

2011 PERIODIC REVIEW REPORT (PRR) FORMER SCM – CORTLANDVILLE 839 NYS ROUTE 13 CORTLANDVILLE, NEW YORK 13045 SITE NO.: 712006

Prepared For: New York State Department of Environmental Conservation Attn: Mr. Thomas Festa, Project Manager 625 Broadway, BURE Albany, New York 12233

> Owner: Cortland Commerce Center, LLC. Attn: Mr. David Yaman 839 NYS Route 13 Cortland, New York 13045

> > Prepared By: GeoLogic NY, Inc. 37 Copeland Avenue P.O. Box 350 Homer, New York 13077

January 2012 GeoLogic Project No. 210087

TABLE OF CONTENTS

1	NTRODUCTION	
2	SITE OVERVIEW 1 2.1 Site Location and Description	222
3	NSTITUTIONAL AND ENGINEERING CONTROLS	1 1
4	MONITORING PLAN	
5	DATA TRENDS AND REMEDIAL EFFECTIVENESS 8 5.1 Data Summary 8 5.2 Remediation System Data Trends 9 5.3 Groundwater Quality Data Trends 9 5.4 Performance and Effectiveness of the IC's/EC's 10 5.5 Contaminant Mass Removal 11	399
6	RECOMMENDATIONS11	
7	REFERENCES11	
8	CERTIFICATION	2

2011 PERIODIC REVIEW REPORT FORMER SCM - CORTLANDVILLE 839 NYS ROUTE 13 CORTLANDVILLE, NEW YORK 13045 SITE NO.: 712006

1 INTRODUCTION

This report provides the basis for review and certification of the groundwater treatment system and the institutional and engineering controls (IC's/EC's) implemented at Site No. 712006. Signed Institutional and Engineering Controls Certification Forms are included in Appendix A.

The site is currently owned by Cortland Commerce Center, LLC. (CCC) and this report is prepared and submitted at the direction of CCC, consistent with the Site's remedial program as approved by the New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH). The reporting period addressed in this report is January 1, 2011 to December 31, 2011.

1.1 Summary of Site

Former manufacturing activities at the site resulted in contamination of soil and groundwater with chlorinated organic solvents, primarily trichloroethylene (TCE) and its decomposition products. In 1986, the contaminant plume was found to extend approximately 1.5 miles downgradient (north) of the facility. The potential contaminant sources identified included a 3,000-gallon aboveground storage tank (AST) that formerly contained TCE, a 20,000-gallon underground storage tank (UST) that formerly contained tramp oil and four areas of stained surface soil associated with past material handling practices. Additionally, a former tumbling area was identified within the building footprint (adjacent to monitoring well MW-L16).

Remedial measures implemented at the site have included installing a soil vapor extraction (SVE) system and a groundwater pump and treat system. The SVE system was activated in 1990 and subsequently dismantled at an unknown date between 1996 through 1998. The groundwater remediation system is currently in operation. In June 1994, the Classification of the site was changed from 2 to 4 (site properly closed – required continued management).

2 SITE OVERVIEW

2.1 Site Location and Description

The site is located at 839 NYS Route 13, Town of Cortlandville, County of Cortland and State of New York (Appendix B, Drawing No. 1).

The site is approximately 47.4 acres in size and is developed with a one-story building occupying approximately 415,000 square feet. The building is utilized for office space, warehouse storage and manufacturing. The remainder of the site consists of employee

2011 PERIODIC REVIEW REPORT FORMER SCM - CORTLANDVILLE 839 NYS ROUTE 13 CORTLANDVILLE, NEW YORK 13045 SITE NO.: 712006

1 INTRODUCTION

This report provides the basis for review and certification of the groundwater treatment system and the institutional and engineering controls (IC's/EC's) implemented at Site No. 712006. Signed Institutional and Engineering Controls Certification Forms are included in Appendix A.

The site is currently owned by Cortland Commerce Center, LLC. (CCC) and this report is prepared and submitted at the direction of CCC, consistent with the Site's remedial program as approved by the New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH). The reporting period addressed in this report is January 1, 2011 to December 31, 2011.

1.1 Summary of Site

Former manufacturing activities at the site resulted in contamination of soil and groundwater with chlorinated organic solvents, primarily trichloroethylene (TCE) and its decomposition products. In 1986, the contaminant plume was found to extend approximately 1.5 miles downgradient (north) of the facility. The potential contaminant sources identified included a 3,000-gallon aboveground storage tank (AST) that formerly contained TCE, a 20,000-gallon underground storage tank (UST) that formerly contained tramp oil and four areas of stained surface soil associated with past material handling practices. Additionally, a former tumbling area was identified within the building footprint (adjacent to monitoring well MW-L16).

Remedial measures implemented at the site have included installing a soil vapor extraction (SVE) system and a groundwater pump and treat system. The SVE system was activated in 1990 and subsequently dismantled at an unknown date between 1996 through 1998. The groundwater remediation system is currently in operation. In June 1994, the Classification of the site was changed from 2 to 4 (site properly closed – required continued management).

2 SITE OVERVIEW

2.1 Site Location and Description

The site is located at 839 NYS Route 13, Town of Cortlandville, County of Cortland and State of New York (Appendix B, Drawing No. 1).

The site is approximately 47.4 acres in size and is developed with a one-story building occupying approximately 415,000 square feet. The building is utilized for office space, warehouse storage and manufacturing. The remainder of the site consists of employee

parking areas, several small out-buildings, treated water infiltration lagoons and vacant undeveloped land.

The site is bordered on the north by Lime Hollow Road and a predominately residential area. It is bordered on the east by NYS Route 13 and a predominately commercial area. It is bordered on the south by a cemetery and the JM Murray Center (formerly part of the Smith Corona complex). It is bordered on the west by a mixture of undeveloped land, agricultural land and some residential properties.

2.2 Site History

The site was formerly owned and operated by Smith Corona Corporation (SCC), previously known as SCM Corporation (SCM). SCC utilized the site for the purposes of manufacturing typewriters. Trichloroethylene was used on the site by SCC during manufacturing processes.

In 1999, S. C. W. P., LLC (SCWP) purchased land and buildings from SCC and assumed operational responsibilities for the groundwater remediation system.

Cortland Commerce Center, LLC (CCC) purchased the site in May of 2010 from SCWP and assumed operational responsibilities for the groundwater remediation system.

2.3 Nature and Extent of Contamination

The site overlies the Otter Creek/Dry Creek aquifer. Town of Cortlandville municipal water wells are located approximately 2,300 feet west of the site and the City of Cortland municipal water wells are located approximately 1.5 miles north-northeast of the site.

In or around 1986 a plume of contaminated groundwater was detected during the investigation of an unrelated petroleum spill. This plume extended from the SCM site approximately 1.5 miles downgradient (generally north) toward the City of Cortland municipal well field. The contaminants in this plume were identified as (TCE) and related decomposition products.

In accordance with the 1989 Settlement Agreement, monitoring of off-site groundwater contamination has been conducted periodically by the NYSDEC, Cortland County Soil and Water Conservation District and the Cortland County Health Department.

2.4 Chronology of Site Remediation Activities

The remediation system, consisting of a recovery well, aeration tower, pipeline, rock cascade and an infiltration lagoon system, remains in place and has not been modified since its original construction.

A brief summary of the site remediation activities undertaken over the past 25 years is presented below¹:

- October 1986 March 1987: Use of TCE was discontinued. Various aboveground storage tanks (AST's) and underground storage tanks (UST's) containing TCE, tramp oil, fuel oil and muriatic acid were removed. Visibly contaminated soil encountered during the tank work was also removed. In addition, four areas of stained soil related to past material handling practices were excavated and disposed of off-site.
- January 1989: The Settlement Agreement for remediation of the site was signed between the NYSDEC, other parties, and SCC on January 12, 1989.
- September December 1989: Approval of the remediation Phase I design was obtained from the NYSDEC on September 22, 1989. Phase I consisted of investigation, design, construction and installation of a groundwater recovery well. The groundwater recovery well came on-line on December 29, 1989. The water from the recovery well was utilized for non-contact cooling purposes and discharged into an existing sewer line until the Phase II system could be completed.
- May 1990: Approval of the remediation Phase II design was obtained from the NYSDEC on May 29, 1990. Phase II included installation of a (SVE) System and groundwater remediation system. The groundwater remediation system consisted of an air stripping column (aeration tower), distribution piping (water from recovery well to the air stripper and from the air stripper to an infiltration lagoon) and an engineered infiltration lagoon.
- August 1990: The SVE system came on-line.
- October 1990: The groundwater remediation system came on-line.
- 1996-1998: At an unknown date the SVE system was shut-down and decommissioned. GeoLogic has not located or reviewed documentation related to the shut-down of the SVE system.
- 1997-1998: At an unknown date the well monitoring frequency was reduced to annual. GeoLogic has not located or reviewed documentation related to the modification of the sampling frequency.
- April 1999: SCWP purchased the SCC land and buildings and assumed operational responsibilities for the groundwater remediation system.
- May 2001: With the permission of the NYSDEC, the stripping tower blower was turned off. The influent TCE concentration has reduced to the point that the tower was able to reduce TCE levels adequately to meet discharge limits without forced air flow. Sampling frequency of the tower influent, tower discharge and outfall cascade was increased from quarterly to monthly.

• May 2010: CCC purchased the SCWP land and buildings and assumed operational responsibilities for the groundwater remediation system.

2.5 Cleanup and Site Closure Criteria

The site-wide groundwater cleanup criteria for the site are the New York State Class GA groundwater quality standards. Currently, the standard for TCE is 5 ug/L.

All site wells are required to be monitored a minimum of annually until all wells meet the clean-up criteria. When all wells meet the clean-up criteria, the remediation system may be shut down.

Groundwater monitoring will continue for a period of five years after the remedial system is shut down. If at any time during the post-remediation monitoring period any of the samples exceed the site-wide clean-up criteria, the system will be restarted. For the first two years, post remediation monitoring will occur quarterly, then semi-annual for the next two years and finally once in the fifth year. If the remedial system must be restarted for any reason, the five year post shut-down monitoring program will be restarted once the site-wide cleanup criteria has been re-achieved.

3 INSTITUTIONAL AND ENGINEERING CONTROLS

Signed Institutional and Engineering Controls Certification Forms are included in Appendix A.

3.1 Summary of Institutional Controls (IC's)

No IC's are identified in the Settlement Agreement or Record of Decision.

3.2 Summary of Engineering Controls (EC's)

The EC's implemented at the site are described below:

• A groundwater remediation system consisting of an air stripping column (aeration tower), distribution piping (water from recovery well to the aeration tower and from the aeration tower to the infiltration lagoons) and engineered infiltration lagoons has been operating at the site since 1990.

Periodic monitoring of system performance is performed. The system must continue to operate until groundwater quality meets the clean-up criteria for the site. It should also be noted that although not required to be operated at present, the blowers (primary and back-up) for the air stripper must remain in place and in good working order.

3.2.1 Summary of EC Operations During Reporting Period

Site Monitoring & Groundwater Treatment System

The groundwater remediation system has operated without major breakdown during this reporting period. The pump rate was checked during monthly sampling events and has met the design standard of 700 to 1,000 gallons per minute (gpm)², with an average flow rate of 754 gallons per minute. Routine maintenance has been performed on system components on an as-needed basis.

Both the primary and back-up blowers were energized and determined to be operational in May 2011.

The reference elevation of well MW-7 was established relative to the existing monitoring network.

A second attempt was made to dislodge the blockage in well MW-2D. The attempt was unsuccessful; the well remains blocked at a depth of 50 feet. It is likely that large gravel entered the well when it was originally damaged and that the gravel has become lodged in the well casing. Quarterly monitoring of well MW-10D was then initiated to supplement the monitoring of conditions at the down gradient property boundary.

Sub-Slab Depressurization (SSD)/Soil Vapor Extraction (SVE) System

A sub-slab depressurization/soil vapor extraction system was installed in the vicinity of the former tumbling pit (Drawing No. 5, Appendix F). The system consists of a single extraction point (well MW-L16) connected at a Gast Model R6P350A regenerative blower that extracts 218 cfm of vapor from under and around the former tumbling pit.

In order to appropriately size the extraction blower and to estimate the probable extent of the negative pressure field to be induced, a pilot test was conducted in March 2011. The pilot test included the installation of 10 permanent vapor monitoring points (Drawing No. 5, Appendix F).

Originally it was planned that the pilot test would be conducted in three different configurations: utilizing the upper screen section of MW-L16 only, utilizing the lower screen section only, and using both screen sections together. However, at the time of the pilot testing, the lower screen section was submerged, leaving only the upper screen available for the testing.

A Gast Model 6350 regenerative blower was utilized for the pilot test. The exhaust from the blower was piped out of the building and connected to a vapor phase activated carbon treatment canister (Carbtrol Model G-2S).

The pilot test was conducted for a period of 3 hours. During the test, the extraction rate averaged 170 cfm. The vacuum at the extraction point was 15 inches of water (WC). A vacuum was induced at all ten (10) vapor monitoring points and ranged from 0.02 WC at VP-35 to 0.2 WC at VP-5. The vacuum measurements are presented in Appendix F.

In addition to the physical measurements, pre-test samples of the soil vapor were obtained at VP-5, VP-25, VP-40 and VP-55. Samples were also obtained from MW-L16 (extraction point) during the first 75 minutes and the last 75 minutes of the test. The analytical results in Appendix F.

Total TCE concentrations in the pre-test samples from the vapor monitoring points ranged from 410 ug/m^3 at VP-55 to 82,000 ug/m^3 at VP-25. The initial TCE concentration in the extracted vapor from MW-L16 was 27,000 ug/m^3 and the concentration at the end of the test was 13,000 ug/m^3 .

Based on the results of the pilot test, it was concluded that a negative pressure field could be induced in the entire area under and around the former tumbling pit buy utilizing a single extraction point (MW-L16). The analytical results also demonstrated that the system would be effective in removing residual contamination from under and around the former tumbling pit.

Following activation of the SSD/SVE system, pressure measurements were made in each of the vapor monitoring points. Negative measurements were recorded at each of the vapor monitoring points and were similar to those measured during the pilot test. Note: VP-40 was not accessible during the post start-up monitoring.

A sample of the system emissions was also obtained. The results are in Appendix F. The TCE concentration $18,000 \text{ ug/m}^3$

4 MONITORING PLAN

4.1 Monitoring Plan Components

Monitoring at the site consists of monthly sampling of the groundwater remediation system, quarterly monitoring of MW-10D and annual sampling of seventeen (17) groundwater monitoring wells (locations depicted on Drawing No. 2, Appendix B). Sampling events data trends and supporting charts are discussed in Section 5.

4.2 Summary of Monitoring Completed During Reporting Period

The following sampling events have taken place during this reporting period:

- Annual Sampling of Groundwater Monitoring Wells (11/21/2011 11/23/2011):
 - Interior Shallow Wells: MW-6, MW-7, MW-8, MW-11 and MW-12S;
 - Interior Deep Wells: MW-9 and MW-12D;
 - Perimeter Shallow Wells: MW-5S, MW-1S, MW-10S, MW-2S and MW-4S;
 - Perimeter Deep Wells: MW-4D, MW-5D, MW-1D and MW-10D;
 - Facility Well: MW-L16 (installed in 2008).
 - Quarterly Monitoring of MW-10D (May 2011 and August 2011, plus annual sampling)
- Monthly Groundwater Remediation System (36 total samples in 2011):
 - Treatment System Influent (12 samples in 2011);
 - Tower Discharge (12 samples in 2011);
 - Cascade Outfall (12 samples in 2011).

All groundwater samples were submitted for analysis to Life Science Laboratories, Inc., LSL Central Lab located at 5854 Butternut Drive, East Syracuse, New York for analysis. The groundwater samples were analyzed for specific Volatile Organic Compounds (VOC's) (1,1,1-Trichloroethane, 1,1-Dichloroethene, 1,2-Dichloroethene, Trichloroethene and Vinyl Chloride) utilizing EPA Method 8260B.

4.2.1 Summary of Monthly Remediation System Sampling

Each month samples are collected at the Tower Influent, Tower Discharge and Cascade Outfall. The pumping rate is also recorded during each monthly sampling event. Samples are submitted for laboratory analysis, results are reviewed and monitoring reports are submitted to the NYSDEC and NYSDOH after each monthly sampling event.

4.2.2 Summary of Annual Sampling Event

The depth to groundwater was measured in each of the seventeen (17) monitoring wells prior to collecting groundwater samples during the November 21, 2011 through November 23, 2011 annual sampling event. Based on recorded water levels, shallow and deep groundwater contour maps were prepared (Drawing No. 3 and No. 4, Appendix B). Generally the groundwater flow for the site was to the north-northwest; and was consistent with the previously reported flow direction. The recovery well continues to depress the water table sufficiently to influence groundwater flow at the site.

The field observations, including water levels, for the 2011 annual sampling event are summarized in Table 1, located in Appendix C.

Groundwater samples are submitted for laboratory analysis, results are reviewed and the results are detailed in the annual PRR for the site. The laboratory reports for the 2011 Annual Sampling event and the monthly monitoring results are included in Appendix E.

The results for the annual sampling event have been up-loaded to the NYSDEC EQuIS database.

4.3 Monitoring Deficiencies

During the annual sampling event (November 21, 2011 through November 23, 2011) monitoring well MW-2D was unable to be sampled due to blockage within the well at a depth of about 50 feet.

5 DATA TRENDS AND REMEDIAL EFFECTIVENESS

5.1 Data Summary

Data from the annual groundwater sampling event and monthly remediation system sampling events are summarized in the following tables and charts and are included in Appendix C and Appendix D.

- APPENDIX C: Tables
 - Table 1: Groundwater Sampling Field Observations;
 - Table 2: Summary of Groundwater Analytical Results;
 - Table 3: Monthly Analytical Results May 2001 2011.
- APPENDIX D: Charts
 - Charts 1 through 4: Remediation System TCE Concentrations;
 - Charts 5 & 6: TCE Concentrations in Perimeter Shallow Wells;
 - Charts 7 & 8: TCE Concentrations in Perimeter Deep Wells;
 - Charts 9 & 10: TCE Concentrations in Interior Shallow Wells;
 - Charts 11 &12: TCE Concentrations in Interior Deep Wells.

The monitoring wells are categorized into four (4) groups (Perimeter Shallow, Perimeter Deep, Interior Shallow and Interior Deep). Charts 5 through 12 depict the TCE concentrations for both the last 10 years and 20 years for each well group (Appendix D). It should also be noted that in 2008 monitoring well MW-L16 was installed and is located inside the facility adjacent to a former tumbling pit. The data from this well is included in Table 2, located in Appendix C.

Periodic Review Report - 2011 Former SCM - Cortlandville, Site No.: 712006 January 2012 Page 9

5.2 Remediation System Data Trends

A total of twelve monthly sampling events have taken place during this reporting period. Sampling of the remediation system consists of collecting samples from three (3) locations: Cascade Outfall, Tower Discharge and Tower Influent. Charts 1 through 3, located in Appendix D, depict the TCE concentrations for each of the three sample locations. As indicated in Charts 1, 2 and 3 the TCE concentration at each of the sample locations exhibits a continued downward trend.

The average TCE concentrations for the 2011 samples are listed below:

- Tower Influent: 10.3 µg/L
- Tower Discharge: 4.2 µg/L
- Cascade Outfall: 1.9 µg/L

5.3 Groundwater Quality Data Trends

Groundwater quality data trends are broken-down by the four groups of monitoring wells indicated below:

• Perimeter Shallow Wells (MW-1S, MW-2S, MW-4S, MW-5S and MW-10S)

Three (3) of the five (5) perimeter shallow wells revealed TCE concentrations below the cleanup objective of 5 μ g/l. Wells MW-1S and MW-10S, did not meet the cleanup objective (a TCE concentration of 5.4 and 5.8 μ g/L, respectively). 2011 year's results for all five (5) wells were similar to previous years and continue to indicate a decreasing trend. Charts 5 and 6, located in Appendix D, depict 10-Year and 20-Year TCE concentrations for the perimeter shallow wells.

• Perimeter Deep Wells (MW-1D, MW-2D, MW-4D, MW-5D and MW-10D)

It should be noted that MW-2D could not be sampled due to a blockage. The four (4) perimeter deep wells sampled yielded TCE concentrations below the cleanup objective of 5 μ g/L (the average concentration in MW-10D was 4.6 ug/L). The result for MW-10D averaged was a non-detectable level of TCE, which is similar to the past several years. All four (4) wells continue to demonstrate a long term downward trend. Charts 7 and 8, located in Appendix D, depict 10-Year and 20-Year TCE Concentrations for the perimeter deep wells.

• Interior Shallow Wells (MW-6, MW-7, MW-8, MW-11 and MW-12S)

Four (4) of the interior shallow wells revealed TCE concentrations above the cleanup objective of 5 μ g/l. With the exception of MW-12S, the results for all of the interior shallow wells were lower than 2010. The results for all of the wells continue to indicate a decreasing trend over the past 20 years. Charts 9 and 10, located in Appendix D, depict 10-Year and 20-Year TCE Concentrations for the interior shallow wells.

• Interior Deep Wells (MW-9 and MW-12D)

Both of the interior deep wells revealed TCE concentrations below the cleanup objective of 5 μ g/l. The 2011 results for both wells were a non-detectable level (<1.0 ug/L) of TCE. Charts 11 and 12, located in Appendix D, depict 10-Year and 20-Year TCE Concentrations for the interior deep wells.

Overall the TCE concentrations detected in the wells continue to indicate a decreasing trend over a 20-year span since the current groundwater treatment system was activated.

5.4 Performance and Effectiveness of the IC's/EC's

The groundwater remediation system continued to be effective in 2011 as demonstrated by both the system operating conditions and the continued decreasing trend of TCE concentrations in the wells over time.

The groundwater pumping system was designed for:

- Minimum Withdrawal Rate: 700 gpm
- Maximum Withdrawal Rate: 1,000 gpm

The average withdrawal rate for 2011 was 754 gpm. This is well within the approved design operational range.

As stated in Section 5.3, contaminant concentrations have shown a declining trend over the past 20 years. This is particularly evident at the wells along Lime Hollow Road (the downgradient side of the site (wells MW-1S & MW-1D, MW-2S & MW-2D, MW-4S & MW-4D, and MW-10S & MW-10D). In 1990, the highest yearly average concentration of TCE in these wells was observed at well cluster MW-10S & MW-10D, 76 ug/L and 36 ug/L respectively. Over the past three years (2009-2011), the highest average concentration of TCE has been 6.5 ug/L at MW-10S.

Contaminant trends in the interior wells echo those along the downgradient boundary. The highest average TCE concentration in 1990 was 1,549 ug/L at MW-11. Over the past three years, the highest average concentration has been 23.7 ug/L at MW-12S. This represents a 98% decline over the past 20 years.

Given the contaminant concentrations at the site have declined by more than 90% over the past 20 years, the system continues to be effective at removing contamination from the subsurface.

Periodic Review Report - 2011 Former SCM - Cortlandville, Site No.: 712006 January 2012 Page 11

5.5 Contaminant Mass Removal

Using the following:

- Average pumping rate = 754 gpm
- Average influent concentration of TCE = 10.2 ug/L
- Density of TCE = 1.465 g/mL

The system removal rates for 2011 are:

- Total volume of water pumped = 396,302,000 gallons
- Total mass of TCE removed= 15 Kg or 33 lb.
- Total volume of TCE removed = 10.2 L or 2.7 gal.

6 **RECOMMENDATIONS**

It is recommended that the current monthly remediation system sampling, quarterly sampling of MW-10D and annual groundwater sampling be conducted for another year. In addition, an annual submission of Periodic Review Reports is thought to be adequate to document data trends at the site.

The distribution piping from the cascade to the lagoons will be inspected in the Spring of 2012. The need to scarify the lagoons will be assessed at that time.

The next annual sampling event is scheduled for November 2012. All seventeen (17) monitoring wells will be sampled.

The pressure field associated with the SSD/SVE system will be measured in November 2012 as part of the annual sampling event.

7 REFERENCES

¹ 2009 Periodic Review Report, February 2010, Buck Engineering, LLC

² Remediation *System As-Built Report*, December 1991, O'Brien & Gere

³ Focused Feasibility Study, May 1988, O'Brien & Gere

Periodic Review Report - 2011 Former SCM - Cortlandville, Site No.: 712006 January 2012 Page 12

GeoLogic

8 CERTIFICATION

Signed Institutional and Engineering Controls Certification Forms are included in Appendix A.

We certify that to the best of our professional knowledge and belief, we meet the definition of *Environmental Professional* as defined in 312.10 of 40 CFR 312. We further certify this report to be factually presented to the best of our knowledge and belief.

Prepared by,

GeoLogic NY, Inc.

Son Senior Author

Forrest Earl President / Principal Hydrogeologist

Senior Reviewer Kenneth J. Teter, P.E./K. Teter Consulting, LLC NYS LN 081583

P:\PROJECTS\2010\210087-CCC\REPORT\2011 Annual PRR\Periodic Review Report for CCC 2011 Text.DOC

APPENDIX A

INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site No. 712006	Site Details	Box	1
Site Name SCM - Cortlandville			
Site Address: 839 Route 13 South City/Town: Cortlan dvill e County: Cortland Site Acreage: 47.3	Zip Code: 13045		
Reporting Period: January 01, 2011 t	o January 01, 2012		
		YES	NO
1. Is the information above correct?		,¤∕	
If NO, include handwritten above of	or on a separate sheet.		
Has some or all of the site propert tax map amendment during this R	y been sold, subdivided, merged, or undergone a eporting Period?		×
(see 6NYCRR 375-1.11(d))?	e at the site during this Reporting Period		X
Have any federal, state, and/or loc for or at the property during this Re	al permits (e.g., building, discharge) been issued eporting Period?	X	
if you answered YES to question that documentation has been pr	ns 2 thru 4, include documentation or evidence eviously submitted with this certification form.	•	
5. Is the site currently undergoing de		۵	X
	· · · · · · · · · · · · · · · · · · ·	Box 2	
		YES	NO
Is the current site use consistent w Industrial	ith the use(s) listed below?	\times	
7. Are all ICs/ECs in place and function	oning as designed?	X	
IF THE ANSWER TO EITHER DO NOT COMPLETE TI	QUESTION 6 OR 7 IS NO, sign and date below a HE REST OF THIS FORM. Otherwise continue.	nd	
A Corrective Measures Work Plan mus	t be submitted along with this form to address th	løse iss	ues.
A Signature of Owner, Remedial Party or D	esignated Representative	>	
	-		

9775837703

SITE NO. 712006		Box 3
Description of In	stitutional Controls	
<u>Parce!</u> 95.00-10-01.100	•	UTER, CC
		Box 4
Description of Er	igineering Controls	
<u>Parcel</u> 95.00-10-01.100	Engineering Control	
	Groundwater Containment Pump & Treat Vapor Mitigation	
Engineering Con	trol Details for Site No. 712006	
Parcel: 95.00-10-01.		
meets the cleanup cri The groundwater mo in 2001 corresponden blower component as monitoring of the grou blower must remain in the onsite groundwate A Soil Vapor Extraction	ngineering controls required for OU1 (onsite). The nance of the groundwater extraction & treatment sy teria of 5 ug/L for TCE for all wells. nitoring wells must be sampled at periodic intervals ince, the groundwater extraction & treatment system long as effluent concentrations remain below 5 ug/ indwater extraction & treatment system influent & e o place and in working condition. The groundwater er containment system, designed to eliminate contain on system was installed as part of the remedial prog il operation was discontinued sometime after May 1	s (currently annually). As outlined may be operated without the fL for TCE, and with monthly ffluent. The blower and a backup extraction system also acts as minant migration offsite.

Box 5 ÷ Periodic Review Report (PRR) Certification Statements 1. I certify by checking "YES" below that: a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification: b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. YES NO 2. If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true: (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department; (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment; (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control; (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document. YES NO IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues. Signature of Owner? Remédial Party or Designated Representative

₽.q

IC CERTIFICATIONS SITE NO. 712006 Box 6 SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. 839 1045 1200 print busihess address 075 13 print name 110-(Owner or Remedial Party) am certifying as 2 for the Site named in the Site Details Section of this form. 27/17 Signature of Owner, Remedial Party, or Designated Representative Rendering Certification Dat

9775837703

c d

	IC/EC CERTIFICATIONS	
F	Professional Engineer Signature	Box 7
unishable as a Class "A" misdemea	4 and 5 are true. I understand that a fals anor, pursuant to Section 210.45 of the P CLENTON ER at	enal Law.
m certifying as a Professional Engir	print business address	ER
ignature of Professional Engineer, femedial Party, Rendering Certificat	for the Owner or	Date

9.q

	TOWN OF CORTL BUILDING PE		COPY
Fee Paid \$ 2,440	Occ. Class $_B_$	Permit No.	
			5.00-10-01.100
Name of Applicant <u>+ Viumo (</u> Address <u>685 CTP</u>	Hout Capalatic	Phone No	315455-5941
	Murerts @ hay		
Name of Property Owner	d Jaman	Phone No	-107-756-587
e-mail address (owner)	· · · · · · · · · · · · · · · · · · ·		
Contractor Hay ARC F	hurits & hear	DA Phone No.	35-455-5941
	ested 839 R+ 13		
Size of Lot	Setbacks: Front Rear C & & NOUATED C Proposed Use Official	I Left Side Man S Size of Buil	Right Side
Sewage Disposal	Water Supply	Est. Cost _	1,200,000
Date Health Dept. Approval	N/A	Sq. Ft. Liva	ble Area λ/A

Submit drawing showing location of building on lot in relation to property lines. A set of Building Plans detailing: foundation, framing, grade & species of lumber, Energy Code compliance, sheathing, interior walls, stairs, windows, and any other information that may be necessary to determine compliance with the N.Y.S. Building Code.

All Statements contained herein are true and the work shall be performed in the manner set forth in this application in accordance with all codes of the State of New York, and all laws, ordinances, codes and regulations of the TOWN OF CORTLANDVILLE, NEW YORK. The Code Enforcement Officer shall be notified immediately in the event of changes occurring during construction. Certificate of Occupancy is required prior to occupying the premises. The undersigned grants the Town Building Inspector permission to enter upon the premises at all reasonable times for the purpose of making necessary inspections.

Υ.q

Permit APPROVED

Permit DISAPPROVED 61 Date: Expiration Date: _6

Signature Signature of Inspector Cortiandville Town Clerk 6/13/11 CK # 2005:55

5274000 mah

rev. 9.09 (4 pt.)

18%, 9.09 (*) ht

9775837703

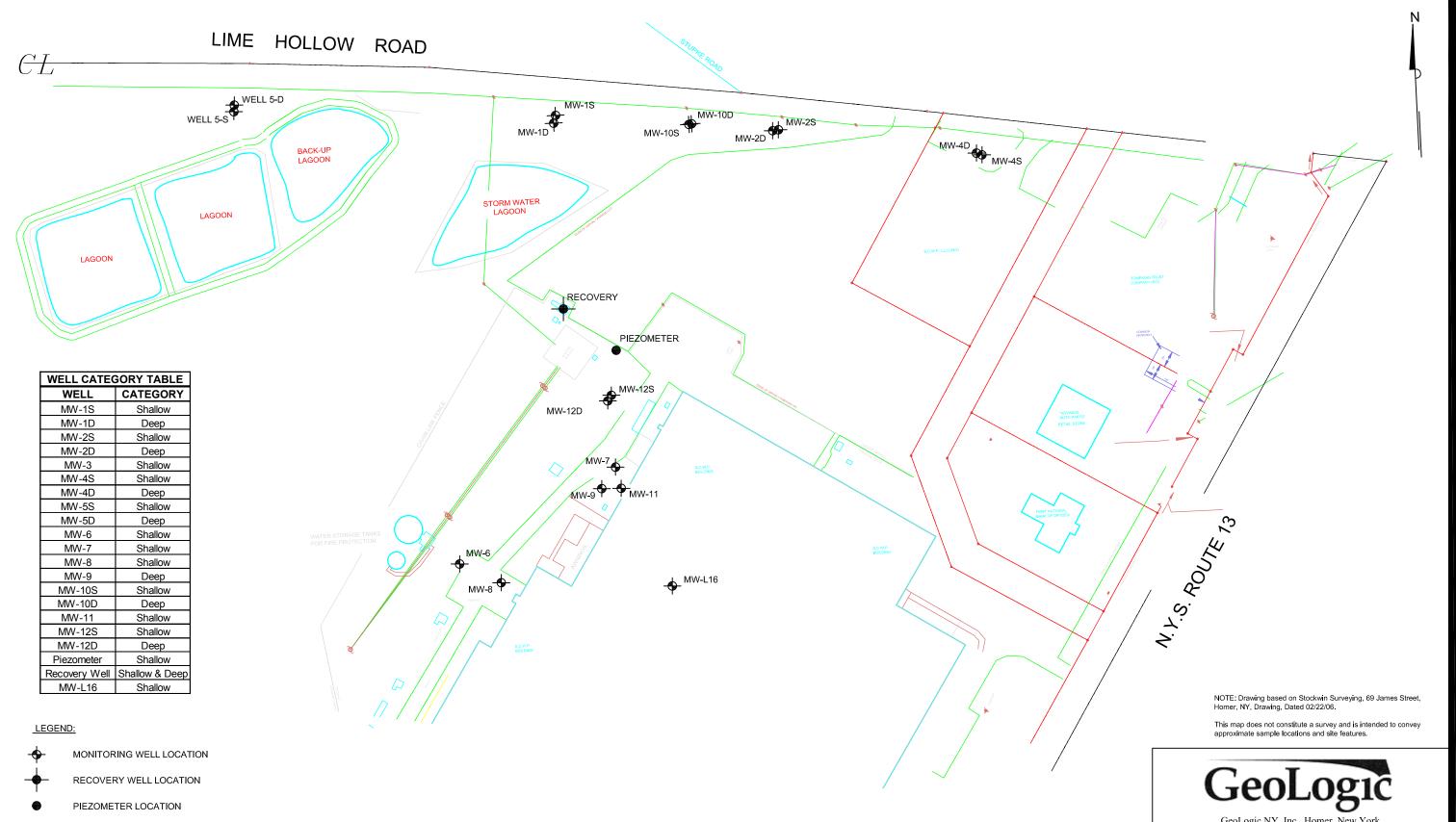
18a David Yaman

an 30 12 09:18a

APPENDIX B

DRAWINGS

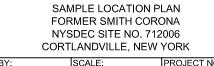
SITE LOCATION PLAN

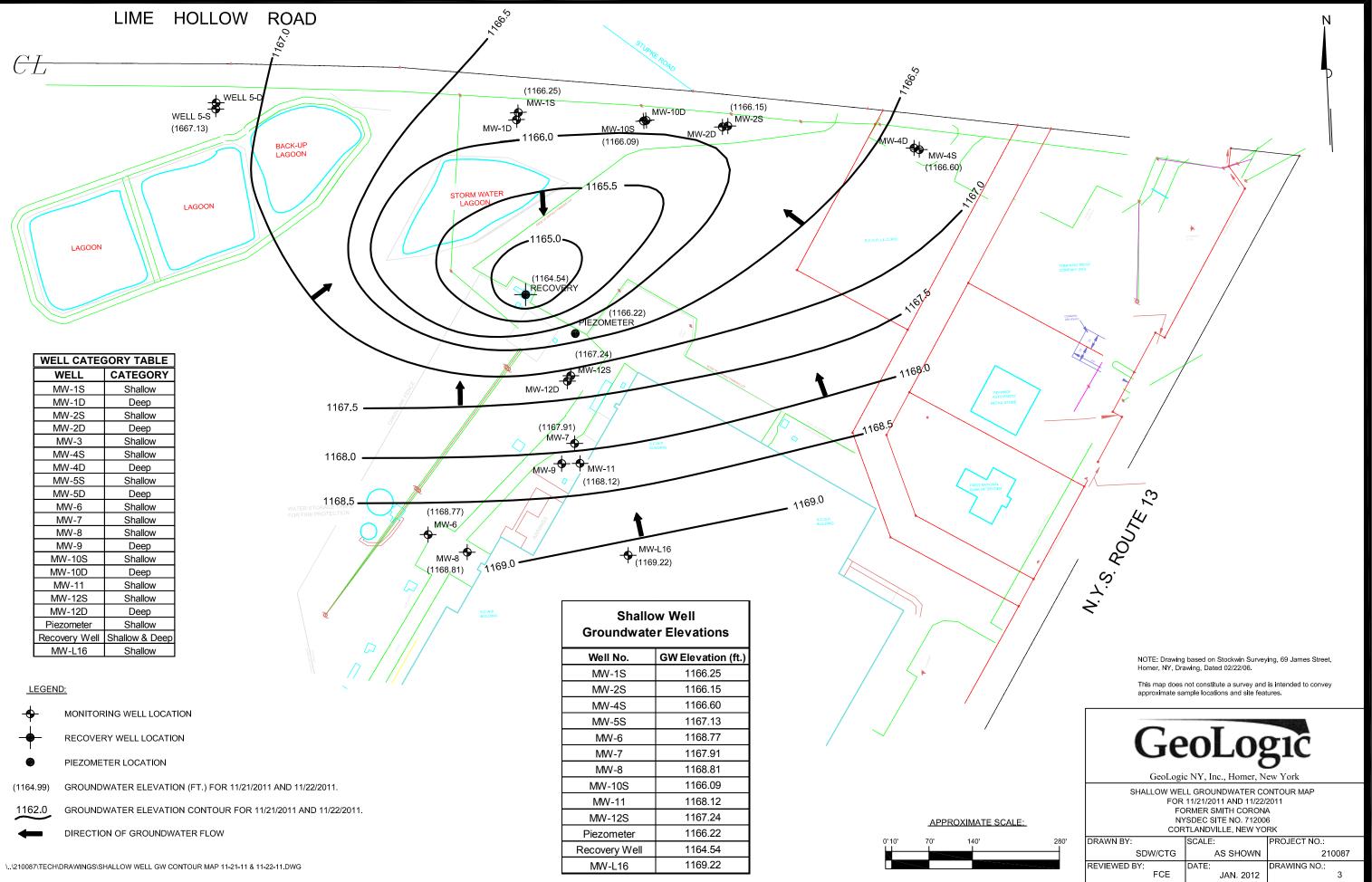

 DRAWN BY:
 SCALE:
 PROJECT NO:

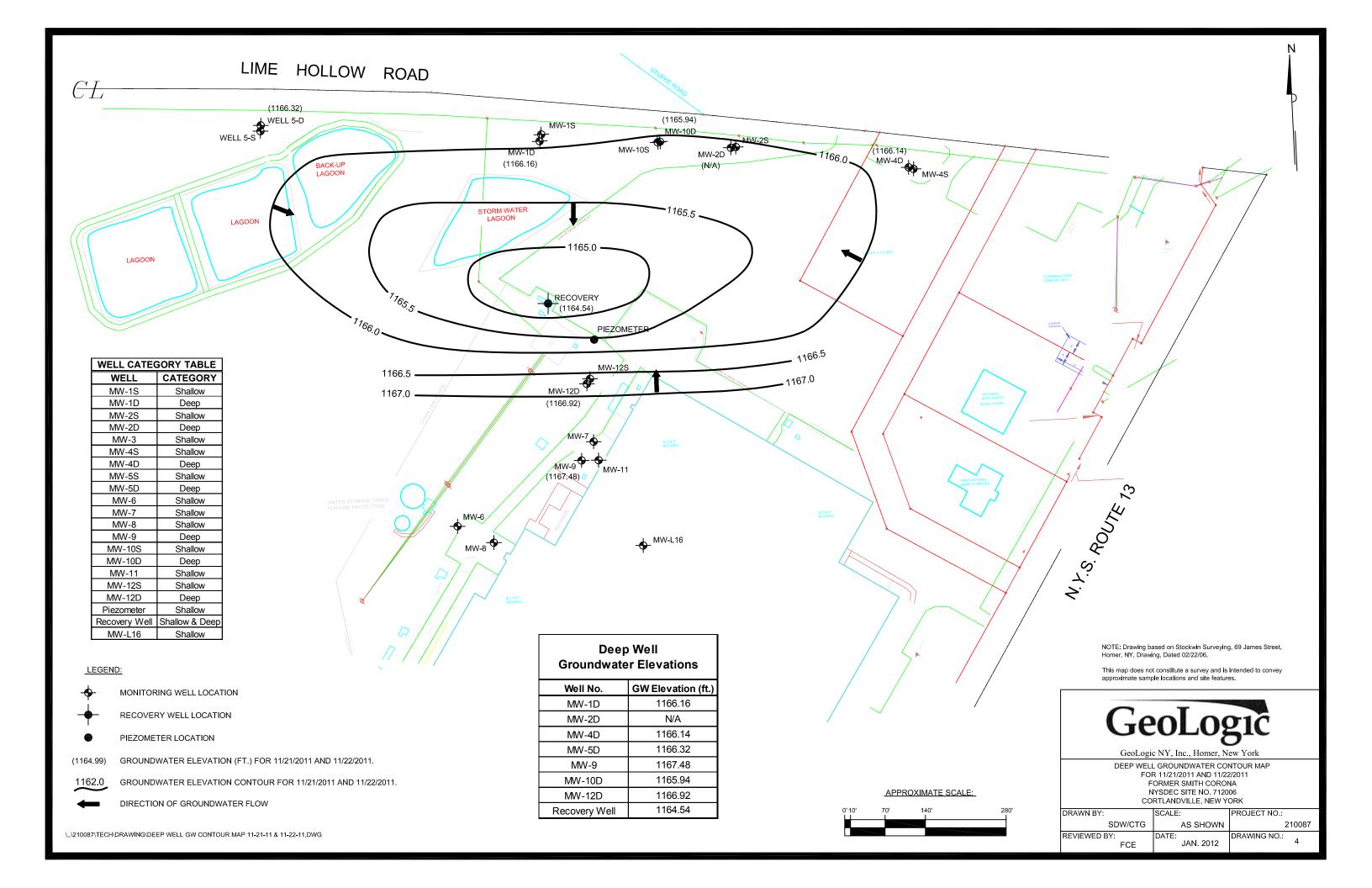
 CTG
 Not To Scale
 210087

 REVIEWED BY:
 DATE:
 DRAWING NO:

 FCE
 DEC. 2011
 1


Project North


 APPROXIMATE SCALE:


 10'
 70'
 140'
 2

GeoLogic NY, Inc., Homer, New York

DR.	AWN BY:	SCALE:	PROJECT NO .:
	SDW/CTG	AS SHOWN	210087
RE	VIEWED BY:	DATE:	DRAWING NO.:
	FCE	JAN. 2012	2

APPENDIX C

TABLES

TABLE 1.

Field Observations: 2011 Annual Groundwater Sampling Event

Well#	CATEGORY	**TOP PVC ELEVATION	TOP PVC WATER LEVEL (FT)	GW ELEVATION	DEPTH OF WELL (FT)	VOLUME (GAL.) of WATER in WELL	APPROX. VOLUME PURGED (GAL.)	Notes
MW-1S	Shallow -Perimeter	1185.75	19.50	1166.25	39.50	3.20	10	Light brown.
MW-1D	Deep - Perimeter	1185.85	19.69	1166.16	70.50	8.13	30	Clear.
MW-2S	Shallow -Perimeter	1210.91	44.76	1166.15	70.20	4.07	12.5	Light brown.
MW-2D	Deep - Perimeter	N/A	-	-	104.00	-	-	No sample, well damaged.
MW-4S	Shallow -Perimeter	1209.72	43.12	1166.60	73.79	4.91	15	Clear.
MW-4D	Deep - Perimeter	1210.14	44.00	1166.14	104.23	9.64	30	Clear.
MW-5S	Shallow -Perimeter	1178.46	11.33	1167.13	40.00	4.59	15	Clear.
MW-5D	Deep - Perimeter	1178.86	12.54	1166.32	71.88	9.49	30	Clear.
MW-6	Shallow - Interior	1212.20	43.43	1168.77	57.27	2.21	7.5	Cloudy-Light brown.
MW-7	Shallow - Interior	1211.56	43.65	1167.91	58.75	2.42	9	Dark brown.
MW-8	Shallow - Interior	1212.76	43.95	1168.81	61.42	2.80	10	Clear.
MW-9	Deep - Interior	1212.94	45.46	1167.48	100.46	8.80	30	Clear.
MW-10S	Shallow -Perimeter	1207.23	41.14	1166.09	62.00	3.34	10	Light brown.
MW-10D	Deep - Perimeter	1207.52	41.58	1165.94	99.00	9.19	30	Clear.
MW-11	Shallow - Interior	1214.44	46.32	1168.12	59.50	2.11	10	Clear.
MW-12S	Shallow - Interior	1212.94	45.70	1167.24	62.00	2.61	8	Brown, turbid.
MW-12D	Deep - Interior	1212.80	45.88	1166.92	89.00	6.90	25	Clear.
MW-L16	Shallow	1212.99	43.77	1169.22	60.00	13.80	8	Light brown.
Piezometer	Shallow	1212.59	46.37	1166.22				No sample, water level only.
Recovery Well	Shallow & Deep	1205.62	41.08	1164.54	94.00			No sample, water level only.

** Top of PVC elevations were determined from survey by Jim Stockwin, LS, 2006. N/A = Not available, well casings have been modified.

Table 2: Page 1 of 2Summary of Groundwater Analytical Results

		32905 33086 33	3178 33270 33359 3	33451 33543 3363	5 33725 338	317 33909	34001	34090 34182 342	74 34366 3448	36 34578 3	34669 34731	34820 35	004 351	36 35370 355	51 35735 350	916 36100 3	36373 36	526 37196	37561 3	37773 37926	38292 3868	7 38961 390	22 39203	39387	39753 4	0118 40	0513 40848
MW-1S		02000 00000 00			0 00720 000		01001					01020 00						020 01100	0,001 0	51110 01020	00202 0000			00007	00700 4		
	TCE TCE Yearly Ave.	<1 47	41 25 17 32	<u>19 12</u> 18	9 13	15 2 10	11	26 3	13 7 1 13	19 13	9 11 13	8	11 10	5 8	10 11 11	15 8 12	7 7	5 6 5 6	8	6	11 11	6 7 6	4 3	2	5	4	4 5
	Total VOC's Total VOC Yearly Ave.	<1 47	41 25 21	23 13	9 15	17 2	13	04 0	13 7 2 16	22 15	9 13	8	11	5 8	10 11	16 8	7	5 6	8	6	11	6 7 6	4 3	2	5	4	4 5
MW-1D											10					12		0	0								
	TCE TCE Yearly Ave.	32 <1	25 25 18 21	<u>19 12 1</u> 19	3 13	14 13 13	14	10 12	16 12 1 14	13 9	11 12 11	12	13 12	7 10	7 8	7 7	8	3 3	1	2	3	5 NS	3 NS	4	5	4	3 4
	Total VOC's	32 <1	25 25 24	24 12 1	3 14	16 15	16	16 115	17 13 1	13 10	13 14	14	13	7 11	7 8	7 7	8	3 3	3	2	3	5	3	4	5	4	3 4
MW-2S	Total VOC Yearly Ave.		21	21		15			16		12		14	9	8		8	3 3	3	2	3	5	3				
	TCE	4 5	6 8 6	8 10	5 7	5 5	5	7 7	4 4	4 3	4 4	4	NA	4 NA	3 NA	4 NA	4	2 2	2	2	2	2 2	2 3	2	2	2	2 2
	TCE Yearly Ave. Total VOC's	4 5	5 6 8 6	8 12	5 7	8 5	5	7 7	4 4	4 3	4 4	4	4 NA	4 NA	3 NA	4 NA	4	2 2 2	2	2	2	2 2	2 3	2	2	2	2 2
MW-2D	Total VOC Yearly Ave.		5	9		6			6		4		3	4	3	4	4	2 2	2	2	2	2	2				
	TCE	6 9	8 7 5	7 9	5 5	5 5	3	4 6	3 3	2 3	2 2	3	NA	2 NA	2 NA	1 NA	3 Dama	iged Damaged	Damaged	Damaged	Damaged Damage	d NS 1	NS NS	NS	NS	NS	NS NS
	TCE Yearly Ave.		7	7		5			4		3		3	2	2	1	3 Dama	ged Damaged	Damaged	Damaged	Damaged Damage	d					
	Total VOC's Total VOC Yearly Ave.	6 9	8 7 5	7 10	5 5	5 5	3	4 6	3 3	2 6	2 2	3	NA 2	2 NA 2	2 NA	1 NA		iged Damaged			Damaged Damage						
MW-3																											
	TCE TCE Yearly Ave.	<1 <1	<u><1</u> <1 <1 0	<u><1</u> <1 < 0	1 <1	<u><1</u> <u><1</u> 0	1	<1 <1	<u><1 <1</u> 0	4 <1	<1 <1 1	<1	NA 1	19 NA 19	2 <1	8 NA 8	<1 <1	<1 <1 <1 <1	<1 <1	2	1 < 1 <	1 NS 1	2 NS 2	<1	NS	NS	NS NS
	Total VOC's Total VOC Yearly Ave.	<1 <1	<1 <1 <1	<1 <1 <	1 <1	<1 2	1	<1 <1	<1 <1	4 <1	<1 <1	<1	NA	33 NA 33	2 <1	12 NA	<1	<1 <1	<1	3	1	2	5	<1			
MW-4S																	~						~				
	TCE TCE Yearly Ave.	<1 <1	2 <1 1 1	2 1 <	1 1	1 1	<1	1 <1	<1 NA <	<1 <1	<1 <1 0	1	NA	<1 NA 0	<1 NA 0	<1 NA 0	<1 <1	<1 <1 <1 <1	<1 <1	<1	<1 < <1 <		<1 <1 <1	<1	<1	<1	<1 <1
	Total VOC's	<1 <1	2 <1 1	2 1 <	1 1	1 1	<1	1 <1	<1 NA <	<1 <1	<1 <1	1	NA	<1 NA	<1 NA	<1 NA	<1	<1 <1	<1	<1	<1 <	1 <1	<1 <1	<1	<1	<1	<1 <1
MW-4D	Total VOC Yearly Ave.												0		0		<1	<1	<1	<1	<1 <		<u></u>				
	TCE TCE Yearly Ave.	<1 1	<1 1 <1		1 <1	<1 <1	<1	<1 <1	<1 NA <	<1 <1	<1 <1	<1	NA 1	<1 NA 0	<1 NA	<1 NA	<1 <1	<1 <1 <1 <1	<1 <1	<1	<1 <		<1 NS <1	<1	<1	<1	<1 <1
	Total VOC's	<1 1	<1 1 <1	1 1 <	1 <1	<1 <1	<1	<1 <1	<1 NA <	<1 <1	<1 <1	<1	NA	<1 NA	<1 NA	<1 NA	<1	<1 <1	<1	<1	<1 <	1	<1	<1	<1	<1	<1 <1
MW-5S	Total VOC Yearly Ave.					0							U		0	0	<1	<1 <1	<1	<1	<1 <		<1				
	TCE TCE Yearly Ave.	1 2	3 <1 1	2 <1 <	1 <1	<1 <1	<1	<1 <1	<1 <1 <	<1 <1	<1 <1	<1	NA 1	<1 NA	<1 NA	<1 NA	<1	<1 <1	1	1	2	1 2	1 1	<1	<1	<1	<1 1
	Total VOC's	1 3	3 <1 1	2 <1 <	1 <1	<1 <1	<1	<1 <1	<1 <1 <	<1 <1	<1 <1	<1	NA	<1 NA	<1 NA	<1 NA	<1	<1 <1	2	1	2	1 2	1 1	<1	<1	<1	<1 1
MW-5D	Total VOC Yearly Ave.		2	1		0			0		0		0	0	0	0	<1	<1 <1	2	1	2	1	1				
	TCE	2 3	5 3 3	3 1 <	1 1	2 1	<1	2 2	<1 <1 <	<1 <1	<1 <1	1	NA	2 NA	2 NA	<1 NA	<1	<1 <1	1	1	2	1 NS	1 NS	<1	2	1	1 1
	TCE Yearly Ave. Total VOC's	2 8	5 3 3	3 1 <	1 1	2 1	<1	2 2	<1 <1 <	<1 <1	<1 <1	2	NA	2 NA	2 NA	<1 <1 NA	<1	<1 <1 <1 <1	2	1	2	1	1	<1	2	1	1 1
MW-6	Total VOC Yearly Ave.		5	3		1			1		0		1	2	2	<1	<1	<1 <1	2	1	2	1	1				
	TCE	NA 43	35 38 62	8 NA 1	8 30	40 21	21	70 32	19 45 5	50 20	17 18	14	7	54 14	18 7	<1 10	5	11 4	14	16	20 1	5 NS	8 NS	10	6	5	35 9
	TCE Yearly Ave. Total VOC's	NA 43	35 35 38 62	36 8 NA 1	8 30	40 21	21	70 32	36 19 45 5	50 20	33 17 18	14	13 7	24 34 14	13 18 7	<1 10	5	11 4 11 4	14 15	16	20 1 20 1	5	8	10	6	5	35 9
MW-7	Total VOC Yearly Ave.		26	27		27			36		33		13	24	13	5	5	11 4	15	16	20 1	5	8				
10100-7	TCE	290 19	63 190 57	19 NA 1	1 57	130 130	120	67 25	10 00 0	60 49	49 45	23	NA	56 NA	25 NA	26 NA	24	24 12	4	9	5 1	9 NS	6 NS	8	3	2	6 7
	TCE Yearly Ave. Total VOC's	290 19	168 63 190 157	89 30 NA 1	5 167 2	82 250 250	175		58 19 137 15	53 84	61 82 84	25	34 NA	56 73 NA	25 35 NA	26 39 NA	24 31	24 12 30 23	4 5	9	5 1 5 3	9 0	6 8	8	3	2	6 7
MW-8	Total VOC Yearly Ave.		168	94		171			89		114		55	73	35	39	31	30 23	5	13	5 3	0	8				
	TCE	70 10	48 31 110	8 3 3	1 31	48 16	12	14 18	10 61 1	11 10	12 9	8	3	98 6	8 2	10 3	2	2 <1	2	3	5	3 NS	3 NS	3	5	2	41 3
	TCE Yearly Ave. Total VOC's	70 10	97 48 31 110	<u> </u>	1 31	<u>32</u> 48 16	12		14 10 61 1	11 10	24 12 9	8	7	52 98 6	5 8 2	10 3	2	2 <1 2 <1	2	3	5	3	3	3	5	2	41 3
MW-9	Total VOC Yearly Ave.		103	38		32			14		24		7	52	5	7	2	2 <1	2	3	5	3	3				
10100-9	TCE	16 5	10 4 11	3 4	3 3	4 4	4	33 8	1 2 2	24 5	3 5	5	<1	18 2	1 <1	<1 5	7	5 4	5	7	17	6 NS	11 NS	5	<1	<1	<1 <1
	TCE Yearly Ave. Total VOC's	16 5	9 10 4 14	6	3 3	4 4	4	42 8	12 1 2 2	24 5	9 3 5	5	3	10	1	<1 5	7	5 4 5 4	5	7	17 17	6	11	5	<1	<1	<1 <1
	Total VOC Yearly Ave.		9	6		4			14		9		3	12	1	3	7	5 4	5	7	17	6	12				
MW-10S	TCE	73 110	59 63 27	32 50 4	4 170	40 32	26	25 37	21 20	31 24	15 16	16	23	17 18	13 13	15 19	16	17 9	19	10	101	0 NS	7 6	8	6	7	7 6
	TCE Yearly Ave. Total VOC's	73 110	76 59 110 33	43 44 62 5	7 228	72 46 37	29		29 31 31 3	31 27	25 16 17	18	18 25	18 18 20	13 13 13	18 17 19	16 17	17 9 17 9	19 21	10	10 1 10 1	0	7 6	8	6	7	7 6
	Total VOC Yearly Ave.		76	62		92			32		26		20	19	13	18	17	17 9	21	10	10 1	1	7		-		
MW-10D	TCE	23 33	60 33 54	31 40 3	0 10	41 37	32	19 32	25 21 2	21 22	22 30	23	19	10 16	12 18	10 20	13	11 8	7	8	5	5 NS	6	6	7	8	5 5
	TCE Yearly Ave. Total VOC's	23 33	36 60 33 66	<u>40</u> 39 45 3	5 12	30 46 43	36	21 32	27	21 25	23 24 32	26	24 19	13	15 12 18	15 10 20	13	11 8 11 8	7	8	5	5	6	6	7	8	5 5
R.M.A.7. 4.4	Total VOC Yearly Ave.		36	46	- '4	34			29		23		26	13	15	10 20	13	11 8	7	8	5	5	6		'		
MW- 11	ТСЕ	2600 44	3400 480 290	31 NA 5	0 420	29 <50	54	170 <50 <	:50 72 <5	50 51	51 42	38	19 1	70 85	46 10	27 11	14	5 7	6	21	111	2 NS	18	8	6	6	38 15
	TCE Yearly Ave. Total VOC's		1549	267 141 NA 44		125 375 230	344		56 50 1062 126		44 130 101	87	33 144 3	128 00 415	28 96 41	<u> </u>	14	5 7	6	21	11 1	2	18	Q	6	6	81 15
	Total VOC S		1549	141 NA 44 1428		419			300 1062 126 304		639		144 3	358	69	30	35	5 31	6	49	11 3	-	40	0	0	0	
MW-12S	ТСЕ	190 280	120 270 190	100 21 4	6 50 ⁻	150 140	150	150 180 1	00 110 17	70 88	88 100	NA	24	82 60	82 11	80 23	11	59 10	44	62	46 2	7 NS	44	25	17	12	22 37
	TCE Yearly Ave.		203	145		97		1	45		114		62	71	47	52	11	59 10 59 10	44	62	46 2		44	20	17	12	
	Total VOC's Total VOC Yearly Ave.		120 270 330 203	137 23 8 190	5 62 '	196 179 130	=		09 119 19 61	92 99	102 101 128	NA	57 56	93 73 83	88 11 50	102 23 63	11	59 10 59 10	46 46	67	49 3 49 3	0	46	25	17	12	23 37
MW-12D	TCF	21 17	23 17 12	12 13 1	0 45	10 9	12	11 15	8 7 4	16 9	5 7	6	6	5 5	5 4	2 0	11	8 10	5		10	3 NS	6	1	2	2	2 _1
	TCE Yearly Ave.		19	14		10 9	10	11 15	8 7 11		9		6	5 5	5 5	<u> </u>	11	8 10	5	4	10	3	6	4	3	<u>۲</u>	
	Total VOC's Total VOC Yearly Ave.	21 17	23 17 14 19	12 13 1 14	1 52	12 9 21	13	13 15	8 7 1 12	16 9	5 7 9	6	6 6	5 5	5 4	2 8	12 12	8 12 8 12	7	4	10 10	3	6	4	3	2	2 <1
MW-L16	TCE																								ЛА	20	14 4
	TCE TCE Yearly Ave.																								41	20	14 4
	Total VOC's Total VOC Yearly Ave.				+ $+$ $-$																		+		42	21	14 4
				I				<u> </u>	- I	<u> </u>		• •	I	1	I I	<u> </u>	I	I	1	I			- 1 - I	I			

Table 2: Page 2 of 2Summary of Groundwater Analytical Results

May-96 Nov-96 May-97 Nov-97 May-98 Nov-98 Aug-99 Nov-00 Nov-01 Nov-02 Jun-03 Nov-03 Nov-04 Dec-05 Sep-06 Nov-06 May-07 Nov-07 Nov-08 Nov-09 Dec-10 Nov-11

E1																			1	
	TCE							<1	NA	NA	NA	<1	NA		NA				Í .	T
	TCE Yearly Ave.							<1	NA	NA	NA	<1	NA		NA					
	Total VOC's							<1	NA	NA	NA	<1	NA		NA				<u> </u>	
	Total VOC Yearly Ave.							<1	NA	NA	NA	<1	NA	NA	NA					
E2																			<u> </u>	
	TCE							<1	NA	NA	NA	<1	NA		NA				<u> </u>	
	TCE Yearly Ave.							<1	NA	NA	NA	<1	NA		NA				<u> </u>	
	Total VOC's							<1	NA	NA	NA	1.2	NA		NA				L	
	Total VOC Yearly Ave.							<1	NA	NA	NA	1.2	NA	NA	NA					
3																			I	
	TCE															<1	<1		l	
	Total VOC's															<1	<1		í	T
4																			i	Ť
	TCE															NS	<1			t
	Total VOC's															NS	<1		i	t
5																_			·	t
	TCE															2.3	2.2			t
	Total VOC's															2.3	2.2		i	t
6																			·	t
	TCE															9.9	NS			t
	Total VOC's															9.9	NS		i	t
27																			·	t
	TCE															4.7	NS			t
	Total VOC's															4.7	NS		i	t
8																			i ———	Ť
	TCE															3.5	NS			t
	Total VOC's															3.5	NS		i	t
29																	_		·	t
	TCE															2.4	NS			t
	Total VOC's															2.4	NS		i	t
0																			i	Ť
	TCE															1.4	1.2			t
	Total VOC's															1.4	1.2		i	t
	Notes:																			<u></u>
	NS = Not Sampled.																			
	1. Units are μg/L.	المتاريمة الممل	o b		100															
	2. Well L16 was construc																			
	3. All data prior to 2010 p	rovided to C	SeoLogic	NY, Inc. I	by Buck E	ngineerin	ig, LLC.													

Former SCM - Cortlandville

Sampling	Compound	Tower	Tower	Reg	Outfall at
Date		Influent	Discharge	Limit	Cascade
5/17/2001	Trichloroethene	19.0	7.6	5	3.5
5/17/2001	Total VOC's	19.0	7.6		3.5
6/4/2001	Trichloroethene	14.0	5.6	5	2.3
0/4/2001	Total VOC's	14.0	5.6		2.3
7/10/2001	Trichloroethene	9.7	3.5	5	1.8
7/10/2001	Total VOC's	9.7	3.5		1.8
8/2/2001	Trichloroethene	13.0	5.4	5	3.0
0/2/2001	Total VOC's	13.0	5.4		3.0
9/7/2001	Trichloroethene	8.3	1.7	5	1.4
9/7/2001	Total VOC's	8.3	1.7		1.4
10/0/2001	Trichloroethene	8.0	ND<1	5	ND<1
10/9/2001	Total VOC's	8.0	ND<1		ND<1
44/42/2004	Trichloroethene	6.0	1.9	5	ND<1
11/13/2001	Total VOC's	6.0	1.9		ND<1
40/40/0004	Trichloroethene	5.7	2.6	5	1.2
12/13/2001	Total VOC's	5.7	2.6		1.2
4/0/0000	Trichloroethene	6.6	3.0	5	1.3
1/9/2002	Total VOC's	6.6	3.0		1.3
0/45/0000	Trichloroethene	9.4	2.6	5	1.6
2/15/2002	Total VOC's	10.6	2.6		1.6
2/0/2022	Trichloroethene	9.9	5.7	5	2.1
3/8/2002	Total VOC's	9.9	5.7		2.1
4/0/0000	Trichloroethene	11.0	4.4	5	2.2
4/2/2002	Total VOC's	11.0	4.4		2.2
5/4/0000	Trichloroethene	13.0	6.7	5	3.4
5/1/2002	Total VOC's	14.1	6.7		3.4
0/04/0000	Trichloroethene	14.0	4.7	5	3.4
6/24/2002	Total VOC's	14.0	4.7		3.4
7/0/0000	Trichloroethene	4.3	1.6	5	ND<1
7/9/2002	Total VOC's	4.3	1.6		1.3
0/10/0000	Trichloroethene	16.0	5.9	5	3.1
8/12/2002	Total VOC's	16.0	5.9		3.1
0/0/2022	Trichloroethene	12.0	3.9	5	1.8
9/9/2002	Total VOC's	12.0	3.9		1.8
10/2/0000	Trichloroethene	11.0	4.1	5	1.3
10/3/2002	Total VOC's	11.0	4.1		1.3
44/44/0000	Trichloroethene	10.0	4.3	5	2.0
11/14/2002	Total VOC's	10.0	4.3		2.0

Former SCM - Cortlandville

Sampling	Compound	Tower	Tower	Reg	Outfall at
Date		Influent	Discharge	Limit	Cascade
12/31/2002	Trichloroethene	12.0	5.1	5	2.0
12/01/2002	Total VOC's	12.0	5.1		2.0
1/13/2003	Trichloroethene	13.0	5.8	5	2.1
1/13/2003	Total VOC's	13.0	5.8		2.1
2/19/2003	Trichloroethene	14.0	5.1	5	2.1
2/19/2003	Total VOC's	14.0	5.1		2.1
3/12/2003	Trichloroethene	14.0	5.9	5	2.2
3/12/2003	Total VOC's	14.0	5.9		2.2
4/9/2003	Trichloroethene	18.0	8.0	5	3.1
4/9/2003	Total VOC's	18.0	8.0		3.1
5/2/2003	Trichloroethene	16.0	5.8	5	3.0
5/2/2003	Total VOC's	16.0	5.8		3.0
6/20/2003	Trichloroethene	18.0	7.2	5	3.4
0/20/2003	Total VOC's	18.0	7.2		3.4
7/1/2002	Trichloroethene	16.0	5.8	5	2.4
7/1/2003	Total VOC's	16.0	5.8		2.4
8/14/2003	Trichloroethene	14.0	4.7	5	2.4
8/14/2003	Total VOC's	14.0	4.7		2.4
9/11/2003	Trichloroethene	9.6	3.5	5	1.8
9/11/2003	Total VOC's	9.6	3.5		1.8
10/2/2003	Trichloroethene	12.0	5.5	5	2.4
10/2/2003	Total VOC's	12.0	5.5		2.4
11/24/2003	Trichloroethene	10.0	1.1	5	1.4
11/24/2003	Total VOC's	10.0	1.1		1.4
12/3/2003	Trichloroethene	13.0	6.5	5	3.0
12/3/2003	Total VOC's	13.0	6.5		3.0
1/5/2004	Trichloroethene	12.0	6.4	5	3.0
1/3/2004	Total VOC's	12.0	6.4		3.0
2/2/2004	Trichloroethene	14.0	7.0	5	3.1
2/2/2004	Total VOC's	14.0	7.0		3.1
2/1/2004	Trichloroethene	13.0	4.8	5	2.0
3/1/2004	Total VOC's	13.0	4.8		2.0
4/2/2004	Trichloroethene	16.0	6.0	5	2.7
4/2/2004	Total VOC's	16.0	6.0		2.7
5/6/2004	Trichloroethene	14.0	5.3	5	2.5
5/0/2004	Total VOC's	14.0	5.3		2.5
6/3/2004	Trichloroethene	12.0	4.9	5	2.5
0/3/2004	Total VOC's	12.0	4.9		2.5

Former SCM - Cortlandville

Sampling	Compound	Tower	Tower	Reg	Outfall at
Date		Influent	Discharge	Limit	Cascade
7/1/2004	Trichloroethene	13.0	4.6	5	2.0
	Total VOC's	13.0	4.6		2.0
8/17/2004	Trichloroethene	12.0	4.7	5	1.9
	Total VOC's	12.0	4.7		1.9
0/7/0004	Trichloroethene	11.0	3.9	5	1.5
9/7/2004	Total VOC's	11.0	3.9		1.5
40/40/0004	Trichloroethene	12.0	2.2	5	2.1
10/18/2004	Total VOC's	12.0	2.2		2.1
44/40/0004	Trichloroethene	13.0	4.6	5	2.2
11/18/2004	Total VOC's	13.0	4.6		2.2
12/8/2004	Trichloroethene	11.0	2.8	5	1.3
12/8/2004	Total VOC's	11.0	2.8		1.3
1/11/2005	Trichloroethene	13.0	6.5	5	2.7
1/11/2005	Total VOC's	13.0	6.5		2.7
2/8/2005	Trichloroethene	9.0	5.0	5	2.0
2/0/2005	Total VOC's	9.0	5.0		2.0
3/3/2005	Trichloroethene	13.0	3.3	5	1.6
3/3/2003	Total VOC's	13.0	3.3		1.6
4/4/2005	Trichloroethene	15.0	6.2	5	2.2
4/4/2003	Total VOC's	15.0	6.2		2.2
5/5/2005	Trichloroethene	11.0	4.5	5	1.9
0/0/2000	Total VOC's	11.0	4.5		1.9
6/8/2005	Trichloroethene	5.6	2.4	5	1.0
0,0,2000	Total VOC's	5.6	2.4		1.0
7/11/2005	Trichloroethene	12.0	4.3	5	2.0
	Total VOC's	12.0	4.3		2.0
8/1/2005	Trichloroethene	9.9	3.5	5	1.7
	Total VOC's	9.9	3.5		1.7
9/6/2005	Trichloroethene	7.2	2.8	5	1.1
	Total VOC's	7.2	2.8	+ +	1.1
10/14/2005	Trichloroethene	6.0	2.3	5	ND<1
	Total VOC's	6.0	2.3		ND<1
11/18/2005	Trichloroethene	7.1	3.2	5	1.2
	Total VOC's	7.1	3.2		1.2
12/5/2005	Trichloroethene	7.4 7.4	3.1 3.1	5	1.2 1.2
1/3/2006	Total VOC's Trichloroethene	7.4	4.0	5	1.2
	Total VOC's	8.9	4.0	5	1.5
2/2/2006	Trichloroethene	9.5	4.0	5	1.7
	Total VOC's	9.5	4.0	ĬĬ	1.7
3/20/2006	Trichloroethene	9.2	1.6	5	1.1
	Total VOC's	9.2	1.6		1.1

Former SCM - Cortlandville

Sampling Date	Compound	Tower Influent	Tower Discharge	Reg Limit	Outfall at Cascade
Total VOC's	10.0	4.0		1.6	
5/4/2006	Trichloroethene	10.0	3.9	5	1.7
	Total VOC's	10.0	3.9		1.7
6/2/2006	Trichloroethene	9.6	3.6	5	1.7
	Total VOC's	9.6	3.6		1.7
7/6/2006	Trichloroethene	10.0	4.0	5	1.8
110/2000	Total VOC's	10.0	4.0		1.8
8/4/2006	Trichloroethene	10.0	4.2	5	1.7
	Total VOC's	10.0	4.2		1.7
9/5/2006	Trichloroethene	11.0	4.4	5	1.8
	Total VOC's	11.0	4.4		1.8
10/5/2006	Trichloroethene	11.0	4.4	5	1.8
10/5/2006	Total VOC's	11.0	4.4		1.8
11/20/2006	Trichloroethene	10.0	4.2	5	1.9
11/20/2000	Total VOC's	10.0	4.2		1.9
12/6/2006	Trichloroethene	11.0	2.9	5	1.2
12/0/2000	Total VOC's	11.0	2.9		1.2
1/8/2007	Trichloroethene	10.0	4.4	5	1.8
1/0/2007	Total VOC's	10.0	4.4		1.8
2/6/2007	Trichloroethene	12.0	3.1	5	ND<1
2/0/2007	Total VOC's	12.0	3.1		ND<1
3/21/2007	Trichloroethene	11.0	4.6	5	1.8
3/21/2007	Total VOC's	11.0	4.6		1.8
4/5/2007	Trichloroethene	10.0	4.8	5	1.6
4/3/2007	Total VOC's	10.0	4.8		1.6
5/18/2007	Trichloroethene	11.0	4.5	5	2.0
	Total VOC's	11.0	4.5		2.0
6/13/2007	Trichloroethene	12.0	4.3	5	2.0
0/13/2007	Total VOC's	12.0	4.3		2.0
7/0/2007	Trichloroethene	10.0	4.1	5	1.4
7/9/2007	Total VOC's	10.0	4.1		1.4
8/8/2007	Trichloroethene	9.2	3.4	5	1.4
	Total VOC's	9.2	3.4		1.4
0/7/2007	Trichloroethene	6.2	2.4	5	1.0
9/7/2007	Total VOC's	6.2	2.4		1.0

Former SCM - Cortlandville

Sampling	Compound	Tower	Tower	Reg	Outfall at
Date		Influent	Discharge	Limit	Cascade
10/4/2007	Trichloroethene	5.9	2.2	5	1.2
10/4/2007	Total VOC's	5.9	2.2		1.2
11/26/2007	Trichloroethene	6.3	2.9	5	1.2
	Total VOC's	6.3	2.9		1.2
12/26/2007	Trichloroethene	10.0	4.8	5	1.9
	Total VOC's	10.0	4.8		3.0
4/44/0000	Trichloroethene	11.0	5.0	5	2.0
1/11/2008	Total VOC's	11.0	5.0		2.0
2/15/2008	Trichloroethene	8.9	3.5	5	1.3
	Total VOC's	8.9	3.5		1.3
2/24/2009	Trichloroethene	11.0	4.4	5	1.9
3/24/2008	Total VOC's	11.0	4.4		1.9
4/16/2008	Trichloroethene	9.6	3.9	5	1.7
4/16/2008	Total VOC's	9.6	3.9		1.7
E/04/0000	Trichloroethene	10.0	4.8	5	2.0
5/21/2008	Total VOC's	10.0	4.8		2.0
0/00/0000	Trichloroethene	8.5	3.4	5	1.7
6/26/2008	Total VOC's	8.5	3.4		1.7
7/22/2008	Trichloroethene	8.1	3.5	5	1.6
	Total VOC's	8.1	3.5		1.6
8/21/2008	Trichloroethene	6.0	3.0	5	1.3
	Total VOC's	6.0	3.0		1.3
9/18/2008	Trichloroethene	5.9	2.7	5	1.0
	Total VOC's	5.9	2.7		1.0
10/23/2008	Trichloroethene	3.5	2.2	5	<1
	Total VOC's	3.5	2.2		<1
11/26/2008	Trichloroethene	4.0	2.2	5	1.0
	Total VOC's	4.0	2.2		1.0
12/16/2008	Trichloroethene	4.2	2.2	5	1.1
	Total VOC's	4.2	2.2		1.1
1/20/2009	Trichloroethene	6.2	3.5	5	1.5
	Total VOC's	6.2	3.5		1.5
2/23/2009	Trichloroethene	5.0	2.1	5	<1
	Total VOC's	5.0	2.1		<1
3/17/2009	Trichloroethene	5.7	3.6	5	1.5
	Total VOC's	5.7	3.6		1.5
4/16/2009	Trichloroethene	6.0	3.5	5	1.8
	Total VOC's	6.0	3.5		1.8

Table No. 3 Monthly Analytical Results May 2001- December 2011

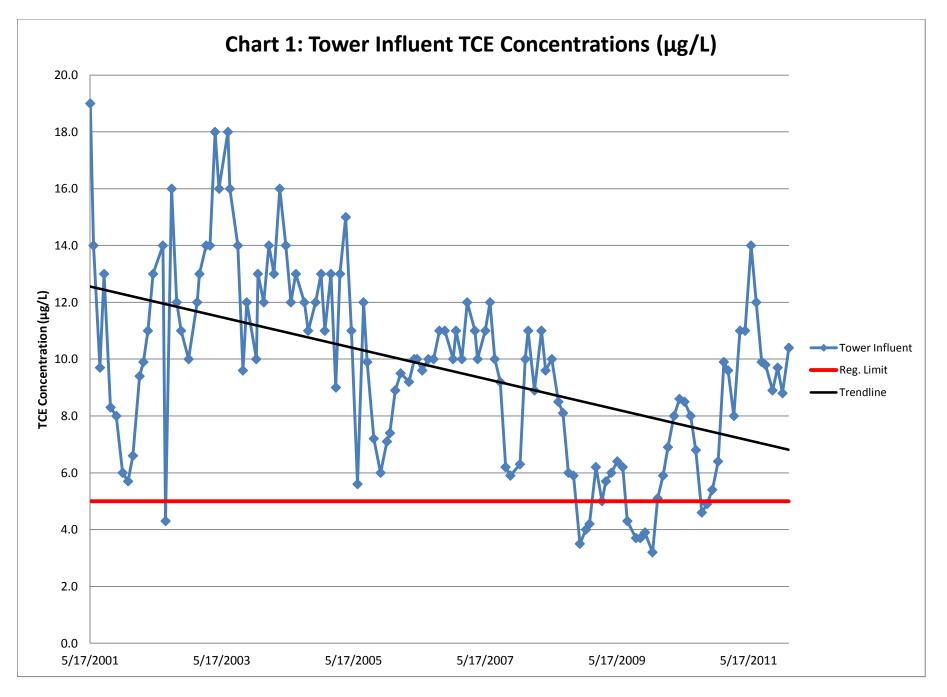
Former SCM - Cortlandville

Site No. 712006

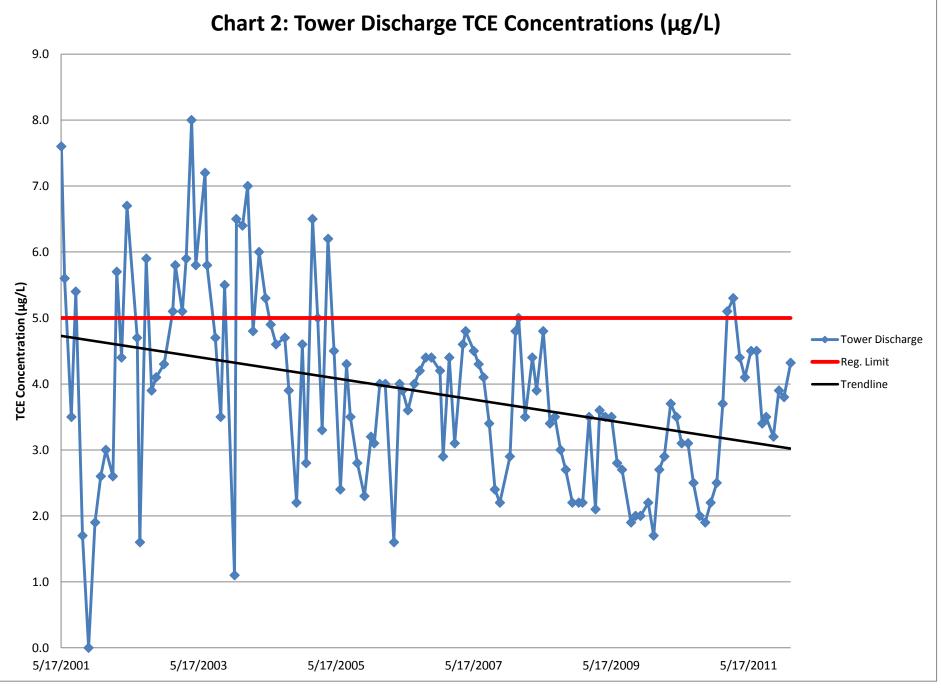
Sampling	Compound	Tower	Tower	Reg	Outfall at
Date		Influent	Discharge	Limit	Cascade
5/19/2009	Trichloroethene	6.4	3.5	5	1.6
	Total VOC's	6.4	3.5		1.6
6/18/2009	Trichloroethene	6.2	2.8	5	1.6
	Total VOC's	6.2	2.8		1.6
7/14/2009	Trichloroethene	4.3	2.7	5	1.4
	Total VOC's	4.3	2.7		1.4
8/31/2009	Trichloroethene	3.7	1.9	5	1.0
	Total VOC's	3.7	1.9		1.0
9/24/2009	Trichloroethene	3.7	2.0	5	1.0
	Total VOC's	3.7	2.0		1.0
10/20/2009	Trichloroethene	3.9	2.0	5	1.0
	Total VOC's	3.9	2.0		1.0
11/30/2009	Trichloroethene	3.2	2.2	5	1.0
	Total VOC's	3.2	2.2		1.0
12/29/2009	Trichloroethene	5.1	1.7	5	<1
	Total VOC's	5.1	1.7		<1
1/28/2010	Trichloroethene	5.9	2.7	5	1.3
	Total VOC's	5.9	2.7		1.3
2/24/2010	Trichloroethene	6.9	2.9	5	1.4
	Total VOC's	6.9	2.9		1.4
3/30/2010	Trichloroethene	8.0	3.7	5	1.7
	Total VOC's	8.0	3.7		1.7
4/29/2010	Trichloroethene	8.6	3.5	5	1.7
	Total VOC's	8.6	3.5		1.7
5/27/2010	Trichloroethene	8.5	3.1	5	1.8
	Total VOC's	8.5	3.1		1.8
6/30/2010	Trichloroethene	8.0	3.1	5	1.6
	Total VOC's	8.0	3.1		1.6
7/29/2010	Trichloroethene	6.8	2.5	5	1.2
	Total VOC's	6.8	2.5		1.2
8/31/2010	Trichloroethene	4.6	2.0	5	1.1
	Total VOC's	4.6	2.0		1.1
9/29/2010	Trichloroethene	4.9	1.9	5	1.0
	Total VOC's	4.9	1.9		1.0
10/28/2010	Trichloroethene	5.4	2.2	5	1.0
	Total VOC's	5.4	2.2		1.0
11/29/2010	Trichloroethene	6.4	2.5	5	1.2
	Total VOC's	6.4	2.5		1.2

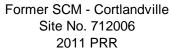
Table No. 3 Monthly Analytical Results May 2001- December 2011

Former SCM - Cortlandville

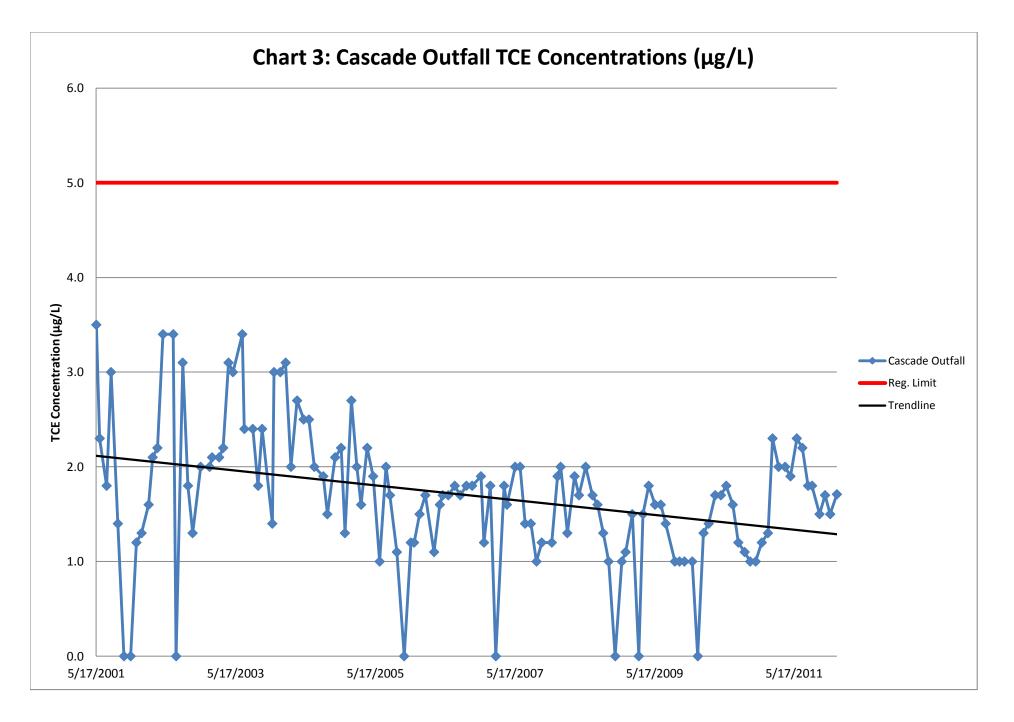

Site No. 712006

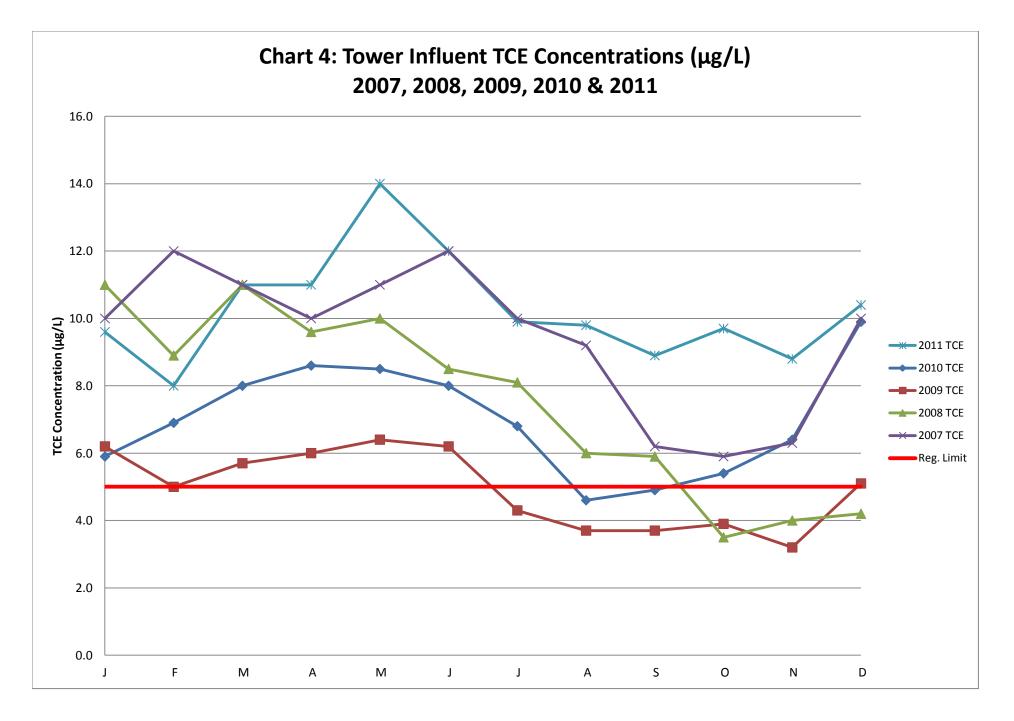
Sampling	Compound	Tower	Tower	Reg	Outfall at
Date		Influent	Discharge	Limit	Cascade
12/31/2010	Trichloroethene	9.9	3.7	5	1.3
	Total VOC's	9.9	3.7		1.3
1/24/2011	Trichloroethene	9.6	5.1	5	2.3
	Total VOC's	9.6	5.1		2.3
2/25/2011	Trichloroethene	8.0	5.3	5	2.0
	Total VOC's	8.0	5.3		2.0
3/31/2011	Trichloroethene	11.0	4.4	5	2.0
	Total VOC's	11.0	4.4		2.0
4/28/2011	Trichloroethene	11.0	4.1	5	1.9
	Total VOC's	11.0	4.1		1.9
5/31/2011	Trichloroethene	14.0	4.5	5	2.3
	Total VOC's	14.0	4.5		2.3
6/29/2011	Trichloroethene	12.0	4.5	5	2.2
	Total VOC's	12.0	4.5		2.2
7/29/2011	Trichloroethene	9.9	3.4	5	1.8
	Total VOC's	9.9	3.4		1.8
8/19/2011	Trichloroethene	9.8	3.5	5	1.8
	Total VOC's	9.8	3.5		1.8
9/27/2011	Trichloroethene	8.9	3.2	5	1.5
	Total VOC's	8.9	3.2		1.5
10/26/2011	Trichloroethene	9.7	3.9	5	1.7
	Total VOC's	9.7	3.9		1.7
11/22/2011	Trichloroethene	8.8	3.8	5	1.5
	Total VOC's	8.8	3.8		1.5
12/27/2011	Trichloroethene	10.4	4.3	5	1.7
	Total VOC's	10.7	4.5		1.7

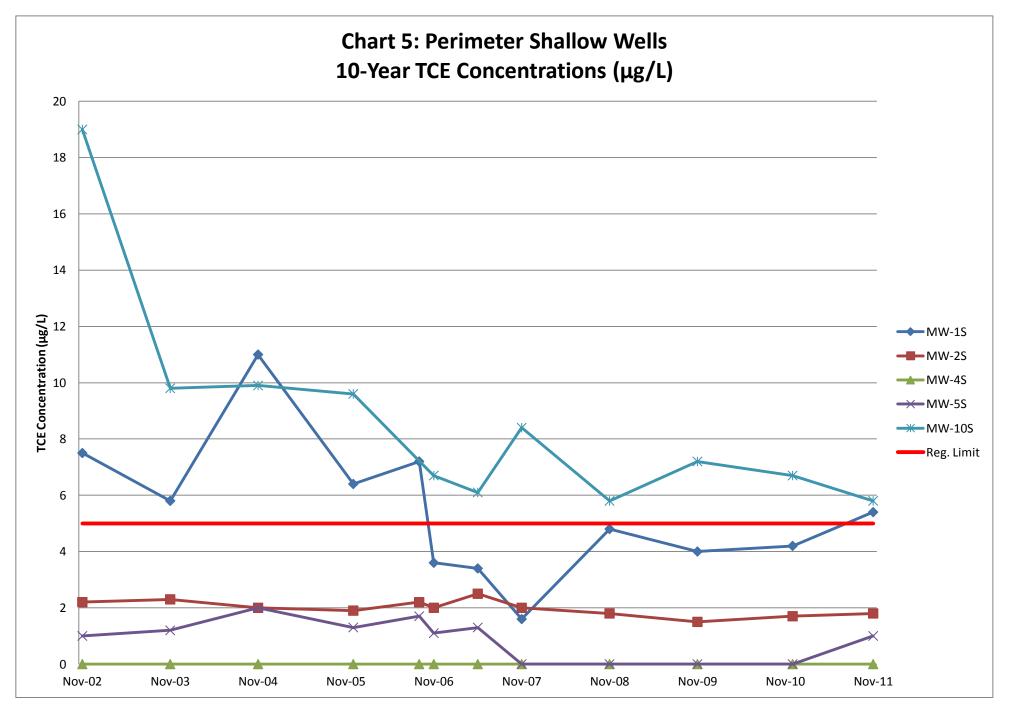


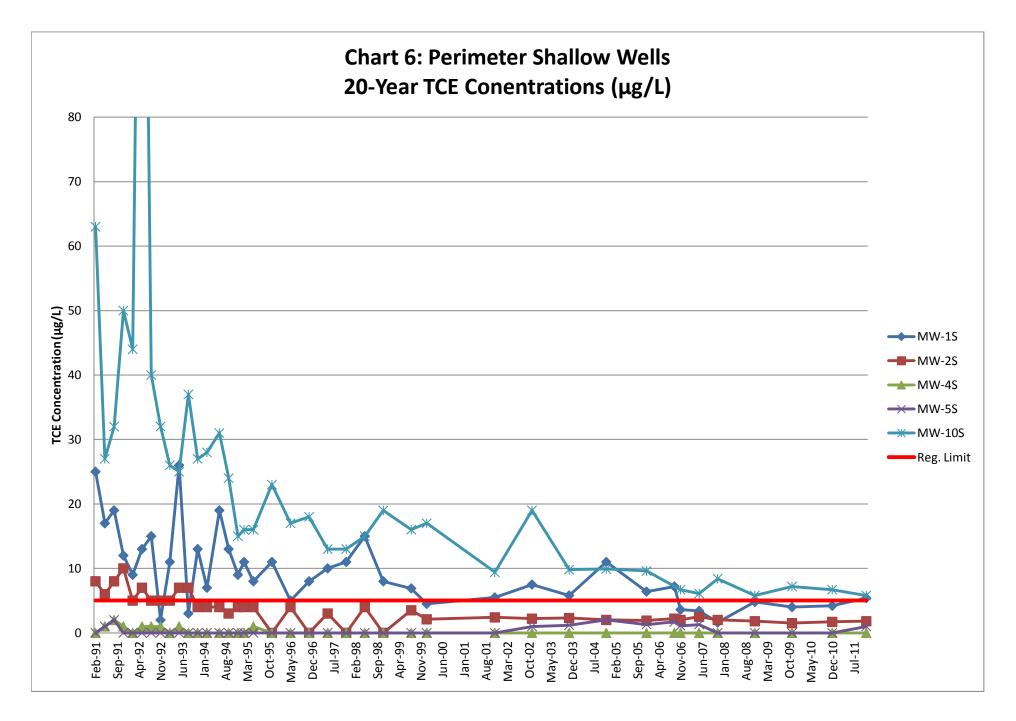

APPENDIX D

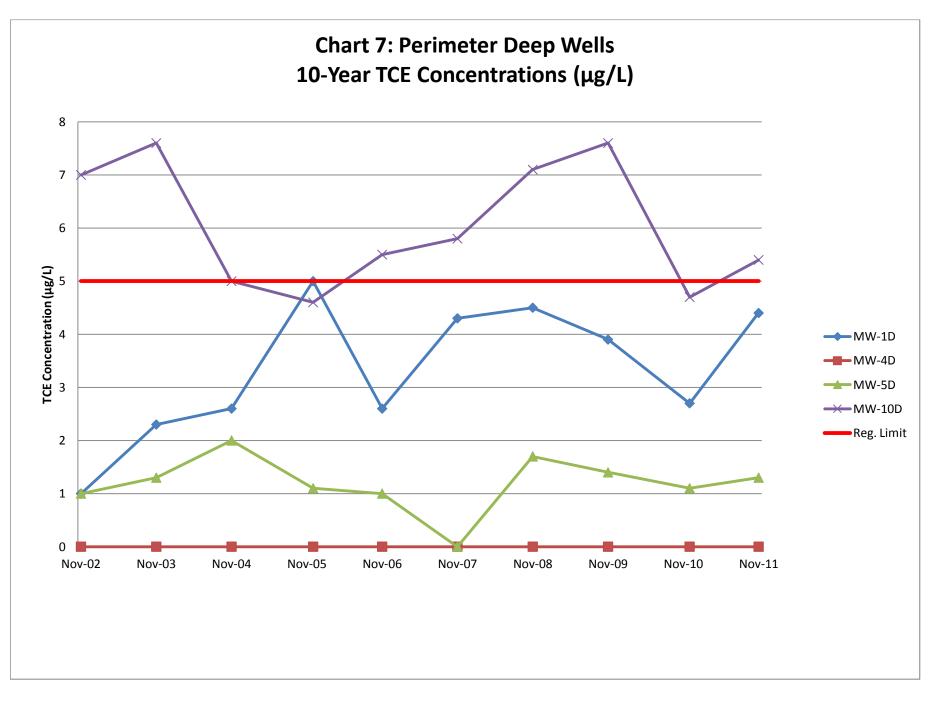
CHARTS

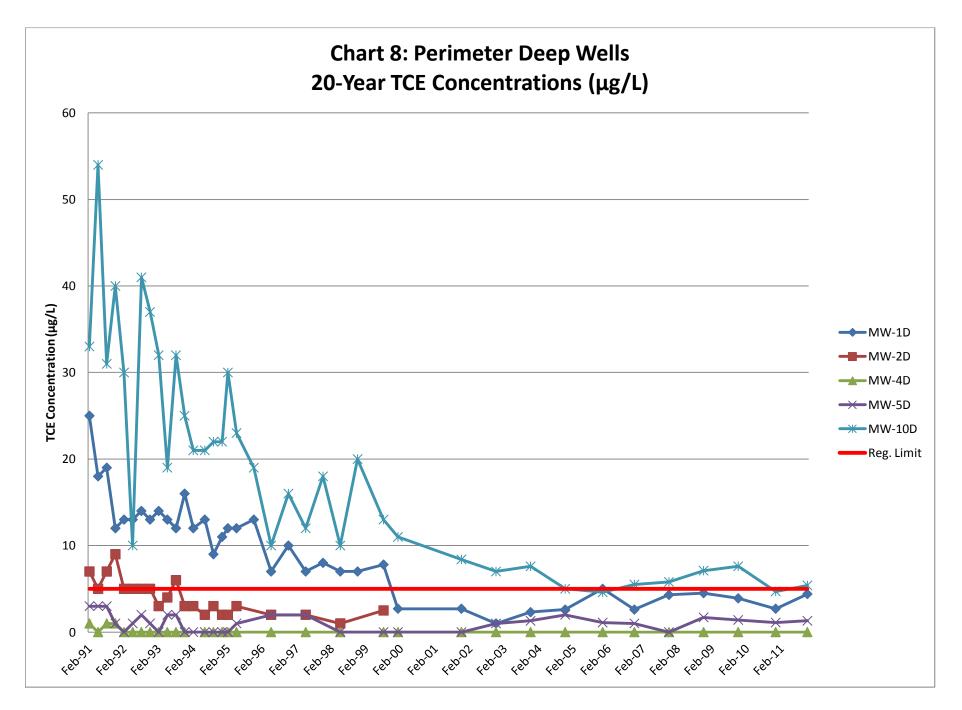


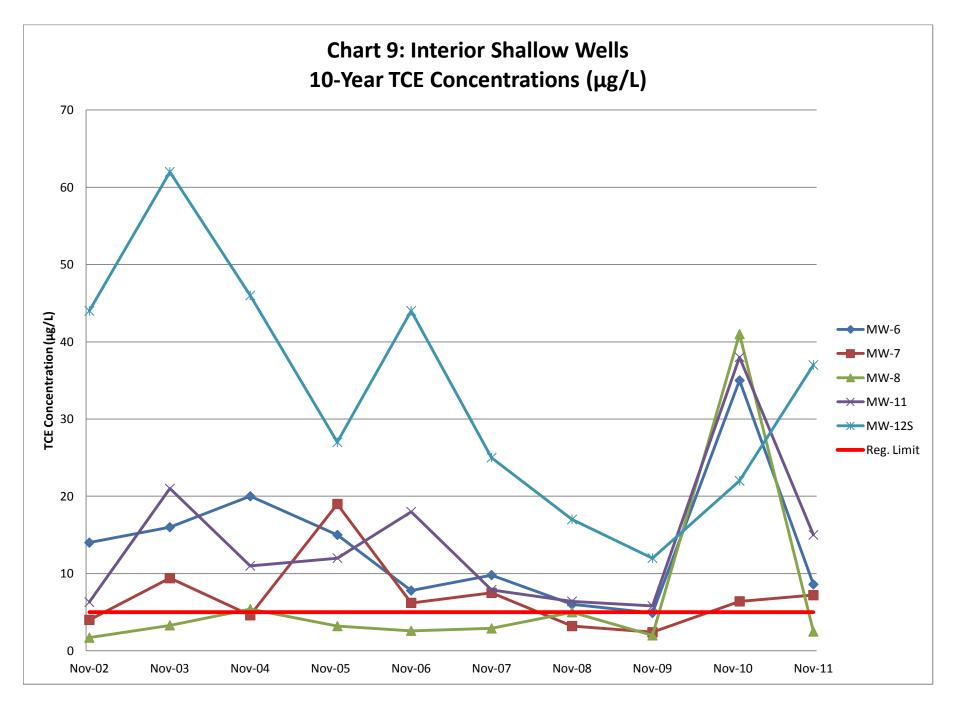


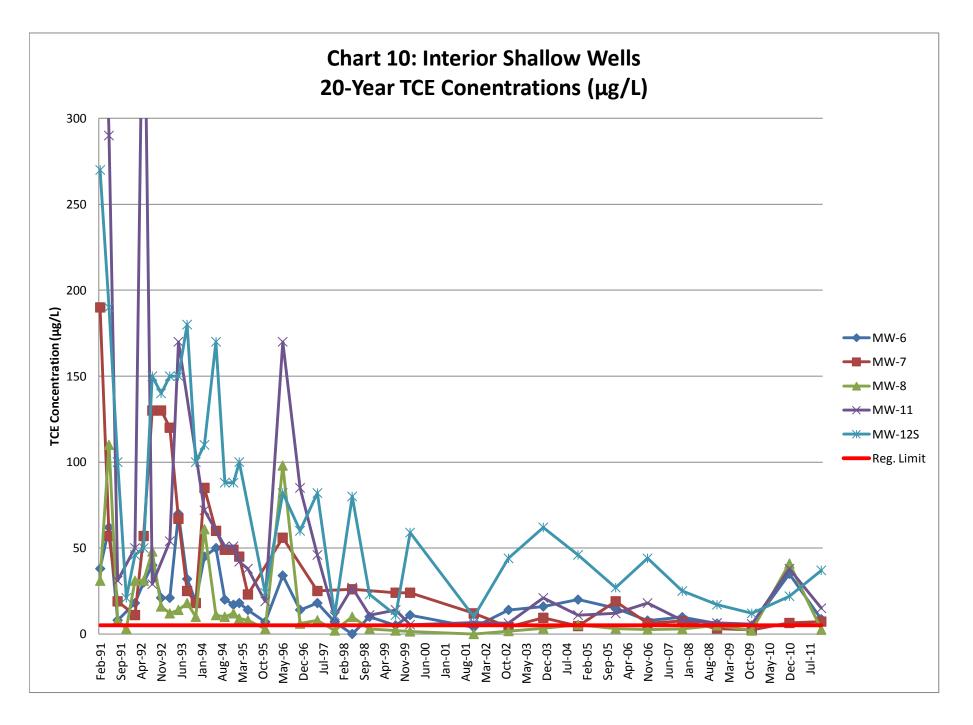


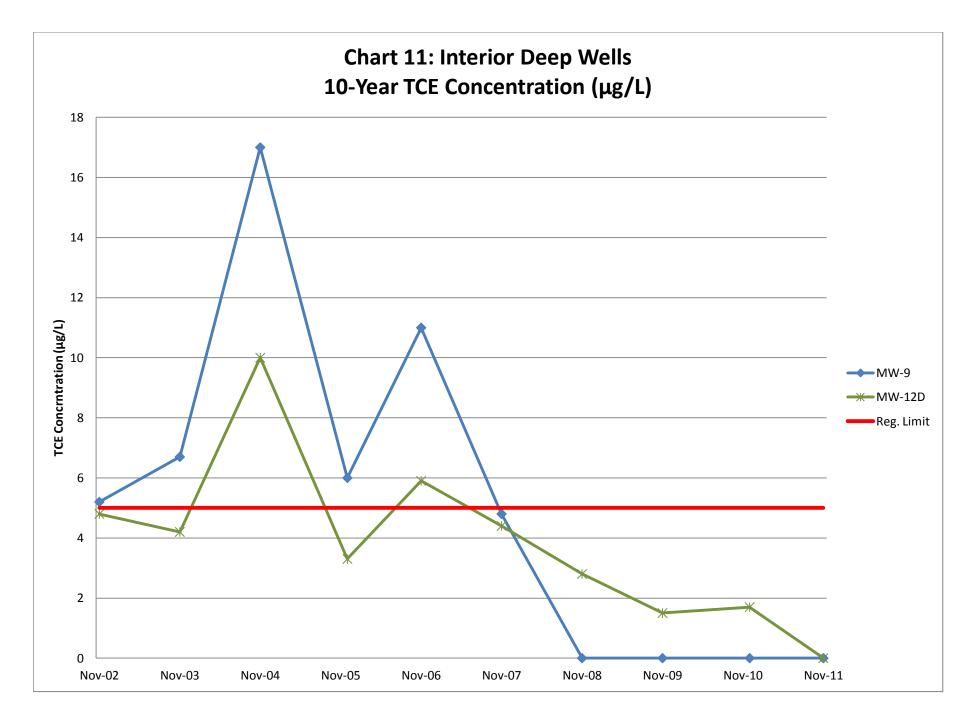


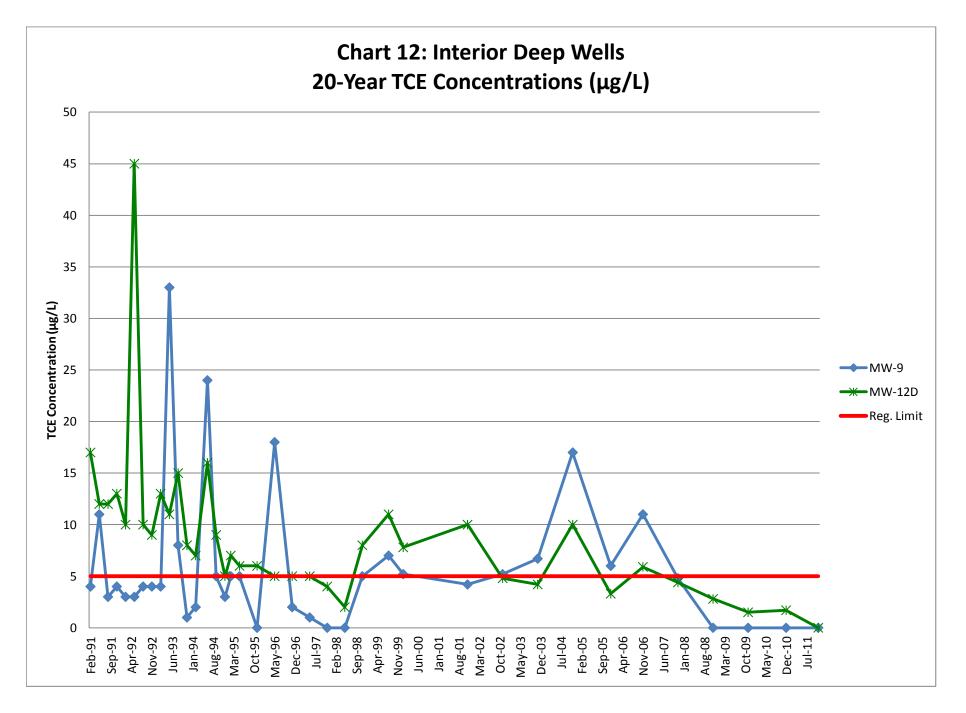












P:\PROJECTS\2010\210087-CCC\REPORT\2011 Annual PRR\ Table 2 - Summary of GW Analytical Results & Charts.xlsx

APPENDIX E

ANALYTICAL RESULTS FROM 2011 ANNUAL SAMPLING EVENT

GeoLogic NY, Inc. PO Box 350 Homer, NY 13077

Phone: (607) 749-5000 FAX: (607) 749-5063

Laboratory Analysis Report For GeoLogic NY, Inc.

LSL Project ID: 1118743

Receive Date/Time: 11/23/11 10:20

Project Received by: GS

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

Life Science Laboratories, Inc.

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Tel. (315) 445-1900 Fax (315) 445-1104 NYS DOH ELAP #10248 PA DEP #68-2556

LSL North Lab 131 St. Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061 NYS DOH ELAP #10900 NYS DOH ELAP #11667

LSL Finger Lakes Lab 16 N. Main St., PO Box 424 Wayland, NY 14572 Tel. (585) 728-3320 Fax (585) 728-2711

LSL Southern Tier Lab 30 East Main Street Cuba, NY 14727 Tel. (585) 968-2640 Fax (585) 968-0906 NYS DOH ELAP #10760

LSL MidLakes Field Offfice 493 South Main Street Canandaigua, NY 14424 Tel. (585) 728-3320 Fax (585) 728-2711 NYS DOH ELAP #11369

This report was reviewed by:

Life Science Laboratories, Inc

ja/ia/11 Date:

A copy of this report was sent to:

Page 1 of 7 **Date Printed:** 11/30/11

	MONT 10				LSL Sample ID:	1118743-0	01
Sample ID:	MW-1S					1110/48 0	
Location:							
Sampled:	11/21/11 15:30	Sampled By:					
Sample Matrix:	NPW						
Analytical Metho	od				Prep	Analysis	Analyst
Analyte			Result	Units	Date	Date & Time	Initials
1) EPA 8260B T	CL Volatiles						
1,1,1-Trich	loroethane		<1	ug/l		11/25/11	MSV
1,1-Dichlor	oethene		<1	ug/l		11/25/11	MSV
1,2-Dichlor	oethene, Total		<1	ug/l		11/25/11	MSV
Trichloroet	thene		5.4	ug/l		11/25/11	MSV
Tetrachloro	pethene		<1	ug/l		11/25/11	MSV
Vinyl chlor	ide		<1	ug/l		11/25/11	MSV
Surrogate ((4-BFB)		119	%R		11/25/11	MSV
Surrogate (Tol-d8)		103	%R		11/25/11	MSV
Surrogate ((1, 2-DCA-d4)		118	%R		11/25/11	MSV
Sample ID:	MW-1D				LSL Sample ID:	1118743-0	002
Location:							
Sampled:	11/21/11 15:15	Sampled By:					
-		Sampled By:					
Sample Matrix:						Analysia	Analys
Analytical Metho	bd			TT 24-	Prep	Analysis Date & Time	Initials
Analyte			Result	Units	Date	Date & Time	Intian
7) EPA 8260B T	CL Volatiles						
1,1,1-Trich	loroethane		<1	ug/l		11/25/11	MSV
1,1-Dichlor	oethene		<1	ug/l		11/25/11	MSV
1,2-Dichlor	oethene, Total		<1	ug/l		11/25/11	MSV
Trichloroe	thene		4.4	ug/l		11/25/11	MSV
Tetrachlor	oethene		<]	ug/l		11/25/11	MSV
Vinyl chlor	·ide		<1	ug/l		11/25/11	MSV
Surrogate	(4-BFB)		119	%R		11/25/11	MSV
Surrogate	(Tol- d8)		104	%R		11/25/11	MSV
Surrogate	(1, 2-DCA-d4)		116	%R		11/25/11	MSV
Sample ID:	MW-2S				LSL Sample ID:	1118743-	003
Location:							
Sampled:	11/21/11 17:10	Sampled By:					
-		Sampled Dy					
Sample Matrix:					Prep	Analysis	Analys
Analytical Methe Analyte	od		Result	Units	Date	Date & Time	Initial
	CI Volatiles						
	loroethane		<1	ug/l		11/25/11	MSV
1,1,1-1 rich 1,1-Dichloi			<1	ug/l		11/25/11	MSV
	roethene, Total		<1	ug/l		11/25/11	MS
T,2-Dicition			1.8	ug/l		11/25/11	MS
Tetrachlor			<1	ug/l		11/25/11	MS
Vinyl chlor			<1	ug/l		11/25/11	MS
Surrogate			117	%R		11/25/11	MS
Surrogate	(Tol-d8)		103	%R		11/25/11	MS

Homer, NY GeoLogic NY, Inc. LSL Sample ID: 1118743-004 MW-4S Sample ID: Location: Sampled By: 11/22/11 9:45 Sampled: Sample Matrix: NPW Analyst Prep Analysis Analytical Method Initials Date Date & Time Result Units Analyte EPA 8260B TCL Volatiles (1) 11/25/11 MSV ug/l <1 1.1.1-Trichloroethane 11/25/11 MSV <1 ug/l 1,1-Dichloroethene MSV 11/25/11 <1 ug/l 1,2-Dichloroethene, Total MSV 11/25/11 <1 ug/l Trichloroethene MSV 11/25/11 <1 ug/l Tetrachloroethene 11/25/11 MSV <1 ug/l Vinvl chloride 11/25/11 MSV 119 %R Surrogate (4-BFB) MSV 11/25/11 103 %R Surrogate (Tol-d8) MSV 11/25/11 117 %R Surrogate (1,2-DCA-d4) 1118743-005 LSL Sample ID: MW-4D Sample ID: Location: Sampled By: 11/22/11 9:30 Sampled: Sample Matrix: NPW Analyst Analysis Prep Analytical Method Initials Date & Time Date Result Units Analyte (1) EPA 8260B TCL Volatiles 11/25/11 MSV <1 ug/l 1.1.1-Trichloroethane MSV 11/25/11 <1 ug/l 1,1-Dichloroethene MSV 11/25/11 <1 ug/l 1.2-Dichloroethene, Total MSV 11/25/11 <1 ug/l Trichloroethene MSV 11/25/11 < 1ug/l Tetrachloroethene MSV 11/25/11 <1 ug/l Vinyl chloride MSV 11/25/11 %R 120 Surrogate (4-BFB) MSV 11/25/11 104 %R Surrogate (Tol-d8) MSV 11/25/11 118 %R Surrogate (1,2-DCA-d4) 1118743-006 LSL Sample ID: MW-5S Sample ID: Location: Sampled By: 11/21/11 13:45 Sampled: Sample Matrix: NPW Analyst Analysis Prep Analytical Method Date & Time Initials Date Units Result Analyte (1) EPA 8260B TCL Volatiles MSV 11/25/11 1,1,1-Trichloroethane <1 ug/l MSV 11/25/11 <1 ug/l 1,1-Dichloroethene MSV 11/25/11 <1 ug/l 1,2-Dichloroethene, Total MSV 11/25/11 1.0 ug/l Trichloroethene MSV 11/25/11 <1 ug/l Tetrachloroethene MSV 11/25/11 ug/l <1 Vinyl chloride MSV 11/25/11 119 %R Surrogate (4-BFB) MSV 11/25/11 102 %R Surrogate (Tol-d8) 11/25/11 MSV 123 %R

Surrogate (1,2-DCA-d4)

GeoLogic NY, Inc. Homer, NY 1118743-007 LSL Sample ID: MW-5D Sample ID: Location: Sampled By: 11/21/11 14:25 Sampled: Sample Matrix: NPW Prep Analysis Analyst Analytical Method Date & Time Initials Result Units Date Analyte EPA 8260B TCL Volatiles (1)MSV 11/25/11 < 1ug/i 1,1,1-Trichloroethane MSV 11/25/11 <1 ug/l 1.1-Dichloroethene MSV 11/25/11 <1 ug/l 1,2-Dichloroethene, Total MSV 11/25/11 1.3 ug/l Trichloroethene 11/25/11 MSV <1 ug/l Tetrachloroethene 11/25/11 MSV <1 ug/l Vinvl chloride MSV 11/25/11 118 %R Surrogate (4-BFB) MSV 11/25/11 104 %R Surrogate (Tol-d8) MSV 11/25/11 118 %R Surrogate (1,2-DCA-d4) 1118743-008 LSL Sample ID: Sample ID: **MW-6** Location: Sampled By: 11/22/11 14:00 Sampled: Sample Matrix: NPW Analyst Prep Analysis Analytical Method Date & Time Date Initials Result Units Analyte (1) EPA 8260B TCL Volatiles MSV 11/25/11 ug/l 1,1,1-Trichloroethane < 1MSV 11/25/11 < 1ug/l 1,1-Dichloroethene MSV 11/25/11 <1ug/l 1,2-Dichloroethene, Total MSV 11/25/11 8.6 ug/l Trichloroethene MSV 11/25/11 <1ug/l Tetrachloroethene MSV 11/25/11 <1 ug/l Vinyl chloride MSV 11/25/11 %R 122 Surrogate (4-BFB) MSV 11/25/11 103 %R Surrogate (Tol-d8) MSV 11/25/11 120 %R Surrogate (1,2-DCA-d4) LSL Sample ID: 1118743-009 Sample ID: **MW-7** Location: Sampled By: 11/22/11 12:20 Sampled: Sample Matrix: NPW Analysis Analyst Prep Analytical Method Date & Time Initials Date Result Units Analyte (1) EPA 8260B TCL Volatiles MSV 11/25/11 <1 ug/l 1,1,1-Trichloroethane MSV ug/l 11/25/11 <1 1.1-Dichloroethene 11/25/11 MSV ug/l <1 1,2-Dichloroethene, Total MSV 11/25/11 ug/l 7.2 Trichloroethene 11/25/11 MSV <1 ug/l Tetrachloroethene MSV 11/25/11 <1 ug/l Vinyl chloride MSV 11/25/11 121 %R Surrogate (4-BFB) 11/25/11 MSV %R 102 Surrogate (Tol-d8) MSV 11/25/11 123 %R Surrogate (1,2-DCA-d4)

GeoLogic NY, Inc. Homer, NY 1118743-010 LSL Sample ID: MW-8 Sample ID: Location: Sampled By: 11/22/11 13:25 Sampled: Sample Matrix: NPW Analyst Analysis Prep Analytical Method Initials Date Date & Time Result Units Analyte EPA 8260B TCL Volatiles (1) 11/25/11 MSV ug/l <1 1,1,1-Trichloroethane MSV 11/25/11 <1 ug/1 1.1-Dichloroethene MSV 11/25/11 <1 ug/l 1,2-Dichloroethene, Total MSV 11/25/11 2.5 ug/l Trichloroethene MSV 11/25/11 <1 ug/l Tetrachloroethene 11/25/11 MSV <1 ug/l Vinyl chloride MSV 11/25/11 %R 120 Surrogate (4-BFB) MSV 11/25/11 103 %R Surrogate (Tol-d8) MSV 11/25/11 119 %R Surrogate (1,2-DCA-d4) 1118743-011 LSL Sample ID: **MW-9** Sample ID: Location: Sampled By: 11/22/11 12:00 Sampled: Sample Matrix: NPW Analyst Analysis Prep Analytical Method Ini<u>tials</u> Date & Time Date Result Units Analyte (1) EPA 8260B TCL Volatiles 11/25/11 MSV <1 ug/l 1.1.1-Trichloroethane MSV 11/25/11 <1 ug/l 1,1-Dichloroethene MSV 11/25/11 <1 ug/l 1.2-Dichloroethene, Total MSV 11/25/11 <1 ug/l Trichloroethene MSV 11/25/11 ug/l <1Tetrachloroethene MSV 11/25/11 <1 ug/i Vinyl chloride MSV 11/25/11 %R 121 Surrogate (4-BFB) MSV 11/25/11 104 %R Surrogate (Tol-d8) MSV 11/25/11 119 %R Surrogate (1,2-DCA-d4) 1118743-012 LSL Sample ID: Sample ID: **MW-10S** Location: Sampled By: 11/21/11 16:20 Sampled: Sample Matrix: NPW Analyst Analysis Prep **Analytical Method** Date & Time Initials Date Units Result Analyte (1) EPA 8260B TCL Volatiles MSV 11/25/11 <1 ug/l 1,1,1-Trichloroethane MSV 11/25/11 <1 ug/l 1.1-Dichloroethene MSV 11/25/11 <1 ug/l 1,2-Dichloroethene, Total 11/25/11 MSV ug/l 5.8 Trichloroethene 11/25/11 MSV ug/l < 1Tetrachloroethene MSV 11/25/11 <1 ug/1 Vinyl chloride MSV 11/25/11 124 %R Surrogate (4-BFB) MSV 11/25/11 102 %R Surrogate (Tol-d8) 11/25/11 MSV 124 %R Surrogate (1,2-DCA-d4)

Life Science Laboratories, Inc.

Sample ID:	MW-10D				LSL Sample ID:	1118743-0	13
1					202 0		
Location:		a					
~F	11/21/11 16:15	Sampled By:					
Sample Matrix:	NPW						
Analytical Metho	d				Prep	Analysis Data & Timo	Analyst Initials
Analyte			Result	Units	Date	Date & Time	111111115
I) EPA 8260B TO	CL Volatiles						
1,1,1-Trichl	oroethane		<1	ug/l		11/25/11	MSV MSV
1,1-Dichloro	oethene		<1	ug/l		11/25/11	MSV
1,2-Dichloro	oethene, Total		<1	ug/l		11/25/11 11/25/11	MSV
Trichloroet	hene		5.4	ug/l		11/25/11	MSV
Tetrachloro			<1	ug/l		11/25/11	MSV
Vinyl chlori			<1	ug/l		11/25/11	MSV
Surrogate (4			123	%R		11/25/11	MSV
Surrogate (104	%R		11/25/11	MSV
Surrogate (1,2-DCA-d4)		120	%R			
Sample ID:	MW-11				LSL Sample ID:	1118743-0)14
Location:							
Sampled:	11/22/11 12:35	Sampled By:					
-		5					
Sample Matrix:					Prep	Analysis	Analyst
Analytical Metho	d		Result	Units	Date	Date & Time	Initials
Analyte			Kesuit	Units			
(1) EPA 8260B T			-1			11/25/11	MSV
1,1,1-Trich			<1	ug/l		11/25/11	MSV
1,1-Dichlor			<1	ug/l		11/25/11	MSV
,	oethene, Total		<1	ug/l		11/25/11	MSV
Trichloroet			15	ug/l		11/25/11	MSV
Tetrachloro			<1 <1	ug/l		11/25/11	MSV
Vinyl chlor			121	ug/l %R		11/25/11	MSV
Surrogate (121	%R		11/25/11	MSV
Surrogate (102	%R		11/25/11	MSV
Surrogate (1,2-DCA-d4)		119	701			
Sample ID:	MW-12S				LSL Sample ID:	1118743-	015
Location:							
Sampled:	11/22/11 10:45	Sampled By:					
Sample Matrix:		1 0					
	·····				Prep	Analysis	Analys
Analytical Metho Analyte	Ju		Result	Units	Date	Date & Time	Initials
	CL Valatilas						
			<1	ug/l		11/25/11	MSV
1,1,1-Trich			<1	ug/l		11/25/11	MSV
1,1-Dichlor			<1	ug/l		11/25/11	MSV
	oethene, Total		37	ug/l		11/25/11	MSV
Trichloroe			<1	ug/l		11/25/11	MSV
TT 4 1 1			<1	ug/l		11/25/11	MSV
Tetrachlor Vinut shlor			-1				1 (01
Vinyl chlor			123	%R		11/25/11	MSV
	(4-BFB)		123 104	%R %R		11/25/11 11/25/11	MS\ MS\

Life Science Laboratories, Inc.

Page 6 of 7 Date Printed: 11/30/11

GeoLogic NY, Inc. Homer, NY 1118743-016 LSL Sample ID: **MW-12D** Sample ID: Location: 11/22/11 10:35 Sampled By: Sampled: Sample Matrix: NPW Analysis Analyst Prep Analytical Method Date & Time Initials Date Units Result Analyte (1)EPA 8260B TCL Volatiles 11/28/11 MSV 1,1,1-Trichloroethane <1 ug/l MSV 11/28/11 <1 ug/l 1,1-Dichloroethene MSV 11/28/11 <1 ug/l 1,2-Dichloroethene, Total MSV 11/28/11 <1 ug/l Trichloroethene 11/28/11 MSV <1 ug/l Tetrachloroethene MSV 11/28/11<1 ug/l Vinyl chloride MSV 11/28/11 119 %R Surrogate (4-BFB) MSV 11/28/11 103 %R Surrogate (Tol-d8) MSV %R 11/28/11 117 Surrogate (1,2-DCA-d4) 1118743-017 LSL Sample ID: **Trip Blank** Sample ID: Location: Sampled By: Sampled: 11/22/11 0:00 Sample Matrix: TB Analysis Analyst Prep **Analytical Method** Date & Time Initials Date Result Units Analyte (1) EPA 8260B TCL Volatiles MSV 11/25/11 1,1,1-Trichloroethane <1 ug/l MSV 11/25/11 <1 ug/l 1,1-Dichloroethene 11/25/11 MSV <1 ug/l 1,2-Dichloroethene, Total MSV 11/25/11 <1 ug/l Trichloroethene 11/25/11 MSV <1 ug/l Tetrachloroethene MSV 11/25/11 Vinyl chloride <1 ug/l MSV 11/25/11 120 %R Surrogate (4-BFB) MSV 101 %R 11/25/11 Surrogate (Tol-d8) MSV 11/25/11 126 %R Surrogate (1,2-DCA-d4) 1118743-018 LSL Sample ID: Sample ID: **Equipment Blank** Location: Sampled By: 11/22/11 16:15 Sampled: Sample Matrix: QC Analyst Prep Analysis **Analytical Method** Date & Time Initials Date Units Result Analyte (1) EPA 8260B TCL Volatiles MSV 11/28/11 <1 ug/l 1,1,1-Trichloroethane MSV 11/28/11 ug/l <1 1.1-Dichloroethene MSV 11/28/11 <1 ug/l 1,2-Dichloroethene, Total 11/28/11 MSV Trichloroethene < 1ug/l MSV 11/28/11 <1 ug/l Tetrachloroethene MSV 11/28/11 <1 ug/l Vinyl chloride MSV 120 %R 11/28/11 Surrogate (4-BFB) MSV 11/28/11 104 %R Surrogate (Tol-d8)

118

%R

11/28/11

MSV

Analysis performed at: (1) LSL Central, (2) LSL North, (3) LSL Finger Lakes, (4) LSL Southern Tier, (5) LSL MidLakes

Surrogate (1,2-DCA-d4)

SURROGATE RECOVERY CONTROL LIMITS FOR ORGANIC METHODS

Method	Surrogate(s)	Water <u>Limits, %R</u>	SHW <u>Limits, %R</u>
EPA 504	ТСМХ	80-120	NA
EPA 508	DCB	70-130	NA
EPA 515.4	DCAA	70-130	NA
EPA 524.2	1,2-DCA-d4	70-130	NA
EPA 524.2	Tol-d8, 4-BFB	75-125	NA
EPA 525.2	1,3-DM-2-NB, TPP, Per-d12	70-130	NA
EPA 526	1,3-DM-2-NB, TPP	70-130	NA
EPA 528	2-CP-3,4,5,6-d4, 2,4,6-TBP	70-130	NA
EPA 551.1	Decafluorobiphenyl	80-120	NA
EPA 552.2	2,3-DBPA	70-130	NA
EPA 601/602	1,2-DCA-d4	70-130	NA
EPA 601/602	Tol-d8, 4-BFB	75-125	NA
EPA 608	TCMX, DCB	30-150	NA
EPA 624	1,2-DCA-d4	70-130	NA
EPA 624	Tol-d8, 4-BFB	75-125	NA
EPA 625, AE	2-Fluorophenol	21-110	NA
EPA 625, AE	Phenol-d5	10-110	NA
EPA 625, AE	2,4,6-Tribromophenol	10-123	NA
EPA 625, BN	Nitrobenzene-d5	35-114	NA
EPA 625, BN	2-Fluorobiphenyl	43-116	NA
EPA 625, BN	Terphenyl-d14	33-141	NA
EPA 8010/8020/8021	1,2-DCA-d4	70-130	69-127
EPA 8010/8020/8021	Tol-d8	75-125	72-138
EPA 8010/8020/8021	4-BFB	75-125	53-167
EPA 8081	TCMX, DCB	30-150	30-150
EPA 8082	DCB	30-150	30-150
EPA 8151	DCAA	30-130	30-120
EPA 8260	1,2-DCA-d4	70-130	69-127
EPA 8260	Tol-d8	75-125	72-138
EPA 8260	4-BFB	75-125	53-167
EPA 8270, AE	2-Fluorophenol	21-110	25-121
EPA 8270, AE	Phenol-d5	10-110	24-113
EPA 8270, AE	2,4,6-Tribromophenol	10-123	19-122
EPA 8270, BN	Nitrobenzene-d5	35-114	23-120
EPA 8270, BN	2-Fluorobiphenyl	43-116	30-115
EPA 8270, BN	Terphenyl-d14	33-141	18-137
DOH 310-13	Terphenyl-d14	40-110	40-110
DOH 310-14	Terphenyl-d14	40-110	40-110
DOH 310-15	Terphenyl-d14	40-110	40-110
DOH 310-34	4-BFB	50-150	50-150
DOH 313-4	DCB	NA	30-150
8015M_GRO	4-BFB	50-150	50-150
8015M_DRO	Terphenyl-d14	50-150	50-150
.			
Units Key:	ug/I = microgram per liter		
	ug/kg = microgram per kilogram mg/l = milligram per liter		

mg/l = milligram per liter mg/kg = milligram per kilogram %R = Percent Recovery

GeoLog **Chain of C**

1118743

~~ : 2

of 2

GeoLogicNY

SAMPLERS NAME(S):

CLIENT: GeoLogic

PROJECT: 210087

C. T. Gabriel

		SA	MPLE TYP	E	NO. of		LYSIS		
SAMPLE LOCATION DATE		TIME				SAMPLES		UIRED	
			WATER	SOIL	AIR				
wi AB MW-1S	11-21	15:30	X			2	See	Below	
Cred MW-1D	11-21	15:15	x			2	See	Below	
003 MW-2S	11-21	17:10	x			2	See	Below	
any MW-4S	11-22	09:45	x			2	See	Below	
∞5 MW-4D	11-22	09:30	x			2	See	Below	
ocl MW-5S	11-21	13:45	x			2	See	Below	
ωη MW-5D	11-21	14:25	$= \sum_{i=1}^{n} \sum_{j \in \mathcal{I}_{i}} \sum_{i \in \mathcal{I}_{i}} \sum_{j \in $			2	See	Below	
wr MW-6	11-22	14:00	X			2	See	Below	
<i>ଇ</i> ୟ MW-7	11-22	12:20	X			2	See	Below	
010 🗸 MW-8	11-22	13:25	x			2	See Below		
Relinquished by:		Date	Time	C	Received by	/: /:	Date	Time	
Relinguished by: C.T.Gaburt of Geol	gie al	11-22-11	1630	Samp	a Fidg	e	11-22-11	1650	
Relinquished by:		Date	Time	(Received by	r: //	Date	Time	
Sample Fridge		11-23-00		10	iel /	nill	11-23-11	9:05	
Relinquished by	1	Date	Time Received for Lab by:			b by:	Date	Time	
I half all	•	11-23-11	10:20	B	78~		11-23-11	10:20	
Method of Shipment:	AB PICK-U	JP			4.5 %	nIq	<u> </u>		
COMMENTS:			· ·			180			
Sample Analysis (1 ug/L report	ting limit)								
EPA 8260B for									
1,1,1-Trichloroethane									
1,1-Dichloroethene	1,1-Dichloroethene								
1,2-Dichloroethene									
Trichloroethene									
Tetrachloroethene									
Vinyl Chloride									

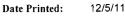
F:\Projects\2010\210087\Tech\Annual CoC 1 of 2

GeoLogi Chain of Ci

1118743

2 072

GeoLogicNY


CLIENT: GeoLogic

PROJECT: 210087

SAMPLERS NAME(S): C. T. Gabrie!

SAMPLE TYPE NO. of ANALYSIS SAMPLE LOCATION DATE TIME SAMPLES REQUIRED WATER SOIL AIR **MW-9** 11-22 12:00 Х on AB 2 See Below **MW-10S** 11-21 16:20 Х 2 012 See Below **MW-10D** 11-21 16:15 Х 2 013 See Below **MW-11** 11-22 12:35 Х 2 014 See Below **MW-12S** 11-22 10:45 015 Х 2 See Below **MW-12D** 11-22 10:35 016 Х 2 See Below **Trip Blank** 017 11-22 Х 2 See Below ov Equipment Blank 11-22 16:15 Х 2 See Below **Relinquished by:** Date Time Received by: Date Time C.T. Gasnel of Geologia NY Juc Sample Fridge 11-22-01 16:30 16-30 11-27-11 Relinguished by: Date Time Received by: Date Time Sample Fridge 11-23-11 11-27-11 905 Relinquished by: Date Time Received for Lab by: Date Time 11-23-11 10:20 11-23-11 10:20 Method of Shipment: LAB PICK-UP TEMP 4.5 onTa COMMENTS: Sample Analysis (1 ug/L reporting limit) EPA 8260B for 1,1,1-Trichloroethane 1,1-Dichloroethene 1,2-Dichloroethene **Trichloroethene** Tetrachloroethene Vinyl Chloride

F:\Projects\2010\210087\Tech\Annual CoC 2 of 2

Initials

GeoLogic NY, Inc. **PO Box 350** Homer, NY 13077

Laboratory Analysis Report For GeoLogic NY, Inc.

LSL Project ID: 1118848

Phone: (607) 749-5000 FAX: (607) 749-5063

A copy of this report was sent to:

LSL Sample ID: 1118848-001 Sample ID: MW-L16 Receive Date/Time: 11/29/11 13:44 Location: Project Rec'd by: RD Sampled: 11/23/11 9:35 Matrix: NPW Sampled By: Analyst Prep Analysis **Analytical Method Result** Units Date Date & Time Analyte

T TINKI / VV			
(1) EPA 8260B TCL Volatiles	· · ·		
1,1,1-Trichloroethane	<1 ug/l	12/1/11	MSV
1,1-Dichloroethene	<1 ug/l	12/1/11	MSV
1,2-Dichloroethene, Total	<1 ug/l	12/1/11	MSV
Trichloroethene	3.5 ug/l	12/1/11	MSV
Tetrachloroethene	<1 ug/l	12/1/11	MSV
Vinyl chloride	<1 ug/l	12/1/11	MSV
Surrogate (4-BFB)	114 %R	12/1/11	MSV
Surrogate (Tol-d8)	112 %R	12/1/11	MSV
Surrogate (1,2-DCA-d4)	105 %R	12/1/11	MSV

Life Science Laboratories, Inc.

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Tel. (315) 445-1900 Fax (315) 445-1104 PA DEP #68-2556

LSL North Lab 131 St. Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061 NYS DOH ELAP #10248 NYS DOH ELAP #10900

LSL Finger Lakes Lab 16 N. Main St., PO Box 424 Wayland, NY 14572 Tel. (585) 728-3320 Fax (585) 728-2711 NYS DOH ELAP #11667

LSL Southern Tier Lab 30 East Main Street Cuba, NY 14727 Tel. (585) 968-2640 Fax (585) 968-0906 NYS DOH ELAP #10760

LSL MidLakes Field Office

Tel. (585) 728-3320

Fax (585) 728-2711

Reviewed by 493 South Main Street Canandaigua, NY 14424 NYS DOH ELAP #11369

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

SURROGATE RECOVERY CONTROL LIMITS FOR ORGANIC METHODS

Method	Surrogate(s)	Water <u>Limits, %R</u>	SHW <u>Limits, %R</u>
EPA 504	тсмх	80-120	NA
EPA 508	DCB	70-130	NA
EPA 515.4	DCAA	70-130	NA
EPA 524.2	1,2-DCA-d4	70-130	NA
EPA 524.2	Tol-d8, 4-BFB	75-125	NA
EPA 525.2	1,3-DM-2-NB, TPP, Per-d12	70-130	NA
EPA 525.2 EPA 526	1,3-DM-2-NB, TPP	70-130	NA
EPA 528	2-CP-3,4,5,6-d4, 2,4,6-TBP	70-130	NA
	Decafluorobiphenyl	80-120	NA
EPA 551.1		70-130	NA
EPA 552.2	2,3-DBPA	70-130	NA
EPA 601/602	1,2-DCA-d4	70-130	NA
EPA 601/602	Tol-d8, 4-BFB	75-125	NA
EPA 608	TCMX, DCB	30-150	NA
EPA 624	1,2-DCA-d4	70-130	NA
EPA 624	Tol-d8, 4-BFB	75-125	NA
EPA 625, AE	2-Fluorophenol	21-110	NA
EPA 625, AE	Phenol-d5	10-110	NA
EPA 625, AE	2,4,6-Tribromophenol	10-123	NA
EPA 625, BN	Nitrobenzene-d5	35-114	NA
EPA 625, BN	2-Fluorobiphenyl	43-116	NA
EPA 625, BN	Terphenyl-d14	33-141	NA
EPA 8010/8020/8021	1,2-DCA-d4	70-130	69-127
EPA 8010/8020/8021	Tol-d8	75-125	72-138
EPA 8010/8020/8021	4-BFB	75-125	53-167
EPA 8081	TCMX, DCB	30-150	30-150
EPA 8082	DCB	30-150	30-150
EPA 8151	DCAA	30-130	30-120
EPA 8260	1,2-DCA-d4	70-130	69-127
EPA 8260	Tol-d8	75-125	72-138
EPA 8260	4-BFB	75-125	53-167
EPA 8270, AE	2-Fluorophenol	21-110	25-121
EPA 8270, AE	Phenol-d5	10-110	24-113
EPA 8270, AE	2,4,6-Tribromophenol	10-123	19-122
EPA 8270, BN	Nitrobenzene-d5	35-114	23-120
EPA 8270, BN	2-Fluorobiphenyl	43-116	30-115
EPA 8270, BN	Terphenyl-d14	33-141	18-137
DOH 310-13	Terphenyl-d14	40-110	40-110
DOH 310-14	Terphenyl-d14	40-110	40-110
DOH 310-15	Terphenyl-d14	40-110	40-110
DOH 310-34	4-BFB	50-150	50-150
DOH 313-4	DCB	NA	30-150
8015M_GRO	4-BFB	50-150	50-150
8015M_DRO	Terphenyl-d14	50-150	50-150
—			
Units Key:	ug/I = microgram per liter		
	ug/kg = microgram per kilogram		
	mg/l = milligram per liter		
	mg/kg = milligram per kilogram		
	%R = Percent Recovery		

GeoLogic NY, Inc. Chain of custody record

1118848 GeoLogicNY 3948

CLIENT: GeoLogic

SAMPLERS NAME(S):

PROJECT: 210087

C. T. Gabriel

				SA	MPLE TYP	E	NO. of		
	SAMPLE LOCATION	DATE	DATE TIME					ANALYSIS REQUIRED	
				WATER	SOIL	AIR			
DOIPB	MW-L16	11-23	09:35	x			2	See I	Below
æ									
			<u></u>						
									- Transment
	••••••••••••••••••••••••••••••••••••••								
					*				
	Relinquished by:		Date	Time	/ ···· a.wa	Received by		Date	Time
	CT Gabriel of Geolo.	GC NYT	11-23-11	10:30	Samp	Le Gridg	L	16-23-11	10:30
	Relinquished by:	/ / / /	Date	Time		Received by	/ :	Date	Time
					Bill	Dorald	non	11-29-11	12:15
	Relinquished by:		Date	Time	Re	ceived for La	b by:	Date	Time
	Bell Doraldson				R.S	Dunbo		11-29-11	13:44
		B PICK-L	JP 🔪	Т	EMP	5.40	c		
				<u> </u>					
	COMMENTS:								
	Sample Analysis (1 ug/L report	ing limit)							
	EPA 8260B for								
	1,1,1-Trichloroethane								
	1,1-Dichloroethene								
	1,2-Dichloroethene								
	Trichloroethene								
	Tetrachloroethene								1
	Vinyl Chloride								
Ŀ								dinter .	

F:\Projects\2010\210087\Tech\Annual CoC Interior

P.O. BOX 350 HOMER, NEW YORK 13077 (607) 749-5000 FAX (607) 749-5063

GeoLogic NY, Inc. **PO Box 350** Homer, NY 13077

Phone: (607) 749-5000 FAX: (607) 749-5063

Laboratory Analysis Report For GeoLogic NY, Inc.

LSL Project ID: 1118747

Receive Date/Time: 11/23/11 10:20

Project Received by: GS

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

Life Science Laboratories, Inc.

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Tel. (315) 445-1900 Fax (315) 445-1104 NYS DOH ELAP #10248 PA DEP #68-2556

LSL North Lab 131 St. Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061

LSL Finger Lakes Lab 16 N. Main St., PO Box 424 Wayland, NY 14572 Tel. (585) 728-3320 Fax (585) 728-2711 NYS DOH ELAP #10900 NYS DOH ELAP #11667

LSL Southern Tier Lab 30 East Main Street Cuba, NY 14727 Tel. (585) 968-2640 Fax (585) 968-0906 NYS DOH ELAP #10760

LSL MidLakes Field Offfice 493 South Main Street Canandaigua, NY 14424 Tel. (585) 728-3320 Fax (585) 728-2711 NYS DOH ELAP #11369

This report was reviewed by:

Life Science Laboratories, Inc

D Date:

A copy of this report was sent to:

Page 1 of 2 11/30/11 Date Printed:

GeoLogic NY, Inc. Homer, NY LSL Sample ID: 1118747-001 Sample ID: Cascade Location: Sampled By: Sampled: 11/22/11 15:30 Sample Matrix: NPW Analysis Analyst Prep **Analytical Method** Date & Time Date Initials Result Units Analyte EPA 8260B TCL Volatiles (1)11/28/11 MSV ug/l 1,1,1-Trichloroethane <1 MSV 11/28/11 1,1-Dichloroethene <1 ug/l MSV 11/28/11 1,2-Dichloroethene, Total <1 ug/l 11/28/11 MSV 1.5 ug/l Trichloroethene 11/28/11 MSV < 1ug/l Tetrachloroethene MSV 11/28/11 <1 ug/l Vinyl chloride 11/28/11 MSV Surrogate (4-BFB) 121 %R MSV 103 %R 11/28/11 Surrogate (Tol-d8) MSV 119 %R 11/28/11 Surrogate (1,2-DCA-d4) 1118747-002 LSL Sample ID: Sample ID: **Tower Discharge** Location: Sampled By: Sampled: 11/22/11 15:10 Sample Matrix: NPW Analyst Prep Analysis **Analytical Method** Initials Date Date & Time Result Units <u>Analyt</u>e EPA 8260B TCL Volatiles (1)11/28/11 MSV <1 ug/l 1.1.1-Trichloroethane MSV 11/28/11 1.1-Dichloroethene <1 ug/l 11/28/11 MSV <1 ug/l 1,2-Dichloroethene, Total 11/28/11 MSV 3.8 ug/l Trichloroethene 11/28/11 MSV <1 ug/l Tetrachloroethene MSV 11/28/11 <1 ug/l Vinyl chloride 11/28/11 MSV Surrogate (4-BFB) 121 %R MSV 103 %R 11/28/11 Surrogate (Tol-d8) 123 %R 11/28/11 MSV Surrogate (1,2-DCA-d4) 1118747-003 LSL Sample ID: Sample ID: **Tower Influent** Location: Sampled By: 11/22/11 14:40 Sampled: Sample Matrix: NPW Prep Analysis Analyst **Analytical Method** Date & Time Initials Date Result Units Analyte EPA 8260B TCL Volatiles (1)MSV 11/28/11 1.1.1-Trichloroethane <1 ug/l <1 11/28/11 MSV ug/l 1,1-Dichloroethene 11/28/11 MSV <1 ug/l 1,2-Dichloroethene, Total MSV 11/28/11 Trichloroethene 8.8 ug/l MSV 11/28/11 Tetrachloroethene <] ug/l 11/28/11 MSV <] ug/l Vinyl chloride 120 %R 11/28/11 MSV Surrogate (4-BFB) 11/28/11 MSV 101 %R Surrogate (Tol-d8) 11/28/11 MSV 120 %R Surrogate (1,2-DCA-d4)

SURROGATE RECOVERY CONTROL LIMITS FOR ORGANIC METHODS

EPA 504 TCMX 80-120 NA EPA 508 DCB 70-130 NA EPA 504 DCAA 70-130 NA EPA 524.2 1,2-DCA-d4 70-130 NA EPA 524.2 1,2-DCA-d4 70-130 NA EPA 526 1,3-DM-2-NB, TPP, Per-d12 70-130 NA EPA 526 1,3-DM-2-NB, TPP, Por-d12 70-130 NA EPA 526 1,3-DM-2-NB, TPP, TO-130 NA EPA 551.1 Decafluorobiphenyl 80-120 NA EPA 501/602 1,2-DCA-d4 70-130 NA EPA 601/602 1,2-DCA-d4 70-130 NA EPA 624 To-d8, 4-BFB 75-125 NA EPA 625, AE Phenol-d5 10-110 NA EPA 625			Water	SHW
EPA 508 DCB 70-130 NA EPA 515.4 DCAA 70-130 NA EPA 524.2 1.2-DCA-d4 70-130 NA EPA 524.2 1.2-DCA-d4 70-130 NA EPA 525.2 1.3-DM-2-NB, TPP 70-130 NA EPA 526 1.3-DM-2-NB, TPP 70-130 NA EPA 526 2.2-DP-3, 4,5,6-d4, 2,4,6-TBP 70-130 NA EPA 551.1 Decafluorobiphenyl 80-120 NA EPA 601/602 1.2-DCA-d4 70-130 NA EPA 601/602 1.2-DCA-d4 70-130 NA EPA 601/602 To-da, 4-BFB 75-125 NA EPA 601/602 To-da, 4-BFB 75-125 NA EPA 624 To-da, 4-BFB 75-125 NA EPA 624 To-da, 4-BFB 75-125 NA EPA 625, AE Phenol-d5 10-110 NA EPA 625, AE 2.4,0-Tinbromophenol 10-123 NA EPA 625, BN 2.4,5-Tinbromophenol 10-123 <td< th=""><th>Method</th><th><u>Surrogate(s)</u></th><th><u>Limits, %R</u></th><th><u>Limits, %R</u></th></td<>	Method	<u>Surrogate(s)</u>	<u>Limits, %R</u>	<u>Limits, %R</u>
EPA 515.4 DCAA To 130 NA EPA 524.2 1,2-DCA-d4 To 130 NA EPA 524.2 To d-8, 4-BFB T5-125 NA EPA 525.2 1,3-DM-2-NB, TPP, Per-d12 To 130 NA EPA 526 1,3-DM-2-NB, TPP, Per-d12 To 130 NA EPA 528 2-CP-3,4,5-6-d4, 2,4,6-TBP To 130 NA EPA 551.1 Decafluorobiphenyl 80-120 NA EPA 601/602 1,2-DCA-d4 To 130 NA EPA 601/602 1,2-DCA-d4 To 130 NA EPA 601/602 1,2-DCA-d4 To 130 NA EPA 601/602 To d-d8, 4-BFB T5-125 NA EPA 601/602 To d-d8, 4-BFB T5-125 NA EPA 624 To d-d8, 4-BFB To 130 NA EPA 625, AE 2-Fluorophenol 21-110 NA EPA 625, AE 2-Fluorophenol 10-123 NA EPA 625, BN Vitrobenzene-d5 35-114 NA EPA 625, BN Z-Fluorophenol		тсмх	80-120	NA
EPA 524.2 1.2-DCA-d4 70-130 NA EPA 524.2 Tol-d6, 4-BFB 75-125 NA EPA 525.2 1,3-DM-2-NB, TPP, Per-d12 70-130 NA EPA 526.2 1,3-DM-2-NB, TPP 70-130 NA EPA 528 2-CP-3, 4,5,6-d4, 2,4,6-TBP 70-130 NA EPA 551.1 Decafluorobiphenyl 80-120 NA EPA 601/602 1,2-DCA-d4 70-130 NA EPA 603 TCMX, DCB 30-150 NA EPA 624 10-d8, 4-BFB 75-125 NA EPA 625, AE 2-Fluorophenol 12-110 NA EPA 625, AE 2-Fluorophenol 12-110 NA EPA 625, BN Vitrobenzene-d5 35-114 NA EPA 625, BN 2-Fluorobiphenyl 43-116 NA EPA 8010/8020/8021 1,2-DCA-d4		DCB	70-130	NA
EPA 524.2 Tot-d8, 4-BFB 75-125 NA EPA 525.2 1,3-DM-2-NB, TPP, Per-d12 70-130 NA EPA 526 1,3-DM-2-NB, TPP 70-130 NA EPA 526 2-OP-3,4,5-6-d4, 2,4,6-TBP 70-130 NA EPA 551.1 Decafluorobiphenyl 80-120 NA EPA 561.602 1,2-DCA-d4 70-130 NA EPA 601/602 1,2-DCA-d4 70-130 NA EPA 601/602 To-d8, 4-BFB 75-125 NA EPA 601/602 To-d8, 4-BFB 75-125 NA EPA 624 1,2-DCA-d4 70-130 NA EPA 624 1,2-DCA-d4 70-130 NA EPA 625, AE 2-Fluorophenol 21-110 NA EPA 625, AE 2.4,6-Tribromophenol 10-123 NA EPA 625, BN Terphenyl-d14 33-141 NA EPA 625, BN Terphenyl-d14 33-141 NA EPA 625, BN Terphenyl-d14 33-167 EPA 62 EPA 8010/8020/8021 To-BA	EPA 515.4	DCAA	70-130	NA
EPA 525.2 1,3-DM-2-NB, TPP, Per-d12 70-130 NA EPA 526 1,3-DM-2-NB, TPP 70-130 NA EPA 528 2-CP-3, 4,5-6-41, 2,4,6-TBP 70-130 NA EPA 551.1 Decafluorobiphenyl 80-120 NA EPA 552.2 2,3-DBPA 70-130 NA EPA 601/602 1,2-DCA-d4 70-130 NA EPA 601/602 Tol-d8, 4-BFB 75-125 NA EPA 606 TCMX, DCB 30-150 NA EPA 608 TCMX, DCB 30-150 NA EPA 624 10-168, 4-BFB 75-125 NA EPA 624 Tol-d8, 4-BFB 75-125 NA EPA 625, AE 2-Fluorophenol 21-110 NA EPA 625, BN 1xitrobenzene-d5 35-114 NA EPA 625, BN 2-Fluorobiphenyl 43-116 NA EPA 625, BN 1z-DCA-d4 70-130 69-127 EPA 8010/8020/8021 1,2-DCA-d4 70-130 69-127 EPA 8010/8020/8021 1,2-DCA-d4	EPA 524.2	1,2-DCA-d4	70-130	NA
EPA 526 1,3-DM-2-NB, TPP 70-130 NA EPA 528 2-CP-3,4,5,6-d4, 2,4,6-TBP 70-130 NA EPA 551.1 Decafluorobiphenyl 80-120 NA EPA 551.2 2,3-DBPA 70-130 NA EPA 601/602 1,2-DCA-d4 70-130 NA EPA 601/602 Tol-d8, 4-BFB 75-125 NA EPA 608 TCMX, DCB 30-150 NA EPA 624 1,2-DCA-d4 70-130 NA EPA 624 1,2-DCA-d4 70-130 NA EPA 624 1,2-DCA-d4 70-130 NA EPA 625, AE 2-Fluorophenol 21-110 NA EPA 625, AE 2-Fluorophenol 10-110 NA EPA 625, BN 2-Fluorophenol 10-123 NA EPA 625, BN 2-Fluorophenol 10-10 NA EPA 625, BN 2-Fluorophenol 10-123 NA EPA 6260 1,2-DCA-d4 70-130 69-127 EPA 8010/8020/8021 1,2-DCA-d4 70-130	EPA 524.2	Tol-d8, 4-BFB	75-125	NA
EPA 526 1.3-DM-2-NB, TPP 70-130 NA EPA 528 2-CP-3,4,5,6-d4, 2,4,6-TBP 70-130 NA EPA 551.1 Decafluorobiphenyl 80-120 NA EPA 551.2 2,3-DBPA 70-130 NA EPA 601/602 1,2-DCA-d4 70-130 NA EPA 601/602 Tol-d8, 4-BFB 75-125 NA EPA 601/602 Tol-d8, 4-BFB 75-125 NA EPA 624 1,2-DCA-d4 70-130 NA EPA 624 1,2-DCA-d4 70-130 NA EPA 624 1,2-DCA-d4 70-130 NA EPA 625, AE Phenol-d5 10-110 NA EPA 625, AE 2,4-6-Tribromophenol 10-123 NA EPA 625, BN 2-Fluorobiphenyl 43-116 NA EPA 625, BN 2-Fluorobiphenyl 43-116 NA EPA 626, BN Tombanzene-d5 35-114 NA EPA 627, BN Tombanzene-d5 30-150 30-150 EPA 8010/8020/8021 1,2-DCA-d4 <t< td=""><td>EPA 525.2</td><td>1,3-DM-2-NB, TPP, Per-d12</td><td>70-130</td><td></td></t<>	EPA 525.2	1,3-DM-2-NB, TPP, Per-d12	70-130	
EPA 528 2-CP-3,4,5,6-d4, 2,4,6-TBP 70-130 NA EPA 551.1 Decafluorobiphenyl 80-120 NA EPA 552.2 2,3-DBPA 70-130 NA EPA 601/602 1,2-DCA-d4 70-130 NA EPA 601/602 1,2-DCA-d4 70-130 NA EPA 601/602 1,2-DCA-d4 70-130 NA EPA 608 TCMX, DCB 30-150 NA EPA 624 10-d8, 4-BFB 75-125 NA EPA 625, AE 2-Fluorophenol 21-110 NA EPA 625, AE 2-Fluorobphenol 10-123 NA EPA 625, AE 2,4,6-Tribromophenol 10-123 NA EPA 625, BN 2-Fluorobiphenyl 43-116 NA EPA 625, BN 2-Fluorobiphenyl 43-116 NA EPA 626, BN 12-DCA-d4 70-130 69-127 EPA 8010/8020/8021 1,2-DCA-d4 70-130 69-127 EPA 8010/8020/8021 1,2-DCA-d4 70-130 69-127 EPA 8010/8020/8021 1-BF	EPA 526			
EPA 551.1 Decafluorobiphenyl 80-120 NA EPA 552.2 2,3-DBPA 70-130 NA EPA 601/602 1,2-DCA-d4 70-130 NA EPA 601/602 To-d8, 4-BFB 75-125 NA EPA 601/602 To-d8, 4-BFB 75-125 NA EPA 604 1,2-DCA-d4 70-130 NA EPA 624 1,2-DCA-d4 70-130 NA EPA 625, AE 2-Fluorophenol 21-110 NA EPA 625, AE 2-Fluorophenol 10-123 NA EPA 625, BN Nitrobenzene-d5 35-114 NA EPA 625, BN Z-Fluorobiphenyl 43-116 NA EPA 625, BN Z-Fluorobiphenyl 43-116 NA EPA 626, BN Terphenyl-d14 33-141 NA EPA 627, BN To-d8 75-125 72-138 EPA 8010/8020/8021 1,2-DCA-d4 70-130 69-127 EPA 8081 TCMX, DCB 30-150 30-150 EPA 8082 DCB 30-150	EPA 528			
EPA 552.2 2,3-DBPA 70-130 NA EPA 601/602 1,2-DCA-d4 70-130 NA EPA 601/602 Tol-d8, 4-BFB 75-125 NA EPA 608 TCMX, DCB 30-150 NA EPA 604 1,2-DCA-d4 70-130 NA EPA 624 1,2-DCA-d4 70-130 NA EPA 625, AE 2-Fluorophenol 21-110 NA EPA 625, AE 2-Fluorophenol 10-123 NA EPA 625, AE 2,4,6-Tribromophenol 10-123 NA EPA 625, BN 2-Fluorobiphenyl 43-116 NA EPA 625, BN 2-Fluorobiphenyl 43-116 NA EPA 625, BN 2-Fluorobiphenyl 43-116 NA EPA 8010/8020/8021 1,2-DCA-d4 70-130 69-127 EPA 8001 1,2-DCA-d4<	EPA 551.1			
EPA 601/602 Tol-d8, 4-BFB 75-125 NA EPA 608 TCMX, DCB 30-150 NA EPA 604 1,2-DCA-d4 70-130 NA EPA 624 1,2-DCA-d4 70-130 NA EPA 625, AE 2-Fluorophenol 21-110 NA EPA 625, AE 2-fluorophenol 10-123 NA EPA 625, AE 2.4,6-Tribromophenol 10-123 NA EPA 625, BN Nitrobenzene-d5 35-114 NA EPA 625, BN 2-Fluorobiphenyl 43.116 NA EPA 625, BN 1,2-DCA-d4 70-130 69-127 EPA 8010/8020/8021 1,2-DCA-d4 70-130 69-127 EPA 8010/8020/8021 1,2-DCA-d4 70-130 69-127 EPA 8010/8020/8021 TOHAB 75-125 53-167 EPA 8010/8020/8021 TOLAB 75-125 53-167 EPA 8010/8020/8021 TOLAA 30-150 30-150 EPA 8020 DCB 30-150 30-150 EPA 8260 1,2-DCA-d4				
EPA 601/602 Tol-d8, 4-BFB 75-125 NA EPA 608 TCMX, DCB 30-150 NA EPA 604 1,2-DCA-d4 70-130 NA EPA 624 1,2-DCA-d4 70-130 NA EPA 625, AE 2-Fluorophenol 21-110 NA EPA 625, AE 2-fluorophenol 10-123 NA EPA 625, AE 2.4,6-Tribromophenol 10-123 NA EPA 625, BN Nitrobenzene-d5 35-114 NA EPA 625, BN 2-Fluorobiphenyl 43.116 NA EPA 625, BN 1,2-DCA-d4 70-130 69-127 EPA 8010/8020/8021 1,2-DCA-d4 70-130 69-127 EPA 8010/8020/8021 1,2-DCA-d4 70-130 69-127 EPA 8010/8020/8021 TOHAB 75-125 53-167 EPA 8010/8020/8021 TOLAB 75-125 53-167 EPA 8010/8020/8021 TOLAA 30-150 30-150 EPA 8020 DCB 30-150 30-150 EPA 8260 1,2-DCA-d4	EPA 601/602	1.2-DCA-d4	70-130	NA
EPA 608 TCMX, DCB 30-150 NA EPA 624 1,2-DCA-d4 70-130 NA EPA 624 Tol-d8, 4-BFB 75-125 NA EPA 625, AE 2-Fluorophenol 21-110 NA EPA 625, AE 2-fluorophenol 10-110 NA EPA 625, AE 2,4,6-Tribromophenol 10-123 NA EPA 625, BN 2-fluorobiphenyl 43-116 NA EPA 625, BN 2-fluorobiphenyl 43-116 NA EPA 625, BN 2-fluorobiphenyl 43-116 NA EPA 625, BN 1,2-DCA-d4 70-130 69-127 EPA 8010/8020/8021 1,2-DCA-d4 70-130 69-127 EPA 8001 TCMX, DCB 30-150 30-150 EPA 8081 TCMX, DCB 30-150 30-150 EPA 8260 1,2	EPA 601/602			
EPA 624 1,2-DCA-d4 70-130 NA EPA 624 Tol-d8, 4-BFB 75-125 NA EPA 625, AE 2-Fluorophenol 21-110 NA EPA 625, AE 2-Fluorophenol 10-123 NA EPA 625, AE 2,4,6-Tribromophenol 10-123 NA EPA 625, AE 2,4,6-Tribromophenol 10-123 NA EPA 625, BN Nitrobenzene-d5 35-114 NA EPA 625, BN 2-Fluorobiphenyl 43-116 NA EPA 625, BN Terphenyl-d14 33-141 NA EPA 8010/8020/8021 1,2-DCA-d4 70-130 69-127 EPA 8010/8020/8021 1-2-DCA-d4 70-130 69-127 EPA 8010/8020/8021 Tol-d8 75-125 72-138 EPA 8010/8020/8021 Tol-d8 75-125 53-167 EPA 8081 TCMX, DCB 30-150 30-150 EPA 8082 DCB 30-150 30-120 EPA 8260 1,2-DCA-d4 70-130 69-127 EPA 8270, AE 2-Fli	EPA 608			
EPA 624 Tol-d8, 4-BFB 75-125 NA EPA 625, AE 2-Fluorophenol 21-110 NA EPA 625, AE Phenol-d5 10-110 NA EPA 625, AE 2,4,6-Tribromophenol 10-123 NA EPA 625, AE 2,4,6-Tribromophenol 10-123 NA EPA 625, BN 2,4,6-Tribromophenol 10-123 NA EPA 625, BN 2-Fluorobiphenyl 43-116 NA EPA 625, BN 2-Fluorobiphenyl 43-116 NA EPA 625, BN Terphenyl-d14 33-141 NA EPA 8010/8020/8021 1,2-DCA-d4 70-130 69-127 EPA 8010/8020/8021 1,2-DCA-d4 70-130 69-127 EPA 8010/8020/8021 1-0-d8 30-150 30-150 EPA 8082 DCB 30-150 30-150 EPA 8082 DCB 30-150 30-120 EPA 8260 12-DCA-d4 70-130 69-127 EPA 8260 10-123 19-122 53-167 EPA 8270, AE 2,4,6-Tribro	EPA 624			
EPA 625, AE 2-Fluorophenol 21-110 NA EPA 625, AE Phenol-d5 10-110 NA EPA 625, AE 2,4,6-Tribromophenol 10-123 NA EPA 625, BN Nitrobenzene-d5 35-114 NA EPA 625, BN 2-Fluorobiphenyl 43-116 NA EPA 625, BN 2-Fluorobiphenyl 43-116 NA EPA 625, BN Terphenyl-d14 33-141 NA EPA 8010/8020/8021 1,2-DCA-d4 70-130 69-127 EPA 8010/8020/8021 1,2-DCA-d4 70-130 69-127 EPA 8010/8020/8021 1-2-DCA-d4 70-130 69-127 EPA 8010/8020/8021 1-2-DCA-d4 70-130 69-127 EPA 8081 TCMX, DCB 30-150 30-150 EPA 8082 DCB 30-150 30-150 EPA 8260 1,2-DCA-d4 70-130 69-127 EPA 8260 1,2-DCA-d4 70-130 69-127 EPA 8260 1,2-DCA-d4 70-130 69-127 EPA 8270, AE <td< td=""><td>EPA 624</td><td></td><td></td><td></td></td<>	EPA 624			
EPA 625, AE Phenol-d5 10-110 NA EPA 625, AE 2,4,6-Tribromophenol 10-123 NA EPA 625, BN Nitrobenzene-d5 35-114 NA EPA 625, BN 2-Fluorobiphenyl 43-116 NA EPA 625, BN 1,2-DCA-d4 70-130 69-127 EPA 8010/8020/8021 1,2-DCA-d4 70-130 69-127 EPA 8010/8020/8021 Tol-d8 75-125 72-138 EPA 8010/8020/8021 Tol-d8 75-125 53-167 EPA 8081 TCMX, DCB 30-150 30-150 EPA 8082 DCB 30-150 30-120 EPA 8151 DCAA 30-130 69-127 EPA 8260 1,2-DCA-d4 70-130 69-127 EPA 8270, AE 2-Fluorophenol 21-110 25-121 EPA 8270, BN Nitrobenzene-d5				and the second
EPA 625, AE 2,4,6-Tribromophenol 10-123 NA EPA 625, BN Nitrobenzene-d5 35-114 NA EPA 625, BN 2-Fluorobiphenyl 43.116 NA EPA 625, BN 2-Fluorobiphenyl 43.116 NA EPA 625, BN Terphenyl-d14 33-141 NA EPA 8010/8020/8021 1,2-DCA-d4 70-130 69-127 EPA 8010/8020/8021 1,2-DCA-d4 70-130 69-127 EPA 8010/8020/8021 4-BFB 75-125 72-138 EPA 8010/8020/8021 4-BFB 75-125 53-167 EPA 8010/8020/8021 4-BFB 75-125 30-150 EPA 8081 TCMX, DCB 30-150 30-150 EPA 8082 DCB 30-130 30-120 EPA 8260 1,2-DCA-d4 70-130 69-127 EPA 8260 Tol-d8 75-125 72-138 EPA 8270, AE 2-Fluorophenol 21-110 25-121 EPA 8270, AE 2-Fluorophenol 10-112 19-122 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN	EPA 625. AE			
EPA 625, BN Nitrobenzene-d5 35-114 NA EPA 625, BN 2-Fluorobiphenyl 43-116 NA EPA 625, BN Terphenyl-d14 33-141 NA EPA 625, BN Terphenyl-d14 33-141 NA EPA 8010/8020/8021 1,2-DCA-d4 70-130 69-127 EPA 8010/8020/8021 Tol-d8 75-125 72-138 EPA 8010/8020/8021 4-BFB 75-125 53-167 EPA 8081 TCMX, DCB 30-150 30-150 EPA 8082 DCB 30-150 30-150 EPA 8082 DCB 30-130 30-120 EPA 8260 1,2-DCA-d4 70-130 69-127 EPA 8270, AE 2-Fluorophenol 21-10 25-121 EPA 8270, AE 2-Fluorophenol 10-110 24+113 EPA 8270, BN 2-Fluorobiphenyl				
EPA 625, BN 2-Fluorobiphenyl 43-116 NA EPA 625, BN Terphenyl-d14 33-141 NA EPA 8010/8020/8021 1,2-DCA-d4 70-130 69-127 EPA 8010/8020/8021 Tol-d8 75-125 72-138 EPA 8010/8020/8021 4-BFB 75-125 53-167 EPA 8081 TCMX, DCB 30-150 30-150 EPA 8082 DCB 30-150 30-150 EPA 8082 DCB 30-130 30-120 EPA 8151 DCAA 30-130 30-120 EPA 8260 1,2-DCA-d4 70-130 69-127 EPA 8270, AE 2-Fluorophenol 21-110 25-125 EPA 8270, AE 2-Fluorophenol 10-123 19-122 EPA 8270, BN Nitrobenzene-d5 35-114 23-120 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-1150 EPA 8270, BN Terphenyl-d14				
EPA 625, BN Terphenyl-d14 33-141 NA EPA 8010/8020/8021 1,2-DCA-d4 70-130 69-127 EPA 8010/8020/8021 Tol-d8 75-125 72-138 EPA 8010/8020/8021 4-BFB 75-125 53-167 EPA 8010/8020/8021 4-BFB 75-125 53-167 EPA 8081 TCMX, DCB 30-150 30-150 EPA 8082 DCB 30-150 30-120 EPA 8151 DCAA 30-130 30-120 EPA 8260 1,2-DCA-d4 70-130 69-127 EPA 8260 1,2-DCA-d4 70-130 69-127 EPA 8260 1,2-DCA-d4 70-130 69-127 EPA 8260 1-BFB 75-125 72-138 EPA 8270, AE 2-Fluorophenol 21-110 25-121 EPA 8270, AE 2-Fluorophenol 10-123 19-122 EPA 8270, AE 2,4,6-Tribromophenol 10-123 19-122 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN 2-Fluoro				
EPA 8010/8020/8021 Tol-d8 75-125 72-138 EPA 8010/8020/8021 4-BFB 75-125 53-167 EPA 8081 TCMX, DCB 30-150 30-150 EPA 8082 DCB 30-150 30-150 EPA 8082 DCB 30-150 30-150 EPA 8082 DCB 30-150 30-150 EPA 8151 DCAA 30-30 30-120 EPA 8260 1,2-DCA-d4 70-130 69-127 EPA 8260 Tol-d8 75-125 72-138 EPA 8260 1,2-DCA-d4 70-130 69-127 EPA 8260 Tol-d8 75-125 72-138 EPA 8260 Tol-d8 75-125 53-167 EPA 8270, AE 2-Fluorophenol 21-110 25-121 EPA 8270, AE 2,4,6-Tribromophenol 10-123 19-122 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN Terphenyl-d14 40-110 40-110 DOH 310-13 Terphenyl-d14 40-110 <t< td=""><td></td><td></td><td></td><td></td></t<>				
EPA 8010/8020/8021 Tol-d8 75-125 72-138 EPA 8010/8020/8021 4-BFB 75-125 53-167 EPA 8081 TCMX, DCB 30-150 30-150 EPA 8082 DCB 30-150 30-150 EPA 8082 DCB 30-150 30-150 EPA 8082 DCB 30-150 30-150 EPA 8151 DCAA 30-30 30-120 EPA 8260 1,2-DCA-d4 70-130 69-127 EPA 8260 Tol-d8 75-125 72-138 EPA 8260 1,2-DCA-d4 70-130 69-127 EPA 8260 Tol-d8 75-125 72-138 EPA 8260 Tol-d8 75-125 53-167 EPA 8270, AE 2-Fluorophenol 21-110 25-121 EPA 8270, AE 2,4,6-Tribromophenol 10-123 19-122 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN Terphenyl-d14 40-110 40-110 DOH 310-13 Terphenyl-d14 40-110 <t< td=""><td>EPA 8010/8020/8021</td><td>12-004-04</td><td>70 120</td><td>60 407</td></t<>	EPA 8010/8020/8021	12-004-04	70 120	60 407
EPA 8010/8020/8021 4-BFB 75-125 53-167 EPA 8081 TCMX, DCB 30-150 30-150 EPA 8082 DCB 30-150 30-150 EPA 8082 DCB 30-150 30-150 EPA 8151 DCAA 30-130 30-120 EPA 8260 1,2-DCA-d4 70-130 69-127 EPA 8260 Tol-d8 75-125 72-138 EPA 8260 4-BFB 75-125 53-167 EPA 8260 4-BFB 75-125 53-167 EPA 8260 4-BFB 75-125 53-167 EPA 8270, AE 2-Fluorophenol 21-110 25-121 EPA 8270, AE 2-fluorophenol 10-110 24-113 EPA 8270, AE 2,4,6-Tribromophenol 10-123 19-122 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN Terphenyl-d14 40-110 40-110 DOH 310-13 Terphenyl-d14 40-110 40-110 DOH 310-34 4-BFB 50-150 <t< td=""><td></td><td></td><td></td><td></td></t<>				
EPA 8081 TCMX, DCB 30-150 30-150 EPA 8082 DCB 30-150 30-150 EPA 8151 DCAA 30-130 30-120 EPA 8260 1,2-DCA-d4 70-130 69-127 EPA 8260 Tol-d8 75-125 72-138 EPA 8260 4-BFB 75-125 53-167 EPA 8270, AE 2-Fluorophenol 21-110 25-121 EPA 8270, AE 2-Fluorophenol 10-110 24-113 EPA 8270, AE 2,4,6-Tribromophenol 10-123 19-122 EPA 8270, BN Nitrobenzene-d5 35-114 23-120 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN Terphenyl-d14 40-110 40-110 DOH 310-13 Terphenyl-d14 40-110 40-110 DOH 310-14 Terphenyl-d14 40-110 40-110 DOH 310-34 4-BFB 50-150 50-150 B015M_GRO 4-BFB <td></td> <td></td> <td></td> <td></td>				
EPA 8082 DCB 30-150 30-150 EPA 8151 DCAA 30-130 30-120 EPA 8260 1,2-DCA-d4 70-130 69-127 EPA 8260 Tol-d8 75-125 72-138 EPA 8260 4-BFB 75-125 53-167 EPA 8270, AE 2-Fluorophenol 21-110 25-121 EPA 8270, AE 2-Fluorophenol 10-110 24-113 EPA 8270, AE 2,4,6-Tribromophenol 10-123 19-122 EPA 8270, AE 2,4,6-Tribromophenol 10-123 19-122 EPA 8270, BN Nitrobenzene-d5 35-114 23-120 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN Terphenyl-d14 40-110 40-110 DOH 310-13 Terphenyl-d14 40-110 40-110 DOH 310-14 Terphenyl-d14 40-110 40-110 DOH 310-34 4-BFB 50-150 50-150 8015M_GRO				
EPA 8151 DCAA 30-130 30-120 EPA 8260 1,2-DCA-d4 70-130 69-127 EPA 8260 Tol-d8 75-125 72-138 EPA 8260 4-BFB 75-125 53-167 EPA 8270, AE 2-Fluorophenol 21-110 25-121 EPA 8270, AE 2-Fluorophenol 10-110 24-113 EPA 8270, AE 2,4,6-Tribromophenol 10-123 19-122 EPA 8270, AE 2,4,6-Tribromophenol 10-123 19-122 EPA 8270, BN Nitrobenzene-d5 35-114 23-120 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN Terphenyl-d14 40-110 40-110 DOH 310-13 Terphenyl-d14 40-110 40-110 DOH 310-14 Terphenyl-d14 40-110 40-110 DOH 310-34 4-BFB 50-150 50-150 8015M				
EPA 8260 1,2-DCA-d4 70-130 69-127 EPA 8260 Tol-d8 75-125 72-138 EPA 8260 4-BFB 75-125 53-167 EPA 8270, AE 2-Fluorophenol 21-110 25-121 EPA 8270, AE 2,4,6-Tribromophenol 10-110 24-113 EPA 8270, AE 2,4,6-Tribromophenol 10-123 19-122 EPA 8270, BN Nitrobenzene-d5 35-114 23-120 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN Terphenyl-d14 40-110 40-110 DOH 310-13 Terphenyl-d14 40-110 40-110 DOH 310-14 Terphenyl-d14 40-110 40-110 DOH 310-34 4-BFB 50-150 50-150 B015M_GRO 4-BFB 50-150 50-150 8015M_GRO 4-BFB 50-150 50-150 8015M_DRO <td></td> <td></td> <td></td> <td></td>				
EPA 8260 Tol-d8 75-125 72-138 EPA 8260 4-BFB 75-125 53-167 EPA 8270, AE 2-Fluorophenol 21-110 25-121 EPA 8270, AE Phenol-d5 10-110 24-113 EPA 8270, AE 2,4,6-Tribromophenol 10-123 19-122 EPA 8270, AE 2,4,6-Tribromophenol 10-123 19-122 EPA 8270, BN Nitrobenzene-d5 35-114 23-120 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN Terphenyl-d14 40-110 40-110 DOH 310-13 Terphenyl-d14 40-110 40-110 DOH 310-14 Terphenyl-d14 40-110 40-110 DOH 310-34 4-BFB 50-150 50-150 DOH 313-4 DCB NA 30-150 B015M_GRO 4-BFB 50-150 50-150 8015M_DRO Terphenyl-d14 50-150 50-150 Wints Key: ug/l = microgram per liter ug/kg = microgram per kilogram				
EPA 8260 4-BFB 75-125 53-167 EPA 8270, AE 2-Fluorophenol 21-110 25-121 EPA 8270, AE Phenol-d5 10-110 24-113 EPA 8270, AE 2,4,6-Tribromophenol 10-123 19-122 EPA 8270, AE 2,4,6-Tribromophenol 10-123 19-122 EPA 8270, BN Nitrobenzene-d5 35-114 23-120 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN Terphenyl-d14 33-141 18-137 DOH 310-13 Terphenyl-d14 40-110 40-110 DOH 310-14 Terphenyl-d14 40-110 40-110 DOH 310-15 Terphenyl-d14 40-110 40-110 DOH 310-34 4-BFB 50-150 50-150 DOH 313-4 DCB NA 30-150 B015M_GRO 4-BFB 50-150 50-150 8015M_DRO Terphenyl-d14 50-150 50-150 Vinits Key: ug/l = microgram per liter ug/kg = microgram per kilogram				
EPA 8270, AE 2-Fluorophenol 21-110 25-121 EPA 8270, AE Phenol-d5 10-110 24-113 EPA 8270, AE 2,4,6-Tribromophenol 10-123 19-122 EPA 8270, AE 2,4,6-Tribromophenol 10-123 19-122 EPA 8270, BN Nitrobenzene-d5 35-114 23-120 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 DOH 310-13 Terphenyl-d14 40-110 40-110 DOH 310-13 Terphenyl-d14 40-110 40-110 DOH 310-14 Terphenyl-d14 40-110 40-110 DOH 310-34 4-BFB 50-150 50-150 DOH 313-4 DCB NA 30-150 B015M_GRO 4-BFB 50-150 50-150 8015M_DRO Terphenyl-d14 50-150 50-150				
EPA 8270, AE Phenol-d5 10-110 24-113 EPA 8270, AE 2,4,6-Tribromophenol 10-123 19-122 EPA 8270, BN Nitrobenzene-d5 35-114 23-120 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN Terphenyl-d14 33-141 18-137 DOH 310-13 Terphenyl-d14 40-110 40-110 DOH 310-13 Terphenyl-d14 40-110 40-110 DOH 310-14 Terphenyl-d14 40-110 40-110 DOH 310-15 Terphenyl-d14 40-110 40-110 DOH 310-34 4-BFB 50-150 50-150 DOH 313-4 DCB NA 30-150 B015M_GRO 4-BFB 50-150 50-150 8015M_DRO Terphenyl-d14 50-150 50-150 Vinits Key: ug/l = microgram per liter ug/kg = microgram per kilogram				
EPA 8270, AE 2,4,6-Tribromophenol 10-123 19-122 EPA 8270, BN Nitrobenzene-d5 35-114 23-120 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN Terphenyl-d14 33-141 18-137 DOH 310-13 Terphenyl-d14 40-110 40-110 DOH 310-14 Terphenyl-d14 40-110 40-110 DOH 310-15 Terphenyl-d14 40-110 40-110 DOH 310-34 4-BFB 50-150 50-150 DOH 313-4 DCB NA 30-150 B015M_GRO 4-BFB 50-150 50-150 8015M_DRO Terphenyl-d14 50-150 50-150 Vinits Key: ug/l = microgram per liter ug/kg = microgram per kilogram				
EPA 8270, BN Nitrobenzene-d5 35-114 23-120 EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN Terphenyl-d14 33-141 18-137 DOH 310-13 Terphenyl-d14 40-110 40-110 DOH 310-13 Terphenyl-d14 40-110 40-110 DOH 310-14 Terphenyl-d14 40-110 40-110 DOH 310-15 Terphenyl-d14 40-110 40-110 DOH 310-34 4-BFB 50-150 50-150 DOH 313-4 DCB NA 30-150 B015M_GRO 4-BFB 50-150 50-150 8015M_DRO Terphenyl-d14 50-150 50-150 Writs Key: ug/l = microgram per liter ug/kg = microgram per kilogram				
EPA 8270, BN 2-Fluorobiphenyl 43-116 30-115 EPA 8270, BN Terphenyl-d14 33-141 18-137 DOH 310-13 Terphenyl-d14 40-110 40-110 DOH 310-14 Terphenyl-d14 40-110 40-110 DOH 310-15 Terphenyl-d14 40-110 40-110 DOH 310-15 Terphenyl-d14 40-110 40-110 DOH 310-34 4-BFB 50-150 50-150 DOH 313-4 DCB NA 30-150 B015M_GRO 4-BFB 50-150 50-150 8015M_DRO Terphenyl-d14 50-150 50-150 Units Key: ug/l = microgram per liter ug/kg = microgram per kilogram				
EPA 8270, BN Terphenyl-d14 33-141 18-137 DOH 310-13 Terphenyl-d14 40-110 40-110 DOH 310-13 Terphenyl-d14 40-110 40-110 DOH 310-14 Terphenyl-d14 40-110 40-110 DOH 310-15 Terphenyl-d14 40-110 40-110 DOH 310-34 4-BFB 50-150 50-150 DOH 313-4 DCB NA 30-150 B015M_GRO 4-BFB 50-150 50-150 8015M_DRO Terphenyl-d14 50-150 50-150 Units Key: ug/l = microgram per liter ug/kg = microgram per kilogram				
DOH 310-13 Terphenyl-d14 40-110 40-110 DOH 310-14 Terphenyl-d14 40-110 40-110 DOH 310-15 Terphenyl-d14 40-110 40-110 DOH 310-15 Terphenyl-d14 40-110 40-110 DOH 310-34 4-BFB 50-150 50-150 DOH 313-4 DCB NA 30-150 8015M_GRO 4-BFB 50-150 50-150 8015M_DRO Terphenyl-d14 50-150 50-150 Units Key: ug/l = microgram per liter ug/kg = microgram per kilogram				
DOH 310-14 Terphenyl-d14 40-110 40-110 DOH 310-15 Terphenyl-d14 40-110 40-110 DOH 310-34 4-BFB 50-150 50-150 DOH 313-4 DCB NA 30-150 8015M_GRO 4-BFB 50-150 50-150 8015M_DRO Terphenyl-d14 50-150 50-150 Units Key: ug/l = microgram per liter ug/kg = microgram per kilogram	LI A 0270, BIN	Teipheilyi-d 14	33-141	18-137
DOH 310-15 Terphenyl-d14 40-110 40-110 DOH 310-34 4-BFB 50-150 50-150 DOH 313-4 DCB NA 30-150 8015M_GRO 4-BFB 50-150 50-150 8015M_DRO Terphenyl-d14 50-150 50-150 Units Key: ug/l = microgram per liter ug/kg = microgram per kilogram				40-110
DOH 310-34 4-BFB 50-150 50-150 DOH 313-4 DCB NA 30-150 8015M_GRO 4-BFB 50-150 50-150 8015M_DRO Terphenyl-d14 50-150 50-150 Units Key: ug/l = microgram per liter ug/kg = microgram per kilogram 50-150				40-110
DOH 313-4 DCB NA 30-150 8015M_GRO 4-BFB 50-150 50-150 8015M_DRO Terphenyl-d14 50-150 50-150 Units Key: ug/l = microgram per liter ug/kg = microgram per kilogram			40-110	40-110
8015M_GRO 4-BFB 50-150 50-150 8015M_DRO Terphenyl-d14 50-150 50-150 Units Key: ug/l = microgram per liter ug/kg = microgram per kilogram		4-BFB	50-150	50-150
8015M_DRO Terphenyl-d14 50-150 50-150 Units Key: ug/l = microgram per liter ug/kg = microgram per kilogram 1		DCB	NA	30-150
Units Key: ug/I = microgram per liter ug/kg = microgram per kilogram	8015M_GRO	4-BFB	50-150	50-150
ug/kg = microgram per kilogram	8015M_DRO	Terphenyl-d14		50-150
ug/kg = microgram per kilogram			-	
	Units Key:			
mo/l = millioram per liter				
		mg/l = milligram per liter		
mg/kg = milligram per kilogram				
%R = Percent Recovery		%R = Percent Recovery		

GeoLogic NY, In CHAIN OF CUSTODY RECON

CLIENT: GeoLogic

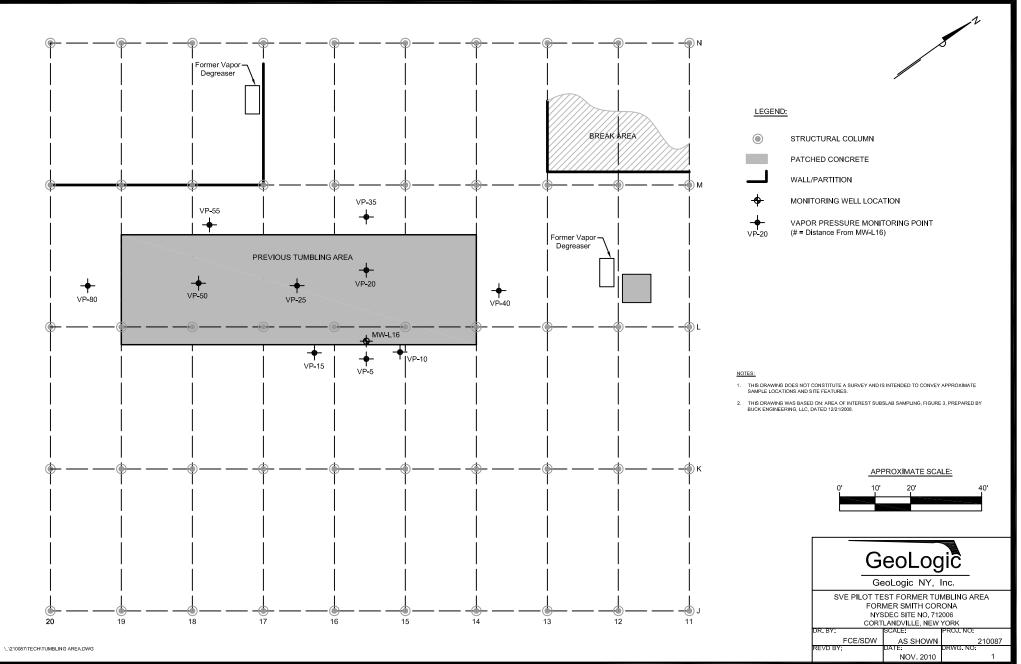
SAMPLERS NAME(S):

PROJECT: 210087

				s	AMPLE TY	ΣE	NO. of	ΔΝ	ALYSIS
	SAMPLE LOCATION	DATE	TIME	WATER	SOIL	AID	SAMPLES	1	UIRED
701	Cascade	11-22	15:30			AIR			
				X			2	See	Below
002	Tower Discharge	11-22	15:10	X	<u> </u>		2		
003	Tower Influent	11-22	14:40	X			2		11

								-	
							<u>.</u>		
		· · · · ·		<u> </u>					
	Relinquished by:		Date	Time		Received by	/:	Date	Time
	C-T-Gard of Geologic.	all t	11-22.11	16:30	Sample			1(-22-0)	16:30
	Relinquished by:	<u>v/an</u>	Date	Time		Peopland by	/:		
	Sample Fridge		11-23-11	09:05	last a	(Life 50	irence als	11-22.0	09:65
	Relinquished by:		Date	Time		ceived for La		Date	Time
	· · · ·				as	Sm	and the second	11-23-11	
	Method of Shipment:				TENAD		-ac on		
			7	Δ		4.5	on	L.Ce	
	COMMENTS:								
	Sample Analysis (1 ug/L reporti	ng limit)							
	EPA 8260B for								
	1,1,1-Trichloroethane								
	1,1-Dichloroethene								
	1,2-Dichloroethene								
	Trichloroethene								
	Tetrachloroethene								
	Vinyl Chloride								
Ľ									

F:\Projects\2010\210087\Tech\Monthly CoC


P.O. BOX 350 HOMER, NEW YORK 13077 (607) 749-5000 FAX (607) 749-5063

APPENDIX F

SSD/SVE DATA

APPENDIX F

SSD/SVE DATA

Sub-Slab Depression/Soil Vapor Extraction System Data Former SCM - Cortlandville 839 NYS Route 13 Cortlandville, NY 13045 Site No. 712006

	<u>Pilot Test</u>	SSD/SVE System
Date	3/29/2011	1/10/2012
Blower	Gast 6350	Gast R6P350A
Flow Rate	170 cfm	218 cfm

Vapor Monitoring Point	Vacuum Inches of Water	Vacuum Inches of Water
Extraction (MW-L16)	15	25
VP-5	0.2	0.25
VP-10	0.1	0.15
VP-15	0.08	0.14
VP-20	0.05	0.08
VP-25	0.06	0.09
VP-35	0.02	0.2
VP-40	0.05	NA
VP-50	0.05	0.05
VP-55	0.05	0.05
VP-80	0.03	0.03

NA - not accessible

Analytical Report

Susan Cummins GeoLogic NY, Inc. PO Box 350 37 Copeland Ave. Homer, NY 13077

Wednesday, April 06, 2011 Order No.: C1103080

TEL: (607) 749-5000 FAX: 607-749-5063

RE: 210087

Dear Susan Cummins:

Centek Laboratories, LLC received 6 sample(s) on 3/30/2011 for the analyses presented in the following report.

I certify that this data package is in compliance with the terms and conditions of the Contract, both technically and for completeness. Release of the data contained in this hardcopy data package and/or in the computer readable data submitted has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Centek Laboratories performs all analyses according to EPA, NIOSH or OSHA-approved analytical methods. Centek Laboratories is dedicated to providing quality analyses and exceptional customer service. All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the case narrative. All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

We do our best to make our reporting format clear and understandable and hope you are thoroughly satisfied with our services. Please contact your client service representative at (315) 431-9730 or myself, if you would like any additional information regarding this report.

Thank you for using Centek Laboratories. This report can not be reproduced except in its entirety, without prior written authorization.

Sincerely,

Russell J. Pellegrino Technical Director

Disclaimer: The test results and procedures utilized, and laboratory interpretations of the data obtained by Centek as contained in this report are believed by Centek to be accurate and reliable

for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of Centek for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages.

Centek Laboratories, LLC Terms and Conditions

Sample Submission

All samples sent to Centek Laboratories should be accompanied by our Request for Analysis Form or Chain of Custody Form. A Chain of Custody will be provided with each order shipped for all sampling events, or if needed, one is available at our website www.CentekLabs.com. Samples received after 3:00pm are considered to be a part of the next day's business.

Sample Media

Samples can be collected in an canister or a Tedlar bag. Depending on your analytical needs, Centek Laboratories may receive a bulk, liquid, soil or other matrix sample for headspace analysis.

Blanks

Every sample is run with a surrogate or tracer compound at a pre-established concentration. The surrogate compound run with each sample is used as a standard to measure the performance of each run of the instrument. If required, a Minican can be provided containing nitrogen to be run as a trip blank with your samples.

Sampling Equipment

Centek Laboratories will be happy to provide the canisters to carry-out your sampling event at no charge. The necessary accessories, such as regulators, tubing or personal sampling belts, are also provided to meet your sampling needs. The customer is responsible for all shipping charges to the client's destination and return shipping to the laboratory. Client assumes all responsibility for lost, stolen and any dameges of equipment.

Turn Around time (TAT)

Centek Laboratories will provide results to its clients in one business-week by 6:00pm EST after receipt of samples. For example, if samples are received on a Monday they are due on the following Monday by 6:00pm EST. Results are faxed or emailed to the requested location indicated on the Chain of Custody. Non-routine analysis may require more than the one business-week turnaround time. Please confirm non-routine sample turnaround times.

Reporting

Results are emailed or faxed at no additional charge. A hard copy of the result report is mailed within 24 hours of the faxing or emailing of your results. Cat "B" like packages are within 3-4 weeks from time of analysis. Standard Electronic Disk Deliverables (EDD) is also available at no additional charge.

Payment Terms

Payment for all purchases shall be due within 30 days from date of invoice. The client agrees to pay a finance charge of 1.5% per month on the overdue balance and cost of collection, including attorney fees, if collection proceedings are necessary. You must have a completed credit application on file to extend credit. Purchase orders or checks information must be submitted for us to release results

Rush Turnaround Samples

Expedited turn around times is available. Please confirm rush turnaround times with Client Services before submitting samples.

Applicable Surcharges for Rush Turnaround Samples: Same day TAT = 200% Next business day TAT by Noon = 150% Next business day TAT by 6:00pm = 100% Second business day TAT by 6:00pm = 75% Third business day TAT by 6:00pm = 50% Fourth business day TAT by 6:00pm = 35% Fifth business day = Standard

Statement of Confidentiality

Centek Laboratories, LLC is aware of the importance of the confidentiality of results to many of our clients. Your name and data will be held in the strictest of confidence. We will not accept business that may constitute a conflict of interest. We commonly sign Confidential Nondisclosure Agreements with clients prior to beginning work. All research, results and reports will be kept strictly confidential. Secrecy Agreements and Disclosure Statements will be signed for the client if so specified. Results will be provided only to the addressee specified on the Chain of Custody Form submitted with the samples unless law requires release. Written permission is required from the addressee to release results to any other party.

Limitation on Liability

Centek Laboratories, LLC warrants the test results to be accurate to the methodology and sample type for each sample submitted to Centek Laboratories, LLC. In no event shall Centek Laboratories, LLC be liable for direct, indirect, special, punitive, incidental, exemplary or consequential damages, or any damages whatsoever, even if Centek Laboratories, LLC has been previously advised of the possibility of such damages whether in an action under contract, negligence, or any other theory, arising out of or in connection with the use, inability to use or performance of the information, services, products and materials available from the laboratory or this site. These limitations shall apply notwithstanding any failure of essential purpose of any limited remedy. Because some jurisdictions do not allow limitations on how long an implied warranty lasts, or the exclusion or limitation of liability for consequential or incidental damages, the above limitations may not apply to you. This is a comprehensive limitation of liability that applies to all damages of any kind, including (without limitation) compensatory, direct, indirect or consequential damages, loss of data, income or profit and or loss of or damage to property and claims of third parties.

Date: 16-Apr-11

CLIENT: GeoLogic NY, Inc.

Project:

Lab Order:

210087 C1103080

CASE NARRATIVE

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the corrective action report(s). All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination. Samples were analyzed using the methods outlined in the following references:

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.

Check Rush TAT Due Turnaround Time: One Surcharge % Date: 5 Business Days 0% 0% 0% 4 Business Days 0% 0% 0% 2 Business Days 0% 0% 0% 3 Business Days 0% 0% 0% 4 Business Days 0%	Chain of Custody 143 Midler Park Drive Syracuse, NY 13212 Contact #'s Lower Right www.CentekLabs.com Company: Report: Phone:	Site Name: Project: $\underline{Z} = 0 \oplus 0$ PO#: Other: $\underline{V} T, \underline{T} = 0$ $\underline{V} T, \underline{T} = 0$ $\underline{V} T, \underline{T} = 0$ $\underline{V} = 0$	Linvoice:	Report Level
Same Day 200%		<u> 3063</u>	Fax:	
Sample ID Date Sampled	Canister Regulator	Queolojic.nct	Email:	
XX52 VP-5 3/29/11 XX51 VP-25 XX51 VP-25 XX751 VP-25 XX50 MW-46A XX50 MW-46A XX	Number Number 852 733 851 718 849 719 751 712 850 697 854 685	Andysis Request	Comments VP-5 VP-25 VP-40 VP-55 MW-L16 MW-L16 MW-L16 B	Vacuum Start/Stop 27/0 27/1,5 27/0 27/0 27/0 27/2 39/4
Chain of Custody Print Name Sampled by: Relinquished by: Received at Lab by: AWA M. LIM	Signature Carro	teal h. Le		FedEx / UPS Centek Labs COC you are Conditions on Back. f. (315) 431-9731

Sample Receipt Checklist

Client Name GEOLOGIC	<u> </u>		Date and Tin	ie Receive		3/30/2011
Work Order Numbe C1103080			Received by	JDS		
Checklist completed by	Date	3/30/11	Reviewed by	ji) Inille!s		J/JOLN Date
Matrix:	Carrier name	Courier (Centek)	-			
Shipping container cooler in good condition?		Yes 🗹	No 🗀	Not Presen		
Custody seals intact on shippping container/co	poler?	Yes 🗌	No 🗌	Not Presen		
Custody seals intact on sample bottles?		Yes 🗌	No 🗌	Not Presen	\checkmark	
Chain of custody present?		Yes 🗹	No 🗆			
Chain of custody signed when relinquished an	d received?	Yes 🗹	No 🗔			
Chain of custody agrees with sample labels?		Yes 🗹	No 🗌			
Samples in proper container/bottle?		Yes 🗹				
Sample containers intact?		Yes 🗹	No 🗌			
Sufficient sample volume for indicated test?		Yes 🗹				
All samples received within holding time?		Yes 🗹	No 🗌			
Container/Temp Blank temperature in complia	nce?	Yes 🗹	No 🗌			
Water - VOA vials have zero headspace?	No VOA vials subm	itted 🔽	Yes 🗌	No 🗔		
Water - pH acceptable upon receipt?		Yes 🗌	No 🗹			
	Adjusted?	Chec	ked b		•-	
Any No and/or NA (not applicable) response rr 	ust be detailed in the co 	mments section b 	e 			
Client contacted	Date contacted:		Perso	n contacted		
Contacted by:	Regarding:					
Comments:						
Corrective Action						

Date: 16-Apr-11

CLIENT: Project: Lab Order:	GeoLogic NY, Inc. 210087 C1103080		Work Order S	ample Summary
Lab Sample ID C1103080-001A	Client Sample ID VP-5	Tag Number 852,733	Collection Date 3/29/2011	Date Received 3/30/2011
C1103080-002A	VP-25	851,718	3/29/2011	3/30/2011
C1103080-003A	VP-40	849,719	3/29/2011	3/30/2011
C1103080-004A	VP-55	751,712	3/29/2011	3/30/2011
C1103080-005A	MW-L16A	850,697	3/29/20 11	3/30/2011
C1103080-006A	MW-L16B	854,685	3/29/20 11	3/30/2011

16-Apr-11

DATES REPORT

Lab Order: C1103080

Client: GeoLogic NY, Inc.

Project: 210087

Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	TCLP Date Prep Date	Analysis Date
C1103080-001A	VP-5	3/29/2011	Air	lug/M3 by Method TO15		4/2/2011
				lug/M3 by Method TO15		4/5/2011
				lug/M3 by Method TO15		4/2/2011
C1103080-002A	VP-25			lug/M3 by Method TO15		4/2/2011
				1ug/M3 by Method TO15		4/2/2011
				lug/M3 by Method TO15		4/5/2011
C1103080-003A	VP-40			lug/M3 by Method TO15		4/4/2011
				lug/M3 by Method TO15		4/2/2011
				lug/M3 by Method TO15		4/2/2011
				lug/M3 by Method TO15		4/2/2011
C1103080-004A	VP-55			lug/M3 by Method TO15		4/3/2011
				lug/M3 by Method TO15		4/5/2011
				lug/M3 by Method TO15		4/2/2011
C1103080-005A	MW-L16A			lug/M3 by Method TO15		4/3/2011
				lug/M3 by Method TO15		4/3/2011
				lug/M3 by Method TO15		4/4/2011
C1103080-006A	MW-L16B			lug/M3 by Method TO15		4/4/2011
				lug/M3 by Method TO15		4/2/2011
				lug/M3 by Method TO15		4/3/2011

Date: 16-Apr-11

CLIENT: GeoLogic NY, Inc. Client Sample ID: VP-5 Lab Order: C1103080 **Tag Number: 852,733 Project:** 210087 Collection Date: 3/29/2011 Lab ID: C1103080-001A Matrix: AIR Analyses Recult **Limit Qual Units DF Date Analyzed

Analyses	Kesult	Limit Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS	FLD				Analyst:
Lab Vacuum In	-1		"Hg		3/30/2011
Lab Vacuum Out	-30		"Hg		3/30/2011
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	15	6.0	ppbV	40	4/2/2011 9:40:00 PM
1,1-Dichloroethene	0.13	0.15 J	ppbV	1	4/2/2011 12:48:00 AM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	4/2/2011 12:48:00 AM
Tetrachloroethylene	61	6.0	ppbV	40	4/2/2011 9:40:00 PM
Trichloroethene	2100	1500	ppbV	9720	4/5/2011 4:59:00 PM
Vinyl chloride	< 0.15	0.15	ppbV	1	4/2/2011 12:48:00 AM
Surr: Bromofluorobenzene	112	70-130	%REC	1	4/2/2011 12:48:00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 16-Apr-11

CLIENT: GeoLogic NY, Inc. Client Sample ID: VP-25 Lab Order: C1103080 **Tag Number: 851,718** Collection Date: 3/29/2011 **Project:** 210087 Lab ID: C1103080-002A Matrix: AIR Anolycos .:. . 24 nп . 14 4-тт <u>1</u>. ~ τt. п .

Analyses	Result	**Limit Qu	ual Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-1		"Hg		3/30/2011
Lab Vacuum Out	-30		"Hg		3/30/2011
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	25	6.0	ррbV	40	4/2/2011 10:46:00 PM
1,1-Dichloroethene	0.26	0.15	ppbV	1	4/2/2011 1:20:00 AM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	4/2/2011 1:20:00 AM
Tetrachloroethylene	26	6.0	ppbV	40	4/2/2011 10:46:00 PM
Trichloroethene	15000	1500	ppbV	9720	4/5/2011 5:31:00 PM
Vinyl chloride	< 0.15	0.15	ppbV	1	4/2/2011 1:20:00 AM
Surr: Bromofluorobenzene	116	70-130	%REC	1	4/2/2011 1:20:00 AM

Qualifiers: **

Reporting Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range

.

- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 16-Apr-11

----**CLIENT:** GeoLogic NY, Inc. Client Sample ID: VP-40 Lab Order: C1103080 Tag Number: 849,719 **Project:** 210087 Collection Date: 3/29/2011 Matrix: AIR Lab ID: C1103080-003A Analysas **I imit Ous! IInits ЪF Docult .1 **D** - 4. . . 1

Analyses	Result	**Limit Qu	ial Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-1		"Hg		3/30/2011
Lab Vacuum Out	-30		"Hg		3/30/2011
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	24	, 6.0	ppbV	40	4/2/2011 11:53:00 PM
1,1-Dichloroethene	0.11	0.15 J	ppbV	1	4/2/2011 1:52:00 AM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	4/2/2011 1:52:00 AM
Tetrachloroethylene	6.9	1.5	ppb∨	10	4/2/2011 11:19:00 PM
Trichloroethene	2300	490	ppbV	3240	4/4/2011 8:28:00 PM
Vinyl chloride	< 0.15	0.15	ppb∨	1	4/2/2011 1:52:00 AM
Surr: Bromofluorobenzene	114	70-130	%REC	1	4/2/2011 1:52:00 AM

Qualifiers:

** Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Date: 16-Apr-11

CLIENT: GeoLogic NY, Inc. Client Sample ID: VP-55 Lab Order: C1103080 Tag Number: 751,712 Collection Date: 3/29/2011 **Project:** 210087 Matrix: AIR Lab ID: C1103080-004A Analyses Result ****Limit Qual Units** DF **Date Analyzed**

FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-1		"Hg		3/30/2011
Lab Vacuum Out	-30		"Hg		3/30/2011
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	47	3.0	ppbV	20	4/3/2011 12:26:00 AM
1,1-Dichloroethene	0.15	0.15	ppbV	1	4/2/2011 2:24:00 AM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	4/2/2011 2:24:00 AM
Tetrachloroethylene	19	3.0	ppbV	20	4/3/2011 12:26:00 AM
Trichloroethene	75	6.0	рръV	40	4/5/2011 6:03:00 PM
Vinyl chloride	< 0.15	0.15	ppbV	1	4/2/2011 2:24:00 AM
Surr: Bromofluorobenzene	118	70-130	%REC	1	4/2/2011 2:24:00 AM

Qualifiers:

- $B \quad \ \ Analyte \ detected \ in \ the \ associated \ Method \ Blank$
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 16-Apr-11

CLIENT: GeoLogic NY, Inc. Client Sample ID: MW-L16A Lab Order: C1103080 Tag Number: 850,697 Collection Date: 3/29/2011 **Project:** 210087 Matrix: Lab ID: C1103080-005A Analyses Result **Limit Qual Units DF Date Analyzed

j		t		21	Balerinalyzed
FIELD PARAMETERS	FLD			Analyst:	
Lab Vacuum In	-2		"Hg		3/30/2011
Lab Vacuum Out	-30		"Hg		3/30/2011
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	30	6.0	ррbV	40	4/3/2011 2:42:00 AM
1,1-Dichloroethene	0.20	0.15	ppbV	1	4/3/2011 1:34:00 AM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	4/3/2011 1:34:00 AM
Tetrachioroethylene	19	6.0	ppbV	40	4/3/2011 2:42:00 AM
Trichloroethene	5000	490	ppbV	3240	4/4/2011 9:33:00 PM
Vinyl chloride	2.0	0.15	ррbV	1	4/3/2011 1:34:00 AM
Surr: Bromofluorobenzene	122	70-130	%REC	1	4/3/2011 1:34:00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 16-Apr-11

CLIENT: GeoLogic NY, Inc. Client Sample ID: MW-L16B Lab Order: C1103080 Tag Number: 854,685 **Project:** Collection Date: 3/29/2011 210087 Lab ID: C1103080-006A Matrix:

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum in	-4		"Hg		3/30/2011
Lab Vacuum Out	-30		"Hg		3/30/2011
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	40	14	ppbV	90	4/3/2011 3:51:00 AM
1,1-Dichloroethene	0.83	0.15	ppbV	1	4/2/2011 3:31:00 AM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	4/2/2011 3:31:00 AM
Tetrachloroethylene	14	14	ppbV	90	4/3/2011 3:51:00 AM
Trichloroethene	2400	490	ppbV	3240	4/4/2011 10:05:00 PM
Vinyl chloride	6.3	0.15	ppbV	1	4/2/2011 3:31:00 AM
Surr: Bromofluorobenzene	109	70-130	%REC	1	4/2/2011 3:31:00 AM

Qualifiers:

- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected .
- Е Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

1,2-Dichloroethane

Tetrachloroethylene

Trichloroethene

Vinyl chloride

Date: 16-Apr-11

1

40

1

9720

4/2/2011 12:48:00 AM

4/2/2011 9:40:00 PM

4/5/2011 4:59:00 PM

4/2/2011 12:48:00 AM

Lab Order:C1103080Tag Number:852,733Project:210087Collection Date:3/29/2011Lab ID:C1103080-001AMatrix:AIRAnalysesResult**Limit Qual UnitsDFDate AualyzedUG/M3 BY METHOD T015TO-15Analyst:RJI1,1,1-Trichloroethane8433ug/m3404/2/2011 9:40:00 PM								
Project: 210087 Collection Date: 3/29/2011 Lab ID: C1103080-001A Matrix: AIR Analyses Result **Limit Qual Units DF Date Aualyzed UG/M3 BY METHOD T015 TO-15 Analyst: RJI 1,1,1-Trichloroethane 84 33 ug/m3 40 4/2/2011 9:40:00 PM	CLIENT:	GeoLogic NY, Inc.			Client S	ample ID:	VP-5	
Lab ID: C1103080-001A Matrix: AIR Analyses Result **Limit Qual Units DF Date Aualyzed UG/M3 BY METHOD T015 TO-15 Analyst: RJI 1,1,1-Trichloroethane 84 33 ug/m3 40 4/2/2011 9:40:00 PM	Lab Order:	C1103080			Tag	Number:	852,73	33
AnalysesResult**LimitQualUnitsDFDateAualyzedUG/M3 BY METHOD TO15TO-15Analyst:RJI1,1,1-Trichloroethane8433ug/m3404/2/2011 9:40:00 PM	Project:	210087			Collec	tion Date:	3/29/2	011
UG/M3 BY METHOD T015 TO-15 Analyst: RJI 1,1,1-Trichloroethane 84 33 ug/m3 40 4/2/2011 9:40:00 PM	Lab ID:	C1103080-001A				Matrix:	AIR	
1,1,1-Trichloroethane 84 33 ug/m3 40 4/2/2011 9:40:00 PM	Analyses		Result	**Limit Qu	al Units		DF	Date Aualyzed
	1UG/M3 BY ME	ETHOD TO15		TO-15				Analyst: RJF
1,1-Dichloroethene 0.52 0.60 J ug/m3 1 4/2/2011 12:48:00 AM	1,1,1-Trichloroe	ethane	84	33	ug/m3		40	4/2/2011 9:40:00 PM
	1,1-Dichloroeth	ene	0.52	0.60 J	ug/m3		1	4/2/2011 12:48:00 AM

0.62

8200

0.39

41

ug/m3

ug/m3

ug/m3

ug/m3

< 0.62

12000

< 0.39

420

 Qualifiers:
 **
 Reporting Limit

 B
 Analyte detected in the associated Method Blank

 H
 Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

	······································	
CLIENT:	GeoLogic NY, Inc.	Client Sample ID: VP-25
Lab Order:	C1103080	Tag Number: 851,718
Project:	210087	Collection Date: 3/29/2011
Lab ID:	C1103080-002A	Matrix: AIR

Date: 16-Apr-11

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	140	33	ug/m3	40	4/2/2011 10:46:00 PM
1,1-Dichloroethene	1.0	0.60	ug/m3	1	4/2/2011 1:20:00 AM
1,2-Dichloroethane	< 0.62	0.62	ug/m3	1	4/2/2011 1:20:00 AM
Tetrachloroethylene	180	41	ug/m3	40	4/2/2011 10:46:00 PM
Trichloroethene	82000	8200	ug/m3	9720	4/5/2011 5:31:00 PM
Vinyl chloride	< 0.39	0.39	ug/m3	1	4/2/2011 1:20:00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 16-Apr-11

Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
Lab ID:	C1103080-003A			·	Matrix:	AIR	
Project:	210087				Collection Date:	3/29/2	011
Lab Order:	C1103080				Tag Number:	849,7	19
CLIENT:	GeoLogic NY, Inc.			С	lient Sample ID:	VP-40)

1UG/M3 BY METHOD TO15		TO-1	5		Analyst: RJP
1,1,1-Trichloroethane	130	33	ug/m3	40	4/2/2011 11:53:00 PM
1,1-Dichloroethene	0.44	0.60	J ug/m3	1	4/2/2011 1:52:00 AM
1,2-Dichloroethane	< 0.62	0.62	ug/m3	1	4/2/2011 1:52:00 AM
Tetrachloroethylene	48	10	ug/m3	10	4/2/2011 11:19:00 PM
Trichloroethene	13000	2700	ug/m3	3240	4/4/2011 8:28:00 PM
Vinyi chloride	< 0.39	0.39	ug/m3	1	4/2/2011 1:52:00 AM

Qualifiers:

** Reporting Limit

 $B \quad \ \ Analyte \ detected \ in \ the \ associated \ Method \ Blank$

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Results reported are not blank corrected

Date: 16-Apr-11

1

4/2/2011 2:24:00 AM

CLIENT:	GeoLogic NY, Inc.			Client S	Sample ID: VP-5	5
Lab Order:	C1103080			Ta	g Number: 751,7	/12
Project:	210087			Colle	ction Date: 3/29/	2011
Lab ID:	C1103080-004A				Matrix: AIR	
Analyses		Result	**Limit	Qual Units	DF	Date Analyzed
1UG/M3 BY ME	THOD TO15		то	-15	, <u>, , , , , , , , , , , , , , , , , , </u>	Analyst: RJF
1,1,1-Trichloroe	thane	260	17	ug/m3	20	4/3/2011 12:26:00 AM
1,1-Dichloroeth	ene	0.60	0.60	ug/m3	1	4/2/2011 2:24:00 AM
1,2-Dichloroeth	апе	< 0.62	0.62	ug/m3	1	4/2/2011 2:24:00 AM
Tetrachloroethy	lene	130	21	ug/m3	20	4/3/2011 12:26:00 AM
Trichloroethene		410	33	ug/m3	40	4/5/2011 6:03:00 PM

0.39

ug/m3

< 0.39

Qualifiers: **

Vinyl chloride

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- $JN \quad Non-routine \ analyte. \ Quantitation \ estimated.$
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 16-Apr-11

CLIENT:	GeoLogic NY, Inc.			Client Sampl	e ID: MW-I	.16A
Lab Order:	C1103080			Tag Nur	nber: 850,69	97
Project:	210087			Collection]	Date: 3/29/2	011
Lab ID:	C1103080-005A			Ma	ntrix:	
Analyses		Result	**Limit Q	ual Units	DF	Date Analyzed
1UG/M3 BY ME	ETHOD TO15		то-1	5		Analyst: RJF
1,1,1-Trichloroe	ethane	170	33	ug/m3	40	4/3/2011 2:42:00 AM
1,1-Dichloroeth	ene	0.81	0.60	ug/m3	1	4/3/2011 1:34:00 AM
1,2-Dichloroeth	ane	< 0.62	0.62	ug/m3	1	4/3/2011 1:34:00 AM
Tetrachloroethy	lene	130	41	ug/m3	40	4/3/2011 2:42:00 AM
Trichloroethene	;	27000	2700	ug/m3	3240	4/4/2011 9:33:00 PM
Vinvl chloride		5.1	0.39	ug/m3		4/3/2011 1:34:00 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- $JN \quad Non-routine \ analyte. \ Quantitation \ estimated.$
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 16-Apr-11

CLIENT:	GeoLogic NY, Inc.			C	lient Sampl	le ID: MW-I	.16B				
Lab Order:	C1103080		Tag Number: 854,685								
Project:	210087		Collection Date: 3/29/2011								
Lab ID:	C1103080-006A				Ma	atrix:					
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed				
1UG/M3 BY ME	THOD TO15		то	-15			Analyst: RJF				
1,1,1-Trichloroe	ethane	220	78		ug/m3	90	4/3/2011 3:51:00 AM				
1,1-Dichloroeth	ene	3.3	0.60		ug/m3	1	4/2/2011 3:31:00 AM				
1,2-Dichloroetha	ane	< 0.62	0.62		ug/m3	1	4/2/2011 3:31:00 AM				
Tetrachloroethy	lene	99	97		ug/m3	90	4/3/2011 3:51:00 AM				
Trichloroethene	I	13000	2700		ug/m3	3240	4/4/2011 10:05:00 PM				
Vinyl chloride		16	0.39		ug/m3	1	4/2/2011 3:31:00 AM				

Qualifiers:

** Reporting Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range

ų

- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

6500 Joy Road * E. Syracuse, NY 13057 *Phone (315) 701-0425 * Fax (315) 218-5624

Upstate Laboratories, Inc. 6034 Corporate Drive East Syracuse, NY 13057 (315)437-0255

Thursday, January 26, 2012

RE: Analytical Report: U1201193 Order No.: E1201002

Dear Mr.Scala,

Enalytic,LLC received 1 sample(s) on 1/10/2012 for the analyses presented in the following report.

All analytical results relate to the samples as received by the laboratory.

All analytical data conforms with standard approved methodologies and quality control.

We have included the Chain of Custody Record as part of your report. You may need to reference this form for a more detailed explanation of your samples. Samples will be disposed of approximately two weeks from final report date.

Should you have any questions regarding these tests, please feel free to give us a call.

Thank you for your patronage.

Sincerely,

Kris Perrotti

Confidentiality Statement: This report is meant for the use of the intended recipient. It may contain confidential information, which is legally privileged or otherwise protected by law. If you have received this report in error, you are strictly prohibited from reviewing, using, disseminating, distributing or copying the information.

Enalytic,LLC

Analytical Report

CLIENT: Geologic NY, Inc.Location Cortland 210087Project: U1201193Lab ID: E1201002-001A

Date 26-Jan-12

Client Sample ID: SVE/SSD Collection Date: 1/10/2012 Tag # 319 Matrix SOIL VAPOR

FIELD		Dilution	Date			Data	uç	/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
	Vaccum upon receipt		10-Jan-12		-1		0	
TO-15 (IA	.Q)	Dilution	Date	ppt	νv	Data	uç	/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1-Trichloroethane	1	23-Jan-12	5.0	34		28	190
75-35-4	1,1-Dichloroethene	1	23-Jan-12	5.0	0.5	J	20	2
156-59-2	cis-1,2-Dichloroethene	124	25-Jan-12	620	200	J	2500	900
127-18-4	Tetrachloroethene	1	23-Jan-12	5.0	41		34	280
156-60-5	trans-1,2-Dichloroethene	1	23-Jan-12	5.0	5.3		20	21
79-01-6	Trichloroethene	124	25-Jan-12	620	3200		3400	18000
75-01-4	Vinyl chloride	1	23-Jan-12	5.0	3	J	13	8
	Surr: Bromofluorobenzene	1	23-Jan-12	65-135	105		0	0
	Surr: Bromofluorobenzene	124	25-Jan-12	65-135	99.7		0	0

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Ups	state	e			Custody formation	an a	Report De	eliverables	Detecti	on Limit	Report Limit
Laborat	ories, Inc.		Project Inf	ormation:			Fax		5ppv		Std
6034 Corporate Drive, E	Syracuse, N	VY 13057	Project Lo	cation: Ca	ortland		Email		1ug/m3		Level II
TEL: 315-437-0255 F		7-1209	Project Nu		10087		EDD		1ug/M3+TCE.25		Cat A
www.upstatelabs.com			PO Numbe	er:			Other		TIC's		Cat B
Client Inform	ation:						Turnaroun	d Time Che	ck One	*Rush TAT	Surcharge
Client: Crealog	C. NY,	ING-	Contact:	Forrest	Earl		10 Busines	s Days		Date Due	Standard
Address: Po Box	<u>- గా గ</u> 3<ట						5 Business				25%
¥	UY 1303	1					4 Business	Days			35%
Phone: 607-749-		·					3 Business	Days			50%
Fax: 607-749-		<u> </u>					2 Business	Days			75%
Email:		· · · · ·					1 Business	Days			100%
				• • •			Same Day				200%
Sample ID	*Sample Matrix	Date Sampled	Date Finished	Canister #	Reg #	Start Vac	Final Vac	Vac at Lab	Start Time	End Time	Analysis Requested
		1-10-12	Ì	319		·			10:19	10:20	Sale
SUE /SSD	A:-	1-10-16	1 70 10	511					14.11	10.2.0	to the sector
			ļ								<u> </u>
		<u> </u>									
								1			
			ļ			ļ					<u> </u>
						· · ·					
Chain of Custody	Print Name	<u> </u>	1	Signature			Date/Time	Courier	*Sample M	latrix/DI	
Chain of Custody Sampled by:	Joseph	A	<u> </u>	Jupha	m	<u> </u>	1-10-17/			or Air: 1ug/M	3+TCE.25
Relinguished by:	Jos gh	MANZE		Graty	Bannel	į.	-10-12/4!3		IA - Indoor	Air: 1ug/M	3+TCE.25
Received at lab by:	$\mathbf{K}' (\mathbf{V})$	KUNP		パ (Min		1-10-12/16		SS - Sub S	Slab: 1ug/m	3
* Rush Samples - Ple	ase call and	ead to ensu	re that Rus	TAT is ava	ailable to sc	hedule with			DL as abov requested/	ve unless o stated	therwise