminent Levels] and MCLs [Maximum Conteminent Level Goals, designated by (G)] according to the Code of Federal Regulations and Health Advisories, Office of Water, U.S. Environmental Protection Agency, December 1993.

Notes on Page 6 of 6

# TABLE, 4 GROUND-WATER ANALYTICAL RESULTS - EVENT 1 SEMIVOLATILE ORGANICS MAY 1991

## ROSEN SITE CORTLAND, NEW YORK

|                             |               |               |            |                  |               |               |             |                | New York Same   |               |
|-----------------------------|---------------|---------------|------------|------------------|---------------|---------------|-------------|----------------|-----------------|---------------|
| Compound                    | 10M           | WO2           | WOS        | WOd              | WOS           | WUS           | W07         | WOS            | Guidenca Values | Ber towns row |
| Phenol                      | <10           | <12           | <10        | <12              | 11>           | <11           | <10         | <10            | 1.              |               |
| Bis(2-Chloroethyt)Ether     | <10           | <12           | <10        | <12              | <11           | <11           | <10         | <b>~10</b>     | 0.1             |               |
| 2-Chlorophenoi              | <10           | <12           | <10        | <12              | <11           | <b>^11</b>    | <b>6</b>    | <del>^</del> 0 | ٠.              |               |
| 1,3-Dichlorobenzene         | -10           | <12           | <10        | <12              | <11           | <b>^</b>      | <b>^10</b>  | <b>61</b> >    | 5               |               |
| 1,4-Dichlorobenzene         | <10           | <12           | <10        | <12              | <11           | 41            | <b>₹</b>    | 습              | 4.7             | 750/750 (G)   |
| Benzyl Alcohol              | <10           | <12           | <10        | <12              | 41>           | <b>-</b>      | <b>61</b> > | <b>6</b>       |                 |               |
| 1,2-Dichlorobenzene         | <10           | <12           | <10        | <12              | <11           | <b>-</b> 1    | <10         | <del>6</del>   | 4.7             | 600/600 (G)   |
| 2-Methylphenol              | <10           | <12           | <10        | <12              | <b>&lt;11</b> | <b>~1</b>     | <b>61</b> > | <10            | ٦.              |               |
| Bis(2-Chlorolsopropyt)Ether | <10           | <12           | <10        | <12              | <11           | <11           | <10         | <10            | ð               |               |
| 4-Methylphenol .            | ŝ             | <b>&lt;12</b> | <10        | <12              | <11           | <11           | <10         | <10            | 1,              |               |
| N-Nitroso-di-n-Propylamine  | <10           | <b>&lt;12</b> | <10        | <12              | <11           | <11           | 01>         | <b>^10</b>     |                 |               |
| Hexachloroethane            | <b>61</b>     | <12           | <10        | <12              | <11           | <11           | <10         | <b>^10</b>     | 5               |               |
| Nitrobenzene                | <10           | <12           | <10        | <12              | <11           | <11           | <10         | <b>10</b>      | 5               |               |
| Isophorone                  | <10           | <12           | <10        | <12              | <11           | <11           | <10         | 01>            | 50(G)           |               |
| 2-Nitrophenol               | <b>61&gt;</b> | <12           | â          | <b>&lt;12</b>    | <b>41</b>     | <11           | <10         | <10            | 14              |               |
| 2,4-Dimethylphenol          | <10           | <12           | <b>^10</b> | <12              | <b></b>       | <11           | <10         | <10            | 10              |               |
| Benzoic Acid                | <u>^</u> 8    | ŝ             | <b>~50</b> | ŝ                | <58           | <56           | <52         | <50            |                 |               |
| Bis(2-Chloroethoxy)Methane  | <b>~10</b>    | <b>~12</b>    | <10        | <12              | <11           | <11           | <10         | <10            | 5               |               |
| 2,4-Dichlorophenol          | ÷             | <12           | <b>^10</b> | <12              | <u>-</u>      | <11           | <10         | <10            | 1°              |               |
| 1,2,4-Trichiorobenzene      | <10           | <12           | <b>~10</b> | <12              | <11           | <11           | <10         | <10            | 5               | 70/70(G)      |
| Naphthalene                 | <10           | <u>^12</u>    | <b>~10</b> | <12              | <b>~11</b>    | <11           | <10         | <10            | 10(G)           |               |
| 4-Chlorosnline              | <10           | <12.          | <b>~10</b> | <12              | - 41          | <11           | <10         | <10            | 5               |               |
| Hexachlorobuladlene         | ŝ             | · <12         | <b>61</b>  | <12              | <b>^11</b>    | <11           | <10         | <10            | 5               |               |
| 4-Chioro-3-Methylphenol     | <b>~10</b>    | <12           | <b>~16</b> | <12              | <11           | <11           | <10         | <10            | 1,              |               |
| 2-Methylnaphthalene         | 410           | <12           | <b>\$</b>  | <12 <sup>-</sup> | â             | <b>&lt;11</b> | 01>         | <10            |                 |               |
| Hexachlorocyclopentactiene  | <b>^10</b>    | <b>~12</b>    | <10        | <12              | . 41          | <11           | <10         | <10            | 5               | 50/50(G)      |
| 2,4,6-Trichlorophenol       | <10           | <b>~12</b>    | <10        | <12              | <11           | <b>411</b>    | <b>~10</b>  | ê              | 1.              |               |

;

# TABLE 4 (Cont.) GROUND-WATER ANALYTICAL RESULTS - EVENT 1 SEMNOLATILE ORGANICS MAY 1901

## ROSEN SITE COFFLAND, NEW YORK

|                                |              |                  |            |                                                          |                 |              |              | 200000000000000000000000000000000000000 |                             |                 |
|--------------------------------|--------------|------------------|------------|----------------------------------------------------------|-----------------|--------------|--------------|-----------------------------------------|-----------------------------|-----------------|
| Compound                       | WOI          | MCC              | MOS        | MOK                                                      | SON SON         | WING         | MARY         | MATE                                    | Man York State<br>Standards |                 |
| 2,4,5-Trichlorophenol          | 0 <b>5</b> > | <62              | 955        | <62                                                      | 85              | 3            | ş            | 3                                       | ,                           | Serie malaceram |
| 2-Chloronaphthalene            | 95           | <12              | 61×        | <12                                                      | 1               |              | *            | 3                                       | -                           |                 |
| 2-Nitroanilina                 | ŝ            | SB2              | ş          | 68/                                                      |                 | 7            | OLY I        | ₽                                       | 10(G)                       |                 |
| Dimethyl Phthalate             | 5            | 5                | 3 3        | 3                                                        | 00 V            | 96           | 2 <b>9</b> 5 | <50                                     | 3                           |                 |
| Acenerhitalene                 | ,            | 7 .              | Ş          | ×12                                                      | ₹               | ₹            | ×10          | <10                                     | (5)og                       |                 |
|                                | 2            | <12<br>          | ş          | <12                                                      | <b>&lt;11</b>   | <11          | <10          | ot >                                    | ,                           |                 |
| Z,O-LUTHBOKCKIEDE              | ê<br>6       | <12              | <b>~10</b> | <12                                                      | <11             | <11          | <10          | 910                                     | uc                          |                 |
| 3-Nitroanline                  | ş            | <62              | <50        | 79<br>¥                                                  | 950             | 185<br>185   | 23,          | Ş                                       |                             |                 |
| Acenaphthena                   | <10          | <12              | 01.0       | <12                                                      | ₹               | 150          | 95.7         | \$ 5                                    | 2                           |                 |
| 2,4-Dintrophenol               | 09>          | . <62            | ş          | <b>∠62</b>                                               | 85              | į            |              | 2   5                                   | (p)nz                       |                 |
| 4-Nitrophenol                  | ş            | 89               | 80         | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | See.            | 3 8          | 26.5         | 8                                       | -                           |                 |
| Dibenzofuran                   | <10          | <12              | ê          | 45                                                       | Ī               | 3 =          | ¥   5        | 8                                       | -                           |                 |
| 2,4-Dinitrotoluene             | 95           | 25               | 8          | 2                                                        | :   =           | , ;          |              | OL V                                    |                             |                 |
| Diethyiphthalate               | 01.5<br>01.0 | <b>412</b>       | 92         | 5                                                        |                 | ,            | OL V         |                                         | 9                           |                 |
| 4-Chlorophenyl-phenylether     | V 10         | \$               | 1          |                                                          | - ;             |              | al v         | <b>~10</b>                              | 50(G)                       |                 |
| Fluciene                       | 9.7          | 22               | 2 5        | 31,                                                      | ē :             | ē            | V 10         | ę                                       |                             |                 |
| 4-Niroaniine                   | 3            |                  | ,          | <u> </u>                                                 | ē               | F            | <b>~10</b>   | <10<br><                                | 50(G)                       |                 |
| 8. Olohra S. math. de t. a. a. | 3            | ÿ                | 8          | <b>29</b>                                                | ×56             | <56          | <52          | <50                                     | 9                           |                 |
|                                | g            | \$               | SS<br>V    | <62                                                      | \$ <del>5</del> | 9Ç>          | <52          | ક્                                      | -                           |                 |
| N-Nitrosodiphenylamina (1)     | <10          | <12              | <b>6</b>   | · <12                                                    | ₹               | 5            | 9.7          | 45,                                     | 13793                       |                 |
| 4-Bromophenyt-phenylether      | <10          | <12              | o! ^       | 21 <sub>2</sub>                                          | ē               | ŧ            |              | 2 5                                     | falso                       |                 |
| Hexachlorobenzene              | <10.         | \$1.<br>21.      | ş          | 412<br>412                                               | ₹               | Ī            | 2 5          | 2 5                                     |                             |                 |
| Pentachlorophenol              | <50          | 28               | ŝ          | <62                                                      | ×5.6            | , g          | 2 2          | 2 4                                     | 0.35                        | 1,0.0(3)        |
| Phenanthrene                   | <10          | 51.<br>54.       | 유          | 25                                                       | ₹               |              |              | 3 3                                     | -                           | 1,0 (G)         |
| Anthracene                     | 95           | 212              | 9          | 5                                                        |                 | , ;          | 9            | 200                                     | 90(G)                       |                 |
| Di-n-Butylphthalate            | 65           | 2 <del>1</del> 2 | 95         | \$                                                       | 7               |              |              | 2                                       | (5)03                       |                 |
| Fluoranthene                   | , de         | 2 ₹              | 8          | <b>₽</b>                                                 | 7 5             | 7 7          | al ş         | 9 ;                                     | 8                           |                 |
| Pyrene                         | <10 ·        | ŝ                | 5          | 1 5                                                      |                 | <del>,</del> | 2            | 9                                       | (S)os                       |                 |
|                                |              |                  |            | 715                                                      | L1>             | <11>         | <10          | <10                                     | 50(G)                       |                 |

2 of 6

Notes on Page 6 of 6

## TABLE 4 (Cont.) TABLE 4 (Cont.)

#### COLLIVAND' NEM AOUK HOSEN SULE

| OTAL TIC                      |     |     |     |     |     |               | รเร   |       |                    |           |
|-------------------------------|-----|-----|-----|-----|-----|---------------|-------|-------|--------------------|-----------|
| Jenskya-Jů, ň, p) Penylene    | 01> | <15 | 01> | <12 | 11> | 11>           | 01>   | 01>   |                    | **        |
| enecentra (d, a) snabolic     | 01> | <15 | 01> | ८।> | 11> | <b>11&gt;</b> | 01>   | 01>   |                    | (2) 0/2.0 |
| neny?(bɔ-ĉ,S,1)onebn          | 01> | <15 | 01> | <12 | 11> | 11>           | · 01> | Ot>   | (5)S00.0           | (2) O/1·0 |
| Senzo(a)Pyrene                | 01> | <12 | 01> | Z1> | 11> | 11>           | 01>   | 01>   | CIN                | (2) O.S.O |
| 3enzo(k)Fluoranthene          | 01> | <15 | 01> | <12 | 11> | 11>           | 01>   | 01>   | ( <i>5</i> )\$00.0 | 0.2/0 (G) |
| enarlinenoul-I(d)označ        | 0t> | <15 | 01> | <15 | 11> | 11>           | 01>   | 01>   | 0.002(G)           | 0.2/0 (G) |
| etalaritrid MtoO-n-iC         | 01> | <12 | 01> | <12 | II> | 11>           | 01>   | 01>   | (5)03              |           |
| edalarkri9(kyarilyris)=-S)al6 | 01> | <12 | 01> | <15 | 11> | 11>           | 01>   | 01>   | 09                 | (5)0.0\0  |
| Chysene                       | 01> | <15 | 01> | <15 | 11> | 11>           | 01>   | 01>   | (a)\$00.0          | (E) 0\2.0 |
| enecenta (a)ozne              | Ot> | <12 | 01> | <15 | 11> | 11>           | 01>   | 01>   | (E)SOO.0           | (5) 0/1.0 |
| 3.5'-Dichlorobenzidina        | <50 | <52 | <50 | <52 | ZZ> | <55           | <51   | <20   | 9                  |           |
| atalarlindiyznadiying         | 01> | <15 | 01> | <12 | 11> | 11>           | 01>   | 01>   | £0(G)              | (5) 0/001 |
| punoduo                       | Iow | ZOM | SOM | FOM | SOM | 9111/1        | YOW   | (90Y) | earley expenses    | PERMISION |
|                               |     |     |     |     |     |               |       |       | dadi yoy yeyi      |           |

3 to 8 ages no setoN

# TABLE 4. (Cont.) GROUND-WATER ANALYTICAL RESULTS - EVENT 1 SEMINOLATILE ORGANICS MAY 1891

## ROSEN SITE CORTLAND, NEW YORK

| Compound                    | qub 90M       | WARE       | W08 chp. | ΰιλί       | Wit           | Wiz        | Wis  | WIS        | New York State<br>Standards<br>Guidance Volune | PER SAMPE   |
|-----------------------------|---------------|------------|----------|------------|---------------|------------|------|------------|------------------------------------------------|-------------|
| Phenoi                      | <10           | <10        | <10      | <12        | <12           | <11        | <12  | <12        | 1.                                             |             |
| Bis(2-Chloroethyf)Ether     | <10           | <10        | <10      | <12        | <12           | <11        | <12  | <12        | 1.0                                            |             |
| 2-Chlorophenol              | <10           | <10        | <10      | <12        | <12           | <11        | <12  | <12        | 1,                                             |             |
| 1,3-Dichlorobenzene         | <10           | <10        | <10      | <12        | <12           | <11        | <12  | <12        | 9                                              |             |
| 1,4-Dichlorobenzene         | <10           | <10        | <10      | <12        | <12           | <11        | <12  | <12        | 4.7                                            | 750/750 (G) |
| Benzyi Alcohol              | <10           | <10        | <10      | <12        | <12           | <11        | <12  | <12        |                                                |             |
| 1,2-Dichlorobenzana         | <10           | <10        | <10      | <12        | <12           | <11        | <12  | <12        | 4.7                                            | (D) 009/009 |
| 2-Methylphenol              | <10           | <10        | <10      | <12        | <12           | <11        | <12  | <12        | • <u>.</u>                                     |             |
| Bis(2-Chloroisopropyt)Ether | <10.          | <10        | <10      | <12        | <12           | <b>C11</b> | ZI ∨ | <12<br><12 | 20                                             |             |
| 4-Methylphenol              | <10           | <10        | <10      | <12        | <12           | <11        | <12  | <12        | 1.                                             |             |
| N-Nitroso-di-n-Propylamina  | <10           | <10        | <10      | <12        | <12           | <11        | <12  | <12        |                                                |             |
| Hexachlorcethane            | <10           | <10        | <10      | <12        | <12           | <11        | <12  | <12        | 9                                              |             |
| Nitrobenzene                | oto           | ot>        | <10      | . <12      | <12           | <11        | <12  | <12        | 5                                              |             |
| Isophorone                  | <10           | . <10      | <10      | <12        | <12           | <11        | <12  | <12        | (D)09                                          |             |
| 2-Nitrophenal               | <10           | <10        | <10      | <12        | <12           | <11        | <12  | <12        | ıl.                                            |             |
| 2,4-Dimethylphenol          | <10           | <10        | <10      | <12        | <12           | <11        | <12  | <12        | 1.                                             |             |
| Benzoic Acid                | 0 <u>\$</u> > | <50        | <50      | <62        | <b>29&gt;</b> | <56        | <62  | <62        |                                                |             |
| Bis(2-Chloroethoxy)Methane  | <10           | <10        | <10      | <12        | <12           | <11        | <12  | <12        | 9                                              |             |
| 2,4-Dichlorophenol          | <10           | <10        | <10      | <12        | <12           | <11        | <12  | <12        | -1                                             |             |
| 1,2,4-Trichlorobenzene      | <10           | <10        | <10 ·    | <12 .      | <12           | <11        | <12  | <12        | 9                                              | (5)01/0L    |
| Naphthalene                 | <10           | <10        | <10      | <12        | <12           | <11        | <12  | <12        | (5)01                                          |             |
| 4-Chloroenlline             | <10           | 0.0<br>0.0 | <10      | <12        | <12           | <11        | <12  | <12        | 5                                              |             |
| Hexachlorobutadiene         | <10           | <10        | <10 ·    | <12        | <12           | <11        | <12  | <12        | g                                              |             |
| 4-Chloro-3-Methylphenol     | <10           | <10        | <10      | <12        | <12           | <11        | <12  | <12        | al.                                            |             |
| 2-Methylnaphthalene         | ~10           | · <10      | <10      | <b>₹12</b> | <12           | <11        | <12  | <12        |                                                |             |
| Hexachlorocyclopentadiene   | <10           | <10        | <10      | <12        | <12           | <11        | <12  | <12        | 2                                              | (5) 09/09   |
| 2,4,6-Trichlorophenol       | <10           | <10        | <10      | <12        | Z1>           | <11        | <12  | <12        | -1                                             |             |

Notes on Page 6 of 6

421.PH 2494T013G

4 of 6

# TABLE 4 (Cont.) GROUND-WATER ANALYTICAL RESULTS - EVENT 1 SEMINOLATILE ORGANICS MAY 1891

## ROSEN SITE CORTLAND, NEW YORK

|                            |               |                                       |             |             |               |            |               |               | New York Shale               |              |
|----------------------------|---------------|---------------------------------------|-------------|-------------|---------------|------------|---------------|---------------|------------------------------|--------------|
| Corpound                   | WOS dup       | 8                                     | Was day.    | Wite        | I.M.          | Wig        | SIM.          | MIA           | Standards/<br>Guidence Volum | MC Selection |
| 2,4,5-Trichlorophenol      | <50           | 0 <u>3</u> 2                          | 95>         | <b>29</b> > | <b>29&gt;</b> | 950        | 282           | <b>29</b> 5   | 18                           |              |
| 2-Chloronaphithalene       | <10           | <10                                   | <10         | <12         | <12           | 1          | <12           | <12           | 10(G)                        |              |
| 2-Nitroaniline             | <50           | <50                                   | <50         | <62         | <62           | 999        | 8             | <62           | 92                           |              |
| Dimethyl Phthalate         | <10           | <10                                   | <10         | <12         | <12           | £          | <12           | <12           | 50(G)                        |              |
| Acenaphthylene             | ¢10           | <10                                   | <10         | <12         | <12           | 1          | 212           | <12           |                              |              |
| 2,6-Dinitrotoluene         | <10           | <10                                   | <10         | <12         | <12           | ₽          | <12           | <12           | 9                            |              |
| 3-Ntroantine               | 8             | × × × × × × × × × × × × × × × × × × × | <50         | <62         | <62           | <b>656</b> | 89            | <b>79&gt;</b> | 9                            |              |
| Acenaphthene               | <10           | <10                                   | <10         | <12         | <12           | ī          | <12           | <12           | 20(G)                        |              |
| 2,4-Dinitrophenol          | ş             | \$\$<br>\$2                           | <50         | <62         | <b>79</b> >   | 95>        | <b>2</b> 85   | <b>29&gt;</b> |                              |              |
| 4-Nitrophenoi              | ×50           | <50                                   | <50         | <62         | 295           | 950        | 280           | <62           | -1                           |              |
| Olbenzofuran               | 왕             | <10                                   | <10         | <12         | <12           | ₹          | 25            | 25            |                              |              |
| 2,4-Dinitrotoluene         | 01×           | <10                                   | <10         | <12         | <12<br><12    | ₹          | 42            | <12           | 10                           | :            |
| Olethylphthalate           | ×10           | <10                                   | <10         | <12         | <12           | ₽          | 25            | ×12           | 50(G)                        |              |
| 4-Chlorophenyl-phenylether | 200           | <10                                   | <10         | <12<br><12  | <12<br><12    | ₹          | 21×           | ×12           |                              |              |
| Fluorene                   | v 10          | <10                                   | <10         | . < 12      | <12           | ı          | ×12           | 212           | 50(3)                        |              |
| 4-Nitroaniline             | <50           | <50                                   | <b>0</b> 9> | 88          | 89            | \$58       | 280           | 8             | ıc                           |              |
| 4,6-Dinitro-2-methylphenol | ×50           | <50                                   | <b>0</b> 9> | 29>         | <b>29&gt;</b> | 999        | 29<br>V       | 285           | -1-                          |              |
| N-Nitrosodiphenylamine (1) | <10           | ×10                                   | <10         | <12         | <12           | ı          | 212           | 217           | (5)09                        |              |
| 4-Bromophenyl-phenylether  | <10           | ×10                                   | <10         | <12         | <12           | ı.         | <12           | ZI>           |                              |              |
| Hexachlorobenzene          | 6             | 01.0                                  | <10         | <12 ·       | <12           | ₹          | <12           | <12           | 0.35                         | 1,0.0(G)     |
| Pentachlorophenol          | 0 <b>\$</b> > | <b>09</b> >                           | В           | <62         | <b>79&gt;</b> | 95>        | <b>29&gt;</b> | <b>29&gt;</b> | 1-                           | 1,0 (G)      |
| Phenanthrene               | c†0           | ×10                                   | <10         | <12         | <12           | ₹          | 212           | <12           | 50(G)                        |              |
| Anthracene                 | ot>           | · <10                                 | <10         | . <12       | <12           | ī          | <12           | <12           | (5)05                        |              |
| Di-n-Butyiphthalate        | 운             | <10                                   | <10         | <12         | 2₹            | ₹          | 25            | 412           | 8                            |              |
| Fkoranthene                | o1>           | <10                                   | <10         | ×12         | 2 <u>1</u> 2  | ₽          | <12           | <12           | 50/G)                        |              |
| Pyrene                     | <10           | <10                                   | 01 V        | ×12         | 21×           | ₽          | ¢12           | 21×           | (5)0G                        |              |
| Butytbenzytphithelete      | <10           | <10                                   | 0.<br>0.    | ×12         | 25            | ₹          | <12           | <12           | (SOACE)                      | 1000 (3)     |
|                            |               |                                       | 4           |             |               |            |               |               |                              |              |

Notes on Page 6 of 6

5 of 6

#### **1681 YAM** SEMINOLATILE ORGANICS **GROUND-WATER ANALYTICAL RESULTS - EVENT 1** TABLE 4 (Cont.)

#### CORTLAND, NEW YORK **BOSEN SILE**

| ELEMPS TOM            | ched toy well<br>absoluted<br>souldy executed | HM   | EIW   | SIW  | LIM | aiW | MDB dup. | BOM                                                            | Apple BOW | jouthorius                   |
|-----------------------|-----------------------------------------------|------|-------|------|-----|-----|----------|----------------------------------------------------------------|-----------|------------------------------|
|                       | 9                                             | <52  | <52   | <22> | <52 | <25 | <50      | <s0< td=""><td>&lt;50</td><td>enibisnedoroldaid-°E,</td></s0<> | <50       | enibisnedoroldaid-°E,        |
| (E) 0\1.0             | 0.002(G)                                      | <15  | <15   | 11>  | <15 | <12 | Ot >     | 01>                                                            | 01>       | euso(a) yugusesue            |
|                       | 0.002(G)                                      | <12  | <15   | 11>  | <15 | <12 | 01>      | 01>                                                            | 01>       | илевив                       |
| (5) 0\S.0<br>(5)0.0\8 | 09                                            | <12  | <12   | 11>  | <12 | <15 | 01>      | 01>                                                            | 01>       | etelertri9(livxertivrti3-S)s |
| 4-3                   | (5)09                                         | <15  | <15   | 11>  | <12 | <15 | 01>      | 01>                                                            | 01>       | -n-Octyl Phinalate           |
| (5) 0/3:0             | 0.002(G)                                      | <15. | <15   | 11>  | <12 | <12 | 01>      | 0t>                                                            | 01>       | enaritasioul-{(d)osna        |
| 0.2/0 (G)             | 0.002(G)                                      | <15  | Z1> . | II>  | ८।> | <15 | OI>      | 01>                                                            | 01>       | enactinanoul-(4)osna         |
| 0.2/0 (G)             | an                                            | <12  | <12   | 11>  | <12 | <15 | 01>      | 01>                                                            | 01>       | eneny4(a)ozne                |
| (5) 0/4.0             | 0.002(G)                                      | <15  | <15   | 11>  | <12 | <15 | <10      | 01>                                                            | 01>       | enety4(bo-2,2,1)oneb         |
| (5) 0/6.0             |                                               | <12  | <12   | 11>  | <12 | <15 | 01>      | 01>                                                            | 01>       | Denz(a,h)Anthracene          |
|                       | ļ                                             | <15  | <12   | 11>  | <15 | <15 | 01>      | 01>                                                            | 01>       | ensit/ne/(f,d,tg)ozne        |
|                       | <del></del>                                   | J    |       | LT   | 1   |     |          |                                                                | 1         | OIT_INC                      |

#### Notes:

Dup. - Indicates field dupitcate. All concentrations, detection levels, standards, guidance values, MCLs/MCLGs are reported as ug/L equivalent to parts per billion (ppb).

The < sign indicates the compound was analyzed for but not detected.

. This compound cannot be separated from Diphenylamine,

The standard value of 1 ugA, applies to the maximum limit for the sum of all phenotic compound concentrations.

TIC - indicates Tentatively Identified Compounds.

J - Indicates and estimated value.

R - Indicates the associated value is unusable.

ND - Non-Detectable

#### Heleroces:

Standards and Guldance Values [designated by (G)], October 1993. Standard and guidance values are according to New York State Department of Environmental Conservation (VYSDEC), Division of Water Technical and Operation Guidance Series (1.1.1), Ambient Water Conservation of Water Technical and Operation Guidance Series (1.1.1), Ambient Water Conservation of Water Technical and Operation Guidance Series (1.1.1), Ambient Water Conservation of Water Technical and Operation Guidance Series (1.1.1), Ambient Water Conservation of Water Technical and Operation Guidance Series (1.1.1), Ambient Water Conservation of Water Technical and Operation Guidance Series (1.1.1), Ambient Water Technical and Operation Operation (1.1.1), Ambient Water Technical and Operation Operation (1.1.1), Ambient Marie Conservation (1.1.

the Drinking Water Regulations and Health Advisories, Office of Water, U.S. Environmental Protection Agency, December 1983. MCLs [Maximum Conteminant Levels] and MCLGs [Maximum conteminant Level Goals, designated by (G)] according to the Code of Federal Regulations, Protection of Environment 40, Part 141, July 1, 1981, and

8 to 8 ages no setoM

#### Notes on Page 3 of 3

| •                | •       |                                         |                             |             |               |         |                |                   |                                      |                                        |
|------------------|---------|-----------------------------------------|-----------------------------|-------------|---------------|---------|----------------|-------------------|--------------------------------------|----------------------------------------|
|                  |         |                                         | <u> </u>                    | <del></del> | T             | 0.1>    | 1:1>           | 0.1>              | 41.0                                 | *(E) 0\B.0                             |
| ot-1260          | 0.1>    | . 01>                                   | 1.1>                        | 0.1>        | 1,1>          |         |                | 01>               | 1'0                                  | *(D) 0\d.0                             |
| 1821-10          | <1.0    | 0.1>                                    | 1.1>                        | . 0.1>      | 1.1>          | 0.1>    | 99.0>          | S0.0>             | 61.0                                 | *(E) 0/2.0                             |
| Jor-1248         | SS.0>   | 03.0>                                   | <b>+6.0&gt;</b>             | 03.0>       | 95.0>         | <0.52   | 82.0>          | \$8.0>            | el'0                                 | 4(E) 0.5.0                             |
| -jot-1245        | <0.52   | 03.0>                                   | <b>\$</b> 2.0>              | 03.0>       | 85.0>         | \$6.0>  | 95.0>          | \$6.0>            | 1.0                                  | "(E) 0\Z.O                             |
| 30K-1232         | S6.0>   | 03.0>                                   | <b>+9</b> '0> .             | 09.0>       | 95.0>         | <0.52   | 88.0>          | \$6.0>            | 1.0                                  | 4(5) 0/S.0                             |
| 1221             | \$5.0>  | 09.0>                                   | þč.0>                       | 05.0>       | <b>88.</b> 0> | \$2.0>  | 82.0>          | \$6.0>            | -1.0                                 | 0.5/0 (G)*                             |
| 9101-1018        | <0.52   | 09.0>                                   | PS.0>                       | 03.0>       | 88.0>         | <0.52   | 1,1>           | 0.1>              | ON                                   | (D) OVE                                |
| phene            | 0.1>    | 0.1>                                    |                             | 0.1>        | 1.1>          | 0.1>    | 93.0>          | <0.52             | 1.0                                  | S\0 (G).                               |
| ma-chiordane     | \$6.0>  | 05.0>                                   | <b>PG.0&gt;</b>             | 03.0>       | 86.0>         | S9.0> . | 88.0>          | <0.52             | 1.0                                  | sto (c).                               |
| a-chlordene      | <0.52   | 03.0>                                   | <b>}</b> 9'0>               | 03.0>       | 88.0>         | <0.52   | 11.0>          | 01.0>             | 9                                    |                                        |
| อนดเอา เมา       | . 01.0> | 01.0>                                   | 11.0>                       | 01.0>       | 11.0>         | 01.0>   |                | \$6.62            | 90                                   | (E) OF/OF                              |
| μοκλεμιοι.       | <0.52   | 03.0>                                   | <b>P3.0&gt;</b>             | 02.0>       | 93.0>         | \$3.0>  | 65.0>          | 01.0>             | ON                                   |                                        |
| -001             | 01.0>   | 01.0>                                   | 11.0>                       | 01.0>       | 11.0>         | 01.0>   | 11.0>          | 01.0>             |                                      |                                        |
| stalius naliusol | 01.0>   | 01.0>                                   | 11.0>                       | 01.0>       | 11.0>         | 01.0>   | 11.0>          | <0.10             | ON                                   |                                        |
| OOO-             | 01.0>   | <0.10                                   | 11.0>                       | 01.0>       | 11.0>         | <0.10   | 11.0>          | 01.0>             |                                      |                                        |
| li neilusol      | 01.0>   | 01.0>                                   | 11.0>                       | 01.0>       | 11.0>         | 01.0>   | 11.0>          | 01.0>             | ON                                   | \$\\$(g)                               |
| uh:              | 01.0>   | 01.0>                                   | 11.0>                       | 01.0>       | 11.0>         | 01.0>   | 11.0>          |                   | GN GN                                |                                        |
|                  | 01.0>   | 01.0>                                   | 11.0>                       | 01.0>       | 11.0>         | 01.0>   | 11.0>          | 01.0>             | GN GN                                |                                        |
| 300-             | 01.0>   | 01.0>                                   | 11.0>                       | 01.0>       | 11.0>         | 01.0>   | 11.0>          | 01.0>             |                                      |                                        |
| ritble           | <0.052  | 050.0>                                  | 150.0>                      | 050.0>      | 860.0>        | \$20.0> | 820.0>         | \$6.05            | CIN                                  | (5) 0/Z·0                              |
| plachlor epoxide | \$30.0> | 050.0>                                  | 150.0>                      | 020.0>      | 820.0>        | \$20.0> | 820.0>         | <0.052            | ON .                                 | 107 410 0                              |
|                  | <0.052  | 050.0>                                  | <b>\$0.0&gt;</b>            | 020.0>      | 820.0>        | \$20.0> | 920.0>         | <0.052            | ON                                   | (E) 0/1·0                              |
| Up               | \$20.0> | 020.0>                                  | 150.0>                      | 050.0>      | 850.0>        | \$20.0> | <0.056         | \$6.05            |                                      | 0.2.to.2 (G)                           |
| bjackjor         | S20.0>  | 050.0>                                  | 190.0>                      | 050.0>      | 920.0>        | S20.0>  | <0.056         | <0.052            | ON                                   | STORED                                 |
| mns-8HC(Lindane) | \$20.0> | <0.050                                  | <0.054                      | 020.0>      | 920.0>        | <0.052  | 920.0>         | <0.052            | ON                                   | <del></del>                            |
| OH8-페            |         | 030.0>                                  | P20.0>                      | 050.0>      | <0.056        | S60.0>  | 990.0>         | <u> &lt;0.052</u> | ON                                   |                                        |
| <u> </u>         | <0.052  | 030.0>                                  | <0.054                      | 050.0>      | 820.0>        | S80.0>  | <b>8</b> 20.0> | S80.0>            | ON                                   | 000 000 000 000 000 000 000 000 000 00 |
| ha-BHC           | <0.052  | 000000000000000000000000000000000000000 | ilionia anticologica come a | POWA        | SOM           | BOW     | YOW            | DOM               | POLINY.                              | MCIA                                   |
| puroduc          | TOM     | AMOS                                    | EUM                         | , un        | "             |         |                |                   | Men York State<br>Schoolstelenstrate | /- LAT                                 |
|                  |         |                                         |                             |             |               |         |                |                   |                                      |                                        |

COULTYND' NEW YORK ROSEN SITE

TABLE 4 PESTICIDES/PCBS GROUND-WATER ANALYTICAL RESULTS - EVENT 1 TABLE 4

## ROSEN STIE COFFLAND, NEW YORK

|                    |          |        |          |        |                         |                |          |        | New York State              |                  |
|--------------------|----------|--------|----------|--------|-------------------------|----------------|----------|--------|-----------------------------|------------------|
| Compound           | WOB dup. | NOS    | MO9 daps | W10    | IM.                     | Wig            | Wis      | Mit    | Standards/Custance<br>Volum |                  |
| alpha-BHC          | <0.056   | <0.050 | <0.050   | <0.062 | <0.055                  | <0.052         | <0.062   | <0.050 | 2                           |                  |
| beta-BHC           | <0.058   | <0.050 | <0.050   | <0.062 | <0.055                  | <0.052         | <0.062   | <0.050 | Ş                           |                  |
| della-BHC          | <0.058   | <0.050 | <0.050   | <0.062 | <0.055                  | <0.052         | <0.062   | <0.050 | 9                           |                  |
| gamma-BHC(Lindane) | <0.056   | <0.050 | <0.050   | <0.062 | <0.055                  | <0.052         | <0.062   | 050.0> | 2                           | 137.6460         |
| Heptachlor         | <0.058   | <0.050 | <0.050   | <0.062 | <0.055                  | <0.052         | <0.062   | 09000> |                             | 107 47 0         |
| Akhin              | <0.056   | <0.050 | <0.050   | <0.062 | <0.055                  | <0.052         | <0.062   | <0.050 | 2                           |                  |
| Heptachlor epoxide | <0.056   | <0.050 | <0.050   | <0.062 | <0.055                  | <0.052         | <0.062   | <0.050 | 9                           | 150 W 60         |
| Endosulfan i       | <0.056   | <0.050 | <0.050   | <0.062 | <0.055                  | <0.052         | <0.082   | 050.05 |                             |                  |
| Dieldrin           | <0.11    | <0.10  | <0.10    | <0.12  | <0.11                   | <0.10          | <0.12    | 9 9    | 2                           |                  |
| 4,4*DDE            | <0.11    | <0.10  | <0.10    | <0.12  | \$0.11                  | <0.10          | <0.12    | 01.05  | 3                           |                  |
| Endrin             | <0.11    | <0.10  | <0.10    | <0.12  | <0.11                   | <0.10          | <0.12    | 0 10   | 9                           | 60               |
| Endosulfan II      | <0.11    | <0.10  | <0.10    | <0.12  | <0.11                   | <0.10          | <0.12    | ot o   |                             | 3                |
| 4.4'-DDD           | <0.11    | <0.10  | <0.10    | <0.12  | <0.11                   | <0.10          | <0.12    | 9.60   | 5                           |                  |
| Endosulian sullate | <0.11    | <0.10  | <0.10    | <0.12  | <0.11                   | <0.10          | ×0.12    | 01.00  | 1                           |                  |
| 4,4'-DDT           | <0.11    | <0.10  | <0.10    | <0.12  | <0.11                   | <0.10          | <0.12    | 9,02   | ş                           |                  |
| Methoxychlor       | 95.0>    | <0.50  | <0.50    | <0.62  | <0.55                   | <0.52          | 6963     | 9      | 2                           | 400              |
| Endrin ketone      | <0.11    | <0.10  | <0.10    | <0.12  | 11.0>                   | 91.00          | 3 5      | 3 6    | 8                           | (c) ne/ne        |
| alpha-chlordane    | <0.56    | <0.50  | <0.50    | <0.62  | <0.55                   | 2 60           | 20.00    | 2 9    | 9                           | 100              |
| gamma-chlordane    | 99'0>    | <0.50  | <0.50    | <0.62  | 0 55<br>55              | CO 50          | 64.67    | 3 6    | -                           | (a) 6/2          |
| Toxaphene          | <1.1     | <1.0   | 0,1>     | <1.2   | <b>1.1</b> 2            | <10            | 212      | 300    | 3 5                         | (5) (7)          |
| Aroctor-1016       | >0.56    | <0.50  | <0.50    | <0.62  | <0.55                   | 62.0           | 100      |        |                             | (5) 25           |
| Aroclor-1221       | <0.56    | <0.50  | <0.50    | <0.62  | <0.55                   | 20.59          | 200      | 3 6    | 4                           | (p) overo        |
| Aroctor-1232       | <0.56    | <0.50  | <0.50    | 29 65  | CO 55                   | 6 60           | 2000     | 300    | 1.0                         | לבו האמים<br>מים |
| Aroclor-1242       | <0.58    | <0.50  | <0.50    | <0.62  | ×0.55                   | 70.02<br>70.62 | ×0.02    | 00.02  | -1.0<br>**                  | -(E) O/C:0       |
| Aroclor-1248       | <0.56    | <0.50  | <0.50    | <0.62  | <0.55<br>50.55<br>50.55 | 200            | 200      | 3 5    | 4.0                         | 0.00 (5)         |
| Aroclor-1254       | <1.1     | <1.0   | 0.15     | <12    | <br> -<br> -            | 010            | 212      | 3 0    | 41.0                        | (E) OF (C)       |
| Aroctor-1260       | <1.1     | 0,15   | 41.0     | <12    | <u></u>                 | 010            | 1 2      | 2 5    | 4 6                         | Caro (ca)        |
|                    |          |        |          | 1      | -                       | 2.7            | <u> </u> | 9.5    | <u></u>                     |                  |

Notes on Page 3 of 3

GROUND-WATER ANALYTICAL RÉSULTS - EVENT 1 PESTICIDES/PCBs TABLE : (Cont.) MAY 1991

COFFILAND, NEW YORK ROSEN SITE

All concentrations, detection levels, standard values, guidence values, and MCLAMCLGs are reported as ugif, equivalent to parts per fullion (ppb).

Dup. - Indicates field duplicate.

The < sign indicates the compound was analyzed for but not detected.

\* The standard value and MOLs/MOLGs apply to chlordane.

The standard value and MCLsAACLGs apply to the sum of all Aroctor concentrations detected.
 Non-detectable concentration by the approved analytical methods referenced in section 700.3 of 6 NYCRR Parts 700-705, Water Quality Regulations.
 Bold indicates NYSDEC standards exceeded; shading indicates federal MCL exceeded.

## References:

Standard and guidance values are according to New York State Department of Environmental Conservation (NYSDEC), Division of Water Technical and Operation Guidence Sarles (1.1.1), Ambient Water Chality Standards and Guidance Values [designated by (G)], October 1983.

MCLs [Maximum Contaminant Levels] and MCLGs [Maximum contaminant Level Gosis, designated by (G)] according to the Code of Federal Regulations, Protection of Environment 40, Part 141, July 1, 1981, and the Drinking Water Regulations and Health Advisories, Office of Water, U.S. Environmental Protection Agency, December 1883.

S to S egs9 no setoN

| -                   |         | <del></del> |         | 0:01>   | · 0.01>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01>                     | 0.01>                       | 0.01>    | 100                  | S00/S00 (G)     |
|---------------------|---------|-------------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------|----------|----------------------|-----------------|
| - abina             | 0.01>   | 0.01>       | 0.01>   | 0.01>   | 999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 191                       | 196                         | 36.35    | 300                  | 2000(2)         |
| 9                   | 64.2E   | 6.08        | rie     | 27.5E   | 875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54.28                     | 108                         | 0.06>    |                      |                 |
| mulban              | 0.06>   | 0.06>       | 0.06>   | 0.06>   | 0.2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3>                      | 0.8>                        | L0.3>    | 4(C)                 | S/0.5 (G)       |
| mulle               | L0.č>   | 0.6>        | 0.6>    | L0.8>   | 31,900E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 300E,E1                   | 300/12                      | 3000,87  | 20'000               |                 |
| ump                 | 3001,81 | 22,900E     | 21,100E | 3007,S8 | 0.8>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8>                      | 0.8>                        | 0.8>     | 09                   | (8) 001         |
| Ver                 | 0.8>    | 0.8>        | 0.8>    | 0.8>    | L0.2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L0.03>                    | L0.8>                       | 10.6>    | 01                   | (E) 05/09       |
| muinal              | L0.3>   | L0.2>       | L0.2>   | 10.3>   | 070,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 088,8                     | 009'11                      | B01-8,1  |                      |                 |
| missal              | 2,100B  | 5,480       | 8078.2  | 1,2908  | 020 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E.TT                      | 505                         | <20.0    |                      | 100\100(@)      |
| [eng                | <20.0   | 61.2        | 81.00   | <20.0   | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.1                       | 02.0>                       | <0.20    | 2                    | \$\S (@)        |
| stem).              | OS.0>   | \$2.0       | <0.20   | <0.20   | 095,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Salo                      | OUEF                        | 91.9g    | (200),200            | (8)09           |
| edeupflus           | 30++    | \$560       | 011,1   | 3061    | 009'08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 003,84                    | 006,13                      | 34,300EJ | 32,000(G)            |                 |
| Wnja eu 64          | 7,640E  | 009,04      | 001,11  | 12,200€ | 1361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1221                      | COSI                        | L007.S   | 52                   | g۱              |
| pë:                 | LEA ET  | 62.0        | 0.8     | H0.6    | 000,58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00r /2                    | 000/1/1                     | 3092'5   | 900                  | (8)006          |
|                     | 3008.8  | 008,85      | 066,4   | ∃078.A  | 548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S80                       | 1/9                         | 87.11    | 200                  | (8)0001         |
| <b>Jedd</b> o       | 83.81   | 35.5        | 87.11   | 66.6    | 51.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.88                     | 102                         | <20.0    |                      |                 |
| tlado               | <20.0   | <20.0       | 0.0\$>  | <20.0   | 291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.92                      | 991                         | 20.9     | 20                   | (5) 001/001     |
| mulmon              | 0.0f>   | 971         | 0.01>   | 0.01>   | 008,18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 112,000                   | 132,000                     | 131,000€ |                      |                 |
| misla               | 38,100€ | 138,000     | 59,300  | 300E,08 | 9'99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V B C                     | 2.00                        | L0.8>    | 10                   | (S) (S)         |
| Wnjtupe             | L0.3>   | 0.81        | 0.6>    | L0.2>   | 0.3>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2>                      | <5.0                        | 0.2>     | 3(e)                 | (5) P/P         |
| eryllium<br>mulitur | 0.3>    | 0.8>        | 0.2>    | 0.6>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 381                       | <b>1</b> 19                 | 1458     | 000'1                | S'000\S'000 (G) |
| muina<br>กามกล      | 80.80   | 1098        | 88.15   | 45.48   | 0.8r<br>878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.81                      | S911                        | 0.2>     | 52                   | 09              |
| plneat              | 0.3>    | 80.9        | 0.6>    | 0.6>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6>                      | 0.6>                        | 0.č>     | (D)C                 | (5)9/9          |
| Vnomin              | <5.0    | 0.3>        | 0.3>    | 0.6>    | 0.8,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 007,81                    | 26,100                      | 2,210E   |                      | 20 P S00 (2)    |
| munim               | 3010.6  | 008,01      | 2,260   | 5,250€  | Company of the state of the sta | Occupation and the second | COCCOCCACA DA COCCOCCACA DA | SON      | Buryen               | * koms          |
| punodulo            | LOM     | MOS         | EOW     | FOM     | SOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BOM                       | £0M                         |          | Selection Selections | MCI ≠WCICI™     |
|                     | J       |             |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                             |          | Mew York State       |                 |

GORTLAND, NEW YORK

TABLE 4 INORGANICS INORGANICS MAY 1991

#### **INOHGYNICS** GROUND-WATER ANALYTICAL RESULTS - EVENT 1 TABLE 4 (Conl.)

1661 YAM

CORTLAND, NEW YORK **HOSEN SITE** 

| S00/S00 (C)     | 001                                   | 0.01>    | 0.01>       | 0:01>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | :88/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------|---------------------------------------|----------|-------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (2)0009         | 900                                   |          | <del></del> | 0.01>    | 0.01>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01>     | 0.01>    | 0.01>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01>    | sbins(0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1250003         | 008                                   | 381.01   | 524E        | 1.86     | 119E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C3909     | 12.08E   | 386.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35.95    | 5UIZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| S/0.5(G)        | (5)4                                  | <30.0    | 6.16        | 0.06>    | 0.06>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.28      | <30.0    | 0.08>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.06>    | mulbanaV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (3) 3 W C       | (5)+                                  | 10.6>    | L0.6>       | 0.6>     | L0.3>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L0.8>     | L0.6>    | 1.0.3>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L0.8>    | muilledT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4-1             | \$0,000                               | 37,200E  | 00₹,0€      | 30,600€  | 23,900E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20,000EJ  | 92,400E  | 39,800€                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3008,87  | - irinibos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (8) 001         | 09                                    | 0.6>     | 0.8>        | 0.8>     | 0.8>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8>      | 0.8>     | 0.6>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8>     | ) soviis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (5) 05/05       | 01                                    | L0.3>    | 10.2>       | L0.8>    | L0.8>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HO.03>    | L0.3>    | L0.8>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0.8>   | Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 | · · · · · · · · · · · · · · · · · · · | 8071,1   | 0.00,8      | 1,9608   | 3,840B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LOIT,8    | 8019,1   | 8059,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B0S6,1   | misselo9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (D)001\001      |                                       | 0.05>    | 191         | <50.0    | 8.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Clos      | <20.0    | <20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <20.0    | Mickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5/5 (G)         |                                       | <0.20    | <0.20       | 5.3      | <0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 054       | 62.0     | <0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.20    | Дизиру                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (2)09           | 906*(003)                             | 982.0    | 3056,5      | OPO'L    | 3083 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2'910E1   | SESE     | SPSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2999     | Mengenese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | 35,000(G)                             | 14,200€  | 3008,ES     | 20,600   | 32,900€                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 77,5008.1 | 40,200E  | 3007,01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L∃008,££ | u.mseuðew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| gl              | 52                                    | FIO.3    | 1362L       | 0.11     | LO,TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Isea      | FI0.7    | fio.e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L88.01   | pear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (2)000          | 006                                   | 110E     | 3000'8EL    | 066,8    | 3000 LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 127,00043 | Took     | acte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3079,4   | UOJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (2)0001         | 500                                   | 0.3>     | 348         | 86.31    | 6.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1921      | 8.3      | 59.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 89.01    | jeddog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 |                                       | 0.05>    | 92.1B       | <20.0    | <50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.63      | <20.0    | <20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <20.0    | Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (5) 001/001     | 09                                    | 0.01>    | JE1         | 14.3     | 8.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | reel.     | 0.01>    | 0.01>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.51     | Окольнія                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 |                                       | 3000,601 | 9007,88     | \$30,000 | 403,000E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 232,000€J | 3000,111 | 3000,551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3000,821 | Celcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (5) 9/9         | Ol                                    | L0.8>    | P2'99       | 0.8>     | resi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60.24     | . Lo.2>  | <2.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L0.2>    | mulmbed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (5)I/F          | 3(0)                                  | 0,3>     | 0.6>        | 0.2>     | 0.6>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2>      | 0.3>     | 0.6>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2>     | Seryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2,000/2,000 (G) | 000'1                                 | 45.18    | 072         | 88.14    | E961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4057      | 362      | 996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1408     | muha8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 99              | 35                                    | 0.2>     | 0.3>        | 0.3>     | 80.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HB0.8     | 0.8>     | 0.6>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <20      | Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (D)9/9          | 3(G)                                  | 0.8>     | 0.3>        | 0.8>     | 0.6>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LG.8>     | 0.6>     | 0.6>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6>     | YnominA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (S) 002 OI 09   |                                       | 381.18   | 10 200E     | 8,710    | 3000, Lf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L3000,78  | 299E     | 38881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2019.2   | municipal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| encr•           | Serie/V                               | FIA      |             |          | particular control de la contr |           |          | COLUMN TO STATE OF THE PARTY OF |          | Contraction of the Contraction o |
| MCF-MCF D*      | eonebhit/jebusbnei8                   | 746      | ELM         | SIW      | LIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MIO       | Mos dup  | 60M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WOS dup. | Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 | elaig shot well                       |          |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Dup. - Indicates field duplicate. All concentrations, detection levels, standards, guidence values, and MCLs/MCLs are reported as ug/L equivalent to perts per billion (ppb).

The < sign indicates the compound was analyzed for but not detected.

g -  $\mu u g$  care g as the Course of the preformation of the first g and g are then the course fedurated detection limit.

E - indicates a value estimated or not reported due to the presence of interference.

5 - indicates value determined by Method of Standard Addition.

R - Indicates the associated value is unusable,

. - Applies to the sum of tron (maximum 300 Light) and marganase. ) - judicetes en estimated value.

Hold indicates NYSDEC standard or guidence value exceeded; sheding indicates federal MCLe/SMCLs exceeded.

Standards and Guidence Values [designated by (G)], October 1993. Standard and guidance values are according to New York State Department of Environmental Conservation (WYSDEC), Division of Water Technical and Operation Guidance Series (1.1.1), Ambient Water Conservation (WYSDEC), Division of Weter Technical and Operation Guidance Series (1.1.1),

Regulations, Protection of Environment 40, Part 141, July 1, 1991, and the Drinking Water Regulations and Health Advisories, Office of Water, U.S. Environmented Protection Agency, December 1993. MCLs [Maximum Contaminant Levels], MCLGs [Maximum contaminant Level Goals, designated by (G)] and SMCLs [Secondary Maximum Contaminant Levels, designated by (S)] according to the Code of Federal

## TABLE 4 GROUND-WATER ANALYTICAL RESULTS EVENT 1 GENERAL WATER QUALITY PARAMETERS MAY 1991

#### ROSEN SITE CORTLAND, NEW YORK

| Compound                       | W01  | W02   | W02 Dup. | W03  | W10   | Wii   |
|--------------------------------|------|-------|----------|------|-------|-------|
| Total Alkalinity               | 89   | 223   | 222      | 137  | 134   | 206   |
| Biochemical Oxygen Demand      | <2.0 | <2.0  | <2.0     | <2.0 | <2.0  | <2.0  |
| Total Organic Carbon           | <1.0 | 1.8   | 2.1      | <1.0 | 1.8   | 2.0   |
| Chemcial Oxygen Demand         | 10   | 22    | 19       | 11   | 52    | 29    |
| Total Hardness                 | 143  | 502   | 473      | 235  | 786   | 1,320 |
| Filterable Residue (180°C)     | 181  | 491   | 510      | 275  | 312   | 1,390 |
| Non-Filterable Residue (103°C) | 298  | 1,350 | 786      | 158  | 5,000 | 1,490 |
| Sulfate                        | 76   | 284   | 320      | 65   | 688   | 882   |
| Silicon Dioxida                | 8.8  | 17    | 8.6      | 5.1  | 110   | 36    |

#### Notes:

All concentrations and detection levels are reported as mg/L equivalent to parts per million (ppm).

Dup. - indicates field duplicate.

The < sign indicates the compound was analyzed for but not detected.

TABLE 4.
GROUND-WATER ANALYTICAL RESULTS - EVENT 2
VOLATILE ORGANICS
FEBRUARY 1992

ROSEN SITE CORTLAND, NEW YORK

| Cempeund                 | W-01       | W.010L     | W:02       | W-02DL | gub<br>gub | W-92DL<br>dup | W-03     | W.030L     | W: 04 | šū.M | 90-A  | TOPOM            | New York State<br>Standards/Guldance<br>Values | WCL*/WCLG*  |
|--------------------------|------------|------------|------------|--------|------------|---------------|----------|------------|-------|------|-------|------------------|------------------------------------------------|-------------|
| Chloromethane            | <1         | 2>         | <1         | <10    | <u>دا</u>  | <10<br><10    | V        | \$2        | ₽     | ⊽    | ⊽     | <40              | 42                                             | \$ 12 A Z   |
| Bromomethane             | ۲          | <2         | <1         | <10    | <b>~</b>   | 010           | ⊽        | \$         | ₽     | ⊽    | v     | \$               | 10                                             |             |
| Vinyl Chloride           | ۲          | <b>~</b> 5 | <1         | <10    | ⊽          | ×10           | ⊽        | \$         | ₽     | ⊽    | ⊽     | 0 <del>5</del> 0 | 2                                              | 2/0 /G)     |
| Chloroethane             | ۲۷         | <2         | <1         | <10    | ٧          | <10           | ⊽        | \$         | v     | ⊽    | ~     | 0 <del>7</del> × | 40                                             |             |
| Methylene Chloride       | 1>         | <0.3J      | ۲۱         | <10    | ٧          | 01.0          | ۲        | <0.6J      | ⊽     | ₹    | 8     | <b>60</b>        | ı                                              | 6/0.0/61    |
| Acetone                  | < <b>6</b> | <10        | <.5        | <50    | \$\$       | ×50           | <b>5</b> | <25        | \$    | \$   | \$    | ×200             | 60 (G)                                         |             |
| Carbon Disulfide         | <u>~</u>   | <b>2</b>   | ۲۷         | <10    | <b>1</b>   | 01.0          | ⊽        | \$         | ⊽     | ⊽    | ⊽     | 97               |                                                |             |
| 1,1-Dichtoroethene       | 0.06.1     | <b>~</b> 5 | 6          | 3DJ    | 2          | 3DJ           | V        | 99         | ٥     | ⊽    | ~     | 97               | 6                                              | (5) 7/2     |
| 1.1-Dichloroethane       | •          | 8          | 53E        | 78D    | 51E        | 80D           | 6        | ē          | 2     | 3.6  | 320E  | 3400             | 10                                             |             |
| cis-1,2-Dichloroethene   | ۲ <u>۰</u> | <2         | <1         | <10    | I>         | <10<br><      | 0.08J    | \$\$       | ⊽     | ⊽    | 5     | 32DJ             |                                                | 70/70 (G)   |
| trans-1,2-Dichloroethens | · 1        | <2         | <b>1</b> > | <10    | ⊽          | 61.0          | ⊽        | 8          | ⊽     | ⊽    | 0.00  | ×40              | 147                                            | 100/100 /G  |
| Chloroform               | ۲ <u>۰</u> | <2         | <1         | < 10   | ⊽          | 01.0          | ⊽        | \$\$       | 7     | V    | 25    | 40               | 7                                              | 2001,000    |
| 1,2-Dichloroethane       | ٧          | <2         | 0.6.       | <10    | 0.63       | × 10          | 1        | \$ V       | ī     | ⊽    | -     | 9                | . 143                                          | 5/0 (G)     |
| 2-Butanone               | <5         | <10        | <5         | <50    | <5         | ×50           | \$       | <25        | \$00  | *    | \$    | <200             | 50 (G)                                         |             |
| 1.1.1-Trichioroethane    | 42E        | 400        | 150E       | 190D   | 150E       | 2000          | •        | 37         | ⊽     | 7    | 400E  | 1,1000           |                                                | 200/200 (G) |
| Carbon Tetrachloride     | ⊽          | 2          | 7          | <10    | . <1       | <10           | ⊽        | ,<br>55    | ⊽     | ⊽    | ⊽     | <b>\$</b>        | G                                              | (5) 0/9     |
| Vinyl Acetate            | <b>2</b>   | 2          | 25<br>>    | <20    | <2         | <20           | <2       | 410        | 2>    | 8    | 25    | 0 <b>8</b> >     |                                                |             |
| Bromodichloromethane     | ⊽          | . <2       | 7          | . <10  | ۲۰         | < 10          | <1       | \$<br>\$   | ₹     | ⊽    | v     | ×40              | 50(G)                                          | 100*0 (G)   |
| 1,2-Dichloropropane      | ⊽          | 25         | v          | <10    | <1         | <10           | 7        | <b>6</b> 5 | ⊽     | ₹    | 0.4.0 | <40              | 46                                             | 5/0 (G)     |
| cis-1,3-Dichloropropene  | ⊽          | .2         | 7          | <10    | <1         | , <10         | ⊽        | \$         | ⊽     | ī    | ⊽     | 040              | VG.                                            |             |
| Trichloroethens          | 0.23       | 0.1DJ      | 0.6J       | 0.6DJ  | 0.63       | 0.4DJ         | 0.5.1    | 0.3DJ      | ٧     | 0.6  | 91    | 1403             | G                                              | 5/0 (G)     |
| Dibromochloromethana     | <1         | <2         | 7          | <10    | ~1         | <10           | ₹        | \$ V       | ⊽     | ī    | ī     | ×40              | 50(G)                                          |             |
|                          |            |            |            |        |            |               |          |            |       |      |       |                  |                                                |             |

Notes on Page 6 of 6

1 0 6

## TABLE 4 (Cont.) GROUND-WATER ANAYLTICAL RESULTS - EVENT 2 VOLATILE ORGANICS 1 FEBRUARY 1992

#### ROSEN SITE CORTLAND, NEW YORK

| Compound                      | W-01 | W-61DL | W-02 | M405DF | W-O2 | W-02DL | W-03 | W-03DL | W-04 | W-05  | W-08  | W:06DL | New York State<br>Standards/Guidance<br>Values | MCLs/MCLGs           |
|-------------------------------|------|--------|------|--------|------|--------|------|--------|------|-------|-------|--------|------------------------------------------------|----------------------|
| 1,1,2-Trichlorosthans         | <1   | <2     | <1   | . <10  | <1   | <10    | <1   | <5     | <1   | <1    | 0.33  | <40    | 5                                              | 5/3(G)               |
| Benzene                       | <1   | <2     | <1   | <10    | <1   | <10    | <1   | <5     | <1   | <1    | <1    | <40    | 0.7                                            | 5/0 (G)              |
| trans-1,3-<br>Dichloropropene | <1   | <2     | <1   | <10    | <1   | <10    | <1   | . <5   | <1   | <1    | <1    | <40    | 5                                              |                      |
| Bromoform                     | <1   | <2     | <1   | <10    | <1   | <10    | <1   | <5     | <1   | <1    | <1    | <40    | 50(G)                                          | 100°/0 (G)           |
| 4-Methyl-2-Pentanone          | <5   | <10    | <5   | <50    | <5   | <50    | <5   | <25    | <5   | <5    | <5    | <200   |                                                | 100 10 (0)           |
| 2-Hexanone                    | <5   | <10    | <5   | <50    | <5   | <50    | <5   | <25    | <5   | <5    | <5    | <200   | 50(G)                                          |                      |
| Tetrachloroethene             | <1   | <2     | 0.1J | <10    | 0.1J | <10    | OTE  | 77P    | <1   | 0.08J | 0.2.1 | <40    | 5                                              | 5/0 (G)              |
| 1,1,2,2-Tetrachloroethene     | <1   | <2     | <1   | <10    | <1   | <10    | <1   | <5     | <1   | <1    | <1    | <40    | 5                                              |                      |
| Toluene                       | <1   | <5     | <1   | <10    | <1   | <10    | <1   | <5     | <1   | <1    | L8.0  | <40    | 6                                              | 1,000/1,000<br>(G)   |
| Chlorobenzena                 | <1   | <2     | <1   | <10    | <1   | <10    | <1   | <5     | <1   | <1    | <1    | <40    | 5                                              | 100/100 (G)          |
| Ethylbenzene                  | <1   | <2     | <1   | <10    | <1   | <10    | <1   | <5     | <1   | <1    | 0.07J | <40    | 5                                              | 700/700 (G)          |
| Styrene                       | . <1 | <2     | <1   | <10    | <1   | <10    | <1   | <5     | <1   | <1    | <1    | <40    | 5                                              | 100/100 (G)          |
| Total Xylenes                 | <1   | <2     | <1   | <10    | <1   | <10    | <1   | <5     | <1   | <1    | 0.3J  | <40    | 5 <sup>b</sup>                                 | 10,000/10,000<br>(G) |
| TOTAL TIC                     | 1J   |        |      |        |      |        | 3J   |        | 3.1  | 1J    | 1J    |        |                                                |                      |

Notes on Page 6 of 6

## TABLE 4 (Cont.) GROUND-WATER ANAYLTICAL RESULTS - EVENT 2 VOLATILE ORGANICS FEBRUARY 1992

#### ROSEN SITE CORTLAND, NEW YORK

| Compound                              | W-07 | W-D8  | W-08DL | W-09          | W-10     | W-10DL | W-11         | WillDL | W-11<br>dup                                  | W-11DL |      |        | New York State<br>Standarde/Guldance |              |
|---------------------------------------|------|-------|--------|---------------|----------|--------|--------------|--------|----------------------------------------------|--------|------|--------|--------------------------------------|--------------|
| Chloromethane                         | <1   | <1J   | <4     | <1            | <1       | <10    | <1           | <40    | e (000000000000000000000000000000000000      | dup    | M-15 | W-18DL | Values                               | MCL+/MCLG#   |
| Bromomethane                          | <1   | <1J   | <4     | <1            | <1       | <10    | <1           |        | <1                                           | <40    | <1   | <6     | 5                                    |              |
| Vinyl Chloride                        | <1   | <1J   | <4     | <1            | <1       | <10    | <del> </del> | <40    | <1                                           | <40    | <1   | <5     | 5                                    |              |
| Chloroethane                          | <1   | <1J   | <4     | <1            | <1       | <10    | <1           | <40    | <1                                           | <40    | <1   | <5     | 2                                    | 2/0 (G)      |
| Methylene Chloride                    | <2   | <0.1J | <0.8DJ | <1            | <1       |        | 18.0         | <40    | 0.3J                                         | <40    | <1   | <5     | 5                                    |              |
| Acetone                               | <5   | <5J   | <20    | <5            | <b> </b> | <10    | <1           | <40    | <1                                           | <40    | <1   | <1J    | 5                                    | 5/0.0(G)     |
| Carbon Disulfide                      | <1   | <1J   | <4     |               | <5       | <50    | <5           | <200   | <5                                           | <200   | <5   | <25    | 50 (G)                               |              |
| 1,1-Dichloroethene                    | 0.2J | 13    | 0.4DJ  | <1            | <1       | <10    | <1           | <40    | <1                                           | <40    | <1   | <5     |                                      | ·            |
| 1,1-Dichloroethane                    | 9    |       |        | <1            | 3        | 2DJ    | 14           | 1103   | 15                                           | 10DJ   | 4    | 3DJ    | 5                                    | 7/7 (G)      |
| cis-1,2-Dichloroethene                |      | 18J   | 11D    | <1            | 27       | 28D    | 110E         | 100D   | 110E                                         | 100D   | 20   | 22D    | 5                                    | -,,, (0)     |
| rans-1,2                              | <1   | <1J   | <4     | <1            | <1       | <10    | <1           | <40    | <1                                           | <40    | <1   | <5     |                                      | 70/70 (0)    |
| · · · · · · · · · · · · · · · · · · · | <1   | <1J   | <4     | <1            | <1       | <10    | <1           | <40    | <1                                           | <40    | <1   | <5     | 5                                    | 70/70 (G)    |
| Chloroform                            | <1   | <1J   | <4     | <1            | <1       | <10    | <1           | <40    | <1                                           | <40    | <1   | <5     |                                      | 100/100 (G)  |
| 1,2-Dichloroethane                    | <1   | <1J   | <4     | <1            | <1       | <10    | 1            | <40    | 0.9J                                         | <40    | <1   | <5     | 7                                    | 100°/100 (G) |
| 2-Butanone                            | <5   | <5J   | <20    | <5            | <5       | <50    | <5           | <200   | <5                                           | <200   |      |        | 5                                    | 5/0 (G)      |
| 1.1.1-Trichloroethane                 | 29   | 92EJ  | 61D    | <1            | 210E     | 190D   | 440E         | 380D   | 440E                                         |        | <5   | <25    | 50 (G)                               |              |
| Carbon Tetrachloride                  | <1   | <1J   | <4     | <1            | <1       | <10    | <1           | <40    | <i>*************************************</i> | 3900   | 140E | 120D   | 5                                    | 200/200 (G)  |
| /inyl Acetate                         | <2   | <2J   | <8     | -<2           | <2       | <20    | -<2          |        | <1                                           | <40    | <1   | <5     | 5                                    | 5/0 (G)      |
| romodichloromethane                   | <1   | <1J   | <4     | <del>-1</del> | <1       | <10    |              | <80    | <2                                           | <80    | <2   | <10    |                                      |              |
| ,2-Dichloropropane                    | <1   | <1J   | <4     | <1            | <1       |        | <1           | <40    | <1                                           | <40    | <1   | <5     | 50(G)                                | 100°/0 (G)   |
| is-1,3-Dichloropropene                | <1   | <1J   | <4     | <1            |          | <10    | <1           | <40    | <1                                           | <40    | <1   | <5     | 5                                    | 5/0 (G)      |
| richloroethene                        | 0.2J | 0.2J  | <4     | <del>\}</del> | <1       | <10    | <1           | <40    | <1                                           | <40    | <1   | <5     | 5                                    |              |
| ibromochloromethane                   | <1   | <1J   | <4     |               | 1        | 0.9DJ  | LE.0         | <40    | 0.9J                                         | <40    | 24   | 19D    | 5                                    | 5/0 (G)      |
|                                       |      |       |        | <1            | <1       | <10    | <1           | <40    | <1                                           | <40    | <1   | <5     | 50(G)                                | . , , , ,    |

Notes on Page 6 of 6

4/25/94 20941013G

## TABLE 4 (Cont.) GROUND-WATER ANAYLTICAL RESULTS - EVENT 2 VOLATILE ORGANICS FEBRUARY 1992

#### ROSEN SITE CORTLAND, NEW YORK

| Compound              | W-07       | W-G8 | W-08DL | W-09 | W-10 | W-10DL | W-11 | W-11DL | W-11<br>dup | W-11DL<br>dup | W-12 | W-12DL | New York State<br>Standards/Guidanca<br>Values | MCL#/MCLG#        |
|-----------------------|------------|------|--------|------|------|--------|------|--------|-------------|---------------|------|--------|------------------------------------------------|-------------------|
| 1,1,2-Trichloroethane | <1         | <1J  | <4     | <1   | <1   | <10    | <1   | <40    | <1          | <40           | <1   | <5     | 5                                              | 5/3(G)            |
| Benzene               | 0.7J       | <1J  | <4     | <1   | <1   | <10    | <1   | <40    | <1          | <40           | <1   | <5     | 0.7                                            | 5/0 (G)           |
| trans-1,3             | <1         | <1J  | <4     | <1   | <1   | <10    | <1   | <40    | <1          | <40           | <1   | <5     | 5                                              |                   |
| Bromoform             | <1         | <13  | <4     | <1   | <1   | <10    | <1   | <40    | <1          | <40           | <1   | <5     | 50(G)                                          | · 100°/0 (G)      |
| 4-Methyl-2-Pentanone  | <5         | <5J  | <20    | <5   | <5   | <50    | <5   | <200   | <5          | <200          | <5   | <25    |                                                |                   |
| 2-Hexanone            | <5         | <5J  | <20    | <5   | <5   | <50    | <5   | <200   | <5          | <200          | <5   | <25    | 50(G)                                          |                   |
| Tetrachloroethene     | <1         | <13  | <4     | <1   | 0.1J | <10    | <1   | <40    | 0.01J       | <40           | <1   | <5     | 5                                              | 5/0 (G)           |
| 1,1,2,2               | <1         | <1J  | <4     | <1   | <1   | <10    | <1   | <40    | <1          | <40           | <1   | <5     | 5                                              |                   |
| Toluene               | 2          | <1J  | <4     | <1   | <1   | <10    | <1   | <40    | <0.03J      | <40           | <1   | <5     | 5                                              | 1,000/1,000(G)    |
| Chlorobenzene         | <1         | <1J  | <4     | <1   | <1   | <10    | <1   | <40    | <1          | <40           | <1   | <5     | 5                                              | 100/100 (G)       |
| Ethylbenzene          | 0.2J       | <1J  | <4     | <1   | <1   | <10    | <1   | <40    | <1          | <40           | <1   | <5     | 5                                              | 700/700 (G)       |
| Styrene               | <1         | <1J  | <4     | <1   | <1   | <10    | <1   | <40    | <1          | <40           | <1   | <5     | 5                                              | 100/100 (G)       |
| Total Xylenes         | L8.0       | <1J  | <4     | <1   | <1   | <10    | <1   | <40    | 0.1J        | <40           | <1   | <5     | 5*                                             | 10,000/10,000 (G) |
| TOTAL TIC             | <b>9</b> J | 6.J  |        | 2.j  | 7J   |        | 17J  |        | 16J         |               | 2J   | 17J    |                                                |                   |

Notes on Page 6 of 6

TABLE 4 (Cont.)
GROUND-WATER ANALYTICAL RESULTS - EVENT 2
VOLATILE ORGANICS
FEBRUARY 1992

ROSEN SITE CORTLAND, NEW YORK

| Qowboning               | W-13     | W-14       | W-15         | W-16       | 71:M     | W-17RE           | W-18      | W-18<br>dub | W-19       | W-19DL      | W.20      | W-21         | W.22     | New York State<br>Standards/Guldance<br>Yalue | MCL*/MCLG*   |
|-------------------------|----------|------------|--------------|------------|----------|------------------|-----------|-------------|------------|-------------|-----------|--------------|----------|-----------------------------------------------|--------------|
| Chloromethane           | ⊽        | ⊽          | <b>!</b>     | <1         | <1J      | <1J              | 7         | ī           | \<br><1    | <20         | 7         | ۲×           | ۲۷       | 9                                             |              |
| Bromomethane            | 1        | <b>.</b>   | ₹            | <b>~</b> 1 | ر1>      | راء<br>م         | ⊽         | ₹           | ⊽          | <20         | ⊽         | ₹            | 1>       | 5                                             |              |
| Vinyl Chloride          | ~        | <b>1</b>   | <1           | <1         | ۲۱>      | L1>              | 8         | 8           | ₽          | <20         | ⊽         | 1            | 41       | 2                                             | 2/0 (G)      |
| Chloroethane            | <b>1</b> | 1>         | <1           | ī          | L1>      | <u>.</u>         | ⊽         | ⊽           | ۲          | <20         | ⊽         | <u>-</u>     |          | 19                                            |              |
| Methylene Chloride      | 1>       | <b>1</b> > | ⊽            | ⊽          | <13      | <u></u>          | ⊽         | ī           | ⊽          | <20         | ⊽         | ⊽            | Ī        | 0                                             | 5/0.0(G)     |
| Acetone                 | <b>9</b> | <5         | <5           | <5         | -5J      | <b>19</b> >      | ŝ         | <b>65</b>   | 9.         | < 100       | \$5       | 8>           | \$<br>\$ | 50 (G)                                        |              |
| Carbon Disulfide        | <u>^</u> | ⊽          | <1           | 1>         | L1>      | L1>              | <u>~</u>  | ⊽           | ⊽          | ×20         | ⊽         | -            | <b>~</b> |                                               |              |
| 1,1-Dichloroethene      | 1>       |            | <1           | <1>        | L1>      | 41 <i>5</i>      | -         | -           | 12         | 1001        | ⊽         | ⊽            | 1        | ۵                                             | (5) ///      |
| 1,1-Dichloroethane      | <b>₽</b> | ⊽          | <1           | 3          | f1       | 27               | 25        | 26          | 100E       | <b>9</b> 90 | ⊽         | ⊽            | ·        | 9                                             |              |
| cis-1,2-Dichloroethene  | ⊽        | 7          | v            | 1>         | 7        | 11               | 59        | 28          | 0.23       | 0Z>         | ⊽         | ₹            | ٠        |                                               | 70/70 (G)    |
| trans-1,2               | ⊽        | ⊽          | <u></u>      | -1         | <1J      | <1J              | <1        | ۲           | 12         | <20         | ⊽         | ⊽            | v        | G                                             | 100/100 (G)  |
| Chloroform              | 7        | <b>1</b>   | <1           | <1         | L1>      | \<br>\<br>\<br>\ | ⊽         | ₹           | ⊽          | 020         | ⊽         | ⊽            | ī        | 7                                             | 100*/100 (G) |
| 1,2-Dichloroethane      | <u>۲</u> | <b>1</b> > | <1           | 1>         | £1>      | ŗ                | ۲         | ₽           | 0.87       | 0Z>         | ⊽         | ₹            | ī        | 50                                            | 5/0 (G)      |
| 2-Butanone              | <5       | <و         | \$>          | Š.         | 797      | Lê.              |           | \$          | ¥9         | < 100       | <b>65</b> | ŝ            | 9 >      | 60 (G)                                        |              |
| 1.1.1-Trichloroethane   | 10       | ĸ          | <1           | 36         | 19T      | 16.1             | 28        | 27          | 340E       | 260D        | ₹         | ⊽            | ⊽        | 10                                            | 200/200 (G)  |
| Carbon Tetrachioride    | v        | ⊽          | <b>-</b>     | <1         | <1.1     | <1J              | ۲۰        | <u>.</u>    | ⊽          | <20         | ⊽         | ₹            | ₽.       | 6                                             | (9) 0/9      |
| Vinyl Acetate           | 7        | <b>2</b>   | <b>2</b> 5   | <2         | <2.1     | <2)              | <2<br><2  | <2          | <b>2</b> 5 | ×40         | \$        | 25           | <b>2</b> |                                               |              |
| Bromodichloromethane    | ⊽        | ⊽          | ⊽            | ⊽          | , v      | ,<br>1,          | ₹         | ۲۰          | <1         | <20         | ⊽         | ⊽            | ⊽        | 50(G)                                         | 100*/0 (G)   |
| 1,2-Dichloropropane     | ⊽        | ⊽          | <u>-</u>     | ⊽          | Ţ.       | L1.              | <b>~1</b> | <1          | <1         | <20         | 7         | ⊽            | ⊽        | ō                                             | 5/0 (G).     |
| cle-1,3-Dichloropropene | ⊽        | ⊽          | ₹            | ⊽          | 7.       |                  | ۲.        | <1          | ۸1         | ×20         | ₹         | ₹            | ⊽        | 9                                             |              |
| Trichloroethene         | ⊽        | ⊽          | <del>-</del> | 8          | 761      | 3                | 0.        | 10          | 0.7J       | <20         | ⊽         | ⊽            | 0        | 20                                            | 5/0 (G)      |
| Uibromochloromethane    | V        | ⊽          | -<br>-       | ī          | راء<br>ا | ₹                | ₹         | <1          | <1         | <20         | · ·       | <b>!&gt;</b> | <1       | 50(G)                                         | •            |

Notes on Page 6 of 6

## GROUND-WATER ANALYTICAL RESULTS - EVENT 2 VOLATILE ORGANICS (Cont.) **FEBRUARY 1992** TABLE 4

## CORTLAND, NEW YORK ROSEN SITE

|                       |              | S 000000000000000000000000000000000000 | 1              |          |      |          |        |          |         |              |          |      |        |                                      |                   |
|-----------------------|--------------|----------------------------------------|----------------|----------|------|----------|--------|----------|---------|--------------|----------|------|--------|--------------------------------------|-------------------|
| Compound              | ¥. †s        | ¥;                                     | W-18 W-14 W-15 | W-16     | W-17 | W-17BE   | W-18   | W-18     | 0. 3    | ido! im      |          |      |        | New York State<br>Standards/Guidence |                   |
| 1.1.2-Telephorosthene | ļ            |                                        |                | -        |      |          |        |          | -1      |              | 022      | W-21 | W-22   | Value                                | MCLe/MCLGs        |
|                       | <u>-</u>     | <                                      | <1             | V        | ₹    | L        | ⊽      | ⊽        |         | <20          | ⊽        | ·    | V      | 2                                    |                   |
| Benzene               | ⊽            | × 1                                    | ⊽              | ⊽        | 5    |          | ⊽      | V        | ī       | 7.30         | ;        |      |        | ,                                    | (n)s/e            |
| trans-1,3             | ī            | v                                      | V              | ķ        |      |          | 1      |          |         |              | ,        | 7    | ٧      | 0.7                                  | (B) 0/9           |
| Bennetten             |              |                                        |                |          | -    | 717      | -      | <b>.</b> | ~       | - 50<br>- 50 | V        | ⊽    | •      | 9                                    |                   |
| DIGINGION             | <1           | <b>~</b> 1                             | <b>!</b>       | V        | 2.   | <1J      | ~      | ₽        | ⊽       | 92,          | ⊽        | V    | V      | 10103                                |                   |
| 4-Methyl-2-Pentanone  | N<br>S       | <5                                     | <b>\$&gt;</b>  | ÿ        | 3    | 3        | \$     | Ş        | ,       | 50,          | ,        |      | ;      | on(a)                                | 100./001          |
| 2-Hexanone            | ۷<br>۷       | 3,                                     | 4/             | ;        | į    |          | 1      |          | ;       | 3            | 7        | 60   | 9      |                                      |                   |
|                       |              |                                        | ,              | ?        | 70V  | Pay 1    | e<br>V | ۷<br>دی  | ×<br>20 | × 100        | \$       | V V  | <.     | 50/31                                |                   |
| l etrachloroethene    | 7            | ⊽                                      | 7              | <u>۷</u> | 2.1  | 27       | 0.51   | 0.5.1    | V       | 6,6,7        | T;       | 1    |        | (2)                                  |                   |
| 1,1,2,2               | ⊽            | v                                      | V              | V        | Ī    |          | 1      | 1        | 1       |              | ;        | 7    | ⊽      | 10                                   | (5) 0/9           |
|                       |              |                                        |                |          | 2    | ?        | 7      | <br>V    | V       | ×20          | <u></u>  | 7    | V      | 167                                  |                   |
| lotuene               | ٧            | V                                      | ⊽              | 1>       | L1>  | <u>-</u> | ⊽      | ⊽        | V       | 150          | Ţ,       |      |        |                                      |                   |
| Chlorobenzene         | ⊽            | ⊽                                      | V              | Ī        | 7    | ₹        | Ī      | ļ;       | 1       |              | ,        | 7    | 7      | g                                    | 1,000/1,000       |
| Ethylbenzene          | ī            | V                                      | ;              | ţ        | ];   |          |        | ;        | ;       | ,            | -        | ⊽    | ⊽      | <b>1</b> 0                           | 100/100 (G)       |
| Shreen                |              |                                        | ;              | ;]       | 3    | 3        | ⊽      | <b>.</b> | ⊽       | ~50<br>~50   | <u>~</u> | 0.73 | <1     | S                                    | 700/700 (G)       |
| or presses            | · ·          | V                                      | <u>v</u>       | ۲        | 7    | Ş        | ⊽      | · ·      | ⊽       | <20          | V        | V    | ŀ      |                                      |                   |
| fotal Xylenes         | <b>1</b> × 1 | ⊽                                      | v              | ⊽        | 3    | Ş        | Į      | V        | †       | 1            |          | :    | ,      | c                                    | (D) 001/001       |
| TOTAL TIC             | =            | 3                                      |                |          |      | 1        |        |          |         |              | ,        | G.0  | -<br>⊽ | 2                                    | 10,000/10,000 (G) |
|                       |              |                                        |                |          |      |          | 3      | 717      | 70      | -            |          | -    |        |                                      |                   |
|                       |              |                                        |                |          |      |          |        |          |         |              |          |      |        |                                      |                   |

All concentrations, detection levels, standard values, guidance values, and MCLS/MCLGs are reported as ug/t. equivalent to parts per billion (ppb).

Dup - Indicates field duplicate.

J - indicates an estimated value.

D - identifies all compounds identified in an analysis at a secondary dilution factor.

E - Identifies compounds whose concentrations exceeded the calibration range of the GC/MS instrument for that specific analysis. The < sign indicates the compound was analyzed for but not detected.

- Applies to the total of trihalomethanes.

- The standard value of 5 ug/L applies to each isomer individually. TIC - Tentatively Identified Compounds.

Bold Indicates NYSDEC standards exceeded; shading Indicates federal MCLs exceeded.

Standard and guidance values are according to New York State Department of Environmental Conservation (NYSDEC), Division of Water Technical and Operation Guidance Series (1.1.1).

Ambient Water Quality Standards and Guidance Values [designated by (G)], October 1993.

MCLs [Maximum Contaminant Levels] and MCLGs [Maximum contaminant Level Goals, designated by (G)] according to the Code of Federal Regulations, Protection of Environment 41.

Part 141, July 1, 1991, and the Drinking Water Regulations and Health Advisories, Office of Water, U.S. Environmental Protection Agency, December 1993.

## TABLE 4 GROUND-WATER ANALYTICAL RESULTS - EVENT 2 SEMIVOLATILE ORGANICS FEBRUARY 1992

#### ROSEN SITE CORTLAND, NEW YORK

| Compound                      | W-15 | W-16 | W-17 | W-18 | W-18<br>Dup. | W-19 | W-20       | W-21 | W-22                                                                  | New York State<br>Standarde/Gulden<br>ce Values | MCLe/<br>MCLGe                        |
|-------------------------------|------|------|------|------|--------------|------|------------|------|-----------------------------------------------------------------------|-------------------------------------------------|---------------------------------------|
| Phenol                        | <12  | <12  | <12  | <12  | <12.         | <12  | <11 .      | <18  | <12                                                                   | 1°                                              |                                       |
| Bis(2-Chloroethyl)Ether       | <12  | <12  | <12  | <12  | <12          | <12  | <11        | <18  | <12                                                                   | 1.0                                             |                                       |
| 2-Chlorophenol                | <12  | <12  | <12  | <12  | <12          | <12  | <11        | <18  | <12                                                                   | 1.0                                             | <del></del>                           |
| 1,3-Dichlorobenzene           | <12  | <12  | <12  | <12  | <12          | <12  | <11        | <18  | <12                                                                   | 5                                               | ·                                     |
| 1,4-Dichlorobenzene           | <12  | <12  | <12  | <12  | <12          | <12  | <11        | <18  | <12                                                                   | 4.7                                             | 250/250 (0)                           |
| Benzyl Alcohol                | <12  | <12  | <12  | <12  | <12          | <12  | <11        | <18  | <12                                                                   | 4.7                                             | 750/750 (G)                           |
| 1,2-Dichlorobenzene           | <12  | <12  | <12  | <12  | <12          | <12  | <11        | <18  | <12                                                                   | 4.7                                             | 200/200 /01                           |
| 2-Methylphenol                | <12  | <12  | <12  | <12  | <12          | <12  | <11        | <18  |                                                                       |                                                 | 600/600 (G)                           |
| Bis(2-Chioroisopropyl)Ether   | <12  | <12  | <12  | <12  | <12          | <12  | <11        | <18  | 2<br 2</td <td>1*</td> <td>· · · · · · · · · · · · · · · · · · ·</td> | 1*                                              | · · · · · · · · · · · · · · · · · · · |
| 4-Methylphenol                | <12  | <12  | <12  | <12  | <12          | <12  | <11        | <18  | <12                                                                   | 5<br>1°                                         | <del></del>                           |
| N-Nitroso-di-n-Propylamine    | <12  | <12  | <12  | <12  | <12          | <12  | <11        | <18  | <12                                                                   |                                                 |                                       |
| Hexachforoethane              | <12  | <12  | <12  | <12  | <12          | <12  | <11        | <18  | <12                                                                   |                                                 |                                       |
| Nitrobenzene                  | <12  | <12  | <12  | <12  | <12          | <12  | <11        | <18  | <12                                                                   | 5                                               | <del></del>                           |
| Isophorone                    | <12  | <12  | <12  | <12  | <12          | <12  | <11        | <18  | <12                                                                   |                                                 | <del></del>                           |
| 2-Nitrophenol                 | <12  | < 12 | <12  | <12  | <12          | <12  | <11        | <18  | <12                                                                   | 50(G)<br>1*                                     | <del></del>                           |
| 2,4-Dimethylphenol            | <12  | <12  | <12  | <12  | <12          | <12  | <11        | <18  | <12                                                                   | 10                                              | ·                                     |
| Benzoic Acid                  | <62  | < 59 | <62  | <62  | <62          | <82  | <56        | <91  | <62                                                                   | 1                                               | · · · · · · · · · · · · · · · · · · · |
| Bis (2-Choloroethoxy) Methane | <12  | <12  | <12  | <12  | <12          | <12  | <11        | <18  | <12                                                                   |                                                 |                                       |
| 2,4-Dichlorophenol            | <12  | <12  | <12  | <12  | <12          | <12  | <11        | <18  | <12                                                                   | 5                                               |                                       |
| 1,2,4-Trichlorobenzene        | <12  | <12  | <12  | <12  | <12          | <12  | <11        | <18  |                                                                       | 1°                                              |                                       |
| Naphthalene                   | <12  | <12  | <12  | <12  | <12          | <12  | <11        |      | <12                                                                   | 5                                               | 70/70(G)                              |
| 4-Chloroaniline               | <12  | <12  | <12  | <12  | <12          | <12  |            | <18  | <12                                                                   | 10(G)                                           | ·                                     |
| Hexachlorobutadiens           | <12  | <12  | <12  | <12  | <12          | <12  | <11<br><11 | <18  | <12                                                                   | 5                                               | <del></del>                           |
| 4-Chloro-3-Methylphenol       | <12  | <12  | <12  | <12  | <12          | <12  |            | <18  | <12                                                                   | 5                                               | <del>,</del>                          |
| 2-Methylnaphthalene           | <12  | <12  | <12  | <12  | <12          | <12  | <11        | <18  | <12                                                                   | 1*                                              |                                       |
| Hexachlorocyclopentadiene     | <12  | <12  | <12  | <12  | <12          | <12  | <11        | <18  | <12                                                                   |                                                 |                                       |
| 2,4,6-Trichiorophenol         | <12  | <12  | <12  | <12  | <12          |      | <11        | < 18 | <12                                                                   | 5                                               | 50/50 (G)                             |
|                               |      |      |      |      | <u> </u>     | <12  | <11        | < 18 | <12                                                                   | 1*                                              |                                       |

Notes on Page 3 of 3

4/20/94 25941013G

## TABLE 4 (Cont.) GROUND-WATER ANALYTICAL RESULTS - EVENT 2 SEMIVOLATILE ORGANICS FEBRUARY 1992

#### ROSEN SITE CORTLAND, NEW YORK

| Compound                                | W-15 | W-16   | W-17 | W-18 | W-16<br>Dup, | W-19       | W-20       | W-21 | W-32 | New York State<br>Standards/Gulden<br>ce Values | MCLs/<br>MCLGs                        |
|-----------------------------------------|------|--------|------|------|--------------|------------|------------|------|------|-------------------------------------------------|---------------------------------------|
| 2,4,5-Trichlorophenol                   | <62  | < 59   | <62  | <62  | <62          | <62        | <56        | <91  | <62  | 1.                                              |                                       |
| 2-Chloronaphthalene                     | <12  | < 1.   | <12  | <12  | <12          | <12        | <11        | <18  | <12  | 10(G)                                           |                                       |
| 2-Nitroaniline                          | <62  | <59    | <62  | <62  | <62          | <62        | . <56      | <91  | <62  | 5                                               |                                       |
| Dimethyl Phthalate                      | <12  | <12    | <12  | <12  | < 12         | <12        | <11        | <18  | <12  | 50(G)                                           | <del></del>                           |
| Acenaphthylene                          | <12  | <12    | <12  | <12  | <12          | <12        | <11        | <18  | <12  | 50(G)                                           | ·                                     |
| 2,6-Dinitrotoluene                      | <12  | <12    | <12  | <12  | <12          | <12        | <11        | <18  | <12  | 5                                               |                                       |
| 3-Nitroaniline                          | <62  | <59    | <62  | <62  | <62          | <62        | <56        | <91  | <62  |                                                 | <del>-</del>                          |
| Acenaphthene                            | <12  | <12    | <12  | <12  | <12          | <12        | <11        | <18  |      | 5                                               | · · · · · · · · · · · · · · · · · · · |
| 2,4-Dinitrophenol                       | <62  | <59    | <62  | <62  | <62          | <62        | <56        | <91  | <12  | 20(G)                                           |                                       |
| 4-Nitrophenol .                         | <62  | <59    | <62  | <62  | <62          | <62        | <56        |      | <62  | 1.                                              |                                       |
| Dibenzoluran                            | <12  | <12    | <12  | <12  | <12          | <12        | <11        | <91  | <62  | 1°                                              | <del>"</del>                          |
| 2,4-Dinitrotoluene                      | <12  | <12    | <12  | <12  | <12          | <12        |            | <18  | <12  |                                                 |                                       |
| Diethylphthalate                        | <12  | <12    | <12  | <12  | <12          | <12        | <11<br><11 | <18  | <12  | 5                                               |                                       |
| 4-Chlorophenyl-phenylether              | <12  | <12    | <12  | <12  | <12          | <12        |            | <18  | <12  | 50(G)                                           |                                       |
| Fluorene                                | <12  | <12    | <12  | <12  | <12          | <12        | <11        | <18  | < 12 |                                                 |                                       |
| 4-Nitroaniline                          | <62  | <59    | <62  | <62  | <62          |            | <11        | <18  | <12  | 50(G)                                           |                                       |
| 4,6-Dinitro-2-Methylphenol              | <62  | <59    | <62  | <62  | <62          | <62<br><62 | < 56       | <91  | <62  | 5                                               | ·                                     |
| N-Nitrosodiphenylamine (1)              | <12  | <12    | <12  | <12  | <12          |            | <56        | <91  | <62  | <del>!</del>                                    | <del></del>                           |
| 4-Bromophenyl-phenylether               | <12  | <12    | <12  | <12  | <12          | <12        | <11        | <18  | <12  | 50(G)                                           |                                       |
| l'exachlorobenzene                      | <12  | <12    | <12  | <12  |              | <12        | <11        | <18  | <12  |                                                 |                                       |
| Pentachlorophenol                       | <62  | <59    | <62  |      | <12          | <12        | <11        | <18  | <12  | 0.35                                            | 1/0 (G)                               |
| Phenanthrene                            | <12  | <12    | <12  | <62  | <62          | <62        | < 56       | <91  | <62  | 1.                                              | 1/0 (G)                               |
| Anthracene                              | <12  | <12    |      | <12  | <12          | <12        | <11        | <18  | <12  | 50(G)                                           |                                       |
| Di-n-Butylphthalate                     | <12  | <12    | <12  | <12  | <12          | <12        | <11        | <18  | <12  | 50(G)                                           | 50                                    |
| Fluoranthene                            |      |        | <12  | <12  | <12          | <12        | <11        | <18  | < 12 | 50                                              |                                       |
| Pyrene                                  | <12  | <12    | <12  | < 12 | <12          | <12        | <11        | < 18 | <12  | 50(G)                                           |                                       |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | < 12 | . < 12 | <12  | < 12 | < 12         | < 12       | <11        | <18  | <12  | 50(G)                                           |                                       |

Notes on Page 3 of 3

4/20/94 25941013G

#### TABLE 4. (Cont.) GROUND-WATER ANALYTICAL RESULTS SEMIVOLATILE ORGANICS FEBRUARY 1992

#### ROSEN SITE CORTLAND, NEW YORK

| Compound                   | W-15  | W-16 | W-17 | W-18 | W-18<br>Dup. | W-19 | W-20 | W-21   | W-22   | New York State<br>Standarde/Guldan<br>ce Values | MCLe/<br>MCLQs                          |
|----------------------------|-------|------|------|------|--------------|------|------|--------|--------|-------------------------------------------------|-----------------------------------------|
| Butylbenzylphthalate       | <12 : | <12  | <12  | <12  | <12          | <12  | <11  | < 18   | <12    | 50(G)                                           |                                         |
| 3,3'-Dichlorobenzidine     | <25   | <24  | <25  | <25  | <25          | <25  | <22  | <36    | <25    |                                                 | 100/0 (G)                               |
| Benzo(a)Anthracene         | < 12  | <12  | <12  | <12  | <12          | <12  | <11  | <18    |        | 5 '                                             |                                         |
| Chrysene                   | <12   | <12  | <12  | <12  | <12          | <12  |      |        | <12    | 0.002(G)                                        | 0.1/0 (G)                               |
| Bis(2-Ethylhexyl)Phthalate | <12   | <12  | <12  | <12  | <12          |      | <11  | < 18   | <12    | 0.002(G)                                        | 0.2/0 (G)                               |
| Di-n-Octyl Phthalate       | <12   | <12  | <12  | <12  | <12          | <12  | <11. | <18    | <12    | 50                                              | 6/0.0(G)                                |
| Benzo(b)Fluoranthene       | <12   | <12  | <12  | <12  |              | <12  | <11  | <18    | <12    | 50(G)                                           | · — · · · · · · · · · · · · · · · · · · |
| Benzo(k)Fluoranthene       | <12   | <12  | <12  |      | <12          | <12  | <11  | <18    | <12    | 0.002(G)                                        | 0.2/0 (G)                               |
| Benzo(a)Pyrene             | <12   | <12  |      | <12  | <12          | <12  | <11  | <18    | <12    | 0.002(G)                                        | 0.2/0 (G)                               |
| Indeno(1,2,3-cd)Pyrene     |       |      | <12  | <12  | <12          | <12  | <11  | <18    | . < 12 | ND                                              | 0.2/0 (G)                               |
|                            | <12   | <12  | <12  | <12  | <12          | <12  | <11  | . < 18 | <12    | 0.002(G)                                        | 0.4/0 (G)                               |
| Dibenz(a,h)Anthracene      | < 12  | <12  | <12  | <12  | <12          | <12  | <11  | <18    | <12    |                                                 | 0.3/0 (G)                               |
| Behzo(g,h,l)Perylene       | <12   | <12  | <12  | <12  | <12          | <12  | <11  | <18    | <12    | · · · · · · · · · · · · · · · · · · ·           | 3.5,5 (0)                               |
| TOTAL TIC                  |       |      |      | 535J | 778J         | 17J  |      |        |        |                                                 |                                         |

#### Notes:

All concentrations, detection levels, standard values, guidance values, and MCLs/MCLGs are reported as ug/L equivalent to parts per billion (ppb). Dup. - indicates field duplicate.

The < sign indicates the compound was analyzed for but not detected.

(1) - This compound cannot be separated from Diphenylamine.

The standard value of 1 ug/L applies to the maximum limit for the sum of all Phenolic compound concentrations.

TIC - Tentatively Identified Compounds,

ND - Non-detectable.

J - Indicates an estimated value.

#### References:

Standard and guidance values are according to New York State Department of Environmental Conservation (NYSDEC), Division of Water Technical and Operation Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values [designated by (G)], October 1993.

MCLs [Maximum Contaminant Levels] and MCLGs [Maximum contaminant Level Goals, designated by (G)] according to the Code of Federal Regulations, Protection of Environment 40, Part 141, July 1, 1991, and the Drinking Water Regulations and Health Advisories, Office of Water, U.S. Environmental Protection Agency, December 1993.

Notes on Page 3 of 3

#### ROSEN SITE CORTLAND, NEW YORK

| Compound     | W-01  | W-02  | W-02 Dup. | W-05  | W-04  | W-05  | W-06  | New York State<br>Standards/Guidance<br>Values | MCL*/MCLG* |
|--------------|-------|-------|-----------|-------|-------|-------|-------|------------------------------------------------|------------|
| Aroclor-1016 | <0.62 | <0.62 | <0.62     | <0.56 | <0.54 | <0.62 | <0.58 | . 0.1°                                         | 0.5/0 (G)* |
| Arocior-1221 | <0.62 | <0.62 | <0.62     | <0.56 | <0.54 | <0.62 | <0.58 | 0.14                                           | 0.5/0 (G)* |
| Aroclor-1232 | <0.62 | <0.62 | <0.62     | <0.56 | <0.54 | <0.62 | <0.58 | 0.1*                                           | 0.5/0 (G)* |
| Aroclor-1242 | <0.62 | <0.62 | <0.62     | <0.56 | <0.54 | <0.62 | <0.58 | 0.1"                                           | 0.5/0 (G)* |
| Aroclor-1248 | <0.62 | <0.62 | <0.62     | <0.58 | <0.54 | <0.62 | <0.58 | 0.1*                                           | 0.5/0 (G)* |
| Aroclor-1254 | <1.2  | <1.2  | <1.2      | <1.1  | <1.1  | <1.2  | <1.2  | 0.1*                                           | 0.5/0 (G)* |
| Arocior-1260 | <1.2  | <1.2  | <1.2      | <1.1  | <1.1  | <1.2  | <1.2  | 0.1*                                           | 0.5/0 (G)* |

Notes on Page 7 of 7

#### ROSEN SITE CORTLAND, NEW YORK

| Compound     | W-07  | W-08   | W-08  | W-10  | W-11  | Will Dup. | New York Siste<br>Signderds/Gyldence<br>Values | MCLa/MCLGs |
|--------------|-------|--------|-------|-------|-------|-----------|------------------------------------------------|------------|
| Aroclor-1016 | <0.62 | <0.62J | <0.62 | <0.56 | <0.62 | <0.62     | 0.1*                                           | 0.5/0 (G)* |
| Aroclor-1221 | <0.62 | <0.62J | <0.62 | <0.56 | <0.62 | <0.82     | 0.1                                            | 0.5/0 (G)* |
| Aroclor-1232 | <0.62 | <0.62J | <0.62 | <0.56 | <0.62 | <0.62     | 0.1*                                           | 0.5/0 (G)* |
| Aroclor-1242 | <0.62 | <0.62J | <0.62 | <0.56 | <0.62 | <0.62     | 0.1*                                           | 0.5/0 (G)* |
| Aroclor-1248 | <0.62 | <0.82J | <0.62 | <0.56 | <0.62 | <0.62     | 0.14                                           | 0.5/0 (G)* |
| Afoclor-1254 | 4.5   | <1.2J  | <1.2  | <1.1  | <1.2  | <1.2      | 0.1*                                           | 0.5/0 (G)* |
| Aroclor-1260 | <1.2  | <1.2J  | <1.2  | <1.1  | <1.2  | <1.2      | 0.1*                                           | 0.5/0 (G)° |

Notes on Page 7 of 7

## ROSEN SITE CORTLAND, NEW YORK

| Compound     | W-12  | W-13  | N-14  | W:15  | W:16  | W:17   | New York State<br>Standarde/Guldenoe<br>Values | MOLEVACIGE |
|--------------|-------|-------|-------|-------|-------|--------|------------------------------------------------|------------|
| Aroclor-1018 | <0.62 | <0.62 | <0.62 | <0.56 | <0.58 | .<0.56 | .,0.1                                          | 0.5/m /G)* |
| Aroclor-1221 | <0.62 | <0.62 | <0.62 | <0.56 | <0.56 | <0.56  | 0.10                                           | 0.5/0 (G)* |
| Aroclor-1232 | <0.62 | <0.62 | <0.62 | <0.56 | <0.56 | <0.56  | • • •                                          | (D) 0/0:0  |
| Aroclor-1242 | <0.62 | <0.62 | <0.62 | <0.56 | <0.56 | <0.56  | • • •                                          | 0.5/0 (a)  |
| Aroclor-1248 | <0.62 | <0.62 | <0.62 | <0.58 | <0.56 | <0.56  |                                                | 0.9/0 (G)  |
| Arocior-1254 | <1.2  | <1.2  | <1.2  | 41.12 | <1.1  | 41.1   |                                                | 0.5/0 (G)  |
| Arocior-1260 | <1.2  | <1.2  | <1.2  | <1.1  | <1.1  | <1.1   | 0.1                                            | 0.5/0 (G)* |

Notes on Page 7 of 7

3 of 7

#### ROSEN SITE CORTLAND, NEW YORK

| W-18  | W-16 Dup:                                 | W-19  | W-20         | W-21  | W-22                                  | New York State<br>Standards/Guidancs<br>Values | MCLs/MCLGs                                                                                                                   |
|-------|-------------------------------------------|-------|--------------|-------|---------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| <0.56 | <0.56                                     | <0.56 | <0.62        | <1.1  | <0.56                                 |                                                | 0.5/0 (G)*                                                                                                                   |
| <0.56 | <0.56                                     | <0.56 | <0.62        | <1.1  |                                       |                                                |                                                                                                                              |
| <0.56 | <0.56                                     | <0.56 | <0.62        |       |                                       |                                                | 0.5/0 (G)*                                                                                                                   |
| <0.56 | <0.56                                     | <0.56 |              |       |                                       | · · · · · · · · · · · · · · · · · · ·          | 0.5/0 (G)*                                                                                                                   |
| <0.56 | <0.56                                     |       | <del></del>  |       | · · · · · · · · · · · · · · · · · · · |                                                | 0.5/0 (G)*                                                                                                                   |
| <1.1  | <1.1                                      |       |              |       |                                       |                                                | 0.5/0 (G) <sup>4</sup>                                                                                                       |
|       |                                           |       | <del> </del> | <2.2  | <1.1                                  | 0.1                                            | 0.5/0 (G)*                                                                                                                   |
|       | <0.58<br><0.58<br><0.56<br><0.56<br><0.56 | <0.56 | <0.56        | <0.56 | <0.56                                 | <0.56                                          | W:18         W:18 Dup.         W:19         W:20         W:21         W:22         Standarde/Guldance Yaluas           <0.56 |

Notes on Page 7 of 7

#### ROSEN SITE CORTLAND, NEW YORK

| Compound           | W-15   | W-16   |                | New York State<br>Standarde/Guldance |                      |
|--------------------|--------|--------|----------------|--------------------------------------|----------------------|
| alpha-BHC          | <0.056 | <0.056 | W-17<br><0.056 | Values<br>· ND                       | MCLe/MCLGe           |
| beta-BHC           | <0.056 | <0.056 | <0.056         | ND ND                                |                      |
| delta-BHC          | <0.058 | <0.056 | <0.056         | ND                                   |                      |
| gamma-BHC(Lindane) | <0.056 | <0.058 | <0.056         | ND                                   | 0.2/0.2 (G)          |
| Heptachlor         | <0.056 | <0.056 | <0.056         | ND                                   | 0.4/0 (G)            |
| Aldrin             | <0.056 | <0.056 | <0.058         | ND                                   | 0.470 (0)            |
| Heptachlor epoxide | <0.056 | <0.058 | <0.056         | ND                                   | 0.2/0 (G)            |
| Endosulfan I       | <0.056 | <0.056 | <0.056         |                                      | 313,5 (4,7)          |
| Dieldrin           | <0.11  | <0.11  | <0.11          | ND                                   |                      |
| 4,4'-DDE           | <0.11  | <0.11  | <0.11          | ND                                   |                      |
| Endrin             | <0.11  | <0.11  | <0.11          | ND                                   | 2/2(G)               |
| Endosulfan II      | <0.11  | <0.11  | <0.11          |                                      |                      |
| 4,4'-DDD           | <0.11  | <0.11  | <0.11          | ND                                   |                      |
| Endosulfan sulfate | <0.11  | <0.11  | <0.11          |                                      |                      |
| 4.4'-DDT           | <0.11  | <0.11  | <0.11          | ND                                   |                      |
| Methoxychlor       | <0.56  | <0.56  | <0.56          | 35                                   | 40/40 (G)            |
| Endrin ketone      | <0.11  | <0.11  | <0.11          | 5                                    |                      |
| alpha-chlordane    | <0.56  | <0.56  | <0.56          | 0.1                                  | 2/0 (G) <sup>b</sup> |
| gamma-chlordane    | <0.56  | <0.58  | <0.56          | 0.1                                  | 2/0 (G) <sup>b</sup> |
| Toxaphene          | <1.1   | <1.t   | <1.1           | ND                                   | 3/0 (G)              |

Notes on Page 7 of 7

## ROSEN SITE CORTLAND, NEW YORK

| Compound           | W-18   | W:18 Dup. | W:19   | W-20   | . 6.W  | W. 23             | New York State<br>Standards/Guldance |             |
|--------------------|--------|-----------|--------|--------|--------|-------------------|--------------------------------------|-------------|
| alpha-BHC          | <0.056 | <0.056    | <0.056 | <0.082 | < 0 11 | 9900/             | San Is                               | MCL s/MCLGs |
| beta-BHC           | <0.058 | <0.058    | <0.056 | <0.062 | <0.11  | 00.00             | ON C                                 |             |
| delta-BHC          | <0.056 | <0.058    | <0.056 | <0,062 | <0.11  | <0.058<br>A 0.058 | 2                                    |             |
| gamma-BHC(Lindane) | <0.056 | <0.056    | <0.058 | <0.062 | <0.11  | <0.056            | Q. G                                 |             |
| Heptachlor         | <0.056 | <0.056    | <0.056 | <0.062 | <0.11  | <0.056            | 2                                    | 0.2/0.2 (G) |
| Aldrin             | <0.056 | <0.056    | <0.056 | <0.062 | <0.11  | <0.056            | CN CN                                | (5) 6/1-0   |
| Heptachlor epoxide | <0.056 | <0.056    | <0.058 | <0.062 | <0.11  | <0.056            | S S                                  | 100 010 0   |
| Endosultan I       | <0.056 | <0.056    | <0.058 | <0.062 | <0.11  | <0.056            |                                      |             |
| Dieldrin           | <0.11  | <0.11     | <0.11  | <0.12  | <0.22  | 2011              | G.                                   |             |
| 4,4'-DDE           | <0.11  | <0.11     | <0.11  | <0.12  | <0.22  |                   | 2                                    |             |
| Endrin             | <0.11  | <0.11     | <0.11  | <0.12  | <0.22  | 1.00              |                                      |             |
| Endosullan II      | <0.11  | <0.11     | <0.11  | <0.12  | <0.0>  |                   | C.                                   | 2/2(G)      |
| 4,4'-DDD           | <0.11  | <0.11     | 40.11  | <0.10  | 00 00  | 2 3               |                                      |             |
| Endosultan sultate | <0.11  | <0.11     | <0.11  | <0.12  | <0.0   |                   | GN.                                  |             |
| 4.4*-DDT           | <0.11  | <0.11     | <0.11  | <0.12  | <0.0>  |                   | 2                                    |             |
| Methoxychlor       | <0.56  | <0.56     | <0.58  | <0.62  | 1      | 20.58             | ND 36                                |             |
| Endrin ketone      | <0.11  | <0.11     | <0.11  | <0.12  | <0.22  | 11.00             | 2                                    | 40/40 (G)   |
| alpha-chlordane    | <0.58  | <0.56     | <0.56  | <0.62  | 1.7    | ×0.58             | ,                                    | 4007 070    |
| gamma-chlordane    | <0.58  | <0.56     | <0.56  | <0.62  | V 1.1  | <0.56             | 4. 0                                 | (a) 0/2     |
| Toxaphene          | <1.1   | <1.1      | 7.1.   | <1.2   | <2.2   | 112               | 2                                    | (5) 0/2     |
|                    |        |           |        |        |        |                   | 2                                    | (5)         |

Noles on Page 7 of 7

#### ROSEN SITE CORTLAND, NEW YORK

#### Notes:

All concentrations, detection levels, standard values, guidance values, MCLs, and MCLGs are reported as ug/L equivalent to parts per billion (ppb). Dup. - indicates field duplicate.

The < sign indicates the compound was analyzed for but not detected.

- \* The standard value and MCLs/MCLGs apply to the maximum limit for the sum of all Aroclor concentrations.
- b The standard value and MCLs/MCLGs apply to chlordane.
- J Indicates and estimated value.

ND - Non-detectable concentration by the approved analytical methods referenced in section 700.3 of 6 NYCRR Parts 700-705, Water Quality Regulations.

- Did not analyze for this parameter.

Bold Indicates NYSDEC standard exceeded; sheding indicates federal MCL exceeded.

#### References:

Standard and guidance values are according to New York State Department of Environmental Conservation (NYSDEC), Division of Water Technical and Operation Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values [designated by (G)], October 1993.

MCLs [Maximum Contaminant Levels] and MCLGs [Maximum contaminant Level Goals, designated by (G)] according to the Code of Federal Regulations, Protection of Environment 40, Part 141, July 1, 1991, and the Drinking Water Regulations and Health Advisories, Office of Water, U.S. Environmental Protection Agency, December 1993.

# TABLE 4 GROUND-WATER ANALYTICAL RESULTS - EVENT 2 INORGANICS FEBRUARY 1992

# ROSEN SITE CORTLAND, NEW YORK

|                      |          |           |           | #Illiared |          | -       |          |           | New York State               |                 |
|----------------------|----------|-----------|-----------|-----------|----------|---------|----------|-----------|------------------------------|-----------------|
| Compound             | W-01     | W-02      | W-02 Dup. | W-02      | W-03     | W-03    | N-04     | W-05      | Standarda/Guldanca<br>Values | MCLaMCLGs       |
| Aluminum             | 86.98    | 2,670     | 3,800     | <50       | 5,850    | < 50    | 6.790    | oue ve    |                              |                 |
| Antimony             | C0.6>    | 59.2BJ    | <50.03    | <50       | 1.000    | 3,      |          |           |                              | 50 to 200(S)    |
| Arsenic              | <5.0R    | <5.0R     | 98.87     | 3,        | 33.33    | 200     | 70'Q>    | 20.8BJ    | 3(G)                         | 6/6(G)          |
| Barlum               | 0 02/    | 27.00     | uo:n/     | 0>        | · H0.6>  | <6.0    | <5.0A    | 8.0R      | 25                           | 20              |
| Barrelline           | 0.00%    | 97.77     | 158       | 47.58     | 69.48    | 34.2B   | 60.5B    | 274 .     | 1,000                        | 2 000/2 000 (G) |
| Continuin            | <5.0     | <5.0      | <5.0      | <10       | <5.0     | <10.0   | <5.0     | <5.0      | 3(G)                         |                 |
| C summu              | <1.0     | 88.0<br>8 | <1.0      | <0.30R    | <1.0     | <0.30R  | <1.0     | 15.31     | 10                           | (5)4/4          |
| Calcium              | 54,200EJ | 160,000EJ | 158,000EJ | 150,000,  | 97,100EJ | 85,600J | 60.00EJ  | 62.200F.J |                              | 0/0 (5)         |
| Chromium             | 1.48     | 6.8BS     | 5.98      | <1.0J     | 8.888    | <1.0J   | 13.2BJ   | 70.088    | 4                            |                 |
| Cobait               | <20.0    | <20.0     | <20.0     | <40.0     | . <20.0  | <40.0   | <20.0    | 230.0     | 3                            | 160             |
| Copper               | <10.0    | 15.2B     | 12B       | ×10,0     | 14.48    | <10.0   | 13.18    |           | 400                          |                 |
| Iron                 | 89.98    | 11,500    | 15,500    | <60.0     | 9.770    | <80.0   | 041.0    | 200       | 007                          | 1,000(5)        |
| Lead                 | <3.0     | 7         | L11       | <3.08     | •        |         |          | One'co    | 300                          | 300(8)          |
| Magnesium            | 9,020    | 33.600    | 33 000    | 20.00     | 9        | 4.0H    | /        | 71.0      | 25                           | 15              |
| Manganese            | <5.0     | 1 860     | 200,50    | Z#,300    | 19,200   | 14,200  | 14,500   | 20,500    | 35,000(G)                    |                 |
| Mercury              | 3        | Ana       | 000/1     | 742       | 1,490    | 354     | 303      | 3,770     | 500" 300                     | \$0(\$)         |
| Nickel               | <0.20    | <0.20     | <0.20     | ٧×        | <0.20    | ٧×      | <0.20    | 0.21      | 2                            | 279 (G)         |
| Dotte                | <20.0    | 40.8      | 43.6      | <40.0     | 35.4B    | <40.0   | <20.0    | 08.0      |                              | 100/100/01      |
|                      | <5,000   | <5,000    | <5,000    | <10,000   | <5,000   | <10,000 | <5,000   | <5,000    |                              |                 |
| Selenium<br>Selenium | <5.0R    | <5.0R     | <5.0R     | <5.0      | <5.0R    | <5.0    | <50.0R   | <5,0R     | 10                           | 50,65, 101      |
| Silver               | <10.0    | <10.0     | <10.0     | <10.0R    | <10.0    | ×10.0R  | 0.01 >   | 2007      |                              |                 |
| Sadlum               | 28,000J  | 24,100J   | 24,000J   | 26,900    | 17,800J  | 20.900  | 28 500 1 | 0.017     | 00                           | 100 (S)         |
| Thaillum             | <7.0J    | <7.0J     | <7.0J     | <7.0      | <7.0.7   | 07.7    | 7.701    | 2000, 1   | 20,000                       |                 |
| Vanadium             | <30.0    | <30.0     | <30.0     | <30.0     | < 30.0   | 0.087   | 20.17    | C0.72     | <b>4</b> (G)                 | 2/0.5(G)        |
| Zinc                 | 138      | 48.7      | 42.6      | <20.0     | 612      | 9       | 200      |           |                              |                 |
| Cyanide              | <10.0    | < 10.0    | <10.0     | ¥         | < 10.0   | 414     | 1.01     | 302       | 300                          | 5,000(S)        |
|                      |          |           |           |           |          | V       | <10.0    | <10.0     | 100                          | 200/200(G)      |

1 c' 5

Notes on Page 5 of 5

### TABLE 4 (Cont.) GROUND-WATER ANALYTICAL RESULTS - EVENT 2 INORGANICS FEBRUARY 1992

#### ROSEN SITE CORTLAND, NEW YORK

| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fillered<br>W-05 | W-08                                    | Filtered<br>W-08 | W-07                                             | Filtered<br>W-07 | W-08         | W-09                                             | W-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | New York State<br>Standards/Guidance<br>Values | MCLe/MCLGe<br>SMCLe |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------|------------------|--------------------------------------------------|------------------|--------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------|
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <50              | 67,000                                  | <50              | 19,900                                           | <50              | 862          | 106B                                             | 59,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |                     |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 50             | <50.0J                                  | <5č              | <50.0J                                           | <50              | <5.0J        | <5.0J                                            | 72.2J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                | 50 to 200(S)        |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <5.0             | 18.4SR                                  | <5.0             | 36.0SR                                           | <5.0             | <5.0R        | <5.0R                                            | Secure Section | 3(G)                                           | 6/6(G)              |
| Barlum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33.2B            | 516                                     | 53.5             | 208                                              | 46.7B            | 205          | <del>                                     </del> | 13.25R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25                                             | 50                  |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <10.0            | <5.0                                    | <10.0            | <5.0                                             | <10.0            | <del> </del> | 341                                              | 418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,000                                          | 2,000/2,000 (G)     |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.30R           | 33.95                                   | <0.30R           | <1.0                                             | <0.30R           | <5.0         | <5.0                                             | <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3(G)                                           | 4/4(G)              |
| Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 48,500J          | 117,000EJ                               | 88,100J          | 89,900EJ                                         |                  | <1.0         | <1.0                                             | 15.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                             | 5/5 (G)             |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1.0J            | 80.08                                   | <1.0J            | <del>                                     </del> | 73,000J          | 158,000EJ    | 139,000EJ                                        | 242,000EJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                |                     |
| Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <40.0            | 43.9B                                   | <40.0            | 52.0BS                                           | <1.0J            | 3.7BJ        | 1.0BJ                                            | 200B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50                                             | 100                 |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <10.0            | 310                                     |                  | <20.0                                            | <40.0            | <20.0        | <20.0                                            | 48.4B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |                     |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <60.0            | 1.0000000000000000000000000000000000000 | 10.4B            | 147                                              | <10.0            | 11.5B        | <10.0                                            | 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200                                            | 1,000(S)            |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.0R             | 151,000                                 | <60.0            | 56,700                                           | 415              | 1,250        | 285                                              | 124,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 300                                            | 300(S)              |
| Magneslum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | 138                                     | 3.0R             | 44.0                                             | <3.0R            | 4.0          | <3.0                                             | 1165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25                                             | 15                  |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8,360            | 59,300                                  | 39,900           | 24,600                                           | 15,800           | 33,900       | 41,200                                           | 77,900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35,000(G)                                      |                     |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.7             | 3,970                                   | <5.0             | 1,510                                            | 798              | 1,050        | 234                                              | 5,760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 500° 300                                       | 50(S)               |
| 1000 to the reserve to the second sec | NA NA            | 0.34                                    | NA NA            | <0.20                                            | NA               | <0.20        | <0.20                                            | <0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                              | 2/2 (G)             |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <40.0            | 210J                                    | <40.0            | 54.5                                             | <40.0            | <20.0        | <20.0                                            | \$307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |                     |
| Potassium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <10,000          | 11,500                                  | <10,000          | 5,170                                            | <10,000          | <5,000       | <5,000                                           | 8,660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                | 100/100(G)          |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <5.0             | <5.0R                                   | <5.0             | <5.0R                                            | <5.0             | <5.0R        | <5.0R                                            | <50.0R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                             |                     |
| Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <10.0R           | <10.0                                   | <10.0R           | <10.0                                            | <10.0R           | <10.0        | <10.0                                            | <10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                | 50/50 (G)           |
| godinu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16,800           | 17,400J                                 | 24,700           | 17,200J                                          | 19,500           | 76,500J      | L006,00                                          | 24,700J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                                             | 100 (8)             |
| hallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <7.0             | <7.0J                                   | <7.0             | <7.0J                                            | <7.00            | <7.0J        | <7.0J                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20,000                                         | ·····               |
| anadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <30.0            | 117                                     | <30.0            | 38.3B                                            | <30.0            | <30.0        |                                                  | <7.0J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4(G)                                           | 2/0.5(G)            |
| Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <20.0            | 1,130                                   | <20.0            | 258                                              | <20.0            | 14.6B        | <30,0                                            | 96.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |                     |
| yanide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA               | <10.0                                   | NA               | <10.0                                            | NA NA            |              | <10.0                                            | 446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 300                                            | 5,000(S)            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                         |                  |                                                  | IVA              | <10.0        | < 10.0                                           | <10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                            | 200/200(G)          |

Notes on Page 5 of 5

4/25/94 14941013G

# TABLE 4 (Cont.) GROUND-WATER ANALYTICAL RESULTS - EVENT 2 INORGANICS FEBRUARY 1992

# ROSEN SITE CORTLAND, NEW YORK

|           | 7-1-113 |           |              |                       |           |           |           |         | New York State               |                     |
|-----------|---------|-----------|--------------|-----------------------|-----------|-----------|-----------|---------|------------------------------|---------------------|
| Compound  | W-10    | W-11      | M-11<br>Dup. | Fillered<br>W-11 Dup. | W-12      | W-13      | W-14      | W-15    | Standards/Guidance<br>Values | MOL#/NOLG#<br>SMCL# |
| Aluminum  | <50     | 11,700    | 12,300       | <50                   | 1,590     | 5,250     | 1828      | 2,890   |                              | 50 to 200(S)        |
| Antimony  | <50     | 101,      | 1081         | 101                   | <50.0J    | <5.03     | <5.0J     | <50.07  | 3(G)                         | (5)9/9              |
| Arsenic   | <5.0    | 10.7SR    | 10.9SR       | <6.0                  | <5.0A     | <5.0R     | <5.0R     | <5.0    | 26                           | 50                  |
| Barlum    | 33.5B   | 1558      | 1718         | <30.0                 | 44.9B     | 320       | 47.38     | 52.18   | 1,000                        | 2.000/2.000 (G)     |
| Beryllium | <10.0   | <5.0      | <5.0         | <10.0                 | <5.0      | <5.0      | <6.0      | <5.0    | 3(G)                         |                     |
| Cadmium   | <0.30R  | <1.0      | <1.0         | <0.30R                | <1.0      | <1.0      | <1.0      | 1.28    | 10                           | 6/5 (G)             |
| Caiclum   | 81,800J | 385,000EJ | 385,000EJ    | 334,000J              | 202,000EJ | 102,000EJ | 119,000EJ | 142,000 |                              |                     |
| Chromlum  | <1.0J   | 22BS      | 5108         | <1.0J                 | 4.6BJ     | 7.58      | 1.68      | 4.1BR   | 90                           | 100                 |
| Cobalt    | <40.0   | <20.0     | <20.0        | <40.0                 | <20.0     | <20.0     | <20.0     | <20.0   |                              |                     |
| Copper    | <10.0   | 45.6      | 57.5         | 24.5B                 | 14.2B     | 67.0      | <10.0     | 28.1    | 200                          | 1,000/51            |
| Iron      | <60.0   | \$5,500   | 35,900       | 6,180                 | \$,020    | 1,650     | 361       | 4,520   | 300                          | 300(S)              |
| Lead      | <3.0R   | 18,0      | 20.0         | 3.0R                  | 10.0      | 11.0      | 7.0       | 4.0     | 25                           | 16                  |
| Magnesium | 12,900  | 32,500    | 35,100       | 19,000                | 25,400    | 13,100    | 18,100    | 35,200  | 35,000/G)                    |                     |
| Manganese | 160     | 1,300     | 1,350        | 896                   | 802       | 0.18      | 7.18      | 4143    | 500 300                      | 50/51               |
| Mercury   | NA      | <0.20     | <0.20        | ٧٧                    | <0.20     | 0.39      | <0.20     | <0.20   |                              | 12) 66              |
| Nickel    | <40.0   | 57.2      | 47.7         | 80.09                 | 23.28     | 29.6B     | <20.0     | <20.0   |                              | 100/100/31          |
| Potaeslum | <10,000 | <5,000    | <5,000       | < 10,000              | <5,000    | <5,000    | <5,000    | <5,000  |                              |                     |
| Selenium  | <5.0    | <5.0R     | <5.0R        | <6.0                  | <5.0R     | <5.0A     | <5.0R     | <5.03   | 10                           | 50/2 (G)            |
| Silver    | <10.0R  | <10.0     | <10.0        | <10.0R                | <10.0     | <10.0     | <10.0     | <10.0   | 909                          | 100 (S)             |
| Bodium    | 26,500  | 31,200J   | 30,400J      | 32,700                | 19,800J   | 30,500J   | 38,500J   | 28,500  | 20,000                       |                     |
| Thallium  | <7.0    | <7.0J     | <7.0J        | <7.0                  | <7.03     | <7.03     | <7.03     | <5.03   | 4(6)                         | 2/0.5(G)            |
| Vanadium  | <30.0   | <30.0     | <30.0        | <30.0                 | <30.0     | <30.0     | <30.0     | <30.0   |                              |                     |
| Zinc      | <20.0   | 97.6      | 159J         | <20.0                 | 23        | 70.4      | 17.78     | 37.4    | 300                          | 5,000(S)            |
| Cyanide   | ΑN      | <10.0     | <10.0        | ¥                     | <10.0     | <10.0     | < 10.0    | < 10.0  | 100                          | 200/200(G)          |

Notes on Page 5 of 5

### TABLE 4 (Cont.) GROUND-WATER ANALYTICAL RESULTS - EVENT 2 INORGANICS FEBRUARY 1992

#### ROSEN'SITE CORTLAND, NEW YORK

| Compound  | W-16     | W-17    | Fillered<br>W-17 | W-18    | W-18<br>Dup. | Filtered<br>W-18 | W-19            | Filtered<br>W-19 | New York State<br>Standards/Guldance<br>Values | MCLs/MCLGs<br>SMCLs |
|-----------|----------|---------|------------------|---------|--------------|------------------|-----------------|------------------|------------------------------------------------|---------------------|
| Aluminum  | 368      | 61,000  | 347              | 121,000 | 89,300       | <50.0            | 32,400          | 1148             |                                                | 50 to 200(S)        |
| Antimony  | <50.0J   | 102J    | <50.0            | 181J    | 177J         | <50.0            | 117,1           | 132              | 3(G)                                           | 6/6(G)              |
| Arsenic   | < 5.0    | 11.4    | <5.0             | 31.6S   | 32.15        | < 5.0            | 29.0J           | <5.0             | 25                                             | 50                  |
| Barlum    | 57.5B    | 476     | 44.6B            | 931     | 803          | 75.1B            | 252             | <30.0            | 1,000                                          | 2,000/2,000 (G)     |
| Beryllium | < 5.0    | <5.0    | <10.0            | < 5.0   | <5.0         | <10.0            | <5.0            | <10.0            | 3(G)                                           | 4/4(G)              |
| Cadmium   | < 0.20   | 1.28    | <0.30R           | 1.5B    | 1.3B         | <0.03Fl          | 0.50B           | 0.40BR           | 10                                             | 5/5 (G)             |
| Calcium   | 122,000  | 455,000 | 131,000J         | 814,000 | 763,000      | 143,000J         | 504,000         | 367,000J         |                                                | 5/5 (d)             |
| Chromium  | 13.1BR   | 75.0BR  | <1.0J            | 220BSN  | 170BR        | <1.0J            | 90.0BR          | <1.0J            | 50                                             | 100                 |
| Cobalt    | <20.0    | 41.8B   | <40.0            | 76.0    | 63.1         | <40.0            | 25.4B           | <40.0            |                                                | 100                 |
| Copper    | 30.2     | 154     | <10.0            | 258     | 199J         | 11.58            | 83.4            | 24.6B            | 200                                            | 1.000(5)            |
| lron      | 560      | 114,000 | 652              | 191,000 | 144,000      | <60.0            | 66,700          | 303              | 300                                            | 1,000(S)            |
| Lead      | 3.0      | 93.58   | 3.0R             | 90.0    | 1708J        | <3.0A            | \$2.0           | <3.0R            | 25                                             | 300(S)              |
| Magnesium | 22,400   | 125,000 | 18,200           | 268,000 | 230,000      | 20,100           | 69,300          | 26,400           | 35,000(G)                                      | 15                  |
| Manganese | 66.0J    | 2,600J  | 60.1             | 6,5003  | 5,980J       | 787              | 3,810J          | 2,650            |                                                |                     |
| Mercury   | <0.20    | <0.20   | NA               | <0.20   | <0.20        | NA               | <0.20           | NA NA            |                                                | 50(S)               |
| Nickel    | <20.0    | 143     | <40.0            | 263     | 207          | <40.0            | 114             | <40.0            | 2                                              | 2/2 (G)             |
| Potessium | <5,000   | 9,540   | <10,000          | 18,900  | 13,800       | <10,000          | 5,340           | <10,000          |                                                | 100/100(G)          |
| Selenium  | <5.0J    | <5.0J   | <5.0             | <50.0J  | <50.0J       | <5.0             | <5.0J           | <5.0             |                                                |                     |
| Silver    | <10.0    | <10.0   | <10.0R           | <10.0   | <10.0        | <10.0R           | <10.0           |                  | 10                                             | 50/50 (G)           |
| Sodium    | 22,300   | 29,700  | 30,100           | 134,000 | 133,000      | 130,000          | 23,500          | <10.0R           | 50                                             | 100 (\$)            |
| The Illum | <5,0J    | <5.0J   | <7.0             | <5.0J   | <5.00        | <7.0             | 23,500<br><5.0J | 24,900           | 20,000                                         |                     |
| /anadium  | <30.0    | 88.5    | <30.0            | 170     | 125          |                  |                 | <7.0             | 4(G)                                           | 2/0.5(G)            |
| Zinc      | 27.0     | 834     | 36.2B            | 748     | 587          | <30.0            | 48.6B           | <30.0            |                                                |                     |
| Cyanide   | 81999900 |         |                  |         |              | <20.0            | 225             | <20.0            | 300                                            | 5,000(S)            |
| ,         | <10.0    | <10.0   | NA NA            | <10.0   | <10.0        | NA ,             | <10.0           | NA               | 100                                            | 200/200(G)          |

Notes on Page 5 of 5

#### INORGANICS GHOUND-WATER ANALYTICAL RESULTS - EVENT 2 (JnoS) 1 3JBAT

#### FEBRUARY 1992

#### CORTLAND, NEW YORK **BOSEN SILE**

| ebina.                  | 0.01>   | ΨN               | 0.01>   | 0.01>            | 0.01>              | YN               | 001                                      | S00/S00(G)          |
|-------------------------|---------|------------------|---------|------------------|--------------------|------------------|------------------------------------------|---------------------|
| áu                      | E. 87   | <20.0            | 506     | 0.19             | 201                | <20.0            | 300                                      | (8)000,8            |
| արբեր                   | 0.06>   | 0.02>            | 88.62   | 80.02            | 152                | 0.0£>            |                                          |                     |
| mullia                  | L0.3>   | 0.7>             | 0.7>    | 0.7>             | L0.8>              | . 0.7>           | 4(G)                                     | S/0.5(G)            |
| wnjp                    | 003,ST  | 73,200           | 227,000 | 242,000          | 009'99             | 64,200           | 20,000                                   |                     |
| 194                     | 0.01>   | 13.61            | 0.01>   | 0.01>            | 0.01>              | A0.01>           | 09                                       | (8) 001             |
| mulnei                  | L0.3>   | 0.3>             | 0.3>    | 0.3>             | L0.03>             | 0.3>             | Of                                       | (5) 03/03           |
| muissai                 | 089'9   | 000,01>          | \$5'800 | 23,300           | 088,7              | 000,01>          |                                          |                     |
| [840                    | 65.4    | 0.01>            | 151     | 0.13             | T02                | 0.01>            |                                          | 100/100(G)          |
| Steuty                  | 02.0>   | AN _             | <0.20   | 02.0>            | <0.20              | YN               | 3                                        | 5\S (G)             |
| <b>ង្គុនធំបត្</b> បិប្ប | COAT.T  | 111              | 1,620   | <b>711</b>       | rotz'g             | 1*09             | 200, 300                                 | (8)09               |
| ឃ្រាំទី១បទិវ            | 000,74  | 007.01           | 28,100  | S2'000           | 000,801            | 14'400           | 35,000(G)                                | •                   |
| pe                      | 0.11    | 80.6>            | 0.74    | 0,01             | 011                | A0.1∙            | 22                                       | 91                  |
| U                       | \$2,400 | 0.08>            | V1200   | 6,420            | \$\$ <b>9</b> '000 | 0,08>            | 300                                      | (8)006              |
| 19Qq                    | 42.0    | 89.61            | 222     | 601              | . 284              | 0.01>            | 500                                      | (3)000,1            |
| jlade                   | <20.0   | 0.03>            | 83.38   | <20.0            | git .              | 0.04>            |                                          |                     |
| mulmon                  | 24.088  | LO.1>            | 1708    | 80.69            | <b>5208U</b>       | L0.1>            | 05                                       | 100                 |
| mulalı                  | 000,771 | 154,000          | 111,000 | 121,000          | 562,000            | L008,£8          |                                          |                     |
| աոլաք։                  | Bos.o   | A02.0>           | 0.6>    | 0.3>             | 1.28               | R02.0>           | O\$ .                                    | 2\2 (G)             |
| muillyn                 | 0.6>    | 0.01>            | 0.3>    | .0.3>            | 0.3>               | 0.01>            | 2(G)                                     | (D) F/F             |
| multi                   | 89.28   | 89.0►            | 1938    | 1138             | 683                | BT.13            | 606,1                                    | 2,000/2,000 (G)     |
| olnes                   | 80.8    | 0.3>             | 0.41    | 0.8>             | 28.61              | 0.3>             | 52                                       | 20                  |
| имолу                   | L3.10   | 0.08>            | 0.3>    | 0.3>             | LE.TT              | <0.03>           | 3(G)                                     | (5)8/8              |
| առսյար                  | 005,11  | 0.03>            | 16,000  | 091,1            | 009,88             | 0.02>            |                                          | 20 to 200(S)        |
| puñoduc                 | M-S0    | Fillered<br>W-20 | rs-W    | Fillered<br>W-21 | M-25               | Fillered<br>W-SS | New York State Standards/Guidence Velues | BMCF*<br>MCF*/MCFG* |

and Guldance Values [designated by (G)], October 1993. and Operation Guidance Setles (1.1.1), Ambient Water Quality Standards of Environmental Conservation (NYSDEC), Division of Water Technical Standard and guidance values are according to New York State Department Reletences:

Environmental Protection: Agency, December 1993. Water Regulations and Health Advisories, Office of Water, U.S. Protection of Environment 40, Part 141, July 1, 1981, and the Drinking Levels, designated by (5)] according to the Code of Federal Regulations, Gosts, designated by (G)] and SMCLs [Secondary Maximum Contaminant MCLs [Maximum Conteminant Lavels], MCLGs [Maximum conteminant Lave

> reported as ug/L equivalent to parts per billion (ppb). All concentrations, detection levels, standard values, guidance values, and MCLs/MCLGs/SMCLs are

Dup. - Indicates field duplicate.

The < sign indicates the compound was analyzed for but not detected.

the contract required detection limit. B - Indicates a value greater than or equal to the instrument detection limit but less than

E - Indicates a value estimated or not reported due to the presence of Interterence.

R - Indicates the associated value is unusable.

5 - Indicates value determined by Method of Standard Addition.

J - Indicates an estimated value,

AA - did not analyze for this parameter.

Bold indicates NYSDEC standards or guidance value exceeded; shading indicates federal MCLs/MCLGs/SMCLs exceeded. - Applies to the sum of Iron (meximum 300 ug/L) and manganese.

### TABLE 4 GROUND-WATER ANALYTICAL RESULTS - EVENT 3 VOLATILE ORGANICS JULY 1992

#### ROSEN SITE CORTLAND, NEW YORK

|                           |             | 4.4.4.4.4 | TW-2        |            |                              | e transmission | New York State                |                                         |
|---------------------------|-------------|-----------|-------------|------------|------------------------------|----------------|-------------------------------|-----------------------------------------|
| Compound                  | TW-1        | TW-2      | (DL)        | TW-3       | W-21                         | W-22           | Standards/<br>Guidance Values | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| Chloromethane             | 2           | 0.9J      | <10         | 3          | 0.4J                         | <1             |                               | MCLe/MCLG                               |
| Bromomethane              | <1          | <1        | <10         | <1         | <1                           | <1             | 5                             | <u> </u>                                |
| Vinyl Chloride            | <1          | 1.4       | 14D         | <1         | <1                           | <1             | 5                             |                                         |
| Chloroethane              | <1          | <1        | <10         | <1         | <1                           | <1             | 2                             | 2/0 (G)                                 |
| Methylene Chloride        | <1          | <1        | <10         | <1         | <1                           |                | 5                             |                                         |
| Acetone                   | <5          | <5        | <50         | <5         | <5                           | <1             | 5                             | 5/0.0(G)                                |
| Carbon Disulfide          | <1          | <1        | <10         | <1         | 0.3J                         | <5             | 50 (G)                        |                                         |
| 1,1-Dichlorosthene        | <1          | 3         | SDJ         | <1         |                              | <1             |                               |                                         |
| 1,1-Dichloroethane        | <1          | <1        | <10         |            | <1                           | <1             | 5                             | 7/7 (G)                                 |
| cis-1,2-Dichloroethene    | 0.2J        | 110E      | 790         | <1         | <1                           | <1             | 5                             |                                         |
| trans-1,2-Dichlorosthane  | <1          | 14        | 11D         | <1         | <1                           | <1             | 5                             | 70/70 (G)                               |
| Chloroform                | <1          | <1        | <10         | <1         | <1                           | <1             | 5                             | 100/100 (G                              |
| 1,2-Dichloroethane        | <1 .        | <1        |             | <1         | <1                           | <1             | 7                             | 100°/100 (G                             |
| 2-Butanone                | <5          | <5        | <10         | <1         | <1                           | <1             | 5                             | 5/0 (G)                                 |
| 1,1,1-Trichloroethane     | <1          | <1        | <50         | <5         | <5                           | <5             | 50 (G)                        | 200/200 (G                              |
| Carbon Tetrachioride      | <1          | <1        | <10         | <1         | <1                           | . <1           | 5                             | 5/0 (G)                                 |
| Vinyl Acetate             | <2          |           | <10         | <1         | <1                           | <1             | 5                             |                                         |
| Bromodichioromethane      | <1          | · <2      | <20         | <2         | <2                           | <2             |                               |                                         |
| 1,2-Dichloropropane       | <1          | <1        | <10         | <1         | <1                           | <1             | 50(G)                         | 100 /0 (G)                              |
| cis-1,3-Dichloropropene   | <1          | <1        | <10         | <1         | <1                           | <1             | 5                             | 5/0 (G)                                 |
| Trichioroetherie          | 0.3J        | <1        | <10         | <1         | <1                           | <1             | 5                             |                                         |
| Dibromochloromethane      |             | 220E      | teoD        | <1         | <1                           | 3              | 5                             | 5/0 (G)                                 |
| 1,1,2-Trichioroethane     | 0.2J        | .<1       | <10         | <1         | <1                           | <1             | 50(G)                         |                                         |
| Benzene                   | <1          | 0.2J      | <10         | <1         | <1                           | <1             | 5                             | 5/3(G)                                  |
| trans-1,3-Dichloropropene |             | 0.2J      | <10         | <1         | <1                           | <1             | 0.7                           | 5/0 (G)                                 |
| Bromoform                 | <1          | <1        | <10         | <1         | <1                           | <1             | 5                             |                                         |
| 4-Methyl-2-Pentanone      | <1          | <1        | <10         | <1         | <1                           | <1             | 50 (G)                        | 100°/0 (G)                              |
| 2-Hexanone                | <5          | <5        | <50         | <5         | <5                           | <5             |                               |                                         |
| Tetrachioroethene         | <5          | <5        | <50         | <5         | <5                           | <5             | 50(G)                         |                                         |
| 1.1.2.2-Tetrachloroethane | <1          | <1        | <10         | <1         | 0.07J                        | <1             | 5                             | 5/0 (G)                                 |
| Toluene                   | <1          | <1        | <10         | <1         | <1                           | <1             | 5                             |                                         |
|                           | 0.1J        | 0.2J      | <10         | Ce0.0      | <1                           | <1             | 5                             | 1,000/1,000                             |
| Chlorobenzene             | 0.1J        | <1        | <10         | <1         | <1                           | <1             | 5                             | (G)                                     |
| Ethylbenzene              | 0.2J        | 0.1J      | <10         | 0.2J       | <del>- \(\frac{7}{1}\)</del> | <1             | 5                             | 100/100 (G)                             |
| Styrene                   | <1          | <1        | <10         | <1         | <1                           | <1             | 5                             | 700/700 (G)                             |
| Total Xylenes             | 2           | U8.0      | <10         | 1          | U8.0                         | <1             | 5'                            | 100/100 (G)<br>10,000/10,00             |
| otal TIC                  | <del></del> |           | <del></del> | <u> </u> - |                              |                |                               | 0 (G)                                   |

Notes on Page 2 of 2

4/26/1

#### TABLE 4 (Cont'd) GROUND-WATER ANALYTICAL RESULTS - EVENT 3 **VOLATILE ORGANICS** JULY 1992

#### ROSEN SITE CORTLAND, NEW YORK

#### Notes:

All concentrations and detection levels are reported as ug/L equivalent to parts per billion (ppb).

DL - indicates dilution.

J - indicates an estimated value.

D - identifies all compounds identified in an analysis at a secondary dilution factor.

E - Identifies compounds whose concentrations exceeded the calibration range of the GC/MS instrument for that specific analysis.

The < sign indicates the compound was analyzed for but not detected.

TIC - indicates Tentatively identified Compounds.

\* - Applies to the total of trihalomethanes.

\* The standard value of 5 ug/L applies to each isomer individually.

Bold indicates NYSDEC standards exceeded; shading indicates federal MCLs exceeded.

#### References:

Standard and guidance values are according to New York State Department of Environmental Conservation (NYSDEC), Division of Water Technical and Operation Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values [designated by (G)], October 1993.

MCLs [Maximum Contaminant Levels] and MCLGs [Maximum contaminant Level Goals, designated by (G)] according to the Code of Federal Regulations, Protection of Environment 40, Part 141, July 1, 1991, and the Drinking Water Regulations and Health Advisories, Office of Water, U.S. Environmental Protection Agency, December 1993.

# TABLE 4 GROUND-WATER ANALYTICAL RESULTS - EVENT 3 INORGANICS JULY 1992

# ROSEN SITE CORTLAND, NEW YORK

| MCLG#/SMCL                                |          | 50 to 200(S) | (5)9/9       | 99     | 2,000/2,000/G) | 4/4/G)  | 5/5(3)      |          | 901            |        |        | 1.000(S) | 300(S)  | 15             |           | 50(S)   | 2/2(G)  | 100/100(G) |          | 50/50/31    | 100(s) | (2)221  |      | Z/0.5(G) | 10,000 \$ | (2)000'0 |
|-------------------------------------------|----------|--------------|--------------|--------|----------------|---------|-------------|----------|----------------|--------|--------|----------|---------|----------------|-----------|---------|---------|------------|----------|-------------|--------|---------|------|----------|-----------|----------|
| New York<br>Blaid<br>Blanderd<br>Ouldanse | Values   |              | <b>3</b> (G) | 25     | 1,000          | 3(G)    | 10          |          | 20             |        |        | 200      | 300     | 25             | 35,000(G) | 500 300 | 2       |            |          | 9           | 92     | 000 00  |      | (2)      | 90        | -        |
| W.22                                      | •        | <60.0        | <5.0         | 0.6>   | 1108           | <6.0    | <b>65.0</b> | 121,000  | 0.10           | <20.03 |        | V 0.0    | <30.0   | 2              | 20,100    | 89.4    | <0.20   | 59.63      | 1,700B   | \$5.0       | ×10,01 | 97.300  | 680  |          | 51.6      |          |
| W-22<br>Unfillers                         | 9        | F006'82      | <5.0         | 18     | 1,110          | 0'9>    | <5.0        | 321,000  | 8008           | 108.1  | 188    | 901      | 000'501 | 180            | 115,000   | 5,080   | 0.25    | . 524.1    | 8,820    | <50.03      | <10.0H | 99.900  | A5.0 |          | 522.      |          |
| W-21.<br>Fillered                         |          | 0.000        | <5.0         | <5.0   | 458            | <5.0    | <5.0        | 54,000   | 41.0           | <20.03 | V5.0   |          | 130.0   | 90             | 13,600    | 206     | <0.20   | <20.07     | 18,600   | <b>65.0</b> | <10.01 | 177,000 | <5.0 | C 00 0   | 200       |          |
| W.21<br>Unfillered                        | 1000     | Pa late      | <b>65.0</b>  | 98     | 63.68          | <5.0    | <5.0        | 66,800   | 828            | <20.03 | 61.6   | 44.40    |         | 90             | 19,000    | 209     | <0.20   | 33.3BJ     | 18,800   | <5.0J       | <10.0R | 168,000 | <5.0 | <20.0    | 76.5      |          |
| TW-S                                      | 750.0    | 2007         | 4.65         | <5.0   | 113B           | <6.0    | <5.0        | 161,000  | <1,0           | <20.03 | <5.0   | <30.0    | •       | ,              | 35,600    | 227     | <0.20   | <20.03     | 6,100    | <5.0        | <10.0J | 42,200  | <5.0 | <20.0    | 18.78     |          |
| F-MT<br>Parellinu                         | 1.000.1  | 4            | an a         | 0.6>   | 1128           | <5.0    | <5.0        | 158,000  | 28             | <20.0J | 5.68   | 1.330    | 8 XXX   |                | 38,000    | 250     | <0.20   | V 20.03    | 5,890    | <5.03       | <10.0R | 45,700  | <5.0 | <20.0    | 35.1      |          |
| Parallis                                  | <50.0    | 0.87         | 0 9          | 0.67   | 91.78          | 0.6>    | <5.0        | 229,000  | <1.0           | <20.07 | < 5.0  | <30.0    |         | T <sub>s</sub> | 20,400    | 0201    | 70.50   | 20.0D3     | 6,270    | <6.0        | <10.0J | 66,100  | <5.0 | <20.0    | 16.4B     |          |
| TW-2<br>Uniffered                         | 1,340J   | <5.0         | 9            | 276    | 113            | 0.65    | <5.0        | 229,000  | 17BS           | <20.0J | 74     | 15,700   | 488     | 40.700         | 200       | 00 07   | 1 00 06 | 3          | 0140     | <5.0J       | <10.0R | 62,600  | <5.0 | <20.0    | 122       |          |
| TW.1                                      | 1668     | <5.0         | <5.0         | 74.18  | 78.0           | 0.00    | 69.0        | 000,001  | <1.0           | <20.07 | <6.0   | 910      | 4       | 22.800         | 430       | ×0.20   | <20 O.1 | 7 790      |          | <5.0        | <10.0J | 26,000  | <5.0 | <20.0    | 17.9B     |          |
| TW-1<br>Unilliere<br>d                    | 29,900J  | <5.0         | 25           | 285    | <5.0           | 0 %     | 000 000     | 200,1877 | 900            | 36.083 | 65.2   | 64,500   | 1288    | 46,000         | 2.860     | <0.20   | 96.33   | 11,100     | 1000     | 50.05       | v.0. v | 26,600  | <5.0 | 50.9     | 253       |          |
| Elemeni                                   | Aluminum | Antimony     | Arsenic      | Berlum | Beryllium      | Cadmium | Catchim     |          | in a line in a | Condit | Copper | Iton     | Lead    | Megneslum      | Manganese | Mercury | Nicket  | Potassium  | Selenium | Silver      |        | Einthoa |      | Vanadium | Zinė      |          |

Notes on Page 2 of 2

## GROUND-WATER ANALYTICAL RESULTS - EVENT 3 Cont.) INORGANICS **JULY 1992** TABLE 4

CORTLAND, NEW YORK ROSEN SITE

All concentrations, detection levels, standard values, guidance values, and MCLs/MCLGs/SMCLs are reported as ug/L equivalent to parts per billion (ppb).

The < sign indicates the compound was analyzed for but not detected.

B - Indicates a value greater then or equal to the instrument detection limit but less than the contract required detection limit.

E - indicates a value estimated or not reported due to the presence of interference. S - Indicates value determined by Method of Standard Addition.

J - Indicates an estimated value.

Bold Indicates NYSDEC standards or guidance value exceeded; shading indicates federal MCLs/SMCLs exceeded. R - Indicates the associated value is unusable.

• - Applies to the sum of Iron (maximum 300 ug/L) and manganese.

References: Standard and guidance valves are according to New York State Department of Environmental Conservation (NYSDEC), Division of Water Technical and Operation Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values [designated by (G)], October 1993.

MCLs [Maximum Contaminant Levels], MCLGs [Maximum Contaminant Level Goals, designated by (G)], and SMCLs [Secondary Maximum Contaminant Levels, designated by (S)] according to the Code of Federal Regulations, Protection of Environment 40, Part 141, July 1, 1991, and the Drinking Water Regulations and Health Advisories, Office of Water, U.S. Environmental

Page 1 of 3

TABLE 4

# GROUND-WATER ANALYTICAL RESULTS - EVENTS 4 and 5 VOLATILE ORGANICS DECEMBER 1992 AND JUNE 1993

# ROSEN SITE CORTLAND, NEW YORK

| Compound<br>Chloromethane   |              | December 1992 | -          |            |            |              | Naw York State |                |
|-----------------------------|--------------|---------------|------------|------------|------------|--------------|----------------|----------------|
| Conpound Chloromethane      |              |               |            |            |            |              | Stranger 19    |                |
| Chloromethane               | W-23         | W-24          | W-24@U     | W-23       | 76-M       | LIMES-W      |                |                |
| Bromomethane                |              |               | **         |            | -          | 710          |                | MULIUMA CO     |
|                             | <b>!&gt;</b> | ⊽             | 4>         | 7          |            | 2 4          | 2              |                |
| Vinyl Chloride              | 7            | 10            | 070        | ,          | - 1        | 21           | C              |                |
| Chloroethene                |              |               | aru.       | ~          | 2/0        | 27.0         | 2              | <b>5</b> 9 (3) |
| Cincidentalia               |              | ⊽             | <b>*</b>   | 7          | ۷          | <10          | <b>40</b>      |                |
| Metnylene Chloride          | 7            | ~             | <b>4</b>   | <2         | <b>42</b>  | g>           | ıc             | 5/0 0/3        |
| Acetone                     | <b>~</b> 2   | <5            | <20        | <5         | <<br>55    | BD.J         | 50 (3)         | 20.00          |
| Carbon Disulfide            | V            | <b>~</b> 1    | 44         | ⊽          | ⊽          | - ot>        |                |                |
| 1,1 Dichloroethene          | 7            | က             | 307        | ⊽          | 4          | 2            | £              | (0) 412        |
| 1,1-Dichloroethane          |              | V             | 44         | ⊽          | V          | 957          | 2              | 2              |
| cls-1,2-Dichloroethene      | 44           | =             | *          | V          | 797        | CIOZ         | <b>9</b> 4     | 101 971 97     |
| trans-1.2-Dichloroethene    | 44           | **            | ***        | į          |            | 100          | ם<br>ا         | (5) (7)        |
| 1.2-Dichloroethene fintall  | 7            | 77.0          | 202        | 7 :        | 2          | \$U.         | 2              | 100/100 (G)    |
| Chloroform                  |              | 110           | 200        |            |            | ##           | See above      |                |
| CIRCIOIOFIII                | ⊽            | ₹             | <b>*</b>   | <1         | ⊽          | <10          | 7              | 100/100 (G)    |
| 1,2-Dichloroethane          | ⊽            | ₹             | <4         | <b>1</b> > | ₹          | ×10          | G              | 5m (G)         |
| 2-Butanone                  | <5           | <5            | <20        | <b>~</b> 2 | \$         | ×50          | 50 (G)         |                |
| 1,1,1-Trichloroethane       | ₹            | 7             | <4         | ۲×         | ⊽          | \$10<br>\$10 | .5             | SUNSON (G)     |
| 1,3-Dichlorobenzene         | YN<br>N      | ¥             | ΥN         | <u>۲</u>   | ⊽          | <10<br><10   |                | GOOFFOO (G)    |
| 1,4-Dichlorobenzene         |              | <b>≸</b> .    | AN         | <1         | ⊽          | cto          |                | 75/75 (G)      |
| 1,2-Dibromo-3-Chloropropane | Y.           | ¥             | ¥          | <1         | <1         | <10          | 3              | 0.2/0 (G)      |
| Carbon letrachloride        | ⊽            | ⊽             | <b>4</b> > | <1         | 7          | <10          | ç              | 5/0 (G)        |
| Viryl Acetate               | ž            | ¥             | Ϋ́         | ۸          | AN         | ¥            |                | 100            |
| Bromodichloromethane        | ⊽            | ⊽             | 4          | ⊽          | <b>~</b> 1 | <10          | 50(G)          | 100'/0 (G)     |
| 1,2-Dichloropropane         | <u>-</u>     | <1            | <4         | <u>~</u>   | <b>~</b>   | <10          | G              | 50.03          |

Notes on Page 3 of 3.

# GROUND-WATER ANALYTICAL RESULTS - EVENTS 4 and 5 VOLATILE ORGANICS DECEMBER 1992 AND JUNE 1993

# ROSEN SITE CORTLAND, NEW YORK

|                           |           |               |           |             |            |                |                               |                   | 1  |
|---------------------------|-----------|---------------|-----------|-------------|------------|----------------|-------------------------------|-------------------|----|
|                           |           | December 1992 |           |             | June 1993  |                | New York State                |                   | ε. |
| Compound                  | W-23      | W-24          | W-24(DL)  | W-23        | W-24       | W-24<br>W-24@L | Standards/<br>Guldance Values |                   |    |
| cis-1,3-Dichloropropene   | ~         | V             | 7         | ,           |            |                |                               | and market        | .  |
| Trichloroethene           | ⊽         | 7AE           | ** AUZ    | <b>▽</b>    | ⊽          | <10            | 9                             | 20                |    |
| Dibromochloromethane      | V         | 1 7           | -can      |             | 200D       | 200D           | <b>.</b>                      | 5/0 (G)           | _  |
| 1,1,2~Trichloroethane     | V         | ;             | **        | <b>V</b>    | ⊽          | <10            | 50(G)                         |                   | -  |
| Benzene                   | V         |               | 44        |             | 0.2.       | <10            | 9                             | 5/3(G)            | _  |
| frans-1,3-Dichloropropene | V         | 2 7           | 44        | ⊽           | 0.13       | <10            | 2'0                           | 5/0 (G)           | _  |
| Bromoform                 | V         | 7 7           | 4         | C12         | 717        | <10            | 9                             |                   |    |
| 4-Methyl-2-Pentanone      | <5<br>5   | 3             | \$ 8      | <br> <br> - | ₹          | <10            | 50(G)                         | 100/0 (G)         |    |
| 2-Hexanone                | <b>\$</b> | 3 4           | 5 8       | 6<br>V      | <b>~</b> 2 | <50            |                               |                   |    |
| Tetrachloroethene         | ⊽         | 7             | 3 ;       | c<br>V      | <5         | <b>~50</b>     | 50(G)                         |                   |    |
| 1,1,2,2-Tetrachloroethane | V         | , ;           | 44        | <b>V</b>    | ⊽          | <10            | 5                             | 5/0 (G)           |    |
| 1,2-Dibromoethane         | WAN       | 7  \$         | * ·       | V           | ⊽          | <10            | 2                             |                   |    |
| Bromochloromethane        | AM        | 5 4           | <b>\$</b> | V           | 7          | <b>~</b> 10    |                               |                   |    |
| 1,2-Dichlorobenzene       | Ą         | VA VA         | ¥ :       | V           | ⊽          | <10            | 2                             |                   |    |
| Toluene                   | V         | \$ 7          | ¥,        | V           | ⊽          | <10            | 4.7                           | (D) 009/009       |    |
| Chlorobenzene             | V         | 1             | *         | V           | 0.047      | <10            | 5                             | 1,000/1,000 (G)   |    |
| Ethylbenzene              | 7         | 7             | *         | ▼           | ·          | <10            | 5                             | 100/100 (G)       |    |
| Styrene                   | 7         | 7             | *         | V           | <b>-</b>   | <10            | 5                             | 700/700 (G)       |    |
| Total Xylenes             | ⊽         | 7 7           | 44        | ▼           | <b>V</b>   | oto            | 5                             | 100/100 (G)       |    |
| Total TIC                 |           | , <           | 44        | ⊽           | ⊽          | <10            | S.                            | 10.000/10.000 (G) |    |
|                           |           | >             | <b>n</b>  | 0           | 0          | 0              |                               |                   |    |

Notes on Page 3 of 3.

Page 2 of 3

### GROUND-WATER ANALYTICAL RESULTS - EVENTS 4 and 5 VOLATILE ORGANICS DECEMBER 1992 AND JUNE 1993

#### ROSEN SITE CORTLAND, NEW YORK

#### Notes:

All concentrations and detection levels are reported as ug/L equivalent to parts per billion (ppb).

The < sign indicates the compound was analyzed for but not detected.

DL - Indicates dilution.

J - Indicates an estimated value.

D - Identifies all compounds identified in an analysis at a secondary dilution factor.

E - Identifies compounds whose concentrations exceeded the calibration range of the GC/MS instrument for that specific analysis.

TIC - Indicates Tentatively Identified Compounds.

NA - Not analyzed for.

- \*\* The laboratory analyzed samples collected in December 1992 from monitoring wells W-23 and W-24 for Total 1,2-Dichloroethene. Samples collected in June 1993 from monitoring wells W-23 and W-24 were analyzed for the cis- and trans- isomers of 1,2-Dichloroethene.
- Applies to the total of trihalomethanes.

b - The standard value of 5 ug/L applies to each isomer individually.

Recovery for trichloroethene (TCE) was above acceptable control limits in both the matrix spike (MS) and matrix spike duplicate (MSD), therefore, the concentration
of TCE in sample W-24 should be considered an estimated value. The high recoveries of TCE in both the MS and MSD were most likely due to the relatively high
concentration of TCE in the unspiked sample.

Bold indicates NYSDEC standards exceeded; shading indicates federal Maximum Contaminant Levels (MCLs) exceeded.

#### References:

Standard and Guidance values are according the New York State Department of Environmental Conservation, Division of Water Technical and Operation Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values [designated by (G)], October 1993.

MCLs [Maximum Contaminant Levels], MCLGs [Maximum Contaminant Level Goals, designated by (G)], and SMCLs [Secondary Maximum Contaminant Levels, designated by (S)] according to the Code of Federal Regulations, Protection of Environment 40, Part 141, July 1, 1991, and the Drinking Water Regulations and Health Advisories, Office of Water, U.S. Environmental Protection Agency, December 1993.

### GROUND-WATER ANALYTICAL RESULTS - EVENT 5 INORGANICS JUNE 1993

#### ROSEN SITE CORTLAND, NEW YORK

| Element   | W-23<br>Unfiltered | W-23<br>Filtered | W-24<br>Unfiltered | W∺24<br>Filtered | New York State<br>Standarde/<br>Guidance Values | MCLs/MCLGs/<br>SMCLs |
|-----------|--------------------|------------------|--------------------|------------------|-------------------------------------------------|----------------------|
| Aluminum  | 9,220EJ            | <100E            | 48,000EJ           | <100E            |                                                 | 50 to 200(S)         |
| Antimony  | <b>&lt;5J</b>      | <5               | <5J                | <5               | 3(G)                                            | 6/6(G)               |
| Arsenic   | <4R                | <4R              | 33R                | <4R              | 25                                              | 50                   |
| Barlym    | 433J               | 436              | 1,460J             | <40              | 1,000                                           | 2,000/2,000 (G)      |
| Beryllium | <5                 | <5               | <5                 | <5               | 3(G)                                            | 4/4(G)               |
| Cadmium   | <0.2               | <0.2             | <0.2               | <0.2             | 10                                              | 5/5 (G)              |
| Calcium   | 97,900J            | 95,700           | 272,000J           | 145,000          |                                                 |                      |
| Chromium  | <10J               | <10              | 189J               | <10              | 50                                              | 100/100 (G)          |
| Cobalt    | <20                | <20              | 55.1               | <20              |                                                 | 155/105 (5/          |
| Copper    | <10J               | <10              | 208J               | <10              | 200                                             | 1,000(S)             |
| Iron      | 576J               | 69.6B            | 164,000J           | <50              | 300                                             | 300(S)               |
| Lead      | <3J                | <3J              | 132SJ              | <3J              | 25                                              | 15                   |
| Magnesium | 24,700J            | 22,900           | 84,200J            | 30,000           | 35,000(G)                                       |                      |
| Manganese | 410E               | 174E             | 8,100E             | 1,010E           | 500° 300                                        | 50(S)                |
| Mercury   | <0.2               | <0.2             | <0.2               | <0.2             | 2                                               | 2/2 (G)              |
| Nickel    | <30J               | <30              | 145J               | 30.5B            | <del></del>                                     | 100/100(G)           |
| Potassium | 1,390B             | 1,260B           | 13,200             | 2,710B           |                                                 | 100,100(0)           |
| Selenium  | <4                 | <4               | <4                 | <4               | 10                                              | 50/50 (G)            |
| Silver    | <0.3J              | <0.3J            | <0.3J              | <0.3J            | 50                                              | 100 (S)              |
| Sodium    | 48,600             | 48,700           | 70,600             | 61,000           | 20,000                                          | 122 (2)              |
| Thallium  | <5                 | <5               | <5                 | <5               | 4(G)                                            | 2/0.5(G)             |
| Vanadium  | <20J               | <20              | 116J               | <20              |                                                 |                      |
| Zinc      | <10                | 19BJ             | 763                | <10              | 300                                             | 5,000(S)             |

Notes on Page 2 of 2.

#### GROUND-WATER ANALYTICAL RESULTS – EVENT 5 INORGANICS JUNE 1993

GORTLAND, NEW YORK

Selon

All concentrations, detection tevels, standard values, guidance values, and MCLs/MCLGs/SMCLs are reported as ug/L equivalent to parts

per billion (ppb).

The < sign indicates the compound was analyzed for but not detected.

B - Indicates a value greater than or equal to the instrument detection limit but less than the contract required detection limit.

E - Indicates a value estimated or not reported due to the presence of interterence.
 S - Indicates value determined by Method of Standard Addition.

J - Indicates an estimated value.

R - Indicates the associated value is unusable.

Applies to the sum of iron (maximum 300 ug/L) and manganese.
 Bold indicates NYSDEC standards or guidance value exceeded; shading indicates federal MCLs/SMCLs exceeded.

#### References:

Standard and Guidance values are according the New York State Department of Environmental Conservation, Division of Water Technical and Operation Guidance Values [designated by (G.1.1), Ambient Water Quality Standards and Guidance Values [designated by (G.1.1.1), October 1993.

MCLs [Maximum Contaminant Levels], MCLGs [Maximum Contaminant Level Goals, designated by (G)], and SMCLs [Secondary Maximum Contaminant Levels, designated by (S)] according to the Code of Federal Regulations, Protection of Environment 40, Part 141, July 1, 1991, and the Drinking Water Regulations and Health Advisories, Office of Water, U.S. Environmental Protection Agency, December 1993.

Table 5

### Summary of Analytical Data (Detects only) for TCA Concentration in Groundwater Rosen Site Cortland, New York

| Sampling<br>Date | Onsite | Wells  |       | Dow   | ngradient V | Wells |       |      | Off   | site Wells |       |
|------------------|--------|--------|-------|-------|-------------|-------|-------|------|-------|------------|-------|
|                  | W-05   | W-06   | W-01  | W-02  | W-03        | W-10  | W-11  | W-16 | W-17  | W-18       | W-19  |
| 5/91             | (4)    | 3400 D | 19    | 120 D | (4)         | 73    | 270 D | NA   | NA    | NA         | NA    |
| 2/92             | 7      | 1100 D | 40 D  | 190 D | 8           | 190 D | 390 D | 36   | 16 J  | 28         | 260 D |
| 12/93            | NA     | 100    | NA    | NA    | NA          | NA    | NA    | NA   | NA    | NA         | NA    |
| 3/95             | 24 DJ  | 110 DJ | 41 DJ | 120 J | ND          | 110 D | 160 J | 23   | (4)   | 68 DJ      | 210 D |
| 8/95             | (2)    | 15     | 68    | 26    | (0.78 J)    | 100 D | 84 D  | 38 D | 11    | 38         | 140   |
| 12/95            | NA     | 5000 D | (3.7) | 16    | 9.4         | 46    | 65    | 23   | (2.3) | (3.6)      | 54    |
| 3/96             | NA     | 1000 D | 7.4   | 22 D  | 8.5         | 88    | 45 D  | 22   | 5.2   | 25         | 62    |
| 8/96             | NA     | 240    | NA    | 30 D  | NA          | NA    | 41    | NA   | NA    | 30 D       | 83    |

#### Notes:

Concentrations reported in ug/L (equivalent to ppb).

- () Concentration detected, but not above state or federal standards.
- J Indicates estimated value.
- D Indicates sample dilution occurred during analysis.
- NA Not analyzed.
- ND Not detected above method detection limit.

#### CHEMICALS OF INTEREST IN ON-SITE GROUND WATER **UPPER OUTWASH**

#### ROSEN SITE CORTLAND, NEW YORK

|                            | Frequency     |            |        | Arithmetic       |           | 95% Upper         |                   |
|----------------------------|---------------|------------|--------|------------------|-----------|-------------------|-------------------|
|                            | of            | Range of B |        | Mean             | Standard  | Sound             | RME               |
| Chemical (a)               | Detection (b) | Concentr   | ations | Concentration (b | Deviation | Concentration (c) | Concentration (d) |
| Organics                   |               |            |        | ,                |           |                   |                   |
| 1,1-DICHLOROETHANE         | 22 / 28       | ND -       | 0.425  | 4.30E-02         | 1.01E-01  | 7.80E-02          | 7.80E-02          |
| 1.1 - DICHLOROETHENE       | 14 / 28       | ND -       | 0.013  | 2.27E-03         | 3.42E-03  | 3.00E-03          | 3.00E-03          |
| 1.1.1-TRICHLOROETHANE      | 26 / 28       | ND -       | 3.1    | 2.00E-01         | 5,99E-01  | 4.08E-01          | 4.08E-01          |
| 1,2-DICHLOROETHANE         | 5 / 28        | ND -       | 0.029  | 1.00E-03         | 1.00E-03  | 1.00E-03          | 1.00E-03          |
| 1,2-DICHLOROETHENE (total) |               | . ND -     | 0.056  | 4.60E-03         | 1,40E-02  | 1.00E-02          | 1.00E-02          |
| ACETONE                    | 2 / 28        | ND -       | 0.017  | 2.00E-02         | 2.90E-02  | 2.80E -02         | 1.70E-02          |
| AROCLOR 1254               | 2 / 24        | ND -       | 0.011  | 1.28E-03         | 2.27E-03  | 2.20E-02          | 1,10E-02          |
| BROMOFORM                  | 2 / 28        | ND -       | 0.0002 | 2.47E-03         | 9.00E-03  | 6.00E-03          | 2.00E-04          |
| CHLOROMETHANE              | 4 / 28        | ND -       | 0.014  | 4.00E-03         | 9.00E-03  | 7,00E-03          | 7.00E-03          |
| CHLOROETHANE               | 3 / 28        | ND -       | 0.023  | 2.40E-03         | 4.00E-03  | 4.00E-03          | 4.00E-03          |
| CHLOROFORM                 | 2 / 28        | ND -       | 0.0003 | 1.00E-03         | 1.00E-03  | 1.00E-03          | 3.00E~04          |
| ETHYLBENZENE               | 4 / 28        | ND -       | 0.071  | 3.30E-03         | 1.26E-02  | 8.00E-03          | 8.00E -03         |
| METHYLENE CHLORIDE         | 4 / 28        | ND -       | 0.096  | 7.00E-03         | 1.90E-02  | 1.50E -02         | 1.50E-02          |
| TETRACHLOROETHENE          | 8 / 28        | ND -       | 0.079  | 5.10E-03         | 1.63E-02  | 1.00E-02          | 1.00E~02          |
| TOLUENE                    | 4 / 28        | ND -       | 1.5    | 5.10E-02         | 2.69E-01  | 1.51E-01          | 1.51E-01          |
| TRICHLOROETHENE            | 22 / 28       | ND -       | 0.15   | 8.00E-03         | 2.77E-02  | 1.80E-02          | 1.80E-02          |
| XYLENES                    | 5 / 28        | ND -       | 0.71   | 2.50E-02         | 1.27E-01  | 7.20E-02          | 7.20E-02          |
| Inorganics                 |               |            |        |                  |           | •                 |                   |
| ALUMINUM                   | 24 / 24       | 0.0511 -   | 67     | 1.87E+01         | 2.20E+01  | 2.80E+01          | 2.80E+01          |
| YNOMITA                    | 4 / 24        | ND -       | 0.1045 | 1.80E-02         | 2.70E-02  | 2.90E-02          | 2,90E-02          |
| ARSENIC                    | 5/ 11         | ND         | 0.116  | 1.80E-02         | 3.20E-02  | 3.70E~02          | 3.70E-02          |
| BARIUM                     | 23 / 24       | ND -       | 0.614  | 2.20E-01         | 1.81E-01  | 3.00E-01          | 3,00E-01          |
| CADMIUM                    | 11 / 24       | ND         | 0.0898 | 1.60E-02         | 2.30E-02  | 2.50E-02          | 2.50E-02          |
| CHROMIUM                   | 21 / 24       | ND -       | 0.2    | 5.02E-02         | 5.30E-02  | 8.00E-02          | 8.00E-02          |
| COBALT                     | 7 / 24        | 0.01 -     | 0.102  | 2.03E-02         | 2.10E-02  | 3.00E-02          | 3.00E-02          |
| COPPER                     | 21 / 24       | 0.0025 -   | 0.571  | 1.04E-01         | 1.40E-01  | 1.70E-01          | 1.70E-01          |
| LEAD                       | 22 / 22       | 0.0015 -   | 2.7    | 1.67E-01         | 5.40E-01  | 4.10E-01          | 4.10E-01          |
| MANGANESE                  | 24 / 24       | 0.0025 -   | 7.58   | 2.20E+00         | 2.00E+00  | 3.00E+00          | 3.00E+00          |
| MERCURY                    | 8 / 24        | 0.0001 -   | 0.0023 | 3.00E-04         | 5.20E-04  | 5.50E-04          | 5,50E -04         |
| NICKEL                     | 17 / 24       | 0.01 -     | 0.23   | 7.50E-02         | 7.40E-02  | 1.06E-01          | 1.06E-01          |
| VANADIUM .                 | 9 / 24        | 0.015 -    | 0.278  | 4.80E-02         | 6.20E-02  | 7.40E-02          | 7.40E-02          |
| ZINC                       | 24 / 24       | 0.0104 -   | 1.13   | 2.80E-01         | 3.30E-01  | 4.20E01           | · 4.20E-01        |

- (a) All concentrations reported in mg/L. Concentrations reflect analytical results of unfiltered samples from all on-site monitoiring wells screened in the upper outwash. A sample size less than 24 for inorganics indicates rejection of sample results by QA/QC review. Data shown here are for MW - 1 through MW-3, MW-5 through MW-8, and MW-10 through MW-14.
- (b) One-half the detection limit is used as aproxy concentration for non-detects per USEPA guidance.
  (c) Based on student's T-distribution with n-1 degrees of freedom, siphs=0.025 in each tail.
- (d) The lesser of the 95% upper bound concentration and the maximum detected concentration.

#### CHEMICALS OF INTEREST IN ON-SITE GROUND WATER LOWER SAND AND GRAVEL

#### ROSEN SITE CORTLAND, NEW YORK

|                              | Frequency      | Range of Sa  | mnle             | Arithmetic<br>Mean      | Standard        | 95% Upper<br>Bound | RME              |
|------------------------------|----------------|--------------|------------------|-------------------------|-----------------|--------------------|------------------|
| Chemical (a)                 | Detection      | Concentratio |                  | Concentration (b        |                 |                    | Concentration(d) |
| <u>Organics</u><br>BROMOFORM | 1/3            | ND -         | 0.0001           | 0.00037                 | 0.00023         | 0.00079            | 0.0001           |
| Inorganics<br>BARIUM         | 3/3            | 0.0521 -     | 0.364            | 0.252                   | 0.174           | 0.57               | 0.364            |
| CADMIUM<br>COPPER            | 1 / 3<br>2 / 3 | ND -         | 0.0012<br>0.0261 | 0.001 <i>4</i><br>0.012 | 0.0010<br>0.012 | 0.003<br>0.034     | 0.0012<br>0.0261 |
| MERCURY                      | 1/3            | ND -         | 0.00028          | 0.00016                 | 0.00010         | 0.00035            | 0.00028          |

- (a) All concentrations reported in mg/L. Concentrations reflect analytical results of unfiltered samples from all on -site monitoring wells screened in the lower outwash. (MW-9 AND MW-15).
- (b) One-half the detection limit is used as a proxy concentration for non-detects per USEPA guidance.
- (c) Based on students T-ditribution with n-1 degrees of freedom, alpha = 0.025 in each tail.
- (d) The lesser of the 95% upper bound concentration and the maximum deteted concentration.

#### TABLE -6

#### CHEMICALS OF INTEREST IN OFF-SITE DOWNGRADIENT GROUND WATER UPPER OUTWASH

#### ROSEN SITE CORTLAND, NEW YORK

| F                          | requency       |                              |         | Arithmetic               |                         | 95% Upper                  | Bur                      |
|----------------------------|----------------|------------------------------|---------|--------------------------|-------------------------|----------------------------|--------------------------|
| Chemical (a) D             | of<br>etection | Range of Sar<br>Concentratio |         | Mean<br>Concentration (b | Standard<br>) Deviation | Bound<br>Concentration (c) | RME<br>Concentration (d) |
| Organics                   | ÷              |                              |         |                          |                         |                            |                          |
| 1,1-DICHLOROETHANE         | 4/4            | 0.0015 -                     | 0.093   | 0.031                    | 0.043                   | 0.10                       | 0.093                    |
| 1,1-DICHLOROETHENE         | 2/4            | ND -                         | 0.011   | 0.0033                   | 0.0052                  | 0.011                      | 0.011                    |
| 1,1,1-TRICHLOROETHANE      | 4/4            | 0,016 -                      | 0.3     | 0.095                    | 0.14                    | 0.31                       | 0.3                      |
| 1,2-DICHLOROETHANE         | 1/4            | ND -                         | 8000.0  | 0.00058                  | 0.00015                 | 8000.0                     | 0.0008                   |
| 1,2-DICHLOROETHENE (total) | 3/4            | ND ~                         | 0.029   | 0.0077                   | 0.014                   | 0.030                      | 0.029                    |
| TETRACHLOROETHENE          | 2/4            | ND -                         | 0.002   | 0.00088                  | 0,00075                 | 0.0021                     | 0.002                    |
| TRICHLOROETHENE            | 4/4            | -ND -                        | 0.019   | 0.010                    | 0.010                   | 0.026                      | 0.019                    |
| <u>Inorganics</u>          |                |                              |         | <del>.</del>             |                         |                            |                          |
| ALUMINUM                   | 4/4            | 0.368 -                      | 105.15  | 49.7                     | 44.5                    | 120.5                      | 105.15                   |
| ANTIMONY                   | 3/4            | ND -                         | 0.179   | 0.11                     | 0.063                   | 0.21                       | 0.18                     |
| ARSENIC                    | 3/4            | ND -                         | 0.03185 | 0.019                    | 0.014                   | 0.04                       | 0.032                    |
| BARIUM                     | 4/4            | 0.0575 -                     | 0.867   | 0.41                     | 0.35                    | 0.97                       | 0.87                     |
| CADMIUM                    | 3/4            | ND -                         | 0.0014  | 08000.0                  | 0.00061                 | 0.0018                     | 0.0014                   |
| COBALT                     | 3/4            | ND -                         | 0.06955 | 0.037                    | 0.025                   | 0.077                      | 0.07                     |
| COPPER                     | 4/4            | 0.0302 -                     | Q.2285  | 0.12                     | 0.086                   | 0.25                       | 0.23                     |
| LEAD .                     | 4/4            | 0.003 -                      | 0.130   | 0.28                     | 0.44                    | 0.98                       | 0.130                    |
| MANGANESE                  | 4/4            | 0.066 -                      | 6.24    | 3.4                      | 3.0                     | 8.17                       | 6.2                      |
| NICKEL                     | 3/4            | ND -                         | 0.235   | 0,13                     | 0.093                   | 0.27                       | 0.23                     |
| VANADIUM                   | 3/4            | ND -                         | 0.1475  | 0.057                    | 0.063                   | 0.16                       | 0.15                     |
| ZINC                       | 4/4            | 0.0378 -                     | 0.834   | 0.44                     | 0.37                    | 1.03                       | 0.83                     |

<sup>(</sup>a) All concentrations reported in mg/L. Concentrations reflect analytical results of unfiltered samples from all off-site downgradient monitoring wells screened in the upper outwash. Data shown here are for MW – 16 through MW-19.

(b) One-half the detection limit is used as a proxy concentration for non-detects per USEPA guidance.

(c) Based on student's T-distribution with n-1 degrees of freedom, alpha = 0.025 in each tail.

<sup>(</sup>d) The lesser of the 95% upper bound concentration and the maximum detected concentration.

#### CHEMICALS OF INTEREST FOR SURFACE SOIL/FILL

#### ROSEN SITE CORTLAND, NEW YORK

|                          | Frequency of    | Range of Si                             |             | Arithmetic                |                       |                   | *************************************** |
|--------------------------|-----------------|-----------------------------------------|-------------|---------------------------|-----------------------|-------------------|-----------------------------------------|
| CHEMICAL(a)              | Detection       | Conpent                                 |             | Mean<br>Concentration (b) | Standard<br>Deviation | 95 % Upper Bound  | RME                                     |
| Organica                 |                 |                                         |             | (1) 100000                | CHVBIOT               | Concentration (c) | Concentration                           |
| 1.1-DICHLOROETHENE       |                 |                                         |             |                           |                       |                   |                                         |
| 1.1.1 - TRICHOLORETHANE  | 1/ 3            | ND -                                    | 0.00335     | 0.0031                    | 0.0002                | 0.004             |                                         |
| 2-METHYLNAPHTHALENE      | 3/ 3            | 0.0075                                  | 0.024       | 0.016                     | 0.008                 | 0.036             | 0.0034                                  |
| 4-CHLORO-3-METHYLPHENOL  | 27/ 35          | ND -                                    | 4.6         | 0.55                      | 1.02                  |                   | 0.02                                    |
| ACETONE                  | 2 35            | ND                                      | 0.13        | 0.57                      | 1.13                  | 0.90              | 0.90                                    |
| ACENAPHTHENE             | 2/ 3            | ND -                                    | 0.029       | 0.02                      | 0.012                 | 1.26              | 0.13                                    |
| CENAPHTHALENE            | 25/ 35          | ND -                                    | 6.85        | 0.86                      | 1.57                  | 0.048             | 0.03                                    |
| NTHRACENE                | 12/ 35          | ND                                      | 4.2         | 0.65                      | 0.91                  | 1.40              | 1.4                                     |
|                          | 31/ 35          | ND -                                    | 7.1         | 1.25                      | 2.01                  | 0.96              | 0.96                                    |
| AROCLOR 1242             | 1/ 8            | ND -                                    | 0.55        | 0.2                       |                       | 1.94              | 1.9                                     |
| AROCLOR 1248             | 4/ 7            | ND -                                    | 1           | 0.3                       | 0.2                   | 0.7               | 0.55                                    |
| ROCLOR 1254              | 5/ 8            | ND -                                    | 7.6         |                           | 0.3                   | 1.3               | 1.0                                     |
| BENZENE                  | 2/3             | NO -                                    | 0.0015      | 1.5<br>0.001a             | 2.5                   | <b>9.6</b>        | 7.6                                     |
| ENZO(a)ANTHRACENE        | 34/ 35          | ND -                                    | 21          |                           | 0.001                 | 0.005             | 0.0015                                  |
| ENZO(a)PYRENE            | 34/ 35          | ND -                                    | 14          | 3.24                      | 4.74                  | 4.87              | 4.9                                     |
| ENZO(b)FLUORANTHENE      | 34/ 35          | ND -                                    | 14<br>17    | 2.56                      | 3.39                  | 3.72              | 3.7                                     |
| ENZO(g.h.)PERYLENE       | 34/ 35          | ND -                                    | 17<br>11.23 | 3.03                      | 4.02                  | 4.41              | 4.4                                     |
| ENZO(K)FLUORANTHENE      | 34/ 35          | ND ~                                    | — —         | 1.69                      | 2.36                  | 2.70              | 2.7                                     |
| IS(2-ETHYLHEXYL)PHTHLATE | 17/ 34          | NO -                                    | 11          | 2.30                      | 2.62                  | 3.36              | 3.4                                     |
| UTYLBENZYLPHTHLATE       | 28/ 34          | • • • • • • • • • • • • • • • • • • • • | 42          | 2.48                      | 7.12                  | 4.96              | 5.0                                     |
| ARBAZOLE                 | 27/ 31          | ND -                                    | 15          | 1.77                      | 2.94                  | 2.79              | 2.8                                     |
| HRYSENE                  | 34/ 35          | ND-                                     | 4.6         | 0.75                      | 1,29                  | 1.22              | 1.2                                     |
| BENZOFURAN               |                 | ND -                                    | 18          | 3.26                      | 4.31                  | 4.74              |                                         |
| IBENZO(a,h)ANTHRACENE    | 26/ 35          | ND -                                    | 7.4         | 0.77                      | 1.46                  | 1.27              | 4.7                                     |
| METHYL PHTHLATE          | 2/ 30           | ND -                                    | 0.21        | 0.91                      | 1.23                  | 1.36              | 1.8                                     |
| I-N-BUTYLPHTHLATE        | 2/ 35           | ND -                                    | 0.069       | 0.83                      | 1.12                  | 1.21              | 0.21                                    |
| -N-OCTYL PHTHLATE        | 26/ 34          | ND -                                    | 6.3         | 0.72                      | 1.26                  |                   | 0.00                                    |
| LUCRANTHENE              | 4/ 30           | ND                                      | 0.2         | 0.87                      | 1.20                  | 1.16              | 1.2                                     |
| LUORENE                  | 34/ 35          | ND -                                    | 40          | 5.79                      | 9.97                  | 1.32              | 0.20                                    |
|                          | 28/ 35          | ND -                                    | 12.5        | 1.19                      | 2.73                  | 9.21              | 9.2                                     |
| DENO(1.2.3-CD)PYRENE     | 34/ 35          | NO -                                    | 7.8         | 1.87                      |                       | 2.13              | 2.1                                     |
| ETHYLENE CHLORIDE        | 3/ 3            | 0.000 -                                 | 0.02        | 0.016                     | 2.04                  | 2.57              | 2.6                                     |
| APHTHALENE               | 25/ 35          | ND-                                     | 0.42        |                           | 0.006                 | 0.031             | 0.02                                    |
| -NITROSODIPHENYLAMINE    | 5/ 34           | ND -                                    | 0.16        | 0.62                      | 1.19                  | 1.03              | 0.42                                    |
| TENANTHRENE              | 34/ 35          | ND -                                    | 32          | 0.82                      | 1.15                  | 1.22              | 0.16                                    |
| PRENE "                  | 34/ 35          | ND -                                    |             | 5.44                      | 19.6                  | 8.50              | 8.5                                     |
| TRACHLOROETHENE          | 1/ 3            | ND -                                    | 31          | 6.20                      | 7.97                  | 8,94              | 8.9                                     |
| DLUENE                   | 2/ 3            | ND -                                    | 0.002       | 0.0027                    | 0.0006                | 0.004             | 0.002                                   |
| CHLOROETHENE             | 2/3             |                                         | 0.007       | 0.0042                    | 0.0025                | 0.010             | 0.01                                    |
|                          | 4 3             | ND -                                    | 0.003       | 0.003                     | 0.0000                | 0.005             | 0.003                                   |
| <u>Organics</u>          |                 |                                         |             |                           |                       |                   | 0.003                                   |
| UMNUM                    | 07/ 07          |                                         |             |                           |                       |                   |                                         |
| ITIMONY                  | 37/ 37          | 161 -                                   | 11100       | 6182.7                    | 2255,0                | 6935.6            | ****                                    |
| SENIC                    | 12/ 37          | ND -                                    | 22.4        | 9.2                       | 5.2                   | 10.0              | 6935                                    |
| RIUM                     | 7/ 7            | ND                                      | 57.5        | -19.5                     | 17.5                  |                   | 11                                      |
| DMILIM                   | 37/ 37          | 23.6 -                                  | 4890        | 374.3                     | 789.3                 | 34.5              | 34                                      |
| ROMIUM                   | 18/ 20          | ND -                                    | 11.1        | 5.3 ·                     | 3.7                   | 637.7             | 638                                     |
| BALT                     | 7/ 7            | 15.8 -                                  | 282         | 110.9                     | 3.7<br>93.5           | 7.02              | 7.0                                     |
| PPER                     | 36/ 37          | ND -                                    | 40.6        | 11.7                      |                       | 192.4             | 192                                     |
| MPEH<br>ND               | 37/ 37          | 14.9                                    | 4290        | 519.1                     | 6.5                   | 13.9              | 14                                      |
|                          | 20/ 20          | 84.4 -                                  | 2040        | 740 <u>.2</u>             | 844.5                 | 800.9             | 501                                     |
| NGANESE                  | 37/ 37          | 40 -                                    | 19100       |                           | 674.5                 | 1063.3            | 1063                                    |
| RCURY                    | 34/ 37          | ND -                                    | 136         | 8470.0                    | 4271.5.               | 4895.5            | 4896                                    |
| KEL                      | 36/ 37          | ND -                                    | 136<br>219  | 4.6                       | 22.3                  | 12.0              | 12                                      |
| LENIUM                   | 4/ 37           | ND -                                    |             | 79.1                      | <b>5</b> 0.1          | 95.9              | 96                                      |
| ALLIUM                   | 2/ 34           | ND -                                    | 1.5         | 0.7                       | 9.0                   | 1.0               | 0.97                                    |
| MUIDAY                   | 2/ 34<br>30/ 37 |                                         | 0.76        | 0.4                       | 0.1                   | 0.5               | 0.46                                    |
| C                        | ,               | ND                                      | 266         | 45.5                      | 58.2                  | 64.9              | 65                                      |
| ANIDE                    | 37/ 37          | 54.2 -                                  | 36200       | 3439.5                    | 6001.1                | 5442.5            |                                         |
| _ <del>_</del>           | 5/ 37           | ND -                                    | 28.4        | 1.7                       | 4.6                   | 3.2               | 5443<br>3.2                             |

All concentrations reported in mg/kg.

(a) A sample size of other than 3 for VOCs or 35 for SVOCs, or other than 8 for Arocions, indicates rejection of sample results by QA/CC review. A sample size of less than 37 for inorganics indicates rejection of samples results by QA/CC review.

Due to matrix interference, not all samples were used to develop RME concentrations. Bessed upon QA/CC review by a qualified enalytical chemist, the Samples used here to develop RME concentrations for organic compounds (laten from tables 5 and 17 of the RI Report) include T+4, T-5, T-9, SS-1, SS-2, SS-2, GUL), SS-3, SS-4(DL), SS-5(DL), SS-6(DL), SS-7(RE), SS-9(RE), SS-10(DL), SS-11(RE), SS-12, SS-12, SS-12, SS-12, SS-13, SS-13, SS-14, SS-14, SS-14, SS-14, SS-15, SS-15, SS-15, SS-15, SS-15, SS-16, SS-17, SS-18, SS-19, SS-20, SS-21, SS-22(DL), SS-23, SS-24(DL), SS-17, SS-18, SS-19, SS-20, SS-21, SS-22(DL), SS-23, SS-24(DL), SS-17, SS-18, SS-19, SS-19, SS-20, SS-21, SS-22, SS-22(DL), SS-23, SS-26(DL), SS-27, SS-28, SS-29, SS-30(DL), SS-31(dup), SS-31(dup), SS-32, SS-32(DL), and SS-34.

RME concentrations for inormanic compounds are based on all samples shown in Table 19 of the RI Report. \$35-32, \$35-35(UL), and \$3-34.

PME concentrations for inorganic compounds are based on all samples shown in Table 19 of the RI Report.

(b) One-half the detection limit is used as a proxy concentration for non-detects per USEPA guidance.

(c) Based on Student's T—distribution with n—1 degrees of feedom, elpha=0.025 in each tall.

(d) The lesser of the SS% upper bound concentration and the maximum detected concentration.

#### CHEMICALS OF INTEREST IN SUBSURFACE SOIL/FILL

#### ROSEN SITE CORTLAND, NEW YORK

| a                                    | Frequency of     | Range of Sample           | Arithmetic<br>Mean Stands | 95% Upper<br>rd Bound        | RME             |
|--------------------------------------|------------------|---------------------------|---------------------------|------------------------------|-----------------|
| Chemical (a) Ottorrics               | <u>Detection</u> | Concentrations            | Concernration (b) Deviati | on Concentration (c) C       | Oncentration (d |
| 1,1-DICHLOROETHANE                   | 5/ 18            | ND - 0.559                | 0.054 (                   | 1.14 0.12                    | 0.12            |
| 1,1-DICHLOROETHENE                   | 1/ 18            | ND - 0.01                 |                           | 0.065 0.06                   | 0.12            |
| 1,1,1-TRICHLOROETHANE                | 10/ 18           | ND - 44                   | 2.5                       | 0.4 7.7                      | 7.7             |
| 1,4-DICHLOROBENZENE<br>2-BUTANONE    | 1/ 19<br>3/ 17   | ND - 0.0515<br>ND - 0.083 |                           | 2.4 2.1                      | 0.00515         |
| 2-METHYLNAPHTHALENE                  | 3/ 17<br>2/ 19   | ND - 0.083<br>ND - 32     |                           | ).13 0.12<br>7.5 6.3         | 0.083<br>6.3    |
| 2-METHYLPHENOL                       | 1/ 18            | ND - 0.305                |                           | 2.4 2.1                      | 0.305           |
| 2-NITROPHENOL                        | 1/ 19            | ND - 0.071                |                           | 2.4 2.1                      | 0.071           |
| 4,4'-DDE<br>ACENAPHTHENE             | 1/ 19<br>1/ 19   | ND - 0.016<br>ND - 20.7   |                           | 725 0.03 <i>6</i><br>5.1 4.5 | 0.016           |
| ACENAPHTHALENE                       | 1/ 19            | ND - 3,23                 |                           | 2.5 2.3                      | 4.5<br>2.3      |
| ACETONE                              | . 11/ 18         | ND - 0.253                |                           | .13 0.14                     | 0.14            |
| ANTHRACENE                           | 1/ 19            | NO - 16                   |                           | 4.2 3.8                      | 3.8             |
| AROCLOR 1254<br>AROCLOR 1260         | . 3/ 19<br>1/ 19 | ND - 5.8<br>ND - 0.61     |                           | 1.3 1.1<br>.27 0.41          | 1.1             |
| BENZENE                              | 2/ 18            | ND - 0.003                |                           | .06 0.05                     | 0.41<br>0.003   |
| BENZOIC ACID                         | 3/ 19            | ND - 0.1                  | 1.8                       | 2.5 3.0                      | 0.1             |
| BFN2O(a)ANTHRACENE<br>B N2O(a)PYRENE | 3/ 19            | ND - 17.3                 |                           | 4.5 4.1                      | 4.1             |
| BENZO(D)FLUORANTHENE                 | 4/ 18<br>6/ 18   | ND - 9.7<br>ND - 9.1      |                           | 5.2 3,1<br>3.2 3,1           | 3.11<br>3.1     |
| BENZO(g.h.jiPERYLENE                 | 1/ 18            | ND - 3.1                  |                           | 2.5 2.4                      | 2.4             |
| BENZOMFLUORANTHENE                   | 5/ 18            | NO - 7.1                  |                           | 2.9 2.8                      | 2.8             |
| BUTYLBENZYLPHTHALATE                 | 11/ 19           | ND 16.7                   |                           | 4.8 4.7                      | 4.7             |
| CHRYSENE                             | 6/ 19<br>8/ 19   | ND - 14<br>ND - 14.7      |                           | 3.8 3.7<br>4.0 3.8           | 3.7<br>3.8      |
| DIBENZOFURAN                         | 1/ 19            | ND - 20                   | 2                         | 5 4.4                        | 4.4             |
| DIBENZO(a.h)ANTHRACENE               | 1/ 18            | ND - 0.55                 | 1 :                       | 2.5 2.2                      | 0.55            |
| DI-n-BUTYLPHTHALATE ETHYLBENZENE     | 6/ 19            | ND 24.7                   |                           | 5.1                          | 5.1             |
| FLUORANTHENE                         | 3/ 18<br>6/ 19   | ND 1.90<br>ND 43          |                           | .44 0.35<br>9.9 8.0          | 0.35<br>8.0     |
| FLUORENE                             | 2/ 19            | ND - 24                   |                           | 5.8 5.0                      | 5.0             |
| INDENO(1,2,3-c,d)PYRENE              | 2/ 18            | ND - 12                   |                           | 2.5 2.3                      | 1.2             |
| METHOXYCHLOR METHYLENE CHLORIDE      | 1/ 19<br>2/ 18   | ND - 0.066                |                           | .13 0.19                     | 0.068           |
| NAPHTHALENE                          | 2/ 18<br>2/ 19   | ND 0.008<br>ND 110        | 0.021 , 0.0<br>5.7 2      | 62 0.052<br>5.1 18.8         | 0.008<br>18.8   |
| N-NITROSODIPHENYLAMINE               | 1/ 19            | NO - 0.585                |                           | 2.4 2.2                      | 0.585           |
| PHENANTHRENE                         | 5/ 19            | ND - 97                   |                           | 2.1 16.9                     | 16.9            |
| PHENOL<br>PYRENE                     | 1/ 19<br>7/ 19   | ND - 0.14<br>ND - 41.7    |                           | 2.4 2.1                      | 0.14            |
| TETRACHLOROETHENE                    | 7/ 19<br>2/ 18   | ND - 41.7<br>NO - 1.69    | •                         | 9.6 8.0<br>40 0.31           | 8.0<br>0.31     |
| TOLUENE                              | 6/ 18            | NO - 27                   |                           | 5.4 5.0                      | 5.0             |
| TRICHLOROETHENE                      | 7/ 18            | ND - 0.012                |                           | 06 0.05                      | 0.012           |
| XYLENES                              | 4/ 18            | ND - 33                   | 2.2                       | 7.8 6.0                      | 6.0             |
| Inorganica                           |                  |                           | ,                         | ·                            | •               |
| ALUMINUM                             | 19/ 19           | 4070 - 18900              | 10009.2 4220              | .9 12043.7                   | 12043.7         |
| ANTIMONY                             | 6/ 19            | ND - 15.2                 | 1.5                       | 1.5 3.2                      | 3.2             |
| ARSENIC<br>BARIUM                    | 18/ 18<br>19/ 19 | 1.9 — 51.4<br>19.4 — 291  |                           | 15.0                         | 15.9            |
| BERYLLIUM                            | 3/ 19            | 19.4 291<br>ND 1.1        |                           | 3.6 · 136.4<br>23            | 138.4<br>0.55   |
| CADMIUM                              | 6/ 19            | ND - 10.8                 |                           | 25 0.55<br>26 2.7            | 2.7             |
| CHROMIUM<br>COBALT                   | 19/ 19           | 6.5 - 169                 | 40.3 40                   | s.o <u>62.</u> 5             | 62.5            |
| COPPER                               | 18/ 19<br>18/ 18 | ND — 15.7<br>10.6 — 272   |                           | 11.1                         | 11.1            |
| LEAD                                 | 19/ 19           | 8.4 - 1150                | 51.6 64<br>103.8 260      | 1.0 83.3<br>0.4 229.3        | \$3.3<br>229.3  |
| MANGANERE                            | 19/ 19           | 53.1 - 8020               | 1552.6 1888               |                              | 2463.0          |
| MERCURY<br>NICKEL                    | 7/ 19            | ND - 0.35                 | 0.10 0.                   | 11 0.15                      | 0.15            |
| SILVER                               | 19/ 19<br>1/ 19  | 6.5 - 361<br>ND - 1.10    | 50.0 78                   |                              | 96.6            |
| VANADIUM                             | 18/ 18           | ND 1.10<br>9 318          | 0.4 0.5<br>52.4 91        |                              | 0.50<br>97.6    |
| ZINC                                 | 19/ 19           | <b>32.2 - 192</b> 0       | 374.0 594                 |                              | 660.5           |
| CYANEDE                              | 5/ 19            | NO - 2.1                  | 0.79 0.                   | 40 0.98                      | 89.0            |

 <sup>(</sup>a) All concentrations reported in mg/kg.
 A sample size less than 19 indicates rejection of sample results by QA/QC review.
 (b) One—half the detection limit is used as a proxy concentration for non—detects per USEPA guidance.
 (c) Based on Student's T—distribution with n=1 degrees of freedom, alpha=0.025 in each tail.
 (d) The lesser of the 95% upper bound concentration and the maximum detected concentration.

#### T 3J8AT

#### POTENTIAL EXPOSURE PATHWAYS

#### GORTLAND, NEW YORK

|                                                                                                                                                                |                                        |                                  | <u> </u>                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Workers are unlikely to wade in the Creek.                                                                                                                     | on                                     | Perlicity Creek<br>and Tributary | Demail contact                                           | \text{verselve} Verselve |                                                     |
| may not be completely covered in the future. Hence, continued volatilization and generation of duste, sepecially during dry conditions, may potentially occur. |                                        | •                                | stodev br                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
| VOCs have been observed in air monitoring, and the site                                                                                                        | \$ <del>9</del> 人                      | eti2 nO .                        | etaub to nottalarini                                     | λlA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |
| Potential future use of the site may be inclustrial/commercial.                                                                                                | 80 <u>/</u>                            | eji2 nO                          | Dermal contact;<br>Incidental Ingestion                  | NoS eashu2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |
| Potentifal tuture use of the site may be industrial/commercial.                                                                                                | 80 <u>%</u>                            | elleW eti2-nO                    | Dermal contact<br>Ingestion                              | TelaW brinos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hypothetical Future<br>Commercial/Industrial Worker |
| Exposure is possible, but as shown for trespassers, risks are negligible, and hence not calculated.                                                            | oN                                     | Perlicity Creek<br>and Tributary | Pompo lamed                                              | Surface Water/<br>framibe2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ٠.                                                  |
| in the future. Hence, continued votetilization and generation of dusts, especially during dry conditions, may potentially occur.                               |                                        |                                  | •                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
| Low concentrations of VOCs have been observed in air monitoring, and the sits may not be completely covered                                                    | жеД                                    | etie nO                          | ateub to notalarini<br>snoqav bna                        | ηA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |
| Potential future use of the site may be residential.                                                                                                           | \$ <del>0</del> 人                      | etie nO                          | Dermal contact;<br>Incidental ingestion                  | lioS eashu2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                   |
| Letinobises ed yem est to eau enutut latineto?                                                                                                                 | 80 <u>)</u>                            | alleW eti2—nO                    | Ingestion; demai<br>contact, inhalation<br>of volatiles  | Ground Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lypothetical Future<br>on-Site Residents            |
| Low concentrations of VOCs have been observed during air monitoring; and dusts may be transported offsite by prevailing white:                                 | 807                                    | eonebiseR eti2-IIO               | ataub to nottelarini<br>anoqav bria                      | Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |
| Downgradient most nearby residents are supplied with public water. However, constituents of interest have been detected in off-site groundwater.               | 26 <b>Y</b>                            | ellaW efiZ-IfO                   | Ingestion; dermal<br>contact; inhalation of<br>volatiles | tetaW briuoiÐ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lypothetical Future<br>Ni-Site Residents            |
| Researt for Gelection of Exclusion                                                                                                                             | Pathway<br>Salected for<br>Evaluation? | Exposure<br>Point                | expoeure<br>Route                                        | Exposure<br>Medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Potentially Exposed<br>Population                   |

Table 8

Available Toxicity Criteria for Non-Carcinogenic Health Effects of the Chemicals of Interest (a)

Rosen Site
Cortland, New York

|                             | OHAL                          |                                         |          | INHALATION |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|-----------------------------|-------------------------------|-----------------------------------------|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| CHEMICAL                    | AfD                           |                                         |          | RIC        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 1,1-DICHLOROETHANE          | <u>(mg/kg÷day)</u><br>1.0E−01 | Elfect of Concern NONE                  | Source   |            | Effect of Concern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bource |
| 1,1-DICHLOROETHENE          |                               |                                         | 1.       | 5E-01      | kidney damage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | р_     |
|                             | 9.0E-03                       | liver lesions                           | b        | UA .       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l      |
| 1,2 - DICHLOROETHANE        | ND                            |                                         | 1        | I ND       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i      |
| 1,1,1-TRICHLOROETHANE       | ND                            |                                         | 1        | ND         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 1,2-DICHLOROETHENE (ch-)    | 1.0E-02                       | decreased hematocrit and hemoglobin     | b        | ND         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      |
| 1,2-DICHLOROETHENE (trans-) | 2.0E-02                       | increased alkaline phosphatase          | 1        | ND         | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| 1,4-DICHLOROBENZENE         | _ ND                          |                                         | ł        | 8E-1       | liver, kidney effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | b      |
| 2-BUTANONE                  | 6.0E-01                       | NONE                                    | Í        | 1.0 \      | decreased birth weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ь      |
| 2-METHYLPHENOL              | 5.0E-02                       | decreased body weight; neurotoxicity    | <b>!</b> | NV         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _      |
| 2-METHYLNAPHTHALENE         | ND                            |                                         | 1        | ND         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 2-NITROPHENOL               | GN                            |                                         | 1        | ND         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 4-CHLORO-3-METHYL PHENOL    | ND                            | ND                                      |          | ND.        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| ACENAPTHENE                 | 6.0E-02                       | hepatotoxicity                          | Į.       | ND         | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| ACENAPHTHALENE              | ND                            | •                                       | l        | l ND       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| ACETONE                     | 1.0E-01                       | increased liver weight; nephrotoxicity  |          | ND         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| ALUMINUM                    | ND                            |                                         | ļ        | ND         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| ANTHRACENE                  | 3.0E-01                       | NONE                                    |          | l ND       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| ANTIMA                      | 4.0E-04                       | Increased mortality, altered blood chem | letry.   | ND ND      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| ARSENIC                     | 3.0E-04                       | keratosis; hyperplamentation            | T.,      | ND         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| BARIUM                      | 7.0E-02                       | increased blood pressure                | ľ        | 5E-04      | fototo de la constante de la c |        |
| BENZOIC ACID                | 4.0                           | NONE                                    | l        | ND ND      | fetotoxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ь      |
| BERYLLIUM                   | 5.0E-03                       | NONE                                    | i        | ND         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| BIS)2-ETHYLHEXYL)PHTHALATE  | 2.0E-02                       | increased relative liver weight         | 1        | I ND       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| BROMOFORM                   | 2.0E-02                       | liver effects                           |          | ***        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| BUTYLBENZYLPHTHALATE        | 2.0E-01                       | altered fiver weight                    | 1        | ND         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| GADMIUM                     | 5.0E-04 Water                 | teus) gattiade                          | 1        | ND         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| -,                          | 1.0E-03 Food                  |                                         |          | UR         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| CHLOROETHANE                | 1.02~03 F860<br>ON            | renal damage                            | ļ        |            | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| CHLOROFORM                  | 1.0E-02                       | M                                       | ſ        | 10         | delayed fetal ossification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
| CHROMIUM din                | ***                           | liver/intty cysts                       | l        | UR         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| CHROMIUM (IV)               | 1.0<br>5.0E-03                | HONE                                    | ļ        | UR         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| COBA:T                      |                               | NONE                                    |          | UR         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                             | UR<br>2.0E-02                 |                                         | l        | ND         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| CYANIDE (free)              | 2.05-02                       | decreased body weight; thyroid effects; | myelin   | ND         | Į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| COPPER                      |                               | degeneration                            | 1        | Ì          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                             | ND                            |                                         |          | ND         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| DIBENZOFURAN                | ND                            |                                         |          | ND         | ŀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| DIMETHYLPHTHALATE           | 10                            | liver, kidney, and testes effects       | ) b      | ND         | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| DI-n-BUTYLPHTHALATE         | 1.0E-01                       | Increased mortality                     | <b>\</b> | NV         | · 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| DI-n-OCTYLPHTHALATE         | _0.02                         | liver, kidney, and testes effects       | Ь        | ND         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| ETHYLBENZENE                | 1.0E-01                       | hepatotoxicity; nephrotoxicity          | l        | 1.0        | developmental toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ь      |
| FLUORANTHENE                | 4.0E-02                       | hematological changes; nephropathy;     |          | ND         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _      |
| <u> </u>                    |                               | increased liver weight                  |          |            | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| FLUORENE                    | 4.0E-02                       | decreased erythrocytes                  | ı        | ND         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| LEAD                        | ND                            |                                         |          | ND         | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| MANGANESE (food)            | 1.0E-01                       | CNS effects                             | 1        | 5E-05      | respiratory effects:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •      |
| MANGANESE (water)           | 5E-03                         |                                         |          | 5E-05      | psychomotor disturbances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | þ<br>b |
| , ,                         | -                             |                                         | )        | 35,-03     | h-Actionion cusingsuces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P      |

See notes on Page 2.

Table 8-ic

#### Available Toxicity Criteria for Non-Carcinogenic Health Effects of the Chemicals of Interest (a)

#### Rosen Site Cortland, New York

| CHEMICAL<br>MERCURY                                                                                                                                                | RID<br>(mg/kg-day)                                                                                                                           | Effect of Concern                                                                                                                                                                                                                                                       | Source | INHALATION<br>RIC<br>(mg/m³)                                    | Effect of Concerns                                      |                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------|
| METHOXYCHLOR METHYLENE CHLORIDE MAPHTHALENE MICKEL PHENOL PYRENE BELENIUM BILVER ETRACHLOROETHENE PICHLOROETHENE PICHLOROETHENE THALLIUM OLUENE ANADIUM YLENES INC | 3.0E-04<br>5.0E-03<br>6.0E-02<br>ND<br>2.0E-02<br>ND<br>6.0E-01<br>3.0E-02<br>5.0E-03<br>1.0E-02<br>ND<br>8E-05<br>2.0E-01<br>7.0E-03<br>2.0 | kidney effects excessive loss of litters liver toxicity  decreased weight (body; major organs) decreased fetal weight kidney effects clinical selenosis argyria hepatotoxicity increased SCOT and LDH altered weight (liver, kidneys) NONE decreased body weight anamia | b<br>b | 3E-04 NV 3.0 ND UR ND NV ND | neurotoxicity hepatotoxicity CNS effects; eye kritation | Bound b b c c c c c c c c c c c c c c c c c |

#### Notes:

ND = No Data.

NV = Not Verifiable.

UR = Under Review.

RfD = Reference Dose.

RiC = Reference Concentration.

CNS = Central Nervous System.

#### Sources:

- (a) IRIS, 1994, unless otherwise noted. (b) USEPA 1994a HEAST.

#### Q eldaT

Available Toxicity Criteria for Carcinogenic Health Effects of the Chemicals of Interest (a)

Hosen Site

|       |     |                                       |            |            | 3        | Cortiand, New York                      |            |                    |                                                                      |
|-------|-----|---------------------------------------|------------|------------|----------|-----------------------------------------|------------|--------------------|----------------------------------------------------------------------|
|       |     |                                       |            | NONTAINIT  |          |                                         | HEG        | 1APO<br>18         |                                                                      |
|       |     |                                       | DENH       | stan l     |          | ed\(\_ioin)                             | SSA LO     | (ASp:=59/803/)     | CHEMICAL                                                             |
| E 2/1 | 8   | edy] sorial                           | 96V 10     | र व्यक्तार | Olivie I |                                         | -          | 10~30.0            | 1,1-DICHLOROETHENE                                                   |
|       |     |                                       | o          | 80~30.8    | 9        | STOTILI (BETEVE)                        | 0          | ON                 | 111 - DICHTOROETHANE                                                 |
| 1 4   | , [ | iggueà: ageuccarciucus                | _          | ON         | - 1      |                                         | 82         | 9.1E-02            | 1,2-DICHLOROETHANE                                                   |
| 1     | ļ   |                                       |            | 2.0E~05    | ٠ ١      | STOTTLE TOVE                            | SG         | 2.4E-02            | 2-METHYLPHENOL.                                                      |
|       | i   |                                       |            | οÑ [       | a l      | setrollided ribis                       | es<br>B2   | ON                 | MASE INC.                                                            |
|       |     |                                       | •          | QN _       | i        | Pacingo ribita                          | <b>v</b>   | 87.1               | BENZENE                                                              |
|       | - 1 | stornes metale youngest               | Ÿ          | 4.3E-03    |          | aimental.                               | V          | \$0~95°Z           | BENZO(v)PYRENE                                                       |
| 1     | ſ   | leukennin                             | ٧          | 90~36'8    | - 1      | forestometh tumore                      | <b>SB</b>  | 7.3E+00<br>7.3E+00 | BENZO(D): COOMVINENE                                                 |
|       |     |                                       | cA         | ON ON      | 0        |                                         | SB<br>68   | 7.35-02            | BNSHINVHONTHENE                                                      |
| ı     | Į   |                                       | 85<br>85   | an (       | ٥        |                                         | 28<br>83   | 10-36.7            | DENZO(4) VALHENCENE                                                  |
| ı     | - 1 | •                                     | 28         | ON         | 9        |                                         | 28         | er                 | MUUTAHadi                                                            |
| 1     |     | BOOKER CONE .                         | 58         | 2.4E-03    |          | stornut latol                           | 58         | \$0-34.f           | BIS(2-ETHYLEHXYL)PHTHMATE                                            |
| ı     |     | BIOURI BUT!                           | \$8        | ON T       | i        | large bilastine: edenomics a character  | 58         | 20-30.7            | BHONOLOHW                                                            |
| ł     |     | sequipe intensions sedent against     |            | 1.1E-06    |          | ;aqyoq euotemoraba :enisesini egnal     |            |                    | CYDMINM                                                              |
|       |     | Partition accounts were to the second | -          |            |          | Adenocarcinoma                          | QN         | ON                 | CARBAZOLE                                                            |
| ı     |     | respiratory systems furnors           | 18         | 60-36.1    |          | aromut 16Vil                            | . 28       | 20E-02             | CHLOHOFORM                                                           |
| - 1   |     |                                       | ••         | ON ON      |          | Morney Authors                          | SB         | 6.1E-03            | CHLOROMETHAME                                                        |
| 1     |     | liver carcinomes                      | <b>8</b> 8 | 80-36.     |          | liver toxicity                          | Š          | 1.3E-02            | CHHOMINM (A)                                                         |
| -     |     | ,                                     | •          | 1.8E-06    |          |                                         | ON<br>ea   | CDN<br>CO−∃6.7     | CHARSENE                                                             |
|       |     | tacum Bun                             | A<br>B2    | ON         | 9        | 1                                       | \$8<br>83  | 0.4E-01            | 300-b'b                                                              |
| 1     |     | )                                     | 200        | ON.        | 1        | storrad bioryra bne tevli               | 85<br>85   | 2.7                | DIBENZ(4h)ANTHRACENE                                                 |
| -1    |     |                                       | 58         | an .       | 9        | 1                                       | <b>8</b> 5 | £7.0               | INDENO(1,2,3-cd)PTRENE                                               |
| - 1   |     | †                                     | 88         |            | 9        | liver burons                            | 58         | 20-38.T            | METHYLENE CHLORIDE (0)                                               |
| 1     |     | EXOLUTE SONE SCHOOL                   | 85<br>85   | ** TO-37.A | ì        | *************************************** | GN         | QN '               | MICHEL (MEFINERY DUST)                                               |
|       |     | esornes maisses voinidaes             | ٧          | 2.4E-04    |          | pladder turnors                         | 85         | 60-36.h            | N-NITHOGODIPHENY AND BOOK                                            |
| 1     |     |                                       |            | άÑ         | ĺ        | Net fumors                              | 85         | rz 202             | TETRACHLOHOETHENE POLYCHLOHORETHENE POLYCHLOHONATED BIPHENNLS (PCBs) |
| 1     |     | j                                     |            | ON TO 3    | ) *      | anoma sevil                             | C-85       | 25E-05             | Bill Handler in the                                                  |
|       | P   | sount Bury                            | C-85       | 10-38'S    | ļ        |                                         | e8-0       | \$0-31.1           | TRICHLOROETHENE                                                      |
|       |     |                                       |            |            |          |                                         |            |                    |                                                                      |

BAGE PLETACES

SHOWING BUILD

B1, B2 - Probable human carcinogen, A - Known human carchogen, HHEG Class - Human Health Evaluation Group Classification.

C - Limited evidence of human carcinogenicity.

D - Not classified,

E - Negative evidence of human carcinogenicity.

URIF = Unit Risk Factor.

\*\* URF is derived from a metabolized dose: conversion to SF is inappropriate.

SF = Slope Factor. ND = No Data.

(a) IRIS, 1994 unless otherwise noised.
(b) USEPA, 1994s HEAST,
(c) Toktolly velues relative to berzo(s)pyrene per USEPA, 1993b. Relative potencies recommended by USEPA (1993b) include:
1.0 for benzo(s)pyrene and diberz (s.h) entirecene, 0.1 for benzo(s)entirecene benzo(b)fluoranitrene and indenci 1.2.3—cd]pyrene,
0.01 for benzo(s)pyrene and diberz (s.h) entirecene, 0.1 for benzo(s)entirecene benzo(b)fluoranitrene and indenci 1.2.3—cd]pyrene,
(d) ECAO, 1992

#### SUMMARY OF HAZARD INDICES (HIS)

#### **ROSEN SITE** CORTLAND, NEW YORK

| Exposure<br>Pathway                   | CURRENT RE  | CEPTORS |                       | HYPOTHETICAL<br>UTURE RECEPTOR | s                     |                                     |
|---------------------------------------|-------------|---------|-----------------------|--------------------------------|-----------------------|-------------------------------------|
| Surface Soil                          | TRESPASSERS | WORKERS | EXCAVATION<br>WORKERS | ON-SITE<br>RESIDENTS           | OFF-SITE<br>RESIDENTS | COMMERCIAL<br>INDUSTRIAL<br>WORKERS |
| incidental ingestion                  | 0.07        | 0.008   | (C) NE                | 1                              |                       |                                     |
| Dermal Contact                        | 5E-04       | 1E-04   | (a) NE                | 1                              | NE NE                 | . 0.2                               |
| Inhalation (c)                        | 0.6         | 0.1     | NE<br>NE              | 0.004<br>3                     | NE<br>3               | 1E~04                               |
| Subsurface Soil                       |             | ļ       |                       |                                |                       | _                                   |
| ncidental Ingestion                   | NE NE       | NE NE   | 0.01                  | NE                             |                       | `                                   |
| Dermal Contact                        | NE.         | NE      | 2E-04                 | NE<br>NE                       | NE                    | NE                                  |
| inhalation                            | NE          | NE      | 0.004                 | NE NE                          | NE<br>NE              | NE<br>NE                            |
| Sround Water - Upper Outwash          |             |         |                       |                                |                       |                                     |
| ngestion                              | NE.         | NE      | NE NE                 | 31                             |                       | _                                   |
| Dermal Contact                        | NE          | NE NE   | NE                    | 0.02                           | 66<br>0.02            | 9                                   |
| nhaiation .                           | NE          | NE      | NE                    | 1                              | 0.02                  | 0.005<br>NE                         |
| Ground Water - L. wer Sand and Gravel |             |         |                       |                                |                       |                                     |
| ngestion                              | NE          | NE      | NE                    | 0.3                            | NE                    |                                     |
| Permai Contact                        | NE          | NE      | NE NE                 | 1E-05                          | NE<br>NE              | 0.08                                |
| nhalation                             | NE          | NE      | NE                    | NQ                             | NE.                   | 1E-06<br>NE                         |
| Surface Water                         |             |         |                       |                                |                       |                                     |
| Permai Contact                        | 6E-09       | NE      | NE                    | NE                             | NE                    | NE                                  |
| ediments                              | •           |         |                       |                                | }                     |                                     |
| ermal Contact                         | NQ (b)      | NE      | NE                    | NE                             | NE                    | NE                                  |
|                                       |             |         |                       |                                |                       |                                     |
| otal Site HI                          | 0.7         | 0.1     | 0.01                  | 36:14                          | 69                    | 12                                  |

- Notes:

  (a) NE = Exposure pathway not evaluated for this receptor.

  (b) NQ = Not quantifishle.

  (c) Based on predicted maximum annual fenceline concentrations.

  (d) Assumes ingestion of upper outwash ground water. A HI of 4 can be derived assuming ingestion of lower sand and gravel ground water.

#### SUMMARY OF CANCER RISKS

#### ROSEN SITE CORTLAND, NEW YORK

| Exposure<br>Pathway                      | CURRENT REC    | EPTORS         |                       | 200.000 - 0.000 - 0.000 | HETICAL<br>ECEPTORS   |                                      |
|------------------------------------------|----------------|----------------|-----------------------|-------------------------|-----------------------|--------------------------------------|
|                                          | TRESPASSERS    | WORKERS        | EXCAVATION<br>WORKERS | ON-SITE<br>RESIDENTS    | OFF-SITE<br>RESIDENTS | COMMERCIAL/<br>INDUSTRIAL<br>WORKERS |
| Surface Soil                             |                |                |                       |                         |                       |                                      |
| Incidental Ingestion Dermal Contact      | 2E-05          | 1E-06          | (a) NE                | 3E-04                   | NE                    | 3E-05                                |
| Dermai Contact<br>Inhalation (c)         | 1E-05<br>6E-06 | 2E-06<br>1E-06 | NE<br>NE              | 1E-04<br>4E-05          | NE<br>4E-05           | 5E-05<br>2E-05                       |
| mmasson (c)                              | 02-00          | 15-00          | NE                    | 45-03                   | <del>*</del> = 05     | 25-03                                |
| Subsurface Soil                          |                |                |                       |                         |                       |                                      |
| Incidental Ingestion                     | , NE           | NE             | 3E-07                 | ) NE                    | ) NE                  | NE                                   |
| Dermal Contact                           | NE             | NE             | 2≘-07                 | NE NE                   | NE                    | NE                                   |
| Inhalation                               | . NE           | NE             | 2E-07                 | NE                      | NE                    | NE                                   |
| Ground Water - Upper Outwash             |                |                | ľ                     |                         | Į                     | -                                    |
| Ingestion                                | NE             | NE             | NE                    | 2E-03                   | 9E-04                 | 5E-04                                |
| Dermal Contact                           | NE             | NE             | NE NE                 | 2E-03                   | 1E-05                 | 3E-04                                |
| inhalation                               | NE.            | NE             | NE                    | 2E-04                   | 6E-04                 | NE                                   |
| Ground Water - Lower Sand and Gravel     |                |                |                       | ļ                       | <b>\</b>              | ļ                                    |
| Ingestion .                              | NE             | NE             | NE NE                 | 1E-08                   | NE                    | 3E-09                                |
| Dermai Contact                           | NE             | NE             | NE                    | 7E-10                   | NE                    | 5E-11                                |
| Inhelation                               | NE             | NE             | NE                    | 7E-08                   | NE                    | NE                                   |
| Surface Water                            |                |                |                       |                         |                       | 1                                    |
| Dermal Contact                           | NQ(b)          | NE             | NE                    | NE                      | NE                    | NE                                   |
| Sediments                                |                |                |                       |                         |                       |                                      |
| Dermal contact                           | 2E-07          | NE             | NE                    | NE                      | NE                    | NE                                   |
|                                          |                |                |                       |                         |                       |                                      |
| Total - Horse is word in a programme and |                | 3E-06          |                       | 5E-03                   | 2E-03                 | 1 9E-04.                             |

Notes:

(a) NE = Exposure Pathway not evaluated for this receptor.

(b) NQ = Not Quantifiable

(c) Based on maximum predicted annual fenceline concentrations.

October 1996

Page 1

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ls     |                                        |                   |                                                             |                                         | Health                                     | Advisorie              |                                        |                        |                                         |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------|-------------------|-------------------------------------------------------------|-----------------------------------------|--------------------------------------------|------------------------|----------------------------------------|------------------------|-----------------------------------------|-----------------|
| Chemicals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Status | MCLG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MCL    | Status                                 | 10-kg Child       |                                                             |                                         |                                            |                        | 70-kg A                                | duit                   |                                         | Cancer<br>Group |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reg.   | (mg/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (mg/l) | HA                                     | One-day<br>(mg/l) | Ten-day<br>(mg/l)                                           | Longer-<br>term<br>(mg/l)               | Longer-<br>term<br>(mg/l)                  | RfD<br>(mg/kg/<br>day) | DWEL<br>(mg/l)                         | Lifetime<br>(mg/l)     | mg/l at 10 <sup>-1</sup><br>Cancer Risk |                 |
| ORGANICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _      | -                                      | · <del></del>     |                                                             |                                         |                                            |                        |                                        | <del>-</del>           |                                         |                 |
| Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ] .    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -      | _                                      | •                 | -                                                           | _                                       | -                                          | 0.06                   | _                                      | •                      | -                                       |                 |
| Acifluorfen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T      | zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _      | F                                      | 2                 | 2                                                           | 0.1                                     | 0.4                                        | 0.013                  | 0.4                                    | •                      | 0.1                                     | <b>B2</b>       |
| Acrylamide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F      | zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Π      | F                                      | 1.5               | 0.3                                                         | 0.02                                    | 0.07                                       | 0.0002                 | 0.007                                  | -                      | 0.001                                   | <b>B2</b>       |
| Acrylonitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Т      | zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •      | D                                      |                   | •                                                           | -                                       | •                                          | •                      | •                                      | -                      | 0.006                                   | 81*             |
| Adipate (diethylhexyl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F      | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4    |                                        | 20                | 20                                                          | 20                                      | 60                                         | 0.6                    | 20                                     | 0.4                    | 3                                       | C.              |
| Alachior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F      | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.002  | F                                      | 0.1               | 0.1                                                         |                                         | •                                          | 0.01                   | 0.4                                    |                        | 0.04                                    | B2              |
| Aldicarb**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D      | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.007  | D                                      |                   | ■<br>isosaididos de contrato contr                          |                                         | →<br>>65-255-350-350-1 on on one one       | 0.001                  | 0.035                                  | 0.007                  | ·                                       | D               |
| Aldicarb sulfone**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D      | enterior contract of the first feet of the | 0.007  | D                                      | •                 | •                                                           | •                                       | •                                          | 0.001                  | 0.035                                  | 0.007                  | •                                       | D               |
| Aldicarb sulfoxide**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D      | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.007  | D                                      | -<br>             | =<br>Samura de desta de | *************************************** | •<br>.000000000000000000000000000000000000 | 0.001                  | 0.035                                  | 0.007                  | <b>-</b>                                | D.              |
| Aldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | D                                      | 0.0003            | 0.0003                                                      | 0.0003                                  | 0.0003                                     | 0.00003                | 0.001                                  | e e                    | 0.0002                                  | B2              |
| Ametryn<br>Ammonium sulfamate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -      | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •      | F                                      | 9                 | 9                                                           | 0.9                                     | 3                                          | 0.009                  | 0.3                                    | 0.06                   | -                                       | D               |
| <ul> <li>1. 100 (17.10)</li> <li>1. 10 (</li></ul> | •      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •      | F                                      | 20                | 20                                                          | 20                                      | 80                                         | 0.28                   | 8                                      | 2                      | •                                       | D               |
| Anthracene (PAH)*** Alrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F      | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.003  | F                                      | -<br>0.1          |                                                             | -                                       | <b>-</b>                                   | 0.3                    |                                        | -                      |                                         | D               |
| Au azine<br>Baygon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | U.UU3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U.UUJ  | F                                      | 0.1<br>0.04       | 0.1<br>0.04                                                 | 0.05<br>0.04                            | 0.2<br>0.1                                 | 0.035<br>0.004         | 0.2*                                   | 0.003*                 | •                                       | C               |
| Bentazon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                        | 0.04              | 0.04                                                        | 0.04                                    | 1.0                                        | 0.032                  | 0.1<br>1.0                             | 0.003<br><i>0.2</i> ** | -                                       | C               |
| Benz(a)anthracene (PAH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _      | -                                      | -<br>-            | <b>u</b>                                                    | u.3                                     | -                                          |                        | 1,0                                    | V.Z                    | •                                       | D<br>B2         |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F      | zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 NO5  | F                                      | 0.2               | 0.2                                                         |                                         |                                            | •                      | •                                      | •                      | 0.1                                     | A               |
| Benzo(a)pyrene (PAH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F      | the events and order of a consideration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0002 | 0000 : 20000 A 0000000                 |                   | •                                                           | _                                       | •                                          | -                      | -                                      | _                      | 0.0002*                                 | B2°             |
| Benzo(b)fluoranthene (PAH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | -                                      |                   | 4                                                           | •                                       | _                                          | _                      | _                                      | _                      | U.UUU2<br>_*                            | B2              |
| Benzo(g,h,i)perylene (PAH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •      | ************************************** | -<br>             | <u> </u>                                                    |                                         | -                                          | -                      | -                                      | •                      | _                                       | D               |
| Benzo(k)fluoranthene (PAH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •      | _                                      | <u> </u>          | •                                                           | _                                       | <u>.</u>                                   | _                      |                                        | _                      | _                                       | B2              |
| bis-2-Chloroisopropyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -      | F                                      | 4                 | 4                                                           | 4                                       | 13                                         | 0.04                   | ************************************** | 0.3                    | •                                       | D               |
| Bromacil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2      | F                                      | 5                 | 5                                                           | 3                                       | 9                                          | 0.13                   | 5                                      | 0.09                   | -                                       | Ğ               |
| Bromobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -      | D                                      |                   | =                                                           |                                         | -<br>-                                     | =                      | ************************************** | •                      | =                                       | •               |

<sup>\*</sup> Under review.

"Revised value based on change in RfD

NOTE: Anthracene and Benzo(g,h,i)perylene — not proposed in Phase V.

NOTE: Changes from the last version are noted in Italic and Bold Face print.

<sup>\*\*</sup>NOTE: The HA value or the MCLG/MCL value for any two or more of these three chemicals should remain at 0.007 mg/L because of similar mode of action.
\*\*\*PAH = Polyaromatic hydrocarbon

<sup>\*</sup>See 40CFR Parts 141 and 142

The seal Health Advisori

#### Drinking Water Standards and Health Advisories

Page 2 October 1996

|             |             |                                                      |                                           |                |                                                                                                                      |            | Report has be                      |                                        |          | 8 .          |                                        |                               | Current MCL. "A HA will not be do |
|-------------|-------------|------------------------------------------------------|-------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------|------------|------------------------------------|----------------------------------------|----------|--------------|----------------------------------------|-------------------------------|-----------------------------------|
| 3           | •           | ****100.0                                            | 70.0                                      | 200.0          | 70 <u>.</u> 0                                                                                                        | 20:0       | 1.0                                | L.O.                                   | a        |              | 100.0                                  | T                             | Cyanazine****                     |
| 79          | ***         | -                                                    | -                                         | -              | -                                                                                                                    | -          | -                                  | -                                      | -        | -            | -                                      | •                             | Chrysene (PAH)                    |
| a           | •           | Z0.0                                                 | 10                                        | £00.0          | 1.0                                                                                                                  | £0.0       | 60:0                               | £0.0                                   | 3        | •            |                                        | •                             | Chlorpyrifos                      |
| a           | -           | 1.0                                                  | T.0                                       | S0.0           | L                                                                                                                    | 2          | 7                                  | 7                                      | 크        | - "          | -                                      | 7                             | Chlorotoluene p-                  |
| 0           | -           | 1.0                                                  | L'0                                       | \$0.0          | L                                                                                                                    | 7          | 7                                  | 7                                      | Э        | •            | -                                      | 7                             | Chlorotoluene o-                  |
| <b>Z9</b>   | St.0        |                                                      | 9.0                                       | 610.0          | <b>ç</b> 0                                                                                                           | 2.0        | <b>S.</b> 0                        | 2.0                                    | 4        | -            | -                                      | •                             | Chlorothalonil                    |
| <u>.</u>    | -           | •                                                    |                                           |                | •                                                                                                                    |            | -                                  | •                                      | •        | •            | -                                      | 7                             | Сһіогорістіп                      |
| a           | · •         | •                                                    | •                                         | · -            | •                                                                                                                    | _          | -                                  | -                                      | **       | -            | -                                      | . •                           | entide/sulfone/sulfoxide          |
| ø           | -           | <b>1</b> 0.0                                         | S.0                                       | 0.005          | Z'0                                                                                                                  | 5.0        | 9.0                                | S'0                                    | A        |              | ************************************** |                               | P-Chlorophenyl methyl             |
| Ö           | _           | 0.003                                                | 1.0                                       | ≱00.0<br>ā00.0 | U 46                                                                                                                 | <b>4.0</b> | 4.0                                | - 90<br>6                              | a<br>a   | 1            | _                                      | -                             | Chloronethane                     |
| <b>28</b>   | 9.0         | 2000                                                 | <b>F</b> 0                                | 0.01           | <b>¥</b> '0                                                                                                          | 10         | <b>7</b> 0                         | <b>d</b>                               | a        | *80.0/*1.0   | OJƏZ                                   | 7<br>-                        | Chlorotem (THM)                   |
| 8           | -           | -                                                    | •                                         | -              | •                                                                                                                    | -          | -                                  | ************************************** | a        | -            | <del></del>                            | 7                             | Ohloroethane                      |
| ō           |             | 90'0                                                 | <i>L</i> .0                               | \$0.0          | 8                                                                                                                    | 7          | 9                                  | 9                                      | a        | *80.0/*1.0   | 90.0                                   | ď                             | Chlorodibromomethane (THM)        |
| <b>73</b> 3 | £00.0       | -                                                    | 200.0                                     | 900000         | •                                                                                                                    | -          | 90.0                               | 90.0                                   | 3        | 200.0        | OJƏZ                                   | 4                             | Chlordane                         |
| g           |             | 1,0                                                  | <b>S</b> '0                               | \$10°0         | <b>9</b> '0                                                                                                          | 2.0        | ε                                  | ε                                      | <b>H</b> |              | •                                      |                               | Спогатьев                         |
| 9           | -           | 90.0                                                 | 90.0                                      | Z000.0         | 9.0                                                                                                                  | 2.0        | 2.0                                | L                                      | a        | ++90.0       | <b>≯</b> 0.0                           | d                             | Chloral hydrate                   |
| g           | •           | 7.0                                                  | ¥                                         | 1/0            | 7                                                                                                                    | l l        | l.                                 | l l                                    | -3       |              | _                                      | •                             | Carboxin                          |
| <b>28</b>   | £0.0        | -                                                    | €0.0                                      | <b>7000.0</b>  | £.0                                                                                                                  | 70.0       | 2.0                                | 7                                      | 4        | 200.0        | Ø                                      | <b>±</b>                      | Sarbon tetrachloride              |
| 3           | -           | <b>5</b> 0.0                                         | 2,0                                       | 900'0          | 2.0                                                                                                                  | 90.0       | 20.0                               | 60.0                                   | 4        | 10,0         | <b>₩</b> 0.0                           | · · · ·                       | Carboluran                        |
| 1           | -           | 7.0                                                  | <b>,</b>                                  | 1.0            | <b>,</b>                                                                                                             | <b>J</b>   | l .                                | ļ                                      | 4        | -            | -                                      | -                             | Carbaryl                          |
| -           | •           | •                                                    | •                                         | •              | -                                                                                                                    | •          | •                                  | •                                      | a        | -            | -                                      | -                             | -het eneznadiçtud                 |
| i -         | -           | <del>-</del><br>************************************ | -<br>:::::::::::::::::::::::::::::::::::: |                | =<br>contribute de la contributada de la | -          | <b>≓</b><br>Waxaan aan aa aa ah aa |                                        | O.       | -            | -<br>                                  | =<br>:xa.aux,sia.aja.aja.aja. | Butylbenzene sec-                 |
|             | -           |                                                      |                                           |                |                                                                                                                      | · ·        | -                                  | •                                      | a        | •            | •                                      | •                             | Butylbenzene n-                   |
| 0           |             | 3E.0                                                 | 7<br><b>L</b>                             | 2:0<br>20:0    | <b>7</b>                                                                                                             | <br>       | 2                                  | Z                                      | <u> </u> |              | -                                      | •                             | Butylate  Butylate                |
| D<br>0      |             | 10.0                                                 | 20.0                                      | 100.0          | 8.0                                                                                                                  | 1.0        | 1.0                                | 1.0                                    | -<br>a   | -            | _                                      | 1                             | Bromomethane sherifamomore        |
| 28          | <b>P</b> '0 | -                                                    | <i>L</i> 0 +                              | 20.0           | 9                                                                                                                    | 5          | 7                                  | 9                                      | a        | *80.0\*1.0   | OJĐZ                                   | ą.                            | (MHT) molomora                    |
| 28          | 90.0        | <b>-</b>                                             | 7.0                                       | 20.0           | EI<br>13                                                                                                             | 7          | 9                                  | 9                                      | a        | *80.0/*1.0   | OJƏZ                                   | d                             | Bromodichloromethane (THM)        |
| - 6         | 300         | F0.0                                                 | 90.0                                      | £10.0          | 9.0                                                                                                                  | 1.0        | ļ                                  | ľO                                     | 3        | 1,500 0/41 0 |                                        | 0                             | Bromochloromethane                |
| •           | -           | **************************************               | •                                         | -              |                                                                                                                      | -          | •                                  | •                                      | a        | -            | -                                      | ı                             | Bromochloroscetonitrile           |
|             |             |                                                      |                                           |                |                                                                                                                      |            |                                    | (ម្រង្ហា)                              |          |              | 6 80 80 80 80                          | _ <del>-</del>                |                                   |
|             | Cancer Risk | (µ6w)                                                | (y6w)                                     | (Yeb           | (µØw)                                                                                                                | (µ6w)      | ( <sub>[/6</sub> ui)               | Yab                                    |          |              |                                        |                               |                                   |
|             | *of is Ngm  | Lifetime                                             | DMER                                      | /Ву/вш)        | mət                                                                                                                  | term       | Ten-day                            | -euO                                   |          |              |                                        |                               |                                   |
|             |             |                                                      |                                           | RED            | Longer-                                                                                                              | rouĝeu-    |                                    |                                        | AH       | (WBW)        | (I/BW)                                 | Reg.                          |                                   |
| Group       |             |                                                      |                                           |                |                                                                                                                      |            |                                    |                                        |          |              | MCLG                                   | sutat2                        |                                   |
| Cancer      |             | 10-KB CHIIQ LO-KB YORK                               |                                           |                |                                                                                                                      |            |                                    |                                        |          |              |                                        |                               | zisəlmədə                         |
|             |             | sehosivbA ritiseH                                    |                                           |                |                                                                                                                      |            |                                    |                                        |          | 9            | Standard                               |                               | 7                                 |
|             | <u> </u>    |                                                      |                                           |                |                                                                                                                      |            |                                    |                                        |          |              |                                        |                               |                                   |

<sup>•</sup> Current MCL A HA will not be developed due to insufficient data, a because permently report rise been published.
• 1994 Proposed rule for Disinfectants and Disinfection By-products: Total for all THMs combined cannot exceed the 0.08 level.

<sup>\*\*</sup>Total for all haloacetic acids cannot exceed 0.06 level. \*\*\*PAE = phthalate acid eater \*\*\*\*Draft HA updated for the Phase VIB regulation, which has been postponed. It includes the change of the change of the change of an additional 10-fold safety factor for the lifetime HA.

Page 3

October 1996

|                |                            |                               |                  | sehoslybA          | Health                   |                  |                                     |                  | 1       |             | sbrabnat2                              | 1      |                                                  |
|----------------|----------------------------|-------------------------------|------------------|--------------------|--------------------------|------------------|-------------------------------------|------------------|---------|-------------|----------------------------------------|--------|--------------------------------------------------|
| Gance<br>Group |                            | init                          | DA 8#-07         | 1                  |                          |                  | <u>l</u><br>10-k <sup>g</sup> cyllq | <u> </u>         | autat2  | WCF         | MCCG                                   | Status | Chemicals                                        |
|                | mg/l at 10*<br>Cancer Risk | miteti.)<br>e<br>(Ngm)        | (mg/l)           | (mg/kg/<br>(mg/kg/ | -1egno.l<br>mət<br>(Ngm) | Longer-<br>(hgn) | Ten-day<br>(mg/l)                   | Vsb-anO<br>(Ngm) | AH      | (វវិពិជា)   | (Ngm)                                  | Bey    |                                                  |
| •              | -                          | •                             | -                | -                  | -<br>-                   | -                | •                                   | -                | -       |             | -                                      | 1      | Cyanogen chloride                                |
| •              | -                          | 20 U                          | P U              | 10 U               | <b>7</b> U               | -                | <b>۵</b> ل                          | ,<br>-           | O =     | 200         | 40 <b>0</b>                            | -<br>- | S 4-D<br>Cymene p-                               |
| 0              | -                          | <b>4</b><br>20 <sup>-</sup> 0 | <b>4.</b> 0      | 10.0<br>10.0       | ≯.0<br>20                | 1.0<br>3         | £.0<br>08                           | 08               | 4       | 70.0        | 70.0<br>-                              | 7      | 2,4-D<br>DCPA (Dadhal)                           |
| O.             | -                          | 2.0                           | 6.0              | 970'0              | 6.0                      | €.0              | 3                                   | 3                | <b></b> | 2.0         | Z.0                                    | £      | Dalapon                                          |
| Ð              | C                          | <b>&gt;</b> 0                 | 50               | 9.0                | 09                       | 50               | 50                                  | 50               | -       | <b>#</b> '0 | Þ.O.                                   | B B    | Di{2-ethylhexyl]adipate                          |
| 3              | -                          | 9000.0                        | 600.0            | 60000.0            | 20.0                     | 200.0            | 20.0                                | S0.0             |         | T           | ······································ |        | nonizsiO                                         |
| C              | -                          | Z0.0                          | 8.0              | 0.02               | 8                        | 7                | 7                                   | 7                | ā       |             |                                        | 7      | Olbromoscetonitrile                              |
| <b>28</b>      | £00.0                      | -                             | -                | -                  | •                        | •                | <b>3</b> 0.0                        | 2.0              | 4       | 2000.0      | OJƏZ                                   | 4      | Dibromochloropropane (DBCP)                      |
| o d            |                            | -<br>+                        | <b>v</b>         |                    | -                        |                  | -                                   | -                | -       |             | -<br>-                                 | 7      | ensdiemomordio                                   |
| <b>U</b>       |                            | 6.2                           | į.               | 1.0<br>En.a        |                          | €.0              | £0                                  | £.0              | ā.      | -           | -                                      | 7      | Dibutyl phthalate (PAE)                          |
| a              | -                          | -                             | -<br>*********** | £0:0               | -<br>L                   | -                |                                     | -<br>            | a       | -           | *********                              | 7      | Dichloroacetaldehyde                             |
| es             | ••*                        | •                             | 1.0              | \$00.0             | 7                        | 1                | l l                                 | l.               | a       | ++90.0      | OJĐZ                                   | ď      | Dice allsosoroldaid                              |
| 3              | -                          | 900.0                         | 6.0              | 800.0              | ε                        | 8.0              | <b>.</b>                            | <b>,</b>         | d       | -           | ************************************** | 7      | elintinotesconoldoi0                             |
| a              | _                          | 9.0                           | ٤                | 60'0               | 30                       | 6                | 6                                   | 6                | E C     | 9.0         | 9.0                                    | 4      | Dichiorobenzene o-                               |
| đ              | •                          | 9.0                           | 3                | 60.0               | 30                       | 6                | 6                                   | 6                | 1 -     | -           | -                                      | •      | Dichlorobenzene m-                               |
| 0              | -                          | S70.0                         |                  | 1.0                | 30<br>40                 | or 10            | 01                                  | O.               | 3       | 920:0       | 920.0                                  | 3<br>1 | Dichlorobenzene p-                               |
| a<br>a         | -                          | ı.                            | ç                | 2.0                | 30<br>30                 | - LU<br>6        | ∠ U<br>07                           | 2 U<br>07        | 년<br>년  | 200.0       | Waz<br>-                               | . H    | Dichlorodifluoromethane                          |
| 29<br>82       | <b>PO.O</b>                | 700.0                         | ₽.0              | 600.0              | 7<br>97                  | <i>L</i> 0       | 1<br>2°0                            | Z<br>20          | J 3     | 700.0       | O193<br>700.0                          | Ⅎ      | Dichloroethane (1,2-)<br>Dichloroethylene (1,1-) |
| 0              | •                          | 70.0                          | 70               | 10.0               | 11                       | E                | E                                   | <b>y</b>         | 3       | 20'0        | 70.0                                   | Э      | )ichloroethylene (cis-1,2-)                      |
| <b>0</b>       | -                          | 1.0                           | 8.0              | 20.0               | 9                        | 7                | 7                                   | SO               | ٠,      | 1.0         | 1.0                                    | . J.   | Chloroethylene (trans-1,2-)                      |
| य              | 9'0                        | •                             | 7                | 90'0               |                          | •                | 7                                   | 10               | H.      | \$00.0      | OJƏZ                                   | 4      | enschemotolici                                   |
| a              | -                          | S0.0                          | 1.0              | 600.0              | 1.0                      | 60.03            | £0.0                                | 60.0             | a       | •           | •                                      | -      | Oichlorophenol (2,4-)                            |
| •              | -                          | -                             | •                | •                  | •                        | -                | -                                   | •                | ā       |             | •                                      | -      | ichloropropane (1,1-)                            |
| <b>73</b>      | 90.0                       | <del>-</del>                  | -                | •                  | <u>-</u>                 | -                | 60.0                                | -<br>-           | 0       | 200.0       | OJĄZ                                   | . j    | Oichloropropane (1,3-)<br>Dichloropropane (1,3-) |

<sup>•</sup> The values for m-dichlorobenzene are based on data for o-dichlorobenzene. • A quantitative risk estimate has not been determined.

<sup>\*\*</sup> Total for all haloacetic acids cannot exceed 0.06 level.

|                                                             |                                           | Standard       | 8               |              |                                           |                      |                                        | Healti                                    | Advisorie              | 8              |                        |                                           |           |
|-------------------------------------------------------------|-------------------------------------------|----------------|-----------------|--------------|-------------------------------------------|----------------------|----------------------------------------|-------------------------------------------|------------------------|----------------|------------------------|-------------------------------------------|-----------|
| Chemicals                                                   |                                           |                |                 |              |                                           | 10-kg Child          | l                                      |                                           |                        | 70-kg A        | Adult                  |                                           | Cancer    |
|                                                             | Statu <del>s</del><br>Reg.                | MCLG<br>(mg/l) | MCL<br>(mg/l)   | Status<br>HA | One-day<br>(mg/l)                         | Ten-day<br>(mg/l)    | Longer-<br>term<br>(mg/l)              | Longer-<br>term<br>(mg/l)                 | RfD<br>(mg/kg/<br>day) | DWEL<br>(mg/l) | Lifetim<br>e<br>(mg/l) | mg/l at 10 <sup>-4</sup><br>Cancer Risk   | Group     |
| Dichloropropane (2,2-)                                      | L                                         | -              |                 | Đ            | -                                         | =                    | _                                      | •                                         | _                      | _              | -                      | -                                         | -         |
| Dichloropropene (1,1-)                                      | L                                         | •              | int.            | D            | -                                         |                      |                                        | -                                         | •                      | •              | -                      |                                           | -         |
| Dichloropropene (1,3-)                                      | T                                         | zero           | •               | F            | 0.03                                      | 0.03                 | 0.03                                   | 0.09                                      | 0.0003                 | 0.01           |                        | 0.02                                      | <b>B2</b> |
| Dieldrin                                                    | •                                         | •              | -               | F            | 0.0005                                    | 0.0005               | 0.0005                                 | 0.002                                     | 0.00005                | 0.002          | -                      | 0.0002                                    | B2        |
| Diethyl phthalate (PAE)                                     | •                                         | •              | *************** | D<br>*       | -                                         | -                    | -                                      | -                                         | 0.8                    | 30             | 5                      |                                           | D         |
| Diethylene glycol dinitrate Di(2-ethylhexyl)phthalate (PAE) | F                                         | zero           | 0.006           | D            | <del>-</del><br>-                         | <del>-</del><br>-    | •                                      | -                                         | -<br>0.02              | •<br>0.7       | -<br>-                 | -<br>0.3                                  | #<br>B2   |
| Diisopropyl<br>methylphosphonate                            | -                                         | -              | -               | F            | 8                                         | 8                    | 8                                      | 30                                        | 80.0                   | 3              | 0.6                    | -                                         | D         |
| Dimethrin                                                   | -                                         | _              |                 | F            | 10                                        | 10                   | 10                                     | 40                                        | 0.3                    | 10             | 2                      |                                           | D         |
| Dimethyl methylphosphonate                                  |                                           | -              | •               | F            | 2                                         | 2                    | 2                                      | 6                                         | 0.2                    | 7              | 0.1                    | 0.7                                       | C         |
| Dimethyl phthalate (PAE)                                    |                                           |                | •               | -            | -<br>:::::::::::::::::::::::::::::::::::: | -<br>*************** | •                                      | -<br>:::::::::::::::::::::::::::::::::::: | -<br>***************   |                |                        | -                                         | D         |
| 1,3-Dinitrobenzene                                          | -                                         |                |                 | F            | 0.04                                      | 0.04                 | 0.04                                   | 0.14                                      | 0.0001                 | 0.005          | 0.001                  | •                                         | D         |
| Dinitrotoluene (2,4-)                                       | L                                         |                | -               | F            | 0.50<br>0.40                              | 0.50<br>0.40         | 0.30                                   | 1                                         | 0.002                  | 0.1            | -                      | 0.005                                     | B2        |
| Dinitrotoluene (2,6-)<br>tg 2,6 & 2,4 dinitrotoluene **     | L                                         | _              | -               |              | U.AU                                      | U.4U                 | 0.40                                   | 1                                         | 0.001                  | 0.04           | •                      | 0.005<br>0.005                            | B2        |
| Dinoseb                                                     | F                                         | 0.007          | 0.007           | F            | 0.3                                       | 0.3                  | 0.01                                   | 0.04                                      | 0.001                  | 0.04           | 0.007                  | 0.003                                     | B2<br>D   |
| Dioxane p-                                                  | ••••••••••••••••••••••••••••••••••••••    | <b></b>        | -               | F            | 4                                         | 0.4                  | ······································ | -                                         | ····•                  |                | -                      | 0.7                                       | B2        |
| Diphenamid                                                  | -                                         |                |                 | F            | 0.3                                       | 0.3                  | 0.3                                    | 1                                         | 0.03                   | 1              | 0.2                    | 0.,                                       | D         |
| Diphenylamine                                               | -                                         |                | ************    | F            | 1                                         | 1                    | 0.3                                    | 1                                         | 0.03                   | 1              | 0.2                    | -                                         | D         |
| Diquat                                                      | F                                         | 0.02           | 0.02            |              | •                                         | •                    |                                        | •                                         | 0.0022                 | 0.08           | 0.02                   | -                                         | D         |
| Disulfoton                                                  | -                                         |                | -               | F            | 0.01                                      | 0.01                 | 0.003                                  | 0.009                                     | 0.00004                | 0.001          | 0.0003                 |                                           | E         |
| Dithiane (1,4-)                                             | -                                         | _              | -               | F            | 0.4                                       | 0.4                  | 0.4                                    | 1                                         | 0.01                   | 0.4            | 0.08                   | •                                         | D         |
| Diuron                                                      |                                           | -              |                 | F            | 1                                         | 1                    | 0.3                                    | 0.9                                       | 0.002                  | 0.07           | 0.01                   | -                                         | D         |
| Endothall                                                   | F                                         | 1.0            | 0.1             | F            | 0.8                                       | 8.0                  | 0.2                                    | 0.2                                       | 0.02                   | 0.7            | 0.1                    | -                                         | D         |
| Endrin                                                      | F                                         | 0.002          | 0.002           | F            | 0.02                                      | 0.02                 | 0.003                                  | 0.01                                      | 0.0003                 | 0.01           | 0.002                  | •                                         | D         |
| Epichlorohydrin                                             | F                                         | zero           | П               | F            | 0.1                                       | 0.1                  | 0.07                                   | 0.07                                      | 0.002                  | 0.07           | •                      | 0.4                                       | B2        |
| Ethylbenzene                                                | F                                         | 0.7            | 0.7             | F            | 30                                        | 3                    | 1                                      | 3                                         | 0.1                    | 3              | 0.7                    | <b>.</b>                                  | D         |
| Ethylene dibromide (EDB)                                    | F                                         | zero           | 0.00005         | F            | 0.008                                     | 0.008                | -                                      |                                           | _                      | •              | _                      | 0.00004                                   | B2        |
| Ethylene glycol                                             | -<br>************************************ | <b>-</b>       | -               | F            | 20                                        | 6                    | 6                                      | 20                                        | 2                      | 40             | 7                      | •<br>************************************ | D         |
| ETU                                                         |                                           | <b>-</b>       | •               | F            | 0.3                                       | 0,3                  | 0.1                                    | 0.4                                       | 0.00008                | 0.003          | 0.000                  | 0.03                                      | B2        |
| Fenamiphos                                                  |                                           | <u> </u>       | <u>-</u>        | , F          | 0.009                                     | 0.009                | 0.005                                  | 0.02                                      | 0.00025                | 0.009          | 0.002                  |                                           | D         |

<sup>\*</sup> An HA will not be developed due to insufficient data; a "Database Deficiency Report" has been published.

October 1996

Page 4

<sup>\*\*</sup> tg = technical grade

October 1996

Page 5

|                 |                                                   |               |                             |                 |                 |                  |                                       |              |            |                                         |                                           |                                           | " Under review                          |
|-----------------|---------------------------------------------------|---------------|-----------------------------|-----------------|-----------------|------------------|---------------------------------------|--------------|------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|
| © O             | •                                                 | Z00.0         | 600.0                       | GS000.0         | 1.0             | €0.0             | £,0                                   | €′0          | 3          | -                                       | // (// <b>-</b> //                        | •                                         | Methy: parathion                        |
| G.              | -                                                 |               | enconstruir president encom | ·               | -               | -                | ·                                     | <del>-</del> | <u> </u>   | *************************************** |                                           | endana anno anno anno anno anno anno anno | Methyl ethyl ketone*                    |
| βū              | •                                                 | 10.0          | 2.0                         | 900'0           | <b>2.0</b>      | S0.0             | 90'0                                  | 90'0         | 1 4        | ₽0.0                                    | ▶0.0                                      | 4                                         | Methoxychlor                            |
| D               | <b>₩</b><br>.000000000000000000000000000000000000 | <b>2.0</b>    | 6.0                         | 0.025           | £.0             | €.0              | £.0                                   | £.0          | <u> </u>   | -                                       | -<br>************************************ |                                           | Метроту                                 |
| 3               | •                                                 | 10.0          | 90.0                        | 2100.0          | <b>¥</b> 0      | r.o              | 1.0                                   | 1.0          | 3          | ***                                     | •                                         | •                                         | MCbV<br>Wsjejc pydrazide                |
| O               | -                                                 | <b>†</b>      | SO                          | 6.0             | 50              | g                | Or                                    | 10           | ] <u> </u> | -                                       | <del>-</del><br>************              | <del>-</del><br>************              | noidtalaM<br>abissthyd pialaM           |
| a               | •                                                 | 2000.0<br>S.D | 10.0<br>8.0                 | £000.0<br>\$0.0 | f.0<br>8.0      | 6.03<br>S.0      | s.0                                   | 2.0          | ਜ<br>ਜ     | 2000.0                                  | 2000.0                                    | 7                                         | ensbnid<br>Lindane                      |
| <b>ე</b>        | _                                                 | Ų UUUS        | 100                         | EUUU U          | <b>↓</b> U      | i suu            | ŀ                                     |              | 0          | 20000                                   |                                           |                                           | euezueqi/doidosi                        |
| a               | -                                                 | 7.0           | 4.0                         | 1.0             | 100             | 30               | 30                                    | 30           | a          | -                                       | -                                         | -                                         | lsopropyl methylphosphonate             |
| 5               | •                                                 | 10            | L                           | 2.0             | 91              | Si               | Sk                                    | GI.          | 3          |                                         | •                                         | 7                                         | euoloudosi                              |
|                 | •                                                 |               |                             |                 | <b>-</b>        |                  | · · · · · · · · · · · · · · · · · · · |              |            | *************************************** |                                           |                                           | (HA9)                                   |
| <b>2</b> 8      | ***                                               | -             | •                           | •               | -               | -                | •                                     | •            | a          | -                                       | -                                         | -                                         | Indeno(1,2,3,-c,d)pyrene                |
| 0               | -                                                 | <b>Þ</b> 0    | 7                           | 20.0            | <b>S</b> 0      | g g              | S                                     | g            | Ä          | -                                       | <u>.</u>                                  | •                                         | XWH                                     |
| a               | -                                                 | •2.0          | .,                          | <b>◆</b> EE0.0  | 6               | ε                | ε                                     | E            | <b>4</b>   | -                                       |                                           | : <del>-</del>                            | Hexazinone                              |
| Ø               | •                                                 | •             | •                           | •               | O)              | ,                | 7                                     | 10           | H          | •                                       | •                                         | •                                         | Hexane (n-)                             |
| 3               | -                                                 | 100.0         | ₩0.0                        | 100.0           | <b>5.0</b>      | 1.0              | S                                     | g            | <u></u>    | -                                       | -                                         | 7                                         | Hexachioroethane                        |
| g               | •                                                 | •             | <b>Z</b> 0                  | Z00'0           | <b>+</b>        |                  | <b>-</b>                              | •            |            | \$0.0                                   | 50.0                                      | <b>H</b>                                  | Hexachlorocyclopentadiene               |
| <u> </u>        | -                                                 | 100.0         | 70.0                        | C00.0           | <b>þ</b> .0     | 1.0              | £.0                                   | £.0          | 占          |                                         | 100.0                                     | 1                                         | Hexachlorobutadiene                     |
| <b>23</b> 3     | 0.002                                             | •             | £0.03                       | 8000.0          | 2.0             | 50.0             | 90'0                                  | <b>30.0</b>  | 3          | 100.0                                   | OJƏZ<br>OJƏZ                              | #                                         | Heptachlor epoxide<br>Hexachlorobenzene |
| 29<br>29        | 8000.0<br>4000.0                                  | •             | 0:02<br>0:0004              | 0:0002<br>1E-2  | 200.0<br>1000.0 | \$00.0<br>1000.0 | ro.o                                  | 10.0<br>0.01 | 귀<br>- 국   | 15000.0<br>2000.0                       | OJOZ                                      | 구<br>구                                    | Heptachlor                              |
| 3               | 3000                                              | 7.0           |                             | 1.0             | 300.0           | 3000             | 50<br>50                              | 50           | 7          | 7.0                                     | 7.0                                       |                                           | Glyphosate                              |
|                 | •                                                 | 900.0         | <b>,</b>                    |                 | +               |                  | -                                     | •            | ā          |                                         |                                           | •                                         | Casoline, unleaded (benzene)            |
| <b>8</b> 8      | -                                                 | L             | S                           | S1.0            | 50              | S                | ç                                     | 01           | a          | •                                       | -                                         | a                                         | Formaldehyde                            |
| a               | •                                                 | 10.0          | <i>1</i> 0'0                | Z00'0           | 70.0            | zoo              | 20.0                                  | 20.02        | ā          |                                         |                                           |                                           | Fonotas                                 |
| 7//////ST////// | =                                                 | -             | -                           | -               | =               | •                | •                                     | •            | l a        | -                                       | *                                         | -                                         | liO go-i                                |
| g               | •                                                 | 3             | Or                          | 6.0             | Or              | ε                | L                                     | L            | <b></b>    | •                                       | -                                         | 7                                         | Fluoroitichloromethane                  |
| đ               | •                                                 | =             | -                           | ₽0.0            | -               | -                | =                                     | •            | •          | -                                       | -                                         | -                                         | (HA9) eneroul                           |
| 0               |                                                   | 60'0          | <b>₽</b> 0                  | 610.0           | g               | Z                | 7                                     | t            | 9          | •                                       | •                                         |                                           | Fluometran                              |
|                 | Cancer Risk                                       | (Mgm)         | (µ8w)                       | (Yeb            | (µBw)           | (y6w)            | (Mgm)                                 | (y6w)        |            |                                         |                                           |                                           |                                         |
|                 | *ot sa Ngm                                        | emitelia      | DANEE                       | (wayka)         | met             | met              | Ten-day                               | Ysb-enO      |            |                                         |                                           |                                           |                                         |
|                 |                                                   |               |                             | CHR             | Longer-         | Longer-          |                                       |              | AH         | (µ6w)<br>MCF                            | (way)<br>WCLG                             | Status<br>.geA                            |                                         |
| Group           |                                                   | lin           | 10-KB PG                    |                 |                 |                  | 10-kg Child                           |              | Sustus     | JUN                                     | O IOM                                     |                                           | Chemicais                               |
| -000            |                                                   | .121          |                             |                 |                 |                  |                                       |              | ]          |                                         |                                           | 1                                         |                                         |
|                 |                                                   |               |                             | sahoalybA       | thisaH          |                  |                                       |              |            | 9                                       | Standard:                                 |                                           |                                         |
|                 |                                                   |               |                             |                 |                 |                  |                                       |              |            | 1                                       |                                           |                                           | <u> </u>                                |

<sup>&</sup>quot; Under review.

<sup>\*\*</sup> Carcinogenicity based on inhalation exposure. \*\*\*See 40CFR Parts 141 and 142

#### October 1996

| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                             | Healt                     | h Advisorie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                         |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------|
| Chemicals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Status   | MCLG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MCL    | Status |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-kg Child                                                  |                                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70-kg A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dult                                                                                                           |                                         | Cancel<br>Group        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reg.     | (mg/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (mg/l) | НА     | One-day<br>(mg/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ten-day<br>(mg/l)                                            | Longer-<br>term<br>(mg/l)                   | Longer-<br>term<br>(mg/l) | RfD<br>(mg/kg/<br>day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DWEL<br>(mg/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lifetime<br>(mg/l)                                                                                             | mg/l at 10 <sup>-1</sup><br>Cancer Risk |                        |
| Methyl tert butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -      | D      | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24                                                           | 3                                           | 12                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02-0.2*                                                                                                      |                                         | C***                   |
| Metolachior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •      | F      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                            | 2                                           | 5.0                       | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.07                                                                                                           | •                                       | C                      |
| Metribuzin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -      | F      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                            | 0.3                                         | 0.5                       | 0.013**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1                                                                                                            | =                                       | D                      |
| Monochloroacetic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ļ        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •      | D      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                            |                                             |                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                              | •                                       | •                      |
| Monochlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F        | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1    | F      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                            | 2                                           | 7                         | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1                                                                                                            | -                                       | Ð                      |
| Naphthalen <del>e</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •      | F      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5                                                          | 0.4                                         | 1                         | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02                                                                                                           | •                                       | D                      |
| Nitrocellulose (non-toxic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -        | ., -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -      | F      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                                            | •                                           | -                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                              | **************************************  | -                      |
| Nitroguanidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •      | F      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                           | 10                                          | 40                        | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                                                                                                            | •                                       | D                      |
| Nitrophenol p-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •      | F      | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.8                                                          | 0.8                                         | 3                         | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.06                                                                                                           | •                                       | ٥                      |
| Oxamyl (Vydate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F        | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2    | F      | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2                                                          | 0.2                                         | 0.9                       | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2                                                                                                            | •                                       | E                      |
| Paraquat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | F      | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1                                                          | 0.05                                        | 0.2                       | 0.0045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.03                                                                                                           | •                                       | E                      |
| Pentachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •      | D      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              | 4                                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                              | •                                       |                        |
| Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F        | zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.001  | F      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3                                                          | 0.3                                         | 1                         | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                              | 0.03                                    | <b>B</b> 2             |
| Phenanthrene (PAH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •      | •      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                            |                                             |                           | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                              |                                         |                        |
| Phenoi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •      | D      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                            | 6                                           | 20                        | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                              | •                                       | D                      |
| Picloram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F        | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5    | F      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                           | 0.7                                         | 2                         | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5                                                                                                            |                                         | ō                      |
| Polychlorinated biphenyls (PCBs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F        | zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0005 | Р      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                            | •                                           | -                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                              | 0.0005                                  | B2                     |
| Prometon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | F      | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2                                                          | 0.2                                         | 0.5                       | 0.015*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1*                                                                                                           |                                         | D                      |
| Pronamide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I -      | <ul> <li>Control (Control /li></ul> | -      | F      | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,8                                                          | 0.8                                         | 3                         | 0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.05                                                                                                           | •                                       | C                      |
| Propachior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | F      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5                                                          | 0.1                                         | 0.5                       | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.09                                                                                                           | •                                       | Đ                      |
| Propazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -      | F      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                            | 0.5                                         | 2                         | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01                                                                                                           | •                                       | C                      |
| Propham                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | F      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                            | 5                                           | 20                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1                                                                                                            | -                                       | D                      |
| Propylbenzene n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _        | <u>.</u><br>■                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •      | D      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | **************************************                       | •                                           | -                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                              | _                                       |                        |
| Pyrene (PAH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                            |                                             | -                         | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                              | _                                       | Ð                      |
| RDX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •      | F      | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1                                                          | 0.1                                         | 0.4                       | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.002                                                                                                          | 0.03                                    | C                      |
| Simazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F        | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.004  | F      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.07                                                         | 0.07                                        | 0.07                      | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.002                                                                                                          | 0.03                                    | Parties Transportation |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F        | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1    | F      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                            | 2                                           | 7                         | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.004                                                                                                          | •                                       | Ģ                      |
| 2,4,5-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ĺ        | U. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | F      | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.8                                                          | 0.8                                         | 1                         | Control of the Contro | e de la companio del companio de la companio del companio de la companio del companio de la companio de la companio de la companio del companio de la companio della companio della companio de la companio della compan | entre de la companya | •                                       | 5                      |
| and a contract of the second contract of the second contract of the contract of the contract of the second contract of the con | F        | TOTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3E-08  | F      | designation of the state of the | Charles and the charles and debit for a second with a second | Section and additional control control con- | A 2000 COSC (2000 COSC )  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.07                                                                                                           | 25.00                                   | Þ                      |
| 2,3,7,8-TCDD (Dioxin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>r</u> | zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JE-U8  | F      | 1E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1E-07                                                        | 1E-08                                       | 4E-08                     | 1E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                              | 2E-08                                   | <b>5</b> 2             |

<sup>\*</sup> Under review. NOTE: Phenanthrene — not proposed.

\*\* The RfD for metribuzin was revised Dec. 1994 to 0.013 mg/kg/day. Based on this revised RfD the Lifetime HA would be 0.1 mg/l assuming a 20% relative source contribution for drinking water.

This information has not been incorporated in the Health Advisory document. \*\*\* Tentative.

<sup>\*</sup> If the cancer classification C is accepted, the Lifetime HA is 0.02; otherwise it is 0.200 mg/L

October 1996

Page 7

| inder review.                                          | · · · · · · · · · · · · · · · · · · · |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                  |                                           | 40                                      | 100             | 2                  | 09                                                                                                            | 10            |             | Ô                 |
|--------------------------------------------------------|---------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|-------------------------------------------|-----------------------------------------|-----------------|--------------------|---------------------------------------------------------------------------------------------------------------|---------------|-------------|-------------------|
| Xylenes                                                |                                       | OJez<br>10                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                     | 3<br>40          | 9                                         | 10.0                                    | 60.0<br>001     | <u>د</u>           | US                                                                                                            | - 0,          | \$100.0     | •                 |
| Vinyl chloride                                         | 3                                     | MAZ -                                     | Z00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                     | 20.0<br>F        | \$0.0<br>2                                | 20.0                                    | 20.0            | 9000.0             | 20.0                                                                                                          | 0.002         | 1.0         | 3                 |
| Trinitroglycerol<br>Trinitrotoluene                    |                                       | -<br>:::::::::::::::::::::::::::::::::::: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                     | 900.0            | 200.0                                     | 200.0                                   | 200.0           | 2000 0             |                                                                                                               | \$00.0        | •           | •                 |
| Trimethylbenzene (1,3,5-)                              |                                       | _                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a<br>a                | 2000             | 3000                                      |                                         | •               | -                  | •                                                                                                             | -             | -           | •                 |
| (-5,2,1) eneznedlynteminT<br>(-3,5,1) eneznedlynteminT | _                                     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a                     | •                | •                                         |                                         | •               | •                  | •                                                                                                             | -             | •           | j.                |
| Trifluralin<br>Trimethylbepseed (4 2 4.)               |                                       |                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                     | 80.0             | 80.0                                      | 80.0                                    | 6.0             | <b>9</b> 400.0     | £.0                                                                                                           | 800.0         | <b>5.</b> 0 | <u>-</u>          |
| Trichloropropane (1,2,3,-)                             | i                                     | •                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                     | 9.0              | 9.0                                       | 9.0                                     | Z               | 900.0              | 2.0                                                                                                           | <b>Þ</b> 0.0  | <b>6.0</b>  | 78                |
| (-f,f,f) ensqongonoldoinT                              | •                                     | •                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a                     | -                | -                                         | •                                       | •               | *******            | -                                                                                                             | •             | -           | •                 |
| Trichlorophenol (2,4,6-)                               | 7                                     | •                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a                     | •                | •                                         | -                                       | •               | •                  | •                                                                                                             | •             | E.0         | ZĒ                |
| Trichloroethylene                                      |                                       | CJƏZ                                      | <b>900</b> .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>ਰ</b>              | -                | •                                         | •                                       | •               | •                  | £.0                                                                                                           | •             | £.0         | 25                |
| Trichloroethanol (2,2,2-)                              | - i                                   | •                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                     | •                | •                                         |                                         |                 | •                  | •                                                                                                             | •             | •           | ,                 |
| Trichloroethane (1,1,2-)                               | 3                                     | £00.0                                     | <b>200</b> .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                     | 9.0              | ₽'0                                       | <b>Þ</b> .0                             | ļ               | <b>\$00.0</b>      | 1.0                                                                                                           | £00.0         | -           | -                 |
| Trichloroethane (1,1,1,1)                              | 3                                     | 0.2                                       | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                     | 100              | Q <del>*</del>                            | 07                                      | 100             | <b>2</b> E0.0      | ı,                                                                                                            | <b>2.0</b>    | -           | ₫                 |
| Trichlorobenzene (1,3,5-)                              | . •                                   |                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                     | 9.0              | 9.0                                       | 9.0                                     | 7               | 900.0              | 2.0                                                                                                           | <b>\$</b> 0.0 | •           | ٥                 |
| Trichlorobenzene (1,2,4-)                              | 9                                     | 40.0                                      | 40'0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                     | 1.0              | 1.0                                       | F.0                                     | 8.0             | 10.0               | <b>P</b> 0.0                                                                                                  | 70.0          | -           | a                 |
| Trichloroacetonitrile                                  | ا ٦                                   | -                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O .                   | 20.0             | 50.0                                      | -                                       | -               | <u> </u>           |                                                                                                               | -             | -<br>       | -<br>             |
| Trichloroacetic acid                                   | đ                                     | £.0                                       | 90'0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a                     | Þ                | þ                                         | ,                                       | EL              | ř.O                | 0.4                                                                                                           | £.0           | -           | 9                 |
| trifluoroethane                                        | -                                     | -                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                     | -                | -                                         | -                                       | -               | -                  | -                                                                                                             | -             |             | -                 |
| 1,1,2-Trichloro-1,2,2-                                 |                                       | 8600-e A 000000e                          | and an annual contraction of the | andres a construction | Sarodonia (1995) | 00000000000000000000000000000000000000    | 200000000000000000000000000000000000000 |                 | TO A SAME AND SAME | o de la companya de | <b>50.0</b>   |             | a                 |
| gT-8,4,S                                               | Э -                                   | 90.0                                      | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                     | 2.0              | 2.0                                       | 70.0                                    | €;0             | 9200.0             | €.0                                                                                                           | - 500         | £00.0       | BS                |
| Toxaphene                                              | E                                     | OJƏZ                                      | £00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b></b>               | *************    | •                                         |                                         | L               | 0.1°               | L                                                                                                             | 1             | 600 0       | a                 |
| Toluene                                                | 3                                     | ļ                                         | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 긤                     | 20               | 7                                         | 7                                       | <u> </u>        |                    | L                                                                                                             | •             | -           |                   |
| Tetranitromethane                                      | ·                                     | ouez                                      | -<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                     | 7                | -<br>************************************ | -<br>                                   | 9               | 10.0               | <b>9</b> .0                                                                                                   | <b>-</b>      | 20.0        | -                 |
| Tetrachloroethane (1,1,2,2-) Tetrachloroethylene       | <u> </u>                              | . Wez                                     | 900'0<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a l                   | ٠                | -                                         | **************************************  | -               | ~                  | •                                                                                                             | •             | -           | -<br>-            |
| Tetrachloroethane (1,1,1,1).                           | 7                                     | <del>-</del>                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a l                   | 7                | 7                                         | 6.0                                     | ε               | £0.0               | ı                                                                                                             | 70.0          | 1.0         | 9                 |
| 1.C t t t) anedtamoldpartaT                            |                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 4                | •                                         | · · · · · · · · · · · · · · · · · · ·   | •               | 3                  | · · · · · · · · · · · · · · · · · · ·                                                                         |               |             | ***************** |
| Terbufos                                               | - 1                                   | -                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | 200.0            | 900.0                                     | 100.0                                   | 900.0           | 1000.0             | 200.0                                                                                                         | 6000.0        | -           | a                 |
| Terbacil                                               |                                       | -                                         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                     | 6.0              | εσ                                        | £,0                                     | 6'0             | 610.0              | ₩0                                                                                                            | 60.0          | -           | 3                 |
| Tebuthiuron                                            | -                                     | ······································    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | ε                | ε                                         | 7.0                                     | 7               | 70.0               | 7                                                                                                             | <b>č.</b> 0   | _           | a                 |
|                                                        |                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | (yBw)            | (J/6w)                                    | (Mgm)                                   | ( <u>/</u> /Bw) | (Kep/              | (µBw)                                                                                                         | (yBiu)        | Cancer Risk |                   |
|                                                        |                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | One-day          | Yeb-neT                                   | tema                                    | may             | бұувш)             | DANEL                                                                                                         | embeliJ       | *Of Ja Ngm  |                   |
|                                                        | -Bey                                  | (y6w)                                     | (y6w)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VH.                   |                  |                                           | roudet-                                 | abuon           | CHA .              |                                                                                                               |               |             |                   |
|                                                        | autat2                                | MCFG                                      | WCF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eutete                |                  | muse Bu                                   |                                         |                 |                    | 70-kg ∧                                                                                                       | Moo           |             | Guont             |
| Chemicals                                              |                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                  | 10-KB CPIIQ                               |                                         |                 |                    | A -4.07                                                                                                       | #inh/         |             |                   |
|                                                        |                                       | Standa                                    | en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F                     |                  |                                           |                                         | thissH          | ehosivbA :         | 9                                                                                                             |               |             |                   |
|                                                        |                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                  |                                           |                                         |                 |                    |                                                                                                               |               |             |                   |

<sup>\*\*</sup> A HA will not be developed due to insufficient data; a "Database Deficiency Report" has been published. 
\*\* Total for all haloacetic soids cannot exceed 0.06 mg/l level.

#### Drinking Water Standards and Health Advisories

October 1996

8 egs9

| 1<br>2<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                         | 0.05 0.08<br>0.05 0.07<br>0.07 0.00<br>0.08 0.07<br>0.09 0.09<br>0.09 0.09<br>0.09 0.09<br>0.09 0.09           | 0.003<br>0.005<br>0.003<br>0.003<br>0.003<br>0.003<br>0.003 | 2'1<br>90'0<br>200'0<br>-<br>-<br>-<br>-<br>9'0<br>-<br>9'0 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>0.01 | 200<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                            |                                          | 0.10<br>0.002<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | ,10<br>-<br>2000<br>-<br>OJØZ<br>-<br>17<br>-<br>17 | F P P F F F F F F F F F F F F F F F F F | Fluoride*  Hypochloride Mercury (inorganic) Lead (at tap) Mercury (inorganic) Mercury |
|--------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| · · · · · · · · · · · · · · · · · · ·                                                            |                                         | 20 800<br>20 80<br>20 80                                                                                       | 0.003<br>0.003<br>0.003<br>0.10<br>0.14*                    | Z00'0<br>-<br>-<br>-<br>-<br>-<br>9'0                       |                                                   | -<br>-<br>-<br>-                                                     | -<br>-<br>-<br>-                           | -<br>-<br>-<br>-<br>H                    | -<br>-<br>-<br>-                                                                                        | -<br>0182<br>17<br>17<br>7                          | P P F                                   | Hypochlorite<br>Manganese<br>Lead (at tap)<br>Lead (at tap)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| · 2 · · · · · · · · · · · · · · · · · ·                                                          |                                         | 20 80<br>                                                                                                      | 00.00<br>200.0<br>20.0<br>21.0<br>-<br>-<br>-               | 9.0                                                         | 2.0<br>-                                          | -<br>-<br>-                                                          | -<br>-<br>-<br>-                           | -                                        | -<br>-<br>-<br>-                                                                                        | -<br>0182<br>17<br>17<br>7                          | d<br>E<br>E                             | Hypochlorite<br>Lead (at tap)<br>Lead (at tap)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                  | •<br>•<br>•                             | 20 80<br><br>L'0 20                                                                                            | 0.003<br>0.005<br>0.12<br>0.12                              | 8.0<br>-<br>-                                               | 2.0<br>-                                          | -<br>-<br>-                                                          | -<br>-<br>-                                | -<br>-<br>-                              | -<br>•                                                                                                  | را<br>ران<br>الان                                   | 9<br>9                                  | Hypochlorite<br>Hypochlorous acid<br>Lead (at tap)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                  | •<br>•<br>•                             | 80.0 1.0<br>C.0 8.0                                                                                            | 0.003<br>- C 002<br>21.0                                    | 8.0<br>-<br>-                                               | 2.0<br>-                                          | -<br>-<br>-                                                          | -<br>-<br>-                                | -<br>-<br>-                              | -<br>•                                                                                                  | را<br>ران<br>الان                                   | 9<br>9                                  | Нуросиюлья всіс<br>Нуросиюлья всіс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                  |                                         | 20 80<br><br>- 20<br>                                                                                          | 0.003<br>- C 002<br>21.0                                    | 9.0<br>-                                                    | 2.0<br>-                                          | -                                                                    | •                                          | -                                        |                                                                                                         | ال<br>ال                                            | d                                       | Нуросыюте                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                  |                                         | 80.0 1.0<br>2.0 8.0<br>                                                                                        | 0.003<br>- C 002<br>21.0                                    | 9.0<br>-                                                    | 2.0<br>-                                          | -                                                                    | •                                          | -                                        |                                                                                                         | 7                                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                  | -<br>-<br>-                             | 0.0 0.0<br>0.2 0.1<br><br>0.8 0.2                                                                              | 60.00<br>600.0<br>-<br>SS0.0                                | -                                                           | -                                                 | <u>-</u><br>-                                                        | 20                                         | -                                        |                                                                                                         |                                                     | <u> </u>                                | ו ימפוומב                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                  | -<br>-<br>-                             | 80.0 1.0<br>7.0 5.0<br>                                                                                        | 600.0<br>600.0<br>-                                         | -                                                           | -                                                 | <u>-</u><br>2.0                                                      | 2.0                                        |                                          | 20000000000000000000000000000000000000                                                                  |                                                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| a<br>a<br>a                                                                                      | •<br>•                                  | 80.0 r.0                                                                                                       | £00.0                                                       | 8.0                                                         |                                                   | -                                                                    |                                            |                                          | 2.0                                                                                                     | 2.0                                                 | 7                                       | Cyanide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4<br>4<br>4                                                                                      | •<br>•                                  | 80.0 r.0                                                                                                       | £00.0                                                       | 8.0                                                         |                                                   |                                                                      | -                                          | •                                        | ****                                                                                                    | £.f                                                 | 4                                       | Copper (at tap)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>a</b><br>a                                                                                    | •<br>•                                  |                                                                                                                |                                                             |                                                             | 2.0                                               | i.                                                                   | 1                                          | 7                                        | 1.0                                                                                                     | 1.0                                                 | 3                                       | Chromium (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| a .                                                                                              | -                                       | E.O 2E.O                                                                                                       |                                                             | -                                                           | -                                                 | -                                                                    | -                                          | a                                        | ŀ                                                                                                       | 80.0                                                | 7                                       | Chlorite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                  | *************************************** | Marketinia e e estable es e establica distributado contrar e fe e estra establica.                             | 10.0                                                        | •                                                           | -                                                 | •                                                                    | •                                          | a                                        | 8.0                                                                                                     | €.0                                                 | 1                                       | Chlorine dioxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| •                                                                                                |                                         | -                                                                                                              | 1.0                                                         | •                                                           | -                                                 | -                                                                    | ,                                          | a                                        | 7                                                                                                       | <b>*</b>                                            | <b>d</b>                                | Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                  |                                         | -                                                                                                              | •                                                           | <u>.</u>                                                    | -                                                 | -                                                                    | •                                          | a                                        | •                                                                                                       |                                                     | 7                                       | Chlorate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                  |                                         | 3.3 3/4*                                                                                                       | 1.0                                                         | ŀ                                                           | <b>,</b>                                          | J.                                                                   | l.                                         | a                                        | <b>*</b>                                                                                                | ****                                                | ď                                       | Chloramine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C C                                                                                              | - g                                     | 00.0 S0.0                                                                                                      | 9000'0                                                      | S0.0                                                        | <b>900</b> '0                                     | 40.0                                                                 | <b>\$</b> 0.0                              | 4                                        | 500.0                                                                                                   | 900'0                                               | 4                                       | - Gadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                  |                                         |                                                                                                                | _                                                           | <b></b>                                                     | -                                                 |                                                                      | -                                          | -                                        | 10.0                                                                                                    | OJƏZ                                                | 7                                       | Bromate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| a                                                                                                | •                                       | 9.0 E                                                                                                          | 60'0                                                        | 3                                                           | 6:0                                               | 6'0                                                                  | •                                          | a                                        | •                                                                                                       | •                                                   | - 1                                     | noroa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                  | 000.0                                   | - 2.0                                                                                                          | 200.0                                                       | 50                                                          | <b>*</b>                                          | 30                                                                   | 30                                         | O. O | <b>\$</b> 00.0                                                                                          | <b>≯</b> 00.0                                       | <b></b>                                 | Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| o l                                                                                              | •                                       | 7 7                                                                                                            | 70.0                                                        | _                                                           | •                                                 | •                                                                    | •                                          | 3                                        | 7                                                                                                       | 7                                                   | H.                                      | muhad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| V 73                                                                                             | 300 MF                                  |                                                                                                                | _                                                           | ,                                                           |                                                   | _                                                                    | _                                          | _                                        | <b> </b>                                                                                                | - wat t                                             |                                         | Mght   hangth   hangth   hangth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                  | 200.0<br>1311 007                       | _                                                                                                              |                                                             | _                                                           |                                                   | -<br>                                                                | _<br>*:::::::::::::::::::::::::::::::::::: | l                                        | J-JM Z                                                                                                  | 7 MFL                                               | 4                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| a                                                                                                |                                         | 00.0 10.0                                                                                                      | <b>≯</b> 000'0                                              | 0.015                                                       | 10.0                                              | 10.0                                                                 | 10.0                                       | a                                        | 50:0                                                                                                    | 000:0                                               |                                         | ynominA<br>SinearA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| a a                                                                                              |                                         | 200                                                                                                            | <b>7000 0</b>                                               | 7100                                                        | \$U U                                             | 10 U                                                                 |                                            | <u> </u>                                 | 900.0                                                                                                   | 900.0                                               | 4                                       | sinomnA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -                                                                                                | -                                       |                                                                                                                | •                                                           | -                                                           | -                                                 | -                                                                    | •                                          | a<br>a                                   | -                                                                                                       | -                                                   | 7                                       | munimulA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                  |                                         |                                                                                                                |                                                             | ,                                                           |                                                   |                                                                      |                                            | -                                        |                                                                                                         |                                                     | ·                                       | INORGANICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| yen:                                                                                             |                                         | ճա)<br>e ( <i>լ</i> թեա)                                                                                       | (Yeb)                                                       | (/6w)                                                       | (J/6w)                                            | (µ6w)                                                                | (убш)                                      |                                          |                                                                                                         |                                                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                  |                                         | DWEL נונפן                                                                                                     | (MB/KB                                                      | met<br>(Nom)                                                | រភាទវ                                             | Yeb-day<br>(mod)                                                     | Ysb-enO                                    |                                          |                                                                                                         |                                                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                  |                                         |                                                                                                                | ดห                                                          | -ronger-                                                    | conder-                                           |                                                                      |                                            | ΑH                                       | (VBW)                                                                                                   | (Mg/l)                                              | -Reg.                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Gancer                                                                                           |                                         | 70-kg Adult                                                                                                    |                                                             |                                                             |                                                   | JO-KB CHIIQ                                                          | l .                                        | #WA2                                     | WCF                                                                                                     | MCFG                                                | autst2                                  | Chemicals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                  |                                         |                                                                                                                |                                                             |                                                             |                                                   |                                                                      |                                            |                                          |                                                                                                         |                                                     |                                         | .,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                  | NT1011T11000000000000000000000000000000 | MARKA KARITTI PARTETE PERTENDAN KARITA K | en e                    | A dilaaH                                                    | 30000000666600000000000000000000000000            |                                                                      |                                            |                                          |                                                                                                         | Standard                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

<sup>.</sup> Under review.

<sup>&</sup>quot; Under review. " Copper — action level 0.015 mg/L, Lead — action level 0.015 mg/L

<sup>\*\*\*</sup> Measured as free chlorine.

Regulated as chlorine.

boot nl s

<sup>,</sup> In water.

Tanak 12

October 1996

|                                                                     |                                       | caecos I processos concessos con |                          |                     |                           |                        |                |                        |                                         |        |
|---------------------------------------------------------------------|---------------------------------------|----------------------------------|--------------------------|---------------------|---------------------------|------------------------|----------------|------------------------|-----------------------------------------|--------|
|                                                                     | Standards                             |                                  |                          |                     | Health A                  | Health Advisories      |                |                        |                                         |        |
| Chemicals                                                           |                                       | Statue                           | 10-kg                    | 10-kg Child         |                           |                        | 70-kg Adult    | ıt                     |                                         | Cancar |
|                                                                     | Reg. (mg/l) (mg/l)                    |                                  | One-day Te.<br>(mg/l) (n | Ten-day term (mg/l) | Longe<br>r-term<br>(mg/l) | RrD<br>(mg/kg/<br>day) | DWEL<br>(mg/l) | Lifetim<br>e<br>(mg/l) | mg/l at 10 <sup>-1</sup><br>Cancer Risk | dnos   |
| Nitrite (as N) Nitrate + Nitrite (both as N)                        |                                       | L IL                             | - 1.                     |                     |                           | 0.16*                  |                |                        |                                         |        |
| Selenium<br>Silver                                                  | F 0.05 0.05                           | . 0 (                            | 0.2 0.                   | 0.2 0.2             | 0.2                       | 0.005<br>0.005         | . 0.2          | - 0.1                  |                                         | . 0    |
| Strontlum<br>Sulfate                                                | , , , , , , , , , , , , , , , , , , , | <u> </u>                         | 25 25                    | . 25                | . 8                       | 9                      | 20 <b></b>     | 11                     |                                         | . ი    |
| Thaillium                                                           | 0 ·                                   | л с<br>-                         | 0 2000                   | 0.007 0.007         | 0.02                      | 0,00007                | 0.0023         | 0.0005                 |                                         | (      |
| White phosphorous                                                   | •                                     | ) IL (                           |                          |                     |                           | 2000                   | 2000           | 10000                  |                                         | 20     |
| Zinc chlonde (measured as Zinc)                                     |                                       | J H                              | G<br>G                   | n E                 | 5 5                       | 0.3                    | 5 5            | 2 2                    |                                         | ٥٥     |
| RADIONUCLIDES                                                       |                                       |                                  |                          |                     |                           |                        |                |                        |                                         |        |
| Beta particle and photon activity (formerly man-made radionuclides) | F ++ 4 mrem                           |                                  |                          | •                   | •                         |                        |                |                        | g.com                                   | •      |
| Gross alpha particle activity                                       | ‡                                     | •                                |                          |                     | ı                         | •                      |                |                        | 15 pCiAL                                | ٤ ٧    |
| Combined Radium 226 & 228 Radon*                                    | F ++ 5 pCut.<br>P zero 300            |                                  |                          |                     |                           |                        |                |                        | 20 pC/L                                 |        |
| Uranium*                                                            | ~~                                    |                                  | -                        | •                   |                           | 0.003                  | , ,            |                        | TAPACE!                                 | e 4    |

<sup>\*</sup> Under review. \*\* Guidance. + 1991 Proposed National Primary Drinking Water Rule for Radionuclides ++No final MCLG, but zero proposed in 1991.

## Table 13 NEW YORK STATE MAXIMUM CONTAMINANT LEVELS (Chapter I of the NYS Sanitary Code, Part 5, Subpart 5.1) ORGANIC

#### (as of February 1992) All units are milligrams per liter (mg/l)

| GENERAL ORGANIC CHEMICALS                         |         |
|---------------------------------------------------|---------|
| Principal Organic Contaminant (POC) <sup>18</sup> | MCL     |
| Benzene                                           | 0.005   |
| Bromobenzene                                      | 0.005   |
| Bromochloromethane                                | 0.005   |
| Bromomethane                                      | 0.005   |
| n-butylbenzene                                    | 0.005   |
| sec-butylbenzene                                  | 0.005   |
| tert-butylbenzene                                 | 0.005   |
| Carbon tetrachloride                              | 0.005   |
| Chioroethane                                      | 0.005   |
| 2-chlorotoluene                                   | 0.005   |
| 4-chiorotoluene                                   | 0.005   |
| Dibromomethane                                    | 0.005   |
| o-Dichlorobenzene (1,2)                           | 0.005   |
| m-Dichlorobenzene (1,3)                           | 0.005   |
| p-Dichlorobenzene (1.4)                           | 0.005   |
| Dichlorodifluoromethane                           | 0.005   |
| 1,1-Dichloroethane                                | 0.005   |
| 1,2-Dichloroethane                                | 0.005   |
| 1,1-Dichloroethylene                              | 0.005   |
| cis-1,2-Dichioroethylene                          | € 0.005 |
| trans-1,2-Dichloroethylene                        | 0.005   |
| Dichloromethane (Methylene chloride)              | 0.005   |
| 1,2-Dichloropropane                               | 0.005   |
| 1,3-Dichloropropane                               | 0.005   |
| 2,2-Dichloropropane                               | 0.005   |
| 1,1-Dichloropropene                               | 0.005   |
| cis-1,3-Dichloropropene                           | 0.005   |
| trans-1,3-Dichloropropene                         | 0.005   |
| Ethylbenzene                                      | 0.005   |
| Hexachlorobutadiene                               | 0.005   |
| Isopropylbenzene                                  | 0.005   |

|                                            | 200.0 |
|--------------------------------------------|-------|
| Vinyl chloride                             | MCF   |
|                                            | 1.0   |
| Total POCs ** and UOCs **                  | MCL   |
|                                            | 50.0  |
| er(OOU) rnanimatnoo oinagro beiticegenU    | MCL   |
| Xylenes (total)                            | 500.0 |
| anasnadlydtamitT-3,5,1                     | 900.0 |
| anaznadlydtaminT-A,S,f                     | 900.0 |
| eneqoropichichloropropane                  | 900.0 |
| nethanoromethane                           | 300.0 |
| Trichloroethylene (TCE)                    | 300.0 |
| anshteorothair S.f.,                       | 300.0 |
| anshteorothaiT-f,f,f                       | 300.0 |
| -7.ichlorobenzene                          | 900'0 |
| 3.3-Trichlorobenzene                       | 300.0 |
| Toluene                                    | 900.0 |
| Ferrachloroethylene                        | 300.0 |
| ansdreonoidastraT-S,S,f,f                  | 900.0 |
| anstheoroldasteT-S,f,f,l                   | 300.0 |
| Styrene                                    | 600.0 |
| n-Propylbenzene                            | 0.005 |
| Monochlorobenzene                          | 900.0 |
| p-isopropyitoluene                         | 900.0 |
| *** O'GOT) franimatic Confamiliant (POC)** |       |

Table 13 (Continued)

| Contaminant        | MCL    |
|--------------------|--------|
| Endrin             | 0.0002 |
| Ethylene dibromide | 0.005  |
| Lindane            | 0.004  |
| Methoxychlor       | 0.050  |
| Toxaphene          | 0.005  |
| 2,4-D              | 0.050  |
| 2,4,5-TP (Silvex)  | 0.010  |

# TRIHALOMETHANES

| TRIHALOMETHANES        | والمستقول والمستول والمستقول والمستقول والمستقول والمستقول والمستقول والمستو |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contaminant            | MCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total Trihalomethans s | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TOTAL TIMBOTHERIUM     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# TABLE 13-INORGANIC CHEMICALS AND PHYSICAL CHARACTERISTICS MAXIMUM CONTAMINANT LEVEL DETERMINATION

| Contaminants                                                              | MCL<br>(mg/1)                                                                                  | Determination of MCL violation                                                                                                                                                        |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Asbestos                                                                  | 7.0 Million fibers/liter (MFL) (Longer than 10 microns)                                        | If the results of a monitoring sample analysis exceed the MCL, the supplier of                                                                                                        |
| Arsenic Barium Cadmium Chromium Mercury Selenium Silver Fluoride Chloride | 0.05<br>2.00<br>0.005<br>0.10<br>0.002<br>0.01<br>0.05<br>2.2<br>250.0                         | water shall collect one more sample from the same sampling point within 2 weeks or as soon as practical. An MCL violation occurs when the average of the two results exceeds the MCL. |
| Iron Manganese Sodium Sulfate Zinc Color Odor                             | 0.3 <sup>2</sup> 0.3 <sup>2</sup> No designated limits <sup>3</sup> 250.0 5.0 15 'nits 3 Units | 6:                                                                                                                                                                                    |

¹Rounded to the same number of significant figures as the MCL for the contaminant in question.

<sup>&</sup>lt;sup>2</sup>If iron and manganese are present, the total concentration of both should not exceed 0.5 mg/l. Higher levels may be allowed by the State when justified by the supplier of water.

TABLE 14

Recommended soil cleanup objectives (wg/kg or ppm)

Volatile Organic Contaminants

|                           |                    |                                           | •                        | ъ ••                                         | USEPA Healt |                       | ***     |                                 |
|---------------------------|--------------------|-------------------------------------------|--------------------------|----------------------------------------------|-------------|-----------------------|---------|---------------------------------|
|                           | Pertition          | Graundweter                               | Allowable                | Soil Cleanup                                 | (pps)       |                       |         |                                 |
|                           | coefficient<br>Koc | Standards/<br>Criteria Cu<br>ug/L or ppb. | Soil conc.<br>ppm.<br>Cs | objectives to<br>Protect GW<br>Quality (ppm) | Carcinogens | Systemic<br>Toxicants | (ppb)   | Rec.soil<br>Elmup Obje<br>(ppm) |
|                           | 2.2                | 50                                        | 0.0011                   | 0.11                                         | . N/A       | 8,000                 | 10      | 0.2                             |
| Acetone                   | 2.2<br>23          | 9.7                                       | 8.0004                   | 0.06                                         | 24          | N/A                   | 5       | 0.06                            |
| Senzene                   | 54*                | 50                                        | 0.027                    | 2.7                                          | M/A         | 300,000               | 5       | 2.7                             |
| Senzeic Acid              | 4.5°               | 50 .                                      | 0.003                    | 0.3                                          | H/A         | 4,000                 | 10      | 0.3                             |
| 2-Butanone                | 54°                | 50                                        | 0.027                    | 2.7                                          | N/A         | 8.000                 | 5       | 2.7                             |
| Carbon Disulfide          | 110*               | , 30<br>5                                 | 0.006                    | 0.6                                          | 5.4         | 60                    | 5       | 0.6                             |
| Carbon Tetrachloride      | 330                | 5                                         | 0.017                    | 1.7                                          | N/A         | 2,000                 | 5       | 1.7                             |
| Chlorobenzene             |                    | 50                                        | 0.017                    | 1.9                                          | N/A         | M/A                   | 10      | 1.9                             |
| Chloroethane ,            | 37                 | 7                                         | 8.003                    | 0.30                                         | 114         | 800                   | 5       | 0.3                             |
| Chloroform                | 31                 | ,<br>50                                   | 0.003<br>M/A             | N/A                                          | H/A         | H/A                   | 5       | W/A                             |
| Dibramochloromethane      | N/A                | <b>-</b>                                  | 0.079                    | 7.9                                          | N/A         | · N/A                 | 330     | 7.9                             |
| 1,2-Dichierobenzene       | 1,700              | 4.7                                       | 0.0155                   | 1.55                                         | N/A         | N/A                   | 330     | 1.6                             |
| 1,3-0 ich Lorobenzene     | 310 •              | 5                                         | 0.085                    | 8.5                                          | K/A         | N/A                   | 330     | 8.5                             |
| 1,4-0 ich i orobenzene    | 1,700              | •                                         | 0.003                    | 0.2                                          | W/A         | N/A                   | 5       | 0.2                             |
| 1,1-Dichloroethane        | 30                 | 7                                         | 0.002                    | 0.1                                          | 7.7         | W/A                   | Š       | 0.1                             |
| 1,2-Dichloroethane        | 14                 | •<br>•                                    |                          | 0.4                                          | 12          | 700                   | Š       | 0.4                             |
| 1,1-Dichleroethane        | 65                 | •                                         | 6.004                    | = -                                          | N/A         | 2,000                 | į       | 0.3                             |
| 1,2-Dichloroethene(trans) |                    | 5                                         | 0.003                    | 0.3                                          |             | N/A                   | •       | 0.3                             |
| 1,3-dichloropropene       | 51                 | 5                                         | 0.003                    | 0.3                                          | M/A         | <b>5,000</b>          |         | 5.5                             |
| Ethylbenzene              | 1,100              | 5                                         | 0.055                    | 5.5                                          | M/A         | ,000                  | •       | 3.3                             |
| 113 Freon(1,1,2 Trichloro |                    |                                           |                          |                                              |             | 200,000               | 5       | 6.0                             |
| 1,2,2 Trifluoroethane     |                    | 5 .                                       | 0.060                    | . 6.0                                        | W/A         | 200,000<br>\$;000     | 5       | 0.1                             |
| Methylene chioride        | 21                 | 5                                         | 0.001                    | 0.1                                          | 93          | 3,000<br>N/A          | 10      | 1.0                             |
| 4-Nethyl-2-Pentanone      | 19*                | 50                                        | 0.01                     | 1.0                                          | N/A         | 800                   | 10<br>5 | 1.6                             |
| Tetrachioroethene         | 277                | 5 /                                       | 0.014                    | 1.4                                          | 14          |                       | 7       | 3.0                             |
| 1,1,1-Trichloroethane     | 152                | 5                                         | 0.0076                   | 0.76                                         | W/A         | 7,000                 | 7       | - • •                           |
| 1,1,2,2-Tetrachloroethane |                    | 5                                         | 0.006                    | 0.6                                          | 35          | N/A                   | ,       | 0.6                             |
| 1,2,3-trichloropropene    | 68                 | . 5                                       | 0.0034                   | 0.34                                         | N/A         | 80                    | ,       | 0.4                             |
| 1,2,4-Trichlorobenzene    | 670 •              | · <b>5</b>                                | 0.034                    | 3.4                                          | H/A         | N/A                   | 330     | 3.4                             |
| Taluene                   | 300                | 5                                         | 0.015                    | 1.5                                          | N/A         | 20,000                | 5       | 1.5                             |
| Trichlorpethene           | 126                | 5                                         | 0.907                    | 0.70                                         | . 64        | W/A                   | 5       | 0.7                             |
| Vinyl chloride            | 57                 | . 2                                       | 0.0012                   | 0.12                                         | N/A ·       | " W/A                 | . 10    | 0.2                             |
| Xylenes                   | 240                | 5                                         | 0.012                    | 1.2                                          | N/A         | . 200,000             |         | 1.2                             |

Note: Soil cleanup objectives are developed for soil organic carbon content (f) of 12 , and should be adjusted for the actual soil organic carbon content if it is known.

a. Allowable Soil Concentration Cs . f a Cm x Koc

b. Soil cleanup objective = Es x Correction Factor (CF) W/A is not available

Partition coefficient is calculated by using the following equation: log Koc = -0.55 log S + 3.64, where S is solubility in water in ppm. All other Koc values are experimental values.

correction factor (CF) of 100 is used as per TAGN #4046

**APPENDIX III** 

ADMINISTRATIVE RECORD INDEX

#### ROSEN BROTHERS SCRAP YARD SITE ADMINISTRATIVE RECORD FILE INDEX OF DOCUMENTS

#### 1.0 SITE IDENTIFICATION

#### 1.1 Background - RCRA and other Information

- P. 100001100315

  Report: Engineering Investigations at Inactive
  Hazardous Waste Sites in the State of New York.

  Phase II Investigations, Rosen Site, City of
  Cortland, Cortland County, N.Y., prepared by
  Wehran Engineering, P.C., prepared for New York
  State Department of Environmental Conservation
  (NYSDEC), Division of Solid and Hazardous Waste,
  April 1987.
- P. 100316- Report: Engineering Investigations at Inactive
  100559 Hazardous Waste Sites in the State of New York.
  Phase II Investigations. Appendix A-D. Rosen Site.
  City of Cortland. Cortland County. N.Y., prepared
  by Wehran Engineering, P.C., prepared for NYSDEC,
  Division of Solid and Hazardous Waste, April 1987.

#### 3.0 REMEDIAL INVESTIGATION

#### 3.1 Sampling and Analysis Plans

- Plan: Sampling and Analysis Plan. Volume 1.

  Ouality Assurance Project Plan. Remedial
  Investigation/Feasibility Study. Rosen Site.
  Cortland. N.Y.. Participating Potentially
  Responsible Parties, prepared by Blasland & Bouck
  Engineers, P.C., Final Revision December 1990.
- Plan: Sampling and Analysis Plan. Volume 2. Field
  300305

  Sampling Plan. Remedial Investigation / Feasibility
  Study. Rosen Site. Cortland. N.Y.. Participating
  Potentially Responsible Parties, prepared by
  Blasland & Bouck Engineers, P.C., Final Revision
  December 1990.

## 3.2 Sampling and Analysis Data/ Chain of Custody Forms

P. 300306- Rosen Data Summary, Soil Split Sample Results and 300306 Rinsate, undated.

- P. 300307- Inorganic Chemical Constituents and Physical 300343 Characteristics Sampling, undated.
- P. 300344- Bromofluorobenzene and
  300725 Decafluorotriphenylphosphine data package,
  December 10, 1987. (Attachment: Analytical Report,
  Incineration Disposal (Sample FOC01), prepared by
  ETC-Findlay Laboratory, prepared for U.S. EPA,
  Region II, December 8, 1987.)
- P. 300726- Data Summary Table for Rosen Scrap Yard Remedial 300737 Investigation, prepared by Versar, Inc., prepared for U.S. Environmental Protection Agency, Headquarters, Office of Waste Programs Enforcement, December 11, 1992.
- P. 300738- Sampling Data for trial run of treatment of Jump 300739 Test effluent with DEC discharge standards, prepared by Buck Environmental Laboratories, Inc., prepared for Blasland, Bouck & Lee, Inc., January 18, 1995.

#### 3.3 Work Plans

- Plan: Work Plan for Remedial
  300832 Investigation/Feasibility Study. Rosen Site.
  Cortland, N.Y., Participating Potentially
  Responsible Parties, prepared by Blasland & Bouck
  Engineers, P.C., December 1990.
- P. 300833- January 1992 Addendum to the Work Plan, Remedial 300841 Investigation/Feasibility Study, Rosen Site, Cortland, N.Y., Final Revision December 1990.

#### 3.4 Remedial Investigation Reports

- P. 300842- Chapter 7, "Redox Reactions" from <u>Environmental</u>
  300849 <u>Chemistry of Soils</u>, written by Mr. Murray B.
  McBride, undated.
- P. 300850- Chapter (w/ attachments) from the U.S. Geological Survey Professional Paper #820, United States Mineral Resources, Manganese, prepared by Mr. John Van N. Dorr, II, Mr. Max D. Crittenden, Jr., and Mr. Ronald G. Worl, undated. (Attachment: Study and Interpretation of the Chemical Characteristics of Natural Water, Third Edition, prepared by the U.S. Geological Survey, Water-Supply Paper 2254, undated.)

- P. 300866- Report: U.S. Geological Survey, Water-Resources
  300938 Investigations 78-3, Open-File Report, <u>Ouality and Movement of Ground Water in Otter Creek Dry Creek Basin</u>. Cortland County, N.Y., prepared in cooperation with Cortland County, N.Y., undated.
- P. 300939- Report: U.S. Geological Survey, Water-Resources
  300989 Investigations, Report 85-4090, <u>Hydrogeology of</u>
  the <u>Surficial Outwash Aquifer at Cortland</u>.
  Cortland County, N.Y., prepared in cooperation
  with Susquehanna River Basin Commission, undated.
- P. 300990301026 Report: U.S. Geological Survey, Water Resources
  Investigations 78-71, Open File Report, <u>Digital-Model Simulation of the Glacial-Outwash Aquifer.</u>
  Otter Creek-Dry Creek Basin. Cortland County.
  N.Y., prepared in cooperation with Cortland County, N.Y., undated.
- P. 301027301249 Report: Summary Report, Final Summary Report for Soil and Drum Sampling, Rosen Brothers Scrap Yard Site, Cortland, N.Y., prepared by Versar, prepared for the Office of Waste Programs Enforcement, U.S. EPA, Headquarters, June 6, 1991.
- P. 301250- Report: Remedial Investigation Report. Rosen
  301581 Site. Cortland, N.Y., Volume 1 of 3, Contributing
  Potentially Responsible Parties, prepared by
  Blasland, Bouck & Lee, Inc., Revised May 1994.
- P. 301582- Report: Remedial Investigation Report, Rosen
  301897 Site, Cortland, N.Y., Volume 2 of 3, Contributing
  Potentially Responsible Parties, prepared by
  Blasland, Bouck & Lee, Inc., Revised May 1994.
- P. 301898- Report: Remedial Investigation Report, Rosen
  302543 Site, Cortland, N.Y., Volume 3 of 3, Contributing
  Potentially Responsible Parties, prepared by
  Blasland, Bouck & Lee, Inc., Revised May 1994.
- P. 302544- Report: <u>Baseline Risk Assessment</u>. <u>Rosen Site</u>.

  302739 <u>Cortland</u>, <u>N.Y.</u>, Contributing Potentially
  Responsible Parties, prepared by Blasland, Bouck &
  Lee, Inc., January 1995.
- P. 302740302755

  Report: Report of Off-Site Soil Gas Modeling for the Remedial Investigation/Feasibility Study
  Oversight at the Rosen Brothers Scrap Yard Site.
  Cortland. Cortland County. N.Y., prepared by ICF
  Kaiser Environment & Energy Group, prepared for U.S. EPA, Region II, August 1995. (Attachments:

(1) Letter to Mr. Mark Granger, Remedial Project Manager, U.S. EPA, Region II, from Ms. Claudine Jones Rafferty, Public Health Specialist II (Environment), Bureau of Environmental Exposure Investigation, New York State Department of Health (NYSDOH), re: Rosen Brothers Site, Report of Off-Site Soil Gas Monitoring, Cortland, Cortland County, January 3, 1996, and (2) Letter to Mr. Mark Granger, Work Assignment Manager, U.S. EPA, Region II, from Mr. Curtis A. Kraemer, Site Manager, ICF Technology, Inc., re: Rosen Brothers Scrap Yard Site RI/FS Oversight, Response to Comments on Off-Site Soil Gas Modeling, March 21, 1996.)

#### 3.5 Correspondence

- P. 302756- Letter to Mr. Mark Granger, Remedial Project
  302758 Manager, U.S. EPA, Region II, from Ms. Nancy E.
  Gensky, Manager, Geology, Blasland & Bouck
  Engineers, P.C., re: November 1992 Addendum, Rosen
  Site, November 20, 1992. (Attachment: November
  1992 Addendum to the Work Plan, Remedial
  Investigation/Feasibility Study, Final Revision
  December 1990, Rosen Site, Cortland N.Y., November
  20, 1992.)
- P. 302759Letter to Mr. Mark Granger, Remedial Project
  302785 Manager, U.S. EPA, Region II, from Ms. Nancy E.
  Gensky, Associate, Blasland & Bouck Engineers,
  P.C., re: October 1993 Addendum, Rosen Site,
  October 18, 1993. (Attachment: October 1993
  Addendum to the Work Plan, Remedial
  Investigation/Feasibility Study, Final Revision
  December 1990, Rosen Site, Cortland, N.Y., October
  18, 1993.)
- P. 302786-Letter to Mr. Mark Granger, Remedial Project 302797 Manager, U.S. EPA, Region II, from Ms. Nancy E. Gensky, Associate, Blasland, Bouck & Lee, Inc., re: Rosen Site, Aquifer Performance Test, February 24, 1994. (Attachments: (1) Table 1 - Ground-Water Analytical Results, Rosen Site Aquifer Test Program, Cortland, N.Y., January 19, 1995, (2) Table 2 - Summary of Transmissivity and Hydraulic Conductivity Pumping Test at Well W-25, Rosen Site, Cortland, N.Y., January 19, 1995, (3) Aquifer Test Program, Draft, Well No. W-25, prepared by Blasland, Bouck & Lee, Inc., February 27, 1995, and (4) Aquifer Test Program, Draft, Well No. W-26, prepared by Blasland, Bouck & Lee,

#### Inc., February 27, 1995.)

- P. 302798
  Letter to Mr. Mark Granger, Remedial Project

  Manager, U.S. EPA, Region II, from Ms. Nancy E.

  Gensky, Associate, Blasland, Bouck & Lee, Inc.,

  re: October 1994 Addendum, Rosen Site, November 7,

  1994 (Attachment: Addendum to the Work Plan,

  Remedial Investigation/Feasibility Study, Rosen

  Site, Cortland, N.Y., prepared by Blasland, Bouck

  & Lee, Inc., October 1994.)
- P. 302818- Memorandum to Mr. Augus Eaton, Division of Water, 302819 NYSDEC, from Mr. David Camp, Division of Hazardous Waste Remediation (DHWR), NYSDEC, re: Request for permission to discharge groundwater generated from a pump test at the Rosen Site, January 5, 1995. (Attachment: Table listing constituents and concentrations detected in the groundwater, May 1991.)
- P. 302820- Memorandum to Mr. David Camp, DHWR, NYSDEC, from 302821 Mr. Shayne Mitchell, BWFD, NYSDEC, re: Rosen Site, Proposed Short Term Wastewater Discharge, January 11, 1995. (Attachment: Effluent Limitations and Monitoring Requirements, Rosen Site, Cortland, Cortland County, January 11, 1995.)
- P. 302822 Letter to Mr. Mark Granger, Remedial Project
  302824 Manager, U.S. EPA, Region II, from Ms. Nancy E.
  Gensky, Associate, Blasland, Bouck & Lee, Inc.,
  re: Aquifer Performance Test, Rosen Site,
  Cortland, N.Y., January 18, 1995. (Attachment:
  Attachment 1 Effluent Limitations and Monitoring
  Requirements, Rosen Site, Cortland, Cortland
  County, January 11, 1995.)
- P. 302825- Letter to the Director of various divisions and regions, from Mr. Elliott P. Laws, Assistant Administrator, U.S. EPA, Headquarters, re: Land Use in the CERCLA Remedy Selection Process, May 25, 1995.
- P. 302836- Letter to Mr. Mark Granger, Remedial Project
  302872 Manager, U.S. EPA, Region II, from Mr. David W.
  Hale, P.E., Associate, Blasland, Bouck & Lee,
  Inc., re: Additional Preliminary Engineering Cost
  Estimates, Rosen Site Cortland, N.Y., June 21,
  1995. (Attachment: Additional Preliminary
  Engineering Cost Estimates, Rosen Site Cortland,
  N.Y., June 21, 1995.)

- P. 302873- Letter (w/ attachments) to Mr. Mark Granger,
  302908 Remedial Project Manager, U.S. EPA, Region II,
  from Ms. Nancy E. Gensky, Associate, Blasland,
  Bouck & Lee, Inc., re: Rosen Site, August 1995
  Ground-Water Sampling and Analysis Event, December
  5, 1995.
- P. 302909- Letter (w/ attachments) Mr. Mark Granger, Remedial 302951 Project Manager, U.S. EPA, Region II, from Ms. Nancy E. Gensky, Associate, Blasland, Bouck & Lee, Inc., re: Rosen Site, December 1995 Ground-Water Sampling and Analysis Event, March 8, 1996.
- P. 302952- Letter to Mr. Mark Granger, Remedial Project 302953 Manager, U.S. EPA, Region II, from Mr. David A. Camp, P.E., Project Engineer, NYSDEC, re: Rosen Site, Cortland County, N.Y., April 4, 1996.
- P. 302954 Letter to Mr. Mark E. Granger, Remedial Project
  302956 Manager, U.S. EPA, Region II, from Ms. Nancy E.
  Gensky, Associate, Blasland, Bouck & Lee, Inc.,
  re: Schedule for Geophysical Investigation
  Program, Rosen Site Cortland, N.Y., April 15,
  1996. (Attachment: Figure 1 Proposed Geophysical
  Survey Area Location Map, Rosen Site, Cortland,
  N.Y., prepared by Blasland, Bouck & Lee, Inc.,
  undated.)

#### 4.0 FEASIBILITY STUDY

#### 4.6 Correspondence

P. 400001Letter to Mr. Mark E. Granger, Remedial Project
400090
Manager, U.S. EPA, Region II, from Mr. David W.
Hale, P.E., Associate, Blasland, Bouck & Lee,
Inc., re: Rosen Site - Cortland, N.Y., Transmittal
of the Sanitary Code, City of Cortland, March 4,
1997. (Attachment: The Sanitary Code of the
Cortland County Health District, with amendments,
prepared by the Cortland County Board of Health,
undated.)

#### 7.0 ENFORCEMENT

#### 7.3 Administrative Orders

P. 700001- U.S. EPA, Region II, Administrative Order, Index 700013 No., II-CERCLA-80215, In the Matter of Dallas Corporation, Keystone Consolidated Industries,

Inc., Monarch Machine Tool Company, Respondents, September 15, 1988.

- P. 700014- U.S. EPA, Region II, Administrative Order, Index 700026 No., II-CERCLA-90210, In the Matter of Niagara Mohawk Power Corporation, Respondent, April 4, 1989.
- P. 700027- U.S. EPA, Region II, Administrative Order on 700051 Consent, Index No. II-CERCLA-00204, In the Matter of Dallas Corporation, Monarch Machine Tool Company, Niagara Mohawk Power Corporation, Respondents, December 28, 1989.
- P. 700052- U.S. EPA, Region II, Administrative Order, Index 700069 No., II-CERCLA-00205, In the Matter of Agway, Inc., Cooper Industries, Inc., Keystone Consolidated Industries, Inc., Potter Paint Company, Inc., Harvey M. Rosen, Smith Corona Corporation, Respondents, February 7, 1990.

#### 7.5 Affidavits

- P. 700070U.S. District Court, Northern District of N.Y.,
  700231 Cooper Industries, Inc., et al., Plaintiffs, vs.
  Agway, Inc., et al., Defendants, Deposition of Mr.
  R. Michael Scott, Volumes 1-4, prepared by
  Precision Reporters, Inc., October 12, 1992.
  (Note: This document is CONFIDENTIAL. It is
  located at the U.S. EPA Superfund Records Center,
  290 Broadway, 18th Floor, N.Y., N.Y. 10007-1866).
- P. 700232U.S. District Court, Northern District of N.Y.,
  700446
  Cooper Industries, Inc., et al., Plaintiffs, vs.
  Agway, Inc., et al., Defendants, Deposition of Mr.
  Carl Edward Kimbrough, Volumes 1-2, prepared by
  Precision Reporters, Inc., October 21, 1992.
  (Note: This document is CONFIDENTIAL. It is
  located at the U.S. EPA Superfund Records Center,
  290 Broadway, 18th Floor, N.Y., N.Y. 10007-1866).
- P. 700447700514 U.S. District Court, Northern District of N.Y.,
  Cooper Industries, Inc., et al., Plaintiffs, vs.
  Agway, Inc., et al., Defendants, Deposition of Mr.
  Dennis M. Hollenbeck, Volumes 1-2, prepared by
  Precision Reporters, Inc., November 17, 1992.
  (Note: This document is CONFIDENTIAL. It is
  located at the U.S. EPA Superfund Records Center,
  290 Broadway, 18th Floor, N.Y., N.Y. 10007-1866).

- P. 700515- U.S. District Court, Northern District of N.Y.,
  701202 Cooper Industries, Inc., et al., Plaintiffs, vs.
  Agway, Inc., et al., Defendants, Deposition of Mr.
  Derl Ross, Volumes 1-3, prepared by Precision
  Reporters, Inc., March 23, 1993. (Note: This
  document is CONFIDENTIAL. It is located at the
  U.S. EPA Superfund Records Center, 290 Broadway,
  18th Floor, N.Y., N.Y. 10007-1866).
- P. 701203- U.S. District Court, Northern District of N.Y.,
  701234 Cooper Industries, Inc., Plaintiffs, vs. Agway,
  Inc., Defendants, Deposition of Mr. William E.
  Bondarenko, prepared by Precision Reporters, Inc.,
  May 5, 1994. (Note: This document is
  CONFIDENTIAL. It is located at the U.S. EPA
  Superfund Records Center, 290 Broadway, 18th
  Floor, N.Y., N.Y. 10007-1866).
- P. 701235- U.S. District Court, Northern District of N.Y.,
  701494 Cooper Industries, Inc., et al., Plaintiffs, vs.
  Agway, Inc., et al., Defendants, Deposition of Mr.
  Philip Rosen, Volumes 1-5, prepared by Precision
  Reporters, Inc., May 23, 1994. (Note: This
  document is CONFIDENTIAL. It is located at the
  U.S. EPA Superfund Records Center, 290 Broadway,
  18th Floor, N.Y., N.Y. 10007-1866).
- P. 701495701546
  U.S. District Court, Northern District of N.Y.,
  Cooper Industries, Inc., et al., Plaintiffs, vs.
  Agway, Inc., et al., Defendants, Deposition of Mr.
  Glenn E. Matoon, prepared by Precision Reporters,
  Inc., December 12, 1994. (Note: This document is
  CONFIDENTIAL. It is located at the U.S. EPA
  Superfund Records Center, 290 Broadway, 18th
  Floor, N.Y., N.Y. 10007-1866).

#### 9.0 MATURAL RESOURCE TRUSTEES

#### 9.4 Correspondence

P. 900001- Letter to Mr. Mark Granger, Remedial Project
900002 Manager, U.S. EPA, Region II, from Mr. Todd
S.Miller, U.S. Department of the Interior, re:
Request for Information regarding the extent of
the glaciolacustrine confining layer in the
Cortland aquifer at the Rosen Superfund site,
January 13, 1994. (Attachment: Figure 2 - Site
Map, Rosen Site, Cortland, N.Y., prepared by
Blasland & Bouck Engineers, P.C., undated.)

P. 900003- Letter to Mr. Mark Granger, Remedial Project
900044 Manager, U.S. EPA, Region II, from Mr. Todd
S.Miller, U.S. Department of the Interior, re:
Results of a particle-tracking analyses for the
Rosen Superfund site, February 24, 1994.
(Attachment: Groundwater Path Lines from the Rosen
Superfund Site, Cortland, N.Y., prepared by Mr.
Todd S. Miller, undated.)

#### 10.0 PUBLIC PARTICIPATION

#### 10.2 Community Relations Plans

P. 1000001- Plan: Revised Community Relations Plan. Rosen
1000038 Brothers Site. Cortland, N.Y., prepared by Booz,
Allen & Hamilton, prepared for the Office of Waste
Programs Enforcement, U.S. EPA, Headquarters, May
24, 1991.

#### 10.6 Facts Sheets and Press Releases

P. 1000039- Quick Reference Fact Sheet: Presumptive Remedy for 1000053 CERCLA Municipal Landfill Sites, prepared by U.S. EPA, Region II, September 1993.

APPENDIX IV

STATE LETTER OF CONCURRENCE

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 50 Wolf Road, Albany, New York 12233-7010



John P. Cahill Commissioner

FEB | 1 | 1998

Mr. Richard Caspe
Director
Emergency & Remedial Response Div.
U.S. Environmental Protection Agency
Region II
290 Broadway - 19th Floor
New York, New York 10007

Dear Mr. Caspe:

Re: Rosen Site, Cortland County, N.Y., Site No. 7-12-004

The New York State Department of Environmental Conservation (NYSDEC) and New York State Department of Health (NYSDOH) have reviewed the Record of Decision (ROD) dated January 1998 for the above-referenced site. The selected remedy consists of the excavation of soils contaminated with elevated levels of PCBs, the excavation of soils contaminated with elevated levels of Trichloroethane (TCA), capping of the cooling pond disposal area consistent with the requirements of 6 NYCCR Part 360, a surface cover over the remainder of the site, and natural attenuation of the groundwater contamination. The excavated soil with PCB concentrations above 50 ppm will be disposed of off site. Those soils with PCBs below 50 ppm will be consolidated into the cooling pond area. All excavated TCA-contaminated soils will be disposed of off site or treated and disposed of on site. The remedy also includes a long-term groundwater monitoring program.

The NYSDEC and NYSDOH concur with the selected remedy listed in the ROD. If you have any questions, please contact Robert W. Schick, of my staff, at (518) 457-4343.

Sincerely,

Michael J. O'Toole, Jr.

Director

Division of Environmental Remediation

cc: J. Singerman, USEPA
M. Granger, USEPA
A. Carlson, NYSDOH

APPENDIX V

RESPONSIVENESS SUMMARY

# RESPONSIVENESS SUMMARY FOR THE ROSEN BROTHERS SUPERFUND SITE CITY OF CORTLAND, CORTLAND COUNTY, NEW YORK

#### INTRODUCTION

This Responsiveness Summary provides a summary of citizens' comments and concerns received during the public comment period related to the remedial investigation and feasibility study (RI/FS) and Proposed Plan for the Rosen Brothers Site (the "Site") and the U.S. Environmental Protection Agency's (EPA's) and the New York State Department of Environmental Conservation's (NYSDEC's) responses to those comments and concerns. All comments summarized in this document have been considered in EPA's and NYSDEC's final decision in the selection of a remedial alternative to address the contamination at the Site.

#### **SUMMARY OF COMMUNITY RELATIONS ACTIVITIES**

The RI/FS, which describes the nature and extent of the contamination at and emanating from the Site and evaluates remedial alternatives to address this contamination, and the Proposed Plan, which identified EPA's and NYSDEC's preferred remedy and the basis for that preference, were made available to the public in both the Administrative Record and information repositories maintained at the EPA Docket Room in the Region II New York City office and at the City of Cortland Free Library located at 32 Church Street, Cortland, New York. Notices of availability of these documents were published in the Cortland Standard on November 17, 1997. A public comment period was held from November 17, 1997 through January 16, 19981 to provide interested parties with the opportunity to comment on the RI/FS and Proposed Plan. A public meeting was held on December 9, 1997 at the New York State Grange Building in Cortland, New York to inform local officials and interested citizens about the Superfund process, to review planned remedial activities at the Site, to discuss and receive comments on the Proposed Plan, and to respond to questions from area residents and other interested parties. Approximately 25 people, consisting of local businessmen, residents, representatives of the media, and state and local government officials, attended the public meeting.

The public comment period originally ran from November 17, 1997 through December 17, 1997. In response to a request for an extension of the comment period, it was extended thirty days to January 16, 1998.

#### **OVERVIEW**

The public, generally, supports the preferred remedy, which includes the excavation, treatment, and disposal of the contaminated soils in four hot-spot areas of the Site, installation of a cap on the former cooling pond, installation of a site-wide surface cover, and natural attenuation of residual groundwater contamination.

The public's concerns, which relate to the groundwater contamination, treatment alternatives, community acceptance, flexibility of the remedy, nature of the site-wide surface cover, groundwater monitoring program, and institutional controls, are summarized below.

# SUMMARY OF WRITTEN AND ORAL COMMENTS AND RESPONSES CONCERNING THE ROSEN BROTHERS SUPERFUND SITE

The following summarizes the oral and written comments received by EPA during the public comment period and EPA's responses.

#### **Groundwater Contamination**

Comment #1: A commenter asked whether the contamination in the groundwater threatens downgradient private wells. The commenter also asked whether the contaminated groundwater leaves toxic elements behind in its path and what effect the contaminated groundwater has on the downgradient Tioghnioga River.

Response #1: No private wells are located downgradient of the Site; all residences within the City of Cortland, including downgradient residences, utilize city water. By the time the groundwater reaches the river, the contaminants have either been diluted, dispersed, or degraded; the contaminated groundwater does not leave substantial toxic residues along its path. Removal of the source of contamination, in combination with continued dilution, dispersion, and degradation of the contaminants, will eventually eliminate the groundwater contamination.

Comment #2: A commenter asked if there was any possibility that hazardous chemicals would be carried off-site when there are fluctuations in the groundwater, especially in the vicinity of the former cooling pond.

Response #2: A thorough investigation of the former cooling pond itself did not locate any hazardous substances contributing to groundwater contamination (the wastes disposed of in the former cooling pond consist of, primarily, construction debris and, to a lesser extent, municipal wastes). Contaminated groundwater was, however, detected immediately

downgradient of the former cooling pond; the source of this groundwater contamination is attributable to a contaminated soil hot spot located outside of the cooling pond. The selected remedy will remove the source of this contaminant hot spot (as well as another one located in a different portion of the site). Once the two contaminant hot spots are removed, they will no longer be a source of groundwater contamination. Further, as is noted in Response #1 above, dilution, dispersion, and degradation of the contaminants will eventually eliminate the groundwater contamination.

Comment #3: A commenter asked if EPA would set goals for the reduction of levels of contamination in the groundwater if natural attenuation was part of the selected remedy.

Response #3: Whether the contaminated groundwater is extracted and treated or natural attenuation is utilized, the cleanup goals for the groundwater are the same—state and federal groundwater standards. As part of a long-term groundwater monitoring program, sampling will be conducted in order to verify that the level and extent of groundwater contaminants are declining from baseline conditions and that conditions are protective of human health and the environment.

Comment #4: Experience at other sites has shown that natural attenuation of chlorinated organics can take several decades, even under favorable conditions. If additional source areas remain and/or unfavorable conditions exist in the groundwater, then natural attenuation may be unacceptably slow. To reduce the uncertainty in the long-term effectiveness of the remedy, there must be an ongoing evaluation of the trends in contaminant concentrations and plume geometry from a robust groundwater monitoring network. It is proposed that EPA install additional monitoring wells during the design phase to strengthen the groundwater monitoring network. This will help identify any areas which are not degrading in a timely fashion, and, perhaps, identify any remaining source areas. In addition, during and after the implementation of the hot spot soil removal, EPA should conduct groundwater monitoring at sufficiently frequent intervals.

Response #4: The removal of the contaminated soil source areas, extremely high groundwater flow, and the presence of conditions favorable to contaminant degradation, should lead to timely groundwater restoration via natural attenuation in about 10 years. Long-term monitoring of the groundwater will evaluate the remedy's effectiveness. The exact frequency, location, and parameters of the groundwater monitoring will be determined during the remedial design. Monitoring will include a network of groundwater monitoring wells; new monitoring wells will be installed, if necessary. Sampling will be conducted in order to verify that the level and extent of groundwater contaminants are declining from baseline conditions and that conditions are protective of human health and the environment.

#### Preferred Remedy

**Comment #5:** A commenter stated that the Proposed Plan lacks specific details related to the nature of the surface cover for the Site and the groundwater monitoring program.

Response #5: As potential risks remain even after the excavation of the soil contaminant hot spots, a surface cover (e.g., asphalt, soil, crushed stone, etc.) will be placed over a large portion of the Site to prevent exposure to residual levels of contaminants in site soils. All of the cover materials that are being considered provide the same level of protection. It is our understanding there is local interest in developing the Site and that a decision may be made within the next few months. Deferring the selection of the nature of the cover material until the design phase will ensure that it will be compatible with the future use of the property.

Long-term monitoring will be utilized to evaluate the selected remedy's effectiveness. At this time, EPA has developed only a conceptual plan for the groundwater monitoring program. Additional data and information need to be collected during the design phase to optimally identify the frequency and parameters of the groundwater monitoring.

#### Surface Cover

Comment #6: A commenter indicated that not all of the possible surface cover materials are equally desirable from the community's point of view. An asphalt cover, for example, might limit many of the possibilities for the property in the future. To facilitate site redevelopment, the site-wide surface cover should not be designed for any specific use. Instead, the design should be flexible enough to accommodate a variety of uses or tenants. A flexible cover approach would allow, for example, paving some areas and utilizing other materials for other areas. If clean fill is used, it should be a minimum of two feet thick (a thicker cover would have greater durability, would be less likely to erode or be accidentally breached, and would better support multiple uses). A geotextile marker layer at the base of the cover appears to be an excellent way to ensure that future users of the Site know when they have reached the base of the cover. Further, a cover maintenance manual should be developed during the design phase. At a minimum, the manual should address cover maintenance and repairs, minimum health and safety measures required of all contractors building on and/or modifying the cover (i.e., foundation work, underground utilities, paving, landscaping, etc.), and disposal options for any excavated soils. Ideally, it should also provide a description of the institutional controls that will be in place to protect

the integrity of the cover. The manual should be made available to prospective tenants, local governments, and anyone who plans to do construction work at the Site.

The commenter also expressed a desire that the community be involved in the cover material selection process.

Response #6: EPA agrees that the cover configuration needs to remain flexible to ensure it is appropriate and compatible with the redevelopment of the property. A marker layer is envisioned as being a component of every cover configuration. A cover maintenance manual will be formulated during the remedial design phase and will be available to the community through the Site information repository.

The community's concerns are important to EPA. As part of EPA's ongoing community relations program, during the remedial design, when a preferred cover material is identified, EPA will seek input from the community.

#### Alternatives Evaluation

Comment #7: Several commenters wanted to know why only four alternatives were evaluated in the Proposed Plan in light of the fact that two of the alternatives—no action and institutional controls—are not viable and the "groundwater extraction and treatment" alternative appears to be unreasonable given its cost.

Response #7: The Superfund program requires that the "no-action" alternative be considered as a baseline for comparison with the other alternatives. While the "institutional controls" alternative does not include any physical remedial measures that address the problem of contamination at the Site and the "groundwater extraction and treatment alternative" is more costly than the alternative that was selected, EPA considered these three "action" alternatives to be viable and appropriate for consideration. Other alternatives were considered in the FS but were eliminated because they were either not effective or their cost was significantly greater than alternatives that could provide the same level of protection for considerably less cost. The selected alternative (contaminated soil hot spot excavation and disposal, installation of a cap on the former cooling pond, a site-wide surface cover, and groundwater natural attenuation) will provide the best balance of tradeoffs among the alternatives with respect to the evaluating criteria.

Comment #8: A commenter expressed concern about the acceptability of Alternative 3 (soil hot spot excavation, former cooling pond cap, site-wide surface cover, and natural

attenuation of residual groundwater contamination) because in order to remove the contaminant hot spots, the excavation areas would have to be secured 24 hours a day to prevent exposure to wildlife and trespassers. The commenter also stated that, for the groundwater monitoring program to be efficient, an annual review of the Site would be more sufficient than every 5 years.

Response #8: Under Alternative 3, to prevent exposure of wildlife and trespassers to hazardous substances during the remediation of the Site, security measures will be employed at the Site, as necessary, such as fencing and security guards.

As part of a long-term groundwater monitoring program, samples from upgradient, on-site, and downgradient groundwater monitoring wells will be collected and analyzed semi-annually in order to verify that the level and extent of groundwater contaminants are declining from baseline conditions and that conditions are protective of human health and the environment. The effectiveness of the selected remedy will be assessed on an ongoing basis as data are collected. In addition, to comply with the requirements of the Superfund statute and regulations, the remedy for the Site will be formally reviewed at least once every five years to assess whether it is being adequately protective of public health and the environment. If justified by the ongoing assessments or the 5-year reviews, additional remedial actions may be implemented to remove or treat the remaining contaminants.

Comment #9: A commenter suggested that it would have been useful to include excavation of the entire residually-contaminated soils as another alternative.

Response #9: The excavation of all of the residually-contaminated soils, which would involve excavating to a depth of six feet across 17 acres of the Site, was evaluated in the FS. This alternative was, however, screened out on the basis of cost—a site-wide surface cover would be similarly protective as excavating all of the residually-contaminated soils, but would be significantly less expensive.

# Former Cooling Pond

Comment #10: A commenter asked why the former cooling pond needs to be capped.

Response #10: While an investigation of the 3-acre former cooling pond did not locate any hazardous substances, since it was used for the disposal of construction and demolition

debris and municipal refuse, it must be closed in accordance with New York State landfill closure requirements.

Comment #11: A commenter wanted to know what would be disposed of in the former cooling pond prior to capping.

Response #11: Only excavated soils characterized as nonhazardous and nonhazardous debris that is located on the surface of the areas where the Site-wide surface cover will be installed will be consolidated onto the former cooling pond prior to capping.

Comment #12: A commenter wanted to know what is the nature of the cap proposed for the former cooling pond.

Response #12: The cap over the former cooling pond must meet the requirements of New York State 6 NYCRR Part 360 regulations. Prior to construction of the cap, the consolidated soils, nonhazardous debris, and existing fill materials will be regraded and compacted to provide a stable foundation and to promote runoff. The first layer of the cap will be an impermeable layer, made of high-density polyethylene or clay. A 2-foot soil barrier protection layer will be installed on top of the impermeable layer. Six inches of top soil and vegetation will be installed on top of the barrier protection layer.

#### Institutional Controls

**Comment #13:** A commenter asked whether there would be any mechanisms in place to preclude the drilling of wells at or downgradient of the Site.

**Response #13:** The remedy includes taking steps to secure institutional controls, such as deed restrictions and contractual agreements, as well as local ordinances, laws, or other government action, for the purpose of, among other things, restricting the installation and use of groundwater wells at and downgradient of the Site.

Comment #14: A commenter asked at what point in process would the institutional controls be implemented and who would take the lead in implementing the institutional controls.

Response #14: Institutional controls are usually put into place following the completion of the construction of the remedy. While it is EPA's responsibility to ensure that institutional controls are put into place, if the potentially responsible parties (PRPs) agree to perform the design and construction of the selected remedy, they, most likely, would take an active role in securing the necessary institutional controls.

Comment #15: A commenter asked if Alternative 3 (contaminated soil hot spot excavation and disposal, installation of a cap on the former cooling pond, a site-wide surface cover, and groundwater natural attenuation) is selected, does it preclude the possibility of the excavation of soils underlying the surface cover, as long as they are treated as hazardous substances.

Response #15: The institutional controls component of the remedy is designed to restrict, though not necessarily preclude, the excavation of soils underlying the site-wide surface cover. For example, in the event of the construction of structures on-site, any excavated soils would be tested for hazardous substances (or may be simply assumed to be hazardous) and disposed of appropriately. A geotextile marker layer at the base of the cover will ensure that future users of the Site know when they have reached the base of the cover.

Comment #16: Because this is a site for which redevelopment is expected, the arrangements that will govern what happens at the Site after the remedy has been implemented are more crucial than at most other Superfund sites. Accordingly, the necessary institutional controls and regulatory arrangements need to be explicitly spelled out at the earliest possible date, and the community should be involved in the process. Experience shows that over the long run, institutional controls are not always honored, therefore, efforts need to be made to preserve the knowledge about the controls. Important areas that need to be addressed include: permit restrictions related to the installation of groundwater wells; deed restrictions for property(ies) above the cover; identification of the various governmental, regulatory, and private entities which will be involved with the Site and their respective roles and responsibilities; development and maintenance of a "cover integrity map" which will identify all the areas in which the sitewide cover has been removed, modified, built over, repaired, etc. and which would serve as a permanent reference for regulators and contractors intending to do work at the Site. The cover maintenance manual should be placed in local libraries, attached to the land title records, and distributed to local governmental agencies.

Response #16: Deed restrictions and contractual agreements and/or local ordinances and laws will be employed to restrict the installation and use of groundwater wells at and downgradient of the Site, restrict excavation or other activities which could affect the integrity of the cap/site-wide surface cover, and restrict residential use of the property in order to reduce potential exposure to site-related contaminants. While it is EPA's responsibility to ensure that institutional controls are put into place, if the PRPs agree to perform the design and construction of the selected remedy, they, most likely, will take an active role in securing the necessary institutional controls. Nevertheless, EPA will ensure that the necessary institutional controls are scoped out as early as possible and that the controls that are put into place are properly maintained. EPA will consider the suggestions related to the development and maintenance of a "cover integrity map" and will make sure that the cover maintenance manual is placed into the local repository and is made available to all that need access to it.

## Potentially Responsible Parties

Comment #17: A commenter wanted to know if the PRPs would be responsible for any additional cleanup costs should additional soil hot spots be identified in the future.

Response #17: Yes, the PRPs are responsible for financing or performing all remediation deemed necessary for the Site, even after the Site is deleted from the Superfund National Priorities List.

# Fencing Around the Site

**Comment #18:** A commenter asked whether or not the property will be fenced once the remediation is completed.

Response #18: The property is currently fenced and will remain fenced until the site-wide cover is in place. In addition, to protect the integrity of the cap, it is anticipated that a fence will be constructed around the former cooling pond.

# Additional Hot Spots

Comment #19: A commenter asked if EPA was confident that there are no other possible hot spots on the Site.

**Response #19:** As part of the RI, over 60 soil samples were collected and analyzed. Consequently, EPA believes that the Site has been adequately characterized. The possibility of the existence of additional hot spots is unlikely. However, if additional sources of contamination are detected in the future, they will be considered for remediation, as appropriate.

#### Perplexity Creek

Comment #20: A commenter asked how the former cooling pond was going to be remediated to ensure that it does not negatively impact the adjacent Perplexity Creek tributary (i.e., erosion).

Response #20: Appropriate erosion control measures, such as rip rap, will be used to protect the integrity of the cap on the former cooling pond and minimize impacts to Perplexity Creek.

## Superfund Process

Comment #21: A commenter wanted to know if EPA intends to gather any additional information prior to making a final decision in the ROD.

Response #21: Other than the public comments on the RI/FS reports and the Proposed Plan, EPA did not intend to obtain any additional information prior to remedy selection.

Comment #22: A commenter expressed concern that the public comment period was being conducted prior to the signing of the ROD, since the public might have post-ROD—concerns or comments.

Response #22: The purpose of the public comment period prior to the selection of a remedy for this Site is to solicit public comment on the proposed remedy. After considering the public's comments on the RI/FS reports and the Proposed Plan, EPA will select a remedy for the Site. Public participation will not, however, end at this point. Throughout the design and construction of the selected remedy and during long-term monitoring, EPA will continue to keep the public informed about site activities and encourage future comments and inquiries.

APPENDIX V-a
RESPONSIVENESS SUMMARY

LETTERS SUBMITTED DURING THE PUBLIC COMMENT PERIOD

# Disposal Safety Incorporated

To: Mark Granger, USEPA RPM

From: Steven Amter

Date: January 15, 1998

Subject: Comments on USEPA's Proposed Plan

Jamie Dangler and Larry Ashley of CURB have asked me to forward to you these comments on EPA's Proposed Plan.

#### **Natural Attenuation of Ground Water**

The proposed remedy relies on excavation of a few identified contaminant source areas followed by natural attenuation of the ground water. This is a long term process that relies upon in situ mechanisms of biodegradation, chemical degradation, volatilization, and other natural mechanisms to reduce contaminant concentrations to applicable standards.

Experience at other sites has shown that for chlorinated hydrocarbon contaminants, this process can take several decades even under favorable circumstances. If unaddressed source areas remain after the planned excavation, or unfavorable chemical conditions exist in the ground water, then natural attenuation will be unacceptably slow and the remedy will fail. Although there is a low probability of significant source areas remaining within the shallow soil, given the high density of shallow soil samples, the same confidence is not justified at greater depths where monitoring wells and other data points are widely spaced.

To reduce the uncertainty in the long-term effectiveness of the remedy, there must be an on-going evaluation of the trends in contaminant concentrations and plume geometry from a robust ground-water monitoring network. We suggest the following measures:

• The ground-water monitoring network should be strengthened by additional wells installed during the design phase. This will help identify those areas which are and those which are not degrading in a timely fashion, and better identify possible remaining source areas. At a minimum, there needs to be an additional well cluster along Huntington Street east of the W-18/19/20 cluster.

<sup>&</sup>lt;sup>1</sup> A review of TCE/DCE and TCA/DCA ratios and available dissolved oxygen data suggest that degradation of chlorinated contaminants (by anaerobic dechlorination) is occurring most efficiently in areas of the plume that are downgradient of the anoxic water sources (e.g., the cooling pond and/or the former city disposal area).

• During and after implementation of the remedy, there needs to be ground-water monitoring at sufficiently frequent intervals. On page 4-8, the Feasibility Study Report (but not the Proposed Plan) proposed the following schedule, which seems acceptable:

Sampling, followed by an evaluation to determine the effectiveness of natural attenuation, would be performed on a semi-annual basis for a period of up to ten years. Assuming successful natural attenuation with levels approaching [remedial goals] for the Site, the frequency of monitoring the natural attenuation would be reduced to an annual basis for the next five years, and then every five years from year 16 through year 30.

Of course, if the PRPs perform these evaluations, the results need to be submitted to the EPA.

#### Surface Cover

Since the Proposed Plan does not provide design details, at this time we can only make general comments about the site-wide cover. We reserve the right to make comments on the specific design as details become available. To facilitate site redevelopment, we feel that the following elements are crucial for any final cover design:

- It should not be designed for any specific use or tenant; instead, the design should be flexible enough to accommodate a variety of uses or tenants by subsequent modification.
- A site-wide cover consisting totally of asphalt is unacceptable. However, a flexible cover approach would allow paving over sub-areas.
- With respect to cover design, thicker is better. We believe that a minimum of two feet of clean soil or equivalent is required. Although we understand that a thicker cover may not provide additional reductions in risk per se (theoretically, a one-inch soil cover, unbreached, provides the same level of protection as a five-foot cover), on a practical basis a thicker cover has greater durability, is less likely to erode or be accidentally breached, and better supports multiple uses.
- A geotextile marker layer at the base of the cover appears to be an excellent way to ensure that future users of the site know when they have reached the base of the cover.
- A guide for cover modification and maintenance should be written during the design phase with input from the cover designers. The guide should be made available to prospective tenants, local governments, and anyone who plans to do construction work at the site. At a minimum, it should address cover maintenance and repairs, minimum health and safety measures required of all contractors building on and/or modifying the cover (i.e., foundation work, underground utilities, paving over, landscaping, etc.), and disposal options for excavated soils. Ideally, it should also provide a useful description of the institutional

requirements that must be navigated by anyone doing work at the site that could compromise the integrity of the cover.

#### **Institutional Controls and Arrangements**

Because this is a site for which redevelopment is planned, the arrangements that will govern what happens at the site after the remedy has been implemented are more crucial than at many other Superfund sites. Accordingly, the necessary institutional controls and regulatory arrangements need to be explicitly spelled out at the earliest possible date, and the community should be involved in the process. Experience shows that over the long run institutional controls are not always honored, therefore efforts need to be made to preserve the knowledge about the controls. Important areas that need to be addressed include:

- Permit restrictions for ground-water wells in the plume area.
- Deed restrictions for property(ies) above the cover.
- Identification of the various governmental, regulatory, and private entities which will be involved with the site, their respective roles, and the institutional arrangements among them. It will be particularly important to spell out who will maintain the site-wide cover and which regulatory agency will provide the oversight to ensure the continued integrity of the cover, particularly during and after construction or modification by tenants.
- The development and upkeep of a "cover integrity map." This map should be continuously upgraded to identify all the areas in which the site-wide cover has been removed, modified, built over, repaired, etc. It would serve as a permanent reference for regulators and contractors intending to do work at the site.
- A non-technical version of the "Modification and Maintenance Guide" should be placed in local libraries, attached to the land title records, and distributed to local governmental agencies.

#### **Notice**

This document has been prepared solely for the guidance of CURB Pollution in interpreting information available to them. Other users should satisfy themselves *independently* as to fact and conclusions contained herein. In particular, such users should refer to original sources of information rather than this memo. This document is not intended for use in any real estate or other transactions, nor as a public health recommendation, and should not be used or relied upon for such purposes.

# SUSAN HAJDA BROCK

Attorney at Law

306 East State Street, Suite 230 Ithaca, New York 14850 Telephone: (607) 277-3995

Fax: (607) 277-8042 E-mail: brock@clarityconnect.com http://www.brock.clarityconnect.com

#### BY FACSIMILE AND MAIL

December 17, 1997

Mark Granger, Project Manager Central NY Remediation Section ERRD, 20th Floor U.S. Environmental Protection Agency 290 Broadway New York, NY 10007-1866

Rosen Site Proposed Plan

Dear Mark:

AND THE WAR BOOK OF THE

At the December 9 public meeting on the Rosen Site's Proposed Plan, members of CURB requested that the public have the opportunity to comment during the Remedial Design phase. They have particular concerns about the nature of the site-wide surface cover and groundwater monitoring program.

The City of Cortland supports CURB's request. The City agrees with EPA that the details of the cover and monitoring should be specified during the Remedial Design phases to maintain flexibility. However, there should be a formal mechanism for public input on these significant issues before EPA makes its decisions. The City urges EPA to make a commitment to solicit and receive public comment during the Remedial Design phase.

Sincerely,

Lusan Hajda Brock

Susan Hajda Brock

Dear. Mr. Granger, 12/2/97 My name is Michael Martin and I am a 26 year old life long citizen of Cortland, NY. I am replying on the various alternatives listed in the December 2nd issue of the Cortland Standard, where a December 9th hearing is scheduled for the Cleanup at the polluted Rosen Brothers site on Pendelton Street. According to the newspaper, alternative one, is no-action. How could this issue be Compared to one that included a complete Clean-up of the area. Does it mean that if there is no other agreeable alternative, we'll just Keep monitoring the groundwater for no reason at all at \$60,000 a year! We also need an alternative that would address any problems of contamination. Although alternative two describes of restrictions, it is the same idea as the first one. Alternative three is very risky. In order to remove the contaminated soil, the whole area would have to be secured 24 hours a day. for our own safety. Example, animals, curious children, vandals, etc. The cost of this that

was never mentioned to the 3 million dollar project makes me believe that the area would not be secured. Also, if the ground water monitoring program was to be efficient, wouldn't an anual check be more sufficient than every 5 years? Alternative four, which extracts the pollution and then treats it, returning the recycled water back to the Tioughnioga River is absolutely unheard of 11 This river has enough recycled and, so called "pollution free" water, being returned as it is. You tell our community that this treated water is safe and you'll be the town's laughing-stock!! This sidea will never fly over our heads. I may know little of the described alternatives, but I do know that alternative four is not my idea of a proper and Safe clean-up. THANK-YOU FOR YOUR TIME!

# APPENDIX V-b

# RESPONSIVENESS SUMMARY

# **PUBLIC MEETING TRANSCRIPT**

| 1          |   |
|------------|---|
| 2          |   |
| 3          |   |
| 4          |   |
| 5          |   |
| 6          |   |
| 7          |   |
| 8          |   |
| 9          |   |
| 10         | ĺ |
| 11         |   |
| 12         |   |
| 13         |   |
| 14         |   |
| 15         |   |
| 16         |   |
| 17         |   |
| 18         |   |
| 19         |   |
| 20         |   |
| 21         |   |
| 22         |   |
| <b>9</b> 3 |   |

# UNITED STATES

# ENVIRONMENTAL PROTECTION AGENCY

# ROSEN BROTHERS SUPERFUND SITE

## PUBLIC MEETING

ON

# ENVIRONMENTAL PROTECTION AGENCY'S

PROPOSED CLEANUP

Held at the New York State Grange Building, 100 Grange Place, Cortland, New York, on the 9th day of December, 1997, commencing at 7:00 PM.

PDQ COURT REPORTERS
MICHELE L. RICE
Shorthand Reporter, Notary Public
4815 Barry Hollow Road
Marathon, New York 13803
(607) 849-6884/(800) 528-9013

## APPEARANCES

ANN RYCHLENSKI; Community Relations Coordinator, US Environmental Protection Agency.

JOEL SINGERMAN; Chief, Central New York Superfund Section, US Environmental Protection Agency.

MARK GRANGER; Project Manager, US Environmental Protection Agency.

MS. RYCHLENSKI: Good evening.

Thanks for coming out tonight. My name is

Ann Rychlenski. I'm community -- I'm a

Community Relations Coordinator with the

US Environmental Protection Agency. And I'm

sure, as most of you know, this meeting here

tonight is to discuss EPA's Proposed Plan

for the cleanup of the Rosen Brothers site

here in Cortland.

Before I move onto a couple little matters of business, I just want to introduce my colleagues that are here with me this evening who will be doing the presentations.

All the way over to my left is Joel Singerman (indicating). And Joel's a Chief of the Central New York Superfund branch at EPA. He's going to be talking to you about how the Superfund process works, what it's all about.

And right here to my immediate left is Mark Granger (indicating). I think a lot of you here know Mark. He's been around a long time with this site. Mark's the

Project Manager of the Rosen site. He's going to be talking about what we found in our site investigations, basically what we found, how much of it's there, where it's at and what we propose to do with it.

So, that's basically what the line of business is here tonight.

I want to acknowledge one person who's here tonight from DEC, David Camp.

Just say hi. New York State DEC. In case there are any State-related questions that come up, I'm sure Dave would be happy to answer them.

We have a few things that we do here at meetings that deal with Proposed Plans. As you can see we have a stenographer here tonight, and that's not usual at most public meetings. And the reason for the stenographer is because this is, indeed, a legal record that is being taken, because public comment is being taken tonight, and public comment is very, very important in the Superfund process, because, as Mark will talk about a little later on, community

acceptance of our Proposed Plan is one of the criteria by which we make a decision on what we're going to do about the site.

very important. And you will see answers to your questions and comments reflected in the document that we call a Responsiveness Summary that we put out after we're all done with this. After we get all of our written comments in, EPA responds to the public. So, what you say here tonight is important, it goes on the record, it will be responded to in person here, but it will also be part of our Responsiveness Summary.

What I also want to talk about a little bit is the public comment period for written comments too. We're in the middle of a public comment period now. It will end on December 17th. So, if you don't get in everything you want to say or ask about tonight, you want to write it down, send a question or comment on to Mark Granger, his address is in the Proposed Plan that you have, and just make sure that you get it to

Mark by close of business December 17th, so that those comments and questions are also included in the public record for the decision on this site.

I just want to remind you all to sign in, if you haven't already, so that I can put you on the mailing list, keep you there, make sure I have the right address for you.

You all have a copy of the Proposed Plan and you also have copies of the slides that Mark will be showing tonight that you can follow along with them. If you have any questions or things that kind of come into your head, you can jot it right down there, so feel free to just follow along with that.

If you want to really look at the documents involved with this site in depth, over at the Cortland Free Library we have an information respository that has all of the documents pertaining to this site. So, if you want to do any further exploration before the end of the comment period for a written comment, you want to go take a look, everything is over at the Cortland Free

2

3

5

7

8

9

23

24

Library.

I'm going ask you to please keep your questions and comments until the end so that our stenographer can get a clear record of what happens here tonight. If you do have a question or comment, please stand, give your name, if you choose to, if you don't want to, that's okay, and speak clearly so that she can get the record down as accurately as possible.

I think that's about it. I'm going to turn it over to Joel, talk about the Superfund process. Thank you.

MR. SINGERMAN: Can you all see that? Can everyone see this or is it too light?

Several well-publicized toxic waste disposal disasters in the late 1970's, among them Love Canal, shocked the nation and highlighted the fact that past waste disposal practices were not effective. 1980 Congress responded with the creation of the Comprehensive Environmental Response, Compensation & Liability Act, more commonly

known as Superfund.

The Superfund law provided Federal funds to be used for the cleanup of uncontrolled and abandoned hazardous waste sites and for responding to emergencies involving hazardous wastes. In addition, EPA was empowered to compel those responsible for these sites to pay for or to conduct the necessary response actions.

The work to remediate a site is very complex and takes place in many stages. Once a site is discovered, an inspection further identifies the hazards and contaminants. A determination is then made whether to include the site on the Superfund National Priorities List, a list of the nation's worst hazardous waste sites. Sites are placed on the National Priorities List primarily on the basis of their scores obtained on the hazard ranking system, which evaluates the risk posed by the site. Only sites in the National Priorities List are eligible for work by Superfund.

The selection of a remedy for a

Superfund site is based upon two studies: A Remedial Investigation and a Feasibility Study. The purpose of the Remedial Investigation is to determine the nature and extent of the contamination at and emanating from the site and the associated risk to public health and the environment. The purpose of the Feasibility Study is to identify and evaluate remedial alternatives to address that contamination.

Public participation is a key feature in a Superfund process. The public is invited to participate in all decisions that will be made at the site. Through the Community Relations Coordinator meetings such as this one are held as necessary to keep the public informed about what is happening at the site and what is planned. The public is also given the opportunity to comment on the results of the investigation and studies conducted at the site and the proposed remedy.

After considering public comments and the proposed remedy, a Record of Decision is

signed. A Record of Decision documents why a particular remedy was selected. The site then enters the remedial design phrase, where the plans and specifications associated with the selected remedy are developed. The remedial action, which begins after design work is completed, is the actual hands on-work associated with cleaning up the site.

Following the completion of the remedial action the site is monitored, if necessary. Once the site no longer poses a threat to public health or the environment it can be deleted from the Superfund National Priorities List.

MR. GRANGER: Hi. My name is Mark Granger. I've been EPA's Remedial Project Manager for the Rosen site for the past seven years. Tonight I'll be discussing site background, the Remedial Investigation, Feasibility Study, the risk assessment and presenting EPA's preferred alternative.

The Rosen site is located on Pendleton Street here in the City of

2

3

5

6

7

8

9

Cortland. From the 1890's through the early '70s the Wickwire Facility operated on forty acres between South Main Street and Pendleton Street, smelting scrap metal and using that smelted metal in the manufacture of nails, wire, wire mesh, screening and wire products. After the plant closed in the early '70s, Philip Rosen was contracted to demolish the western twenty acres and in exchange was granted title to the eastern twenty acres. Rosen operated on the site from 1975 to 1985.

> Ann, can we see figure 2? MS. RYCHLENSKI: Sure.

MR. GRANGER: Here's South Main Street, Pendleton Street to the right, you can see the site outlined, and Philip Rosen was contracted to demolish this twenty acres and in exchange was granted the eastern twenty acres of the site (indicating).

We go to the next slide. activities at the site included scrap processing and garbage hauling. The site has been unoccupied since Rosen declared

bankruptcy in 1985.

A New York State Department of Environmental Conservation investigation of the site in 1986 found significant levels of contamination in groundwater and soil. As a result of this investigation, the site was added to Superfund's National Priority List in March of 1989.

In January of 1990 a group of parties potentially liable for cleanup agreed to conduct the RI/FS for the site, and these parties are known as potentially-responsible parties or PRP's.

Next slide. EPA conducted a removal action at the site from 1987 to 1989, where drums of hazardous materials were removed, along with severely-contaminated soils, transformers filled with PCBs. And, in addition, the site was fenced.

The RI was performed from 1990 to 1995, with additional studies being conducted from 1995 to 1997. I'll be discussing the results of these studies in a little while.

The potentially-responsible parties performed the investigation of the site with EPA oversight, and studies included groundwater sampling, soil sampling, both subsurface and surface soil, sediment, surface water and air sampling, along with test hitting and pump testing of the aquifer.

The results of the Remedial

Investigation: There are two groundwater

units beneath the site, an upper outwash

unit and a lower sand and gravel unit. The

groundwater flow direction is to the

northeast. The City of Cortland being

situated at the confluence of several

valleys has massive groundwater flow moving

beneath the site, far more that you would

find in most other areas of New York State,

and probably a lot of other places, as well.

The RI found that groundwater contamination is confined to the upper outwash unit.

The Cortland County -- I'm sorry.

The City of Cortland water supply is located

2

3

5

6

8

9

far upgrading of the site. Most soil samples were found to contain contaminants above State guidance levels. And the RI further found that surface water, sediment and air have not been significantly impacted by the site.

During the RI, groundwater and soils were sampled for VOCs, SVOCs, PCBs and metals. There were seven full rounds of groundwater sampling. And based on the groundwater and soil sampling efforts, it was concluded that there was an intermittent source of contamination in soils in the area of well 6. I'll show you the figure in a moment.

In addition, the RI concluded that VOC levels in groundwater leaving the site were relatively low and have undergone significant decline over time.

Results of an investigation of the cooling pond area, which I will show you in a moment, concluded that the cooling pond area of the site was not a significant source of contamination to the aquifer.

However, several areas of significant PCB and TCA contamination were found, as well as low to moderate levels of contaminants elsewhere in soils on the site.

Results of a drum investigation concluded that there were no buried drums

Can we see figure 2?

able to be located at the site.

MS. RYCHLENSKI: Figure 2, sure.

MR. GRANGER: Groundwater flow is to the northeast. This being north, northeast, groundwater moves this way, northeast and out past Pendleton Street and then moves into an easterly direction as it goes out into the aquifer at large (indicating).

And then figure 1, Ann:

MS. RYCHLENSKI: Mm-hm.

MR. GRANGER: There's valleys coming in from the west and from the north. The City of Cortland is situated at the confluence of these valleys and groundwater tends to move in the vicinity of the site to the northeast, to a westerly direction and then out down the Tioughnioga River Valley

(indicating).

And the Cortland water supply, as you can see, the groundwater flow moves in this direction and down Cortland County (indicating). The City of Cortland water supply is in this vicinity, far upgrading of groundwater associated with the Rosen site (indicating).

Okay, Ann, figure 3.

MS. RYCHLENSKI: Mm-hm.

MR. GRANGER: The RI found a significant area of contamination in the well 6 area, as well in the T-02 areas (indicating). Those are areas where there's TCA-contaminated soils and PCB-contaminated soils in the northeastern portion of the site and in the Gantry Crane portion of the site.

The cooling pond, located at the southern portion of the site, comprises about three acres, with the remaining area of the site being about seventeen acres (indicating).

Okay, next slide.

· 9

MS. RYCHLENSKI: Mm-hm.

MR. GRANGER: Sampling results from the I -- the RI were compiled and analyzed in the risk assessment. The purpose of the risk assessment is to determine whether the sites poses a threat to the human health and the environment should nothing be done.

EPA's acceptable risk range for non-carcinogenic compounds is a hazard index less than or equal to 1, and for carcinogenic compounds a 10 to the minus 4, to 10 to the minus 6 risk, which basically translates to an increased cancer rate from 1 in 10,000 to 1 in 1,000,000.

Results for groundwater found that risks fell outside EPA's acceptable risk range, with non-carcinogenic risk coming in at -- with a hazard index of 66 and carcinogenic risks 1.5 times 10 to the minus 3.

Results for soil also fell outside

EPA's accepted risk range only for

non-carcinogenic risks, with a hazard index

64. All other risks were in or below EPA's

acceptable risk range.

Next slide.

MS. RYCHLENSKI: Mm-hm.

MR. GRANGER: EPA's evaluated four alternatives in the Proposed Plan to address these risks.

Alternative 1: No action, is required as a baseline in comparison and assumes only monitoring over time, which is the -- \$440,000 is the cost associated with monitoring over a ten-year period.

Institutional controls alternative assumes that the only action taken, aside from monitoring, is administrative action in the form of deed restrictions or restrictions on groundwater extraction for potable use, restrictions on excavating soils, et cetera, things of that nature.

The cost was carried over, because the administrative actions were assumed to be in addition to monitoring over a ten-year period.

Alternative 3 includes hot spot excavation of the TCA and PCB areas, a cap

1 2

over the cooling pond, with a cover over the remaining portion of the site and natural attenuation of residual groundwater. The total cost over a ten-year period was collated to be \$3.1 Million.

Can we go to figure 3, Ann?

MS. RYCHLENSKI: Mm-hm.

MR. GRANGER: Basically alternative 3 would provide for excavation of the two TCA areas and two PCB areas, with a cap placed over the cooling pond, which we call a cooling pond. It was formerly a cooling pond but was used as a landfill, we call it the cooling pond area. It was a landfill that accepted construction and demolition The most appropriate approach debris. toward final closure of that would be placing a cap over the top of it and a permeable cover placed across the remaining portions of the site. And groundwater would be naturally attenuated over time.

We'll go to --

MS. RYCHLENSKI: Want to go back to the --

MR. GRANGER: Yes.

Alternative 4 includes the same first three components of alternative 3, which is hot spot excavation, cooling pond cap, and a cover over the remaining portion of the site, and in addition provides for groundwater extraction and treatment.

Can we go to the figure?

MS. RYCHLENSKI: Mm-hm.

MR. GRANGER: So, in addition to excavation of the TCA and PCB areas with a cap over the cooling pond portion of the site and a permeable cover placed across the remaining portions of the site, a series of extraction wells would be placed across the northern perimeter of the site that would effectively create a hydraulic barrier or wall, if you will, which would extract groundwater and provide for a line to be constructed out to the Tioughnioga River where it would be discharged. And the total cost for that — can you go back to the other slide?

MS. RYCHLENSKI: Sure.

MR. GRANGER: -- which was

calculated over a five-year period was \$19.8

Million.

In evaluating the relative merits of each of the alternatives, EPA weighs each of them against nine evaluation criteria or what we call insure EPA's nine criteria, the threshold criteria being overall protection of human health and the environment and compliance with environmental regulations. Those are the primary criteria we look at, and then we move to the balance: Long-term effectiveness and permanence, reduction of toxicity, mobility or volume through treatment, short-term effectiveness, implementability and cost-modifying criteria, State and community acceptance, which Ann had mentioned earlier.

After careful consideration, EPA's preferred alternative is alternative 3, contaminated soil hot spots excavation and disposal, installation of cap on former cooling pond, site-wide surface cover and natural attenuation of residual groundwater

э 

contamination.

provides the best balance among the nine criteria. It's protective of human health and the environment, reduces toxicity, mobility and volume through permanent solution, it involves a simple implementation with simple maintenance and uses known effective technologies and is cost effective.

Thank you for your time. I'll turn the meeting back over to Ann.

MR. SINGERMAN: The preferred remedy that was just described is just that, it's EPA's preferred remedy, and EPA is not going to make a final selection until we've considered all public comments and after the completion of the comment period.

MS. RYCHLENSKI: Okay, thank you, Joel.

Okay. Mark is going to -- you've got the lights. That's what we take EPA's engineers with us for, these guys can do lights.

Okay. All right, we'll take questions. As I asked before, just speak clearly, stand and give your name if you feel comfortable with that, so our stenographer can get a good record.

Any questions or comments?

(Whereupon there was no verbal response)

MS. RYCHLENSKI: No questions or comments?

MS. KATHLEEN HENNESSY: I have a question.

MS. RYCHLENSKI: Okay.

MS. KATHLEEN HENNESSY: My name is
Kathleen Hennessy. And I'm just wondering
about the groundwater, because even though
it doesn't go into the City's water supply,
what effect does it have on people with
wells who are within the path of the
groundwater? I mean, I know you said it
goes into the Tioghnioga River, but --

MR. GRANGER: Right. We've done some investigations in terms of when there is any wells and we're unable to find anyone

## Public Meeting

with a well. Basically the plume is confined within the City of Cortland, and it's my understanding that everyone within the confines of the City limits is on City water.

MS. KATHLEEN HENNESSY: Until it goes into the river.

MR. GRANGER: Well, by the time it gets to the river, to tell you the truth, basically it's petered out.

MS. KATHLEEN HENNESSY: And it doesn't -- but doesn't it leave toxic elements behind on the path?

MR. GRANGER: Contaminants can be absorbed to soil, but in general the type of contamination that's leaving the site is basically swept along and disbursed over distance and over time, which is -- that's not something that's exclusive to this site, that's something that basically occurs at all sites. And if you're removing sources, as we are here, you would expect that petering out period to be shorter and shorter.

MS. RYCHLENSKI:

MR. LARRY ASHLEY: My name is Larry Ashley. I wanted to start with a comment. We've handed to Mark a number of questions that have arisen from a Curb meeting which considered the Proposed Plan as you gave it to us, and we sort of like to present those publicly, sort of get some reaction now and get them on the record.

Yes, sir?

say is that in terms of Ann's statement that community acceptance of the plan is part of what you aim at, Curb at least finds it difficult to simply accept the plan since some crucial elements of the plan are postponed to the design phase, in particular the nature of the cap that's going to be on the site and details about the groundwater monitoring, both of which are elements for the nine years of the development of this that Curb has been fairly involved in and considers to be fairly crucial from the point of view of the welfare of the community.

So, we just wanted to report to you that we were finding it hard to just sort of selectively say yes, this looks like a good thing for the community and/or no, this looks like something that we would not like in the longrun, because -- because of the absence of specificity for a few details, in particular the cap and the details about groundwater monitoring, both of which are postponed until the design phase is completed.

Is that clear?

MR. GRANGER: Yes, that's perfectly clear.

And let me say that I think that one of the strong points of this Proposed Plan is that it does not specify the cap configuration nor the specifics of the groundwater monitoring plan. EPA is definitely looking for a protective cap and it's definitely looking for a comprehensive monitoring program. If you specify both of those -- but let me just start with the cap. If you specify what the cap is, you're

basically closing off the possibilities for what you may want to do with the cap in the future.

So, what our cap -- ultimately what our cap components are going to be could be a number of things, all of which would have an equivalent protection, such as you could have an impermeable, geotextile layer with a foot of soil with grass on top. specified that, then it could be difficult to say okay, now we're going to build a road across the cap, which that would be a part of the cap too, but that would be asphalt with gravel. Or if you wanted to put gravel and put something else across the top, or if you wanted to build a building, there's a lot of ways -- there's a lot of directions that this site could go in terms of the future.

At a site where the site was not going to do anything, nothing was going to happen with the site, you could specify, you could say, all right, we're going to put, you know, we're going to asphalt the entire

site and that's going to be the end of that.

I think that we're trying to allow the maximum flexibility in terms -- and provide that benefit to the community.

Similarly, with the monitoring program, we could specify now what that monitoring program is, but then you lock it in, and it is possible that EPA would want to require additional monitoring points, would want to go out further into the aquifer or require the installation of monitoring wells, and if we went down on record as saying that this is going to be the monitoring program when we forge a legal agreement with whoever's going to implement the remedy, that's locked in in the Record of Decision, so -- okay, did I answer your question?

MR. LARRY ASHLEY: You did, although it postpones rather than answers some of our difficulties. Because amongst those proposed remedies, they may all be equally protective, but they're not equally desirable from the point of view, in our

judgment, of the community and what the community will live with for the term after that. So, that's a crucial item which remains for us crucial, and which we're going to, I guess, continue to be asking or trying to make sure that what eventually is decided is not anything that the community is going to find hard to live with in the longrun. Such, in my judgment, would be an asphalt cover.

Putting an asphalt barrier, right there limiting, I think, a lot of the possibilities for -- for the community in the future. This is a crucial issue for us. That's all I'm saying.

MR. GRANGER: Are you worried about an asphalt cover?

MR. LARRY ASHLEY: Am I worried about it?

MR. GRANGER: Are you worried that's going to be what's going to happen?

MR. LARRY ASHLEY: That's one possibility, yes.

MR. GRANGER: Well, without going

down completely, you know, staking my reputation on it, we're not really looking to place an asphalt cover over the site. I know that's not necessarily reassurance for you.

MR. LARRY ASHLEY: That's a relief, because in the document that you sent to us, in parentheses there was always the soil, gravel, asphalt trilogy, and one of those -- one item in that trilogy is importantly, I think, undesirable for the community, so --

MR. GRANGER: Right.

MR. LARRY ASHLEY: -- if EPA was, you know, still envisioning doing that, then that would be crucial for us.

MR. GRANGER: I think the only asphalt that we would envision on the Rosen site would be a road, in terms of like developing the property for some other purpose.

MR. LARRY ASHLEY: Well, we look forward to that.

MR. SINGERMAN: How about the other items within parentheses, do you object to

any of the other ones or just the asphalt?

MR. LARRY ASHLEY: The crushed -what was it -- crushed gravel or crushed
stone or whatever it was, I don't quite know
what that amounts to, and I guess I don't
remember that that ever arose in your
discussion with us as the basic cover, but
that covered by soil seems plausible, but
crushed stone by itself, I mean, I would
want to know what the ramifications are for
that remedy too.

MR. GRANGER: Okay.

MS. RYCHLENSKI: I think too -- I just want to interject for a moment -- that as we go into remedial design, we'll continue to work with Curb and with the rest of the community on that design. We don't just come out and spring a remedial design on people and say, hey, here, this is what it is. We come out, we'll talk about it, we'll have a meeting similar to this one, maybe a meeting before that, maybe one after that, depending on what the community's requirements are and the community's

concerns are. But here it is written in stone and we're never going to talk to you again, we'll never do that. We've been in touch and we'll stay in touch. You guys have been very important in this process.

MR. SINGERMAN: Plus if you have any ideas now or any recommendations in writing, we consider that --

MS. RYCHLENSKI: Absolutely.

MR. SINGERMAN: -- for the future.

MS. RYCHLENSKI: Absolutely.

Yes, sir?

MR. SAM FARRELL: I'm Sam Farrell.

You mentioned the groundwater extraction and treatment. Could you go into more detail on that? If that happened, would that eliminate a cap if that was done in this particular area?

MR. GRANGER: No, it would not.

MR. SAM FARRELL: It would not.

MR. GRANGER: The purpose of the cap is to eliminate exposure to surface soils.

Are you talking about the cap over the cooling pond or the surface cover?

MR. SAM FARRELL: Yes, well --

MR. GRANGER: Or both?

MR. SAM FARRELL: About the groundwater extraction, would that also -- MR. GRANGER: Right.

MR. SAM FARRELL: -- would you be on the Rosen site? Of course would that.

MR. GRANGER: Okay.

MR. SAM FARRELL: Would you also be drying out the pond?

MR. GRANGER: Okay. The pond is not necessarily -- the pond is not any different from the remainder of the site in terms of the aquifer. It's not a pond. It's basically a landfill. It's been covered and it's flat on -- it's at ground level on one end and it's mounded up fifteen feet high on the other end, so there's no pond, per se. Basically when we say pond, we mean landfill. And there's construction debris, actually most of the Wickwire buildings were dumped into the cooling pond.

So, as we were digging down doing our investigation, what you tended to see was

twenty feet deep of bricks mixed in with timbers and metal rods and things of that nature. So, the groundwater extraction and treatment actually -- just backing up -- and one of the things I had mentioned in my talk was that there's a massive groundwater flow that's moving beneath the Losen site and beneath the Cortland area in general.

As you extract groundwater, you wouldn't tend to dry out anything. You'd tend to extract the groundwater, you'd extract a lot, probably a million to a million and a half gallons a day, but you wouldn't be drying anything out. So, that would not influence the cap at all. The purpose of the cap doesn't have anything to do with the groundwater, per se.

Is that clear?

MR. SAM FARRELL: Yes.

MR. GRANGER: Did I address your question?

MR. SAM FARRELL: (Nods head)

MR. GRANGER: Okay.

MS. RYCHLENSKI: Yes?

1 MS. JAMIE DAGLER: Jamie Dagler (phonetic) from Curb. Our second question, 3 Mark, is kind of related to the first question that Larry asked. We're just pressing you a little bit more on this. 6 general we just want to know why more 7 options weren't costed out in the Proposed 8 Plan? 9 For example, you know, the fact that 10 the Proposed Plan, there are four 11 alternatives; however, alternative 1 and

think, right?

MS. RYCHLENSKI: Well, I think alternative 2 is a viable alternative, but that's a subjective statement.

alternative 2 are out of the question, I

MS. JAMIE DAGLER: Okay. I think I can, at least speaking for Curb, it would certainly not be acceptable to Curb, but -- so, alternatives 3 and 4 are what we agreed is really the only real alternatives for any kind of significant cleanup of the site, and alternative 4, certainly based on the informal discussions that we've had with you

12

13

14

15

16

17

18

19

20

21

22

all along, appears to be a bit unreasonable perhaps, given the cost in relation to the likely benefit of groundwater treatment, which leaves us then with only one alternative.

Our question or our comment is this:

Now, again, I am kind of echoing what Larry
already said, given the lack of detail about
groundwater monitoring, about the surface
cover and alternative 3 as it has been
presented in the plan, we're wondering if -if what the Proposed Plan actually
incorporates is an alternative which
actually encompasses many possible
alternatives?

In other words, why, perhaps,
wouldn't you have costed out the difference
between an asphalt cover as opposed to a
one-foot soil cover with a geothermal -what's it called -- a geotextile cover as
opposed to a two-foot soil cover, et cetera?

In other words, are there significant differences in cost to doing these kinds of options or doing some combination of those

things?

And, you know, as you know, we certainly raised the issue of a soil scrapedown with you informally earlier in the process, and I guess we want to, for the record, ask that again. Wouldn't it have been useful to cost out, as another alternative, a soil scrapedown?

For example, it seems to us as a soil scrapedown would have been a more permanent remedy. And if that's the case, would it have been cost effective in terms of reducing long-term maintenance costs? For example, as opposed to blacktop, asphalt or other alternatives?

So, again, we're a little bit
perplexed about what we see as a narrow -really literally just one realistic option
which seems to have within it the
possibility of a number of options which are
not costed out as separate options.

Does that make sense to you?

MR. GRANGER: Yes. As I had

mentioned as we were talking to Larry, I

can't emphasize enough that the flexibility that's built into the site-wide cover system is a strong point in the Proposed Plan, not a weakness.

In fact, most likely the cost difference between an asphalt cap, a gravel cap, a dirt cap is probably not all that much. What we were looking to get was the reduction of risk by ensuring that the site was covered from one end to the other. flexibility comes in whereby if I specify -or I shouldn't say I -- but if EPA specifies in a Record of Decision some cap configuration and then locks it in, it eliminates the possibility of anything else being done on those portions of the site, which is significant. That's seventeen acres of property, seventeen acres of undeveloped property in the City of Cortland.

Again, for example, if I specify -
if EPA specifies a grass -- a dirt cover

covered with soil and grass from one end to

the other, it doesn't allow the possibility

for then going in and putting a road and developing some sort of -- performing some kind of development on the property in the future. Is that clear?

MS. JAMIE DAGLER: Yeah, although I guess I'm kind of confused, maybe, about the process and the significance of the ROD.

For example, I guess I just envision this as

For example, I guess I just envision this as proceeding such that at some point there is a definite decision made about all aspects of the cleanup, because, I mean, we've been under the impression that eventually EPA turns the site over to the DEC, for example, and at that point obviously you're no longer involved.

So, I'm not clear on -- I understand your point about flexibility, and certainly makes perfect sense, but at what point does the final configuration of what's going to be done there become decided?

And certainly Curb has been interested in making sure that public comment -- official public comment certainly, as well as the kind of informal

2

3

5

6

8

interchange will continue to be allowed through all of those. Maybe we're just not clear about how the process will actually unfold after the ROD.

MR. GRANGER: Well, we'll be looking for a design document, whether we're performing it or whether the PRPs are performing it, within -- let me see -probably 1999, and at that point you'll be finalizing all your cover configurations and your monitoring programs and your cap configuration.

MS. JAMIE DAGLER: So, the flexibility you're talking about, you're conceiving about the desirability of that flexibility for that now two- or three-year period?

MR. GRANGER: That's the way I envision it at present, yes, although depending on what the City of Cortland -you know, as you know, EPA's not in the land development, we're just allowing for it. Depending on how creative the City of Cortland is or Cortland County or whoever's

approaching the City in the meantime would dictate somewhat how that flexibility is going to fall out.

I don't think I was done with the second part of Jamie's question. Before we move on

MS. RYCHLENSKI: I think Larry had another question.

MR. LARRY ASHLEY: No, it was really a follow to Jamie's.

MR. GRANGER: Okay, jump in.

MR. LARRY ASHLEY: The flexibility might seem important if you were going to gather some new information meanwhile, that is if we're keeping flexible for a couple of years, and that's an advantage. Presumably you're going to get some information that will come down solidly on the side of one form of capping rather than another or one display of monitoring rather than another. Are we planning to gather information during the intervening couple of years so that we gather information we don't presently have in making that decision?

## Public Meeting

24

1 MR. GRANGER: Absolutely. 2 MR. LARRY ASHLEY: Absolutely, okay. 3 MR. GRANGER: The information is going to be is anyone interested in putting 5 some kind of enterprise on the site? 6 MR. LARRY ASHLEY: That's the 7 information that we're --8 MR. GRANGER: Yes. 9 MR. LARRY ASHLEY: Not testing or 10 anything like that? 11 No, absolutely. MR. GRANGER: 12 MR. LARRY ASHLEY: Okay. 13 MR. GRANGER: No, there's no testing 14 necessary for implementation of a cover on 15 the site. 16 And getting to a second part of 17 Jamie's -- is that clear, Larry? 18 MR. LARRY ASHLEY: Yeah. 19 MR. GRANGER: Getting to the second 20 part, Jamie, we have four options in the 21 Proposed Plan. There were several other 22 options that were evaluated in the 23 Feasibility Study. Obviously we can't put

all of the information that's included in

3

6

8

10 11

12

13

14

15 16

17

18

19

20 21

22

23

24

the Feasibility Study into the Proposed Plan.

One of the sections of the · Feasibility Study screens out alternatives that don't really appear to be realistic from a number of standpoints. And one of these addressed excavation of the entire contaminated soils from one end of the site to the other, which basically entails a massive undertaking of digging down six feet across the entire site, which is what we found after going through several test pits, that the soils look like they've been impacted in some way down to six feet, and without, like, testing, which is another probably tens of thousands of dollars more, that we would -- that that was not really a realistic approach.

And that covering the site meets the goal of reducing the risk, which is basically the entire thrust of the program is to -- in balancing the nine criteria coming up with approaches that address site risks, not necessarily ease of maintenance

over the long term, which is a

consideration, but granted, doing that

massive undertaking would make things very

simple, because you're just removing

everything, you don't have anything else to

worry about. But when you start putting

that into -- weighing that against what your

other options are, it doesn't appear to be

realistic.

MS. RYCHLENSKI: This gentleman here

has been waiting (indicating).

MR. ERIC DUMOND: Yeah, my name is

MR. ERIC DUMOND: Yeah, my name is Eric DuMond from Curb. And this right now we're in the middle of the public comment period. What happens if, say, a year-and-a-half from now after the Record of Decision is made you're talking about maybe new technologies possibly arising to -- that may alter, you know, the cap, will there be any future public comment period before the Record of Decision is implemented, before action is taken?

MR. GRANGER: The Record of Decision being implemented as is, there would not be

 any further comment period unless there's a comment period associated with closeout.

MR. SINGERMAN: Well, there are mechanisms in the law that allow for changes to remedies. There's ROD amendments, there's an explanation of significant differences, and really it's a function of what type of changes are necessary.

Quite frequently during design we may find something in the site that changes our opinion about the remedy, a new technology may come about, so we have the ability and flexibility to change remedies.

So, depending upon which mechanism we would use to change a remedy, we would seek public comment to make sure that -- that whatever we changed would be, you know, acceptable to the public, and in the same way we're requesting public comment now.

MR. ERIC DUMOND: But the only -the problem that I see is that, you know,
we're in the Record of Decision, you know,
public comment comes before the Record of
Decision. We don't have any definite --

really any definite answer as -- as far as specifics on the site. How can we, as a community, or as an individual really, decide whether this proposal is acceptable to us?

That's, you know, we had a meeting
the other night -- last night, and I was -I'm quite -- I'm very adamant about
imposing, you know, the proposal number 3,
because without any specifics, how can this
community accept this proposal as is?

And if after the record of, you know, or after this time period is over we're not allowed -- our comments aren't going to influence the EPA's decision on this until extremely late in the process, I don't think that's doing this community any justice.

MR. SINGERMAN: The Record of
Decision comment period is just a comment on
the remedy. EPA will accept comments all
throughout the process, through the
deletions of the site from the National
Priorities List, at any time. We're always
willing to hear what people have to say

about what we're doing.

We have meetings all the time, you know. We can have -- like say, for example, in various, you know, through the design, I mean, really what we feel is necessary, what the public feels is necessary as far as keeping them informed and trying to make sure the public's happy with what's going on with the site.

We're not trying to ram this down anyone's throat. Basically we're here, there's some basic principles of the remedy that are being identified and we're excavating four known hot spot areas that we believe are the significant sources of contamination. We're covering over the former cooling pond. And I mean, we specifically identified, you know, those, I mean, those are the major part of the remedy.

And the other part covering over is -- we're not exactly sure what we'll be covering with, but, I mean, whatever we do, we'll be protective of public health and the

environment.

MR. ERIC DUMOND: So, basically in all actually the official public comment period doesn't end the 17th, in other words, is what you're saying?

MR. SINGERMAN: The comment on the actual remedy, once we consider public comment, then we'll make a decision on the remedy, but we're always open to concerns or comments from the public.

I mean, we -- just as we -- I presume comments were provided, you know, from the beginning, you know, when the site was listed up until now we have -- people have commented on various things and Curb has presented concerns to our agency and, you know, Mark has met with the group and, you know, various other parties, I mean, you know, have expressed concern, so EPA has considered those.

So, throughout the whole process from listing the site on the National Priorities List to deletion, EPA will always consider anybody's concerns, whether it be the

public's, potentially-responsible parties,
you know, local officials, elected
officials, whatever.

MS. RYCHLENSKI: And just to add to what Joel has said, I've been doing community relations for the agency for a very long time. And this is --

A VOICE: You need to speak up.

MS. RYCHLENSKI: I'm sorry, I've been doing community relations for the agency for a very long time and I have seen RODs reopened and changed, and what we call an Explanation of Significant Differences done, because communities are vocal and because they are concerned.

So, this is an official public comment period, as Joel mentioned, to this proposed remedy, but the public activity and especially, a group like yours in a community like this, does not end until the site is deleted. It continues.

We have some sites that are extremely active. This is one where the community's very active. We have some where the

communities don't become active at all, but especially on sites like this it's a continuing process. Especially you have a TAG, it's a continuing process.

Yeah, Larry?

MR. LARRY ASHLEY: I think I can cut through this pit. Is it possible within Mark's guidelines or EPA's guidelines that you return to this community before the decision is already made?

Because I'm a person who does not believe that once a decision has been made you're in the same position as just before it is made. I think what would be best from the point of view of -- of bringing this community into the decision, would be if just prior or just at that moment when you're trying to decide what the nature of that cap is, you would return to this community and say here are the realistic alternatives as we're now looking at them, we're about to decide, give us some input, because we know you're going to live with what we decide.

If it's decided independently of us,

I think it will leave residually. There
will always be people who think they have
been kept out of the process and would -may move to opposition just on that. I
think in the point of community relations
and procedure I think it would be -- not
give a -- a fet a compli (phonetic), but a
genuine chance of contribution from -- not
that you have to follow what we do, but we'd
like the language of being part of the
process to have some real meaning, and
something like that would do it.

Now, that may not be standard, but I guess I would like to request it, if it's possible within the framework of what you do.

MS. RYCHLENSKI: It's not unusual. We can do it.

MR. GRANGER: I just want to make sure exactly what you're talking about.

You're saying before the decision's final.

We're anticipating finalizing our decision within the next month or so.

## Public Meeting

Now, but what you're talking about especially is a final decision as to what the final cap configuration's going to be, which is presumably at the stage of completion of the remedial design, is that correct?

MR. LARRY ASHLEY: What you're talking about for desirable purposes from your point of view leaving open and flexible for up to two years.

MR. GRANGER: It's not from my point of view. It's from EPA's point of view and from the community point of view.

MR. LARRY ASHLEY: Okay, stand corrected. But in any case, if that's still going to remain open, we'll still be here and we will be interested in knowing what you are considering doing to that twenty acres, which is our twenty acres, you know.

We don't want to see it -- we don't want to see it become either an eyesore or unuseable. Or actually I would say I trust that whatever cover you put on will be health protective. I mean, I just -- I have

to believe that you're going to do a good job of insulating whatever residual health dangers remain on the site from the community, but there's much more that remains at stake, because I think I could do that along the whole spectrum of things, some of which could be a disaster from our community.

And economics aside, if you won't tell us what the costs of these various things are, we would certainly like to tell you which various alternatives we would prefer as a community to end up with for that site, and I think that's really where Eric was going with his question.

MR. GRANGER: Let me just state for the record and make sure that I paraphrase for the record, you're not worried about acceptable cap configurations. What you're worried about, is it an unacceptable cap configuration from the community standpoint? For example, one example of which would be a complete asphalt paving of the property.

MR. LARRY ASHLEY: Exactly.

MR. GRANGER: And you would like to be kept informed and the opportunity to have input at the point where those decisions are being made?

MR. LARRY ASHLEY: Yes.

MR. GRANGER: Okay. That's my paraphrase, and I'll defer to my supervisor.

MR. SINGERMAN: But also is there anything else in the list of your, you know, dislikes, as far as, I mean, we'd be more than happy to consider if you want to just identify other, you know, other caps that you don't think are appropriate, asphalt and anything else?

One of the reasons we're here is to hear your concerns. I mean, you don't have to identify them right now. It's an ongoing process. One of the reasons we have TAG is that your advisor, you know, we can interact with the advisor and the group to make sure that the group is and the community at large is happy with what we're selecting, what we're ultimately selecting for the site.

So, if you can identify now or at

some time in the future, we'd be more than happy to take that request.

MR. LARRY ASHLEY: Yes. Would just like to say, although I don't know if you would like to be pressed on this too hard, that we were sort of surprised when the possibility was mooted of one-foot cover, because we had thought that two feet, in fact someone asserted three feet, but it's controversial for us what the depth of that cover is expected to be, so we'd like to think that through, and if a soil cover for the site is the selected capping surface, capping method.

MR. GRANGER: So, I mean, I anticipate an ongoing relationship with Curb and individual members of Curb, although there's always the hit by a bus syndrome whereby, you know --

MR. LARRY ASHLEY: Right, something doesn't --

A VOICE: You or us?

MR. GRANGER: Yeah, could be either way. So --

MR. LARRY ASHLEY: We've dodged a few buses.

MR. GRANGER: So, let's put down for the record that we need to address the possibility of formalizing an agreement to maintain communication with the community regarding the cap configuration.

MR. LARRY ASHLEY: Thank you.

MR. SINGERMAN: Because also we don't want to preclude the appropriate development of the property, so we don't want to put something down there, therefore it can't be developed, so, I mean, ultimately we see it as being -- developing the piece of property.

MS. RYCHLENSKI: Jamie?

MS. JAMIE DAGLER: Yeah. Could I also just kind of state for the record that I think one reason why we're concerned about -- this is not the main reason, I think Larry's discussed the main reason -- is that, you know, I guess we would like to see, you know, that kind of more official commitment that there will be a public

comment at this stage, et cetera. Because we have had a really good relationship as a result of the TAG process, et cetera. It's not clear that we will have that TAG for very much longer.

I mean, Mark, you know our situation, we're basically out of money. We need to decide whether we want to reapply for an additional TAG. And the fact of the matter is administering this TAG has been a nightmare for us and I'm not really sure that we can do it. And so if that happens, Curb is not going to dissolve. I can say that we are in it for the longrun, but the nature of our relationship with you may change, you know, if we don't have the technical advisor.

And we want to make sure that, you know, if that happens, you know, if Curb kind of officially dissolves as a TAG group, that there are mechanisms in place to allow for us as individuals, or collectively without TAG and the technical advisor --

MR. GRANGER: Well, the technical

advisor works for you. Any relationship that you have established with EPA through my position or any other relationships that you might have is very straightforward.

MS. JAMIE DAGLER: Yeah.

MR. GRANGER: The TAG is ancillary to any relationship that's been established.

MS. JAMIE DAGLER: Well, Mark, again, I firmly believe that that is what will happen if you remain Project Manager, but if you don't -- and you really stuck with us over the long -- we went through two Project Managers in a short period of time and you've been with us for a long time and we really appreciate that. But again, we're talking about years really into the future, and so we're a little bit nervous about our ability to sustain that relationship with EPA, because we may not have a TAG.

And also if you end up not being in this position we'd be having to forge around with a new Project Manager without a TAG, which I assume would be a bit more difficult to do, maybe depending on that individual

 and his or her experience with community groups. That's kind of where we're at.

MR. GRANGER: Okay.

MR. SINGERMAN: Mark will look both ways twice before crossing now.

MS. RYCHLENSKI: So, basically what we're doing is we're chaining Mark to the Rosen site for the rest of his professional life.

I saw a hand go up here (indicating).

MR. TODD MILLER: Todd Miller. I've
got my public hat on tonight. My question's
two parts, hypothetical. Maybe one, Mark,
you can answer and maybe the second part
Dave here.

One: Option 3 will allow a plume to go beyond the extent of the site underneath the residences. Is there a plan for surveys, such that in the future someone doesn't come in the neighborhood and drill a well?

And two: If someone wanted to drill a well anyway over the plume, what are their water rights situation? Can they go ahead,

drill it and say, yeah, my water's

contaminated, I'm going to sue or something

like that?

My understanding is MR. GRANGER: that there are restrictions on installing potable drinking water wells within the City of Cortland, or at a minimum you need to obtain a permit first. I would say that as part -- typically as part of EPA's remedy and as part of the consent decree that would be entered into with the potentially-responsible parties, or as part of EPA's implementation of the remedies should the potentially-responsible parties not desire to proceed with implementation of the remedy, a part of whatever remedy that gets selected is the formalization of institutional controls, such as deed restrictions and restrictions on installation of wells for potable purposes, sometimes even for nonpotable purposes.

I don't see, personally at this point, just speaking from my own opinion, I don't see the need to restrict groundwater

withdrawals for industrial purposes at this point in time, but I do see the wisdom of restricting potable withdrawal of water downgrading of the Rosen site, and that would be formalized in the future.

MR. TODD MILLER: I guess it comes down to a question of water rights of the property owner. Can you prevent a property owner from using their water underneath their property?

MR. GRANGER: That's a good question. I don't know if that would be enforceable, but it certainly would be -- I'm going to have to look into that one, Todd.

MR. SINGERMAN: Well, if
institutional controls is part of the
remedy, then EPA could effectively prohibit
people from using the water underneath the
property. I mean, if we select, you know,
part of the remedy that we're proposing
includes institutional controls, such as
deed restrictions or other mechanisms to
prevent any installation of potable water

wells within the extent of the plume, so basically that's, you know, that would be part of the remedy.

So, it would be up to some local authority to implement that aspect of it.

Like, for example, whoever controls the issuance of permits for installation of wells would know that they cannot issue permits for X number of years until EPA says that, you know, the water is now safe. So, therefore, you cannot install a well, so that would be controlled as part of the remedy.

But EPA itself cannot -- you can't go out and say -- we're not the authority that issues the permits, so we're not the one that can say you can't issue a permit. We would just tell the party, whether it's the County or City. I guess it's the City.

MR. TODD MILLER: Does the County have a right to refuse a permit on the basis that water is contaminated beneath them?

That's my question.

MR. SINGERMAN: Yes, because one of

the purposes of issuing a permit is that you don't want to install a well that's not a potable supply, so they're not going to approve a permit if it's not going to have usable water, and if it's contaminated it's not usable unless you treat it, so there's also some interrelationship between the fact that there's already public water supply.

So, sometimes there's -- there are local ordinances that preclude installation of private wells in the area that's controlled by a public water supply, so I don't know the specific -- specifically what the law is here, but that, I mean, it's likely to be the case.

MR. TODD MILLER: Actually that would work in Cortland, because actually Cortland is only one of the few places that has a permitting system. Most counties don't in New York, but fortunately Cortland does.

MS. RYCHLENSKI: Okay. This lady here (indicating).

MS. AUDREY LEWIS: My name is Audrey

Lewis. I am from the Health Department, the agency that would be issuing permits, and I think that the issue may soon be a moot point, because for other reasons they're looking into restricting any wells drilled within the City public water supply, water district to cross-contamination, cross-connection problems. So, it may not be allowed anywhere within the water district to drill potable waters. As well as the plume doesn't go outside City limits and once it reaches Cortlandville that's no longer in that.

MR. GRANGER: Do you have a time frame for that, Audrey, of when you expect that decision to be finalized?

MS. AUDREY LEWIS: Probably we talk to the Water Board. Doug, you would have a better estimate.

MS. RYCHLENSKI: Okay.

Yes, sir?

A VOICE: What you just said, are you saying that the EPA's proposing to monitor the plume from the plume broke --

MR. SINGERMAN: Part of the remedy is to include monitoring of the plume to make sure that it is attenuating. We're just not going to just ignore it and walk away from it. Part of the long-term monitoring is to make sure that natural attenuation is occurring as part of the remedy.

A VOICE: So, does that mean that you're going to be proposing more wells downgradient of the site?

MR. SINGERMAN: Well, it depends. I mean, we may be able to use existing wells, we may have to install additional wells.

These are some of the decisions we have to make during design, but we basically want to el -- find out what's happens with the plume over some time, so if we need more wells we would install them.

A VOICE: That's -- once again, that is one of my big concerns is once this Record of Decision is made and this decision is implemented, what happens if the EPA, god forbid, they fix a hot spot and a hot spot

develops, what happens then? Are the PRPs still responsible for any additional cleanup costs?

MR. SINGERMAN: PRPs are responsible for -- for anything at the site, even if we delete the site from the National Priorities List and find contamination after that, so they're always on the hook. That's why it's in their best interest for them to implement a remedy at the site and do it the best possible way, because if they don't do it to our satisfaction, they may have to do it over again. Or EPA may have to go in and spend additional funds.

So, the thing is, is that, as I mentioned earlier, the ROD amendments, ESDs, we have mechanisms for changing remedies, if necessary. So, if we find some additional hot spot in the future, you know, if we can't address it under the current ROD, we can perhaps modify the ROD as, you know, as necessary to encompass other contaminant sources or problems we find in the future.

MR. GRANGER: And just to add one

more thing to that, you'll notice in the Proposed Plan as one of the bullet items under the preferred alternative, the provision for a five-year review, so that such -- such that the Superfund program requires that the site be reviewed and all the data that's been received reviewed every fire years to ensure that the remedy that's used remains protective.

MS. RYCHLENSKI: Larry?

MR. LARRY ASHLEY: I'd like to ask some really just basically informational questions I'm sure will be no problem. They mostly surround the 360 cap.

MR. GRANGER: I'm sorry?

MR. LARRY ASHLEY: The 360 cap over the cool pond.

MR. GRANGER: Yes.

MR. LARRY ASHLEY: Several questions about it.

MR. GRANGER: Okay.

MR. LARRY ASHLEY: One: Could you tell us in other terms other than 360 cap what the nature of that barrier is like?

Two: Is it in the end covered with this same sort of cover as is being committed for the other seventeen acres? Is it set aside in some way, is it visually differentiable from the other areas of the site?

I gather that the cooling pond gets treated differently because it deserves this cap. And what way does that translate to any difference that you can see once the remediation is completed?

And finally, there's language in those bullet items on page 15 that says that the nonhazardous wastes from the cooling pond are going to be removed, compacted and replaced or something for fill, and it struck us as curious, how do you separate the hazardous from the nonhazardous material that's in the cooling pond? I assume that there's hazardous material there.

So, that's a battery of questions, basically information questions.

MR. GRANGER: Let's break that into two parts. The part about compaction and

consolidation, I'll answer that. The first part about the 360 cap is, yes, it varies dramatically from the site-wide cover. I could try to tackle it, but we have an expert here on 360 caps, so did you want to tell them?

MR. DAVID CAMP: Yeah, I mean, a 360 cap, basically you would just contour the area a little bit to shape it into the shape you want. And then it's the capping is just impermeable layer first, like something like a plastic, high-density polyethylene liner, or it could be a clay layer, something that meets the permeability requirements of Part 360. And then on top of that is -- it's a guess, a couple feet of what they call barrier protection layer, which is just this type soil. And then on top of that you put a topsoil layer. And then you seed it so that the topsoil is stable.

And in this case that's basically what we're talking about for a 360 cap.

MR. LARRY ASHLEY: The plastic part remains after a couple of decades still

intrical? I mean, it's --

MR. DAVID CAMP: Yeah, as long as

I -- yeah, it lasts a long time, as long as

it's not exposed to sunlight, which it won't

be.

MR. LARRY ASHLEY: Right. Mark, you're looking up the section I was talking about?

MR. GRANGER: Yeah, I'll read it out loud for the record. "Nonhazardous debris that is located on the surface of the areas where the site-wide surface cover would be installed and/or is commingled with the excavated soil would be removed and consolidated onto the former cooling pond."

What that's referring to is as we do
the excavations, you know, assuming this
remedy moves forward, as the excavations
would be performed you'd be digging up soils
that are contaminated with PCBs and TCA,
there's going to be like large boulders,
let's say, that is not necessarily PCB- or
TCA-related whatsoever, and you could
decontaminate it quite simply by rinsing it

6

7

8

11

10

12 13

14

15

16

17 18

19

20 21

22

23

24

off. Or a pipe or a car body, that is something that's not the kind of thing you'd want to send to a hazardous waste landfill in a rolloff or treat in some way.

In addition, that's excavated-related materials. Then there's material on top of the site, like bricks and, you know, a pile of fishing wire, you know, from -- you know what I mean? There's, like, a big mass of spaghetti of old fishing line, things of that nature, that's what that's referring to in terms of, okay, we're putting -- we have a landfill, we're going to be capping a landfill, these are the type of materials that are already in the landfill, let's consolidate those materials and focus our attentions on the hazardous materials in terms of treatment and sending off site, and we'll put the cap over the top of the cooling pond and other nonhazardous debris.

MR. LARRY ASHLEY: So, that bullet item began with a description of the cooling pond, but actually the materials that are going to go in is from the rest of the site?

3

5

7

8

9

MR. GRANGER: Well, what it says is nonhazardous debris that is located on the surface of the areas where the site-wide surface cover would be installed, meaning the seventeen acres on the surface, so you have structural steel, fishing line, et cetera, bricks.

MR. LARRY ASHLEY: I don't know if we are talking about the same part. The bullet item that begins a cap -- a cap meeting the requirements --

MR. GRANGER: Oh, I'm sorry.

MR. SINGERMAN: Prior to the construction of the cap, the consolidated soils --

MR. LARRY ASHLEY: Nonhazardous debris --

MR. GRANGER: -- debris, and existing fill materials would be regraded and compacted to provide a stable foundation.

That's building on the previous bullet, so what that's saying is that all those materials, and with the

## Public Meeting

addition of these other materials, would then go through what Dave said in terms of contouring. You have to have, like, specific grades in order to meet the specifications of the State standard, Part 360.

MR. LARRY ASHLEY: Okay.

MR. GRANGER: When they say compacted, you have to -- in order to maintain that slope you have to send the equivalent of a steam roller over the top and it has to meet -- it's a very technical specification and they have machines that measure compaction. You have to have ninety-nine percent, et cetera.

MR. SINGERMAN: It's all so it doesn't start settling too, so the cap doesn't collapse.

MS. RYCHLENSKI: Okay. Any more questions or comments?

Jamie?

MS. JAMIE DAGLER: Yeah. Just wanted to ask a question about the institutional controls. Can you give us an

idea, Mark, of at what point in the process that's going to unfold? Would EPA begin the process of developing those institutional controls with the community?

We're assuming that EPA takes the lead in bringing together, if it be City, County, whomever, or the DEC, obviously, to sit down and actually establish what those controls would be. For example, under what conditions could there be excavation on the site?

And actually that's a question is would this remedy, if selected, still allow the possibility of excavation on the site as long as the soils underneath the surface cover were treated as hazardous waste, is that --

MR. GRANGER: That's how I envision the institutional controls for soils related to the site proceeding.

Very briefly, institutional controls could be begun to be instituted concurrently with design of the remedy or after. My experience has been that institutional

controls are usually addressed kind of like as the period on the end of the sentence, where you're done with your remediation or you're done constructing your remedy, assuming that you don't have any thirty-year remedy going on, but in terms of just constructing the remedy, design and construction, and then you move into your institutional controls, fails that could be moved up.

But I'm assuming perhaps, Joel, did you have any further insights on that?

MR. SINGERMAN: There's really no requirement as to when it has to be done. If you definitely want to have the institutional controls in place before the remedy is basically completed, because at that time, you know, you don't want to have people be able to do something to the covered area or cap that, you know, would adversely impact it, so we probably want to start early enough in the process that by the time the remedial action is completed, that we would have those protections in

Δ

place.

But there's really no specific time when we're required to start doing it, but, you know, I guess the sooner, the better.

MS. JAMIE DAGLER: So, that is the EPA's responsibility, to make sure that these are implemented?

MR. SINGERMAN: Well, everything at the site is EPA's responsibility depending if we -- we intend to negotiate with potentially-responsible parties to undertake the remedy, so, you know, certain aspects may untimately be their responsibility, but ultimately everything is EPA's responsibility.

If they do something on behalf of EPA we would want to make sure that it's done as we would do it.

MS. RYCHLENSKI: Mark?

MR. LARRY ASHLEY: Sorry to jump in again. Once the remediation is complete, will need there be a fence around the property or will it again be open to children who use it quite naturally as means

of cutting down distances to and from their house and school, et cetera, which remains a problem for any fencing that remains in place?

As you know, people have used, over the years, that land as a thruway. Does any remediation, absent someone on the site who fences it for purposes of security for whatever is going on there, does the type of cleanup we're talking about here end up with no fence around it or is a fence kept around it sort of perpetually in recognition of the fact that it's a site that needs to be treated carefully?

MR. GRANGER: I would say that the basic policy of EPA is to err on the side of conservative, such that any portions of the site that had not been remediated to eliminating health risks would be fenced, would remain fenced.

MR. LARRY ASHLEY: But that would not be true for the huge majority of the site, is that right?

MR. GRANGER: I would say

ultimately -- let's say that hypothetically half of the site was remediated and had some kind of cover configuration placed over the site, over that portion of the site, that the fence line could then be moved back to the unremediated portion of the site.

In addition, I envision that the cooling pond portion of the site will be fenced in perpetuity, typically to protect the integrity of the cover that's done.

MR. SINGERMAN: That's currently fenced now.

MR. GRANGER: The whole site is fenced now and that fence will stay up as long as there's remediation work going on.

MR. SINGERMAN: We have no intention of taking the fence down, though. I -- I mean, basically it's private property, so it's not -- so if the property owner will maintain the fence, then the fence will stay.

MR. ERIC DUMOND: I'm going to speak from a little bit of the ignorant side of my education. My understanding is groundwater

rises, it fluctuates, right? It goes up and down. This 360 cap is going to be on top of basically the cooling pond?

MR. GRANGER: (Nods head)

MR. ERIC DUMOND: Is there any possibility of when the water rises it carrying away any hazardous chemicals when it rises?

MR. GRANGER: Eric, that's the total point of this remedy is, first of all, to remove sources of contamination to the aquifer, so that when the groundwater does rise it doesn't carry away these chemicals.

There's four areas of the site that are going to be excavated, two of which have a direct impact on groundwater. That's the first thing.

The second part is the cap over the cooling pond is one thing, but we did an investigation of the cooling pond and did not find hazardous materials contributing to aquifer contamination.

MR. ERIC DUMOND: Okay.

MR. GRANGER: So, we're going to be

excavating the materials outside of the cooling pond that have been determined to be a source to the aquifer, we're covering the cooling pond simply because it was a construction and demolition debris landfill and that's what you do with old landfills, rot because it's hazardous.

MR. ERIC DUMOND: Now, you're quite positive that there are no other -- and I'm, you know, talking to you, we've dealt for a long time, and I, you know, I respect your opinion -- are you quite confident that there are no other possible hot spots on the site?

MR. GRANGER: I'm quite confident, yes, I would use that phrase.

I think that we have an impressive data set, database for the site. There's just sampling points from one end of the site to the other. The nature of the site is such that it is not out of the question, I think it's remote, but it does remain a possibility. And if a source was determined to be present on the site, then we would

evaluate the need to address that in addition to what else we have.

That builds on something that Joel had mentioned earlier, that if information comes to EPA in the future, we do have mechanisms for reopening our decision, for reevaluating our decision and formalizing that in a post Record of Decision document.

MS. RYCHLENSKI: Jamie, just let me get this gentleman in front of you.

Yes, sir?

MR. RICHARD PARKER: I'm Dick Parker with Curb. I've lived at that end of town most of my life, especially since '65.

This Perplexity Creek and Owego Creek frequently go wild in the spring. Now, when you're going to cover that area of the cooling pond over there, which I'm really familiar with, you will have the Perplexity Creek to deal with, it goes right through it.

And having had -- brought up a granddaughter that I confronted that Perplexity Creek commonly going under the

fence along with her friends. I don't think it's going to get remedied that easily. I just brought her home from LeMoyne this afternoon, so she's not one of your worries anymore.

That would be a concern of mine, as to how you're going to get that thing so it doesn't run out of there, out of this creekbed. Some parts of it are underground.

MR. GRANGER: Right. The creek is definitely a consideration in remedial design.

MR. RICHARD PARKER: Yeah.

MR. GRANGER: Absolutely.

MR. RICHARD PARKER: That's something you want to keep in your monitoring.

MR. GRANGER: You mean just during the construction of the cap or just long term?

MR. RICHARD PARKER: They'll tear it apart for you. If that thing wants to run wild up there it goes.

MR. GRANGER: We're going to have to

## Public Meeting

design for that and they're going to put proper surface water drainage around the cap, you know. They might have to beef that up and put riprap or something, you know, different measures to prevent erosion and whatnot, but, yeah, that's definitely something that we're going to have to address.

MR. RICHARD PARKER: There will be considerable pressure from underneath there, because you may not be aware of the elevation of the subterrainian land, there are two aquifers there, an upper one and a lower one. I don't know if you drove through both of them or not. Did you not? Both of the aquifers?

MR. GRANGER: I'm familiar with them.

MR. RICHARD PARKER: You were?

MR. GRANGER: I'm familiar with the aquifers beneath the Rosen site.

MR. RICHARD PARKER: The two of them?

MR. GRANGER: Right, exactly.

MR. RICHARD PARKER: The upper and the lower?

MR. GRANGER: Yeah.

MR. RICHARD PARKER: And I don't know if the lower one puts the pressure on or the upper one.

MR. GRANGER: Well, that's one of the reasons that the site-wide cover system is being designed to be permeable, because the groundwater tends to rise so high, I mean, I've been out at the site where you could literally dig to groundwater with a teaspoon, so it really would be counterproductive to put a permeable cover across the site when the groundwater comes up so high, and it could actually compromise the cover system. So, I think the permeable specification is important for the site-wide cover.

MR. RICHARD PARKER: I don't think they'll do it, but they were considering putting a bypass highway just above that in Polkville. It had all been surveyed and staked off. I don't think they can get

through there anymore, but they put that water tank up there, they might go around it, and that's a State project from Route 13 across Route 11 -- or Route 81.

MS. RYCHLENSKI: Okay. Lot of stuff going on out near that site, that's for sure. Thank you.

MR. RICHARD PARKER: Been there a long time.

MS. RYCHLENSKI: Been here a long time, know it inside out, better than him, I quess.

No offense.

Jamie?

MS. JAMIE DAGLER: Mark, with regard to natural attenuation, if that's the remedy selected for groundwater, would you actually set goals for reduction of contaminants? In other words, I'm trying to project ahead. Say natural attenuation doesn't work, you know, in the long run you need to come back and revisit, at what point will you make that determination that this is not working, we need to go back and figure out why it's

not working?

Will you set goals based on the levels of contamination you know are there, they should be reduced to a certain level by a certain time or something like that?

MR. GRANGER: There's already goals in terms of State and Federal groundwater standards for drinking waters, so those are ultimately the goals. That's the rods, the yardstick that we're measuring it against.

over time, there's the stipulation, which is part of the Superfund program, for a five-year review. Every five years that this site is reviewed to ensure that the remedy remains protective. So, we're saying right now that we believe natural attenuation will meet those drinking water standards within ten years. That's an estimate. If it turns out to be fifteen years, at the second five-year review we would evaluate whether that remedy has remained protective and make a decision based on that.

I would say that in the unlikely instance where the City of Cortland wanted or absolutely had to place their groundwater extraction well for drinking purposes downgradient of the Rosen site, that would be -- that would change the equation dramatically and that would be the kind of scenario where we would say, well, okay, this remedy's no longer protective, you know. If that's the circumstance we'd have to evaluate that, okay?

MS. RYCHLENSKI: Okay. Any other questions or comments?

(Whereupon there was no verbal response)

MS. RYCHLENSKI: Okay, then we'll close for the evening. I thank you all very much. And just remember, written comments, get them to Mark by close of business

December 17th. And I'm sure we'll see you soon.

(Whereupon the meeting adjourned at 8:30 PM)

\* \* \* \*

STATE OF NEW YORK
COUNTY OF BROOME

I, MICHELE L. RICE, Shorthand Reporter, do hereby certify that the foregoing is a true and accurate transcription of the proceedings in the Matter of a PUBLIC MEETING, held in Cortland, New York, on the 9th day of December, 1997.

Michele Lacce

MICHELE L. RICE Shorthand Reporter Notary Public PDQ Court Reporters 4815 Barry Hollow Road Marathon, NY 13803 (607) 849-6884/(800) 528-9013