

Mr. Amen M. Omorogbe, P.E. New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau C 625 Broadway, 11th Floor Albany, New York 12233-7014

Arcadis of New York, Inc. One Lincoln Center 110 West Fayette Street Suite 300 Svracuse New York 13202 Tel 315 446 9120 Fax 315 449 0017

Subject:

NYSEG Cortland-Homer Former MGP Site Homer. New York NYSDEC Site #7-12-005 2017 Annual Groundwater Monitoring Report and Groundwater Monitoring Well Decommissioning Summary

Dear Mr. Omorogbe:

On behalf of New York State Electric & Gas Corporation (NYSEG), this report summarizes the annual groundwater monitoring, monitoring well repair, and monitoring well decommissioning work completed in 2017 at the Cortland-Homer former manufactured gas plant (MGP) site in Homer, New York (the Site). Arcadis of New York, Inc. (Arcadis) implemented the groundwater monitoring event during September 2017 and the well repair/decommissioning on various dates between May and September 2017.

As summarized herein, the analytical data from the 2017 annual groundwater monitoring event indicate that the area of groundwater impacted by the former MGP is relatively small and the exceedances of groundwater quality standards/ guidance values continue to be relatively minor. The data demonstrate that the upland soil remedy is effective. Monitoring wells no longer needed for the groundwater monitoring program have been decommissioned, and the remaining wells are appropriate for future monitoring.

Relevant background information is presented below, followed by a summary of the groundwater monitoring fieldwork/findings and well repair and decommissioning activities.

I. **BACKGROUND**

Remedial activities at the Site were substantially completed between July 2012 and February 2013, and final site restoration was performed in May/June 2013. The remedial activities primarily involved: (1) in-situ soil solidification (ISS) of

www.arcadis.com

ENVIRONMENT

November 14, 2017

John C. Brussel, PE

315.671.9441

John.Brussel@arcadis.com

Our ref:

B0013123.0019 #11

approximately 55,000 cubic yards of soil in two separate operable units on opposite sides of US Route 11 (i.e., Operable Units OU-1 and OU-2 located on the west and east sides of the roadway, respectively); and (2) installation of two vertical barrier walls (sealed steel sheet pile walls) connecting the ISS monoliths in OU-1 and OU-2 and extending beneath Route 11. The OU-1 and OU-2 locations, ISS remedial limits, and vertical barrier wall locations are shown on Figure 1. ISS treatment columns extended vertically into an underlying silt/clay layer up to 50 feet below ground surface. ISS was performed to encapsulate coal tar dense non-aqueous phase liquid (DNAPL) and site-related chemical constituents in soil to reduce or eliminate: (1) the release of constituents from soil to groundwater; and (2) migration of coal tar DNAPL beyond site boundaries. The vertical barrier walls beneath Route 11 were driven into the clay confining layer to divert groundwater around potentially-impacted soils below the roadway.

Groundwater monitoring was performed in June 2012 (approximately one month prior to the start of remedial construction) to evaluate baseline conditions. Post-remediation groundwater monitoring was performed in November 2013, September 2015, and October 2016 to assess groundwater flow patterns and water quality following remediation. In addition, an investigation was performed from October to December 2013 to assess the nature, extent, and recoverability of an area of petroleum-based light non-aqueous phase liquid (LNAPL) encountered during remediation in the southeastern corner of OU-1, around monitoring well MW-11. Eight wells were gauged for LNAPL weekly throughout November and December 2013. The investigation findings indicated that recoverable LNAPL was limited to the immediate vicinity of MW-11, but MW-11 was not ideally constructed to recover LNAPL. Arcadis subsequently installed a new well (MW-36) adjacent to MW-11 in April 2014. Additional LNAPL gauging was performed weekly in April and May 2014, and then monthly from June 2014 through January 2015. The LNAPL gauging results, which are presented in January 30, 2015 e-mail correspondence from Arcadis to the New York State Department of Environmental Conservation (NYSDEC), indicated that no recoverable NAPL was encountered during the gauging period except for 0.7 gallons removed from MW-11 (mixture of LNAPL and water).

II. 2017 GROUNDWATER MONITORING SUMMARY

The 2017 annual groundwater monitoring event is the fourth post-remediation groundwater monitoring event performed at the site. This event marks the last of the annual post-remediation groundwater monitoring events as required by the NYSDEC in a December 18, 2015 letter to NYSEG. The NYSDEC indicated it would consider reducing the monitoring frequency after the annual events of 2016 and 2017, assuming concentrations continued to remain stable or were decreasing. The 2017 annual groundwater monitoring was performed on September 12 and 13, 2017 in accordance with the protocols presented in the NYSDEC-approved Site Management Plan (SMP; Arcadis, March 2016). The wells included in the 2017 groundwater monitoring event were those identified in a November 6, 2015 letter from Arcadis to the NYSDEC (the "2015 Annual Groundwater Monitoring Report"), plus two additional wells as requested in the above-referenced December 18, 2015 NYSDEC letter.

The fieldwork and results of the 2017 annual groundwater monitoring are summarized below.

A. Groundwater Monitoring Activities

The 2017 annual groundwater monitoring event included: (1) collecting a synoptic round of water-level measurements; (2) checking each well for LNAPL and DNAPL with a dual-interface probe; and (3) sampling groundwater from wells in the monitoring well network (refer to Figure 1 for the well locations). Arcadis measured water levels and performed NAPL gauging on September 12, 2017. Arcadis collected groundwater samples on September 12 and 13, 2017. The fieldwork was performed in accordance with the protocols presented in Section 3.3.1 of the SMP.

Before beginning sampling, Arcadis measured water levels from the following 15 monitoring wells:

- One well west of the railroad tracks (MW-1).
- Seven wells between the railroad tracks and US Route 11 (MW-11, MW-12, MW-30S, MW-31A, MW-32A, MW-33, and MW-36).
- Seven wells between US Route 11 and the Tioughnioga River (MW-6, MW-13, MW-14R, MW-17, MW-18, MW-28S, and MW-28D).

Arcadis obtained depth-to-bottom measurements from each of the above-identified wells. Trace LNAPL was encountered in MW-11 and MW-36 (i.e., approximately 0.08 feet in MW-11 and 0.02 feet in MW-36). LNAPL had previously been observed in both of these wells. LNAPL was not observed in wells MW-31A and MW-32A (north and south of MW-11), unlike in October 2016. The water-level measurements and calculated groundwater elevations are presented in Table 1. The groundwater elevations were used to prepare a map of the water table (Figure 1). Similar to previous observations, groundwater near the site continues to flow toward the east/southeast. Locally, groundwater is directed around the ISS monoliths and vertical barrier walls. Groundwater elevations are within the range of historical measurements and most closely resemble the groundwater elevations measured in November 2013.

Groundwater samples were collected from 10 monitoring wells (wells MW-1, MW-6, MW-12, MW-13, MW-14R, MW-17, MW-18, MW-28S, MW-28D, and MW-30S). The groundwater samples were collected using the low-flow method described in Section 3.3.1.1 of the SMP. Field-parameter measurements obtained during well purging prior to sampling are presented on the groundwater sampling logs included as Attachment A to this letter.

The groundwater samples were submitted to Test America of Amherst, New York where they were analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs), and total cyanide. One set of quality assurance/quality control samples, consisting of a field duplicate, matrix spike, matrix spike duplicate, and a trip blank, was also collected and analyzed.

B. Groundwater Monitoring Results

Arcadis validated the groundwater analytical results, and found the results to be useable as intended. The data validation report and full laboratory analytical data report (NYSDEC Analytical Services Protocol

Category B data deliverables package) are provided on the attached CD. The electronic data deliverables (EDDs) are being e-mailed to the NYSDEC separately for upload to the NYSDEC's EQuIS database.

The validated groundwater analytical results are presented in Table 2. This table also provides the corresponding ambient water quality standards and guidance values for each analyte as presented in the NYSDEC Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1) document titled "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations", last updated June 2004. Results that exceed these criteria are shaded in the table. Groundwater analytical results for constituents exceeding the water quality standards/guidance values are shown on Figure 2.

The groundwater analytical results are summarized as follows:

- BTEX were not detected in any of the samples collected from the 10 wells. This is the first monitoring
 event at this site where this has occurred.
- PAHs were not identified at concentrations exceeding the groundwater quality standards or guidance values in 9 of the 10 wells that were sampled. Acenaphthene was identified in the sample from MW-17 at a concentration of 29 parts per billion (ppb) vs. the 20 ppb groundwater quality guidance value. The acenaphthene concentration at MW-17 is consistent with the concentrations observed in previous post-remediation groundwater monitoring events (22.1 ppb to 33 ppb), but an order of magnitude less than the 168 ppb concentration identified in this well prior to remediation.
- Total cyanide was not identified at concentrations exceeding the 200 ppb groundwater quality standard in 8 of the 10 wells that were sampled. Cyanide was detected in the samples collected from MW-12 (estimated 5,800 ppb in the sample and 6,000 ppb in the duplicate) and MW-28S (estimated 260 ppb), which are north of and hydraulically side-gradient to the soil remediation footprint. The total cyanide concentrations at MW-12 and MW-28S were generally consistent with the concentrations identified during the previous monitoring events. The post-remediation groundwater analytical data show that total cyanide has attenuated between MW-12 (upgradient well) and MW-28S (downgradient well), which are screened at approximately the same intervals, and concentrations at MW-28S are at or only slightly above the groundwater quality standard.

C. Groundwater Monitoring Conclusions and Recommendations

Overall, the BTEX, PAH, and cyanide groundwater analytical results for September 2017 are lower than, or approximately the same as, those from the three previous post-remediation monitoring events, and the BTEX and PAH results are much lower than those from the baseline monitoring event in June 2012 (before remediation). BTEX were not detected at any of the 10 wells sampled in 2017. PAH exceedances of groundwater quality standards/guidance values were limited to only one constituent (acenaphthene) identified at only one well (MW-17) in 2017. Cyanide exceedances of the groundwater quality standard were limited to two wells (MW-12 and MW-28S). The observation of trace amounts of LNAPL in wells MW-11 and MW-36 in September 2017 is consistent with previous observations during the weekly or monthly gauging in 2013 and 2014. The data continue to indicate that a trace amount of LNAPL is limited to the southeast corner of OU-1.

Considering the overall improvement in groundwater quality observed since remediation, the relatively small area of impacted groundwater remaining, the relatively minor exceedances of groundwater quality standards/guidance values, the lack of groundwater use at and near the Site, and existing groundwater use laws codified in 10 NYCRR 5-1.31(b) that prohibit the installation of private wells where public supply is available (unless approval is expressly granted by the public water authority), the potential for human exposure to constituents in groundwater at this Site continues to be limited.

NYSEG proposes changing the groundwater monitoring program to further focus the sampling locations and reduce the sampling frequency in a graduated process. This is supported based on: (1) the groundwater sampling results showing that concentrations are decreasing or remaining stable; (2) the limited potential for human exposure. The revised groundwater monitoring program is outlined in the table below.

Frequency/Task	Monitoring Wells	Analytical Parameters
Annual Monitoring Event (2018	and 2019)	
Measure water levels and gauge LNAPL	MW-1, MW-6, MW-11, MW-12, MW-13, MW-14R, MW-17, MW-18, MW-28S/D, MW-30S, MW-31A, MW-32A, MW-33, and MW-36	Not Applicable
Collect groundwater complex	MW-17	BTEX and PAHs
Collect groundwater samples	MW-12 and MW-28S	Total Cyanide
Triennial Monitoring Event (Onc	ce Every Three Years, Starting in 2020)	
Measure water levels and gauge LNAPL	same wells to be used for the annual monitoring event	Not Applicable
Collect groundwater samples	MW-1, MW-6, MW-12, MW-13, MW- 14R, MW-17, MW-18, MW-28S/D, and MW-30S	BTEX, PAHs, and Total Cyanide

NYSEG proposes to continue the triennial monitoring until 2026, when there will be 8 rounds of data for MW-6, MW-12, MW-13, MW-14R, MW-17, MW-18, and MW-28S/D. The proposed sampling period is subject to change based on such factors as a shift in groundwater flow direction, an increase in LNAPL observed, or a spike of BTEX, PAH, or total cyanide concentrations (i.e., at least an order of magnitude greater than historical data at the same well). An increase in LNAPL will be defined as the observation of more than the historical record of 1.25 inches of LNAPL at a single well or the observation of more than 0.5 inches of LNAPL separately in four wells during a single gauging event.

NYSEG proposes summarizing the results of the annual groundwater monitoring in e-mail correspondence to the NYSDEC within approximately 30 days of receiving the validated data. The e-mail correspondence will also identify changes in data trends (if any), propose changes to the groundwater monitoring program (if necessary), and be supported by updated groundwater elevation and groundwater results tables (groundwater results may be limited to the results for MW-12, MW-17, and MW-28S), a potentiometric surface map, and an updated groundwater results figure.

The results of the triennial monitoring will be summarized in the Periodic Review Report (PRR) for that period (once the Certificate of Completion is awarded). If the PRR is not scheduled to be prepared within six months of the groundwater sampling event, the results will be summarized in a letter report supported by updated tables, figures, groundwater monitoring logs, laboratory analytical reports, and data validation reports.

NYSEG will also provide the NYSDEC with updated groundwater data as an electronic data deliverable (EDD) for the NYSDEC's EQuIS database, following the data validation for each monitoring event.

III. 2017 WELL REPAIR AND DECOMMISSIONING SUMMARY

During the 2017 annual groundwater monitoring event, Arcadis noticed that the concrete pad at monitoring well MW-30 had disintegrated and the steel cover was missing. The well continued to be sealed via the j-plug. Arcadis repaired the surface completion at MW-30S on May 23, 2017. The repair consisted of removing the damaged pad/curb box and installing a new steel curb box set inside a new flush-mount concrete pad.

A total of 9 offsite groundwater monitoring wells were decommissioned by Arcadis between May and September 2017. The well decommissioning included the wells identified in the 2015 Post-ISS Groundwater Monitoring Report contained in a November 6, 2015 letter from Arcadis to the NYSDEC, as accepted by the NYSDEC on December 18, 2015. The table below identifies what wells were decommissioned and the corresponding decommissioning date:

Well Decommissioning Date	Monitoring Well Decommissioned
May 23, 2017	MW-27S, MW-29S, MW-29D, MW-30D, MW-31
July 13, 2017	MW-25, MW-26
September 25, 2017	MW-22, MW-23

Monitoring well MW-32 was also proposed for decommissioning, but Arcadis was unable to locate the well using Global Positioning System (GPS) and coordinates from previous survey. The well is assumed to be lost or destroyed.

The well decommissioning was conducted during three mobilizations to accommodate the offsite property owners and avoid inclement weather. The wells decommissioned in September had been planned for decommissioning in July, but the property owner requested a postponement because of extremely wet conditions and concerns that vehicle travel over his property would damage his lawn.

The well decommissioning was performed in general accordance with the protocols presented in NYSDEC's policy document titled "CP-43: Groundwater Monitoring Well Decommissioning Policy", dated November 2009. In general, decommissioning was performed via tremie-grouting with a standard mixture of cement/bentonite grout (in proportions of one 94-pound bag of Type I Portland cement, approximately 4 to 5 pounds powdered bentonite, and approximately 5 to 9 gallons of potable water, per batch, with one or two batches used at each well). Grout was pumped into each well through a tremie pipe, from the bottom upwards. Ferrous metal markers were placed in the top of the grout for each well for future

Mr. Amen M. Omorogbe, P.E. November 14, 2017

identification, as needed. Existing surface completions (concrete pad, flush-mount curb box, stick-up riser casing, etc.) were removed following grouting. The well casings were subsequently removed to depths of between 2 feet below ground surface (bgs) and 6.7 feet bgs, depending on location. After the casings were removed, the annular space was backfilled using bentonite chips and/or surrounding soils to 0.5 feet bgs. The top 0.5 feet of the open hole was restored to match the surrounding surface area. Monitoring well decommissioning logs are included as Attachment B to this letter.

IV. CLOSING

Following NYSDEC review and approval of the proposed changes to the groundwater monitoring program as outlined in Section I.C. (including any additional changes, if needed, based on NYSDEC's review), NYSEG will update the SMP to incorporate the revised groundwater monitoring program into the document. No further monitoring well decommissioning is proposed, and no additional well repairs are needed at this time.

Please feel free to contact Tracy Blazicek (NYSEG) at 607.764.8839 or me at 315.671.9441 if you have any comments/questions or need additional information.

Sincerely,

Arcadis of New York, Inc.

John C. Brussel, P.E. Principal Engineer

Copies:

Mr. Tracy L. Blazicek, CHMM, PMP, NYSEG (via e-mail & US Mail)

Mr. Keith A. White, CPG, Arcadis (via e-mail)

Enclosures:

Tables

- 1 Summary of NAPL and Water Level Gauging Data
- 2 Groundwater Analytical Results

Figures

- 1 Water-Table Map October 18, 2016
- 2 Groundwater Analytical Results

Attachment

- A Groundwater Sampling Logs
- B Monitoring Well Decommissioning Logs

TABLES

Table 1 Summary of NAPL and Water Level Gauging Data

2017 Annual Groundwater Monitoring Report Cortland-Homer Former MGP Site - Homer, New York

	Top of Inner			epth to W				Depth to Bottom (feet below TIC)			Α	pproxima	ate LNAPL (feet)	. Thicknes	s*	Groundwater Elevation (feet amsl)					
Monitoring Well ID	Elevation	6/25/12	11/5/13	9/14/15	10/18/16	9/12/17	6/25/12	11/5/13	9/14/15	10/18/16	9/12/17	6/25/12	11/5/13	9/14/15	10/18/16	9/12/17	6/25/12	11/5/13	9/14/15	10/18/16	9/12/17
MW-1	1116.25	-	5.79	6.98	7.80	6.04	-	23.6	23.8	23.9	23.6	0.00	0.00	0.00	0.00	0.00	-	1110.46	1109.27	1108.45	1110.21
MW-6	1113.07	4.67	4.20	5.04	5.22	4.61	20.1	25.4	26.1	26.4	25.4	0.00	0.00	0.00	0.00	0.00	1108.40	1108.87	1108.03	1107.85	1108.46
MW-11	1114.97	6.68	6.05	7.31	buried***	6.82	11.2	-	11.5	buried***	-	0.22	0.30	0.00	0.00	0.08	1108.29	1109.19**	1107.66	buried***	1108.15
MW-12	1115.23	6.46	5.61	6.51	6.65	6.10	11.4	11.6	11.6	11.5	11.8	0.00	0.00	0.00	0.00	0.00	1108.77	1109.62	1108.72	1108.58	1109.13
MW-13	1113.47	5.09	4.55	5.51	5.70	4.97	31.5	31.7	31.8	31.6	31.7	0.00	0.00	0.00	0.00	0.00	1108.38	1108.92	1107.96	1107.77	1108.50
MW-14R	1112.78	-	4.09	4.88	4.88	4.50	-	13.1	13.0	12.5	13.0	0.00	0.00	0.00	0.00	0.00	-	1108.69	1107.90	1107.90	1108.28
MW-17	1114.75	6.68	6.12	6.86	7.11	6.73	10.5	10.5	10.6	10.6	10.1	0.00	0.00	0.00	0.00	0.00	1108.07	1108.63	1107.89	1107.64	1108.02
MW-18	1114.81	6.57	6.01	6.76	6.93	6.51	30.0	30.1	30.1	30.1	30.1	0.00	0.00	0.00	0.00	0.00	1108.24	1108.80	1108.05	1107.88	1108.30
MW-28S	1111.68	3.34	2.77	3.58	3.67	3.25	13.1	13.2	13.3	13.2	13.2	0.00	0.00	0.00	0.00	0.00	1108.34	1108.91	1108.10	1108.01	1108.43
MW-28D	1111.50	3.22	2.65	6.43	3.55	3.15	21.6	26.8	26.8	26.8	26.8	0.00	0.00	0.00	0.00	0.00	1108.28	1108.85	1105.07	1107.95	1108.35
MW-30S	1115.08	5.89	5.46	6.15	6.58	5.44	9.9	12.1	12.1	11.8	11.2	0.00	0.00	0.00	0.00	0.00	1109.19	1109.62	1108.93	1108.50	1109.64
MW-31A	1115.30	-	6.42	7.31	8.10	6.73	-	14.0	14.0	-	14.1	0.00	0.00	Trace	0.30	0.00	-	1108.88	1107.99	1107.20	1108.57
MW-32A	1115.78	-	6.75	7.77	8.21	7.15	-	14.4	-	-	14.4	0.00	0.00	0.06	0.01	0.00	-	1109.03	1108.01	1107.57	1108.63
MW-33	1116.17	-	7.10	8.02	8.56	7.46	-	13.6	13.5	13.6	13.6	0.00	0.00	0.00	0.00	0.00	-	1109.07	1108.15	1107.61	1108.71
MW-36	1114.96	-	-	7.16	7.78	6.64	-	-	13.4	13.5	-	0.00	0.00	0.00	0.09	0.02	-	-	1107.80	1107.18	1108.32

Notes:

- 1. Elevations are shown in feet above mean sea level (AMSL) relative to the North Americal Vertical Datum of 1988 (NAVD88).
- 2. = not available; NAPL = Non-Aqueous Phase Liquid; LNAPL= Light Non-Aqueous Phase Liquid; DNAPL = Dense Non-Aqueous Phase Liquid.
- 3. TIC = Top of Inner Casing.
- 4. *= No DNAPL has been identified in any of the monitoring wells during the groundwater monitoring events.
- 5. ** The groundwater elevation at MW-11 has been corrected for the presence of LNAPL, using an estimated LNAPL density of 0.9.
- 6. *** = MW-11 was buried under concrete during the October 2016 sampling event and later events. It could not be accessed.

Table 2
Groundwater Analytical Results (ppb)

Location ID:	NYSDEC Groundwater		MW-1				MW-6			MW-11
Screen Interval (ft bgs):	Standards/		15.5 - 20.5				26 - 31			7 - 13
Date Collected:	Guidance Values	11/06/13	10/19/16	09/12/17	06/26/12	11/05/13	09/14/15	10/19/16	09/13/17	09/16/15
Volatile Organics										
Benzene	1	<0.500	<1.00	<1.00	<0.500	<0.500 J	<0.500 J [<0.500 J]	<1.00	<1.00	0.820 J
Ethylbenzene	5	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00 J [<1.00 J]	<1.00	<1.00	<1.00 J
Toluene	5	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00 J [<1.00 J]	<1.00	<1.00	0.290 J
Xylenes (total)	5	<1.00	<2.00	<2.00	<1.00	<1.00	<1.00 J [<1.00 J]	<2.00	<2.00	0.330 J
Polycyclic Aromatic Hydro	carbons									,
2-Methylnaphthalene		<2.40	<24.0	<5.40	<2.20	<2.50	<2.00 [0.0440 J]	<24.0	<5.60	<2.00
Acenaphthene	20	<2.40	<24.0	<5.40	<2.20	<2.50	0.0370 J [0.0380 J]	<24.0	<5.60	4.60
Acenaphthylene		<2.40	<24.0	<5.40	<2.20	<2.50	0.130 [0.120]	<24.0	<5.60	0.260
Anthracene	50	<2.40	<24.0	<5.40	<2.20	<2.50	<0.100 [<0.100]	<24.0	<5.60	0.110
Benzo(a)anthracene	0.002	<2.40	<24.0	<5.40	<2.20	<2.50	<0.0510 [<0.0500]	<24.0	<5.60	<0.0510
Benzo(a)pyrene	ND	<2.40	<24.0	<5.40	<2.20	<2.50	<0.100 [<0.100]	<24.0	<5.60	<0.100
Benzo(b)fluoranthene	0.002	<2.40	<24.0	<5.40	<2.20	<2.50	<0.0510 J [<0.0500 J]	<24.0	<5.60	<0.0510 J
Benzo(g,h,i)perylene		<2.40	<24.0	<5.40	<2.20	<2.50	<0.100 [<0.100]	<24.0	<5.60	<0.100
Benzo(k)fluoranthene	0.002	<2.40	<24.0	<5.40	<2.20	<2.50	<0.100 [<0.100]	<24.0	<5.60	<0.100
Chrysene	0.002	<2.40	<24.0	<5.40	<2.20	<2.50	<0.100 [<0.100]	<24.0	<5.60	0.0160 J
Dibenzo(a,h)anthracene		<2.40	<24.0	<5.40	<2.20	<2.50	<0.100 [<0.100]	<24.0	<5.60	<0.100
Fluoranthene	50	<2.40	<24.0	<5.40	<2.20	<2.50	0.0450 J [0.0510 J]	<24.0	<5.60	0.0460 J
Fluorene	50	<2.40	<24.0	<5.40	<2.20	<2.50	<0.100 [0.0200 J]	<24.0	<5.60	1.10
Indeno(1,2,3-cd)pyrene	0.002	<2.40	<24.0	<5.40	<2.20	<2.50	<0.100 [<0.100]	<24.0	<5.60	<0.100
Naphthalene	10	<2.40	<24.0	<5.40	<2.20 B	<2.50	0.0230 J [0.0270 J]	<24.0	<5.60	0.250 J
Phenanthrene	50	<2.40	<24.0	<5.40	<2.20	<2.50	<0.0510 [0.0300 J]	<24.0	<5.60	0.0380 J
Pyrene	50	<2.40	<24.0	<5.40	<2.20	<2.50	0.0580 J [0.0650 J]	<24.0	<5.60	0.150
Cyanide										
Total Cyanide	200	<10.0	<10.0 J	<10.0	<10.0	<10.0	<10.0 J [<10.0 J]	<10.0	<10.0	370

Table 2
Groundwater Analytical Results (ppb)

	NYSDEC										
Location ID:	Groundwater			MW-12					MW-13		
Screen Interval (ft bgs):	Standards/			8 - 13					35.5 - 40.5		
Date Collected:	Guidance Values	06/27/12	11/06/13	09/16/15	10/19/16	09/12/17	06/27/12	11/06/13	09/16/15	10/19/16	09/13/17
Volatile Organics											
Benzene	1	<0.500	<0.500	<0.500 J	<1.00	<1.00 [<1.00]	<0.500	<0.500	<0.500 J	<1.00	<1.00
Ethylbenzene	5	<1.00	<1.00	<1.00 J	<1.00	<1.00 [<1.00]	<1.00	<1.00	<1.00 J	<1.00	<1.00
Toluene	5	<1.00	<1.00	<1.00 J	<1.00	<1.00 [<1.00]	<1.00	<1.00	<1.00 J	<1.00	<1.00
Xylenes (total)	5	<1.00	<1.00	<1.00 J	<2.00	<2.00 [<2.00]	<1.00	<1.00	<1.00 J	<2.00	<2.00
Polycyclic Aromatic Hydro	carbons										
2-Methylnaphthalene		<2.30	<2.50	<2.00 B	<5.10	<5.00 [<5.10]	<2.20	<2.40	<2.00	<5.00	<5.20
Acenaphthene	20	<2.30	<2.50	<0.100	<5.10	<5.00 [<5.10]	<2.20	<2.40	<0.100	<5.00	<5.20
Acenaphthylene		<2.30	<2.50	<0.100	<5.10	<5.00 [<5.10]	<2.20	<2.40	<0.100	<5.00	<5.20
Anthracene	50	<2.30	<2.50	<0.100	<5.10	<5.00 [<5.10]	<2.20	<2.40	<0.100	<5.00	<5.20
Benzo(a)anthracene	0.002	<2.30	<2.50	<0.0510	<5.10	<5.00 [<5.10]	<2.20	<2.40	<0.0510	<5.00	<5.20
Benzo(a)pyrene	ND	<2.30	<2.50	<0.100	<5.10	<5.00 [<5.10]	<2.20	<2.40	<0.100	<5.00	<5.20
Benzo(b)fluoranthene	0.002	<2.30	<2.50	<0.0510 J	<5.10	<5.00 [<5.10]	<2.20	<2.40	<0.0510 J	<5.00	<5.20
Benzo(g,h,i)perylene		<2.30	<2.50	<0.100	<5.10	<5.00 [<5.10]	<2.20	<2.40	<0.100	<5.00	<5.20
Benzo(k)fluoranthene	0.002	<2.30	<2.50	<0.100	<5.10	<5.00 [<5.10]	<2.20	<2.40	<0.100	<5.00	<5.20
Chrysene	0.002	<2.30	<2.50	<0.100	<5.10	<5.00 [<5.10]	<2.20	<2.40	<0.100	<5.00	<5.20
Dibenzo(a,h)anthracene		<2.30	<2.50	<0.100	<5.10	<5.00 [<5.10]	<2.20	<2.40	<0.100	<5.00	<5.20
Fluoranthene	50	<2.30	<2.50	<0.100	<5.10	<5.00 [<5.10]	<2.20	<2.40	<0.100	<5.00	<5.20
Fluorene	50	<2.30	<2.50	<0.100	<5.10	<5.00 [<5.10]	<2.20	<2.40	<0.100	<5.00	<5.20
Indeno(1,2,3-cd)pyrene	0.002	<2.30	<2.50	<0.100	<5.10	<5.00 [<5.10]	<2.20	<2.40	<0.100	<5.00	<5.20
Naphthalene	10	<2.30	<2.50	<2.00 B	<5.10	<5.00 [<5.10]	<2.20	<2.40	<2.00	<5.00	<5.20
Phenanthrene	50	<2.30	<2.50	<0.0510	<5.10	<5.00 [<5.10]	<2.20	<2.40	<0.0510	<5.00	<5.20
Pyrene	50	<2.30	<2.50	<0.100	<5.10	<5.00 [<5.10]	<2.20	<2.40	<0.100	<5.00	<5.20
Cyanide											
Total Cyanide	200	2,600	3,000	6,500	7,300 J	5,800 [6,000]	<10.0	<10.0	<10.0	<10.0 J	<10.0

Table 2
Groundwater Analytical Results (ppb)

	NYSDEC										
Location ID:	Groundwater	MW-14		MW-					IW-17		
Screen Interval (ft bgs):		6.5 - 11.5		2.8 -					6 - 11		
Date Collected:	Guidance Values	06/26/12	11/05/13	09/14/15	10/19/16	09/13/17	06/25/12	11/05/13	09/14/15	10/18/16	09/13/17
Volatile Organics											
Benzene	1	14.5	17.0 J	<0.500 J	<1.00	<1.00	291 [304]	14.1 J	5.30 J	38.0	<1.00
Ethylbenzene	5	<1.00	<1.00	<1.00 J	<1.00	<1.00	258 [257]	17.5	0.790 J	14.0	<1.00
Toluene	5	<1.00	<1.00	<1.00 J	<1.00	<1.00	16.0 [17.1]	1.10	<1.00 J	0.900 J	<1.00
Xylenes (total)	5	<1.00	<1.00	<1.00 J	<2.00	<2.00	157 J [144]	1.70	0.240 J	6.60	<2.00
Polycyclic Aromatic Hydro	carbons										
2-Methylnaphthalene		<2.10	<2.40	<2.00	<4.70	<5.20	<2.20 [<2.20]	26.8	<2.10	<25.0	<5.00
Acenaphthene	20	3.00	13.6	<0.100	<4.70	<5.20	168 [146]	22.5	22.1	33.0	29.0
Acenaphthylene		<2.10	<2.40	<0.100	<4.70	<5.20	<2.20 [<2.20]	<2.60	1.50	<25.0	<5.00
Anthracene	50	<2.10	<2.40	<0.100	<4.70	<5.20	2.90 [2.80]	0.730 J	1.10	<25.0	0.790 J
Benzo(a)anthracene	0.002	<2.10	<2.40	<0.0510	<4.70	<5.20	<2.20 [<2.20]	<2.60	<0.0520	<25.0	<5.00
Benzo(a)pyrene	ND	<2.10	<2.40	<0.100	<4.70	<5.20	<2.20 [<2.20]	<2.60	<0.100	<25.0	<5.00
Benzo(b)fluoranthene	0.002	<2.10	<2.40	<0.0510 J	<4.70	<5.20	<2.20 [<2.20]	<2.60	<0.0520 J	<25.0	<5.00
Benzo(g,h,i)perylene		<2.10	<2.40	<0.100	<4.70	<5.20	<2.20 [<2.20]	<2.60	<0.100	<25.0	<5.00
Benzo(k)fluoranthene	0.002	<2.10	<2.40	<0.100	<4.70	<5.20	<2.20 [<2.20]	<2.60	<0.100	<25.0	<5.00
Chrysene	0.002	<2.10	<2.40	<0.100	<4.70	<5.20	<2.20 [<2.20]	<2.60	<0.100	<25.0	<5.00
Dibenzo(a,h)anthracene		<2.10	<2.40	<0.100	<4.70	<5.20	<2.20 [<2.20]	<2.60	<0.100	<25.0	<5.00
Fluoranthene	50	<2.10	<2.40	<0.100	<4.70	<5.20	1.50 J [1.50 J]	<2.60	0.520	<25.0	0.630 J
Fluorene	50	<2.10	<2.40	<0.100	<4.70	<5.20	39.0 [35.2]	6.70	9.10	8.00 J	9.40
Indeno(1,2,3-cd)pyrene	0.002	<2.10	<2.40	<0.100	<4.70	<5.20	<2.20 [<2.20]	<2.60	<0.100	<25.0	<5.00
Naphthalene	10	<2.10 B	<2.40	0.0160 J	<4.70	<5.20	1,870 D [<1,740 BD]	0.730 J	0.340 J	8.20 J	<5.00
Phenanthrene	50	<2.10	<2.40	<0.0510	<4.70	<5.20	33.9 [32.5]	7.40	0.770	2.40 J	<5.00
Pyrene	50	<2.10	<2.40	<0.100	<4.70	<5.20	1.10 J [1.10 J]	<2.60	0.460	<25.0	0.580 J
Cyanide											
Total Cyanide	200	100	130	81.0 J	880 J	61	310 [330]	30.0	<10.0 J	150 J	30

Table 2
Groundwater Analytical Results (ppb)

Location ID:	NYSDEC Groundwater			MW-18			MM	<i>l-</i> 21	MV	<i>l-</i> 25	MW-26	MW	-27D
Screen Interval (ft bgs):	Standards/			24.6 - 29.6			32 - 37	32 - 37		14	50 - 60		- 34
Date Collected:		06/25/12	11/05/13	09/14/15	10/18/16	09/13/17	06/27/12	11/06/13	06/27/12	11/06/13	11/06/13	06/26/12	11/05/13
Volatile Organics	Guidanoc values	00/20/ 12			10.10.10	00.10.11	00.21112		00.2.7.12	1 0 10	1 1100/10	00/20/12	
Benzene	1	0.650	<0.500 J	<0.500 J	<1.00	<1.00	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500 J
Ethylbenzene	5	<1.00	<1.00	<1.00 J	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Toluene	5	<1.00	<1.00	<1.00 J	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Xylenes (total)	5	<1.00	<1.00	<1.00 J	<2.00	<2.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Polycyclic Aromatic Hydro	carbons					1		1	1	1			
2-Methylnaphthalene		<2.20	<2.40	0.0170 J	<5.40	<5.00	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Acenaphthene	20	<2.20	0.580 J	4.10	<5.40	8.40 J	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Acenaphthylene		<2.20	<2.40	1.20	<5.40	1.60 J	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Anthracene	50	<2.20	<2.40	0.0440 J	<5.40	<5.00	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Benzo(a)anthracene	0.002	<2.20	<2.40	<0.0520	<5.40	<5.00	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Benzo(a)pyrene	ND	<2.20	<2.40	<0.100	<5.40	<5.00	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Benzo(b)fluoranthene	0.002	<2.20	<2.40	<0.0520 J	<5.40	<5.00	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Benzo(g,h,i)perylene		<2.20	<2.40	<0.100	<5.40	<5.00	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Benzo(k)fluoranthene	0.002	<2.20	<2.40	<0.100	<5.40	<5.00	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Chrysene	0.002	<2.20	<2.40	<0.100	<5.40	<5.00	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Dibenzo(a,h)anthracene		<2.20	<2.40	<0.100	<5.40	<5.00	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Fluoranthene	50	<2.20	<2.40	0.170	<5.40	0.400 J	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Fluorene	50	<2.20	<2.40	0.270	<5.40	<5.00	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Indeno(1,2,3-cd)pyrene	0.002	<2.20	<2.40	<0.100	<5.40	<5.00	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Naphthalene	10	<2.20 B	<2.40	0.0320 J	<5.40	<5.00	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50 J
Phenanthrene	50	<2.20	<2.40	0.0510 J	<5.40	<5.00	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Pyrene	50	<2.20	<2.40	0.170	<5.40	0.360 J	<2.20	<2.30	<2.20	<2.60	<2.40	<2.20	<2.50
Cyanide													
Total Cyanide	200	<10.0	<10.0	<10.0 J	<10.0 J	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0

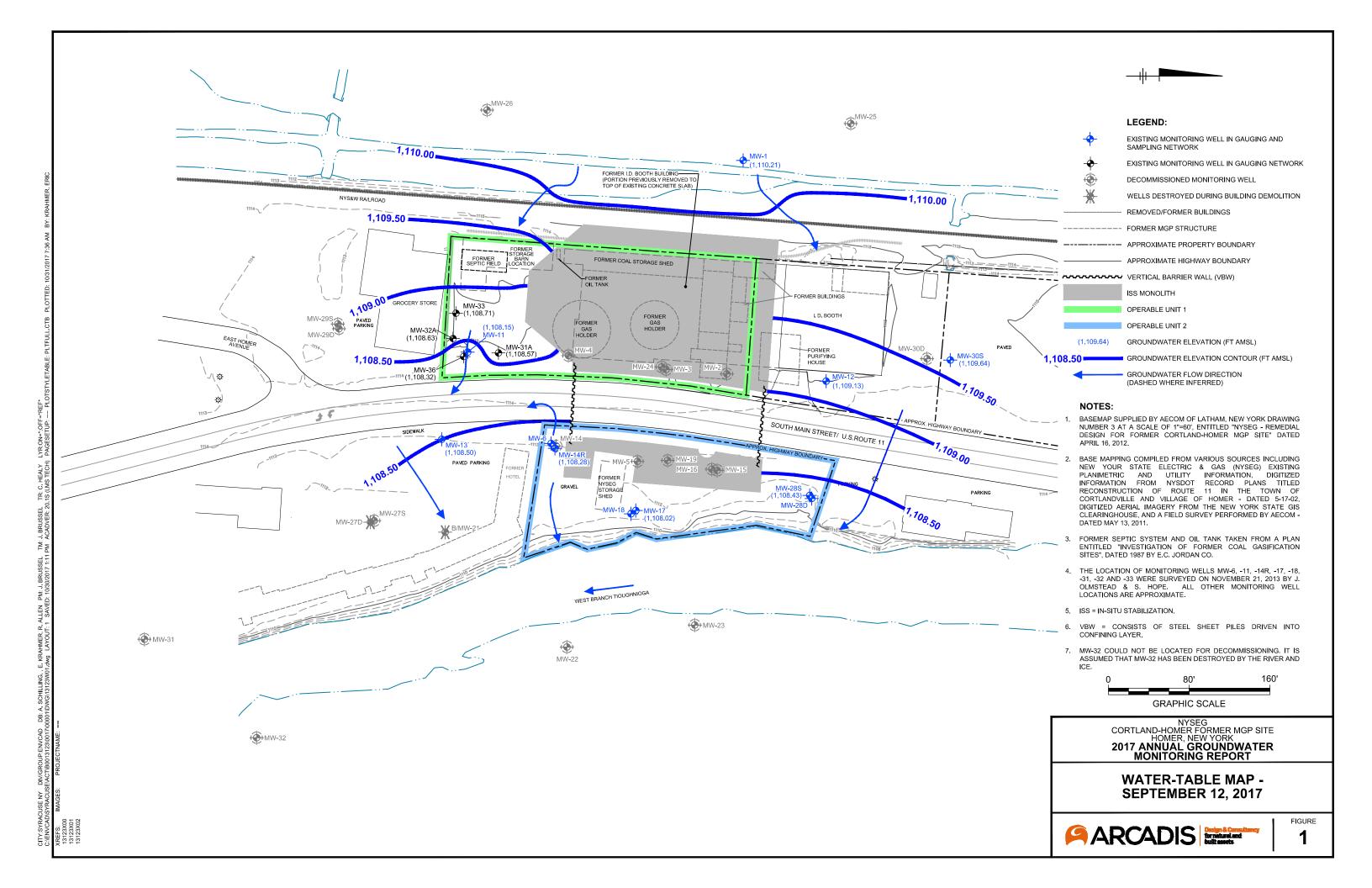
Table 2
Groundwater Analytical Results (ppb)

Location ID:	NYSDEC Groundwater		MW-278				MW-28D					MW-28S		
Screen Interval (ft bgs): Date Collected:	Standards/ Guidance Values	06/26/12	5 - 15 11/05/13	09/16/15	06/25/12	11/05/13	18 - 28 09/15/15	10/18/16	09/13/17	06/25/12	11/05/13	4 - 14 09/15/15	10/18/16	09/13/17
Volatile Organics	Guidance values	00/20/12	11/03/13	09/10/13	00/23/12	11/03/13	09/13/13	10/10/10	09/13/17	00/23/12	11/03/13	09/13/13	10/10/10	03/13/11
Benzene	1	<0.500	<0.500 J [<0.500 J]	<0.500 J	<0.500	<0.500 J	<0.500 J	<1.00	<1.00	<0.500	<0.500 J	<0.500 J	<1.00	<1.00
Ethylbenzene		<1.00	<1.00 [<1.00]	<1.00 J	<1.00	<1.00	<1.00 J	<1.00	<1.00	<1.00	<1.00	<1.00 J	<1.00	<1.00
Toluene	5	<1.00	<1.00 [<1.00]	<1.00 J	<1.00	<1.00	<1.00 3	<1.00	<1.00	<1.00	<1.00	<1.00 3	<1.00	<1.00
Xylenes (total)	5	<1.00	<1.00 [<1.00]	<1.00 J	<1.00	<1.00	<1.00 J	<2.00	<2.00	<1.00	<1.00	<1.00 J	0.780 J	<2.00
, ,		<1.00	<1.00 [<1.00]	<1.00 J	\1.00	<1.00	<1.00 J	<2.00	\2.00	<1.00	<1.00	<1.00 J	0.760 3	\2.00
Polycyclic Aromatic Hydro		-0.40	.0.50.1.0.401	-0.00 D	-0.00	.0.00	-0.00 D	.4.00	-5.00	-0.40	-0.50	-0.00 D	.4.70	-5.00
2-Methylnaphthalene		<2.40	<2.50 [<2.40]	<2.30 B	<2.00	<2.20	<2.00 B	<4.80	<5.00	<2.40	<2.50	<2.00 B	<4.70	<5.00
Acenaphthene	20	<2.40	<2.50 J [16.4 J]	<0.110	3.80	<2.20	4.30	4.90	14.0	9.90	4.50	5.10	5.90	9.70
Acenaphthylene		<2.40	<2.50 [0.930 J]	<0.110	0.870 J	<2.20	1.40	1.10 J	3.30 J	3.10	1.00 J	1.50	1.40 J	2.30 J
Anthracene	50	<2.40	<2.50 [<2.40]	<0.110	<2.00	<2.20	<0.100	<4.80	<5.00	<2.40	<2.50	0.0150 J	<4.70	<5.00
Benzo(a)anthracene	0.002	<2.40	<2.50 [<2.40]	<0.0570	<2.00	<2.20	<0.0510	<4.80	<5.00	<2.40	<2.50	<0.0510	<4.70	<5.00
Benzo(a)pyrene	ND	<2.40	<2.50 [<2.40]	<0.110	<2.00	<2.20	<0.100	<4.80	<5.00	<2.40	<2.50	<0.100	<4.70 J	<5.00
Benzo(b)fluoranthene	0.002	<2.40	<2.50 [<2.40]	<0.0570 J	<2.00	<2.20	<0.0510 J	<4.80	<5.00	<2.40	<2.50	<0.0510 J	<4.70	<5.00
Benzo(g,h,i)perylene		<2.40	<2.50 [<2.40]	<0.110	<2.00	<2.20	<0.100	<4.80	<5.00	<2.40	<2.50	<0.100	<4.70 J	<5.00
Benzo(k)fluoranthene	0.002	<2.40	<2.50 [<2.40]	<0.110	<2.00	<2.20	<0.100	<4.80	<5.00	<2.40	<2.50	<0.100	<4.70	<5.00
Chrysene	0.002	<2.40	<2.50 [<2.40]	<0.110	<2.00	<2.20	<0.100	<4.80	<5.00	<2.40	<2.50	<0.100	<4.70 J	<5.00
Dibenzo(a,h)anthracene		<2.40	<2.50 [<2.40]	<0.110	<2.00	<2.20	<0.100	<4.80	<5.00	<2.40	<2.50	<0.100	<4.70 J	<5.00
Fluoranthene	50	<2.40	<2.50 [<2.40]	<0.110	<2.00	<2.20	<0.100	<4.80	<5.00	<2.40	<2.50	<0.100	<4.70	<5.00
Fluorene	50	<2.40	<2.50 [5.10]	<0.110	<2.00	<2.20	0.150	<4.80	<5.00	<2.40	<2.50	<0.100	<4.70	<5.00
Indeno(1,2,3-cd)pyrene	0.002	<2.40	<2.50 [<2.40]	<0.110	<2.00	<2.20	<0.100	<4.80	<5.00	<2.40	<2.50	<0.100	<4.70 J	<5.00
Naphthalene	10	<5.40 B	<2.50 [<2.40]	<2.30 B	<2.00 B	<2.20	<2.00 B	<4.80	<5.00	<2.40	<2.50	<2.00 B	<4.70	<5.00
Phenanthrene	50	<2.40	<2.50 [5.70]	<0.0570	<2.00	<2.20	0.0300 J	<4.80	<5.00	<2.40	<2.50	0.0270 J	<4.70	<5.00
Pyrene	50	<2.40	<2.50 [<2.40]	<0.110	<2.00	<2.20	<0.100	<4.80	<5.00	<2.40	<2.50	<0.100	<4.70	<5.00
Cyanide														
Total Cyanide	200	<10.0	<10.0 [<10.0]	<10.0	<10.0	<10.0	2.40 B	<10.0 J	<10.0	240	200	270	200 J	260

Table 2
Groundwater Analytical Results (ppb)

Location ID:	NYSDEC Groundwater		MW-29D			-29S		-30D			IW-30S	
Screen Interval (ft bgs):	Standards/		35 - 45		-	15		- 34			5 - 15	
Date Collected:	Guidance Values	06/26/12	11/06/13	09/15/15	11/06/13	09/15/15	06/26/12	11/06/13	06/27/12	11/06/13	10/18/16	09/12/17
Volatile Organics												
Benzene	1	<0.500	<0.500	<0.500 J	<0.500	<0.500 J	<0.500	<0.500	<0.500	<0.500	<1.00 [<1.00]	<1.00
Ethylbenzene	5	<1.00	<1.00	<1.00 J	<1.00	<1.00 J	<1.00	<1.00	<1.00	<1.00	<1.00 [<1.00]	<1.00
Toluene	5	<1.00	<1.00	<1.00	<1.00	<1.00	1.20	<1.00	<1.00	<1.00	<1.00 [<1.00]	<1.00
Xylenes (total)	5	<1.00	<1.00	<1.00 J	<1.00	<1.00 J	<1.00	<1.00	<1.00	<1.00	<2.00 [<2.00]	<2.00
Polycyclic Aromatic Hydro	carbons											
2-Methylnaphthalene		<2.20	<2.40	<2.40 B	<2.40	<2.00 B	<2.20	<2.50	<2.40	<2.50	<110 [<100]	<5.00
Acenaphthene	20	<2.20	<2.40	<0.120	<2.40	<0.100	<2.20	<2.50	<2.40	<2.50	<110 [<100]	<5.00
Acenaphthylene		<2.20	<2.40	<0.120	<2.40	<0.100	<2.20	<2.50	<2.40	<2.50	<110 [<100]	<5.00
Anthracene	50	<2.20	<2.40	<0.120	<2.40	<0.100	<2.20	<2.50	<2.40	<2.50	<110 [<100]	<5.00
Benzo(a)anthracene	0.002	<2.20	<2.40	<0.0590	<2.40	<0.0500	<2.20	<2.50	<2.40	<2.50	<110 [<100]	<5.00
Benzo(a)pyrene	ND	<2.20	<2.40	<0.120	<2.40	<0.100	<2.20	<2.50	<2.40	<2.50	<110 [<100]	<5.00
Benzo(b)fluoranthene	0.002	<2.20	<2.40	<0.0590 J	<2.40	<0.0500 J	<2.20	<2.50	<2.40	<2.50	<110 [<100]	<5.00
Benzo(g,h,i)perylene		<2.20	<2.40	<0.120	<2.40	<0.100	<2.20	<2.50	<2.40	<2.50	<110 [<100]	<5.00
Benzo(k)fluoranthene	0.002	<2.20	<2.40	<0.120	<2.40	<0.100	<2.20	<2.50	<2.40	<2.50	<110 [<100]	<5.00
Chrysene	0.002	<2.20	<2.40	<0.120	<2.40	<0.100	<2.20	<2.50	<2.40	<2.50	<110 [<100]	<5.00
Dibenzo(a,h)anthracene		<2.20	<2.40	<0.120	<2.40	<0.100	<2.20	<2.50	<2.40	<2.50	<110 [<100]	<5.00
Fluoranthene	50	<2.20	<2.40	<0.120	<2.40	<0.100	<2.20	<2.50	<2.40	<2.50	<110 [<100]	<5.00
Fluorene	50	<2.20	<2.40	0.0180 J	<2.40	<0.100	<2.20	<2.50	<2.40	<2.50	<110 [<100]	<5.00
Indeno(1,2,3-cd)pyrene	0.002	<2.20	<2.40	<0.120	<2.40	<0.100	<2.20	<2.50	<2.40	<2.50	<110 [<100]	<5.00
Naphthalene	10	<2.20	<2.40	<2.40 B	<2.40	<2.00 B	<2.20 B	<2.50	<2.40	<2.50	<110 [<100]	<5.00
Phenanthrene	50	<2.20	<2.40	0.0270 J	<2.40	<0.0500	<2.20	<2.50	<2.40	<2.50	<110 [<100]	<5.00
Pyrene	50	<2.20	<2.40	0.0200 J	<2.40	<0.100	<2.20	<2.50	<2.40	<2.50	<110 [<100]	<5.00
Cyanide												
Total Cyanide	200	<10.0	<10.0	<10.0	110	7.60 B	<10.0	<10.0	16.0	14.0	220 J [<10.0 J]	9.7 J

Table 2 Groundwater Analytical Results (ppb)




2017 Annual Groundwater Monitoring Report Cortland-Homer Former MGP Site - Homer, New York

Notes:

- 1. Baseline samples collected by Arcadis of New York, Inc. from June 25-27, 2012, and post-in-situ soil solidification (ISS) samples collected by Arcadis from November 2013 to September 2017.
- 2. Laboratory analysis was performed by SGS Accutest Laboratories of Marlborough, Massachusetts (before the 2016 monitoring event) or TestAmerica of Amherst, New York for the 2016 and 2017 monitoring events) for:
 - BTEX (benzene, toluene, ethylbenzene, xylenes) using United States Environmental Protection Agency (USEPA) SW-846 Method 8260B.
 - Polycyclic aromatic hydrocarbons (PAHs) using USEPA SW-846 Method 8270C.
 - Total cyanide using USEPA SW-846 Method 9012.
- 3. Concentrations reported in micrograms per liter (ug/L), which is equivalent to parts per billion (ppb).
- 4. Data qualifiers are defined as follows:
 - J Indicates an estimated value.
 - < Indicates that the compound was analyzed for but not detected. The associated value is the compound quantitation limit
 - B Indicates that the analyte was also detected in the associated method blank.
 - D Indicates that the analyte was quantified using a second dilution.
- 5. NYSDEC groundwater standards/guidance values are from the NYSDEC Division of Water, Technical and Operational Guidance Series (TOGS) document titled "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (TOGS 1.1.1) dated June 1998, revised April 2000 and June 2004.
- 6. Shading indicates that the result exceeds the water quality standard/guidance value.
- 7. -- Indicates that no water quality standard or guidance value is available for this compound.
- 8. [] Results shown in brackets represent field duplicates.
- 9. ND = non-detect.
- 10. bgs = below ground surface.
- 11. Results have been validated in accordance with USEPA National Functional Guidelines of October 1999, USEPA Region II Standard Operating Procedures, and the NYSDEC Analytical Services Protocol.

FIGURES

ATTACHMENT A

Groundwater Sampling Logs

NYSEG - Cortland Homer 2017 Groundwater Sampling Event **GROUNDWATER SAMPLING LOG** ensel KROSKOFF 1/W -Sampling Personnel: Well ID: Client / Job Number: Date: 1212/17 12 Z OTime Out: Weather: Sunnu Time In: 1420 **Well Information** Stick-Up Well Type: Flushmount Depth to Water (feet): (from MP) Stainless Steel Total Depth (feet): (from MP) Well Material: PVC Yes Length of Water Column (feet): / Well Locked: No Measuring Point Marked: Volume of Water in Well (gal): No Intake depth for tubing (feet) Well Diameter: Other: **Conversion Factors Purging Information** Purging Method: Bailer Peristaltic Grundfos Other: gal / ft. of 1" ID 2" ID 4" ID 6" ID Tubing/Bailer St. Steel Polyethylene Teflon Other: 0.041 0.163 0.653 1.469 Sampling Method: Bailer (VOCs) Peristaltic Grundfos Other: 1 gal = 3.785 L =3875 ml = 0.1337 775 Pump Start Time Pump Stop Time **Unit Stability** U52 HARiba Water-Quality Meter Type: ORP pH DO Cond. No Total Volume Removed: 7 Did well go dry: ± 0.1 ± 10% ± 3.0% Yes ± 10 mV 250 Parameter: 115 05 100 110 Time Volume Purged (mL) 50 150 150 150 150 150 50 150 150 Rate (mL/min) 10.1 6-09 .09 0 60.09 6.11 Depth to Water (ft.) 8.93 7.44 -1 47 7.47 8 .44 67 600 110 98 15.89 18.00 17.14 160.65 15.60 107 Temp. (C) 6.7310 731 0.700 0.707 0.710 72 0.6 Conductivity (mS/cm) Dissolved Oxygen 1.09 1.30 1.07 1.42 .07 1.11 1.00 (mg/L) 15 -6 -8 -8 -10 -8 ORP (mV) 13 19 8. 11.0 Turbidity (NTU) Notes: Sampling Information Problems/Observation Laboratory Analyses **BTEX** 3 Test America TCN Test America PAH Test America 2 Color: Sec Page Odor: Appearance: Sample ID: Sample Time:

Yes

Yes

No

No

Dup. Time:

MS/MSD:

Duplicate:

PID =

Duplicate ID

Page 10FZ

PID =

2017 Groundwater Sampling Event GROUNDWATER SAMPLING LOG en Sel K KOSKEF Well ID: Sampling Personnel: Client / Job Number: Date: 12/17 Weather: Time In: 1220 Time Out: **Well Information** Stick-Up Well Type: Flushmount Depth to Water (feet): 6-04 (from MP) **PVC** Total Depth (feet): (from MP) Well Material: Stainless Steel Length of Water Column (feet): Well Locked: Yes) No-Volume of Water in Well (gal): Measuring Point Marked: Yes No Intake depth for tubing (feet) Well Diameter: 2" Other: **Purging Information Conversion Factors** Purging Method: Peristaltic Grundfos Other: gal / ft. of 1" ID 2" ID 4" ID 6" ID Bailer Tubing/Bailer St. Steel Polyethylone Teflon Other: 0.041 0.163 0.653 1.469 Peristallic 1 gal = 3.785 L =3875 ml = 0.1337 Sampling Method: Bailer (VOCs) Grundfos Other: 9 Pump Start Time Pump Stop Time **Unit Stability** ORP Water-Quality Meter Type: pH DO Cond. Total Volume Removed: (gal) Did well go dry: Nd ± 0.1 ± 10% ± 3.0% Yes ± 10 mV Parameter: 30* 1405 355 120 125 140 Time Volume Purged (mL) Rate (mL/min) 10. Depth to Water (ft.) 9.15 8 00 7 10.010 X 16 00 Temp. (C) 733 0 0 Conductivity (mS/cm) Dissolved Oxygen 1.4 1.54 78 (mg/L) 341 ORP (mV) 13 219 10 Turbidity (NTU) Notes: Problems/Observation Sampling Information Bodfely of Hoffin diel Analyses Laboratory BTEX 3 -Test America TCN Test America PAH Test America Color: None Odor: None Appearance: rein Sample Time: 1405 Sample ID: MW -1 MS/MSD: Nç Yes Duplicate: No Dup. Time: Duplicate ID

Page 20FZ

PID =

Event GROUNDWATER SAMPLING LOG KROSKOFF Sampling Personnel: Hensel Well ID: MINTO Date: 9/13/17 Client / Job Number: Weather: Time In: 1115 Time Out: MIDUCH Sunny **Well Information** Well Type: Flushmount Stick-Up Depth to Water (feet): 4-(0) (from MP) Total Depth (feet): (from MP) Well Material: (Stainless Steel) **PVC** Length of Water Column (feet): No Well Locked: Yes Volume of Water in Well (gal): Measuring Point Marked: Yes No Intake depth for tubing (feet) 2" Well Diameter: Other: **Purging Information Conversion Factors** Purging Method: Bailer Grundfos Other: gal / ft. of 1" ID | 2" ID | 4" ID | 6" ID Peristaltic Tubing/Bailer St. Steel Polyethylene Teflon Other: 0.041 0.163 0.653 1.469 Sampling Method: Bailer (VOCs) Peristaltic Other: 1 gal = 3.785 L =3875 ml = 0.1337 Grundfos 1120 Pump Start Time Pump Stop Time **Unit Stability** Water-Quality Meter Type: HORIBA DO Cond. ORP pH Total Volume Removed: \(^{\infty}\) (gal) Did well go dry: No ± 0.1 ± 10% ± 3.0% Yes ± 10 mV Parameter: 1200 1215 1135 1205 1145 1210 1130 1140 1150 1155 Time Volume Purged (mL) 300 300 300 300 300 300 300 300 300 Rate (mL/min) 4 4.(09 amana 70 4.70 4.69 4.70 4.70 Depth to Water (ft.) 9.17 9.48 9.50 9.63 94 9.49 9.66 9.72 A 15.09 H94 104 15.16 Kax Temp. (C) 4 Conductivity (mS/cm) 736 735 73 0.7860805 810 0.73 0 812 Dissolved Oxygen 0.98 1.60 .34 1.20 0.94 1.11 8 (mg/L) 67 65 (04 64 -51 00 79 E ORP (mV) 0.0 0.0 1.8 0.0 0.0 8. 0.0 Turbidity (NTU) Notes: Sampling Information Problems/Observation Analyses Laboratory BTEX Test America TCN Test America PAH Test America NONE Color: Odor: Appearance: 1120 Sample ID: Sample Time: MS/MSD: No Yes Duplicate: No Duplicate ID Dup. Time:

Pylot

		/CP	OUNDWAT	ED CAMPI II	NC LOC	Event			
Sampling Personne	1: RHe	nsc1/K	VOSK	ER SAMPLII	NG LOG	Well ID:	MW-17	,	
Client / Job Number	7	· i per j pe	- Kosk			Date: 9/	12/12		
Weather: Sun						Time In: 16	1211	e Out:	
Well Information						7			
	. (6.1	/6.0.00	MON	Well Tv	pe: Flushmo	ount	Stick-Up		-
Depth to Water (feet)	11 %	(from		7	1	-/-		7	
Total Depth (feet): Length of Water Colu	11.11	(from	IVIP)	Well Ma		Ye	Stainless St	//	PVC
Volume of Water in V			-	-				(No)	
Intake depth for tubin		-9	_	Well Dia	ing Point Ma	-	es ?"	Other: No	_
				VVCII DI	arrictor.	-)	Other.	-
Purging Information		- 1	3		- CO. 37			n Factors	
Purging Method:	Bailer		eristaltic	Grundfo					4" ID 6" ID
Tubing/Bailer Sampling Method:	St. Ste Bailer (VC		yethylene/ eristaltic	Teflon Grundfo	Other:			0.041 0.163	
	655	CS) F	eristaitie	Grundio	s Other:	-	1 gal = 3.7	85 L =3875 m	1 = 0.1337
	800				-				-
October 1912 September 1942 Control								Unit Stabilit	у
Water-Quality Meter	Type:	552					pН	DO Cond	d. ORP
	no								
Total Volume Remove	ed: 2.0	(gal)		Did well go di	y: Yes	(No	± 0.1	± 10% ± 3.0°	% ± 10 mV
						1			
	·								
Parameter:	1	2	3	4	5	5 6		7	9
Time	1705	1710	1715	1726	1725	1730	1735	1746	1745
Volume Purged (mL)									
Rate (mL/min)	120	80	80	80	120	120	120	120	120
Depth to Water (ft.)	6.84	6.84	6.84	6.84	6.87	6.87	7.04	7.04	7.04
pH	7.18	7.60	7.32	8.23	8.08	8.45	8.67	8.72	2.76
	77.		18.16	18.02		400 6		The second	0.000
Temp. (C)	18.46				17.63	10.0.	17.18	16.89	16.89
Conductivity (mS/cm)	1.31	1.34	1.35	1.34	1.35	1.35	1.36	1.33	1.34
Dissolved Oxygen (mg/L)	9.02	9.93	10.66	9.33	3.57	5.30	2.3	1.14	1.22
ORP (mV)	270	259	254	255	257	259	281	255	255
	3.0	1.7		13.9					
Turbidity (NTU)	0,1-	11.7	6.1	1.0.1	5.5	7.2	58	14.2	15.6
Notes:									
Sampling Information	n				s/Observati			- 1	
Analyses	#	Laboratory	0	bstruc	chon	Observ	ect c	et 6 by	25
BTEX		est America				0		9	7-
TCN PAH		est America	-1		. 0	11.0	b	V. 1	,
	2 T	est America	ab	e to	get Bo	aller o	TON!	1.9	A.
			The second		0			/	
Odor: No.									
Sample ID: MW-12	2 Samela T	ma: 175	2.1						
Was .		me: 17 35							
VIO/IVIOD.	(No)								
ouplicate.	No		7	P-201:	28917				
Duplicate IDD	Dup. Time):	- 100	L 901.	10110				
PID = 0.0									

Py lof 2

NYSEG - Cortland Homer 2017 Groundwater Sampling Event GROUNDWATER SAMPLING LOG Sampling Personnel: - R Hensey Well ID: MW-12 Client / Job Number: Date: Weather: Sunny Time In: 1648 Time Out: **Well Information** Well Type: Flushmount Stick-Up Depth to Water (feet): (from MP) PVC Well Material: Total Depth (feet): (from MP) Stainless Steel Length of Water Column (feet): Well Locked: Yes No Volume of Water in Well (gal): Measuring Point Marked: Yes No 2" Well Diameter: Intake depth for tubing (feet) Other: **Purging Information** Conversion Factors gal / ft. of | 1" ID | 2" ID | 4" ID | 6" ID Purging Method: Bailer Peristaltic Grundfos Other: 0.041 0.163 0.653 1.469 St. Steet Teflon Other: Tubing/Bailer Polyethylene 1 gal = 3.785 L =3875 ml = 0.1337 Bailer (VOCs) Sampling Method: Peristaltic Grundfos Other: Pump Start Time Pump Stop Time **Unit Stability** Water-Quality Meter Type: pH DO Cond. ORP Total Volume Removed: (gal) Did well go dry: Yes No ± 0.1 ± 10% ± 3.0% | ± 10 mV Parameter: 3 5 8 9 1755 1750 Time Volume Purged (mL) Rate (mL/min) A Depth to Water (ft.) 8.80 pH 16.81 Temp. (C) Conductivity (mS/cm) Dissolved Oxygen F (mg/L) ORP (mV) Turbidity (NTU) Notes: Sampling Information Problems/Observation Analyses Laboratory 3 Test America Test America 2

BTEX TCN PAH Test America Color: Odor: Appearance: Sample ID: Sample Time: Yes MS/MSD: No Duplicate: No Duplicate ID Dup. Time: PID =

See 1 Pour 1

		GR	OUNDWAT	ER SAMPLI	NG LOG	Event				
Sampling Personne	el: PHe	1581/K	ROSKO	PP		Well ID:	110-	3		
Client / Job Numbe	16					Date: 9/	13/17			
Weather: Cioud	WIC IN C	ANNA				Time In: /2	35 Ti	me Out:	14	25
Well Information						1				
Depth to Water (feet): 4.9.	(from	MP)	Well Ty	/pe: Flushme	ount	Stick-U	p		
Total Depth (feet):	31.67	(from		Well M	aterial:	(Stainless	Steel		PVC
Length of Water Colu	umn (feet):	20.7		Well Lo	ocked:	Ye			10)	
Volume of Water in V		30.86	4.35	Measur	ring Point Ma	rked:	eş .	7	No)	
Intake depth for tubir	ng (feet) ~	-25		Well Di	ameter:	1" (2	.")	Other:		
Purging Information	1			_			Conver	sion Fac	tore	
Purging Method:	Bailer	r (P	eristaltic	Grundfo	s Other:		_	of 1" ID		" ID 6" ID
Tubing/Bailer	St. Ste		yethylene	Teflon			water	0.041	0.163 0	.653 1.46
Sampling Method:	Bailer (VC	DCs) (Po	eristaltic ²)	Grundfo	s Other:		1 gal = 3	3.785 L =	3875 ml	= 0.1337
	240									
Pump Stop Time	426	1-1						Unit S	Stability	
Water-Quality Meter	Type:	5 the	Pha	U52			рН	DO	Cond.	ORP
	-									
Total Volume Remov	red: ~>	(gal)		Did well go d	ry: Yes	(Na	± 0.1	± 10%	± 3.0%	± 10 mV
						0				
	_				,	_				
Parameter:	1	2	2	3 4	1 5	5 6		7	8	9
Time	1250	1255	1300	1305	1310	1315	1320) 13	25	1330
Volume Purged (mL)										
Rate (mL/min)	140	240	240	240	240	240	240	24	0	240
Depth to Water (ft.)	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.	1	5.1
pH	9.56	9.57	9.60	9105	971	9.74	9.70	0 9	25	9 79
	16.08	15.48	15 19	15.0	14.99	14.99	10-11	1 15	10	15.04
Temp. (C)			71.2	13.12	1711	7.7.7.	1 21	1 1		
Conductivity (mS/cm) Dissolved Oxygen	0.760	6.762		0.764	0762	0.762	0.74	20	761	0.76
(mg/L)	5.55	5.28	4.44	3.31	2.14	1.69	1.45	11.	39	1.90
ORP (mV)	87	89	90	88	85	79	75	OC.	1	23
Turbidity (NTU)	0.0	0.0	0.0	0.0	0.0	0.0	1.2	10	1.7	191
Notes:										
Sampling Information	n			Problen	ns/Observat	ion				
Analyses	#	Laboratory	1							
BTEX		est America								
TCN		est America								
PAH Color: 1200F	2 T	est America								
Odor: NINE										
Appearance: CLE	40									
Sample ID: Mul-1	7	ime:								
MS/MSD: Yes	(No)									
Duplicate: Yes	No)									
Duplicate ID —	Dup. Time	-								
	- up. 111110	· · · · · · · · · · · · · · · · · · ·								

Event

				ER SAMPLIN	IG LOG					
Sampling Personnel	: K Hens	RIKK	OSKUFF			Well ID:	1-W1	S		
Client / Job Number:		1.				Date: 9	1311	7		
Weather: (10 vd)	Ly Su	nny				Time In: 13	35 'Ti	me Out	5	
Well Information				-						
Depth to Water (feet):		(from I	MP)	Well Typ	e: Flushmo	ount	Stick-U	P		
Total Depth (feet):		(from I	MP)	Well Ma	terial:	3	Statnless	Steel		PVC
Length of Water Colu	mn (feet):			Well Loc	cked:	Yes	S		No	
Volume of Water in W	ell (gal):			Measuri	ng Point Mar	rked: Y	es		No	
Intake depth for tubing	g (feet)			Well Dia	meter:	1" 2	"	Other	:	
Purging Information			/				Conver	sion Fa	Commence and Comme	
Purging Method:	Bailer		eristattic	Grundfos			gal / ft. d			" ID 6" ID
Tubing/Bailer	St. Stee		vethylene eristaltic	Teflon Grundfos	Other:		water		=3875 ml :	653 1.469
Sampling Method:	Bailer (VO	CS) PE	eristanic	Grandios	Otrier.	-	ji gai).103 L	-3073 1111	- 0.1337
Pump Start Time	_/									
Pump Stop Time	/								Stability	
Water-Quality Meter	ype:						pH	DO	Cond.	ORP
Total Volume Remove	ed: ((gal)	1	Did well go dr	y: Yes	No	± 0.1	± 10%	6 ± 3.0%	± 10 mV
Parameter:	1	2	3	4	5	5 6		7	8	9
Time	1335	1340	1345	1350	1355	1400	HOS	-)<	110	1415
Volume Purged (mL)										
Rate (mL/min)	240	240	240	240	240	240	240) 2	40	S
Depth to Water (ft.)	5.1	5.1	5.1	5.1	5.1	5-1	5.1	5	.1	A
рН	7.45	8.63	9.20	9.42	9.00	9.32	936	9	.39	M
Temp. (C)	15.11	15.13	15.09	15.12	H81	4.90	148	2 1	478	P
Conductivity (mS/cm)	0.772	4777	0:777	0786	0.785	0 785	0.78	55 0.	784	L
Dissolved Oxygen (mg/L)	2.77	3.54	3,96	4.37	4.48	4.50	4.0	4 4	.67	E
ORP (mV)	3	- 1	1	1	4	0	9	1	3	h (2 m-1)
Turbidity (NTU)	25.4	27.1	34.5	37.5	39.7	4.4	6.4	. 0	2.1	
Notes:										
Sampling Informatio	n			Problem	ns/Observat	tion				
Analyses	#	Laboratory								
BTEX		est America								
TCN PAH		est America est America								
Color: NONE	2	CST AITICITOR								
Odor: NONE										
Appearance: CLEA										
Sample ID: HW-V	Sample T	ime: 1413								
MS/MSD: Yes	(No									
Duplicate: Yes	(NO)									
Duplicate ID -	Dup. Time	e: —								

Pg ZoFZ

Event

		GR	OUNDWAT	ER SAMPLIN	IG LOG					
Sampling Personnel: RHCMON / KROSK of					A STATE OF THE STA	Well ID: N	1W 14	R		
	Client / Job Number:					Date: 9/	13/17		100	^
Weather: Suny	M/C10	udy				Time In: 1	15 Tir	ne Out:	120	<u> </u>
Well Information										
Depth to Water (feet)	4.50	(from I	MP)	Well Typ	pe: Flushmo	unt)	Stick-Up)		-
Total Depth (feet):	13.02	_(from l	MP)	Well Ma	terial.		Stainless	Steel	> (PVC)
Length of Water Colu	mn (feet):	8.52	200	Well Loc	cked:	Yes	S	(N	2	
Volume of Water in W	/ell (gal):	1.39		Measuring Point Marked: Yes No						
Intake depth for tubing	g (feet) ~	10	_	Well Dia	meter:	1" (2'		Other:		
Purging Information			7				Convers			
Purging Method:	Bailer		eristattic	Grundfos			gal / ft. o			"ID 6" ID
Tubing/Bailer	St. Stee		yethylene)	Teflon	Other:		water			653 1.469
Sampling Method:	Bailer (VO	Cs) PE	eristaltic)	Grundfos	o Other:		1 gal = 3	.705 L -	30/3/111	- 0.1337
Pump Start Time Pump Stop Time	125						77	200		
	1/1/2	d . t.	En						Stability	1 000
Water-Quality Meter	ype: Ha	nha o	157				рН	DO	Cond.	ORP
	25					<i>a</i>				10.75
Total Volume Remove	ed: (gal)		Did well go dr	y: Yes	(N)	± 0.1	± 10%	± 3.0%	± 10 mV
Parameter:	1	2	3	4	5	6		7	8	9
Time	1130	1135	1140	145	1150	1155	170	s 12	05	0151
Volume Purged (mL)							1671			
Rate (mL/min)	200	200	200	200	200	200	200	1 2	00	S
Depth to Water (ft.)	4.83	4.83	4.83	4.83	4.83	4.83	4.83	3 4.	83	A
pH	7.37	7.37	7.33	7.32	7.30	7.36	7.29	1 /-	29	N
Temp. (C)	17.81	17.96	17.88	17.86	17.82	17.78	17.7	5 /7	:80	P
Conductivity (mS/cm)	2.12	2.21	2.36	2.42	2.47	2.50	2.5	3 2.	55	1
Dissolved Oxygen (mg/L)	0.0	0.6	0.0	0.6	6.0	0.6	0.0	0.	0	P
ORP (mV)	-129	- 78	-58	-49	-44	-40	-35	- 3	3.3	
	44.6	11.0	5.3	3.8	3.9	3.9	0.6	6	6	
Turbidity (NTU)	11.0	77.0	0.5	0.0	0. /	0.7	0.0	-	0	
Notes:										
Sampling Informatio	n			Problem	s/Observati	on				
Analyses	#	Laboratory	1							
BTEX		est America								
TCN		est America								
PAH Color: 100	2 T	est America								
Odor:										
	Cleur		1							
Sample ID: MW-14	Peamola T	imo	1							
V-1	RSample T	mie.								
IVIS/IVISD.	(No)									
Duplicate: Yes	M									
Duplicate ID	Dup. Time	e: —]							

NYSEG - Cortland H	lomer					Event	2017 Gro	undwater Sampli	ng
	2.1		DUNDWATE	ER SAMPLI	NG LOG				
Sampling Personne		nsel				Well ID:	MW-	17	
Client / Job Number						Date:	9/13/	17	
Weather: Su	My					Time In: 9	3) Tir	me Out:	
Well Information	9		1				-		
Depth to Water (feet)	: 6.73	(from N	MP)	Well Ty	pe: Flushmo	unt	Stick-Up		
Total Depth (feet):	10.14	(from N	ИP)	Well Ma	aterial:		Stainless	Steel	(PVO)
Length of Water Colu	ımn (feet):	3.41		Well Lo	cked:	(Ye	s)	No	
Volume of Water in V	Vell (gal): ,	55		Measur	ing Point Mar		es	No	_
ntake depth for tubin	g (feet)	-8	_	Well Dia	ameter:	1" (2		Other:	_
Purging Information	1			_			Convers	sion Factors	
Purging Method:	Bailer	CPE	ristaltic	Grundfo	s Other:			f 1" ID 2" ID	4" ID 6" ID
Tubing/Bailer	St. Stee		ethylene	Teflon			water	0.041 0.163	
Sampling Method:	Bailer (VC	Cs) Pe	ristaltic	Grundfo	s Other:		1 gal = 3	.785 L =3875 m	1 = 0.1337
Pump Start Time	940	A (/ A							
Pump Stop Time	11	040	11					Unit Stabilit	
Water-Quality Meter	Type:	rriba	052				pН	DO Cond	d. ORP
	30							A 50-10-1	
Total Volume Remov	ed:	(gal)		Did well go d	ry: Yes	(NG	±0.1	± 10% ± 3.0°	% ± 10 mV
						1	-		
Parameter:	1	2	3	4	5	6	6	7	8 9
ime	950	955	1000	1005	100	1015	1020	1025	/030
olume Purged (mL)			4.00						
Rate (mL/min)	200	200	200	200	200	200	200	200	200
Depth to Water (ft.)	C76	674	6910	75	6.75	6.75	6.71	675	6.75
	1.60	C 90	101	6.87	672	1) 27	2/10	7.52	752
pH	6.85	6.90	6.71	6.87	6.7.4	7.57	7.70	7.30	7.34
Temp. (C)	16.54	16.48	16.41	16.62	16.40	16.77	166	1 16.41	1687
Conductivity (mS/cm)	6.874	0.824	0.818	0.8/9	0.818	0.817	0.8/6	0.816	0.815
Dissolved Oxygen	0.0	0.0	0.0	0.0	0.0	0.0	6.0	0.0	0.0
(mg/L)	V -		7				- 0		
ORP (mV)	-179	-/83		-185	-187	-211	-216		-218
Turbidity (NTU)	59.4	26.4	8.4	13.0	2.9	8.6	9.6	0.0	0.0
						4			
Notes:									
Sampling Information	on	L		Problem	ns/Observati	ion	1		1
Analyses	#	Laboratory			_	4.1	. 1	1 1 0	0.5
BTEX		est America	+ 6k	ostretu	an e r	- 4 bas	Hu	d to Pa	of Sax
CN		est America	0.			, 0			
PAH Color:	2 T	est America	Balla	ek did	Not t	i+.			
Odor:									
Appearance:									
Sample ID: MUS-1	7 Sample T	ime: /03:	5						
MS/MSD:	(No)								
Ouplicate: Yes	(No)								
Duplicate ID	Dup. Tim	e: ~							
PID = O.O									

Event

	0	GRO	UNDWATE	R SAMPLIN	G LOG	Lvent					
Sampling Personnel: KHCNXI/KRCXOH				P		Well ID:	W-18				
Client / Job Number				Date: 4/15/17 Time In: 935 Time Out:							
Weather: SUNIN	001					Time in: 9	55 Time	Out:			
Well Information			_			/					
Depth to Water (feet):	(0.51	(from M	1P)	Well Typ	e: Flushmo	×	Stick-Up	7			
101011-011111	30.08	(from N	(P)	Well Ma			Stainless Ste		PVC		
Length of Water Colu		24.29		Well Loc	cked:	Yes	3)	No	_		
Volume of Water in W	/ell (gal): 🌡	9.74		Measuri	ng Point Mar		es	(No			
Intake depth for tubing	g (feet)		_	Well Dia	meter:	1" (2') 0	ther:			
Purging Information			7				Conversion				
Purging Method:	Bailer		ristaltie	Grundfos			gal / ft. of 1	" ID 2" ID 4 .041 0.163 0	"ID 6" ID		
Tubing/Bailer Sampling Method:	St. Stee Bailer (VC		ethylene /	Teflon Grundfos	Other:			5 L =3875 ml			
Pump Start Time	140	(00)	- Colonia	Ordinaro			, ,				
Pump Stop Time	/03	5						II-ii Ci-Lilia			
Water-Quality Meter			SZU					Unit Stability DO Cond.	ORP		
water-Quality Meter			000				Pri	DO CONG.	UI.		
	ed: 12.5	/N		Na mall as de	Voc	No	± 0.1 ±	10% ± 3.0%	± 10 mV		
Total Volume Remove	ed: O	(gai)		Did well go dr	y: Yes	(NO	1 10,1 1	10% ± 3.0%) I TO IIIV		
						_					
Parameter:	1	-	3	4	5		7				
Time	950	955	1000	1005	1010	1015	1020	1025	1030		
Volume Purged (mL)											
Rate (mL/min)	120	120	120	120	120	120	120	120	3		
Depth to Water (ft.)	6.53	6.53	6.52	6.53	653	6.53	653	6.53	Α		
pH	8.30	8.30	8.31	8 20	7.64	7.52	7.52	7.51	M		
Temp. (C)	1491	14.85	H82	14.86	H.80	H.79	14.63	14.00	1)		
Conductivity (mS/cm)	0.590	0.589	0.590	0,615	0793	0.815	0.820	0.824	Ĺ		
Dissolved Oxygen	1.58	1.36	1.10	1.09	1.04	1.03	099	0.97	F		
(mg/L)	70	100	26	-109	-120	-126	-131	-136			
ORP (mV)	0.0	617	0.0		0.0	3.9	12	2.7			
Turbidity (NTU)	0.0	0.0	0-0	0.0	0.0	7. 1	10	X.I			
Notes: Sampling Information	<u> </u>			Problem	ns/Observat	ion					
				11001011	15/0500114						
Analyses	#	Laboratory									
BTEX TCN		est America est America									
PAH		Test America									
Color: NONE											
Odor: NONE											
Appearance: () EA		1-00									
Sample ID: MW18 Sample Time: 1030											
MS/MSD: Yes	(Ne										
Duplicate: Yes	(No)										
Duplicate ID	Dup. Tim	e:									

	0	GR	OUNDWAT	ER SAMPLII	NG LOG	Event			
Sampling Personne	1: 6.16		K Resh		10 200	Well ID:	MW-Z8	27	
Client / Job Number			C COON			Date:	9/1	3/17	
Weather:	Sine	1				Time In: 🤗	Time	Out: 9	25
MATERIAL PROPERTY.	V					0	755		
Well Information	3.25		-	Well Tv	pe: Flushmo	unt	Stick-Up		
Depth to Water (feet)	13 15			-	_				(
Total Depth (feet): Length of Water Colu	1201/	(from	MP)	Well Ma	2,115	Ye	Stainless Ste	(No)	(PVC)
Volume of Water in W		.62		-				No	
Intake depth for tubing		2-10	_	Well Dia	ing Point Ma	1" (2	es		-
make depth for tubin	g (leet)		_	Well Dia	arrieter.	' (2)	Other:	-
Purging Information		- /5					Conversion	n Factors	
Purging Method:	Baile		eristaltic	Grundfo			gal / ft. of		4" ID 6" ID
Tubing/Bailer Sampling Method:	St. Ste		eristaltic	Teflon Grundfo	Other:			.041 [0.163] 35 L =3875 m	0.653 1.469
Pump Start Time	805	3037	ristantio	Ordinato	o outer.		ji gai - o.re	0 L -00/0 II	11 - 0.1007
Pump Stop Time	900								
		Holliba	11-5	>				Unit Stabilit	
Water-Quality Meter	Type:	TOCKIOU	0-3				pН	DO Cond	d. ORP
	3	/==1S		D. 1		1	1	400/	
Total Volume Remove	ed: —	(gal)		Did well go di	ry: Yes	No	± 0.1 ±	10% ± 3.0	% ± 10 mV
							1		
Parameter:	1	1 2	3	4	5	6	7		8 9
	810	8/5	820	825	830	835	840	845	850
ime	0100	0/3	840	رده	000	40	010	073	0.50
/olume Purged (mL)									
Rate (mL/min)	200	200	200	200	200	200	Za	200	200
	3:36	3.36	3.36	3.36	3.36	8.3.36	3.36	336	336
Depth to Water (ft.)	,				1 51			1 -0	
pH	6.34	6.39	6.83	6.50	6.01	6.53	6.55	6.58	6.59
Temp. (C)	14.68	15.00	15.03	14.85	15.01	15.02	15.07	15.09	15.13
Conductivity (mS/cm)	3.03	790	2.86	2.66	269	2.71	2.57	2.44	7.117
Dissolved Oxygen		10	0 .		0.0			20	0.6
(mg/L)	1.25	1.0	066	0.0	0.0	0.0	0.0	0.0	0.0
ORP (mV)	-170	-185	-193	-192	-/83	-666	-167	-167	-167
Turbidity (NTU)	301	221	82.6	0.0	853	826	41	216	20.1
rurbidity (NTO)	00,	C 0/	00.10	0.0	000	000	16.1	21.1	0.1
Notes:				D. H.	101				1
Sampling Informatio	n			Problem	ns/Observat	ion			
Analyses	#	Laboratory		900 S	Chille				
BTEX TCN		Test America Test America		100 a	empe				
PAH		Test America							
Color: Now									
Odor: Nac	Server Comment								
Appearance:	roun	0.							
Sample ID: MW-2	7	Time: 900							
MS/MSD: Yes	(No)								
Duplicate: Yes	(No)	-							
Duplicate ID —	Dup. Tim	ie: —							
PID =			Lie Control						

Duplicate:

Duplicate ID

PID = (1.()

No

Dup. Time:

2017 Groundwater Sampling

Page 2082

GROUNDWATE	R SAMPLIN	G LOG						
			147 II III I I	() Oxc				
Sampling Personnel: K HKNSK) K KOSKOTT	Well ID: MW-30S							
Weather: Swan	Date: 9/12/17 Time In: 1435 Time Out:							
Weather: Sunny			111116 111. 19	32 11111	e Out.			
Well Information			7					
Depth to Water (feet): 5.99 (from MP)	Well Ty	e: Flushmo	unt	Stick-Up		1		
Total Depth (feet): 11.18 (from MP)	Well Ma	terial:		Stainless St	teel	(PVC)		
Length of Water Column (feet): 5. 74	Well Loc	ked:	(Ye	5)	No			
Volume of Water in Well (gal): 0 - 936	Measurin	ng Point Mar	ked:	es	(No)			
Intake depth for tubing (feet) ~ 9	Well Dia	meter:	1" (2)	Other:	_		
Displace Information	_			Conversi	on Factors			
Purging Information Purging Method: Bailer Peristaltic	Grundfos	Other:			1" ID 2" ID	4" ID 6" ID		
Tubing/Bailer St. Steel Polyethylene	Teflon	Other:			0.041 0.163			
Sampling Method: Bailer (VOCs) Peristaltic	Grundfos	Other:		1 gal = 3.7	'85 L =3875 n	nl = 0.1337		
Pump Start Time 1440								
Pump Stop Time /665					Unit Stabilit	v		
Water-Quality Meter Type: Happiba USZ				рН	DO Con			
7 114 105								
Total Volume Removed: (gal) Di	d well go dr	v: Yes	No	±0.1	± 10% ± 3.0	% ± 10 mV		
Total Volume Nemoved. (gai)	d Well go di	y. 100	C	20.1	1070 10.0	70 1 = 10 1110		
Parameter: 1 2 3	4	5	6		7	8 9		
	1500	1505	1510	1515	1520	1525		
Time 1445 H50 H55	1500	1)-3	1210	1)1)	1520	1222		
Volume Purged (mL)								
Rate (mL/min) 150 150*150	150	150	150	150	150	7/50		
Depth to Water (ft.) (0.37 (6.71 (6.85)	6.97	(0.95	6.96	696	696	6.98		
pH 8.17 8.64 7.18	7.19	7.97	7.21	7.22	7.22	7.23		
Temp. (C) 1950 20.39 20.44	20.28	20.41	20.40	20.40	20.30	20.09		
Conductivity (mS/cm) 3.35 3.25 3.19	3.27	3.25	3.19	3.14	3.09	3.64		
Dissolved Oxygen	105	103	155	9 . 1	1.	1.13		
(mg/L) 1.31 1.08 1.07	1.02	1.00	1.05	1.07	1.11	161		
ORP (mV) 99 87 82	74	54	35	25	10	3		
Turbidity (NTU) 300 154 118	95.5	82	80.1	92.1	94.3	99.0		
Lowest				1				
0 .0								
Notes: XXXY Sampling Information	Problem	s/Observati	ion		1			
Analyses # Laboratory BTEX 3 Test America	·	24						
TCN 1 Test America	y Tul	10						
PAH 2 Test America								
Color: Odor:								
Appearance: Brow He								
Sample ID: MW30 S Sample Time: /Coo								
Beprioate. The								
Duplicate ID Dup. Time:								

Pg 1 of Z

BTEX Test America TCN Test America PAH Test America Color: brownish NONE Appearance: BROWNISH HUE Sample ID: MW - 305 Sample Time: 1 600 Yes MS/MSD: No

Laboratory

Dup. Time: Duplicate ID PID =

Notes:

Analyses

Duplicate:

Sampling Information

Problems/Observation

ATTACHMENT B

Monitoring Well Decommissioning Logs

(= 0 12 Fem.	m68 3, 7 Well I.D.: MW 27 3
Site Filamer - B	Driller: D. G. Richmone
Site Location: Homer W Drilling Co.: Arl AD 5	Inspector: Innex Whaten.
Drining Co 771 CV: 2	Date: 5/23/17

DECOMMISSIONING DA	TA		ELL SCHEMATI	IC*
(Fill in all that apply)		Depth (feet)		
OVERDRILLING nterval Drilled	1		3//	grovi
Drilling Method(s)	1	_	PUCAIST	1
Borehole Dia. (in.)				1 1
Cemporary Casing Installed? (y/n)	V		- '	
Depth temporary casing installed			→ ‡	
Casing type/dia. (in.)		-		
Method of installing			<u> </u>	
CASING PULLING		10	25/270	
Method employed	1/	-10	- [
Casing retrieved (feet)	1	-		
Casing type/dia. (in)]	
CASING PERFORATING	2/ 14 0	15 -	-	
	1/8 3 Tes) Red		-	
Number of perforations/foot	17/8			1
Size of perforations	BeTom	- 1		
Interval perforated	56 110			
GROUTING		-	-	
Interval grouted (FBLS)	15		-	
# of batches prepared				
For each batch record:	8			
Quantity of water used (gal.) Quantity of cement used (lbs.)	94			
Cement type	porting	-		
Quantity of bentonite used (lbs.)	4			
Quantity of calcium chloride used (lbs.)	0			
Volume of grout prepared (gal.)	9,5			
Volume of grout used (gal.)	9,5			

COMMENTS: Knock evi Bettom et Wall
gray Bottom To Top Vozing Tremit
pipe. Kymun Svitale Langle Tronk
and Top 2' of pul laszing

* Sketch in all relevant decommissioning data, including: interval overdrilled, interval grouted, casing left in hole, well stickup, etc.

Arc ADIS

Department Representative 3 C3 2 457

Site Name: CorTland - Homer Former mbP 3177. Well I.D.: mW 235.

Site Location: Homer NX.

Driller: Dong Richard.

Drilling Co.: Are AD15.

Date: 5-23-17

DECOMMISSIONING (Fill in all that apply		Depth	VELL SCHEMA	
(I III III all man app.	, ,	(feet)		
OVERDRILLING Interval Drilled Drilling Method(s)			PUII	PV2
Borehole Dia. (in.) Temporary Casing Installed? (y/n) Depth temporary casing installed		_5_	91007	KIST
Casing type/dia. (in.) Method of installing			= 1	Ksin
CASING PULLING Method employed Casing retrieved (feet)	PU11 4'	10	=	
Casing type/dia. (in)	2"pvc		= 1 :	
CASING PERFORATING Equipment used	STETI ROBS	<u>15</u>		
Number of perforations/foot Size of perforations Interval perforated	17/8" Bottom		3	
GROUTING (FPLS)	14.92		=	
Interval grouted (FBLS) # of batches prepared For each batch record:	1		3	
Quantity of water used (gal.) Quantity of cement used (lbs.)	94			
Cement type Quantity of bentonite used (lbs.)	POTTIAND!			
Quantity of calcium chloride used (lbs.) Volume of grout prepared (gal.) Volume of grout used (gal.)	9.5		\exists	

COMMENTS: Knock OUT BUTTOM of Was /
gray Bottem To Top pull Top
51 of IVE RISHY OUT

ArlaD,3

Devs 133 fizh mand CWD

Department/Representative #3032457

^{*} Sketch in all relevant decommissioning data, including: interval overdrilled, interval grouted, casing left in hole, well stickup, etc.

Site Name: LorTland-Hamar Former mbP 6.72 Well I.D.: MW 29 D

Site Location: Homar N-Y.

Drilling Co.: AraADis inc

Date: 5-23-17

WELL SCHEMATIC* DECOMMISSIONING DATA Depth (Fill in all that apply) (feet) 0 OVERDRILLING grovi Interval Drilled Drilling Method(s) Borehole Dia. (in.) Temporary Casing Installed? (y/n) 293179 Depth temporary casing installed Casing type/dia. (in.) Method of installing CASING PULLING Method employed Casing retrieved (feet) Casing type/dia. (in) CASING PERFORATING Equipment used Number of perforations/foot Size of perforations Interval perforated GROUTING Interval grouted (FBLS) # of batches prepared For each batch record: PVL Quantity of water used (gal.) 16 3105 Quantity of cement used (lbs.) 31/270 PUTTINDO Cement type Quantity of bentonite used (lbs.) Quantity of calcium chloride used (lbs.) Volume of grout prepared (gal.) Volume of grout used (gal.)

COMMENTS: Growt Was Buttom TU

TUP VS=1119 1" Tramie pipe

PVII TOP 2' of pVE Casing

* Sketch in all relevant decommissioning data, including: interval overdrilled, interval grouted, casing left in hole, well stickup, etc.

AYLADI3

Deus 133 Kichman (CWD)
Department Representative
#3032457

DECOMMISSIONING DATA (Fill in all that apply) OVERDRILLING Interval Drilled Drilling Method(s) Borehole Dia. (in.) Temporary Casing Installed? (y/n)	Well I.D.: mh 30 D Oriller: 1) G. Rich ma Inspector: Jance whalen. Date: 5/23/1): WELL SCHEMATIC* Depth (feet) O PUI/ TOP 4'cf PUGGSING
ite Name: Coff Is not Homer France Williams ite Location: Homer Williams I	Oriller: 1) G. Richmann Sinspector: Janee Whalen. Date: 5/23/17: WELL SCHEMATIC* Depth (feet) O O O O O O O O O O O O O
DECOMMISSIONING DATA (Fill in all that apply) OVERDRILLING Interval Drilled Drilling Method(s) Borehole Dia. (in.) Temporary Casing Installed? (y/n)	Date: 5/23/17 WELL SCHEMATIC* Depth (feet) O O O O O O O O O O O O O
DECOMMISSIONING DATA (Fill in all that apply) OVERDRILLING Interval Drilled Orilling Method(s) Borehole Dia. (in.) Temporary Casing Installed? (y/n)	Date: 5/23/17 WELL SCHEMATIC* Depth (feet) O O O O O O O O O O O O O
(Fill in all that apply) OVERDRILLING Interval Drilled Orilling Method(s) Borehole Dia. (in.) Femporary Casing Installed? (y/n)	Depth (feet) Grov
(Fill in all that apply) OVERDRILLING Interval Drilled Orilling Method(s) Borehole Dia. (in.) Comporary Casing Installed? (y/n)	Depth (feet) Grov
(Fill in all that apply) OVERDRILLING Interval Drilled Orilling Method(s) Borehole Dia. (in.) Comporary Casing Installed? (y/n)	(feet) O O O O O O O O O O O O O
nterval Drilled Drilling Method(s) Borehole Dia. (in.) Semporary Casing Installed? (y/n)	- Jour Grov
nterval Drilled Orilling Method(s) Borehole Dia. (in.) Comporary Casing Installed? (y/n)	- PUII GIOV - TOP 4'ct - PULLASING
Orilling Method(s) Borehole Dia. (in.) Femporary Casing Installed? (y/n)	- TOP 4 Ct - PULLOSING
Borehole Dia. (in.) Semporary Casing Installed? (y/n)	-PULLASING
Cemporary Casing Installed? (y/n)	7/
	-
Depth temporary casing installed]
Casing type/dia. (in.)	
Method of installing	-
CASING PULLING	-
Method employed	
Casing retrieved (feet)	
Casing type/dia. (in)	7 111
CASING PERFORATING	-
Fauipment used	
Number of perforations/foot	7 111
Size of perforations	3 1 1
Interval perforated	7 2)' -
GROUTING	~ 7
Interval grouted (FBLS)	
# of batches prepared	70000
For each batch record:	Serzen
Quantity of water used (gal.) Quantity of cement used (lbs.)	
Cement type	- 1/1
Quantity of hentonite used (lbs.)	
Quantity of calcium chloride used (lbs.)	
Volume of grout prepared (gal.)	34.0]
Volume of grout used (gal.)	* Sketch in all relevant decommissioning data, including:

Site Name: CorTisno Burnes Former mtP:	Well I.D.: My 31
Site Location: Heman No.4.	Driller: DGRILLIM
1 1 1 2 : .	Inspector: /snez who lan
Drilling Co.: Arc AD, 5	Date: 5/23/17
	Date. O / VI S / /

DECOMMISSIONING I (Fill in all that apply		Depth (feet)	WELL SCHEMAT	
OVERDRILLING Interval Drilled Drilling Method(s) Borehole Dia. (in.) Temporary Casing Installed? (y/n) Depth temporary casing installed Casing type/dia. (in.) Method of installing		5	2"PVC R=mov= ToP 2"	grovi
CASING PULLING Method employed Casing retrieved (feet) Casing type/dia. (in)		10		
CASING PERFORATING Equipment used Number of perforations/foot Size of perforations Interval perforated	57-20) Rod. 17/8" BOTTOM	12		
GROUTING Interval grouted (FBLS) # of batches prepared For each batch record:	15.0			
Quantity of water used (gal.) Quantity of cement used (lbs.) Cement type Quantity of bentonite used (lbs.) Quantity of calcium chloride used (lbs.) Volume of grout prepared (gal.) Volume of grout used (gal.)	9.0 22) 94 portland 4 0 9.5			

COMMENTS: Knock out BUTTOM, grant BUTTO.	** Sketch in all relevant decommissioning data, including:
TO TUP, Ramera Surface Complition	interval overdrilled, interval grouted, casing left in hole, well stickup, etc.
RESTORE WITH ADDIST	

Are AD15
Drilling Contractor

Days R12hm (W)
Department Representative

343 2457

Site Name: NU EG. COTTROL Home	
TO BUT ALL	W. 1
Drilling Co.: ACAAN	Driller: D. Richmond
	Inspector: T. O'BOUCKE
	Date: 7-13-13
DECOMMISSIONING DATA	
(Fill in all that apply)	WELL SCHEMATIC*
OVERDRILLING	Deptn
Interval Drilled	(feet)
Drilling Method(s)	7 0000 045
Borehole Dia (in)	14'2" 90
Temporary Casing Installed (/)	APUL PULL
Dopin temporary casing installed	RIST
Casing type/dia. (in)	
Method of installing	
CASING PULLING	
Method employed	
Casing retrieved (feet)	
Casing type/dia. (in)	
8 9 par atts. (III)	
ASING PERFORATING	
quipment used	
lumber of perforations/foot	
ize of perforations	
iterval perforated	
ROUTING	
terval grouted (FRI S)	
of Datches prepared	
r each batch record:	
antity of water used (col)	
annity of cement used (lbs.)	
ment type	
antity of bentonite used (lbs.)	
antity of calcium chloride used (lbs.) ume of grout prepared (gal.)	
ume of grout used (gal.)	1 - 19 1
9	13.40
MMENTS: TOWNY COUNT BORONTO TO	
11 4"pro-622 on 3 Transmito Top	* Sketch in all relevant decommissioning data, including:
11 Rise 6 17 3 TOP 4' 0+ 2	interval overdrilled, interval grouted, casing left in hole,
DIECIEL BALKFILL WITH NATIV	well stickup, etc.
Was in All and	
Contractor of Temper CWD.	

3632457

Department Representative

Site Name: N 95 FG. COST III	and Homer	Well I.D.:	mw-26
Bit Doublott. HODY	4.	Driller:	D. Richmon
Drilling Co.: Ar CADIS	.11	Inspector:	TERMON
		Date:	Chours
		Date.	-/3-17
DECOMMISSION	NG DATA	W	ELL SCHEMATIC*
(Fill in all that a	apply)	Depth	-23 SCHEMATIC
OVERDRILLING		(feet)	PUII 1-2
Interval Drilled			7
Drilling Method(s)			PIII/ = CO
Borehole Dia. (in.)			211 PUL \$ 910
Temporary Casing Installed? (v/p)		16.7	Pipy 3
Depin temporary casing installed			3
Casing type/dia. (in.)			
Method of installing			1/2
•		_	
ASING PULLING		-	
lethod employed		-	
asing retrieved (feet)			
asing type/dia. (in)		2	
A CIDIO PEDEGO (-	
ASING PERFORATING quipment used			
Justinent used			
umber of perforations/foot ze of perforations		-	
terval perforated			
tor var periorated			
ROUTING			
erval grouted (FBLS)			
f batches prepared	2		
r each batch record:	<u> </u>		
antity of water used (gal.)	10		
antity of cement used (lbs.)	199		
nent type	TYPEI		
antity of bentonite used (lbs.)	10	-	
untity of calcium chloride used (lbs.)		3-4	
ume of grout prepared (pal)	240	-	
ume of grout used (gal.)	22.0	60.67	
AATSITO 4		<u> </u>	
MMENTS: Tremie grows fort	Dom TO TOU.	* Sketch in all relevant	annomical and a second
LE HOOMYC OUT cond		interval overdeittes :	lecommissioning data, including: erval grouted, casing left in hole,
2 1 31 21 0 0 0	1 4 4 11		ervar grouted, casing left in hole.
F bil of PUC NIST	Barretill	well stickup, etc.	-

3032457

Department Representative

Site Name: Former m&P 5	iTe	Well I.I) ha 1	1-33	
Site Location: Colland Homes N.4		Driller:			
Drilling Co.: AYCADID INC	-/ //-/	Inspecto	-	hman	01
		Date:		MILLE	T
		Date:	9-25	-17	
DECOMMISSIONING D (Fill in all that apply) OVERDRILLING		Depth (feet)	WELL SO	HEMATIC	*
Interval Drilled Drilling Method(s) Borehole Dia. (in.) Temporary Casing Installed? (y/n)		3,0		E FILL	W17 n
Depth temporary casing installed Casing type/dia. (in.) Method of installing		-			
CASING PULLING Method employed Casing retrieved (feet) Casing type/dia. (in)		-		4	
CASING PERFORATING Equipment used Number of perforations/foot lize of perforations Interval perforated				THE THE PERSON NAMED IN TH	
of batches prepared or each batch record: uantity of water used (gal.)	35.0'	-		7	
cuantity of cement used (lbs.) ement type uantity of bentonite used (lbs.) uantity of calcium chloride used (lbs.)	GY STrand C 9.0			7	

Departing Representative #3032457

Site Name: Former met Site	Well I.D.: MW- 82
Site Location: CosTland Hames 11	Driller: D. By harand
Drilling Co.: APAADIS 112	Inspector: Je miller
7.7.6	Date: 9-25-13
DECOVO (IGGIOVA) C +	7.81.17
DECOMMISSIONING DATA (Fill in all that apply)	WELL SCHEMATIC*
OVERDRILLING Interval Drilled Drilling Method(s) Borehole Dia. (in.) Temporary Casing Installed? (y/n) Depth temporary casing installed Casing type/dia. (in.) Method of installing	(feet) Remove to 4.0' CF BVI
CASING PULLING Method employed Casing retrieved (feet) Casing type/dia. (in)	
CASING PERFORATING Equipment used Number of perforations/foot Size of perforations Interval perforated	
interval grouted (FBLS) of batches prepared or each batch record: Quantity of water used (gal.) Quantity of cement used (lbs.) Cement type Quantity of bentonite used (lbs.) Quantity of calcium chloride used (lbs.) Volume of grout prepared (gal.)	36.5
TOMMENTS: GROWT BOTTOM TO TOP VOICE THE PIPE BY TOURISE FIVE TOWNST	* Sketch in all relevant decommissioning data, including: interval overdrilled, interval grouted, casing left in hole, well stickup, etc.

Dougles Brinner (W1)
Departitlege Representative #303 2457

Site Name: Former m61 51	Te Well I.D.: mul-32
Site Location: Homer Corriginal	NY Driller: 1 Rich many
Drilling Co.: AFRADIS	Inspector: J muller
	Date: 4-25-17
DECOMMISSIONING DA	ATA WELL SCHEMATIC*
(Fill in all that apply) OVERDRILLING Interval Drilled	
Drilling Method(s) Borehole Dia. (in.) Temporary Casing Installed? (y/n) Depth temporary casing installed Casing type/dia. (in.)	
Method of installing CASING PULLING Method employed Casing retrieved (feet) Casing type/dia. (in)	
CASING PERFORATING Equipment used Number of perforations/foot Size of perforations Interval perforated	
GROUTING Interval grouted (FBLS) of batches prepared For each batch record: Quantity of water used (gal.)	
Quantity of cement used (lbs.) Cement type Quantity of bentonite used (lbs.) Quantity of calcium chloride used (lbs.) /olume of grout prepared (gal.) /olume of grout used (gal.)	
COMMENTS: Armadio used 6P3. There well about be, B	* Sketch in all relevant decommissioning data, including: interval overdrilled, interval grouted, casing left in hole, well stickup, etc.

Department Representative #303215