

Justin Starr, P.G.
New York State Department of Environmental Conservation
Division of Environmental Remediation
625 Broadway, 11th Floor
Albany, NY 12233-7014

Date: January 21, 2026
Our Ref: 30229726
Subject: **Response to Comments – 2025 Soil Vapor Investigation Work Plan**
NYSEG Cortland-Homer Former MGP Site
NYSDEC Site No. 7-12-005

Arcadis of New York, Inc.
One Lincoln Center
110 West Fayette Street
Suite 300
Syracuse, NY 13202
United States
Phone: 315 446 9120
Fax: 315 449 0017
www.arcadis.com

Dear Mr. Starr,

On behalf of the New York State Electric & Gas Corporation (NYSEG), please find enclosed the revised 2025 Soil Vapor Investigation (SVI) Work Plan (revised January 2026) for the Cortland-Homer Former Manufactured Gas Plant (MGP) site, Operable Unit No. 1 (OU-1), located in Homer, New York (the site).

The 2025 SVI Work Plan for the Cortland-Homer Former MGP site was submitted to the New York State Department of Environmental Conservation (NYSDEC) on August 20, 2025. The NYSDEC provided comments to the 2025 SVI Work Plan in a letter to NYSEG dated September 9, 2025. NYSEG submitted a revised SVI Work Plan on November 6, 2025 and NYSDEC provided additional comments via conference call between Arcadis, NYSEG, NYSDEC, and New York State Department of Health (NYSDOH) on January 12, 2026. The enclosed SVI Work Plan has been revised to address each NYSDEC comment. For ease of presentation, each NYSDEC comment from the September 9, 2025, letter is presented below in bold, followed by NYSEG's response.

Comments and Responses

Comment 1, Section 1.2, Site Description, first paragraph: It is our understanding that the railroad line portion mentioned in this section is part of OU-2 and not OU-1 as it is currently written. Please confirm and revise, as needed.

Response 1: Section 1.2 has been revised to more accurately describe parcels within OU-1 and OU-2.

Comment 2, Section 1.2, Site Description, first paragraph: This section mentions the original I.D. Booth being situated over two former gasholders and the purifying house “which are buried below the surface”. Please clarify whether these structures still exist and what, if any, structures exist beneath the current building. Please revise the quoted sentence, as needed.

Response 2: Additional text has been added to Section 1.2, Paragraph 3 to indicate that the former MGP structure foundations beneath the original ID Booth building were removed or mixed with in-situ soil solidification

Justin Starr, P.G.
New York State Department of Environmental Conservation
January 21, 2026

columns in 2012/2013 as part of the remedy. Former MGP structures beneath the current ID Booth building are already noted.

Comment 3, Section 3.0 Schedule and Reporting: Please include submission of the electronic data deliverable (EDD) to the DEC EQuIS database as part of the reporting requirements listed in this section

Response 3: Submission of an EQuIS Electronic Data Deliverable (EDD) has been added to Section 3.0.

Comment 4, Table 4: Please revise to report the entire TO-15 list in the SVI Report. Analysis and discussion of the results in the SVI Report should provide context to MGP versus non-MGP compounds, but reporting itself should contain the entire TO-15 list to allow for better comparisons to the full NYSDOH Soil Vapor Intrusion (SVI) decision matrices and to include those compounds that may be partially related to coal tar such as the trimethylbenzenes.

Response 4: Contaminants of concern for the site were derived from site specific data collected during prior investigative efforts. As stated in the Amended Record of Decision (ROD, NYSDEC 2010) the VOCs of concern include benzene, toluene, ethylbenzene and xylene and SVOCs of concern include the PAHs listed. In accordance with Section 2.9.1 of the NYSDOH Soil Vapor Investigation Guidance a site-specific analyte list should include volatile chemicals that: 1) have been previously detected at the site, 2) are known or demonstrated constituents of the contamination in question, 3) or, expected degradation products of chemicals mentioned in 1) or 2). Using this guidance, NYSEG revised Table 4 to include select TO-15 compounds that were detected in site media samples collected during the Remedial Investigation and that are listed in the NYSDOH SVI Decision Matrices A through F.

Please contact Mark Castro at 203.233.1245 or mark_castro@avangrid.com with any questions or comments.

Sincerely,
Arcadis of New York, Inc.

Joe Bistrovich
Senior Environmental Engineer

Email: joe.bistrovich@arcadis.com

Direct Line: 315.671.9697

Mobile: 315.427.4585

CC. Mark Castro, PMP, NYSEG
John C. Brussel, P.E., Arcadis

Enclosure:

2025 SVI Work Plan – Revised

New York State Electric & Gas Corporation

Soil Vapor Investigation Work Plan

**NYSEG Cortland-Homer Former MGP Site
Homer, New York**

NYSDEC Site #7-12-005

August 2025 (Revised January 2026)

Soil Vapor Investigation Work Plan

NYSEG Cortland-Homer Former MGP Site
Homer, New York

NYSDEC Site #7-12-005

August 2025 (Revised January 2026)

Prepared By:
Arcadis of New York Inc.
One Lincoln Center, 110 West Fayette Street
Suite 300
Syracuse, NY 13202
United States
Phone: 315 446 9120
Fax: 315 449 0017

Prepared For:
NYSEG
18 Link Drive
Binghamton, New York 13904

Our Ref:
30291873

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Contents

Acronyms and Abbreviations.....	iv
1 Introduction.....	1
1.1 Plan Organization	1
1.2 Site Description	1
1.3 Site Geology and Hydrogeology	2
1.4 Investigation Objectives	3
1.5 Previous Investigations	3
2 Scope of Investigation	5
2.1 Health and Safety.....	5
2.2 Building Reconnaissance and Product Inventory	5
2.3 Utility Clearance.....	6
2.4 Sub-Slab and Indoor Air Sampling Points	6
2.5 Tracer Testing	6
2.6 Sub-Slab, Soil Vapor, Indoor Air, and Ambient Air Sampling	7
2.7 Sample Point Abandonment.....	7
2.8 Post Sampling Survey.....	7
2.9 Field Documentation	8
2.10 Sample Analysis	8
2.11 Quality Assurance/Quality Control	8
2.12 Data Validation.....	9
3 Schedule and Reporting	10
4 References	11

Tables

- Table 1 Remedial Investigation Indoor Air Sample Analytical Results**
- Table 2 Remedial Investigation Sub-Slab Soil Vapor Sample Analytical Results**
- Table 3 Soil Vapor/Indoor Air Sampling Locations**
- Table 4 Soil Vapor/Indoor Air Constituent List**

Figures

- Figure 1 Site Location Map**
- Figure 2 Site Layout and Proposed Sampling Locations**
- Figure 3 Historical and PDI Sample Locations**
- Figure 4 Soil Vapor Sampling Design**

Attachments

- Attachment A NYSDEC Structure Sampling Questionnaire and Building Inventory Form**
- Attachment B Arcadis Technical Guidance and Information Documents**
- Attachment C Remedial Investigation Report Indoor Air Survey Results Figure**

Acronyms and Abbreviations

Arcadis	Arcadis of New York, Inc.
bgs	below ground surface
ELAP	Environmental Laboratory Approval Program
IA	Indoor air
ID Booth	Irving D. Booth, Inc.
in. Hg	inches of mercury (vacuum)
ISS	in-situ soil solidification
MGP	Manufactured gas plant
NYSEG	New York State Electric & Gas Corporation
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
OU	Operable unit
PAH	polycyclic aromatic hydrocarbon
PID	photoionization detector
ppm	parts per million
PVC	polyvinyl chloride
ROD	Record of Decision
SS	Sub-slab
SVI	Soil Vapor Investigation
TGI	Technical guidance and information
$\mu\text{g}/\text{m}^3$	microgram per cubic meter
USEPA	United States Environmental Protection Agency
VI	vapor intrusion
VOCs	volatile organic compounds

1 Introduction

On behalf of the New York State Electric & Gas Corporation (NYSEG), Arcadis has prepared this Soil Vapor Investigation Work Plan (SVI Work Plan) for an additional vapor intrusion (VI) investigation to be performed at the remaining portion of the Irving D. Booth, Inc. (ID Booth) building located at 216 South Main Street, Homer, New York. This building is immediately adjacent to and north of Operable Unit 1 (OU-1) of the NYSEG Cortland-Homer former manufacturing gas plant (MGP) site (the “Site”) located in Homer, New York (New York State Department of Environmental Conservation [NYSDEC] Site No. 7-12-005).

This SVI Work Plan has been prepared in accordance with the Amended and Restated Multi-Site Order on Consent (ARMSCO) (#DO-0002-9309), executed December 5, 2015 and the Record of Decision (ROD) Amendment for OU-1 (NYSDEC 2010). The ROD Amendment requires that a VI evaluation be implemented in the remaining portion of the ID Booth building, after remedial activities at the site are completed.

The remainder of this SVI Work Plan provides relevant site background information and the specific objectives and scope of the investigation.

1.1 Plan Organization

This SVI Work Plan has been organized into the following sections:

Section	Purpose
Section 1 – Introduction	Presents background information relevant to the proposed soil vapor investigation.
Section 2 – Scope of Investigation	Presents a detailed description of proposed soil vapor investigation activities.
Section 3 – Schedule and Reporting	Presents the anticipated schedule for implementing proposed soil vapor investigation activities and a description of the report to be prepared following completion of the soil vapor investigation field activities.

1.2 Site Description

The NYSEG Cortland Homer Former MGP Site (Site) is broken into two operable units: OU-1 (former MGP plant) and OU-2 (off-site areas). OU-1 is located in the Village of Homer, NY on portions of two adjacent parcels, which are located between United States (US) Route 11 to the parcels' east and the New York, Susquehanna and Western Railway railroad parcel to the west¹. OU-2 Upland is located in the Village of Homer between the section

¹ A portion of an additional off-site ancillary parcel that is part of OU-2, is located adjacent to the OU-1 western boundary. This off-site parcel is owned by the Cortland County Industrial Development Agency and is occupied by the New York, Susquehanna & Western Railway. ISS treatment was performed on the 0.1-acre portion of this parcel, which is detailed in the Cortland-Homer Former MGP Site Construction Completion Report (Arcadis 2021).

of US Route 11 adjacent to OU-1 and the West Branch of the Tioughnioga River. In-river remedial area OU2 Area 1 is located in the Village of Homer in the West Branch of the Tioughnioga River immediately east of OU-2 Upland. OU-2 Area 1 starts approximately 150 feet north of OU-2 Upland and extends southwards downstream in the West Branch of the Tioughnioga River for a total length of approximately 1,550 feet. In-river remedial area OU2 Area 2 is located approximately 2,300 feet downstream (south) of OU2 Area 1 along a large bend in the West Branch Tioughnioga River in Cortland NY.

The Site is located at 218 South Main Street, in the Village of Homer, Cortland County, New York (see Figure 1), just north of the City of Cortland. The majority of OU-1 is owned by NYSEG with a small northern portion owned by ID Booth. The NYSEG-owned portion of OU-1 consists of a vacant land parcel identified as 76.57-01-05.200 on the Cortland County tax map. The ID Booth portion of OU-1 consists of vacant land south of a single story 10,000 square feet commercial building identified as 76.57-01-08.100 on the Cortland County tax map.

The original ID Booth building was situated over the remains of the former MGP structure foundations, including two former gasholders and a purifying house, which were buried below the surface. Those subsurface remains were removed or mixed with in-situ soil solidification columns as part of the remedy implemented in 2012 and 2013. The remaining portion of the ID Booth (i.e., the northern one-third of the building, following removal of the rest of the building in preparation for soil remediation) extends over part of the purifying house. Remedial activities at OU-1 were completed from July 2012 to February 2013 and included excavation and in-situ soil solidification (ISS) of impacted soil. Details of the OU-1 remediation are presented in the Cortland-Homer Former MGP Site Construction Completion Report (Arcadis 2021). OU-2 sediment remedial activities were completed from April 2021 to November 2022 and are detailed in the Draft NYSEG Cortland Homer Former MGP Site Final Engineering Report (GEI 2023).

1.3 Site Geology and Hydrogeology

The following description of site geologic conditions is based on the description presented in the March 2005 Record of Decision (ROD) for OU-2 (NYSDEC 2005). Site features and boring locations are shown on Figures 2 and 3.

The Site is located in the Homer Preble Valley. This is within the Homer Preble Sole Source Aquifer. Regional geology is reported to consist of stratified drift and glacial outwash deposits that are underlain by bedrock composed primarily of shale. Collectively the drift and outwash deposits can be up to 240 feet thick.

In the Homer Preble Valley, the base of the aquifer is a lacustrine clay that is present at a depth of approximately 60 feet. Geological cross sections of the valley prepared by the United States Geological Survey indicate that this deposit may be over 100 feet thick in this area. South of the Site, in the City of Cortland, there is a confined outwash aquifer, as well as the surficial outwash aquifer. Wells drilled in the outwash aquifer in the Homer Preble Aquifer have been reported to have yields of 1,000 gallons per minute.

The Site is underlain (in descending order) by an anthropogenic fill layer, a glacial outwash sand, and a laminated gray silt and clay unit that constitutes a confining layer. The fill layer ranges from 6 inches to 10 feet onsite, and the outwash sand varies in thickness from 20 to 40 feet. The laminated gray silt was found to be continuous beneath the Site.

Groundwater at the Site is encountered at approximately 5 feet bgs, in the glacial outwash deposits. A seasonal fluctuation of 1 to 1.5 feet has been observed. The groundwater flows across the Site in a west-to-east/southeast

direction. The flow is primarily horizontal, consistent with the stratified nature of the aquifer. The groundwater then discharges into the West Branch of the Tioughnioga River.

Site monitoring wells on the east bank of the Tioughnioga River, across the river from the Site, confirm the river is a discharge boundary as groundwater flows towards the river from both sides. Similarly, deep wells at the Site have identified a slight upward gradient near the river.

1.4 Investigation Objectives

This SVI Work Plan has been developed in accordance with the New York State Department of Health (NYSDOH) Guidance for Evaluating Vapor Intrusion in the State of New York (NYSDOH 2006, 2024) and subsequent updates through February 2024.

Based on the identification of MGP related volatile organic compounds (VOCs) in historic soil, groundwater, and air samples at the Site, the SVI activities proposed in this SVI Work Plan will be performed to evaluate the potential presence, concentration, and distribution of MGP related VOCs in the soil vapor at the site and the potential for vapor intrusion into the existing ID Booth building.

Upon receipt of the laboratory data from the investigation, the sample data will be reviewed and validated. The final validated data will be included in the VI Summary Report, which will be submitted to NYSDEC/NYSDOH within approximately 60-days following data validation. The VI Summary Report will also include recommendations for follow-up action, such as mitigation, as necessary, based on the results of the VI evaluation and NYSDOH guidance.

1.5 Previous Investigations

Two remedial investigations were completed at the former MGP site between 1985 and 1989. The first investigation identified an apparent source area of coal tar-related compounds in subsurface soils near the ID Booth building. Coal tar related VOCs and polycyclic aromatic hydrocarbons (PAHs) were found in shallow soils at a number of soil boring locations. Groundwater from monitoring wells downgradient of the site contained detectable concentrations of VOCs and PAHs.

In 1999, five indoor air samples were collected from the ID Booth building (SC-1 and SC-3 through SC-6), from the portion of the building that was deconstructed in preparation for soil remediation. One ambient (outdoor) air sample was also collected (sample SC-2). The samples were analyzed via United States Environmental Protection Agency (USEPA) Method TO-14. A total of 20 different VOCs were detected in the indoor air samples. Of those 20 compounds, at least 10 were identified as being potentially present in equipment and material at the ID Booth facility. The single compound detected at the highest level was tetrahydrofuran, which was detected at five of the six locations, and at concentrations that ranged from 19.46 to 150.39 microgram per cubic meter ($\mu\text{g}/\text{m}^3$). Tetrahydrofuran is widely used as a chemical intermediate and solvent and not a common MGP residual and is believed to be an artifact of other industrial processes at the site. The only VOC identified in the ambient air sample was methylene chloride, which was not identified in any of the indoor air samples.

No single compound was detected at all six sample locations. The following compounds were detected at the five indoor air sampling locations: benzene, toluene, tetrachloroethene, 2-butanone, tetrahydrofuran, and ethanol. These compounds can be found in industrial machinery and equipment, and as volatile emissions from common petroleum products, including fuels, lubricants, adhesives, grease, and solvents. The results from the five indoor

Soil Vapor Investigation Work Plan

air samples had similar concentrations, which indicated there was no preferred pathway for vapors into the building, nor were there any hot spot areas where an uncontrolled specific chemical source might be present. A complete table of the soil vapor results are provided in Table 1.

In 2001, three sub-slab vapor samples were collected from soil borings installed through the concrete floor inside the ID Booth building at a depth of 2 to 3 feet under the floor slab (SB-9, SB-13, and SB-21). The samples were analyzed via USEPA Method TO-14. Soil vapor immediately below the floor at SB-9 (adjacent to the northernmost former gas holder) contained the highest total VOC concentration among the three samples (5,427 $\mu\text{g}/\text{m}^3$). This is roughly an order of magnitude greater than the concentrations identified in the previously collected air samples. Xylenes accounted for the highest concentration of individual compounds, followed by toluene, 1,2,4-trimethylbenzene, and ethylbenzene. A complete table of the soil vapor results are provided in Table 2.

Indoor air and sub-slab soil vapor sample locations and results are shown on Figure 5-21 (Stearns & Wheler 2003) included in Appendix C.

2 Scope of Investigation

The proposed VI investigation at the ID Booth building consists of:

- Reviewing property conditions and conducting due diligence reconnaissance (including a building inventory for indoor locations) of the ID Booth property.
- Collecting paired sub-slab/indoor air samples at four locations inside the building to be determined based on the results of the due diligence work.
- Collecting an outdoor ambient air sample to evaluate the background air concentrations during sampling.
- Preparing a VI Summary Report for submittal to the NYSDEC and NYSDOH.

Sampling will be conducted in accordance with the NYSDOH's Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH 2006, last updated 2024). Sampling will tentatively be performed during the 2025/2026 heating season, contingent upon SVI Work Plan approval and obtaining required access. The following sections present a detailed discussion of the investigation scope and support activities.

2.1 Health and Safety

A site-specific Health and Safety Plan will be prepared to present the health and safety procedures, methods, and requirements that will apply to field personnel during implementation of the field work. Field activities will be conducted using Level D personal protective equipment, with latex gloves. Health and safety procedures will be compliant with the Occupational Safety and Health Administration's Hazardous Waste Operations and Emergency Response standards, as described in 29 Code of Federal Regulations 1910.120. Field personnel will abstain from using or having contact with fuels, solvent cleaners, aerosol sprays and avoid smoke/vapor exposure or use of alcohol-based hand sanitizers for 24 hours prior to conducting sampling activities and will conduct sampling activities in accordance with the Technical Guidance Instruction documents (TGIs) provided in Attachment B.

2.2 Building Reconnaissance and Product Inventory

Before sampling activities are initiated, a building reconnaissance and product inventory will be completed at the ID Booth building to observe and document the building layout and construction. This information will be used to identify potential locations where VOCs could enter the building and select sampling locations. As part of the reconnaissance, building construction details will be collected, as available, including basements, foundation walls, doorways, equipment, heating and ventilation systems. Building design/as-built drawings (if available) will also be reviewed to identify building footer and subsurface drainage/conduit locations and depths. Building conditions will be observed and documented, including floor penetrations, cracks, or other preferential pathways that could potentially serve as a route for vapors to enter the building.

Field personnel will complete the NYSDEC Structure Sampling Questionnaire and Building Inventory Form (provided in Attachment A) a minimum of 48 hours prior to conducting the indoor air sampling. This will be done in conjunction with evaluating slab perforations, obtaining information on building space use, evaluating the operating conditions of the heating, ventilation, and air conditioning system and identifying the type and location of chemical products that could influence indoor air results. A low-level photoionization detector (PID) capable of reading levels in parts per billion (ppb), equipped with a 10.6 electron volt lamp, will be used to complete a real-time vapor survey to screen for the presence of detectable vapor-phase chemicals within the breathing zone and

for any floor penetrations. Any products identified during the survey that could impact results of the indoor air sampling will be removed from the area at least 48 hours prior to sampling, if possible. The Technical Guidance Instruction (TGI) document for completing the survey and reconnaissance is provided in Attachment B.

2.3 Utility Clearance

Before soil vapor sampling points are installed, each sampling location will be cleared of utilities using three lines of evidence. It is assumed that the following lines may be used: building drawings, review of incoming utility lines, geophysical scan (ground penetrating radar/magnetometer), UDig-NY one-call utility locating service (formerly DigSafelyNY) and clearing using hand tools. Each location will also be visually inspected for items or conditions that would negatively affect the sample results.

2.4 Sub-Slab and Indoor Air Sampling Points

On the day of sampling, the sampling team will confirm and document any changes to the building inventory since the inventory was completed. Upon completion of the utility clearance, four temporary sub-slab vapor points will be installed at the approximate locations shown on Figure 2 (locations SS-1 through SS-4). These proposed sampling locations may be changed, as necessary, based on building access and the location of utilities/anomalies. The TGI document for installing and sampling sub-slab vapor points is provided in Attachment B. The sub-slab points will be installed using a hand-held hammer drill and a high-efficiency particulate air dust collection vacuum. A 5/8-inch core hole will be advanced through the concrete slab and approximately 3 inches into the sub-slab material to create an open cavity. New Vapor-Pin® sampling points will be inserted into the concrete slab at each sample location, approximately 1 inch above the sub-slab material. Each Vapor Pin® sample point will be capped with a stainless-steel, air-tight Swagelok® fitting until tracer testing is conducted. A typical sub-slab schematic of a sub-slab point is presented on Figure 4 for reference. Vapor Pin® sample points will be removed and abandoned following sampling activities (see Section 2.7).

Paired building indoor air samples (IA-1, IA-2, IA-3, and IA-4) will be collected over the same time period (8 hours) and in the general vicinity of the sub-slab soil proposed vapor sample points shown on Figure 2. One ambient air sample (AA-1) will also be collected outside, upwind of the building. The ambient air sample will be collected over the same time period (8 hours) as the sub-slab and indoor air samples.

Indoor air and ambient air samples will be collected from an intake height of approximately 4 to 5 feet above the ground/slab. The TGI document for collecting indoor and ambient air samples is provided in Attachment B. Sample types and sample identifications are listed in Table 3.

2.5 Tracer Testing

After installation of the sub-slab vapor sampling points and prior to collecting any samples, a tracer gas test will be performed using helium, to assess the integrity of the vapor point installations. The TGI document for tracer gas testing is provided in Attachment B. Helium will be introduced into a shroud covering the intersection of the sample tubing and the ground. The atmosphere under the shroud will consist of an initial concentration of 80 percent (%) helium or greater. After introducing the tracer gas to the shroud, three volumes (i.e., the volume of the sample probe and tube) will be purged from each sampling location at a rate not to exceed 200 milliliters per minute. The purge volumes will be consistent at each sample location. Purge air will be tested for the helium

tracer gas using real-time monitoring equipment. If the percentage of helium in the purge air is greater than 10% of the current shroud concentration, the seal will be fixed and the tracer test re-administered. Should the helium level still be greater than 10% after re-testing, the sample location will be reassessed, and a determination will be made if it is necessary to abandon the vapor point and install a new vapor point at a nearby location. Additionally, if water or significant condensation is observed in the vapor tubing, the vapor point will not be used for sample collection, and a new vapor point will be installed at a nearby location. Helium data and vapor point conditions will be noted on the sampling log.

2.6 Sub-Slab, Soil Vapor, Indoor Air, and Ambient Air Sampling

Indoor air, ambient air, and sub-slab soil vapor sample collection will begin following the successful passing of the helium tracer test described above. Sub-slab, soil vapor, indoor air, and ambient air sampling will be completed in accordance with the TGIs, provided in Attachment B. Based on the ID Booth building zoning, designated as commercial, paired sub-slab and indoor/ambient air samples will be collected over a period of approximately 8-hours. Samples will be collected passively using 6-liter, stainless-steel SUMMA canisters supplied with a vacuum (less than -28 inches of mercury [in. Hg]) from a laboratory with current NYSDOH Environmental Laboratory Approval Program (ELAP) certification. The canisters will be individually certified clean by the laboratory and supplied with vacuum gauges and pre-set flow controllers capable of collecting a sample at a rate not to exceed 20 milliliters per minute. Once a canister is full (i.e., -5 in. Hg remaining, as measured by an analog or digital pressure gauge), it will be sealed and labeled with the sample identification number for the sub-slab vapor point. A single duplicate indoor air sample will be collected in a manner consistent with site samples. The duplicate sample will be collected concurrently with the parent sample using a Swagelok® "T" fitting to effectively split the sample into a separate sample canister.

Each canister shipment will be sealed with chain-of-custody tape, and chain-of-custody forms will be completed in triplicate. Samples will be either shipped via overnight carrier or driven directly to the analytical laboratory on the day that collections are completed.

2.7 Sample Point Abandonment

Following sample collection, each sampling point will be abandoned by removing the sampling equipment (i.e., Vapor Pin® sample points) from the core holes and patching the concrete surface with a non-shrinking grout to match surrounding conditions. The area around each sampling point will be swept clean of any sampling-related debris and returned to pre-sampling conditions.

2.8 Post Sampling Survey

The ambient air sampling location will be documented by tie-distance measurements from the exterior building wall or other fixed structural objects. The interior sub-slab sampling locations will be photo-documented and described in the field notebook, and distances will be manually measured relative to the interior building walls.

2.9 Field Documentation

Photographs will be taken to document the sampling setup and nearby relative site features in the background. Slab conditions, building layout, and on-site chemicals will be documented on the NYSDEC Structure Sampling Questionnaire and Building Inventory Form (Attachment A). The following information will be recorded on a sampling log:

- Plot sketches.
- Local weather information.
- Sample identification number.
- Sub-slab, indoor air, soil vapor, and ambient air PID readings.
- Date and time of sample collection.
- Slab thickness and sampling depth interval.
- Field personnel.
- Sampling methods and devices.
- Number of purge volumes.
- Tracer test detections/results.
- Volume of soil vapor purged before sampling.
- Vacuum of canisters before and after sample collection.
- Apparent moisture content (dry, moist, or saturated) of the sampling zone.
- Chain-of-custody protocols and records.

2.10 Sample Analysis

Sub-slab soil vapor, indoor air, and ambient air samples will be analyzed by an ELAP-certified laboratory using USEPA Method TO-15 (Determination of VOCs in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography Mass Spectrometry). Whole-air samples will be analyzed for VOCs associated with former MGP sites and included on the NYSDOH Air Decision Matrices, using a quadrupole or ion-trap gas chromatograph/mass spectrometer system to provide compound reporting limits of at or below the NYSDOH guidance values. The proposed analytical compound list and associated reporting limits for each analyte is presented in Table 4.

2.11 Quality Assurance/Quality Control

Quality assurance/quality control measures will be implemented to minimize potential data-quality issues and facilitate obtaining high-quality data. Arcadis field personnel will avoid actions that could cause sample interference in the field, such as fueling vehicles on the day of sampling, using permanent marking pens, and wearing freshly dry-cleaned clothing or personal fragrances. Appropriate quality assurance/quality control protocols will be followed during sample collection and laboratory analysis, including:

- Individually certified clean sample devices and containers will be employed.
- Sample holding times (30 days) and temperatures will be met and documented.

- Chain-of-custody practices will be followed.
- A single duplicate indoor air sample will be collected in a manner consistent with site samples. The duplicate sample will be collected concurrently with the parent sample using a Swagelok® "T" fitting to effectively split the sample into a separate sample canister.

2.12 Data Validation

Analytical data generated during the VI investigation will be accompanied by a NYSDEC Analytical Services Protocol Category B data deliverable package(s). The data package(s) will be validated in accordance with the NYSDEC Analytical Services Protocol. The validation will include, but not be limited to, the following items:

- Adherence to specific holding times.
- Laboratory blank-detected constituents.
- Field duplicate precision.

Pertinent field sampling records (i.e., field notes, chain-of-custody records) will be reviewed in conjunction with the laboratory deliverables for accuracy, precision, completeness, the overall quality of data, and the absence of transcription errors. The results of the data validation will be summarized in a Data Usability Summary Report for each set of TO-15 samples.

3 Schedule and Reporting

The VI investigation is tentatively scheduled to be conducted in the 2025/2026 heating season, pending NYSDEC/NYSDOH approval of this SVI Work Plan and acquiring access to the off-site property. Upon completion of the fieldwork and data validation, a VI Summary Report will be prepared to include:

- A discussion of the results from the site reconnaissance, building survey, and chemical inventory.
- A summary of the completed field activities and any necessary deviations from this SVI Work Plan.
- A comparison of current analytical results to the screening values provided in the NYSDOH guidance (NYSDOH 2006, last updated 2024).
- An EQuIS Electronic Data Deliverable (EDD), including analytical data from implementation of this work plan, will be prepared and submitted to the NYSDEC.
- Conclusions and recommendations.

The VI Summary Report will include the following attachments:

- Data Usability Summary Report(s).
- Field sampling logs.
- A Structure Sampling Questionnaire and Building Inventory Form.
- Summary data tables and figures depicting new and historical VI investigation sampling locations.

The VI Summary Report will be generated and submitted to the NYSDEC/NYSDOH within approximately 60-days following data validation and evaluation.

4 References

Arcadis. 2021. Cortland-Homer Former MGP Site, Homer New York, Construction Completion Report, NYSDEC Site No. 7-12-005. September.

GEI. 2023. Final Engineering Report, NYSEG Cortland Homer Former MGP Site, NYSDEC Site Number:7-12-005. June.

NYSDEC. 2010. Record of Decision Amendment. NYSEG Cortland Homer Former MGP Site, Operable Unit No. 1, Village of Homer, Cortland County, New York, Site Number 712005. December.

NYSDOH. 2006. Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October 2006, updated February 2024 (http://health.ny.gov/environmental/indoors/vapor_intrusion/update.htm).

Stearns & Wheler. 2003. Supplemental Remedial Investigation NYSEG Cortland/Homer Former MGP Cortland County, New York. December.

Tables

Table 1
Remedial Investigation Indoor Air Sample Analytical Results
NYSEG - Cortland-Homer Former MGP Site
Homer, New York

Location ID:	SC-1	SC-2 ³	SC-3	SC-4	SC-5	SC-6
Date Collected:	12/5/1999	12/5/1999	12/5/1999	12/5/1999	12/5/1999	12/5/1999
1,2,4-Trimethylbenzene	U	U	U	U	5.41	11.80
1,3,5-Trimethylbenzene	U	U	U	6.39	U	U
2-Butanone	17.99	U	32.44	24.48	24.18	U
2-Propanol	U	U	U	16.22	15.24	29.49
Acetone	28.51	U	U	42.76	47.51	26.13
Benzene	6.07	U	5.75	11.82	10.54	23.00
Chlorobenzene	U	U	U	5.52	U	U
Ethanol	20.73	U	22.61	14.13	13.57	14.70
Ethyl Benzene	U	U	8.68	18.24	5.21	10.42
Freon 12	U	U	U	4.95	4.95	6.43
Hexane	12.69	U	U	31.37	25.73	28.55
m,p-Xylene	9.55	U	U	6.95	16.07	39.95
Methyl tert-Butyl Ether	U	U	U	U	U	16.58
Methylene Chloride	U	6.25	U	U	U	U
o-Xylene	U	U	11.29	86.85	6.08	12.59
Styrene	13.63	U	U	U	63.89	19.17
Tetrachloroethene	54.27	U	29.85	41.38	44.77	12.89
Tetrahydrofuran	70.77	U	150.39	61.93	64.88	19.46
Toluene	33.16	U	37.68	67.83	52.75	87.67
Trichloroethene	U	U	U	6.99	5.32	U
Total VOCs	267.37	6.25	298.69	447.81	406.1	358.83

Acronyms and Abbreviations:

SC = summa canister

U = Non-Detect

µg/m³ = micrograms per cubic meter

Notes:

1. Table shows results from 24-hour indoor air samples collected from December 4 to 5, 1999.
2. Values are reported in micrograms per cubic meter (µg/m³) and were converted from parts per billion by volume (ppbV).
3. Sample SC-2 is an ambient air sample and located outside of the ID Booth building.

Table 2
Remedial Investigation Sub-slab Soil Vapor Sample Analytical Results
NYSEG - Cortland-Homer Former MGP Site
Homer, New York

Location ID:	SB-9	SB-13	SB-21
Date Collected:	10/2001	10/2001	10/2001
1,2,4-Trymethylbenzene	688.20	45.22	18.19
1,3,5-Trimethylbenzene	260.56	30.97	6.93
1,3-Butadiene	U	U	97.34
2-Butanone (MEK)	U	22.71	32.44
Acetone	U	U	68.89
Acrolein	U	20.18	U
Benzene	172.51	23.00	63.89
Benzyl chloride	U	3.00	U
Bromodichloromethane (G)	U	2.68	U
Carbon disulfide	U	13.39	3.74
Chlorodifluoromethane	U	2.70	6.39
Chloroform	U	4.74	6.84
Cumene	58.99	1.82	U
Cyclohexane	U	8.95	11.36
Dichlorodifluoromethane;CFC-12	U	2.44	U
Ethylbenzene	325.64	14.33	19.10
Methanol	U	U	43.24
Methyl tert-butyl ether	U	33.89	35.69
Methylene chloride	U	U	U
Naphthalene	68.14	10.48	6.81
n-Butane	U	71.32	133.13
n-Decane	180.40	64.01	6.98
n-Dodecane	69.67	11.15	21.60
n-Heptane	233.6	18.03	25.41
n-Hexane	31.01	56.39	74.01
n-Octane	462.49	12.61	12.15
Nonane	215.08	35.15	U
n-Propylbenzene	142.57	4.33	4.08
n-Undecane	127.86	32.60	12.15
Pentane	U	91.48	120.99
Styrene	39.19	127.78	166.11
Toluene	527.53	105.51	158.26
o-Xylene	521.08	19.54	19.97
m,p-Xylene	1302.70	52.11	56.45
Total VOCs	5427.22	942.51	1232.14

Acronyms and Abbreviations:

SC = summa canister

U = Non-Detect

µg/m³ = micrograms per cubic meter

Notes:

1. Table shows results from subslab grab samples taken in October 2001.
2. Values are reported in micrograms per cubic meter (µg/m³) and were converted from parts per billion by v

Table 3
Soil Vapor/Indoor Air Sampling Locations
NYSEG - Cortland-Homer Former MGP Site
Homer, New York

Sample Type	Sample ID	Sampling Event and Analytical
On-Site Samples		
Proposed- Sub-Slab Soil Vapor	SS-1	2025/2026 Heating Season USEPA TO-15 VOC List
Proposed- Sub-Slab Soil Vapor	SS-2	2025/2026 Heating Season USEPA TO-15 VOC List
Proposed- Sub-Slab Soil Vapor	SS-3	2025/2026 Heating Season USEPA TO-15 VOC List
Proposed- Sub-Slab Soil Vapor	SS-4	2025/2026 Heating Season USEPA TO-15 VOC List
Proposed- Indoor Air	IA-1	2025/2026 Heating Season USEPA TO-15 VOC List
Proposed- Indoor Air	IA-2	2025/2026 Heating Season USEPA TO-15 VOC List
Proposed- Indoor Air	IA-3	2025/2026 Heating Season USEPA TO-15 VOC List
Proposed- Indoor Air	IA-4	2025/2026 Heating Season USEPA TO-15 VOC List
Proposed- Indoor Air Duplicate	DUP-IA-1	2025/2026 Heating Season USEPA TO-15 VOC List
Proposed- Ambient Air	AA-1	2025/2026 Heating Season USEPA TO-15 VOC List

Acronyms and Abbreviations:

USEPA - United States Environmental Protection Agency

VOC - volatile organic compound

Note:

1. TO-15 - Method TO-15 (Determination of VOCs in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography Mass Spectrometry).

Table 4
Soil Vapor/Indoor Air Constituent List
NYSEG - Cortland-Homer Former MGP Site
Homer, New York

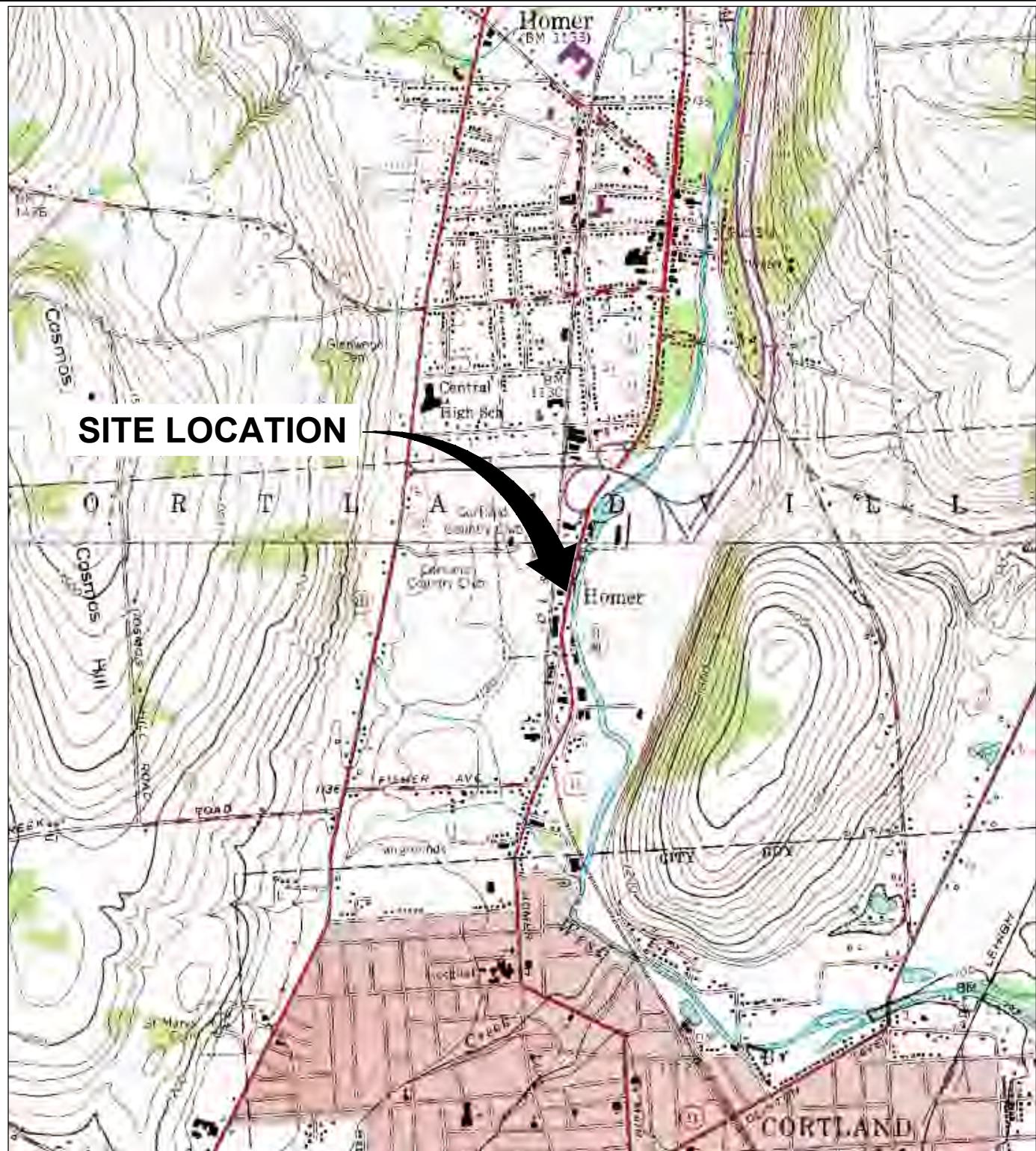
CAS Number	Compound ¹	Reporting Limit ($\mu\text{g}/\text{m}^3$)	NYSDOH Matrix	Indoor Air - Maximum Results ² ($\mu\text{g}/\text{m}^3$)
75-35-4	1,1-Dichloroethene	0.200	A	U
95-63-6	1,2,4-Trimethylbenzene	0.983	D	11.80
108-67-8	1,3,5-Trimethylbenzene	0.983	D	6.39
540-84-1	2,2,4-Trimethylpentane	0.934	D	NA
71-43-2	Benzene	0.639	D	23.00
156-59-2	cis-1,2-Dichloroethene	0.200	A	U
110-82-7	Cyclohexane	0.688	D	U
100-41-4	Ethylbenzene	0.868	D	18.24
179601-23-1	m,p-Xylene	2.17	E	39.95
75-09-2	Methylene Chloride	1.74	B	U
91-20-3	Naphthalene	2.00	D	NA
142-82-5	n-Heptane	0.820	E	U
110-54-3	n-Hexane	1.76	E	31.37
95-47-6	o-Xylene	0.868	D	86.85
127-18-4	Tetrachloroethene	1.36	B	54.27
108-88-3	Toluene	0.754	F	87.67
79-01-6	Trichloroethene	0.200	A	6.99

Acronyms and Abbreviations:

NA - not analyzed

NYSDOH - New York State Department of Health

$\mu\text{g}/\text{m}^3$ - micrograms per cubic meter


U - non-detect

VOC - volatile organic compound

Notes:

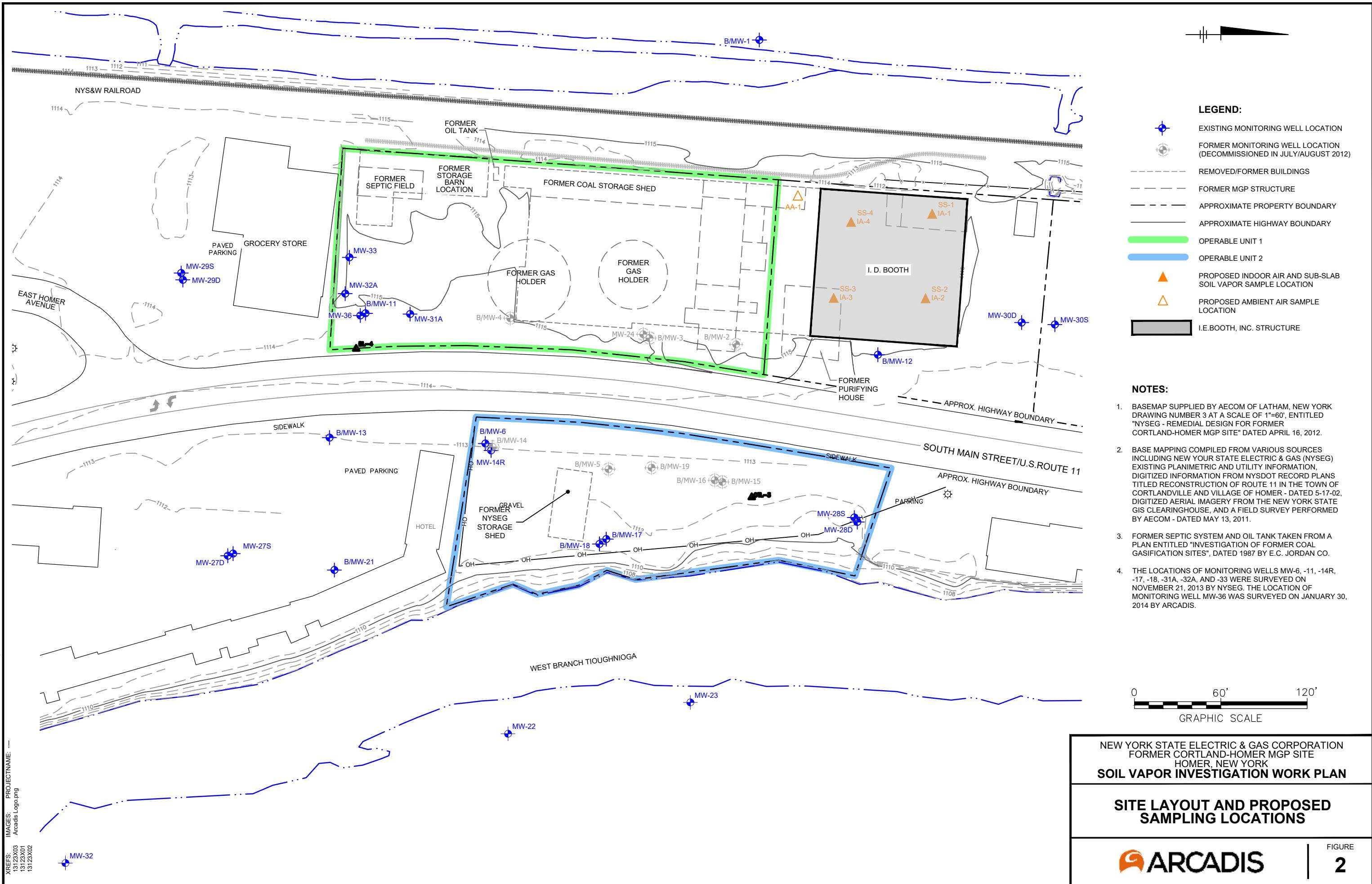
1. Compound list was derived from historical compound detections in soil, sediment, groundwater, or air samples as reported in the 2003 Remedial Investigation Report that are also included in the NYSDOH Soil Vapor Indoor Air Matrices A through F.
2. Maximum indoor air results from 24-hour indoor air samples collected from December 4 to 5, 1999.
3. TO-15 - Method TO-15 (Determination of VOCs in Air Collected in Specially-Prepared Canisters and analyzed by Gas Chromatography Mass Spectrometry).

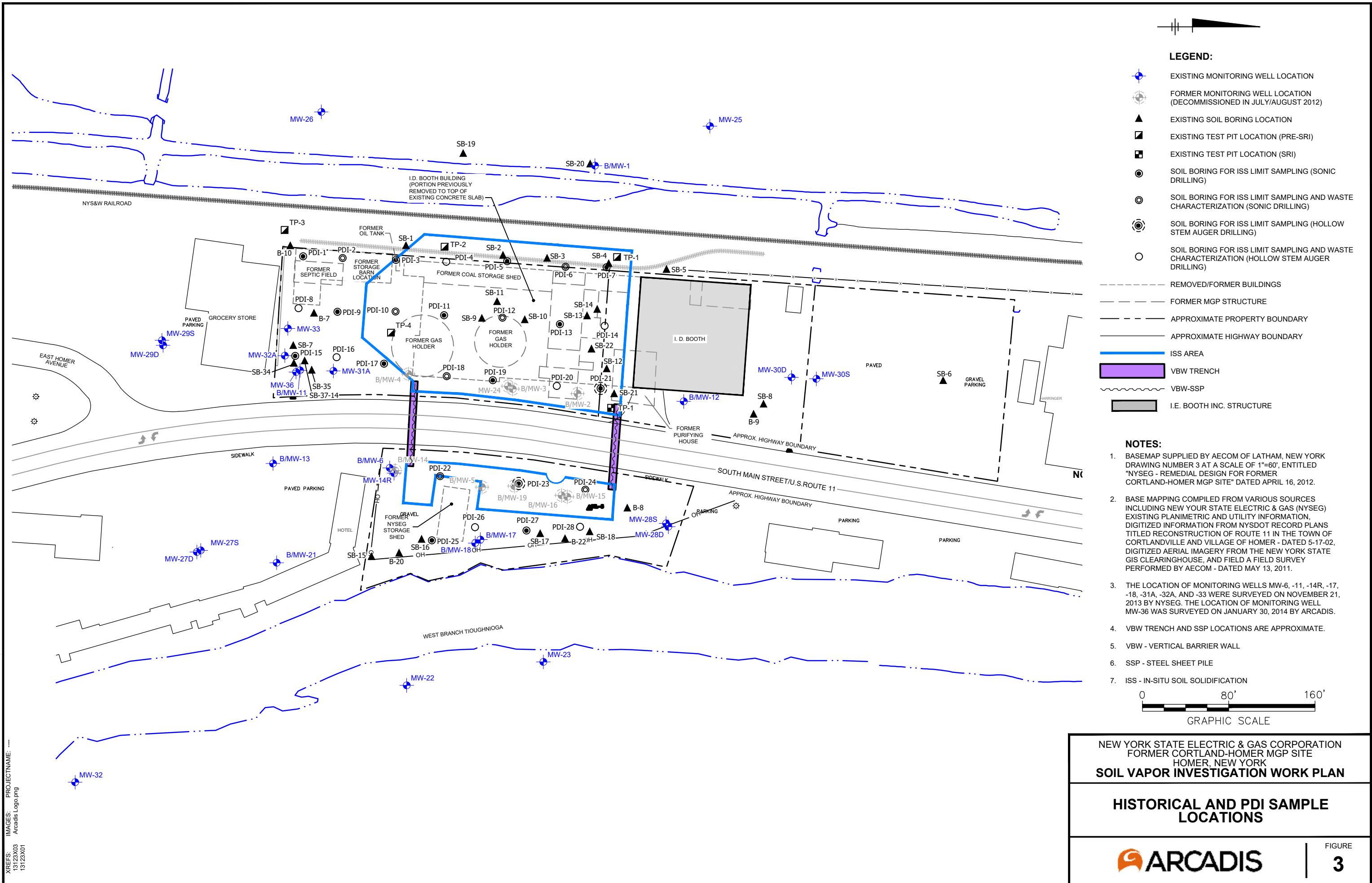
Figures

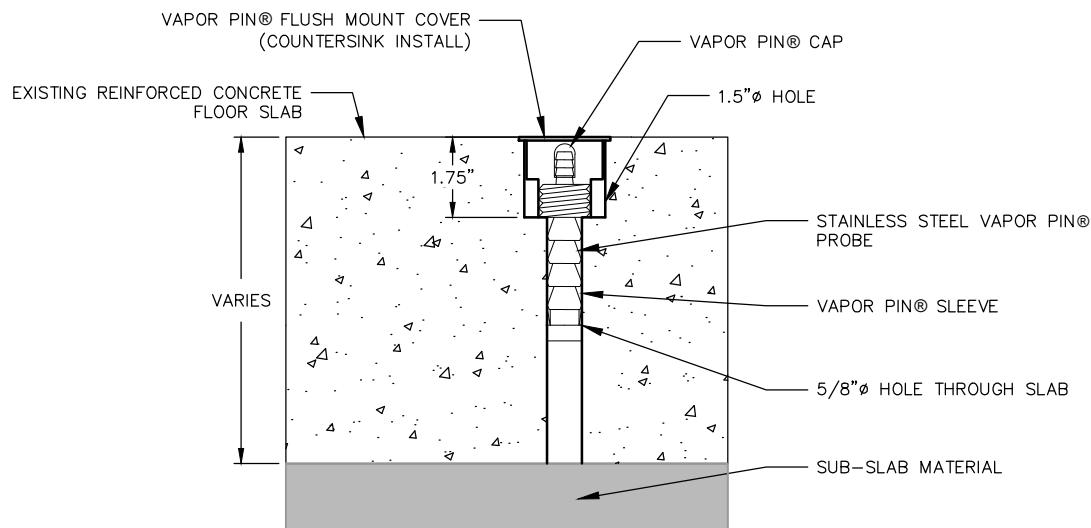
REFERENCE: BASE MAP USGS 7.5. MIN. TOPO. QUADS., CORTLAND, NY, 1955, AND HOMER, NY 1955, PHOTOREVISED 1978.

0 2000' 4000'

Approximate Scale: 1 in. = 2000 ft.

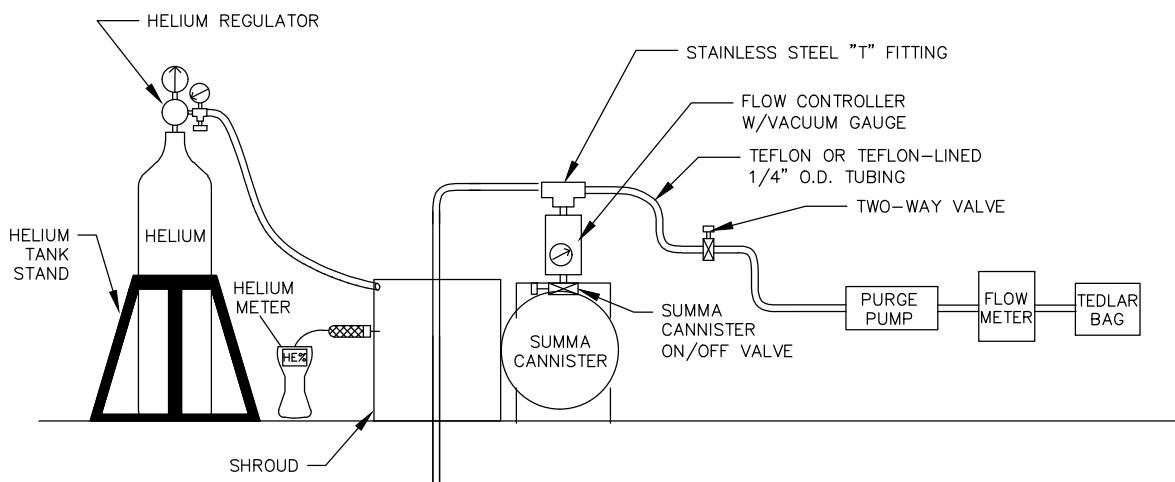



NYSEG
CORTLAND-HOMER FORMER MGP SITE
HOMER, NEW YORK


SITE LOCATION MAP

ARCADIS

Design & Consultancy
for natural and
built assets



SUB-SLAB VAPOR SAMPLING POINT

NOT TO SCALE

SOIL VAPOR SAMPLING TRAIN

NOT TO SCALE

NEW YORK STATE ELECTRIC & GAS CORPORATION
FORMER CORTLAND-HOMER MGP SITE
HOMER, NEW YORK
SOIL VAPOR INVESTIGATION WORK PLAN

SOIL VAPOR SAMPLING DESIGN

Attachment A

**NYSDEC Structure Sampling Questionnaire and Building
Inventory Form**

Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

Site Name: _____ Site Code: _____ Operable Unit: _____

Building Code: _____ Building Name: _____

Address: _____ Apt/Suite No: _____

City: _____ State: _____ Zip: _____ County: _____

Contact Information

Preparer's Name: _____ Phone No: _____

Preparer's Affiliation: _____ Company Code: _____

Purpose of Investigation: _____ Date of Inspection: _____

Contact Name: _____ Affiliation: _____

Phone No: _____ Alt. Phone No: _____ Email: _____

Number of Occupants (total): _____ Number of Children: _____

Occupant Interviewed? Owner Occupied? Owner Interviewed?

Owner Name (if different): _____ Owner Phone: _____

Owner Mailing Address: _____

Building Details

Bldg Type (Res/Com/Ind/Mixed): _____ Bldg Size (S/M/L): _____

If Commercial or Industrial Facility, Select Operations: _____ If Residential Select Structure Type: _____

Number of Floors: _____ Approx. Year Construction: _____ Building Insulated? Attached Garage?

Describe Overall Building 'Tightness' and Airflows(e.g., results of smoke tests):

Foundation Description

Foundation Type: _____ Foundation Depth (bgs): _____ Unit: _____ FEET

Foundation Floor Material: _____ Foundation Floor Thickness: _____ Unit: _____ INCHES

Foundation Wall Material: _____ Foundation Wall Thickness: _____ Unit: _____ INCHES

Floor penetrations? Describe Floor Penetrations: _____

Wall penetrations? Describe Wall Penetrations: _____

Basement is: _____ Basement is: _____ Sumps/Drains? Water In Sump?: _____

Describe Foundation Condition (cracks, seepage, etc.): _____

Radon Mitigation System Installed? VOC Mitigation System Installed? Mitigation System On?

Heating/Cooling/Ventilation Systems

Heating System: _____ Heat Fuel Type: _____ Central A/C Present?: _____

Vented Appliances

Water Heater Fuel Type: _____ Clothes Dryer Fuel Type: _____

Water Htr Vent Location: _____ Dryer Vent Location: _____

Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

PRODUCT INVENTORY

Building Name: _____ Bldg Code: _____ Date: _____

Bldg Address: _____ Apt/Suite No: _____

Bldg City/State/Zip:

Make and Model of PID: _____ Date of Calibration: _____

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)**

** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Product Inventory Complete?

Were there any elevated PID readings taken on site?

Products with COC?

Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

Site Name: _____ Site Code: _____ Operable Unit: _____

Building Code: _____ Building Name: _____

Address: _____ Apt/Suite No: _____

City: _____ State: _____ Zip: _____ County: _____

Factors Affecting Indoor Air Quality

Frequency Basement/Lowest Level is Occupied?: _____ Floor Material: _____

Inhabited? HVAC System On? Bathroom Exhaust Fan? Kitchen Exhaust Fan?

Alternate Heat Source: _____ Is there smoking in the building?

Air Fresheners? Description/Location of Air Freshener: _____

Cleaning Products Used Recently?: Description of Cleaning Products: _____

Cosmetic Products Used Recently?: Description of Cosmetic Products: _____

New Carpet or Furniture? Location of New Carpet/Furniture: _____

Recent Dry Cleaning? Location of Recently Dry Cleaned Fabrics: _____

Recent Painting/Staining? Location of New Painting: _____

Solvent or Chemical Odors? Describe Odors (if any): _____

Do Any Occupants Use Solvents At Work? If So, List Solvents Used: _____

Recent Pesticide/Rodenticide? Description of Last Use: _____

Describe Any Household Activities (chemical use/storage, unvented appliances, hobbies, etc.) That May Affect Indoor Air Quality: _____

Any Prior Testing For Radon? If So, When?: _____

Any Prior Testing For VOCs? If So, When?: _____

Sampling Conditions

Weather Conditions: _____ Outdoor Temperature: _____ °F

Current Building Use: _____ Barometric Pressure: _____ in(hg)

Product Inventory Complete? Building Questionnaire Completed?

Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

Building Code: _____ Address: _____

Sampling Information

Sampler Name(s): _____ Sampler Company Code: _____

Sample Collection Date: _____ Date Samples Sent To Lab: _____

Sample Chain of Custody Number: _____ Outdoor Air Sample Location ID: _____

SUMMA Canister Information

Sample ID: _____

Location Code: _____

Location Type: _____

Canister ID: _____

Regulator ID: _____

Matrix: _____

Sampling Method: _____

Sampling Area Info

Slab Thickness (inches): _____

Sub-Slab Material: _____

Sub-Slab Moisture: _____

Seal Type: _____

Seal Adequate?:

Sample Times and Vacuum Readings

Sample Start Date/Time: _____

Vacuum Gauge Start: _____

Sample End Date/Time: _____

Vacuum Gauge End: _____

Sample Duration (hrs): _____

Vacuum Gauge Unit: _____

Sample QA/QC Readings

Vapor Port Purge:

Purge PID Reading: _____

Purge PID Unit: _____

Tracer Test Pass:

Sample start and end times should be entered using the following format: MM/DD/YYYY HH:MM

Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

LOWEST BUILDING LEVEL LAYOUT SKETCH

Please click the box with the blue border below to upload a sketch of the lowest building level.
The sketch should be in a standard image format (.jpg, .png, .tiff)

[Clear Image](#)

Design Sketch

Design Sketch Guidelines and Recommended Symbology

- Identify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch.
- Measure the distance of all sample locations from identifiable features, and include on the layout sketch.
- Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketch.
- Identify the locations of the following features on the layout sketch, using the appropriate symbols:

B or F	Boiler or Furnace	○	Other floor or wall penetrations (label appropriately)
HW	Hot Water Heater	xxxxxx	Perimeter Drains (draw inside or outside outer walls as appropriate)
FP	Fireplaces	#####	Areas of broken-up concrete
WS	Wood Stoves	●	SS-1 Location & label of sub-slab samples
W/D	Washer / Dryer	●	IA-1 Location & label of indoor air samples
S	Sumps	●	OA-1 Location & label of outdoor air samples
@	Floor Drains	●	PFET-1 Location and label of any pressure field test holes.

Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

FIRST FLOOR BUILDING LAYOUT SKETCH

Please click the box with the blue border below to upload a sketch of the first floor of the building. The sketch should be in a standard image format (.jpg, .png, .tiff)

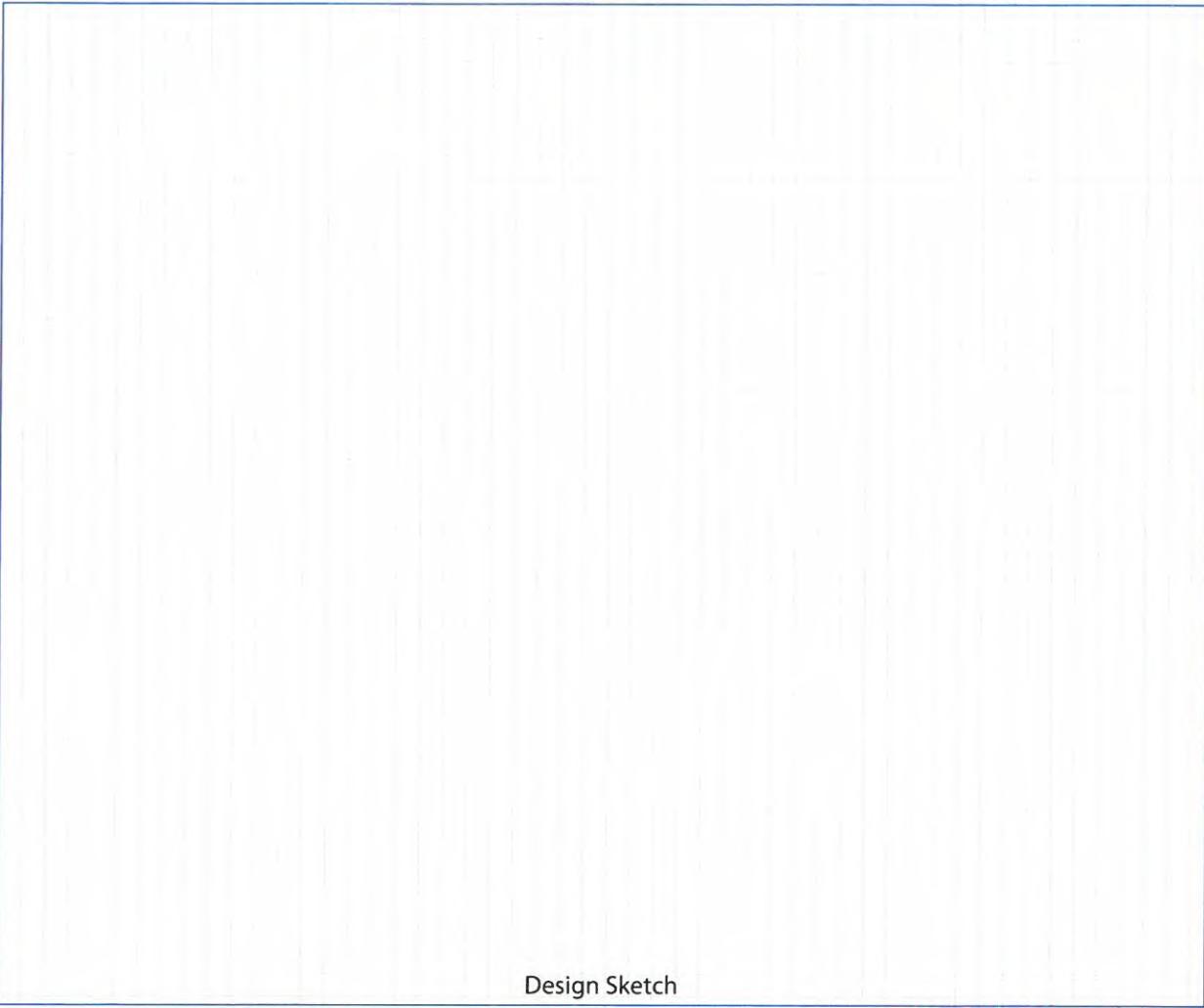
[Clear Image](#)

Design Sketch

Design Sketch Guidelines and Recommended Symbology

- Identify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch.
- Measure the distance of all sample locations from identifiable features, and include on the layout sketch.
- Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketch.
- Identify the locations of the following features on the layout sketch, using the appropriate symbols:

B or F	Boiler or Furnace	<input type="radio"/>	Other floor or wall penetrations (label appropriately)
HW	Hot Water Heater	<input type="radio"/>	Perimeter Drains (draw inside or outside outer walls as appropriate)
FP	Fireplaces	<input type="radio"/>	Areas of broken-up concrete
WS	Wood Stoves	<input type="radio"/>	Location & label of sub-slab samples
W/D	Washer / Dryer	<input type="radio"/>	Location & label of indoor air samples
S	Sumps	<input type="radio"/>	Location & label of outdoor air samples
@	Floor Drains	<input type="radio"/>	Location and label of any pressure field test holes.


Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

OUTDOOR PLOT LAYOUT SKETCH

Please click the box with the blue border below to upload a sketch of the outdoor plot of the building as well as the surrounding area. The sketch should be in a standard image format (.jpg, .png, .tiff)

[Clear Image](#)

Design Sketch

Design Sketch Guidelines and Recommended Symbology

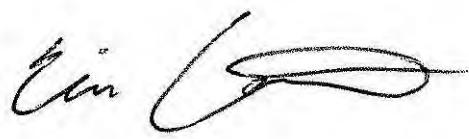
- Identify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch.
- Measure the distance of all sample locations from identifiable features, and include on the layout sketch.
- Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketch.
- Identify the locations of the following features on the layout sketch, using the appropriate symbols:

B or F	Boiler or Furnace	○	Other floor or wall penetrations (label appropriately)
HW	Hot Water Heater	xxxxxx	Perimeter Drains (draw inside or outside outer walls as appropriate)
FP	Fireplaces	#####	Areas of broken-up concrete
WS	Wood Stoves	● SS-1	Location & label of sub-slab samples
W/D	Washer / Dryer	● IA-1	Location & label of indoor air samples
S	Sumps	● OA-1	Location & label of outdoor air samples
@	Floor Drains	● PFET-1	Location and label of any pressure field test holes.

Attachment B

Arcadis Technical Guidance and Information Documents

TGI - ADMINISTERING HELIUM TRACER GAS LEAK TEST


Rev #: 1

Rev Date: October 14, 2016

A large, solid orange triangle is positioned in the bottom right corner of the page. It is bounded by a thin white line that extends from the bottom right corner to the top right edge and then follows a diagonal path towards the bottom left. A thin horizontal orange line is also present, starting from the bottom left corner and extending towards the right, ending at the base of the triangle's white line.

APPROVAL SIGNATURES

Prepared by:

Eric Cathcart

Date: 10/14/2016

Reviewed by:

Mitch Wacksman

Date: 10/14/2016

I. INTRODUCTION

This Technical Guidance Instruction (TGI) document describes the procedures to conduct a building survey prior to indoor air sampling.

This document describes general and/or specific procedures, methods, actions, steps, and considerations to be used and observed by Arcadis staff when performing work, tasks, or actions under the scope and relevancy of this document. This document may describe expectations, requirements, guidance, recommendations, and/or instructions pertinent to the service, work task, or activity it covers.

It is the responsibility of the Arcadis Certified Project Manager (CPM) to provide this document to the persons conducting services that fall under the scope and purpose of this procedure, instruction, and/or guidance. The Arcadis CPM will also ensure that the persons conducting the work falling under this document are appropriately trained and familiar with its content. The persons conducting the work under this document are required to meet the minimum competency requirements outlined herein, and inquire to the CPM regarding any questions, misunderstanding, or discrepancy related to the work under this document.

This document is not considered to be all inclusive nor does it apply to all projects. It is the CPM's responsibility to determine the proper scope and personnel required for each project. There may be project- and/or client- and/or state-specific requirements that may be more or less stringent than what is described herein. The CPM is responsible for informing Arcadis and/or Subcontractor personnel of omissions and/or deviations from this document that may be required for the project. In turn, project staff are required to inform the CPM if or when there is a deviation or omission from work performed as compared to what is described herein.

In following this document to execute the scope of work for a project, it may be necessary for staff to make professional judgment decisions to meet the project's scope of work based upon site conditions, staffing expertise, regulation-specific requirements, health and safety concerns, etc. Staff are required to consult with the CPM when or if a deviation or omission from this document is required that has not already been previously approved by the CPM. Upon approval by the CPM, the staff can perform the deviation or omission as confirmed by the CPM.

II. SCOPE AND APPLICATION

When collecting subsurface vapor samples as part of a vapor intrusion evaluation, a tracer gas serves as a quality assurance/quality control method to verify the integrity of the vapor port seal and the numerous connections comprising the sample train. Without the use of a tracer, verification that a soil vapor sample has not been diluted by ambient or indoor air is difficult.

This Technical Guidance Instruction (TGI) focuses on using helium as a tracer gas. It should be noted that a field helium meter could register a false positive if methane is present in the subsurface. In this case an alternative method should be employed (i.e., water dam test). The protocol for using a tracer gas includes the following basic steps: (1) enrich the atmosphere in the immediate vicinity of the sample port where ambient air could enter the sampling train during sampling with the tracer gas; and (2) measure a vapor sample from the sample tubing for the presence of elevated concentrations (> 10%) of the tracer. A plastic pail, bucket, garbage can or

even a plastic bag can serve as a shroud to keep the tracer gas in contact with the port during the testing.

There are two basic approaches to testing for the tracer gas:

1. Include the tracer gas in the list of target analytes reported by the laboratory; and/or
2. Use a portable monitoring device to analyze a sample of soil vapor for the tracer prior to sampling for the compounds of concern. (Note that tracer gas samples can be collected via syringe, Tedlar bag, etc. They need not be collected in SUMMA® canisters or mini-cans.)

This TGI focuses on monitoring helium using a portable sampling device, although helium can also be analyzed by the laboratory along with other volatile organic compounds (VOCs). Real-time tracer sampling allows the investigator to confirm the integrity of the port seals prior to formal sample collection.

During the initial stages of a subsurface vapor sampling program, tracer gas samples should be collected at each of the sampling points. If the results of the initial samples indicate that the port seals are adequate, the Project Manager can consider reducing the number of locations at which tracer gas samples are used in future monitoring rounds. At a minimum, at least 10% of the subsequent samples should be supported with tracer gas analyses. When using permanent soil vapor points as part of a long-term monitoring program, the port should be tested prior to the first sampling event. Tracer gas testing of subsequent sampling events may often be reduced or eliminated unless conditions have changed at the site. Soil gas port integrity should certainly be rechecked with Tracer gas if land clearing/grading activities, freeze thaw cycles, or soil desiccation may have occurred. Points should also be rechecked if more than 2 years have elapsed since the last check of that port.

III. PERSONNEL QUALIFICATIONS

Arcadis field sampling personnel will have current health and safety training, including 40-hour HAZWOPER training, site supervisor training, site-specific training, first aid, and cardiopulmonary resuscitation (CPR), as needed. Arcadis field sampling personnel will be competent in the relevant procedures and possess the required skills and experience necessary to successfully complete the desired field work. Arcadis personnel responsible for directing tracer gas testing must have previous experience conducting similar tests without direct supervision.

IV. EQUIPMENT LIST

The equipment required to conduct a helium tracer gas test is presented below:

- Appropriate PPE for site (as required by the Health and Safety Plan)
- Helium (laboratory grade)
- Regulator for helium tank
- Shroud (plastic bucket, garbage can, plastic bag, etc)

- The size of the shroud should be sufficient to fit over the sample port. It is worth noting that using the smallest shroud possible will minimize the volume of helium needed; this may be important when projects require a large number of helium tracer tests.
- The shroud will need to have three small holes in it. These holes will include one on the top (to accommodate the sample tubing), and two on the side (one for the helium detector probe, and one for the helium line).
- The shroud should ideally enclose the sample port and as much as possible of the sampling train.
- Helium detector capable of measuring from 1 - 100% (Dielectric MGD-2002, Mark Model 9522, or equivalent)
- Tedlar bag
- Seal material for shroud (rubber gasket, VOC-free modeling clay, bentonite, etc) to keep helium levels in shroud high in windy conditions. Although the sealing material is not in direct contact with the sample if leakage does not occur, sealing materials with high levels of VOC emissions should be avoided, since they could contaminate a sample if a leak occurs.
- Sample logs
- Field notebook

V. CAUTIONS

Helium is an asphyxiant! Be cautious with its use indoors! Never release large volumes of helium within a closed room!

Field sampling equipment must be carefully handled to minimize the potential for injury and the spread of hazardous substances. All sampling personnel should review the appropriate health and safety plan (HASP) and job safety analysis (JSA) prior to beginning work to be aware of all potential hazards associated with the job site and the specific task. Field staff should review the attachment on safely handling compressed gas cylinders prior to commencing field work.

Compressed gas cylinders should be handled with caution; see attachment on the use and storage of compressed gasses before beginning field work.

Care should be taken not to pressurize the shroud while introducing helium. If the shroud is completely air tight and the helium is introduced quickly, the shroud can be over-pressurized and helium can be pushed into the ground. Provide a relief valve or small gap where the helium can escape.

Because minor leakage around the port seal should not materially affect the usability of the soil vapor sampling results, the mere presence of the tracer gas in the sample should not be a cause for alarm. Consequently, portable field monitoring devices with detection limits in the low ppm range are more than adequate for screening samples for the tracer. If high concentrations (> 10%) of tracer gas are observed in a sample, the port seal should be enhanced and fittings within the sampling train should be checked and/or tightened to reduce the infiltration of ambient air

and the tracer test re-administered. If the problem cannot be rectified, a new sample point should be installed or an alternate sampling train used.

VI. PROCEDURE

The helium tracer test can be conducted when using temporary or permanent sampling points and inside or outside a facility. A visual of an example helium tracer gas test equipment set up is included as Figure 1.

1. Attach Teflon or nylon (Nylaflow) sample tubing to the sample point. This can be accomplished utilizing a number of different methods depending on the sample install (i.e., Swage-Lok or comparable fittings).
2. Place the shroud over the sample point and tubing.
3. Pull the tubing through hole in top of shroud. Seal opening at top of shroud with VOC free modeling clay.
4. Place weight on top of shroud to help maintain a good seal with the ground.
5. Insert helium tubing and helium detector probe into side of shroud. Seal both with modeling clay to prevent leaks.
6. Fill shroud with helium. Fill shroud slowly, allowing atmospheric air to escape either by leaving a gap where the shroud meets the ground surface or by providing a release valve on the side of the shroud. Do not pressurize the shroud!
7. Use the helium detector to monitor helium concentration within the shroud from the lowest hole drilled in the shroud (bottom of the shroud nearest where the sample tubing intersects the ground). Helium should be added until the environment inside the shroud has > 40% helium.
8. Purge the sample point through the sample tubing into a Tedlar bag using a syringe equipped with a three-way leur lock valve. The purge rate should at least match the sample collection rate but not exceed 100 ml/min. Test the air in the Tedlar bag for helium using portable helium detector. If the point is free of leaks there should be very low helium in the purge air from the soil. The natural concentration of helium in the atmosphere is 0.00052% by volume and there are few if any natural sources of helium to soil gas.
9. If > 10% of the amount of helium present in the shroud is noted in purge air, rectify issues with the seal at the sample port and repeat the testing procedure. If the seal cannot be fixed, reinstall sample point.
10. Monitor and record helium level in shroud before, during and after tracer test.
11. Monitor and record helium level in purge exhaust.
12. At successful completion of tracer test and sample point purging, the soil vapor sample can be collected (if the helium shroud must be removed prior to sample collection be mindful not to disturb the sample tubing and any established seals).

VII. WASTE MANAGEMENT

No specific waste management procedures are required.

VIII. DATA RECORDING AND MANAGEMENT

Measurements will be recorded on the sample logs at the time of measurement with notations of the project name, sample date, sample start and finish time, sample location, and the helium concentrations in both the shroud and the purge air before, during, and after tracer testing. Any problems encountered should also be recorded in the field notes.

IX. QUALITY ASSURANCE

Conduct quality assurance as required by the project-specific work plan and/or Quality Assurance Project Plan (QAPP).

ATTACHMENT: Compressed Gases – Use and Storage

In general, a compressed gas is any material contained under pressure that is dissolved or liquefied by compression or refrigeration. Compressed gas cylinders should be handled as high- energy sources and therefore as potential explosives and projectiles. Prudent safety practices should be followed when handling compressed gases since they expose workers to both chemical and physical hazards.

Handling

- Safety glasses with side shields (or safety goggles) and other appropriate personal protective equipment should be worn when working with compressed gases.
- Cylinders should be marked with a label that clearly identifies the contents.
- All cylinders should be checked for damage prior to use. Do not repair damaged cylinders or valves. Damaged or defective cylinders, valves, etc., should be taken out of use immediately and returned to the manufacturer/distributor for repair.
- All gas cylinders (full or empty) should be rigidly secured to a substantial structure at 2/3 height. Only two cylinders per restraint are allowed in the laboratory and only soldered link chains or belts with buckles are acceptable. Cylinder stands are also acceptable but not preferred.
- Handcarts shall be used when moving gas cylinders. Cylinders must be chained to the carts.
- All cylinders must be fitted with safety valve covers before they are moved.
- Only three-wheeled or four-wheeled carts should be used to move cylinders.
- A pressure-regulating device shall be used at all times to control the flow of gas from the cylinder.
- The main cylinder valve shall be the only means by which gas flow is to be shut off. The correct position for the main valve is all the way on or all the way off.
- Cylinder valves should never be lubricated, modified, forced, or tampered with.
- After connecting a cylinder, check for leaks at connections. Periodically check for leaks while the cylinder is in use.
- Regulators and valves should be tightened firmly with the proper size wrench. Do not use adjustable wrenches or pliers because they may damage the nuts.
- Cylinders should not be placed near heat or where they can become part of an electrical circuit.
- Cylinders should not be exposed to temperatures above 50 °C (122 °F). Some rupture devices on cylinders will release at about 65 °C (149 °F). Some small cylinders, such as

lecture bottles, are not fitted with rupture devices and may explode if exposed to high temperatures.

- Rapid release of a compressed gas should be avoided because it will cause an unsecured gas hose to whip dangerously and also may build up enough static charge to ignite a flammable gas.
- Appropriate regulators should be used on each gas cylinder. Threads and the configuration of valve outlets are different for each family of gases to avoid improper use. Adaptors and homemade modifications are prohibited.
- Cylinders should never be bled completely empty. Leave a slight pressure to keep contaminants out.

Storage

- When not in use, cylinders should be stored with their main valve closed and the valve safety cap in place.
- Cylinders must be stored upright and not on their side. All cylinders should be secured.
- Cylinders awaiting use should be stored according to their hazard classes.
- Cylinders should not be located where objects may strike or fall on them.
- Cylinders should not be stored in damp areas or near salt, corrosive chemicals, chemical vapors, heat, or direct sunlight. Cylinders stored outside should be protected from the weather.

Special Precautions

Flammable Gases

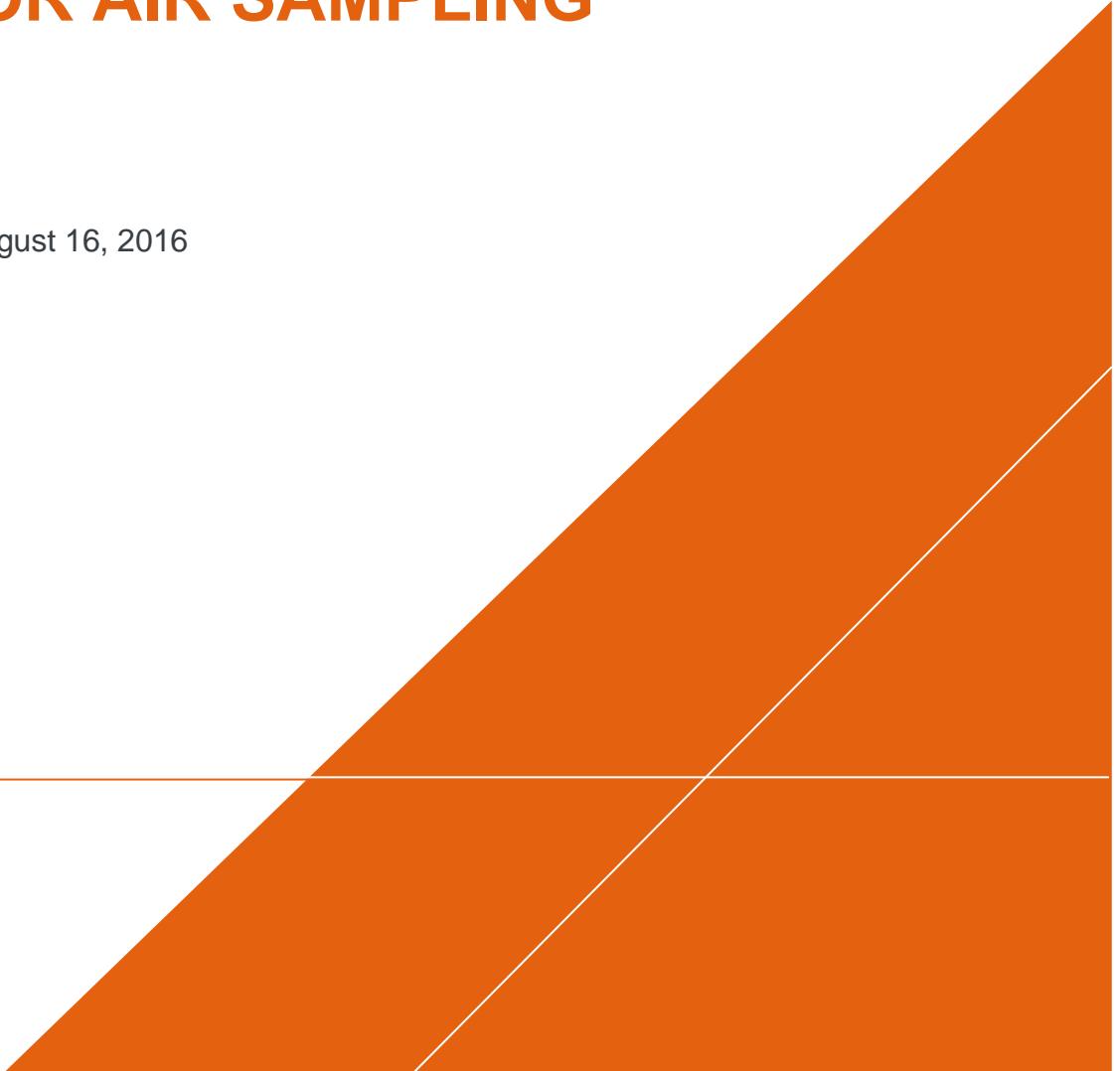
- No more than two cylinders should be manifolded together; however, several instruments or outlets are permitted for a single cylinder.
- Valves on flammable gas cylinders should be shut off when the laboratory is unattended and no experimental process is in progress.
- Flames involving a highly flammable gas should not be extinguished until the source of the gas has been safely shut off; otherwise it can reignite causing an explosion.

Acetylene Gas Cylinders

- Acetylene cylinders must always be stored upright. They contain acetone, which can discharge instead of or along with acetylene. Do not use an acetylene cylinder that has been stored or handled in a nonupright position until it has remained in an upright position for at least 30 minutes.
- A flame arrestor must protect the outlet line of an acetylene cylinder.

Downloaded and printed copies from the Approved Procedure Library are uncontrolled documents.

- Compatible tubing should be used to transport gaseous acetylene. Some tubing like copper forms explosive acetylides.


Lecture Bottles

- All lecture bottles should be marked with a label that clearly identifies the contents.
- Lecture bottles should be stored according to their hazard classes.
- Lecture bottles that contain toxic gases should be stored in a ventilated cabinet.
- Lecture bottles should be stored in a secure place to eliminate them from rolling or falling.
- Lecture bottles should not be stored near corrosives, heat, direct sunlight, or in damp areas.
- To avoid costly disposal fees, lecture bottles should only be purchased from suppliers that will accept returned bottles (full or empty). Contact the supplier before purchasing lecture bottles to ensure that they have a return policy.
- Lecture bottles should be dated upon initial use. It is advised that bottles be sent back to the supplier after one year to avoid accumulation of old bottles.

TGI - BUILDING SURVEYING PRIOR TO VAPOR INTRUSION INDOOR AIR SAMPLING

Rev. #: 1

Rev Date: August 16, 2016

A large, solid orange triangle is positioned in the lower right corner of the page. It is oriented such that its hypotenuse runs from the bottom-left towards the top-right. A thin white line is drawn from the top-right vertex of the triangle down to the bottom edge, creating a smaller triangle shape within the main one.

SOP VERSION CONTROL

Revision No	Revision Date	Page No(s)	Description	Reviewed by
1	8/19/2016	All	Update Rev 0	Margaret Bartee Mitch Wacksman

APPROVAL SIGNATURES

Prepared by: _____ Date: _____
Margaret Barteel

Reviewed by: _____ Date: _____
Mitch Wacksman

I. SCOPE AND APPLICATION

This Technical Guidance Instruction (TGI) document describes the procedures to conduct a building survey prior to indoor air sampling.

II. PERSONNEL QUALIFICATIONS

Arcadis field sampling personnel will have current health and safety training, including 40-hour HAZWOPER training, site supervisor training, site-specific training, first aid, and cardiopulmonary resuscitation (CPR), as needed. Arcadis field sampling personnel will be competent in the relevant procedures and possess the required skills and experience necessary to successfully complete the desired field work. Arcadis personnel responsible for directing indoor air and/or ambient air sample collection activities must have previous indoor air sampling experience and be able to complete the field work without direct supervision.

III. EQUIPMENT LIST

The equipment required for conducting a building survey is presented below:

- Building survey form specific to jurisdiction, or using one of the attached forms. If the building survey form does not include sufficient space for documenting the chemical product inventory, bring additional pages (attached) to complete the chemical product inventory.
- Photoionization detector (PID) capable of readings in the parts per billion by volume (ppbv) range (e.g., ppbRae)
- Nitrile gloves

IV. HEALTH AND SAFETY CONSIDERATIONS

All survey personnel should review the appropriate health and safety plan (HASP) and job safety analysis (JSA) prior to beginning work to be aware of all potential hazards associated with the job site and the specific task.

V. PROCEDURE

Using the appropriate building survey form, document site information; building construction, usage, and layout; and chemical products present in the building prior to conducting indoor air sampling. The building survey form should be jurisdiction-specific, or use one of the generic Arcadis forms for either a commercial or residential building included in Attachment A.

- Complete the portions of the form provide site and property information. This information may be completed in advance of the building survey.
- If property contact is available, review building construction, layout, usage, and occupancy information with property contact. If no property contact is available, complete these portions of the form based on observations during the building survey.
- Document observed products or materials that may potentially produce or emit volatile organic compounds (VOCs) on the building survey form, or if sufficient space is unavailable, on separate pages. Record brand name, product name, and product identification number; take a reading with the PID to

evaluate potential off-gassing; and take a photograph of each product or material documented. Use nitrile gloves, as needed, to handle chemical products. If the building is owned and/or occupied by a commercial/industrial occupant, ask the property contact whether a copy of the chemical product inventory could be provided for confirmatory purposes.

- Items or materials that contain contaminants of concern and/or exhibit elevated PID readings shall be considered probable sources of VOCs. Request approval of the owner or occupant to have these items removed to a structure not attached to the target structure at least 48 hours prior to sampling, if possible.
- Note the buildings current condition, particularly the floor slab. Pay attention for any penetrations or perforations in the floor that could act as preferential pathways. These include floor cracks, floor drains, utility penetrations, and sumps.
- Set a date and time with the owner or occupant to return to conduct sampling.

VI. WASTE MANAGEMENT

No specific waste management procedures are required.

VII. DATA RECORDING AND MANAGEMENT

Notes taken during the initial building survey will be recorded on the building survey form. A copy of the building survey form will be transmitted to the Task Manager or Project Manager.

VIII. QUALITY ASSURANCE

Conduct quality assurance as required by the project-specific work plan and/or Quality Assurance Project Plan (QAPP).

TGI - INDOOR OR AMBIENT AIR SAMPLING AND ANALYSIS VIA USEPA METHOD TO-15

Rev #: 1

Rev Date: August 19, 2016

SOP VERSION CONTROL

Revision No	Revision Date	Page No(s)	Description	Reviewed by
1	8/19/2016	All	Updated Rev0	Mitch Wacksman

APPROVAL SIGNATURES

Prepared by: _____
Margaret Barteel

Date: 8/19/2016

Reviewed by: _____
Mitch Wacksman

Date: 8/19/2016

I. INTRODUCTION

This Technical Guidance Instruction (TGI) document describes the procedures to conduct a building survey prior to indoor air sampling.

This document describes general and/or specific procedures, methods, actions, steps, and considerations to be used and observed by Arcadis staff when performing work, tasks, or actions under the scope and relevancy of this document. This document may describe expectations, requirements, guidance, recommendations, and/or instructions pertinent to the service, work task, or activity it covers.

It is the responsibility of the Arcadis Certified Project Manager (CPM) to provide this document to the persons conducting services that fall under the scope and purpose of this procedure, instruction, and/or guidance. The Arcadis CPM will also ensure that the persons conducting the work falling under this document are appropriately trained and familiar with its content. The persons conducting the work under this document are required to meet the minimum competency requirements outlined herein, and inquire to the CPM regarding any questions, misunderstanding, or discrepancy related to the work under this document.

This document is not considered to be all inclusive nor does it apply to all projects. It is the CPM's responsibility to determine the proper scope and personnel required for each project. There may be project- and/or client- and/or state-specific requirements that may be more or less stringent than what is described herein. The CPM is responsible for informing Arcadis and/or Subcontractor personnel of omissions and/or deviations from this document that may be required for the project. In turn, project staff are required to inform the CPM if or when there is a deviation or omission from work performed as compared to what is described herein.

In following this document to execute the scope of work for a project, it may be necessary for staff to make professional judgment decisions to meet the project's scope of work based upon site conditions, staffing expertise, regulation-specific requirements, health and safety concerns, etc. Staff are required to consult with the CPM when or if a deviation or omission from this document is required that has not already been previously approved by the CPM. Upon approval by the CPM, the staff can perform the deviation or omission as confirmed by the CPM.

II. SCOPE AND APPLICATION

This Technical Guidance Instruction (TGI) document describes the procedures to collect indoor air or ambient air samples in passivated stainless steel canisters (e.g., SUMMA®) for the analysis of volatile organic compounds (VOCs) using United States Environmental Protection Agency (USEPA) Method TO-15 (TO-15).

III. PERSONNEL QUALIFICATIONS

Arcadis field sampling personnel will have current health and safety training, including 40-hour HAZWOPER training, site supervisor training, site-specific training, first aid, and cardiopulmonary resuscitation (CPR), as needed. Arcadis field sampling personnel will be competent in the relevant procedures and possess the required skills and experience necessary to successfully complete the

desired field work. Arcadis personnel responsible for directing indoor air and/or ambient air sample collection activities must have previous indoor air sampling experience and be able to complete the field work without direct supervision.

IV. EQUIPMENT LIST

The equipment required for indoor air sample collection is presented below:

- 6-liter, stainless steel passivated canisters (e.g., SUMMA®). Request one canister for each sampling location, plus duplicate canisters per project-specific requirements. If feasible, order extra canisters at a rate of 10 to 20% of the total number of sampling canisters (including duplicates).
- Flow controllers with in-line particulate filters and vacuum gauges. Flow controllers are pre-calibrated by the laboratory to the sampling duration [e.g., 8 hours] specified by the project team). Vacuum gauges are also generally supplied by the laboratory.
- Open-end wrench. Typical canister caps require 9/16-inch wrenches.
- Chain-of-custody (COC) form.
- Sample collection log (attached).
- Box, chair, tripod, or similar to hold canister above the ground surface at approximate breathing height (3-5 feet).
- Camera (optional, if photography is permitted at sampling locations).
- Hand-held weather meter (optional)

For abnormal situations (i.e., sumps, crawlspaces with no access, where canisters must be hidden, etc.), Teflon tubing may be used to collect an air sample. In these situations, ¼-inch Swagelok fittings (including nut, front sleeve, and back sleeve) or other methods may be appropriate to affix tubing to canister.

V. CAUTIONS

Care must be taken to minimize the potential for introducing interferences during the sampling event. As such, keep canisters away from heavy pedestrian traffic areas (e.g., main entranceways, walkways), if possible. Sampling personnel should not handle hazardous substances (such as gasoline), permanent marking pens (sharpies), wear/apply fragrances, or smoke cigarettes before and/or during the sampling event.

Specify sample collection duration with the laboratory when ordering equipment, and confirm with the laboratory upon equipment receipt. Sample integrity can be compromised if sample collection is extended to the point that the canister reaches atmospheric pressure. Sample integrity is maintained if sample collection is terminated prior to the target sample duration and a measurable vacuum (e.g., 5 inches Hg) remains in the canister when sample collection is terminated.

VI. HEALTH AND SAFETY CONSIDERATIONS

All sampling personnel should review the appropriate health and safety plan (HASP) and job safety analysis (JSA) prior to beginning work to be aware of all potential hazards associated with the job site and the specific task.

VII. PROCEDURE

Preparation of Passivated Canister and Collection of Sample

1. Record the following information on the sampling form (use a hand-held weather meter, contact the local airport or other suitable information source [e.g., weatherunderground.com] to obtain the following information):
 - ambient temperature
 - barometric pressure
 - wind speed
 - relative humidity
 - significant recent precipitation
 - snow/ice cover
2. For indoor air sampling, note whether the heating, ventilation, and air conditioning (HVAC) system is operational and record settings.
3. Choose the sampling location in accordance with the project sampling plan. If a breathing zone sample is required, place the canister on a box, chair, tripod, or other similar stand to locate the canister orifice 3 to 5 feet above the ground or floor surface. The canister may be affixed to wall/ceiling support with nylon rope or placed on a stable surface. In general, areas near windows, doors, air supply vents, and/or other potential sources of "drafts" shall be avoided.
4. Record canister serial number and flow controller number on the sampling log and COC form. Assign sample identification (ID), and record on canister ID tag, sample collection log (Attachment A), and COC form.
5. Remove the brass dust cap from the canister with the wrench. Attach the flow controller and vacuum gauge to the canister with the wrench. Tighten with fingers first, then gently with the wrench (roughly a quarter turn). Use caution not to over tighten fittings.
6. Open the canister valve to initiate sample collection. Record the date and local time (24-hour basis) of valve opening on the sample collection log and COC form. Collection of duplicate samples will include collecting two samples side by side at the same time.
7. Check the initial canister pressure using the vacuum gauge. Record the initial pressure in the canister on the sample log and COC form. The initial pressure reading should be evaluated with respect to project-specific and jurisdictional requirements. If the initial pressure registers less

than -25 inches of Hg, then the canister is not appropriate for use, and another canister should be used.

8. Photograph the canister and surrounding area, if photography is permitted at sampling locations.
9. If feasible, check the canister approximately half-way through the sample duration and note progress on sample logs.

Termination of Sample Collection

1. Arrive at the sampling location at least 1 to 2 hours prior to the end of the sampling interval (e.g., 6 hours following sample initiation for an 8-hour sampling duration).
2. Stop collecting the sample by turning the valve on the canister when the canister pressure reaches approximately -5 inches of Hg or when the desired sample time has elapsed, whichever comes first. Leaving some vacuum in the canister provides a way to evaluate whether the canister leaks before it reaches the laboratory.
3. Record the final canister pressure. Record the date and local time (24-hour basis) of valve closing on the sample collection log and COC form.
4. Remove the flow controller from the canister, re-install brass cap on canister fitting, and tighten with the wrench.
5. Package the canister and flow controller in accordance with Department of Transportation regulations available on the Transportation Health and Safety's Team Site on the Source for return shipment to the laboratory. The canister does not require preservation with ice or refrigeration during shipment.
6. Complete the forms and sample labels provided by the laboratory as directed (e.g., affix card with string).
7. Complete COC form; copy, photograph, or scan a version for the project file (if possible); and place the form in the shipping container. Close the shipping container and affix the custody seal to the container closure. Transmit canisters via courier delivery service (e.g., Federal Express or UPS) to laboratory for analysis.

VIII. WASTE MANAGEMENT

No specific waste management procedures are required.

IX. DATA RECORDING AND MANAGEMENT

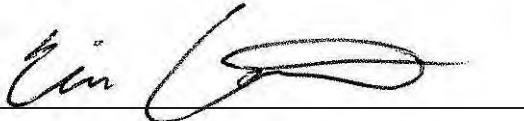
Notes will be recorded on the sampling log form (attached), with notations of project name, sample date, sample time, and sample location (e.g., description and GPS coordinates if available) sample start and finish times, canister serial number, flow controller number, initial vacuum reading, and final vacuum reading. Sampling logs and COC records will be transmitted to the Task Manager or Project Manager and stored in the project file consistent with client and project requirements.

X. QUALITY ASSURANCE

Conduct quality assurance as required by the project-specific work plan and/or Quality Assurance Project Plan (QAPP).

TGI - SUB-SLAB SOIL VAPOR OR SOIL VAPOR SAMPLING USING WHOLE AIR CANISTERS ANALYZED VIA USEPA METHOD TO-15

Rev #: 1


Date: September 18, 2016

SOP VERSION CONTROL

Revision No	Revision Date	Page No(s)	Description	Reviewed by
1	9/18/2016	All	Updated Rev0	Mitch Wacksman

APPROVAL SIGNATURES

Prepared by:

Date: 9/18/2016

Eric Cathcart

Reviewed by:

Date: 9/18/2016

Mitch Wacksman (Technical Expert)

I. INTRODUCTION

This Technical Guidance Instruction (TGI) document describes the procedures to conduct a building survey prior to indoor air sampling.

This document describes general and/or specific procedures, methods, actions, steps, and considerations to be used and observed by Arcadis staff when performing work, tasks, or actions under the scope and relevancy of this document. This document may describe expectations, requirements, guidance, recommendations, and/or instructions pertinent to the service, work task, or activity it covers.

It is the responsibility of the Arcadis Certified Project Manager (CPM) to provide this document to the persons conducting services that fall under the scope and purpose of this procedure, instruction, and/or guidance. The Arcadis CPM will also ensure that the persons conducting the work falling under this document are appropriately trained and familiar with its content. The persons conducting the work under this document are required to meet the minimum competency requirements outlined herein, and inquire to the CPM regarding any questions, misunderstanding, or discrepancy related to the work under this document.

This document is not considered to be all inclusive nor does it apply to all projects. It is the CPM's responsibility to determine the proper scope and personnel required for each project. There may be project- and/or client- and/or state-specific requirements that may be more or less stringent than what is described herein. The CPM is responsible for informing Arcadis and/or Subcontractor personnel of omissions and/or deviations from this document that may be required for the project. In turn, project staff are required to inform the CPM if or when there is a deviation or omission from work performed as compared to what is described herein.

In following this document to execute the scope of work for a project, it may be necessary for staff to make professional judgment decisions to meet the project's scope of work based upon site conditions, staffing expertise, regulation-specific requirements, health and safety concerns, etc. Staff are required to consult with the CPM when or if a deviation or omission from this document is required that has not already been previously approved by the CPM. Upon approval by the CPM, the staff can perform the deviation or omission as confirmed by the CPM.

II. SCOPE AND APPLICATION

This document describes the procedures for collecting exterior soil vapor or sub-slab soil vapor (herein referred to as "soil vapor") samples using whole air canisters for the analysis of volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method TO-15 (TO-15). This document assumes a sample port – either sub-slab or exterior soil vapor – has already been installed. This document covers the above ground assembly and sampling methods.

Method TO-15 uses a 1-liter 3-liter or 6-liter SUMMA® passivated stainless steel canister to collect a whole-air sample. The whole-air sample is then analyzed for VOCs using a quadrupole or ion-trap gas chromatograph/mass spectrometer (GS/MS) system to provide typical compound detection limits of 0.5 parts per billion volume (ppbv).

The following sections list the necessary equipment and detailed instructions for collecting soil vapor samples for VOC analysis.

III. PERSONNEL QUALIFICATIONS

Arcadis field sampling personnel will have current health and safety training, including 40-hour HAZWOPER training, site supervisor training, site-specific training, first-aid, and cardiopulmonary resuscitation (CPR), as needed. Arcadis field sampling personnel will be well versed in the relevant technical guidance instructions (TGIs) and possess the required skills and experience necessary to successfully complete the desired field work. Arcadis personnel responsible for leading soil vapor sample collection activities must have previous soil vapor sampling experience.

IV. EQUIPMENT LIST

The equipment required for soil vapor sample collection is presented below:

- 1,3, or 6 – liter stainless steel SUMMA® canisters (order at least one extra, if feasible) (batch certified canisters or individual certified canisters as required by the project);
- Flow controllers with in-line particulate filters and vacuum gauges; flow controllers are pre-calibrated to specified sample duration (e.g., 5-, 10, or 30- minutes) or flow rate (e.g., < 200 milliliters per minute [mL/min]); confirm with the laboratory that the flow controller comes with an in-line particulate filter and pressure gauge (order at least one extra, if feasible);
- 1/4-inch OD tubing (Teflon®, or similar);
- Extra 1/4-inch Swagelok front and back compression sleeves
- Decontaminated stainless steel Swagelok or comparable “T” fitting and ball or needle valve for isolation of purge leg of sample train;
- Stainless steel duplicate “T” fitting provided by the laboratory (if collecting duplicate [i.e., split] samples);
- 60-mL syringe equipped with a three-way leur lock valve;
- Appropriate equipment and materials for quality assurance testing as laid out in the respective quality assurance TGIs (i.e., helium leak testing, water dam testing, methane testing);
- Appropriate-sized open-end wrench (typically 9/16-inch and 1/2”);
- Tedlar® bag to collect purge air for venting outside a structure if working inside;
- Portable weather meter, if appropriate;

- Chain-of-custody (COC) form;
- Sample collection log (attached);
- Nitrile gloves;
- Work gloves; and
- Field notebook

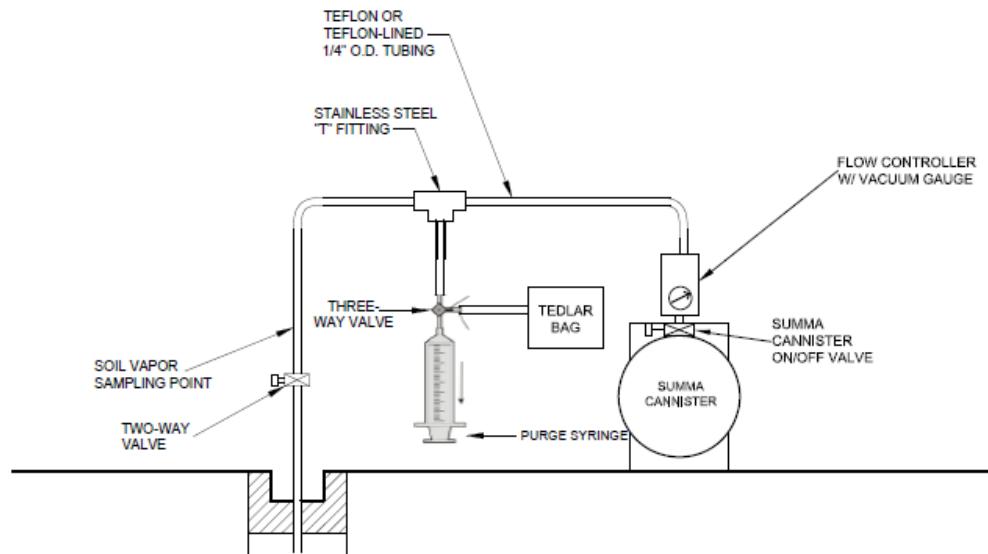
V. CAUTIONS

The following cautions and field tips should be reviewed and considered prior to installing or collecting a soil vapor sample.

- Sampling personnel should not handle hazardous substances (such as gasoline), permanent marking pens (sharpies), wear/apply fragrances, or smoke cigarettes/cigars before and/or during the sampling event.
- Ensure that the flow controller is pre-calibrated to the proper sample collection duration (confirm with laboratory). Sample integrity can be compromised if sample collection is extended to the point that the canister reaches atmospheric pressure. Sample integrity is maintained if sample collection is terminated prior to the target duration and a measurable vacuum (e.g., 3 -7 – inches Hg) remains in the canister when sample collection is terminated.
- The integrity of the sample train will be tested in accordance with the project specific requirements. These procedures are contained in their own TGI documents and include helium leak testing, water dam testing, and methane screening.
- It is important to record the canister pressure, start and stop times, and sample identification on a proper field sampling form. You should observe and record the time/pressure at the start, and then again one or two hours after starting the sample collection. It is a good practice to lightly tap the pressure gauge with your finger before reading it to make sure it is not stuck. If the canister is running correctly for a 24-hour period, the vacuum will have decreased slightly after one or two hours (for example from 29 inches to 27 inches). Consult your project manager, risk assessor or air sampling expert by phone if the SUMMA canister does not appear to be working properly.
- Ensure that there is still measurable vacuum in the SUMMA® after sampling. Sometimes the gauges sent from labs have offset errors, or they stick.
- When sampling carefully consider elevation. If your site is over 2,000' above sea level or the difference in elevation between your site and your lab is more than 2,000' then pressure effects will be significant. If you take your samples at a high elevation they will contain less air for a given ending pressure reading. High elevation samples analyzed at low elevation

will result in more dilution at the lab, which could affect reporting limits. Conversely low elevation samples when received at high elevation may appear to not have much vacuum left in them. http://www.uigi.com/Atmos_pressure.html.

- If possible, have equipment shipped a two to three days before the scheduled start of the sampling event so that all materials can be checked. Order replacements if needed.
- Requesting extra canisters and flow controllers from the laboratory should also be considered to ensure that you have enough equipment on site in case of an equipment failure.
- Check the seal around the soil vapor sampling port by using a tracer gas (e.g., helium) or other method established in the appropriate guidance document. See TGI library and project specific instructions for appropriate TGIs.


VI. HEALTH AND SAFETY CONSIDERATIONS

All sampling personnel should review the appropriate health and safety plan (HASP) and job safety analysis (JSA) prior to beginning work to be aware of all potential hazards associated with the job site and the specific task. Field sampling must be carefully performed to minimize the potential for injury and the spread of hazardous substances.

VII. SOIL VAPOR SAMPLE COLLECTION

Sample Train Assembly

The following procedures should be used to collect a soil vapor sample using a whole air canister (i.e., SUMMA canister). These methods can be used for both exterior soil vapor samples and interior sub-slab soil vapor samples collected from both permanent or temporary sample points installations. A schematic of the suggested sample train set up is included below

1. Assemble the sample train by removing the cap from the SUMMA canister and connecting the flow controller with in-line particulate filter and vacuum gauge. The flow controller attaches directly to the canister and dictates the sample duration. This piece will come preset from the laboratory.
2. Attach the canister and flow controller assembly to a stainless steel T-fitting using a short length of 1/4-inch OD Teflon tubing. This T-fitting adds a leg to the sample train that will be used to purge "dead" air from the sample train in order to collect a more representative sample.
3. Connect the purge syringe with three-way valve to one of the free ends of the T-fitting using a length of Teflon sample tubing, Swagelok compression fittings and silicon tubing.
4. Attach the Swagelok two-way valve to the remaining free end of the T-fitting using a short length of 1/4-inch OD Teflon tubing. The two-way valve will be immediately adjacent to the sample point in the train assembly. This valve is used to isolate the sample train from the sample point prior to sampling in order to test the sample train's integrity.
5. When collecting duplicate or other quality assurance/quality control (QA/QC) samples as required by applicable regulations and guidance, couple two SUMMA canisters using stainless steel Swagelok duplicate sample T-fitting supplied by the laboratory. Attach flow controller with in-line particulate filter and vacuum gauge to duplicate sample T-fitting provided by the laboratory.
6. Attach the terminal end of the two-way Swagelok valve to the sample port as appropriate. This may be done using the options below:

- a. Use a section of silicon tube to connect the Teflon sample tubing to the barbed fitting of a Vapor Pin™ port.
- b. Use Swagelok compression fittings to connect Teflon tubing to sampling port. Teflon tape should never be used on Swagelok compression fitting connections.
- c. Wrap the Teflon tubing with Teflon tape to seal around the slab then use VOC free clay to further seal around the slab if using temporary points.

Sample Documentation

1. Record on the sample log and COC form the flow controller number with the appropriate SUMMA® canister number.
2. Record the following information on the sample log, if appropriate (contact the local airport or other suitable information source [e.g., site-specific measurements, weatherunderground.com] to obtain the information):
 - a. wind speed and direction;
 - b. ambient temperature;
 - c. barometric pressure; and
 - d. relative humidity.
3. Take a photograph of the SUMMA® canister and surrounding area.

Sample Collection

1. Perform a leak-down-test by closing the two-way valve to the sample port. Open the three-way valve to the syringe and pull a vacuum. Quickly close the three-way valve and record the pressure indicated on the gauge connected to the canister. If there are no leaks in the system this vacuum should be held. If vacuum holds proceed with sample collection; if not attempt to rectify the situation by tightening fittings.
2. Open the two-way valve and purge the soil vapor sampling port and tubing with the portable sampling pump. Purge approximately three volumes of air from the soil vapor sampling port and sampling line using a flow rate of 200 mL/min. Purge volume is calculated by the following equation “purge volume = $3 \times \pi \times \text{inner radius of tubing}^2 \times \text{length of tubing}$ ”. Purge air will be collected into a Tedlar bag to provide that VOCs are not released into interior spaces. Perform quality control method tests concurrently, as appropriate
3. Close the three-way valve to the syringe in order to isolate this leg of the sample train.

4. Open the SUMMA® canister valve to initiate sample collection. Record on the sample log (attached) the time sampling began and the canister pressure.

If the initial vacuum pressure registers less than -25 inches of Hg, then the SUMMA® canister is not appropriate for use and another canister should be used.

5. Check the SUMMA canister approximately half way through the sample duration and note progress on sample logs.

Termination of Sample Collection

1. Arrive at the SUMMA® canister prior to the end of sample collection.
2. Record the final vacuum pressure. Stop collecting the sample by closing the SUMMA® canister valves. The canister should have a minimum amount of vacuum (approximately 5 inches of Hg or slightly greater).
3. Record the date and local time (24-hour basis) of valve closing on the sample collection log and COC form.
4. Disconnect sample tubing from the sample port; replace any coverings or abandon as appropriate to mitigate tripping hazards.
5. Remove the particulate filter and flow controller from the SUMMA® canister, re-install the brass plug on the canister fitting, and tighten with the appropriate wrench.
6. Package the canister and flow controller per Department of Transportation regulations for return shipment to the laboratory. These regulations can be found at the Transportation Safety Program's Team Site on the Source. The SUMMA® canister does not require preservation with ice or refrigeration during shipment.
7. Complete the appropriate forms and sample labels as directed by the laboratory (e.g., affix card with a string).
8. Complete the COC form and place the requisite copies in a shipping container. Close the shipping container and affix a custody seal to the container closure. Ship the container to the laboratory via overnight carrier (e.g., Federal Express) for analysis.

VIII. WASTE MANAGEMENT

No specific waste management procedures are required.

IX. DATA RECORDING AND MANAGEMENT

Measurements will be recorded on the sample log at the time of measurement with notations of the project name, sample date, sample start and finish time, sample location (e.g., GPS

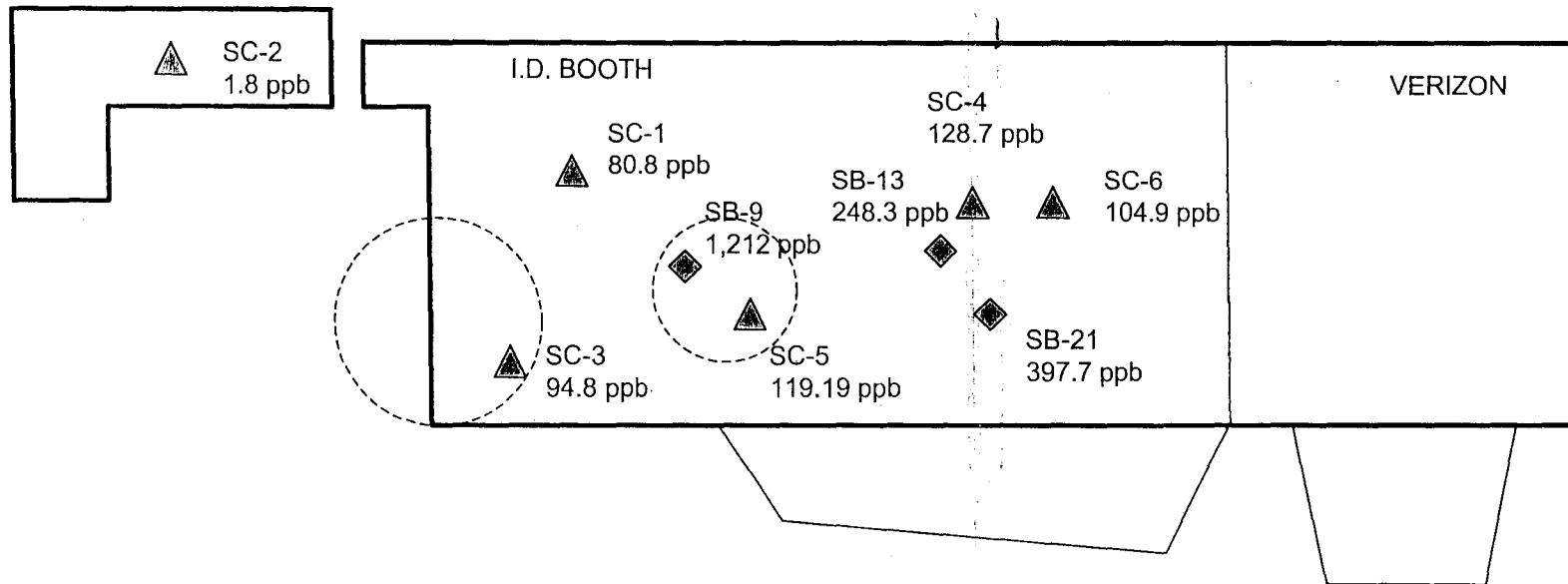
Downloaded and printed copies from the Approved Procedure Library are uncontrolled documents.

coordinates, distance from permanent structure [e.g., two walls, corner of room]), canister serial number, flow controller serial number, initial vacuum reading, and final pressure reading. Field sampling logs and COC records will be transmitted to the Project Manager.

X. QUALITY ASSURANCE

Duplicate samples should be collected in the field as a quality assurance step per project requirements. Generally, duplicates are taken from 10% of samples, but project specific requirements should take precedence.

XI. REFERENCES


DiGiulio et. al. 2003. Draft Standard Operating Procedure (SOP) for Installation of Sub-Slab Vapor Probes and Sampling Using EPA TO-15 to Support Vapor Intrusion Investigations. <http://www.cdphe.state.co.us/hm/indoorair.pdf> (Attachment C)

Di Giulio et. Al. 2006. Assessment of Vapor intrusion in Homes Near the Raymark Superfund Site Using Basement and Sub-Slab Air Samples. USEPA. EPA/600/R-05/147.

New York State Department of Health (NYSDOH). 2005. DRAFT "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" February 23, 2005.

Attachment C

Remedial Investigation Report Indoor Air Survey Results Figure

Concentrations of total detected volatile organic compounds (VOCs).

Phase 1 SRI Suma canister – 24 hr time-weighted average from ambient air (December, 1999)

Phase 2 SRI Suma canister – Grab sample below floor slab (October, 2001).

 Stearns & Wheeler Companies <small>DATE: MAR 02</small>	NYSEG – CORTLAND/HOMER FORMER MGP SRI
	FIGURE 5-21 INDOOR AIR SURVEY RESULTS <small>JOB No: 10126</small>

Arcadis of New York, Inc.
One Lincoln Center, 110 West Fayette Street, Suite 300
Syracuse, New York 13202
United States
Phone: 315 446 9120
Fax: 315 449 0017
www.arcadis.com