2022 PERIODIC REVIEW REPORT

SOUTH HILL DUMP SOUTH HILL ROAD CORTLANDVILLE, NEW YORK

NYSDEC Site Number: 712009

CHA Project Number: 034236.000

Prepared for:

Town of Cortlandville Raymond G. Thorpe Municipal Building 3577 Terrace Road Cortland, New York 13045

Prepared by:

One Park Place 300 South State Street, Suite 600 Syracuse, New York 13202 Phone: (315) 471-3920 Fax: (315) 471-3569

November 21, 2022

TABLE OF CONTENTS

1.0	SITE O	VERVIE	W		. 1
	1.1	Site Ba	ackground		. 1
	1.2			oncern	
	1.3			emedy	
	1.4			tatus	
	1	5100 111	unugement 2		••
2.0	INSTIT	UTIONA	L/Engineeri	NG CONTROLS	5
	2.1			ols	
	2.2			rols	
	2.2	2.2.1	_	nspection	
		2.2.1		Landfill Cover System	
				Site Access Controls	
				Surface Water Drainage Conveyance Controls	
				Landfill Gas Vents	
		222		Groundwater Monitoring Wells	
		2.2.2	-	s of the Monitoring Program	
		2.2.3		Completed During Reporting Period	
				Groundwater Elevation Monitoring	
				Groundwater Sampling	
			2.2.3.3	Surface Water Sampling	.8
			2.2.3.4	Seep Sampling	.9
			2.2.3.5	Sediment Sampling	.9
3.0					
	3.1		-	on Results	
	3.2	Site M		sults	
		3.2.1	Groundwate	er Elevation Monitoring and Flow Direction	. 10
		3.2.2	Groundwate	er Sampling	.11
		3.2.3	Surface Wa	ter Sampling	. 12
		3.2.4		ing	
		3.2.5	Sediment S	ampling	. 13
				•	
4.0	SUMM	ARY, CO	ONCLUSIONS	& RECOMMENDATIONS	. 14
	4.1				
	4.2	Conclu	usions		. 14
	4.3	Recom	nmendations.		. 15
]	LIST OF FIGURES	
Figure	1	Site	e Location M	an	
Figure			e Location Mag	•	
_			•		
Figure				otentiometric Map - Overburden Wells Only	
Figure	4	Gro	unuwater Po	otentiometric Map - Bedrock Wells Only	

LIST OF TABLES

Table 1	Groundwater Elevation Data
Table 2	Groundwater Monitoring Well Results – Detections Only
Table 3	Surface Water Results – Detections Only
Table 4	Sediment Results – Detections Only

APPENDICES

Appendix A Institutional & Engineering Controls Certification Forms
Appendix B Landfill Inspection Forms
Appendix C Laboratory Analytical Report

LIST OF ACRONYMS & ABBREVIATIONS

CHA Consulting, Inc.

CVOC Chlorinated Volatile Organic Compound

DCE cis-1,2-Dichloroethylene EC Engineering Controls

ELAP Environmental Laboratory Approval Program

FER Final Engineering Report IC Institutional Controls

MACTEC Engineering and Consulting, P.C.

MS Matrix Spike

MSD Matrix Spike Duplicate

NYS New York State

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health PAH Polycyclic Aromatic Hydrocarbons

PCB Polychlorinated Biphenyls
PRR Periodic Review Report
RI Remedial Investigation
ROD Record of Decision
SMP Site Management Plan

SVOC Semi volatile Organic Compound

TCE Trichloroethene TMP Tax Map Parcel

TOGS Technical & Operational Guidance Series

USEPA Environmental Protection Agency VOC Volatile Organic Compound

μg/L Micrograms per Liter, or parts per billion (ppb)
mg/kg Milligrams per Kilogram, or parts per million (ppm)

1.0 SITE OVERVIEW

The South Hill Dump inactive hazardous waste disposal site (Site) was remediated in accordance with the Record of Decision (ROD) dated January 2008. A detailed description of the remedial actions completed at the Site is discussed in Section 1.3. On December 5th, 2016, the Town of Cortlandville (Town) entered an Order on Consent (Index No. R7-20150122-34) with the New York State Department of Environmental Conservation (NYSDEC) to implement the Site Management Plan (SMP), which was previously approved by NYSDEC in November 2015. This Periodic Review Report (PRR) is required as an element of the SMP developed for the Site and documents the groundwater monitoring event and site-wide inspections during the reporting years from January 1st, 2021 to December 31st, 2022.

The Site is a 10.4-acre parcel located off Sommerville Road in the Town of Cortlandville, Cortland County, New York, and is identified as Tax Map Parcel (TMP) No. 109.00-01-02.000 on the Cortland County Tax Map. The Site is bounded by South Hill Road to the north and surrounded by forested land to the west, south, and east. Agricultural land is the primary land use along the north side of South Hill Road. A Site location map is included as Figure 1. An aerial image showing the boundaries and layout of the Site is provided as Figure 2.

1.1 SITE BACKGROUND

The Site was reportedly used as a local waste disposal location by residents as early as 1949 and officially operated as an unlined solid waste disposal facility, controlled by the Town of Cortlandville, from approximately 1960 to 1972. Industrial and municipal wastes were accepted from the Town of Cortlandville, the Town of Solon, and the Village of McGraw; however, access to the Site was reportedly unrestricted during this time. Site operations included pushing the waste over the working face of the landfill with cover material spread one or more times per week; however, prior to remedial action, various types of waste could be observed protruding from the surface of the landfill.

In 1990, the NYSDEC conducted a site-wide inspection and observed the presence of multiple drum carcasses as well as leachate seeps emanating from the landfill. During this inspection soil and leachate samples were collected, revealing the presence of chlorinated solvents and pesticides. In February 1991, the Site was assigned a Class 2 Hazardous Waste Site designation (sites considered to be a significant threat to the public health or environment - action required) based on the results of the 1990 site-wide inspection and the fact that laboratory analysis identified the presence of pesticides and chlorinated solvents. Following an evaluation of the findings from

intermittent sampling events from 1991 through 1994, a Remedial Investigation (RI) was proposed. The RI was conducted by Parsons Engineering Science, Inc, under contract by the NYSDEC. The RI field activities included:

- The excavation of test pits to determine the vertical extent of solid waste, collection of subsurface soil samples, and characterization of the shallow lithology;
- The collection of samples from leachate seeps and the intermittent stream on the southeastern most region of the Site; and,
- The installation of soil borings and groundwater monitoring wells to facilitate the collection of subsurface soil samples (during the boring installation) and groundwater samples following the well installations.

A feasibility study and remedial action were recommended in the RI Report due to the shallow depth to fractured bedrock at the Site, the overall condition of the landfill at the time of the investigation, and analytical results confirming the presence of soil, surface water, and groundwater contamination. Following the development of a feasibility study to evaluate remedial alternatives for the Site, MACTEC Engineering and Consulting, P.C. (MACTEC) conducted remedial actions at the Site in 2011 and 2012. A more detailed discussion of the Site remedial actions is provided in the SMP (MACTEC, 2015) and is summarized in Section 1.3 of this document. After the remedial actions were performed, the Site was reclassified as a Class 4 Inactive Hazardous Waste Site (Site Code 712009) designation (a site properly closed but requiring continued management) by the NYSDEC.

1.2 CONTAMINANTS OF CONCERN

The following types of contaminants were identified on the Site during the RI and remedial actions:

- Volatile organic compounds (VOCs)
 - Trichloroethene (TCE)
 - 1,2-dichloroethene (DCE)
- Semivolatile organic compounds (SVOCs)
 - Polycyclic Aromatic Hydrocarbons (PAHs)
- Polychlorinated biphenyls (PCBs)
- Heavy metals
 - Copper
 - Mercury
 - Nickel
 - Zinc
 - Cadmium

1.3 SUMMARY OF SITE REMEDY

The selected remedy for the Site included the following major components:

- Consolidation of waste from outside the proposed landfill boundary to within the landfill boundary;
- Installation of a sedimentation basin for additional erosion and sediment control;
- Grading of the landfill within the new boundary;
- Removal of bulk waste uncovered during grading and excavation of down-drain trenches;
- Installation of sloped benches and down-drains to reduce the likelihood of scouring.
- Installation of landfill cover system, gas vents, perimeter access road water bars to convey water across the Site roadways, and stormwater controls; and
- Seeding and mulching of vegetated areas.

In addition to the closure of the landfill, the Site remedy required that an Environmental Easement be placed on the property to: (1) require compliance with the November 2015 SMP; (2) restrict the use of groundwater as a potable water source; (3) periodically certify the Institutional Controls/Engineering Controls (IC/ECs) are in place and unchanged, which is included in this PRR; and, (4) limit the use and development of the Site to closed and capped/covered landfill only. The Environmental Easement for the Site was executed by the NYSDEC on September 30, 2013, and recorded with the Cortland County Clerk on October 11, 2013, and included in Appendix C of the SMP. A Final Engineering Report (FER) was written and submitted to the NYSDEC by MACTEC in 2014.

1.4 SITE MANAGEMENT STATUS

Submittal of an annual PRR is required by the NYSDEC to document the status of the controls established by the SMP. This PRR was prepared by CHA Consulting, Inc. (CHA) on behalf of the Town of Cortlandville to document the status of the controls, established by the SMP, during 2022.

The SMP requirements include:

- An annual inspection of the ICs and ECs; and
- Long-term monitoring of:
 - Groundwater:
 - Surface water: and
 - Sediment.

In the 2018 PRR, CHA requested groundwater, surface water, and sediment monitoring frequency to be reduced from once every 15 months, as written in the SMP, to once every 24 months. This was approved by the NYSDEC with concurrent approval of the 2018 PRR. Per this reduced monitoring frequency, groundwater, surface water, and sediment sampling on a 24-month cycle began in September 2020 and continued with the September 2022 sampling event.

2.0 INSTITUTIONAL/ENGINEERING CONTROLS

ICs and ECs have been established to protect public health and the environment for future use of the Site. The IC/ECs are designed to:

- Prevent ingestion/direct contact with remaining contamination;
- Prevent inhalation of or exposure to contaminants volatilizing from remaining contamination:
- Prevent ingestion of groundwater with contaminant levels that exceed drinking water standards; and
- Prevent contact with or inhalation of volatiles from contaminated groundwater.

The IC and EC Certification Forms are included in Appendix A.

2.1 INSTITUTIONAL CONTROLS

ICs are required to implement, maintain and monitor the ECs, control disturbance of contamination to prevent future exposure, and limit the use of the Site to its current use as a capped/covered landfill. ICs must remain in place unless the Environmental Easement is amended or terminated. The ICs implemented under the SMP include:

- Compliance with the Environmental Easement;
- Operation and maintenance of the ECs as specified in Section 4.0 of the SMP;
- Inspection and certification of the ECs on a semiannual basis (i.e. in the spring and the fall);
- Implementation of long-term environmental monitoring as defined in Section 3.0 of the SMP;
- Protection and replacement, as necessary, of on-site environmental monitoring devices; and
- Preparation of an annual report to regulatory agencies, as defined by the SMP.

2.2 ENGINGEERING CONTROLS

2.2.1 Site-Wide Inspection

2.2.1.1 Landfill Cover System

The landfill cover prevents exposure to the remaining contamination at the Site. The cover consists of 18-inches of cover soil and 6-inches of vegetated topsoil for an overall cover thickness of 24-

inches. In the event the landfill cover is penetrated, removed, or severely disturbed, an Excavation Plan included in Section 2.4 of the SMP, should be referred to for requirements for restoration of the cover system.

The landfill cover system was inspected for evidence of erosion, cracks, and settlement of the cover soils. The drainage systems were inspected for evidence of leachate seeps. Vegetation was inspected for height, evidence of disturbance, and evidence of woody growth. The cover system inspection included examining the landfill for the presence of any live or dead vectors, animal droppings, and burrows.

2.2.1.2 Site Access Controls

Site access is controlled by a chain-link fence along South Hill Road and a locked gate at the vehicle entrance. A stone road provides access around the perimeter of the landfill boundary. Site access controls were inspected for evidence of trespassing such as breaks in the fence, broken locks, or vehicle tracks.

2.2.1.3 Surface Water Drainage Conveyance Controls

The perimeter access roads include water bars to adequately convey surface water and prevent erosion of the stone road. Stone drainage pathways (down-drains or interceptor trenches) on the landfill cover convey most surface water to a riprap-lined drainage swale along the approximate centerline of the landfill and ultimately to the stormwater detention basin on the southern side of the landfill. Surface water not managed by the stone drainage pathways is conveyed to riprap swales along the perimeter of the landfill that also discharge to the stormwater detention basin to the south. The stormwater detention basin outlet creates an intermittent flow of water that discharges to an unnamed stream which then discharges to Hoxie Gorge Creek located approximately 550 feet to the southeast of the landfill. The drainage system was inspected to identify any erosion, siltation, settlement, or restriction to the flow of water in the drainage channels and piping on top of and around the perimeter of the landfill.

2.2.1.4 Landfill Gas Vents

Seven passive landfill gas vents were installed to collect potential landfill gas for direct venting to the atmosphere. The gas venting system was inspected by checking the vents for damage or blockages and checking the cap adjacent to the vents for settlement and stressed vegetation. These gas vents reduce the potential for accumulation and migration of landfill gas in the subsurface. Items such as stressed vegetation and bubbling of surface water could indicate a malfunction of

the gas venting system that cannot readily be detected upon visual inspection of the venting system itself.

2.2.1.5 Groundwater Monitoring Wells

Eleven groundwater monitoring wells, including overburden and bedrock wells, were installed at the Site. The wells are constructed of polyvinyl chloride and are protected by lockable steel casings. All monitoring well casings, covers, locks, and associated structures were visually inspected to verify they are properly secured and not damaged.

2.2.2 Components of the Monitoring Program

The NYSDEC approved a reduction in the groundwater, surface water, and sediment sampling frequency from once per 15 months to once per 24 months. Per this reduced monitoring frequency, groundwater, surface water, and sediment samples were collected or analyzed in September 2022.

Components of the monitoring plan include:

Annually

• Water level measurements from the 11 groundwater monitoring wells on Site. Monitoring wells are set in clusters with screens in the shallow overburden and bedrock.

Biennially

- Groundwater sampling;
- Surface water sampling;
- Seep sampling (if observed); and
- Sediment sampling.

Following sample collection, the samples were delivered by CHA to Alpha Analytical Inc.'s (Alpha) Service Center in Syracuse, New York, for subsequent transport by Alpha to its laboratory in Westborough, Massachusetts, following proper chain-of-custody protocol. Alpha is currently certified by the New York State Department of Health's (NYSDOH) Environmental Laboratory Approval Program (ELAP). The samples were analyzed for one or more of the parameters below, as detailed in Section 2.2.3:

VOCs via United States Environmental Protection Agency (USEPA) Method 8260C;

- Metals via USEPA method 6020B and 7470A; and/or
- PCBs via USEPA method 8082.

2.2.3 Monitoring Completed During Reporting Period

Monitoring activities were performed on September 14th, 2022 and are summarized in the following subsections.

2.2.3.1 Groundwater Elevation Monitoring

Groundwater water level measurements were collected in July and September 2022 from each of the 11 groundwater monitoring wells shown in Figure 2.

2.2.3.2 Groundwater Sampling

Groundwater samples were collected per the SMP using "no purge" passive collection bags from all on-site monitoring wells. Groundwater results were compared to the Technical and Operational Guidance Series (TOGS) 1.1.1 New York State (NYS) Class GA Ambient Water Quality Standards. The groundwater samples were placed directly into laboratory-supplied containers, which were labeled with the project name, sample identification, date, time, sampler's initials, and applicable laboratory analyses. Well MW-1S was dry and unable to be sampled at the time of the September monitoring event. Well MW-1B was sampled with a disposable bailer. These deficiencies are discussed further in Section 3.2.2. Samples were submitted to Alpha Analytical for the following analyses:

- VOCs via EPA Method 8260C; and,
- Total Metals via EPA Methods 6020B and 7470A.

2.2.3.3 Surface Water Sampling

A surface water sample was collected from the stormwater retention basin outfall during the September 2022 monitoring event. The results were compared to the TOGS 1.1.1 Ambient Water Quality Standards. The surface water sample was placed directly into laboratory-supplied containers, which were labeled with the project name, sample identification, date, time, sampler's initials, and applicable laboratory analyses. Samples were submitted to Alpha Analytical for the following analyses:

- VOCs via EPA Method 8260C;
- Total Metals via EPA Methods 6020B and 7470A; and,

Total PCBs via EPA Method 8082A.

2.2.3.4 Seep Sampling

Leachate seeps were observed on the surface of the landfill during the remedial action in 2012 and were addressed via excavating saturated soil and solid waste in the seep areas and replacing the materials with borrow material and a geosynthetic geogrid. During the 2013 landfill inspection, minor groundwater seeps remained. Though the seeps were relatively minor in 2013, compared to 2012, a requirement to sample observed seeps, if any, was added to the SMP.

At the time of the 2022 fieldwork, there were no active seeps observed, and therefore, no leachate seep sample was collected.

2.2.3.5 Sediment Sampling

A sediment sample was collected from the stormwater detention basin outfall during the September 2022 monitoring event. The sediment sample was compared to NYSDEC Sediment Guidance Values from the Division of Fish, Wildlife and Marine Resources Technical Guidance for Screening Contaminated Sediments, updated January 25, 1999. The sediment sample was placed directly into laboratory-supplied containers, which were labeled with the project name, sample identification, date, time, sampler's initials, and applicable laboratory analyses. Samples were submitted to Alpha Analytical for the following analyses:

- VOCs via EPA Method 8260C;
- Total Metals via EPA Methods 6020B and 7470A; and,
- Total PCBs via EPA Method 8082A.

3.0 MONITORING RESULTS

3.1 SITE-WIDE INSPECTION RESULTS

Pursuant the SMP, CHA performed Site inspections on October 8th, 2021, and July 29th, 2022. The landfill inspection forms associated with each inspection are included in Appendix B. The results of the inspections indicate the following:

- The landfill cover was in good condition; there was no evidence of scouring or erosion.
 The Town of Cortlandville maintained the vegetative cover at an appropriate height by
 mowing the landfill in July and September 2022 following CHA's recommendation to
 mow the landfill two times per year;
- No woody vegetation, animal burrows, or leachate seeps were observed during the site inspections;
- The drainage channels appeared to be in good condition with no evidence of scour or accumulation of silt.
- The Site access controls were observed to be in satisfactory condition and no evidence of trespassing was observed;
- Landfill gas vents were in good condition; and,
- During the 2021 site inspection, monitoring well MW-2D was found to be damaged, presumably from lawn mowing activities. This deficiency was reported to the Town of Cortlandville and the well was repaired with a PVC coupling with riser extension and new steel casing. During the 2022 site inspection, the monitoring wells were in good condition;

The results from this inspection indicate that the landfill cap and infrastructure is in generally good condition, and no repairs are recommended as a result of the 2022 inspections.

3.2 SITE MONITORING RESULTS

3.2.1 Groundwater Elevation Monitoring and Flow Direction

Groundwater levels measured in July and September 2022 in most wells were generally lower compared to the previous year's monitoring events and are presented in Table 1. The groundwater flow direction for the overburden and bedrock wells are depicted on the Groundwater Potentiometric Maps included in Figures 3 and 4, respectively. Groundwater at the Site generally flows to the southeast across the Site for both the shallow overburden aquifer and the bedrock aquifer.

3.2.2 Groundwater Sampling

During the September 2022 monitoring event, the HydraSleeveTM located in monitoring well MW-1S did not have sufficient water to sample. CHA used a Solinst water level meter to determine the volume of water in the well and found that well MW-1S had approximately 0.5 feet of water at the time of the September 2022 sampling event. Therefore, CHA was not able to collect a groundwater sample. The dedicated HydraSleeveTM in well MW-1B was damaged and water did not accumulate in the sleeve. Therefore, well MW-1B was purged of three well volumes and sampled with a disposable polyethylene bailer. Table 1 indicates the groundwater elevation in well MW-1S has decreased by over five feet since 2018.

For quality assurance purposes, one blind duplicate (CHA-001) was collected at well MW-4B and matrix spike/matrix spike duplicate (MS/MSD-001) samples were collected at well MS-2B. One trip blank was prepared by the laboratory and accompanied the sample contains throughout the sampling and transport processes. The laboratory analytical results from the groundwater sampling event are presented in Table 2 and summarized below.

VOCs:

- VOC detections are consistent with previous monitoring events.
- Overburden well results:
 - The upgradient overburden monitoring well MW-1S was dry and unable to be sampled.
 - No VOCs were detected in the downgradient overburden wells MW-2S, MW-2D, or MW-4S.
 - O Vinyl chloride was detected in well MW-3SR2 at an estimated concentration below the applicable groundwater standards. Chlorinated VOCs (CVOC) TCE and DCE were detected at concentrations of 160 micrograms per liter (μg/L), and 26 μg/L, respectively, which exceeds their applicable groundwater standards.
 - o TCE was detected at a concentration of 1.7 μ g/L in well MW-3SR, which does not exceed the applicable groundwater standard.
- Bedrock well results:
 - o No VOCs were detected in the upgradient monitoring well MW-1B.
 - No VOCs were detected in downgradient bedrock wells MW-2B or MW-3BR during the September 2022 monitoring event.
 - TCE was detected in well MW-4B at an estimated concentration not exceeding the groundwater standard. TCE and DCE were detected at concentrations of 50 μg/L and 7.8 μg/L, respectively, in well MW-3BR2 which is in exceedance of their

appliable groundwater standards. Vinyl chloride was also detected, but at an estimated concentration not in exceedance of the groundwater standard.

Metals:

- The metals results were generally consistent with historical groundwater results.
- Overburden well results:
 - Upgradient monitoring well MW-1S was not sampled. In October 2018, only iron was detected in exceedance of the groundwater standard.
 - Iron was detected in exceedance of the groundwater standard in all downgradient overburden monitoring wells except for wells MW-4S and MW-3SR.
 - Manganese was detected in exceedance of the groundwater standard in wells MW-2D and MW-2S.
 - Sodium was detected in exceedance of the groundwater standard in wells MW-2S and MW-3SR2.
 - Several other metals were detected in the downgradient overburden monitoring wells; however, no other metals were detected above the applicable groundwater standards and guidance values.
- Bedrock well results:
 - Several metals were detected in the upgradient well MW-1B; however, only iron, lead, manganese and thallium exceeded the groundwater standard during the 2022 sampling event. The detected concentration of iron was 55,000 μg/L compared to a standard of 300 μg/L. The detected concentration of lead was 41 μg/L compared to a standard of 25 μg/L. The detected concentration of manganese was 4,870 μg/L compared to a standard of 300 μg/L. The detected concentration of thallium was 4 μg/L compared to a standard of 0.5 μg/L.
 - Several metals were detected in all the downgradient bedrock wells as well. Iron was detected in exceedance of the applicable groundwater standard in wells MW-2B, MW-3BR, and MW-3BR2. Manganese was detected in exceedance of the applicable groundwater standard in well MW-4B and MW-3BR.

The complete laboratory analytical package is included in Appendix C.

3.2.3 Surface Water Sampling

One surface water sample from the outflow of the stormwater retention basin was collected during the September 2022 sampling event. The laboratory analytical results from the surface water sample are provided in Table 3. The results indicate acetone was identified at a low concentration not exceeding the applicable standard. Multiple metals were detected, and iron and manganese

were detected at concentrations in exceedance of the applicable ambient water quality standards. The complete laboratory analytical package is included in Appendix C.

3.2.4 Seep Sampling

As previously discussed, no seeps were identified at the time of the September 2022 sampling event. Therefore, no seep sample was able to be collected for analysis.

3.2.5 Sediment Sampling

The laboratory analytical results from the sediment sample are provided in Table 4. Analytical results indicate VOCs and most metals were detected in the sediment sample at concentrations not exceeding their applicable standards. PCBs were not detected in the sample. The metal manganese was detected at a concentration exceeding the applicable standard in the sediment sample with a concentration of 9,690 milligrams per kilogram (mg/kg), which is consistent with previous monitoring events. The complete laboratory analytical package is included in Appendix C.

4.0 SUMMARY, CONCLUSIONS & RECOMMENDATIONS

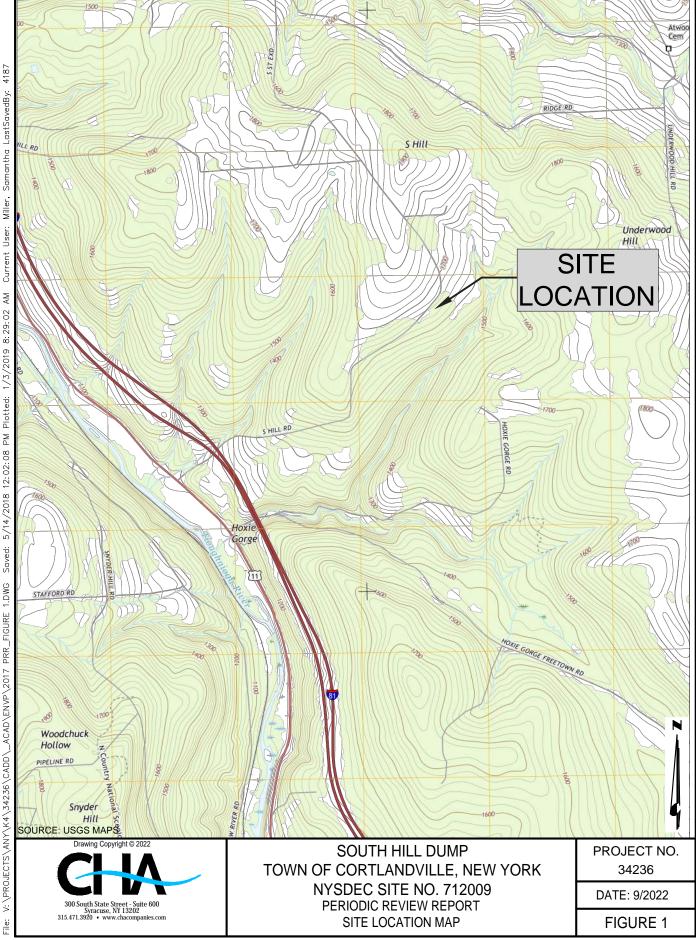
4.1 SUMMARY

The Site was observed to be in overall good condition at the time of the 2022 activities. In summary, specific observations include:

- Previously, it was recommended the Town of Cortlandville mow the landfill twice annually. Landfill mowing occurred before each site inspection during 2021 and 2022.
- CHA did not observe evidence of erosion, scour, animal burrows, large saplings, or leachate seeps during the site inspections. The landfill cover system appeared to be in relatively good condition.
- Groundwater elevations during the October 2021 Site Inspection were consistent with historical measurements from at least 2017 and 2018, but higher than the 2020 and 2022 inspections. Groundwater level measurements were lower in 2022 which caused insufficient groundwater to sample in one monitoring well. Groundwater flow direction in both overburden and bedrock wells remains consistent towards the southeast.
- No groundwater sample was collected from wells MW-1S due to insufficient water in the monitoring well.
- Groundwater results indicated slightly elevated concentrations of some VOCs and metals, which is consistent with previous monitoring events. Specifically:
 - TCE and DCE were detected in exceedance of the groundwater standard in wells MW-3BR2 and MW-3SR2.
 - Iron and manganese were detected in exceedance of the groundwater standard in most monitoring wells sampled.
 - Sodium was detected in exceedance of the groundwater standard in wells MW-2S and MW-3SR2.
- One sediment sample was collected from the catch basin outfall. Analytical results indicated low levels of metals detected in the sediment sample. Only manganese was detected at a concentration exceeding the applicable standard.
- The surface water sample was collected at the outfall of the stormwater retention basin. Analytical results indicate iron and manganese were detected in exceedance of the applicable standards in the stormwater.
- No leachate seeps were identified; therefore, a leachate sample was not collected.

4.2 CONCLUSIONS

As previously indicated, the IC and EC Certification Forms are included in Appendix A. Provided that the ICs and ECs established for the Site remain in place, and are maintained, it is expected that the remedy will continue to be effective in protecting human health and the environment. The results of the sampling event summarized above indicate that the remedy continues to be effective.



4.3 RECOMMENDATIONS

It is recommended that all current Site ICs and ECs remain in place, and the ECs continue to be inspected and monitored. The most recent round of monitoring did confirm some exceedances of standards in groundwater. Therefore, it is recommended that the Site monitoring program continue. No changes to the operation and maintenance plans are recommended at this time. The next landfill inspection is anticipated to be in the Summer/Fall of 2023 and the next groundwater, surface water, and sediment sampling are anticipated to be completed in September 2024.

FIGURES

GERY SHORCE: NYS HRIHHS HNLI

4187

Current User: Miller, Samantha LastSavedBy:

ΑA

1/3/2019 11:20:42 AM Plotted: 10/30/2019 10:37:39

Saved:

V: \PROJECTS\ANY\K4\34236\CADD_ACAD\ENVP\PRR FIGURES.DWG

SOUTH HILL DUMP
TOWN OF CORTLANDVILLE, NEW YORK
NYSDEC SITE NO. 712009
PERIODIC REVIEW REPORT
SITE LAYOUT MAP

PROJECT NO. 34236

DATE: 12/2019

FIGURE 2

Current User: Ehmann, Karyn LastSavedBy:

11/14/2022 12:04:44 PM

9:10:11 AM Plotted:

10/27/2022

Saved:

V: \PROJECTS\ANY\K4\34236\CADD_ACAD\ENVP\PRR FIGURES_10-2022.DWG

TABLES

Table 1. Groundwater Elevation Data South Hill Dump Town of Cortlandville, New York 2022 Periodic Review Report

Well ID	Casing Elevation (ft)	Riser Elevation (ft)	Ground Elevation (ft)	3	Total depth of well (ft)	('omments	Screen (ft, bgs)	Groundwater Elevation (ft) 2017	Groundwater Elevation (ft) 2018		Groundwater Elevation (ft) October 2019	Elevation (ft)	Groundwater Elevation (ft) September 2020	Groundwater Elevation (ft) October 2021	Groundwater Elevation (ft) July 2022	Groundwater Elevation (ft) September 2022
						2-inch										
MW-1S	1670.85	1670.95	1668.10	TOR	17.90	Overburden	5'-15'	1659.34	1659.06	1657.03	1655.55	1656.19	1653.71	1660.57	1655.34	1653.45
MW-1B	1671.65	1671.35	1668.50	TOR	37.90	2-inch Bedrock	25'-35'	1648.40	1648.96	1648.60	1647.52	1647.04	1644.41	1649.05	1647.30	1647.81
MW-2B	1574.85	No Riser	1573.40	TOC	44	3-inch Open Hole Bedrock	Open from 31.5'-41.5'	1565.18	1566.02	1562.98	1560.65	1562.01	1556.07	1565.81	1561.53	1562.03
IVIVV-ZD	1374.03	NO KISEI	1373.40	100	44	2-inch	31.3-41.3	1303.16	1300.02	1302.90	1300.03	1302.01	1000.07	1303.61	1301.33	1302.03
MW-2D	1576.30	1575.00	1572.00	TOR	27.00	Overburden	14'-24'	1566.64	1566.44	1565.12	1562.44	1563.81	1558.32	1567.48	1560.42	1560.83
						2-inch										
MW-2S	1575.40	1575.45	1572.60	TOR	12.90	Overburden	5'-10'	1567.83	1567.72	1567.23	1566.06	1565.88	1563.45	1568.76	1566.33	1563.97
						3-inch Open	Open from 31'-									
MW-3BR	1562.61	No Riser	1559.83	TOC	43.90	Hole Bedrock	41'	1553.69	1553.57	1552.95	1551.19	1553.77	1551.01	1553.74	1552.13	1551.08
MW-3SR	1563.68	1563.04	1561.35	TOR	25.30	2-inch Overburden	19'-24'	1558.71	1558.52	1558.08	1556.58	1558.49	1554.66	1560.59	1558.28	1557.65
						4-inch Open	Open from 14'-									
MW-3BR2	1565.25	No Riser	1565.61	TOR	24.49	Hole Bedrock	26'	1564.71	1565.25	Not Gauged	1562.55	1563.76	1561.06	1565.24	1563.87	1563.42
						2-inch										
MW-3SR2	Flush	1565.76	1566.02	TOR	11.04	Overburden	6'-11'	1564.47	1565.36	1564.12	1562.44	1563.58	1561.25	1565.64	1563.80	1563.38
						3-inch Open	Open from									
MW-4B	1545.45	No Riser	1541.90	TOC	48.40	Hole Bedrock	36.6'-46.6'	1517.37	1517.34	1516.09	1512.00	1513.61	1511.19	1513.43	1510.26	1510.08
						2-inch										
MW-4S	1545.45	1545.40	1542.60	TOR	18.80	Overburden	6'-16'	1535.65	1535.54	1532.84	1533.66	1530.79	1529.64	1536.75	1530.66	1530.49

Notes:

All casing, riser and ground elevation data taken from Field Activities Report Site Management Media Sampling and Landfill Inspection, MACTEC January 2018

	LC	CATION	N	IW-1S		MW-1B					
	SAMPLI	NG DATE	7/5/2017	10/24/2018		7/5/2017	10/24/2018	3	9/23/2020		9/14/2022
	NY-AWQS	Units	Results	Results		Results	Results		Results		Results
Volatile Organics by GC/MS						•					
Acetone	50	ug/l									
Benzene	1	ug/l									
cis-1,2-Dichloroethene		ug/l									
trans-1,2-Dichloroethene		ug/l									
Trichloroethene	5	ug/l									
Vinyl chloride	2	ug/l									
Total Metals											
Aluminum, Total		ug/l	4400	594		300	406		104		33700
Antimony, Total		ug/l		0.49	J		0.55	J			
Arsenic, Total	25	ug/l		0.42	J		0.37	J	0.17	J	6
Barium, Total	1000		50	40.37		17	23.31		26.86		431
Beryllium, Total	3	ug/l									1 J
Cadmium, Total	5	ug/l									1 J
Calcium, Total		ug/l	16100	33600		17600	21400		37900		43700
Chromium, Total	50	ug/l	4.4	1.42			0.84	J	0.64	J	46
Cobalt, Total		ug/l	1.5 J	0.62			0.35	J	0.23	J	29
Copper, Total	200	ug/l	3.1 J	1.1			0.94	J			52
Iron, Total	300	ug/l	3900 J	1060		320 J	606		321		55000
Lead, Total	25	ug/l	4.1 J	1.04			0.53	J			41
Magnesium, Total	35000	ug/l	4400	7720		4000	4850		8300		20000
Manganese, Total	300	ug/l	70 J	64.76		13	39.83		28.85		4870
Nickel, Total	100	ug/l	3.8 J	1.39	J		0.88	J			74
Potassium, Total		ug/l	1700	943		710	708		935		4140
Sodium, Total	20000	ug/l	6100	15800		6800	7420		16100		18000
Thallium, Total	0.5	ug/l	4.2 J								4 J
Vanadium, Total		ug/l									38
Zinc, Total	2000	ug/l	11	10.06			10.91				145

Notes:

Samples were collected by CHA Consulting, Inc. September 14th, 2022

Samples were analyzed by Alpha Analytical

Samples were compared to the New York TOGS 1.1.1 Ambient

Water Quality Standards and Guidance Criteria, Class GA

Blue Highlighted and bold parameters exceed TOGS 1.1.1

Blank cells indicate the parameter was not detected above the laboratory Method Detection Limit.

	LOCATIO	N		MW-2B				MW-2S				
	SAMPLING DAT	E 7/5/2017	10/24/2018	9/23/2020		9/14/2022	7/5/2017	10/24/2018	9/14/2022	2		
	NY-AWQS Units	Results	Results	Results		Results	Results	Results	Results			
Volatile Organics by GC/MS								•	-			
Acetone	50 ug/l		2	J								
Benzene	1 ug/l			0.35	J							
cis-1,2-Dichloroethene	5 ug/l											
trans-1,2-Dichloroethene	5 ug/l											
Trichloroethene	5 ug/l											
Vinyl chloride	2 ug/l											
Total Metals												
Aluminum, Total	ug/l		37.5	9.47	J		2600	7750	4120			
Antimony, Total	3 ug/l	13 J		0.43	J				50	U		
Arsenic, Total	25 ug/l							7.89	3	J		
Barium, Total	1000 ug/l	120	149.1	109.4		151	42	101.2	64			
Beryllium, Total	3 ug/l							0.63				
Cadmium, Total	5 ug/l		0.08	J				0.48				
Calcium, Total	ug/l	32300	38300	33900		39300	73800	69800	54600			
Chromium, Total	50 ug/l		3.01	0.44	J		4.6	11.16	6	J		
Cobalt, Total	ug/l		1.37				0.69 J	6.21	5	J		
Copper, Total	200 ug/l	20 J	11.01	1.1			2.7 J	12.14	9	J		
Iron, Total	300 ug/l	159000 J	370000	9050		16300	2400 J	17100	8180			
Lead, Total	25 ug/l	3.4 J	0.4	J			3.5 J	11.04	8	J		
Magnesium, Total	35000 ug/l	7000	8560	7680		8390	14200	14000	10300			
Manganese, Total	300 ug/l	1000 J	1590	181.4		214	15 J	1677	838			
Nickel, Total	100 ug/l	6.5 J	8.27	0.9	J		2.7 J	12.75	8	J		
Potassium, Total	ug/l	840	1320	967		933	J 1600	3100	3030			
Sodium, Total	20000 ug/l	4200	5650	5520		5330	24100	51200	28500			
Thallium, Total	0.5 ug/l	-		0.47	J	•						
Vanadium, Total	ug/l	0.0022 J					0.0029 J	8.72	6	J		
Zinc, Total	2000 ug/l	1.5 J	12.98	3.57	J		20	110.4	78			

Notes:

Samples were collected by CHA Consulting, Inc. September 14th, 2022

Samples were analyzed by Alpha Analytical

Samples were compared to the New York TOGS 1.1.1 Ambient

Water Quality Standards and Guidance Criteria, Class GA

Blue Highlighted and bold parameters exceed TOGS 1.1.1

Blank cells indicate the parameter was not detected above the laboratory Method Detection Limit.

	LOCATIO	N		MW-2D					MW-4B	
	SAMPLING DAT	E 7/5/2017	10/24/2018	9/23/2020		9/14/2022	7/5/2017	10/24/2018	9/23/2020	9/14/2022
	NY-AWQS Units	Results	Results	Results		Results	Results	Results	Results	Results
Volatile Organics by GC/MS	<u>.</u>							•	*	
Acetone	50 ug/l						0.56 J			
Benzene	1 ug/l									
cis-1,2-Dichloroethene	5 ug/l									
trans-1,2-Dichloroethene	5 ug/l									
Trichloroethene	5 ug/l							1.8		1.8
Vinyl chloride	2 ug/l									
Total Metals										
Aluminum, Total	ug/l	0.6	406	78.1			66 J	70.5	25	
Antimony, Total	3 ug/l									
Arsenic, Total	25 ug/l		0.46	J 0.48	J	3	J	0.2	J	
Barium, Total	1000 ug/l	0.032	33.38	31.67		30	41	244.9	57.58	56
Beryllium, Total	3 ug/l						0.00078 J		0.5	
Cadmium, Total	5 ug/l		0.12	J 0.24				0.06	J	
Calcium, Total	ug/l	52.6	54700	61800		55100	27600	55300	28300	22700
Chromium, Total	50 ug/l	0.0018 J	1.97	0.99	J			1.75	0.65	J
Cobalt, Total	ug/l		0.26	J 0.24	J			0.82		
Copper, Total	200 ug/l		0.8	J		2	J	4.76	0.62	J
Iron, Total	300 ug/l	0.68 J	729	372		1820	11700 J	144000	30300	25900
Lead, Total	25 ug/l		0.65	J						
Magnesium, Total	35000 ug/l	13.2	13500	14900		16500	6900	10400	6890	6280
Manganese, Total	300 ug/l	0.03 J	33.86	192.8		518	110 J	425.5	245.2	352
Nickel, Total	100 ug/l		0.73	J 0.66	J		1.4 J	6.48	0.94	J
Potassium, Total	ug/l	1	958	998		1380	J 520	916	347	648
Sodium, Total	20000 ug/l	3.6	3550	3950		4220	3200	4380	3300	3270
Thallium, Total	0.5 ug/l			0.25	J			0.19	J 0.16	J
Vanadium, Total	ug/l									
Zinc, Total	2000 ug/l	0.005 J		27.07		7	J 1.7 J	14.84	12.01	

Notes:

Samples were collected by CHA Consulting, Inc. September 14th, 2022

Samples were analyzed by Alpha Analytical

Samples were compared to the New York TOGS 1.1.1 Ambient

Water Quality Standards and Guidance Criteria, Class GA

Blue Highlighted and bold parameters exceed TOGS 1.1.1

Blank cells indicate the parameter was not detected above the laboratory Method Detection Limit.

	LOCATION		N	MW-4S					MW	7-3SR	
	SAMPLING DATE	7/5/2017	10/24/2018	9/23/2020	9/14/2022		7/5/2017	10/2	24/2018	9/23/2020	9/14/2022
	NY-AWQS Units	Results	Results	Results	Results		Results	R	esults	Results	Results
Volatile Organics by GC/MS				•	•					•	•
Acetone	50 ug/l										
Benzene	1 ug/l										
cis-1,2-Dichloroethene	5 ug/l										
trans-1,2-Dichloroethene	5 ug/l										
Trichloroethene	5 ug/l								2.4	1.9	1.7
Vinyl chloride	2 ug/l										
Total Metals											
Aluminum, Total	ug/l	360	26	11.4			1400	2	2280	419	104
Antimony, Total	3 ug/l										
Arsenic, Total	25 ug/l								1.81	0.52	
Barium, Total	1000 ug/l	28	45.82	44.41	50		72		102	86.28	83
Beryllium, Total	3 ug/l										
Cadmium, Total	5 ug/l										
Calcium, Total	ug/l	58300	83400	104000	86000		69800	7	6000	87000	67900
Chromium, Total	50 ug/l		0.66 J	2.04	2	J	1.6	J	5.09	1.64	
Cobalt, Total	ug/l								2	0.55	
Copper, Total	200 ug/l	2.7 J			3	J	2.1	J ;	3.35	1.09	2 J
Iron, Total	300 ug/l	440 J	110	35.1 J	48	J	1600	J	1590	858	235
Lead, Total	25 ug/l						3		2.06	0.66 J	
Magnesium, Total	35000 ug/l	8700	12700	16800	18200		15200		6600	18800	19200
Manganese, Total	300 ug/l	17 J	2.29	5.99			180	J 3	92.6	164.7	36
Nickel, Total	100 ug/l				6	J	1.9	_	4.97	1.19 J	
Potassium, Total	ug/l	610	534	840	1040	J	3500		3200	2380	2590
Sodium, Total	20000 ug/l	2000	2370	2750	2710		6200	- 6	390	6520	6620
Thallium, Total	0.5 ug/l			-							
Vanadium, Total	ug/l						0.0018	_	4.17 J		
Zinc, Total	2000 ug/l	1.9 J		21.41	8	J	6.1	J	14.2	10.52	

Notes:

Samples were collected by CHA Consulting, Inc. September 14th, 2022

Samples were analyzed by Alpha Analytical

Samples were compared to the New York TOGS 1.1.1 Ambient

Water Quality Standards and Guidance Criteria, Class GA

Blue Highlighted and bold parameters exceed TOGS 1.1.1

Blank cells indicate the parameter was not detected above the laboratory Method Detection Limit.

	LC	CATION		MW	/-3BR				MW-3BR2						
	SAMPLIN	NG DATE	7/5/2017	10/24/2018	9/23/2020		9/14/2022		7/5/2017 10/24/2018 9/23/2020 9/			9/14/2022			
	NY-AWQS	Units	Results	Results	Results		Results		Results		Results		Results	Results	
Volatile Organics by GC/MS				-						•				-	
Acetone	50	ug/l											5 L	J	
Benzene	1	ug/l													
cis-1,2-Dichloroethene	5	ug/l							3.1		9.2		9.7	7.8	
trans-1,2-Dichloroethene		ug/l													
Trichloroethene	5	ug/l							6.5		83		67	50	
Vinyl chloride	2	ug/l											0.21	0.15	
Total Metals										•					
Aluminum, Total		ug/l		11	20.9				81	J	115		14.8	59 .	
Antimony, Total	3	ug/l	11 .												
Arsenic, Total	25	ug/l		1.76	1.11						0.76		0.26		
Barium, Total	1000	ug/l	74	70.3	67.04		42		120		289.8		278	253	
Beryllium, Total		ug/l			0.5										
Cadmium, Total		ug/l			0.08	J									
Calcium, Total		ug/l	10000	9440	6420		4190		29600		86100		62300	88200	
Chromium, Total	50	ug/l		0.39 J	0.57	J					1.24		0.41		
Cobalt, Total		ug/l	1.3	1.62	2.15						0.42	J	0.19		
Copper, Total	200	ug/l	2 .	1.47	3.01						1.45		0.72		
Iron, Total	300	ug/l	124000 、	136000	102000		50800		27300	J	46000		40300	25500	
Lead, Total	25	ug/l													
Magnesium, Total	35000	ug/l	3100	2780	1180		1140		12500		16100		15900	18900	
Manganese, Total	300	ug/l	1500	1321	1590		789		290	J	359.7		220.3	292	
Nickel, Total	100	ug/l	15	7.57	15.15		5	J	1.5	J	1.96	J	0.81		
Potassium, Total		ug/l	2300	1860	1060		1260	J	960		1000		926	1070	
Sodium, Total	20000	ug/l	14900	12800	10700		9650		12000		12300		14000	14900	
Thallium, Total	0.5														
Vanadium, Total		ug/l													
Zinc, Total	2000	ug/l	4.3		4.82	J								2 .	

Notes:

Samples were collected by CHA Consulting, Inc. September 14th, 2022

Samples were analyzed by Alpha Analytical

Samples were compared to the New York TOGS 1.1.1 Ambient

Water Quality Standards and Guidance Criteria, Class GA

Blue Highlighted and bold parameters exceed TOGS 1.1.1

Blank cells indicate the parameter was not detected above the laboratory Method Detection Limit.

	MW-3SR2									
	SAMPLI	NG DATE	7/5/2017		10/24/2018		9/23/2020		9/14/2022	
	NY-AWQS	Units	Results		Results		Results		Results	
Volatile Organics by GC/MS										
Acetone	50	ug/l								
Benzene	1	ug/l					0.17	J		
cis-1,2-Dichloroethene	5	ug/l	20		24		28		26	
trans-1,2-Dichloroethene		ug/l					1.4	J		
Trichloroethene	5	ug/l	170		160		14		160	
Vinyl chloride	2	ug/l					3		0.79	J
Total Metals										
Aluminum, Total		ug/l	9900		871		174		125	
Antimony, Total	3	ug/l								
Arsenic, Total		ug/l	5.8	J	0.62		1.42			
Barium, Total	1000	ug/l	220		135.8		180.2		129	
Beryllium, Total	3	ug/l	0.0005	J						
Cadmium, Total	5	ug/l								
Calcium, Total		ug/l	102000		98700		118000		107000	
Chromium, Total	50	ug/l	12		1.82		0.61	J		
Cobalt, Total		ug/l	5.1		0.8		2.64			
Copper, Total	200	ug/l	9.5	ک	1.42		1.33			
Iron, Total	300	ug/l	13000	J	1650		1310		1340	
Lead, Total	25	ug/l	7.9	ک	0.79	ک	0.47	J		
Magnesium, Total	35000	ug/l	21400		18400		18500		19800	
Manganese, Total	300	ug/l	350	J	169.2		3035		152	
Nickel, Total	100	ug/l	13		1.79	J	2.67			
Potassium, Total		ug/l	3900		1620		3810		1730	J
Sodium, Total	20000	ug/l	18200		17600		27800		21900	
Thallium, Total	0.5	ug/l								
Vanadium, Total		ug/l	0.014		1.82	J				
Zinc, Total	2000	ug/l	34		4.51	J	31.54		10	J

Notes:

Samples were collected by CHA Consulting, Inc. September 14th, 2022

Samples were analyzed by Alpha Analytical

Samples were compared to the New York TOGS 1.1.1 Ambient

Water Quality Standards and Guidance Criteria, Class GA

Blue Highlighted and bold parameters exceed TOGS 1.1.1

Blank cells indicate the parameter was not detected above the laboratory Method Detection Limit.

Table 3.
Surface Water Sample Results Detected Compounds Only
South Hill Dump
2022 Periodic Review Report

LOCATION	SW-00	SW-001			
SAMPLING DATE			9/14/202	22	
	NY-AWQS	Units	Results	Qual	
Volatile Organics by GC/MS					
Acetone	50	ug/l	1.5	J	
Total Metals					
Aluminum, Total		ug/l	177		
Barium, Total	1000	ug/l	64		
Calcium, Total		ug/l	95700		
Copper, Total	200	ug/l	2	J	
Iron, Total	300	ug/l	383		
Magnesium, Total	35000	ug/l	11800		
Manganese, Total	300	ug/l	448		
Potassium, Total		ug/l	4250		
Sodium, Total	20000	ug/l	3210		

Notes:

Samples were collected by CHA Consulting, Inc. September 14th, 2022 Samples were analyzed by Alpha Analytical Samples were compared to the New York TOGS 1.1.1 Ambient Water Quality Standards and Guidance Criteria, Class GA

Blue Highlighted and bold parameters exceed TOGS 1.1.1 Blank cells indicate the parameter was not detected above the laboratory Method Detection Limit.

Table 4. Sediment Sample Results - Detected Compounds Only South Hill Dump 2022 Periodic Review Report

	LOCA	ATION	SED-	1	SED-0	01	SED-00	1
	SAMPLING	DATE	3/2/201	6	9/23/20)20	9/14/202	22
	NYSDEC Sediment							
	Guidance Value	Units	Results	Qual	Results	Qual	Results	Qual
General Chemistry						_		
Solids, Total		%	62.6		18		20.4	
Polychlorinated Biphen	yls by GC							
PCBs, Total	0.0008	mg/kg						
Total Metals								
Aluminum, Total		mg/kg	22,600		12,700		12,300	
Antimony, Total		mg/kg	2.4	J				
Arsenic, Total	33	mg/kg	9.7		7.19		5.56	
Barium, Total		mg/kg	166		310		224	
Beryllium, Total		mg/kg	0.91		0.732	J	0.626	J
Cadmium, Total	9	mg/kg	0.33	J	1.16	J	1.07	J
Calcium, Total		mg/kg	4,480		15,900		13,200	
Chromium, Total	110	mg/kg	26.5		40.6		32.5	
Cobalt, Total		mg/kg	16.2		24.4		17.1	
Copper, Total	110	mg/kg	18.2		24		22.2	
Iron, Total	40,000	mg/kg	33,500		24,200		21,800	
Lead, Total	110	mg/kg	17.8		18.1	J	17.9	
Magnesium, Total		mg/kg	5,240		6,680		6,400	
Manganese, Total	1,100	mg/kg	1,890		25,000		9,690	
Nickel, Total	50	mg/kg	34.3		43.2		32.5	
Potassium, Total		mg/kg	2,190		925	J	806	J
Selenium, Total		mg/kg			10.8			
Silver, Total	2.2	mg/kg			1.38	J	1.62	J
Sodium, Total		mg/kg	112	J	302	J	202	J
Thallium, Total		mg/kg			23			
Vanadium, Total		mg/kg	37.5		6.2		44.6	
Zinc, Total	270	mg/kg	89.2		93		87.7	
Volatile Organics by Go	C/MS							
Toluene		mg/kg			0.068		0.01	
Ethylbenzene		mg/kg			0.003	J		
Acetone		mg/kg			0.76		0.5	
2-Butanone		mg/kg			0.21		0.11	

^{*} Comparison is not performed on parameters with non-numeric criteria.

NYDEC Sediment Guidance Values - Division of Fish, Wildlife and Marine Resources Technical Guidance for Screening Contaminated Sediment, updated January 25, 1999. PCB and VOC Sediment Guidance Values are based off the Human Health Bioaccumulation Level of Protection.

Exceedances of NYSDEC Sediment Guidance Values are highlighted in blue.

Blank cells indicate the parameter was not detected above the laboratory Method Detection Limit 2022 sample collected September 14th, 2022 and analyzed by Alpha Analytical.

J - Estimated value below the reporting limit but above the method detection limit.

Institutional and Engineering Controls Certification Forms

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site	Site Details No.	Box 1	
Site	Name:		
City/T Coun			
Repo	orting Period: to		
		YES	NO
1.	Is the information above correct?		
	If NO, include handwritten above or on a separate sheet.		
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.		
5.	Is the site currently undergoing development?		
		Box 2	
			NO
6	Is the current site use consistent with the use(s) listed helpu?	YES	NO
6.	Is the current site use consistent with the use(s) listed below?	Ш	
7.	Are all ICs/ECs in place and functioning as designed?		
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
A Cor	rrective Measures Work Plan must be submitted along with this form to address these is	sues.	
Sig	nature of Owner, Remedial Party or Designated Representative Date		

SITE NO.	Box 3
Description of Institutional Controls	
Description of Engineering Controls	Box 4
Description of Engineering Controls	Box 4
Description of Engineering Controls	Box 4
Description of Engineering Controls	Box 4
Description of Engineering Controls	Box 4
Description of Engineering Controls	Box 4
Description of Engineering Controls	Box 4
Description of Engineering Controls	Box 4
Description of Engineering Controls	Box 4
Description of Engineering Controls	Box 4
Description of Engineering Controls	Box 4
Description of Engineering Controls	Box 4
Description of Engineering Controls	Box 4
Description of Engineering Controls	Box 4

	Box 5	
Periodic Review Report (PRR) Certification Statements		
Teriodic Neview Report (FRR) Continuation Statements		
I certify by checking "YES" below that:		
 a) the Periodic Review report and all attachments were prepared under the direction reviewed by, the party making the certification; 	of, and	
 b) to the best of my knowledge and belief, the work and conclusions described in the are in accordance with the requirements of the site remedial program, and generally 		
	YES	NO
 If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for ea or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that a following statements are true: 		utional
(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged Control was put in-place, or was last approved by the Department;	I since th	e date that the
(b) nothing has occurred that would impair the ability of such Control, to protect public health the environment;	and	
(c) access to the site will continue to be provided to the Department, to evaluate the remedy evaluate the continued maintenance of this Control;	, includin	g access to
(d) nothing has occurred that would constitute a violation or failure to comply with the Site M Control; and	anageme	ent Plan for this
(e) if a financial assurance mechanism is required by the oversight document for the site, the and sufficient for its intended purpose established in the document.	e mechai	nism remains valid
	YES	NO
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
DO NOT COME LETE THE NEOT OF THIS FORMS CONGING.		
A Corrective Measures Work Plan must be submitted along with this form to address these	issues.	
Signature of Owner, Remedial Party or Designated Representative Date		

IC CERTIFICATIONS SITE NO.

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal

Tom Williams, Town Supervisor	at 3577 Terrace Road, Cortlar	ndville, NY 13045
print name	print business address	
Owner am certifying as		(Owner or Remedial Party)
for the Site named in the Site Details Signature of Owner, Remedial Party, or I Rendering Certification		

IC/EC CERTIFICATIONS

IC/EC CERTIF	ICATIONS
Sign I certify that all information in Boxes 4 and 5 are true. I punishable as a Class "A" misdemeanor, pursuant to Se	
I print name	print business address
am certifying as a Professional Engineer for the	(Owner or Remedial Party)
Signature of Professional Engineer for the Owner or Remedial Party, Rendering Certification	Stamp SSTONE Date (Required for PE)

APPENDIX B

Landfill Inspection Forms

	Re	eport	No. 007	
	Pa	age '	1 of 3	
	Da	ate: 10	0/8/2021	Time: 11:30
Inspector: K. Ehmann				No. 34236
			Weather	r: Sunny
People Accompanying Inspector:			_	
			Temp.:	Hi 62 Low 48
SIGNAGE AND GAT				001445170
ITEM/CONDITION Is a sign posted at entrance to the landfill stating that the area is a closed landfill?	YES	NO	NA	COMMENTS No sign present
Is a gate present at the entrance to the landfill?	\boxtimes			
Is the gate locked and secured?	\boxtimes			
SOIL COVER SYSTE	M INS	PEC.	TION	
ITEM/CONDITION	YES	NO	NA	COMMENTS
Evidence of erosion of cover soils from surface of landfill (top/sideslopes)?		\boxtimes		
Evidence of cracks or depressions in cover soils?		\boxtimes		
Evidence of exposed or damaged geomembrane/clay		\boxtimes		
barrier?				
GAS VENTING SYST	EM IN	SPEC	TION	
	EM IN	SPEC NO	TION NA	COMMENTS
GAS VENTING SYST	ı			COMMENTS
GAS VENTING SYST	YES			COMMENTS
GAS VENTING SYST ITEM/CONDITION Gas vent structures intact?	YES			COMMENTS
GAS VENTING SYST ITEM/CONDITION Gas vent structures intact? Screens on gas vents intact and unobstructed?	YES	NO		COMMENTS
GAS VENTING SYST ITEM/CONDITION Gas vent structures intact? Screens on gas vents intact and unobstructed? Settlement of cover system soils in area of gas vents? Vapors or odors emanating from gas vents? Evidence of stressed vegetation in areas around gas vents or other areas of the landfill?	YES	NO		COMMENTS
GAS VENTING SYST ITEM/CONDITION Gas vent structures intact? Screens on gas vents intact and unobstructed? Settlement of cover system soils in area of gas vents? Vapors or odors emanating from gas vents? Evidence of stressed vegetation in areas around gas vents or other areas of the landfill? Evidence of bubbling surface water on or in the area surrounding the landfill?	YES	NO	NA	
GAS VENTING SYST ITEM/CONDITION Gas vent structures intact? Screens on gas vents intact and unobstructed? Settlement of cover system soils in area of gas vents? Vapors or odors emanating from gas vents? Evidence of stressed vegetation in areas around gas vents or other areas of the landfill? Evidence of bubbling surface water on or in the area surrounding the landfill? VEGETATIVE COVER SY	YES	NO S S S S S S S S S S S S S S S S S S	NA O O O O O O O O O O O O O O O O O O	
GAS VENTING SYST ITEM/CONDITION Gas vent structures intact? Screens on gas vents intact and unobstructed? Settlement of cover system soils in area of gas vents? Vapors or odors emanating from gas vents? Evidence of stressed vegetation in areas around gas vents or other areas of the landfill? Evidence of bubbling surface water on or in the area surrounding the landfill? VEGETATIVE COVER SY	YES	NO	NA	
GAS VENTING SYST ITEM/CONDITION Gas vent structures intact? Screens on gas vents intact and unobstructed? Settlement of cover system soils in area of gas vents? Vapors or odors emanating from gas vents? Evidence of stressed vegetation in areas around gas vents or other areas of the landfill? Evidence of bubbling surface water on or in the area surrounding the landfill? VEGETATIVE COVER SY	YES	NO S S S S S S S S S S S S S S S S S S	NA O O O O O O O O O O O O O O O O O O	
GAS VENTING SYST ITEM/CONDITION Gas vent structures intact? Screens on gas vents intact and unobstructed? Settlement of cover system soils in area of gas vents? Vapors or odors emanating from gas vents? Evidence of stressed vegetation in areas around gas vents or other areas of the landfill? Evidence of bubbling surface water on or in the area surrounding the landfill? VEGETATIVE COVER SY	YES	NO S S S S S S S S S S S S S S S S S S	NA O O O O O O O O O O O O O O O O O O	
GAS VENTING SYST ITEM/CONDITION Gas vent structures intact? Screens on gas vents intact and unobstructed? Settlement of cover system soils in area of gas vents? Vapors or odors emanating from gas vents? Evidence of stressed vegetation in areas around gas vents or other areas of the landfill? Evidence of bubbling surface water on or in the area surrounding the landfill? VEGETATIVE COVER SY ITEM/CONDITION Is vegetation well established over the entire landfill?	YES	NO S NO NO NO TINSI	NA O O O O O O O O O O O O O O O O O O	

	Repo	rt No. (007		
	Page	2 of	3		
		10/8/2		Time: 11:30	
	1,770				
ITEM/CONDITION	YES	NO	NA_	COMMENTS	
Evidence of exposed geotextile?		\boxtimes			
Presence of woody growth?		\boxtimes			
Evidence of ponded water?		\boxtimes			
Evidence of debris?		\boxtimes			
DRAINAGE SYST	EM INS	PECTION	ON		
ITEM/CONDITION	YES	NO	NA	COMMENTS	
Evidence of erosion in drainage structures?					
Presence of siltation in drainage structures?	<u> </u>		<u> </u>		
Evidence of settlement in drainage structures?	\Box		Ш		
Evidence of restrictions of water flow in drainage ditche and structures?		\boxtimes			
LEACHATE I	NSPEC	TION			
ITEM/CONDITION	YES	NO	NA	COMMENTS	
Evidence of leachate seeps or staining around the perimeter of the landfill?		\boxtimes			
Evidence of leachate seeps or staining off the perimeter of the landfill?	r 🗆	\boxtimes			
Evidence of leachate seeps or staining in the drainage ditches or structures of the landfill?		\boxtimes			
Evidence of leachate seeps or staining on the surface of the landfill?	of \square	\boxtimes			
MONITORING WE	ELL INS	PECTION	NC		
ITEM/CONDITION	YES	NO	NA	COMMENTS	
Are the monitoring wells in generally good condition?		\boxtimes		See comments on Page 3	
Are well caps installed on the wells?	\boxtimes				
Are locks present and secured?					
VECTOR IN	ISPECTI	ON			
ITEM/CONDITION	YES	NO	NA	COMMENTS	
Were any vectors observed?		\boxtimes			
Evidence of vector activity (tracks, droppings, dens, etc	.) 🗆	\boxtimes			
Evidence of damage due to vector activity?		\boxtimes			
SITE ACCESS RO	AD INS	PECTI	ON		
ITEM/CONDITION	YES	NO	NA	COMMENTS	
Are site access roads passable?					
Presence of ruts or erosion?					
Are site access roads in generally good condition?					

Report No. 007

Page 3 of 3

Date: 10/8/2021 Time: 11:30

ADDITIONAL NOTES & OBSERVATIONS

MW-2D damaged by lawn mowing activities. See images, below.

MW-3SR and MW-3BR inundated with water, nearly at the riser. Water appeared to be reddish brown, but no odor or sheen.

Signature:

Kary Smann

		_	No. 007		
	Page 1 of 3				
	Date: 7/29/2022 Time: 12:45			Time: 12:45	
Inspector: S.Miller / A.Hodgens				No. 34236	
			Weathe	r: Sunny	
People Accompanying Inspector:					
			Temp.:	Hi 81 Low 61	
SIGNAGE AND GAT		PECT			
ITEM/CONDITION	YES	NO	NA	COMMENTS	
Is a sign posted at entrance to the landfill stating that the area is a closed landfill?				No sign present	
Is a gate present at the entrance to the landfill?	\boxtimes				
Is the gate locked and secured?	\boxtimes				
SOIL COVER SYSTI	EM INS	SPEC	TION		
ITEM/CONDITION	YES	NO	NA	COMMENTS	
Evidence of erosion of cover soils from surface of landfill (top/sideslopes)?		\boxtimes			
Evidence of cracks or depressions in cover soils?		\boxtimes			
Evidence of exposed or damaged geomembrane/clay barrier?		\boxtimes			
GAS VENTING SYST	EM IN	SPEC	CTION		
ITEM/CONDITION	YES	NO	NA	COMMENTS	
Gas vent structures intact?	\boxtimes				
Screens on gas vents intact and unobstructed?	\boxtimes				
Settlement of cover system soils in area of gas vents?		\boxtimes			
Vapors or odors emanating from gas vents?		\boxtimes			
Evidence of stressed vegetation in areas around gas vents or other areas of the landfill?		\boxtimes			
Evidence of bubbling surface water on or in the area surrounding the landfill?		\boxtimes			
VEGETATIVE COVER S	YSTEN	/ INS	PECTION		
ITEM/CONDITION	YES	NO	NA	COMMENTS	
Is vegetation well established over the entire landfill?					
Evidence of stressed vegetation?		\boxtimes			
Evidence of erosion or thin vegetative cover?		\boxtimes			
Does the landfill need to be mowed?		\boxtimes			

ITEM/CONDITION

Are site access roads passable?

Are site access roads in generally good condition?

Presence of ruts or erosion?

SOUTH HILL DUMP SEMI-ANNUAL POST-CLOSURE INSPECTION CHECKLIST

	D (N 007				
	Report No. 007				
	Page 2 of 3				
	Date:	7/29/2	022 Ti	me: 12:45	
ITEM/CONDITION	YES	NO	NA	COMMENTS	
Evidence of exposed geotextile?		\boxtimes			
Presence of woody growth?		\boxtimes			
Evidence of ponded water?		\boxtimes			
Evidence of debris?		\boxtimes			
DRAINAGE SYSTE	M INS	PECTION	ON		
ITEM/CONDITION	YES	NO	NA	COMMENTS	
Evidence of erosion in drainage structures?		\boxtimes			
Presence of siltation in drainage structures?		\boxtimes			
Evidence of settlement in drainage structures?		\boxtimes			
Evidence of restrictions of water flow in drainage ditches		\boxtimes			
and structures?	CDEC				
LEACHATE IN			NIA	COMMENTS	
ITEM/CONDITION Evidence of leachate seeps or staining around the	YES	NO	NA	COMMENTS	
perimeter of the landfill?		\boxtimes			
Evidence of leachate seeps or staining off the perimeter of the landfill?		\boxtimes			
Evidence of leachate seeps or staining in the drainage ditches or structures of the landfill?		\boxtimes			
Evidence of leachate seeps or staining on the surface of the landfill?		\boxtimes			
MONITORING WEL	L INS	PECTION	ON		
ITEM/CONDITION	YES	NO	NA	COMMENTS	
Are the monitoring wells in generally good condition?	\boxtimes				
Are well caps installed on the wells?					
Are locks present and secured?	\boxtimes				
VECTOR INS	PECTI	ON			
ITEM/CONDITION	YES	NO	NA	COMMENTS	
Were any vectors observed?		\boxtimes			
Evidence of vector activity (tracks, droppings, dens, etc.)		\boxtimes			
Evidence of damage due to vector activity?		\boxtimes			
SITE ACCESS ROA	D INS	PECTION	ON		

YES

 $\overline{\boxtimes}$

NO

X

NA

COMMENTS

Report No. 007	
Page 3 of 3	
Date:	Time:

ADDITIONAL NOTES & OBSERVATIONS			
Photos were not taken.			
Signature: Andrew Hodgen			

APPENDIX C

Laboratory Analytical Report

ANALYTICAL REPORT

Lab Number: L2250253

Client: CHA Companies

One Park Place

300 South State St., Suite 600

Syracuse, NY 13202

ATTN: Karyn Ehmann Phone: (315) 471-3920

Project Name: SOUTH HILL DUMP

Project Number: 34236 Report Date: 10/07/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2250253 **Report Date:** 10/07/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2250253-01	MW-1B	WATER	CORTLANDVILLE,NY	09/14/22 09:55	09/14/22
L2250253-02	MW-2B	WATER	CORTLANDVILLE,NY	09/14/22 10:30	09/14/22
L2250253-03	MW-2S	WATER	CORTLANDVILLE,NY	09/14/22 10:50	09/14/22
L2250253-04	CHA-001	WATER	CORTLANDVILLE,NY	09/14/22 10:50	09/14/22
L2250253-05	MW-2D	WATER	CORTLANDVILLE,NY	09/14/22 11:00	09/14/22
L2250253-06	MW-4B	WATER	CORTLANDVILLE,NY	09/14/22 11:30	09/14/22
L2250253-07	MW-4S	WATER	CORTLANDVILLE,NY	09/14/22 11:50	09/14/22
L2250253-08	MW-3BR	WATER	CORTLANDVILLE,NY	09/14/22 12:50	09/14/22
L2250253-11	MW-3SR	WATER	CORTLANDVILLE,NY	09/14/22 12:40	09/14/22
L2250253-12	MW-3SR2	WATER	CORTLANDVILLE,NY	09/14/22 13:20	09/14/22
L2250253-13	MW-3BR2	WATER	CORTLANDVILLE,NY	09/14/22 13:40	09/14/22
L2250253-14	SW-001	WATER	CORTLANDVILLE,NY	09/14/22 13:05	09/14/22
L2250253-15	SED-001	SOIL	CORTLANDVILLE,NY	09/14/22 13:10	09/14/22
L2250253-17	TRIP BLANK	WATER	CORTLANDVILLE,NY	09/14/22 00:00	09/14/22

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L2250253-05D: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

L2250253-15: Any reported concentrations that are below 200 ug/kg may be biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

Total Metals

L2250253-15: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by matrix interferences encountered during analysis.

The WG1688149-3/-4 MS/MSD recoveries for iron (0%/0%), performed on L2250253-02, do not apply because the sample concentration is greater than four times the spike amount added.

The WG1688149-3/-4 MS/MSD recoveries, performed on L2250253-02, are outside the acceptance criteria for selenium (64%/65%). A post digestion spike was performed and was within acceptance criteria.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 10/07/22

Melissa Sturgis Melissa Sturgis

ORGANICS

VOLATILES

L2250253

10/07/22

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

Date Collected: 09/14/22 09:55

Lab Number:

Report Date:

Lab ID: L2250253-01 Dat

Client ID: MW-1B Date Received: 09/14/22 Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/26/22 13:07

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

SAMPLE RESULTS

Lab ID: L2250253-01 Date Collected: 09/14/22 09:55

Client ID: MW-1B Date Received: 09/14/22 Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	117	70-130	

L2250253

10/07/22

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

Date Collected: 09/14/22 10:30

LE REGULTO

Lab Number:

Report Date:

Date Received: 09/14/22 Field Prep: Not Specified

Lab ID: L2250253-02

Client ID: MW-2B

Sample Location: CORTLANDVILLE,NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/26/22 13:31

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: SOUTH HILL DUMP L2250253

Project Number: Report Date: 34236 10/07/22

SAMPLE RESULTS

Lab ID: Date Collected: 09/14/22 10:30 L2250253-02

Date Received: Client ID: 09/14/22 MW-2B Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	117	70-130	

L2250253

10/07/22

Not Specified

09/14/22

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

Date Collected: 09/14/22 10:50

Lab Number:

Report Date:

Date Received:

Field Prep:

Lab ID: L2250253-03

Client ID: MW-2S

Sample Location: CORTLANDVILLE,NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 09/26/22 13:56

Analyst: MKS

		Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: SOUTH HILL DUMP L2250253

Project Number: Report Date: 34236 10/07/22

SAMPLE RESULTS

Lab ID: Date Collected: 09/14/22 10:50 L2250253-03

Client ID: MW-2S Date Received: 09/14/22 Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	117	70-130	

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

Lab Number: L2250253

Report Date: 10/07/22

Lab ID: L2250253-04 Date Collected: 09/14/22 10:50

Client ID: Date Received: 09/14/22 CHA-001 Field Prep: Sample Location: Not Specified CORTLANDVILLE,NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/24/22 19:42

Analyst: MKS

Volatile Organics by GC/MS - Westboroug					Dilution Factor
volatile Organics by GC/M3 - Westboroug	h Lab				
Methylene chloride	ND	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND	ug/l	2.5	0.70	1
Chloroform	ND	ug/l	2.5	0.70	1
Carbon tetrachloride	ND	ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	ND	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Trichloroethene	0.77	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	1

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

SAMPLE RESULTS

Lab ID: L2250253-04 Date Collected: 09/14/22 10:50

Client ID: CHA-001 Date Received: 09/14/22 Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	110	70-130	
Dibromofluoromethane	108	70-130	

09/14/22 11:00

Not Specified

09/14/22

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

Lab Number: L2250253

Report Date: 10/07/22

Date Collected:

Date Received:

Field Prep:

Lab ID: L2250253-05 D

Client ID: MW-2D

Sample Location: CORTLANDVILLE,NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/24/22 20:02

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	oorough Lab						
Methylene chloride	ND		ug/l	25	7.0	10	
1,1-Dichloroethane	ND		ug/l	25	7.0	10	
Chloroform	ND		ug/l	25	7.0	10	
Carbon tetrachloride	ND		ug/l	5.0	1.3	10	
1,2-Dichloropropane	ND		ug/l	10	1.4	10	
Dibromochloromethane	ND		ug/l	5.0	1.5	10	
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10	
Tetrachloroethene	ND		ug/l	5.0	1.8	10	
Chlorobenzene	ND		ug/l	25	7.0	10	
Trichlorofluoromethane	ND		ug/l	25	7.0	10	
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10	
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10	
Bromodichloromethane	ND		ug/l	5.0	1.9	10	
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10	
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10	
Bromoform	ND		ug/l	20	6.5	10	
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10	
Benzene	ND		ug/l	5.0	1.6	10	
Toluene	ND		ug/l	25	7.0	10	
Ethylbenzene	ND		ug/l	25	7.0	10	
Chloromethane	ND		ug/l	25	7.0	10	
Bromomethane	ND		ug/l	25	7.0	10	
Vinyl chloride	ND		ug/l	10	0.71	10	
Chloroethane	ND		ug/l	25	7.0	10	
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10	
trans-1,2-Dichloroethene	ND		ug/l	25	7.0	10	
Trichloroethene	ND		ug/l	5.0	1.8	10	
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10	

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

SAMPLE RESULTS

Lab ID: L2250253-05 D Date Collected: 09/14/22 11:00

Client ID: MW-2D Date Received: 09/14/22 Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10
Methyl tert butyl ether	ND		ug/l	25	7.0	10
p/m-Xylene	ND		ug/l	25	7.0	10
o-Xylene	ND		ug/l	25	7.0	10
cis-1,2-Dichloroethene	ND		ug/l	25	7.0	10
Styrene	ND		ug/l	25	7.0	10
Dichlorodifluoromethane	ND		ug/l	50	10.	10
Acetone	ND		ug/l	50	15.	10
Carbon disulfide	ND		ug/l	50	10.	10
2-Butanone	ND		ug/l	50	19.	10
4-Methyl-2-pentanone	ND		ug/l	50	10.	10
2-Hexanone	ND		ug/l	50	10.	10
Bromochloromethane	ND		ug/l	25	7.0	10
1,2-Dibromoethane	ND		ug/l	20	6.5	10
1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10
Isopropylbenzene	ND		ug/l	25	7.0	10
1,2,3-Trichlorobenzene	ND		ug/l	25	7.0	10
1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10
Methyl Acetate	ND		ug/l	20	2.3	10
Cyclohexane	ND		ug/l	100	2.7	10
1,4-Dioxane	ND		ug/l	2500	610	10
Freon-113	ND		ug/l	25	7.0	10
Methyl cyclohexane	ND		ug/l	100	4.0	10

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	110	70-130	
Dibromofluoromethane	104	70-130	

L2250253

10/07/22

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

Date Collected: 09/14/22 11:30

Lab Number:

Report Date:

L2250253-06

Client ID: Date Received: 09/14/22 MW-4B Not Specified

Sample Location: Field Prep: CORTLANDVILLE,NY

Sample Depth:

Lab ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/24/22 20:23

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	1.8		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: SOUTH HILL DUMP L2250253

Project Number: Report Date: 34236 10/07/22

SAMPLE RESULTS

Lab ID: Date Collected: 09/14/22 11:30 L2250253-06

Date Received: Client ID: 09/14/22 MW-4B Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	108	70-130	
Dibromofluoromethane	107	70-130	

L2250253

10/07/22

Project Name: SOUTH HILL DUMP

L2250253-07

Project Number: 34236

SAMPLE RESULTS

Date Collected: 09/14/22 11:50

Lab Number:

Report Date:

Client ID: Date Received: 09/14/22 MW-4S Sample Location: Field Prep: CORTLANDVILLE,NY Not Specified

Sample Depth:

Lab ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/24/22 20:44

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

SAMPLE RESULTS

Lab ID: L2250253-07 Date Collected: 09/14/22 11:50

Client ID: MW-4S Date Received: 09/14/22 Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

i arameter	Nosun	Qualifici	Office			Dilation ractor	
Volatile Organics by GC/MS - Westb	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	109		70-130	
Dibromofluoromethane	102		70-130	

L2250253

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

Lab Number:

Report Date: 10/07/22

Lab ID: L2250253-08

Client ID: MW-3BR

Sample Location: CORTLANDVILLE,NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/24/22 21:04

Analyst: MKS

Date Collected:	09/14/22 12:50
Date Received:	09/14/22
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

SAMPLE RESULTS

Lab ID: L2250253-08 Date Collected: 09/14/22 12:50

Client ID: MW-3BR Date Received: 09/14/22 Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	110		70-130	
Dibromofluoromethane	103		70-130	

L2250253

10/07/22

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

Date Collected: 09/14/22 12:40

Lab Number:

Report Date:

L2250253-11

Client ID: Date Received: 09/14/22 MW-3SR Sample Location: Field Prep: Not Specified CORTLANDVILLE,NY

Sample Depth:

Lab ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/24/22 21:25

Analyst: MKS

Volatile Organics by GC/MS - Westborough Methylene chloride 1,1-Dichloroethane Chloroform	ND ND ND ND ND	ug/l ug/l	2.5	0.70	1
1,1-Dichloroethane	ND ND			0.70	1
	ND	ua/l			•
Chloroform		~ 9 , .	2.5	0.70	1
	ND	ug/l	2.5	0.70	1
Carbon tetrachloride	ND	ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	ND	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Trichloroethene	1.7	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	1

Project Name: Lab Number: SOUTH HILL DUMP L2250253

Project Number: Report Date: 34236 10/07/22

SAMPLE RESULTS

Lab ID: Date Collected: 09/14/22 12:40 L2250253-11

Client ID: Date Received: 09/14/22 MW-3SR Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	107	70-130	
Dibromofluoromethane	106	70-130	

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

Lab Number: L2250253

Report Date: 10/07/22

Lab ID: L2250253-12 D

Client ID: MW-3SR2

Sample Location: CORTLANDVILLE,NY

Field Prep:

Date Collected:

Date Received:

09/14/22 13:20 09/14/22 Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/24/22 21:45

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	5.0	1.4	2
1,1-Dichloroethane	ND		ug/l	5.0	1.4	2
Chloroform	ND		ug/l	5.0	1.4	2
Carbon tetrachloride	ND		ug/l	1.0	0.27	2
1,2-Dichloropropane	ND		ug/l	2.0	0.27	2
Dibromochloromethane	ND		ug/l	1.0	0.30	2
1,1,2-Trichloroethane	ND		ug/l	3.0	1.0	2
Tetrachloroethene	ND		ug/l	1.0	0.36	2
Chlorobenzene	ND		ug/l	5.0	1.4	2
Trichlorofluoromethane	ND		ug/l	5.0	1.4	2
1,2-Dichloroethane	ND		ug/l	1.0	0.26	2
1,1,1-Trichloroethane	ND		ug/l	5.0	1.4	2
Bromodichloromethane	ND		ug/l	1.0	0.38	2
trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2
cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2
Bromoform	ND		ug/l	4.0	1.3	2
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2
Benzene	ND		ug/l	1.0	0.32	2
Toluene	ND		ug/l	5.0	1.4	2
Ethylbenzene	ND		ug/l	5.0	1.4	2
Chloromethane	ND		ug/l	5.0	1.4	2
Bromomethane	ND		ug/l	5.0	1.4	2
Vinyl chloride	0.79	J	ug/l	2.0	0.14	2
Chloroethane	ND		ug/l	5.0	1.4	2
1,1-Dichloroethene	ND		ug/l	1.0	0.34	2
trans-1,2-Dichloroethene	ND		ug/l	5.0	1.4	2
Trichloroethene	160		ug/l	1.0	0.35	2
1,2-Dichlorobenzene	ND		ug/l	5.0	1.4	2

09/14/22 13:20

Not Specified

09/14/22

Date Collected:

Date Received:

Field Prep:

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

SAMPLE RESULTS

Lab ID: L2250253-12 D

Client ID: MW-3SR2

Sample Location: CORTLANDVILLE,NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	5.0	1.4	2
1,4-Dichlorobenzene	ND		ug/l	5.0	1.4	2
Methyl tert butyl ether	ND		ug/l	5.0	1.4	2
p/m-Xylene	ND		ug/l	5.0	1.4	2
o-Xylene	ND		ug/l	5.0	1.4	2
cis-1,2-Dichloroethene	26		ug/l	5.0	1.4	2
Styrene	ND		ug/l	5.0	1.4	2
Dichlorodifluoromethane	ND		ug/l	10	2.0	2
Acetone	ND		ug/l	10	2.9	2
Carbon disulfide	ND		ug/l	10	2.0	2
2-Butanone	ND		ug/l	10	3.9	2
4-Methyl-2-pentanone	ND		ug/l	10	2.0	2
2-Hexanone	ND		ug/l	10	2.0	2
Bromochloromethane	ND		ug/l	5.0	1.4	2
1,2-Dibromoethane	ND		ug/l	4.0	1.3	2
1,2-Dibromo-3-chloropropane	ND		ug/l	5.0	1.4	2
Isopropylbenzene	ND		ug/l	5.0	1.4	2
1,2,3-Trichlorobenzene	ND		ug/l	5.0	1.4	2
1,2,4-Trichlorobenzene	ND		ug/l	5.0	1.4	2
Methyl Acetate	ND		ug/l	4.0	0.47	2
Cyclohexane	ND		ug/l	20	0.54	2
1,4-Dioxane	ND		ug/l	500	120	2
Freon-113	ND		ug/l	5.0	1.4	2
Methyl cyclohexane	ND		ug/l	20	0.79	2

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	108		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	110		70-130	
Dibromofluoromethane	103		70-130	

L2250253

09/14/22 13:40

Not Specified

09/14/22

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

Lab Number:

Date Collected:

Date Received:

Field Prep:

Report Date: 10/07/22

Lab ID: L2250253-13

Client ID: MW-3BR2

Sample Location: CORTLANDVILLE,NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/24/22 22:06

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	tborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	0.15	J	ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	50		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

SAMPLE RESULTS

Lab ID: L2250253-13 Date Collected: 09/14/22 13:40

Client ID: MW-3BR2 Date Received: 09/14/22 Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	7.8		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	108		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	112		70-130	
Dibromofluoromethane	105		70-130	

L2250253

10/07/22

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

Date Collected: 09/14/22 13:05

Lab Number:

Report Date:

Lab ID: L2250253-14

Client ID: SW-001

Sample Location: CORTLANDVILLE,NY

Date Received: 09/14/22 Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/24/22 22:26

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: SOUTH HILL DUMP L2250253

Project Number: Report Date: 34236 10/07/22

SAMPLE RESULTS

Lab ID: Date Collected: 09/14/22 13:05 L2250253-14

Date Received: Client ID: 09/14/22 SW-001 Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	1.5	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	113	70-130	
Dibromofluoromethane	105	70-130	

L2250253

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

Date Collected: 09/14/22 13:10

Report Date: 10/07/22

Lab Number:

Lab ID: L2250253-15 Client ID: SED-001

Sample Location: CORTLANDVILLE,NY

Date Received: 09/14/22 Field Prep: Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 09/27/22 15:56

Analyst: JC 20% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	oorough Lab						
Methylene chloride	ND		ug/kg	18	8.1	1	
1,1-Dichloroethane	ND		ug/kg	3.5	0.51	1	
Chloroform	ND		ug/kg	5.3	0.49	1	
Carbon tetrachloride	ND		ug/kg	3.5	0.81	1	
1,2-Dichloropropane	ND		ug/kg	3.5	0.44	1	
Dibromochloromethane	ND		ug/kg	3.5	0.49	1	
1,1,2-Trichloroethane	ND		ug/kg	3.5	0.94	1	
Tetrachloroethene	ND		ug/kg	1.8	0.69	1	
Chlorobenzene	ND		ug/kg	1.8	0.45	1	
Trichlorofluoromethane	ND		ug/kg	14	2.4	1	
1,2-Dichloroethane	ND		ug/kg	3.5	0.91	1	
1,1,1-Trichloroethane	ND		ug/kg	1.8	0.59	1	
Bromodichloromethane	ND		ug/kg	1.8	0.38	1	
trans-1,3-Dichloropropene	ND		ug/kg	3.5	0.96	1	
cis-1,3-Dichloropropene	ND		ug/kg	1.8	0.56	1	
Bromoform	ND		ug/kg	14	0.87	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.8	0.59	1	
Benzene	ND		ug/kg	1.8	0.59	1	
Toluene	10		ug/kg	3.5	1.9	1	
Ethylbenzene	ND		ug/kg	3.5	0.50	1	
Chloromethane	ND		ug/kg	14	3.3	1	
Bromomethane	ND		ug/kg	7.1	2.0	1	
Vinyl chloride	ND		ug/kg	3.5	1.2	1	
Chloroethane	ND		ug/kg	7.1	1.6	1	
1,1-Dichloroethene	ND		ug/kg	3.5	0.84	1	
trans-1,2-Dichloroethene	ND		ug/kg	5.3	0.48	1	
Trichloroethene	ND		ug/kg	1.8	0.48	1	
1,2-Dichlorobenzene	ND		ug/kg	7.1	0.51	1	

Project Name: Lab Number: SOUTH HILL DUMP L2250253

Project Number: Report Date: 34236 10/07/22

SAMPLE RESULTS

Lab ID: Date Collected: 09/14/22 13:10 L2250253-15

Date Received: Client ID: 09/14/22 SED-001 Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	7.1	0.52	1
1,4-Dichlorobenzene	ND		ug/kg	7.1	0.60	1
Methyl tert butyl ether	ND		ug/kg	7.1	0.71	1
p/m-Xylene	ND		ug/kg	7.1	2.0	1
o-Xylene	ND		ug/kg	3.5	1.0	1
cis-1,2-Dichloroethene	ND		ug/kg	3.5	0.62	1
Styrene	ND		ug/kg	3.5	0.69	1
Dichlorodifluoromethane	ND		ug/kg	35	3.2	1
Acetone	500		ug/kg	35	17.	1
Carbon disulfide	ND		ug/kg	35	16.	1
2-Butanone	110		ug/kg	35	7.8	1
4-Methyl-2-pentanone	ND		ug/kg	35	4.5	1
2-Hexanone	ND		ug/kg	35	4.2	1
Bromochloromethane	ND		ug/kg	7.1	0.72	1
1,2-Dibromoethane	ND		ug/kg	3.5	0.98	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	10	3.5	1
Isopropylbenzene	ND		ug/kg	3.5	0.38	1
1,2,3-Trichlorobenzene	ND		ug/kg	7.1	1.1	1
1,2,4-Trichlorobenzene	ND		ug/kg	7.1	0.96	1
Methyl Acetate	ND		ug/kg	14	3.4	1
Cyclohexane	ND		ug/kg	35	1.9	1
1,4-Dioxane	ND		ug/kg	280	120	1
Freon-113	ND		ug/kg	14	2.4	1
Methyl cyclohexane	ND		ug/kg	14	2.1	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	112	70-130	

Project Name: SOUTH HILL DUMP

Project Number: 34236

SAMPLE RESULTS

L2250253

Lab Number:

Report Date: 10/07/22

Lab ID: L2250253-17 Date Collected: 09/14/22 00:00

Client ID: Date Received: 09/14/22 TRIP BLANK Field Prep: Sample Location: Not Specified CORTLANDVILLE,NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/24/22 22:47

Analyst: MKS

		Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

SAMPLE RESULTS

Lab ID: L2250253-17 Date Collected: 09/14/22 00:00

Client ID: TRIP BLANK Date Received: 09/14/22 Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	1.5	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	109	70-130	
Dibromofluoromethane	107	70-130	

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/24/22 15:53

Analyst: TMS

arameter	Result	Qualifier (Jnits	RL	MDL	
olatile Organics by GC/MS - W	estborough Lab	o for sample(s):	04-08,11-14,17	Batch:	WG1692509-5
Methylene chloride	ND		ug/l	2.5	0.70)
1,1-Dichloroethane	ND		ug/l	2.5	0.70)
Chloroform	ND		ug/l	2.5	0.70)
Carbon tetrachloride	ND		ug/l	0.50	0.13	3
1,2-Dichloropropane	ND		ug/l	1.0	0.14	ļ
Dibromochloromethane	ND		ug/l	0.50	0.15	5
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50)
Tetrachloroethene	ND		ug/l	0.50	0.18	3
Chlorobenzene	ND		ug/l	2.5	0.70)
Trichlorofluoromethane	ND		ug/l	2.5	0.70)
1,2-Dichloroethane	ND		ug/l	0.50	0.13	3
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70)
Bromodichloromethane	ND		ug/l	0.50	0.19)
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	3
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	5
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	7
Benzene	ND		ug/l	0.50	0.16	3
Toluene	ND		ug/l	2.5	0.70)
Ethylbenzene	ND		ug/l	2.5	0.70)
Chloromethane	ND		ug/l	2.5	0.70)
Bromomethane	ND		ug/l	2.5	0.70)
Vinyl chloride	ND		ug/l	1.0	0.07	7
Chloroethane	ND		ug/l	2.5	0.70)
1,1-Dichloroethene	ND		ug/l	0.50	0.17	7
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70)
Trichloroethene	ND		ug/l	0.50	0.18	3
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70)
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70)

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/24/22 15:53

Analyst: TMS

Parameter	Result	Qualifier Units	RL RL	MDL	
Volatile Organics by GC/MS - West	oorough Lab	for sample(s):	04-08,11-14,17	Batch:	WG1692509-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Styrene	ND	ug/l	2.5	0.70	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	
Acetone	ND	ug/l	5.0	1.5	
Carbon disulfide	ND	ug/l	5.0	1.0	
2-Butanone	ND	ug/l	5.0	1.9	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	
2-Hexanone	ND	ug/l	5.0	1.0	
Bromochloromethane	ND	ug/l	2.5	0.70	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
Methyl Acetate	ND	ug/l	2.0	0.23	
Cyclohexane	ND	ug/l	10	0.27	
1,4-Dioxane	ND	ug/l	250	61.	
Freon-113	ND	ug/l	2.5	0.70	
Methyl cyclohexane	ND	ug/l	10	0.40	

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/24/22 15:53

Analyst: TMS

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 04-08,11-14,17 Batch: WG1692509-5

		-	Acceptance	
Surrogate	%Recovery	111 70-130 98 70-130 112 70-130		
1,2-Dichloroethane-d4	111		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	112		70-130	
Dibromofluoromethane	107		70-130	

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/27/22 08:59

Analyst: AJK

arameter	Result	Qualifier U	nits	RL		MDL
olatile Organics by EPA 5035 Low	- Westbord	ough Lab for s	ample(s):	15	Batch:	WG1692571-5
Methylene chloride	ND	ι	ıg/kg	5.0		2.3
1,1-Dichloroethane	ND	ι	ıg/kg	1.0		0.14
Chloroform	ND	ι	ıg/kg	1.5		0.14
Carbon tetrachloride	ND	ι	ıg/kg	1.0		0.23
1,2-Dichloropropane	ND	ι	ıg/kg	1.0		0.12
Dibromochloromethane	ND	ι	ıg/kg	1.0		0.14
1,1,2-Trichloroethane	ND	ι	ıg/kg	1.0		0.27
Tetrachloroethene	ND	ι	ıg/kg	0.50		0.20
Chlorobenzene	ND	ι	ıg/kg	0.50		0.13
Trichlorofluoromethane	ND	U	ıg/kg	4.0		0.70
1,2-Dichloroethane	ND	U	ıg/kg	1.0		0.26
1,1,1-Trichloroethane	ND	U	ıg/kg	0.50		0.17
Bromodichloromethane	ND	U	ıg/kg	0.50		0.11
trans-1,3-Dichloropropene	ND	ι	ıg/kg	1.0		0.27
cis-1,3-Dichloropropene	ND	ι	ıg/kg	0.50		0.16
Bromoform	ND	ι	ıg/kg	4.0		0.25
1,1,2,2-Tetrachloroethane	ND	ι	ıg/kg	0.50		0.17
Benzene	ND	ι	ıg/kg	0.50		0.17
Toluene	ND	l	ıg/kg	1.0		0.54
Ethylbenzene	ND	ι	ıg/kg	1.0		0.14
Chloromethane	ND	ι	ıg/kg	4.0		0.93
Bromomethane	ND	ι	ıg/kg	2.0		0.58
Vinyl chloride	ND	ι	ıg/kg	1.0		0.34
Chloroethane	ND	ι	ıg/kg	2.0		0.45
1,1-Dichloroethene	ND	U	ıg/kg	1.0		0.24
trans-1,2-Dichloroethene	ND	U	ıg/kg	1.5		0.14
Trichloroethene	ND	ι	ıg/kg	0.50		0.14
1,2-Dichlorobenzene	ND	U	ıg/kg	2.0		0.14
1,3-Dichlorobenzene	ND	U	ıg/kg	2.0		0.15

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/27/22 08:59

Analyst: AJK

colatile Organics by EPA 5035 Low - Westborough Lab for sample(s): 15 Batch: WG1692571-5 1,4-Dichlorobenzene ND ug/kg 2.0 0.17 Methyl tert butyl ether ND ug/kg 2.0 0.20 p/m-Xylene ND ug/kg 1.0 0.29 c-Xylene ND ug/kg 1.0 0.29 cis-1,2-Dichloroethene ND ug/kg 1.0 0.20 Styrene ND ug/kg 1.0 0.20 Dichlorodifluoromethane ND ug/kg 10 0.92 Acetone ND ug/kg 10 4.8 Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 Bromochloromethane ND ug/kg 2.0 0.20 1,2-Dibromo-3-chloropropane ND ug/kg	Parameter	Result	Qualifier	Units	RL		MDL
Methyl tert butyl ether ND ug/kg 2.0 0.20 p/m-Xylene ND ug/kg 2.0 0.56 o-Xylene ND ug/kg 1.0 0.29 cis-1,2-Dichloroethene ND ug/kg 1.0 0.18 Styrene ND ug/kg 1.0 0.20 Dichlorodifluoromethane ND ug/kg 10 0.92 Acetone ND ug/kg 10 4.8 Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 Bromochloromethane ND ug/kg 2.0 0.20 1,2-Dibromo-3-chloropropane ND ug/kg 1.0 0.11 Isopropylbenzene ND ug/kg 2.0 0.32 <	olatile Organics by EPA 5035 Low	- Westboro	ugh Lab fo	r sample(s):	15	Batch:	WG1692571-5
p/m-Xylene ND ug/kg 2.0 0.56 o-Xylene ND ug/kg 1.0 0.29 cis-1,2-Dichloroethene ND ug/kg 1.0 0.18 Styrene ND ug/kg 1.0 0.20 Dichlorodifluoromethane ND ug/kg 10 0.92 Acetone ND ug/kg 10 4.8 Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 2.2 4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 Bromochloromethane ND ug/kg 2.0 0.20 1,2-Dibromoethane ND ug/kg 3.0 1.0 1sopropylbenzene ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27	1,4-Dichlorobenzene	ND		ug/kg	2.0		0.17
o-Xylene ND ug/kg 1.0 0.29 cis-1,2-Dichloroethene ND ug/kg 1.0 0.18 Styrene ND ug/kg 1.0 0.20 Dichlorodifluoromethane ND ug/kg 10 0.92 Acetone ND ug/kg 10 4.8 Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 2.2 4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 Bromochloromethane ND ug/kg 2.0 0.20 1,2-Dibromoethane ND ug/kg 1.0 0.28 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 2.0 0.32 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0	Methyl tert butyl ether	ND		ug/kg	2.0		0.20
cis-1,2-Dichloroethene ND ug/kg 1.0 0.18 Styrene ND ug/kg 1.0 0.20 Dichlorodifluoromethane ND ug/kg 10 0.92 Acetone ND ug/kg 10 4.8 Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 2.2 4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 Bromochloromethane ND ug/kg 2.0 0.20 1,2-Dibromoethane ND ug/kg 1.0 0.28 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 2.0 0.32 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.95 Cyclohexane ND ug/kg 4.0<	p/m-Xylene	ND		ug/kg	2.0		0.56
Styrene ND ug/kg 1.0 0.20 Dichlorodifluoromethane ND ug/kg 10 0.92 Acetone ND ug/kg 10 4.8 Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 2.2 4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 Bromochloromethane ND ug/kg 2.0 0.20 1,2-Dibromoethane ND ug/kg 1.0 0.28 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 4.0	o-Xylene	ND		ug/kg	1.0		0.29
Dichlorodifluoromethane ND ug/kg 10 0.92 Acetone ND ug/kg 10 4.8 Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 2.2 4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 Bromochloromethane ND ug/kg 2.0 0.20 1,2-Dibromoethane ND ug/kg 1.0 0.28 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0	cis-1,2-Dichloroethene	ND		ug/kg	1.0		0.18
Acetone ND ug/kg 10 4.8 Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 2.2 4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 Bromochloromethane ND ug/kg 2.0 0.20 1,2-Dibromoethane ND ug/kg 1.0 0.28 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	Styrene	ND		ug/kg	1.0		0.20
Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 2.2 4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 Bromochloromethane ND ug/kg 2.0 0.20 1,2-Dibromoethane ND ug/kg 1.0 0.28 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 1,4-Dioxane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	Dichlorodifluoromethane	ND		ug/kg	10		0.92
2-Butanone ND ug/kg 10 2.2 4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 Bromochloromethane ND ug/kg 2.0 0.20 1,2-Dibromoethane ND ug/kg 1.0 0.28 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.57 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 1,4-Dioxane ND ug/kg 80 35. Freon-113	Acetone	ND		ug/kg	10		4.8
4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 Bromochloromethane ND ug/kg 2.0 0.20 1,2-Dibromoethane ND ug/kg 1.0 0.28 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 1,4-Dioxane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	Carbon disulfide	ND		ug/kg	10		4.6
2-Hexanone ND ug/kg 10 1.2 Bromochloromethane ND ug/kg 2.0 0.20 1,2-Dibromoethane ND ug/kg 1.0 0.28 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 1,4-Dioxane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	2-Butanone	ND		ug/kg	10		2.2
Bromochloromethane ND ug/kg 2.0 0.20 1,2-Dibromoethane ND ug/kg 1.0 0.28 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 1,4-Dioxane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	4-Methyl-2-pentanone	ND		ug/kg	10		1.3
1,2-Dibromoethane ND ug/kg 1.0 0.28 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 1,4-Dioxane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	2-Hexanone	ND		ug/kg	10		1.2
1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 1,4-Dioxane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	Bromochloromethane	ND		ug/kg	2.0		0.20
Isopropylbenzene ND ug/kg 1.0 0.11 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 1,4-Dioxane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	1,2-Dibromoethane	ND		ug/kg	1.0		0.28
1,2,3-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 1,4-Dioxane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0		1.0
1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 1,4-Dioxane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	Isopropylbenzene	ND		ug/kg	1.0		0.11
Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 1,4-Dioxane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	1,2,3-Trichlorobenzene	ND		ug/kg	2.0		0.32
Cyclohexane ND ug/kg 10 0.54 1,4-Dioxane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	1,2,4-Trichlorobenzene	ND		ug/kg	2.0		0.27
1,4-Dioxane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	Methyl Acetate	ND		ug/kg	4.0		0.95
Freon-113 ND ug/kg 4.0 0.69	Cyclohexane	ND		ug/kg	10		0.54
	1,4-Dioxane	ND		ug/kg	80		35.
Methyl cyclohexane ND ug/kg 4.0 0.60	Freon-113	ND		ug/kg	4.0		0.69
	Methyl cyclohexane	ND		ug/kg	4.0		0.60

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/27/22 08:59

Analyst: AJK

Parameter Result Qualifier Units RL MDL

Volatile Organics by EPA 5035 Low - Westborough Lab for sample(s): 15 Batch: WG1692571-5

			Acceptance	
Surrogate	%Recovery	70-130 9 70-130 7 70-130		
1,2-Dichloroethane-d4	117		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	113		70-130	

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/26/22 11:03

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-03 Batch:	WG1692636-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/26/22 11:03

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Wes	tborough Lab	for sample(s): 01-03	Batch:	WG1692636-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/26/22 11:03

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-03 Batch: WG1692636-5

Surrogate		Acceptance
Surrogate	%Recovery Quali	fier Criteria
1,2-Dichloroethane-d4	101	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	95	70-130
Dibromofluoromethane	116	70-130

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2250253

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qua	%Recove al Limits	ery RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	04-08,11-14,17	Batch:	WG1692509-3	WG1692509-4			
Methylene chloride	110		110		70-130	0		20	
1,1-Dichloroethane	110		110		70-130	0		20	
Chloroform	98		100		70-130	2		20	
Carbon tetrachloride	100		100		63-132	0		20	
1,2-Dichloropropane	110		120		70-130	9		20	
Dibromochloromethane	92		97		63-130	5		20	
1,1,2-Trichloroethane	97		100		70-130	3		20	
Tetrachloroethene	110		100		70-130	10		20	
Chlorobenzene	100		100		75-130	0		20	
Trichlorofluoromethane	92		96		62-150	4		20	
1,2-Dichloroethane	98		110		70-130	12		20	
1,1,1-Trichloroethane	100		100		67-130	0		20	
Bromodichloromethane	99		100		67-130	1		20	
trans-1,3-Dichloropropene	100		100		70-130	0		20	
cis-1,3-Dichloropropene	100		100		70-130	0		20	
Bromoform	86		96		54-136	11		20	
1,1,2,2-Tetrachloroethane	91		97		67-130	6		20	
Benzene	110		110		70-130	0		20	
Toluene	100		100		70-130	0		20	
Ethylbenzene	100		110		70-130	10		20	
Chloromethane	130		130		64-130	0		20	
Bromomethane	56		62		39-139	10		20	
Vinyl chloride	120		120		55-140	0		20	

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2250253

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qua	%Recove al Limits	ery RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough I	Lab Associated	sample(s):	04-08,11-14,17	Batch:	WG1692509-3	WG1692509-4			
Chloroethane	94		93		55-138	1		20	
1,1-Dichloroethene	110		100		61-145	10		20	
trans-1,2-Dichloroethene	100		110		70-130	10		20	
Trichloroethene	94		100		70-130	6		20	
1,2-Dichlorobenzene	100		100		70-130	0		20	
1,3-Dichlorobenzene	100		100		70-130	0		20	
1,4-Dichlorobenzene	100		100		70-130	0		20	
Methyl tert butyl ether	95		100		63-130	5		20	
p/m-Xylene	105		105		70-130	0		20	
o-Xylene	100		105		70-130	5		20	
cis-1,2-Dichloroethene	100		100		70-130	0		20	
Styrene	100		105		70-130	5		20	
Dichlorodifluoromethane	120		120		36-147	0		20	
Acetone	120		120		58-148	0		20	
Carbon disulfide	110		110		51-130	0		20	
2-Butanone	86		89		63-138	3		20	
4-Methyl-2-pentanone	81		92		59-130	13		20	
2-Hexanone	92		100		57-130	8		20	
Bromochloromethane	99		100		70-130	1		20	
1,2-Dibromoethane	94		100		70-130	6		20	
1,2-Dibromo-3-chloropropane	81		84		41-144	4		20	
Isopropylbenzene	110		110		70-130	0		20	
1,2,3-Trichlorobenzene	96		98		70-130	2		20	

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2250253

Parameter	LCS %Recovery Q	LCSD Qual %Recovery	Qual	%Recovery Limits	, RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	n Lab Associated sam	ple(s): 04-08,11-14,17	Batch: Wo	G1692509-3 V	VG1692509-4			
1,2,4-Trichlorobenzene	100	100		70-130	0		20	
Methyl Acetate	87	110		70-130	23	Q	20	
Cyclohexane	120	120		70-130	0		20	
1,4-Dioxane	72	88		56-162	20		20	
Freon-113	110	110		70-130	0		20	
Methyl cyclohexane	98	100		70-130	2		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	98	99	70-130
Toluene-d8	101	104	70-130
4-Bromofluorobenzene	113	109	70-130
Dibromofluoromethane	99	104	70-130

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2250253

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 Low - Westb	orough Lab Ass	ociated sample(s): 15 Bato	h: WG1692571-3 WG16925	71-4	
Methylene chloride	104	98	70-130	6	30
1,1-Dichloroethane	97	92	70-130	5	30
Chloroform	101	94	70-130	7	30
Carbon tetrachloride	99	97	70-130	2	30
1,2-Dichloropropane	104	103	70-130	1	30
Dibromochloromethane	101	101	70-130	0	30
1,1,2-Trichloroethane	96	98	70-130	2	30
Tetrachloroethene	102	101	70-130	1	30
Chlorobenzene	105	101	70-130	4	30
Trichlorofluoromethane	98	96	70-139	2	30
1,2-Dichloroethane	103	102	70-130	1	30
1,1,1-Trichloroethane	103	100	70-130	3	30
Bromodichloromethane	109	108	70-130	1	30
trans-1,3-Dichloropropene	98	99	70-130	1	30
cis-1,3-Dichloropropene	97	97	70-130	0	30
Bromoform	87	90	70-130	3	30
1,1,2,2-Tetrachloroethane	104	108	70-130	4	30
Benzene	101	99	70-130	2	30
Toluene	100	98	70-130	2	30
Ethylbenzene	102	98	70-130	4	30
Chloromethane	79	76	52-130	4	30
Bromomethane	92	86	57-147	7	30
Vinyl chloride	89	86	67-130	3	30

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2250253

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 Low - Wo	estborough Lab Asso	ociated sample(s): 15 Batcl	n: WG1692571-3 WG16925	71-4	
Chloroethane	104	101	50-151	3	30
1,1-Dichloroethene	93	87	65-135	7	30
trans-1,2-Dichloroethene	98	93	70-130	5	30
Trichloroethene	89	88	70-130	1	30
1,2-Dichlorobenzene	108	104	70-130	4	30
1,3-Dichlorobenzene	107	102	70-130	5	30
1,4-Dichlorobenzene	107	103	70-130	4	30
Methyl tert butyl ether	105	110	66-130	5	30
p/m-Xylene	103	100	70-130	3	30
o-Xylene	103	99	70-130	4	30
cis-1,2-Dichloroethene	99	95	70-130	4	30
Styrene	103	99	70-130	4	30
Dichlorodifluoromethane	72	68	30-146	6	30
Acetone	78	81	54-140	4	30
Carbon disulfide	89	84	59-130	6	30
2-Butanone	84	90	70-130	7	30
4-Methyl-2-pentanone	97	104	70-130	7	30
2-Hexanone	87	93	70-130	7	30
Bromochloromethane	104	97	70-130	7	30
1,2-Dibromoethane	96	98	70-130	2	30
1,2-Dibromo-3-chloropropane	88	88	68-130	0	30
Isopropylbenzene	106	101	70-130	5	30
1,2,3-Trichlorobenzene	107	102	70-130	5	30

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2250253

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Organics by EPA 5035 Low - We	estborough Lab Associ	ated sample	e(s): 15 Batch	: WG1692571-3 WG16925	71-4		
1,2,4-Trichlorobenzene	108		103	70-130	5	30	
Methyl Acetate	90		90	51-146	0	30	
Cyclohexane	95		92	59-142	3	30	
1,4-Dioxane	94		97	65-136	3	30	
Freon-113	96		92	50-139	4	30	
Methyl cyclohexane	95		93	70-130	2	30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	103	102	70-130
Toluene-d8	100	100	70-130
4-Bromofluorobenzene	102	100	70-130
Dibromofluoromethane	102	99	70-130

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2250253

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-03 Batch:	WG1692636-3	WG1692636-4			
Methylene chloride	110		120		70-130	9	20	
1,1-Dichloroethane	120		130		70-130	8	20	
Chloroform	110		120		70-130	9	20	
Carbon tetrachloride	110		110		63-132	0	20	
1,2-Dichloropropane	120		120		70-130	0	20	
Dibromochloromethane	99		100		63-130	1	20	
1,1,2-Trichloroethane	100		100		70-130	0	20	
Tetrachloroethene	96		96		70-130	0	20	
Chlorobenzene	110		110		75-130	0	20	
Trichlorofluoromethane	110		120		62-150	9	20	
1,2-Dichloroethane	100		110		70-130	10	20	
1,1,1-Trichloroethane	110		110		67-130	0	20	
Bromodichloromethane	100		110		67-130	10	20	
trans-1,3-Dichloropropene	100		99		70-130	1	20	
cis-1,3-Dichloropropene	100		100		70-130	0	20	
Bromoform	91		90		54-136	1	20	
1,1,2,2-Tetrachloroethane	110		110		67-130	0	20	
Benzene	110		120		70-130	9	20	
Toluene	110		110		70-130	0	20	
Ethylbenzene	110		110		70-130	0	20	
Chloromethane	120		120		64-130	0	20	
Bromomethane	50		53		39-139	6	20	
Vinyl chloride	140		150	Q	55-140	7	20	

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2250253

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03 Batch:	WG1692636-3	WG1692636-4		
Chloroethane	160	Q	170	Q	55-138	6	20
1,1-Dichloroethene	120		130		61-145	8	20
trans-1,2-Dichloroethene	120		120		70-130	0	20
Trichloroethene	110		110		70-130	0	20
1,2-Dichlorobenzene	100		110		70-130	10	20
1,3-Dichlorobenzene	100		110		70-130	10	20
1,4-Dichlorobenzene	110		110		70-130	0	20
Methyl tert butyl ether	85		89		63-130	5	20
p/m-Xylene	105		110		70-130	5	20
o-Xylene	100		110		70-130	10	20
cis-1,2-Dichloroethene	110		120		70-130	9	20
Styrene	100		105		70-130	5	20
Dichlorodifluoromethane	100		110		36-147	10	20
Acetone	78		82		58-148	5	20
Carbon disulfide	130		140	Q	51-130	7	20
2-Butanone	93		96		63-138	3	20
4-Methyl-2-pentanone	77		77		59-130	0	20
2-Hexanone	70		77		57-130	10	20
Bromochloromethane	110		120		70-130	9	20
1,2-Dibromoethane	100		97		70-130	3	20
1,2-Dibromo-3-chloropropane	86		91		41-144	6	20
Isopropylbenzene	100		110		70-130	10	20
1,2,3-Trichlorobenzene	89		96		70-130	8	20

Project Name: SOUTH HILL DUMP

Project Number: 34236 Lab Number:

L2250253

Parameter	LCS %Recovery	Qual	LCSD %Recov		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 Bato	h: WG1692636-3	3 WG1692636-4				
1,2,4-Trichlorobenzene	91		96		70-130	5		20	
Methyl Acetate	120		110		70-130	9		20	
Cyclohexane	120		130		70-130	8		20	
1,4-Dioxane	84		96		56-162	13		20	
Freon-113	120		120		70-130	0		20	
Methyl cyclohexane	99		100		70-130	1		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	97	99	70-130
Toluene-d8	100	100	70-130
4-Bromofluorobenzene	97	95	70-130
Dibromofluoromethane	100	105	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number:

L2250253

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recover	ry	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-2B	Westborough	Lab Ass	ociated sample(s): 01-03 (QC I	Batch ID:	WG16926	336-6 WG1692	2636-7	QC Sample	: L2250	0253-02	Client ID:
Methylene chloride	ND	10	13	130			12	120		70-130	8		20
1,1-Dichloroethane	ND	10	14	140		Q	13	130		70-130	7		20
Chloroform	ND	10	12	120			12	120		70-130	0		20
Carbon tetrachloride	ND	10	12	120			12	120		63-132	0		20
1,2-Dichloropropane	ND	10	11	110			11	110		70-130	0		20
Dibromochloromethane	ND	10	9.3	93			9.7	97		63-130	4		20
1,1,2-Trichloroethane	ND	10	9.2	92			9.4	94		70-130	2		20
Tetrachloroethene	ND	10	9.6	96			9.9	99		70-130	3		20
Chlorobenzene	ND	10	11	110			11	110		75-130	0		20
Trichlorofluoromethane	ND	10	13	130			13	130		62-150	0		20
1,2-Dichloroethane	ND	10	11	110			11	110		70-130	0		20
1,1,1-Trichloroethane	ND	10	12	120			12	120		67-130	0		20
Bromodichloromethane	ND	10	11	110			11	110		67-130	0		20
trans-1,3-Dichloropropene	ND	10	8.4	84			8.7	87		70-130	4		20
cis-1,3-Dichloropropene	ND	10	9.5	95			9.4	94		70-130	1		20
Bromoform	ND	10	8.7	87			8.7	87		54-136	0		20
1,1,2,2-Tetrachloroethane	ND	10	10	100			10	100		67-130	0		20
Benzene	ND	10	12	120			12	120		70-130	0		20
Toluene	ND	10	10	100			11	110		70-130	10		20
Ethylbenzene	ND	10	11	110			11	110		70-130	0		20
Chloromethane	ND	10	12	120			12	120		64-130	0		20
Bromomethane	ND	10	2.6	26		Q	3.0	30	Q	39-139	14		20
Vinyl chloride	ND	10	15	150		Q	15	150	Q	55-140	0		20

Matrix Spike Analysis Batch Quality Control

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number:

L2250253

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	v Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-2B	- Westborough	Lab Asso	ciated sample	(s): 01-03 Q	C Batch ID	: WG16926	636-6 WG1692	2636-7	QC Sample	e: L2250	253-02	Client ID:
Chloroethane	ND	10	17	170	Q	16	160	Q	55-138	6		20
1,1-Dichloroethene	ND	10	14	140		14	140		61-145	0		20
trans-1,2-Dichloroethene	ND	10	13	130		13	130		70-130	0		20
Trichloroethene	ND	10	11	110		11	110		70-130	0		20
1,2-Dichlorobenzene	ND	10	10	100		10	100		70-130	0		20
1,3-Dichlorobenzene	ND	10	10	100		10	100		70-130	0		20
1,4-Dichlorobenzene	ND	10	10	100		10	100		70-130	0		20
Methyl tert butyl ether	ND	10	8.7	87		9.0	90		63-130	3		20
o/m-Xylene	ND	20	21	105		22	110		70-130	5		20
o-Xylene	ND	20	20	100		21	105		70-130	5		20
cis-1,2-Dichloroethene	ND	10	13	130		12	120		70-130	8		20
Styrene	ND	20	19	95		20	100		70-130	5		20
Dichlorodifluoromethane	ND	10	12	120		11	110		36-147	9		20
Acetone	ND	10	8.3	83		8.4	84		58-148	1		20
Carbon disulfide	ND	10	14	140	Q	14	140	Q	51-130	0		20
2-Butanone	ND	10	8.2	82		9.8	98		63-138	18		20
4-Methyl-2-pentanone	ND	10	6.6	66		7.4	74		59-130	11		20
2-Hexanone	ND	10	6.1	61		6.3	63		57-130	3		20
Bromochloromethane	ND	10	13	130		12	120		70-130	8		20
1,2-Dibromoethane	ND	10	9.1	91		9.5	95		70-130	4		20
1,2-Dibromo-3-chloropropane	ND	10	8.5	85		8.7	87		41-144	2		20
Isopropylbenzene	ND	10	10	100		11	110		70-130	10		20
1,2,3-Trichlorobenzene	ND	10	9.0	90		9.3	93		70-130	3		20

Matrix Spike Analysis Batch Quality Control

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number:

L2250253

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-2B	- Westborough	Lab Assoc	iated sample((s): 01-03 Q(C Batch ID:	WG16926	336-6 WG1692	2636-7	QC Sample	e: L2250)253-02	Client ID:
1,2,4-Trichlorobenzene	ND	10	9.3	93		9.6	96		70-130	3		20
Methyl Acetate	ND	10	9.8	98		10	100		70-130	2		20
Cyclohexane	ND	10	12	120		12	120		70-130	0		20
1,4-Dioxane	ND	500	450	90		500	100		56-162	11		20
Freon-113	ND	10	12	120		13	130		70-130	8		20
Methyl cyclohexane	ND	10	9.7J	97		10	100		70-130	3		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	100	98	70-130
4-Bromofluorobenzene	95	95	70-130
Dibromofluoromethane	111	107	70-130
Toluene-d8	96	96	70-130

PCBS

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

SAMPLE RESULTS

Lab ID: L2250253-14 Date Collected: 09/14/22 13:05

Client ID: SW-001 Date Received: 09/14/22

Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8082A Extraction Date: 10/01/22 20:15

Analytical Date: 10/02/22 18:10 Cleanup Method: EPA 3665A Analyst: SDC Cleanup Date: 10/02/22

Cleanup Method: EPA 3660B Cleanup Date: 10/02/22

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - We	stborough Lab						
Aroclor 1016	ND		ug/l	0.071	0.061	1	Α
Aroclor 1221	ND		ug/l	0.071	0.061	1	Α
Aroclor 1232	ND		ug/l	0.071	0.061	1	Α
Aroclor 1242	ND		ug/l	0.071	0.061	1	Α
Aroclor 1248	ND		ug/l	0.071	0.061	1	А
Aroclor 1254	ND		ug/l	0.071	0.061	1	Α
Aroclor 1260	ND		ug/l	0.071	0.061	1	А
Aroclor 1262	ND		ug/l	0.071	0.061	1	Α
Aroclor 1268	ND		ug/l	0.071	0.061	1	А
PCBs, Total	ND		ug/l	0.071	0.061	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	100		30-150	Α
Decachlorobiphenyl	101		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	98		30-150	В
Decachlorobiphenyl	102		30-150	В

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

SAMPLE RESULTS

Lab ID: L2250253-15 Date Collected: 09/14/22 13:10

Client ID: SED-001 Date Received: 09/14/22

Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 10/02/22 10:28
Analytical Date: 10/03/22 22:13 Cleanup Method: EPA 3665A

Analytical Date: 10/03/22 22:13 Cleanup Method: EPA 3665A
Analyst: MEO Cleanup Date: 10/03/22
Percent Solids: 20% Cleanup Method: EPA 3660B

Cleanup Date: 10/03/22

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC -	Westborough Lab						
Aroclor 1016	ND		ug/kg	156	13.8	1	Α
Aroclor 1221	ND		ug/kg	156	15.6	1	Α
Aroclor 1232	ND		ug/kg	156	33.0	1	Α
Aroclor 1242	ND		ug/kg	156	21.0	1	Α
Aroclor 1248	ND		ug/kg	156	23.4	1	Α
Aroclor 1254	ND		ug/kg	156	17.0	1	Α
Aroclor 1260	ND		ug/kg	156	28.8	1	Α
Aroclor 1262	ND		ug/kg	156	19.8	1	Α
Aroclor 1268	ND		ug/kg	156	16.1	1	Α
PCBs, Total	ND		ug/kg	156	13.8	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	62		30-150	Α
Decachlorobiphenyl	50		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	65		30-150	В
Decachlorobiphenyl	50		30-150	В

L2250253

Lab Number:

Project Name: SOUTH HILL DUMP

Project Number: 34236 Report Date: 10/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 10/02/22 17:34

Analyst: SDC

Extraction Method: EPA 3510C
Extraction Date: 10/01/22 19:31
Cleanup Method: EPA 3665A
Cleanup Date: 10/02/22
Cleanup Method: EPA 3660B
Cleanup Date: 10/02/22

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC -	Westborough	n Lab for s	ample(s):	14 Batch:	WG169442	9-1
Aroclor 1016	ND		ug/l	0.071	0.061	Α
Aroclor 1221	ND		ug/l	0.071	0.061	Α
Aroclor 1232	ND		ug/l	0.071	0.061	Α
Aroclor 1242	ND		ug/l	0.071	0.061	Α
Aroclor 1248	ND		ug/l	0.071	0.061	Α
Aroclor 1254	ND		ug/l	0.071	0.061	Α
Aroclor 1260	ND		ug/l	0.071	0.061	Α
Aroclor 1262	ND		ug/l	0.071	0.061	Α
Aroclor 1268	ND		ug/l	0.071	0.061	Α
PCBs, Total	ND		ug/l	0.071	0.061	Α

		Acceptance				
Surrogate	%Recovery Qualifie	r Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	88	30-150	Α			
Decachlorobiphenyl	90	30-150	Α			
2,4,5,6-Tetrachloro-m-xylene	88	30-150	В			
Decachlorobiphenyl	98	30-150	В			

L2250253

Lab Number:

Project Name: SOUTH HILL DUMP

Report Date: Project Number: 34236 10/07/22

Method Blank Analysis

Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 10/03/22 08:00

Analyst: MEO

Extraction Method: EPA 3546 10/02/22 10:28 **Extraction Date:** Cleanup Method: EPA 3665A Cleanup Date: 10/02/22 Cleanup Method: EPA 3660B Cleanup Date: 10/03/22

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC -	Westborougl	h Lab for s	ample(s):	15 Batch:	WG169453	7-1
Aroclor 1016	ND		ug/kg	31.8	2.83	А
Aroclor 1221	ND		ug/kg	31.8	3.19	Α
Aroclor 1232	ND		ug/kg	31.8	6.75	Α
Aroclor 1242	ND		ug/kg	31.8	4.29	Α
Aroclor 1248	ND		ug/kg	31.8	4.77	А
Aroclor 1254	ND		ug/kg	31.8	3.48	А
Aroclor 1260	ND		ug/kg	31.8	5.88	А
Aroclor 1262	ND		ug/kg	31.8	4.04	Α
Aroclor 1268	ND		ug/kg	31.8	3.30	Α
PCBs, Total	ND		ug/kg	31.8	2.83	А

		Acceptance				
Surrogate	%Recovery Qualifie	r Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	84	30-150	Α			
Decachlorobiphenyl	73	30-150	Α			
2,4,5,6-Tetrachloro-m-xylene	86	30-150	В			
Decachlorobiphenyl	85	30-150	В			

Project Name: SOUTH HILL DUMP

Project Number: 34236 Lab Number:

L2250253

Report Date:

	LCS		LCSD	%	6Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westbor	ough Lab Associa	ited sample(s):	14 Batch:	WG1694429-2	WG1694429-3				
Aroclor 1016	80		83		40-140	5		50	Α
Aroclor 1260	75		77		40-140	2		50	Α

Surrogate	LCS %Recovery Qual	LCSD al %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	97	93	30-150 A
Decachlorobiphenyl	91	93	30-150 A
2,4,5,6-Tetrachloro-m-xylene	90	89	30-150 B
Decachlorobiphenyl	96	99	30-150 B

Project Name: SOUTH HILL DUMP

Project Number:

34236

Lab Number:

L2250253

Report Date:

10/07/22

	LCS		LC	SD	%	6Recovery			RPD	
Parameter	%Recovery	Qual	%Rec	overy	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westboro	ugh Lab Associ	ated sample(s)	: 15	Batch:	WG1694537-2	WG1694537-3	3			
Aroclor 1016	83		:	85		40-140	2		50	Α
Aroclor 1260	76			79		40-140	4		50	Α

Surrogate	LCS %Recovery Qu	LCSD nal %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	80	84	30-150 A
Decachlorobiphenyl	69	72	30-150 A
2,4,5,6-Tetrachloro-m-xylene	81	86	30-150 B
Decachlorobiphenyl	79	84	30-150 B

METALS

09/14/22 09:55

Date Collected:

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

SAMPLE RESULTS

Lab ID: L2250253-01

Client ID: MW-1B Date Received: 09/14/22

Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Aluminum, Total	33.7		mg/l	0.100	0.032	1	09/16/22 06:39	10/06/22 13:38	EPA 3005A	1,6010D	MC
Antimony, Total	ND		mg/l	0.050	0.007	1	09/16/22 06:39	10/06/22 13:38	EPA 3005A	1,6010D	MC
Arsenic, Total	0.006		mg/l	0.005	0.002	1	09/16/22 06:39	10/06/22 13:38	EPA 3005A	1,6010D	MC
Barium, Total	0.431		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 13:38	EPA 3005A	1,6010D	MC
Beryllium, Total	0.001	J	mg/l	0.005	0.001	1	09/16/22 06:39	10/06/22 13:38	EPA 3005A	1,6010D	МС
Cadmium, Total	0.001	J	mg/l	0.005	0.001	1	09/16/22 06:39	10/06/22 13:38	EPA 3005A	1,6010D	МС
Calcium, Total	43.7		mg/l	0.100	0.035	1	09/16/22 06:39	10/06/22 13:38	EPA 3005A	1,6010D	МС
Chromium, Total	0.046		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 13:38	EPA 3005A	1,6010D	МС
Cobalt, Total	0.029		mg/l	0.020	0.002	1	09/16/22 06:39	10/06/22 13:38	EPA 3005A	1,6010D	МС
Copper, Total	0.052		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 13:38	EPA 3005A	1,6010D	МС
Iron, Total	55.0		mg/l	0.050	0.009	1	09/16/22 06:39	10/06/22 18:30	EPA 3005A	1,6010D	MC
Lead, Total	0.041		mg/l	0.010	0.003	1	09/16/22 06:39	10/06/22 13:38	EPA 3005A	1,6010D	МС
Magnesium, Total	20.0		mg/l	0.100	0.015	1	09/16/22 06:39	10/06/22 13:38	EPA 3005A	1,6010D	МС
Manganese, Total	4.87		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 18:30	EPA 3005A	1,6010D	MC
Mercury, Total	ND		mg/l	0.00020	0.00009	1	09/16/22 07:13	09/16/22 18:41	EPA 7470A	1,7470A	DMB
Nickel, Total	0.074		mg/l	0.025	0.002	1	09/16/22 06:39	10/06/22 13:38	EPA 3005A	1,6010D	МС
Potassium, Total	4.14		mg/l	2.50	0.237	1	09/16/22 06:39	10/06/22 13:38	EPA 3005A	1,6010D	МС
Selenium, Total	ND		mg/l	0.010	0.004	1	09/16/22 06:39	10/06/22 13:38	EPA 3005A	1,6010D	МС
Silver, Total	ND		mg/l	0.007	0.003	1	09/16/22 06:39	10/06/22 13:38	EPA 3005A	1,6010D	МС
Sodium, Total	18.0		mg/l	2.00	0.120	1	09/16/22 06:39	10/06/22 18:30	EPA 3005A	1,6010D	МС
Thallium, Total	0.004	J	mg/l	0.020	0.003	1	09/16/22 06:39	10/06/22 13:38	EPA 3005A	1,6010D	МС
Vanadium, Total	0.038		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 13:38	EPA 3005A	1,6010D	МС
Zinc, Total	0.145		mg/l	0.050	0.002	1	09/16/22 06:39	10/06/22 13:38	EPA 3005A	1,6010D	МС

09/14/22 10:30

Date Collected:

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

SAMPLE RESULTS

Lab ID: L2250253-02

Client ID: MW-2B Date Received: 09/14/22

Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	ND		mg/l	0.100	0.032	1	09/16/22 06:39	10/03/22 11:21	EPA 3005A	1,6010D	EW
Antimony, Total	ND		mg/l	0.050	0.007	1	09/16/22 06:39	10/03/22 11:21	EPA 3005A	1,6010D	EW
Arsenic, Total	ND		mg/l	0.005	0.002	1	09/16/22 06:39	10/03/22 11:21	EPA 3005A	1,6010D	EW
Barium, Total	0.151		mg/l	0.010	0.002	1	09/16/22 06:39	10/03/22 11:21	EPA 3005A	1,6010D	EW
Beryllium, Total	ND		mg/l	0.005	0.001	1	09/16/22 06:39	10/03/22 11:21	EPA 3005A	1,6010D	EW
Cadmium, Total	ND		mg/l	0.005	0.001	1	09/16/22 06:39	10/03/22 11:21	EPA 3005A	1,6010D	EW
Calcium, Total	39.3		mg/l	0.100	0.035	1	09/16/22 06:39	10/03/22 11:21	EPA 3005A	1,6010D	EW
Chromium, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/03/22 11:21	EPA 3005A	1,6010D	EW
Cobalt, Total	ND		mg/l	0.020	0.002	1	09/16/22 06:39	10/03/22 11:21	EPA 3005A	1,6010D	EW
Copper, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/03/22 11:21	EPA 3005A	1,6010D	EW
Iron, Total	16.3		mg/l	0.050	0.009	1	09/16/22 06:39	10/03/22 11:21	EPA 3005A	1,6010D	EW
Lead, Total	ND		mg/l	0.010	0.003	1	09/16/22 06:39	10/03/22 11:21	EPA 3005A	1,6010D	EW
Magnesium, Total	8.39		mg/l	0.100	0.015	1	09/16/22 06:39	10/03/22 11:21	EPA 3005A	1,6010D	EW
Manganese, Total	0.214		mg/l	0.010	0.002	1	09/16/22 06:39	10/03/22 11:21	EPA 3005A	1,6010D	EW
Mercury, Total	ND		mg/l	0.00020	0.00009	1	09/16/22 07:13	09/16/22 18:04	EPA 7470A	1,7470A	DMB
Nickel, Total	ND		mg/l	0.025	0.002	1	09/16/22 06:39	10/03/22 11:21	EPA 3005A	1,6010D	EW
Potassium, Total	0.933	J	mg/l	2.50	0.237	1	09/16/22 06:39	10/03/22 11:21	EPA 3005A	1,6010D	EW
Selenium, Total	ND		mg/l	0.010	0.004	1	09/16/22 06:39	10/03/22 11:21	EPA 3005A	1,6010D	EW
Silver, Total	ND		mg/l	0.007	0.003	1	09/16/22 06:39	10/03/22 11:21	EPA 3005A	1,6010D	EW
Sodium, Total	5.33		mg/l	2.00	0.120	1	09/16/22 06:39	10/03/22 11:21	EPA 3005A	1,6010D	EW
Thallium, Total	ND		mg/l	0.020	0.003	1	09/16/22 06:39	10/03/22 11:21	EPA 3005A	1,6010D	EW
Vanadium, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/03/22 11:21	EPA 3005A	1,6010D	EW
Zinc, Total	ND		mg/l	0.050	0.002	1	09/16/22 06:39	10/03/22 11:21	EPA 3005A	1,6010D	EW

Project Name: Lab Number: SOUTH HILL DUMP L2250253

Project Number: Report Date: 34236 10/07/22

SAMPLE RESULTS

Lab ID: L2250253-03

Date Collected: 09/14/22 10:50 Client ID: MW-2S Date Received: 09/14/22

Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Aluminum, Total	4.12		mg/l	0.100	0.032	1	09/16/22 06:39	10/06/22 13:44	EPA 3005A	1,6010D	MC
Antimony, Total	ND		mg/l	0.050	0.007	1	09/16/22 06:39	10/06/22 13:44	EPA 3005A	1,6010D	MC
Arsenic, Total	0.003	J	mg/l	0.005	0.002	1	09/16/22 06:39	10/06/22 13:44	EPA 3005A	1,6010D	МС
Barium, Total	0.064		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 13:44	EPA 3005A	1,6010D	МС
Beryllium, Total	ND		mg/l	0.005	0.001	1	09/16/22 06:39	10/06/22 13:44	EPA 3005A	1,6010D	МС
Cadmium, Total	ND		mg/l	0.005	0.001	1	09/16/22 06:39	10/06/22 13:44	EPA 3005A	1,6010D	МС
Calcium, Total	54.6		mg/l	0.100	0.035	1	09/16/22 06:39	10/06/22 13:44	EPA 3005A	1,6010D	МС
Chromium, Total	0.006	J	mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 13:44	EPA 3005A	1,6010D	МС
Cobalt, Total	0.005	J	mg/l	0.020	0.002	1	09/16/22 06:39	10/06/22 13:44	EPA 3005A	1,6010D	МС
Copper, Total	0.009	J	mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 13:44	EPA 3005A	1,6010D	МС
Iron, Total	8.18		mg/l	0.050	0.009	1	09/16/22 06:39	10/06/22 18:35	EPA 3005A	1,6010D	МС
Lead, Total	0.008	J	mg/l	0.010	0.003	1	09/16/22 06:39	10/06/22 13:44	EPA 3005A	1,6010D	МС
Magnesium, Total	10.3		mg/l	0.100	0.015	1	09/16/22 06:39	10/06/22 13:44	EPA 3005A	1,6010D	МС
Manganese, Total	0.838		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 18:35	EPA 3005A	1,6010D	МС
Mercury, Total	ND		mg/l	0.00020	0.00009	1	09/16/22 07:13	09/16/22 18:45	EPA 7470A	1,7470A	DMB
Nickel, Total	0.008	J	mg/l	0.025	0.002	1	09/16/22 06:39	10/06/22 13:44	EPA 3005A	1,6010D	МС
Potassium, Total	3.03		mg/l	2.50	0.237	1	09/16/22 06:39	10/06/22 13:44	EPA 3005A	1,6010D	МС
Selenium, Total	ND		mg/l	0.010	0.004	1	09/16/22 06:39	10/06/22 13:44	EPA 3005A	1,6010D	МС
Silver, Total	ND		mg/l	0.007	0.003	1	09/16/22 06:39	10/06/22 13:44	EPA 3005A	1,6010D	МС
Sodium, Total	28.5		mg/l	2.00	0.120	1	09/16/22 06:39	10/06/22 18:35	EPA 3005A	1,6010D	МС
Thallium, Total	ND		mg/l	0.020	0.003	1	09/16/22 06:39	10/06/22 13:44	EPA 3005A	1,6010D	MC
Vanadium, Total	0.006	J	mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 13:44	EPA 3005A	1,6010D	MC
Zinc, Total	0.078		mg/l	0.050	0.002	1	09/16/22 06:39	10/06/22 13:44	EPA 3005A	1,6010D	MC

09/14/22 10:50

Date Collected:

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

SAMPLE RESULTS

Lab ID: L2250253-04

Client ID: CHA-001 Date Received: 09/14/22

Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	ND		mg/l	0.100	0.032	1	09/16/22 06:39	10/06/22 13:49	EPA 3005A	1,6010D	МС
Antimony, Total	ND		mg/l	0.050	0.007	1	09/16/22 06:39	10/06/22 13:49	EPA 3005A	1,6010D	MC
Arsenic, Total	ND		mg/l	0.005	0.002	1	09/16/22 06:39	10/06/22 13:49	EPA 3005A	1,6010D	MC
Barium, Total	0.054		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 13:49	EPA 3005A	1,6010D	MC
Beryllium, Total	ND		mg/l	0.005	0.001	1	09/16/22 06:39	10/06/22 13:49	EPA 3005A	1,6010D	МС
Cadmium, Total	ND		mg/l	0.005	0.001	1	09/16/22 06:39	10/06/22 13:49	EPA 3005A	1,6010D	МС
Calcium, Total	22.8		mg/l	0.100	0.035	1	09/16/22 06:39	10/06/22 13:49	EPA 3005A	1,6010D	МС
Chromium, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 13:49	EPA 3005A	1,6010D	МС
Cobalt, Total	ND		mg/l	0.020	0.002	1	09/16/22 06:39	10/06/22 13:49	EPA 3005A	1,6010D	МС
Copper, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 13:49	EPA 3005A	1,6010D	МС
Iron, Total	24.6		mg/l	0.050	0.009	1	09/16/22 06:39	10/06/22 18:40	EPA 3005A	1,6010D	МС
Lead, Total	ND		mg/l	0.010	0.003	1	09/16/22 06:39	10/06/22 13:49	EPA 3005A	1,6010D	МС
Magnesium, Total	6.13		mg/l	0.100	0.015	1	09/16/22 06:39	10/06/22 13:49	EPA 3005A	1,6010D	МС
Manganese, Total	0.353		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 18:40	EPA 3005A	1,6010D	МС
Mercury, Total	ND		mg/l	0.00020	0.00009	1	09/16/22 07:13	09/16/22 18:48	EPA 7470A	1,7470A	DMB
Nickel, Total	ND		mg/l	0.025	0.002	1	09/16/22 06:39	10/06/22 13:49	EPA 3005A	1,6010D	МС
Potassium, Total	0.746	J	mg/l	2.50	0.237	1	09/16/22 06:39	10/06/22 13:49	EPA 3005A	1,6010D	МС
Selenium, Total	ND		mg/l	0.010	0.004	1	09/16/22 06:39	10/06/22 13:49	EPA 3005A	1,6010D	МС
Silver, Total	ND		mg/l	0.007	0.003	1	09/16/22 06:39	10/06/22 13:49	EPA 3005A	1,6010D	МС
Sodium, Total	3.31		mg/l	2.00	0.120	1	09/16/22 06:39	10/06/22 18:40	EPA 3005A	1,6010D	МС
Thallium, Total	ND		mg/l	0.020	0.003	1	09/16/22 06:39	10/06/22 13:49	EPA 3005A	1,6010D	МС
Vanadium, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 13:49	EPA 3005A	1,6010D	МС
Zinc, Total	0.005	J	mg/l	0.050	0.002	1	09/16/22 06:39	10/06/22 13:49	EPA 3005A	1,6010D	MC

09/14/22 11:00

Date Collected:

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

SAMPLE RESULTS

Lab ID: L2250253-05

Client ID: MW-2D Date Received: 09/14/22

Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Aluminum, Total	ND		mg/l	0.100	0.032	1	09/16/22 06:39	10/06/22 13:54	EPA 3005A	1,6010D	МС
Antimony, Total	ND		mg/l	0.050	0.007	1	09/16/22 06:39	10/06/22 13:54	EPA 3005A	1,6010D	МС
Arsenic, Total	0.003	J	mg/l	0.005	0.002	1	09/16/22 06:39	10/06/22 13:54	EPA 3005A	1,6010D	МС
Barium, Total	0.030		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 13:54	EPA 3005A	1,6010D	MC
Beryllium, Total	ND		mg/l	0.005	0.001	1	09/16/22 06:39	10/06/22 13:54	EPA 3005A	1,6010D	МС
Cadmium, Total	ND		mg/l	0.005	0.001	1	09/16/22 06:39	10/06/22 13:54	EPA 3005A	1,6010D	МС
Calcium, Total	55.1		mg/l	0.100	0.035	1	09/16/22 06:39	10/06/22 13:54	EPA 3005A	1,6010D	МС
Chromium, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 13:54	EPA 3005A	1,6010D	МС
Cobalt, Total	ND		mg/l	0.020	0.002	1	09/16/22 06:39	10/06/22 13:54	EPA 3005A	1,6010D	МС
Copper, Total	0.002	J	mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 13:54	EPA 3005A	1,6010D	МС
Iron, Total	1.82		mg/l	0.050	0.009	1	09/16/22 06:39	10/06/22 18:45	EPA 3005A	1,6010D	МС
Lead, Total	ND		mg/l	0.010	0.003	1	09/16/22 06:39	10/06/22 13:54	EPA 3005A	1,6010D	МС
Magnesium, Total	16.5		mg/l	0.100	0.015	1	09/16/22 06:39	10/06/22 13:54	EPA 3005A	1,6010D	МС
Manganese, Total	0.518		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 18:45	EPA 3005A	1,6010D	МС
Mercury, Total	ND		mg/l	0.00020	0.00009	1	09/16/22 07:13	09/16/22 19:44	EPA 7470A	1,7470A	DMB
Nickel, Total	ND		mg/l	0.025	0.002	1	09/16/22 06:39	10/06/22 13:54	EPA 3005A	1,6010D	MC
Potassium, Total	1.38	J	mg/l	2.50	0.237	1	09/16/22 06:39	10/06/22 13:54	EPA 3005A	1,6010D	МС
Selenium, Total	ND		mg/l	0.010	0.004	1	09/16/22 06:39	10/06/22 13:54	EPA 3005A	1,6010D	МС
Silver, Total	ND		mg/l	0.007	0.003	1	09/16/22 06:39	10/06/22 13:54	EPA 3005A	1,6010D	МС
Sodium, Total	4.22		mg/l	2.00	0.120	1	09/16/22 06:39	10/06/22 18:45	EPA 3005A	1,6010D	MC
Thallium, Total	ND		mg/l	0.020	0.003	1	09/16/22 06:39	10/06/22 13:54	EPA 3005A	1,6010D	MC
Vanadium, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 13:54	EPA 3005A	1,6010D	MC
Zinc, Total	0.007	J	mg/l	0.050	0.002	1	09/16/22 06:39	10/06/22 13:54	EPA 3005A	1,6010D	МС

09/14/22 11:30

Date Collected:

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

SAMPLE RESULTS

Lab ID: L2250253-06

Client ID: MW-4B Date Received: 09/14/22

Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Aluminum, Total	ND		mg/l	0.100	0.032	1	09/16/22 06:39	10/06/22 13:59	EPA 3005A	1,6010D	МС
Antimony, Total	ND		mg/l	0.050	0.007	1	09/16/22 06:39	10/06/22 13:59	EPA 3005A	1,6010D	МС
Arsenic, Total	ND		mg/l	0.005	0.002	1	09/16/22 06:39	10/06/22 13:59	EPA 3005A	1,6010D	МС
Barium, Total	0.056		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 13:59	EPA 3005A	1,6010D	МС
Beryllium, Total	ND		mg/l	0.005	0.001	1	09/16/22 06:39	10/06/22 13:59	EPA 3005A	1,6010D	МС
Cadmium, Total	ND		mg/l	0.005	0.001	1	09/16/22 06:39	10/06/22 13:59	EPA 3005A	1,6010D	МС
Calcium, Total	22.7		mg/l	0.100	0.035	1	09/16/22 06:39	10/06/22 13:59	EPA 3005A	1,6010D	МС
Chromium, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 13:59	EPA 3005A	1,6010D	МС
Cobalt, Total	ND		mg/l	0.020	0.002	1	09/16/22 06:39	10/06/22 13:59	EPA 3005A	1,6010D	МС
Copper, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 13:59	EPA 3005A	1,6010D	МС
Iron, Total	25.9		mg/l	0.050	0.009	1	09/16/22 06:39	10/06/22 18:50	EPA 3005A	1,6010D	МС
Lead, Total	ND		mg/l	0.010	0.003	1	09/16/22 06:39	10/06/22 13:59	EPA 3005A	1,6010D	МС
Magnesium, Total	6.28		mg/l	0.100	0.015	1	09/16/22 06:39	10/06/22 13:59	EPA 3005A	1,6010D	МС
Manganese, Total	0.352		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 18:50	EPA 3005A	1,6010D	МС
Mercury, Total	ND		mg/l	0.00020	0.00009	1	09/16/22 07:13	09/16/22 19:48	EPA 7470A	1,7470A	DMB
Nickel, Total	ND		mg/l	0.025	0.002	1	09/16/22 06:39	10/06/22 13:59	EPA 3005A	1,6010D	МС
Potassium, Total	0.648	J	mg/l	2.50	0.237	1	09/16/22 06:39	10/06/22 13:59	EPA 3005A	1,6010D	МС
Selenium, Total	ND		mg/l	0.010	0.004	1	09/16/22 06:39	10/06/22 13:59	EPA 3005A	1,6010D	МС
Silver, Total	ND		mg/l	0.007	0.003	1	09/16/22 06:39	10/06/22 13:59	EPA 3005A	1,6010D	МС
Sodium, Total	3.27		mg/l	2.00	0.120	1	09/16/22 06:39	10/06/22 18:50	EPA 3005A	1,6010D	МС
Thallium, Total	ND		mg/l	0.020	0.003	1	09/16/22 06:39	10/06/22 13:59	EPA 3005A	1,6010D	МС
Vanadium, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 13:59	EPA 3005A	1,6010D	МС
Zinc, Total	ND		mg/l	0.050	0.002	1	09/16/22 06:39	10/06/22 13:59	EPA 3005A	1,6010D	MC

09/14/22 11:50

Date Collected:

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

SAMPLE RESULTS

Lab ID: L2250253-07

Client ID: MW-4S Date Received: 09/14/22

Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Aluminum, Total	ND		mg/l	0.100	0.032	1	09/16/22 06:39	10/06/22 14:04	EPA 3005A	1,6010D	МС
Antimony, Total	ND		mg/l	0.050	0.007	1	09/16/22 06:39	10/06/22 14:04	EPA 3005A	1,6010D	МС
Arsenic, Total	ND		mg/l	0.005	0.002	1	09/16/22 06:39	10/06/22 14:04	EPA 3005A	1,6010D	МС
Barium, Total	0.050		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 14:04	EPA 3005A	1,6010D	МС
Beryllium, Total	ND		mg/l	0.005	0.001	1	09/16/22 06:39	10/06/22 14:04	EPA 3005A	1,6010D	МС
Cadmium, Total	ND		mg/l	0.005	0.001	1	09/16/22 06:39	10/06/22 14:04	EPA 3005A	1,6010D	MC
Calcium, Total	86.0		mg/l	0.100	0.035	1	09/16/22 06:39	10/06/22 14:04	EPA 3005A	1,6010D	МС
Chromium, Total	0.002	J	mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 14:04	EPA 3005A	1,6010D	МС
Cobalt, Total	ND		mg/l	0.020	0.002	1	09/16/22 06:39	10/06/22 14:04	EPA 3005A	1,6010D	МС
Copper, Total	0.003	J	mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 14:04	EPA 3005A	1,6010D	МС
Iron, Total	0.048	J	mg/l	0.050	0.009	1	09/16/22 06:39	10/06/22 18:56	EPA 3005A	1,6010D	МС
Lead, Total	ND		mg/l	0.010	0.003	1	09/16/22 06:39	10/06/22 14:04	EPA 3005A	1,6010D	МС
Magnesium, Total	18.2		mg/l	0.100	0.015	1	09/16/22 06:39	10/06/22 14:04	EPA 3005A	1,6010D	MC
Manganese, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 18:56	EPA 3005A	1,6010D	МС
Mercury, Total	ND		mg/l	0.00020	0.00009	1	09/16/22 07:13	09/16/22 19:51	EPA 7470A	1,7470A	DMB
Nickel, Total	0.006	J	mg/l	0.025	0.002	1	09/16/22 06:39	10/06/22 14:04	EPA 3005A	1,6010D	МС
Potassium, Total	1.04	J	mg/l	2.50	0.237	1	09/16/22 06:39	10/06/22 14:04	EPA 3005A	1,6010D	МС
Selenium, Total	ND		mg/l	0.010	0.004	1	09/16/22 06:39	10/06/22 14:04	EPA 3005A	1,6010D	МС
Silver, Total	ND		mg/l	0.007	0.003	1	09/16/22 06:39	10/06/22 14:04	EPA 3005A	1,6010D	МС
Sodium, Total	2.71		mg/l	2.00	0.120	1	09/16/22 06:39	10/06/22 18:56	EPA 3005A	1,6010D	МС
Thallium, Total	ND		mg/l	0.020	0.003	1	09/16/22 06:39	10/06/22 14:04	EPA 3005A	1,6010D	МС
Vanadium, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 14:04	EPA 3005A	1,6010D	MC
Zinc, Total	0.008	J	mg/l	0.050	0.002	1	09/16/22 06:39	10/06/22 14:04	EPA 3005A	1,6010D	MC
•											

09/14/22 12:50

Date Collected:

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

SAMPLE RESULTS

Lab ID: L2250253-08

Client ID: MW-3BR Date Received: 09/14/22

Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Aluminum, Total	ND		mg/l	0.100	0.032	1	09/16/22 06:39	10/06/22 14:09	EPA 3005A	1,6010D	MC
Antimony, Total	ND		mg/l	0.050	0.007	1	09/16/22 06:39	10/06/22 14:09	EPA 3005A	1,6010D	MC
Arsenic, Total	ND		mg/l	0.005	0.002	1	09/16/22 06:39	10/06/22 14:09	EPA 3005A	1,6010D	МС
Barium, Total	0.042		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 14:09	EPA 3005A	1,6010D	MC
Beryllium, Total	ND		mg/l	0.005	0.001	1	09/16/22 06:39	10/06/22 14:09	EPA 3005A	1,6010D	МС
Cadmium, Total	ND		mg/l	0.005	0.001	1	09/16/22 06:39	10/06/22 14:09	EPA 3005A	1,6010D	МС
Calcium, Total	4.19		mg/l	0.100	0.035	1	09/16/22 06:39	10/06/22 14:09	EPA 3005A	1,6010D	МС
Chromium, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 14:09	EPA 3005A	1,6010D	МС
Cobalt, Total	ND		mg/l	0.020	0.002	1	09/16/22 06:39	10/06/22 14:09	EPA 3005A	1,6010D	МС
Copper, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 14:09	EPA 3005A	1,6010D	МС
Iron, Total	50.8		mg/l	0.050	0.009	1	09/16/22 06:39	10/06/22 19:01	EPA 3005A	1,6010D	МС
Lead, Total	ND		mg/l	0.010	0.003	1	09/16/22 06:39	10/06/22 14:09	EPA 3005A	1,6010D	МС
Magnesium, Total	1.14		mg/l	0.100	0.015	1	09/16/22 06:39	10/06/22 14:09	EPA 3005A	1,6010D	МС
Manganese, Total	0.789		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 19:01	EPA 3005A	1,6010D	MC
Mercury, Total	ND		mg/l	0.00020	0.00009	1	09/16/22 07:13	09/16/22 19:54	EPA 7470A	1,7470A	DMB
Nickel, Total	0.005	J	mg/l	0.025	0.002	1	09/16/22 06:39	10/06/22 14:09	EPA 3005A	1,6010D	МС
Potassium, Total	1.26	J	mg/l	2.50	0.237	1	09/16/22 06:39	10/06/22 14:09	EPA 3005A	1,6010D	МС
Selenium, Total	ND		mg/l	0.010	0.004	1	09/16/22 06:39	10/06/22 14:09	EPA 3005A	1,6010D	МС
Silver, Total	ND		mg/l	0.007	0.003	1	09/16/22 06:39	10/06/22 14:09	EPA 3005A	1,6010D	МС
Sodium, Total	9.65		mg/l	2.00	0.120	1	09/16/22 06:39	10/06/22 19:01	EPA 3005A	1,6010D	МС
Thallium, Total	ND		mg/l	0.020	0.003	1	09/16/22 06:39	10/06/22 14:09	EPA 3005A	1,6010D	МС
Vanadium, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 14:09	EPA 3005A	1,6010D	МС
Zinc, Total	ND		mg/l	0.050	0.002	1	09/16/22 06:39	10/06/22 14:09	EPA 3005A	1,6010D	МС

Project Name: Lab Number: SOUTH HILL DUMP L2250253

Project Number: Report Date: 34236 10/07/22

SAMPLE RESULTS

Lab ID: L2250253-11

Date Collected: 09/14/22 12:40 Client ID: MW-3SR Date Received: 09/14/22

Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Aluminum, Total	0.104		mg/l	0.100	0.032	1	09/16/22 06:39	10/06/22 14:14	EPA 3005A	1,6010D	МС
Antimony, Total	ND		mg/l	0.050	0.007	1	09/16/22 06:39	10/06/22 14:14	EPA 3005A	1,6010D	MC
Arsenic, Total	ND		mg/l	0.005	0.002	1	09/16/22 06:39	10/06/22 14:14	EPA 3005A	1,6010D	МС
Barium, Total	0.083		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 14:14	EPA 3005A	1,6010D	MC
Beryllium, Total	ND		mg/l	0.005	0.001	1	09/16/22 06:39	10/06/22 14:14	EPA 3005A	1,6010D	МС
Cadmium, Total	ND		mg/l	0.005	0.001	1	09/16/22 06:39	10/06/22 14:14	EPA 3005A	1,6010D	МС
Calcium, Total	67.9		mg/l	0.100	0.035	1	09/16/22 06:39	10/06/22 14:14	EPA 3005A	1,6010D	МС
Chromium, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 14:14	EPA 3005A	1,6010D	МС
Cobalt, Total	ND		mg/l	0.020	0.002	1	09/16/22 06:39	10/06/22 14:14	EPA 3005A	1,6010D	МС
Copper, Total	0.002	J	mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 14:14	EPA 3005A	1,6010D	МС
Iron, Total	0.235		mg/l	0.050	0.009	1	09/16/22 06:39	10/06/22 19:06	EPA 3005A	1,6010D	МС
Lead, Total	ND		mg/l	0.010	0.003	1	09/16/22 06:39	10/06/22 14:14	EPA 3005A	1,6010D	МС
Magnesium, Total	19.2		mg/l	0.100	0.015	1	09/16/22 06:39	10/06/22 14:14	EPA 3005A	1,6010D	МС
Manganese, Total	0.036		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 19:06	EPA 3005A	1,6010D	MC
Mercury, Total	ND		mg/l	0.00020	0.00009	1	09/16/22 07:13	09/16/22 19:58	EPA 7470A	1,7470A	DMB
Nickel, Total	ND		mg/l	0.025	0.002	1	09/16/22 06:39	10/06/22 14:14	EPA 3005A	1,6010D	МС
Potassium, Total	2.59		mg/l	2.50	0.237	1	09/16/22 06:39	10/06/22 14:14	EPA 3005A	1,6010D	МС
Selenium, Total	ND		mg/l	0.010	0.004	1	09/16/22 06:39	10/06/22 14:14	EPA 3005A	1,6010D	МС
Silver, Total	ND		mg/l	0.007	0.003	1	09/16/22 06:39	10/06/22 14:14	EPA 3005A	1,6010D	МС
Sodium, Total	6.62		mg/l	2.00	0.120	1	09/16/22 06:39	10/06/22 19:06	EPA 3005A	1,6010D	МС
Thallium, Total	ND		mg/l	0.020	0.003	1	09/16/22 06:39	10/06/22 14:14	EPA 3005A	1,6010D	МС
Vanadium, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 14:14	EPA 3005A	1,6010D	МС
Zinc, Total	ND		mg/l	0.050	0.002	1	09/16/22 06:39	10/06/22 14:14	EPA 3005A	1,6010D	МС

09/14/22 13:20

Date Collected:

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

SAMPLE RESULTS

Lab ID: L2250253-12

Client ID: MW-3SR2 Date Received: 09/14/22 Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	0.125		mg/l	0.100	0.032	1	09/16/22 06:39	10/06/22 18:25	EPA 3005A	1,6010D	MC
Antimony, Total	ND		mg/l	0.050	0.007	1	09/16/22 06:39	10/06/22 18:25	EPA 3005A	1,6010D	MC
Arsenic, Total	ND		mg/l	0.005	0.002	1	09/16/22 06:39	10/06/22 18:25	EPA 3005A	1,6010D	MC
Barium, Total	0.129		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 18:25	EPA 3005A	1,6010D	MC
Beryllium, Total	ND		mg/l	0.005	0.001	1	09/16/22 06:39	10/06/22 18:25	EPA 3005A	1,6010D	MC
Cadmium, Total	ND		mg/l	0.005	0.001	1	09/16/22 06:39	10/06/22 18:25	EPA 3005A	1,6010D	MC
Calcium, Total	107		mg/l	0.100	0.035	1	09/16/22 06:39	10/06/22 18:25	EPA 3005A	1,6010D	MC
Chromium, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 18:25	EPA 3005A	1,6010D	MC
Cobalt, Total	ND		mg/l	0.020	0.002	1	09/16/22 06:39	10/06/22 18:25	EPA 3005A	1,6010D	MC
Copper, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 18:25	EPA 3005A	1,6010D	MC
Iron, Total	1.34		mg/l	0.050	0.009	1	09/16/22 06:39	10/06/22 18:25	EPA 3005A	1,6010D	MC
Lead, Total	ND		mg/l	0.010	0.003	1	09/16/22 06:39	10/06/22 18:25	EPA 3005A	1,6010D	MC
Magnesium, Total	19.8		mg/l	0.100	0.015	1	09/16/22 06:39	10/06/22 18:25	EPA 3005A	1,6010D	MC
Manganese, Total	0.152		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 18:25	EPA 3005A	1,6010D	MC
Mercury, Total	ND		mg/l	0.00020	0.00009	1	09/16/22 07:13	09/16/22 20:01	EPA 7470A	1,7470A	DMB
Nickel, Total	ND		mg/l	0.025	0.002	1	09/16/22 06:39	10/06/22 18:25	EPA 3005A	1,6010D	MC
Potassium, Total	1.73	J	mg/l	2.50	0.237	1	09/16/22 06:39	10/06/22 18:25	EPA 3005A	1,6010D	MC
Selenium, Total	ND		mg/l	0.010	0.004	1	09/16/22 06:39	10/06/22 18:25	EPA 3005A	1,6010D	MC
Silver, Total	ND		mg/l	0.007	0.003	1	09/16/22 06:39	10/06/22 18:25	EPA 3005A	1,6010D	MC
Sodium, Total	21.9		mg/l	2.00	0.120	1	09/16/22 06:39	10/06/22 18:25	EPA 3005A	1,6010D	МС
Thallium, Total	ND		mg/l	0.020	0.003	1	09/16/22 06:39	10/06/22 18:25	EPA 3005A	1,6010D	МС
Vanadium, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 18:25	EPA 3005A	1,6010D	МС
Zinc, Total	0.010	J	mg/l	0.050	0.002	1	09/16/22 06:39	10/06/22 18:25	EPA 3005A	1,6010D	МС

09/14/22 13:40

Date Collected:

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

SAMPLE RESULTS

Lab ID: L2250253-13

Client ID: MW-3BR2 Date Received: 09/14/22

Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	0.059	J	mg/l	0.100	0.032	1	09/16/22 06:39	10/06/22 19:12	EPA 3005A	1,6010D	МС
Antimony, Total	ND		mg/l	0.050	0.007	1	09/16/22 06:39	10/06/22 19:12	EPA 3005A	1,6010D	МС
Arsenic, Total	ND		mg/l	0.005	0.002	1	09/16/22 06:39	10/06/22 19:12	EPA 3005A	1,6010D	MC
Barium, Total	0.253		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 19:12	EPA 3005A	1,6010D	MC
Beryllium, Total	ND		mg/l	0.005	0.001	1	09/16/22 06:39	10/06/22 19:12	EPA 3005A	1,6010D	МС
Cadmium, Total	ND		mg/l	0.005	0.001	1	09/16/22 06:39	10/06/22 19:12	EPA 3005A	1,6010D	МС
Calcium, Total	88.2		mg/l	0.100	0.035	1	09/16/22 06:39	10/06/22 19:12	EPA 3005A	1,6010D	МС
Chromium, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 19:12	EPA 3005A	1,6010D	МС
Cobalt, Total	ND		mg/l	0.020	0.002	1	09/16/22 06:39	10/06/22 19:12	EPA 3005A	1,6010D	МС
Copper, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 19:12	EPA 3005A	1,6010D	МС
Iron, Total	25.5		mg/l	0.050	0.009	1	09/16/22 06:39	10/06/22 19:12	EPA 3005A	1,6010D	МС
Lead, Total	ND		mg/l	0.010	0.003	1	09/16/22 06:39	10/06/22 19:12	EPA 3005A	1,6010D	МС
Magnesium, Total	18.9		mg/l	0.100	0.015	1	09/16/22 06:39	10/06/22 19:12	EPA 3005A	1,6010D	МС
Manganese, Total	0.292		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 19:12	EPA 3005A	1,6010D	МС
Mercury, Total	ND		mg/l	0.00020	0.00009	1	09/16/22 07:13	09/16/22 20:04	EPA 7470A	1,7470A	DMB
Nickel, Total	ND		mg/l	0.025	0.002	1	09/16/22 06:39	10/06/22 19:12	EPA 3005A	1,6010D	MC
Potassium, Total	1.07	J	mg/l	2.50	0.237	1	09/16/22 06:39	10/06/22 19:12	EPA 3005A	1,6010D	МС
Selenium, Total	ND		mg/l	0.010	0.004	1	09/16/22 06:39	10/06/22 19:12	EPA 3005A	1,6010D	MC
Silver, Total	ND		mg/l	0.007	0.003	1	09/16/22 06:39	10/06/22 19:12	EPA 3005A	1,6010D	MC
Sodium, Total	14.9		mg/l	2.00	0.120	1	09/16/22 06:39	10/06/22 19:12	EPA 3005A	1,6010D	MC
Thallium, Total	ND		mg/l	0.020	0.003	1	09/16/22 06:39	10/06/22 19:12	EPA 3005A	1,6010D	МС
Vanadium, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 19:12	EPA 3005A	1,6010D	MC
Zinc, Total	0.002	J	mg/l	0.050	0.002	1	09/16/22 06:39	10/06/22 19:12	EPA 3005A	1,6010D	МС

09/14/22 13:05

Date Collected:

Project Name: Lab Number: SOUTH HILL DUMP L2250253

Project Number: Report Date: 34236 10/07/22

SAMPLE RESULTS

Lab ID: L2250253-14

Client ID: SW-001 Date Received:

09/14/22 Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	0.177		mg/l	0.100	0.032	1	09/16/22 06:39	10/06/22 19:27	EPA 3005A	1,6010D	МС
Antimony, Total	ND		mg/l	0.050	0.007	1	09/16/22 06:39	10/06/22 19:27	EPA 3005A	1,6010D	МС
Arsenic, Total	ND		mg/l	0.005	0.002	1	09/16/22 06:39	10/06/22 19:27	EPA 3005A	1,6010D	MC
Barium, Total	0.064		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 19:27	EPA 3005A	1,6010D	MC
Beryllium, Total	ND		mg/l	0.005	0.001	1	09/16/22 06:39	10/06/22 19:27	EPA 3005A	1,6010D	MC
Cadmium, Total	ND		mg/l	0.005	0.001	1	09/16/22 06:39	10/06/22 19:27	EPA 3005A	1,6010D	MC
Calcium, Total	95.7		mg/l	0.100	0.035	1	09/16/22 06:39	10/06/22 19:27	EPA 3005A	1,6010D	MC
Chromium, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 19:27	EPA 3005A	1,6010D	MC
Cobalt, Total	ND		mg/l	0.020	0.002	1	09/16/22 06:39	10/06/22 19:27	EPA 3005A	1,6010D	MC
Copper, Total	0.002	J	mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 19:27	EPA 3005A	1,6010D	MC
Iron, Total	0.383		mg/l	0.050	0.009	1	09/16/22 06:39	10/06/22 19:27	EPA 3005A	1,6010D	MC
Lead, Total	ND		mg/l	0.010	0.003	1	09/16/22 06:39	10/06/22 19:27	EPA 3005A	1,6010D	MC
Magnesium, Total	11.8		mg/l	0.100	0.015	1	09/16/22 06:39	10/06/22 19:27	EPA 3005A	1,6010D	MC
Manganese, Total	0.448		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 19:27	EPA 3005A	1,6010D	MC
Mercury, Total	ND		mg/l	0.00020	0.00009	1	09/16/22 07:13	09/16/22 20:08	EPA 7470A	1,7470A	DMB
Nickel, Total	ND		mg/l	0.025	0.002	1	09/16/22 06:39	10/06/22 19:27	EPA 3005A	1,6010D	MC
Potassium, Total	4.25		mg/l	2.50	0.237	1	09/16/22 06:39	10/06/22 19:27	EPA 3005A	1,6010D	MC
Selenium, Total	ND		mg/l	0.010	0.004	1	09/16/22 06:39	10/06/22 19:27	EPA 3005A	1,6010D	MC
Silver, Total	ND		mg/l	0.007	0.003	1	09/16/22 06:39	10/06/22 19:27	EPA 3005A	1,6010D	MC
Sodium, Total	3.21		mg/l	2.00	0.120	1	09/16/22 06:39	10/06/22 19:27	EPA 3005A	1,6010D	МС
Thallium, Total	ND		mg/l	0.020	0.003	1	09/16/22 06:39	10/06/22 19:27	EPA 3005A	1,6010D	МС
Vanadium, Total	ND		mg/l	0.010	0.002	1	09/16/22 06:39	10/06/22 19:27	EPA 3005A	1,6010D	МС
Zinc, Total	ND		mg/l	0.050	0.002	1	09/16/22 06:39	10/06/22 19:27	EPA 3005A	1,6010D	МС

09/14/22 13:10

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

SAMPLE RESULTS

Lab ID: L2250253-15 Date Collected:

Client ID: SED-001 Date Received: 09/14/22
Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil

20% Percent Solids: Dilution Date Date Prep **Analytical** Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units MDL RL Analyst Total Metals - Mansfield Lab Aluminum, Total 12300 mg/kg 36.8 9.95 2 09/17/22 08:30 09/20/22 21:56 EPA 3050B 1,6010D ΒV ND 18.4 2 1,6010D Antimony, Total mg/kg 1.40 09/17/22 08:30 09/20/22 21:56 EPA 3050B R۷ 09/17/22 08:30 09/20/22 21:56 EPA 3050B Arsenic, Total 5.56 mg/kg 3.68 0.767 2 1,6010D ΒV 2 Barium, Total 224 3.68 0.641 09/17/22 08:30 09/20/22 21:56 EPA 3050B 1,6010D ΒV mg/kg J 0.122 2 1,6010D Beryllium, Total 0.626 mg/kg 1.84 09/17/22 08:30 09/20/22 21:56 EPA 3050B ΒV J 09/17/22 08:30 09/20/22 21:56 EPA 3050B 0.361 2 1,6010D ΒV Cadmium, Total 1.07 mg/kg 3.68 Calcium, Total 13200 36.8 12.9 2 09/17/22 08:30 09/20/22 21:56 EPA 3050B 1,6010D mg/kg ΒV 2 1,6010D 32.5 3.68 0.354 09/17/22 08:30 09/20/22 21:56 EPA 3050B ΒV Chromium, Total mg/kg 2 1,6010D Cobalt, Total 17.1 mg/kg 7.37 0.612 09/17/22 08:30 09/20/22 21:56 EPA 3050B BV 2 1,6010D Copper, Total 22.2 3.68 0.951 09/17/22 08:30 09/20/22 21:56 EPA 3050B ΒV mg/kg 2 1,6010D Iron, Total 21800 3.33 09/17/22 08:30 09/20/22 21:56 EPA 3050B ΒV mg/kg 18.4 J 2 Lead, Total 17.9 mg/kg 18.4 0.988 09/17/22 08:30 09/20/22 21:56 EPA 3050B 1,6010D BV Magnesium, Total 6400 36.8 5.68 2 09/17/22 08:30 09/20/22 21:56 EPA 3050B 1,6010D ΒV mg/kg 9690 3.68 0.586 2 09/17/22 08:30 09/20/22 21:56 EPA 3050B 1,6010D ΒV Manganese, Total mg/kg Mercury, Total ND mg/kg 0.313 0.204 1 09/17/22 12:15 09/18/22 13:40 EPA 7471B 1,7471B AW Nickel, Total 32.5 9.21 0.892 2 09/17/22 08:30 09/20/22 21:56 EPA 3050B 1,6010D BV mg/kg J 2 1,6010D Potassium, Total 806 mg/kg 921 53.1 09/17/22 08:30 09/20/22 21:56 EPA 3050B BV Selenium, Total ND mg/kg 7.37 0.951 2 09/17/22 08:30 09/20/22 21:56 EPA 3050B 1,6010D BV Silver, Total 1.62 J mg/kg 3.68 1.04 2 09/17/22 08:30 09/20/22 21:56 EPA 3050B 1,6010D BV J Sodium, Total 202 mg/kg 380 5.99 1 09/21/22 23:18 10/05/22 11:44 EPA 3050B 1,6010D ΕW Thallium, Total ND mg/kg 7.37 1.16 2 09/17/22 08:30 09/20/22 21:56 EPA 3050B 1,6010D ΒV Vanadium, Total 44.6 2 09/17/22 08:30 09/20/22 21:56 EPA 3050B 1,6010D mg/kg 3.68 0.748 R۷

2

09/17/22 08:30 09/20/22 21:56 EPA 3050B

1.08

18.4

mg/kg

1,6010D

ΒV

Zinc, Total

87.7

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number:

L2250253

Report Date: 10/07/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansf	ield Lab for sample(s):	01-08,11	-14 Bate	ch: WG	1688149-1				
Aluminum, Total	ND	mg/l	0.100	0.032	1	09/16/22 06:39	10/03/22 10:53	1,6010D	EW
Antimony, Total	ND	mg/l	0.050	0.007	1	09/16/22 06:39	10/03/22 10:53	1,6010D	EW
Arsenic, Total	ND	mg/l	0.005	0.002	1	09/16/22 06:39	10/03/22 10:53	1,6010D	EW
Barium, Total	ND	mg/l	0.010	0.002	1	09/16/22 06:39	10/03/22 10:53	1,6010D	EW
Beryllium, Total	ND	mg/l	0.005	0.001	1	09/16/22 06:39	10/03/22 10:53	1,6010D	EW
Cadmium, Total	ND	mg/l	0.005	0.001	1	09/16/22 06:39	10/03/22 10:53	1,6010D	EW
Calcium, Total	ND	mg/l	0.100	0.035	1	09/16/22 06:39	10/03/22 10:53	1,6010D	EW
Chromium, Total	ND	mg/l	0.010	0.002	1	09/16/22 06:39	10/03/22 10:53	1,6010D	EW
Cobalt, Total	ND	mg/l	0.020	0.002	1	09/16/22 06:39	10/03/22 10:53	1,6010D	EW
Copper, Total	ND	mg/l	0.010	0.002	1	09/16/22 06:39	10/03/22 10:53	1,6010D	EW
Iron, Total	ND	mg/l	0.050	0.009	1	09/16/22 06:39	10/03/22 10:53	1,6010D	EW
Lead, Total	ND	mg/l	0.010	0.003	1	09/16/22 06:39	10/03/22 10:53	1,6010D	EW
Magnesium, Total	ND	mg/l	0.100	0.015	1	09/16/22 06:39	10/03/22 10:53	1,6010D	EW
Manganese, Total	ND	mg/l	0.010	0.002	1	09/16/22 06:39	10/03/22 10:53	1,6010D	EW
Nickel, Total	ND	mg/l	0.025	0.002	1	09/16/22 06:39	10/03/22 10:53	1,6010D	EW
Potassium, Total	ND	mg/l	2.50	0.237	1	09/16/22 06:39	10/03/22 10:53	1,6010D	EW
Selenium, Total	ND	mg/l	0.010	0.004	1	09/16/22 06:39	10/03/22 10:53	1,6010D	EW
Silver, Total	ND	mg/l	0.007	0.003	1	09/16/22 06:39	10/03/22 10:53	1,6010D	EW
Sodium, Total	ND	mg/l	2.00	0.120	1	09/16/22 06:39	10/03/22 10:53	1,6010D	EW
Thallium, Total	ND	mg/l	0.020	0.003	1	09/16/22 06:39	10/03/22 10:53	1,6010D	EW
Vanadium, Total	ND	mg/l	0.010	0.002	1	09/16/22 06:39	10/03/22 10:53	1,6010D	EW
Zinc, Total	ND	mg/l	0.050	0.002	1	09/16/22 06:39	10/03/22 10:53	1,6010D	EW

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mans	field Lab for sample(s):	01-08,11	-14 Bate	ch: WG	1688151-1				
Mercury, Total	ND	mg/l	0.00020	0.00009) 1	09/16/22 07:13	09/16/22 17:57	1,7470A	DMB

L2250253

Project Name: SOUTH HILL DUMP Lab Number:

Project Number: 34236 Report Date: 10/07/22

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7470A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield I	Lab for s	ample(s):	15 Batch	n: WG16	688668-	1		•		,
Aluminum, Total	ND		mg/kg	4.00	1.08	1	09/17/22 08:30	09/20/22 11:58	1,6010D	NB
Antimony, Total	ND		mg/kg	2.00	0.152	1	09/17/22 08:30	09/20/22 11:58	1,6010D	NB
Arsenic, Total	ND		mg/kg	0.400	0.083	1	09/17/22 08:30	09/20/22 11:58	1,6010D	NB
Barium, Total	ND		mg/kg	0.400	0.070	1	09/17/22 08:30	09/20/22 11:58	1,6010D	NB
Beryllium, Total	ND		mg/kg	0.200	0.013	1	09/17/22 08:30	09/20/22 11:58	1,6010D	NB
Cadmium, Total	ND		mg/kg	0.400	0.039	1	09/17/22 08:30	09/20/22 11:58	1,6010D	NB
Calcium, Total	ND		mg/kg	4.00	1.40	1	09/17/22 08:30	09/20/22 11:58	1,6010D	NB
Chromium, Total	ND		mg/kg	0.400	0.038	1	09/17/22 08:30	09/20/22 11:58	1,6010D	NB
Cobalt, Total	ND		mg/kg	0.800	0.066	1	09/17/22 08:30	09/20/22 11:58	1,6010D	NB
Copper, Total	ND		mg/kg	0.400	0.103	1	09/17/22 08:30	09/20/22 11:58	1,6010D	NB
Iron, Total	1.69	J	mg/kg	2.00	0.361	1	09/17/22 08:30	09/20/22 11:58	1,6010D	NB
Lead, Total	ND		mg/kg	2.00	0.107	1	09/17/22 08:30	09/20/22 11:58	1,6010D	NB
Magnesium, Total	ND		mg/kg	4.00	0.616	1	09/17/22 08:30	09/20/22 11:58	1,6010D	NB
Manganese, Total	ND		mg/kg	0.400	0.064	1	09/17/22 08:30	09/20/22 11:58	1,6010D	NB
Nickel, Total	ND		mg/kg	1.00	0.097	1	09/17/22 08:30	09/20/22 11:58	1,6010D	NB
Potassium, Total	ND		mg/kg	100	5.76	1	09/17/22 08:30	09/20/22 11:58	1,6010D	NB
Selenium, Total	ND		mg/kg	0.800	0.103	1	09/17/22 08:30	09/20/22 11:58	1,6010D	NB
Silver, Total	ND		mg/kg	0.400	0.113	1	09/17/22 08:30	09/20/22 11:58	1,6010D	NB
Thallium, Total	ND		mg/kg	0.800	0.126	1	09/17/22 08:30	09/20/22 11:58	1,6010D	NB
Vanadium, Total	ND		mg/kg	0.400	0.081	1	09/17/22 08:30	09/20/22 11:58	1,6010D	NB
Zinc, Total	ND		mg/kg	2.00	0.117	1	09/17/22 08:30	09/20/22 11:58	1,6010D	NB

Prep Information

Digestion Method: EPA 3050B

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2250253

Report Date: 10/07/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfiel	ld Lab for sample(s):	15 Batch	: WG16	688683-	1				
Mercury, Total	ND	mg/kg	0.083	0.054	1	09/17/22 12:15	09/18/22 12:57	7 1,7471B	AW

Prep Information

Digestion Method: EPA 7471B

Total Metals - Mansfield Lab for sample(s): 15 Batch: WG1690259-1 Aluminum, Total ND mg/kg 4.00 1.08 1 09/21/22 23:18 09/27/22 19:10 1,6010D Antimony, Total ND mg/kg 2.00 0.152 1 09/21/22 23:18 09/27/22 19:10 1,6010D Arsenic, Total 0.088 J mg/kg 0.400 0.083 1 09/21/22 23:18 09/27/22 19:10 1,6010D Barium, Total ND mg/kg 0.400 0.070 1 09/21/22 23:18 09/27/22 19:10 1,6010D Beryllium, Total ND mg/kg 0.400 0.070 1 09/21/22 23:18 09/27/22 19:10 1,6010D Cadmium, Total ND mg/kg 0.400 0.039 1 09/21/22 23:18 09/27/22 19:10 1,6010D Calcium, Total ND mg/kg 0.400 0.038 1 09/21/22 23:18 09/27/22 19:10 1,6010D Chomium, Total ND mg/kg 0.400 0.066 1 09/21/22 23	Analyst	Analytical Method	Date Analyzed	Date Prepared	Dilution Factor	MDL	RL	Units	Qualifier	Result	Parameter
Antimony, Total ND mg/kg 2.00 0.152 1 09/21/22 23:18 09/27/22 19:10 1,6010D Arsenic, Total 0.088 J mg/kg 0.400 0.083 1 09/21/22 23:18 09/27/22 19:10 1,6010D Barium, Total ND mg/kg 0.400 0.070 1 09/21/22 23:18 09/27/22 19:10 1,6010D Beryllium, Total ND mg/kg 0.200 0.013 1 09/21/22 23:18 09/27/22 19:10 1,6010D Cadmium, Total ND mg/kg 0.400 0.039 1 09/21/22 23:18 09/27/22 19:10 1,6010D Calcium, Total ND mg/kg 4.00 1.40 1 09/21/22 23:18 09/27/22 19:10 1,6010D Chromium, Total ND mg/kg 0.400 0.038 1 09/21/22 23:18 09/27/22 19:10 1,6010D Chromium, Total ND mg/kg 0.400 0.038 1 09/21/22 23:18 09/27/22 19:10 1,6010D Cobalt, Total ND mg/kg 0.400 0.066 1 09/21/22 23:18 09/27/22 19:10 1,6010D Copper, Total ND mg/kg 0.400 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Iron, Total 0.424 J mg/kg 2.00 0.361 1 09/21/22 23:18 09/27/22 19:10 1,6010D Lead, Total ND mg/kg 2.00 0.361 1 09/21/22 23:18 09/27/22 19:10 1,6010D Magnesium, Total ND mg/kg 0.400 0.616 1 09/21/22 23:18 09/27/22 19:10 1,6010D Magnesium, Total ND mg/kg 0.400 0.616 1 09/21/22 23:18 09/27/22 19:10 1,6010D Manganese, Total ND mg/kg 0.400 0.616 1 09/21/22 23:18 09/27/22 19:10 1,6010D Nickel, Total ND mg/kg 0.400 0.064 1 09/21/22 23:18 09/27/22 19:10 1,6010D Potassium, Total ND mg/kg 0.400 0.064 1 09/21/22 23:18 09/27/22 19:10 1,6010D Selenium, Total ND mg/kg 0.400 0.113 1 09/21/22 23:18 09/27/22 19:10 1,6010D Selenium, Total ND mg/kg 0.400 0.113 1 09/21/22 23:18 09/27/22 19:10 1,6010D Selenium, Total ND mg/kg 0.400 0.113 1 09/21/22 23:18 09/27/22 19:10 1,6010D					ĺ	690259-1	h: WG16	15 Bato	sample(s):	d Lab for s	Total Metals - Mansfiel
Arsenic, Total 0.088 J mg/kg 0.400 0.083 1 09/21/22 23:18 09/27/22 19:10 1,6010D Barium, Total ND mg/kg 0.400 0.070 1 09/21/22 23:18 09/27/22 19:10 1,6010D Beryllium, Total ND mg/kg 0.400 0.039 1 09/21/22 23:18 09/27/22 19:10 1,6010D Cadmium, Total ND mg/kg 0.400 0.039 1 09/21/22 23:18 09/27/22 19:10 1,6010D Calcium, Total ND mg/kg 0.400 0.039 1 09/21/22 23:18 09/27/22 19:10 1,6010D Calcium, Total ND mg/kg 0.400 0.038 1 09/21/22 23:18 09/27/22 19:10 1,6010D Chromium, Total ND mg/kg 0.400 0.038 1 09/21/22 23:18 09/27/22 19:10 1,6010D Cobalt, Total ND mg/kg 0.800 0.066 1 09/21/22 23:18 09/27/22 19:10 1,6010D Copper, Total ND mg/kg 0.400 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Iron, Total 0.424 J mg/kg 2.00 0.361 1 09/21/22 23:18 09/27/22 19:10 1,6010D Lead, Total ND mg/kg 2.00 0.361 1 09/21/22 23:18 09/27/22 19:10 1,6010D Magnesium, Total ND mg/kg 4.00 0.616 1 09/21/22 23:18 09/27/22 19:10 1,6010D Magnesium, Total ND mg/kg 0.400 0.616 1 09/21/22 23:18 09/27/22 19:10 1,6010D Magnesium, Total ND mg/kg 1.00 0.064 1 09/21/22 23:18 09/27/22 19:10 1,6010D Nickel, Total ND mg/kg 1.00 0.097 1 09/21/22 23:18 09/27/22 19:10 1,6010D Nickel, Total ND mg/kg 0.400 0.064 1 09/21/22 23:18 09/27/22 19:10 1,6010D Nickel, Total ND mg/kg 0.400 0.064 1 09/21/22 23:18 09/27/22 19:10 1,6010D Nickel, Total ND mg/kg 0.400 0.064 1 09/21/22 23:18 09/27/22 19:10 1,6010D Nickel, Total ND mg/kg 0.400 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Nickel, Total ND mg/kg 0.400 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Nickel, Total ND mg/kg 0.400 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Nickel, Total ND mg/kg 0.400 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Nickel, Total ND mg/kg 0.400 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Nickel, Total ND mg/kg 0.400 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Nickel, Total ND mg/kg 0.400 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Nickel, Total ND mg/kg 0.400 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Nickel, Total ND mg/kg 0.400 0.113 1 09/21/22 23:18 09/27/22 19:10 1,6010D	BV	1,6010D	09/27/22 19:10	09/21/22 23:18	1	1.08	4.00	mg/kg		ND	Aluminum, Total
Barium, Total ND mg/kg 0.400 0.070 1 09/21/22 23:18 09/27/22 19:10 1,6010D Beryllium, Total ND mg/kg 0.200 0.013 1 09/21/22 23:18 09/27/22 19:10 1,6010D Cadmium, Total ND mg/kg 0.400 0.039 1 09/21/22 23:18 09/27/22 19:10 1,6010D Calcium, Total ND mg/kg 4.00 1.40 1 09/21/22 23:18 09/27/22 19:10 1,6010D Chromium, Total ND mg/kg 0.400 0.038 1 09/21/22 23:18 09/27/22 19:10 1,6010D Cobalt, Total ND mg/kg 0.400 0.038 1 09/21/22 23:18 09/27/22 19:10 1,6010D Copper, Total ND mg/kg 0.400 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Iron, Total 0.424 J mg/kg 2.00 0.107 1 09/21/22 23:18 09/27/22 19:10 1,6010D Magnesium, Total	BV	1,6010D	09/27/22 19:10	09/21/22 23:18	1	0.152	2.00	mg/kg		ND	Antimony, Total
Beryllium, Total ND mg/kg 0.200 0.013 1 09/21/22 23:18 09/27/22 19:10 1,6010D Cadmium, Total ND mg/kg 0.400 0.039 1 09/21/22 23:18 09/27/22 19:10 1,6010D Calcium, Total ND mg/kg 4.00 1.40 1 09/21/22 23:18 09/27/22 19:10 1,6010D Chromium, Total ND mg/kg 0.400 0.038 1 09/21/22 23:18 09/27/22 19:10 1,6010D Cobalt, Total ND mg/kg 0.800 0.066 1 09/21/22 23:18 09/27/22 19:10 1,6010D Copper, Total ND mg/kg 0.400 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Iron, Total 0.424 J mg/kg 2.00 0.361 1 09/21/22 23:18 09/27/22 19:10 1,6010D Lead, Total ND mg/kg 2.00 0.107 1 09/21/22 23:18 09/27/22 19:10 1,6010D Magnesium, Total	BV	1,6010D	09/27/22 19:10	09/21/22 23:18	1	0.083	0.400	mg/kg	J	0.088	Arsenic, Total
Cadmium, Total ND mg/kg 0.400 0.039 1 09/21/22 23:18 09/27/22 19:10 1,6010D Calcium, Total ND mg/kg 4.00 1.40 1 09/21/22 23:18 09/27/22 19:10 1,6010D Chromium, Total ND mg/kg 0.400 0.038 1 09/21/22 23:18 09/27/22 19:10 1,6010D Cobalt, Total ND mg/kg 0.800 0.066 1 09/21/22 23:18 09/27/22 19:10 1,6010D Copper, Total ND mg/kg 0.400 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Iron, Total 0.424 J mg/kg 2.00 0.361 1 09/21/22 23:18 09/27/22 19:10 1,6010D Lead, Total ND mg/kg 2.00 0.107 1 09/21/22 23:18 09/27/22 19:10 1,6010D Manganesium, Total ND mg/kg 4.00 0.616 1 09/21/22 23:18 09/27/22 19:10 1,6010D Potassium, Total	BV	1,6010D	09/27/22 19:10	09/21/22 23:18	1	0.070	0.400	mg/kg		ND	Barium, Total
Calcium, Total ND mg/kg 4.00 1.40 1 09/21/22 23:18 09/27/22 19:10 1,6010D Chromium, Total ND mg/kg 0.400 0.038 1 09/21/22 23:18 09/27/22 19:10 1,6010D Cobalt, Total ND mg/kg 0.800 0.066 1 09/21/22 23:18 09/27/22 19:10 1,6010D Copper, Total ND mg/kg 0.400 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Iron, Total 0.424 J mg/kg 2.00 0.361 1 09/21/22 23:18 09/27/22 19:10 1,6010D Lead, Total ND mg/kg 2.00 0.107 1 09/21/22 23:18 09/27/22 19:10 1,6010D Magnesium, Total ND mg/kg 4.00 0.616 1 09/21/22 23:18 09/27/22 19:10 1,6010D Manganese, Total ND mg/kg 0.400 0.616 1 09/21/22 23:18 09/27/22 19:10 1,6010D Nickel, Total ND mg/kg 1.00 0.097 1 09/21/22 23:18 09/27/22 19:10 1,6010D Potassium, Total ND mg/kg 1.00 0.097 1 09/21/22 23:18 09/27/22 19:10 1,6010D Selenium, Total ND mg/kg 0.800 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Selenium, Total ND mg/kg 0.800 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Silver, Total ND mg/kg 0.400 0.113 1 09/21/22 23:18 09/27/22 19:10 1,6010D Solium, Total ND mg/kg 0.400 0.113 1 09/21/22 23:18 09/27/22 19:10 1,6010D	BV	1,6010D	09/27/22 19:10	09/21/22 23:18	1	0.013	0.200	mg/kg		ND	Beryllium, Total
Chromium, Total ND mg/kg 0.400 0.038 1 09/21/22 23:18 09/27/22 19:10 1,6010D Cobalt, Total ND mg/kg 0.800 0.066 1 09/21/22 23:18 09/27/22 19:10 1,6010D Copper, Total ND mg/kg 0.400 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Iron, Total 0.424 J mg/kg 2.00 0.361 1 09/21/22 23:18 09/27/22 19:10 1,6010D Lead, Total ND mg/kg 2.00 0.107 1 09/21/22 23:18 09/27/22 19:10 1,6010D Magnesium, Total ND mg/kg 4.00 0.616 1 09/21/22 23:18 09/27/22 19:10 1,6010D Manganese, Total ND mg/kg 0.400 0.616 1 09/21/22 23:18 09/27/22 19:10 1,6010D Nickel, Total ND mg/kg 1.00 0.097 1 09/21/22 23:18 09/27/22 19:10 1,6010D Nickel, Total ND mg/kg 1.00 0.097 1 09/21/22 23:18 09/27/22 19:10 1,6010D Selenium, Total ND mg/kg 0.800 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Silver, Total ND mg/kg 0.400 0.113 1 09/21/22 23:18 09/27/22 19:10 1,6010D Silver, Total ND mg/kg 0.400 0.113 1 09/21/22 23:18 09/27/22 19:10 1,6010D Sodium, Total ND mg/kg 0.400 0.113 1 09/21/22 23:18 09/27/22 19:10 1,6010D	BV	1,6010D	09/27/22 19:10	09/21/22 23:18	1	0.039	0.400	mg/kg		ND	Cadmium, Total
Cobalt, Total ND mg/kg 0.800 0.066 1 09/21/22 23:18 09/27/22 19:10 1,6010D Copper, Total ND mg/kg 0.400 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Iron, Total 0.424 J mg/kg 2.00 0.361 1 09/21/22 23:18 09/27/22 19:10 1,6010D Lead, Total ND mg/kg 2.00 0.107 1 09/21/22 23:18 09/27/22 19:10 1,6010D Magnesium, Total ND mg/kg 4.00 0.616 1 09/21/22 23:18 09/27/22 19:10 1,6010D Manganese, Total ND mg/kg 0.400 0.064 1 09/21/22 23:18 09/27/22 19:10 1,6010D Nickel, Total ND mg/kg 1.00 0.097 1 09/21/22 23:18 09/27/22 19:10 1,6010D Potassium, Total ND mg/kg 0.800 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Silver, Total	BV	1,6010D	09/27/22 19:10	09/21/22 23:18	1	1.40	4.00	mg/kg		ND	Calcium, Total
Copper, Total ND mg/kg 0.400 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Iron, Total 0.424 J mg/kg 2.00 0.361 1 09/21/22 23:18 09/27/22 19:10 1,6010D Lead, Total ND mg/kg 2.00 0.107 1 09/21/22 23:18 09/27/22 19:10 1,6010D Magnesium, Total ND mg/kg 4.00 0.616 1 09/21/22 23:18 09/27/22 19:10 1,6010D Manganese, Total ND mg/kg 0.400 0.064 1 09/21/22 23:18 09/27/22 19:10 1,6010D Mickel, Total ND mg/kg 1.00 0.097 1 09/21/22 23:18 09/27/22 19:10 1,6010D Potassium, Total ND mg/kg 100 5.76 1 09/21/22 23:18 09/27/22 19:10 1,6010D Selenium, Total ND mg/kg 0.800 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Silver, Total ND mg/kg 0.400 0.113 1 09/21/22 23:18 09/27/22 19:10 1,6010D Sodium, Total ND mg/kg 0.400 0.113 1 09/21/22 23:18 09/27/22 19:10 1,6010D Sodium, Total 1.54 J mg/kg 80.0 1.26 1 09/21/22 23:18 09/27/22 19:10 1,6010D	BV	1,6010D	09/27/22 19:10	09/21/22 23:18	1	0.038	0.400	mg/kg		ND	Chromium, Total
Iron, Total 0.424 J mg/kg 2.00 0.361 1 09/21/22 23:18 09/27/22 19:10 1,6010D Lead, Total ND mg/kg 2.00 0.107 1 09/21/22 23:18 09/27/22 19:10 1,6010D Magnesium, Total ND mg/kg 4.00 0.616 1 09/21/22 23:18 09/27/22 19:10 1,6010D Manganese, Total ND mg/kg 0.400 0.064 1 09/21/22 23:18 09/27/22 19:10 1,6010D Nickel, Total ND mg/kg 1.00 0.097 1 09/21/22 23:18 09/27/22 19:10 1,6010D Potassium, Total ND mg/kg 100 5.76 1 09/21/22 23:18 09/27/22 19:10 1,6010D Selenium, Total ND mg/kg 0.800 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Silver, Total ND mg/kg 0.400 0.113 1 09/21/22 23:18 09/27/22 19:10 1,6010D Sodium, Total 1.54 J mg/kg 80.0 1.26 1 09/21/22 23:18 09/27/22 19:10 1,6010D	BV	1,6010D	09/27/22 19:10	09/21/22 23:18	1	0.066	0.800	mg/kg		ND	Cobalt, Total
Lead, Total ND mg/kg 2.00 0.107 1 09/21/22 23:18 09/27/22 19:10 1,6010D Magnesium, Total ND mg/kg 4.00 0.616 1 09/21/22 23:18 09/27/22 19:10 1,6010D Manganese, Total ND mg/kg 0.400 0.064 1 09/21/22 23:18 09/27/22 19:10 1,6010D Nickel, Total ND mg/kg 1.00 0.097 1 09/21/22 23:18 09/27/22 19:10 1,6010D Potassium, Total ND mg/kg 100 5.76 1 09/21/22 23:18 09/27/22 19:10 1,6010D Selenium, Total ND mg/kg 0.800 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Silver, Total ND mg/kg 0.400 0.113 1 09/21/22 23:18 09/27/22 19:10 1,6010D Sodium, Total 1.54 J mg/kg 80.0 1.26 1 09/21/22 23:18 09/27/22 19:10 1,6010D	BV	1,6010D	09/27/22 19:10	09/21/22 23:18	1	0.103	0.400	mg/kg		ND	Copper, Total
Magnesium, Total ND mg/kg 4.00 0.616 1 09/21/22 23:18 09/27/22 19:10 1,6010D Manganese, Total ND mg/kg 0.400 0.064 1 09/21/22 23:18 09/27/22 19:10 1,6010D Nickel, Total ND mg/kg 1.00 0.097 1 09/21/22 23:18 09/27/22 19:10 1,6010D Potassium, Total ND mg/kg 100 5.76 1 09/21/22 23:18 09/27/22 19:10 1,6010D Selenium, Total ND mg/kg 0.800 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Silver, Total ND mg/kg 0.400 0.113 1 09/21/22 23:18 09/27/22 19:10 1,6010D Sodium, Total 1.54 J mg/kg 80.0 1.26 1 09/21/22 23:18 09/27/22 19:10 1,6010D	BV	1,6010D	09/27/22 19:10	09/21/22 23:18	1	0.361	2.00	mg/kg	J	0.424	Iron, Total
Manganese, Total ND mg/kg 0.400 0.064 1 09/21/22 23:18 09/27/22 19:10 1,6010D Nickel, Total ND mg/kg 1.00 0.097 1 09/21/22 23:18 09/27/22 19:10 1,6010D Potassium, Total ND mg/kg 100 5.76 1 09/21/22 23:18 09/27/22 19:10 1,6010D Selenium, Total ND mg/kg 0.800 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Silver, Total ND mg/kg 0.400 0.113 1 09/21/22 23:18 09/27/22 19:10 1,6010D Sodium, Total 1.54 J mg/kg 80.0 1.26 1 09/21/22 23:18 09/27/22 19:10 1,6010D	BV	1,6010D	09/27/22 19:10	09/21/22 23:18	1	0.107	2.00	mg/kg		ND	Lead, Total
Nickel, Total ND mg/kg 1.00 0.097 1 09/21/22 23:18 09/27/22 19:10 1,6010D Potassium, Total ND mg/kg 100 5.76 1 09/21/22 23:18 09/27/22 19:10 1,6010D Selenium, Total ND mg/kg 0.800 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Silver, Total ND mg/kg 0.400 0.113 1 09/21/22 23:18 09/27/22 19:10 1,6010D Sodium, Total 1.54 J mg/kg 80.0 1.26 1 09/21/22 23:18 09/27/22 19:10 1,6010D	BV	1,6010D	09/27/22 19:10	09/21/22 23:18	1	0.616	4.00	mg/kg		ND	Magnesium, Total
Potassium, Total ND mg/kg 100 5.76 1 09/21/22 23:18 09/27/22 19:10 1,6010D Selenium, Total ND mg/kg 0.800 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Silver, Total ND mg/kg 0.400 0.113 1 09/21/22 23:18 09/27/22 19:10 1,6010D Sodium, Total 1.54 J mg/kg 80.0 1.26 1 09/21/22 23:18 09/27/22 19:10 1,6010D	BV	1,6010D	09/27/22 19:10	09/21/22 23:18	1	0.064	0.400	mg/kg		ND	Manganese, Total
Selenium, Total ND mg/kg 0.800 0.103 1 09/21/22 23:18 09/27/22 19:10 1,6010D Silver, Total ND mg/kg 0.400 0.113 1 09/21/22 23:18 09/27/22 19:10 1,6010D Sodium, Total 1.54 J mg/kg 80.0 1.26 1 09/21/22 23:18 09/27/22 19:10 1,6010D	BV	1,6010D	09/27/22 19:10	09/21/22 23:18	1	0.097	1.00	mg/kg		ND	Nickel, Total
Silver, Total ND mg/kg 0.400 0.113 1 09/21/22 23:18 09/27/22 19:10 1,6010D Sodium, Total 1.54 J mg/kg 80.0 1.26 1 09/21/22 23:18 09/27/22 19:10 1,6010D	BV	1,6010D	09/27/22 19:10	09/21/22 23:18	1	5.76	100	mg/kg		ND	Potassium, Total
Sodium, Total 1.54 J mg/kg 80.0 1.26 1 09/21/22 23:18 09/27/22 19:10 1,6010D	BV	1,6010D	09/27/22 19:10	09/21/22 23:18	1	0.103	0.800	mg/kg		ND	Selenium, Total
	BV	1,6010D	09/27/22 19:10	09/21/22 23:18	1	0.113	0.400	mg/kg		ND	Silver, Total
Thallium, Total ND mg/kg 0.800 0.126 1 09/21/22 23:18 09/27/22 19:10 1,6010D	BV	1,6010D	09/27/22 19:10	09/21/22 23:18	1	1.26	80.0	mg/kg	J	1.54	Sodium, Total
	BV	1,6010D	09/27/22 19:10	09/21/22 23:18	1	0.126	0.800	mg/kg		ND	Thallium, Total
Vanadium, Total ND mg/kg 0.400 0.081 1 09/21/22 23:18 09/27/22 19:10 1,6010D	BV	1,6010D	09/27/22 19:10	09/21/22 23:18	1	0.081	0.400	mg/kg		ND	Vanadium, Total
Zinc, Total ND mg/kg 2.00 0.117 1 09/21/22 23:18 09/27/22 19:10 1,6010D	BV	1,6010D	09/27/22 19:10	09/21/22 23:18	1	0.117	2.00	mg/kg		ND	Zinc, Total

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3050B

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2250253

Report Date: 10/07/22

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Fotal Metals - Mansfield Lab Associated sa	mple(s): 01-08,11-14	Batch: WG1688149-2				
Aluminum, Total	102	-	80-120	-		
Antimony, Total	104	-	80-120	-		
Arsenic, Total	109	-	80-120	-		
Barium, Total	100	-	80-120	-		
Beryllium, Total	109	-	80-120	-		
Cadmium, Total	103	-	80-120	-		
Calcium, Total	104	-	80-120	-		
Chromium, Total	99	-	80-120	-		
Cobalt, Total	99	-	80-120	-		
Copper, Total	102	-	80-120	-		
Iron, Total	105	-	80-120	-		
Lead, Total	107	-	80-120	-		
Magnesium, Total	103	-	80-120	-		
Manganese, Total	101	-	80-120	-		
Nickel, Total	102	-	80-120	-		
Potassium, Total	106	-	80-120	-		
Selenium, Total	108	-	80-120	-		
Silver, Total	101	-	80-120	-		
Sodium, Total	106	-	80-120	-		
Thallium, Total	107	-	80-120	-		
Vanadium, Total	102	-	80-120	-		

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number:

L2250253

Report Date:

10/07/22

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associ	ated sample(s): 01-08,11-14	Batch: WG1688149-2			
Zinc, Total	99	-	80-120	-	
Total Metals - Mansfield Lab Associ	ated sample(s): 01-08,11-14	Batch: WG1688151-2			
Mercury, Total	81	-	80-120	-	

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2250253

Report Date: 10/07/22

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield Lab Associated samp	ple(s): 15 Batch: WG16	88668-2 SRM Lot Numb	er: D113-540		
Aluminum, Total	78	-	51-149	-	
Antimony, Total	153	-	20-250	-	
Arsenic, Total	100	-	70-130	-	
Barium, Total	92	-	75-125	-	
Beryllium, Total	91	-	75-125	-	
Cadmium, Total	91	-	75-125	-	
Calcium, Total	92	-	73-128	-	
Chromium, Total	97	-	70-130	-	
Cobalt, Total	94	-	75-125	-	
Copper, Total	94	-	75-125	-	
Iron, Total	99	-	36-164	-	
Lead, Total	96	-	72-128	-	
Magnesium, Total	83	-	63-138	-	
Manganese, Total	93	-	77-123	-	
Nickel, Total	92	-	70-130	-	
Potassium, Total	83	-	59-141	-	
Selenium, Total	101	-	66-134	-	
Silver, Total	95	-	70-131	-	
Thallium, Total	89	-	70-130	-	
Vanadium, Total	98	-	74-126	-	
Zinc, Total	92	-	70-130	-	

Project Name: SOUTH HILL DUMP

Lab Number: L2250253

Project Number: 34236

Report Date: 10/07/22

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 15 Batch: WG168868	3-2 SRM Lot Number: D	113-540		
Mercury, Total	101	-	60-140	-	

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2250253

Report Date: 10/07/22

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield Lab Associated sa	mple(s): 15 Batch: WG16	90259-2 SRM Lot Numbe	er: D113-540		
Aluminum, Total	75	-	51-149	-	
Antimony, Total	132	-	20-250	-	
Arsenic, Total	96	-	70-130	-	
Barium, Total	92	-	75-125	-	
Beryllium, Total	93	-	75-125	-	
Cadmium, Total	91	-	75-125	-	
Calcium, Total	94	-	73-128	-	
Chromium, Total	95	-	70-130	-	
Cobalt, Total	95	-	75-125	-	
Copper, Total	92	-	75-125	-	
Iron, Total	96	-	36-164	-	
Lead, Total	92	-	72-128	-	
Magnesium, Total	92	-	63-138	-	
Manganese, Total	92	-	77-123	-	
Nickel, Total	92	-	70-130	-	
Potassium, Total	85	-	59-141	-	
Selenium, Total	98	-	66-134	-	
Silver, Total	99	-	70-131	-	
Sodium, Total	92	-	35-164	-	
Thallium, Total	90	-	70-130	-	
Vanadium, Total	95	-	74-126	-	

Project Name: SOUTH HILL DUMP

OUTH HILL DUMP

Project Number: 34236

Lab Number:

L2250253

Report Date:

10/07/22

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated samp	ele(s): 15 Batch: WG1690	259-2 SRM Lot Number:	D113-540		
Zinc, Total	97	-	70-130	-	

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2250253

Report Date: 10/07/22

nrameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	RPD Qual Limits
otal Metals - Mansfield La B	ab Associated sar	mple(s): 01-0	08,11-14	QC Batch ID: V	VG16881	49-3 WG	1688149-4 Q	C Samp	ole: L225025	53-02	Client ID: MW
Aluminum, Total	ND	2	2.04	102		2.04	102		75-125	0	20
Antimony, Total	ND	0.5	0.490	98		0.489	98		75-125	0	20
Arsenic, Total	ND	0.12	0.10	83		0.099	82		75-125	1	20
Barium, Total	0.151	2	2.13	99		2.13	99		75-125	0	20
Beryllium, Total	ND	0.05	0.054	108		0.054	108		75-125	0	20
Cadmium, Total	ND	0.053	0.055	103		0.055	103		75-125	0	20
Calcium, Total	39.3	10	49.9	106		49.7	104		75-125	0	20
Chromium, Total	ND	0.2	0.196	98		0.196	98		75-125	0	20
Cobalt, Total	ND	0.5	0.490	98		0.489	98		75-125	0	20
Copper, Total	ND	0.25	0.253	101		0.254	102		75-125	0	20
Iron, Total	16.3	1	14.5	0	Q	14.4	0	Q	75-125	1	20
Lead, Total	ND	0.53	0.560	106		0.554	104		75-125	1	20
Magnesium, Total	8.39	10	18.6	102		18.5	101		75-125	1	20
Manganese, Total	0.214	0.5	0.701	97		0.700	97		75-125	0	20
Nickel, Total	ND	0.5	0.502	100		0.502	100		75-125	0	20
Potassium, Total	0.933J	10	11.7	117		11.7	117		75-125	0	20
Selenium, Total	ND	0.12	0.077	64	Q	0.078	65	Q	75-125	2	20
Silver, Total	ND	0.05	0.051	101		0.051	102		75-125	1	20
Sodium, Total	5.33	10	16.1	108		16.0	107		75-125	1	20
Thallium, Total	ND	0.12	0.127	106		0.126	105		75-125	1	20
Vanadium, Total	ND	0.5	0.503	101		0.506	101		75-125	1	20

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number:

L2250253

Report Date:

10/07/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits RPD	RPD Limits
Total Metals - Mansfield La 2B	b Associated sam	ple(s): 01-0	8,11-14	QC Batch ID: WO	G1688149-3 WG1	1688149-4 Q	C Sample: L2250253-02	Client ID: MW-
Zinc, Total	ND	0.5	0.496	99	0.520	104	75-125 5	20
Total Metals - Mansfield La 2B	b Associated sam	ple(s): 01-0	8,11-14	QC Batch ID: WO	G1688151-3 WG1	1688151-4 Q	C Sample: L2250253-02	Client ID: MW-
Mercury, Total	ND	0.005	0.00480	96	0.00474	95	75-125 1	20

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2250253

Report Date: 10/07/22

arameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield L	ab Associated sar	mple(s): 15	QC Batch	ID: WG168866	8-3	QC Sample	e: L2250312-01	Client ID: MS Sa	mple	
Aluminum, Total	3850	182	5120	699	Q	-	-	75-125	-	20
Antimony, Total	ND	45.4	32.8	72	Q	-	-	75-125	-	20
Arsenic, Total	17.1	10.9	25.5	77		-	-	75-125	-	20
Barium, Total	10.9	182	157	80		-	-	75-125	-	20
Beryllium, Total	0.235	4.54	3.97	82		-	-	75-125	-	20
Cadmium, Total	0.625	4.81	4.18	74	Q	-	-	75-125	-	20
Calcium, Total	464	908	1290	91		-	-	75-125	-	20
Chromium, Total	17.0	18.2	28.1	61	Q	-	-	75-125	-	20
Cobalt, Total	0.783J	45.4	33.2	73	Q	-	-	75-125	-	20
Copper, Total	6.45	22.7	25.5	84		-	-	75-125	-	20
Iron, Total	20300	90.8	17100	0	Q	-	-	75-125	-	20
Lead, Total	24.6	48.1	56.7	67	Q	-	-	75-125	-	20
Magnesium, Total	300	908	1020	79		-	-	75-125	-	20
Manganese, Total	70.6	45.4	119	106		-	-	75-125	-	20
Nickel, Total	1.15	45.4	33.6	71	Q	-	-	75-125	-	20
Potassium, Total	619	908	1450	91		-	-	75-125	-	20
Selenium, Total	0.231J	10.9	8.11	74	Q	-	-	75-125	-	20
Silver, Total	ND	27.2	21.9	80		-	-	75-125	-	20
Thallium, Total	ND	10.9	7.42	68	Q	-	-	75-125	-	20
Vanadium, Total	26.8	45.4	63.8	81		-	-	75-125	-	20
Zinc, Total	12.0	45.4	41.8	66	Q	-	-	75-125	-	20

Project Name: SOUTH HILL DUMP

Lab Number:

L2250253

Project Number: 34236 Report Date:

10/07/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab	Associated san	nple(s): 15	QC Batch	ID: WG1688683-3	QC Sample	: L2250124-01	Client ID: MS S	ample	
Mercury, Total	ND	1.43	1.44	101	-	-	80-120	-	20

Project Name: SOUTH HILL DUMP

Project Number: 34236

Lab Number: L2250253

Report Date: 10/07/22

arameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield L	ab Associated sar	mple(s): 15	QC Batch	ID: WG169025	9-3	QC Sample	: L2251397-01	Client ID: MS S	ample	
Aluminum, Total	7360	202	10200	1400	Q	-	-	75-125	-	20
Antimony, Total	ND	50.6	23.0	45	Q	-	-	75-125	-	20
Arsenic, Total	6.11	12.1	14.4	68	Q	-	-	75-125	-	20
Barium, Total	40.1	202	190	74	Q	-	-	75-125	-	20
Beryllium, Total	0.310	5.06	3.74	68	Q	-	-	75-125	-	20
Cadmium, Total	0.254J	5.36	3.48	65	Q	-	-	75-125	-	20
Calcium, Total	1530	1010	2300	76		-	-	75-125	-	20
Chromium, Total	12.9	20.2	29.1	80		-	-	75-125	-	20
Cobalt, Total	6.52	50.6	36.3	59	Q	-	-	75-125	-	20
Copper, Total	11.0	25.3	28.5	69	Q	-	-	75-125	-	20
Iron, Total	13600	101	17200	3560	Q	-	-	75-125	-	20
Lead, Total	6.45	53.6	37.4	58	Q	-	-	75-125	-	20
Magnesium, Total	3460	1010	4980	150	Q	-	-	75-125	-	20
Manganese, Total	251	50.6	310	117		-	-	75-125	-	20
Nickel, Total	10.1	50.6	39.3	58	Q	-	-	75-125	-	20
Potassium, Total	2730	1010	4520	177	Q	-	-	75-125	-	20
Selenium, Total	ND	12.1	8.03	66	Q	-	-	75-125	-	20
Silver, Total	ND	30.4	20.5	68	Q	-	-	75-125	-	20
Sodium, Total	129	1010	856	72	Q	-	-	75-125	-	20
Thallium, Total	ND	12.1	6.50	54	Q	-	-	75-125	-	20
Vanadium, Total	21.4	50.6	61.0	78		-	-	75-125	-	20

Project Name: SOUTH HILL DUMP

Project Number:

34236

Lab Number:

L2250253

Report Date:

10/07/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield La	ab Associated sam	nple(s): 15	QC Batch	ID: WG1690259	9-3	QC Sample	: L2251397-01	Client ID: MS S	ample	
Zinc, Total	40.1	50.6	73.4	66	Q	-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: SOUTH HILL DUMP

Project Number: 34236

 Lab Number:
 L2250253

 Report Date:
 10/07/22

Parameter	Native Sample Do	uplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 15	QC Batch ID: WG1688668-	4 QC Sample:	L2250312-01	Client ID:	DUP Sample	
Arsenic, Total	17.1	16.6	mg/kg	3		20
Lead, Total	24.6	21.7	mg/kg	13		20
Total Metals - Mansfield Lab Associated sample(s): 15	QC Batch ID: WG1688683-	4 QC Sample:	L2250124-01	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/kg	NC		20
Fotal Metals - Mansfield Lab Associated sample(s): 15	QC Batch ID: WG1690259-	4 QC Sample:	L2251397-01	Client ID:	DUP Sample	
Antimony, Total	ND	ND	mg/kg	NC		20
Arsenic, Total	6.11	5.99	mg/kg	2		20
Barium, Total	40.1	59.8	mg/kg	39	Q	20
Beryllium, Total	0.310	0.395	mg/kg	24	Q	20
Cadmium, Total	0.254J	0.285J	mg/kg	NC		20
Chromium, Total	12.9	16.7	mg/kg	26	Q	20
Lead, Total	6.45	6.27	mg/kg	3		20
Nickel, Total	10.1	11.6	mg/kg	14		20
Selenium, Total	ND	ND	mg/kg	NC		20
Silver, Total	ND	ND	mg/kg	NC		20
Thallium, Total	ND	ND	mg/kg	NC		20
Vanadium, Total	21.4	28.7	mg/kg	29	Q	20
Zinc, Total	40.1	45.9	mg/kg	13		20

Lab Serial Dilution
Analysis
Batch Quality Control

Project Name: SOUTH HILL DUMP

Project Number: 34236

Report Date: 10

Lab Number:

L2250253 10/07/22

Parameter	Native Sample	Serial Dilution	Units	% D	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 15	QC Batch ID: WG1688668	3-6 QC Sample:	L2250312-01	Client ID:	DUP Sample	
Arsenic, Total	17.1	19.2	mg/kg	12		20

INORGANICS & MISCELLANEOUS

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

SAMPLE RESULTS

Lab ID: L2250253-15 Date Collected: 09/14/22 13:10

Client ID: SED-001 Date Received: 09/14/22 Sample Location: CORTLANDVILLE,NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Solids, Total	20.4		%	0.100	NA	1	-	09/20/22 08:57	121,2540G	RI

L2250253

Lab Number:

Lab Duplicate Analysis Batch Quality Control

Project Name: SOUTH HILL DUMP Batch Quality

Project Number: 34236 Report Date: 10/07/22

Parameter	Native Sample	Duplicate Sam	ple Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab Associated samp	ole(s): 15 QC Batch ID:	WG1689528-1	QC Sample: L22509	04-01	Client ID: DUP Sample
Solids, Total	19.3	19.7	%	2	20

Lab Number: L2250253

Demont Detect 40/07/00

Report Date: 10/07/22

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

SOUTH HILL DUMP

Cooler Information

Project Name:

Project Number: 34236

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2250253-01A	Vial HCI preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-01B	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-01C	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-01D	Plastic 250ml HNO3 preserved	A	<2	<2	5.1	Y	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG- TI(180),NI-TI(180),TL-TI(180),CR-TI(180),AL- TI(180),PB-TI(180),SE-TI(180),SB-TI(180),ZN- TI(180),CU-TI(180),CO-TI(180),V-TI(180),FE- TI(180),MG-TI(180),MN-TI(180),HG-T(28),CD- TI(180),K-TI(180),NA-TI(180),CA-TI(180)
L2250253-02A	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-02A1	Vial HCI preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-02A2	Vial HCI preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-02B	Vial HCI preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-02B1	Vial HCI preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-02B2	Vial HCI preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-02C	Vial HCI preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-02C1	Vial HCI preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-02C2	Vial HCI preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-02D	Plastic 250ml HNO3 preserved	A	<2	<2	5.1	Y	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG- TI(180),NI-TI(180),TL-TI(180),AL-TI(180),CR- TI(180),ZN-TI(180),CU-TI(180),SE-TI(180),SB- TI(180),PB-TI(180),V-TI(180),CO-TI(180),MN- TI(180),FE-TI(180),MG-TI(180),HG-T(28),CA- TI(180),K-TI(180),CD-TI(180),NA-TI(180)
L2250253-02D1	Plastic 250ml HNO3 preserved	A	<2	<2	5.1	Y	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG- TI(180),NI-TI(180),TL-TI(180),AL-TI(180),CR- TI(180),ZN-TI(180),CU-TI(180),SE-TI(180),SB- TI(180),PB-TI(180),V-TI(180),CO-TI(180),MN- TI(180),FE-TI(180),MG-TI(180),HG-T(28),CA- TI(180),K-TI(180),CD-TI(180),NA-TI(180)

Lab Number: L2250253

Report Date: 10/07/22

Project Name: SOUTH HILL DUMP

Project Number: 34236

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler		рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2250253-02D2	Plastic 250ml HNO3 preserved	А	<2	<2	5.1	Y	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG- TI(180),NI-TI(180),TL-TI(180),AL-TI(180),CR- TI(180),ZN-TI(180),CU-TI(180),SE-TI(180),SB- TI(180),PB-TI(180),V-TI(180),CO-TI(180),MN- TI(180),FE-TI(180),MG-TI(180),HG-T(28),CA- TI(180),K-TI(180),CD-TI(180),NA-TI(180)
L2250253-03A	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-03B	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-03C	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-03D	Plastic 250ml HNO3 preserved	А	<2	<2	5.1	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL- TI(180),SE-TI(180),CU-TI(180),PB-TI(180),SB- TI(180),ZN-TI(180),V-TI(180),CO-TI(180),HG- T(28),MN-TI(180),FE-TI(180),MG-TI(180),NA- TI(180),CD-TI(180),CA-TI(180),K-TI(180)
L2250253-04A	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-04B	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-04C	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-04D	Plastic 250ml HNO3 preserved	Α	<2	<2	5.1	Y	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG- TI(180),NI-TI(180),TL-TI(180),CR-TI(180),AL- TI(180),CU-TI(180),PB-TI(180),SB-TI(180),SE- TI(180),ZN-TI(180),CO-TI(180),V-TI(180),MG- TI(180),FE-TI(180),HG-T(28),MN-TI(180),K- TI(180),CA-TI(180),CD-TI(180),NA-TI(180)
L2250253-05A	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-05B	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-05C	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-05D	Plastic 250ml HNO3 preserved	Α	<2	<2	5.1	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),NI-TI(180),TL-TI(180),CR-TI(180),AL- TI(180),CU-TI(180),PB-TI(180),SE-TI(180),SB- TI(180),ZN-TI(180),CO-TI(180),V-TI(180),HG- T(28),FE-TI(180),MG-TI(180),MN-TI(180),CD- TI(180),CA-TI(180),K-TI(180),NA-TI(180)
L2250253-06A	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-06B	Vial HCI preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-06C	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)

Lab Number: L2250253

Report Date: 10/07/22

Project Number: 34236

SOUTH HILL DUMP

Project Name:

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2250253-06D	Plastic 250ml HNO3 preserved	A	<2	<2	5.1	Υ	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),TL-TI(180),NI-TI(180),AL- TI(180),SE-TI(180),SB-TI(180),PB-TI(180),ZN- TI(180),CU-TI(180),V-TI(180),CO-TI(180),MN- TI(180),FE-TI(180),HG-T(28),MG-TI(180),NA- TI(180),CD-TI(180),K-TI(180),CA-TI(180)
L2250253-07A	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-07B	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-07C	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-07D	Plastic 250ml HNO3 preserved	Α	<2	<2	5.1	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),AL-TI(180),NI-TI(180),CR-TI(180),TL- TI(180),ZN-TI(180),PB-TI(180),SE-TI(180),CU- TI(180),SB-TI(180),CO-TI(180),V-TI(180),MN- TI(180),FE-TI(180),HG-T(28),MG-TI(180),CA- TI(180),CD-TI(180),K-TI(180),NA-TI(180)
L2250253-08A	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-08B	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-08C	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-08D	Plastic 250ml HNO3 preserved	Α	<2	<2	5.1	Y	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG- TI(180),AL-TI(180),NI-TI(180),CR-TI(180),TL- TI(180),CU-TI(180),PB-TI(180),SB-TI(180),SE- TI(180),ZN-TI(180),V-TI(180),CO-TI(180),HG- T(28),MG-TI(180),FE-TI(180),MN-TI(180),K- TI(180),CD-TI(180),NA-TI(180),CA-TI(180)
L2250253-11A	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-11B	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-11C	Vial HCI preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-11D	Plastic 250ml HNO3 preserved	A	<2	<2	5.1	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),NI-TI(180),TL-TI(180),CR-TI(180),AL- TI(180),SB-TI(180),ZN-TI(180),PB-TI(180),SE- TI(180),CU-TI(180),V-TI(180),CO-TI(180),MN- TI(180),FE-TI(180),MG-TI(180),HG-T(28),NA- TI(180),K-TI(180),CA-TI(180),CD-TI(180)
L2250253-12A	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-12B	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
L2250253-12C	Vial HCI preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)

Lab Number: L2250253

Report Date: 10/07/22

Project Name: SOUTH HILL DUMP

Project Number: 34236

Container Information				Initial	Final	Temp			Frozen	
	Container ID	Container Type	Cooler	рН	рH	•	Pres	Seal	Date/Time	Analysis(*)
	L2250253-12D	Plastic 250ml HNO3 preserved	A	<2	<2	5.1	Y	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG- TI(180),AL-TI(180),CR-TI(180),TL-TI(180),NI- TI(180),SB-TI(180),CU-TI(180),PB-TI(180),ZN- TI(180),SE-TI(180),V-TI(180),CO-TI(180),HG- T(28),FE-TI(180),MG-TI(180),MN-TI(180),CA- TI(180),K-TI(180),CD-TI(180),NA-TI(180)
	L2250253-13A	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
	L2250253-13B	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
	L2250253-13C	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
	L2250253-13D	Plastic 250ml HNO3 preserved	Α	<2	<2	5.1	Y	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG- TI(180),TL-TI(180),AL-TI(180),CR-TI(180),NI- TI(180),PB-TI(180),SE-TI(180),SB-TI(180),CU- TI(180),ZN-TI(180),CO-TI(180),V-TI(180),FE- TI(180),HG-T(28),MG-TI(180),MN-TI(180),CA- TI(180),CD-TI(180),NA-TI(180),K-TI(180)
	L2250253-14A	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
	L2250253-14B	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
	L2250253-14C	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
	L2250253-14D	Plastic 250ml HNO3 preserved	Α	<2	<2	5.1	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),AL-TI(180),TL-TI(180),CR-TI(180),NI- TI(180),SB-TI(180),SE-TI(180),ZN-TI(180),CU- TI(180),PB-TI(180),CO-TI(180),V-TI(180),FE- TI(180),MN-TI(180),MG-TI(180),HG-T(28),CD- TI(180),K-TI(180),CA-TI(180),NA-TI(180)
	L2250253-14E	Amber 120ml unpreserved	Α	7	7	5.1	Υ	Absent		NYTCL-8082-LVI(365)
	L2250253-14F	Amber 120ml unpreserved	Α	7	7	5.1	Υ	Absent		NYTCL-8082-LVI(365)
	L2250253-15A	Plastic 2oz unpreserved for TS	Α	NA		5.1	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),NI-TI(180),CR-TI(180),TL-TI(180),AL- TI(180),SB-TI(180),SE-TI(180),PB-TI(180),CU- TI(180),ZN-TI(180),CO-TI(180),V-TI(180),HG- T(28),FE-TI(180),MN-TI(180),MG-TI(180),K- TI(180),NA-TI(180),CD-TI(180),CA-TI(180)
	L2250253-15B	Vial Large Septa unpreserved (4oz)	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
	L2250253-15C	Glass 60mL/2oz unpreserved	Α	NA		5.1	Υ	Absent		TS(7),NYTCL-8082(365)
	L2250253-15D	Glass 60mL/2oz unpreserved	Α	NA		5.1	Υ	Absent		TS(7),NYTCL-8082(365)
	L2250253-15X	Vial MeOH preserved split	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)
	L2250253-15Y	Vial Water preserved split	Α	NA		5.1	Υ	Absent	26-SEP-22 18:08	NYTCL-8260(14)
	L2250253-15Z	Vial Water preserved split	Α	NA		5.1	Υ	Absent	26-SEP-22 18:08	NYTCL-8260(14)
	L2250253-17A	Vial HCI preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)

Lab Number: L2250253

Report Date: 10/07/22

Container Information

Container information			Initial	Final	. U.I.P			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2250253-17B	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260(14)

Project Name:

Project Number: 34236

SOUTH HILL DUMP

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

GLOSSARY

Acronyms

EDL

EMPC

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:SOUTH HILL DUMPLab Number:L2250253Project Number:34236Report Date:10/07/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:SOUTH HILL DUMPLab Number:L2250253Project Number:34236Report Date:10/07/22

Data Qualifiers

Identified Compounds (TICs).

- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: SOUTH HILL DUMP Lab Number: L2250253

Project Number: 34236 Report Date: 10/07/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

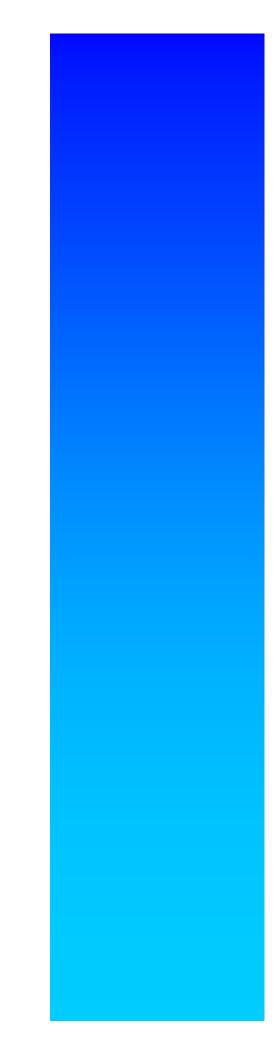
EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg


SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Regulation Regulation Regulation Regulation Regulator	ДІРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitner Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Nay	105	Page	f 2		Date Rec	9 6.9	11	51	22	агрна Job# 253	
TEL: 508-828-2309 Project Name: SoLAH Hill Duar P	Westborough, MA 01581		Project Information	1	S. COLORS	BWE 19	1	Deliv	erables	-					
Cient Information				h Hill D	i i i i i i i			ТП	ASP-A		Same as Client Info				
Client C P	FAX: 508-898-9193	FAX: 508-822-3288	Project Location: / Av	Handri	110 110			15		File)					
Client: C.	Client Information			i anavi j	it, ivi		_	1 1		1 110)			5 (4 1 110)		
Address 300		28.14/20		roject #\				Peni		uiromo	nt	-	1000	Disposal Site Information	
APPHACAUGU #: APPHACAUGU #					, ,	Malia	Λ.	NUMBER OF STREET	STREET, STREET	ullettle	1000	NIV D	+ 275		
Phone 3/5 - 4/14 - 8/6 75		att Street		1/P (1 Cov	wight /	1711556	DEYO	1 11		400000000000000000000000000000000000000	=				
Standard Due Date:	315-1111	017-	The Winds and San State of the Control of the Contr			Name and Address of the Owner, where the Owner, which is the Owner, whi							-51		
Email: A Hodgers (Leace on Panits Legush (only if pre approved) # of Days: NYC Sewer Discharge Other: These samples have been proviously analyzed by Alpha	956	- 2015	The state of the s	7	2011		THE PARTY NAMED IN					Other		(2.2)	
These samples have been proviously analyzed by Alpha Other project specific requirements/comments: Category R PDF feport Fair's 4 file (C 5 cm M ill for and Keryn ethmann) Please specify Metals or TAL. 7 A L M et 6 ls ALPHA Lab ID (Lab Use Only) Sample ID Collection Date Time Matrix Initials ARALYSIS Sample Filtration Once Lab to do Preservation ALPHA Lab ID (Lab Use Only) Sample Specific Comments ARALYSIS Sample Filtration Once Lab to do Preservation Lab to do Preservation Lab to do Preservation ARALYSIS Sample Filtration Once Lab to do Preservation ARALYSIS Sample Filtration Once La	7,7,800,000	2 1			Due Date:				NY Unrestr	icted Us	8			NJ NY	
Other project specific requirements/comments: Catering R PD F Feport Fan's 4 file Catering R PD F Feport Fan's 4 file Catering R PD F Feport Fan's 4 file Catering R PD F Feport Fan's 4 file Catering R PD F Feport Fan's 4 file Catering R PD F Feport Fan's 4 file PD F Feport Fan's 5 file PD F Fep	Email: MHOWENSIA	uchacompanies.	Rush (only if pre approved	0)	# of Days:				NYC Sewe	r Discha	rge			Other:	
Please specify Metals or TAL. 7 A L M C t	These samples have be	en previously analyze	ed by Alpha					ANA	LYSIS			Sample Filtration			
Clab Use Only				2/121		- qu		. 8260	1 1		20			Lab to do Preservation Lab to do	
Clab Use Only	ALPHA Lab ID			Col	lection	Sample	Sampler's	ĭδ	>						
10 MW-1B	(Lab Use Only)	Sa	mple ID	Date	Time	\$100.00 \$100 \$100.00 \$			X					Sample Specific Comments	
10 MW - 7 B 9 14 10 30 W AH X X X X X X X X X	50252.01	M11/-1B		9/14	-	1.1	AL	X	V	+		_	-		
1030	10)	-MW-7R						1	0	+					
1030	(2)	CHA - MSON		1///		VV	AIL	1/4	X	+	\vdash	_			
DSD X X X DEFINITION DEPOSITION DE								\ \ \	-74	+	\vdash	-	_		
CHA-OO) CHA-OO COS MW-2D IDOO X X X X IDOO X X X IDOO X X X IDOO X X X IDOO X X X IDOO X X X X IDOO X X X X IDOO X X X IDOO X X X X IDOO X X X X IDOO X X X X IDOO X X X X IDOO X X X X IDOO X X X X IDOO X X X X IDOO X X X X IDOO X X X X IDOO X X X X IDOO X X X X IDOO X X X X IDOO X X X X IDOO X X X X IDOO X X X X IDOO X X X X IDOO X X X X IDOO X X X X IDOO X X X X X IDOO X X X X IDOO X X X X IDOO X X X X IDOO X X X X X IDOO X X X			001			\vdash		X		+	\vdash	\vdash			
Container Code	THE COUNTY A			 				_		-					
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH G = NaHSO ₄ G = Glass E = NaOH B = Bacteria Cup F = MeOH G = NaHSO ₄ D = Dother H = Na ₂ S ₂ O ₃ D = BOD Bottle D = Other Westboro: Certification No: MA935 Nansfield: Certification No: MA					1050					_					
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH B = Bacteria Cup F = MeOH G = SaHSO ₄ H = Na ₂ S ₂ O ₃ D = H ₂ So ₃ D = D = Other Relinquished By; D = D = Other Relinquished By; D = D = Other Relinquished By; D = D = D = D = D = D = D = D = D = D =					1100			X	X						
Preservative Code: A = None B = HCI C = A = Amber Glass C = HNO ₃ D = H ₂ SO ₄ G = Glass E = NAOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other Westboro: Certification No: MA935 Container Type V P Please print clearly, legit and completely. Samples not be logged in and turnaround time clock will start until any ambiguities resolved. BY EXECUTION THIS COC, THE CLIENT HAS READ AND AGREE TO BE BOD Bottle Preservative B C Container Type V P Please print clearly, legit and completely. Samples not be logged in and turnaround time clock will start until any ambiguities resolved. BY EXECUTION THIS COC, THE CLIENT HAS READ AND AGREE TO BE BOUND BY ALP! TERMS & CONDITIONS (So reparts eight) (So reparts eight)	,01	MW-40			1130			×	X						
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ Westboro: Certification No: MA935 C = Mayson C = Cube D = BOD Bottle P = Plastic Mansfield: Certification No: MA935 Mansfield: Certification No: MA935 Container Type V P Please print clearly, legit and completely. Samples not be logged in and turnaround time clock will start until any ambiguities resolved. By EXECUTINE Received By: Date/Time D = BOD Bottle P = Plastic A = Amber Glass Mansfield: Certification No: MA935 Mansfield: Certification No: MA935 Mansfield: Certification No: MA935 D = H ₂ SO ₄ D = Received By: Date/Time D = Bod Bottle D = Bod Bottle P = Plastic A = Amber Glass Mansfield: Certification No: MA935 Mansfield: Certification No: MA935 Mansfield: Certification No: MA935 D = H ₂ SO ₄ D = Received By: Date/Time D = Bod Bottle D	.07	MW-45		1	1150			X	×						
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other C = Other	.04	MW-3BR			1250	4	-	X	X						
B = HCI C = HNO ₃ C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ H = Na ₂ S ₂ O ₃ E = Encore D = BOD Bottle Mansfield: Certification No: MAO15 Mansfield: Certification No: MAO15 Mansfield: Certification No: MAO15 Mansfield: Certification No: MAO15 Preservative B C Preservative B C Date/Time Received By: Date/Time F = Secural Storest Aft 4/14/27 18.50 FOR MACH AFT AFT AGINAOH D = BOD Bottle Preservative B C Date/Time F = Secural Storest Aft 4/14/27 18.50 FOR MACH AFT AFT AGINAOH D = Other Preservative B C Date/Time F = Secural Storest Aft 4/14/27 18.50 FOR MACH AFT AFT AGINAOH D = BOD Bottle D = BOD Bottle D = Other Preservative B C Date/Time F = Secural Storest Aft 4/14/27 18.50 FOR MACH AFT AFT AGINAOH D = Other Preservative B C Date/Time F = Secural Storest Aft 4/14/27 18.50 FOR MACH AFT AFT AGINAOH D = Other Preservative B C Date/Time F = Secural Storest Aft 4/14/27 18.50 FOR MACH AFT AFT AGINAOH D = Other F = MeOH D = Other Preservative B C Date/Time F = Secural Storest Aft 4/14/27 18.50 FOR MACH AFT AFT AGINAOH D = Other F = MeOH D = Other			Westboro: Certification N	lo: MA935										Discounded stands to the	
This coc, the client of the cock with the co			Mansfield: Certification N	lo: MAO15		Con	tainer Type	V	P						
Termson time clock will start until any ambiguities resolved. By Executive B C Software Start until any ambiguities resolved.										_					
Start until any ambiguities F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ E = Encore D = BOD Bottle Relinquished By; Date/Time Received By: Date/Time Received By: Date/Time Received By: Date/Time Received By: Date/Time Phylip 2 15:50 Seluct Storey AAL 4/14/27 15:50 HAS READ AND AGREE TO BE BOUND BY ALPH TO BE BOUND BY ALPH TERMS & CONDITIONS TERMS & CONDITIONS TERMS & CONDITIONS						P	reservative	B	6					turnaround time clock will	
G = NaHSO ₄ H = Na ₂ S ₂ O ₃ C/E = Zn Ac/NaOH D = Other D = NaHSO ₄ H = Na ₂ S ₂ O ₃ C/E = Zn Ac/NaOH D = Other			2222					0		_				start until any ambiguities	
H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH D = BOD Bottle T = BOD B	G = NaHSO ₄	O = Other	7. 1 17											TING 000 THE 01 ITHE	
0 = Other	1 = Na ₂ S ₂ O ₃ E		Mohn May	160	7/14/22	15:50	Sewa	57	Drase 1	HAL	9/1	4/27	15.50		
Juny Cin 9/14/27 18.53 C-2- 9/15/22 0010 TERMS & CONDITIONS	VE - ZII ACINAUN	= BOD Bottle			4/14/27	18.50	Jon	nC	un	AAL	-			TO BE BOUND BY ALPH	
(Soo roverse side)	D = Other		Jun Cir)											
WHILE THE THE THE THE THE THE THE THE THE TH	Form No: 01-25 HC (rev. 30-	Sept-2013)	11		111111111111111111111111111111111111111						71.	, ,	0010	(See reverse side.)	

ΔLPHA	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Page 2 o			Date in I	Rec'd Lab	9,	13	51.	2)		ALPHA JOB# 5025	3		
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Delive	erable	5						Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: South Hill Dump						ASP-A ASP-B							Same as Client Info	
1 FAX: 000-000-0100	PAX. 300-022-3200	Project Location: Cor-			•			EQui	S (1 Fil	le)	V	EQul:	S (4 F	ile)	PO#34236	
Client Information		Project# 3423		,,,,				Other							-1236	
Client: CHA Low	inlting	(Use Project name as Pr	roject#)				Regul	latory	Requir	ement		187		7 -0	Disposal Site Information	
Address: 300 5. 5		Project Manager: M	elissa	Devo				NY TO	GS	NAME OF TAXABLE PARTY.	П	NY Pa	rt 375		Please identify below location of	_
Suite 600		ALPHAQuote #:		007			1 🗔	AWQ :	Standar	ds	$\overline{\Box}$	NY CF	-51		applicable disposal facilities.	
Phone: 315 - 414 -9	675	Turn-Around Time	1228 114	SUSSIL S	SHOWE !	1000	ī	NY Re	stricted	Use	$\overline{\Box}$	Other			Disposal Facility:	*****
Fax:		Standard	N F	Due Date			=					etato e tra			□ NJ □ NY	
	Cha chun Dale	Bush (only if pre approved		# of Days			NY Unrestricted Use NYC Sewer Discharge							Other:		
These samples have been				# OI Days			ANAL	-	DAY 2011 1	iacriary	-			_	Sample Filtration	T
Other project specific r			/ PDF Res	21/50	116	1 -	ANAL					-			Sample rittration	-8
CC Sam Mille	v and Kar	yn Ehmanh	ZIN HE	ory Egy	nis 4-bi	!6	c \$260	Metals+ Hg	B 8082		C 8260	Metals + Hg	9082	N	☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below)	The second secon
ALPHA Lab ID	Sa	mple ID	Col	lection	Sample	Sampler's	0	_	2		00	Al	5 Z	Total		ı
(Lab Use Only)		mpie ito	Date	Time	Matrix	Initials	=	TA	9		-	K	9	70	Sample Specific Comments	1
50253,11,04	MW-3SR		9114	1240	w	AH	Х	Χ								Ī
176315-10	MW-35R	2	1	1320	1		X	X			\neg					t
13.41	MW-3BR7	2		1346	1		V	X			\neg					t
74	SW-001			1305	1		v V	X	X		\neg					†
15	SED-001			1310	Sediment						X	X	V	V		t
17	Trip Blan	· k	1	1010	Cab water		X			\rightarrow	$\overline{}$			1		1
	T BIE									_	_	\neg				ť
MINISTER STREET			-					-		-	\rightarrow	-		_		t
								-	_	-	\rightarrow	-	_			t
								-	\rightarrow	-	-					+
I = None P		Westboro: Certification N Mansfield: Certification N		1.	Con	tainer Type	٧	P	A	\top	A	A	Α	P	Please print clearly, legib and completely. Samples	
= H ₂ SO ₄ G = NaOH B	= Vial = Glass = Bacteria Cup				Р	reservative	В	C	A		AA		A	A	not be logged in and turnaround time clock will not start until any ambiguities are	
111	= Cube = Other	, Relinquished I	Receive	ed By				Date/	Time	- 10	resolved. BY EXECUTING					
I = NB ₂ S ₂ O ₃ E	= Encore	andre Min	2 15:5		1451			46			15:	50	THIS COC, THE CLIENT			
/E = Zn Ac/NaOH D = Other	= BOD Bottle	Sever Stors	my 05.81 4/1/1/1 18.00 mm				v Cen				9/4/22 /81.50				HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.	
orm No: 01-25 HC (rev. 30-8 ge 109 of 109	ept-2013)	1-1								\neg	11				(See reverse side.)	

