

Ms. Sarah Saucier, P.E.
Environmental Engineer 1
New York State Department of Environmental Conservation
Division of Environmental Remediation
Remedial Bureau C
625 Broadway, 11th Floor
Albany, New York 12233-7014

Arcadis of New York, Inc.
One Lincoln Center
110 West Fayette Street
Suite 300
Syracuse
New York 13202
Tel 315 446 9120
Fax 315 449 0017
www.arcadis.com

Subject:

2016 Annual Groundwater Monitoring Report NYSEG Cortland-Homer Former MGP Site Homer, New York NYSDEC Site #7-12-005

Dear Ms. Saucier:

On behalf of New York State Electric & Gas Corporation (NYSEG), this report summarizes the results of the October 2016 groundwater monitoring event completed at the Cortland-Homer former manufactured gas plant (MGP) site in Homer, New York (the Site). The October 2016 monitoring event was the first of two additional post-remediation annual groundwater monitoring events requested by the New York State Department of Environmental Conservation (NYSDEC) in a December 18, 2015 letter to NYSEG. Pre-remediation baseline groundwater monitoring was conducted in June 2012, and post-remediation groundwater monitoring was conducted in November 2013 and September 2015.

The 2016 groundwater monitoring event was conducted by Arcadis of New York, Inc. (Arcadis) in accordance with protocols presented in the NYSDEC-approved Site Management Plan (SMP; Arcadis, March 2016). The wells included in the 2016 groundwater monitoring event were those identified in a November 6, 2015 letter from Arcadis to the NYSDEC (the "2015 Annual Groundwater Monitoring Report"), plus two additional wells as requested in the NYSDEC's December 18, 2015 letter.

As summarized herein, the monitoring data indicate that the area of groundwater impacted by the former MGP is relatively small, the exceedances of groundwater quality standards/guidance values continue to be relatively minor, and concentrations are lower than those identified during the baseline (pre-remediation) monitoring event.

Relevant background information is presented below, followed by a summary of the groundwater monitoring activities and results. **ENVIRONMENT**

Date

February 24, 2017

Contact:

John C. Brussel, PE

Phone:

315.671.9441

Email:

John.Brussel@arcadis.com

Our ref:

B0013123.0015 #11

I. BACKGROUND

Remedial activities at the Site were substantially completed between July 2012 and February 2013, and final site restoration was performed in May/June 2013. The remedial activities involved in-situ soil solidification (ISS) of approximately 55,000 cubic yards of soil in two separate operable units on opposite sides of US Route 11 (i.e., Operable Units OU-1 and OU-2 located on the west and east sides of the roadway, respectively). The OU-1 and OU-2 locations and ISS remedial limits are shown on Figure 1. ISS treatment columns extended vertically into an underlying silt/clay layer up to 50 feet below ground surface. ISS was performed to encapsulate coal tar dense non-aqueous phase liquid (DNAPL) and site-related chemical constituents in soil to reduce or eliminate: (1) the release of constituents from soil to groundwater; and (2) migration of coal tar DNAPL beyond site boundaries. The ISS monoliths in OU-1 and OU-2 were connected by two vertical barrier walls (sealed steel sheet pile walls driven into the confining layer) extending beneath Route 11 to divert groundwater around potentially-impacted soils below the roadway.

As indicated above, groundwater monitoring was performed in June 2012 (approximately one month prior to the start of remedial construction) to evaluate baseline conditions. Post-remediation groundwater monitoring was performed in November 2013 and September 2015 to assess groundwater flow patterns and water quality following remediation. In addition, an investigation was performed from October 2013 to December 2013 to assess the nature, extent, and recoverability of an area of petroleum-based light nonaqueous phase liquid (LNAPL) encountered during remediation in the southeastern corner of OU-1, around monitoring well MW-11. As part of the LNAPL investigation, three new monitoring wells (MW-31A, MW-32A, and MW-33, as shown on Figure 1) were installed and developed for gauging. The three new wells and five existing nearby wells were gauged for LNAPL weekly throughout November and December 2013. The investigation findings indicated that recoverable LNAPL was limited to the immediate vicinity of MW-11. Because MW-11 was not ideally constructed to recover LNAPL, an additional monitoring well (MW-36) was subsequently constructed adjacent to MW-11 in April 2014 with NYSDEC's approval. MW-36 is screened from 3.9 to 13.6 feet below ground surface (bgs), while MW-11 is screened from 7 to 12 feet bgs. The water table in this area has sometimes been above the top of the MW-11 screen. Additional LNAPL gauging was performed weekly in April and May 2014, and then monthly from June 2014 through January 2015. As indicated by the LNAPL gauging results (presented in January 30, 2015 e-mail correspondence from Arcadis to the NYSDEC), no recoverable NAPL was encountered during the gauging period except for 0.7 gallons removed from MW-11 (mixture of LNAPL and water).

II. GROUNDWATER MONITORING ACTIVITIES

The 2016 annual groundwater monitoring event involved: (1) collecting a synoptic round of water-level measurements; (2) checking each well for LNAPL and DNAPL) with a dual-interface probe; and (3) sampling groundwater from wells in the monitoring well network (refer to Figure 1 for the well locations). Arcadis measured water levels and performed NAPL gauging on October 18, 2016. Arcadis collected groundwater samples on October 18 and 19, 2016. The fieldwork was performed in accordance with the protocols presented in Section 3.3.1 of the SMP.

Before beginning sampling, Arcadis measured water levels from the following 14 monitoring wells:

- One well west of the railroad tracks (MW-1).
- Six wells between the railroad tracks and US Route 11 (MW-12, MW-30S, MW-31A, MW-32A, MW-33, and MW-36).
- Seven wells between US Route 11 and the Tioughnioga River (MW-6, MW-13, MW-14R, MW-17, MW-18, MW-28S, and MW-28D).

Arcadis did not obtain a water-level measurement or perform NAPL gauging at monitoring well MW-11 because the well was inaccessible. Specifically, the well was found to be covered by a concrete patch that could not be removed with reasonable force using steel hand tools). Arcadis obtained depth-to-bottom measurements from each of the above-identified accessible wells. Some LNAPL was encountered in three wells near MW-11 (i.e., approximately 0.01 feet in MW-32A, 0.09 feet in MW-36, and 0.30 feet in MW-31A) and was removed by bailing. Traces of LNAPL (blebs/films) had previously been observed in each of these three wells. The LNAPL/water mixture from these wells (approximately one gallon total) was placed in a pail (which was overpacked in a 55-gallon drum) and transported offsite by Clean Harbors on November 14, 2016 for treatment/disposal. The water-level measurements and calculated groundwater elevations are presented in Table 1. The groundwater elevations were used to prepare a map of the water table (Figure 1). Similar to previous observations, groundwater near the site continues to flow toward the east/southeast. Locally, groundwater is directed around the ISS monoliths and vertical barrier walls.

Groundwater samples were collected from 10 monitoring wells (wells MW-1, MW-6, MW-12, MW-13, MW-14R, MW-17, MW-18, MW-28S, MW-28D, and MW-30S). The groundwater samples were collected using the low-flow method described in Section 3.3.1.1 of the SMP. Field-parameter measurements obtained during well purging prior to sampling are presented on the groundwater sampling logs included as Attachment A to this letter.

The groundwater samples were submitted to Accutest Laboratories of Marlborough, Massachusetts where they were analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs), and total cyanide. One set of quality assurance/quality control samples, consisting of a field duplicate, matrix spike, matrix spike duplicate, and a trip blank, was also collected and analyzed.

III. GROUNDWATER MONITORING RESULTS

Arcadis validated the groundwater analytical results, and found the results to be useable as intended. The data validation report and full laboratory analytical data report (NYSDEC Analytical Services Protocol Category B data deliverables package) are provided on the attached CD. The electronic data deliverables (EDDs) are being e-mailed to the NYSDEC separately for upload to the NYSDEC's EQuIS database.

The validated groundwater analytical results are presented in Table 2. This table also provides the corresponding ambient water quality standards and guidance values for each analyte as presented in the NYSDEC Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1) document titled "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations", last

updated June 2004. Results that exceed these criteria are shaded in the table. Groundwater analytical results for constituents exceeding the water quality standards/guidance values are shown on Figure 2.

The groundwater analytical results are summarized as follows:

- BTEX were not identified at concentrations exceeding the groundwater quality standards in 9 of the 10 wells that were sampled. BTEX were only identified at MW-17 (just east of a former filling station within OU-2) at concentrations greater than the groundwater quality standards. The BTEX concentrations in the October 2016 sample from MW-17 were generally similar to or slightly higher than those identified in previous post-remediation samples from this well, but one to two orders of magnitude lower than those identified in the pre-remediation baseline sample. The benzene, ethylbenzene, and xylenes concentrations identified in the October 2016 groundwater sample from MW-17 were 38 parts per billion (ppb), 14 ppb, and 6.6 ppb, respectively, vs. the groundwater quality standards of 1 ppb (benzene) and 5 ppb (ethylbenzene and xylenes).
- PAHs were not identified at concentrations exceeding the groundwater quality standards in 9 of the 10 wells that were sampled. Acenaphthene was identified at MW-17 at a concentration of 33 ppb vs. the 20 ppb groundwater quality guidance value. The acenaphthene concentration at MW-17 is slightly higher than the concentrations observed in previous post-remediation groundwater monitoring events (22.5 ppb and 22.1 ppb), but an order of magnitude lower than the 168 ppb concentration identified in this well before remediation.
- Total cyanide was not identified at concentrations exceeding the 200 ppb groundwater quality standard in 7 of the 10 wells that were sampled. Cyanide was identified at MW-12 (estimated 7,300 ppb), MW-14R (estimated 880 ppb), and MW-30S (estimated 220 ppb). Cyanide was not identified above the laboratory detection limit of 10 ppb in the duplicate sample collected from MW-30S. The cyanide results have been qualified as estimated based on the discrepancy between the duplicate and parent sample results. Cyanide was identified in each previous groundwater sample from these three wells, but the concentrations identified in the October 2016 samples were the highest identified to date in these wells. The higher reported cyanide concentrations do not appear to be related to sample turbidities. The 0.0 nephelometric unit (NTU) turbidity in the October 2016 sample from MW-12 was the lowest recorded at that well, while the 15.4 NTU turbidity in the October 2016 sample from MW-14R was the highest recorded at that well. The 191 NTU turbidity in the October 2016 sample from MW-30S was between previous turbidity readings of 145 NTU and >500 NTU. From a review of historical water level measurements, the October 2016 water levels across the site were the lowest observed since the June 2012 baseline monitoring event. The effect of water level (if any) on cyanide concentrations is unknown.

IV. CONCLUSIONS AND RECOMMENDATIONS

Overall, the BTEX and PAH groundwater analytical results for October 2016 are approximately the same or slightly higher than those from the previous post-remediation monitoring events (November 2013 and September 2015), but less than those from the baseline groundwater monitoring event (June 2012). BTEX and PAH exceedances of groundwater quality standards were only identified at one location in

2016 (MW-17). The observation of LNAPL in wells MW-31A and MW-32A (north and south of MW-11) in October 2016 is consistent with previous observations during the weekly or monthly gauging in 2013 and 2014. The data continue to indicate that the LNAPL is limited to the southeast corner of OU-1. The apparent increase in total cyanide concentrations may be related to a lower water table. Additional annual groundwater monitoring will be performed in September/October 2017 to further evaluate conditions. Based on the results of the 2017 annual groundwater monitoring, NYSEG may propose to continue the monitoring program unchanged or with modifications, as appropriate.

Decommissioning of 10 monitoring wells that are not needed for the groundwater monitoring program (monitoring wells MW-22, MW-23, MW-25, MW-26, MW-27S, MW-29S/D, MW-30D, MW-31, and MW-32) is scheduled to be performed in April/May 2017. The decommissioning will be performed as proposed in the 2015 Annual Groundwater Monitoring Report and approved by the NYSDEC on December 18, 2015. While onsite for the monitoring well decommissioning activities, Arcadis will re-check monitoring wells MW-31A, MW-32A, and MW-36 for LNAPL. If measurable LNAPL is present in these wells, Arcadis will remove the LNAPL and transfer it into an appropriate container for offsite treatment/disposal by NYSEG. Arcadis will also attempt to remove the concrete mass from over MW-11 using tooling available onsite for well decommissioning work (and will check MW-11 for LNAPL if the well can be made accessible).

Considering the relatively small area of impacted groundwater, the relatively minor exceedances of groundwater quality standards/guidance values, the lack of groundwater use at and near the Site, and existing groundwater use laws codified in 10 NYCRR 5-1.31(b) that prohibit the installation of private wells where public supply is available (unless approval is expressly granted by the public water authority), the potential for human exposure to constituents in groundwater at this Site continues to be limited.

Please feel free to contact Tracy Blazicek (NYSEG) at 607.764.8839 or me at 315.671.9441 if you have any comments/questions or need additional information.

Sincerely,

Arcadis of New York, Inc.

John C. Brussel, P.E. Principal Engineer

Copies:

Mr. Tracy L. Blazicek, CHMM, NYSEG (via e-mail & US Mail)

Mr. Keith A. White, CPG, Arcadis (via e-mail)

Enclosures:

Tables

- 1 Summary of NAPL and Water Level Gauging Data
- 2 Groundwater Analytical Results

Figures

- 1 Water-Table Map October 18, 2016
- 2 Groundwater Analytical Results

Attachment

A Groundwater Sampling Logs

TABLES

Table 1 Summary of NAPL and Water Level Gauging Data

2016 Annual Groundwater Monitoring Report Cortland-Homer Former MGP Site - Homer, New York

	Top of Inner			o Water low TIC)				Bottom		Appro	ximate LN (fe	APL Thic	kness*	(Groundwate (feet :		n
Monitoring Well ID	Casing (TIC) Elevation (feet AMSL)	6/25/12	11/5/13	9/14/15	10/18/16	6/25/12	11/5/13	9/14/15	10/18/16	6/25/12	11/5/13	9/14/15	10/18/16	6/25/12	11/5/13	9/14/15	10/18/16
MW-1	1116.25	-	5.79	6.98	7.80	-	23.6	23.8	23.9	0.00	0.00	0.00	0.00	-	1110.46	1109.27	1108.45
MW-6	1113.07	4.67	4.20	5.04	5.22	20.1	25.4	26.1	26.4	0.00	0.00	0.00	0.00	1108.40	1108.87	1108.03	1107.85
MW-11	1114.97	6.68	6.05	7.31	buried***	11.2	-	11.5	buried***	0.22	0.30	0.00	0.00	1108.29	1109.19**	1107.66	buried***
MW-12	1115.23	6.46	5.61	6.51	6.65	11.4	11.6	11.6	11.5	0.00	0.00	0.00	0.00	1108.77	1109.62	1108.72	1108.58
MW-13	1113.47	5.09	4.55	5.51	5.70	31.5	31.7	31.8	31.6	0.00	0.00	0.00	0.00	1108.38	1108.92	1107.96	1107.77
MW-14R	1112.78	-	4.09	4.88	4.88	-	13.1	13.0	12.5	0.00	0.00	0.00	0.00	-	1108.69	1107.90	1107.90
MW-17	1114.75	6.68	6.12	6.86	7.11	10.5	10.5	10.6	10.6	0.00	0.00	0.00	0.00	1108.07	1108.63	1107.89	1107.64
MW-18	1114.81	6.57	6.01	6.76	6.93	30.0	30.1	30.1	30.1	0.00	0.00	0.00	0.00	1108.24	1108.80	1108.05	1107.88
MW-28S	1111.68	3.34	2.77	3.58	3.67	13.1	13.2	13.3	13.2	0.00	0.00	0.00	0.00	1108.34	1108.91	1108.10	1108.01
MW-28D	1111.50	3.22	2.65	6.43	3.55	21.6	26.8	26.8	26.8	0.00	0.00	0.00	0.00	1108.28	1108.85	1105.07	1107.95
MW-30S	1115.08	5.89	5.46	6.15	6.58	9.9	12.1	12.1	11.8	0.00	0.00	0.00	0.00	1109.19	1109.62	1108.93	1108.50
MW-31A	1115.30	-	6.42	7.31	8.10	-	14.0	14.0	-	0.00	0.00	Trace	0.30	-	1108.88	1107.99	1107.20
MW-32A	1115.78	-	6.75	7.77	8.21	-	14.4	-	-	0.00	0.00	0.06	0.01	-	1109.03	1108.01	1107.57
MW-33	1116.17	-	7.10	8.02	8.56	-	13.6	13.5	13.6	0.00	0.00	0.00	0.00	-	1109.07	1108.15	1107.61
MW-36	1114.96	-	-	7.16	7.78	-	-	13.4	13.5	0.00	0.00	0.00	0.09	-	-	1107.80	1107.18

Notes:

- 1. Elevations are shown in feet above mean sea level (AMSL) relative to the North Americal Vertical Datum of 1988 (NAVD88).
- 2. = not available; NAPL = Non-Aqueous Phase Liquid; LNAPL= Light Non-Aqueous Phase Liquid; DNAPL = Dense Non-Aqueous Phase Liquid.
- 3. TIC = Top of Inner Casing.
- 4. *= No DNAPL has been identified in any of the monitoring wells during the groundwater monitoring events.
- 5. ** The groundwater elevation at MW-11 has been corrected for the presence of LNAPL, using an estimated LNAPL density of 0.9.
- 6. *** = MW-11 was buried under concrete during the October 2016 sampling event and could not be accessed.

Table 2
Groundwater Analytical Results (ppb)

Location ID:	NYSDEC Groundwater	MW				MW-6		MW-11			V-12	
Screen Interval (feet bgs):	Standards/	15.5 -				26 - 31		7 - 13			- 13	
	Guidance Values	11/06/13	10/19/16	06/26/12	11/05/13	09/14/15	10/19/16	09/16/15	06/27/12	11/06/13	09/16/15	10/19/16
Volatile Organics												
Benzene	1	<0.500	<1.00	<0.500	<0.500 J	<0.500 J [<0.500 J]	<1.00	0.820 J	<0.500	<0.500	<0.500 J	<1.00
Ethylbenzene	5	<1.00	<1.00	<1.00	<1.00	<1.00 J [<1.00 J]	<1.00	<1.00 J	<1.00	<1.00	<1.00 J	<1.00
Toluene	5	<1.00	<1.00	<1.00	<1.00	<1.00 J [<1.00 J]	<1.00	0.290 J	<1.00	<1.00	<1.00 J	<1.00
Xylenes (total)	5	<1.00	<2.00	<1.00	<1.00	<1.00 J [<1.00 J]	<2.00	0.330 J	<1.00	<1.00	<1.00 J	<2.00
Polycyclic Aromatic Hydrocarbons												
2-Methylnaphthalene		<2.40	<24.0	<2.20	<2.50	<2.00 [0.0440 J]	<24.0	<2.00	<2.30	<2.50	<2.00 B	<5.10
Acenaphthene	20	<2.40	<24.0	<2.20	<2.50	0.0370 J [0.0380 J]	<24.0	4.60	<2.30	<2.50	<0.100	<5.10
Acenaphthylene		<2.40	<24.0	<2.20	<2.50	0.130 [0.120]	<24.0	0.260	<2.30	<2.50	<0.100	<5.10
Anthracene	50	<2.40	<24.0	<2.20	<2.50	<0.100 [<0.100]	<24.0	0.110	<2.30	<2.50	<0.100	<5.10
Benzo(a)anthracene	0.002	<2.40	<24.0	<2.20	<2.50	<0.0510 [<0.0500]	<24.0	<0.0510	<2.30	<2.50	< 0.0510	<5.10
Benzo(a)pyrene	ND	<2.40	<24.0	<2.20	<2.50	<0.100 [<0.100]	<24.0	<0.100	<2.30	<2.50	<0.100	<5.10
Benzo(b)fluoranthene	0.002	<2.40	<24.0	<2.20	<2.50	<0.0510 J [<0.0500 J]	<24.0	<0.0510 J	<2.30	<2.50	<0.0510 J	<5.10
Benzo(g,h,i)perylene		<2.40	<24.0	<2.20	<2.50	<0.100 [<0.100]	<24.0	<0.100	<2.30	<2.50	<0.100	<5.10
Benzo(k)fluoranthene	0.002	<2.40	<24.0	<2.20	<2.50	<0.100 [<0.100]	<24.0	<0.100	<2.30	<2.50	<0.100	<5.10
Chrysene	0.002	<2.40	<24.0	<2.20	<2.50	<0.100 [<0.100]	<24.0	0.0160 J	<2.30	<2.50	<0.100	<5.10
Dibenzo(a,h)anthracene		<2.40	<24.0	<2.20	<2.50	<0.100 [<0.100]	<24.0	<0.100	<2.30	<2.50	<0.100	<5.10
Fluoranthene	50	<2.40	<24.0	<2.20	<2.50	0.0450 J [0.0510 J]	<24.0	0.0460 J	<2.30	<2.50	<0.100	<5.10
Fluorene	50	<2.40	<24.0	<2.20	<2.50	<0.100 [0.0200 J]	<24.0	1.10	<2.30	<2.50	<0.100	<5.10
Indeno(1,2,3-cd)pyrene	0.002	<2.40	<24.0	<2.20	<2.50	<0.100 [<0.100]	<24.0	<0.100	<2.30	<2.50	<0.100	<5.10
Naphthalene	10	<2.40	<24.0	<2.20 B	<2.50	0.0230 J [0.0270 J]	<24.0	0.250 J	<2.30	<2.50	<2.00 B	<5.10
Phenanthrene	50	<2.40	<24.0	<2.20	<2.50	<0.0510 [0.0300 J]	<24.0	0.0380 J	<2.30	<2.50	<0.0510	<5.10
Pyrene	50	<2.40	<24.0	<2.20	<2.50	0.0580 J [0.0650 J]	<24.0	0.150	<2.30	<2.50	<0.100	<5.10
Cyanide						-						
Total Cyanide	200	<10.0	<10.0 J	<10.0	<10.0	<10.0 J [<10.0 J]	<10.0	370	2,600	3,000	6,500	7,300 J

Table 2
Groundwater Analytical Results (ppb)

Landing ID.	NYSDEC	MW-13			P.004.4.4		B004 4 4 D			B00/ 47			
Location ID:	Groundwater					MW-14		MW-14R			MW-17		
Screen Interval (feet bgs):	Standards/	00/07/40	35.5 -		40/40/40	6.5 - 11.5	44/05/40	2.8 - 12.8	40/40/40	00/05/40	6 - 11	00/44/45	40/40/40
Date Collected:	Guidance Values	06/27/12	11/06/13	09/16/15	10/19/16	06/26/12	11/05/13	09/14/15	10/19/16	06/25/12	11/05/13	09/14/15	10/18/16
Volatile Organics													
Benzene	1	<0.500	<0.500	<0.500 J	<1.00	14.5	17.0 J	<0.500 J	<1.00	291 [304]	14.1 J	5.30 J	38.0
Ethylbenzene	5	<1.00	<1.00	<1.00 J	<1.00	<1.00	<1.00	<1.00 J	<1.00	258 [257]	17.5	0.790 J	14.0
Toluene	5	<1.00	<1.00	<1.00 J	<1.00	<1.00	<1.00	<1.00 J	<1.00	16.0 [17.1]	1.10	<1.00 J	0.900 J
Xylenes (total)	5	<1.00	<1.00	<1.00 J	<2.00	<1.00	<1.00	<1.00 J	<2.00	157 J [144]	1.70	0.240 J	6.60
Polycyclic Aromatic Hydrocarbons													
2-Methylnaphthalene		<2.20	<2.40	<2.00	<5.00	<2.10	<2.40	<2.00	<4.70	<2.20 [<2.20]	26.8	<2.10	<25.0
Acenaphthene	20	<2.20	<2.40	<0.100	<5.00	3.00	13.6	<0.100	<4.70	168 [146]	22.5	22.1	33.0
Acenaphthylene		<2.20	<2.40	<0.100	<5.00	<2.10	<2.40	<0.100	<4.70	<2.20 [<2.20]	<2.60	1.50	<25.0
Anthracene	50	<2.20	<2.40	<0.100	<5.00	<2.10	<2.40	<0.100	<4.70	2.90 [2.80]	0.730 J	1.10	<25.0
Benzo(a)anthracene	0.002	<2.20	<2.40	<0.0510	<5.00	<2.10	<2.40	<0.0510	<4.70	<2.20 [<2.20]	<2.60	<0.0520	<25.0
Benzo(a)pyrene	ND	<2.20	<2.40	<0.100	<5.00	<2.10	<2.40	<0.100	<4.70	<2.20 [<2.20]	<2.60	<0.100	<25.0
Benzo(b)fluoranthene	0.002	<2.20	<2.40	<0.0510 J	<5.00	<2.10	<2.40	<0.0510 J	<4.70	<2.20 [<2.20]	<2.60	<0.0520 J	<25.0
Benzo(g,h,i)perylene		<2.20	<2.40	<0.100	<5.00	<2.10	<2.40	<0.100	<4.70	<2.20 [<2.20]	<2.60	<0.100	<25.0
Benzo(k)fluoranthene	0.002	<2.20	<2.40	<0.100	<5.00	<2.10	<2.40	<0.100	<4.70	<2.20 [<2.20]	<2.60	<0.100	<25.0
Chrysene	0.002	<2.20	<2.40	<0.100	<5.00	<2.10	<2.40	<0.100	<4.70	<2.20 [<2.20]	<2.60	<0.100	<25.0
Dibenzo(a,h)anthracene		<2.20	<2.40	<0.100	<5.00	<2.10	<2.40	<0.100	<4.70	<2.20 [<2.20]	<2.60	<0.100	<25.0
Fluoranthene	50	<2.20	<2.40	<0.100	<5.00	<2.10	<2.40	<0.100	<4.70	1.50 J [1.50 J]	<2.60	0.520	<25.0
Fluorene	50	<2.20	<2.40	<0.100	<5.00	<2.10	<2.40	<0.100	<4.70	39.0 [35.2]	6.70	9.10	8.00 J
Indeno(1,2,3-cd)pyrene	0.002	<2.20	<2.40	<0.100	<5.00	<2.10	<2.40	<0.100	<4.70	<2.20 [<2.20]	<2.60	<0.100	<25.0
Naphthalene	10	<2.20	<2.40	<2.00	<5.00	<2.10 B	<2.40	0.0160 J	<4.70	1,870 D [<1,740 BD]	0.730 J	0.340 J	8.20 J
Phenanthrene	50	<2.20	<2.40	<0.0510	<5.00	<2.10	<2.40	<0.0510	<4.70	33.9 [32.5]	7.40	0.770	2.40 J
Pyrene	50	<2.20	<2.40	<0.100	<5.00	<2.10	<2.40	<0.100	<4.70	1.10 J [1.10 J]	<2.60	0.460	<25.0
Cyanide													
Total Cyanide	200	<10.0	<10.0	<10.0	<10.0 J	100	130	81.0 J	880 J	310 [330]	30.0	<10.0 J	150 J

Table 2
Groundwater Analytical Results (ppb)

Location ID: Screen Interval (feet bos):	NYSDEC Groundwater		MW-			MV		MW	/-25	MW-26	MW	-27D
Screen Interval (feet bgs):	Standards/		24.6 -			32 - 37	32 - 37	4 -		50 - 60		- 34
Date Collected:	Guidance Values	06/25/12	11/05/13	09/14/15	10/18/16	06/27/12	11/06/13	06/27/12	11/06/13	11/06/13	06/26/12	11/05/13
Volatile Organics												
Benzene	1	0.650	<0.500 J	<0.500 J	<1.00	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500 J
Ethylbenzene	5	<1.00	<1.00	<1.00 J	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Toluene	5	<1.00	<1.00	<1.00 J	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Xylenes (total)	5	<1.00	<1.00	<1.00 J	<2.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Polycyclic Aromatic Hydrocarbons												
2-Methylnaphthalene		<2.20	<2.40	0.0170 J	<5.40	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Acenaphthene	20	<2.20	0.580 J	4.10	<5.40	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Acenaphthylene		<2.20	<2.40	1.20	<5.40	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Anthracene	50	<2.20	<2.40	0.0440 J	<5.40	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Benzo(a)anthracene	0.002	<2.20	<2.40	<0.0520	<5.40	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Benzo(a)pyrene	ND	<2.20	<2.40	<0.100	<5.40	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Benzo(b)fluoranthene	0.002	<2.20	<2.40	<0.0520 J	<5.40	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Benzo(g,h,i)perylene		<2.20	<2.40	<0.100	<5.40	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Benzo(k)fluoranthene	0.002	<2.20	<2.40	<0.100	<5.40	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Chrysene	0.002	<2.20	<2.40	<0.100	<5.40	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Dibenzo(a,h)anthracene		<2.20	<2.40	<0.100	<5.40	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Fluoranthene	50	<2.20	<2.40	0.170	<5.40	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Fluorene	50	<2.20	<2.40	0.270	<5.40	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Indeno(1,2,3-cd)pyrene	0.002	<2.20	<2.40	<0.100	<5.40	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Naphthalene	10	<2.20 B	<2.40	0.0320 J	<5.40	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50 J
Phenanthrene	50	<2.20	<2.40	0.0510 J	<5.40	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Pyrene	50	<2.20	<2.40	0.170	<5.40	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Cyanide												
Total Cyanide	200	<10.0	<10.0	<10.0 J	<10.0 J	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0

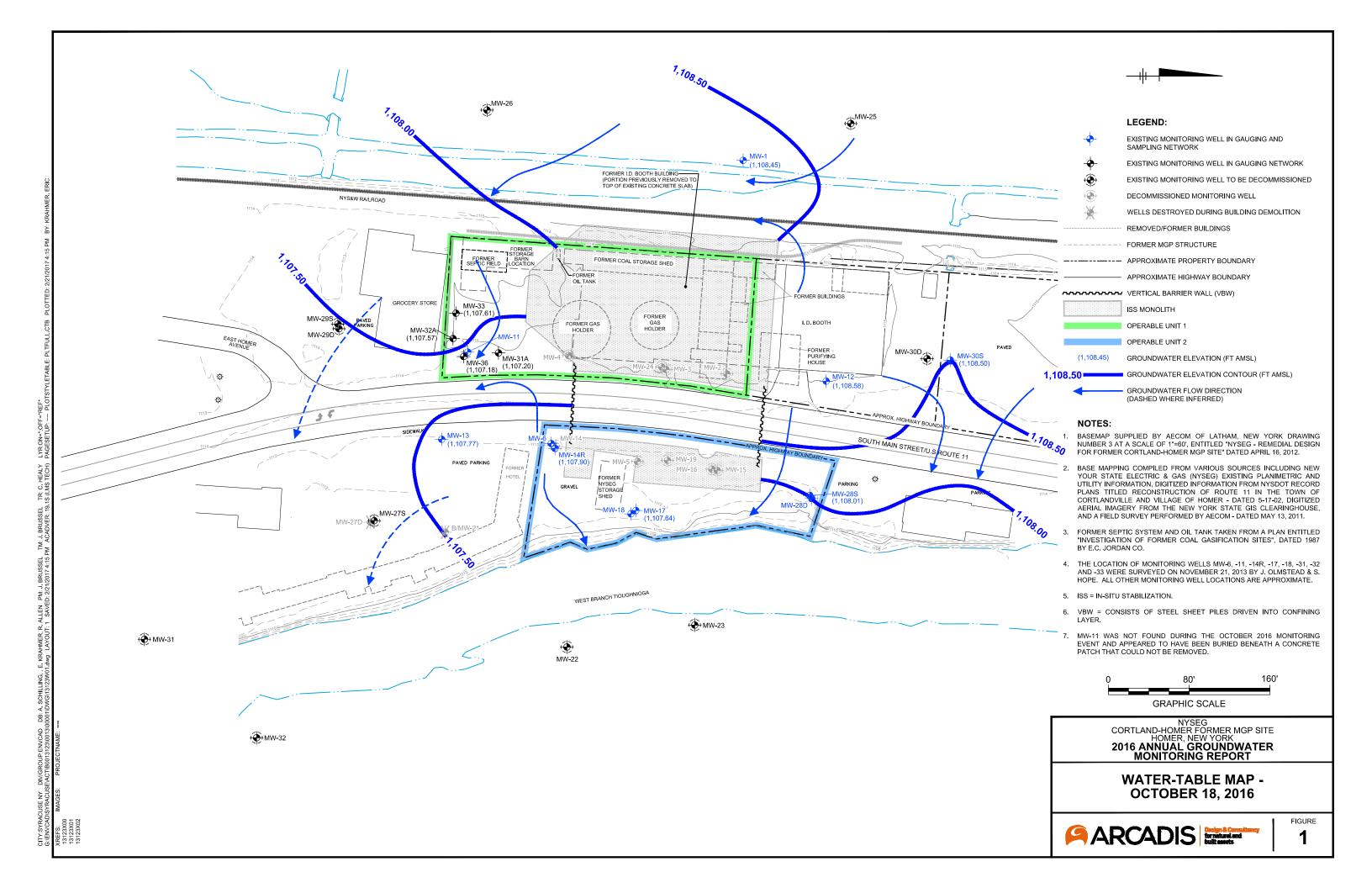
Table 2
Groundwater Analytical Results (ppb)

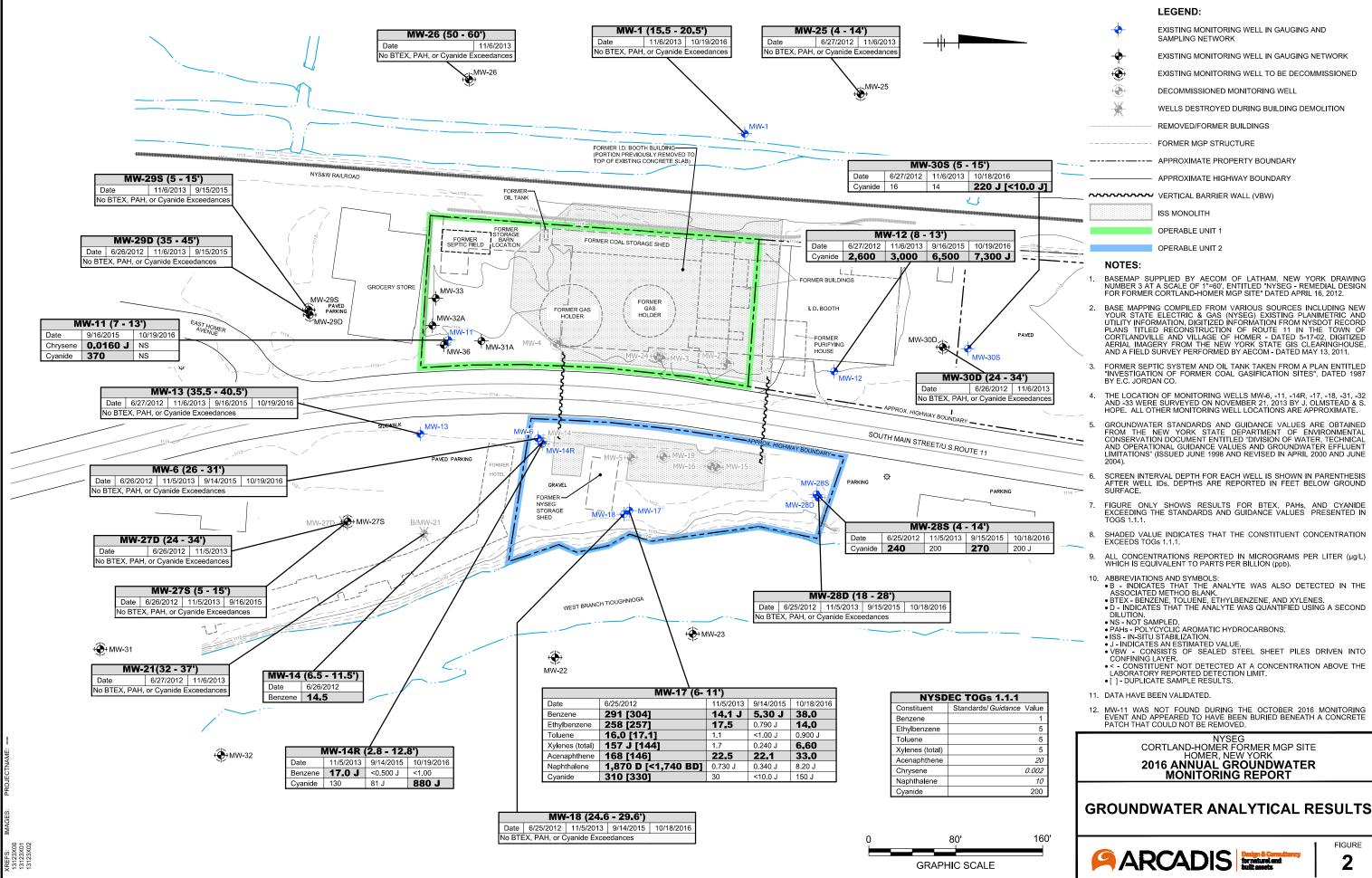
Location ID:	NYSDEC Groundwater		MW-27S			MW	-28D			MW	-28S	
Screen Interval (feet bgs):	Standards/		5 - 15				- 28			4 -	14	
Date Collected:	Guidance Values	06/26/12	11/05/13	09/16/15	06/25/12	11/05/13	09/15/15	10/18/16	06/25/12	11/05/13	09/15/15	10/18/16
Volatile Organics												
Benzene	1	<0.500	<0.500 J [<0.500 J]	<0.500 J	<0.500	<0.500 J	<0.500 J	<1.00	<0.500	<0.500 J	<0.500 J	<1.00
Ethylbenzene	5	<1.00	<1.00 [<1.00]	<1.00 J	<1.00	<1.00	<1.00 J	<1.00	<1.00	<1.00	<1.00 J	<1.00
Toluene	5	<1.00	<1.00 [<1.00]	<1.00 J	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Xylenes (total)	5	<1.00	<1.00 [<1.00]	<1.00 J	<1.00	<1.00	<1.00 J	<2.00	<1.00	<1.00	<1.00 J	0.780 J
Polycyclic Aromatic Hydrocarbons												
2-Methylnaphthalene		<2.40	<2.50 [<2.40]	<2.30 B	<2.00	<2.20	<2.00 B	<4.80	<2.40	<2.50	<2.00 B	<4.70
Acenaphthene	20	<2.40	<2.50 J [16.4 J]	<0.110	3.80	<2.20	4.30	4.90	9.90	4.50	5.10	5.90
Acenaphthylene		<2.40	<2.50 [0.930 J]	<0.110	0.870 J	<2.20	1.40	1.10 J	3.10	1.00 J	1.50	1.40 J
Anthracene	50	<2.40	<2.50 [<2.40]	<0.110	<2.00	<2.20	<0.100	<4.80	<2.40	<2.50	0.0150 J	<4.70
Benzo(a)anthracene	0.002	<2.40	<2.50 [<2.40]	<0.0570	<2.00	<2.20	<0.0510	<4.80	<2.40	<2.50	<0.0510	<4.70
Benzo(a)pyrene	ND	<2.40	<2.50 [<2.40]	<0.110	<2.00	<2.20	<0.100	<4.80	<2.40	<2.50	<0.100	<4.70 J
Benzo(b)fluoranthene	0.002	<2.40	<2.50 [<2.40]	<0.0570 J	<2.00	<2.20	<0.0510 J	<4.80	<2.40	<2.50	<0.0510 J	<4.70
Benzo(g,h,i)perylene		<2.40	<2.50 [<2.40]	<0.110	<2.00	<2.20	<0.100	<4.80	<2.40	<2.50	<0.100	<4.70 J
Benzo(k)fluoranthene	0.002	<2.40	<2.50 [<2.40]	<0.110	<2.00	<2.20	<0.100	<4.80	<2.40	<2.50	<0.100	<4.70
Chrysene	0.002	<2.40	<2.50 [<2.40]	<0.110	<2.00	<2.20	<0.100	<4.80	<2.40	<2.50	<0.100	<4.70 J
Dibenzo(a,h)anthracene		<2.40	<2.50 [<2.40]	<0.110	<2.00	<2.20	<0.100	<4.80	<2.40	<2.50	<0.100	<4.70 J
Fluoranthene	50	<2.40	<2.50 [<2.40]	<0.110	<2.00	<2.20	<0.100	<4.80	<2.40	<2.50	<0.100	<4.70
Fluorene	50	<2.40	<2.50 [5.10]	<0.110	<2.00	<2.20	0.150	<4.80	<2.40	<2.50	<0.100	<4.70
Indeno(1,2,3-cd)pyrene	0.002	<2.40	<2.50 [<2.40]	<0.110	<2.00	<2.20	<0.100	<4.80	<2.40	<2.50	<0.100	<4.70 J
Naphthalene	10	<5.40 B	<2.50 [<2.40]	<2.30 B	<2.00 B	<2.20	<2.00 B	<4.80	<2.40	<2.50	<2.00 B	<4.70
Phenanthrene	50	<2.40	<2.50 [5.70]	<0.0570	<2.00	<2.20	0.0300 J	<4.80	<2.40	<2.50	0.0270 J	<4.70
Pyrene	50	<2.40	<2.50 [<2.40]	<0.110	<2.00	<2.20	<0.100	<4.80	<2.40	<2.50	<0.100	<4.70
Cyanide												
Total Cyanide	200	<10.0	<10.0 [<10.0]	<10.0	<10.0	<10.0	2.40 B	<10.0 J	240	200	270	200 J

Table 2
Groundwater Analytical Results (ppb)

Location ID:	NYSDEC Groundwater		MW-29D			/-29S		-30D		MW-30	s
Screen Interval (feet bgs):	Standards/		35 - 45		-	- 15		- 34		5 - 15	
Date Collected:	Guidance Values	06/26/12	11/06/13	09/15/15	11/06/13	09/15/15	06/26/12	11/06/13	06/27/12	11/06/13	10/18/16
Volatile Organics											
Benzene	1	<0.500	<0.500	<0.500 J	<0.500	<0.500 J	<0.500	<0.500	<0.500	<0.500	<1.00 [<1.00]
Ethylbenzene	5	<1.00	<1.00	<1.00 J	<1.00	<1.00 J	<1.00	<1.00	<1.00	<1.00	<1.00 [<1.00]
Toluene	5	<1.00	<1.00	<1.00	<1.00	<1.00	1.20	<1.00	<1.00	<1.00	<1.00 [<1.00]
Xylenes (total)	5	<1.00	<1.00	<1.00 J	<1.00	<1.00 J	<1.00	<1.00	<1.00	<1.00	<2.00 [<2.00]
Polycyclic Aromatic Hydrocarbons											
2-Methylnaphthalene		<2.20	<2.40	<2.40 B	<2.40	<2.00 B	<2.20	<2.50	<2.40	<2.50	<110 [<100]
Acenaphthene	20	<2.20	<2.40	<0.120	<2.40	<0.100	<2.20	<2.50	<2.40	<2.50	<110 [<100]
Acenaphthylene		<2.20	<2.40	<0.120	<2.40	<0.100	<2.20	<2.50	<2.40	<2.50	<110 [<100]
Anthracene	50	<2.20	<2.40	<0.120	<2.40	<0.100	<2.20	<2.50	<2.40	<2.50	<110 [<100]
Benzo(a)anthracene	0.002	<2.20	<2.40	<0.0590	<2.40	<0.0500	<2.20	<2.50	<2.40	<2.50	<110 [<100]
Benzo(a)pyrene	ND	<2.20	<2.40	<0.120	<2.40	<0.100	<2.20	<2.50	<2.40	<2.50	<110 [<100]
Benzo(b)fluoranthene	0.002	<2.20	<2.40	<0.0590 J	<2.40	<0.0500 J	<2.20	<2.50	<2.40	<2.50	<110 [<100]
Benzo(g,h,i)perylene		<2.20	<2.40	<0.120	<2.40	<0.100	<2.20	<2.50	<2.40	<2.50	<110 [<100]
Benzo(k)fluoranthene	0.002	<2.20	<2.40	<0.120	<2.40	<0.100	<2.20	<2.50	<2.40	<2.50	<110 [<100]
Chrysene	0.002	<2.20	<2.40	<0.120	<2.40	<0.100	<2.20	<2.50	<2.40	<2.50	<110 [<100]
Dibenzo(a,h)anthracene		<2.20	<2.40	<0.120	<2.40	<0.100	<2.20	<2.50	<2.40	<2.50	<110 [<100]
Fluoranthene	50	<2.20	<2.40	<0.120	<2.40	<0.100	<2.20	<2.50	<2.40	<2.50	<110 [<100]
Fluorene	50	<2.20	<2.40	0.0180 J	<2.40	<0.100	<2.20	<2.50	<2.40	<2.50	<110 [<100]
Indeno(1,2,3-cd)pyrene	0.002	<2.20	<2.40	<0.120	<2.40	<0.100	<2.20	<2.50	<2.40	<2.50	<110 [<100]
Naphthalene	10	<2.20	<2.40	<2.40 B	<2.40	<2.00 B	<2.20 B	<2.50	<2.40	<2.50	<110 [<100]
Phenanthrene	50	<2.20	<2.40	0.0270 J	<2.40	<0.0500	<2.20	<2.50	<2.40	<2.50	<110 [<100]
Pyrene	50	<2.20	<2.40	0.0200 J	<2.40	<0.100	<2.20	<2.50	<2.40	<2.50	<110 [<100]
Cyanide											
Total Cyanide	200	<10.0	<10.0	<10.0	110	7.60 B	<10.0	<10.0	16.0	14.0	220 J [<10.0 J]

Table 2 Groundwater Analytical Results (ppb)




2016 Annual Groundwater Monitoring Report Cortland-Homer Former MGP Site - Homer, New York

Notes:

- 1. Baseline samples collected by Arcadis of New York, Inc. from June 25-27, 2012, and post-in-situ soil solidification (ISS) samples collected by Arcadis from November 5-6, 2013, September 14-16, 2015, and October 18-19, 2016.
- 2. Laboratory analysis was performed by Accutest Laboratories of Marlborough, Massachusetts (each event except the 2016 monitoring event) or TestAmerica of Amherst, New York (2016 monitoring event) for:
 - BTEX (benzene, toluene, ethylbenzene, xylenes) using United States Environmental Protection Agency (USEPA) SW-846 Method 8260B.
 - Polycyclic aromatic hydrocarbons (PAHs) using USEPA SW-846 Method 8270C.
 - Total cyanide using USEPA SW-846 Method 9012.
- Concentrations reported in micrograms per liter (ug/L), which is equivalent to parts per billion (ppb).
- 4. Data qualifiers are defined as follows:
 - J Indicates an estimated value.
 - < Indicates that the compound was analyzed for but not detected. The associated value is the compound quantitation limit
 - B Indicates that the analyte was also detected in the associated method blank.
 - D Indicates that the analyte was quantified using a second dilution.
- 5. NYSDEC groundwater standards/guidance values are from the NYSDEC Division of Water, Technical and Operational Guidance Series (TOGS) document titled "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (TOGS 1.1.1) dated June 1998, revised April 2000 and June 2004.
- 6. Shading indicates that the results exceeds the water quality standard/quidance value.
- 7. -- Indicates that no water quality standard or quidance value is available for this compound.
- 8. [] Results shown in brackets represent field duplicates.
- 9. ND = non-detect.
- 10. bas = below ground surface.
- 11. Results have been validated in accordance with USEPA National Functional Guidelines of October 1999, USEPA Region II Standard Operating Procedures, and the NYSDEC Analytical Services Protocol.

FIGURES

- BASE MAPPING COMPILED FROM VARIOUS SOURCES INCLUDING NEW YOUR STATE ELECTRIC & GAS (NYSEG) EXISTING PLANIMETRIC AND UTILITY INFORMATION, DIGITIZED INFORMATION FROM NYSDOT RECORD PLANS TITLED RECONSTRUCTION OF ROUTE 11 IN THE TOWN OF CORTLANDVILLE AND VILLAGE OF HOMER - DATED 5-17-02, DIGITIZED AERIAL IMAGERY FROM THE NEW YORK STATE GIS CLEARINGHOUSE,

- GROUNDWATER STANDARDS AND GUIDANCE VALUES ARE OBTAINED FROM THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DOCUMENT ENTITLED "DIVISION OF WATER, TECHNICAL AND OPERATIONAL GUIDANCE VALUES AND GROUNDWATER EFFLUENT LIMITATIONS" (ISSUED JUNE 1998 AND REVISED IN APRIL 2000 AND JUNE

- VBW CONSISTS OF SEALED STEEL SHEET PILES DRIVEN INTO

FIGURE 2

ATTACHMENT A

Groundwater Sampling Logs

NYSEG - Cortland H	omer						2016 Groun	dwater Samplir	ng		
		CDC		R SAMPLIN	C I OC	Event			ţ-	-	
Sampling Personnel	: R. HONG		MOTT	K SAMPLIN		Well ID: \\\\\	NI - \			-	
Client / Job Number		ics	1410 1 1			Date: 10	19/10			-	
Weather: UOF	RUND.	IYO			•	Time In: 🗥	OO'Time	Out: 915)	-	
Well Information	,	•						,			
Depth to Water (feet):	7.80	(from I	—— ИР)	Well Typ	e: Flushmo	unt (Stick-Up	\supset			
Total Depth (feet): 2	3.80	(from I		Well Ma	terial:		स्त्रीमालुङ्ग Ste	jet s	(PVC)		
Length of Water Colu		<u> 2 16 </u>		Well Loc		Yes	N	0			
Volume of Water in W		<u> 2,61</u> - 19	-	,	ng Point Mar		es	No No	_		
Intake depth for tubing	g (feet)	<u> </u>		Well Dia	meter:	1" (_2	<u>") </u>	Other:	-		
Purging Information							Conversio]	
Purging Method: Tubing/Bailer	Bailer St. Stee		eristaltic) vethylene	Grundfos Teflon	Other:				4" ID 6" ID]	
Sampling Method:	Bailer (VO		eristaltic	Grundfos	, /	······································		#### 0.163 0 85 L =3875 m			
Pump Start Time	317	, , , , , , , , , , , , , , , , , , ,					J., Y.		· · · · · · · · · · · · · · · · · · ·	,	
Pump Stop Time	910							Unit Stability]	
Water-Quality Meter T	ype: Hol	liba					pН	DO Cond			
	s .										
Total Volume Remove	ed: 1.5 ₍	gal)	D	id well go dry	: Yes	(No)	± 0.1 ±	10% ± 3.0%	6 ± 10 mV		
						\cup					
	T	T	I	I	r	1		1	1		
Parameter:	1	2	3,	4	5	6		7 8	9		
Time	0820	0825	0830	6835	0840	0849	0850	0855	0900	0905	
Volume Purged (mL)						, <u>, , , , , , , , , , , , , , , , , , </u>			-1.5		
Rate (mL/min)	1911	200	150	100	100	100	190	150	190	150 7.84	
Depth to Water (ft.)	7.85	792	7.85	7.83	783	7.82	704	7.93	7.83	7.84	
	792	7 20	7.08	7.07	1002	1,01	(0.74	1 76	0.77	6.75	
pH	14.42	12 70	12.00	12.00	1201	17.10	- 14	10 TU	12 00		
Temp. (C)	71.17	17.70	17.20	10.6	77.19	15.10	13.11	13.00	12:14	12.91	
Conductivity (mS/cm) Dissolved Oxygen	0.817	0.749	0.751	0.752	0.700	0.791	0.750	0.762	0.709	0.765	
(mg/L)	5.79	2.17	1.62	1.23	1.02	0.93	1.71	0.85	0.79	0.75	
ORP (mV)	192	187	148	91	59		40000			27	
Turbidity (NTU)	14-1	174	910	73.0	101.3	67.9	52.2	38.1	24	19.2	
Turblaky (1410)	<u> </u>	1/-1	11.0	1.0.0	W1.7	V/] . J	12.0	100-1		11.2	
Notes:											
Sampling Information	<u> </u>			Problem	s/Observation	on		<u> </u>	l		
Analyses	#	Laboratory	● ↓	interior and re-		4 1	SIGIRA	1	,		
BTEX 3 Test America — LOCK WI & VEVICEO											
TCN 1 Test America PAH 2 Test America											
Color: Co.R	······································			- 1	A112711	14 1	rive				
Odor: Nove Appearance:						7	J				
Sample ID: MW-1	Sample Ti	me: 0910									
MS/MSD:	(No)										
Duplicate: Yes	No							<i>*</i>			

Duplicate ID PID =

Dup. Time:

		.GR	DUNDWATE	ER SAMPLIN	G L OG	Event				•
Sampling Personne	1: R. Hen		. 1/1/17	了		Well ID: ∧	W-10			
Client / Job Number		M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-		4		Date: 1()	119			
Weather: 0006.	NVVOZ	Y				Time In:	7 Tin	ne Out:	1200	7
Well Information		•				11	10		170	
	5.22			Well Tv	pe: Flushmo	unt	Stick-Up			· · · · · · · · · · · · · · · · · · ·
Depth to Water (feet)		(from l					<u> </u>			
Total Depth (feet): 2 Length of Water Colu	mn (feet):	(from I	<u>MP)</u>	Well Ma		Yes	Stainless S		···	_(evc)
Volume of Water in W		2 45						No /		
Intake depth for tubing		- 20		-	ng Point Mar		es		No)	
make depth for tubing	g (leet) ~	- 20		Well Dia	meter:	1" {2		Other:		
Purging Information							Convers	ion Facto	ors	
Purging Method:	Bailer		eristaltic	Grundfo	s Other:		gal / ft. of			1D 6" ID
Tubing/Bailer	St. Stee		ethylene/	Teflon	Other:		water	#### 0		
Sampling Method:	Bailer (VC	(Ca)	ristaltic	Grundio	Other:	·	1 gal = 3.	785 L =3	875 ml	= 0.1337
Pump Start Time	<u> </u>	*								
Pump Stop Time	240							Unit S	tability	
Water-Quality Meter 7	Гуре: Д	Reiba					pН	DO	Cond.	ORP
		_								
Total Volume Remove	$_{ ext{ed:}}\sim\mathcal{U}$ (gai)	D	id well go dry	: Yes	SN)	± 0.1	± 10%	± 3.0%	± 10 mV
						$\overline{}$		· · · · · · · · · · · · · · · · · · ·		1 =
										İ
Parameter:					_					
Parameter:	1	2	3		5	6		7	8	9
Time	1210	1219	1220	1225	1230	1235	1240	2112	45	
Volume Purged (mL)							~ 2			
Rate (mL/min)	150	150	100	100	100	100	100	1 7	: +	
Depth to Water (ft.)	6 34	5.40	5.30	5.30	5.30	5.30	5.30			
	704	7.26	280	7.92	- //		7.70	$\frac{1}{2}$ $\frac{N}{2}$	1	
pH	1.02	7.00	7.01		7.90	7.80	7.1-	1 1		
Temp. (C)	10.83	16.00	10.09	16.51	16.43	16.30	21638			
Conductivity (mS/cm)	0.633	0.624	0.621	0.022	0.622	0.021	0 6075) l		
Dissolved Oxygen (mg/L)	8.01	2.87	2.57	2.33	2.16	1.95	2.10			
ORP (mV)	193	183	181	173	172	124	170	<u> </u>		
			\sim			7 7				
Turbidity (NTU)	50	2.8	3.6	2.8	1.8	2.7	3.7			
									f	
Notes:										
Sampling Information)			Problem	s/Observation	on		· · · · · · · · · · · · · · · · · · ·		
Analyses	#	Laboratory								
BTEX		est America								
TCN PAH		est America								*
Color: None	<u> </u>	est America								
Odor: Wine										
Appearance: Clew										*
Sample ID: MW-(Sample Ti	me: 1245								
MS/MSD: Yes	No									
Duplicate: Yes	(No.)									
Duplicate ID	$\overline{}$									
PID =	Dup. Time									

Duplicate ID PID =

Dup. Time:

		0.5				Event			<u> </u>
Sampling Personne	el: R.HP)		MOTE	ER SAMPLI		100 H T			·
Client / Job Numbe			-MOTI			Well ID: M	W-12	·	
Weather: 60%	SUNA	1 Y					9/16 45 Time	Out	
						1	1 mile	Out.	
Well Information): (0, (05)			1A/ - II T			<u>w</u>		
Depth to Water (feet) Total Depth (feet):		(from			ype: Flushmo	ount)	Stick-Up		
Length of Water Colu	11.5)	(from	MP)	Well M			Stainless Ste		PVO
Volume of Water in V		4086 70	····	Well Lo		Yes	(N	<u>z</u>	
Intake depth for tubin		20 7		-	ring Point Mai		es)	No	
make departer tabili	g (leet)	$\smile o$		well Di	ameter:	1" 2	<u>") </u>	Other:	
Purging Information						,	Conversion	n Factors	
Purging Method: Tubing/Bailer	Bailer St. Ste		eristaltic) Grundfo			gal / ft. of 1	1" ID 2" ID 4	" ID 6" ID
Sampling Method:	Bailer (VC		yethylene eristaltic	Teflon Grundfo					653 1.469
Pump Start Time Ø		3/ (oriotatao	Grandio	s Other.		1 gal = 3.78	35 L =3875 ml	= 0.1337
Pump Stop Time	1625		· · · · · · · · · · · · · · · · · · ·						
Water-Quality Meter		Hallix		······································				Unit Stability	
- Later Quality Motor	турс.	100ch	<u> </u>				pH I	DO Cond.	ORP
Total Volume Remove	ed. 1.5	(gal)	-	المسالمين		C			
- star voicino romov	. ,	gai)		oid well go dr	y: Yes	No_	/± 0.1 ±	10% ± 3.0%	<u>± 10 mV</u>
	T		T	1	1	T		T T	
Parameter:	1	2	2 3	4	5	6	7	8	9
Time	1605	1610	1615	1620	1625	1630	11/25		
Volume Purged (mL)					20/05		7400		
Rate (mL/min)	80	80	80	80	80	\subseteq			· · · · · · · · · · · · · · · · · · ·
Depth to Water (ft.)	7.39	8.33	7.40	7.40	7.40	Δ			
pН	7.5	7.49	7-16	7.45	7.15	M			
Temp. (C)	17.40	17.29	17.11	17.03		(7)			
Conductivity (mS/cm)	0.755	0.765	0.752		16.94				
Dissolved Oxygen		0.700		0.7410	0.740	<u> </u>			
(mg/L)	0.33	1.05	0.29	0.09	0.13	<u>e</u>			
ORP (mV)	273	202	240	240	238				
Turbidity (NTU)	Ö	0	0	0	0				
Notes:									
Sampling Information	1			Problem	s/Observatio	n			
Analyses	#	Laboratory							
		est America							
		est America est America							
Color: Cleck	<u> </u>	31 America							
Odor: @None									
Appearance:		7,5	_						4
Sample ID: MW-12	A	ne: <i>16</i> 3)						
MS/MSD: Yes Ounlicate: Yes	<u>(6)</u>								
AUDIN 241H	INIO!								

		^	NIND:	D 04115:	0100	Event				
Sampling Personne	i: R. Flev		MOH	R SAMPLIN		Well ID: M	N-13			
Client / Job Number		IKI FF	IVIUT				N-12 9/110			
Weather: (00°F J								me Ou	it: 14-10	1
Well Information		-							111-	,
Depth to Water (feet)	5.70	(from N	<u></u>	Well Tv	per Flushmou	int	Stick-Up			
Total Depth (feet):	31.10			Well Ma			tainless			(PVC)
Length of Water Colu		25.9	v /	Well Lo		(Yes)	itali liess	No		PVC
Volume of Water in W	Vell (gal): 9	. 22		Measuri	ng Point Marl	\leftarrow	es		No	****
Intake depth for tubing	g (feet) 🗢	25		Well Dia		1" 2		Othe		
Purging Information										
Purging Method:	Bailer	€ Pe	eristaltic))	Grundfo	Other:		Gonvers gal / ft. c			'ID 6" ID
Tubing/Bailer	St. Ster	eL Poly	ethylene	Teflon	ر Other:		water	###	# 0.163 0.	653 1.469
Sampling Method: Bailer (VOCs) Peristaltic Grundfos Other: 1 gal = 3.785 L =3875 ml = 0.133										
	375									
Pump Stop Time	1350,	100:							it Stability	
Water-Quality Meter 1	ype:	ekkiba					pН	DO	Cond.	ORP
Total Volume Remove	2.5		_							
rotal volume Remove	eu: 🗪 (gal)	D	id well go dry	r: Yes	Ne/	± 0.1	± 10%	% ± 3.0%	± 10 mV
	Ī							Т.		
Parameter:	1	2	3	4	5	6		7	8	9
Time	1330	1335	1340	1345	1350	1355				
Volume Purged (mL)					22.5	S				
Rate (mL/min)	150	150	160	150	150	Δ				
Depth to Water (ft.)	5.68	5.62	5.60	5 100	5.60	M				
pH	7.49	7.72	7.13	7.00	700	0				
	18.10	1797		1700	17 64			_		
Temp. (C)			1740	17:15	27/					
Conductivity (mS/cm) Dissolved Oxygen	0.755	0.750	0.494	0.456	0.755	_e	-			
(mg/L)	4.18	3.02	2.78	2.291	2.39					
ORP (mV)	170	167	100	160	162					
Turbidity (NTU)	1.1	1.0	0.1	0.0	0.0					
(110)	•••	1.0	<u> </u>	<u> </u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		-	\dashv		
Notes:										
Sampling Information	n			Problem	s/Observation	1				
Analyses	#	Laboratory								
BTEX		est America								
TCN PAH	1 T	est America								
Color: Numer	2 T	est America								
Odor: Non										
Appearance: Class										A
	3Sample Ti	me: (5/40)								
MS/MSD: Yes	(Ng)									
Duplicate: Yes	(No)									
Duplicate ID —	Dup. Time	:								
PID =										

		000		,		Event	2010 (31)	dildwater	Sampinig	,
Sampling Personne	I: L HOV	1001	V MA	R SAMPLIN	***************************************	Mell ID. Ad	W/ - 12	d.		
Client / Job Number		171. 8	<i>v</i>	<u> </u>		Well ID: M	19101	11/		
Weather: 1000 F	SON	JY				Time In:	O Ti	ne Out:	1200	
Mall Information									1200	
Well Information Depth to Water (feet)	1.88	(F		Well Tv	pe: Flushmo	vint \	Stick-Up			
Total Depth (feet):	12.50	(from I								$\overline{}$
Length of Water Colu		(from I) کو). ک	<u>VIP)</u>	Well Ma		Yes	Stainless S	No)		EVC)
Volume of Water in W		1.2			ng Point Mar		es)	INO	No	
Intake depth for tubin		g		Well Dia		1" (2'		Other:	INO	
								00101.		
Purging Information Purging Method:	Bailer	De	eristaltic	Crundfo	045		Convers	~		
Tubing/Bailer	St. Stee		ethylene	Grundfos (Teflon	S Other: Other:		gal / ft. o water			ID 6" ID 553 1.469
Sampling Method:	Bailer (VO		eristaltic	Grundfos					3875 ml =	
Pump Start Time	1112									
Pump Stop Time	1140							Unit	Stability	
Water-Quality Meter 1	Гуре: Д	Riba					рН	DO	Cond.	ORP
	, , , , ,					$\overline{}$				
Total Volume Remove	ed: プラ (e	gal)	D	id well go dry	: Yes	(No	± 0.1	± 10%	± 3.0%	± 10 mV
	1	1			T					
Parameter:	1	2	3	4	5	6		7	8	9
Time	1115	1120	1125	1130	1139	1140	1146	, _		
		1120	1,00	11 00	1177		(<u>′</u> -		
Volume Purged (mL)		10.0	100	(1)		21.5	\rightarrow			
Rate (mL/min)	100	100	100	100	100	100	A			
Depth to Water (ft.)	5.1()	5.05	5.05	5.03	5.03	5.09	M			
рH	7.25	718	7.00	7.03	7.01	10.95	0			
Temp. (C)	16.67	10.07	10.69	16.68	8010)1	10.69	- r -			
	0.709	N 177	0 -171	0777	10.00	2777	<u> </u>	_		
Conductivity (mS/cm) Dissolved Oxygen	<u> </u>	0.772	0.177	0.470	0.47+	0.111				
(mg/L)	5.91	4.04	3.47	3.00	3.0v	3.12	1			
ORP (mV)	204	212	219	223	225	225				
Turbidity (NTU)	38	21.8	9.7	8.2	0.2	19.4				
raibidity (1110)	- 00		1.7	0.0	<i>U.U</i>	17,7				
Notes:							,			
Sampling Information	<u></u>			Problem	s/Observation	<u> </u>				
Analyses		Laboratori					1 .			
BTEX		Laboratory est America		- Well	119 0	rackec) Mil	ccin	a 1	balt
ren Pah i	1 T€	est America					, , . ,	2011 I	J -	DUIT
Color: Now-	2 Te	est America								
Odor: Nov										
Appearance:	P.	9140								*
	Rsample Tir	me: 145								
NO/NOD.	(Ng)									
oplicate.	(No)									
Ouplicate ID — PID =	Dup. Time:									

		GR	DUNDWATE	ER SAMPLIN	ie i ne	Event				
Sampling Personne	I: K. HP	neri	1/10	- COAIIII EII		Well ID: ∧∧	W-1:	7		
Client / Job Number			. 14.0	<u> </u>		Date:	1812	6110		
Weather: 70	OF SUL	1176)				Time In: 17	1	me Out:	1230	
Well Information	9-4									
Depth to Water (feet)	(0.00)	(from	MP)	Well Ty	pe: Flushmo	unt 🤇	Stick-Up	\rightarrow		
Total Depth (feet):	10 47	(from		Well Ma			Stainless S			PVC
Length of Water Colu	mn (feet):	3.48		Well Lo		Yes	on the state of th	No		YC
Volume of Water in W	/ell (gal):	.56			ing Point Mar	ked: Y	es		No	
Intake depth for tubing	g (feet)	<u> </u>	********	Well Dia		1" 2		Other:		
Description Information					To the section					
Purging Information Purging Method:	Bailer	(Pa	eristaltic	Grundfo	**			ion Fac		" ID 6" ID
Tubing/Bailer	St. Ste		yethylene	Teflon			water			653 1.469
Sampling Method:	<bailer (vc<="" td=""><td>Cs) >> P</td><td>eristaltic</td><td>Grundfo</td><td>s Other:</td><td></td><td></td><td></td><td>3875 ml</td><td></td></bailer>	Cs) >> P	eristaltic	Grundfo	s Other:				3875 ml	
Pump Start Time	1140									
Pump Stop Time	122								Stability	
Water-Quality Meter 1	Гуре: Д	cllbe.					рН	DO	Cond.	ORP
	P					$\overline{}$				
Total Volume Remove	ed: (gal)	D	id well go dry	: Yes	(No)	± 0.1	± 10%	± 3.0%	± 10 mV
						$\overline{}$			***************************************	
							: 1			
Parameter:	1	2	3	4	5	6		7	8	9
Time	1145	1190	1199	1200	1209	1210	1210	2 12	20	
Volume Purged (mL)				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100	1010		7 16		
Rate (mL/min)	100	100	160	150	100	100		17	7	
Depth to Water (ft.)	702	7.02	7.02	7.07	7.02	7.02		17	Ú I	
pH	7.29	6.90	6.60	(0.61	6.61	is 104			N	
Temp. (C)	19.84	19.08	19.60	19.61	19.50	19-61		1)	**
		 	0.598					+-		
Conductivity (mS/cm) Dissolved Oxygen	0.570	0.582	V / V	0.1024	0.667	-0-486		- 		
(mg/L)	3.00	42.89	1.92	1.38	0.98	1.10		18		
ORP (mV)	-92	-134	-139	-143	-149	-163				
Turbidity (NTU)	52.1	9.7	19	1.1	0.1	0				
Notes:									-	
Sampling Information	1		1	Problem	s/Observation	on				
Analyses	#	Laboratory	1							
BTEX		est America						*		
TCN PAH	1 T	est America								
Color: Ciel	2 T	est America								
Odor: None										
Appearance:		100								•
Sample ID: MW-1+		me: 1220							r.	
MS/MSD: Yes	(No)									
Duplicate: Yes	(Ng)									
Duplicate ID —	Dup. Time									
PID =		_								

Sampling Personnel:			GR	DUNDWATI	ER SAMPLIN	ig i og	Event							
Delet 10 10 10 10 10 10 10 1	Sampling Personnel: R. Jewsel Well ID: 1/1//- 1/2													
West Information Depth to Water (fiset): (1, 0, 0) (from MP) Total Depth (fiset): (1, 0, 0) (from MP) (from MP														
Depth to Water (feet): (f, \(\bar{N} \) (from MP) Total Depth (feet): \(\frac{1}{2} \) (from MP) Length of Water Column (feet): \(\frac{2}{3} \) 2, 1 4 Well Material: Stainless Steel PvC Well Locked: Yes No Measuring Point Marked: Yes No Well Dismortalist Total Puriping Method: Bailer Depth Water (No.) Did well go dry: Yes No. Depth Water (No.) Depth Water (No	Weather: 705		The state of the s											
Depth to Water (feet): (f, \(\bar{N} \) (from MP) Total Depth (feet): \(\frac{1}{2} \) (from MP) Length of Water Column (feet): \(\frac{2}{3} \) 2, 1 4 Well Material: Stainless Steel PvC Well Locked: Yes No Measuring Point Marked: Yes No Well Dismortalist Total Puriping Method: Bailer Depth Water (No.) Did well go dry: Yes No. Depth Water (No.) Depth Water (No	Well Information													
Total Depth (feet): \$\frac{1}{2} \frac{1}{2} 1		: 10 93	(from	MP)	Well Ty	Well Type: Flushmount Stick-Up								
Length of Water Column (feet): 2, 3, 2, 1 Volume of Water in Well (gas): 3, 7, 8 Measuring Point Marked: (** ** ** ** ** ** ** ** ** ** ** ** **			(<u>-</u>										
Note Purging Information Purging Information Bailer Caristalitic Grundfos Tellon Grundfos Gr		mn (feet):	23.21											
Purging Information	Volume of Water in W	Vell (gal):	3.78		Measur									
Purple Baller Desistable Converted Converted	Intake depth for tubin	g (feet) 🔷	- 25		Well Dia									
Purple Baller Desistable Converted Converted	Purging Information													
Tubing/Bailer			Œ.	eristaltic>	Grundfo	s Other:								
Pump Start Time		St. Ste	el Pol	yethylene>				۹-						
Pump Stop Time Water-Quality Meter Type: QQ: Qa O33 //3 PH DO Cond. ORP	Sampling Method: Bailer (VOCs) Peristaltic Grundfos Other: 1 gal = 3.785 L =3875 ml = 0.1337													
Water-Quality Meter Type: □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Pump Start Time 1195													
Total Volume Removed: 74 (gal) Did well go dry: Yes No				4						Unit Stability				
Parameter:	Water-Quality Meter 1	Гуре: Но	Kiba	033/13)						ORP			
Parameter:		- ^					\sim							
Time	Total Volume Remove	ed: W (gal)		id well go dry	/: Yes	(No)	± 0.1	± 10	% ± 3.0%	± 10 mV			
Time	x													
Time			1	T			r · · · · · · · · · · · · · · · · · · ·							
Time	Parameter:	1	2	3	4	5	6		7	8	اه			
Volume Purged (mL) Rate (mL/min) 200 200 200 200 S	Time	1150	1155	1200	1205	1210	1215							
Rate (mL/min)	Volume Purged (mL)													
DH		200	200	200	200	200	S							
Temp. (C)	Depth to Water (ft.)		6.91	6.91	691	6.91	A							
Temp. (C) 20.49 20.34 20.20 20.64 P	рН	8.78	8.74	8.75	8.77	8.757	m							
Conductivity (mS/cm)	Temp. (C)	26.69	20.34	2020	20.09									
Dissolved Oxygen (mg/L)														
ORP (mV)	Dissolved Oxygen	A 22	<u> </u>				<u> </u>							
Turbidity (NTU) Notes: Sampling Information Problems/Observation Analyses # Laboratory BTEX 3 Test America TCN 1 Test America PAH 2 Test America Color: Cleft Odor: ANA Appearance: Sample ID: MJ-18 Sample Time: 2-15 MS/MSD: Yes No Duplicate: Yes No Duplicate ID Dup. Time:	(mg/L)	0.45				<u> </u>	<u> </u>							
Notes: Sampling Information Analyses # Laboratory BTEX 3 Test America TCN 1 Test America PAH 2 Test America Color: CACC Odor: ANN Appearance: Sample ID: NN-18 Sample Time: 1215 MS/MSD: Yes NO Duplicate: Yes NO Duplicate ID Dup. Time:	ORP (mV)		-54	<i>-51</i>	-47	-44					l			
Sampling Information Problems/Observation Analyses # Laboratory BTEX 3 Test America TCN 1 Test America PAH 2 Test America Color: CACA Odor: ANN Appearance: Sample ID: NN-18 Sample Time: 1215 MS/MSD: Yes NO Duplicate: Yes NO Duplicate ID Dup. Time:	Turbidity (NTU)	0.0	0.0	0.0	0.0	0.0								
Sampling Information Analyses # Laboratory BTEX 3 Test America TCN 1 Test America PAH 2 Test America Color: Color: Odor: Akki Appearance: Sample ID: NW-18 Sample Time: 215 MS/MSD: Yes NO Duplicate: Yes NO Duplicate ID Dup. Time:							1		_					
Sampling Information Analyses # Laboratory BTEX 3 Test America TCN 1 Test America PAH 2 Test America Color: Color: Odor: Akki Appearance: Sample ID: NW-18 Sample Time: 215 MS/MSD: Yes NO Duplicate: Yes NO Duplicate ID Dup. Time:	Notes:													
BTEX 3 Test America TCN 1 Test America PAH 2 Test America Color: Odor: Appearance: Sample ID: NW-18 Sample Time: 2.15 MS/MSD: Pes No Duplicate: Ves No Duplicate ID Dup. Time:		<u> </u>			Problem	s/Observation	l							
BTEX 3 Test America TCN 1 Test America PAH 2 Test America Color: Odor: Appearance: Sample ID: NW-18 Sample Time: 2.15 MS/MSD: Pes No Duplicate: Ves No Duplicate ID Dup. Time:	Analyses	#	Laboratory											
PAH 2 Test America Color: Odor: Appearance: Sample ID: MW-18 Sample Time: 2.15 MS/MSD: Yes Duplicate: Duplicate ID Dup. Time:	BTEX	3 T	est America	7 Non	0									
Color: Odor: Appearance: Sample ID: MW-18 Sample Time: 2.15 MS/MSD: Yes Duplicate: Duplicate ID Dup. Time:				7001	· ·									
Odor: Appearance: Sample ID: MW-18 Sample Time: 2.15 MS/MSD: Yes No Duplicate: Yes No Duplicate ID Dup. Time:		4	est America											
Sample ID: NW-18 Sample Time: 1215 MS/MSD: Yes No Duplicate: Yes No Duplicate ID Dup. Time:	Odor: Nine													
MS/MSD: Yes NO Duplicate: Yes NO Duplicate ID Dup. Time:			101								•			
Duplicate: Ves No Dup. Time:			me: 1615											
Duplicate ID Dup. Time:	M3/N3D.													
	Duplicate.					*								
	Duplicate ID PID =	Dup. Time	:			•								

Event												
Sampling Personnel: R. HWSR G K. MOTH Well ID: MW 7.85												
Sampling Personnel Client / Job Number:			Well ID: MW 285 Date: 10/18/10									
Weather: HOF	CLIMALY	ig l	・ Date: ハークハリー Time In: ハカ4 ハー Time Out:									
1011	701AIN I					1.7.						
Well Information	0 ()		_	\A/ II ~								
Depth to Water (feet):	3-67	(from N										
	5.7.4.	(from N	<u>(IP)</u>		Well Material: Stainless Steel					PVC)		
Length of Water Colur	9	7.57		Well Locked: Yes No								
Volume of Water in W		·5G		Measuring Point Marked: Yes No Well Diameter: 1" (2") Other:								
Intake depth for tubing)	Othe	er:									
Purging Information							Conversion Factors					
Purging Method:	Bailer		ristaltic 🔿	Grundfos			gal / ft. of 1" ID 2" ID 4" ID 6"					
Tubing/Bailer Sampling Method:	St. Stee Bailer (VO		ethylene ristaltic	Teflon	Other:		water #### 0.163 0.653 1.469 1 gal = 3.785 L =3875 ml = 0.1337					
		US) - E	iistaitic -	5 Grandios	Other.		i yai = 3	.765 L	- - 3 073 IIII -	- 0.1337		
Pump Start Time 134G												
Pump Stop Time /	120	00:1.0	···				Unit Stability					
Water-Quality Meter T	ype: /-KA	criba					pН	DO	Cond.	ORP		
	.75.		_		.,							
Total Volume Remove	:d: スッノ ((gal)	D	id well go dry	: Yes	No)	± 0.1	± 10°	% ± 3.0%	± 10 mV		
							-					
		T			 							
Parameter:	. 1	 	3	4	5	6		7	8	9		
Time	1346	1350	1355	1400	1405	1410	1416	2	1430			
Volume Purged (mL)							~200	ร์	5			
Rate (mL/min)	00 0250	240	140	140	140	140	140		A			
Depth to Water (ft.)	3.61	3.00	3-60	3.(00)	3.60	3.00	3.6	0	m			
pН	6.77	10.85	6.88	(0.88	10.89	10.91	6.9		ρ			
Temp. (C)	18-09	18.19	10.03	17.92	17.81	17.92	17.0	8	٤			
Conductivity (mS/cm)	2.22	2.22	2-21	2.17	2.14	2.10	2.08	,	ε			
Dissolved Oxygen	2.10	1-26	1.12.	1-01	0.89	0.81	0.7	7				
(mg/L)	·			1/01								
ORP (mV)	-191	-166	-198	-101	-1602	-165	-10	<u> </u>				
Turbidity (NTU)	96.9	38.7	20.1	19.0	18.2	15.8	14.1					
Notes:												
Sampling Information	n				s/Observation		_					
Analyses	#	Laboratory		- (1)	Hected	MS	/M(\cup				
BTEX TCN		est America		0	(100.00	, ,	1					
PAH		est America est America										
Color: Cheel												
Odor: Nive												
	Sample Ti	ma: 1421										
MS/MSD: Yes	=	ine. []()										
WIGHNIGD.	No No											
Duplicate:												

Analyses # Laboratory
BTEX 3 Test America
TCN 1 Test America
PAH 2 Test America
Color: Claud
Odor: NAN
Appearance: NO
Sample ID: NNN-750 Sample Time: 1446
MS/MSD: Yes No
Duplicate: Yes No
Duplicate ID ______ Dup. Time: ______
PID =

Duplicate ID DY

Event GROUNDWATER SAMPLING LOG										•			
Sampling Personne	1: 2. Hen		MOH	Well ID: Mu) - 305									
Client / Job Number:					Date: 10 / 18 / (C								
Weather: 705 Sunny.					Time In: ()968 Time Out:								
Well information													
Well Information Depth to Water (feet): 6.58 (from MP) Well Type: Flushmount Stick-Up													
Depth to Water (feet)													
Total Depth (feet): Length of Water Colu	11.80	(from l	MP)		Well Material: Stainless Steel PVC Well Locked: Yes No								
Volume of Water in W		Wello. 85	_										
Intake depth for tubin		· 6 8		Well Dia		1" (2'	es	ther: No	-				
make depth for tubin	g (leet)			VVEII DIA	iniciei.	<u>'</u>	<u></u>	uiei.	-				
Purging Information			~		Conversion Factors								
Purging Method:	Bailer		ristaltic	Grundfos			gal / ft. of 1						
Tubing/Bailer Sampling Method:	St. Stee Bailer (VO		vethylene eristaltic	Teflon Grundfos	Other: Other:			### 0.163 0 5 L =3875 m					
Pump Start Time	750		onotartio)	Ordinaroa	outer.		1 gai = 0.70	0 L -0070 III	1-0.1007	Į			
Pump Stop Time	1710.												
		:11-	2420	1G									
Water-Quality Meter	lype: Hc	uriba	<u> </u>	77	^		pH [OO Cond	. ORP				
			_										
Total Volume Remove	ea: (gal)	ט	id well go dry	: Yes	(No	± 0.1 ±	10% ± 3.0%	% ± 10 mV				
		1	T	Ţ	T	1	<u> </u>	T					
Parameter:	1	2	3	4	5	6	7	8	9	10			
Time	1015	1020	1029	1030	1039	1040	1045	1050	1055	1100			
Volume Purged (mL)							~1.5						
Rate (mL/min)	150	100	100	100	79	79	60	60	60	60			
Depth to Water (ft.)	7.54	7.80	7.60	7.64	7.72	7.78	7.65	7.66	7.50	7.68			
рН	6.13	v. 15	0.18	6.22	6.30	6.30	6.42	646	6.46	6.40			
) 	19.70	19.71	10 24	19.78		20.05	20.33	0. 10	201	_			
Temp. (C)			10,70	, , , ,			·	26.48	20.90	20.3			
Conductivity (mS/cm)	80.098	0927	0.730	0.609	1.03	1.05	1.07	1.08	1.08	1.17			
Dissolved Oxygen (mg/L)	1.32	1.29	1.22	1.14	1.27	1.11	1.08	1.08	1.08	1.12			
ORP (mV)	-110		2772	-100		-119	-121	-118	-115	-100			
Turbidity (NTU)	9/000	302	4-70	279	un	291	236	204	195	191			
raibidity (1410)	1100	100		61	0 70	101	200	001	 	VII			
Notes: Sampling Informatio				Droblem	ıs/Observati	<u> </u>			<u> </u>				
			_	riobieii	is/Obseivati	OII							
Analyses BTEX	# 3 T	Laboratory	- X	Vell "	1-014	C 2.	0.10						
TCN									/				
PAH 2 Test America - PUMD dipo during amolo collection - nau										naug			
Color: Brown murry to in create flow rate which stirred									ed 6				
Appearance:							ki d	h.)	3//	-			
Sample ID: MW -3(Sample Ti	ime: ()(/)	$\mid \psi$	seailr	unt (TITU	10101	<i>「</i> り)					
MS/MSD: Yes	(49)	·····	1					•					
Duplicate: (Yes)	No		CUI	lected	VW								
Duplicate ID D	Dup. Time	: 110-5	_		•								
	יקטים. יחווכ	· • • • • • • • • • • • • • • • • • • •	, -										