

November 21, 2007

Ms. Karen Cahill New York State Department of Environmental Conservation 615 Erie Boulevard Syracuse, New York 13204

Re: September/October Site Investigation

Bristol-Myers Squibb Company

Krutulis Property Kirkville, New York

File: 2874/40312 #2

Dear Ms. Cahill:

This letter report summarizes the results of additional site investigation activities conducted at the Krutulis property located at 848 Marsh Mill Road in Kirkville, New York (Figure 1) during September and October 2007.

Field Investigation Activities

The field investigation activities completed during September and October 2007 included the following:

- soil boring advancement and subsurface soil sample collection
- temporary ground water monitoring well installation
- permanent ground water monitoring well installations
- ground water sample collection
- surveying

Soil Boring Advancement and Subsurface Soil Sample Collection

The objective of the soil borings and subsurface soil sample collection activities was to provide data to evaluate the horizontal and vertical extent of volatile organic compounds (VOCs) in soil to develop an estimate of the boundaries of a potential *in situ* soil treatment area.

Eight soil borings (SB-01 through SB-08) were advanced to the underlying till using hollow stem auger drilling methods. The locations of these soil borings are shown on Figure 2. Soil samples were collected continuously from grade to the terminal depth of each boring using 2-inch diameter split barrel samplers. The soil samples were described as to color, moisture content, density, grain-size, and odors/staining. Each soil sample was screened in the field for the presence of total VOCs using photoionization detector (PID), as well as the potential presence of non-aqueous phase liquid (NAPL) using Oil-Red-O. Oil-Red-O is a hydrophobic dye that is practically insoluble in water, but will dye

organic NAPL bright red upon contact. Approximately 1 gram of soil and a small amount of Oil-Red-O were placed in a new, clean 40-ml glass vial with 20 milliliters of de-ionized water. The sample was mixed by vigorously shaking the vial for thirty seconds, and visually examined for the presence of residual source material. None of the soil samples tested indicated the presence of NAPL using the Oil-Red-O dye.

The soil descriptions and field screening information were recorded on soil boring logs. Soil boring logs are provided in Appendix A.

Four soil samples were submitted from each soil boring for analysis of VOCs using USEPA Method 8260. Soil samples exhibiting the highest PID readings at various depths were submitted. The soil samples were analyzed by Life Science Laboratories, Inc. in Syracuse, New York. The VOCs detected in the soil samples are summarized on Table 1 and shown on Figure 3. Laboratory data sheets are provided in Appendix B.

Subsequent to completion, each soil boring was backfilled with cement/bentonite grout.

Temporary Ground Water Monitoring Well Installation

The objective of the temporary ground water monitoring well installation activities was to provide data to characterize the current VOC ground water conditions near former HydroPunch® sampling location HP-6S, collected in 1994.

Temporary shallow monitoring well TW-01 was installed adjacent to former HydroPunch® sampling location HP-6S, as shown on Figure 2. The borehole for TW-01 was advanced to a depth of approximately 22.5-ft below ground using 3.25-inch hollow stem augers. During advancement of the augers, soil samples were collected continuously for descriptive purposes.

TW-01 was constructed using a 2-inch diameter, 0.010-inch slot PVC screen from approximately 12.5-ft to 22.5-ft below ground to incorporate the 15-ft sample depth of the former HydroPunch® sample HP-6S. Prior to sampling, approximately 6 gallons of water was removed at which point the well was essentially dry. The water was allowed to recharge overnight and the sample was collected the following morning within 12 hours of purging. The ground water sample was submitted to Life Science Laboratories, Inc. for rush (24-hour turnaround) VOC analysis via USEPA Method 8260.

The results of the ground water sample are summarized on Table 2. Laboratory data sheets are provided in Appendix B. As summarized on Table 2, VOCs were not detected in the TW-01 sample. As the results of this sample did not indicate the presence of VOCs, the temporary well was removed and the borehole filled with cement/bentonite grout in accordance with the New York State Department of Environmental Conservation (NYSDEC) approved Work Plan.

Permanent Ground Water Monitoring Well Installations

The objective of the ground water monitoring well installation activities was to provide additional data to evaluate the following:

- the vertical extent of VOCs in ground water below the MW-3 screen depth of approximately 17-ft below grade by installing monitoring well MW-3D
- the potential presence of VOCs in shallow and deep ground water at a location approximately 200-ft upgradient of MW-3 by installation of monitoring wells MW-6S and MW-6D

The locations of MW-3D, MW-6S, and MW-6D are shown on Figure 2.

Each monitoring well was installed using 4.25-inch inside diameter hollow stem augers. The monitoring wells were constructed using a 10-ft length of 2-inch diameter Schedule 40 PVC well screen with 0.010-inch slots, flush-threaded to 2-inch diameter Schedule 40 PVC riser casing. The well heads were completed approximately 3-ft above grade using four-inch diameter lockable steel protective casing set within concrete surface pads.

Monitoring well MW-6S is screened between 12-ft and 22-ft below grade to be positioned at elevations similar to existing shallow wells MW-3, MW-4, and MW-5. Monitoring well MW-3D is screened between 19-ft and 29-ft below grade to the top of till. Monitoring well MW-6D is screened between 24-ft and 34-ft below grade to the top of till. The well screens at monitoring wells MW-3D and MW-6D are similar in elevation.

During the advancement of the borings for the monitoring wells, soil samples were collected continuously in 2-ft intervals from grade to the terminal depth of each boring using 2-inch diameter split barrel samplers. The soil samples were described as to color, moisture content, density, grain-size, and odors/staining. Each soil sample was screened in the field for the presence of total VOCs using PID, as well as the potential presence of NAPL using Oil-Red-O. None of the soil samples tested indicated the presence of NAPL using the Oil-Red-O dye.

Based on the field screening, a total of nine soil samples from the three monitoring wells were submitted for VOC analysis using USEPA Method 8260. A summary of the VOCs detected in the soil samples is provided on Table 1. In addition to VOCs, a representative soil sample was collected from soil generated during the installation of MW-6S and MW-6D for natural soil oxidant demand (SOD) analysis. This sample was submitted to Carus Corporation of Peru, Illinois for SOD, using permanganate, via the Standard Test Method for Determining the Permanganate Soil Oxidant Demand. The information gathered from this test can be used to estimate oxidant-dosing requirements for Site soils. The following table summarizes the 48-hour SOD results for low, medium, and high permanganate doses received from Carus Corporation:

Low Dose (g/kg)	Medium Dose (g/kg)	High Dose (g/kg)	Soil Moisture (%)
1.3	2.4	4.6	20.76

Note: Oxidant demands were calculated on a weight $KmnO_4/dry$ soil weight basis. To convert the demand results from a dry basis to an as received basis, multiply the dry value by 1 minus the moisture. For example, the demand from the high dose is $4.6 \text{ k/kg (dry)} \times (1 - 0.2076) = 3.6 \text{ g/kg (as received)}$.

A representative soil sample was also sent to Bioremediation Consulting Inc (BCI) of Watertown, Massachusetts to be archived at BCI's laboratory for the potential future construction of ground water microcosms for biodegradation treatability testing.

The soil descriptions and field screening information were recorded on soil boring logs. Soil boring logs are provided in Appendix A.

Once installed, the monitoring wells were developed to remove the fine-grained material from the well and to improve the hydraulic connection with the water-bearing materials. Development consisted of hand bailing and surging the screened intervals. Well development was considered complete after five well volumes had been removed from each well.

Ground Water Sample Collection

Subsequent to development, each newly installed permanent monitoring well, and existing monitoring well MW-3 was sampled using low-flow ground water sampling methods. Ground water sampling logs are provided in Appendix C. Ground water samples from the newly installed monitoring wells MW-3D, MW-6S, and MW-6D, and existing monitoring well MW-3 were analyzed for VOCs via USEPA Method 8260 and headspace hydrocarbons (methane, ethane, ethene) via USEPA Method 8015 by Life Science Laboratories, Inc. In addition, the ground water sample from MW-3 was analyzed for the following *in situ* treatability parameters:

- Chloride via EPA Method 325.2
- Total organic carbon (TOC) via EPA Method 415.1
- Alkalinity via EPA Method 310.1
- Sulfate via EPA Method 375.4
- Sulfide via EPA Method 376.2
- Nitrate via EPA Method 353.2
- Nitrite via EPA Method 353.2
- Total iron via EPA Method 6010
- Total manganese via EPA Method 6010
- Total dissolved solids via EPA Method 160.1
- Total phosphate via EPA Method 365.2
- Total sodium via EPA Method 6010
- Total potassium via EPA Method 6010
- Total calcium via EPA Method 6010
- Total magnesium via EPA Method 6010

The VOCs detected in the ground water samples are summarized on Table 2 and shown on Figure 4. The headspace hydrocarbon data are summarized on Table 3. The treatability parameter data are summarized on Table 4. Laboratory data sheets are provided in Appendix B.

In addition to the VOC samples, a four-liter ground water sample was collected for *Dehalococcoides* from MW-6S and shipped to BCI. The sample has been archived at BCI's laboratory for the potential future construction of ground water microcosms for biodegradation treatability testing.

Surveying

Each of the newly installed monitoring wells and soil borings were surveyed for horizontal and vertical control by a New York State licensed surveyor. Horizontal positions and elevations of the monitoring wells and soil borings were tied into the existing site datum. Horizontal accuracy was 0.01-ft. Monitoring wells were surveyed to the nearest 0.01 feet at the top of the wells riser pipe (measuring point) and top of protective steel casing. The ground surface at each location was surveyed to the nearest 0.1 feet.

After you have had a chance to review these data, we would like to meet with you at Bristol-Myers Squibb Company's Syracuse office to discuss the results and future site activities on one of the following dates: December 12, 2007, December 13, 2007 or December 14, 2007. Please e-mail me which dates you would be available to meet with us.

Very truly yours,

O'BRIEN & GERE

Marc J. Dent, P.E. Managing Engineer

Mare Dens

 $I:\DIV58\Projects\2874-BMS\40312\Docs\Reports\NYSDEC_LTR_11-21-07_final.doc$

cc: D. Morrison – Bristol-Myers Squibb Company

D. Plutto – Bristol-Myers Squibb Company

J.R. Pooler – Bristol-Myers Squibb Company

W.J. Sivak – Bristol-Myers Squibb Company

TABLES

Table 1
Bristol-Myers Kirkville Site
Kirkville, New York

	Boring I.D.		SB	-01			SB	-02	
	Sample Depth	2-4	10-12	18-20	24-26	2-4	12-14	20-22	24-26
	Collection Date	9/27/07	9/27/07	9/27/07	9/27/07	9/27/07	9/27/07	9/27/07	9/27/07
Chemical Constituent	Units	ug/kg							
1,1,2,2-Tetrachloroethane		<2	<10	<20	<20	<20	<200	<200	<30
1,2,4-Trimethylbenzene		<2	<10	<20	<20	<20	<200	<200	<30
1,3,5-Trimethylbenzene		<2	<10	<20	<20	<20	<200	<200	<30
Benzene		<2	<10	<20	<20	52	<200	<200	<30
Chloroform		<2	<10	<20	<20	<20	<200	300	<30
cis-1,2-Dichloroethene		<2	<10	<20	<20	1,200	<200	<200	<30
Ethylbenzene		<2	<10	<20	<20	<20	<200	<200	<30
Isopropylbenzene		<2	<10	<20	<20	<20	<200	<200	<30
Methylene Chloride		<2	<10	<20	<20	<20	<200	<200	<30
n-Butylbenzene		<2	<10	<20	<20	<20	<200	<200	<30
n-Propylbenzene		<2	<10	<20	<20	<20	<200	<200	<30
sec-Butylbenzene		<2	<10	<20	<20	28	<200	<200	<30
Tetrachloroethene		<2	<10	<20	<20	<20	<200	<200	<30
Toluene	_	<2	<10	<20	<20	<20	<200	<200	<30
trans-1,2-Dichloroethene	_	<2	<10	<20	<20	<20	<200	<200	<30
Trichloroethene		5.3	<10	<20	<20	37	1,500	1,800	59
Vinyl Chloride		<2	<10	<20	<20	340	<200	<200	<30

Table 1
Bristol-Myers Kirkville Site
Kirkville, New York

	Boring I.D.		SB	-03			SB	-04	
	Sample Depth	2-4	10-12	18-20	30-32	2-4	12-14	20-22	32-34
	Collection Date	9/26/07	9/26/07	9/26/07	9/26/07	9/25/07	9/25/07	9/25/07	9/25/07
Chemical Constituent	Units	ug/kg							
1,1,2,2-Tetrachloroethane		<10	<200	<200	<200	<2	<10	<30	<20
1,2,4-Trimethylbenzene		<10	<200	<200	<200	<2	<10	<30	<20
1,3,5-Trimethylbenzene		<10	<200	<200	<200	<2	<10	<30	<20
Benzene		<10	<200	<200	<200	<2	<10	<30	<20
Chloroform		<10	<200	<200	<200	<2	<10	<30	<20
cis-1,2-Dichloroethene		110	840	<200	<200	<2	<10	<30	<20
Ethylbenzene		<10	<200	<200	<200	<2	<10	<30	<20
Isopropylbenzene		<10	<200	<200	<200	<2	<10	<30	<20
Methylene Chloride		<10	<200	<200	<200	<2	<10	<30	<20
n-Butylbenzene		<10	<200	<200	<200	<2	<10	<30	<20
n-Propylbenzene		<10	<200	<200	<200	<2	<10	<30	<20
sec-Butylbenzene		<10	<200	<200	<200	<2	<10	<30	<20
Tetrachloroethene		<10	270	<200	<200	<2	<10	<30	<20
Toluene		<10	<200	1,700	<200	<2	<10	<30	<20
trans-1,2-Dichloroethene	_	<10	<200	220	<200	<2	<10	<30	<20
Trichloroethene		<10	2,600	12,000	3,700	<2	<10	<30	<20
Vinyl Chloride		91	<200	<200	<200	<2	<10	<30	<20

Table 1
Bristol-Myers Kirkville Site
Kirkville, New York

	Boring I.D.		SB	-05			SB	-06	
	Sample Depth	2-4	10-12	20-22	30-32	2-4	8-10	22-24	28-30
	Collection Date	9/28/07	9/28/07	9/28/07	9/28/07	9/27/07	9/27/07	9/27/07	9/27/07
Chemical Constituent	Units	ug/kg							
1,1,2,2-Tetrachloroethane		<2	<2	<20	<20	<2	<9	<200	<200
1,2,4-Trimethylbenzene		<2	<2	<20	<20	<2	<9	<200	<200
1,3,5-Trimethylbenzene		<2	<2	<20	<20	<2	<9	<200	<200
Benzene		<2	<2	<20	<20	<2	<9	<200	<200
Chloroform		<2	<2	<20	<20	<2	<9	<200	<200
cis-1,2-Dichloroethene		<2	<2	<20	<20	<2	<9	<200	<200
Ethylbenzene		<2	<2	<20	<20	<2	<9	<200	<200
Isopropylbenzene		<2	<2	<20	<20	<2	<9	<200	<200
Methylene Chloride		<2	<2	<20	<20	<2	<9	<200	<200
n-Butylbenzene		<2	<2	<20	<20	<2	<9	<200	<200
n-Propylbenzene		<2	<2	<20	<20	<2	<9	<200	<200
sec-Butylbenzene		<2	<2	<20	<20	<2	<9	<200	<200
Tetrachloroethene		<2	<2	<20	<20	<2	<9	<200	<200
Toluene		<2	<2	<20	<20	<2	<9	1,200	350
trans-1,2-Dichloroethene		<2	<2	<20	<20	<2	<9	<200	<200
Trichloroethene		<2	3.5	<20	<20	<2	510	8,500	3,300
Vinyl Chloride		<2	<2	<20	<20	<2	<9	<200	<200

Table 1
Bristol-Myers Kirkville Site
Kirkville, New York

	Boring I.D.		SB	-07			SB	-08	
	Sample Depth	2-4	16-18	22-24	28-30	2-4	10-12	20-22	32-34
	Collection Date	9/26/07	9/26/07	9/26/07	9/26/07	9/25/07	9/25/07	9/25/07	9/25/07
Chemical Constituent	Units	ug/kg							
1,1,2,2-Tetrachloroethane		<3	<200	<200	<200	<2	<200	<30	<30
1,2,4-Trimethylbenzene		<3	480	<200	<200	<2	<200	<30	<30
1,3,5-Trimethylbenzene		<3	2,100	<200	<200	<2	<200	<30	<30
Benzene		<3	<200	<200	<200	<2	<200	<30	<30
Chloroform		<3	<200	<200	<200	<2	<200	<30	<30
cis-1,2-Dichloroethene		<3	<200	<200	<200	<2	<200	<30	<30
Ethylbenzene		<3	<200	<200	<200	<2	<200	<30	<30
Isopropylbenzene		<3	490	<200	<200	<2	<200	<30	<30
Methylene Chloride		3.8	<200	<200	<200	<2	<200	<30	<30
n-Butylbenzene		<3	<200	<200	<200	<2	<200	<30	<30
n-Propylbenzene		<3	460	<200	<200	<2	<200	<30	<30
sec-Butylbenzene		<3	<200	<200	<200	<2	<200	<30	<30
Tetrachloroethene		<3	330	<200	<200	<2	<200	<30	<30
Toluene		<3	<200	800	210	<2	<200	<30	<30
trans-1,2-Dichloroethene	_	<3	<200	<200	<200	<2	<200	<30	<30
Trichloroethene		<3	380	2,800	1,100	<2	3,100	<30	<30
Vinyl Chloride		<3	<200	<200	<200	<2	<200	<30	<30

Table 1
Bristol-Myers Kirkville Site
Kirkville, New York

	Boring I.D.		MW-3D		MW	'-6S		MW	′-6D	
	Sample Depth	8-10	18-20	26-28	10-12	16-18	8-10	18-20	22-24	30-32
	Collection Date	10/2/07	10/2/07	10/2/07	10/1/07	10/1/07	10/1/07	10/1/07	10/1/07	10/1/07
Chemical Constituent	Units	ug/kg								
1,1,2,2-Tetrachloroethane		16	<15	<3	<3	<15	<3.1	<360	<3.1	<3
1,2,4-Trimethylbenzene		<3	<15	<3	<3	<15	<3.1	<360	<3.1	<3
1,3,5-Trimethylbenzene		<3	<15	<3	<3	<15	<3.1	<360	<3.1	<3
Benzene		<3	<15	<3	<3	<15	<3.1	<360	<3.1	<3
Chloroform		<3	<15	<3	<3	<15	<3.1	<360	<3.1	<3
cis-1,2-Dichloroethene		11	<15	<3	<3	<15	<3.1	<360	30	<3
Ethylbenzene		<3	51	<3	<3	<15	<3.1	<360	<3.1	<3
Isopropylbenzene		6.9	<15	<3	<3	<15	<3.1	<360	<3.1	<3
Methylene Chloride		<6	<29	13	<6	<30	<6.2	<710	<6.3	<6
n-Butylbenzene		<3	<15	<3	<3	38	4.2	<360	<3.1	<3
n-Propylbenzene		<3	<15	<3	<3	<15	<3.1	<360	<3.1	<3
sec-Butylbenzene		24	<15	<3	<3	24	<3.1	<360	<3.1	<3
Tetrachloroethene		43	1,000	<3	<3	<15	<3.1	<360	<3.1	<3
Toluene		<3	100	<3	<3	<15	<3.1	7,000	5,000	3.3
trans-1,2-Dichloroethene		<3	<15	<3	<3	<15	<3.1	<360	110	<3
Trichloroethene		200	7,900	9.1	<3	<15	<3.1	3,900	7,700	8.1
Vinyl Chloride		<6	<29	<6	<6	<30	<6.2	<710	<6.3	<6

Table 2

Bristol-Myers Kirkville Site Kirkville, New York

Detected Volatile Organic Compounds in Ground Water Samples

i	144 H L D		10110	101/ 00	101/ 20	104/ 25
	Well I.D.	TW-1	MW-3	MW-3D	MW-6S	MW-6D
	Screened Interval Depth Below Grade	12.5 - 22.5	7 - 17	19 - 29	12 - 22	24 - 34
	Screened Interval Elevation	276.2 - 266.2	283.5 - 273.5	273.1 - 263.1	284.5 - 274.5	273.0 - 263.0
	Collection Date	9/25/07	10/18/07	10/18/07	10/18/07	10/18/07
Chemical Constituent	Units	ug/l	ug/l	ug/l	ug/l	ug/l
cis-1,2-Dichloroethene		<0.5	3,230	<100	<10	<25
Toluene		<0.5	<100	<100	530	1,470
Trichloroethene		<0.5	1,140	1,030	677	1,940
Vinyl Chloride		<1	624	<200	<20	<50

Table 3

Bristol-Myers Kirkville Site Kirkville, New York

Headspace Hydrocarbons

	Well I.D.	MW-3	MW-3D	MW-6S	MW-6D
	Screened Interval Depth Below Grade	7 - 17	19 - 29	12 - 22	24 - 34
	Screened Interval Elevation	283.5 - 273.5	273.1 - 263.1	284.5 - 274.5	273.0 - 263.0
	Collection Date	10/18/07	10/18/07	10/18/07	10/18/07
Chemical Constituent	Units	mg/l	mg/l	mg/l	mg/l
Ethane		< 0.0041	< 0.021	< 0.0042	< 0.0042
Ethene		0.0054	< 0.021	< 0.0042	<0.0042
Methane		0.012	0.27	0.0028	0.013

Table 4

Bristol-Myers Kirkville Site Kirkville, New York

Treatability Parameters

Well I.D.	MW-3
Screened Interval Depth Below Grade	7 - 17
Screened Interval Elevation	283.5 - 273.5
Collection Date	10/18/07
Units	mg/l
Chemical Constituent	
Chloride	6.1
Nitrate (as N)	< 0.020
Nitrite (as N)	< 0.020
Orthophosphate (as P)	< 0.050
Sulfate (as SO ₄)	38
Total Dissolved Solids	29,000
Alkalinity (as CaCO ₃)	160
Total Organic Carbon	1.3
Sulfide	<1.0
Calcium	52
Iron	3.3
Magnesium	19
Manganese	0.071
Potassium	< 5.0
Sodium	3.0

FIGURES

ADAPTED FROM: CLEVELAND AND MANLIUS, NEW YORK USGS QUADRANGLE

FIGURE 2

LEGEND

- MEMBRANE INTERFACE PROBE
- HYDROPUNCH
- MONITORING WELL
- **SOIL BORING**
- ---- PROPERTY LINE
- EDGE OF WATER/POND

**** TREE LINE

APPROXIMATE DIRECTION OF GROUND WATER FLOW (SEPTEMBER 7, 2007)

KRUTULIS PROPERTY KIRKVILLE, NEW YORK

SOIL BORING AND MONITORING WELL LOCATIONS

NOVEMBER 2007 2874.40312

FIGURE 3

LEGEND

- MEMBRANE INTERFACE PROBE
- HYDROPUNCH
- MONITORING WELL
- ▲ SOIL BORING
- ---- PROPERTY LINE
- --- EDGE OF WATER/POND

MMM TREE LINE

KRUTULIS PROPERTY KIRKVILLE, NEW YORK

DETECTED VOCs IN SOIL SAMPLES

OCTOBER 2007 2874.40312

FIGURE 4

LEGEND

- HYDROPUNCH
- MONITORING WELL
- ▲ SOIL BORING
- ---- PROPERTY LINE
- --- EDGE OF WATER/POND
- **** TREE LINE

KRUTULIS PROPERTY KIRKVILLE, NEW YORK

DETECTED VOCs IN GROUND WATER SAMPLES

OCTOBER 2007 2874.40312

Appendix A

Soil Boring Logs

						SOIL BORING LOG	R	EPORT C	F BOR	NG
O'BRII	EN &	k GER	E ENGI	NEERS, IN	IC.			3R-01		
		***************	er-Squib	000000000000000000000000000000000000000		Sampler: 2" split spoon-	Location:		Kirkville, I	۷Y
Proj. L	oc:	Kirville	, NY			Hammer: 150168 deep	Page:		of	2_
						 _ a		: 001-27		
File No				. 141-155	,	Fall: 30"	·	-01-27·	Grout	
			Parrati				Riser		Sand Pag	:k
ORG G	an. eolo	nist. ∂a/aw	ر کی گرزر Paul Fr	ر ever					Bentonit	. 1
0000		giot.					Stratum			eld
Depth				Penetr/		·	Change			ting
Below			Blows			Sample Description	General	Equip.	PID	Time
Grade	No.		/6"	(in ft)	Value		<u> </u>	Installed	(ppm)	(hhmm)
0		2	3-3	2/1.4	<u>, 6</u>	O. G. Dugky Yellowish Brown (10 YR 2/2) Domp, firm f. sandpand silt, trace class Plant Gragulanta roots	silt-sunt		2.0	1218
	- 		3-4			Plant Crantents roots	,			
	_					0.8 Yellowish Brown (104R 5/2) damp				
-						to saturated, FaSand, little Silt.				
2_		4	5-2	2/1.5	4	1.5' SAA	Analyt		0.6	10.3
			2-2	····································			Samp			1220
				21.	7	1.0 SAA ,	-			
4		Ģ	2-3-	2/1.2		•			0.5	
			<u>4-4</u>			O.Z Moderate Yellowish Brown (5489)	Ð		0.5	1224
			3.	·			*			,
						<u></u>	Fine Sand Silt			
9		8	2-2	2/1/2	5	O. 2 SAN	Fine			
			3-2			10 Grangish Brown (SYR 4/2) Saturated, 1005c f. Sand, little sit.	Si''		0.8	12 78
						Saturated, 1005c f. sand, little sitt.			:	10.50
	_					}				
Q'		10	2-2	2/1.3	4	1,3' SAA	-]	1.5	
			2-3	7					, ,	1230
				- 1				;		
10		اک	W-W	2/0.8		O-8' SAA	Analyt		2.1	1236
			1-2				Samp			
12_		14	2-3	2/1,3	5	1.3' SAA	<u> </u>			
16			2-1	-2/113					1.7	1238
14		[હ	w-₩	2/0.4	Image: section of the	O.H. SAA			1, 2	
			2.0						0	1243
	_				2	Tala 2018 Rep 1 (CVR 4/2)	-			
16		18	<u>V-W</u>	2/1.0		1.01 arong ish Brown (SYR4/2) Sofurated, found 195114			0.6	
						taninations,				1246
							1			
18		20	2-4	2/1.2	俄	1.2 SAA	Analyt		1,3	1249
			L1 - (p	/			Semp			
			1	2/0/60	۷.	Ø · G · S · A A	<u> </u>			
20		22	12-12 12-12	2/0.6	}-	J 0. 4 3 HA			1 . 1	1253
	\dashv		~~~			1			0.9	
22		24	2-2	2/1.5	Ц	1.5' Grayish Brown (5YR 4/2) satura	ed .		0.0	12555
			<u> </u>	1		1.5' Granish Brown (SYR 4/2) satura 1005, F. Sand, little 31H. One 315" layer of FM Sand				
						one 815" layer of FM Band	<u> </u>	<u> </u>	<u></u>	

è

						SOIL BORING LOG	R	EPORT (OF BOR	ING
O'BRI	ĒΝ	& GER	E ENG	INEERS, I	VC.			SB-01		
2000 0000000000000000000000000000000000			er-Squi			Sampler: 2" Split Spoon	Location:		Kirkville,	
		Kirville				Hammer: 150 lbs Drop	Page:	7	of	2
						E-III CAN		3: 9-27-07 : 9-27-07		
File No). <u>:</u>		Davis	+ \8/0166		Fall: 30"	Screen		Grout	
		mpany: Johann	Parrat	I-VVOIII			Riser		Sand Pa	ck
		Jaraan ogist:		rever					Bentonit	e
	T		<u> </u>	''			Stratum			eld
Depth			ļ	Penetr/			Change			ting Time
Below			Blows			Sample Description	General Descript	Equip.	PID (ppm)	(hhmm)
Grade	No.		/6"	(in ft)	Value	0.2 SAA		mstaneu	(ppiii)	1300
24		50	10-10 10-10	2/10	10	0. L' SAA	FD		, 1	1,500
			10 10			0.6 Groupish Red (10R4/2) gutwater 1009@ FM Sand, little Sitt, trace FM	Rewarked		lol	
		<u> </u>				crowel,	11:77			
						o.2 Grayish Red (10 R4/2) domp dense of FMC gravel in a matrix of	11,7		[1,3 ⊭	
						o¢ /		,	£ _	1303
2,6		26.8	30-50/63	.8/ag	750	0.8 SAA]			
			<u> </u>			Refusal@ 26,81				
			<u> </u>							
									.	
				<u> </u>						
				· · · · · · · · · · · · · · · · · · ·						
				<u> </u>						
	SEE.									
39. 127										

,

						SOIL BORING LOG	R	EPORT (F BOR	ING
O'BRI	EN	s GER	E ENG	INEERS, I	VC.			SB-02		
Client:	Bris	tol-My	er-Squi			Sampler: 2" Split Speon	Location:		Kirkville, I	_
		Kirville				Hammer: 150 lbs drop		1 01-27	of	2
File Me						Fall: 30"		09-27-0		
File No		nnany:	Parrat	t-Wolff		un- 50	Screen		Grout	
			Brica				Riser		Sand Pag	
			Paul F				Stratum		Bentonit	
D(1-				Penetr/			Change		Field Testing	
Depth Below		Denth	Blows		"N"	Sample Description	General	Equip.	PID	Time
Grade	No.	•	/6"	(in ft)	Value	, i	Descript	Installed	(ppm)	(hhmm)
0_		٤	W-W	2/0.5	2_	0.2 Dusky Yellowish Brown (104R 2/2) damp, 1000 e/soft. Fo Sand, silt. Pleat Fregments, roots		1		
			1-3	,		Plant Fragments, roots			21,9	1345
						0.3			~1,-1	13-17
	-			. 						
	-					Strong Chemical odor	-			
2		니	5-7	2/1.8	12	0, 2 \ SAA	Andust			1347
			5-5			116 Dark (ellowish Brown (10884/2) wet of Saturated 1005 11. Skined dark Gray	Andyt Jamp		15.1	
						Wet of Sowel Hitle 311.	•			
						Chancal oder 1.0 SAH, No Staning		.		1013
4		U	2-4	2/10	و	1.0' SAH, No Staining			3,9	1353
			ኒ - ጌ			chemical odor			J. (
	-			0 1 1 7	7	O.4' SAA	>		5	13.56
عا_		8	2-3 4-4	2/1.4					2.8	
						1.0' Grayish Brown (54% 1/2) Saturated, loose, Foundinsilt.				19.58
						'			a.	
8		10	2-2	2/1.7	۲.۱	1.71 Grayish Brown (5 YR 4/Z) Sorturated, loose, F. Sand, little			4.6	1400
···	_		2-2			sitt.				1700
						3.10.				
w		12	W-W	2/1.2	4	1.2' SAA			3.1:	
			ひ-2				**			1414
1.5		М	Ч- Ы.	2/1/4	<u> </u>	1.4' SAA	Analut			
12_			5-4	7			Analyt Somp		[4.]	1460
						NO RECOVERY	Samy			
14		16	M-M	2/0	41	ha KECONEK I				1421
			W-W							
16_		18	W-74	2/1.4	2_	1.4' Grayist Brown (54R4/2)			2.9	1424
			2-4			Saturated, Loose, F. Sund, little silt.		•		
			2		P 1	11' SAA , 21 two 0.125"	_			
18		20	2-2	2/1.1	Щ	1.1' SAA wy two 0.125" Grayish Red (10 R 4/2) Foundard			2.4	
			<u>~_ L</u>			silt, Frace clay bands.				14122
20		2,2_	W~W	2/0.6	71	Silty Frace clay bands. 0.0' SAA no bundsof silty small claw	Analyt		(0.)	1432
			M~N				5000		As)	
12	\dashv	24	2-2	2/1.5	.	1.5'SAA				1435
<u></u>			1-3						0,0	-
	二				<u></u>					
							<u></u>		<u> </u>	
D+W ≅	31									

						SOIL BORING LOG	R	EPORT (OF BOR	ING
O'BRI	EΝ	& GER	EENG	INEERS, I	VC.		İ	SB -6	12	
Client	Bris	stol-My	er-Squ	bb		Sampler: 2" spirt Spoon	Location:	· · · · · · · · · · · · · · · · · · ·	Kirkville,	NY
		Kirville				Hammer: 1509bs drop	Page:	2-	_ of	
							1	3: 09-27		
File No				(r. 107 - 177		Fall: 301	End Date	- T	Grout	.
Boring Forem				tt-Wolff			Screen Riser	-	Sand Pa	ck
OBG G		اه ک :naist	اممہ Paul F	Brice			11301	السسا	Bentonii	
]	T]		Stratum			eld
Depth			1	Penetr/	İ		Change	l		ting
Below			Blows			Sample Description	General	Equip.	PID (nnm)	Time
Grade	No.		/6"	(in ft)	Value	0.6' 9AR	i	Installed	(ppm)	(hhmm)
24		26	12-18	2/0.9	.12	1 2 Granish Red (10 R4/2), Saturates	Avalyt e Samp		0.3	1439
<u> </u>			1-1-10	<u> </u>		0.3 Grayish Red (10 R4/2), saturated lagger, FM sand, little FMGraveltan	e Samp			
26	_	27.3	7-18	1.3/1.0	>50	0.8 Grayish Red (10 YR 4/2) saturated loose, FM Sand, some FM grower,				113145
			50/0.3'			loose, FM Sand, some FM growel,			0.5	1442
						trace Silt (200d (10YR4/2)domp				
<u> </u>			<u> </u>			trace 5ilt 0.2' Grayish Red (104R4/2) damp very dense, FM gravel in a clayey Silt and F. Sand matrix:				
						Very dense				
-										
					-	- Refueal @ 27.3 bgs-	Ì			
	\dashv									
						•				
						1				
	\dashv						Ì			
	-+	-								
										İ
									j	
	-+								İ	
 -	+									
							<u></u>			
]
										Í

						SOIL BORING LOG	R	EPORT (OF BOR	ING
O'BRI	EN.	S GER	E ENG	INEERS, II	VC.		<u> </u>	B-0-3	<u>. </u>	
Client: Proj. L			er-Squil e, NY	ob		Sampler: 24 sp1.t spaan Hammer: 150 lbs drop		1 09-26-		NY
File No			Dorret	4 Molff		Fall: 30"	Screen	= 1 = 1	Grout	
			Parrat				Riser		Sand Pa	ck
OBG G			Paul F				Divisions		Bentonii	eld
Depth Below			Blows		"N"	Sample Description	Stratum Change General Descript	Equip.		ting Time (hhmm)
Grade O	NO.	(1661)	/6" 2-5	(in ft) 2/1.0	Value ⊗	0.5' Brownish Black (5YR 2/1) moist,			((,
		_ ــ	3-2	~////		Siltand fine Sand, trace Clay. Plant Fragments, Rosts.	SILLA			0754
						Clay. Plant Fragments, Rosts.			1.2	:
						0.51 Relevellowish Brown (104R 6/2) Moist, soft, silt, little clay trace Fire gand, few hight brown (SYR 5/4) mott ma	-			
						(5/R 5/4) mottling hight brown	ſ,			
2		식	2-2	2/1.2	4		Siltard		3.2	0800
			2.5			0.5' dive gray (5/4/1) moist - Saturated Silt, little clong and fine sand	Vine (Six)			
					_	and fine sand	Samt			
L _L		Ç	W-1.	2/1./	1	0.6' SAA		.	2.1	0807
						o. 5' Brownish & non (SYR4/1) Saturated, 1005ry F. Sand, little Silt.				
		- C.	•	- 1 "	3	1.5 Brownish Gray (SYR4/1)	:			
و		Q.	1-1 2-3	2/1.5		seturated losse F. Sand Sitt.			1-9	0809
			<u> </u>			seturated loose F. Sandiffelt. Some fine lammortions			, , ,	
		-					6			
8		10	3-2	2/1.2	4	1, 2 ' SAA	4.5ml		0.9	0812
			2-2				11/4			08,2
10	\dashv	12	3.2	2/1.5	3	1: 5' SAA	Analyt		. ~	0821
			1-2	1			Samp		3.8	
12		14	2-2	2/1.5	(0	1.5 SAA				0824
-1.4-			4-3	-/ ///					2,4	
- 1/1		10	U-3	2/1.2	5	1.2' 544			į	
_14		10	2-2	<u> </u>		1.2			5.2	0834
				<u> </u>		1 -1 - 0 - 0				
10	-	8	2-1	2/1.5	<u>Z</u> _	1,5' SAA			7.3	0837
						4 40 0				
18		20	W-W	2/15	1	1.5' SAA	Analyt Sump		8.2	0839
							Samp			
20		22	W-W	2/0.5	1	0.5' SAA			2 0	0847
			1-2-			,			2.9	
22_	\Box	24	3-2	2/1.2	4	1.2' SAA			(،،ی	0849
	\dashv		2-2						٠,٠	
									L	

O'BRIEN & GERE ENGINEERS, INC.						SOIL BORING LOG	R	EPORT (OF BOR	ING
O'BRI	EN	& GER	E ENG	INEERS, I	NC.			0-82		
		-	-	bb		Sampler: 24 Spit-Spoon	Location:		Kirkville,	_
Proj. L	oc:	Kirville	e, NY			Hammer: 150 lbs drop	Page:	2 : 09-26-0	of	
File No).!					Fall: 30 ¹¹		09-26-0		
		npany:	Parrat	t-Wolff			Screen	= \	Grout	
Forem	an:	Jolon	Brice	د _			Riser		Sand Pa	
OBG G	eolo	gist:	Paul F	reyer		T	Stratum		Bentonit Fi	eld
Depth]	Penetr/			Change		1	ting
Below		Depth	Blows		"N"	Sample Description	General	Equip.	PID	Time
Grade	No.		/6"	(in ft)	Value		Descript	Installed	(ppm)	(hhmm)
24_		2۶	3-3	2/1.2	Q	1,2 SAA			3.0	0904
			5-2							
26		28	5-6	2/1.6	_11_	I.G' SAX			2.1	0907
			5-Ce			,			_ ,	
28		30	45	2/11	14	1 B' Brown ish Com (Exp 4/1)	1			
		ور_	9-4	-/- 1/ 1	1.1	1.0' Brown ish Gray (SYR4/1) Saturated, loose, F. sandonx 1THE Sit.	1 Sand			০৭১৭
						little silt.	F. 511		4.7	
						0.1 Grandish Red (10R4/2)				
	\dashv					Saturated, loose, Fsand, little silt, trace M. sand				
						little sitt, trace M. sand				
30		32	5-G	2/1.6	13_	0.9 SAA				
	_		7-12			o. I Grayish Red (IOR 4/2) Saturated & Moist, SAt, little clay and f. sand matrix, in FM	Avalyt Samp		6.9	0914
				-		clay and f. sand matrix , in FM	James			
						Graves	Till			
32		32.5	50/0.5	0.5/0.5	750	ois' SAA,	7(1)		2.5	40.11
	\dashv									0916
	\dashv									
									ŀ	
		·								
	\dashv									
						· i				
	_									ł
	\dashv								ļ	
	_ +]
										

O'BR	FN	& GFF	REENC	BINEERS, I	NC.	SOIL BORING LOG		EPORT (B - 04	OF BOR	ING
Client	Bri		er-Squ	*******************************		Sampler: 2" Split Speen Hammer: 150 lbs drop	Location: Page:		Kirkville, of	NY 2
File No			-,			Fall: 30"	Start Date	09-25-6	57	
	Coi an:	Jolen	Brice				Screen Riser	= \\	Grout Sand Pa Bentonit	:e
Depth				Penetr/			Stratum Change			eld sting
Below Grade	No.		Blows	4	"N" Value	Sample Description	General Descript	Equip. Installed	PID (ppm)	Time (hhmm)
0		2	2-2	2/1.1	3	damp, loss/soft Find Soud, littlesity	Silty Sara Loam		0.0	1256
2		٤)	4~4	2/1.4	8	plant Fromments / roots o. 6 Light & Dan (51R5/6) damp, ene Sand 1: HIC Silt I. M Moderate Brown (54R 4/4) damp to Saturated, Loose, F. Sand, 1: HIL			4. 0	1259
4		G	3-3	2/1.2	Ч	S ¹¹ .			0.0	1312
<u>~1</u>		9	1-1	-		1.2' SAA some Light brown SYR 516 oxidation			0.0	10,0
(0		8	1-1	2/0.9	2	0.9 park yellowish Brown (107R4)2 Saturated losse, F. Sard, 1:46 Sit.			0.0	1314
B		10	N-M	2/1.5	41	1.5' SAA	Sand/ Silt		0.0	1320
[6		12	M-M M-M	2/0	۷١	No Recovery				1325
12_		14	2+1 6-4	7/1.5	7	1.S' SAA			0.0	1327
JY		Τ̈́ς	W-W	2/1.2		1 · 2' SAA			۵.۵	1339
](0		18	1-1	2/1,5	3	0.3' SAA 1.2' Pale Gray'sh Brown (STR4/2) Saturated, 1000e, F. Sand, little Silt. Few thin to min ations			0.0	1341
18		20	2-3 4-3	2/1.2	7	1.2' SAA			00	1344
20		22	ω-ω W-W	2/1.0		1.0' 544			0.0	1355
72_			V-1	2/1.5	4	1.5' SAA			0,0	1358
		<u> </u>					<u></u>	<u> </u>	L	

						SOIL BORING LOG	R	EPORT (OF BOR	ING
O'BRI	ΕN	& GER	E ENG	INEERS, II	VC.		5.	R-04		
Client	Bris	stol-My	er-Squi	bb		Sampler: 2" Spill Span Hammer: 150 lbs Jap	Location:		Kirkville,	NY
Proj. L	oc:	Kirvill	e, NY			Hammer: 150 lbg Jsp.	Page:	2	of	
File No						Fall: 30 "	End Date	09-25		
		npanv:	Parrat	tt-Wolff		(run. 5)	Screen		Grout	
			1 Br				Riser		Sand Pa	
OBG G	eolo	gist:	Paul F	reyer			Charter	T	Bentonit	
Depth				Penetr/			Stratum Change			eld sting
Below		Depth	Blows	1	"N"	Sample Description	General	Equip.	PID	Time
Grade	No.		/6"	(in ft)	Value		Descript	Installed	(ppm)	(hhmm)
24		24	2-2	2/1.5	<u>ų</u>	1.5'SAA				14 10
ļ			2-2	'					0-1	
W.		28	4-4	2/1,3	च	1.3' SAA	tive			
		~ 6	5-6	(113			Fine		2.8	1413
							. 41			1415
28		30	2-4	2/1.7	8	1.7' Pale Grayish Brown &YR 4/2' Saturated, 1005e, F. Sand, little sitt.	Siff		,	1113
			4-6			Saturated, loose, F. Smd, little silt,			0-1	
		-								
30		32	10-W	2/0.8	Ćę .	0.8' SAA			2.8	1423
			6-2	·					2.4	
7.0		34	2-4	2/1,4	10	1.35' SAA				1425
32		٠, ر	62	~ ()	10	1.00 2000	FD		0.3	1145
						Saturated, Silt, fine Sand lines	Analyt		•	
						0.05' Grayish Red (SR4/2) Loose Saturated, Silt, Fine Sand trace Clay, F. gravel	Somp			
34	-	3 41 /	71/2	0.6/0.5	> 70	O.5' Gray ish Red (5R4/2) Moist, extremely dense Mc Sand and F. growel ina sill of trace of clay matrix.				;
		<u>ها د</u>	79/010	0.9/6.3		anse MC Sand	Till		9.5	1435
						Moist, travel ina sill w	·			
	\dashv					and of clay matrix.				
						- End of Boring				
					-	- End of Do				
	_						}			
				-			İ			
	_					^.				
	_									
	\dashv					√				
<u> </u>							İ		ļ	
	+									
+	\dashv									
							ŀ			
						İ				
					\dashv					
					-					

						SOIL BORING LOG	R	EPORT (F BOR	ING
O'BRI	EN	3. GER	E ENG	INEERS, IN	VC.			SB -	5.5	
			er-Squil			Sampler: 2" Spirt spoon	Location:		Kirkville,	
		Kirville				Hammer: 150 lbs drop	Page:			2
•								: 09-28-0		
File No						Fall: 301		09-28-0	Grout	
			Parrat	t-Wolff			Screen]=	Sand Pa	ما
		Johan					Riser		Bentonit	t e
OBG G	eolo	gist:	Paul Fr	′eyer	г	· · · · · · · · · · · · · · · · · · ·	Stratum			eld
5 41.				Penetr/			Change			sting
Depth		Donth	Blows		"N"	Sample Description	General	Equip.	PID	Time
Below Grade	Na		/6"	(in ft)	Value	Campio 2 as an passa		Installed	(ppm)_	(hhmm)
Olade	110.	2	2-2	2/1.3	4	0.4 Dusky Yellowish Brown (1048 2/2)				0837
<u> </u>	$\neg \neg$		2-3			0.4 Dusky Yellowish Brown, (1042 2/2) damp to moist, F. Sandand 5:14, trace clay. Plant Fragments, 200 ts			0.0	O W S 1
						0.9' Light Brown (548 5/6) mist, loose				
						F. Sand, Silt.				
					!					
7_		Ч	2,-4	2/1.4		1. 4' Modera 1. Brown (548 4/4) expost to	Analyt			2840
			3-5			Saturated, F. Sand, Sill.	Samp.		0,0	
	 ∤						DTW35'			
;,				2/11	7	a El Mile de Braya (SYRY/4) Jatovated	جار ت∨ اور			
Ч.		&	w - 2 2 - 1	2/10/		Lorse, F. Sound . Withe Site Owed-g to			0,0	0847
	$\overline{}$		<u> </u>			0.5' Moderate Brown (STRU/4) saturated Loss, F. Sand. little 5'to Grad-5 to O.6' Moderate Kilouish Brown (1048514) Saturated. F. Sand, little 21't				
(0		ъ.	W-10	2/1,4	2_	1.4 SAA				
			2-5.						0.0	૭ & ધવ
							•			0 2 1 1
8		10	2-7	2/1.5	5	1.0 SAA grading to			a , Q	0852
			3-3			0.5 Grayish Brown (5/R 4/2) saturated Loose F. Sand. little Sitt, Fow homewith			0.0	
						(show)	5			
10		12	ひ~ひ	2/0.7	2_	OH'SAA	Apolut		<i>C</i> .	
			2-2	7			Analyt Sump,		0,0	0900
							•			
12		14	1-3	2/0.8	5	0.81 SAA			0,0	0903
			77_	<u> </u>						
			1 - \	2/1/1	2	1.1 3AM				
14		. Ke	1-1			,,,			0.0	1190
	_									
16		18	W-W	2/1.6		1.0' BAA				0914
			1-1	, ,	•	O. 6 Cray sh Brown (SYR 4/2) Saturcial, Loose/soft, Silt, some F. Sand			0.0	ריו ט
						trace-1141 Clay				
		<u>-</u>	2-3	0100	5_	0.3'SAA	-			09 19
18	+	20	7-2	2/0.9		(SYR4/2)			0.0	
					1-	O.G Granish Stand, little Silt			- · · ·	
20		22	ひら	2/0.4	4	o-4'SAA	Amlyt			0929
			N-N				Samo		0.0	<u> </u>
	\dashv	_		0112	~	1.31 SAA Few Years Min dispersion	•		•]
55		24	J - 1 12-13	2/1.3	2_	Lours of ma.			0 10	P131
	\dashv		1- 1						0,0	
 -										
									<u> </u>	
DTW =	3.5 '			 -						

						SOIL BORING LOG	R	EPORT (OF BOR	ING
O'BRI	ĒΝ	& GER	E ENG	INEERS, II	NC.			5B-05		
000000000000000000000000000000000000000			er-Squi	************	201120022000000000000000000000000000000	Sampler: 21 Spirt Spaun	Location:		Kirkville,	NY
		Kirville				Hammer: 1501bs drap	Page:	22	of	2.
] '							Start Date		•	
File No						Fall: 30 "	End Date	T T.	⊳ີ Grout	
			Pąrrat				Screen Riser	=	Sand Pa	ck
Forem OBG G			Brice Paul Fi				1/1361		Bentonit	
OBG G	I	gist	Fauit	leyer			Stratum			eld
Depth				Penetr/			Change		Tes	ting
Below		Depth	Blows	Recovery	"N"	Sample Description	General	Equip.	PID	Time
Grade	No.	(feet)	/6"	(in ft)	Value		Descript	Installed	(ppm)	(hhmm)
24		26	2-2	2/11	4	1.1 Gray is L Brown (54A 4/2) Sate, Loose, F Sund, little silt				0943
			2-4			Sat., Loote, 15 Sand, 11110 2111				
 		0.00		2/1.3	8	1 21 222 7 3"	-			
26		28	3-4	-2/ 110	 	1.3 SAA, wy one 3" Layer				0944
			<u> </u>			of FM sand, Attle silt. Two				
						Grayish Red (10R4/2) F. Sard and Clayey Silt O. 25" homing	ions			
						S				-0 H G
28		30	4 ~4	2/1.5	9	1.5' crayish Brown (54R4/2) Sat. Loose, F. Band , little Silt				0948
			5 -4			Sat. Loose, F. Sand 1 11 HESIN	•			
						(3) 0.25" Graysh Red (10R 4/2)				
						and a second state of the second	ic. d			
					_	Fisand and Clayer Silt lammer	(113)			
30_		3.2	W-W	2/101	q	0.4' 848				0957
			9-28	- [1 Pad (108 4/5) a 1 . Ad	الماملة			- •
!					-	0.51 Gray ish Red (IOR 4/2) saturated Loose, Frand, trace Silly Trace F. Cruss	1 Same.			
	\dashv		-			0.2' Gray is h Red (1084/2) dams.	1			
						O. 2' Gray is h Red (1084/2) damp. V. Jense, FM gravel subongular to subfor w7- matrix of Clayer + it and Fiscand	nstead			
32		334	18-30	1.4/0.8'	780	0.81 SAA				1002
			30/0,4							
			`			Refusal @ 33.4 bys	,			
						_ 3				
								!		
			-							
						}				
-						İ				
	_									
	\rightarrow									
		Ţ					İ			
		1								
								1	<u></u>	

						SOIL BORING LOG	R	EPORT (OF BOR	ING
O'BRI	ĒΝ	& GER	REENG	INEERS, II	NC.		SB	-06		
Client:	Bris	stol-My	er-Squi	bb		Sampler: 2" Split Spoon	Location:		Kirkville,	NY
Proj. L						Hammer: 150165 3rop	Page:		of	_ 2
						•		9: 09-27-		
File No	o.:					Fall: 30!1	End Date	09-27-0		
Boring	Coi	npany:	Parra	tt-Wolff			Screen	= \	Grout	
Forem	an:	Jolaa	in Bri				Riser		Sand Pa	
		gist:							Bentoni	
]		Stratum			eld
Depth			}	Penetr/			Change			sting
Below	ļ		Blows			Sample Description	General	Equip.	PID	Time
Grade	No.		/6"	(in ft)	Value		Descript	Installed	(ppm)	(hhmm)
Ó			2-2	2/10	5	10.2 Park Yellowish Brown				0.800
	<u> </u>		3.5	 	·	and sill, trace clan.			0.0	
			<u> </u>			(10 YR 4/2) dump, loose, F. Sangrand 3:H, Trace Clay. Old Fale Vilgier bround sill of the conditions of the conditions of the conditions.	.1			
		₹.	<u> </u>	211.		0.3 SAA	 *			
2		4	2-3	2/1.5	10	1	l . ,			0804
			7-5	-		1.2 Pale retion ish brown (1012) dry to dampy F Sand, 11the sitt.	Analyt Sompi		0.0	
						ary to dampy F Sand, little Silt,	20mb			
Д		4	<u> </u>	2/1.2	10	IN SAA U Fair Moderate hours	ļ			
~		<u> </u>	4-6		10	Moilles			0.9	0822
			4-3	<u> </u>		Chive gray (544)) damp to			0, 1	
U		ક	1-3	2/1.2	7	1.0' SAA U few Moderate from n 0.2' Ohvegrau (SY4/1) damp to Saturated, Psand, lille 31/1+, 1,2' SAA				
		-	4-3	-/ \·		1 17 2 3 .				0825
			4-9						6,5	
										a
8		10	1-4	1/20	સ	1.7 SAA	Analut			0827
			4.~3	'		0.31 Cromish Brown (SYR4/2) Sodie	50000		17.2	
						ated, loose, F. Sand, little Sitty Fow thin	amilian		•	
r á		17_	1) ~ 1.	2/10	3	1.0 SAIN				0835
		,	7~1						0.O	~ 3 J
									ļ	7500
12		lu	1 - 2	2/1.8	- 4	1.8'5AA			_	
			2-1						G.O	
	_			7.1						
14		16	W-W	2/0	4	No Recovery			<u> </u>	0845
	-		W-W				İ			
1,		18		11.0	2	1.7 ' Grayish Brown (SYR4/2)				0847
16		LB	2-1	2/1.7		Saturated, 1005c, A Sund, little			9.6	0071
	 -		1-1			Satura rea, 1005 c/			, · L	
	\dashv					Silt. fow law nations.				085°6
18	\dashv	20	W-W	2/1.9	41	1.91 SAA				J 40 -
18-1			W-M			1. 1. 2			9,5	
			<u> </u>						,	
20		23	W-W	2/0.7	4	0.7' 5AA	,			
			W-W						6.2	0903
2.2	\Box	24	M-M	2/1.6	L	1.6 Grayish Brown (54R4/2)	No. Land			
	_		2-3	1		Saturated, loose, F. Sand, little Sity	Klnelgy		231	AGAC.
						Carrier to a second in the street	Sump			0906
	\dashv			01: 1	;;	few very to a common on a p. Grang				
24	\dashv	26	3-3	2/1.2		1.2'SAA W/ one 2" Longer			10.4	0911
	\dashv		8-8			with traciclas			10.4	. , , ,
		<u> </u>						<u></u>	ļ	
						•				
						3				

(1) (4)

	**					SOIL BORING LOG	R	EPOF	TC	OF BOR	ING
O'BRI	FΝ	& GER	E ENG	INEERS, II	VC.		51	3-06			
			er-Squil		***************************************	Sampler: 2" Spl.+ spoon	Location:			Kirkville,	NY
Proj. L						Hammer: 15016 drop	Page:	2_		-	2.
							Start Date				
File No						Fall: 30"	End Date:	<i>-</i> 09-	$\overline{}$	Grout	
			Parrat				Screen Riser	_	\ 	Sand Pa	ck
			Brice Paul Fi				141301	ш		Bentonit	
OBG G	eoic	yjist.	Faulti	leyer			Stratum			Fi	eld
Depth			ĺ	Penetr/			Change				ting
Below		Depth	Blows	Recovery	•	Sample Description	General	Equi		PID	Time
Grade	No.	_	/6"	(in ft)	Value			Install	ea T	(ppm)	(hhmm)
24		28	10 - 9	2/1,4	7.7	1.4 Granish Brown (SYR4/L) saturated, Loose, Fsend, little sit, trace claw Few disray sin lance actions					0922
			8-8			Sit, trace clare Few disyon				7.0	
					<u> </u>	Star James adioks.					
28		30	lφ - ζο	2/1,6	14	1.6' Gray ish Brown (SYR4/2) Saturated, 1005e, FSand 1. He Silt.	†				A9 A
1./			8-5			Saturated, loose, FSand little Silt	K 1 . 1				0924
			ļ			(3) Grouply Red OIES" SIHY Clay	Analyt Sampi			2.5	
						Jenson Money	Jamp.				
30		32	W-W	2/1.1		o. s' SAA of no laminations	1				0 333
νς.		<u> </u>	14-50/01			In a consist Red (BK 412) Moist					,
			3.5/			1 1 C Pric System Anter				9.4	
						To down a water					
			-			to Suproceeded served in a matrix of Classed stilling little from d.					
						211					
						BOB @ 321					
	-										
									İ		
		<u></u>									
	_			. .,							
			-								
									ľ		
								Щ		L	
										×	

						SOIL BORING LOG	R	EPORT (OF BOR	ING
O'BRI	EN.	s GER	E ENG	INEERS, II	VC.			50-07		
			er-Squil		************	Sampler: 2" Split apoon	Location:		Kirkville,	NY
		Kirville				Hammer: 150160 drop	Page:	: 09-2	of	
						Falls a	Start Date:	-	•	
File No).: 		Darrat	+ Molff		Fall: 30 "	Screen		Grout	
			Parrat Brick				Riser		Sand Pa	
OBG G	ieolo	૩૦૧૦,\^ ogist:	Paul Fi	eyer					Bentonit	
							Stratum			eld iting
Depth			l	Penetr/	 ''N''	Sample Description	Change General	Equip.	PID	Time
Below			Blows /6"		Value		Descript	Installed		(hhmm)
Grade	NO.	(feet)	4-2	(in ft) 2 1 1 2	Value L	ary soose 1 finesand, some	5		- · · · · · · · · · · · · · · · · · · ·	1226
0			2-1	2/	— -	dry soose , finesand, some	[/		.	, ,
 						1 a + 1 in			1.3	
						0.9' moderate Brown (5YR 4/4) oby	ı			
					<u> </u>	to moist, 1009e / F. Sand, little S 1.5' Moderate Brown (SYR 4/2) miss to saturated, F. Sand	7 ,			1229
2_		4	3-3	2/15	5	1.5 Moderate Brown (SPR7/9 Mois	3.5		1,4	
<u> </u>			2-3			little Silt, trace Clayo	sandyt sand		17	
				· · · · · ·		Tiffle Still, Trace Total	J. 344 P]	
V		4	3-3	2/10	5	1.0 SAA			11 2	
			2-2						4,3	12.35
		8	3 ~1	2/1.2	3	1.21 Yellowish Brown (10 YR 5/2)	Kne.			
4		_0	2 - 3	47		Saturated, 10054, NF. Sand, Little	sand		5.4	
						8:1t.	Soll			1237
							,			
8		10	2-4	2/1.0	_7_	1.0' SAA			_	1240
			3-3	-				1	6.3	12 10
} <u>-</u>							_			
16		12	w · w	2/1.3	2_	1.3' SAA				1249
			2-2	1					4.2	!
	3			<u> </u>			-			1251
12_		14	2-2	2/10	3_	1,0' Dark	}	 	4.9	
 			<u> </u>	 					''' (
14		16	₩- <i>W</i>	2/1.0	2	1.01 Brownish Gray (5TR 4/1)				1300
			7-4			Saturated, , f. Sand, little			5.3	
						sill.			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	[
<u> </u>		10	- ·	2/11	1	1,6' SAA	Ms/			
16		18	17-M 3-1	2/1.6		110	M3D		7.1	1305
<u> </u>							Anglisto			
18		20	W-W	2/1.5		1.5 1 SAA			3.3	1308
			1-1							
<u> </u>		2.0		2/6	41	No Recovery	-			1
20		22_	12-11 17-17	~/ ·	 -1 -	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				1
	-		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				1			
22		24	W-W	2/1.0	2_	1.0' Brownish Gray (SYR4/1)		14.9	1317
			5-1	<u>'</u>	<u> </u>	Soturated, loose, F. Sand, 1:44 5:14 (laminated)	- Analyt		1-1-7	
			-		 	Sire Cimerion	Semp			
			<u> </u>							
						•				
I										

						SOIL BORING LOG	R	EPOR	TC	F BOR	ING
O'BRI	ΕN	& GER	E ENG	INEERS, I	VC.		9	B-0	7		
2222 2300000000000000000000000000000000			er-Squil		_	Sampler: 2" split - speen	Location:			Kirkville, I	ÑΥ
		Kirville				Hammer: 150 lbs drop	Page:	_2_		of	2
	•••		•			·	Start Date	-	٥- م	วา	
File No).:					Fall: 3011	End Date:				<u></u> .
Boring	Coi	npany:	Parrat	t-Wolff			1	=	\ *****	Grout	n.le
Forem	an:	Jology	Paul F	e.			Riser	<u> </u>		Sand Pa Bentonit	
OBG G	eolo	gist:	Paul F	reyer	1	<u> </u>	Stratum	1	····	_	eld
D46	•			Penetr/			Change				ting
Depth Below		Donth	Blows		_{"N"}	Sample Description	General	Equip).	PID	Time
Grade	No.		/6"	(in ft)	Value	·	Descript	install	ed	(ppm)	(hhmm)
24		2.6	2-5	2/1.2	10	1.2' Brownish Gray (SYR4/1) Saturated, 100se, F. Sand, Some Silt. Fow Grayse Red bands. (10R4/2)					1324
- 			5 -4			Saturated, loose, F. Sand,	_			6-4	
						some silt , tow brayist	Fine			١٩٠١	
						Red bands. (10R4/2)	Fine Sand and Silt				
·				<i></i>			Silt				1227
2 Ce		28	4-5	2/1.0_	11	I.a' SAN				7.2	1327
			6-6								
28		30	9-13	2/12	48	0,9' SAA					
2.70		20	35-28	7/ 1/2		1.2 (manish Red (5R4/2)	7711				10-
						damo, dense, Clayer silt	Avulyt			3,6	1330
						damp, dense, Clayer sitt and fine sound matrix support	Jung Gut				
						FM sub vouvaled grownel					.9
						J 111 0					
30	-	31 %	8-12	1,8/0.2	40	Poor Recovery					1336
ال در		5,116	28-59/0			Poor Recovery 0.2' SAA Coarse Growel clust stack in Spoon nose.		·		1.9	, 5242
			7			clust stuck in spoon nose.					
						·					
									`		
				<u> </u>							
	-										
·											
			· · · · ·								
			<u> </u>				l.				
										<u> </u>	

				000000000000000000000000000000000000000							1116
O'BRI	EN	& GER	REENG	INEERS, II	NC.	SOIL BORING LOG	R	SB-		OF BOR	RING
Client:	Bris	stol-My	er-Squi	bb	*********	Sampler: 2" spill Spoon	Location:			Kirkville,	NY
Proj. L	oc:	Kirvill	e, NY			Hammer: 1501bs Drop	Page:		1	of	
File No).:					Fall: 30"	Start Date			2007	
				tt-Wolff			Screen	=	1		Age .
			Brio				Riser	Ш		25 - 2007 25 - 2007 Grout Sand Pack Bentonite Field Testing PID	
OBG G	eolo	gist:	Paul F	reyer	Ι	T-0	Stratum				
Depth				Penetr/			Change				
Below		Depth	Blows		"N"	Sample Description	General	Eq	μip.		Time
Grade	No.	107 - 100 miles	/6"	(in ft)	Value	3	Descript	Inst	alled	(ppm)	(hhmm)
0		2	2-4	2/0,8	8	damp, f. Sand and silt,	S: L.			11.5	0802
			4-6			damp, , f. sand and silt,	Sand			11.13	
						Plant fragments, Brown (104R4/1)	Loain				
						013 Dank Stellowish Brown (10x R4/	5				
2		Ч	5-8	2/1.1	16	111 Dark Valland Bound Silt					0805
			8 - 7	==/-*-		damp to saturated, very loose, F. Sand Some Silt.	7			11.1	Ů.
						Fo Sand, Some Silt . "	3.01				
							-				
-1		<u>(e</u>	5-5	2/1.0	<i>\$</i>	10 SAA					0820
			3-3							7.9	
Ç		8	3-4	2/1.8	10	1.8 Dank Yellowish Brown (1048 412)	8				
	_		6-6			1.8 Dank Yellowish Brown (104R4/2) Saturated, 1005e, F. Sand, little Silt.					0200000
						silt.	2007			13.6	0827
	-						Fine Soundy				
8		10	3-3	2/151	8	15' SAA	Boundy				
			5-2	7			3.14			(.,0	0832
	_									Ψ -	
10	-	12	W-3	2/0.51	5_	O. 5' Pale Grayish Brown (54R 4/2)					0838
	-		2-2			saturated, Loose, Fine sand, little silt, trace Med Sand.				10.2	
						, , , , , , , , , , , , , , , , , , , ,					
12		14	2-3	2/1.8	В	1.8' SAA				120 100	08.41
			5-2						61	11.4	
	_	,,									
14	\dashv	16	W-W	2/1.0		I.o' SAA				, ,	0001
	\dashv		1-2							6,2	0406
	\exists										
16		18		2/1.4	3	1.6'SAA				94	
	_		2-1				=			2.9	0907
	+										
18	+	26	1,-2	2/1.25	4	1,25 Pala C - 1 D /				Ç.	
-18	\dashv		2-4	-/		1.25 Pale Groupsh Brown (SYR4/2) Saturated, Losse, F. Sand, Little				5.3	
						s:H.					0909
20	-			2/1.2	2	1.2' SAA				9.1	0920
	+		1-1								
······································				A CONTRACTOR OF THE PARTY OF TH			-	*****			
											1

						SOIL BORING LOG	REPORT OF BORING			
O'BRIEN & GERE ENGINEERS, INC.							92-08			
Client: Bristol-Myer-Squibb						Sampler: 2" Split stoon	Location: Kirkville, NY			
Proj. Loc: Kirville, NY						Hammer: 150 lbs drop	Page:	2	of	_2_
							Start Date:	: 0925-0		
						Fall: 30"		= 1	Grout	
Boring Company: Parratt-Wolff Foreman: John Brice							Riser		Sand Pa	ck
OBG Geologist: Paul Freyer									Bentonit	
1000		, <u>g</u>			Γ		Stratum			eld
Depth				Penetr/	l		Change	Fauls	PID	ting Time
Below			Blows			Sample Description	General Descript	Equip.	(ppm)	(hhmm)
Grade	No.		/6"	(in ft)	Value		Descript	Instanca	(PP)	
12		건년	1-12 1-12	2/1.0	۷.	1.0' SAA			6.2	०१२५
 	_		1 W W						`	
24		26	W-W	2/1.0	۷]	I. o SAA	Fings,			
			พ-w	1			414		8.8	०९५५
							Fing Sand and Silt			
				2/1.2	4	1.2' SAA	'			
26		24	2-2	2/1.2	<u> ¹</u>	I. C. Sart			41.8	-000
			2-7-							0958
28		30	3-3	2/1.8	7	1.81 Pale grayist brown (SYR 4/2) Saturated, LOSSE, F. Sand, title	MS/MSD			1000
			4-4			saturated, coose, F. sand, title			5.1	
						silt.				
-	-									
30		3.2	ひこお	2/1.5	۷)	1.5 SAA	- Fine		5.5	
,/			W-W				Sand and		2.2	1013
							3114			
				0 / 1 7	9	1.5' SAA				
_ 32_		34	3-3 6-5	2/15		11.3			3.5	1015
			<u> </u>							,
.રપ		34,8	30-5%	30.8/0.8	> 50	0.3 SAA			2.3	10 27
						0.5' Grayish Red (10 R 4/2), Maist	TILL		~ • •	
						extremely dense, FM granuel (sub-ounded) in a matrix of Silt, little Clay, trace Fine				
						Sand				
) -				
							:			
				-						
	\dashv									
·	\dashv									
l	1					<u> </u>	-			

						SOIL BORING LOG				OF BOH		
O'BRI	EN.	& GER	E ENG	INEERS, I	VC.		Location:	ندم)اج	(4) 1 70	· · · · · · · · · · · · · · · · · · ·	
			er-Squil	ob		Sampler: 2" Split spoon		' ,		Kirkville,		
Proj. L	o¢.	Kirville	, NY			Hammer: 160 lbs drop	Page: Start Date		124	of קלים	<u> </u>	-
						Fall: 30"	End Date					
File No	<u>).:</u>	200011	Parraț	t-Molff		Fall: 30"	Screen	= 1	17	Grout		1
			rallal n Bri				Riser			Sand Pa	ck	
			Paul F							Bentoni		1
0866		gist.	""				Stratum	J		7	ield	1
Depth				Penetr/			Change				sting]
Below		Depth	Blows	Recovery	"N"	Sample Description	General	Equi	-	PID	Time	oil
Grade	No.			(in ft)	Value		Descript	Instal	led	(ppm)	(hhmm)	1
C -		2	WOH	2/1.1	۲١	1.1' Olive Gray (54 3/1), Saturated, Very soft, Silt, 1the]				
			Wolf	7		Saturated, Very soft, silt, little					13.05	l.
						Fine Sand, little Clary. Plat Frage	ants			1.3	13.0-2	1
						roots						
						(ev 1:1) 1 ()						ļ
2	2_	٧	1-	1/1.25	2_	1.25 Olive gray (SY 4/1) saturated,				A A	1307	
			1-	···	 	very soft, silt, little F. Sound, some				0,0	'30'	
					 	very soft, silt, little F. Sand, some Clay. root fragments. few light alive brown (545/0)						
					 	from light alive brown (545/6)						
					 	ممأس درد						1
ш	3	<u>(</u>	1-40W	2/1.25	3	1.25' Olive Group (SY 4/1) Saturated V. Soft (18:14, Jittle F. Sand, little Clary. Plant Fragments, Heaf litt				Į.		
		9	2-1	/1.7 53.5		V. Soft Bilt, Dittle F. Sand, 11thle				0.0	1335	
						clay . "Plant Fragments, kat 11th	;-				,	
						some shellsfragonerits.					1	
						30.00					'	
					,							
6		8	W-n	2/105	< ا	1.5' Olive Gray (54 4/1) Saturated V. Soft, SH, Tittle Fine Fand, little Clay. Some Shell Fragments						
			<u> </u>			1.5044, She Shell Francists		R		0,0	1338	
		<u> </u>				Claus.		1				
						trace. pla		5				
						, u		le				
								1				
-Z		10	w-W	2/0.2	4	0.2' Olive Grow (SY 4/1) Moist	·					1
			W-W			very soft Clary Frage Sitt.				Ф. Э	1341	
						trace shell fragments						
						7						
						and con the solution						
10		15	N-11	2/1.2	_<_	0.2' SAA increasing silt			_		1350	· .
			N-N			1.0' Bive Gray (5Y 4/1) Sadurate		<	;	1.3	,	
						76. 1/2		5	1.			
9					<u> </u>	•		h				
								d				
12		14	2/2	2/1.0	4	1.0' Olive Gray SY4/1, Saturated			11.5			
+			W-W	1		V. Soft, Silt I trace Clay trace fine Sand, Trace		-		৫,৩	1353	
						trace fine Sand, Trace		-				
						Shell fragments and plant material		=	133			1
						material -			1.			1
	<u> </u>	1.7		21.		1 -1 CAA		1111111			Illa	1
14		l (e	2-3	2/1.0	۷.	I.o' SAA			147	0.0	1400	
			W-W					13				
	1		l		L .							1

						SOIL BORING LOG	R	ΕP	OR	T C	OF BOR	ING
O'BR	ΕN	& GER	EENG	INEERS, II	NC.		_	رم	me.) [v	oell.	
	000000000000000000000000000000000000000		er-Squi			Sampler: 1" split spoon Hammer: 150 lbs drop	Location:		7		Kirkville,	
		Kirville				Hammer: 150 lbs drop	Page:		1		of	<u> </u>
						- n	Start Date					
File No).: 		Davis	H Wolff		Fall: 80 11	End Date Screen	=	Υ	h	Grout	
Forem	j Gor an:	npany:	rariai , Br.	tt-Wolff			Riser	H	1		Sand Pa	ck
			Paul F						,		Bentonit	
		<u> </u>		,			Stratum					eld
Depth			l	Penetr/		O Decembrish	Change General	_	~ i .	•	PID	ting Time
Below			Blows /6"	Recovery (in ft)	"N" Value	Sample Description	Descript		qui _l tall		(ppm)	(hhmm)
Grade	NO.	(feet)	W-W	2/1/1	<u>المالة</u>	11' Object of (SY 4/1)	2 coonpt		_	. 1	(-	,
- '* -			W-W	-		1.1' Ohve grow (SY 4/1) Saturated V. Soft, S. H, So me, f. Sand, trace clay, trace Shell Graguents.			-	٠.		
						Some , f. sand, trace clay , trace			_	[[ó	1404
ļ			<u> </u>			Shell fraguents.		1	-			
10		20-	13.15	2 /0	41	No recovery		(A)	=	.5		
_){	\vdash	20	<i>ω-ω</i>	2/0	~1	100 (5500 5.5)		۲	-	'	,	1471
								1	_			
							ļ	Sec. 6	د -	,		
20		22	W-W	40.5	دا	0.5' olive ormy (SY 4/1) Saturated, v. Soft Silt, little F. Sond, trace clay.		9	_	<u> </u>		
			W-W			f. Sand. Frace Clay.			1	'	2.4	1415
						, , , , , , , , , , , , , , , , , , ,			1 1	r .	,	
							_		-	, '		
22		22.5		0.5/0.25	<u> </u>	0.25' SAA			()		2.1	1422
			W-W							1		
	_			 							ļ	
									:		ĺ	
										l		
				-								
	-											
												ľ
	-											
	-							ĺ				
								-				
	\dashv											
*	\dashv											
		<u> </u>				İ					j	
				-]]		

REPORT OF BORING **SOIL BORING LOG** O'BRIEN & GERE ENGINEERS, INC. MW-3D Sampler: 2" Split-Spoon Location: Client: BMS Proj. Loc: Knututis Property 2 Hammer: 150lbs Drop Page: of Start Date: 10 - 2-07 End Date: 10-2-07 Fall: 30" File No.: Boring Company: Parratt-Wolff Grout Screen Riser Sand Pack Foreman: Jolaan Brice Bentonite OBG Geologist: Paul Freyer Field Stratum **Testing** Change Depth Penetr/ "N" PID General Time Equip. Below Depth Blows Recovery Sample Description Descript Installed (ppm) (hhmm) Grade No. (feet) /6" (in ft) Value 0.81 Dus Ky Yelbwish brown (1048 7/2), sitt 2 1-2, 딕 2/1.0 0 2-2 trace tolittle Clay. Plant Fragments, Roots. 0922 1.2 o. 2' Pale Yellowich Brown (104R 6/2) moist 1005e, F. Sand, little Siff, trace clay 2.57 <u>5 - G</u> 13 Oul' SAA, moist to Saturated 0925 7-5 0.9 1.2 Dark Yellowish Brown (104R4/2) Saturated Loose, F. Sand, little Silt. Root, few moderate Brown (54R4/4) molfles. Ч 6 1-W 2/1.4 41 442'1.1 0938 0.4 ω-ω 4 C Q 2-2 2/10! 1.0' SAA 22 3.9 0941 8 6 10 2-2 1031 Pork Yellowish Brown (104R4/2) 4-3 Saturated, Loose, F. Sawol, little Sill. AS 10.7 0943 Stight Chemical odor 0/5 WW No Recovery 10 0952 1~.1 211.2 1.2' Groupish Brown (51R 4/2) subworld toose, F. Sand, sittle 51t. No odor. 2-2 14 12 11.5 0455 2-3 2/0.3 41 5.3' SAA, foor Recovery 16 U-W 14 4.5 1004 ω- l 18 W rw 2/1.8 41 1,81 SAA عا 30,3 1007 **ಬ-**ಬ 41 18 20 พ-พ 2/1.7 0.2' Granish Brown (SYRYZ) softwarted loose/Soft, F. Sandard S: Hay little 109 1009 w -1 AS MS/MSD clay, 1.0' Granish brown (54R4/2) guturajed Loose, F. Sand, little Silt. 2 2/1.0 20 27 W-W 33.9 1504 2-2 22 24 W-2 2/1.7 4 1.7'5AA 52,1 1207

						SOIL BORING LOG	R	EPORT (OF BOR	ING
O'BRI	EΝ	& GER	E ENG	INEERS, II	VC.		. M	W-31		<u></u>
Client:	Br	15				Sampler: 2" Split-Spoon	Location:			
Proj. L	.o`c:	Krutul	s Prope	w+		Hammer: 150lbs Drop	Page:		of	2
l								10-2-		
File No				4 144 155		Fall: 30"	End Date:		Grout	
				tt-Wolff			Screen Riser	 -	Sand Pa	ck
Forem			Paul F	rovor			NISCI	Щ 🔛	Bentonit	
OBG C	COR) gist.		i cy ci	 		Stratum			eld
Depth				Penetr/			Change			ting
Below		Depth	Blows	Recovery	"N"	Sample Description	General	Equip.	PID	Time
Grade_	No.		/6"	(in ft)	Value	-		Installed	(ppm)	(hhmm)
24		2ري	N-1	2/1.6	Ч	1.6' Crayish Brown (54R4/2) Saturated, loose, F. Sand, 1:Hle silt. Few Crayish Red (5R4/2) 0.125" silt laminations			23.7	1220
			2-3	,		silt. Few Granish Red (5R4/2)				
			<u> </u>			0.125" silt laminations				
2.6		28	2-3	2/16	8	L . \ CA A				
26		24	5-5	1.411.6	<u>U:</u>	U.4' Growish Brown (SYR 4/2) saturch 40032 F. Sand, little M. Sard,) NC		, ,	1222
			<u> </u>			Goose Figured, little Misand,	" AS		0.5	
					<u></u>	trace 511t				
28_		30	2-2	1.9/1.9	9,	1.51 SAA wy trace FM agreel				
			7-50%	, ,		014 Ground Rad (SR4/2) dame			018	1225
						014' Groyish Red (SR4/2) damp extremely dense, FM around, FM sore in a clayey Silt matrix.	,			
.,						in a clause silt no tois	(
	_					11 x 2120/25 3111 112012,				}
	\dashv									
	-	-			==					
									!	
								i I I		
-	\dashv									
	\dashv		-							İ
						>				
	[ļ			
	_									ĺ
-										
	-+									
-+	\dashv		 				1			
	\dashv				\dashv					
						i			ļ	
						·	ŀ		i	1
	\prod									
	\dashv						ĺ			
		+					Į			İ
		+			\dashv		[i	
								<u> </u>	<u></u> .	

						SOIL BORING LOG	R	EPORT ()F BOR	ING
O'BRI	EN	& GER	EENG	INEERS, IN	NC.		<u> </u>	MW-	06S	
Client:	200000000000		***************************************	***************************************	<u> </u>	Sampler: 2" Split-Spoon	Location:			
			lis Prop.	erty		Hammer: 150lbs Drop	Page:		of	
			-					10-1-07		
File No				· 141.128		Fall: 30"	End Date: Screen	= \ = \	Grout	
			Parrat	t-woin			Riser		Sand Pa	ck
ľ		Jolaan ogist:		raver					Bentonit	
0000	60.0	ygist.	1 66				Stratum		1	eld
Depth			'	Penetr/		<u>'</u>	Change	_		ting
Below			Blows		1	Sample Description	General	Equip.	PID (nnm)	Time
Grade	No.			(in ft)	Value		Descript	Instance	(ppm)	(hhmm)
0	 	2	2-2	2/1,7	<u> </u>	0.2 Dusky fellowish Brown Cloth 2/2) damp, 10034, F. Band, Siff, trace Clay, plant Prayments, roots	Sand-Silt Loam		19.7	1343
-	igwdown		2-2	 	 		ļ 			
			 	 	 	1.5 Yellowich Brown (104R 5/2) demp 1005e, F. Sand, little 5:H.	Fisher			
2		<u>در</u>	3-\$	2/15	12_	0.5 Grayish Red (SR4/2), damp 1005c, FMC Sand, Figravel, little 511t, trace Clay. 1.01 Yellowish Brown(104A5/2) damp	Some -		7.8	1346
			7-7	<u> </u>	 '	1005c, FMC sand, Figravel, HTIE,	Crawe)		'	10 14
	$\vdash\vdash$	-	 	 	 -'	1.01 Yellowish Brown (10 YA 5/2) damp				
- 12	\vdash	<u> </u>	2-3	2/0	9	to moist, F. Sand, little wilt.	F. sang			
ય	\Box	4	3-4	210	 	No Recovery	5:14		~ ~ ~	א כא
-					,				272	15 >"
]				
					<u> </u>	ļ	-< 61.57			
ب	 	- &	2-3	2/13	(q	143' Yellowish Brown (104 R 5/2) sectioned	þ !		, , , ,	12.73
			3-1			loose, F. Somal, little Silt.			136	1353
	$\overline{}$					Chemical ador				
q		10	U-12	2/1.2	2_	1.2' Yelburish Brown (184R 5/2) to				1355
			2-3		<u> </u>	1.2' Yelbaish Brown (104R5/2) to Bark relianish Brown (104R4/2), Saturated			186	1
	 		 		 	10125 + 2000 HILL 2:14.				
	_	12_	W-2	2/0.5	5	Bright Sheen, Chemoal galor 0.5' Dank Yellowish Brown (104R4/2)				
-10		1 4	3-4	C/0.5		Saturated, 10052, F. Sound, little	As		2172	<u></u>
						Silt. Frint Sheen, Chemical ador				1412
12		14	2-3	7/1.2	6	1.2' SAA	F. Sound			·
			34	<i>'</i>	 		· S:H		254	1414
1(1)		11		2/17	(a	Faint Sheen Chemical odoc				
14	\rightarrow	16	2-3 3-4	-~/ '-	- '4- -	1.7 SAM			297	1419
						chemical odor				,
16	\Box	18		2/ 1.8	7	1.8' SAM	ا م		110.1	
			4-3	·	 		ÀS		114	1507
18		2.0	2-3	2/1.7	4	Chamical adac	 			
 X 	\dashv	4.0	1-1	2/1.7	1	117			10:00	1509
						chimical odor				
20	\Box	22	w-w	2/0.4	۷	0.4' Grayish Brown (5YR4/2)	ļ		8.6	15 14
	\rightarrow		W-M		 	Saturated, loose/soft, Silt, F. Sand,				·
	\dashv					trace to little clay,				
	_		[· · · · · · · · · · · · · · · · · · ·		[ţ !			
						<u> </u>				
					 _	!				
					لـــــا	<u> </u>			<u></u>	

O'BRIEN & GERE ENGINEERS, INC.						SOIL BORING LOG	R	REPORT OF BORING				
Client Proj. L		a GEI	VE ENC	1141≡(<i>1</i> 776)@	· * U .	Sampler: 2" Split-Spoon Hammer: 150lbs Drop	Location: Page: Start Date				of	2
File No	o.:					Fall: 30"	End Date		0-1	-07	ı	
Boring	Co			tt-Wolff			Screen	=			Grout	· <u>·</u>
4		Jolaar		rovor			Riser	L	J		Sand Pa Bentoni	
OBG G	leoid	gist.	Paul F	Teyer	<u> </u>		Stratum	<u> </u>		.		ield
Depth		i		Penetr/			Change	_				sting
Below Grade		1 -	Blows /6"	Recovery (in ft)	"N" Value	Sample Description	General Descript		liup Ilet		PID (ppm)	Time (hhmm)
Oracle	NO.	(1001)	1-2	2/1.2	4	1.2 Yellow ish Brown (OYR 5/2), damp	Descript	1113	l	Ĭ	(ppiii)	0856
			2-3	7		loose, F. Sand, Sill.					2.8	0034
				<u> </u>	·							
2		۲,	22	2/1.2	5	1,2'SAA	ļ					~~~
			3-4	/		112 300					3.6	085%
				, ,		disconnection and the second s						
		<u>(</u>	2-3	2/1.51	5_	1,5 SAA, damp to saturated.		l .			3.0	0908
			<u> </u>	`		Slight chemical odor	DTW = 3.0'				ن، د	
Ģ		8	1-2	2/1.4	Ч	1.41 Dark Yellowish Brown (10 YR 4/2)					_	
	_		2-2			1.41 Dank Yellowish Brown (10 YR 4/2) eathersted loose, F. Sand, little silt.					81.8	0960
						Slight Chemical odor						1
4		10	WW	2/1.8	2	1.8' SAA, Blight chemical ador	۸.				548	09/3
			2-4			' - 2	Αs				548	
10		<u> </u>	ww	2/0.6		0.61 SAA, w/ Few verythin laminofions	٠n :					
		14-	2-3	2/0.0		old son the send the commenter	Fine sand			İ	427	09 20
							3,14					
12		14	1 ~2	2/1.7	5	1.7 Dark Yellow ish Brown (104R 4/2)	.				165	
,	\dashv		3-3			Saturated, Loose, F. Sand, 1441e Silt, trace clay.					165	
						<u> </u>		İ	i			
14		16		2/1,2	5	1.21 Dark Yellowich Brown (10 YR 4/2)					267	0928
-+	\dashv		2-3			Saturated, loose, F. Sand, 1. Hles. H					ر يو ر	
						Chamical ador, faint Sheen						
				2/. /				80				
16	-	18	4-3	2/0,5	5	0.55AA chemical odon		ا ل		٧		
								٧		4	155	०९३०
								ار	Ì	C		
10		36	1 - 1	2/1.3	2_	111500 5001		ئر د .		4		
18		26	1-1	-/ 1,3		1. SAA, Slight chemical odor. 0.2 Crayish Grown (SYR 4/2) sot.	AS	Bendonit		707	634	
						loose F. Sand, Silt. Chemical adar		82		Ç		0932
20	+		ม-เง 2-1	2/0.5	2	0.5' SAA, Bright sheen in when Chamical odor						
							ļ				ĺ	0947
22				2/1.0		1.0' Grayish Brown (5YR4/2) Saturated	F			``		949.
			2-2	1		loose, F. Sand, little Silf, Lamnated.	AS				6.1	İ
						once 1" layer F. Sandard Sift, traceclay. Chancel Idar fairt sheen	7 -					
						CHARLICH FAIR TAILS BYEEK				-,		
								f				
							•					. 1

						SOIL BORING LOG	R	EPORT (F BOR	ING
O'BRI	EΝ	& GER	E ENG	ineers, i	NC.			4 W - 6D		
Client:	B1	15 ,				Sampler: 2" Split-Spoon	Location:		-6	0
Proj. L	oc:	Krntu	lis Prop	perty		Hammer: 150lbs Drop	Page:	2 10/1/07	of	
File No						Fall: 30"	End Date:			
		mnanv	Parrat	tt-Wolff		il all. 30	Screen	= \ \ <u>\</u>	Grout	
		Jolaan					Riser		Sand Pa	ck
			Paul F	reyer	·				Bentonit	
				<u> </u>			Stratum			eld
Depth	İ	D 4 h	Blasse	Penetr/	"N"	Sample Description	Change General	Equip.	PID	ting Time
Below Grade	No		Blows /6"	Recovery (in ft)	Value	Sample Description	Descript		(ppm)	(hhmm)
24	140.	26	3-5	2/0.6		a.a. Cranish Brown 54R(4/2)			<u> </u>	, ,
~~~			4-6	1-2-1-0-10		0.6 Grayish Brawn 54R(4/2) Saturated, 1005c F. Soud 15:14.			11.1	1001
						, '\'.'			(	
					ļ		- F. Sand			
24		28	3-5	2/1.51	10	1.5' SAA	F.Sand -S.1t		20.3	1003
			5-4	<u> </u>				1-1	<b>n</b> - /	,005
2.8		36	3-5	2/11	11	1.1'SA A		Warren 1971 Francist &		
			(0-8-	-1				5. 1	3.8	1006
								[ ]		
30		32	L1-6	2/0.8'	13	0.2 SAA	AS_	11111111		1014
			7-11	1		0.6' Group's h brown (64R4/2) Saturating Loss. FA Sand, trace Silf and FMquel			200	1014
	$\dashv$					tross. Freeze Silt and triggive	Sauda			
32		34	11-11	2/0.9	31	0. 7' Granish Brown (SYR4/2) to	Sand-			1016
		- ; ; .	20-25	7		Gray ish Red (584/2) FM sund		[ -		1010
						trace Sitt and You FM Gravel.		1.		
						0.7' Crayish Brows (54R4/2) to Grow ish Red (5R4/2) FM Sand trace Solitory You EM Gravel. 0.2' Grow ish Kind (5R4/2), FM		Control of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta		
						gravel trace Coand, supported	Till	12	1.7	
						in a matrix of SittandClay.	,		, ,	
						very dense.		-		
						Very dense.  Bottom of Borman  @ 34,01 bys				
						5				
	_									
i	一									
										i
	_			<del></del>						
	+									
<del></del>	$\dashv$									
									ļ	
	_	∤	<del> </del>							
	$\dashv$					:				
<del>-  </del>										
							Ì			
	$\Box$									
							,			
-		-					`			
+										
					•	•	<u> </u>			

Appendix B

**Laboratory Data Sheets** 



Monday, October 01, 2007

Dave Carnevale
O'Brien & Gere Engineers, Inc.
5000 Brittonfield Parkway

PO Box 4873

Syracuse, NY 13221-4873

TEL: 315-437-6100

Project: BMS-KRUTULIS

RE: Analytical Results

Order No.: 0709135

Dear Dave Carnevale:

Life Science Laboratories, Inc. received 3 sample(s) on 9/25/2007 for the analyses presented in the following report.

Very truly yours, Life Science Laboratories, Inc.

Monike Santuca.

Monika Santucci

Project Manager



5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

**Analytical Results** 

StateCertNo: 10155

0709135-001A

CLIENT: O'Brien & Gere Engineers, Inc.

**BMS-Krutulis** Project:

W Order: 0709135

Matrix: WATER

Inst. ID: MS01 11

ColumnID: Rtx-VMS 09/26/07 13:39 Revision:

Sample Size: 10 mL

%Moisture: TestCode 8260W **Collection Date:** Date Received:

09/25/07 7:30 09/25/07 9:22

PrepDate:

BatchNo: R11185

Client Sample ID: TW-01-09252007

FileID:

Lab ID:

1-SAMP-926\T50

Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS		SW8260B		
(m+p)-Xylene	ND	1.00	μg/L	1	09/26/07 12:17
1,1,1,2-Tetrachloroethane	ND	0.50	μg/L	1	09/26/07 12:17
1,1,1-Trichloroethane	ND	0.50	μg/L	1	09/26/07 12:17
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1	09/26/07 12:17
1,1,2-Trichloroethane	ND	0.50	μg/L	1	09/26/07 12:17
1,1-Dichloroethane	ND	0.50	μg/L	1	09/26/07 12:17
1,1-Dichloroethene	ND	0.50	μg/L	1	09/26/07 12:17
1,1-Dichloropropene	ND	0.50	μg/L	1	09/26/07 12:17
1,2,3-Trichlorobenzene	ND	1.00	μg/L	1	09/26/07 12:17
1,2,3-Trichloropropane	ND	0.50	μg/L	1	09/26/07 12:17
1,2,4-Trichlorobenzene	ND	1.00	μg/L.	1	09/26/07 12:17
1,2,4-Trimethylbenzene	ND	0.50	μg/L	1	09/26/07 12:17
1,2-Dibromo-3-chloropropane	ND	1.00	μg/L	1	09/26/07 12:17
1,2-Dibromoethane	ND	0.50	μg/L	1	09/26/07 12:17
1,2-Dichlorobenzene	ND	0.50	μg/L	1	09/26/07 12:17
1,2-Dichloroethane	ND	0.50	μg/L	1	09/26/07 12:17
1,2-Dichloropropane	ND	0.50	μg/L	1	09/26/07 12:17
1,3,5-Trimethylbenzene	ND	0.50	μg/L	1	09/26/07 12:17
1,3-Dichlorobenzene	ND	0.50	μg/L	1	09/26/07 12:17
1,3-Dichloropropane	ND	0.50	μg/L	1	09/26/07 12:17
1,4-Dichlorobenzene	ND	0.50	μg/L	1	09/26/07 12:17
2,2-Dichloropropane	ND	0.50	μg/L	1	09/26/07 12:17
2-Chlorotoluene	ND	0.50	μg/L	1	09/26/07 12:17
4-Chlorotoluene	ND	0.50	μg/L	1	09/26/07 12:17
Benzene	ND	0.50	μg/L	1	09/26/07 12:17
Bromobenzene	ND	0.50	μg/L	1	09/26/07 12:17
Bromochloromethane	ND	0.50	μg/L	1	09/26/07 12:17
Bromodichloromethane	ND	0.50	μg/L	1	09/26/07 12:17
Bromoform	ND	0.50	µg/L	1	09/26/07 12:17
Bromomethane	ND	1.00	μg/L	1	09/26/07 12:17
Carbon tetrachloride	ND	0.50	μg/L	1	09/26/07 12:17
Chlorobenzene	ND	0.50	μg/L	1	09/26/07 12:17
Chloroethane	ND	1.00	µg/L	1	09/26/07 12:17
Chloroform	ND	0.50	μg/L	1	09/26/07 12:17

### Qualifiers:

Print Date: 09/26/07 13:39

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit

304745

- B Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- Spike Recovery outside accepted recovery limits

Page 1 of 4 Project Supervisor: Monika Santucci



**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

**CLIENT:** O'Brien & Gere Engineers, Inc.

Project: **BMS-Krutulis** 

W Order: 0709135

Matrix: WATER

Inst. ID: MS01 11

ColumnID: Rtx-VMS 09/26/07 13:39 Revision:

Sample Size: 10 mL

TestCode 8260W

%Moisture:

Lab ID:

0709135-001A

Client Sample ID: TW-01-09252007 **Collection Date:** 

09/25/07 7:30 09/25/07 9:22

Date Received: PrepDate:

BatchNo:

R11185

FileID:

1-SAMP-926\T50

Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	S BY GC/MS		SW8260B		
Chloromethane	ND	1.00	μg/L	1	09/26/07 12:17
cis-1,2-Dichloroethene	ND	0.50	μg/L	1	09/26/07 12:17
cis-1,3-Dichloropropene	ND	0.50	μg/L	1	09/26/07 12:17
Dibromochloromethane	ND	0.50	μg/L	1	09/26/07 12:17
Dibromomethane	ND	0.50	μg/L	1	09/26/07 12:17
Dichlorodifluoromethane	ND	1.00	μg/L	1	09/26/07 12:17
Ethylbenzene	ND	0.50	μg/L	1	09/26/07 12:17
Hexachlorobutadiene	ND	1.00	μg/L	1	09/26/07 12:17
Isopropylbenzene	ND	0.50	μg/L	1	09/26/07 12:17
Methyl tert-butyl ether	ND	0.50	μg/L	1	09/26/07 12:17
Methylene chloride	ND	2.00	μg/L	1	09/26/07 12:17
n-Butylbenzene	ND	0.50	μg/L.	1	09/26/07 12:17
n-Propylbenzene	ND	0.50	μg/L	1	09/26/07 12:17
Naphthalene	ND	1.00	μg/L	1	09/26/07 12:17
o-Xylene	ND	0.50	μg/L	1	09/26/07 12:17
p-Isopropyltoluene	ND	0.50	μg/L	1	09/26/07 12:17
sec-Butylbenzene	ND	0.50	μg/L	1	09/26/07 12:17
Styrene	ND	0.50	μg/L	1	09/26/07 12:17
tert-Butylbenzene	ND	0.50	μg/L	1	09/26/07 12:17
Tetrachloroethene	ND	0.50	μg/L	1	09/26/07 12:17
Toluene	ND	0.50	μg/L	1	09/26/07 12:17
trans-1,2-Dichloroethene	ND	0.50	μg/L	1	09/26/07 12:17
trans-1,3-Dichloropropene	ND	0.50	μg/L	1	09/26/07 12:17
Trichloroethene	ND	0.50	μg/L	1	09/26/07 12:17
Trichlorofluoromethane	ND	1.00	μg/L	1	09/26/07 12:17
Vinyl chloride	ND	1.00	μg/L	1	09/26/07 12:17
Xylenes (total)	ND	1.00	μg/L	1	09/26/07 12:17
Surr: 1,2-Dichloroethane-d4	107	75-134	%REC	1	09/26/07 12:17
Surr: 4-Bromofluorobenzene	97.0	75-125	%REC	1	09/26/07 12:17
Surr: Dibromofluoromethane	101	75-127	%REC	1	09/26/07 12:17
Surr: Toluene-d8	105	75-125	%REC	1	09/26/07 12:17

### Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- Spike Recovery outside accepted recovery limits

Print Date: 09/26/07 13:39 Project Supervisor: Monika Santucci Page 2 of 4 304745



### **Analytical Results**

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

0709135-003A

CLIENT: O'Brien & Gere Engineers, Inc.

**Project:** BMS-Krutulis

W Order: 0709135 Matrix: WATER Q

Inst. ID: MS01 11

Inst. ID: MS01 11 ColumnID: Rtx-VMS

**Revision:** 09/26/07 13:39

%Moisture:

Sample Size: 10 mL

TestCode 8260W

Client Sample ID: *TB-01-09252007* 

**Collection Date:** 09/25/07 7:30 **Date Received:** 09/25/07 9:22

PrepDate:

Lab ID:

BatchNo: R11185

**FileID:** 1-SAMP-926\T50

Col Type:

1,1,1,2-Tetrachloroethane         ND         0.50         µg/L         1         09/26/1           1,1,1-Trichloroethane         ND         0.50         µg/L         1         09/26/1           1,1,2-Trichloroethane         ND         0.50         µg/L         1         09/26/1           1,1-Dichloroethane         ND         0.50         µg/L         1         09/26/1           1,1-Dichloroethane         ND         0.50         µg/L         1         09/26/1           1,1-Dichloroethane         ND         0.50         µg/L         1         09/26/1           1,1-Dichloropropene         ND         0.50         µg/L         1         09/26/1           1,1-Dichloropropene         ND         0.50         µg/L         1         09/26/1           1,2,3-Trichlorobenzene         ND         0.50         µg/L         1         09/26/1           1,2,3-Trichlorobenzene         ND         0.50         µg/L         1         09/26/1           1,2,2-Trichlorobenzene         ND         0.50         µg/L         1         09/26/1           1,2-Dichlorobenzene         ND         0.50         µg/L         1         09/26/1           1,2-Dichlorobenzene         ND	nalyte	Result Qu	al PQL	Units	DF	Date Analyzed
1,1,1,2-Tetrachloroethane         ND         0.50         µg/L         1         09/26/1           1,1,1-Trichloroethane         ND         0.50         µg/L         1         09/26/1           1,1,2-Trichloroethane         ND         0.50         µg/L         1         09/26/1           1,1,2-Trichloroethane         ND         0.50         µg/L         1         09/26/1           1,1-Dichloroethane         ND         0.50         µg/L         1         09/26/1           1,1-Dichloropenene         ND         0.50         µg/L         1         09/26/1           1,1-Dichlorobenzene         ND         0.50         µg/L         1         09/26/1           1,2,3-Trichlorobenzene         ND         0.50         µg/L         1         09/26/1           1,2,3-Trichlorobenzene         ND         0.50         µg/L         1         09/26/1           1,2,4-Trimethylbenzene         ND         0.50         µg/L         1         09/26/1           1,2-Dibromo-3-chloropropane         ND         0.50         µg/L         1         09/26/1           1,2-Dichlorobenzene         ND         0.50         µg/L         1         09/26/1           1,2-Dichlorobenzene	OLATILE ORGANIC COMPOUNE	OS BY GC/MS		SW8260B		<del> </del>
1,1,1-Trichloroethane         ND         0.50         µg/L         1         09/26/I           1,1,2-Trichloroethane         ND         0.50         µg/L         1         09/26/I           1,1,2-Trichloroethane         ND         0.50         µg/L         1         09/26/I           1,1-Dichloroethane         ND         0.50         µg/L         1         09/26/I           1,1-Dichloropropene         ND         0.50         µg/L         1         09/26/I           1,1-Dichloropropene         ND         0.50         µg/L         1         09/26/I           1,2,3-Trichloropenzene         ND         1.00         µg/L         1         09/26/I           1,2,3-Trichloropenzene         ND         0.50         µg/L         1         09/26/I           1,2,4-Trimethylbenzene         ND         0.50         µg/L         1         09/26/I           1,2-Dichlorobenzene         ND         0.50         µg/L         1         09/26/I           1,2-Dichlorobenzene         ND         0.50         µg/L         1         09/26/I           1,2-Dichloropenzene         ND         0.50         µg/L         1         09/26/I           1,2-Dichloropropane         ND<	(m+p)-Xylene	ND	1.00	μg/L	1	09/26/07 11:44
1,1,2,2-Tetrachloroethane	1,1,1,2-Tetrachloroethane	ND	0.50	μg/L	1	09/26/07 11:44
1,1,2-Trichloroethane         ND         0.50         µg/L         1         09/26/           1,1-Dichloroethane         ND         0.50         µg/L         1         09/26/           1,1-Dichloroethane         ND         0.50         µg/L         1         09/26/           1,1-Dichloropropene         ND         0.50         µg/L         1         09/26/           1,2,3-Trichlorobenzene         ND         0.50         µg/L         1         09/26/           1,2,3-Trichloropopane         ND         0.50         µg/L         1         09/26/           1,2,4-Trimethylbenzene         ND         0.50         µg/L         1         09/26/           1,2-Dibromo-3-chloropropane         ND         0.50         µg/L         1         09/26/           1,2-Dibromo-barcene         ND         0.50         µg/L         1         09/26/           1,2-Dichloropropane         ND         0.50         µg/L         1         09/26/           1,2-Dichlorobenzene         ND         0.50         µg/L         1         09/26/           1,2-Dichloropropane         ND         0.50         µg/L         1         09/26/           1,3-Dichloropropane         ND	1,1,1-Trichloroethane	ND	0.50	μg/L	1	09/26/07 11:44
1,1-Dichloroethane	1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1	09/26/07 11:44
1,1-Dichloroethene         ND         0.50         µg/L         1         09/26/           1,1-Dichloropropene         ND         0.50         µg/L         1         09/26/           1,2,3-Trichlorobenzene         ND         1.00         µg/L         1         09/26/           1,2,3-Trichlorobenzene         ND         0.50         µg/L         1         09/26/           1,2,4-Trichlorobenzene         ND         0.50         µg/L         1         09/26/           1,2-Dibromo-3-chloropropane         ND         0.50         µg/L         1         09/26/           1,2-Dibromo-3-chloropropane         ND         1.00         µg/L         1         09/26/           1,2-Dibromo-4-chloropropane         ND         0.50         µg/L         1         09/26/           1,2-Dichlorobenzene         ND         0.50         µg/L         1         09/26/           1,2-Dichloropenzene         ND         0.50         µg/L         1         09/26/           1,2-Dichloropenzene         ND         0.50         µg/L         1         09/26/           1,3-Dichloropenzene         ND         0.50         µg/L         1         09/26/           1,3-Dichloropenzene <t< td=""><td>1,1,2-Trichloroethane</td><td>ND</td><td>0.50</td><td>μg/L</td><td>1</td><td>09/26/07 11:44</td></t<>	1,1,2-Trichloroethane	ND	0.50	μg/L	1	09/26/07 11:44
1,1-Dichloropropene	1,1-Dichloroethane	ND	0.50	μg/L	1	09/26/07 11:44
1,2,3-Trichlorobenzene	1,1-Dichloroethene	ND	0.50	μg/L	1	09/26/07 11:44
1,2,3-Trichloropropane         ND         0.50         µg/L         1         09/26/1,2,4-Trichlorobenzene           1,2,4-Trichlorobenzene         ND         1.00         µg/L         1         09/26/1           1,2-Dibromo-3-chloropropane         ND         0.50         µg/L         1         09/26/1           1,2-Dibromoethane         ND         0.50         µg/L         1         09/26/1           1,2-Dichlorobenzene         ND         0.50         µg/L         1         09/26/1           1,2-Dichloroptenane         ND         0.50         µg/L         1         09/26/1           1,2-Dichloropropane         ND         0.50         µg/L         1         09/26/1           1,2-Dichloropropane         ND         0.50         µg/L         1         09/26/1           1,3-Timethylbenzene         ND         0.50         µg/L         1         09/26/1           1,3-Dichloropropane         ND         0.50         µg/L         1         09/26/1           1,3-Dichloropropane         ND         0.50         µg/L         1         09/26/1           1,4-Dichlorobenzene         ND         0.50         µg/L         1         09/26/1           2,2-Dichloropropane <td>1,1-Dichloropropene</td> <td>ND</td> <td>0.50</td> <td>μg/L</td> <td>1</td> <td>09/26/07 11:44</td>	1,1-Dichloropropene	ND	0.50	μg/L	1	09/26/07 11:44
1,2,3-Trichloropropane         ND         0.50         µg/L         1         09/26/1,2,4-Trichlorobenzene           1,2,4-Trichlorobenzene         ND         1.00         µg/L         1         09/26/1           1,2-Dibromo-3-chloropropane         ND         0.50         µg/L         1         09/26/1           1,2-Dibromoethane         ND         0.50         µg/L         1         09/26/1           1,2-Dichlorobenzene         ND         0.50         µg/L         1         09/26/1           1,2-Dichloroptenane         ND         0.50         µg/L         1         09/26/1           1,2-Dichloropropane         ND         0.50         µg/L         1         09/26/1           1,2-Dichloropropane         ND         0.50         µg/L         1         09/26/1           1,3-Timethylbenzene         ND         0.50         µg/L         1         09/26/1           1,3-Dichloropropane         ND         0.50         µg/L         1         09/26/1           1,3-Dichloropropane         ND         0.50         µg/L         1         09/26/1           1,4-Dichlorobenzene         ND         0.50         µg/L         1         09/26/1           2,2-Dichloropropane <td>1,2,3-Trichlorobenzene</td> <td>ND</td> <td>1.00</td> <td>μg/L.</td> <td>1</td> <td>09/26/07 11:44</td>	1,2,3-Trichlorobenzene	ND	1.00	μg/L.	1	09/26/07 11:44
1,2,4-Trimethylbenzene         ND         0.50         µg/L         1         09/26/1           1,2-Dibromo-3-chloropropane         ND         1.00         µg/L         1         09/26/1           1,2-Dibromoethane         ND         0.50         µg/L         1         09/26/1           1,2-Dichlorobenzene         ND         0.50         µg/L         1         09/26/1           1,2-Dichloroptopane         ND         0.50         µg/L         1         09/26/1           1,2-Dichloroptopane         ND         0.50         µg/L         1         09/26/1           1,3-Dichloroptopane         ND         0.50         µg/L         1         09/26/1           1,4-Dichloroptopane         ND         0.50         µg/L         1         09/26/1           2,2-Dichloroptopane         ND	1,2,3-Trichloropropane	ND	0.50		1	09/26/07 11:44
1,2-Dibromo-3-chloropropane         ND         1.00         µg/L         1         09/26/           1,2-Dibromoethane         ND         0.50         µg/L         1         09/26/           1,2-Dichlorobenzene         ND         0.50         µg/L         1         09/26/           1,2-Dichloroptopane         ND         0.50         µg/L         1         09/26/           1,2-Dichloroptopane         ND         0.50         µg/L         1         09/26/           1,3-Frimethylbenzene         ND         0.50         µg/L         1         09/26/           1,3-Dichlorobenzene         ND         0.50         µg/L         1         09/26/           1,3-Dichloropropane         ND         0.50         µg/L         1         09/26/           1,3-Dichloropropane         ND         0.50         µg/L         1         09/26/           1,3-Dichloropropane         ND         0.50         µg/L         1         09/26/           1,4-Dichlorobenzene         ND         0.50         µg/L         1         09/26/           2,2-Dichloropropane         ND         0.50         µg/L         1         09/26/           2,-Dichloropropane         ND         0.50	1,2,4-Trichlorobenzene	ND	1.00	μg/L	1	09/26/07 11:44
1,2-Dibromoethane         ND         0.50         µg/L         1         09/26/           1,2-Dichlorobenzene         ND         0.50         µg/L         1         09/26/           1,2-Dichloroethane         ND         0.50         µg/L         1         09/26/           1,2-Dichloropropane         ND         0.50         µg/L         1         09/26/           1,3-Frimethylbenzene         ND         0.50         µg/L         1         09/26/           1,3-Dichlorobenzene         ND         0.50         µg/L         1         09/26/           1,3-Dichloropropane         ND         0.50         µg/L         1         09/26/           1,3-Dichloropropane         ND         0.50         µg/L         1         09/26/           1,3-Dichloropropane         ND         0.50         µg/L         1         09/26/           1,3-Dichloropropane         ND         0.50         µg/L         1         09/26/           1,4-Dichloropropane         ND         0.50         µg/L         1         09/26/           2,2-Dichloropropane         ND         0.50         µg/L         1         09/26/           2-Chlorotoluene         ND         0.50	1,2,4-Trimethylbenzene	ND	0.50	μg/L	1	09/26/07 11:44
1,2-Dichlorobenzene         ND         0.50         µg/L         1         09/26/1           1,2-Dichloroethane         ND         0.50         µg/L         1         09/26/1           1,2-Dichloropropane         ND         0.50         µg/L         1         09/26/1           1,3-Frimethylbenzene         ND         0.50         µg/L         1         09/26/1           1,3-Dichlorobenzene         ND         0.50         µg/L         1         09/26/1           1,3-Dichloropropane         ND         0.50         µg/L         1         09/26/1           1,4-Dichlorobenzene         ND         0.50         µg/L         1         09/26/1           2,2-Dichloropropane         ND         0.50         µg/L         1         09/26/1           2,2-Dichloropropane         ND         0.50         µg/L         1         09/26/1           2,2-Dichloropropane         ND         0.50         µg/L         1         09/26/1           2,2-Dichloropropane         ND         0.50         µg/L         1         09/26/1           4-Chlorotoluene         ND         0.50         µg/L         1         09/26/1           Benzene         ND         0.50	1,2-Dibromo-3-chloropropane	ND	1.00	μg/L	1	09/26/07 11:44
1,2-Dichloroethane         ND         0.50         µg/L         1         09/26/1           1,2-Dichloropropane         ND         0.50         µg/L         1         09/26/1           1,3,5-Trimethylbenzene         ND         0.50         µg/L         1         09/26/1           1,3-Dichlorobenzene         ND         0.50         µg/L         1         09/26/1           1,3-Dichloropropane         ND         0.50         µg/L         1         09/26/1           1,4-Dichlorobenzene         ND         0.50         µg/L         1         09/26/1           2,2-Dichloropropane         ND         0.50         µg/L         1         09/26/1           2,2-Dichloropropane         ND         0.50         µg/L         1         09/26/1           2,2-Dichloropropane         ND         0.50         µg/L         1         09/26/1           2,2-Dichloropropane         ND         0.50         µg/L         1         09/26/1           2,2-Dichloropropane         ND         0.50         µg/L         1         09/26/1           4-Chlorotoluene         ND         0.50         µg/L         1         09/26/1           Benzene         ND         0.50	1,2-Dibromoethane	ND	0.50	μg/L	1	09/26/07 11:44
1,2-Dichloropropane         ND         0.50         µg/L         1         09/26/           1,3,5-Trimethylbenzene         ND         0.50         µg/L         1         09/26/           1,3-Dichlorobenzene         ND         0.50         µg/L         1         09/26/           1,3-Dichloropropane         ND         0.50         µg/L         1         09/26/           1,4-Dichlorobenzene         ND         0.50         µg/L         1         09/26/           2,2-Dichloropropane         ND         0.50         µg/L         1         09/26/           2,2-Dichloropropane         ND         0.50         µg/L         1         09/26/           2,2-Dichloropropane         ND         0.50         µg/L         1         09/26/           2,2-Dichloropropane         ND         0.50         µg/L         1         09/26/           2,Chlorotoluene         ND         0.50         µg/L         1         09/26/           4-Chlorotoluene         ND         0.50         µg/L         1         09/26/           Benzene         ND         0.50         µg/L         1         09/26/           Bromochloromethane         ND         0.50         µg/L </td <td>1,2-Dichlorobenzene</td> <td>ND</td> <td>0.50</td> <td>μg/L</td> <td>1</td> <td>09/26/07 11:44</td>	1,2-Dichlorobenzene	ND	0.50	μg/L	1	09/26/07 11:44
1,3,5-Trimethylbenzene         ND         0.50         μg/L         1         09/26/           1,3-Dichlorobenzene         ND         0.50         μg/L         1         09/26/           1,3-Dichloropropane         ND         0.50         μg/L         1         09/26/           1,4-Dichlorobenzene         ND         0.50         μg/L         1         09/26/           2,2-Dichloropropane         ND         0.50         μg/L         1         09/26/           2,Chlorotoluene         ND         0.50         μg/L         1         09/26/           4-Chlorotoluene         ND         0.50         μg/L         1         09/26/           4-Chlorotoluene         ND         0.50         μg/L         1         09/26/           Benzene         ND         0.50         μg/L         1         09/26/           Bromobenzene         ND         0.50         μg/L         1         09/26/           Bromochloromethane         ND         0.50         μg/L         1         09/26/           Bromoform         ND         0.50         μg/L         1         09/26/           Bromomethane         ND         0.50         μg/L         1	1,2-Dichloroethane	ND	0.50	μg/L	1	09/26/07 11:44
1,3-Dichlorobenzene       ND       0.50       μg/L       1       09/26/         1,3-Dichloropropane       ND       0.50       μg/L       1       09/26/         1,4-Dichlorobenzene       ND       0.50       μg/L       1       09/26/         2,2-Dichloropropane       ND       0.50       μg/L       1       09/26/         2-Chlorotoluene       ND       0.50       μg/L       1       09/26/         4-Chlorotoluene       ND       0.50       μg/L       1       09/26/         Benzene       ND       0.50       μg/L       1       09/26/         Bromobenzene       ND       0.50       μg/L       1       09/26/         Bromochloromethane       ND       0.50       μg/L       1       09/26/         Bromoform       ND       0.50       μg/L       1       09/26/         Bromomethane       ND       0.50       μg/L       1       09/26/         Carbon tetrachloride       ND       0.50       μg/L       1       09/26/         Chlorobenzene       ND       0.50       μg/L       1       09/26/         Chlorotohane       ND       0.50       μg/L       1 <t< td=""><td>1,2-Dichloropropane</td><td>ND</td><td>0.50</td><td>μg/L</td><td>1</td><td>09/26/07 11:44</td></t<>	1,2-Dichloropropane	ND	0.50	μg/L	1	09/26/07 11:44
1,3-Dichloropropane         ND         0.50         µg/L         1         09/26/           1,4-Dichlorobenzene         ND         0.50         µg/L         1         09/26/           2,2-Dichloropropane         ND         0.50         µg/L         1         09/26/           2-Chlorotoluene         ND         0.50         µg/L         1         09/26/           4-Chlorotoluene         ND         0.50         µg/L         1         09/26/           Benzene         ND         0.50         µg/L         1         09/26/           Bromobenzene         ND         0.50         µg/L         1         09/26/           Bromochloromethane         ND         0.50         µg/L         1         09/26/           Bromoform         ND         0.50         µg/L         1         09/26/           Bromomethane         ND         0.50         µg/L         1         09/26/           Carbon tetrachloride         ND         0.50         µg/L         1         09/26/           Chlorobenzene         ND         0.50         µg/L         1         09/26/           Chlorothane         ND         0.50         µg/L         1         09/26	1,3,5-Trimethylbenzene	ND	0.50	μg/L	1	09/26/07 11:44
1,4-Dichlorobenzene         ND         0.50         µg/L         1         09/26/           2,2-Dichloropropane         ND         0.50         µg/L         1         09/26/           2-Chlorotoluene         ND         0.50         µg/L         1         09/26/           4-Chlorotoluene         ND         0.50         µg/L         1         09/26/           Benzene         ND         0.50         µg/L         1         09/26/           Bromobenzene         ND         0.50         µg/L         1         09/26/           Bromochloromethane         ND         0.50         µg/L         1         09/26/           Bromoform         ND         0.50         µg/L         1         09/26/           Bromomethane         ND         1.00         µg/L         1         09/26/           Carbon tetrachloride         ND         0.50         µg/L         1         09/26/           Chlorobenzene         ND         0.50         µg/L         1         09/26/           Chloroethane         ND         1.00         µg/L         1         09/26/	1,3-Dichlorobenzene	ND	0.50	μg/L	1	09/26/07 11:44
2,2-Dichloropropane         ND         0.50         µg/L         1         09/26/           2-Chlorotoluene         ND         0.50         µg/L         1         09/26/           4-Chlorotoluene         ND         0.50         µg/L         1         09/26/           Benzene         ND         0.50         µg/L         1         09/26/           Bromobenzene         ND         0.50         µg/L         1         09/26/           Bromochloromethane         ND         0.50         µg/L         1         09/26/           Bromoform         ND         0.50         µg/L         1         09/26/           Bromomethane         ND         1.00         µg/L         1         09/26/           Carbon tetrachloride         ND         0.50         µg/L         1         09/26/           Chlorobenzene         ND         0.50         µg/L         1         09/26/           Chloroethane         ND         1.00         µg/L         1         09/26/	1,3-Dichloropropane	ND	0.50	μg/L.	1	09/26/07 11:44
2-Chlorotoluene         ND         0.50         μg/L         1         09/26/           4-Chlorotoluene         ND         0.50         μg/L         1         09/26/           Benzene         ND         0.50         μg/L         1         09/26/           Bromobenzene         ND         0.50         μg/L         1         09/26/           Bromochloromethane         ND         0.50         μg/L         1         09/26/           Bromoform         ND         0.50         μg/L         1         09/26/           Bromomethane         ND         1.00         μg/L         1         09/26/           Carbon tetrachloride         ND         0.50         μg/L         1         09/26/           Chlorobenzene         ND         0.50         μg/L         1         09/26/           Chloroethane         ND         1.00         μg/L         1         09/26/	1,4-Dichlorobenzene	ND	0.50	μg/L	1	09/26/07 11:44
4-Chlorotoluene       ND       0.50       μg/L       1       09/26/         Benzene       ND       0.50       μg/L       1       09/26/         Bromobenzene       ND       0.50       μg/L       1       09/26/         Bromochloromethane       ND       0.50       μg/L       1       09/26/         Bromodichloromethane       ND       0.50       μg/L       1       09/26/         Bromoform       ND       0.50       μg/L       1       09/26/         Bromomethane       ND       1.00       μg/L       1       09/26/         Carbon tetrachloride       ND       0.50       μg/L       1       09/26/         Chlorobenzene       ND       0.50       μg/L       1       09/26/         Chloroethane       ND       1.00       μg/L       1       09/26/	2,2-Dichloropropane	ND	0.50	μg/L	1	09/26/07 11:44
Benzene         ND         0.50         μg/L         1         09/26/           Bromobenzene         ND         0.50         μg/L         1         09/26/           Bromochloromethane         ND         0.50         μg/L         1         09/26/           Bromodichloromethane         ND         0.50         μg/L         1         09/26/           Bromoform         ND         0.50         μg/L         1         09/26/           Bromomethane         ND         1.00         μg/L         1         09/26/           Carbon tetrachloride         ND         0.50         μg/L         1         09/26/           Chlorobenzene         ND         0.50         μg/L         1         09/26/           Chloroethane         ND         1.00         μg/L         1         09/26/	2-Chlorotoluene	ND	0.50	μg/L	1	09/26/07 11:44
Bromobenzene         ND         0.50         μg/L         1         09/26/           Bromochloromethane         ND         0.50         μg/L         1         09/26/           Bromodichloromethane         ND         0.50         μg/L         1         09/26/           Bromoform         ND         0.50         μg/L         1         09/26/           Bromomethane         ND         1.00         μg/L         1         09/26/           Carbon tetrachloride         ND         0.50         μg/L         1         09/26/           Chlorobenzene         ND         0.50         μg/L         1         09/26/           Chloroethane         ND         1.00         μg/L         1         09/26/	4-Chlorotoluene	ND	0.50	μg/L	1	09/26/07 11:44
Bromochloromethane         ND         0.50         μg/L         1         09/26/           Bromodichloromethane         ND         0.50         μg/L         1         09/26/           Bromoform         ND         0.50         μg/L         1         09/26/           Bromomethane         ND         1.00         μg/L         1         09/26/           Carbon tetrachloride         ND         0.50         μg/L         1         09/26/           Chlorobenzene         ND         0.50         μg/L         1         09/26/           Chloroethane         ND         1.00         μg/L         1         09/26/	Benzene	ND	0.50	μg/L	1	09/26/07 11:44
Bromodichloromethane         ND         0.50         μg/L         1         09/26/           Bromoform         ND         0.50         μg/L         1         09/26/           Bromomethane         ND         1.00         μg/L         1         09/26/           Carbon tetrachloride         ND         0.50         μg/L         1         09/26/           Chlorobenzene         ND         0.50         μg/L         1         09/26/           Chloroethane         ND         1.00         μg/L         1         09/26/	Bromobenzene	ND	0.50	μg/L	1	09/26/07 11:44
Bromoform         ND         0.50         μg/L         1         09/26/           Bromomethane         ND         1.00         μg/L         1         09/26/           Carbon tetrachloride         ND         0.50         μg/L         1         09/26/           Chlorobenzene         ND         0.50         μg/L         1         09/26/           Chloroethane         ND         1.00         μg/L         1         09/26/	Bromochloromethane	ND	0.50	μg/L	1	09/26/07 11:44
Bromoform         ND         0.50         μg/L         1         09/26/           Bromomethane         ND         1.00         μg/L         1         09/26/           Carbon tetrachloride         ND         0.50         μg/L         1         09/26/           Chlorobenzene         ND         0.50         μg/L         1         09/26/           Chloroethane         ND         1.00         μg/L         1         09/26/	Bromodichloromethane	ND	0.50	μg/L	1	09/26/07 11:44
Carbon tetrachloride         ND         0.50         μg/L         1         09/26/           Chlorobenzene         ND         0.50         μg/L         1         09/26/           Chloroethane         ND         1.00         μg/L         1         09/26/	Bromoform	ND	0.50	μg/L	1	09/26/07 11:44
Carbon tetrachloride         ND         0.50         μg/L         1         09/26/           Chlorobenzene         ND         0.50         μg/L         1         09/26/           Chloroethane         ND         1.00         μg/L         1         09/26/	Bromomethane	ND	1.00		1	09/26/07 11:44
Chlorobenzene ND 0.50 $\mu$ g/L 1 09/26/ Chloroethane ND 1.00 $\mu$ g/L 1 09/26/	Carbon tetrachloride	ND	0.50		1	09/26/07 11:44
Chloroethane ND 1.00 μg/L 1 09/26/	Chlorobenzene	ND	0.50		1	09/26/07 11:44
• •	Chloroethane	ND	1.00		1	09/26/07 11:44
Official Park 1 dates	Chloroform	ND	0.50	μg/L	1	09/26/07 11:44

### Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Value exceeds the instrument calibration range
- J Analyte detected below the PQL
- P Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - S Spike Recovery outside accepted recovery limits

**Print Date:** 09/26/07 13:39 30

304744

Project Supervisor: Monika Santucci



5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

**Analytical Results** 

StateCertNo: 10155

**CLIENT:** O'Brien & Gere Engineers, Inc.

**BMS-Krutulis** Project: W Order: 0709135

Matrix: WATER Q

Inst. ID: MS01 11

ColumnID: Rtx-VMS Revision: 09/26/07 13:39

Sample Size: 10 mL %Moisture:

TestCode 8260W

0709135-003A Client Sample ID: TB-01-09252007

**Collection Date:** 09/25/07 7:30 Date Received: 09/25/07 9:22

PrepDate:

Lab ID:

BatchNo: R11185

FileID: 1-SAMP-926\T50

Col Type:

Analyte	Result Qu	al PQL	Units	Units DF	
VOLATILE ORGANIC COMPOUND	S BY GC/MS		SW8260B		
Chloromethane	ND	1.00	μg/L	1	09/26/07 11:44
cis-1,2-Dichloroethene	ND	0.50	μg/L	1	09/26/07 11:44
cis-1,3-Dichloropropene	ND	0.50	μg/L	1	09/26/07 11:44
Dibromochloromethane	ND	0.50	μg/L	1	09/26/07 11:44
Dibromomethane	ND	0.50	μg/L.	1	09/26/07 11:44
Dichlorodifluoromethane	ND	1.00	μg/L	1	09/26/07 11:44
Ethylbenzene	ND	0.50	μg/L	1	09/26/07 11:44
Hexachlorobutadiene	ND	1.00	μg/L	1	09/26/07 11:44
Isopropylbenzene	ND	0.50	μg/L	1	09/26/07 11:44
Methyl tert-butyl ether	ND	0.50	μg/L.	1	09/26/07 11:44
Methylene chloride	ND	2.00	μg/L	1	09/26/07 11:44
n-Butylbenzene	ND	0.50	μg/L	1	09/26/07 11:44
n-Propylbenzene	ND	0.50	μg/L	1	09/26/07 11:44
Naphthalene	ND	1.00	μg/L	1	09/26/07 11:44
o-Xylene	ND	0.50	μg/L.	1	09/26/07 11:44
p-Isopropyltoluene	ND	0.50	μg/L	1	09/26/07 11:44
sec-Butylbenzene	ND	0.50	μg/L	1	09/26/07 11:44
Styrene	ND	0.50	μg/L	1	09/26/07 11:44
tert-Butylbenzene	ND	0.50	μg/L	1	09/26/07 11:44
Tetrachloroethene	ND	0.50	μg/L	1	09/26/07 11:44
Toluene	ND	0.50	μg/L	1	09/26/07 11:44
trans-1,2-Dichloroethene	ND	0.50	μg/L	1	09/26/07 11:44
trans-1,3-Dichloropropene	ND	0.50	μg/L	1	09/26/07 11:44
Trichloroethene	ND	0.50	μg/L	1	09/26/07 11:44
Trichlorofluoromethane	ND	1.00	μg/L	1	09/26/07 11:44
Vinyl chloride	ND	1.00	μg/L	1	09/26/07 11:44
Xylenes (total)	ND	1.00	μg/L	1	09/26/07 11:44
Surr: 1,2-Dichloroethane-d4	103	75-134	%REC	1	09/26/07 11:44
Surr: 4-Bromofluorobenzene	95.8	75-125	%REC	1	09/26/07 11:44
Surr: Dibromofluoromethane	99.8	75-127	%REC	1	09/26/07 11:44
Surr: Toluene-d8	106	75-125	%REC	1	09/26/07 11:44

### Qualifiers:

- Value exceeds Maximum Contaminant Level
- Е Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- Spike Recovery outside accepted recovery limits

Print Date: 09/26/07 13:39 304744 Project Supervisor: Monika Santucci Page 4 of 4

## Page 1 of 9

# Life Science Laboratories, Inc.

ANALYTICAL QC SUMMARY REPORT

SW8260B 0709135

Work Order: Method:

Project:

**BMS-Krutulis** 

5000 Brittonfield Parkway, Suite 200

(315) 437-0200 East Syracuse, NY 13057

CLIENT:

O'Brien & Gere Engineers, Inc.

Sample ID: LCS-11185	SampType: LCS	TestCode:	e: 8260W	Units: µg/L		Prep Date:		RunNo:		11185	
Client ID: ZZZZZ	Batch ID: R11185	Method:	SW8260B	•		Analysis Date:	9/26/2007	SeqNo:		304741	
Instrument: MS01_11	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	df							
Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC	LowLimit H	HighLimit RPD	RPD Ref Val	%RPD	D RPDLimit	Qual
(m+p)-Xylene	19.4	1.00	20	0	26	80	120				
1,1,1,2-Tetrachloroethane	9.28	0.500	10	0	93	80	120				
1,1,1-Trichloroethane	10.2	0.500	10	0	102	80	127				
1,1,2,2-Tetrachloroethane	10.4	0.500	10	0	104	73	122				
1,1,2-Trichloroethane	6.77	0.500	10	0	98	80	120				
1,1-Dichloroethane	10.0	0.500	10	0	100	80	120				
1,1-Dichloroethene	9.50	0.500	10	0	92	77	126				
1,1-Dichloropropene	10.3	0.500	10	0	103	80	120				
1,2,3-Trichlorobenzene	9.32	1.00	10	0	93	75	123				
1,2,3-Trichloropropane	10.6	0.500	10	0	106	72	126				
1,2,4-Trichlorobenzene	9.42	1.00	10	0	8	73	123				
1,2,4-Trimethylbenzene	11.3	0.500	10	0	113	80	122				
1,2-Dibromo-3-chloropropane	9.53	1.00	10	0	92	71	124				
1,2-Dibromoethane	9.64	0.500	10	0	96	80	120				
1,2-Dichlorobenzene	10.6	0.500	10	0	106	80	120				
1,2-Dichloroethane	10.1	0.500	10	0	101	73	126				
1,2-Dichloropropane	9.78	0.500	10	0	98	80	120				
1,3,5-Trimethylbenzene	11.1	0.500	10	0	111	80	121				
1,3-Dichlorobenzene	10.4	0.500	10	0	104	80	120				
1,3-Dichloropropane	9.60	0.500	10	0	96	80	120				
1,4-Dichlorobenzene	10.0	0.500	10	0	100	80	120				
2,2-Dichloropropane	9.83	0.500	10	0	86	74	128				
2-Chlorotoluene	10.8	0.500	10	0	108	80	121				
4-Chlorotoluene	10.8	0.500	10	0	108	80	120				
Benzene	10.4	0.500	10	0	104	80	120				
Bromobenzene	10.4	0.500	10	0	104	80	120				
Bromochioromethane	9.38	0.500	10	0	94	80	120				

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank а <u>Q</u> ⊃ Qualifiers:

RPD exceeds accepted precision limit ய உ

Value exceeds the instrument calibration range

Analyte detected below the PQL

Spike Recovery outside accepted recovery limits

Not Detected at the MDC or RL

26-Sep-07

Date:

## Page 2 of 9

26-Sep-07

Date:

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc.

CLIENT:

Method:

SW8260B

ANALYTICAL QC SUMMARY REPORT

**BMS-Krutulis** 

0709135	BMS-Kruto
Work Order:	Project:

Sample ID: 1 CS-11185	1185	SampType: 1 CS	TestCode	SSENW	linite: "IO!		Pren Date		RinNo.	11185	
Client ID: ZZZZZ	3	Batch ID: R11185	Method:		i 3		Analysis Date:	9/26/2007	SeqNo:		
Instrument: MS01_11	+	ColumniD: Rtx-VMS		Rtx-VMS, 1.0	.0 df						
Analyte		QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC	LowLimit	HighLimit RPD Ref Val		%RPD RPDLimit	nit Qual
Bromodichloromethane	ane	10.1	0.500	10	0	101	78	125			
Bromoform		8.02	0.500	10	0	80	72	126			
Bromomethane		9.03	1.00	10	0	06	42	156			
Carbon tetrachloride	o)	9.22	0.500	10	0	95	74	137			
Chlorobenzene		9.78	0.500	10	0	98	8	120			
Chloroethane		9.79	1.00	10	0	98	75	124			
Chloraform		9.81	0.500	10	0	86	8	120			
Chloromethane		9.80	1.00	10	0	98	29	133			
cis-1,2-Dichloroethene	ane.	9.89	0.500	10	0	66	88	120			
cis-1,3-Dichloropropene	репе	10.5	0.500	10	0	105	80	120			
Dibromochloromethane	lane	9.15	0.500	10	0	92	75	123			
Dibromomethane		9.85	0.500	10	0	98	79	120			
Dichlorodifluoromethane	hane	9.95	1.00	10	0	100	63	139			
Ethylbenzene		10.3	0.500	10	0	103	80	120			
Hexachlorobutadiene	ě	9.80	1.00	10	0	88	7.7	120			
Isopropylbenzene		11.5	0.500	10	0	115	8	121			
Methyl tert-butyl ether	ier	10.5	0.500	10	0	105	9/	122			
Methylene chloride		9.07	2.00	10	0	91	78	120			
n-Butylbenzene		11.0	0.500	10	0	110	77	121			
n-Propylbenzene		11.4	00:200	10	0	114	80	122			
Naphthalene		9.57	1.00	10	0	96	29	134			
o-Xylene		9.82	0.500	10	0	86	79	120			
p-Isopropyltoluene		11.6	0.500	10	0	116	80	120			
sec-Butylbenzene		11.6	0.500	10	0	116	8	120			
Styrene		8.77	0.500	10	0	88	79	120			
tert-Butylbenzene		10.9	0.500	10	0	109	80	120			
Tetrachloroethene		9.36	0.500	10	0	94	80	120			
Oualifiers: B	Analyte detecte	Analyte detected in the associated Method Blank	nod Blank	E Value	Value exceeds the instrument calibration range	nt calibratior	range	J Analyte de	Analyte detected below the POL	ne POL	:
	Not Detected a	Not Detected at the Practical Quantitation Limit (PQL)	on Limit (PQL)		RPD exceeds accepted precision limit	ision limit	)		overy outside a	Spike Recovery outside accepted recovery limits	imits
Ω	Not Detected a	Not Detected at the MDC or RL									

5000 Brittonfield Parkway, Suite 200

(315) 437-0200 East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

Method:

Work Order:

0709135

SW8260B

ANALYTICAL QC SUMMARY REPORT

BMS-Krutulis Project:

Sample ID: LCS-11185	SampType: LCS	TestCode	TestCode: 8260W	Units: µg/L		Prep Date:		RunNo:	11185	85	
Client ID: ZZZZZ	Batch ID: R11185	Method:	SW8260B			Analysis Date:	9/26/2007	SeqNo:		304741	•
Instrument: MS01_11	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	df							
	QC Sample			Parent Sample							
Analyte	Result	Pal	SPK Added	Result	%REC	%REC LowLimit HighLimit	HighLimit RPD 1	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene	10.7	0.500	10	0	107	80	120				
trans-1,2-Dichloroethene	9.79	0.500	10	0	86	80	120				
trans-1,3-Dichloropropene	9.33	0.500	10	0	93	73	121				
Trichloroethene	9.92	0.500	10	0	66	80	120				
Trichlorofluoromethane	10.3	1.00	10	0	103	73	132				
Vinyl chloride	10.4	1.00	10	0	104	75	125				
Xylenes (total)	29.2	1.00	30	0	26	80	120				
Surr: 1,2-Dichloroethane-d4	10.3	0.100	10	0	103	75	134				
Surr. 4-Bromofluorobenzene	9.75	0.100	10	0	86	75	125				
Surr: Dibromofluoromethane	10.0	0.100	10	0	100	75	127				
Surr: Toluene-d8	10.9	0.100	10	0	109	75	125				

Analyte detected in the associated Method Blank Qualifiers:

Not Detected at the Practical Quantitation Limit (PQL) B O O

Not Detected at the MDC or RL

26-Sep-07

Date:

RPD exceeds accepted precision limit шк

Value exceeds the instrument calibration range

Analyte detected below the PQL

Spike Recovery outside accepted recovery limits

## Page 4 of 9

Spike Recovery outside accepted recovery limits

Analyte detected below the PQL

Value exceeds the instrument calibration range RPD exceeds accepted precision limit

田民

Not Detected at the Practical Quantitation Limit (PQL)

a Q n

Qualifiers:

Not Detected at the MDC or RL

26-Sep-07

Date:

Analyte detected in the associated Method Blank

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

(315) 437-0200 East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc. CLIENT:

SW8260B Method:

ANALYTICAL QC SUMMARY REPORT

0709135	BMS-Krutulis
Work Order:	Project:

Oceanie IO: 1 000 4440F	000 I	70000				100			10777		
Sample 10. LCSD-11 189	i	DONES!		Jilles pg/r		riep Date.					
Instrument: MS01 11	ColumnID: Rtx-VMS	Wethod:	SW8260B Rtx-VMS, 1.0 df	<del>1</del> 5		Analysis Date:	9/26/2007	7 SeqNo:	No: 304742		
1				Parent Sample							
Analyte	Result	PQL	SPK Added	Result	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD RPI	RPDLimit Q	Qual
(m+p)-Xylene	19.7	1.00	20	0	66	80	120	19.4	1.6	20	
1,1,1,2-Tetrachloroethane	9.29	0.500	10	0	93	80	120	9.28	0.1	20	
1,1,1-Trichloroethane	10.1	0.500	10	0	101	80	127	10.2	0.8	70	
1,1,2,2-Tetrachloroethane	10.0	0.500	10	0	100	73	122	10.4	3.9	20	
1,1,2-Trichloroethane	8.62	0.500	10	0	96	80	120	9.77	1,5	20	
1,1-Dichloroethane	9.83	0.500	10	0	86	80	120	10	1.7	20	
1,1-Dichloroethene	9:36	0.500	10	0	8	7.7	126	9.5	1.5	50	
1,1-Dichloropropene	10.2	0.500	10	0	102	80	120	10.3	1.2	20	
1,2,3-Trichlorobenzene	9.21	1.00	10	0	95	75	123	9.32	1.2	20	
1,2,3-Trichloropropane	10.3	0.500	10	0	103	72	126	10.6	3.0	20	
1,2,4-Trichlorobenzene	9.16	1.00	10	0	95	73	123	9.42	2.8	20	
1,2,4-Trimethylbenzene	10.9	0.500	10	0	109	80	122	11.3	3.5	70	
1,2-Dibromo-3-chloropropane	9.16	1.00	10	0	95	71	124	9.53	4.0	20	
1,2-Dibromoethane	9.51	0.500	10	0	95	80	120	9.64	1.4	20	
1,2-Dichlorobenzene	10.2	0.500	10	0	102	80	120	10.6	3.4	20	
1,2-Dichloroethane	6.77	0.500	10	0	86	73	126	10.1	3.3	20	
1,2-Dichloropropane	9.78	0.500	10	0	86	80	120	9.78	0	20	
1,3,5-Trimethylbenzene	10.8	0.500	10	0	108	80	121	11.1	2.6	20	
1,3-Dichlorobenzene	10.2	0.500	10	0	102	80	120	10.4	2.3	20	
1,3-Dichloropropane	9.45	0.500	10	0	94	80	120	9.6	1.6	20	
1,4-Dichlorobenzene	9.92	0.500	10	0	66	80	120	10	1.2	20	
2,2-Dichloropropane	9.44	0.500	10	0	94	74	128	9.83	4.0	20	
2-Chforotoluene	10.6	0.500	10	0	106	80	121	10.8	1,4	20	
4-Chlorotoluene	10.7	0.500	10	0	107	80	120	10.8	1.6	20	
Benzene	10.2	0.500	10	0	102	80	120	10.4	1.7	20	
Bromobenzene	10.2	0.500	10	0	102	80	120	10.4	1.6	20	
Bromochloromethane	9.30	0.500	10	0	93	80	120	9.38	6.0	70	
							:			· : I	

## Page 5 of 9

26-Sep-07

Date:

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc.

CLIENT:

SW8260B 0709135 Work Order: Method:

ANALYTICAL QC SUMMARY REPORT

**BMS-Krutulis** Project:

			nit Qual	20	20	24	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20		imits
11185	304742		O RPDLimit	2	_	es es	D.	(0	0	e	2	4	2	æ	e	0	2	e	œ	4	თ	<b>-</b>	o o	o.	2	0	က	on	0	ε.	:	d recovery I
RunNo: 1	SeqNo: 3		%RPD	2.2	1.1	9.0	3.5	9.0	1.0	1.3	0.7	1.4	2.2	1.8	2.3	J	1.2	1.3	2.8	0.4	6.0	3.1	1.9	1.9	1.2	3.0	2.3	1.9	2.(	?iO	Inw the POI	side accepte
<u>R</u>			RPD Ref Val	10.1	8.02	9.03	9.22	9.78	9.79	9.81	8.6	9.89	10.5	9.15	9.85	9.95	10.3	8.6	11.5	10.5	9.07	<del>-</del>	11.4	9.57	9.82	11.6	11.6	8.77	10.9	9.36	Analyte detected helow the POL	Spike Recovery outside accepted recovery limits
	9/26/2007		HighLimit	125	126	156	137	120	124	120	133	120	120	123	120	139	120	120	121	122	120	121	122	134	120	120	120	120	120	120	1	S
Prep Date:	Analysis Date:		LowLimit	28	72	42	74	80	75	8	29	8	8	75	79	83	80	77	8	9/	78	77	80	29	79	80	80	79	80	80	range	à
Δ.	∢		%REC	66	8	06	88	97	97	26	97	86	103	93	96	100	102	26	112	106	92	106	112	98	66	112	113	89	107	93	t ~alihration	sion limit
Units: pg/L		df	Parent Sample Result	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Walue exceeds the instrument calibration range	RPD exceeds accepted precision limit
:: 8260W	SW8260B	Rtx-VMS, 1.0 df	SPK Added	10	1	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	F Value es	
TestCode:	Method:		Pol	0.500	0.500	1.00	0.500	0.500	1.00	0.500	1.00	0.500	0.500	0.500	0.500	1.00	0.500	1.00	0.500	0.500	2.00	0.500	0.500	1.00	0.500	0.500	0.500	0.500	0.500	0.500	Mank	imit (POL)
CSD	R11185	Rtx-VMS	ımple sult	9.89	8.11	96.8	8.90	9.72	69.6	9.68	9.73	9.75	10.3	9.32	9.63	9.95	10.2	9.67	11.2	10.6	9.15	10.6	11.2	9.39	9.94	11.2	11.3	8.94	10.7	9.29	Total Method	Duantitation L
SampType: LCSD	Batch ID:	ColumnID: 1	QC Sample Result																												Analyte detected in the accordated Method Riank	Not Detected at the Practical Quantitation Limit (PQL)
11185	N	£'		hane			æ					iene	pene	hane		thane		ine		her	di.											
Sample ID: LCSD-11185	Client ID: ZZZZZ	Instrument: MS01_11	Analyte	Bromodichloromethane	Bromoform	Bromomethane	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Dibromochloromethane	Dibromomethane	Dichlorodifluoromethane	Ethylbenzene	Hexachlorobutadiene	Sopropylbenzene	Methyl tert-butyl ether	Methylene chloride	n-Butylbenzene	n-Propylbenzene	Naphthalene	o-Xylene	p-Isopropyltoluene	sec-Butylbenzene	Styrene	tert-Butylbenzene	Tetrachloroethene	Ouolifiance	

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc. CLIENT:

SW8260B Method:

ANALYTICAL QC SUMMARY REPORT

0709135 Work Order:

**BMS-Krutulis** Project:

Sample ID: LCSD-11185	SampType: LCSD	TestCode	TestCode: 8260W	Units: µg/L		Prep Date:				11185	
Client ID: ZZZZZ	Batch ID: R11185	Method:	SW8260B		•	Analysis Date:	9/26/2007		SeqNo: 3	304742	
Instrument: MS01_11	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	₫ŧ							
	QC Sample			Parent Sample							
Analyte	Result	Pal	SPK Added	Result	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene	10.4	0.500	10	0	104	80	120	10.7	3.2	20	
trans-1,2-Dichloroethene	9.59	0.500	10	0	96	8	120	9.79	2.1	20	
trans-1,3-Dichloropropene	9.10	0.500	10	0	91	73	121	9.33	2.5	, 25	
Trichloroethene	9.83	0.500	10	0	98	80	120	9.92	0.9	20	
Trichlorofluoromethane	10.2	1.00	10	0	102	73	132	10.3	-	20	
Vinyl chloride	10.3	1.00	10	0	103	75	125	10.4	0.9	20	
Xylenes (total)	29.7	1.00	30	0	66	8	120	29.2	1.5	20	
Surr: 1,2-Dichloroethane-d4	10.2	0.100	10	0	102	75	134	0		0	
Surr: 4-Bromofluorobenzene	9.90	0.100	10	0	66	75	125	0		0	
Surr: Dibromofluoromethane	10.0	0.100	10	0	100	75	127	0		0	
Surr: Toluene-d8	10.8	0.100	10	0	108	75	125	0		0	

Value exceeds the instrument calibration range

Date:

Analyte detected in the associated Method Blank 8 Qualifiers:

Not Detected at the Practical Quantitation Limit (PQL) S >

RPD exceeds accepted precision limit 日氏

Analyte detected below the PQL

Spike Recovery outside accepted recovery limits

## Page 7 of 9

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

SW8260B 0709135 Work Order: Method:

ANALYTICAL QC SUMMARY REPORT

					Work Order:	0709135		
CLIENT: O'Brien & Ger	O'Brien & Gere Engineers, Inc.				Project:	BMS-Krutulis		
Sample ID: MB-11185	SampType: MBLK	TestCode:	8260W	Units: µg/L	Prep Date:	RunNo:	11185	
Client ID: ZZZZZ	Batch ID: R11185	Method:	SW8260B		Analysis Date: 9/26/2007		304743	
Instrument: MS01_11	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	JD (				
	OC Sample			Parent Sample				
Analyte	Result	PQL	SPK Added	Result	%REC LowLimit HighLimit R	RPD Ref Val	%RPD RPDLimit	Qual
(m+p)-Xylene	QN	1.00						
1,1,1,2-Tetrachloroethane	Ð	0.500						
1,1,1-Trichloroethane	QV	0.500						
1,1,2,2-Tetrachloroethane	QV	0.500						
1,1,2-Trichloroethane	ON	0.500						
1,1-Dichloroethane	QN	0.500						
1,1-Dichtoroethene	QN	0.500						
1,1-Dichloropropene	QN	0.500						
1,2,3-Trichlorobenzene	QN	1.00						
1,2,3-Trichloropropane	Q	0.500						
1,2,4-Trichlorobenzene	QN	1.00						
1,2,4-Trimethylbenzene	ON	0.500						
1,2-Dibromo-3-chloropropane	ON	1.00						
1,2-Dibromoethane	QN	0.500						
1,2-Dichlorobenzene	Q	0.500						
1,2-Dichloroethane	QN	0.500						
1,2-Dichloropropane	ON	0.500						
1,3,5-Trimethylbenzene	QN	0.500						
1,3-Dichlorobenzene	QN	0.500						
1,3-Dichloropropane	ON	0.500						
1,4-Dichlorobenzene	ON	0.500						
2,2-Dichloropropane	ON	0.500						
2-Chlorotoluene	ON	0.500						
4-Chlorotoluene	QN	0.500						
Вепzепе	ΩN	0.500						
Bromobenzene	QN							
Bromochloromethane	QN	0.500						

Value exceeds the instrument calibration range 田比 Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank g > Ω Qualifiers:

Spike Recovery outside accepted recovery limits Analyte detected below the PQL

RPD exceeds accepted precision limit

Not Detected at the MDC or RL

26-Sep-07 Date:

## Page 8 of 9

Not Detected at the MDC or RL

⊃

26-Sep-07

Date:

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc.

CLIENT:

Method:

0709135 Work Order:

SW8260B

ANALYTICAL QC SUMMARY REPORT

**BMS-Krutulis** Project:

				F								•
Sample ID: MB-11185	185 SampType: MBLK	: MBLK	TestCode:		Units: pg/L	Pre	Prep Date:			RunNo:	11185	
Client ID: ZZZZZ	Batch ID:	R11185	Method:	SW8260B		An	Analysis Date:	9/26/2007		SedNo:	304743	
Instrument: MS01_11	11 ColumnID:	: Rtx-VMS		Rtx-VMS, 1.0 df	1.0 df							
Analyte	OO	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC L	LowLimit	HighLimit	RPD Ref Val	%F	%RPD RPDLimit	Qual
Bromodichloromethane	ane	QN	0.500									
Bromoform		Q	0.500									
Bromomethane		QN	1.00									
Carbon tetrachloride	4)	QN	0.500									
Chlorobenzene		QN	0.500									
Chloroethane		QN	1.00									
Chloroform		Q	0.500									
Chloromethane		QN	1.00									
cis-1,2-Dichloroethene	ne	g	0.500									
cis-1,3-Dichloropropene	ene	S	0.500									
Dibromochloromethane	ane	2	0.500									
Dibromomethane		Q	0.500									
Dichlorodifluoromethane	hane	Q	1.00									
Ethylbenzene		Q	0.500									
Hexachlorobutadiene	<b>Q</b>	Q	1.00									
Isopropylbenzene		Q	0.500									
Methyl tert-butyl ether	ъ	QN	0.500									
Methylene chloride		QN	2.00									
n-Butylbenzene		QN	0.500									
n-Propylbenzene		Ω	0.500									
Naphthalene		Q	1.00									
o-Xylene		QN	0.500									
p-Isopropyltoluene		Q	0.500									
sec-Butylbenzene		Q	0.500									
Styrene		Q	0.500									
tert-Butylbenzene		Q	0.500									
Tetrachloroethene		Q	0.500									
		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s					8	-	Legisland of Florida	- de malad	2	
Qualifiers: B	Analyte delected in the associated intelling brank	ocialed Method B	iank		value exceeds the instrument cantifation range	i candialion ra	aŝir		Analyte detected below the FQL	i pelow me i	₹	
QN	Not Detected at the Practical Quantitation Limit (PQL)	al Quantitation L	imit (PQL)	R RPD	RPD exceeds accepted precision limit	sion limit		S	spike Recovery	outside acce	Spike Recovery outside accepted recovery limits	ts

5000 Brittonfield Parkway, Suite 200

(315) 437-0200 East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc. CLIENT:

SW8260B Work Order: Method:

0709135

ANALYTICAL QC SUMMARY REPORT

**BMS-Krutulis** Project:

Sample ID: MB-11185	SampType: MBLK	TestCode	TestCode: 8260W	Units: µg/L	_	Prep Date:		RunNo:		11185	
Client ID: ZZZZZ	Batch ID: R11185	Method:	SW8260B			Analysis Date:	9/26/2007	SeqNo:		304743	
Instrument: MS01_11	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	df							
l				Parent							
	QC Sample			Sample							
Analyte	Result	PQL	SPK Added	Result	%REC	%REC LowLimit HighLimit RPD Ref Val	ighLimiť RF	ն Ref Val	%RF	%RPD RPDLimit Qual	Qual
Toluene	Q	0.500									
trans-1,2-Dichloroethene	ON.	0.500									
trans-1,3-Dichloropropene	Q	0.500									
Trichloroethene	QN	0.500									
Trichlorofluoromethane	QN	1.00									
Vinyl chloride	Q	1.00									
Xylenes (total)	Q	1.00									
Surr: 1,2-Dichloroethane-d4	10.6	0.100	10	0	106	75	134				
Surr: 4-Bromofluorobenzene	9.80	0.100	10	0	86	75	125				
Surr: Dibromofluoromethane	86.6	0.100	10	0	100	75	127				
Surr: Toluene-d8	10.6	0.100	10	0	106	75	125				

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank 8 Qualifiers:

Value exceeds the instrument calibration range RPD exceeds accepted precision limit 日氏

Analyte detected below the PQL

Spike Recovery outside accepted recovery limits

Not Detected at the MDC or RL Q ⊃

26-Sep-07

Date:

## (LSI)

## Life Science Laboratories, Inc. Brittonfield Lab

5000 Brittonfield Parkway, Suite 200 East Syracuse, New York 13057

Chain of Custody

East Syracuse, New Yor (315) 437-0200

Date: 9/2/67 Time: 0922 Date: 9/25/07 Time: 0500 Comments Det. Date: Analysis/Method VOC 8260 Received by Lab Received by: Airbill Number Received by: Comp. No. of or Grab Containers M Date: 9/25/07 Time: 0922 Grab Date: 1-25-07 Time: 0100 Grab Grab Water Sample Matrix Later Mater Date Time
Collected Collected 0735 0210 Date: 4-25-67 10-52-b Sample Description Phone # 9-25-07 Client Contact: Jave Correvale Sample Location 09252007 C9252007 09 25 2007 Sampled by: Project: 3M5 -Client: 0 Brien Shipment Method: Relinquished by: Relinquished by: Relinquished by: TW-OI TW-01 TB-01

uired:	
Time Red	
Turnaround	

Comments:

Cooler Temperature: 7

7.6°C W/100

Original - Laboratory Copy - Client

### Sample Receipt Checklist

Client Name: OBG-TAA		Date and Time	e Received:	9/25/2007 9:22:00 AM
Work Order Number 0709135		Received by:	ads	
Checklist completed by:  Initials  Date	9/25/07	Reviewed by	r: MS	9/25/07 Date
Matrix: Carrier name:	Hand Delivered	<u>l</u>		
Shipping container/cooler in good condition?	Yes 🗸	No 🗌	Not Present	
Custody seals intact on shipping container/cooler?	Yes	No 🗌	Not Present	✓
Custody seals intact on sample bottles?	Yes	No 🗌	Not Present	✓
Chain of custody present?	Yes 🗸	No 🗌		
Chain of custody signed when relinquished and received?	Yes 🗸	No 🗌		
Chain of custody agrees with sample labels?	Yes 🗸	No 🗌		
Samples in proper container/bottle?	Yes 🗸	No 🗌		
Sample containers intact?	Yes 🗸	No 🗌		
Sufficient sample volume for indicated test?	Yes 🗸	No 🗌		
All samples received within holding time?	Yes 🗸	No 🗆		
Container/Temp Blank temperature in compliance?	Yes 🗸	No 🗌		
Water - VOA vials have zero headspace?	Yes 🗸	No 🗌 No	VOA vials su	bmitted
Water - pH acceptable upon receipt?	Yes	No 🗌	Not Applicable	. 🗸

Comments:

Corrective Action::



Saturday, October 20, 2007

Dave Carnevale
O'Brien & Gere Engineers, Inc.
5000 Brittonfield Parkway
PO Box 4873
Syracuse, NY 13221-4873

TEL: 315-437-6100

Project: BMS-KRUTULIS

RE: Analytical Results

Order No.: 0709165

Dear Dave Carnevale:

Life Science Laboratories, Inc. received 17 sample(s) on 9/27/2007 for the analyses presented in the following report.

Very truly yours,

Life Science Laboratories, Inc.

Monke Janfuca

Monika Santucci

Project Manager



Monika Santucci Life Science Laboratories, Inc. 5000 Brittonfield Parkway East Syracuse, NY 13057

Phone: (315) 437-0200

## Laboratory Analysis Report For

## Life Science Laboratories, Inc.

Client Project ID:

WO #0709165

LSL Project ID: 0717167

Receive Date/Time: 09/28/07 13:54

Project Received by: JH

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

## Life Science Laboratories, Inc.

This report was reviewed by:

unes Commune, at Date: 10/10/07

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-012A

LSL Sample ID:

0717167-001

Location: Sampled:

SB-03 (18-20) - 092607

09/26/07 8:39

Sampled By: Client

Sample Matrix: SHW Dry Wt

Analytical Method	Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
Analyte	Resurt	Onits		2000	
D) EPA 8260B Volatiles	<200	allen der		10/3/07	CRT
1,1,2-Tetrachloroethane	<200	ug/kg dry		10/3/07	CRT
1,1,1-Trichloroethane	<200	ug/kg dry		10/3/07	CRT
1,1,2,2-Tetrachloroethane	<200	ug/kg dry		10/3/07	CRT
1,1,2-Trichloroethane	<200	ug/kg dry			CRT
1,1-Dichloroethane	<200	ug/kg dry		10/3/07 10/3/07	CRT
1,1-Dichloroethene	<200	ug/kg dry			CRT
1,1-Dichloropropene	<200	ug/kg dry		10/3/07	
1,2,3-Trichlorobenzene	<200	ug/kg dry		10/3/07	CRT
1,2,3-Trichloropropane	<200	ug/kg dry		10/3/07	CRT
1,2,4-Trichlorobenzene	<200	ug/kg dry		10/3/07	CRT
1,2,4-Trimethylbenzene	<200	ug/kg dry		10/3/07	CRT
1,2-Dibromo-3-chloropropane	<200	ug/kg dry		10/3/07	CRT
1,2-Dibromoethane(EDB)	<200	ug/kg dry		10/3/07	CRT
1,2-Dichlorobenzene	<200	ug/kg dry		10/3/07	CRT
1,2-Dichloroethane	<200	ug/kg dry		10/3/07	CRT
1,2-Dichloropropane	<200	ug/kg dry		10/3/07	CR
1,3,5-Trimethylbenzene	<200	ug/kg dry		10/3/07	CR?
1,3-Dichlorobenzene	<200	ug/kg dry		10/3/07	CR.
1,3-Dichloropropane	<200	ug/kg dry		10/3/07	CR'
1,4-Dichlorobenzene	<200	ug/kg dry		10/3/07	CR'
2,2-Dichloropropane	<200	ug/kg dry		10/3/07	CR
2-Chlorotoluene	<200	ug/kg dry		10/3/07	ÇR'
4-Chlorotoluene	<200	ug/kg dry		10/3/07	CR
Benzene	<200	ug/kg dry		10/3/07	CR
Bromobenzene	<200	ug/kg dry		10/3/07	CR'
Bromochloromethane	<200	ug/kg dry		10/3/07	CR'
Bromodichloromethane	<200	ug/kg dry		10/3/07	CR'
Bromoform	<200	ug/kg dry		10/3/07	CR
Bromomethane	<200	ug/kg dry		10/3/07	CR
Carbon tetrachloride	<200	ug/kg dry		10/3/07	CR'
Chlorobenzene	<200	ug/kg dry		10/3/07	CR'
Chloroethane	<200	ug/kg dry		10/3/07	CR.
Chloroform	<200	ug/kg dry		10/3/07	CR'
Chloromethane	<200	ug/kg dry		10/3/07	CR'
cis-1,2-Dichloroethene	<200	ug/kg dry		10/3/07	CR'
•	<200	ug/kg dry		10/3/07	CR'
cis-1,3-Dichloropropene	<200	ug/kg dry		10/3/07	CR'
Dibromochloromethane	<200	ug/kg dry		10/3/07	CR'
Dibromomethane	<200	ug/kg dry		10/3/07	CR'
Dichlorodifluoromethane	<200	ug/kg dry		10/3/07	CR
Ethyl benzene	<200	ug/kg dry		10/3/07	CR'
Hexachlorobutadiene	<200	ug/kg dry ug/kg dry		10/3/07	CR'
Isopropylbenzene (Cumene)	<200	ug/kg dry ug/kg dry		10/3/07	CR'
MTBE				10/3/07	CR
Methylene chloride	<200	ug/kg dry		10/3/07	CR
n-Butylbenzene	<200	ug/kg dry		10/3/07	CR
n-Propylbenzene	<200	ug/kg dry		10/3/07	CR'
Naphthalene	<200	ug/kg dry		10(5)(0)	Page 2 of 4

Life Science Laboratories, Inc.

Page 2 of 43

Date Printed:

10/9/07

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-012A

LSL Sample ID:

0717167-001

Location: Sampled:

SB-03 (18-20) - 092607

09/26/07 8:39

Sampled By: Client

Sample Matrix: SHW Dry Wt

Analytical Method Analyte	Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
D EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	<200	ug/kg dry		10/3/07	CRT
sec-Butylbenzene	<200	ug/kg dry		10/3/07	CRT
Styrene	<200	ug/kg dry		10/3/07	CRT
tert-Butylbenzene	<200	ug/kg dry		10/3/07	CRT
Tetrachloroethene	<200	ug/kg dry		10/3/07	CRT
Toluene	1700	ug/kg dry		10/3/07	CRT
trans-1,2-Dichloroethene	220	ug/kg dry		10/3/07	CRT
trans-1,3-Dichloropropene	<200	ug/kg dry		10/3/07	CRT
Trichloroethene	12000	ug/kg dry		10/3/07	CRT
Trichlorofluoromethane (Freon 11)	<200	ug/kg dry		10/3/07	CRT
Vinyl chloride	<200	ug/kg dry		10/3/07	CRT
Xylenes (Total)	<200	ug/kg dry		10/3/07	CRT
Surrogate (1,2-DCA-d4)	106	%R		10/3/07	CRT
Surrogate (4-BFB)	98	%R		10/3/07	CRT
Surrogate (Tol-d8)	90	%R		10/3/07	CRT
Total Solids @ 103-105 C	82	%		10/3/07	KIS

Page 3 of 43

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-013A

LSL Sample ID:

0717167-002

Location: Sampled:

SB-03 (30-32) - 092607

09/26/07 9:14

Sampled By: Client

Sample Matrix: SHW Dry Wt

nalytical Method Analyte	Result	Units	Prep Dat <u>e</u>	Analysis Date & Time	Analys Initial
EPA 8260B Volatiles					
1,1,1,2-Tetrachloroethane	<200	ug/kg dry		10/3/07	CR'
1,1,1-Trichloroethane	<200	ug/kg dry		10/3/07	CR
1,1,2,2-Tetrachloroethane	<200	ug/kg đry		10/3/07	CR
1,1,2-Trichloroethane	<200	ug/kg dry		10/3/0 <b>7</b>	CR
1,1-Dichloroethane	<200	ug/kg dry		10/3/07	CR
1,1-Dichloroethene	<200	ug/kg dry		10/3/07	CR
1,1-Dichloropropenc	<200	ug/kg dry		10/3/07	CF
1,2,3-Trichlorobenzene	<200	ug/kg dry		10/3/07	CF
1,2,3-Trichloropropane	<200	ug/kg dry		10/3/07	CF
	<200	ug/kg dry		10/3/07	CF
1,2,4-Trichlorobenzene	<200	ug/kg dry		10/3/07	CI
1,2,4-Trimethylbenzene	<200	ug/kg dry		10/3/07	CF
1,2-Dibromo-3-chloropropane	<200	ug/kg dry		10/3/07	CF
1,2-Dibromoethane(EDB)	<200	ug/kg dry		10/3/07	CI
1,2-Dichlorobenzene	<200	ug/kg dry		10/3/07	CI
1,2-Dichloroethane	<200	ug/kg dry ug/kg dry		10/3/07	CI
1,2-Dichloropropane	<200			10/3/07	CI
1,3,5-Trimethylbenzene	<200	ug/kg dry		10/3/07	CI
1,3-Dichlorobenzene		ug/kg dry		10/3/07	CI
1,3-Dichloropropane	<200	ug/kg dry		10/3/07	CI CI
1,4-Dichlorobenzene	<200	ug/kg dry		10/3/07	CI
2,2-Dichloropropane	<200	ug/kg dry			CI
2-Chlorotoluene	<200	ug/kg dry		10/3/07	Cl
4-Chlorotoluene	<200	ug/kg dry		10/3/07	CI
Benzene	<200	ug/kg dry		10/3/07	
Bromobenzene	<200	ug/kg dry		10/3/07	CI
Bromochloromethane	<200	ug/kg dry		10/3/07	CI
Bromodichloromethane	<200	ug/kg dry		10/3/07	CI
Bromoform	<200	ug/kg dry		10/3/07	Cl
Bromomethane	<200	ug/kg dry		10/3/07	C
Carbon tetrachloride	<200	ug/kg dry		10/3/07	Cl
Chlorobenzene	<200	ug/kg dry		10/3/07	C
Chloroethane	<200	ug/kg dry		10/3/07	C
Chloroform	<200	ug/kg dry		10/3/07	Cl
Chloromethane	<200	ug/kg dry		10/3/07	C
cis-1,2-Dichloroethene	<200	ug/kg dry		10/3/07	Ci
cis-1,3-Dichloropropene	<200	ug/kg dry		10/3/07	Cl
Dibromochloromethane	<200	ug/kg dry		10/3/07	Cl
Dibromomethane	<200	ug/kg dry		10/3/07	Cl
Dichlorodifluoromethane	<200	ug/kg dry		10/3/07	CI
Ethyl benzene	<200	ug/kg dry		10/3/07	CI
Hexachlorobutadiene	<200	ug/kg dry		10/3/07	CI
Isopropylbenzene (Cumene)	<200	ug/kg dry		10/3/07	Ci
мтве	<200	ug/kg dry		10/3/07	Cl
Methylene chloride	<200	ug/kg dry		10/3/07	C
n-Butylbenzene	<200	ug/kg dry		10/3/07	Cl
n-Propylbenzene	<200	ug/kg dry		10/3/07	Cl
Naphthalene	<200	ug/kg dry		10/3/07	Cl

Life Science Laboratories, Inc.

Date Printed:

10/9/07

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-013A

LSL Sample ID:

0717167-002

Location:

0/0/105-015/1

SB-03 (30-32) - 092607

Sampled: 09/26/07 9:14

Sampled By: Client

Sample Matrix: SHW Dry Wt

Analytical Method	Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
Analyte	Result				
(1) EPA 8260B Volatiles				10/2/07	CRT
4-Isopropyl toluene (Cymene)	<200	ug/kg dry		10/3/07	
sec-Butylbenzene	<200	ug/kg dry		10/3/07	CRT
Styrene	<200	ug/kg dry		10/3/07	CRT
tert-Butylbenzene	<200	ug/kg dry		10/3/07	CRT
Tetrachloroethene	<200	ug/kg dry		10/3/07	CRT
Toluene	<200	ug/kg dry		10/3/07	CRT
trans-1,2-Dichloroethene	<200	ug/kg dry		10/3/07	CRT
trans-1,3-Dichloropropene	<200	ug/kg dry		10/3/07	CRT
Trichloroethene	3700	ug/kg dry		10/3/07	CRT
Trichlorofluoromethane (Freon 11)	<200	ug/kg dry		10/3/07	CRT
•	<200	ug/kg dry		10/3/07	CRT
Vinyl chloride	<200	ug/kg dry		10/3/07	CRT
Xylenes (Total)				10/3/07	CRT
Surrogate (1,2-DCA-d4)	110	%R		10/3/07	CRT
Surrogate (4-BFB)	97	%R			
Surrogate (Tol-d8)	91	%R		10/3/07	CRT
Total Solids @ 103-105 C	92	%		10/3/07	KIS

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-014A

LSL Sample ID:

0717167-003

Location:

SB-07 (2-4) - 092607

Sampled:

09/26/07 12:29

Sampled By: Client

Sample Matrix: SHW Dry Wt

Analytical Method	Dogu-14	Units	Prep Date	Analysis Date & Time	Analys Initials
Analyte	Result	Onits	Date	Date of Time	
D EPA 8260B Volatiles	•	. 0 4		10/4/07	CDT
1,1,2-Tetrachloroethane	<3	ug/kg dry		10/4/07	CRT
1,1,1-Trichloroethane	<3	ug/kg dry		10/4/07	CRT
1,1,2,2-Tetrachloroethane	<3	ug/kg dry		10/4/07	CRT
1,1,2-Trichloroethane	<3	ug/kg dry		10/4/07	CRT
1,1-Dichloroethane	<3	ug/kg dry		10/4/07	CRT
1,1-Dichloroethene	<3	ug/kg dry		10/4/07	CRT
1,1-Dichloropropene	<3	ug/kg dry		10/4/07	CR
1,2,3-Trichlorobenzene	<3	ug/kg dry		10/4/07	CR.
1,2,3-Trichloropropane	<3	ug/kg dry		10/4/07	CR'
1,2,4-Trichlorobenzene	<3	ug/kg dry		10/4/07	CR'
1,2,4-Trimethylbenzene	<3	ug/kg dry		10/4/07	CR
1,2-Dibromo-3-chloropropane	<3	ug/kg dry		10/4/07	CR
1,2-Dibromoethane(EDB)	<3	ug/kg dry		10/4/07	CR7
1,2-Dichlorobenzene	<3	ug/kg dry		10/4/07	CR
1,2-Dichloroethane	<3	ug/kg dry		10/4/07	CR'
1,2-Dichloropropane	<3	ug/kg dry		10/4/07	CR'
1,3,5-Trimethylbenzene	<3	ug/kg dry		10/4/07	CR'
1,3-Dichlorobenzene	<3	ug/kg dry		10/4/07	CR'
1,3-Dichloropropane	<3	ug/kg dry		10/4/07	CR'
1,4-Dichlorobenzene	<3	ug/kg dry		10/4/07	CR'
2,2-Dichloropropane	<3	ug/kg dry		10/4/07	CR'
2-Chlorotoluene	<3	ug/kg dry		10/4/07	CR'
4-Chlorotoluene	<3	ug/kg dry		10/4/07	CR'
Benzene	<3	ug/kg dry		10/4/07	CR'
Bromobenzene	<3	ug/kg dry		10/4/07	CR
Bromochloromethane	<3	ug/kg dry		10/4/07	CR'
Bromodichloromethane	<3	ug/kg dry		10/4/07	CR
Bromoform	<3	ug/kg dry		10/4/07	CR
Bromomethane	<3	ug/kg dry		10/4/07	CR'
Carbon tetrachloride	<3	ug/kg dry		10/4/07	CR7
Chlorobenzene	<3	ug/kg dry		10/4/07	CR ²
Chloroethane	<3	ug/kg dry		10/4/07	CR'
Chloroform	<3	ug/kg dry		10/4/07	CR'
Chloromethane	<3	ug/kg dry		10/4/07	CR'
cis-1,2-Dichloroethene	<3	ug/kg dry		10/4/07	CR'
cis-1,3-Dichloropropene	<3	ug/kg dry		10/4/07	CR'
Dibromochloromethane	<3	ug/kg dry		10/4/07	CR'
Dibromomethane	<3	ug/kg dry		10/4/07	CR
Dichlorodifluoromethane	<3	ug/kg dry		10/4/07	CR'
Ethyl benzene	<3	ug/kg dry		10/4/07	CR'
Hexachlorobutadiene	<3	ug/kg dry		10/4/07	CR'
Isopropylbenzene (Cumene)	<3	ug/kg dry		10/4/07	CR'
MTBE	<3	ug/kg dry ug/kg dry		10/4/07	CR'
	3.8	ug/kg dry ug/kg dry		10/4/07	CR'
Methylene chloride	<3	ug/kg dry ug/kg dry		10/4/07	CR'
n-Butylbenzene	<3	ug/kg dry		10/4/07	CR'
n-Propylbenzene	<3	ug/kg dry ug/kg dry		10/4/07	CR'
Naphthalene	<,	ug/ng ury		10/1/07	Page 6 of

Life Science Laboratories, Inc.

Page 6 of 43

Date Printed:

10/9/07

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-014A

LSL Sample ID:

0717167-003

Location: Sampled:

SB-07 (2-4) - 092607

09/26/07 12:29

Sampled By: Client

Sample Matrix: SHW Dry Wt

Analytical Method	·		Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
(1) EPA 8260B Volatiles			-		
4-Isopropyl toluene (Cymene)	<3	ug/kg dry		10/4/07	CRT
sec-Butylbenzene	<3	ug/kg dry		10/4/07	CRT
Styrene	<3	ug/kg dry		10/4/07	CRT
tert-Butylbenzene	<3	ug/kg dry		10/4/07	CRT
Tetrachloroethene	<3	ug/kg dry		10/4/07	CRT
Toluenc	<3	ug/kg dry		10/4/07	CRT
trans-1,2-Dichloroethene	<3	ug/kg dry		10/4/07	CRT
trans-1,3-Dichloropropene	<3	ug/kg dry		10/4/07	CRT
Trichloroethene	<3	ug/kg dry		10/4/07	CRT
Trichlorofluoromethane (Freon 11)	<3	ug/kg dry		10/4/07	CRT
Vinyl chloride	<3	ug/kg dry		10/4/07	CRT
Xylenes (Total)	<3	ug/kg dry		10/4/07	CRT
Surrogate (1,2-DCA-d4)	106	%R		10/4/07	CRT
Surrogate (4-BFB)	109	%R		10/4/07	CRT
Surrogate (Tol-d8)	94	%R		10/4/07	CRT
Total Solids @ 103-105 C	70	%		10/3/07	KIS

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-015A

LSL Sample ID:

0717167-004

Location:

SB-07 (16-18) - 092607

Sampled:

09/26/07 13:05

Sampled By: Client

Sample Matrix: SHW Dry Wt

nalytical Method			Prep	Analysis	Analys
Analyte	Result	<u>Units</u>	Date	Date & Time	Initial
EPA 8260B Volatiles					
1,1,1,2-Tetrachloroethane	<200	ug/kg dry		10/3/07	CRT
1,1,1-Trichloroethane	<200	ug/kg dry		10/3/07	CRT
1,1,2,2-Tetrachloroethane	<200	ug/kg dry		10/3/07	CR?
1,1,2-Trichloroethane	<200	ug/kg dry		10/3/07	CR'
1,1-Dichloroethane	<200	ug/kg dry		10/3/07	CR'
1,1-Dichloroethene	<200	ug/kg dry		10/3/07	CR'
1,1-Dichloropropene	<200	ug/kg dry		10/3/07	CR'
1,2,3-Trichlorobenzene	<200	ug/kg dry		10/3/07	CR
1,2,3-Trichloropropane	<200	ug/kg dry		10/3/07	CR'
1,2,4-Trichlorobenzene	<200	ug/kg dry		10/3/07	CR'
1,2,4-Trimethylbenzene	480	ug/kg dry		10/3/07	CR
1,2-Dibromo-3-chloropropane	<200	ug/kg dry		10/3/07	CR
1,2-Dibromoethane(EDB)	<200	ug/kg dry		10/3/07	CR
1,2-Dichlorobenzene	<200	ug/kg dry		10/3/07	CR
1,2-Dichloroethane	<200	ug/kg dry		10/3/07	CR
1,2-Dichloropropane	<200	ug/kg dry		10/3/07	CR
1,3,5-Trimethylbenzene	2100	ug/kg dry		10/3/07	CR
1,3-Dichlorobenzene	<200	ug/kg dry		10/3/07	CR
1,3-Dichloropropane	<200	ug/kg dry		10/3/07	CR
1,4-Dichlorobenzene	<200	ug/kg dry		10/3/07	CR
2,2-Dichloropropane	<200	ug/kg dry		10/3/07	CR
2-Chlorotoluene	<200	ug/kg dry		10/3/07	CR
4-Chlorotoluene	<200	ug/kg dry		10/3/07	CR
	<200	ug/kg dry		10/3/07	CR
Benzene	<200	ug/kg dry		10/3/07	CR
Bromobenzene	<200	ug/kg dry		10/3/07	CR
Bromochloromethane	<200	ug/kg dry		10/3/07	CR
Bromodichloromethane	<200	ug/kg dry		10/3/07	CR
Bromoform	<200	ug/kg dry		10/3/07	CF
Bromomethane	<200			10/3/07	CF
Carbon tetrachloride		ug/kg dry		10/3/07	CF
Chlorobenzene	<200	ug/kg dry		10/3/07	CF
Chlorocthane	<200	ug/kg dry		10/3/07	CF
Chloroform	<200	ug/kg dry			
Chloromethane	<200	ug/kg đry		10/3/07	CF CF
cis-1,2-Dichloroethene	<200	ug/kg dry		10/3/07	
cis-1,3-Dichloropropene	<200	ug/kg dry		10/3/07	CF
Dibromochloromethane	<200	ug/kg dry		10/3/07	CF
Dibromomethane	<200	ug/kg dry		10/3/07	CF
Dichlorodifluoromethane	<200	ug/kg dry		10/3/07	CF
Ethyl benzene	<200	ug/kg dry		10/3/07	CF
Hexachlorobutadiene	<200	ug/kg dry		10/3/07	CF
Isopropylbenzene (Cumene)	490	ug/kg dry		10/3/07	CF
MTBE	<200	ug/kg dry		10/3/07	CF
Methylene chloride	<200	ug/kg dry		10/3/07	CF
n-Butylbenzene	<200	ug/kg dry		10/3/07	CF
n-Propylbenzene	460	ug/kg dry		10/3/07	CF
Naphthalene	<200	ug/kg dry		10/3/07	CR

Life Science Laboratories, Inc.

Page 8 of 43

Date Printed:

10/9/07

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-015A

LSL Sample ID:

0717167-004

Location: Sampled:

SB-07 (16-18) - 092607

09/26/07 13:05

Sampled By: Client

Sample Matrix: SHW Dry Wt

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
(1) EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	<200	ug/kg dry		10/3/07	CRT
sec-Butylbenzene	<200	ug/kg dry		10/3/07	CRT
Styrene	<200	ug/kg dry		10/3/07	CRT
tert-Butylbenzene	<200	ug/kg dry		10/3/07	CRT
Tetrachloroethene	330	ug/kg dry		10/3/07	CRT
Toluene	<200	ug/kg dry		10/3/07	CRT
trans-1,2-Dichloroethene	<200	ug/kg dry		10/3/07	CRT
trans-1,3-Dichloropropenc	<200	ug/kg dry		10/3/07	CRT
Trichloroethene	380	ug/kg đry		10/3/07	CRT
Trichlorofluoromethane (Freon 11)	<200	ug/kg dry		10/3/07	CRT
Vinyl chloride	<200	ug/kg dry		10/3/07	CRT
Xylenes (Total)	<200	ug/kg dry		10/3/07	CRT
Surrogate (1,2-DCA-d4)	113	%R		10/3/07	CRT
Surrogate (4-BFB)	95	%R		10/3/07	CRT
Surrogate (Tol-d8)	92	%R		10/3/07	CRT
Total Solids @ 103-105 C	83	%		10/3/07	KIS

Page 9 of 43

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-015A Matrix Spike

LSL Sample ID:

0717167-005

Location:

SB-07 (16-18) - 092607

Sampled:

09/26/07 13:05

Sampled By: Client

Sample Matrix: QC

nalytical Method	D 14	II:40	Prep	Analysis Date & Time	Analysi Initials
Analyte	Result	Units	Date	Date & Time	Intuat
EPA 8260B Volatiles		0.475		10/2/07	CRI
1,1,1,2-Tetrachloroctbane	110	%R		10/3/07	
1,1,1-Trichloroethane	111	%R		10/3/07	CRT
1,1,2,2-Tetrachloroethane	102	%R		10/3/07	CRT
1,1,2-Trichloroethane	105	%R		10/3/07	CRT
1,1-Dichloroethane	111	%R		10/3/07	CRI
1,1-Dichloroethene	97	%R		10/3/07	CR7
1,1-Dichloropropene	107	%R		10/3/07	CR
1,2,3-Trichlorobenzene	83	%R		10/3/07	CR'
1,2,3-Trichloropropaue	96	%R		10/3/07	CR'
1,2,4-Trichlorobenzene	87	%R		10/3/07	CR
1,2,4-Trimethylbenzene	101	%R		10/3/07	CR
1,2-Dibromo-3-chloropropane	123	%R		10/3/07	CR
1,2-Dibromoethane(EDB)	107	%R		10/3/07	CR'
1,2-Dichlorobenzene	102	%R		10/3/07	CR'
1,2-Dichloroethane	121	%R		10/3/07	CR'
1,2-Dichloropropane	108	%R		10/3/07	CR'
1,3,5-Trimethylbenzene	78	%R		10/3/07	CR'
1,3-Dichlorobenzene	98	%R		10/3/07	CR'
1,3-Dichloropropane	103	%R		10/3/07	CR'
1,4-Dichlorobenzene	100	%R		10/3/07	CR
2,2-Dichloropropane	103	%R		10/3/07	CR'
2-Chlorotoluene	105	%R		10/3/07	CR
4-Chlorotoluene	89	%R		10/3/07	CR
Benzene	103	%R		10/3/07	CR
Bromobenzene	101	%R		10/3/07	CR
Bromochloromethane	106	%R		10/3/07	CR
Bromodichloromethane	99	%R		10/3/07	CR
Bromoform	96	%R		10/3/07	CR
Bromomethane	111	%R		10/3/07	CR
Carbon tetrachloride	79	%R		10/3/07	CR
Chlorobenzene	103	%R		10/3/07	CR
Chloroethane	108	%R		10/3/07	CR
Chloroform	103	%R		10/3/07	CR
Chloromethane	123	%R		10/3/07	CR
cis-1,2-Dichloroethene	102	%R		10/3/07	CR
cis-1,3-Dichloropropene	102	%R		10/3/07	CR
Dibromochloromethane	112	%R		10/3/07	CR
Dibromomethane	103	%R		10/3/07	CR
Dichlorodifluoromethane	161*	%R		10/3/07	CR
*Outside LSL control limits.		•			
Ethyl benzene	102	%R		10/3/07	CR
Hexachlorobutadiene	96	%R		10/3/07	CR
Isopropylbenzene (Cumene)	102	%R		10/3/07	CR
MTBE	107	%R		10/3/07	CR
Methylene chloride	91	%R		10/3/07	CR
n-Butylbenzene	100	%R		10/3/07	CR
n-Propylbenzene n-Propylbenzene	102	%R		10/3/07	CR

Life Science Laboratories, Inc.

Date Printed:

10/9/07

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-015A Matrix Spike

LSL Sample ID:

0717167-005

Location:

SB-07 (16-18) - 092607

Sampled:

09/26/07 13:05

Sampled By: Client

Sample Matrix: QC

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	<u>Units</u>	Date	Date & Time	<u>Initials</u>
(I) EPA 8260B Volatiles					
Naphthalene	90	%R		10/3/07	CRT
4-Isopropyl toluene (Cymene)	100	%R		10/3/07	CRT
sec-Butylbenzene	105	%R		10/3/07	CRT
Styrene	104	%R		10/3/07	CRT
tert-Butylbenzene	106	%R		10/3/07	CRT
Tetrachloroethene	97	%R		10/3/07	CRT
Toluene	97	%R		10/3/07	CRT
trans-1,2-Dichloroethene	99	%R		10/3/07	CRT
trans-1,3-Dichloropropene	100	%R		10/3/07	CRT
Trichloroethene	101	%R		10/3/07	CRT
Trichlorofluoromethane (Freon 11)	109	%R		10/3/07	CRT
Vinyl chloride	137	%R		10/3/07	CRT
Xylenes (Total)	98	%R		10/3/07	CRT
Surrogate (1,2-DCA-d4)	110	%R		10/3/07	CRT
Surrogate (4-BFB)	92	%R		10/3/07	CRT
Surrogate (Tol-d8)	98	%R		10/3/07	CRT
Total Solids @ 103-105 C	83	%		10/3/07	KIS

Page 11 of 43

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-015A Matrix Spike Duplicate

LSL Sample ID:

0717167-006

Location:

SB-07 (16-18) - 092607

Sampled:

09/26/07 13:05

Sampled By: Client

Sample Matrix: QC

Analytical Method	Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
Analyte  DEPA 8260B Volatiles	Result	Onno	Ditt	2332 34 11110	
	2	RPD		10/3/07	CRT
1,1,1,2-Tetrachloroethane	1	RPD		10/3/07	CRT
1,1,1-Trichloroethane	3	RPD		10/3/07	CRT
1,1,2,2-Tetrachloroethane	6	RPD		10/3/07	CRT
1,1,2-Trichloroethane	1	RPD		10/3/07	CRT
1,1-Dichloroethane		RPD		10/3/07	CRT
1,1-Dichloroethene	5			10/3/07	CRT
1,1-Dichloropropene	2	RPD RPD		10/3/07	CRT
1,2,3-Trichlorobenzene	19	RPD		10/3/07	CRT
1,2,3-Trichloropropane	6			10/3/07	CRT
1,2,4-Trichlorobenzene	13	RPD		10/3/07	CRT
1,2,4-Trimethylbenzene	7	RPD		10/3/07	CRT
1,2-Dibromo-3-chloropropane	<1	RPD		10/3/07	CRT
1,2-Dibromoethane(EDB)	10	RPD		10/3/07	CRT
1,2-Dichlorobenzene	<1	RPD		10/3/07	CRI
1,2-Dichloroethane	4	RPD			CR
1,2-Dichloropropane	2	RPD		10/3/07	CR:
1,3,5-Trimethylbenzene	11	RPD		10/3/07	CR'
1,3-Dichlorobenzene	1	RPD		10/3/07	CR:
1,3-Dichloropropane	5	RPD		10/3/07	
1,4-Dichlorobenzene	7	RPD		10/3/07	CR'
2,2-Dichloropropane	9	RPD		10/3/07	CR'
2-Chlorotoluene	8	RPD		10/3/07	CR ²
4-Chlorotoluene	9	RPD		10/3/07	CR
Benzene	1	RPD		10/3/07	CR
Bromobenzene	3	RPD		10/3/07	CR
Bromochloromethane	8	RPD		10/3/07	CR'
Bromodichloromethane	5	RPD		10/3/07	CR'
Bromoform	9	RPD		10/3/07	CR'
Bromomethane	18	RPD		10/3/07	CR
Carbon tetrachloride	5	RPD		10/3/07	CR'
Chlorobenzene	1	RPD		10/3/07	CR'
Chloroethane	9	RPD		10/3/07	CR
Chloroform	2	RPD		10/3/07	CR'
Chloromethane	4	RPD		10/3/07	CR
cis-1,2-Dichloroethenc	2	RPD		10/3/07	CR'
cis-1,3-Dichloropropene	2	RPD		10/3/07	CR'
Dibromochloromethane	6	RPD		10/3/07	CR'
Dibromomethane	7	RPD		10/3/07	CR'
Dichlorodifluoromethane	16	RPD		10/3/07	CR'
Ethyl benzene	i	RPD		10/3/07	CR'
Hexachlorobutadiene	8	RPD		10/3/07	CR'
Isopropylbenzene (Cumene)	6	RPD		10/3/07	CR'
МТВЕ	8	RPD		10/3/07	CR'
Methylene chloride	<1	RPD		10/3/07	CR'
n-Butylbenzene	4	RPD		10/3/07	CR'
n-Propylbenzene	5	RPD		10/3/07	CR7
Naphthalene	23	RPD		10/3/07	CR

Life Science Laboratories, Inc.

Page 12 of 43

Date Printed:

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-015A Matrix Spike Duplicate

LSL Sample ID:

0717167-006

Location:

SB-07 (16-18) - 092607

Sampled:

09/26/07 13:05

Sampled By: Client

Sample Matrix: QC

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
(I) EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	2	RPD		10/3/07	CRT
sec-Butylbenzene	7	RPD		10/3/07	CRT
Styrene	2	RPD		10/3/07	CRT
tert-Butylbenzene	6	RPD		10/3/07	CRT
Tetrachloroethene	1	RPD		10/3/07	CRT
Toluene	l	RPD		10/3/07	CRT
trans-1,2-Dichloroethene	5	RPD		10/3/07	CRT
trans-1,3-Dichloropropene	3	RPD		10/3/07	CRT
Trichloroethene	1	RPD		10/3/07	CRT
Trichlorofluoromethane (Freon 11)	5	RPD		10/3/07	CRT
Vinyl chloride	21	RPD		10/3/07	CRT
Xylenes (Total)	2	RPD		10/3/07	CRT
Surrogate (1,2-DCA-d4)	123	%R		10/3/07	CRT
Surrogate (4-BFB)	92	%R		10/3/07	CRT
Surrogate (Tol-d8)	97	%R		10/3/07	CRT
Total Solids @ 103-105 C	83	%		10/3/07	KIS

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-016A

LSL Sample ID:

0717167-007

Location: Sampled:

SB-07 (22-24) - 092607

09/26/07 13:17

Sampled By: Client

Sample Matrix: SHW Dry Wt

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	<u>Units</u>	Date	Date & Time	Initials
(1) EPA 8260B Volatiles					
1,1,1,2-Tetrachloroethane	<200	ug/kg dry		10/3/07	CRT
1,1,1-Trichloroethane	<200	ug/kg dry		10/3/07	CRT
1,1,2,2-Tetrachloroethane	<200	ug/kg dry		10/3/07	CRT
1,1,2-Trichloroethane	<200	ug/kg dry		10/3/07	CRT
1,1-Dichloroethane	<200	ug/kg dry		10/3/07	CRT
1,1-Dichloroethene	<200	ug/kg dry		10/3/07	CRT
1,1-Dichloropropene	<200	ug/kg dry		10/3/07	CRT
1,2,3-Trichlorobenzene	<200	ug/kg dry		10/3/07	CRT
1,2,3-Trichloropropane	<200	ug/kg dry		10/3/07	CRT
1,2,4-Trichlorobenzene	<200	ug/kg dry		10/3/07	CRT
1,2,4-Trimethylbenzene	<200	ug/kg dry		10/3/07	CRT
1,2-Dibromo-3-chloropropane	<200	ug/kg dry		10/3/07	CRT
1,2-Dibromoethane(EDB)	<200	ug/kg dry		10/3/07	CRT
1,2-Dichlorobenzene	<200	ug/kg dry		10/3/07	CRT
1,2-Dichloroethane	<200	ug/kg dry		10/3/07	CRT
1,2-Dichloropropane	<200	ug/kg dry		10/3/07	CRT
1,3,5-Trimethylbenzene	<200	ug/kg dry		10/3/07	CRT
1,3-Dichlorobenzene	<200	ug/kg dry		10/3/07	CRT
1,3-Dichloropropane	<200	ug/kg dry		10/3/07	CRT
1,4-Dichlorobenzene	<200	ug/kg dry		10/3/07	CRT
2,2-Dichloropropane	<200	ug/kg dry		10/3/07	CRT
2-Chlorotoluene	<200	ug/kg dry		10/3/07	CRT
4-Chlorotoluene	<200	ug/kg dry		10/3/07	CRT
Benzene	<200	ug/kg dry		10/3/07	CRT
Bromobenzene	<200	ug/kg dry		10/3/07	CRT
Bromochloromethane	<200	ug/kg dry		10/3/07	CRT
Bromodichloromethane	<200	ug/kg dry		10/3/07	CRT
Bromoform	<200	ug/kg dry		10/3/07	CRT
Bromomethane	<200	ug/kg dry		10/3/07	CRT
Carbon tetrachloride	<200	ug/kg dry		10/3/07	CRT
Chlorobenzene	<200	ug/kg dry		10/3/07	CRT
Chloroethane	<200	ug/kg dry		10/3/07	CRT
Chloroform	<200	ug/kg dry		10/3/07	CRT
Chloromethane	<200	ug/kg dry		10/3/07	CRT
cis-1,2-Dichloroethene	<200	ug/kg dry		10/3/07	CRT
cis-1,3-Dichloropropene	<200	ug/kg dry		10/3/07	CRT
Dibromochloromethane	<200	ug/kg dry		10/3/07	CRT
Dibromomethane	<200	ug/kg dry		10/3/07	CRT
Dichlorodifluoromethane	<200	ug/kg dry		10/3/07	CRT
	<200	ug/kg dry		10/3/07	CRT
Ethyl benzene Hexachlorobutadiene	<200	ug/kg dry		10/3/07	CRT
	<200	ug/kg dry		10/3/07	CRT
Isopropylbenzene (Cumene)	<200	ug/kg dry		10/3/07	CRT
MTBE Mathylana ablavida	<200	ug/kg dry		10/3/07	CRT
Methylene chloride	<200	ug/kg dry		10/3/07	CRT
n-Butylbenzene	<200	ug/kg dry		10/3/07	CRT
n-Propylbenzene	<200	ug/kg dry		10/3/07	CRT
Naphthalene	-200	-001			Page 14 of 4

Life Science Laboratories, Inc.

Page 14 of 43

Date Printed:

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-016A

LSL Sample ID:

0717167-007

Location: Sampled:

SB-07 (22-24) - 092607

09/26/07 13:17

Sampled By: Client

Sample Matrix: SHW Dry Wt

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
(1) EPA 8260B Volatiles		•			
4-Isopropyl toluene (Cymene)	<200	ug/kg dry		10/3/07	CRT
sec-Butylbenzene	<200	ug/kg dry		10/3/07	CRT
Styrene	<200	ug/kg dry		10/3/07	CRT
tert-Butylbenzene	<200	ug/kg dry		10/3/07	CRT
Tetrachloroethene	<200	ug/kg dry		10/3/07	CRT
Toluene	800	ug/kg dry		10/3/07	CRT
trans-1,2-Dichloroethene	<200	ug/kg dry		10/3/07	CRT
trans-1,3-Dichloropropene	<200	ug/kg dry		10/3/07	CRT
Trichloroethene	2800	ug/kg dry		10/3/07	CRT
Trichlorofluoromethane (Freon 11)	<200	ug/kg dry		10/3/07	CRT
Vinyl chloride	<200	ug/kg dry		10/3/07	CRT
Xylenes (Total)	<200	ug/kg dry		10/3/07	CRT
Surrogate (1,2-DCA-d4)	111	%R		10/3/07	CRT
Surrogate (4-BFB)	98	%R		10/3/07	CRT
Surrogate (Tol-d8)	90	%R		10/3/07	CRT
Total Solids @ 103-105 C	84	%		10/3/07	KIS

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-017A

LSL Sample ID:

0717167-008

Location:

SB-07 (28-30) - 092607

Sampled:

09/26/07 13:30

Sampled By: Client

Sample Matrix: SHW Dry Wt

Analytical Method	D ago 14	Unito	Prep Date	Analysis Date & Time	Analysi Initials
Analyte	Result	Units	Date	Date of Time	- Initials
D EPA 8260B Volatiles				10/2/07	CDT
1,1,1,2-Tetrachloroethanc	<200	ug/kg dry		10/3/07	CRT
1,1,1-Trichloroethane	<200	ug/kg dry		10/3/07	CRT
1,1,2,2-Tetrachloroethane	<200	ug/kg dry		10/3/07	CRT
1,1,2-Trichloroethane	<200	ug/kg dry		10/3/07	CRT
1,1-Dichloroethane	<200	ug/kg dry		10/3/07	CR1
1,1-Dichloroethene	<200	ug/kg dry		10/3/07	CR'
1,1-Dichloropropene	<200	ug/kg dry		10/3/07	CR
1,2,3-Trichlorobenzene	<200	ug/kg dry		10/3/07	CR'
1,2,3-Trichloropropane	<200	ug/kg dry		10/3/07	CR'
1,2,4-Trichlorobenzene	<200	ug/kg dry		10/3/07	CR'
1,2,4-Trimethylbenzene	<200	ug/kg dry		10/3/07	CR:
1,2-Dibromo-3-chloropropane	<200	ug/kg dry		10/3/07	CR:
1,2-Dibromoethane(EDB)	<200	ug/kg dry		10/3/07	CR
1,2-Dichlorobenzene	<200	ug/kg dry		10/3/07	CR'
1,2-Dichloroethane	< 200	ug/kg dry		10/3/07	CR'
1,2-Dichloropropane	<200	ug/kg dry		10/3/07	CR'
1,3,5-Trimethylbenzene	<200	ug/kg dry		10/3/07	CR'
1,3-Dichlorobenzene	<200	ug/kg dry		10/3/07	CR'
1,3-Dichloropropane	<200	ug/kg dry		10/3/07	CR.
1,4-Dichlorobenzene	<200	ug/kg dry		10/3/07	CR
2,2-Dichloropropane	<200	ug/kg dry		10/3/07	CR
2-Chlorotoluene	<200	ug/kg dry		10/3/07	CR
4-Chlorotoluene	<200	ug/kg dry		10/3/07	CR
Benzene	<200	ug/kg dry		10/3/07	CR
Bromobenzene	<200	ug/kg dry		10/3/07	CR
Bromochloromethane	<200	ug/kg dry		10/3/07	CR
Bromodichloromethane	<200	ug/kg dry		10/3/07	CR'
	<200	ug/kg dry		10/3/07	CR'
Bromoform	<200	ug/kg dry ug/kg dry		10/3/07	CR'
Bromomethane	<200	ug/kg dry ug/kg dry		10/3/07	CR'
Carbon tetrachloride	<200			10/3/07	CR'
Chlorobenzene		ug/kg dry		10/3/07	CR
Chloroethane	<200	ug/kg dry		10/3/07	CR ²
Chloroform	<200	ug/kg dry		10/3/07	CR
Chloromethane	<200	ug/kg dry		10/3/07	CR
cis-1,2-Dichloroethene	<200	ug/kg dry			CR'
cis-1,3-Dichloropropene	<200	ug/kg dry		10/3/07	CR'
Dibromochloromethane	<200	ug/kg dry		10/3/07	
Dibromomethane	<200	ug/kg dry		10/3/07	CR
Dichlorodifluoromethane	<200	ug/kg dry		10/3/07	CR
Ethyl benzene	<200	ug/kg dry		10/3/07	CR
Hexachlorobutadiene	<200	ug/kg dry		10/3/07	CR
Isopropylbenzene (Cumene)	<200	ug/kg dry		10/3/07	CR
MTBE	<200	ug/kg dry		10/3/07	CR
Methylene chloride	<200	ug/kg dry		10/3/07	CR
n-Butylbenzene	<200	ug/kg dry		10/3/07	CR
n-Propylbenzene	<200	ug/kg dry		10/3/07	CR
Naphthalene	<200	ug/kg dry		10/3/07	CR.

Life Science Laboratories, Inc.

Page 16 of 43

Date Printed:

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-017A

LSL Sample ID:

0717167-008

Location: Sampled:

SB-07 (28-30) - 092607

09/26/07 13:30

Sampled By: Client

Sample Matrix: SHW Dry Wt

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	<u>Initials</u>
(1) EPA 8260B Volatiles					
4-Isopropyl toluene (Cymcne)	<200	ug/kg dry		10/3/07	CRT
sec-Butylbenzene	<200	ug/kg dry		10/3/07	CRT
Styrene	<200	ug/kg dry		10/3/07	CRT
tert-Butylbenzene	<200	ug/kg dry		10/3/07	CRT
Tetrachloroethene	<200	ug/kg dry		10/3/07	CRT
Toluene	210	ug/kg dry		10/3/07	CRT
trans-1,2-Dichloroethene	<200	ug/kg dry		10/3/07	CRT
trans-1,3-Dichloropropene	<200	ug/kg dry		10/3/07	CRT
Trichloroethene	1100	ug/kg dry		10/3/07	CRT
Trichlorofluoromethane (Freon 11)	<200	ug/kg dry		10/3/07	CRT
Vinyl chloride	<200	ug/kg dry		10/3/07	CRT
Xylenes (Total)	<200	ug/kg dry		10/3/07	CRT
Surrogate (1,2-DCA-d4)	104	%R		10/3/07	CRT
Surrogate (4-BFB)	104	%R		10/3/07	CRT
Surrogate (Tol-d8)	89	%R		10/3/07	CRT
Total Solids @ 103-105 C	86	%		10/3/07	KIS

Page 17 of 43

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-001A

LSL Sample ID:

0717167-009

Location:

SB-08 (2-4) - 092507

Sampled:

09/20/07 8:05

Sampled By: Client

Sample Matrix: SHW Dry Wt

analytical Method	<b>n</b>	Tiuita	Prep Dote	Analysis Date & Time	Analyst Initials
Analyte	Result	Units	<u>Date</u>	Date & Time	Tilletais
EPA 8260B Volatiles				10/4/07	CDT
1,1,1,2-Tetrachloroethane	<2	ug/kg dry		10/4/07	CRT
1,1,1-Trichloroethane	<2	ug/kg dry		10/4/07	CRT
1,1,2,2-Tetrachloroethane	<2	ug/kg dry		10/4/07	CRT
1,1,2-Trichloroethane	<2	ug/kg dry		10/4/07	CRT
1,1-Dichloroethanc	<2	ug/kg dry		10/4/07	CRT
1,1-Dichloroethene	<2	ug/kg dry		10/4/07	CRT
1,1-Dichloropropene	<2	ug/kg dry		10/4/07	CRT
1,2,3-Trichlorobenzene	<2	ug/kg dry		10/4/07	CR1
1,2,3-Trichloropropane	<2	ug/kg dry		10/4/07	CRT
1,2,4-Trichlorobenzene	<2	ug/kg dry		10/4/07	CRT
1,2,4-Trimethylbenzene	<2	ug/kg dry		10/4/07	CRT
1,2-Dibromo-3-chloropropane	<2	ug/kg dry		10/4/07	CRT
1,2-Dibromoethane(EDB)	<2	ug/kg dry		10/4/07	CRT
1,2-Dichlorobenzene	<2	ug/kg dry		10/4/07	CRT
1,2-Dichloroethane	<2	ug/kg dry		10/4/07	CR?
1,2-Dichloropropane	<2	ug/kg dry		10/4/07	CR7
1,3,5-Trimethylbenzene	<2	ug/kg dry		10/4/07	CR'
1,3-Dichlorobenzene	<2	ug/kg dry		10/4/07	CR'
1,3-Dichloropropane	<2	ug/kg dry		10/4/07	CR'
1,4-Dichlorobenzene	<2	ug/kg dry		10/4/07	CR'
2,2-Dichloropropane	<2	ug/kg dry		10/4/07	CR'
2-Chlorotoluene	<2	ug/kg dry		10/4/07	CR'
4-Chlorotoluene	<2	ug/kg dry		10/4/07	CR'
Benzenc	<2	ug/kg dry		10/4/07	CR'
Bromobenzene	<2	ug/kg dry		10/4/07	CR'
Bromochloromethane	<2	ug/kg dry		10/4/07	CR'
Bromodichloromethane	<2	ug/kg dry		10/4/07	CR'
Bromoform	<2	ug/kg dry		10/4/07	CR'
	<2	ug/kg dry		10/4/07	CR'
Bromomethane	<2	ug/kg dry		10/4/07	CR'
Carbon tetrachloride	<2	ug/kg dry		10/4/07	CR'
Chlorobenzene	<2	ug/kg dry		10/4/07	CR'
Chloroethane	<2	ug/kg dry		10/4/07	CR'
Chloroform	<2	ug/kg dry		10/4/07	CR'
Chloromethane	<2	ug/kg dry		10/4/07	CR'
cis-1,2-Dichloroethene	<2	ug/kg dry		10/4/07	CR'
cis-1,3-Dichloropropene	<2			10/4/07	CR'
Dibromochloromethane		ug/kg dry		10/4/07	CR'
Dibromomethane	<2	ug/kg dry		10/4/07	CR
Dichlorodifluoromethane	<2	ug/kg dry		10/4/07	CR
Ethyl benzene	<2	ug/kg dry		10/4/07	CR
Hexachlorobutadiene	<2 →	ug/kg dry		10/4/07	CR
Isopropylbenzene (Cumene)	<2	ug/kg dry		10/4/07	CR
MTBE	<2	ug/kg dry		10/4/07	CR
Methylene chloride	<2	ug/kg dry			CR
n-Butylbenzene	<2	ug/kg dry		10/4/07	CR
n-Propylbenzene	<2	ug/kg dry		10/4/07	CR
Naphthalene	<2	ug/kg dry		10/4/07	CK

Life Science Laboratories, Inc.

Page 18 of 43

Date Printed:

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-001A

LSL Sample ID:

0717167-009

Location:

SB-08 (2-4) - 092507

Sampled:

09/20/07 8:05

Sampled By: Client

Sample Matrix: SHW Dry Wt

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	<u>Initials</u>
(1) EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	<2	ug/kg dry		10/4/07	CRT
sec-Butylbenzene	<2	ug/kg dry		10/4/07	CRT
Styrene	<2	ug/kg dry		10/4/07	CRT
tert-Butylbenzene	<2	ug/kg dry		10/4/07	CRT
Tetrachloroethene	<2	ug/kg dry		10/4/07	CRT
Toluene	<2	ug/kg dry		10/4/07	CRT
trans-1,2-Dichloroethene	<2	ug/kg dry		10/4/07	CRT
trans-1,3-Dichloropropene	<2	ug/kg dry		10/4/07	CRT
Trichloroethene	<2	ug/kg dry		10/4/07	CRT
Trichlorofluoromethane (Freon 11)	<2	ug/kg dry		10/4/07	CRT
Vinyl chloride	<2	ug/kg dry		10/4/07	CRT
Xylenes (Total)	<2	ug/kg dry		10/4/07	CRT
Surrogate (1,2-DCA-d4)	104	%R		10/4/07	CRT
Surrogate (4-BFB)	103	%R		10/4/07	CRT
Surrogate (Tol-d8)	93	%R		10/4/07	CRT
Total Solids @ 103-105 C	84	%		10/3/07	KIS

Page 19 of 43

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-002A

LSL Sample ID:

0717167-010

Location:

SB-08 (10-12) - 092507

Sampled:

09/25/07 8:38

Sampled By: Client

Sample Matrix: SHW Dry Wt

nalytical Method  Analyte	Result	Units	Prep Date	Analysis  Date & Time	Analyst Initials
EPA 8260B Volatiles					
1,1,1,2-Tetrachloroethane	<200	ug/kg dry		10/3/07	CRT
1,1,1-Trichloroethane	<200	ug/kg dry		10/3/07	CRT
1,1,2,2-Tetrachloroethane	<200	ug/kg dry		10/3/07	CRT
1,1,2-Trichloroethane	<200	ug/kg dry		10/3/07	CRT
1,1-Dichloroethane	<200	ug/kg dry		10/3/07	CRT
1,1-Dichloroethene	<200	ug/kg dry		10/3/07	CRT
1,1-Dichloropropene	<200	ug/kg dry		10/3/07	CRT
1,2,3-Trichlorobenzene	<200	ug/kg dry		10/3/07	CRT
1,2,3-Trichloropenzene	<200	ug/kg dry		10/3/07	CRT
	<200	ug/kg dry		10/3/07	CRI
1,2,4-Trichlorobenzene	<200	ug/kg dry		10/3/07	CRT
1,2,4-Trimethylbenzene	<200	ug/kg dry		10/3/07	CRT
1,2-Dibromo-3-chloropropane	<200	ug/kg dry		10/3/07	CRT
1,2-Dibromoethane(EDB)	<200	ug/kg dry		10/3/07	CR7
1,2-Dichlorobenzene	<200	ug/kg dry		10/3/07	CR
1,2-Dichloroethane	<200	ug/kg dry ug/kg dry		10/3/07	CR
1,2-Dichloropropane	<200			10/3/07	CR2
1,3,5-Trimethylbenzene		ug/kg dry		10/3/07	CR
1,3-Dichlorobenzenc	<200	ug/kg dry		10/3/07	CR
1,3-Dichloropropane	<200	ug/kg dry		10/3/07	CR'
1,4-Dichlorobenzene	<200	ug/kg dry		10/3/07	CR'
2,2-Dichloropropane	<200	ug/kg dry			CR'
2-Chlorotoluene	<200	ug/kg dry		10/3/07	CR'
4-Chlorotoluene	<200	ug/kg dry		10/3/07	CR'
Benzene	<200	ug/kg dry		10/3/07	CR'
Bromobenzene	<200	ug/kg dry		10/3/07	CR'
Bromochloromethanc	<200	ug/kg dry		10/3/07	CR'
Bromodichloromethane	<200	ug/kg dry		10/3/07	
Bromoform	<200	ug/kg dry		10/3/07	CR ²
Bromomethane	<200	ug/kg dry		10/3/07	CR'
Carbon tetrachloride	<200	ug/kg dry		10/3/07	CR'
Chlorobenzene	<200	ug/kg dry		10/3/07	CR'
Chloroethane	<200	ug/kg dry		10/3/07	CR
Chloroform	<200	ug/kg dry		10/3/07	CR'
Chloromethane	<200	ug/kg dry		10/3/07	CR'
cis-1,2-Dichloroethene	<200	ug/kg dry		10/3/07	CR'
cis-1,3-Dichloropropene	<200	ug/kg dry		10/3/07	CR'
Dibromochloromethane	<200	ug/kg dry		10/3/07	CR'
Dibromomethane	<200	ug/kg dry		10/3/07	CR'
Dichlorodifluoromethane	<200	ug/kg dry		10/3/07	CR'
Ethyl benzene	<200	ug/kg dry		10/3/07	CR'
Hexachlorobutadiene	<200	ug/kg dry		10/3/07	CR'
Isopropylbenzene (Cumene)	<200	ug/kg dry		10/3/07	CR'
мтве	<200	ug/kg dry		10/3/07	CR'
Methylene chloride	<200	ug/kg dry		10/3/07	CR
n-Butylbenzene	<200	ug/kg dry		10/3/07	CR
n-Propylbenzene	<200	ug/kg dry		10/3/07	CR*
Naphthalene	<200	ug/kg dry		10/3/07	CR ²

Life Science Laboratories, Inc.

Date Printed:

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-002A

LSL Sample ID:

0717167-010

Location:

SB-08 (10-12) - 092507

Sampled:

09/25/07 8:38

Sampled By: Client

Sample Matrix: SHW Dry Wt

Analytical Method				Prep	Analysis	Analyst
Analyte	· · · · · · · · · · · · · · · · · · ·	Result	Units	Date	Date & Time	Initials
(1) EPA 8260B Vola	tiles					
4-Isopropyl tol	uenc (Cymene)	<200	ug/kg dry		10/3/07	CRT
sec-Butylbenze	ne	<200	ug/kg dry		10/3/07	CRT
Styrene		<200	ug/kg dry		10/3/07	CRT
tert-Butylbenz	ene	<200	ug/kg dry		10/3/07	CRT
Tetrachloroeth	ene	<200	ug/kg dry		10/3/07	CRT
Toluene		<200	ug/kg dry		10/3/07	CRT
trans-1,2-Dichi	oroethene	<200	ug/kg dry		10/3/07	CRT
trans-1,3-Dich	огоргорене	<200	ug/kg dry		10/3/07	CRT
Trichloroethen	e	3100	ug/kg dry		10/3/07	CRT
Trichlorofluor	omethane (Freon 11)	<200	ug/kg dry		10/3/07	CRT
Vinyl chloride	,	<200	ug/kg dry		10/3/07	CRT
Xylenes (Total		<200	ug/kg dry		10/3/07	CRT
Surrogate (1,2-		107	%R		10/3/07	CRT
Surrogate (4-B		98	%R		10/3/07	CRT
Surrogate (Tol		90	%R		10/3/07	CRT
Total Solids @	•	83	%		10/3/07	KIS

Page 21 of 43

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-003A

LSL Sample ID:

0717167-011

Location:

SB-08 (20-22) - 092507

Sampled:

09/25/07 9:20

Sampled By: Client

Sample Matrix: SHW Dry Wt

nalytical Method		** **	Prep	Analysis	Analys
Analyte	Result	Units	Date	Date & Time	Initial
EPA 8260B Volatiles					an.
1,1,1,2-Tetrachloroethane	<30	ug/kg dry		10/9/07	CRT
1,1,1-Trichloroethane	<30	ug/kg dry		10/9/07	CRT
1,1,2,2-Tetrachloroethane	<30	ug/kg dry		10/9/07	CRT
1,1,2-Trichloroethane	<30	ug/kg dry		10/9/07	CR'
1,1-Dichloroethane	<30	ug/kg dry		10/9/07	CR
1,1-Dichloroethene	<30	ug/kg dry		10/9/07	CR'
1,1-Dichloropropene	<30	ug/kg dry		10/9/07	CR'
1,2,3-Trichlorobenzene	<30	ug/kg dry		10/9/07	CR
1,2,3-Trichloropropane	<30	ug/kg dry		10/9/07	CR
1,2,4-Trichlorobenzene	<30	ug/kg dry		10/9/07	CR
1,2,4-Trimethylbenzene	<30	ug/kg dry		10/9/07	CR
1,2-Dibromo-3-chloropropane	<30	ug/kg dry		10/9/07	CR'
1,2-Dibromoethanc(EDB)	<30	ug/kg dry		10/9/07	CR
1,2-Dichlorobenzene	<30	ug/kg dry		10/9/07	CR
1,2-Dichloroethane	<30	ug/kg dry		10/9/07	CR
1,2-Dichloropropane	<30	ug/kg dry		10/9/07	CR
1,3,5-Trimethylbenzene	<30	ug/kg dry		10/9/07	CR
1,3-Dichlorobenzene	<30	ug/kg dry		10/9/07	CR
1,3-Dichloropropane	<30	ug/kg dry		10/9/07	CR
1,4-Dichlorobenzene	<30	ug/kg dry		10/9/07	CF
·	<30	ug/kg dry		10/9/07	CF
2,2-Dichloropropane	<30	ug/kg dry		10/9/07	CR
2-Chlorotoluene	<30	ug/kg dry		10/9/07	CF
4-Chlorotoluene	<30	ug/kg dry		10/9/07	CR
Benzene	<30	ug/kg dry		10/9/07	CF
Bromobenzene	<30	ug/kg dry		10/9/07	CF
Bromochloromethane	<30	ug/kg dry		10/9/07	CF
Bromodichloromethane	<30			10/9/07	CF
Bromoform		ug/kg dry		10/9/07	CF
Bromomethane	<30	ug/kg dry		10/9/07	CF CF
Carbon tetrachloride	<30	ug/kg dry		10/9/07	Ci Ci
Chlorobenzene	<30	ug/kg dry		10/9/07	CI
Chloroethane	<30	ug/kg dry		10/9/07	CF
Chloroform	<30	ug/kg dry		10/9/07	CI
Chloromethane	<30	ug/kg dry			
cis-1,2-Dichloroethene	<30	ug/kg dry		10/9/07	CF CF
cis-1,3-Dichloropropene	<30	ug/kg dry		10/9/07	
Dibromochloromethane	<30	ug/kg dry		10/9/07	CF
Dibromomethane	<30	ug/kg dry		10/9/07	CI
Dichlorodifluoromethane	<30	ug/kg dry		10/9/07	CF
Ethyl benzene	<30	ug/kg dry		10/9/07	CF
Hexachlorobutadiene	<30	ug/kg dry		10/9/07	CF
Isopropylbenzene (Cumene)	<30	ug/kg dry		10/9/07	CF
MTBE	<30	ug/kg dry		10/9/07	CI
Methylene chloride	<30	ug/kg dry		10/9/07	CI
n-Butylbenzene	<30	ug/kg dry		10/9/07	CF
n-Propylbenzene	<30	ug/kg dry		10/9/07	CF
Naphthalene	<30	ug/kg dry		10/9/07	CF

Life Science Laboratories, Inc.

Page 22 of 43

Date Printed:

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-003A

LSL Sample ID:

0717167-011

Location: Sampled:

SB-08 (20-22) - 092507

09/25/07 9:20

Sampled By: Client

Sample Matrix: SHW Dry Wt

Analytical Method Analyte	Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
7) EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	<30	ug/kg dry		10/9/07	CRT
sec-Butylbenzene	<30	ug/kg dry		10/9/07	CRT
Styrene	<30	ug/kg dry		10/9/07	CRT
tert-Butylbenzene	<30	ug/kg dry		10/9/07	CRT
Tetrachloroethene	<30	ug/kg dry		10/9/07	CRT
Toluene	<30	ug/kg dry		10/9/07	CRT
trans-1,2-Dichloroethene	<30	ug/kg dry		10/9/07	CRT
trans-1,3-Dichloropropene	<30	ug/kg dry		10/9/07	CRT
Trichloroethene	<30	ug/kg dry		10/9/07	CRT
Trichlorofluoromethane (Freon 11)	<30	ug/kg dry		10/9/07	CRT
Vinyl chloride	< 30	ug/kg dry		10/9/07	CRT
Xylenes (Total)	<30	ug/kg dry		10/9/07	CRT
Surrogate (1,2-DCA-d4)	105	%R		10/9/07	CRT
Surrogate (4-BFB)	98	%R		10/9/07	CRT
Surrogate (Tol-d8)	110	%R		10/9/07	CRT
Total Solids @ 103-105 C	81	%		10/3/07	KIS

Elevated detection limit due to matrix interference.

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-004A

LSL Sample ID:

0717167-012

Location:

SB-08 (32-34) - 092507

Sampled:

09/25/07 10:15

Sampled By: Client

Sample Matrix: SHW Dry Wt

alytical Method		<b>T</b> 14	Prep	Analysis	Analys
Analyte	Result	Units	Date	Date & Time	<u>Initial</u>
EPA 8260B Volatiles				10/0/07	an.
1,1,1,2-Tetrachloroethane	<30	ug/kg dry		10/9/07	CR'
1,1,1-Trichloroethane	<30	ug/kg dry		10/9/07	CR'
1,1,2,2-Tetrachloroethane	<30	ug/kg dry		10/9/07	CR'
1,1,2-Trichforoethane	<30	ug/kg dry		10/9/07	CR
1,1-Dichloroethane	<30	ug/kg đry		10/9/07	CR
1,1-Dichloroethene	<30	ug/kg dry		10/9/07	CR
1,1-Dichloropropene	<30	ug/kg dry		10/9/07	CR
1,2,3-Trichlorobenzene	<30	ug/kg dry		10/9/07	CR
1,2,3-Trichloropropane	<30	ug/kg dry		10/9/07	CR
1,2,4-Trichlorobenzene	<30	ug/kg dry		10/9/07	CR
1,2,4-Trimethylbenzene	<30	ug/kg dry		10/9/07	CR
1,2-Dibromo-3-chloropropane	<30	ug/kg dry		10/9/07	CR
1,2-Dibromoethane(EDB)	<30	ug/kg dry		10/9/07	CR
1,2-Dichlorobenzene	<30	ug/kg dry		10/9/07	CR
1,2-Dichloroethane	<30	ug/kg dry		10/9/07	CR
1,2-Dichloropropane	<30	ug/kg dry		10/9/07	CR
	<30	ug/kg dry		10/9/07	CF
1,3,5-Trimethylbenzene	<30	ug/kg dry		10/9/07	CF
1,3-Dichlorobenzene	<30	ug/kg dry		10/9/07	CI
1,3-Dichloropropane	<30	ug/kg dry		10/9/07	CI
1,4-Dichlorobenzene	<30	ug/kg dry		10/9/07	CI
2,2-Dichloropropane	<30	ug/kg dry		10/9/07	CI
2-Chlorotoluene	<30	ug/kg dry		10/9/07	CI
4-Chlorotoluene	<30			10/9/07	CI
Benzene		ug/kg dry		10/9/07	CI
Bromobenzene	<30	ug/kg dry		10/9/07	Cl
Bromochloromethane	<30	ug/kg dry		10/9/07	CI
Bromodichloromethane	<30	ug/kg dry		10/9/07	CI
Bromoform	<30	ug/kg dry			C
Bromomethane	<30	ug/kg dry		10/9/07	C
Carbon tetrachloride	<30	ug/kg dry		10/9/07	C
Chlorobenzene	<30	ug/kg dry		10/9/07	
Chloroethane	<30	ug/kg dry		10/9/07	C
Chloroform	<30	ug/kg dry		10/9/07	C
Chloromethane	<30	ug/kg dry		10/9/07	C
cis-1,2-Dichloroethene	<30	ug/kg dry		10/9/07	C
cis-1,3-Dichloropropene	<30	ug/kg dry		10/9/07	C
Dibromochloromethane	<30	ug/kg dry		10/9/07	C
Dibromomethane	<30	ug/kg dry		10/9/07	C
Dichlorodifluoromethane	<30	ug/kg dry		10/9/07	C
Ethyl benzene	<30	ug/kg dry		10/9/07	С
Hexachlorobutadiene	<30	ug/kg dry		10/9/07	C
Isopropylbenzene (Cumene)	<30	ug/kg dry		10/9/07	C
мтве	<30	ug/kg dry		10/9/07	C
Methylene chloride	<30	ug/kg dry		10/9/07	C
n-Butylbenzene	<30	ug/kg dry		10/9/07	C
n-Propylbenzene	<30	ug/kg dry		10/9/07	C
Naphthalene	<30	ug/kg dry		10/9/0 <b>7</b>	C

Life Science Laboratories, Inc.

Page 24 of 43

Date Printed:

Life Science Laboratories, Inc.

Sample ID: 0709165-004A East Syracuse, NY

LSL Sample ID:

0717167-012

Location:

SB-08 (32-34) - 092507

Sampled:

09/25/07 10:15

Sampled By: Client

Sample Matrix: SHW Dry Wt

Analytical Method		<u> </u>	Prep	Analysis	Analyst
Analyte	Result	<u>Units</u>	Date	Date & Time	Initials
(1) EPA 8260B Volatiles		-			
4-Isopropyl toluene (Cymene)	<30	ug/kg dry		10/9/07	CRT
sec-Butylbenzene	<30	ug/kg dry		10/9/07	CRT
Styrene	<30	ug/kg dry		10/9/07	CRT
tert-Butylbenzene	<30	ug/kg dry		10/9/07	CRT
Tetrachloroethene	<30	ug/kg dry		10/9/07	CRT
Toluene	<30	ug/kg dry		10/9/07	CRT
trans-1,2-Dichloroethene	<30	ug/kg dry		10/9/07	CRT
trans-1,3-Dichloropropene	<30	ug/kg dry		10/9/07	CRT
Trichloroethene	<30	ug/kg dry		10/9/07	CRT
Trichlorofluoromethane (Freon 11)	<30	ug/kg dry		10/9/07	CRT
Vinyl chloride	<30	ug/kg dry		10/9/07	CRT
Xylenes (Total)	<30	ug/kg dry		10/9/07	CRT
Surrogate (1,2-DCA-d4)	111	%R		10/9/07	CRT
Surrogate (4-BFB)	107	%R		10/9/07	CRT
Surrogate (Tol-d8)	120	%R		10/9/07	CRT
Total Solids @ 103-105 C	82	%		10/3/07	KIS

An internal standard response for this analysis was outside our established control limits. Reported results have been estimated. Elevated detection limit due to matrix interference.

Page 25 of 43

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-005

LSL Sample ID:

0717167-013

Location:

FD-092507

Sampled:

-

09/25/07 0:00 Sar

Sampled By: Client

Sample Matrix: SHW Dry Wt

		-	D. 4. 0 Time	Initial
Result	Units	<u>Date</u>	Date & Time	<u>Initial</u>
				an:
<20	ug/kg dry			CR'
<20	ug/kg dry			CR
<20	ug/kg dry			CR
<20	ug/kg dry			CR
<20	ug/kg dry			CR
<20	ug/kg dry			CF
<20	ug/kg dry			CF
<20	ug/kg dry		10/9/07	CF
<20	ug/kg dry		10/9/07	CF
<20	ug/kg dry		10/9/07	CF
<20	ug/kg dry		10/9/07	CF
<20	ug/kg dry		10/9/07	CF
<20	ug/kg dry		10/9/07	CF
			10/9/07	CF
			10/9/07	CI
		٠	10/9/07	CF
			10/9/07	CI
			10/9/07	CI
				CI
	•			CI
	=			CI
				Cl
				CI
				CI
				Cl
				CI
				CI
				Cl
				Cl
				Ci
				Cl
<20	ug/kg dry			Cl
<20	ug/kg dry			C
<20	ug/kg dry			C
<20	ug/kg dry			C
<20	ug/kg dry			C
<20	ug/kg dry			C
<20	ug/kg dry		10/9/07	C
<20	ug/kg dry		10/9/07	C
<20	ug/kg dry		10/9/07	C
<20	ug/kg dry		10/9/07	С
<20	ug/kg dry		10/9/07	С
<20			10/9/07	C
			10/9/07	C
<20			10/9/07	C
			10/9/07	С
-20			10/9/07	С
	<20 <20 <20 <20 <20 <20 <20 <20 <20 <20	<20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry	<20	Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Comp

Life Science Laboratories, Inc.

Page 26 of 43

Date Printed:

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-005

LSL Sample ID:

0717167-013

Location:

FD-092507

Sampled:

09/25/07 0:00

Sampled By: Client

Sample Matrix: SHW Dry Wt

Analytical Method	D 14	¥ 1 54-	Prep	Analysis Date & Time	Analyst Initials
Analyte	Result	Units	Date	Date & Time	Illitiais
(I) EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	<20	ug/kg dry		10/9/07	CRT
sec-Butylbenzene	<20	ug/kg dry		10/9/07	CRT
Styrene	<20	ug/kg dry		10/9/07	CRT
tert-Butylbenzene	<20	ug/kg dry		10/9/07	CRT
Tetrachloroethene	<20	ug/kg dry		10/9/07	CRT
Toluene	<20	ug/kg dry		10/9/07	CRT
trans-1,2-Dichloroethenc	<20	ug/kg dry		10/9/07	CRT
trans-1,3-Dichloropropene	<20	ug/kg dry		10/9/07	CRT
Trichloroethene	<20	ug/kg dry		10/9/07	CRT
Trichlorofluoromethane (Freon 11)	<20	ug/kg dry		10/9/07	CRT
Vinyl chloride	<20	ug/kg dry		10/9/07	CRT
Xylenes (Total)	<20	ug/kg dry		10/9/07	CRT
Surrogate (1,2-DCA-d4)	117	%R		10/9/07	CRT
Surrogate (4-BFB)	105	%R		10/9/07	CRT
Surrogate (Tol-d8)	128	%R		10/9/07	CRT
Total Solids @ 103-105 C	83	%		10/3/07	KIS

An internal standard response for this analysis was outside our established control limits. Reported results have been estimated. Elevated detection limit due to matrix interference.

Page 27 of 43

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-006A

LSL Sample ID:

0717167-014

Location:

SB-04 (2-4) - 092507

Sampled:

09/25/07 12:59

Sampled By: Client

Sample Matrix: SHW Dry Wt

nalytical Method	D17	Unito	Prep Date	Analysis Date & Time	Analysi Initials
Analyte	Result	Units	Date	Date & Time	mulais
EPA 8260B Volatiles	_	. 11 1		10/2/07	CRT
1,1,1,2-Tetrachloroethane	<2	ug/kg dry			
1,1,1-Trichloroethane	<2	ug/kg dry		10/2/07	CRT
1,1,2,2-Tetrachloroethane	<2	ug/kg dry		10/2/07	CRT
1,1,2-Trichloroethane	<2	ug/kg dry		10/2/07	CRT
1,1-Dichloroethane	<2	ug/kg dry		10/2/07	CR:
1,1-Dichloroethene	<2	ug/kg dry		10/2/07	CR ²
1,1-Dichloropropene	<2	ug/kg dry		10/2/07	CR'
1,2,3-Trichlorobenzene	<2	ug/kg dry		10/2/07	CR'
1,2,3-Trichloropropane	<2	ug/kg dry		10/2/07	CR'
1,2,4-Trichlorobenzene	<2	ug/kg dry		10/2/07	CR
1,2,4-Trimethylbenzene	<2	ug/kg dry		10/2/07	CR'
1,2-Dibromo-3-chloropropane	<2	ug/kg dry		10/2/07	CR'
1,2-Dibromoethane(EDB)	<2	ug/kg dry		10/2/07	CR'
1,2-Dichlorobenzene	<2	ug/kg dry		10/2/07	CR
1,2-Dichloroethane	<2	ug/kg dry		10/2/07	CR
1,2-Dichloropropane	<2	ug/kg dry		10/2/07	CR
1,3,5-Trimethylbenzene	<2	ug/kg dry		10/2/07	CR
1,3-Dichlorobenzene	<2	ug/kg dry		10/2/07	CR
1,3-Dichloropropane	<2	ug/kg dry		10/2/07	CR
1,4-Dichlorobenzene	<2	ug/kg dry		10/2/07	CR
2,2-Dichloropropane	<2	ug/kg dry		10/2/07	CR
2-Chlorotoluene	<2	ug/kg đry		10/2/07	CR
4-Chlorotoluene	<2	ug/kg dry		10/2/07	CR
Benzene	<2	ug/kg dry		10/2/07	CR
Bromobenzene	<2	ug/kg dry		10/2/07	CR
Bromochloromethane	<2	ug/kg dry		10/2/07	CR
Bromodichloromethane	<2	ug/kg dry		10/2/07	CR
Bromoform	<2	ug/kg dry		10/2/07	CR
Bromomethane	<2	ug/kg dry		10/2/07	CR
Carbon tetrachloride	<2	ug/kg dry		10/2/07	CR
Chlorobenzene	<2	ug/kg dry		10/2/07	CR
Chloroethane	<2	ug/kg dry		10/2/07	CF
Chloroform	<2	ug/kg dry		10/2/07	CR
Chloromethane	<2	ug/kg dry		10/2/07	CR
cis-1,2-Dichloroethene	<2	ug/kg dry		10/2/07	CR
cis-1,3-Dichloropropene	<2	ug/kg dry		10/2/07	CF
Dibromochloromethane	<2	ug/kg dry		10/2/07	CR
Dibromomethane	<2	ug/kg dry		10/2/07	CR
Dichlorodifluoromethane	<2	ug/kg dry		10/2/07	CF
	<2	ug/kg dry		10/2/07	CF
Ethyl benzene	<2	ug/kg dry		10/2/07	CF
Hexachlorobutadiene	<2	ug/kg dry		10/2/07	CF
Isopropylbenzene (Cumene)	<2	ug/kg dry		10/2/07	CF
MTBE	<2			10/2/07	CI
Methylene chloride	<2	ug/kg dry ug/kg dry		10/2/07	CI CI
n-Butylbenzene	<2 <2	<del>-</del>		10/2/07	CF
n-Propylbenzene		ug/kg dry		10/2/07	CF
Naphthalene	<2	ug/kg dry			Page 28 of

Life Science Laboratories, Inc.

Page 28 of 43

Date Printed:

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-006A

LSL Sample ID:

0717167-014

Location:

SB-04 (2-4) - 092507

Sampled:

09/25/07 12:59

Sampled By: Client

Sample Matrix: SHW Dry Wt

Analytical Method		_	Prep	Analysis	Analyst
Analyte	Result_	<u>Units</u>	Date	Date & Time	Initials
(I) EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	<2	ug/kg dry		10/2/07	CRT
sec-Butylbenzene	<2	ug/kg dry		10/2/07	CRT
Styrene	<2	ug/kg dry		10/2/07	CRT
tert-Butylbenzene	<2	ug/kg dry		10/2/07	CRT
Tetrachloroethene	<2	ug/kg dry		10/2/07	CRT
Toluene	<2	ug/kg dry		10/2/07	CRT
trans-1,2-Dichloroethene	<2	ug/kg dry		10/2/07	CRT
trans-1,3-Dichloropropene	<2	ug/kg dry		10/2/07	CRT
Trichloroethene	<2	ug/kg dry		10/2/07	CRT
Trichlorofluoromethane (Freon 11)	<2	ug/kg dry		10/2/07	CRT
Vinyl chloride	<2	ug/kg dry		10/2/07	CRT
Xylenes (Total)	<2	ug/kg dry		10/2/07	CRT
Surrogate (1,2-DCA-d4)	99	%R		10/2/07	CRT
Surrogate (4-BFB)	99	%R		10/2/07	CRT
Surrogate (Tol-d8)	96	%R		10/2/07	CRT
Total Solids @ 103-105 C	81	%		10/3/07	KIS

Page 29 of 43

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-007A

LSL Sample ID:

0717167-015

Location:

SB-04 (12-14) - 092507

Sampled:

09/25/07 13:27

Sampled By: Client

Sample Matrix: SHW Dry Wt

alytical Method			Prep	Analysis	Analys
Analyte	Result	Units	Date	Date & Time	Initial
EPA 8260B Volatiles					
1,1,1,2-Tetrachlorocthane	<10	ug/kg dry		10/8/07	CR'
1,1,1-Trichloroethane	<10	ug/kg đry		10/8/07	CR'
1,1,2,2-Tetrachloroethane	<10	ug/kg dry		10/8/07	CR'
1,1,2-Trichloroethane	<10	ug/kg dry		10/8/07	CR'
1,1-Dichloroethane	<10	ug/kg dry		10/8/07	CR
1,1-Dichloroethene	<10	ug/kg dry		10/8/07	CR
1,1-Dichloropropene	<10	ug/kg dry		10/8/07	CR
1,2,3-Trichlorobenzene	<10	ug/kg dry		10/8/07	CR
1,2,3-Trichloropropane	<10	ug/kg dry		10/8/07	CR
1,2,4-Trichlorobenzenc	<10	ug/kg dry		10/8/07	CF
1,2,4-Trimethylbenzene	<10	ug/kg dry		10/8/07	CF
1,2-Dibromo-3-chloropropane	<10	ug/kg dry		10/8/07	CF
1,2-Dibromoethane(EDB)	<10	ug/kg dry		10/8/07	CF
1,2-Dichlorobenzene	<10	ug/kg dry		10/8/07	CF
1,2-Dichloroethane	<10	ug/kg dry		10/8/07	CI
1,2-Dichloropropane	<10	ug/kg dry		10/8/07	CI
1,3,5-Trimethylbenzene	<10	ug/kg dry		10/8/07	CI
1,3-Dichlorobenzene	<10	ug/kg dry		10/8/07	CI
	<10	ug/kg dry		10/8/07	CI
1,3-Dichloropropane	<10	ug/kg dry		10/8/07	CI
1,4-Dichlorobenzene	<10	ug/kg dry		10/8/07	CI
2,2-Dichloropropane	<10	ug/kg dry		10/8/07	Cl
2-Chlorotoluene	<10	ug/kg dry		10/8/07	Cl
4-Chlorotoluene	<10	ug/kg dry		10/8/07	CI
Benzene	<10	ug/kg dry		10/8/07	CI
Bromobenzene	<10	ug/kg dry		10/8/07	CI
Bromochloromethane	<10	ug/kg dry		10/8/07	Cl
Bromodichloromethane				10/8/07	Cl
Bromoform	<10	ug/kg dry		10/8/07	Cl
Bromomethane	<10	ug/kg dry		10/8/07	C
Carbon tetrachloride	<10	ug/kg dry		10/8/07	C
Chlorobenzene	<10	ug/kg dry		10/8/07	C
Chloroethane	<10	ug/kg dry		10/8/07	C
Chloroform	<10	ug/kg dry		10/8/07	C
Chloromethane	<10	ug/kg dry			C
cis-1,2-Dichloroethene	<10	ug/kg dry		10/8/07	C: C:
cis-1,3-Dichloropropene	<10	ug/kg dry		10/8/07	C
Dibromochloromethane	<10	ug/kg dry		10/8/07	C
Dibromomethane	<10	ug/kg dry		10/8/07	
Dichlorodifluoromethane	<10	ug/kg dry		10/8/07	C
Ethyl benzene	<10	ug/kg dry		10/8/07	Cl
Hexachlorobutadiene	<10	ug/kg dry		10/8/07	Cl
Isopropylbenzene (Cumenc)	<10	ug/kg dry		10/8/07	C
MTBE	<10	ug/kg dry		10/8/07	C
Methylene chloride	<10	ug/kg dry		10/8/07	C
n-Butylbenzene	<10	ug/kg dry		10/8/07	C
n-Propylbenzene	<10	ug/kg dry		10/8/07	C
Naphthalene	<10	ug/kg dry		10/8/07	C

Life Science Laboratories, Inc.

Date Printed:

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-007A

LSL Sample ID:

0717167-015

Location:

SB-04 (12-14) - 092507

Sampled:

09/25/07 13:27

Sampled By: Client

Sample Matrix: SHW Dry Wt

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
(1) EPA 8260B Volatiles		-			
4-Isopropyl toluene (Cymene)	<10	ug/kg dry		10/8/07	CRT
sec-Butylbenzene	<10	ug/kg dry		10/8/07	CRT
Styrene	<10	ug/kg dry		10/8/07	CRT
tert-Butylbenzene	<10	ug/kg dry		10/8/07	CRT
Tetrachloroethene	<10	ug/kg đry		10/8/07	CRT
Toluene	<10	ug/kg dry		10/8/07	CRT
trans-1,2-Dichloroethene	<10	ug/kg dry		10/8/07	CRT
trans-1,3-Dichloropropene	<10	ug/kg dry		10/8/07	CRT
Trichloroethene	<10	ug/kg dry		10/8/07	CRT
Trichlorofluoromethane (Freon 11)	<10	ug/kg dry		10/8/07	CRT
Vinyl chloride	<10	ug/kg dry		10/8/07	CRT
Xylencs (Total)	<10	ug/kg dry		10/8/07	CRT
Surrogate (1,2-DCA-d4)	109	%R		10/8/07	CRT
Surrogate (4-BFB)	95	%R		10/8/07	CRT
Surrogate (Tol-d8)	102	%R	•	10/8/07	CRT
Total Solids @ 103-105 C	84	%		10/3/07	KIS

Elevated detection limit due to matrix interference.

Page 31 of 43

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-008A

LSL Sample ID:

0717167-016

Location:

SB-04 (20-22) - 092507

Sampled:

09/25/07 13:55

Sampled By: Client

ample Matrix: SHW Dry Wt nalytical Method			Prep	Analysis	Analys
Analyte	Result	<u>Units</u>	Date	Date & Time	<u>Initial</u>
EPA 8260B Volatiles					
1,1,1,2-Tetrachloroethane	<30	ug/kg dry		10/9/07	CR'
1,1,1-Trichloroethane	<30	ug/kg dry		10/9/07	CR'
1,1,2,2-Tetrachloroethane	<30	ug/kg dry		10/9/07	CR'
1,1,2-Trichloroethane	<30	ug/kg dry		10/9/07	CR'
1,1-Dichloroethane	<30	ug/kg dry		10/9/07	CR'
1,1-Dichloroethene	<30	ug/kg dry		10/9/07	CR
1,1-Dichloropropene	<30	ug/kg dry		10/9/07	CR
1,2,3-Trichlorobenzene	<30	ug/kg dry		10/9/07	CR
1,2,3-Trichloropropane	<30	ug/kg dry		10/9/07	CR
1,2,4-Trichlorobenzene	<30	ug/kg dry		10/9/07	CR
1,2,4-Trimethylbenzene	<30	ug/kg dry		10/9/07	CR
1,2-Dibromo-3-chloropropane	<30	ug/kg dry	•	10/9/07	CR
1,2-Dibromoethane(EDB)	<30	ug/kg dry		10/9/07	CR
1,2-Dichlorobenzene	<30	ug/kg dry		10/9/07	CR
1,2-Dichloroethane	<30	ug/kg dry		10/9/07	CR
1,2-Dichloropropane	<30	ug/kg dry		10/9/07	CF
1,3,5-Trimethylbenzene	<30	ug/kg dry		10/9/07	CF
1,3-Dichlorobenzene	<30	ug/kg dry		10/9/07	CF
1,3-Dichloropropane	<30	ug/kg dry		10/9/07	CF
1,4-Dichlorobenzene	<30	ug/kg dry		10/9/07	CI
2,2-Dichloropropane	<30	ug/kg dry		10/9/07	CF
2-Chlorotoluene	<30	ug/kg dry		10/9/07	CF
4-Chlorotoluene	<30	ug/kg dry		10/9/07	CI
	<30	ug/kg dry		10/9/07	CF
Benzene Bromobenzene	<30	ug/kg dry		10/9/07	CF
	<30	ug/kg dry		10/9/07	CI
Bromochloromethane	<30	ug/kg dry		10/9/07	CI
Bromodichloromethane	<30	ug/kg dry		10/9/07	CI
Bromoform	<30	ug/kg dry		10/9/07	Cl
Bromomethane	<30	ug/kg dry		10/9/07	Cl
Carbon tetrachloride	<30	ug/kg dry		10/9/07	CI
Chlorobenzene	<30	ug/kg dry		10/9/07	C
Chloroethane	<30	ug/kg dry		10/9/07	Cl
Chloroform	<30	ug/kg dry		10/9/07	C
Chloromethane	<30	ug/kg dry		10/9/07	C
cis-1,2-Dichloroethene	<30	ug/kg dry		10/9/07	C
cis-1,3-Dichloropropene	<30	ug/kg dry		10/9/07	C
Dibromochloromethane	<30	ug/kg dry		10/9/07	Cl
Dibromomethane	<30	ug/kg dry		10/9/07	C
Dichlorodifluoromethane	<30	ug/kg dry ug/kg dry		10/9/07	C
Ethyl benzene	<30 <30			10/9/07	Cl
Hexachlorobutadiene				10/9/07	C
Isopropylbenzene (Cumene)	<30			10/9/07	C
MTBE	<30	Ç .		10/9/07	C
Methylene chloride	<30			10/9/07	C
n-Butylbenzene	<30	• •		10/9/07	C
n-Propylbenzene	<30	• •		10/9/07	C
Naphthalene	<30	ug/kg dry			Page 32 o

Life Science Laboratories, Inc.

Date Printed:

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-008A

LSL Sample ID:

0717167-016

Location:

SB-04 (20-22) - 092507

Sampled:

09/25/07 13:55

Sampled By: Client

Sample Matrix: SHW Dry Wt

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	<u>Initials</u>
(1) EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	<30	ug/kg dry		10/9/07	CRT
sec-Butylbenzene	<30	ug/kg đry		10/9/07	CRT
Styrene	<30	ug/kg đry		10/9/07	CRT
tert-Butylbenzene	<30	ug/kg dry		10/9/07	CRT
Tetrachloroethene	<30	ug/kg đry		10/9/07	CRT
Toluene	<30	ug/kg dry		10/9/07	CRT
trans-1,2-Dichloroethene	<30	ug/kg dry		10/9/07	CRT
trans-1,3-Dichloropropene	<30	ug/kg đry		10/9/07	CRT
Trichloroethene	<30	ug/kg dry		10/9/07	CRT
Trichlorofluoromethane (Freon 11)	<30	ug/kg dry		10/9/07	CRT
Vinyl chloride	<30	ug/kg dry		10/9/07	CRT
Xylenes (Total)	<30	ug/kg dry		10/9/07	CRT
Surrogate (1,2-DCA-d4)	110	%R		10/9/07	CRT
Surrogate (4-BFB)	103	%R		10/9/07	CRT
Surrogate (Tol-d8)	101	%R		10/9/07	CRT
Total Solids @ 103-105 C	84	%		10/3/07	KIS

Elevated detection limit due to matrix interference.

Page 33 of 43

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-009A

LSL Sample ID:

0717167-017

Location:

SB-04 (32-34) - 092507

Sampled:

09/25/07 14:25

Sampled By: Client

Sample Matrix: SHW Dry Wt

alytical Method	<b>.</b>	**	Prep	Analysis Date & Time	Analys Initial
Analyte	Result	Units	<u>Date</u>	Date & Time	IIIIII
EPA 8260B Volatiles					CD.
1,1,1,2-Tetrachloroethane	<20	ug/kg dry		10/9/07	CR'
1,1,1-Trichloroethanc	<20	ug/kg dry		10/9/07	CR'
1,1,2,2-Tetrachloroethane	<20	ug/kg dry		10/9/07	CR'
1,1,2-Trichloroethane	<20	ug/kg dry		10/9/07	CR
1,I-Dichloroethane	<20	ug/kg dry		10/9/07	CR
1,1-Dichloroethene	<20	ug/kg dry		10/9/07	CR
1,1-Dichloropropene	<20	ug/kg dry		10/9/07	CR
1,2,3-Trichlorobenzene	<20	ug/kg dry		10/9/07	CR
1,2,3-Trichloropropane	<20	ug/kg dry		10/9/07	CR
1,2,4-Trichlorobenzene	<20	ug/kg dry		10/9/07	CF
1,2,4-Trimethylbenzene	<20	ug/kg dry		10/9/07	CI
1,2-Dibromo-3-chloropropane	<20	ug/kg dry		10/9/07	CI
1.2-Dibromoethane(EDB)	<20	ug/kg dry		10/9/07	CI
1,2-Dichlorobenzene	<20	ug/kg dry		10/9/07	CI
1,2-Dichloroethane	<20	ng/kg dry		10/9/07	CI
1,2-Dichloropropane	<20	ug/kg dry		10/9/07	CI
1,3,5-Trimethylbenzene	<20	ug/kg dry		10/9/07	CI
1,3-Dichlorobenzene	<20	ug/kg dry		10/9/07	C
1,3-Dichloropropane	<20	ug/kg dry		10/9/07	C
1,4-Dichlorobenzene	<20	ug/kg dry		10/9/07	С
•	<20	ug/kg dry		10/9/07	C
2,2-Dichloropropane	<20	ug/kg dry		10/9/07	C
2-Chlorotoluene	<20	ug/kg dry		10/9/07	C
4-Chlorotoluene	<20	ug/kg dry		10/9/07	C
Benzene	<20	ug/kg dry		10/9/07	С
Bromobenzene	<20	ug/kg dry		10/9/07	C
Bromochloromethane	<20	ug/kg dry		10/9/07	C
Bromodichloromethane	<20			10/9/07	C
Bromoform		ug/kg dry		10/9/07	C
Bromomethane	<20	ug/kg dry		10/9/07	C
Carbon tetrachloride	<20	ug/kg dry		10/9/07	C
Chlorobenzene	<20	ug/kg dry		10/9/07	C
Chloroethane	<20	ug/kg dry		10/9/07	C
Chloroform	<20	ug/kg dry		10/9/07	C
Chloromethane	<20	ug/kg dry			C
cis-1,2-Dichloroethene	<20	ug/kg dry		10/9/07	C
cis-1,3-Dichloropropene	<20	ug/kg dry		10/9/07	C
Dibromochloromethane	<20	ug/kg dry		10/9/07	
Dibromomethane	<20	ug/kg dry		10/9/07	C
Dichlorodifluoromethane	<20	ug/kg dry		10/9/07	C
Ethyl benzene	<20	ug/kg dry		10/9/07	C
Hexachlorobutadiene	<20	ug/kg dry		10/9/07	С
Isopropylbenzene (Cumene)	<20	ug/kg dry		10/9/07	C
МТВЕ	<20	ug/kg dry		10/9/07	C
Methylene chloride	<20	ug/kg dry		10/9/07	C
n-Butylbenzene	<20	ug/kg dry		10/9/07	C
n-Propylbenzene	<20	ug/kg dry		10/9/07	C
Naphthalene	<20	ug/kg dry		10/9/07	C

Life Science Laboratories, Inc.

Date Printed:

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-009A

LSL Sample ID:

0717167-017

Location: Sampled:

0,00105 00011

SB-04 (32-34) - 092507

09/25/07 14:25

Sampled By: Client

Sample Matrix: SHW Dry Wt

Analytical Method	Result	Units	Prep Date I	Analysis Date & Time	Analyst Initials
Analyte	Result	Onto			
1) EPA 8260B Volatiles					OD.
4-Isopropyl toluene (Cymene)	<20	ug/kg dry		10/9/07	CRT
sec-Butylbenzene	<20	ug/kg dry		10/9/07	CRT
Styrene	<20	ug/kg dry		10/9/07	CRT
tert-Butylbenzene	<20	ug/kg dry		10/9/07	CRT
Tetrachloroethene	<20	ug/kg dry		10/9/07	CRT
Toluene	<20	ug/kg dry		10/9/07	CRT
trans-1,2-Dichloroethene	<20	ug/kg dry		10/9/07	CRT
, , , , , , , , , , , , , , , , , , ,	<20	ug/kg dry		10/9/07	CRT
trans-1,3-Dichloropropene	<20	ug/kg dry		10/9/07	CRT
Trichloroethene	<20	ug/kg dry		10/9/07	CRT
Trichlorofluoromethane (Freon 11)	<20	ug/kg dry		10/9/07	CRT
Vinyl chloride	<20	ug/kg dry		10/9/07	CRT
Xylenes (Total)	122	%R		10/9/07	CRT
Surrogate (1,2-DCA-d4)				10/9/07	CRT
Surrogate (4-BFB)	132	%R		10/9/07	CRT
Surrogate (Tol-d8)	106	%R		10/3/07	KIS
Total Solids @ 103-105 C	82	%	ta haya haay astimatad		

An internal standard response for this analysis was outside our established control limits. Reported results have been estimated. Elevated detection limit due to matrix interference.

Page 35 of 43

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-010A

LSL Sample ID:

0717167-018

Location:

SB-03 (2-4) - 092507

Sampled:

09/26/07 8:00

Sampled By: Client

nalytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
EPA 8260B Volatiles		-			
1,1,1,2-Tetrachloroethane	<10	ug/kg dry		10/4/07	CRT
1,1,1-Trichloroethane	<10	ug/kg dry		10/4/07	CRT
1,1,2,2-Tetrachloroethane	<10	ug/kg dry		10/4/07	CRT
1,1,2-Trichloroethane	<10	ug/kg dry		10/4/07	CRT
1,1-Dichloroethane	<10	ug/kg dry		10/4/07	CRT
1,1-Dichloroethene	<10	ug/kg dry		10/4/07	CR.
1,1-Dichloropropene	<10	ug/kg dry		10/4/07	CR'
1,2,3-Trichlorobenzene	<10	ug/kg dry		10/4/07	CR'
1,2,3-Trichloropropane	<10	ug/kg dry		10/4/07	CR ²
1,2,4-Trichlorobenzenc	<10	ug/kg dry		10/4/07	CR?
1,2,4-Trimethylbenzene	<10	ug/kg dry		10/4/07	CR'
	<10	ug/kg dry		10/4/07	CR
1,2-Dibromo-3-chloropropane	<10	ug/kg dry		10/4/07	CR'
1,2-Dibromoethane(EDB)	<10	ug/kg dry		10/4/07	CR'
1,2-Dichlorobenzene	<10	ug/kg dry		10/4/07	CR'
1,2-Dichloroethane	<10	ug/kg dry		10/4/07	CR
1,2-Dichloropropane	<10	ug/kg dry		10/4/07	CR
1,3,5-Trimethylbenzenc	<10	ug/kg dry		10/4/07	CR
1,3-Dichlorobenzene	<10	ug/kg dry		10/4/07	CR
1,3-Dichloropropane	<10	ug/kg dry		10/4/07	CR
1,4-Dichlorobenzene	<10	-		10/4/07	CR
2,2-Dichloropropane		ug/kg dry		10/4/07	CR
2-Chlorotoluene	<10	ug/kg dry		10/4/07	CR
4-Chlorotoluene	<10	ug/kg dry		10/4/07	CR
Benzene	<10	ug/kg dry		10/4/07	CR
Bromobenzene	<10	ug/kg dry		10/4/07	CR
Bromochloromethane	<10	ug/kg dry		10/4/07	CR
Bromodichloromethane	<10	ug/kg dry			CR
Bromoform	<10	ug/kg dry		10/4/07 10/4/07	CR
Bromomethane	<10	ug/kg dry			CR
Carbon tetrachloride	<10	ug/kg dry		10/4/07	CR
Chlorobenzene	<10	ug/kg dry		10/4/07	CR
Chloroethane	<10	ug/kg dry		10/4/07	CF CF
Chloroform	<10	ug/kg dry		10/4/07	
Chloromethane	<10	ug/kg dry		10/4/07	CF
cis-1,2-Dichloroethenc	110	ug/kg dry		10/4/07	CF
cis-1,3-Dichloropropene	<10	ug/kg dry		10/4/07	CF
Dibromochloromethanc	<10	ug/kg dry		10/4/07	CF
Dibromomethane	<10	ug/kg dry		10/4/07	CF
Dichlorodifluoromethane	<10	ug/kg dry		10/4/07	CF
Ethyl benzene	<10	ug/kg dry		10/4/07	CF
Hexachlorobutadiene	<10	ug/kg dry		10/4/07	CF
Isopropylbenzene (Cumene)	<10	ug/kg dry		10/4/07	CF
мтве	<10	ug/kg dry		10/4/07	CI
Methylene chloride	<10	ug/kg dry		10/4/07	Cl
n-Butylbenzene	<10	ug/kg dry		10/4/07	CI
n-Propylbenzene	<10	ug/kg dry		10/4/07	CI
Naphthalene	<10	ug/kg dry		10/4/07	CI

Life Science Laboratories, Inc.

Date Printed:

Life Science Laboratories, Inc. East Syracuse, NY

Sample ID: 07091

0709165-010A

LSL Sample ID:

0717167-018

Location:

SB-03 (2-4) - 092507

Sampled:

09/26/07 8:00

09/20/07

Sampled By: Client

Sample Matrix: SHW Dry Wt

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	<u>Initials</u>
(I) EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	<10	ug/kg dry		10/4/07	CRT
sec-Butylbenzene	<10	ug/kg dry		10/4/07	CRT
Styrene	<10	ug/kg dry		10/4/07	CRT
tert-Butylbenzene	<10	ug/kg dry		10/4/07	CRT
Tetrachloroethene	<10	ug/kg dry		10/4/07	CRT
Toluene	<10	ug/kg dry		10/4/07	CRT
frans-1,2-Dichloroethene	<10	ug/kg dry		10/4/07	CRT
trans-1,3-Dichloropropene	<10	ug/kg dry		10/4/07	CRT
Trichloroethene	<10	ug/kg dry		10/4/07	CRT
Trichlorofluoromethane (Freon 11)	<10	ug/kg dry		10/4/07	CRT
Vinyl chloride	91	ug/kg dry		10/4/07	CRT
Xylenes (Total)	<10	ug/kg dry		10/4/07	CRT
Surrogate (1,2-DCA-d4)	106	%R		10/4/07	CRT
Surrogate (4-BFB)	106	%R		10/4/07	CRT
Surrogate (Tol-d8)	94	%R		10/4/07	CRT
Total Solids @ 103-105 C	64	%		10/3/07	KIS

Page 37 of 43

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-011A

LSL Sample ID:

0717167-019

Location:

SB-03 (10-12) - 092507

Sampled:

09/26/07 8:21

Sampled By: Client

Sample Matrix: SHW Dry Wt

nalytical Method			Prep	Analysis	Analys
Analyte	Result	Units	Date	Date & Time	<u>Initial</u>
EPA 8260B Volatiles					
1,1,1,2-Tetrachloroethane	<200	ug/kg dry		10/3/07	CRT
1.1.1-Trichloroethane	<200	ug/kg dry		10/3/07	CRT
1,1,2,2-Tetrachloroethane	<200	ug/kg dry		10/3/07	CR?
1,1,2-Trichloroethane	<200	ug/kg dry		10/3/07	CR7
1,1-Dichloroethane	<200	ug/kg dry		10/3/07	CR7
1,1-Dichloroethene	<200	ug/kg dry		10/3/07	CR'
1,1-Dichloropropene	<200	ug/kg dry		10/3/07	CR'
1,2,3-Trichlorobenzene	<200	ug/kg dry		10/3/07	CR'
1,2,3-Trichloropropane	<200	ug/kg dry		10/3/07	CR'
1,2,4-Trichlorobenzene	<200	ug/kg dry		10/3/07	CR
1,2,4-Trimethylbenzene	<200	ug/kg dry		10/3/07	CR
1,2-Dibromo-3-chloropropane	<200	ug/kg dry		10/3/07	CR
1,2-Dibromoethane(EDB)	<200	ug/kg dry		10/3/07	CR
1,2-Dichlorobenzene	<200	ug/kg dry		10/3/07	CR
•	<200	ug/kg dry		10/3/07	CR
1,2-Dichloroethane	<200	ug/kg dry		10/3/07	CR
1,2-Dichloropropane	<200	ug/kg dry		10/3/07	CR
1,3,5-Trimethylbenzene	<200	ug/kg dry		10/3/07	CR
1,3-Dichlorobenzene	<200	ug/kg dry		10/3/07	CR
1,3-Dichloropropane	<200	ug/kg dry		10/3/07	CR
1,4-Dichlorobenzene	<200	ug/kg dry		10/3/07	CF
2,2-Dichloropropane	<200	ug/kg dry		10/3/07	CF
2-Chlorotoluene	<200	ug/kg dry		10/3/07	CR
4-Chlorotoluene	<200	ug/kg dry		10/3/07	CR
Benzene	<200	ug/kg dry		10/3/07	CF
Bromobenzene	<200	ug/kg dry		10/3/07	CF
Bromochloromethane	<200	ug/kg dry ug/kg dry		10/3/07	CF
Bromodichloromethane	<200			10/3/07	CF
Bromoform	<200	ug/kg dry		10/3/07	CI
Bromomethane		ug/kg dry		10/3/07	CF
Carbon tetrachloride	<200	ug/kg dry		10/3/07	CF
Chlorobenzene	<200	ug/kg dry		10/3/07	CI
Chloroethane	<200	ug/kg dry		10/3/07	CI
Chloroform	<200	ug/kg dry		10/3/07	CI
Chloromethane	<200	ug/kg dry		10/3/07	CI CI
cis-1,2-Dichloroethene	840	ug/kg dry		10/3/07	CI
cis-1,3-Dichloropropene	<200	ug/kg dry		10/3/07	CI
Dibromochloromethane	<200	ug/kg dry		10/3/07	CI CI
Dibromomethane	<200	ug/kg dry		10/3/07	CI
Dichlorodifluoromethane	<200	ug/kg dry			CI
Ethyl benzene	<200	ug/kg dry		10/3/07	Ci
Hexachlorobutadiene	<200	ug/kg dry		10/3/07	CI
Isopropylbenzene (Cumene)	<200	ug/kg dry		10/3/07	CI
MTBE	<200			10/3/07	Cl
Methylene chloride	<200			10/3/07	
n-Butylbenzene	<200	0 0 1		10/3/07	CI
n-Propylbenzene	<200			10/3/07	CI
Naphthalene	<200	ug/kg dry		10/3/07	CI

Life Science Laboratories, Inc.

Date Printed:

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

0709165-011A

LSL Sample ID:

0717167-019

Location: Sampled:

SB-03 (10-12) - 092507

09/26/07 8:21

Sampled By: Client

Sample Matrix: SHW Dry Wt

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	<u>Date</u>	Date & Time	<u>Initials</u>
(1) EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	<200	ug/kg dry		10/3/07	CRT
sec-Butylbenzene	<200	ug/kg dгу		10/3/07	CRT
Styrene	<200	ug/kg dry		10/3/07	CRT
tert-Butylbenzene	<200	ug/kg dry		10/3/07	CRT
Tetrachloroethene	270	ug/kg dry		10/3/07	CRT
Toluene	<200	ug/kg dry		10/3/07	CRT
trans-1,2-Dichloroethene	<200	ug/kg dry		10/3/07	CRT
trans-1.3-Dichloropropene	<200	ug/kg dry		10/3/07	CRT
Trichloroethene	2600	ug/kg dry		10/3/07	CRT
Trichlorofluoromethane (Freon 11)	<200	ug/kg dry		10/3/07	CRT
Vinyl chloride	<200	ug/kg dry		10/3/07	CRT
Xylenes (Total)	<200	ug/kg dry		10/3/07	CRT
Surrogate (1,2-DCA-d4)	105	%R		10/3/07	CRT
Surrogate (4-BFB)	96	%R		10/3/07	CRT
Surrogate (Tol-d8)	90	%R		10/3/07	CRT
Total Solids @ 103-105 C	84	%		10/3/07	KIS

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

LCS

LSL Sample ID:

0717167-020

Location:

Sampled:

09/26/07 0:00

Sampled By:

ample Matrix: QC nalytical Method	7714	Units	Prep Date	Analysis Date & Time	Analyst Initials
Analyte	Result	Units			
EPA 8260B Volatiles				10/3/07	CRT
1,1,1,2-Tetrachlorocthane	102	%R		10/3/07	CRT
1,1,1-Trichloroethane	98	%R		10/3/07	CRT
1,1,2,2-Tetrachloroethane	94	%R		10/3/07	CRT
1,1,2-Trichloroethane	112	%R		10/3/07	CRT
1,1-Dichloroethane	96	%R		10/3/07	CRT
1,1-Dichloroethene	100	%R		10/3/07	CRT
1,1-Dichloropropene	93	%R		10/3/07	CRT
1,2,3-Trichlorobenzene	127	%R		10/3/07	CRT
1,2,3-Trichloropropane	110	%R		10/3/07	CRT
1,2,4-Trichlorobenzene	114	%R		10/3/07	CR
1,2,4-Trimethylbenzene	117	%R		10/3/07	CR'
1,2-Dibromo-3-chloropropane	117	%R		10/3/07	CR'
1,2-Dibromoethane(EDB)	109	%R			CR'
1,2-Dichlorobenzene	95	%R		10/3/07	CR'
1,2-Dichloroethane	100	%R		10/3/07	CR'
1,2-Dichloropropane	100	%R		10/3/07	CR'
1,3,5-Trimethylbenzene	128	%R		10/3/07	CR'
1,3-Dichlorobenzene	93	%R		10/3/07	CR'
1,3-Dichloropropane	108	%R		10/3/07	CR'
1,4-Dichlorobenzene	99	%R		10/3/07	CR:
2,2-Dichloropropane	101	%R		10/3/07	CR
2-Chlorotoluene	104	%R		10/3/07	CR
4-Chlorotoluene	109	%R		10/3/07	CR
Benzene	101	%R		10/3/07	CR
Bromobenzene	110	%R		10/3/07	CR
Bromochloromethane	100	%R		10/3/07	CR CR
Bromodichloromethane	98	%R		10/3/07	CR CR
Bromoform	112	? %R		10/3/07	CR
Bromomethane	83	3 %R		10/3/07	
Carbon tetrachloride	80	6 %R		10/3/07	CR
Chlorobenzene	90	6 %R		10/3/07	CF
	123	2 %R		10/3/07	CF
Chloroethane	89	9 %R		10/3/07	CF
Chloroform	10	7 %R		10/3/07	CF
Chloromethane	9.	4 %R		10/3/07	CF
cis-1,2-Dichloroethene	9	7 %R		10/3/07	CF
cis-1,3-Dichloropropene Dibromochloromethane	10	7 %R		10/3/07	CI
	9	9 %R		10/3/07	CI
Dibromomethane	13	8 %R		10/3/07	Cl
Dichlorodifluoromethane	9	1 %R		10/3/07	CI
Ethyl benzene	9			10/3/07	CI
Hexachlorobutadiene	11			10/3/07	CI
Isopropylbenzene (Cumene)		4 %R		10/3/07	C
MTBE	9			10/3/07	C
Methylene chloride	11			10/3/07	C
n-Butylbenzene	11			10/3/07	C
n-Propylbenzene	12			10/3/07	Cl
Naphthalene		<u> </u>			Page 40 of

Life Science Laboratories, Inc.

Date Printed:

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

LCS

LSL Sample ID:

0717167-020

Location:

Sampled:

09/26/07 0:00

Sampled By:

Sample Matrix: QC

Analytical Method Analyte	Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	105	%R		10/3/07	CRT
sec-Butylbenzene	112	%R		10/3/07	CRT
Styrene	98	%R		10/3/07	CRT
tert-Butylbenzene	110	%R		10/3/07	CRT
Tetrachloroethene	100	%R		10/3/07	CRT
Toluene	104	%R		10/3/07	CRT
trans-1,2-Dichloroethene	97	%R		10/3/07	CRT
trans-1,3-Dichloropropene	118	%R		10/3/07	CRT
Trichloroethene	102	%R		10/3/07	CRT
Trichlorofluoromethane (Freon 11)	131	%R		10/3/07	CRT
, , ,	101	%R		10/3/07	CRT
Vinyl chloride	98	%R		10/3/07	CRT
Xylenes (Total)	100	%R		10/3/07	CRT
Surrogate (1,2-DCA-d4)	105	%R		10/3/07	CRT
Surrogate (4-BFB)	107	%R		10/3/07	CRT
Surrogate (Tol-d8) Total Solids @ 103-105 C	100	%		10/3/07	KIS

Life Science Laboratories, Inc.

Page 41 of 43

Date Printed:

10/19/07

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

Method Blank

LSL Sample ID:

0717167-021

Location:

Sampled:

09/26/07 0:00

Sampled By:

Sample Matrix: QC  Analytical Method	<del></del> -		Prep	Analysis Date & Time	Analyst Initials
Analyte	Result	Units	<u>Date</u>	Date & Time	Illitians
EPA 8260B Volatiles					CRT
1,1,1,2-Tetrachloroethane	<2	ug/kg dry		10/3/07	
1,1,1-Trichloroethane	<2	ug/kg dry		10/3/07	CRT
1,1,2,2-Tetrachloroethane	<2	ug/kg dry		10/3/07	CRT
1,1,2-Trichloroethane	<2	ug/kg dry		10/3/07	CRT
1,1.Dichloroethane	<2	ug/kg dry		10/3/07	CRT
	<2	ug/kg dry		10/3/07	CRT
1,1-Dichloroethene	<2	ug/kg dry		10/3/07	CRT
1,1-Dichloropropene	<2	ug/kg dry		10/3/07	CRT
1,2,3-Trichlorobenzene	<2	ug/kg dry		10/3/07	CRT
1,2,3-Trichloropropane	<2	ug/kg dry		10/3/07	CRT
1,2,4-Trichlorobenzene	<2	ug/kg dry		10/3/07	CRT
1,2,4-Trimethylbenzenc	<2	ug/kg dry		10/3/07	CR7
1,2-Dibromo-3-chloropropane	<2	ug/kg dry		10/3/07	CR7
1,2-Dibromoethane(EDB)	<2	ug/kg dry		10/3/07	CR
1,2-Dichlorobenzene	<2	ug/kg dry		10/3/07	CR
1,2-Dichloroethane	<2	ug/kg dry		10/3/07	CR'
1,2-Dichloropropane	<2	ug/kg dry		10/3/07	CR'
1,3,5-Trimethylbenzene	<2			10/3/07	CR'
1,3-Dichlorobenzene	<2			10/3/07	CR'
1,3-Dichloropropane	<2	·		10/3/07	CR'
1,4-Dichlorobenzene	<2			10/3/07	CR'
2,2-Dichloropropane		•		10/3/07	CR
2-Chlorotoluene	<2			10/3/07	CR
4-Chlorotoluene	<2			10/3/07	CR
Benzene	<2	<del>-</del> -		10/3/07	CR
Bromobenzene	<2			10/3/07	CR'
Bromochloromethane	<2			10/3/07	CR
Bromodichloromethane	<2	· -		10/3/07	CR
Bromoform	<2			10/3/07	CR
Bromomethane	<2			10/3/07	CR
Carbon tetrachloride	</td <td>• • •</td> <td></td> <td>10/3/07</td> <td>CR</td>	• • •		10/3/07	CR
Chlorobenzene	<.			10/3/07	CR
Chloroethane	<			10/3/07	CR
Chloroform	<			10/3/07	CF
Chloromethane	<			10/3/07	CF
cis-1,2-Dichloroethene	<	• • •		10/3/07	CF
cis-1,3-Dichloropropene	<	• -		10/3/07	CF
Dibromochloromethane	<	2 ug/kg dry		10/3/07	CI
Dibromomethane	<	2 ug/kg dry			CF
Dichlorodifluoromethane	<	2 ug/kg dry		10/3/07	CI
Ethyl benzene	<	2 ug/kg dry		10/3/07	CI
Hexachlorobutadiene	<	2 ug/kg dry		10/3/07	Ci
Isopropylbenzene (Cumene)	<	2 ug/kg dry		10/3/07	CI
MTBE	<	2 ug/kg dry		10/3/07	
	<	2 ug/kg dry		10/3/07	C
Methylene chloride	<	2 ug/kg dry		10/3/07	C
n-Butylbenzene	<	2 ug/kg dry		10/3/07	C
n-Propylbenzene Naphthalene	<	2 ug/kg dry		10/3/07	C

Life Science Laboratories, Inc.

Original Report Date: 10/09/07

10/19/07

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

Method Blank

LSL Sample ID:

0717167-021

Location:

Sampled:

09/26/07 0:00

Sampled By:

Sample Matrix: QC

Sample Matrix: QC Analytical Method	Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
<u>Analyte</u>	Resuit	Cints			
(1) EPA 8260B Volatiles  4-Isopropyl toluene (Cymene) sec-Butylbenzene Styrene tert-Butylbenzene Tetrachloroethene Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene Trichlorofluoromethane (Freon 11) Vinyl chloride Xylenes (Total) Surrogate (1,2-DCA-d4)	2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry		10/3/07 10/3/07 10/3/07 10/3/07 10/3/07 10/3/07 10/3/07 10/3/07 10/3/07 10/3/07 10/3/07 10/3/07 10/3/07	CRT CRT CRT CRT CRT CRT CRT CRT CRT CRT
Surrogate (4-BFB) Surrogate (Tol-d8) Total Solids @ 103-105 C	102 100	%R %		10/3/07 10/3/07	CRT KIS



### SURROGATE RECOVERY CONTROL LIMITS FOR ORGANIC METHODS

<u>Method</u>	Surrogate(s)	Water <u>Limits, %R</u>	SHW <u>Limits, %R</u>
EPA 504	TCMX	80-120	NA
EPA 508	DCB	70-130	NA
EPA 515.4	DCAA	70-130	NA
EPA 524.2	1,2-DCA-d4, 4-BFB	80-120	NA
EPA 525.2	1,3-DM-2-NB, TPP, Per-d12	70-130	NA
EPA 526	1,3-DM-2-NB, TPP	70-130	NA
EPA 528	2-CP-3,4,5,6-d4, 2,4,6-TBP	70-130	NA
EPA 551.1	Decafluorobiphenyl	80-120	NA
EPA 552.2	2,3-DBPA	70-130	NA
EPA 601	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
EPA 602	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
EPA 608	TCMX, DCB	30-150	NA
EPA 624	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
EPA 625, AE	2-Fluorophenol	21-110	NA
EPA 625, AE	Phenol-d5	10-110	NA
EPA 625, AE	2,4,6-Tribromophenol	10-123	NA NA
EPA 625, BN	Nitrobenzene-d5	35-114	NA NA
EPA 625, BN	2-Fluorobiphenyl	43-116	NA NA
EPA 625, BN	Terphenyl-d14	33-141	NA
EPA 8010	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8020	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8021	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8081	TCMX, DCB	30-150	30-150
EPA 8082	DCB	30-150	30-150
EPA 8151	DCAA	30-130	30-120
EPA 8260	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8270, AE	2-Fluorophenol	21-110	25-121
EPA 8270, AE	Phenol-d5	10-110	24-113
EPA 8270, AE	2,4,6-Tribromophenol	10-123	19-122
EPA 8270, BN	Nitrobenzene-d5	35-114	23-120
EPA 8270, BN	2-Fluorobiphenyl	43-116	30-115
EPA 8270, BN	Terphenyl-d14	33-141	18-137
DOH 310-13	Terphenyl-d14	40-110	40-110
DOH 310-14	Terphenyl-d14	40-110	40-110
DOH 310-15	Terphenyl-d14	40-110	40-110
DOH 310-34	4-BFB	50-150	50-150
DOH 313-4	DCB	NA	30-150
8015M_GRO	4-BFB	50-150	50-150
8015M_DRO	Terphenyl-d14	50-150	50-150

Units Key:	ug/l = microgram per liter
'	ug/kg = microgram per kilogram
	mg/l = milligram per liter
	mg/kg = milligram per kilogram
	%R = Percent Recovery

LSL_BL

# CHAIN-OF-CUSTODY REC

Life Science Laboratories, Inc. 5000 Brittonfield Parkway, Suite 200 East Syracuse, NY 13057

TEL: (315) 437-0200

FAX: (315) 437-0377

### Subcontractor:

Life Science Laboratories, Inc. East Syracuse, NY 13057 5854 Butternut Drive

TEL:

Acct #:

93

28-Sep-07

						15	Requested Tests	ests
0709165-001A         Soil         09/25/07 8:36         2OZ         1         1           1         0709165-002A         Soil         09/25/07 8:36         2OZ         1         1           1         0709165-002A         Soil         09/25/07 10:15         2OZ         1         1           1         0709165-004A         Soil         09/25/07 10:15         2OZ         1         1           1         0709165-005A         Soil         09/25/07 13:27         2OZ         1         1           1         0709165-005A         Soil         09/25/07 13:27         2OZ         1         1           2         0709165-005A         Soil         09/25/07 13:27         2OZ         1         1           3         0709165-005A         Soil         09/25/07 13:27         2OZ         1         1           4         0709165-008A         Soil         09/25/07 14:30         2OZ         1         1           5         0709165-009A         Soil         09/25/07 14:30         2OZ         1         1           6         0709165-010A         Soil         09/26/07 8:21         2OZ         1         1           7         0709165-011A         Soil	lient Sample ID	Sample ID	Matrix	Collection Date	Bottle Type	D2216	Technical and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Control and Cont	
0709165-002A   Soil   09/25/07 8:38   202   1	B-08 (2-4)- 32507	0709165-001A	Soil	09/25/07 8:05	202	Ţ		600
P-         0709165-003A         Soil         09/25/07 9:20         2OZ         1         1           P-         0709165-004A         Soil         09/25/07 10:15         2OZ         1         1           P-         0709165-005A         Soil         09/25/07 12:59         2OZ         1         1           P-         0709165-007A         Soil         09/25/07 13:27         2OZ         1         1           P-         0709165-008A         Soil         09/25/07 13:27         2OZ         1         1           P-         0709165-009A         Soil         09/25/07 14.25 ★         2OZ         1         1           P-         0709165-010A         Soil         09/26/07 8:00         2OZ         1         1           P-         0709165-010A         Soil         09/26/07 8:00         2OZ         1         1           P-         0709165-010A         Soil         09/26/07 8:01         2OZ         1         1	3-08 (10-12)- 12507	0709165-002A	Soil	09/25/07 8:38	202		-	010
1-         0709165-004A         Soil         09/25/07 10:15         2OZ         1         1           0709165-005A         Soil         09/25/07 12:59         2OZ         1         1           0709165-006A         Soil         09/25/07 13:27         2OZ         1         1           0709165-008A         Soil         09/25/07 13:55         2OZ         1         1           0709165-009A         Soil         09/25/07 14.35 (2OZ         1         1         1           0709165-010A         Soil         09/26/07 8:00         2OZ         1         1           0709165-011A         Soil         09/26/07 8:21         2OZ         1         1	3-08 (20-22)- 12507	0709165-003A	Soil	09/25/07 9:20	202	/-	-	110
0709165-005A         Soil         09/25/07 12:59         2OZ         1         1           0709165-006A         Soil         09/25/07 12:59         2OZ         1         1           0709165-007A         Soil         09/25/07 13:27         2OZ         1         1           0709165-008A         Soil         09/25/07 14.35.         2OZ         1         1           0709165-010A         Soil         09/26/07 8:00         2OZ         1         1           0709165-011A         Soil         09/26/07 8:21         2OZ         1         1	3-08 (32-34)- 2507	0709165-004A	Soil	09/25/07 10:15	202	$ \nearrow $	~	013
0709165-006A Soil 09/25/07 12:59 20Z 1  0709165-007A Soil 09/25/07 13:57 20Z 1  0709165-009A Soil 09/25/07 1435 20Z 1  0709165-010A Soil 09/26/07 8:00 20Z 1  0709165-011A Soil 09/26/07 8:21 20Z 1  0709165-011A Soil 09/26/07 8:21 20Z 1  0709165-011A Soil 09/26/07 8:21 20Z 1  0709165-011A Soil 09/26/07 8:21 20Z 1  0709165-011A Soil 09/26/07 8:21 20Z 1  0709165-011A Soil 09/26/07 8:21 20Z 1  0709165-011A Soil 09/26/07 8:21 20Z 1  0709165-011A Soil 09/26/07 8:21 20Z 1  0709165-011A Soil 09/26/07 8:21 20Z 1  0709165-011A Soil 09/26/07 8:21 20Z 1  0709165-011A Soil 09/26/07 8:21 20Z 1  0709165-011A Soil 09/26/07 8:21 20Z 1  0709165-011A Soil 09/26/07 8:21 20Z 1  0709165-011A Soil 09/26/07 8:21 20Z 1	-092507	0709165-005A	Soil	09/25/07 0:00	20Z	7	-	00
- 0709165-007A Soil 09/25/07 13:27 20Z 1 1 1 1 1 1	3-04 (2-4)- 2507	0709165-006A	Soil	09/25/07 12:59	202	S	-	210
- 0709165-008A Soil 09/25/07 13:55 20Z ↑ 1 1 1 1 1	3-04 (12-14)- 2507	0709165-007A	Soil	09/25/07 13:27	202	7	-	0//5
- 0709165-009A Soil 09/26/07 1435-X 2OZ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3-04 (20-22)- 2507	0709165-008A	Soil	09/25/07 13:55	202	$\wedge$	~	20
0709165-010A Soil 09/26/07 8:21 2OZ 17 1	3-04 (32-34)- 12507	0709165-009A	Soil	09/25/07 1430	202	J	<b>-</b>	710
0709165-011A Soil 09/26/07 8:21 2OZ 15 1	3-03 (2-4)- 32507	0709165-010A	Soil	09/26/07 8:00	202	Z	-	3/0
	3-03 (10-12)- 12607	0709165-011A	Soil	09/26/07 8:21	202	$\triangle$	-	0.0

Results due 10/9. Please report paramters and RLs as per attached list. Send report in attention to Monika Santucci. Include your, standard BDD LCS and method below Please include your in excel format. Comments:

Los Coport. Airo-strados

9 18/07 1 FIM Received by: Date/Time

Relinquished by:

Received by: Thron cil truly

3.6 conire

09-28-07 13:54 RCVD

Date/Time

## CHAIN-OF-CUSTODY REC

Life Science Laboratories, Inc. 5000 Brittonfield Parkway, Suite 200 East Syracuse, NY 13057

TEL: (315) 437-0200

FAX: (315) 437-0377

Subcontractor:

Life Science Laboratories, Inc. East Syracuse, NY 13057 5854 Butternut Drive

Acct #: TEL:

28-Sep-07

					1		Requested Tests	
Client Sample ID	Sample ID	Matrix	Collection Date	Bottle Type	02246	SW8260B		
SB-03 (18-20)-	0709165-012A	Soil	09/26/07 8:39	20Z	J	-		8
SB-03 (30-32)-	0709165-013A	Soil	09/26/07 9:14	202	7	-		000
SB-07 (2-4)-	0709165-014A	Soil	09/26/07 12:29	202	À	-	0	800
SB-07 (16-18)-	0709165-015A	Soil	09/26/07 13:05	202	£	M	MS, MSD on	004,5,6
SB-07 (22-24)-	0709165-016A	Soil	09/26/07 13:17	202	J	-		700
SB-07 (28-30)-	0709165-017A	Soil	09/26/07 13:30	202	N	~		008
/00760								

Results due 10/9. Please report paramters and RLs as per attached list. Send report in attention to Monika Santucci. Include your standard EDD in excel format. Comments:

Relinquished by:

Relinquished by:

1/28/07 (1/85/PM

Date/Time

Received by:

Received by:

09-28-07 13:54 RCVD

Date/Time

3.6°C on 10e

### Life Science Laboratories, Inc. **Brittonfield Lab**

5000 Brittonfield Parkway, Suite 200 East Syracuse, New York 13057

(315) 437-0200

Chain of Custody

Sample Description	US185 C C851					
Phone # 437 - 6100 x 2257    Date	Project: BMS Nowablis					
Phone # 437 - C100 x 2571     Date	Sampled by: Pour Fred A					
Date		437 -	x2571			
ation	Sample Descri	iption				
7 4-25-67 0805 56:1 grab 7 4-25-67 0805 56:1 grab 4-25-67 1015 56:1 grab 67 67-25-67 1259 56:1 grab 67 67-25-67 1259 56:1 grab 67 67-25-67 1327 56:1 grab 67 67-25-67 1325 56:1 grab 67 67-25-67 1325 56:1 grab 67 67-25-67 1325 56:1 grab 67 67-25-67 1325 56:1 grab 67 67-25-67 1325 56:1 grab 67 67-25-67 1325 56:1 grab 67 67-25-67 1325 56:1 grab 67 67 67-25-67 1325 56:1 grab 67 67 67 67-25-67 1325 56:1 grab 67 67 67 67 67 67 67 67 67 67 67 67 67		Time Collected	Comp. or Grab			Comments
7  9.25 c 7 (836) 5e 11 grab  1.25 c 7 (926) 5e 11 grab  1.25 c 7 1015 5e 11 grab  1.25 c 7 125 c 7 125 5e 1 grab  1.25 c 7 125 5e 1 grab  1.25 c 7 125 5e 1 grab  1.25 c 7 125 5e 1 grab  1.25 c 7 132 5e 1 grab  1.25 c 7 135 5e 1 grab  1.25 c 1 135 5e 1 grab  1.25 c 1 135 5e 1 grab  1.25 c 1 135 5e 1 grab  1.25 c 1 135 5e 1 grab  1.25 c 1 135 5e 1 grab  1.25 c 1 135 5e 1 grab  1.25 c 1 135 5e 1 grab  1.25 c 1 135 5e 1 grab  1.25 c 1 135 5e 1 grab  1.25 c 1 135 5e 1 grab  1.25 c 1 135 5e 1 grab  1.25 c 1 135 5e 1 grab  1.25 c 1 135 5e 1 grab			ا مامه	×		
9-25-07 0920 50:1 grab 9-25-07 1015 50:1 grab 9-25-07 1259 50:1 grab 07 9-25-07 1327 50:1 grab 07 9-25-07 1325 50:1 grab 07 9-25-07 1325 50:1 grab 07 9-25-07 1325 50:1 grab 07 9-26-07 0820 50:1 grab 07 9-26-07 0839 50:1 grab			् । प्रस्	X		
9-25-07   1015   50.1   graph   9-25-07   1259   50.1   graph   9-25-07   1259   50.1   graph   9-25-07   1327   50.1   graph   9-25-07   1325   50.1   graph   9-25-07   1425   50.1   graph   9-25-07   1425   50.1   graph   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-25-07   9-			J days	×		
9-25-07   2-54   3yeeb 9-25-07   12-54   56.1   3yeeb 07   4-25-07   1355   56.1   3yeeb 07   4-25-07   1425   56.1   3yeeb 07   4-25-07   1425   56.1   3yeeb 07   4-26-07   08.21   56.1   3yeeb 07   9-26-07   08.34   54.1   3yeeb 07   9-26-07   08.34   54.1   3yeeb		1015		×		
97 125-07 1259 50:1 grab  07 4.25-07 1327 50:1 grab  07 4.25-07 1425 50:1 grab  07 4.25-07 1425 50:1 grab  07 4.26-07 0800 50:1 grab  07 4.26-07 0821 50:1 grab  07 9.26-07 0839 50:1		-	J dych	X		
07 4-25-c7 1327 5c.1 grab 07 4-25-c7 1355 5c.1 grab 07 4-25-c7 1425 5c.1 grab 07 4-25-c7 1425 5c.1 grab 07 4-26-c7 080c 5c.1 grab 07 4-26-c7 0821 5c.1 grab 07 126-c7 0839 5c.1 grab		1259		*		
4-25-57 1425 5011 grap 4-25-57 1425 5011 grap 4-26-57 0805 5011 grap 4-26-57 0821 501 grap 4-26-57 0834 501 grap	75			×		
4.25-01 1425 Soil grab 4.22-07 0800 Soil grab 4.22-07 0821 Soil grab 4.25-07 0839 Soil grab 7.25-07 Date: 09-22-07 Time: 1815	7			X		
4-26-07 0821 50:1 grab 4-26-07 0824 50:1 grab 4-26-07 0834 50:1 grab	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s			×		
4-16-07 08.21 50:11 grash 4-16-07 08.39 50:11 grash Date: 09-26-07 Time: 1815		2080		×		
19-16-67 0839 56:1 49.00 Date: 09-26-67 Time: 1815		-		×		
Date: 09-26-67 Time: 1815						
	Relinquished by:			ived by:	Date:	Time:
Date:	Relinquished by:		Time: Rece	Received by:	Date:	Time:
Received by Lab: Time: Received by Lab:	Relinquished by:			ived by Lab;	1 Date: 9/27,	26>7 Time: 05€
Shipment Method:	Shipment Method:		Airbil	I Number:	`	

Turnaround Time Required:
Routine
Rush (Specify)

Comments:

Cooler Temperature:

Original - Laboratory Copy - Client

# Chain of Custody

Life Science Laboratories, Inc. **Brittonfield Lab** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, New York 13057 (315) 437-0200

Client: O. Brigo & George				Analysis	Analysis/Method	
Project: BMS Krutulis						
Sampled by: Paul French						
Client Contact: Dave Corneval	Phone# 437	437-6100	X 2571			
Sample Description	scription			00/		
Sample Location	Date Time Collected Collected	Sample Matrix	Comp. No. of or Grab Containers.			Comments
58-03 (30-32), 092407	4.26-07 0914	50:1 6	Grab	×		
58-07 (2-4) -0126c7	9-26-67 1229	55.1	Grash	×		
58-07 (16-18)-09 co	9-26-07 1305	9:1	i okari	×		
58-67 (22-24) OJ2667	9-26-co 1317	Soil	Grab 1	×		
58-07 (28-30)-092607	9-26-07 1330	5.1	Grab 1	×		
MS - 012607	9-26-57 1305	5011	Grab 1	×		(81-91) LO-85
MSN-092601	4-26-67 1365	Sail	Grab 1			SB-01 (16-18)
A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA						
Relinquished by: Fore A. Trans	Date: 9-2.1	Date: 9-2 <i>6-</i> 07 Time: <i>181</i> 5	815 Received by:	ed by:	Date:	Time:
	Date:	Time:	Received by:	ed by:	, Date:	Time:
Relinquished by:	Date:	Time:	Receiv	Received by Lab.	Date:9/14/07	/о≯ Time: 0500
Shipment Method:			Airbill	Airbill Number:		

Turnaround Time Required:
Routine
Rush (Specify)

Comments:

Cooler Temperature:___

Original - Laboratory Copy - Client

### Life Science Laboratories, Inc.

### Sample Receipt Checklist

Client Name: OBG-MS		Date and Time Received:	9/27/2007 8:00:00 AM
Work Order Number 0709165		Received by: ads	
Checklist completed by:  Initials  Date	9/27/07	Reviewed by: M	9/27/07 Date
Matrix: Carrier name:	Hand Delivered		
Shipping container/cooler in good condition?	Yes 🗸	No Not Present	
Custody seals intact on shipping container/cooler?	Yes 🗸	No Not Present	
Custody seals intact on sample bottles?	Yes	No Not Present	✓
Chain of custody present?	Yes 🗸	No 🗆	
Chain of custody signed when relinquished and received?	Yes 🗸	No 🗆	
Chain of custody agrees with sample labels?	Yes 🗸	No 🗌	
Samples in proper container/bottle?	Yes 🗸	No 🗆	
Sample containers intact?	Yes 🗸	No 🗌	
Sufficient sample volume for indicated test?	Yes 🗸	No 🗆	
All samples received within holding time?	Yes 🗸	No 🗆	
Container/Temp Blank temperature in compliance?	Yes 🗸	No 🗆	
Water - VOA vials have zero headspace?	Yes	No OA vials s	ubmitted 🗹
Water - pH acceptable upon receipt?	Yes	No Not Applicab	le 🗸

Comments:

Corrective Action::

### CASE FILE FORM

PROGRAM INFORMATION		
CLIENT: O'Brien & Grane	DIV. <u>071</u>	REF. No.
PROGRAM: BMS Kratalis		
CUSTODY SEAL: INTACT	NOT INTACT	NA
AFTER HOURS CUSTODY		
RELINQUISHED BY DATE TIME  Faul 1. Frye 9-26-07 1815  GUARD TO COOLER: DATE TIME  A COOLER: 9/76/87 1825	SECURITY GUARD: SAMPLE CUSTODIAN	DATE TIME 9/36/09 19/5 DATE TIME 9/27/67 OF00
COMMENTS/DISCREPANCIES:	, , , , , , , , , , , , , , , , , , ,	
	<u> </u>	
RESOLUTION/CLIENT COMMENT:		
		<u> </u>
SIGNED:	-	
DATE:	QA/QC APROVAL:	****
	SIGNED:	-71
	DATE:	



Saturday, October 20, 2007

Dave Carnevale
O'Brien & Gere Engineers, Inc.
5000 Brittonfield Parkway
PO Box 4873
Syracuse, NY 13221-4873

TEL: 315-437-6100

Project: BMS-KRUTULIS

RE: Analytical Results

Order No.: 0710001

Dear Dave Carnevale:

Life Science Laboratories, Inc. received 17 sample(s) on 9/28/2007 for the analyses presented in the following report.

Very truly yours,

Life Science Laboratories, Inc.

Moniko Santucci

Monika Santucci

Project Manager



Monika Santucci Life Science Laboratories, Inc. 5000 Brittonfield Parkway East Syracuse, NY 13057 Phone: (315) 437-0200

# Laboratory Analysis Report For

Life Science Laboratories, Inc.

LSL Project ID: **0717315** 

Receive Date/Time: 10/02/07 11:57

Project Received by: RD

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if

# Life Science Laboratories, Inc.

(1) LSL Central Lab, East Syracuse, NY (2) LSL North Lab, Waddington, NY (3) LSL Finger Lakes Lab, Wayland, NY (4) LSL Southern Tier Lab, Cuba, NY (5) LSL MidLakes Lab, Canandaigua, NY (6) LSL Brittonfield Lab, East Syracuse, NY	(315) 445-1105 (315) 388-4476 (585) 728-3320 (585) 968-2640 (585) 396-0270 (315) 437-0200	NYS DOH ELAP #10248 PA DEP #68-2556 NYS DOH ELAP #10900 NYS DOH ELAP #11667 NYS DOH ELAP #10760 NYS DOH ELAP #11369 NYS DOH ELAP #10155
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------

This report was reviewed by:

Eife Science Laboratories, Inc.

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

SB-06 (2-4) - 092707

LSL Sample ID:

0717315-001

Location:

0710001-001A

Sampled:

09/27/07 8:04

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method Analyte	Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
7) EPA 8260B Volatiles					
1,1,1,2-Tetrachloroethane	<2	ug/kg dry		10/9/07	CRT
1,1,1-Trichloroethane	<2	ug/kg dry		10/9/07	CRT
1,1,2,2-Tetrachlorocthane	<2	ug/kg dry		10/9/07	CRT
1,1,2-Trichloroethane	<2	ug/kg dry		10/9/07	CRT
1,1-Dichloroethane	<2	ug/kg dry		10/9/07	CRT
1,1-Dichloroethene	<2	ug/kg dry		10/9/07	CRT
1,1-Dichloropropene	<2	ug/kg dry		10/9/07	CRT
1,2,3-Trichlorobenzene	<2	ug/kg dry		10/9/07	CRT
1,2,3-Trichloropropane	<2	ug/kg dry		10/9/07	CRT
1,2,4-Trichlorobenzene	<2	ug/kg dry		10/9/07	CRT
1,2,4-Trimethylbenzene	<2	ug/kg dry		10/9/07	CRT
1,2-Dibromo-3-chloropropane	<2	ug/kg dry		10/9/07	CRT
1,2-Dibromoethane(EDB)	<2	ug/kg dry		10/9/07	CRT
1,2-Dichlorobenzene	<2	ug/kg dry		10/9/07	CRT
1,2-Dichloroethane	<2	ug/kg dry		10/9/07	CRT
1,2-Dichloropropane	<2	ug/kg dry		10/9/07	CRT
1,3,5-Trimethylbenzene	<2	ug/kg dry		10/9/07	CRT
1,3-Dichlorobenzene	<2	ug/kg dry		10/9/07	CRT
1,3-Dichloropropane	<2	ug/kg dry		10/9/07	CRT
1,4-Dichlorobenzene	<2	ug/kg dry		10/9/07	CRT
2,2-Dichloropropane	<2	ug/kg dry		10/9/07	CRT
2-Chlorotoluene	<2	ug/kg dry		10/9/07	CRT
4-Chlorotoluene	<2	ug/kg dry		10/9/07	CRT
Benzene	<2	ug/kg dry		10/9/07	CRT
Bromobenzene	<2	ug/kg đry		10/9/07	CRT
Bromochloromethane	<2	ug/kg dry		10/9/07	CRT
Bromodichloromethane	<2	ug/kg dry		10/9/07	CRT
Bromoform	<2	ug/kg dry		10/9/07	CRT
Bromomethane	<2	ug/kg dry		10/9/07	CRT
Carbon tetrachloride	<2	ug/kg dry		10/9/07	CRT
Chlorobenzene	<2	ug/kg dry		10/9/07	CRT
Chloroethane	<2	ug/kg dry		10/9/07	CRT
Chloroform	<2	ug/kg dry		10/9/07	CRT
Chloromethane	<2	ug/kg dry		10/9/07	CRT
cis-1,2-Dichloroethene	<2	ug/kg dry		10/9/07	CRT
cis-1,3-Dichloropropene	<2	ug/kg dry		10/9/07	CRT
Dibromochloromethane	<2	ug/kg dry		10/9/07	CRT
Dibromomethane	<2	ug/kg dry		10/9/07	CRT
Dichlorodifluoromethane	<2	ug/kg dry		10/9/07	CRT
Ethyl benzene	<2	ug/kg dry		10/9/07	CRT
Hexachlorobutadiene	<2	ug/kg dry		10/9/07	CRT
Isopropylbenzene (Cumene)	<2	ug/kg dry		10/9/07	CRT
мтве	<2	ug/kg dry		10/9/07	CRT
Methylene chloride	<2	ug/kg dry		10/9/07	CRT
n-Butylbenzene	<2	ug/kg dry		10/9/07	CRT
n-Propylbenzene	<2	ug/kg dry		10/9/07	CRT
Naphthalene	<2	ug/kg dry		10/9/07	CRT

Life Science Laboratories, Inc.

Page 2 of 39

Date Printed:

Life Science Laboratories, Inc. East Syracuse, NY

Sample ID: SB-06 (2-4) - 092707

LSL Sample ID:

0717315-001

Location:

0710001-001A

Sampled:

09/27/07 8:04

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method		<u> </u>	Prep	Analysis	Analyst
Analyte	<u>Result</u>	Units	Date	Date & Time	Initials
(1) EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	<2	ug/kg dry		10/9/07	CRT
sec-Butylbenzene	<2	ug/kg dry		10/9/07	CRT
Styrene	<2	ug/kg dry		10/9/07	CRT
tert-Butylbenzene	<2	ug/kg dry		10/9/07	CRT
Tetrachloroethene	<2	ug/kg dry		10/9/07	CRT
Toluene	<2	ug/kg dry		10/9/07	CRT
trans-1,2-Dichloroethene	<2	ug/kg dry		10/9/07	CRT
trans-1,3-Dichloropropene	<2	ug/kg dry		10/9/07	CRT
Trichloroethene	<2	ug/kg dry		10/9/07	CRT
Trichlorofluoromethane (Freon 11)	<2	ug/kg dry		10/9/07	CRT
Vinyl chloride	<2	ug/kg dry		10/9/07	CRT
Xylenes (Total)	<2	ug/kg dry		10/9/07	CRT
Surrogate (1,2-DCA-d4)	107	%R		10/9/07	CRT
Surrogate (4-BFB)	107	%R		10/9/07	CRT
Surrogate (Tol-d8)	94	%R		10/9/07	CRT
Total Solids @ 103-105 C	91	%		10/8/07	CRT

Page 3 of 39

Life Science Laboratories, Inc. East Syracuse, NY

Sample ID: SB-06 (8-10) - 092707

LSL Sample ID:

0717315-002

Location:

0710001-002A

Sampled:

09/27/07 8:27

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method Analyte	Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
DEPA 8260B Volatiles				,	
1,1,1,2-Tetrachloroethane	<9	ug/kg dry		10/5/07	CRT
1,1,1-Trichloroethane	<9	ug/kg dry		10/5/07	CRT
1,1,2,2-Tetrachloroethane	<9	ug/kg dry		10/5/07	CRT
1,1,2-Trichloroethane	<9	ug/kg dry		10/5/07	CRT
1,1-Dichloroethane	<9	ug/kg dry		10/5/07	CRT
1,1-Dichloroethene	<9	ug/kg dry		10/5/07	CRT
1,1-Dichloropropene	<9	ug/kg đry		10/5/07	CRT
1,2,3-Trichlorobenzene	<9	ug/kg dry		10/5/07	CRT
1,2,3-Trichloropropane	<9	ug/kg dry		10/5/07	CRT
1,2,4-Trichlorobenzene	<9	ug/kg dry		10/5/07	CRT
1,2,4-Trimethylbenzene	<9	ug/kg dry		10/5/07	CRT
1,2-Dibromo-3-chloropropane	<9	ug/kg dry		10/5/07	CRT
1,2-Dibromoethane(EDB)	<9	ug/kg dry		10/5/07	CRT
	<9	ug/kg dry		10/5/07	CRT
1,2-Dichlorobenzene	<9	ug/kg dry		10/5/07	CRT
1,2-Dichloroethane	<9	ug/kg dry		10/5/07	CRT
1,2-Dichloropropane	<9	ug/kg dry		10/5/07	CRT
1,3,5-Trimethylbenzene				10/5/07	CRT
1,3-Dichlorobenzene	<9	ug/kg dry		10/5/07	CRT
1,3-Dichloropropane	<9	ug/kg dry		10/5/07	CRT
1,4-Dichlorobenzene	<9	ug/kg dry		10/5/07	CRT
2,2-Dichloropropane	<9	ug/kg dry		10/5/07	CRT
2-Chlorotoluene	<9	ug/kg dry		10/5/07	CRT
4-Chlorotoluene	<9	ug/kg đry			CRT
Benzene	<9	ug/kg dry		10/5/07	CRT
Bromobenzene	<9	ug/kg dry		10/5/07	CRT
Bromochloromethane	<9	ug/kg dry		10/5/07	
Bromodichloromethane	<9	ug/kg dry		10/5/07	CRT
Bromoform	<9	ug/kg dry		10/5/07	CRT
Bromomethane	<9	ug/kg dry		10/5/07	CRT
Carbon tetrachloride	<9	ug/kg dry		10/5/07	CRT
Chlorobenzene	<9	ug/kg dry		10/5/07	CRT
Chloroethane	<9	ug/kg dry		10/5/07	CRT
Chloroform	<9	ug/kg dry		10/5/07	CRT
Chloromethane	<9	ug/kg dry		10/5/07	CRT
cis-1,2-Dichloroethene	86	ug/kg dry		10/5/07	CRT
cis-1,3-Dichloropropene	<9	ug/kg dry		10/5/07	CRT
Dibromochloromethane	<9	ug/kg dry		10/5/07	CRT
Dibromomethane	<9	ug/kg dry		10/5/07	CRT
Dichlorodifluoromethane	<9	ug/kg dry		10/5/07	CRT
Ethyl benzene	<9	ug/kg dry		10/5/07	CRT
Hexachlorobutadiene	<9	ug/kg dry		10/5/07	CRT
Isopropylbenzene (Cumene)	<9	ug/kg dry		10/5/07	CRT
MTBE	<9	ug/kg dry		10/5/07	CRT
Methylene chloride	<9	ug/kg dry		10/5/07	CRT
n-Butylbenzene	<9	ug/kg dry		10/5/07	CRT
n-Propylbenzene	<9	ug/kg dry		10/5/07	CRT
Naphthalene	<9	ug/kg dry		10/5/07	CRT

Page 4 of 39

Life Science Laboratories, Inc.

Date Printed:

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

SB-06 (8-10) - 092707

LSL Sample ID:

0717315-002

Location:

0710001-002A

Sampled:

09/27/07 8:27

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method	D 1	TT24-	Prep	Analysis Date & Time	Analyst Initials
<u>Analyte</u>	Result	Units	Date	Date & Time	Illitials
(I) EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	<9	ug/kg dry		10/5/07	CRT
sec-Butylbenzene	<9	ug/kg dry		10/5/07	CRT
Styrene	<9	ug/kg dry		10/5/07	CRT
tert-Butylbenzene	<9	ug/kg dry		10/5/07	CRT
Tetrachloroethene	<9	ug/kg dry		10/5/07	CRT
Toluene	<9	ug/kg dry		10/5/07	CRT
trans-1,2-Dichloroethene	<9	ug/kg dry		10/5/07	CRT
trans-1,3-Dichloropropene	<9	ug/kg dry		10/5/07	CRT
Trichloroethene	510	ug/kg dry		10/5/07	CRT
Trichlorofluoromethane (Freon 11)	<9	ug/kg dry		10/5/07	CRT
Vinyl chloride	<9	ug/kg dry		10/5/07	CRT
Xylenes (Total)	<9	ug/kg dry		10/5/07	CRT
Surrogate (1,2-DCA-d4)	114	%R		10/5/07	CRT
Surrogate (4-BFB)	106	%R		10/5/07	CRT
Surrogate (4-brb) Surrogate (Tol-d8)	92	%R		10/5/07	CRT
Total Solids @ 103-105 C	82	%		10/8/07	CRT

Page 5 of 39

Life Science Laboratories, Inc. East Syracuse, NY

Sample ID: SB-06 (22-24) - 092707

LSL Sample ID:

0717315-003

Location:

0710001-003A

Sampled:

09/27/07 9:06

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method Analyte	Result	Units	Prep Date	Analysis Date & Time	Analyst In <u>itial</u> s
PA 8260B Volatiles					
1,1,1,2-Tetrachloroethane	<200	ug/kg dry		10/10/07	CRT
1,1,1-Trichloroethane	<200	ug/kg dry		10/10/07	CRT
1,1,2,2-Tetrachloroethane	<200	ug/kg dry		10/10/07	CRT
1,1,2-Trichloroethane	<200	ug/kg dry		10/10/07	CRT
1,1-Dichloroethane	<200	ug/kg dry		10/10/07	CRT
1,1-Dichloroethene	<200	ug/kg dry		10/10/07	CRT
1,1-Dichloropropene	<200	ug/kg đry		10/10/07	CRT
1,2,3-Trichlorobenzene	<200	ug/kg dry		10/10/07	CRT
1,2,3-Trichloropropane	<200	ug/kg dry		10/10/07	CRT
1,2,4-Trichlorobenzene	<200	ug/kg dry		10/10/07	CRT
1,2,4-Trimethylbenzene	<200	ug/kg dry		10/10/07	CRT
1,2-Dibromo-3-chloropropane	<200	ug/kg dry		10/10/07	CRT
1,2-Dibromoethane(EDB)	<200	ug/kg dry		10/10/07	CRT
•	<200	ug/kg dry		10/10/07	CRT
1,2-Dichlorobenzene	<200	ug/kg dry		10/10/07	CRT
1,2-Dichloroethane	<200	ug/kg dry		10/10/07	CR'
1,2-Dichloropropane	<200	ug/kg dry		10/10/07	CR
1,3,5-Trimethylbenzene	<200	ug/kg dry		10/10/07	CR'
1,3-Dichlorobenzene	<200	ug/kg dry		10/10/07	CR.
1,3-Dichloropropane	<200	ug/kg dry		10/10/07	CR'
1,4-Dichlorobenzene	<200	ug/kg dry ug/kg dry		10/10/07	CR'
2,2-Dichloropropane	<200	ug/kg dry ug/kg dry		10/10/07	CR'
2-Chlorotoluene	<200			10/10/07	CR'
4-Chlorotoluene		ug/kg dry		10/10/07	CR'
Benzene	<200	ug/kg dry		10/10/07	CR'
Bromobenzene	<200	ug/kg dry		10/10/07	CR'
Bromochloromethane	<200	ug/kg dry		10/10/07	CR'
Bromodichloromethane	<200	ug/kg dry		10/10/07	CR.
Bromoform	<200	ug/kg dry		10/10/07	CR'
Bromomethane	<200	ug/kg dry		10/10/07	CR'
Carbon tetrachloride	<200	ug/kg dry		10/10/07	CR'
Chlorobenzene	<200	ug/kg dry		10/10/07	CR'
Chloroethane	<200	ug/kg đry		10/10/07	CR'
Chloroform	<200	ug/kg dry		10/10/07	CR'
Chloromethane	<200	ug/kg dry			CR'
cis-1,2-Dichloroethene	<200	ug/kg dry		10/10/07 10/10/07	CR'
cis-1,3-Dichloropropene	<200	ug/kg dry			
Dibromochloromethane	<200	ug/kg dry		10/10/07	CR.
Dibromomethane	<200	ug/kg dry		10/10/07	CR
Dichlorodifluoromethane	<200	ug/kg dry		10/10/07	CR
Ethyl benzene	<200	ug/kg dry		10/10/07	CR
Hexachlorobutadiene	<200	ug/kg dry		10/10/07	CR
Isopropylbenzene (Cumene)	<200	ug/kg dry		10/10/07	CR
MTBE	<200	ug/kg dry		10/10/07	CR
Methylene chloride	<200	ug/kg dry		10/10/07	CR
n-Butylbenzene	<200	ug/kg dry		10/10/07	CR
n-Propylbenzene	<200	ug/kg dry		10/10/07	CR
Naphthalene	<200	ug/kg dry		10/10/07	CR'

Life Science Laboratories, Inc.

Date Printed:

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

SB-06 (22-24) - 092707

LSL Sample ID:

0717315-003

Location:

0710001-003A

Sampled:

09/27/07 9:06

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	<u>Units</u>	Date	Date & Time	<u>Initials</u>
(1) EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	<200	ug/kg dry		10/10/07	CRT
sec-Butylbenzene	<200	ug/kg dry		10/10/07	CRT
Styrene	<200	ug/kg dry		10/10/07	CRT
tert-Butylbenzene	<200	ug/kg dry		10/10/07	CRT
Tetrachloroethene	<200	ug/kg dry		10/10/07	CRT
Toluene	1200	ug/kg dry		10/10/07	CRT
trans-1,2-Dichloroethene	<200	ug/kg dry		10/10/07	CRT
trans-1,3-Dichloropropene	<200	ug/kg dry		10/10/07	CRT
Trichloroethene	8500	ug/kg dry		10/10/07	CRT
Trichlorofluoromethane (Freon 11)	<200	ug/kg dry		10/10/07	CRT
Vinyl chloride	<200	ug/kg dry		10/10/07	CRT
Xylenes (Total)	<200	ug/kg dry		10/10/07	CRT
Surrogate (1,2-DCA-d4)	125	%R		10/10/07	CRT
Surrogate (4-BFB)	98	%R		10/10/07	CRT
Surrogate (Tol-d8)	87	%R		10/10/07	CRT
Total Solids @ 103-105 C	80	%		10/8/07	CRT

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

SB-06 (28-30) - 092707

LSL Sample ID:

0717315-004

Location:

0710001-004A

Sampled:

09/27/07 9:24

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method Analyte	Result	Units_	Prep Date	Analysis  Date & Time	Analyst Initials
(I) EPA 8260B Volatiles				17	
1,1,1,2-Tetrachloroethane	<200	ug/kg dry		10/10/07	CRT
1,1,1-Trichloroethane	<200	ug/kg dry		10/10/07	CRT
1,1,2,2-Tetrachlorocthane	<200	ug/kg dry		10/10/07	CRT
1,1,2-Terraction oction	<200	ug/kg dry		10/10/07	CRT
1,1-Dichloroethane	<200	ug/kg dry		10/10/07	CRT
	<200	ug/kg dry		10/10/07	CRT
1,1-Dichloroethene	<200	ug/kg dry		10/10/07	CRT
1,1-Dichloropropene	<200	ug/kg dry		10/10/07	CRT
1,2,3-Trichlorobenzene	<200	ug/kg dry		10/10/07	CRT
1,2,3-Trichloropropane	<200	ug/kg dry		10/10/07	CRT
1,2,4-Trichlorobenzene	<200	ug/kg dry		10/10/07	CRT
1,2,4-Trimethylbenzene	<200	ug/kg dry		10/10/07	CRT
1,2-Dibromo-3-chloropropane	<200	ug/kg dry		10/10/07	CRT
1,2-Dibromoethane(EDB)	<200			10/10/07	CRT
1,2-Dichlorobenzene		ug/kg dry		10/10/07	CRT
1,2-Dichloroethane	<200	ug/kg dry		10/10/07	CRT
1,2-Dichloropropane	<200	ug/kg dry		10/10/07	CRT
1,3,5-Trimethylbenzene	<200	ug/kg dry		10/10/07	CRT
1,3-Dichlorobenzene	<200	ug/kg dry		10/10/07	CRT
1,3-Dichloropropane	<200	ug/kg dry			CRT
1,4-Dichlorobenzene	<200	ug/kg dry		10/10/07	CRT
2,2-Dichloropropane	<200	ug/kg dry		10/10/07	CRT
2-Chlorotoluene	<200	ug/kg dry		10/10/07	
4-Chlorotoluene	<200	ug/kg dry		10/10/07	CRT
Benzene	<200	ug/kg dry		10/10/07	CRT
Bromobenzene	<200	ug/kg đry		10/10/07	CRT
Bromochloromethane	<200	ug/kg dry		10/10/07	CRT
Bromodichloromethane	<200	ug/kg dry		10/10/07	CRT
Bromoform	<200	ug/kg dry		10/10/07	CRT
Bromomethane	<200	ug/kg dry		10/10/07	CRT
Carbon tetrachloride	<200	ug/kg dry		10/10/07	CRT
Chlorobenzene	<200	ug/kg dry		10/10/07	CRT
Chloroethane	<200	ug/kg dry		10/10/07	CRT
Chloroform	<200	ug/kg dry		10/10/07	CRT
Chloromethane	<200	ug/kg dry		10/10/07	CRT
cis-1,2-Dichloroethene	<200	ug/kg dry		10/10/07	CRT
cis-1,3-Dichloropropene	<200	ug/kg dry		10/10/07	CRT
Dibromochloromethane	<200	ug/kg dry		10/10/07	CRT
Dibromomethane	<200	ug/kg dry		10/10/07	CRT
Dichlorodifluoromethane	<200	ug/kg dry		10/10/07	CRT
Ethyl benzene	<200	ug/kg dry		10/10/07	CRT
Hexachlorobutadiene	<200	ug/kg dry		10/10/07	CRT
Isopropylbenzene (Cumene)	<200	ug/kg dry		10/10/07	CRT
MTBE	<200	ug/kg dry		10/10/07	CRT
	<200	ug/kg dry		10/10/07	CRT
Methylene chloride	<200	ug/kg dry		10/10/07	CRT
n-Butylbenzene	<200	ug/kg dry		10/10/07	CRT
n-Propylbenzene	<200			10/10/07	CRT
Naphthalene	<200	ug/kg dry		10/10/07	Page 8

Life Science Laboratories, Inc.

Page 8 of 39

Date Printed

Life Science Laboratories, Inc. East Syracuse, NY

Sample ID: SB-06 (28-30) - 092707

LSL Sample ID:

0717315-004

Location:

0710001-004A

**Sampled:** 09/27/07 9:24

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	<u>Initials</u>
(I) EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	<200	ug/kg dry		10/10/07	CRT
sec-Butylbenzene	<200	ug/kg dry		10/10/07	CRT
Styrene	<200	ug/kg đry		10/10/07	CRT
tert-Butylbenzene	<200	ug/kg dry		10/10/07	CRT
Tetrachloroethene	<200	ug/kg dry		10/10/07	CRT
Toluene	350	ug/kg dry		10/10/07	CRT
trans-1,2-Dichloroethene	<200	ug/kg dry		10/10/07	CRT
trans-1,3-Dichloropropene	<200	ug/kg dry		10/10/07	CRT
Trichloroethene	3300	ug/kg dry		10/10/07	CRT
Trichlorofluoromethane (Freon 11)	<200	ug/kg dry		10/10/07	CRT
Vinyl chloride	<200	ug/kg dry		10/10/07	CRT
Xylenes (Total)	<200	ug/kg dry		10/10/07	CRT
Surrogate (1,2-DCA-d4)	116	%R		10/10/07	CRT
Surrogate (4-BFB)	100	%R		10/10/07	CRT
Surrogate (Tol-d8)	90	%R		10/10/07	CRT
Total Solids @ 103-105 C	83	%		10/8/07	CRT

Page 9 of 39

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

SB-01 (2-4) - 092707

LSL Sample ID:

0717315-005

Location:

0710001-005A

Sampled:

09/27/07 12:20

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method Analyte	Result	Units	Prep Date	Analysis <u>Date &amp; Time</u>	Analyst Initials
PA 8260B Volatiles			•	<u> </u>	
1,1,1,2-Tetrachloroethane	<2	ug/kg dry		10/9/07	CRT
1,1,1-Trichloroethane	<2	ug/kg dry		10/9/07	CRT
1,1,2,2-Tetrachloroethane	<2	ug/kg dry		10/9/07	CRT
1,1,2-Trichloroethane	<2	ug/kg dry		10/9/07	CRT
1,1-Dichloroethane	<2	ug/kg dry		10/9/07	CRT
1,1-Dichloroethene	<2	ug/kg dry	•	10/9/07	CRT
1,1-Dichloropropene	<2	ug/kg dry		10/9/07	CRT
1,2,3-Trichlorobenzene	<2	ug/kg dry		10/9/07	CRT
1,2,3-Trichloropropane	<2	ug/kg dry		10/9/07	CRT
1,2,4-Trichlorobenzene	<2	ug/kg dry		10/9/07	CRT
	<2	ug/kg dry		10/9/07	CRT
1,2,4-Trimethylbenzene	<2	ug/kg dry		10/9/07	CRT
1,2-Dibromo-3-chloropropane	<2	ug/kg dry		10/9/07	CRT
1,2-Dibromoethane(EDB)	<2	ug/kg dry		10/9/07	CRT
1,2-Dichlorobenzene	<2	ug/kg dry		10/9/07	CRT
1,2-Dichloroethane	<2	ug/kg dry		10/9/07	CRT
1,2-Dichloropropane	<2	ug/kg dry		10/9/07	CRT
1,3,5-Trimethylbenzene	<2	ug/kg dry		10/9/07	CRT
1,3-Dichlorobenzene	<2	ug/kg dry		10/9/07	CRT
1,3-Dichloropropane	<2	ug/kg dry		10/9/07	CRT
1,4-Dichlorobenzene	<2	ug/kg dry		10/9/07	CRT
2,2-Dichloropropane	<2	ug/kg dry		10/9/07	CR?
2-Chlorotoluene	<2			10/9/07	CRT
4-Chlorotoluene		ug/kg dry		10/9/07	CRT
Benzene	<2	ug/kg dry		10/9/07	CR'
Bromobenzene	<2	ug/kg dry		10/9/07	CR
Bromochloromethane	<2	ug/kg dry		10/9/07	CR"
Bromodichloromethane	<2	ug/kg dry		10/9/07	CR"
Bromoform	<2	ug/kg dry		10/9/07	CR'
Bromomethane	<2	ug/kg dry		10/9/07	CR
Carbon tetrachloride	<2	ug/kg dry		10/9/07	CR"
Chlorobenzene	<2	ug/kg dry		10/9/07	CR'
Chloroethane	<2	ug/kg dry		10/9/07	CR ^r
Chloroform	<2	ug/kg dry		10/9/07	CR'
Chloromethane	<2	ug/kg dry		10/9/07	CR'
cis-1,2-Dichloroethene	<2	ug/kg dry		10/9/07	CR'
cis-1,3-Dichloropropene	<2	ug/kg dry		10/9/07	CR
Dibromochloromethane	<2	ug/kg đry		10/9/07	CR'
Dibromomethane	<2	ug/kg dry			CR'
Dichlorodifluoromethane	<2	ug/kg dry		10/9/07	CR CR
Ethyl benzene	<2	ug/kg dry		10/9/07	CR'
Hexachlorobutadiene	<2	ug/kg đry		10/9/07	
Isopropylbenzene (Cumene)	<2	ug/kg dry		10/9/07	CR' CR'
MTBE	<2	ug/kg dry		10/9/07	
Methylene chloride	<2	ug/kg dry		10/9/07	CR
n-Butylbenzene	<2	ug/kg dry		10/9/07	CR
n-Propylbenzene	<2	ug/kg dry		10/9/07	CR
Naphthalene	<2	ug/kg dry		10/9/07	CR

Life Science Laboratories, Inc.

Date Printed:

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

SB-01 (2-4) - 092707

LSL Sample ID:

0717315-005

Location:

0710001-005A

Sampled:

09/27/07 12:20

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method Analyte	Result	Units	Prep Date	Analysis Date & Time	Analyst I <u>nitial</u> s
(1) EPA 8260B Volatiles			-		
4-Isopropyl toluene (Cymene)	<2	ug/kg dry		10/9/07	CRT
sec-Butylbenzene	<2	ug/kg dry		10/9/07	CRT
Styrene	<2	ug/kg dry		10/9/07	CRT
tert-Butylbenzene	<2	ug/kg dry		10/9/07	CRT
Tetrachloroethene	<2	ug/kg dry		10/9/07	CRT
Toluene	<2	ug/kg dry		10/9/07	CRT
trans-1,2-Dichloroethene	<2	ug/kg dry		10/9/07	CRT
trans-1,3-Dichloropropene	<2	ug/kg dry		10/9/07	CRT
Trichloroethene	5.3	ug/kg dry		10/9/07	CRT
Trichlorofluoromethane (Freon 11)	<2	ug/kg dry		10/9/07	CRT
Vinyl chloride	<2	ug/kg dry		10/9/07	CRT
Xylenes (Total)	<2	ug/kg dry		10/9/07	CRT
Surrogate (1,2-DCA-d4)	109	%R		10/9/07	CRT
Surrogate (4-BFB)	104	%R		10/9/07	CRT
Surrogate (Tol-d8)	97	%R		10/9/07	CRT
Total Solids @ 103-105 C	82	%		10/8/07	CRT

Page 11 of 39

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

SB-01 (10-12) - 092707

LSL Sample ID:

0717315-006

Location:

0710001-006A

Sampled:

09/27/07 12:36

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method Analyte	Result_	Units	Prep Date	Analysis Date & Time	Analyst Initials
(1) EPA 8260B Volatiles					
1,1,1,2-Tetrachloroethane	<10	ug/kg dry		10/5/07	CRT
1,1,1-Trichloroethane	<10	ug/kg dry		10/5/07	CRT
1,1,2,2-Tetrachloroethane	<10	ug/kg dry		10/5/07	CRT
1,1,2-Trichloroethane	<10	ug/kg dry		10/5/07	CRT
1,1-Dichloroethane	<10	ug/kg dry		10/5/07	CRT
1,1-Dichloroethene	<10	ug/kg dry		10/5/07	CRT
1,1-Dichloropropene	<10	ug/kg dry		10/5/07	CRT
1,2,3-Trichlorobenzene	<10	ug/kg dry		10/5/07	CRT
1,2,3-Trichloropenzene	<10	ug/kg dry		10/5/07	CRT
	<10	ug/kg dry		10/5/07	CRT
1,2,4-Trichlorobenzene	<10	ug/kg dry		10/5/07	CRT
1,2,4-Trimethylbenzene	<10	ug/kg dry		10/5/07	CRT
1,2-Dibromo-3-chloropropane	<10	ug/kg dry		10/5/07	CRT
1,2-Dibromoethane(EDB)	<10	ug/kg dry		10/5/07	CRT
1,2-Dichlorobenzene	<10	ug/kg dry		10/5/07	CRT
1,2-Dichloroethane	<10			10/5/07	CRT
1,2-Dichloropropane		ug/kg dry		10/5/07	CRT
1,3,5-Trimethylbenzene	<10	ug/kg dry		10/5/07	CRT
1,3-Dichlorobenzene	<10	ug/kg dry		10/5/07	CRT
1,3-Dichloropropane	<10	ug/kg dry		10/5/07	CRT
1,4-Dichlorobenzene	<10	ug/kg dry		10/5/07	CRT
2,2-Dichloropropane	<10	ug/kg dry			CRT
2-Chlorotoluene	<10	ug/kg dry		10/5/07	
4-Chlorotoluene	<10	ug/kg dry		10/5/07	CRT
Benzene	<10	ug/kg dry		10/5/07	CRT
Bromobenzene	<10	ug/kg dry		10/5/07	CRT
Bromochloromethane	<10	ug/kg dry		10/5/07	CRT
Bromodichloromethane	<10	ug/kg dry		10/5/07	CRT
Bromoform	<10	ug/kg dry		10/5/07	CRT
Bromomethane	<10	ug/kg dry		10/5/07	CRT
Carbon tetrachloride	<10	ug/kg dry		10/5/07	CRT
Chlorobenzene	<10	ug/kg dry		10/5/07	CRT
Chloroethane	<10	ug/kg dry		10/5/07	CRT
Chloroform	<10	ug/kg dry		10/5/07	CRT
Chloromethane	<10	ug/kg dry		10/5/07	CRT
cis-1,2-Dichloroethene	<10	ug/kg dry		10/5/07	CRT
cis-1,3-Dichloropropene	<10	ug/kg dry		10/5/07	CRT
Dibromochloromethane	<10	ug/kg dry		10/5/07	CRT
Dibromomethane	<10	ug/kg đry		10/5/07	CRT
Dichlorodifluoromethane	<10	ug/kg dry		10/5/07	CRT
Ethyl benzene	<10	ug/kg dry		10/5/07	CRT
Hexachlorobutadiene	<10	ug/kg dry		10/5/07	CRT
Isopropylbenzene (Cumene)	<10	ug/kg dry		10/5/07	CRT
мтве	<10	ug/kg dry		10/5/07	CRT
Methylene chloride	<10	ug/kg dry		10/5/07	CRT
	<10	ug/kg dry		10/5/07	CRT
n-Butylbenzene	<10	ug/kg dry		10/5/07	CRT
n-Propylbenzene	<10	ug/kg dry		10/5/07	CRT
Naphthalene		-8 6 -9			Page 12 of 3

Life Science Laboratories, Inc.

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

SB-01 (10-12) - 092707

LSL Sample ID:

0717315-006

Location:

0710001-006A

Sampled: 09/27/

09/27/07 12:36

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	<u>Initials</u>
(1) EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	<10	ug/kg dry		10/5/07	CRT
sec-Butylbenzene	<10	ug/kg dry		10/5/07	CRT
Styrene	<10	ug/kg dry		10/5/07	CRT
tert-Butylbenzene	<10	ug/kg dry		10/5/07	CRT
Tetrachloroethene	<10	ug/kg dry		10/5/07	CRT
Toluene	<10	ug/kg dry		10/5/07	CRT
trans-1,2-Dichloroethene	<10	ug/kg dry		10/5/07	CRT
trans-1,3-Dichloropropene	<10	ug/kg dry		10/5/07	CRT
Trichloroethene	<10	ug/kg dry		10/5/07	CRT
Trichlorofluoromethane (Freon 11)	<10	ug/kg dry		10/5/07	CRT
Vinyl chloride	<10	ug/kg dry		10/5/07	CRT
Xylenes (Total)	<10	ug/kg dry		10/5/07	CRT
Surrogate (1,2-DCA-d4)	114	%R		10/5/07	CRT
Surrogate (4-BFB)	104	%R		10/5/07	CRT
Surrogate (Tol-d8)	93	%R		10/5/07	CRT
Total Solids @ 103-105 C	82	%		10/8/07	CRT

Elevated detection limit due to matrix interference.

Page 13 of 39

Life Science Laboratories, Inc.

Date Printed:

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

SB-01 (18-20) - 092707

LSL Sample ID:

0717315-007

Location:

0710001-007A

Sampled:

09/27/07 12:49

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

analytical Method Analyte	Result	Units	Prep Date	Analysis Date & Time	Analys Initial
EPA 8260B Volatiles					
1,1,1,2-Tetrachloroethane	<20	ug/kg dry		10/9/07	CRT
1,1,1-Trichloroethane	<20	ug/kg dry		10/9/07	CRT
1,1,2,2-Tetrachloroethane	<20	ug/kg dry		10/9/07	CRT
1,1,2-Trichloroethane	<20	ug/kg dry		10/9/07	CRT
1,1-Dichloroethane	<20	ug/kg dry		10/9/07	CRI
	<20	ug/kg dry		10/9/07	CRI
1,1-Dichloroethene 1,1-Dichloropropene	<20	ug/kg dry		10/9/07	CRT
• •	<20	ug/kg dry		10/9/07	CR
1,2,3-Trichlorobenzene	<20	ug/kg dry		10/9/07	CR
1,2,3-Trichloropropane	<20	ug/kg dry		10/9/07	CR
1,2,4-Trichlorobenzene	<20			10/9/07	CR'
1,2,4-Trimethylbenzene		ug/kg dry		10/9/07	CR'
1,2-Dibromo-3-chloropropane	<20	ug/kg dry		10/9/07	CR
1,2-Dibromoethane(EDB)	<20	ug/kg dry		10/9/07	CR'
1,2-Dichlorobenzene	<20	ug/kg dry		10/9/07	CR'
1,2-Dichloroethane	<20	ug/kg dry		10/9/07	CR'
1,2-Dichloropropane	<20	ug/kg dry		10/9/07	CR'
1,3,5-Trimethylbenzene	<20	ug/kg dry		10/9/07	CR
1,3-Dichlorobenzene	<20	ug/kg dry		10/9/07	CR
1,3-Dichloropropane	<20	ug/kg dry			CR
1,4-Dichlorobenzene	<20	ug/kg dry		10/9/07	CR
2,2-Dichloropropane	<20	ug/kg đry		10/9/07	CR
2-Chlorotoluene	<20	ug/kg dry		10/9/07	
4-Chlorotoluene	<20	ug/kg dry		10/9/07	CR
Benzene	<20	ug/kg dry		10/9/07	CR
Bromobenzene	<20	ug/kg dry		10/9/07	CR
Bromochloromethane	<20	ug/kg dry		10/9/07	CR
Bromodichloromethane	<20	ug/kg dry		10/9/07	CR
Bromoform	<20	ug/kg đry		10/9/07	CR
Bromomethane	<20	ug/kg dry		10/9/07	CR
Carbon tetrachloride	<20	ug/kg dry		10/9/07	CR
Chlorobenzene	<20	ug/kg dry		10/9/07	CR
Chloroethane	<20	ug/kg dry		10/9/07	CF
Chloroform	<20	ug/kg dry		10/9/07	CR
Chloromethane	<20	ug/kg dry		10/9/07	CF
cis-1,2-Dichloroethene	<20	ug/kg dry		10/9/07	CF
cis-1,3-Dichloropropene	<20	ug/kg dry		10/9/07	CF
Dibromochloromethane	<20	ug/kg dry		10/9/07	CF
Dibromomethane	<20	ug/kg dry		10/9/07	CF
Dichlorodifluoromethane	<20	ug/kg dry		10/9/07	CF
Ethyl benzene	<20	ug/kg dry		10/9/07	CF
Hexachlorobutadiene	<20	ug/kg dry		10/9/07	CI
Isopropylbenzene (Cumene)	<20	ug/kg dry		10/9/07	CF
MTBE	<20	ug/kg dry		10/9/07	CF
Methylene chloride	<20	ug/kg dry		10/9/07	CI
n-Butylbenzene	<20	ug/kg dry		10/9/07	CI
•	<20	ug/kg dry		10/9/07	CF
n-Propylbenzene Naphthalene	<20	ug/kg dry		10/9/07	CF

Life Science Laboratories, Inc.

Date Printed:

Life Science Laboratories, Inc. East Syracuse, NY

Sample ID: SB-01 (18-20) - 092707 LSL Sample ID:

Location: 071

0710001-007A

Sampled: 09/27/07 12:49

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method	Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
Analyte	Kesun	Units	- Dute		
(1) EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	<20	ug/kg dry		10/9/07	CRT
sec-Butylbenzene	<20	ug/kg dry		10/9/07	CRT
Styrene	<20	ug/kg dry		10/9/07	CRT
tert-Butylbenzene	<20	ug/kg dry		10/9/07	CRT
Tetrachloroethene	<20	ug/kg dry		10/9/07	CRT
Toluene	<20	ug/kg dry		10/9/07	CRT
trans-1,2-Dichloroethene	<20	ug/kg dry		10/9/07	CRT
trans-1,3-Dichloropropene	<20	ug/kg dry		10/9/07	CRT
Trichloroethene	<20	ug/kg dry		10/9/07	CRT
Trichlorofluoromethane (Freon 11)	<20	ug/kg dry		10/9/07	CRT
Vinyl chloride	<20	ug/kg dry		10/9/07	CRT
Xylenes (Total)	<20	ug/kg dry		10/9/07	CRT
Surrogate (1,2-DCA-d4)	124	%R		10/9/07	CRT
Surrogate (4-BFB)	123	%R		10/9/07	CRT
Surrogate (4-Drb) Surrogate (Tol-d8)	102	%R		10/9/07	CRT
	83	%		10/8/07	CRT
Total Solids @ 103-105 C	0.5			. t pt . t t:	11 14 1 4.

An internal standard response for this analysis was outside our established control limits. Reported results have been estimated. Elevated detection limit due to matrix interference.

Page 15 of 39

0717315-007

LSL Sample ID:

0717315-008

Life Science Laboratories, Inc. East Syracuse, NY

Sample ID: SB-01 (24-26) - 092707

0710001-008A

Sampled: 09/27/07 13:00

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Location:

Analytical Method Analyte	Result_	Units	Prep Date	Analysis  Date & Time	Analyst Initials
EPA 8260B Volatiles		****			
1.1.1.2-Tetrachloroethane	<20	ug/kg dry		10/9/07	CRT
1.1.1-Trichloroethane	<20	ug/kg dry		10/9/07	CRT
1,1,2,2-Tetrachloroethane	<20	ug/kg dry		10/9/07	CRT
1,1,2-Trichloroethane	<20	ug/kg dry		10/9/07	CRT
1,1-Dichloroethane	<20	ug/kg dry		10/9/07	CRT
1,1-Dichloroethene	<20	ug/kg dry		10/9/07	CRT
1,1-Dichloropropene	<20	ug/kg dry		10/9/07	CRT
1,2,3-Trichlorobenzene	<20	ug/kg dry		10/9/07	CRT
1,2,3-Trichloropropane	<20	ug/kg dry		10/9/07	CRT
1,2,4-Trichlorobenzene	<20	ug/kg dry		10/9/07	CRT
1,2,4-Trimethylbenzene	<20	ug/kg dry		10/9/07	CRT
1,2-Dibromo-3-chloropropane	<20	ug/kg dry		10/9/07	CRT
1,2-Dibromoethane(EDB)	<20	ug/kg dry		10/9/07	CRT
1,2-Dichlorobenzene	<20	ug/kg dry		10/9/07	CRT
•	<20	ug/kg dry		10/9/07	CRT
1,2-Dichloroethane	<20	ug/kg dry ug/kg dry		10/9/07	CRT
1,2-Dichloropropane	<20	ug/kg dry ug/kg dry		10/9/07	CRT
1,3,5-Trimethylbenzene	<20			10/9/07	CRT
1,3-Dichlorobenzene		ug/kg dry		10/9/07	CRT
1,3-Dichloropropane	<20	ug/kg dry		10/9/07	CRT
1,4-Dichlorobenzene	<20	ug/kg dry		10/9/07	CRT
2,2-Dichloropropane	<20	ug/kg dry		10/9/07	CRT
2-Chlorotoluene	<20	ug/kg dry			CRT
4-Chlorotoluene	<20	ug/kg dry		10/9/07	
Benzene	<20	ug/kg dry		10/9/07	CRT
Bromobenzene	<20	ug/kg dry		10/9/07	CRT
Bromochloromethane	<20	ug/kg dry		10/9/07	CRT
Bromodichloromethane	<20	ug/kg dry		10/9/07	CRT
Bromoform	<20	ug/kg dry		10/9/07	CRT
Bromomethane	<20	ug/kg dry		10/9/07	CRT
Carbon tetrachloride	<20	ug/kg dry		10/9/07	CRT
Chlorobenzene	<20	ug/kg dry		10/9/07	CRT
Chloroethane	<20	ug/kg đry		10/9/07	CRT
Chloroform	<20	ug/kg dry		10/9/07	CRT
Chloromethane	<20	ug/kg dry		10/9/07	CRT
cis-1,2-Dichloroethene	<20	ug/kg dry		10/9/07	CRT
cis-1,3-Dichloropropene	<20	ug/kg dry		10/9/07	CRT
Dibromochloromethane	<20	ug/kg dry		10/9/07	CRT
Dibromomethane	<20	ug/kg dry		10/9/07	CRT
Dichlorodifluoromethane	<20	ug/kg dry		10/9/07	CRT
Ethyl benzene	<20	ug/kg dry		10/9/07	CRT
Hexachlorobutadiene	<20	ug/kg dry		10/9/07	CRT
Isopropylbenzene (Cumene)	<20	ug/kg dry		10/9/07	CRT
мтве	<20	ug/kg dry		10/9/07	CRT
Methylene chloride	<20	ug/kg dry		10/9/07	CRT
n-Butylbenzene	<20	ug/kg dry		10/9/07	CRT
n-Propylbenzene	<20	ug/kg dry		10/9/07	CRT
Naphthalene	<20	ug/kg dry		10/9/07	CRT

Page 16 of 39

Life Science Laboratories, Inc.

Date Printed:

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

SB-01 (24-26) - 092707

LSL Sample ID:

0717315-008

Location:

0710001-008A

Sampled:

09/27/07 13:00

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date 1	Date & Time	<u>Initials</u>
(1) EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	<20	ug/kg dry		10/9/07	CRT
sec-Butylbenzene	<20	ug/kg dry		10/9/07	CRT
Styrene	<20	ug/kg dry		10/9/07	CRT
tert-Butylbenzene	<20	ug/kg dry		10/9/07	CRT
Tetrachloroethene	<20	ug/kg dry		10/9/07	CRT
Toluene	<20	ug/kg dry		10/9/07	CRT
trans-1,2-Dichloroethene	<20	ug/kg đry		10/9/07	CRT
trans-1,3-Dichloropropene	<20	ug/kg dry		10/9/07	CRT
Trichloroethene	<20	ug/kg dry		10/9/07	CRT
Trichlorofluoromethane (Freon 11)	<20	ug/kg dry		10/9/07	CRT
Vinyl chloride	<20	ug/kg dry		10/9/07	CRT
Xylenes (Total)	<20	ug/kg dry		10/9/07	CRT
Surrogate (1,2-DCA-d4)	120	%R		10/9/07	CRT
Surrogate (4-BFB)	167	%R		10/9/07	CRT
Surrogate (Tol-d8)	126	%R		10/9/07	CRT
Total Solids @ 103-105 C	84	%	b have been estimated	10/8/07	CRT

An internal standard response for this analysis was outside our established control limits. Reported results have been estimated. Elevated detection limit due to matrix interference.

Page 17 of 39

East Syracuse, NY Life Science Laboratories, Inc.

FD-092707 Sample ID:

LSL Sample ID:

0717315-009

Location:

0710001-009A

Sampled:

09/27/07 0:00

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

nalytical Method	Result	Units	Prep Date	Analysis Date & Time	Analys Initial
Analyte		Omts	Date	27110 - 2 11110	-2100-01
EPA 8260B Volatiles	-20	المسائدة المسائدة		10/9/07	CR.
1,1,1,2-Tetrachloroethane	<20	ug/kg dry		10/9/07	CR'
1,1,1-Trichloroethane	<20	ug/kg dry		10/9/07	CR'
1,1,2,2-Tetrachloroethane	<20	ug/kg dry			CR'
1,1,2-Trichloroethane	<20	ug/kg dry		10/9/07	CR'
1,1-Dichloroethane	<20	ug/kg dry		10/9/07	
1,1-Dichloroethene	<20	ug/kg dry		10/9/07	CR
1,1-Dichloropropene	<20	ug/kg dry		10/9/07	CR
1,2,3-Trichlorobenzene	<20	ug/kg dry		10/9/07	CR
1,2,3-Trichloropropane	<20	ug/kg dry		10/9/07	CR
1,2,4-Trichlorobenzene	<20	ug/kg dry		10/9/07	CR
1,2,4-Trimethylbenzene	<20	ug/kg dry		10/9/07	CR
1,2-Dibromo-3-chloropropane	<20	ug/kg dry		10/9/07	CR
1,2-Dibromoethane(EDB)	<20	ug/kg dry		10/9/07	CR
1,2-Dichlorobenzene	<20	ug/kg dry		10/9/07	CR
1,2-Dichloroethane	<20	ug/kg dry		10/9/07	CF
1,2-Dichloropropane	<20	ug/kg dry		10/9/07	CF
1,3,5-Trimethylbenzene	<20	ug/kg dry		10/9/07	CF
1,3-Dichlorobenzene	<20	ug/kg dry		10/9/07	CF
1,3-Dichloropropane	<20	ug/kg dry		10/9/07	CF
1,4-Dichlorobenzene	<20	ug/kg dry		10/9/07	CF
2,2-Dichloropropane	<20	ug/kg dry		10/9/07	CI
2-Chlorotoluene	<20	ug/kg dry		10/9/07	Cl
4-Chlorotoluene	<20	ug/kg dry		10/9/07	CI
Benzene	<20	ug/kg dry		10/9/07	CH
Bromobenzene	<20	ug/kg dry		10/9/07	CI
Bromochloromethane	<20	ug/kg dry		10/9/07	CI
Bromodichloromethane	<20	ug/kg dry		10/9/07	CI
	<20	ug/kg dry		10/9/07	CI
Bromoform	<20	ug/kg dry		10/9/07	CI
Bromomethane	<20	ug/kg dry		10/9/07	CI
Carbon tetrachloride	<20	ug/kg dry		10/9/07	CI
Chlorobenzene	<20	ug/kg dry ug/kg dry		10/9/07	C
Chloroethane	<20	ug/kg dry ug/kg dry		10/9/07	CI
Chloroform				10/9/07	CI
Chloromethane	<20	ug/kg dry		10/9/07	CI
cis-1,2-Dichloroethene	<20	ug/kg dry		10/9/07	CI
cis-1,3-Dichloropropene	<20	ug/kg dry		10/9/07	CI
Dibromochloromethane	<20	ug/kg dry			CI
Dibromomethane	<20	ug/kg dry		10/9/07	
Dichlorodifluoromethane	<20	ug/kg dry		10/9/07	Cl
Ethyl benzene	<20	ug/kg dry		10/9/07	CI
Hexachlorobutadiene	<20	ug/kg dry		10/9/07	CI
Isopropylbenzene (Cumene)	<20	ug/kg dry		10/9/07	Cl
MTBE	<20	ug/kg dry		10/9/07	Cl
Methylene chloride	<20	ug/kg dry		10/9/07	Cl
n-Butylbenzene	<20	ug/kg dry		10/9/07	Cl
n-Propylbenzene	<20	ug/kg dry		10/9/07	Cl
Naphthalene	<20	ug/kg dry		10/9/07	Cl

Page 18 of 39

Life Science Laboratories, Inc.

Date Printed:

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

FD-092707

LSL Sample ID:

0717315-009

Location:

0710001-009A

Sampled: 09/27/07 0:00

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	<u>Initials</u>
(1) EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	<20	ug/kg dry		10/9/07	CRT
sec-Butylbenzene	<20	ug/kg dry		10/9/07	CRT
Styrene	<20	ug/kg dry		10/9/07	CRT
tert-Butylbenzene	<20	ug/kg dry		10/9/07	CRT
Tetrachloroethene	<20	ug/kg dry		10/9/07	CRT
Toluene	<20	ug/kg dry		10/9/07	CRT
trans-1,2-Dichloroethene	<20	ug/kg đry		10/9/07	CRT
trans-1,3-Dichloropropene	<20	ug/kg dry		10/9/07	CRT
Trichloroethene	<20	ug/kg đry		10/9/07	CRT
Trichlorofluoromethane (Freon 11)	<20	ug/kg đry		10/9/07	CRT
Vinyl chloride	<20	ug/kg dry		10/9/07	CRT
Xylenes (Total)	<20	ug/kg đry		10/9/07	CRT
Surrogate (1,2-DCA-d4)	128	%R		10/9/07	CRT
Surrogate (4-BFB)	155	%R		10/9/07	CRT
Surrogate (Tol-d8)	119	%R		10/9/07	CRT
Total Solids @ 103-105 C	85	%	. I b	10/8/07	CRT

An internal standard response for this analysis was outside our established control limits. Reported results have been estimated. Elevated detection limit due to matrix interference.

Page 19 of 39

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

SB-02 (2-4) - 092707

LSL Sample ID:

0717315-010

Location:

0710001-010A

Sampled:

09/27/07 13:47

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method Analyte	Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
(1) EPA 8260B Volatiles	<u>.                                      </u>				
1,1,1,2-Tetrachloroethane	<20	ug/kg dry		10/6/07	CRT
1,1,1-Trichloroethane	<20	ug/kg dry		10/6/07	CRT
1,1,2,2-Tetrachloroethane	<20	ug/kg dry		10/6/07	CRT
1,1,2-Trichloroethane	<20	ug/kg dry		10/6/07	CRT
1,1-Dichloroethane	<20	ug/kg dry		10/6/07	CRT
1,1-Dichloroethene	<20	ug/kg dry		10/6/07	CRT
1,1-Dichloropropene	<20	ug/kg dry		10/6/07	CRT
1,2,3-Trichlorobenzene	<20	ug/kg dry		10/6/07	CRT
1,2,3-Trichloropropane	<20	ug/kg dry		10/6/07	CRT
1,2,4-Trichlorobenzene	<20	ug/kg dry		10/6/07	CRT
1,2,4-Trimethylbenzene	<20	ug/kg dry		10/6/07	CRT
1,2-Dibromo-3-chloropropane	<20	ug/kg dry		10/6/07	CRT
1,2-Dibromoethane(EDB)	<20	ug/kg dry		10/6/07	CRT
1,2-Dichlorobenzene	<20	ug/kg dry		10/6/07	CRT
1,2-Dichloroethane	<20	ug/kg dry		10/6/07	CRT
,	<20	ug/kg dry		10/6/07	CRT
1,2-Dichloropropane	<20	ug/kg dry		10/6/07	CRT
1,3,5-Trimethylbenzene	<20	ug/kg dry		10/6/07	CRT
1,3-Dichlorobenzene	<20	ug/kg dry		10/6/07	CRT
1,3-Dichloropropane	<20	ug/kg dry		10/6/07	CRT
1,4-Dichlorobenzene	<20	ug/kg dry		10/6/07	CRT
2,2-Dichloropropane	<20	ug/kg dry		10/6/07	CRT
2-Chlorotoluene				10/6/07	CRT
4-Chlorotoluene	<20	ug/kg dry		10/6/07	CRT
Benzene	52	ug/kg dry		10/6/07	CRT
Bromobenzene	<20	ug/kg dry		10/6/07	CRT
Bromochloromethane	<20	ug/kg dry		10/6/07	CRT
Bromodichloromethane	<20	ug/kg dry		10/6/07	CRT
Bromoform	<20	ug/kg dry		10/6/07	CRT
Bromomethane	<20	ug/kg dry		10/6/07	CRT
Carbon tetrachloride	<20	ug/kg dry		10/6/07	CRT
Chlorobenzene	<20	ug/kg đry		10/6/07	CRT
Chloroethane	<20	ug/kg dry		10/6/07	CRT
Chloroform	<20	ug/kg dry		10/6/07	CRT
Chloromethane	<20	ug/kg dry		10/6/07	CRT
cis-1,2-Dichloroethene	1200	ug/kg dry			CRT
cis-1,3-Dichloropropene	<20	ug/kg dry		10/6/07	CRT
Dibromochloromethane	<20	ug/kg dry		10/6/07	CRT
Dibromomethanc	<20	ug/kg dry		10/6/07	CRT
Dichlorodifluoromethane	<20	ug/kg dry		10/6/07	
Ethyl benzene	<20	ug/kg dry		10/6/07	CRT CRT
Hexachlorobutadiene	<20	ug/kg dry		10/6/07	
Isopropylbenzene (Cumene)	<20	ug/kg dry		10/6/07	CRT
MTBE	<20	ug/kg dry		10/6/07	CRT
Methylene chloride	<20	ug/kg dry		10/6/07	CRT
n-Butylbenzene	<20	ug/kg dry		10/6/07	CRT
n-Propylbenzene	<20	ug/kg dry		10/6/07	CRT
Naphthalene	<20	ug/kg dry		10/6/07	CRT

Page 20 of 39

Life Science Laboratories, Inc. East Syracuse, NY

Sample ID: SB-02 (2-4) - 092707

LSL Sample ID:

0717315-010

Location:

0710001-010A

Sampled:

09/27/07 13:47

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method Analyte	Result	Units	Prep Date	Analysis Date & Time	Analyst Initi <u>als</u>
(I) EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	<20	ug/kg đry		10/6/07	CRT
sec-Butylbenzene	28	ug/kg dry		10/6/07	CRT
Styrene	<20	ug/kg dry		10/6/07	CRT
tert-Butylbenzene	<20	ug/kg dry		10/6/07	CRT
Tetrachloroethene	<20	ug/kg đry		10/6/07	CRT
Toluene	<20	ug/kg đry		10/6/07	CRT
trans-1,2-Dichloroethene	<20	ug/kg dry		10/6/07	CRT
trans-1,3-Dichloropropene	<20	ug/kg đry		10/6/07	CRT
Trichloroethene	37	ug/kg đry		10/6/07	CRT
Trichlorofluoromethane (Freon 11)	<20	ug/kg dry		10/6/07	CRT
Vinyl chloride	340	ug/kg đry		10/6/07	CRT
Xylenes (Total)	<20	ug/kg đry		10/6/07	CRT
Surrogate (1,2-DCA-d4)	107	%R		10/6/07	CRT
Surrogate (4-BFB)	113	%R		10/6/07	CRT
Surrogate (Tol-d8)	88	%R		10/6/07	CRT
Total Solids @ 103-105 C	81	%		10/8/07	CRT

Page 21 of 39

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

SB-02 (12-14) - 092707

LSL Sample ID:

0717315-011

Location:

0710001-011A

Sampled:

09/27/07 14:16

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method Analyte	Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
7) EPA 8260B Volatiles			·-		
1,1,2-Tetrachloroethane	<200	ug/kg dry		10/10/07	CRT
1,1,1-Trichloroethane	<200	ug/kg dry		10/10/07	CRT
1,1,2,2-Tetrachloroethane	<200	ug/kg dry		10/10/07	CRT
1,1,2-Trichloroethane	<200	ug/kg dry		10/10/07	CRT
1,1-Dichloroethane	<200	ug/kg dry		10/10/07	CRT
1,1-Dichloroethene	<200	ug/kg dry		10/10/07	CRT
1,1-Dichloropropene	<200	ug/kg đry		10/10/07	CRT
1,2,3-Trichlorobenzene	<200	ug/kg dry		10/10/07	CRT
1,2,3-Trichloropropane	<200	ug/kg dry		10/10/07	CRT
1,2,4-Trichlorobenzene	<200	ug/kg dry		10/10/07	CRT
1,2,4-Trimethylbenzene	<200	ug/kg dry		10/10/07	CRT
1,2-Dibromo-3-chloropropane	<200	ug/kg dry		10/10/07	CRT
1,2-Dibromoethane(EDB)	<200	ug/kg dry		10/10/07	CRT
1,2-Diolomoemane(EDB)	<200	ug/kg dry		10/10/07	CRT
1,2-Dichloroethane	<200	ug/kg dry		10/10/07	CRT
,	<200	ug/kg dry		10/10/07	CRT
1,2-Dichloropropane	<200	ug/kg dry		10/10/07	CRT
1,3,5-Trimethylbenzene	<200	ug/kg dry		10/10/07	CRT
1,3-Dichlorobenzene	<200	ug/kg dry		10/10/07	CRT
1,3-Dichloropropane	<200	ug/kg dry		10/10/07	CRT
1,4-Dichlorobenzene	<200	ug/kg dry		10/10/07	CRT
2,2-Dichloropropane	<200	ug/kg dry ug/kg dry		10/10/07	CRT
2-Chlorotoluene	<200			10/10/07	CRT
4-Chlorotoluene	<200	ug/kg dry		10/10/07	CRT
Benzene		ug/kg dry		10/10/07	CRT
Bromobenzene	<200	ug/kg dry		10/10/07	CRT
Bromochloromethane	<200	ug/kg dry		10/10/07	CRT
Bromodichloromethane	<200	ug/kg dry		10/10/07	CRT
Bromoform	<200	ug/kg dry		10/10/07	CRT
Bromomethane	<200	ug/kg dry		10/10/07	CRT
Carbon tetrachloride	<200	ug/kg dry		10/10/07	CRT
Chlorobenzene	<200	ug/kg dry		10/10/07	CRT
Chloroethane	<200	ug/kg dry		10/10/07	CRT
Chloroform	<200	ug/kg dry		10/10/07	CRT
Chloromethane	<200	ug/kg dry			CRT
cis-1,2-Dichloroethene	<200	ug/kg dry		10/10/07	CRT
cis-1,3-Dichloropropene	<200	ug/kg dry		10/10/07 10/10/07	CRT
Dibromochloromethane	<200	ug/kg dry			CRT
Dibromomethane	<200	ug/kg dry		10/10/07	CRT
Dichlorodifluoromethane	<200	ug/kg dry		10/10/07	CRT
Ethyl benzene	<200	ug/kg dry		10/10/07	
Hexachlorobutadiene	<200	ug/kg dry		10/10/07	CRT
Isopropylbenzene (Cumene)	<200	ug/kg dry		10/10/07	CRT
MTBE	<200	ug/kg dry		10/10/07	CRT
Methylene chloride	<200	ug/kg dry		10/10/07	CRT
n-Butylbenzene	<200	ug/kg dry		10/10/07	CRT
n-Propylbenzene	<200	ug/kg dry		10/10/07	CRT
Naphthalene	<200	ug/kg dry		10/10/07	CRT

Life Science Laboratories, Inc.

Date Printed:

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

SB-02 (12-14) - 092707

LSL Sample ID:

0717315-011

Location:

0710001-011A

Sampled:

09/27/07 14:16

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method Analyte	Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
(1) EPA 8260B Volatiles					<u> </u>
4-Isopropyl toluene (Cymene)	<200	ug/kg đry		10/10/07	CRT
sec-Butylbenzene	<200	ug/kg dry		10/10/07	CRT
Styrene	<200	ug/kg dry		10/10/07	CRT
tert-Butylbenzene	<200	ug/kg dry		10/10/07	CRT
Tetrachloroethene	<200	ug/kg dry		10/10/07	CRT
Toluene	<200	ug/kg dry		10/10/07	CRT
trans-1,2-Dichloroethene	<200	ug/kg dry		10/10/07	CRT
trans-1,3-Dichloropropene	<200	ug/kg dry		10/10/07	CRT
Trichloroethene	1500	ug/kg dry		10/10/07	CRT
Trichlorofluoromethane (Freon 11)	<200	ug/kg dry		10/10/07	CRT
Vinyl chloride	<200	ug/kg dry		10/10/07	CRT
Xylenes (Total)	<200	ug/kg dry		10/10/07	CRT
Surrogate (1,2-DCA-d4)	116	%R		10/10/07	CRT
Surrogate (4-BFB)	102	%R		10/10/07	CRT
Surrogate (Tol-d8)	86	%R		10/10/07	CRT
Total Solids @ 103-105 C	83	%		10/8/07	CRT

Page 23 of 39

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

SB-02 (20-22) - 092707

LSL Sample ID:

0717315-012

Location:

0710001-012A

Sampled:

09/27/07 14:35

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method Analyte	Result	Units	Prep Date	Analysis  Date & Time	Analyst Initials
(1) EPA 8260B Volatiles					
1,1,1,2-Tetrachloroethane	<200	ug/kg dry		10/10/07	CRT
1,1,1-Trichloroethane	<200	ug/kg dry		10/10/07	CRT
	<200	ug/kg dry		10/10/07	CRT
1,1,2,2-Tetrachloroethane	<200	ug/kg dry		10/10/07	CRT
1,1,2-Trichloroethane	<200	ug/kg dry ug/kg dry		10/10/07	CRT
1,1-Dichloroethane	<200	ug/kg dry		10/10/07	CRT
1,1-Dichloroethene	<200	ug/kg dry		10/10/07	CRT
1,1-Dichloropropene	<200	ug/kg dry		10/10/07	CRT
1,2,3-Trichlorobenzene	<200	ug/kg dry		10/10/07	CRT
1,2,3-Trichloropropane				10/10/07	CRT
1,2,4-Trichlorobenzene	<200	ug/kg dry		10/10/07	CRT
1,2,4-Trimethylbenzene	<200	ug/kg dry		10/10/07	CRT
1,2-Dibromo-3-chloropropane	<200	ug/kg dry		10/10/07	CRT
1,2-Dibromoethane(EDB)	<200	ug/kg dry		10/10/07	CRT
1,2-Dichlorobenzene	<200	ug/kg dry		10/10/07	CRT
1,2-Dichloroethane	<200	ug/kg dry			CRT
1,2-Dichloropropane	<200	ug/kg dry		10/10/07	CRT
1,3,5-Trimethylbenzene	<200	ug/kg dry		10/10/07	CRT
1,3-Dichlorobenzene	<200	ug/kg dry		10/10/07	
1,3-Dichloropropane	<200	ug/kg dry		10/10/07	CRT
1,4-Dichlorobenzene	<200	ug/kg đry		10/10/07	CRT
2,2-Dichloropropane	<200	ug/kg dry		10/10/07	CRT
2-Chlorotoluene	<200	ug/kg dry		10/10/07	CRT
4-Chlorotoluene	<200	ug/kg dry		10/10/07	CRT
Benzene	<200	ug/kg dry		10/10/07	CRT
Bromobenzene	<200	ug/kg dry		10/10/07	CRT
Bromochloromethane	<200	ug/kg dry		10/10/07	CRT
Bromodichloromethane	<200	ug/kg dry		10/10/07	CRT
Bromoform	<200	ug/kg dry		10/10/07	CRT
Bromomethane	<200	ug/kg dry		10/10/07	CRT
Carbon tetrachloride	<200	ug/kg dry		10/10/07	CRT
Chlorobenzene	<200	ug/kg dry		10/10/07	CRT
Chloroethane	<200	ug/kg dry		10/10/07	CRT
Chloroform	300	ug/kg dry		10/10/07	CRT
Chloromethane	<200	ug/kg dry		10/10/07	CRT
cis-1,2-Dichloroethene	<200	ug/kg dry		10/10/07	CRT
cis-1,3-Dichloropropene	<200	ug/kg dry		10/10/07	CRT
Dibromochloromethane	<200	ug/kg dry		10/10/07	CRT
Dibromomethane	<200	ug/kg dry		10/10/07	CRT
Dichlorodifluoromethane	<200	ug/kg dry		10/10/07	CRT
	<200	ug/kg dry		10/10/07	CRT
Ethyl benzene	<200	ug/kg dry		10/10/07	CRT
Hexachlorobutadiene	<200 <200	ug/kg dry		10/10/07	CRT
Isopropylbenzene (Cumene)				10/10/07	CRT
MTBE	<200	ug/kg dry		10/10/07	CRT
Methylene chloride	<200	ug/kg dry		10/10/07	CRT
n-Butylbenzene	<200	ug/kg dry		10/10/07	CRT
n-Propylbenzene	<200	ug/kg dry		10/10/07	CRT
Naphthalene	<200	ug/kg dry		10/10/07	CKI

Life Science Laboratories, Inc.

Page 24 of 39

Data Printade

Life Science Laboratories, Inc. East Syracuse, NY

Sample ID: SB-02 (20-22) - 092707

LSL Sample ID:

0717315-012

Location:

0710001-012A

Sampled:

09/27/07 14:35

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method		<u> </u>	Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
(I) EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	<200	ug/kg dry		10/10/07	CRT
sec-Butylbenzene	<200	ug/kg dry		10/10/07	CRT
Styrene	<200	ug/kg dry		10/10/07	CRT
tert-Butylbenzene	<200	ug/kg dry		10/10/07	CRT
Tetrachloroethene	<200	ug/kg dry		10/10/07	CRT
Toluene	<200	ug/kg dry		10/10/07	CRT
trans-1,2-Dichloroethene	<200	ug/kg dry		10/10/07	CRT
trans-1,3-Dichloropropene	<200	ug/kg dry		10/10/07	CRT
Trichloroethene	1800	ug/kg dry		10/10/07	CRT
Trichlorofluoromethane (Freon 11)	<200	ug/kg dry		10/10/07	CRT
Vinyl chloride	<200	ug/kg dry		10/10/07	CRT
Xylenes (Total)	<200	ug/kg dry		10/10/07	CRT
Surrogate (1,2-DCA-d4)	121	%R		10/10/07	CRT
Surrogate (4-BFB)	100	%R		10/10/07	CRT
Surrogate (Tol-d8)	89	%R		10/10/07	CRT
Total Solids @ 103-105 C	92	%		10/8/07	CRT

Page 25 of 39

East Syracuse, NY Life Science Laboratories, Inc.

Sample ID: SB-02 (24-26) - 092707 LSL Sample ID:

0717315-013

Location:

0710001-013A

Sampled:

09/27/07 14:39

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

nalytical Method Analyte	Result	Units	Prep Date	Analysis Date & Time	Analys <u>Initial</u>
EPA 8260B Volatiles					
1,1,1,2-Tetrachloroethane	<30	ug/kg dry		10/9/07	CR'
1,1,1-Trichloroethane	<30	ug/kg dry		10/9/07	CR
1,1,2,2-Tetrachloroethane	<30	ug/kg dry		10/9/07	CR'
1,1,2-Trichloroethane	<30	ug/kg dry		10/9/07	CR'
1,1-Dichloroethane	<30	ug/kg dry		10/9/07	CR.
1.1-Dichloroethene	<30	ug/kg dry		10/9/07	CR
1,1-Dichloropropene	<30	ug/kg đry		10/9/07	CR
1,2,3-Trichlorobenzene	<30	ug/kg dry		10/9/07	CR
1,2,3-Trichloropropane	<30	ug/kg dry		10/9/07	CR
1,2,4-Trichlorobenzene	<30	ug/kg dry		10/9/07	CR
1,2,4-Trientrobenzene	<30	ug/kg dry		10/9/07	CR
1,2-Dibromo-3-chloropropane	<30	ug/kg dry		10/9/07	CR
1,2-Dibromoethane(EDB)	<30	ug/kg dry		10/9/07	CF
	<30	ug/kg dry		10/9/07	CF
1,2-Dichlorobenzene	<30	ug/kg dry		10/9/07	CF
1,2-Dichloroethane	<30	ug/kg dry		10/9/07	CI
1,2-Dichloropropane	<30	ug/kg dry		10/9/07	CI
1,3,5-Trimethylbenzene	<30	ug/kg dry		10/9/07	CI
1,3-Dichlorobenzene	<30	ug/kg dry		10/9/07	Cl
1,3-Dichloropropane	<30	ug/kg dry		10/9/07	Cl
1,4-Dichlorobenzene	<30	ug/kg dry ug/kg dry		10/9/07	C
2,2-Dichloropropane	<30			10/9/07	CI
2-Chlorotoluene		ug/kg dry		10/9/07	C
4-Chlorotoluene	<30	ug/kg dry		10/9/07	C
Benzene	<30	ug/kg dry		10/9/07	C
Bromobenzenc	<30	ug/kg dry		10/9/07	Cl
Bromochloromethane	<30	ug/kg dry		10/9/07	C:
Bromodichloromethane	<30	ug/kg dry		10/9/07	C.
Bromoform	<30	ug/kg dry			C
Bromomethane	<30	ug/kg dry		10/9/07	C
Carbon tetrachloride	<30	ug/kg dry		10/9/07	
Chlorobenzene	<30	ug/kg dry		10/9/07	C
Chloroethane	<30	ug/kg dry		10/9/07	C
Chloroform	<30	ug/kg dry		10/9/07	С
Chloromethane	<30	ug/kg dry		10/9/07	C
cis-1,2-Dichloroethene	<30	ug/kg dry		10/9/07	С
cis-1,3-Dichloropropene	<30	ug/kg dry		10/9/07	C
Dibromochloromethane	<30	ug/kg dry		10/9/07	C
Dibromomethane	<30	ug/kg dry		10/9/07	C
Dichlorodifluoromethane	<30	ug/kg dry		10/9/07	C
Ethyl benzene	<30	ug/kg dry		10/9/07	C
Hexachlorobutadiene	<30	ug/kg dry		10/9/07	C
Isopropylbenzene (Cumene)	<30	ug/kg dry		10/9/07	C
MTBE	<30	ug/kg dry		10/9/07	C
Methylene chloride	<30	ug/kg dry		10/9/07	C
n-Butylbenzene	<30	ug/kg dry		10/9/07	С
n-Propylbenzene	<30	ug/kg dry		10/9/07	C
Naphthalene	<30	ug/kg dry		10/9/07	C

Life Science Laboratories, Inc.

Date Printed:

Life Science Laboratories, Inc. East Syracuse, NY

Sample ID: SB-02 (24-26) - 092707 LSL Sample ID: 0717315-013

**Location:** 0710001-013A

Sampled: 09/27/07 14:39 Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	<u>Units</u>	Date	Date & Time	Initials
(1) EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	<30	ug/kg dry		10/9/07	CRT
sec-Butylbenzene	<30	ug/kg dry		10/9/07	CRT
Styrene	<30	ug/kg dry		10/9/07	CRT
tert-Butylbenzene	<30	ug/kg dry		10/9/07	CRT
Tetrachloroethene	<30	ug/kg dry		10/9/07	CRT
Toluene	<30	ug/kg dry		10/9/07	CRT
trans-1,2-Dichloroethene	<30	ug/kg dry		10/9/07	CRT
trans-1,3-Dichloropropene	<30	ug/kg dry		10/9/07	CRT
Trichloroethene	59	ug/kg dry		10/9/07	CRT
Trichlorofluoromethane (Freon 11)	<30	ug/kg dry		10/9/07	CRT
Vinyl chloride	<30	ug/kg dry		10/9/07	CRT
Xylenes (Total)	<30	ug/kg dry		10/9/07	CRT
Surrogate (1,2-DCA-d4)	113	%R		10/9/07	CRT
Surrogate (4-BFB)	120	%R		10/9/07	CRT
Surrogate (Tol-d8)	99	%R		10/9/07	CRT
Total Solids @ 103-105 C	87	%		10/8/07	CRT

An internal standard response for this analysis was outside our established control limits. Reported results have been estimated. Elevated detection limit due to matrix interference.

Page 27 of 39

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

SB-05 (2-4) - 092807

LSL Sample ID:

0717315-014

Location:

0710001-014A

Sampled:

09/28/07 8:40

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

nalytical Method  Analyte	Result	Units	Prep Date	Analysis  Date & Time	Analys Initial
EPA 8260B Volatiles			<del></del>		
1,1,1,2-Tetrachloroethane	<2	ug/kg dry		10/9/07	CR
1,1,1-Trichloroethane	<2	ug/kg dry		10/9/07	CR
1,1,2,2-Tetrachloroethane	<2	ug/kg dry		10/9/07	CR
1,1,2-Trichloroethane	<2	ug/kg dry		10/9/07	CR'
1.1-Dichloroethane	<2	ug/kg dry		10/9/07	CR
1,1-Dichloroethene	<2	ug/kg dry		10/9/07	CR'
1,1-Dichloropropene	<2	ug/kg dry		10/9/07	CR'
1,2,3-Trichlorobenzene	<2	ug/kg dry		10/9/07	CR
1,2,3-Trichloropropane	<2	ug/kg dry		10/9/07	CR
1,2,4-Trichlorobenzene	<2	ug/kg dry		10/9/07	CR
1,2,4-Trimethylbenzene	<2	ug/kg dry		10/9/07	CR
1,2-Dibromo-3-chloropropane	<2	ug/kg dry		10/9/07	CR
1,2-Dibromoethane(EDB)	<2	ug/kg dry		10/9/07	CR
1,2-Dichlorobenzene	<2	ug/kg dry		10/9/07	CR
1,2-Dichloroethane	<2	ug/kg dry		10/9/07	CR
1,2-Dichloropropane	<2	ug/kg dry		10/9/07	CR
1,3,5-Trimethylbenzene	<2	ug/kg dry		10/9/07	CR
1,3-Dichlorobenzene	<2	ug/kg dry		10/9/07	CR
1,3-Dichloropropane	<2	ug/kg dry		10/9/07	CR
1,4-Dichlorobenzene	<2	ug/kg dry		10/9/07	CR
2,2-Dichloropropane	<2	ug/kg đry		10/9/07	CR
2-Chlorotoluene	<2	ug/kg dry		10/9/07	CR
4-Chlorotoluene	<2	ug/kg dry		10/9/07	CR
Benzene	<2	ug/kg dry		10/9/07	CR
Bromobenzene	<2	ug/kg dry		10/9/07	CR
Bromochloromethane	<2	ug/kg dry		10/9/07	CR
Bromodichloromethane	<2	ug/kg dry		10/9/07	CR
Bromoform	<2	ug/kg dry		10/9/07	CF
Bromomethane	<2	ug/kg dry		10/9/07	CF
Carbon tetrachloride	<2	ug/kg dry		10/9/07	CR
Chlorobenzene	<2	ug/kg dry		10/9/07	CF
Chloroethane	<2	ug/kg dry		10/9/07	CF
Chloroform	<2	ug/kg dry		10/9/07	CR
Chloromethane	<2	ug/kg dry		10/9/07	CR
cis-1,2-Dichloroethene	<2	ug/kg dry		10/9/07	CR
cis-1,3-Dichloropropene	<2	ug/kg dry		10/9/07	CF
Dibromochloromethane	<2	ug/kg dry		10/9/07	CF
Dibromomethane	<2	ug/kg dry		10/9/07	CF
Dichlorodifluoromethane	<2	ug/kg dry		10/9/07	CF
Ethyl benzene	<2	ug/kg dry		10/9/07	CF
Hexachlorobutadiene	<2	ug/kg dry		10/9/07	CF
Isopropylbenzene (Cumene)	<2	ug/kg dry		10/9/07	CF
MTBE	<2	ug/kg dry		10/9/07	CF
Methylene chloride	<2	ug/kg dry		10/9/07	CF
n-Butylbenzene	<2	ug/kg dry		10/9/07	CF
n-Propylbenzene	<2	ug/kg dry		10/9/07	CF
Naphthalene	<2	ug/kg dry		10/9/07	CF

Life Science Laboratories, Inc.

Page 28 of 39

Date Printed:

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

SB-05 (2-4) - 092807

LSL Sample ID:

0717315-014

Location:

0710001-014A

Sampled:

09/28/07 8:40

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method	Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
Analyte	Kesuit	Omto			
(1) EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	<2	ug/kg dry		10/9/07	CRT
sec-Butylbenzene	<2	ug/kg dry		10/9/07	CRT
Styrene	<2	ug/kg dry		10/9/07	CRT
tert-Butylbenzene	<2	ug/kg dry		10/9/07	CRT
Tetrachloroethene	<2	ug/kg dry		10/9/07	CRT
Toluene	<2	ug/kg dry		10/9/07	CRT
trans-1,2-Dichloroethene	<2	ug/kg đry		10/9/07	CRT
trans-1,3-Dichloropropene	<2	ug/kg dry		10/9/07	CRT
Trichloroethene	<2	ug/kg dry		10/9/07	CRT
Trichlorofluoromethane (Freon 11)	<2	ug/kg dry		10/9/07	CRT
Vinyl chloride	<2	ug/kg dry		10/9/07	CRT
Xylenes (Total)	<2	ug/kg dry		10/9/07	CRT
Surrogate (1,2-DCA-d4)	108	%R		10/9/07	CRT
Surrogate (4-BFB)	100	%R		10/9/07	CRT
Surrogate (Tol-d8)	89	%R		10/9/07	CRT
Total Solids @ 103-105 C	82	%		10/8/07	CRT

Page 29 of 39

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

SB-05 (10-12) - 092807

LSL Sample ID:

0717315-015

Location:

0710001-015A

Sampled:

09/28/07 9:00

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method Analyte	Result	Units	Prep Date	Analysis  Date & Time	Analyst Initials
D EPA 8260B Volatiles	<u> </u>				
1,1,1,2-Tetrachloroethane	<2	ug/kg dry		10/9/07	CRT
1,1,1-Trichloroethane	<2	ug/kg dry		10/9/07	CRT
1,1,2,2-Tetrachloroethane	<2	ug/kg dry		10/9/07	CRT
1,1,2-Trichloroethane	<2	ug/kg dry		10/9/07	CRT
1,1-Dichloroethane	<2	ug/kg dry		10/9/07	CRT
1,1-Dichloroethene	<2	ug/kg dry		10/9/07	CRT
1,1-Dichloropropene	<2	ug/kg dry		10/9/07	CRT
1,2,3-Trichlorobenzene	<2	ug/kg dry		10/9/07	CRT
1,2,3-Trichloropropane	<2	ug/kg dry		10/9/07	CRT
1,2,4-Trichlorobenzene	<2	ug/kg dry		10/9/07	CRT
1,2,4-Trimethylbenzene	<2	ug/kg dry		10/9/07	CRT
1,2-Dibromo-3-chloropropane	<2	ug/kg dry		10/9/07	CRT
1,2-Dibromoethane(EDB)	<2	ug/kg đry		10/9/07	CRT
1,2-Dichlorobenzene	<2	ug/kg dry		10/9/07	CRT
1,2-Dichloroethane	<2	ug/kg dry		10/9/07	CR7
1,2-Dichloropropane	<2	ug/kg dry		10/9/07	CR'
1,3,5-Trimethylbenzene	<2	ug/kg dry		10/9/07	CR7
1,3-Dichlorobenzene	<2	ug/kg dry		10/9/07	CR ²
1,3-Dichloropropane	<2	ug/kg dry		10/9/07	CR'
1,4-Dichlorobenzene	<2	ug/kg dry		10/9/07	CR'
•	<2	ug/kg dry		10/9/07	CR.
2,2-Dichloropropane 2-Chlorotolucne	<2	ug/kg dry		10/9/07	CR'
	<2	ug/kg dry		10/9/07	CR'
4-Chlorotoluene	<2	ug/kg đry		10/9/07	CR
Benzene	<2	ug/kg dry		10/9/07	CR
Bromobenzene	<2	ug/kg dry		10/9/07	CR'
Bromochloromethane	<2	ug/kg dry		10/9/07	CR'
Bromodichloromethane	<2	ug/kg dry		10/9/07	CR'
Bromoform	<2	ug/kg dry		10/9/07	CR'
Bromomethane	<2	ug/kg dry		10/9/07	CR'
Carbon tetrachloride	<2	ug/kg dry		10/9/07	CR
Chlorobenzene	<2	ug/kg dry		10/9/07	CR'
Chloroethane	<2	ug/kg dry		10/9/07	CR'
Chloroform	<2	ug/kg dry ug/kg dry		10/9/07	CR
Chloromethane	<2	ug/kg dry ug/kg dry		10/9/07	CR'
cis-1,2-Dichloroethene				10/9/07	CR'
cis-1,3-Dichloropropene	<2	ug/kg dry		10/9/07	CR
Dibromochloromethane	<2	ug/kg dry		10/9/07	CR'
Dibromomethane	<2	ug/kg dry		10/9/07	CR'
Dichlorodifluoromethane	<2	ug/kg dry		10/9/07	CR:
Ethyl benzene	<2	ug/kg dry		10/9/07	CR
Hexachlorobutadiene	<2	ug/kg dry		10/9/07	CR
Isopropylbenzene (Cumene)	<2	ug/kg dry		10/9/07	CR
MTBE	<2	ug/kg dry		10/9/07	CR
Methylene chloride	<2	ug/kg dry			CR
n-Butylbenzene	<2	ug/kg đry		10/9/07	CR CR
n-Propylbenzene	<2	ug/kg đry		10/9/07	
Naphthalene	<2	ug/kg dry		10/9/07	CR

Life Science Laboratories, Inc.

Page 30 of 39

Date Printed:

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

SB-05 (10-12) - 092807

LSL Sample ID:

0717315-015

Location:

0710001-015A

Sampled:

09/28/07 9:00

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	<u>Date</u>	Date & Time	Initials
(1) EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	<2	ug/kg dry		10/9/07	CRT
sec-Butylbenzene	<2	ug/kg đry		10/9/07	CRT
Styrene	<2	ug/kg đry		10/9/07	CRT
tert-Butylbenzene	<2	ug/kg đry		10/9/07	CRT
Tetrachloroethene	<2	ug/kg đry		10/9/07	CRT
Toluene	<2	ug/kg đry		10/9/07	CRT
trans-1,2-Dichloroethene	<2	ug/kg đry		10/9/07	CRT
trans-1,3-Dichloropropene	<2	ug/kg đry		10/9/07	CRT
Trichloroethene	3.5	ug/kg dry		10/9/07	CRT
Trichlorofluoromethane (Freon 11)	<2	ug/kg đry		10/9/07	CRT
Vinyl chloride	<2	ug/kg dry		10/9/07	CRT
Xylenes (Total)	<2	ug/kg dry		10/9/07	CRT
Surrogate (1,2-DCA-d4)	108	%R		10/9/07	CRT
Surrogate (4-BFB)	112	%R		10/9/07	CRT
Surrogate (Tol-d8)	97	%R		10/9/07	CRT
Total Solids @ 103-105 C	81	%		10/8/07	CRT

Page 31 of 39

Life Science Laboratories, Inc. East Syracuse, NY

Sample ID: SB-05 (20-22) - 092807

LSL Sample ID:

0717315-016

Location:

0710001-016A

Sampled: 09/

09/28/07 9:29

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method  Analyte	Result	Units	Prep Date	Analysis  Date & Time	Analyst Initials
(1) EPA 8260B Volatiles	<u> </u>			<u>.</u>	
1,1,1,2-Tetrachloroethane	<20	ug/kg dry		10/9/07	CRT
1,1,1-Trichloroethane	<20	ug/kg dry		10/9/07	CRT
1,1,2,2-Tetrachloroethane	<20	ug/kg dry		10/9/07	CRT
1,1,2-Trichloroethane	<20	ug/kg dry		10/9/07	CRT
1,1-Dichloroethane	<20	ug/kg dry		10/9/07	CRT
1,1-Dichloroethene	<20	ug/kg dry		10/9/07	CRT
1,1-Dichloropropene	<20	ug/kg dry		10/9/07	CRT
1,2,3-Trichlorobenzenc	<20	ug/kg dry		10/9/07	CRT
1,2,3-Trichloropropane	<20	ug/kg dry		10/9/07	CRT
1,2,4-Trichlorobenzene	<20	ug/kg dry		10/9/07	CRT
	<20	ug/kg dry		10/9/07	CRT
1,2,4-Trimethylbenzene	<20	ug/kg dry		10/9/07	CRT
1,2-Dibromo-3-chloropropane	<20	ug/kg dry		10/9/07	CRT
1,2-Dibromoethane(EDB)	<20	ug/kg dry		10/9/07	CRT
1,2-Dichlorobenzene	<20	ug/kg dry		10/9/07	CRT
1,2-Dichloroethane	<20	ug/kg dry		10/9/07	CRT
1,2-Dichloropropane	<20	ug/kg dry		10/9/07	CRT
1,3,5-Trimethylbenzene	<20			10/9/07	CRT
1,3-Dichlorobenzene	<20	ug/kg dry		10/9/07	CRT
1,3-Dichloropropane	<20	ug/kg dry		10/9/07	CRT
1,4-Dichlorobenzene		ug/kg dry		10/9/07	CRT
2,2-Dichloropropane	<20	ug/kg dry		10/9/07	CRT
2-Chlorotoluene	<20	ug/kg dry		10/9/07	CRT
4-Chlorotoluene	<20	ug/kg dry		10/9/07	CRT
Benzene	<20	ug/kg dry		10/9/07	CRT
Bromobenzene	<20	ug/kg dry		10/9/07	CRT
Bromochloromethane	<20	ug/kg dry		10/9/07	CRT
Bromodichloromethane	<20	ug/kg dry		10/9/07	CRT
Bromoform	<20	ug/kg dry		10/9/07	CRT
Bromomethane	<20	ug/kg dry		10/9/07	CRT
Carbon tetrachloride	<20	ug/kg dry		10/9/07	CRT
Chlorobenzene	<20	ug/kg đry		10/9/07	CRT
Chloroethane	<20	ug/kg dry		10/9/07	CRT
Chloroform	<20	ug/kg dry			CRT
Chloromethane	<20	ug/kg dry		10/9/07	
cis-1,2-Dichloroethene	<20	ug/kg dry		10/9/07	CRT
cis-1,3-Dichloropropene	<20	ug/kg dry		10/9/07	CRT
Dibromochloromethane	<20	ug/kg dry		10/9/07	CRT
Dibromomethane	<20	ug/kg dry		10/9/07	CRT
Dichlorodifluoromethane	<20	ug/kg dry		10/9/07	CRT
Ethyl benzene	<20	ug/kg dry		10/9/07	CRT
Hexachlorobutadiene	<20	ug/kg dry		10/9/07	CRT
Isopropylbenzene (Cumene)	<20	ug/kg dry		10/9/07	CRT
MTBE	<20	ug/kg dry		10/9/07	CRT
Methylene chloride	<20	ug/kg đry		10/9/07	CRT
n-Butylbenzene	<20	ug/kg đry		10/9/07	CRT
n-Propylbenzene	<20	ug/kg dry		10/9/07	CRT
Naphthalene	<20	ug/kg dry		10/9/07	CRT

Page 32 of 39

Life Science Laboratories, Inc.

Date Printed:

#### -- LABORATORY ANALYSIS REPORT --

Life Science Laboratories, Inc. East Syracuse, NY

Sample ID: SB-05 (20-22) - 092807

LSL Sample ID:

0717315-016

Location:

0710001-016A

Sampled: 09/28/07 9:29

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

		Prep	Analysis	Analyst
Result	<u>Units</u>	Date	Date & Time	Initials
<20	ug/kg dry		10/9/07	CRT
<20	ug/kg dry		10/9/07	CRT
<20	ug/kg dry		10/9/07	CRT
<20	ug/kg dry		10/9/07	CRT
<20	ug/kg dry		10/9/07	CRT
<20	ug/kg dry		10/9/07	CRT
<20	ug/kg dry		10/9/07	CRT
<20	ug/kg dry		10/9/07	CRT
<20	ug/kg dry		10/9/07	CRT
<20	ug/kg dry		10/9/07	CRT
<20	ug/kg dry		10/9/07	CRT
<20	ug/kg dry		10/9/07	CRT
119	%R		10/9/07	CRT
122	%R		10/9/07	CRT
108	%R		10/9/07	CRT
76	%		10/8/07	CRT
	<20 <20 <20 <20 <20 <20 <20 <20 <20 <20	<20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <10 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <20 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <10 ug/kg dry <1	Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calcarate   Calc	Result         Units         Date         Date & Time           <20

An internal standard response for this analysis was outside our established control limits. Reported results have been estimated. Elevated detection limit due to matrix interference.

Page 33 of 39

#### -- LABORATORY ANALYSIS REPORT --

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

SB-05 (30-32) - 092807

LSL Sample ID:

0717315-017

Location:

0710001-017A

Sampled:

09/28/07 9:57

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

nalytical Method  Analyte	Result	Units	Prep <u>Date</u>	Analysis Date & Time	Analys Initial
EPA 8260B Volatiles			,		
1,1,1,2-Tetrachloroethane	<20	ug/kg dry		10/9/07	CR
1,1,1-Trichloroethane	<20	ug/kg dry		10/9/07	CR
	<20	ug/kg dry		10/9/07	ÇR
1,1,2,2-Tetrachloroethane	<20	ug/kg dry		10/9/07	CR
1,1,2-Trichloroethane	<20	ug/kg dry		10/9/07	CF
1,1-Dichloroethane	<20	ug/kg dry		10/9/07	CI
1,1-Dichloroethene	<20	ug/kg dry		10/9/07	CI
1,1-Dichloropropene	<20	ug/kg dry		10/9/07	Cl
1,2,3-Trichlorobenzene	<20	ug/kg dry		10/9/07	Cl
1,2,3-Trichloropropane	<20	ug/kg dry		10/9/07	CI
1,2,4-Trichlorobenzene	<20	ug/kg dry		10/9/07	C
1,2,4-Trimethylbenzene	<20	ug/kg dry		10/9/07	C
1,2-Dibromo-3-chloropropane				10/9/07	Cl
1,2-Dibromoethane(EDB)	<20	ug/kg dry ug/kg dry		10/9/07	CI
1,2-Dichlorobenzene	<20	• -		10/9/07	C
1,2-Dichloroethane	<20 <20	ug/kg dry		10/9/07	C
1,2-Dichloropropane		ug/kg dry		10/9/07	C
1,3,5-Trimethylbenzene	<20	ug/kg dry		10/9/07	C
1,3-Dichlorobenzene	<20	ug/kg dry		10/9/07	C
1,3-Dichloropropane	<20	ug/kg dry		10/9/07	Č
1,4-Dichlorobenzene	<20	ug/kg dry		10/9/07	C
2,2-Dichloropropane	<20	ug/kg dry		10/9/07	C
2-Chlorotoluene	<20	ug/kg dry		10/9/07	C
4-Chlorotoluene	<20	ug/kg dry			C
Benzene	<20	ug/kg dry		10/9/07	C
Bromobenzene	<20	ug/kg dry		10/9/07	C
Bromochloromethane	<20	ug/kg dry		10/9/07	c
Bromodichloromethane	<20	ug/kg dry		10/9/07	c
Bromoform	<20	ug/kg dry		10/9/07	
Bromomethane	<20	ug/kg dry		10/9/07	C
Carbon tetrachloride	<20	ug/kg dry		10/9/07	C
Chlorobenzene	<20	ug/kg dry		10/9/07	C
Chloroethane	<20	ug/kg dry		10/9/07	C
Chloroform	<20	ug/kg dry		10/9/07	C
Chloromethane	<20	ug/kg dry		10/9/07	C
cis-1,2-Dichloroethene	<20	ug/kg dry		10/9/07	C
cis-1,3-Dichloropropene	<20	ug/kg dry		10/9/07	C
Dibromochloromethane	<20	ug/kg dry		10/9/07	C
Dibromomethane	<20	ug/kg dry		10/9/07	C
Dichlorodifluoromethane	<20	ug/kg dry		10/9/07	C
Ethyl benzene	<20	ug/kg dry		10/9/07	C
Hexachlorobutadiene	<20	ug/kg đry		10/9/07	C
Isopropylbenzene (Cumene)	<20			10/9/07	C
MTBE	<20			10/9/07	C
	<20			10/9/07	C
Methylene chloride	<20	-		10/9/07	C
n-Butylbenzene	<20			10/9/07	C
n-Propylbenzene Naphthalene	<20			10/9/07	C

Life Science Laboratories, Inc.

Date Printed:

10/11/07

#### -- LABORATORY ANALYSIS REPORT --

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

SB-05 (30-32) - 092807

LSL Sample ID:

0717315-017

Location:

0710001-017A

Sampled:

09/28/07 9:57

Sampled By: Client

Sample Matrix: SHW as Recd, Soil

Analytical Method		<u> </u>	Prep	Analysis	Analyst
Analyte	Result	Units	<u>Date</u>	Date & Time	<u>Initials</u>
(1) EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	<20	ug/kg dry		10/9/07	CRT
sec-Butylbenzene	<20	ug/kg dry		10/9/07	CRT
Styrene	<20	ug/kg dry		10/9/07	CRT
tert-Butylbenzene	<20	ug/kg dry		10/9/07	CRT
Tetrachloroethene	<20	ug/kg dry		10/9/07	CRT
Toluene	<20	ug/kg dry		10/9/07	CRT
trans-1,2-Dichloroethene	<20	ug/kg dry		10/9/07	CRT
trans-1,3-Dichloropropene	<20	ug/kg dry		10/9/07	CRT
Trichloroethene	<20	ug/kg dry		10/9/07	CRT
Trichlorofluoromethane (Freon 11)	<20	ug/kg dry		10/9/07	CRT
Vinyl chloride	<20	ug/kg dry		10/9/07	CRT
Xylenes (Total)	<20	ug/kg dry		10/9/07	CRT
Surrogate (1,2-DCA-d4)	123	%R		10/9/07	CRT
Surrogate (4-BFB)	130	%R		10/9/07	CRT
Surrogate (Tol-d8)	104	%R		10/9/07	CRT
Total Solids @ 103-105 C	83	%		10/8/07	CRT

An internal standard response for this analysis was outside our established control limits. Reported results have been estimated. Elevated detection limit due to matrix interference.

Page 35 of 39

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

LCS

LSL Sample ID:

0717315-018

Location:

Sampled:

09/28/07 0:00

Sampled By:

nmple Matrix: QC nalytical Method			Prep	Analysis Date & Time	Analys Initial
Analyte	Result	<u>Units</u>	<u>Date</u>	Date & Time	IIIII
EPA 8260B Volatiles				1010/07	CR'
1,1,1,2-Tetrachloroethane	105	%R		10/9/07	CR'
1,1,1-Trichloroethane	103	%R		10/9/07	CR'
1,1,2,2-Tetrachloroethane	92	%R		10/9/07	CR CR
1,1,2-Trichloroethane	105	%R		10/9/07	CR CR
1,1-Dichloroethane	98	%R	-	10/9/07	CR CR
1,1-Dichloroethene	96	%R		10/9/07	
1,1-Dichloropropene	102	%R		10/9/07	CR
1.2.3-Trichlorobenzene	114	%R		10/9/07	CF
1,2,3-Trichloropropane	97	%R		10/9/07	CR
1,2,4-Trichlorobenzene	107	%R		10/9/07	CF
1,2,4-Trimethylbenzene	106	%R		10/9/07	CF
1,2-Dibromo-3-chloropropane	101	%R		10/9/07	CF
1,2-Dibromoethane(EDB)	108	%R		10/9/07	CF
1,2-Dichlorobenzene	98	%R		10/9/07	CF
1,2-Dichloroethane	109	%R		10/9/07	CI
1,2-Dichloropropane	99	%R		10/9/07	CI
1,3,5-Trimethylbenzene	117	%R		10/9/07	CI
1,3-Dichlorobenzene	96	%R		10/9/07	Cl
1,3-Dichloropropane	103	%R		10/9/07	CI
1,4-Dichlorobenzene	97	%R		10/9/07	Cl
2,2-Dichloropropane	101	%R		10/9/07	Cl
2-Chlorotoluene	101	%R		10/9/07	C
4-Chlorotolucne	96	%R		10/9/07	C
	101	%R		10/9/07	C
Benzene	102	%R		10/9/07	C
Bromobenzenc	107	%R		10/9/07	C
Bromochloromethane	105	%R		10/9/07	C
Bromodichloromethane	110	%R		10/9/07	C
Bromoform	76	%R		10/9/07	C
Bromomethane	87	%R		10/9/07	C
Carbon tetrachloride	99	%R		10/9/07	C
Chlorobenzene	99	%R		10/9/07	C
Chloroethane	99	%R		10/9/07	C
Chloroform	109	%R		10/9/07	C
Chloromethane	102	%R		10/9/07	C
cis-1,2-Dichloroethene	99	%R		10/9/07	C
cis-1,3-Dichloropropene	110			10/9/07	C
Dibromochloromethane	101	%R		10/9/07	C
Dibromomethane	103			10/9/07	C
Dichlorodifluoromethane	96			10/9/07	C
Ethyl benzene	97			10/9/07	C
Hexachlorobutadiene				10/9/07	C
Isopropylbenzene (Cumene)	100			10/9/07	C
MTBE	95			10/9/07	C
Methylene chloride	94			10/9/07	(
n-Butylbenzene	107			10/9/07	
n-Propylbenzene	100			10/9/07	(
Naphthalene	131	%R		10/7/0/	Page 36 c

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

LCS

LSL Sample ID:

0717315-018

Location:

Sampled:

09/28/07 0:00

Sampled By:

QC Sample Matrix:

Analytical Method Analyte	Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
(1) EPA 8260B Volatiles		-			and.
4-Isopropyl toluene (Cymene)	100	%R		10/9/07	CRT
sec-Butylbenzene	94	%R		10/9/07	CRT
Styrene	100	%R		10/9/07	CRT
tert-Butylbenzene	101	%R		10/9/07	CRT
Tetrachloroethene	92	%R		10/9/07	CRT
<del>-</del>	98	%R		10/9/07	CRT
Toluene	98	%R		10/9/07	CRT
trans-1,2-Dichloroethene	120	%R		10/9/07	CRT
trans-1,3-Dichloropropene	98	%R		10/9/07	CRT
Trichlorocthene	101	%R		10/9/07	CRT
Trichlorofluoromethane (Freon 11)	110	%R		10/9/07	CRT
Vinyl chloride	100	%R		10/9/07	CRT
Xylenes (Total)	107	%R		10/9/07	CRT
Surrogate (1,2-DCA-d4)	95	%R		10/9/07	CRT
Surrogate (4-BFB)	100	%R		10/9/07	CRT
Surrogate (Tol-d8) Total Solids @ 103-105 C	100	%		10/8/07	CRT

10/19/07

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

Method Blank

LSL Sample ID:

0717315-019

Location:

Sampled:

09/28/07 0:00

Sampled By:

ample Matrix: QC nalytical Method		TF . *4.	Prep Date	Analysis Date & Time	Analyst Initials
Analyte	Result	Units	Date	Date to Time	
EPA 8260B Volatiles				10/9/07	CRT
1,1,1,2-Tetrachloroethane	<2	ug/kg dry		10/9/07	CRT
1,1,1-Trichloroethane	<2	ug/kg dry		10/9/07	CRT
1,1,2,2-Tetrachloroethane	<2	ug/kg dry		10/9/07	CRT
1,1,2-Trichloroethane	<2	ug/kg dry		10/9/07	CRT
1,1-Dichloroethane	<2	ug/kg dry		10/9/07	CRT
1,1-Dichloroethene	<2	ug/kg dry		10/9/07	CRT
1,1-Dichloropropene	<2	ug/kg dry			CRT
1,2,3-Trichlorobenzene	<2	ug/kg dry		10/9/07	CRT
1,2,3-Trichloropropane	<2	ug/kg dry		10/9/07	CRT
1,2,4-Trichlorobenzene	<2	ug/kg dry		10/9/07	CRT
1,2,4-Trimethylbenzene	<2	ug/kg dry		10/9/07	CRT
1,2-Dibromo-3-chloropropane	<2	ug/kg dry		10/9/07	CRT
1,2-Dibromoethane(EDB)	<2	ug/kg dry		10/9/07	CRT
1,2-Dichlorobenzene	<2	ug/kg dry		10/9/07	CRT
1,2-Dichloroethane	<2	ug/kg dry		10/9/07	CRI
1,2-Dichloropropane	<2	ug/kg dry		10/9/07	
1,3,5-Trimethylbenzene	<2	ug/kg dry		10/9/07	CR?
1.3-Dichlorobenzene	<2	ug/kg dry		10/9/07	CR ²
1,3-Dichloropropane	<2	ug/kg dry		10/9/07	CR'
1,4-Dichlorobenzene	<2	ug/kg dry		10/9/07	CR'
2,2-Dichloropropane	<2	ug/kg dry		10/9/07	CR'
2-Chlorotoluene	<2	ug/kg dry		10/9/07	CR'
4-Chlorotoluene	<2	ug/kg dry		10/9/07	CR
Benzene	<2	ug/kg dry		10/9/07	CR
Bromobenzene	<2	ug/kg dry		10/9/07	CR
Bromochloromethanc	<2	ug/kg dry		10/9/07	CR
Bromodichloromethane	<2	ug/kg dry		10/9/07	CR
	<2	ug/kg dry		10/9/07	CR
Bromoform	<2			10/9/07	CR
Bromomethane	<2			10/9/07	CR
Carbon tetrachloride	<2			10/9/07	CR
Chlorobenzene	<2			10/9/07	CF
Chloroethane	<			10/9/07	CF
Chloroform	<			10/9/07	CF
Chloromethane	<			10/9/07	CF
cis-1,2-Dichloroethene	<			10/9/07	CF
cis-1,3-Dichloropropenc	<			10/9/07	CF
Dibromochloromethane	<	_		10/9/07	CF
Dibromomethane	<			10/9/07	CF
Dichlorodifluoromethane	<	_		10/9/07	CI
Ethyl benzene	`			10/9/07	CI
Hexachlorobutadiene	<			10/9/07	CI
Isopropylbenzene (Cumene)	` <			10/9/07	CI
MTBE	<	·		10/9/07	C
Methylene chloride	<			10/9/07	C
n-Butylbenzene				10/9/07	C
n-Propylbenzene	<			10/9/07	C
Naphthalene	<	2 ug/kg dry			Page 38 of

Life Science Laboratories, Inc.

Date Printed:

10/19/07

Life Science Laboratories, Inc.

East Syracuse, NY

Sample ID:

Method Blank

LSL Sample ID:

0717315-019

Location:

Sampled:

09/28/07 0:00

Sampled By:

Sample Matrix: QC

Analytical Method  Analyte	Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
(I) EPA 8260B Volatiles					
4-Isopropyl toluene (Cymene)	<2	ug/kg dry		10/9/07	CRT
sec-Butylbenzene	<2	ug/kg dry		10/9/07	CRT
Styrene	<2	ug/kg dry		10/9/07	CRT
tert-Butylbenzene	<2	ug/kg dry		10/9/07	CRT
Tetrachloroethene	<2	ug/kg dry		10/9/07	CRT
	<2	ug/kg dry		10/9/07	CRT
Toluene	<2	ug/kg dry		10/9/07	CRT
trans-1,2-Dichloroethene	<2	ug/kg dry		10/9/07	CRT
trans-1,3-Dichloropropene	<2	ug/kg dry		10/9/07	CRT
Trichloroethene	<2	ug/kg dry		10/9/07	CRT
Trichlorofluoromethane (Freon 11)	<2	ug/kg dry		10/9/07	CRI
Vinyl chloride	<2	ug/kg dry		10/9/07	CRT
Xylenes (Total)	106	%R		10/9/07	CRI
Surrogate (1,2-DCA-d4)	100	%R		10/9/07	CRT
Surrogate (4-BFB)	92	%R		10/9/07	CR?
Surrogate (Tol-d8) Total Solids @ 103-105 C	100	%R %R		10/8/07	CR'

Page 39 of 39



#### SURROGATE RECOVERY CONTROL LIMITS FOR ORGANIC METHODS

<u>Method</u>	Surrogate(s)	Water <u>Limits, %R</u>	SHW <u>Limits, %R</u>
EPA 504	TCMX	80-120	NA
EPA 508	DCB	70-130	NA
EPA 515.4	DCAA	70-130	NA
EPA 524.2	1,2-DCA-d4, 4-BFB	80-120	NA
EPA 525.2	1,3-DM-2-NB, TPP, Per-d12	70-130	NA
EPA 526	1,3-DM-2-NB, TPP	70-130	NA
EPA 528	2-CP-3,4,5,6-d4, 2,4,6-TBP	70-130	NA
EPA 551.1	Decafluorobiphenyl	80-120	NA
EPA 552.2	2,3-DBPA	70-130	NA
EPA 601	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
EPA 602	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
EPA 608	TCMX, DCB	30-150	NA
EPA 624	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
EPA 625, AE	2-Fluorophenol	21-110	NA
EPA 625, AE	Phenol-d5	10-110	NA
EPA 625, AE	2,4,6-Tribromophenol	10-123	NA NA
EPA 625, BN	Nitrobenzene-d5	35-114	NA NA
EPA 625, BN	2-Fluorobiphenyl	43-116 33-141	NA NA
EPA 625, BN	Terphenyl-d14	33-141	IVA
EPA 8010	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8020	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8021	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8081	TCMX, DCB	30-150	30-150
EPA 8082	DCB	30-150	30-150
EPA 8151	DCAA	30-130	30-120
EPA 8260	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8270, AE	2-Fluorophenol	21-110	25-121
EPA 8270, AE	Phenol-d5	10-110	24-113
EPA 8270, AE	2,4,6-Tribromophenol	10-123	19-122
EPA 8270, BN	Nitrobenzene-d5	35-114	23-120
EPA 8270, BN	2-Fluorobiphenyl	43-116	30-115
EPA 8270, BN	Terphenyl-d14	33-141	18-137
DOH 310-13	Terphenyl-d14	40-110	40-110
DOH 310-14	Terphenyl-d14	40-110	40-110
DOH 310-15	Terphenyl-d14	40-110	40-110
DOH 310-34	4-BFB	50-150	50-150
DOH 313-4	DCB	NA	30-150
8015M GRO	4-BFB	50-150	50-150
8015M_DRO	Terphenyl-d14	50-150	50-150

Units Key:	ug/l = microgram per liter
	ug/kg = microgram per kilogram
	mg/l = milligram per liter
	mg/kg = milligram per kilogram
	%R = Percent Recovery

# CHAIN-OF-CUSTODY RECO

LSI BL

Life Science Laboratories, Inc. 5000 Brittonfield Parkway, Suite 200 East Syracuse, NY 13057 FAX: (315) 437-0377

Subcontractor:

TEL: (315) 437-0200

Life Science Laboratories, Inc. East Syracuse, NY 13057 5854 Butternut Drive

TEL: FAX:

Acct #:

01-Oct-07

					252	Requested Tests	
Client Sample ID	Sample ID	Matrix	Collection Date	<b>Bottle Type</b>	SW8260B		
SB-06 (2-4)-	0710001-001A	Soil	09/27/07 8:04	202	-		100
SB-06 (8-10)-	0710001-002A	Soil	09/27/07 8:27	20Z	-		602
SB-06 (22-24)-	0710001-003A	Soil	09/27/07 9:06	20Z	-		003
SB-06 (28-30)-	0710001-004A	Soil	09/27/07 9:24	202	-		,600 ,600
SB-01 (2-4)-	0710001-005A	Soil	09/27/07 12:20	20Z	-		500
SB-01 (10-12)- 092707	0710001-006A	Soil	09/27/07 12:36	20Z	-		000
SB-01 (18-20)-	0710001-007A	Soil	09/27/07 12:49	20Z	-		100
SB-01 (24-26)- 092707	0710001-008A	Soil	09/27/07 13:00	20Z	-		800
FD-092707	0710001-009A	Soil	09/27/07 0:00	20Z	-		600
SB-02 (2-4)- 092707	0710001-010A	Soil	09/27/07 13:47	20Z	7		010
SB-02 (12-14)-	0710001-011A	Soil	09/27/07 14:16	20Z	-		110

Comments:

Results due by 10/11, Please report parameter and RLs as per attached list. Send report in attention to Monika Santucci. Include our standard

EDD. Please include your LCS and method blank summary with the report.

Date/Time Relinquished by: Relinquished by:

Received by: Received by:

10-02-07 11:57 RCVD

04/1

Date/Time

5.6°C

## CHAIN-OF-CUSTODY REC

LSL BL

Life Science Laboratories, Inc. 5000 Brittonfield Parkway, Suite 200 East Syracuse, NY 13057

FAX: (315) 437-0377 TEL: (315) 437-0200

Subcontractor:

Life Science Laboratories, Inc.

East Syracuse, NY 13057 5854 Butternut Drive

Acct #: TEL:

01-Oct-07

					PCTS	Requested Tests	
Client Sample ID	Sample ID	Matrix	Collection Date	<b>Bottle Type</b>	SW8260B		013
SB-02 (20-22)- 092707	0710001-012A	Soil	09/27/07 14:35	20Z	7-		
SB-02 (24-26)- 092707	0710001-013A	Soil	09/27/07 14:39	20Z	~		013
SB-05 (2-4)- 09280718	0710001-014A	Soil	09/28/07 8:40	202	~		014
SB-05 (10-12)- 092807	0710001-015A	Soil	09/28/07 9:00	202	-		910
SB-05 (20-22)- 092807	0710001-016A	Soil	09/28/07 9:29	20Z	~		016
SB-05 (30-32)- 092807	0710001-017A	Soil	09/28/07 9:57	20Z	-		017

Mothed Blankoig

Comments:

Results due by 10/11, Please report parameter and RLs as per attached list. Send report in attention to Monika Santucci. Include our standard EDD. Please include your LCS and method blank summary with the report.

Relinquished by: Relinquished by:

135 Folips

Date/Time

Received by:

Received by:

10-02-07 11:57 RCVD

Date/Time

5.6°C.



Life Science Laboratories, Inc. **Brittonfield Lab** 

5000 Brittonfield Parkway, Suite 200 East Syracuse, New York 13057

(315) 437-0200

Chain of Custody

Date: 9/シシ/01 Time: 0) ばいい Comments Time: Time: Date: Date: Analysis/Method Received by Lab: Months Janker Airbill Number: X X  $\star$ X X Received by: Received by: × Comp. No. of or Grab Containers 1521× विद्यु のたいか Date: 9-28-07 Time: 1455 Gran Time: Time: Sample Matrix Phone # 437-6100 ابخ .-So:-3 2 50.1 Soil R (;; ) 50:1 9-27-07 0906 Soil Date Time Collected Collected 4-27-07 0827 4-27-07 0804 9-27-07 12.36 9-27-67 1220 \$30G 4-27-07 1347 4-27-07 1416 4-27-07 0924 1249 9-27-07 1435 Date: Date: 9-27-07 9-27-cz 9-27-07 Sample Description Casoneval Sampled by: Paul Freyer Sample Location 58-02(2-4)-092707 SB-02 (12-14)_092707 Project: BMS Krustus 70-22)_092707 -092707 1072707 10-12 ) = C92707 Client: O'Brien & Grears ro1200-58-06 (28-30)-092307 5B-06 (22-24) -09 2707 53-06(8-10)-092707 5B-CG(2-4)_092707 Client Contact: Dave FD_092707 ( 77-17) (oz -3) Shipment Method: Relinquished by: (7-4) Refinquished by: Relinquished by: 58-01 58-01 53-01 58-01

Turnaround Time Required:

Cooler Temperature:

Comments:

Original - Laboratory Copy - Client

## (LSI)

# Life Science Laboratories, Inc. Brittonfield Lab

5000 Brittonfield Parkway, Suite 200 East Syracuse, New York 13057

Chain of Custody

East Syracuse, New York (315) 437-0200

Client: O'Brien & Cresce						Anal	Analysis/Method	por	
project: BMS Kruthis									
Sampled by: Paul Irenew									
Slient Contact: Days Carnedals!	Phone #	15-43	35-437-6100 (x257)	2 (x2	( 125				
	escription								
Sample Location	Date Time Collected Collected		Sample Matrix	Comp. or Grab C	No. of Containers	1			Comments
8-02 (24-26) 092707	1 10-12-60	1439   ६	Sil 10	Grab		×			
SB-65 (2-4) -C82807	9-23-07 08	0840 4	1505	400-		Υ			
58-05(10-12)_092807	9-28-67 0900		50,1	C-va-i		×	<u></u>	-	
58-05 (25-22)-042807	4-28-01	6929 6	Soil	day)		У			
58-65 (30-32)-09.2807	9-28-07 09	0957 C	Soil	(Jrach		7			
		-							
Relinquished by:	Date:	7-28-0	Date: 9-28-0-7 Time: 1455	1455	Received by:	by:		Date:	Time:
Relinquished by:	Date:		Time:		Received by:	by:		Date:	Time:
Relinquished by:	Date:		Time:		Received	Received by Lab: Mishikas children		Date: <b>1/29/07</b>	Date: 3/20/07 Time: 2); SS LAN
Shipment Method:					Airbill Number:	mber:			

red:
Requi
ime F
I pun
naroi
٦

Cooler Temperature: 3.8°C

Comments:

Original - Laboratory Copy - Client

#### Life Science Laboratories, Inc.

#### Sample Receipt Checklist

Client Name: OBG-MS			Date and Ti	me Received:	9/:	28/2007 2:55:00 PM
Work Order Number 0710001	/	Rel	Received by	y: MS		
Checklist completed by:	Date	F popular	Reviewed	by:		9/28/07 Date
Matrix:	Carrier name:	Hand Delivered				
Shipping container/cooler in good condition?		Yes 🗸	No 🗌	Not Present		
Custody seals intact on shipping container/cooler?		Yes	No 🗌	Not Present	<b>~</b>	
Custody seals intact on sample bottles?		Yes	No 🗌	Not Present	✓	
Chain of custody present?		Yes 🗸	No 🗌			
Chain of custody signed when relinquished and received	ved?	Yes 🗸	No 🗌			
Chain of custody agrees with sample labels?		Yes 🗸	No 🗌			
Samples in proper container/bottle?		Yes 🗸	No 🗌			
Sample containers intact?		Yes 🗸	No 🗌			
Sufficient sample volume for indicated test?		Yes 🗸	No 🗌			
All samples received within holding time?		Yes 🗸	No 🗌			
Container/Temp Blank temperature in compliance?		Yes 🗸	No 🗌			
Water - VOA vials have zero headspace?		Yes	No 🗌	No VOA vials sul	bmitted	✓
Water - pH acceptable upon receipt?		Yes	No 🗌	Not Applicable	<b>✓</b>	

Comments:

Corrective Action::



Tuesday, October 02, 2007

Dave Carnevale
O'Brien & Gere Engineers, Inc.
5000 Brittonfield Parkway
PO Box 4873
Syracuse, NY 13221-4873

TEL: 315-437-6100

Project: BMS-KRUTULIS

RE: Analytical Results

Order No.: 0710012

Dear Dave Carnevale:

Life Science Laboratories, Inc. received 2 sample(s) on 10/1/2007 for the analyses presented in the following report.

Very truly yours,

Life Science Laboratories, Inc.

Monika Santucci

Project Manager

#### Life Science Laboratories, Inc.

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

**CLIENT:** O'Brien & Gere Engineers, Inc.

**BMS-Krutulis** 

W Order: 0710012 SOIL Matrix:

Inst. ID: MS01 11 ColumnID: Rtx-VMS

Revision: 10/02/07 15:11

Sample Size: 5 g

%Moisture: 22.0 TestCode 8260SM

0710012-001A Lab ID:

Client Sample ID: MW-6D (18-20)_100107

10/01/07 9:32 **Collection Date:** 10/01/07 15:12 Date Received: PrepDate: 10/01/07 14:42 BatchNo:

FileID:

6272/R11295 1-SAMP-T0627.D

Col Type:

Analyte	Result Qua	l PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS - MEC	H EXTRACT	SW8260B		(SW5035_MED)
1,1,1,2-Tetrachloroethane	ND	360	μg/Kg-dry	1	10/01/07 21:30
1.1.1-Trichloroethane	ND	360	μg/Kg-dry	1	10/01/07 21:30
1,1,2,2-Tetrachloroethane	ND	360	μg/Kg-dry	1	10/01/07 21:30
1,1,2-Trichloroethane	ND	360	μg/Kg-dry	1	10/01/07 21:30
1,1-Dichloroethane	ND	360	μg/Kg-dry	1	10/01/07 21:30
1,1-Dichloroethene	ND	360	μg/Kg-dry	1	10/01/07 21:30
1,1-Dichloropropene	ND	360	μg/Kg-dry	1	10/01/07 21:30
1,2,3-Trichlorobenzene	ND	710	μg/Kg-dry	1	10/01/07 21:30
1,2,3-Trichloropropane	ND	360	μg/Kg-dry	1	10/01/07 21:30
1,2,4-Trichlorobenzene	ND	710	μg/Kg-dry	1	10/01/07 21:30
1,2,4-Trimethylbenzene	ND	360	μg/Kg-dry	1	10/01/07 21:30
1,2-Dibromo-3-chloropropane	ND	710	μg/Kg-dry	1	10/01/07 21:30
1,2-Dibromoethane	ND	360	μg/Kg-dry	1	10/01/07 21:30
1,2-Dichlorobenzene	ND	360	μg/Kg-dry	1	10/01/07 21:30
1,2-Dichloroethane	ND	360	μg/Kg-dry	1	10/01/07 21:30
1,2-Dichloropropane	ND	360	μg/Kg-dry	1	10/01/07 21:30
1,3,5-Trimethylbenzene	ND	360	μg/Kg-dry	1	10/01/07 21:30
1,3-Dichlorobenzene	ND	360	μg/Kg-dry	1	10/01/07 21:30
1,3-Dichloropropane	ND	360	μg/Kg-dry	1	10/01/07 21:30
1,4-Dichlorobenzene	ND	360	μg/Kg-dry	1	10/01/07 21:30
2,2-Dichloropropane	ND	360	μg/Kg-dry	1	10/01/07 21:30
2-Chlorotoluene	ND	360	μg/Kg-dry	1	10/01/07 21:30
4-Chlorotoluene	ND	360	μg/Kg-dry	1	10/01/07 21:30
Benzene	ND	360	μg/Kg-dry	1	10/01/07 21:30
Bromobenzene	ND	360	μg/Kg-dry	1	10/01/07 21:30
Bromochloromethane	ND	360	µg/Kg-dry	1	10/01/07 21:30
Bromodichloromethane	ND	360	μg/Kg-dry	1	10/01/07 21:30
Bromoform	ND	360	μg/Kg-dry	1	10/01/07 21:30
Bromomethane	ND	710	μg/Kg-dry	1	10/01/07 21:30
Carbon tetrachloride	ND	360	μg/Kg-dry	1	10/01/07 21:30
Chlorobenzene	ND	360	μg/Kg-dry	1	10/01/07 21:30
Chloroethane	ND	710	μg/Kg-dry	1	10/01/07 21:30
Chloroform	ND	360	μg/Kg-dry	1	10/01/07 21:30
Chloromethane	ND	710	μg/Kg-dry	1	10/01/07 21:30

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - Spike Recovery outside accepted recovery limits

Page 1 of 6

#### Life Science Laboratories, Inc. 5000 Brittonfield Parkway, Suite 200

#### **Analytical Results**

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

O'Brien & Gere Engineers, Inc. **CLIENT:** 

**BMS-Krutulis** 

W Order: 0710012 Matrix: SOIL

Project:

Revision:

MS01 11 Inst. ID: ColumnID: Rtx-VMS

10/02/07 15:11

Sample Size: 5 g %Moisture: 22.0

TestCode 8260SM

ND

ND

ND

93.9

72.2

81.9

89.6

0710012-001A

Client Sample ID: MW-6D (18-20)_100107

**Collection Date:** 10/01/07 9:32 10/01/07 15:12 Date Received: PrepDate:

Lab ID:

BatchNo:

10/01/07 14:42 6272/R11295 1-SAMP-T0627.D

FileID:

Analyte	Result Qu	Result Qual PQL S BY GC/MS - MEOH EXTRACT		DF	Date Analyzed
VOLATILE ORGANIC COMPOU	NDS BY GC/MS - ME				(SW5035_MED)
cis-1,2-Dichloroethene	ND	360	μg/Kg-dry	1	10/01/07 21:30
cis-1,3-Dichloropropene	ND	360	μg/Kg-dry	1	10/01/07 21:30
Dibromochloromethane	ND	360	μg/Kg-dry	1	10/01/07 21:30
Dibromomethane	ND	360	µg/Kg-dry	1	10/01/07 21:30
Dichlorodifluoromethane	ND	710	µg/Kg-dry	1	10/01/07 21:30
Ethylbenzene	ND	360	μg/Kg-dry	1	10/01/07 21:30
Hexachlorobutadiene	ND	710	μg/Kg-dry	1	10/01/07 21:30
Isopropylbenzene	ND	360	μg/Kg-dry	1	10/01/07 21:30
Methyl tert-butyl ether	ND	360	µg/Kg-dry	1	10/01/07 21:30
Methylene chloride	ND	710	μg/Kg-dry	1	10/01/07 21:30
n-Butylbenzene	ND	360	μg/Kg-dry	1	10/01/07 21:30
n-Propylbenzene	ND	360	μg/Kg-dry	1	10/01/07 21:30
Naphthalene	ND	710	μg/Kg-dry	1	10/01/07 21:30
p-Isopropyltoluene	ND	360	μg/Kg-dry	1	10/01/07 21:30
sec-Butylbenzene	ND	360	μg/Kg-dry	1	10/01/07 21:30
Styrene	ND	360	μg/Kg-dry	1	10/01/07 21:30
tert-Butylbenzene	ND	360	μg/Kg-dry	1	10/01/07 21:30
Tetrachloroethene	ND	360	μg/Kg-dry	1	10/01/07 21:30
Toluene	7000	360	μg/Kg-dry	1	10/01/07 21:30
trans-1,2-Dichloroethene	ND	360	μg/Kg-dry	1	10/01/07 21:30
trans-1,3-Dichloropropene	ND	360	μg/Kg-dry	1	10/01/07 21:30
Trichloroethene	3900	360	μg/Kg-dry	1	10/01/07 21:30

710

710

710

71-128

59-125

40-156

75-125

Trichlorofluoromethane

Surr: Toluene-d8

Print Date: 10/02/07 15:47

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Vinyl chloride

Xylenes (total)

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit

307095

Analyte detected in the associated Method Blank

1

10/01/07 21:30

10/01/07 21:30

10/01/07 21:30

10/01/07 21:30

10/01/07 21:30

10/01/07 21:30

10/01/07 21:30

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - Spike Recovery outside accepted recovery limits

Page 2 of 6 Project Supervisor: Monika Santucci

µg/Kg-dry

µg/Kg-dry

%REC

%REC

%REC

%REC

μg/Kg-dry 1

#### Life Science Laboratories, Inc.

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

0710012-002A

10/01/07 10:14

10/01/07 15:12

O'Brien & Gere Engineers, Inc. **CLIENT:** 

**BMS-Krutulis** 

W Order: 0710012 **SOIL** Matrix:

Inst. ID:

ColumnID: Rtx-502.2

Sample Size: 5 g MS02 12 %Moisture: 16.2

TestCode 8260S Revision: 10/02/07 15:41

Date Received: PrepDate:

**Collection Date:** 

Lab ID:

BatchNo: R11296

FileID: 1-SAMP-M2657.D

Client Sample ID: MW-6D (30-32)_100107

Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS		SW8260B		
1,1,1,2-Tetrachloroethane	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
1,1,1-Trichloroethane	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
1,1,2,2-Tetrachloroethane	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
1,1,2-Trichloroethane	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
1,1-Dichloroethane	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
1,1-Dichloroethene	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
1,1-Dichloropropene	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
1,2,3-Trichlorobenzene	ND	6.0	μg/Kg-dry	1	10/02/07 14:59
1,2,3-Trichloropropane	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
1,2,4-Trichlorobenzene	ND	6.0	μg/Kg-dry	1	10/02/07 14:59
1,2,4-Trimethylbenzene	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
1,2-Dibromo-3-chloropropane	ND	6.0	μg/Kg-dry	1	10/02/07 14:59
1,2-Dibromoethane	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
1,2-Dichlorobenzene	ND	3.0	µg/Kg-dry	1	10/02/07 14:59
1,2-Dichloroethane	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
1,2-Dichloropropane	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
1,3,5-Trimethylbenzene	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
1,3-Dichlorobenzene	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
1,3-Dichloropropane	ND	3.0	µg/Kg-dry	1	10/02/07 14:59
1,4-Dichlorobenzene	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
2,2-Dichloropropane	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
2-Chlorotoluene	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
4-Chlorotoluene	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
Benzene	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
Bromobenzene	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
Bromochloromethane	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
Bromodichloromethane	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
Bromoform	ND	3.0	µg/Kg-dry	1	10/02/07 14:59
Bromomethane	ND	6.0	μg/Kg-dry	1	10/02/07 14:59
Carbon tetrachloride	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
Chlorobenzene	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
Chloroethane	ND	6.0	μg/Kg-dry	1	10/02/07 14:59
Chloroform	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
Chloromethane	ND	6.0	μg/Kg-dry	1	10/02/07 14:59

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)

Page 4 of 6

Spike Recovery outside accepted recovery limits

Project Supervisor: Monika Santucci Print Date: 10/02/07 15:47 307102

#### Life Science Laboratories, Inc. 5000 Brittonfield Parkway, Suite 200

**Analytical Results** 

East Syracuse, NY 13057 (315) 437-0200 StateCertNo: 10155

CLIENT: O'Brien & Gere Engineers, Inc. Lab ID: 0710012-002A

Project: **BMS-Krutulis** Client Sample ID: MW-6D (30-32)_100107

W Order: 0710012 **Collection Date:** 10/01/07 10:14 Date Received: 10/01/07 15:12 Matrix: **SOIL** 

PrepDate: MS02 12 Sample Size: 5 g Inst. ID:

R11296 ColumnID: Rtx-502.2 %Moisture: 16.2 BatchNo:

TestCode 8260S FileID: 1-SAMP-M2657.D Revision: 10/02/07 15:41

Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	S BY GC/MS		SW8260B		
cis-1,2-Dichloroethene	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
cis-1,3-Dichloropropene	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
Dibromochloromethane	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
Dibromomethane	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
Dichlorodifluoromethane	ND	6.0	μg/Kg-dry	1	10/02/07 14:59
Ethylbenzene	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
Hexachlorobutadiene	ND	6.0	μg/Kg-dry	1	10/02/07 14:59
lsopropylbenzene	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
Methyl tert-butyl ether	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
Methylene chloride	ND	6.0	μg/Kg-dry	1	10/02/07 14:59
п-Butylbenzene	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
n-Propylbenzene	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
Naphthalene	ND	6.0	μg/Kg-dry	1	10/02/07 14:59
p-Isopropyltoluene	ND	3.0	µg/Kg-dry	1	10/02/07 14:59
sec-Butylbenzene	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
Styrene	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
tert-Butylbenzene	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
Tetrachloroethene	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
Toluene	3.3	3.0	μg/Kg-dry	1	10/02/07 14:59
trans-1,2-Dichloroethene	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
trans-1,3-Dichloropropene	ND	3.0	μg/Kg-dry	1	10/02/07 14:59
Trichloroethene	8.1	3.0	μg/Kg-dry	1	10/02/07 14:59
Trichlorofluoromethane	ND	6.0	μg/Kg-dry	1	10/02/07 14:59
Vinyl chloride	ND	6.0	μg/Kg-dry	1	10/02/07 14:59
Xylenes (total)	ND	6.0	μg/Kg-dry	1	10/02/07 14:59
Surr: 1,2-Dichloroethane-d4	103	71-128	%REC	1	10/02/07 14:59
Surr: 4-Bromofluorobenzene	101	59-125	%REC	1	10/02/07 14:59
Surr: Dibromofluoromethane	102	40-156	%REC	1	10/02/07 14:59
Surr: Toluene-d8	104	75-125	%REC	1	10/02/07 14:59

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- Spike Recovery outside accepted recovery limits

Page 5 of 6 Print Date: 10/02/07 15:47 307102 Project Supervisor: Monika Santucci

#### Life Science Laboratories, Inc. 5000 Brittonfield Parkway, Suite 200

**Analytical Results** 

East Syracuse, NY 13057

(315) 437-0200

Sample Size: NA

TestCode PMOIST

%Moisture:

StateCertNo: 10155

CLIENT: O'Brien & Gere Engineers, Inc.

**BMS-Krutulis** 

W Order: 0710012 Matrix: SOIL

Project:

Col Type:

Inst. ID: **DENVER APX-200** 

ColumnID: Revision:

10/02/07 7:41

Lab ID:

0710012-001A

Client Sample ID: MW-6D (18-20)_100107

**Collection Date:** Date Received:

10/01/07 9:32 10/01/07 15:12

PrepDate:

BatchNo:

R11284

FileID:

1-SAMP-

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
PERCENT MOISTURE			SM 2540 G		
Percent Moisture	22.0	1.0	wt%	1	10/01/07 18:15

Qualifiers:

Value exceeds Maximum Contaminant Level

Value exceeds the instrument calibration range

Analyte detected below the PQL

Prim./Conf. column %D or RPD exceeds limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Practical Quantitation Limit (PQL)

Spike Recovery outside accepted recovery limits

Page 3 of 6 Print Date: 10/02/07 15:47 306745 Project Supervisor: Monika Santucci

#### Life Science Laboratories, Inc.

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

CLIENT: O'Brien & Gere Engineers, Inc. Lab ID:

0710012-002A

**BMS-Krutulis** Project:

Client Sample ID: MW-6D (30-32)_100107

W Order: 0710012 **Collection Date:** Date Received:

10/01/07 10:14 10/01/07 15:12

SOIL Matrix: **DENVER APX-200** 

Sample Size: NA

TestCode PMOIST

PrepDate:

R11284

Inst. ID: ColumnID:

%Moisture:

BatchNo: FileID:

1-SAMP-

Revision: 10/02/07 7:41 Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
PERCENT MOISTURE			SM 2540 G		
Percent Moisture	16.2	1.0	wt%	1	10/01/07 18:15

Qualifiers:

Value exceeds Maximum Contaminant Level

Value exceeds the instrument calibration range

Analyte detected below the PQL

Prim./Conf. column %D or RPD exceeds limit

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

ND Not Detected at the Practical Quantitation Limit (PQL)

Spike Recovery outside accepted recovery limits

Project Supervisor: Monika Santucci Print Date: 10/02/07 15:47 306746

Life Science Laboratories, Inc. **Brittonfield Lab** 

5000 Brittonfield Parkway, Suite 200 East Syracuse, New York 13057

(315) 437-0200

Chain of Custody

Sample Description   Sample   Comp.   No. of   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Comments   Commen	Cilent: CACINASA VI		Analysis/Method	sthod
Time Sample Comp. No. of Collected Matrix or Grab Containers  0522 Sci. Grad ( 1014 Soi. Grad ( 1014 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Grad ( 1015 Soi. Gr				
Time Sample Comp. No. of Collected Matrix or Grab Containers  OG722 Scit. Gray ( 10)4 Scit. Gray ( 10)4 Scit. Gray ( 10)4 Scit. Gray ( 10)4 Scit. Gray ( 10)4 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)5 Scit. Gray ( 10)	2	7	(308)	
Time Sample Comp. No. of Alibili Number:  Collected Matrix or Grab Containers  OG22 Sci. Grab i  ICIH Soi. Grab i  ICIH Soi. Grab i  Received by: Monte.  Airbili Number:	le [		12	
1014 Sir Grab i 1014 Sir Grab i 1014 Sir Grab i 1015 Sir Grab i 1016 Sir Sir Sir Sir Sir Sir Sir Sir Sir Sir	1	Time Sample Comp.		Comments
Oly Sit (gui)		10927 Sie Grah		648-PIDA
10/1   27 Time: 15/2 Received by: Janil Moritan Cardiner.  Received by Lab: Moritan Cardiner.  Airbill Number:		Jish Soic		200-AD K
12/62 Time: 15/12 Received by: Main Montes.  Airbill Number:				
12/62 Time: 15/12 Received by: Montes Carller	}			
12/62 Time: 15/12 Received by: Morite Carther.  Received by Lab: Morite Carther.  Airbill Number:				
12/62 Time: 1572 Received by: Spain Here.  Received by: Assistance.  Airbill Number:	ł			
10/16 Time: 15/12 Received by: Law Montes.  Airbill Number:				
10/1 27 Time: 15/12 Received by: Hariff Commerce Time: Received by Lab: Montes Carloce.  Airbill Number:	l Í			
(2) (6) Time: 1517 Received by: Maril Horizon Carles.  Received by Lab: Morizon Carles.  Airbill Number:	-			
12/162 Time: 15/12 Received by: Sprint Hermel.  13/162 Time: Received by Lab: Montes On Weel.  Airbill Number:	i			
10/162 Time: 15/12 Received by: Lawrit / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Commercial / Com	1			
Airbill Number:		1 27 Time: 1572	ceived by: Spring Henriede	Date: (0/1/07 Time: 1512
Time: Received by Lab: Monker Jan Keer. Airbill Number:	1	15/162 Time: 1525	ceived by:	-
Airbill Number:		// Time:	ceived by Lab: Monikes Januacei	Date: (Ο /ι /οη Time: /5:/12
		Air	bill Number:	

Turnaround Time Required: Routine______Rush (Specify)___

Cooler Temperature:_

Comments:

Results by end of day (vesday, Ochlar 2, 2007

* Run mechinin benef

Original - Laboratory Copy - Client

#### Life Science Laboratories, Inc.

#### Sample Receipt Checklist

Client Name: OBG-MS			Date and Time	Received:	10	0/1/2007 3:12:00 PM
Work Order Number 0710012			Received by:	MS		
Checklist completed by:	Date	10/1/0>	Reviewed by:	M J Initials		lolz lo~
Matrix:	Carrier name:	Hand Delivered				
Shipping container/cooler in good condition?		Yes 🗸	No 🗆 N	lot Present		
Custody seals intact on shipping container/cooler?		Yes	No 🗌 N	lot Present	<b>✓</b>	
Custody seals intact on sample bottles?		Yes	No 🗌 N	lot Present	<b>✓</b>	
Chain of custody present?		Yes 🗸	No 🗌			
Chain of custody signed when relinquished and rec	ceived?	Yes 🗸	No 🗆			
Chain of custody agrees with sample labels?		Yes 🗸	No 🗌			
Samples in proper container/bottle?		Yes 🗸	No 🗌			
Sample containers intact?		Yes 🗸	No 🗌			
Sufficient sample volume for indicated test?		Yes 🗸	No 🗆			
All samples received within holding time?		Yes 🗸	No 🗌			
Container/Temp Blank temperature in compliance?	?	Yes 🗸	No 🗌			
Water - VOA vials have zero headspace?		Yes	No 🗌 No	VOA vials su	ıbmitted	✓
Water - pH acceptable upon receipt?		Yes	No 🗆	Not Applicable	· 🗸	

Comments:

Corrective Action::



Tuesday, October 30, 2007

Dave Carnevale
O'Brien & Gere Engineers, Inc.
5000 Brittonfield Parkway
PO Box 4873
Syracuse, NY 13221-4873

TEL: 315-437-6100

Project: BMS-KRUTULIS

RE: Analytical Results

Order No.: 0710024

×9.

Dear Dave Carnevale:

Life Science Laboratories, Inc. received 9 sample(s) on 10/2/2007 for the analyses presented in the following report.

Very truly yours,

Life Science Laboratories, Inc.

Monko Santucci

Monika Santucci

Project Manager

#### Life Science Laboratories, Inc.

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

**CLIENT:** O'Brien & Gere Engineers, Inc.

BMS-Krutulis

10/11/07 8:23

Client Sample ID: MW-06D (8-10)_100107

0710024-001A

W Order: 0710024

**Collection Date:** 

10/01/07 9:13

**SOIL** Matrix:

Date Received:

Lab ID:

10/02/07 16:54

MS03 10 Inst. ID:

Sample Size: 5 g

PrepDate:

ColumnID: Rtx-VMS

%Moisture: 19.0

BatchNo: R11344

Revision:

TestCode 8260S

FileID: 1-SAMP-J4693.D

Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS		SW8260B		
1,1,1,2-Tetrachloroethane	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
1,1,1-Trichloroethane	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
1,1,2,2-Tetrachloroethane	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
1,1,2-Trichloroethane	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
1,1-Dichloroethane	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
1,1-Dichloroethene	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
1,1-Dichloropropene	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
1,2,3-Trichlorobenzene	ND	6.2	μg/Kg-dry	1	10/05/07 16:40
1,2,3-Trichloropropane	ND	3.1	µg/Kg-dry	1	10/05/07 16:40
1,2,4-Trichlorobenzene	ND	6.2	μg/Kg-dry	1	10/05/07 16:40
1,2,4-Trimethylbenzene	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
1,2-Dibromo-3-chloropropane	ND	6.2	μg/Kg-dry	1	10/05/07 16:40
1,2-Dibromoethane	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
1,2-Dichlorobenzene	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
1,2-Dichloroethane	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
1,2-Dichloropropane	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
1,3,5-Trimethylbenzene	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
1,3-Dichlorobenzene	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
1,3-Dichloropropane	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
1,4-Dichlorobenzene	ND	3.1	µg/Kg-dry	1	10/05/07 16:40
2,2-Dichloropropane	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
2-Chlorotoluene	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
4-Chlorotoluene	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
Benzene	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
Bromobenzene	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
Bromochloromethane	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
Bromodichloromethane	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
Bromoform	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
Bromomethane	ND	6.2	μg/Kg-dry	1	10/05/07 16:40
Carbon tetrachloride	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
Chlorobenzene	ND	3.1	μg/Kg-dry		10/05/07 16:40
Chloroethane	ND	6.2	μg/Kg-dry	1	10/05/07 16:40
Chloroform	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
Chloromethane	ND	6.2	μg/Kg-dry	1	10/05/07 16:40

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- Spike Recovery outside accepted recovery limits

Page 1 of 28

Print Date: 10/18/07 15:28 309450

Project Supervisor: Monika Santucci



#### Life Science Laboratories, Inc.

**Analytical Results** 

LSL 5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

Sample Size: 5 g

%Moisture: 19.0

TestCode 8260S

StateCertNo: 10155

CLIENT: O'Brien & Gere Engineers, Inc.

**BMS-Krutulis** 

W Order: 0710024

Matrix: **SOIL** 

Inst. ID: MS03 10

ColumnID: Rtx-VMS Revision:

10/11/07 8:23

Lab ID: 0710024-001A

Client Sample ID: MW-06D (8-10)_100107

Collection Date: Date Received:

10/01/07 9:13 10/02/07 16:54

PrepDate:

BatchNo: R11344

FileID: 1-SAMP-J4693.D

Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS		SW8260B	·	
cis-1,2-Dichloroethene	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
cis-1,3-Dichloropropene	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
Dibromochloromethane	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
Dibromomethane	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
Dichlorodifluoromethane	ND	6.2	μg/Kg-dry	1	10/05/07 16:40
Ethylbenzene	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
Hexachlorobutadiene	ND	6.2	μg/Kg-dry	1	10/05/07 16:40
Isopropylbenzene	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
Methyl tert-butyl ether	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
Methylene chloride	ND	6.2	μg/Kg-dry	1	10/05/07 16:40
n-Butylbenzene	4.2	3.1	μg/Kg-dry	1	10/05/07 16:40
n-Propylbenzene	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
Naphthalene	ND	6.2	μg/Kg-dry	1	10/05/07 16:40
p-Isopropyltoluene	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
sec-Butylbenzene	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
Styrene	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
tert-Butylbenzene	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
Tetrachloroethene	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
Toluene	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
trans-1,2-Dichloroethene	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
trans-1,3-Dichloropropene	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
Trichloroethene	ND	3.1	μg/Kg-dry	1	10/05/07 16:40
Trichlorofluoromethane	ND	6.2	μg/Kg-dry	1	10/05/07 16:40
Vinyl chloride	ND	6.2	μg/Kg-dry	1	10/05/07 16:40
Xylenes (total)	ND	6.2	μg/Kg-dry	1	10/05/07 16:40
Surr: 1,2-Dichloroethane-d4	92.2	71-128	%REC	1	10/05/07 16:40
Surr: 4-Bromofluorobenzene	113	59-125	%REC	1	10/05/07 16:40
Surr: Dibromofluoromethane	98.9	40-156	%REC	1	10/05/07 16:40
Surr: Toluene-d8	111	75-125	%REC	1	10/05/07 16:40

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - Spike Recovery outside accepted recovery limits

Print Date: 10/18/07 15:28 309450 Project Supervisor: Monika Santucci Page 2 of 28



#### Life Science Laboratories, Inc.

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

**CLIENT:** O'Brien & Gere Engineers, Inc.

**BMS-Krutulis** 

W Order: 0710024 **SOIL** Matrix:

MS03 10 Inst. ID:

ColumnID: Rtx-VMS

10/11/07 8:23 Revision:

Sample Size: 5 g %Moisture: 20.4

TestCode 8260S

Lab ID: 0710024-002A

Client Sample ID: MW-06D (22-24)_100107

10/01/07 9:49 **Collection Date:** Date Received: 10/02/07 16:54

PrepDate:

BatchNo: R11344

FileID: 1-SAMP-J4694.D

Col Type:

Analyte	Result Qua	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS		SW8260B		
1,1,1,2-Tetrachloroethane	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
1,1,1-Trichloroethane	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
1,1,2,2-Tetrachloroethane	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
1,1,2-Trichloroethane	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
1,1-Dichloroethane	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
1,1-Dichloroethene	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
1,1-Dichloropropene	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
1,2,3-Trichlorobenzene	ND	6.3	μg/Kg-dry	1	10/05/07 17:15
1,2,3-Trichloropropane	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
1,2,4-Trichlorobenzene	ND	6.3	μg/Kg-dry	1	10/05/07 17:15
1,2,4-Trimethylbenzene	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
1,2-Dibromo-3-chloropropane	ND	6.3	μg/Kg-dry	1	10/05/07 17:15
1,2-Dibromoethane	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
1,2-Dichlorobenzene	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
1,2-Dichloroethane	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
1,2-Dichloropropane	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
1,3,5-Trimethylbenzene	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
1,3-Dichforobenzene	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
1,3-Dichloropropane	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
1,4-Dichlorobenzene	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
2,2-Dichloropropane	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
2-Chlorotoluene	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
4-Chlorotoluene	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
Benzene	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
Bromobenzene	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
Bromochloromethane	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
Bromodichloromethane	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
Bromoform	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
Bromomethane	ND	6.3	μg/Kg-dry	1	10/05/07 17:15
Carbon tetrachloride	ND	3.1	µg/Kg-dry	1	10/05/07 17:15
Chlorobenzene	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
Chloroethane	ND	6.3	μg/Kg-dry	1	10/05/07 17:15
Chloroform	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
Chloromethane	ND	6.3	μg/Kg-dry	1	10/05/07 17:15

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - Spike Recovery outside accepted recovery limits

Page 3 of 28

#### Life Science Laboratories, Inc.

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

0710024-002A

10/01/07 9:49

10/02/07 16:54

1-SAMP-J4694.D

Client Sample ID: MW-06D (22-24)_100107

R11344

CLIENT: O'Brien & Gere Engineers, Inc.

**BMS-Krutulis** Project:

W Order: 0710024 **SOIL** Matrix:

Inst. ID: MS03 10

ColumnID: Rtx-VMS Revision: 10/11/07 8:23

Sample Size: 5 g %Moisture: 20.4

Date Received: PrepDate:

Lab ID:

**Collection Date:** 

BatchNo: FileID:

TestCode 8260S

Col Type:

Analyte	Result Qual	PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS		SW8260B			
cis-1,2-Dichloroethene	30	3.1	μg/Kg-dry	1	10/05/07 17:15
cis-1,3-Dichloropropene	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
Dibromochloromethane	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
Dibromomethane	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
Dichlorodifluoromethane	ND	6.3	μg/Kg-dry	1	10/05/07 17:15
Ethylbenzene	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
Hexachlorobutadiene	ND	6.3	μg/Kg-dry	1	10/05/07 17:15
Isopropylbenzene	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
Methyl tert-butyl ether	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
Methylene chloride	ND	6.3	μg/Kg-dry	1	10/05/07 17:15
n-Butylbenzene	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
n-Propylbenzene	<b>N</b> D	3.1	μg/Kg-dry	1	10/05/07 17:15
Naphthalene	ND	6.3	μg/Kg-dry	1	10/05/07 17:15
p-Isopropyltoluene	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
sec-Butylbenzene	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
Styrene	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
tert-Butylbenzene	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
Tetrachloroethene	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
Toluene	790 E	3.1	μg/Kg-dry	1	10/05/07 17:15
trans-1,2-Dichloroethene	110	3.1	μg/Kg-dry	1	10/05/07 17:15
trans-1,3-Dichloropropene	ND	3.1	μg/Kg-dry	1	10/05/07 17:15
Trichloroethene	2300 BE	3.1	μg/Kg-dry	1	10/05/07 17:15
Trichlorofluoromethane	ND	6.3	μg/Kg-dry	1	10/05/07 17:15
Vinyl chloride	ND	6.3	μg/Kg-dry	1	10/05/07 17:15
Xylenes (total)	ND	6.3	μg/Kg-dry	1	10/05/07 17:15
Surr: 1,2-Dichloroethane-d4	104	71-128	%REC	1	10/05/07 17:15
Surr: 4-Bromofluorobenzene	73.6	59-125	%REC	1	10/05/07 17:15
Surr: Dibromofluoromethane	109	40-156	%REC	1	10/05/07 17:15
Surr: Toluene-d8	92.7	75-125	%REC	1	10/05/07 17:15

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - Spike Recovery outside accepted recovery limits

Page 4 of 28 Print Date: 10/18/07 15:28 309451 Project Supervisor: Monika Santucci



#### Life Science Laboratories, Inc.

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

CLIENT: O'Brien & Gere Engineers, Inc.

BMS-Krutulis

W Order: 0710024 Matrix: SOIL

Inst. ID: MS01 11 ColumnID: Rtx-VMS

**Revision:** 10/30/07 10:43

Sample Size: 5 g %Moisture: 20.4

TestCode 8260SM

Lab ID: 0710024-002ADL

Client Sample ID: *MW-06D* (22-24)_100107 Collection Date: 10/01/07 9:49

 Date Received:
 10/02/07 16:54

 PrepDate:
 10/15/07 10:00

 BatchNo:
 6389/R11519

FileID:

1-DL-T0842.D

Col Type:

analyte Result Qual PQL		al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	BY GC/MS - ME	OH EXTRACT	SW8260B		(SW5035_MED)
1,1,1,2-Tetrachloroethane	ND	350	µg/Kg-dry	1	10/17/07 15:13
1,1,1-Trichloroethane	ND	350	μg/Kg-dry	1	10/17/07 15:13
1,1,2,2-Tetrachloroethane	ND	350	μg/Kg-dry	1	10/17/07 15:13
1,1,2-Trichloroethane	ND	350	μg/Kg-dry	1	10/17/07 15:13
1,1-Dichloroethane	ND	350	μg/Kg-dry	1	10/17/07 15:13
1,1-Dichloroethene	ND	350	μg/Kg-dry	1	10/17/07 15:13
1,1-Dichloropropene	ND	350	μg/Kg-dry	1	10/17/07 15:13
1,2,3-Trichlorobenzene	ND	690	μg/Kg-dry	1	10/17/07 15:13
1,2,3-Trichloropropane	ND	350	μg/Kg-dry	1	10/17/07 15:13
1,2,4-Trichlorobenzene	ND	690	μg/Kg-dry	1	10/17/07 15:13
1,2,4-Trimethylbenzene	ND	350	μg/Kg-dry	1	10/17/07 15:13
1,2-Dibromo-3-chloropropane	ND	690	μg/Kg-dry	1	10/17/07 15:13
1,2-Dibromoethane	ND	350	μg/Kg-dry	1	10/17/07 15:13
1,2-Dichlorobenzene	ND	350	µg/Kg-dry	1	10/17/07 15:13
1,2-Dichloroethane	ND	350	μg/Kg-dry	1	10/17/07 15:13
1,2-Dichloropropane	ND	350	μg/Kg-dry	1	10/17/07 15:13
1,3,5-Trimethylbenzene	ND	350	μg/Kg-dry	1	10/17/07 15:13
1,3-Dichlorobenzene	ND	350	μg/Kg-dry	1	10/17/07 15:13
1,3-Dichloropropane	ND	350	μg/Kg-dry	1	10/17/07 15:13
1,4-Dichlorobenzene	ND	350	μg/Kg-dry	1	10/17/07 15:13
2,2-Dichloropropane	ND	350	μg/Kg-dry	1	10/17/07 15:13
2-Chlorotoluene	ND	350	μg/Kg-dry	1	10/17/07 15:13
4-Chlorotoluene	ND	350	μg/Kg-dry	1	10/17/07 15:13
Benzene	ND	350	μg/Kg-dry	1	10/17/07 15:13
Bromobenzene	ND	350	μg/Kg-dry	1	10/17/07 15:13
Bromochloromethane	ND	350	μg/Kg-dry	1	10/17/07 15:13
Bromodichloromethane	ND	350	μg/Kg-dry	1	10/17/07 15:13
Bromoform	ND	350	μg/Kg-dry	1	10/17/07 15:13
Bromomethane	ND	690	μg/Kg-dry	1	10/17/07 15:13
Carbon tetrachloride	ND	350	μg/Kg-dry	1	10/17/07 15:13
Chlorobenzene	ND	350	μg/Kg-dry	1	10/17/07 15:13
Chloroethane	ND	690	μg/Kg-dry	1	10/17/07 15:13
Chloroform	ND	350	μg/Kg-dry	1	10/17/07 15:13
Chloromethane	ND	690	µg/Kg-dry	1	10/17/07 15:13

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Value exceeds the instrument calibration range
- J Analyte detected below the PQL
- P Prim./Conf. column %D or RPD exceeds limit
- 3 Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - S Spike Recovery outside accepted recovery limits

### LSL

Project:

#### Life Science Laboratories, Inc.

#### **Analytical Results**

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

Sample Size: 5 g

%Moisture: 20.4

TestCode 8260SM

StateCertNo: 10155

CLIENT: O'Brien & Gere Engineers, Inc.

BMS-Krutulis

W Order: 0710024 Matrix: SOIL

Inst. ID: MS01 11 ColumnID: Rtx-VMS

10/30/07 10:43

Lab ID: 0'

0710024-002ADL

Client Sample ID: MW-06D (22-24)_100107

Collection Date: Date Received:

10/01/07 9:49 10/02/07 16:54

 PrepDate:
 10/15/07 10:00

 BatchNo:
 6389/R11519

 FileID:
 1-DL-T0842.D

Revision: Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	S BY GC/MS - ME	OH EXTRACT	SW8260B		(SW5035_MED)
cis-1,2-Dichloroethene	ND	350	μg/Kg-dry	1	10/17/07 15:13
cis-1,3-Dichloropropene	ND	350	μg/Kg-dry	1	10/17/07 15:13
Dibromochloromethane	ND	350	μg/Kg-dry	1	10/17/07 15:13
Dibromomethane	ND	350	μg/Kg-dry	1	10/17/07 15:13
Dichlorodifluoromethane	ND	690	μg/Kg-dry	1	10/17/07 15:13
Ethylbenzene	ND	350	μg/Kg-dry	1	10/17/07 15:13
Hexachlorobutadiene	ND	690	μg/Kg-dry	1	10/17/07 15:13
Isopropylbenzene	ND	350	μg/Kg-dry	1	10/17/07 15:13
Methyl tert-butyl ether	ND	350	μg/Kg-dry	1	10/17/07 15:13
Methylene chloride	ND	690	μg/Kg-dry		10/17/07 15:13
n-Butylbenzene	ND	350	μg/Kg-dry	1	10/17/07 15:13
n-Propylbenzene	ND	350	μg/Kg-dry	1	10/17/07 15:13
Naphthalene	ND	690	μg/Kg-dry	1	10/17/07 15:13
p-Isopropyltoluene	ND	350	μg/Kg-dry	1	10/17/07 15:13
sec-Butylbenzene	ND	350	μg/Kg-dry	1	10/17/07 15:13
Styrene	ND	350	μg/Kg-dry	1	10/17/07 15:13
tert-Butylbenzene	ND	350	μg/Kg-dry	1	10/17/07 15:13
Tetrachloroethene	ND	350	μg/Kg-dry	1	10/17/07 15:13
Toluene	5000	350	μg/Kg-dry	1	10/17/07 15:13
trans-1,2-Dichloroethene	ND	350	μg/Kg-dry		10/17/07 15:13
trans-1,3-Dichloropropene	ND	350	μg/Kg-dry	1	10/17/07 15:13
Trichloroethene	7700	350	μg/Kg-dry	1	10/17/07 15:13
Trichlorofluoromethane	ND	690	μg/Kg-dry	1	10/17/07 15:13
Vinyl chloride	ND	690	μg/Kg-dry	1	10/17/07 15:13
Xylenes (total)	ND	690	μg/Kg-dry	1	10/17/07 15:13
Surr: 1,2-Dichloroethane-d4	106	71-128	%REC	1	10/17/07 15:13
Surr: 4-Bromofluorobenzene	93.9	59-125	%REC	1	10/17/07 15:13
Surr: Dibromofluoromethane	80.5	40-156	%REC	1	10/17/07 15:13
Surr: Toluene-d8	104	75-125	%REC	1	10/17/07 15:13

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Value exceeds the instrument calibration range
- J Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - S Spike Recovery outside accepted recovery limits



#### Life Science Laboratories, Inc.

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

**CLIENT:** O'Brien & Gere Engineers, Inc.

Project: **BMS-Krutulis** 

W Order: 0710024 SOIL Matrix:

Inst. ID: MS03 10

ColumnID: Rtx-VMS Revision:

10/12/07 11:26

Sample Size: 5 g %Moisture: 16.9

TestCode 8260S

Lab ID:

0710024-003A

Client Sample ID: MW-06S (10-12)_100107

**Collection Date:** Date Received:

10/01/07 14:12 10/02/07 16:54

PrepDate:

BatchNo: R11382

1-SAMP-J4732.D FileID:

$\sim$	Type:
COL	I VDC:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS		SW8260B		
1,1,1,2-Tetrachloroethane	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
1,1,1-Trichloroethane	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
1,1,2,2-Tetrachloroethane	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
1,1,2-Trichloroethane	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
1,1-Dichloroethane	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
1,1-Dichloroethene	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
1,1-Dichloropropene	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
1,2,3-Trichlorobenzene	ND	6.0	μg/Kg-dry	1	10/08/07 12:04
1,2,3-Trichloropropane	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
1,2,4-Trichlorobenzene	ND	6.0	μg/Kg-dry	1	10/08/07 12:04
1,2,4-Trimethylbenzene	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
1,2-Dibromo-3-chloropropane	ND	6.0	µg/Kg-dry	1	10/08/07 12:04
1,2-Dibromoethane	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
1,2-Dichlorobenzene	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
1,2-Dichloroethane	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
1,2-Dichloropropane	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
1,3,5-Trimethylbenzene	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
1,3-Dichlorobenzene	ND	3.0	µg/Kg-dry	1	10/08/07 12:04
1,3-Dichloropropane	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
1,4-Dichlorobenzene	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
2,2-Dichloropropane	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
2-Chlorotoluene	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
4-Chforotoluene	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
Benzene	ND	3.0	µg/Kg-dry	1	10/08/07 12:04
Bromobenzene	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
Bromochloromethane	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
Bromodichloromethane	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
Bromoform	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
Bromomethane	ND	6.0	μg/Kg-dry	1	10/08/07 12:04
Carbon tetrachloride	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
Chlorobenzene	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
Chloroethane	ND	6.0	μ <b>g/K</b> g-dry	1	10/08/07 12:04
Chloroform	ND	3.0	µg/Kg-dry	1	10/08/07 12:04
Chloromethane	ND	6.0	µg/Kg-dry	1	10/08/07 12:04

#### Qualifiers:

Print Date: 10/18/07 15:28

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Print./Conf. column %D or RPD exceeds limit

309961

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - Spike Recovery outside accepted recovery limits

Page 7 of 28 Project Supervisor: Monika Santucci

#### Life Science Laboratories, Inc.

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

O'Brien & Gere Engineers, Inc. **CLIENT:** 

**BMS-Krutulis** 

W Order: 0710024 Matrix: SOIL

MS03 10 Inst. ID:

ColumnID: Rtx-VMS

10/12/07 11:26

Sample Size: 5 g %Moisture: 16.9

TestCode 8260S

Lab ID: 0710024-003A

Client Sample ID: MW-06S (10-12)_100107

**Collection Date:** Date Received:

10/01/07 14:12 10/02/07 16:54

PrepDate:

BatchNo: R11382

FileID: 1-SAMP-J4732.D

**Revision:** Col Type:

Analyte	Result Qua	I PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	S BY GC/MS		SW8260B		
cis-1,2-Dichloroethene	ND	3.0	µg/Kg-dry	1	10/08/07 12:04
cis-1,3-Dichloropropene	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
Dibromochloromethane	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
Dibromomethane	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
Dichlorodifluoromethane	ND	6.0	μg/Kg-dry	1	10/08/07 12:04
Ethylbenzene	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
Hexachlorobutadiene	ND	6.0	μg/Kg-dry	1	10/08/07 12:04
Isopropylbenzene	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
Methyl tert-butyl ether	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
Methylene chloride	ND	6.0	μg/Kg-dry	1	10/08/07 12:04
n-Butylbenzene	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
n-Propylbenzene	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
Naphthalene	ND	6.0	μg/Kg-dry	1	10/08/07 12:04
p-Isopropyltoluene	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
sec-Butylbenzene	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
Styrene	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
tert-Butylbenzene	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
Tetrachloroethene	ND	3.0	μg/Kg-dry		10/08/07 12:04
Toluene	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
trans-1,2-Dichloroethene	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
trans-1,3-Dichloropropene	ND	3.0	µg/Kg-dry	1	10/08/07 12:04
Trichloroethene	ND	3.0	μg/Kg-dry	1	10/08/07 12:04
Trichlorofluoromethane	ND	6.0	μg/Kg-dry	1	10/08/07 12:04
Vinyl chloride	ND	6.0	μg/Kg-dry	1	10/08/07 12:04
Xylenes (total)	ND	6.0	μg/Kg-dry	1	10/08/07 12:04
Surr: 1,2-Dichloroethane-d4	97.3	71-128	%REC	1	10/08/07 12:04
Surr: 4-Bromofluorobenzene	262 S	59-125	%REC	1	10/08/07 12:04
Surr: Dibromofluoromethane	101	40-156	%REC	1	10/08/07 12:04
Surr: Toluene-d8	136 S	75-125	%REC	1	10/08/07 12:04

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - Spike Recovery outside accepted recovery limits

Page 8 of 28

309961 Print Date: 10/18/07 15:28

Project Supervisor: Monika Santucci

### LSL

Project:

#### Life Science Laboratories, Inc.

**Analytical Results** 

LSL 5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

Client Sample ID: MW-06S (10-12)_100107

0710024-003ADL

CLIENT: O'Brien & Gere Engineers, Inc.

**BMS-Krutulis** 

W Order: 0710024 Matrix: SOIL

Inst. ID: MS03 10

ColumnID: Rtx-VMS Revision: 10/11/07 10:49

3 10 Sample Size: 1 g VMS %Moisture: 16.9

10/11/07 10:49 **TestCode** 8260S

**Collection Date:** 10/01/07 14:12 **Date Received:** 10/02/07 16:54

PrepDate:

Lab ID:

BatchNo: R11395

**FileID:** 1-DL-J4765.D

$\sim$ 1	Typ	
	1 V I	

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS		SW8260B		
1,1,1,2-Tetrachloroethane	ND	15	μg/Kg-dry	5	10/09/07 19:21
1,1,1-Trichloroethane	ND	15	μg/Kg-dry	5	10/09/07 19:21
1,1,2,2-Tetrachloroethane	ND	15	µg/Kg-dry	5	10/09/07 19:21
1,1,2-Trichloroethane	ND	15	μg/Kg-dry	5	10/09/07 19:21
1,1-Dichloroethane	ND	15	μg/Kg-dry	5	10/09/07 19:21
1,1-Dichloroethene	ND	15	μg/Kg-dry	5	10/09/07 19:21
1,1-Dichloropropene	ND	15	μg/Kg-dry	5	10/09/07 19:21
1,2,3-Trichlorobenzene	ND	30	µg/Kg-dry	5	10/09/07 19:21
1,2,3-Trichloropropane	ND	15	μg/Kg-dry	5	10/09/07 19:21
1,2,4-Trichlorobenzene	ND	30	μg/Kg-dry	5	10/09/07 19:21
1,2,4-Trimethylbenzene	ND	15	μg/Kg-dry	5	10/09/07 19:21
1,2-Dibromo-3-chloropropane	ND	30	μg/Kg-dry	5	10/09/07 19:21
1,2-Dibromoethane	ND	15	μg/Kg-dry	5	10/09/07 19:21
1,2-Dichlorobenzene	ND	15	μg/Kg-dry	5	10/09/07 19:21
1,2-Dichloroethane	ND	15	μg/Kg-dry	5	10/09/07 19:21
1,2-Dichloropropane	ND	15	μg/Kg-dry	5	10/09/07 19:21
1,3,5-Trimethylbenzene	ND	15	μg/Kg-dry	5	10/09/07 19:21
1,3-Dichlorobenzene	ND	15	μg/Kg-dry	5	10/09/07 19:21
1,3-Dichloropropane	ND	15	μg/Kg-dry	5	10/09/07 19:21
1,4-Dichlorobenzene	ND	15	μg/Kg-dry	5	10/09/07 19:21
2,2-Dichloropropane	ND	15	μg/Kg-dry	5	10/09/07 19:21
2-Chlorotoluene	ND	15	μg/Kg-dry	5	10/09/07 19:21
4-Chlorotoluene	ND	15	μg/Kg-dry	5	10/09/07 19:21
Benzene	ND	15	μg/Kg-dry	5	10/09/07 19:21
Bromobenzene	ND	15	μg/Kg-dry	5	10/09/07 19:21
Bromochloromethane	ND	15	μg/Kg-dry	5	10/09/07 19:21
Bromodichloromethane	ND	15	μg/Kg-dry	5	10/09/07 19:21
Bromoform	ND	15	μg/Kg-dry	5	10/09/07 19:21
Bromomethane	ND	30	μg/Kg-dry	5	10/09/07 19:21
Carbon tetrachloride	ND	15	μg/Kg-dry	5	10/09/07 19:21
Chlorobenzene	ND	15	μg/Kg-dry	5	10/09/07 19:21
Chloroethane	ND	30	μg/Kg-dry	5	10/09/07 19:21
Chloroform	ND	15	μg/Kg-dry	5	10/09/07 19:21
Chloromethane	ND	30	μg/Kg-dry	5	10/09/07 19:21

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Value exceeds the instrument calibration range
- J Analyte detected below the PQL.
- P Prim./Conf. column %D or RPD exceeds limit
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- S Spike Recovery outside accepted recovery limits

Print Date: 10/18/07 15:28 310185 Project Supervisor: Monika Santucci Page 9 of 28

#### Life Science Laboratories, Inc.

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

Sample Size: 1 g

%Moisture: 16.9

TestCode 8260S

StateCertNo: 10155

0710024-003ADL

O'Brien & Gere Engineers, Inc. **CLIENT:** 

**BMS-Krutulis** Project:

W Order: 0710024 SOIL Matrix:

Inst. ID: MS03 10

ColumnID: Rtx-VMS Revision:

10/11/07 10:49

Client Sample ID: MW-06S (10-12)_100107 **Collection Date:** 

Date Received:

10/01/07 14:12 10/02/07 16:54

PrepDate:

Lab ID:

R11395 BatchNo:

FilelD:

1-DL-J4765.D

Col Type:

Analyte	Result Qua	l PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS		SW8260B		
cis-1,2-Dichloroethene	ND	15	μg/Kg-dry	5	10/09/07 19:21
cis-1,3-Dichloropropene	ND	15	μg/Kg-dry	5	10/09/07 19:21
Dibromochloromethane	ND	15	μg/Kg-dry	5	10/09/07 19:21
Dibromomethane	ND	15	μg/Kg-dry	5	10/09/07 19:21
Dichlorodifluoromethane	ND	30	μg/Kg-dry	5	10/09/07 19:21
Ethylbenzene	ND	15	μg/Kg-dry	5	10/09/07 19:21
Hexachlorobutadiene	ND	30	μg/Kg-dry	5	10/09/07 19:21
Isopropylbenzene	ND	15	μg/Kg-dry	5	10/09/07 19:21
Methyl tert-butyl ether	ND	15	μg/Kg-dry	5	10/09/07 19:21
Methylene chloride	ND	30	μg/Kg-dry	5	10/09/07 19:21
n-Butylbenzene	ND	15	μg/Kg-dry	5	10/09/07 19:21
n-Propylbenzene	ND	15	μg/Kg-dry	5	10/09/07 19:21
Naphthalene	ND	30	μg/Kg-dry	5	10/09/07 19:21
p-Isopropyltoluene	ND	15	μg/Kg-dry	5	10/09/07 19:21
sec-Butylbenzene	ND	15	μg/Kg-dry	5	10/09/07 19:21
Styrene	ND	15	μg/Kg-dry	5	10/09/07 19:21
tert-Butylbenzene	ND	15	μg/Kg-dry	5	10/09/07 19:21
Tetrachloroethene	ND	15	μg/Kg-dry	5	10/09/07 19:21
Toluene	ND	15	μg/Kg-dry	5	10/09/07 19:21
trans-1,2-Dichloroethene	ND	15	μg/Kg-dry	5	10/09/07 19:21
trans-1,3-Dichloropropene	ND	15	μg/Kg-dry	5	10/09/07 19:21
Trichloroethene	ND	15	μg/Kg-dry	5	10/09/07 19:21
Trichlorofluoromethane	ND	30	μg/Kg-dry	5	10/09/07 19:21
Vinyl chloride	ND	30	μg/Kg-dry	5	10/09/07 19:21
Xylenes (total)	ND	30	μg/Kg-dry	5	10/09/07 19:21
Surr: 1,2-Dichloroethane-d4	101	71-128	%REC	5	10/09/07 19:21
Surr: 4-Bromofluorobenzene	177 S	59-125	%REC	5	10/09/07 19:21
Surr: Dibromofluoromethane	102	40-156	%REC	5	10/09/07 19:21
Surr: Toluene-d8	125	75-125	%REC	5	10/09/07 19:21

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - Spike Recovery outside accepted recovery limits

Project Supervisor: Monika Santucci Page 10 of 28 310185 Print Date: 10/18/07 15:28

#### Life Science Laboratories, Inc.

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

O'Brien & Gere Engineers, Inc. CLIENT:

Project: **BMS-Krutulis** 

W Order: 0710024 Matrix: SOIL

MS03 10 Inst. ID:

ColumnID: Rtx-VMS Revision:

10/30/07 10:36

Sample Size: 1 g

%Moisture: 15.6

TestCode 8260S

Lab ID:

0710024-004A

Client Sample ID: MW-06S (16-18)_100107

**Collection Date:** Date Received:

10/01/07 15:07 10/02/07 16:54

PrepDate:

BatchNo: R11382

FileID:

1-SAMP-J4742.D

Col	Type
-----	------

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS	Y GC/MS			
1,1,1,2-Tetrachloroethane	ND	15	μg/Kg-dry	5	10/08/07 18:26
1,1,1-Trichloroethane	ND	15	μg/Kg-dry	5	10/08/07 18:26
1,1,2,2-Tetrachloroethane	ND	15	μg/Kg-dry	5	10/08/07 18:26
1,1,2-Trichloroethane	ND	15	μg/Kg-dry	5	10/08/07 18:26
1,1-Dichloroethane	ND	15	μg/Kg-dry	5	10/08/07 18:26
1,1-Dichloroethene	ND	15	μg/Kg-dry	5	10/08/07 18:26
1,1-Dichloropropene	ND	15	μg/Kg-dry	5	10/08/07 18:26
1,2,3-Trichlorobenzene	ND	30	μg/Kg-dry	5	10/08/07 18:26
1,2,3-Trichloropropane	ND	15	μg/Kg-dry	5	10/08/07 18:26
1,2,4-Trichlorobenzene	ND	30	μg/Kg-dry	5	10/08/07 18:26
1,2,4-Trimethylbenzene	ND	15	μg/Kg-dry	5	10/08/07 18:26
1,2-Dibromo-3-chloropropane	ND	30	μg/Kg-dry	5	10/08/07 18:26
1,2-Dibromoethane	ND	15	μg/Kg-dry	5	10/08/07 18:26
1,2-Dichlorobenzene	ND	15	µg/Kg-dry	5	10/08/07 18:26
1,2-Dichloroethane	ND	15	μg/Kg-dry	5	10/08/07 18:26
1,2-Dichloropropane	ND	15	μg/Kg-dry	5	10/08/07 18:26
1,3,5-Trimethylbenzene	ND	15	μg/Kg-dry	5	10/08/07 18:26
1,3-Dichlorobenzene	ND	15	μg/Kg-dry	5	10/08/07 18:26
1,3-Dichloropropane	ND	15	μg/Kg-dry	5	10/08/07 18:26
1,4-Dichlorobenzene	ND	15	μg/Kg-dry	5	10/08/07 18:26
2,2-Dichloropropane	ND	15	μg/Kg-dry	5	10/08/07 18:26
2-Chlorotoluene	ND	15	μg/Kg-dry	5	10/08/07 18:26
4-Chlorotoluene	ND	15	μg/Kg-dry	5	10/08/07 18:26
Benzene	ND	15	μg/Kg-dry	5	10/08/07 18:26
Bromobenzene	ND	15	μg/Kg-dry	5	10/08/07 18:26
Bromochloromethane	ND	15	μg/Kg-dry	5	10/08/07 18:26
Bromodichloromethane	ND	15	μg/Kg-dry	5	10/08/07 18:26
Bromoform	ND	15	μg/Kg-dry	5	10/08/07 18:26
Bromomethane	ND	30	μg/Kg-dry	5	10/08/07 18:26
Carbon tetrachloride	ND	15	μg/Kg-dry	5	10/08/07 18:26
Chlorobenzene	ND	15	μg/Kg-dry	5	10/08/07 18:26
Chloroethane	ND	30	μg/Kg-dry		10/08/07 18:26
Chloroform	ND	15	μg/Kg-dry		10/08/07 18:26
Chloromethane	ND	30	μg/Kg-dry		10/08/07 18:26

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range

Prim./Conf. column %D or RPD exceeds limit

J Analyte detected below the PQL

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- Spike Recovery outside accepted recovery limits

Print Date: 10/30/07 10:39 315503 Project Supervisor: Monika Santucci

## LSL

Project:

#### Life Science Laboratories, Inc.

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

CLIENT: O'Brien & Gere Engineers, Inc.

BMS-Krutulis

W Order: 0710024 Matrix: SOIL

Matrix: SOIL Inst. ID: MS03-1

Inst. ID: MS03 10 ColumnID: Rtx-VMS

**Revision:** 10/30/07 10:36

Sample Size: 1 g %Moisture: 15.6

TestCode 8260S

Lab ID: 0710024-004A

Client Sample ID: MW-06S (16-18)_100107

**Collection Date:** 10/01/07 15:07 **Date Received:** 10/02/07 16:54

PrepDate:

BatchNo: R11382

FileID: 1-SAMP-J4742.D

Col Type:

Analyte	Result Qua	I PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS	GC/MS		<del></del>	
cis-1,2-Dichloroethene	ND	15	μg/Kg-dry	5	10/08/07 18:26
cis-1,3-Dichloropropene	ND	15	μg/Kg-dry	5	10/08/07 18:26
Dibromochloromethane	ND	15	μg/Kg-dry	5	10/08/07 18:26
Dibromomethane	ND	15	μg/Kg-dry	5	10/08/07 18:26
Dichlorodifluoromethane	ND	30	μg/Kg-dry	5	10/08/07 18:26
Ethylbenzene	ND	15	μg/Kg-dry	5	10/08/07 18:26
Hexachlorobutadiene	ND	30	μg/Kg-dry	5	10/08/07 18:26
Isopropylbenzene	ND	15	μg/Kg-dry	5	10/08/07 18:26
Methyl tert-butyl ether	ND	15	μg/Kg-dry	5	10/08/07 18:26
Methylene chloride	ND	30	μg/Kg-dry	5	10/08/07 18:26
n-Butylbenzene	38	15	μg/Kg-dry	5	10/08/07 18:26
n-Propylbenzene	ND	15	μg/Kg-dry	5	10/08/07 18:26
Naphthalene	ND	30	μg/Kg-dry	5	10/08/07 18:26
p-Isopropyltoluene	ND	15	μg/Kg-dry	5	10/08/07 18:26
sec-Butylbenzene	24	15	μg/Kg-dry	5	10/08/07 18:26
Styrene	ND	15	μg/Kg-dry	5	10/08/07 18:26
tert-Butylbenzene	ND	15	μg/Kg-dry	5	10/08/07 18:26
Tetrachloroethene	ND	15	μg/Kg-dry	5	10/08/07 18:26
Toluene	ND	15	μg/Kg-dry	5	10/08/07 18:26
trans-1,2-Dichloroethene	ND	15	μg/Kg-dry	5	10/08/07 18:26
trans-1,3-Dichloropropene	ND	15	μg/Kg-dry	5	10/08/07 18:26
Trichloroethene	ND	15	μg/Kg-dry	5	10/08/07 18:26
Trichlorofluoromethane	ND	30	μg/Kg-dry	5	10/08/07 18:26
Vinyl chloride	ND	30	μg/Kg-dry	5	10/08/07 18:26
Xylenes (total)	ND	30	μg/Kg-dry	5	10/08/07 18:26
Surr: 1,2-Dichloroethane-d4	91.5	71-128	%REC	5	10/08/07 18:26
Surr: 4-Bromofluorobenzene	171 S	59-125	%REC	5	10/08/07 18:26
Surr: Dibromofluoromethane	97.0	40-156	%REC	5	10/08/07 18:26
Surr: Toluene-d8	109	75-125	%REC	5	10/08/07 18:26

#### Qualifiers:

Print Date: 10/30/07 10:39

- Value exceeds Maximum Contaminant Level
- E Value exceeds the instrument calibration range
- J Analyte detected below the PQL
- P Prim./Conf. column %D or RPD exceeds limit

315503

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - S Spike Recovery outside accepted recovery limits

Project Supervisor: Monika Santucci Page 12 of 28



#### Life Science Laboratories, Inc.

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

Sample Size: 1 g

%Moisture: 15.6

TestCode 8260S

CLIENT: O'Brien & Gere Engineers, Inc.

**BMS-Krutulis** 

W Order: 0710024 Matrix: SOIL

Inst. ID:

MS03 10 ColumnID: Rtx-VMS

Revision:

10/30/07 10:37

Lab ID: 0710024-004ARA

Client Sample ID: *MW-06S* (16-18)_100107

StateCertNo: 10155

**Collection Date:** 10/01/07 15:07 10/02/07 16:54 Date Received:

PrepDate:

BatchNo: R11395

FileID: 1-RA-J4767.D

Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS		SW8260B		
1,1,1,2-Tetrachloroethane	ND	15	μg/Kg-dry	5	10/09/07 20:34
1,1,1-Trichloroethane	ND	15	μg/Kg-dry	5	10/09/07 20:34
1,1,2,2-Tetrachloroethane	ND	15	μg/Kg-dry	5	10/09/07 20:34
1,1,2-Trichloroethane	ND	15	μg/Kg-dry	5	10/09/07 20:34
1,1-Dichloroethane	ND	15	μg/Kg-dry	5	10/09/07 20:34
1,1-Dichloroethene	ND	15	μg/Kg-dry	5	10/09/07 20:34
1,1-Dichloropropene	ND	15	μg/Kg-dry	5	10/09/07 20:34
1,2,3-Trichlorobenzene	ND	30	μg/Kg-dry	5	10/09/07 20:34
1,2,3-Trichloropropane	ND	15	μg/Kg-dry	5	10/09/07 20:34
1,2,4-Trichlorobenzene	ND	30	μg/Kg-dry	5	10/09/07 20:34
1,2,4-Trimethylbenzene	ND	15	μg/Kg-dry	5	10/09/07 20:34
1,2-Dibromo-3-chloropropane	ND	30	μg/Kg-dry	5	10/09/07 20:34
1,2-Dibromoethane	ND	15	μg/Kg-dry	5	10/09/07 20:34
1,2-Dichlorobenzene	ND	15	μg/Kg-dry	5	10/09/07 20:34
1,2-Dichloroethane	ND	15	μg/Kg-dry	5	10/09/07 20:34
1,2-Dichloropropane	ND	15	μg/Kg-dry	5	10/09/07 20:34
1,3,5-Trimethylbenzene	ND	15	μg/Kg-dry	5	10/09/07 20:34
1,3-Dichlorobenzene	ND	15	μg/Kg-dry	5	10/09/07 20:34
1,3-Dichloropropane	ND	15	μg/Kg-dry	5	10/09/07 20:34
1,4-Dichlorobenzene	ND	15	μg/Kg-dry	5	10/09/07 20:34
2,2-Dichloropropane	ND	15	μg/Kg-dry	5	10/09/07 20:34
2-Chlorotoluene	ND	15	μg/Kg-dry	5	10/09/07 20:34
4-Chlorotoluene	ND	15	μg/Kg-dry	5	10/09/07 20:34
Benzene	ND	<b>1</b> 5	μg/Kg-dry	5	10/09/07 20:34
Bromobenzene	ND	15	μg/Kg-dry	5	10/09/07 20:34
Bromochloromethane	ND	15	μg/Kg-dry	5	10/09/07 20:34
Bromodichloromethane	ND	15	μg/Kg-dry	5	10/09/07 20:34
Bromoform	ND	15	μg/Kg-dry	5	10/09/07 20:34
Bromomethane	ND	30	μg/Kg-dry	5	10/09/07 20:34
Carbon tetrachloride	ND	15	μg/Kg-dry	5	10/09/07 20:34
Chlorobenzene	ND	15	μg/Kg-dry	5	10/09/07 20:34
Chloroethane	ND	30	μg/Kg-dry	5	10/09/07 20:34
Chloroform	ND	15	μg/Kg-dry	5	10/09/07 20:34
Chloromethane	ND	30	μg/Kg-dry		10/09/07 20:34

#### Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- Spike Recovery outside accepted recovery limits

Page 13 of 28 Print Date: 10/30/07 10:39 315504 Project Supervisor: Monika Santucci



## Life Science Laboratories, Inc.

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

**CLIENT:** O'Brien & Gere Engineers, Inc.

BMS-Krutulis

W Order: 0710024 Matrix: SOIL

Inst. ID: MS03 10

ColumnID: Rtx-VMS

Revision:

10/30/07 10:37

Sample Size: 1 g %Moisture: 15.6

TestCode 8260S

Lab ID:

0710024-004ARA Client Sample ID: MW-06S (16-18)_100107

**Collection Date:** 10/01/07 15:07 10/02/07 16:54 Date Received:

PrepDate:

BatchNo: R11395

FileID: 1-RA-J4767.D

Col Type:

Analyte	Result Qua	l PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS		SW8260B		
cis-1,2-Dichloroethene	ND	15	μg/Kg-dry	5	10/09/07 20:34
cis-1,3-Dichloropropene	ND	15	μg/Kg-dry	5	10/09/07 20:34
Dibromochloromethane	ND	15	μg/Kg-dry	5	10/09/07 20:34
Dibromomethane	ND	15	μg/Kg-dry	5	10/09/07 20:34
Dichlorodifluoromethane	ND	30	μg/Kg-dry	5	10/09/07 20:34
Ethylbenzene	ND	15	μg/Kg-dry	5	10/09/07 20:34
Hexachlorobutadiene	ND	30	μg/Kg-dry	5	10/09/07 20:34
Isopropylbenzene	ND	15	μg/Kg-dry	5	10/09/07 20:34
Methyl tert-butyl ether	ND	15	μg/Kg-dry	5	10/09/07 20:34
Methylene chloride	ND	30	μg/Kg-dry	5	10/09/07 20:34
n-Butylbenzene	27	15	μg/Kg-dry	5	10/09/07 20:34
n-Propylbenzene	ND	15	μg/Kg-dry	5	10/09/07 20:34
Naphthalene	ND	30	μg/Kg-dry	5	10/09/07 20:34
p-Isopropyltoluene	ND	15	μg/Kg-dry	5	10/09/07 20:34
sec-Butylbenzene	15	15	μg/Kg-dry	5	10/09/07 20:34
Styrene	ND	15	μg/Kg-dry	5	10/09/07 20:34
tert-Butylbenzene	ND	15	μg/Kg-dry	5	10/09/07 20:34
Tetrachloroethene	ND	15	μg/Kg-dry	5	10/09/07 20:34
Toluene	ND	15	μg/Kg-dry	5	10/09/07 20:34
trans-1,2-Dichloroethene	ND	15	μg/Kg-dry	5	10/09/07 20:34
trans-1,3-Dichloropropene	ND	15	μg/Kg-dry	5	10/09/07 20:34
Trichloroethene	ND	15	μg/Kg-dry	5	10/09/07 20:34
Trichlorofluoromethane	ND	30	μg/Kg-dry	5	10/09/07 20:34
Vinyl chloride	ND	30	μg/Kg-dry	5	10/09/07 20:34
Xylenes (total)	ND	30	μg/Kg-dry	5	10/09/07 20:34
Surr: 1,2-Dichloroethane-d4	95.9	71-128	%REC	5	10/09/07 20:34
Surr: 4-Bromofluorobenzene	165 S	59-125	%REC	5	10/09/07 20:34
Surr: Dibromofluoromethane	101	40-156	%REC	5	10/09/07 20:34
Surr: Toluene-d8	123	75-125	%REC	5	10/09/07 20:34

### Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL J
- Prim./Conf. column %D or RPD exceeds limit
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- Spike Recovery outside accepted recovery limits

Project Supervisor: Monika Santucci Print Date: 10/30/07 10:39 315504 Page 14 of 28



## Life Science Laboratories, Inc.

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

Sample Size: 5 g

%Moisture: 16.8

TestCode 8260S

StateCertNo: 10155

**CLIENT:** O'Brien & Gere Engineers, Inc.

**BMS-Krutulis** 

W Order: 0710024 Matrix: SOIL

MS03 10 Inst. ID:

ColumnID: Rtx-VMS Revision:

10/11/07 10:49

0710024-005A

Lab ID:

Client Sample ID: MW-03D (8-10)_100207

**Collection Date:** Date Received:

10/02/07 9:43 10/02/07 16:54

PrepDate:

BatchNo: R11395

FileID:

1-SAMP-J4764.D

	Type:
e ai	I vne

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS BY GC/MS			SW8260B		
1,1,1,2-Tetrachloroethane	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
1,1,1-Trichloroethane	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
1,1,2,2-Tetrachloroethane	16	3.0	μg/Kg-dry		10/09/07 18:35
1,1,2-Trichloroethane	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
1,1-Dichloroethane	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
1,1-Dichloroethene	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
1,1-Dichloropropene	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
1,2,3-Trichlorobenzene	ND	6.0	μg/Kg-dry	1	10/09/07 18:35
1,2,3-Trichloropropane	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
1,2,4-Trichlorobenzene	ND	6.0	μg/Kg-dry	1	10/09/07 18:35
1,2,4-Trimethylbenzene	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
1,2-Dibromo-3-chloropropane	ND	6.0	μg/Kg-dry	1	10/09/07 18:35
1,2-Dibromoethane	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
1,2-Dichlorobenzene	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
1,2-Dichloroethane	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
1,2-Dichloropropane	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
1,3,5-Trimethylbenzene	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
1,3-Dichlorobenzene	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
1,3-Dichloropropane	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
1,4-Dichlorobenzene	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
2,2-Dichloropropane	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
2-Chlorotoluene	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
4-Chlorotoluene	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
Benzene	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
Bromobenzene	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
Bromochloromethane	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
Bromodichloromethane	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
Bromoform	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
Bromomethane	ND	6.0	μg/Kg-dry	1	10/09/07 18:35
Carbon tetrachloride	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
Chlorobenzene	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
Chloroethane	ND	6.0	μg/Kg-dry	1	10/09/07 18:35
Chloroform	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
Chloromethane	ND	6.0	μg/Kg-dry	1	10/09/07 18:35

## Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - Spike Recovery outside accepted recovery limits

Page 15 of 28

Print Date: 10/18/07 15:28 310184 Project Supervisor: Monika Santucci

## Life Science Laboratories, Inc.

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

Sample Size: 5 g

%Moisture: 16.8

TestCode 8260S

StateCertNo: 10155

**CLIENT:** O'Brien & Gere Engineers, Inc.

**BMS-Krutulis** 

W Order: 0710024 Matrix: SOIL

Inst. ID: MS03 10

ColumnID: Rtx-VMS

10/11/07 10:49 Revision:

Lab ID: 0710024-005A

Client Sample ID: *MW-03D* (8-10)_100207

**Collection Date:** Date Received:

10/02/07 9:43 10/02/07 16:54

PrepDate:

BatchNo: R11395

FileID:

1-SAMP-J4764.D

Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS BY GC/MS			SW8260B		
cis-1,2-Dichloroethene	11	3.0	μg/Kg-dry	1	10/09/07 18:35
cis-1,3-Dichloropropene	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
Dibromochloromethane	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
Dibromomethane	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
Dichlorodifluoromethane	ND	6.0	μg/Kg-dry	1	10/09/07 18:35
Ethylbenzene	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
Hexachlorobutadiene	ND	6.0	μg/Kg-dry	1	10/09/07 18:35
Isopropylbenzene	6.9	3.0	μg/Kg-dry	1	10/09/07 18:35
Methyl tert-butyl ether	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
Methylene chloride	ND	6.0	μg/Kg-dry	1	10/09/07 18:35
n-Butylbenzene	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
n-Propylbenzene	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
Naphthalene	ND	6.0	μg/Kg-dry	1	10/09/07 18:35
p-Isopropyltoluene	ND	3.0	µg/Kg-dry	1	10/09/07 18:35
sec-Butylbenzene	24	3.0	μg/Kg-dry	1	10/09/07 18:35
Styrene	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
tert-Butylbenzene	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
Tetrachloroethene	43	3.0	μg/Kg-dry	1	10/09/07 18:35
Toluene	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
trans-1,2-Dichloroethene	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
trans-1,3-Dichloropropene	ND	3.0	μg/Kg-dry	1	10/09/07 18:35
Trichloroethene	200	3.0	μg/Kg-dry	1	10/09/07 18:35
Trichlorofluoromethane	ND	6.0	μg/Kg-dry	1	10/09/07 18:35
Vinyl chloride	ND	6.0	μg/Kg-dry	1	10/09/07 18:35
Xylenes (total)	ND	6.0	μg/Kg-dry	1	10/09/07 18:35
Surr: 1,2-Dichloroethane-d4	99.2	71-128	%REC	1	10/09/07 18:35
Surr: 4-Bromofluorobenzene	92.2	59-125	%REC	1	10/09/07 18:35
Surr: Dibromofluoromethane	101	40-156	%REC	1	10/09/07 18:35
Surr: Toluene-d8	104	75-125	%REC	1	10/09/07 18:35

## Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - Spike Recovery outside accepted recovery limits

Page 16 of 28

Print Date: 10/18/07 15:28

310184

Project Supervisor: Monika Santucci

## LSL

Project:

## Life Science Laboratories, Inc.

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

Sample Size: 1 g

%Moisture: 15.2

TestCode 8260S

StateCertNo: 10155

CLIENT: O'Brien & Gere Engineers, Inc.

BMS-Krutulis

W Order: 0710024 Matrix: SOIL

Inst. ID: MS03 10 ColumnID: Rtx-VMS

10/12/07 11:32

-----

Lab ID: 0710024-006A

Client Sample ID: MW-03D (18-20)_100207

Collection Date:
Date Received:

10/02/07 10:09 10/02/07 16:54

PrepDate:

BatchNo: R11405

FileID: 1-S

1-SAMP-J4791.D

Revision: Col Type:

Analyte	Result Qua	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS BY GC/MS			SW8260B	SW8260B	
1.1.2-Tetrachloroethane	ND	15	μg/Kg-dry	5	10/10/07 19:32
1,1,1-Trichloroethane	ND	15	μg/Kg-dry	5	10/10/07 19:32
1,1,2,2-Tetrachloroethane	ND	15	μg/Kg-dry	5	10/10/07 19:32
1,1,2-Trichloroethane	ND	15	μg/Kg-dry	5	10/10/07 19:32
1,1-Dichloroethane	ND	15	μg/Kg-dry	5	10/10/07 19:32
1,1-Dichloroethene	ND	15	μg/Kg-dry	5	10/10/07 19:32
1,1-Dichloropropene	ND	15	μg/Kg-dry	5	10/10/07 19:32
1,2,3-Trichlorobenzene	ND	29	μg/Kg-dry	5	10/10/07 19:32
1.2.3-Trichloropropane	ND	15	μg/Kg-dry	5	10/10/07 19:32
1,2,4-Trichlorobenzene	ND	29	μg/Kg-dry	5	10/10/07 19:32
1,2,4-Trimethylbenzene	ND	15	μg/Kg-dry	5	10/10/07 19:32
1,2-Dibromo-3-chloropropane	ND	29	μg/Kg-dry	5	10/10/07 19:32
1,2-Dibromoethane	ND	15	μg/Kg-dry	5	10/10/07 19:32
1,2-Dichlorobenzene	ND	15	μg/Kg-dry	5	10/10/07 19:32
1,2-Dichloroethane	ND	15	μg/Kg-dry	5	10/10/07 19:32
1,2-Dichloropropane	ND	15	µg/Kg-dry	5	10/10/07 19:32
1,3,5-Trimethylbenzene	ND	15	μg/Kg-dry	5	10/10/07 19:32
1,3-Dichlorobenzene	ND	15	μg/Kg-dry	5	10/10/07 19:32
1,3-Dichloropropane	ND	15	μg/Kg-dry	5	10/10/07 19:32
1,4-Dichlorobenzene	ND	15	μg/Kg-dry	5	10/10/07 19:32
2,2-Dichloropropane	ND	15	μg/Kg-dry	5	10/10/07 19:32
2-Chlorotoluene	ND	15	μg/Kg-dry	5	10/10/07 19:32
4-Chlorotoluene	ND	15	μg/Kg-dry	5	10/10/07 19:32
Benzene	ND	15	μg/Kg-dry	5	10/10/07 19:32
Bromobenzene	ND	15	μg/Kg-dry	5	10/10/07 19:32
Bromochloromethane	ND	15	μg/Kg-dry	5	10/10/07 19:32
Bromodichloromethane	ND	15	μg/Kg-dry	5	10/10/07 19:32
Bromoform	ND	15	μg/Kg-dry	5	10/10/07 19:32
Bromomethane	ND	29	μg/Kg-dry	5	10/10/07 19:32
Carbon tetrachloride	ND	15	μg/Kg-dry	5	10/10/07 19:32
Chlorobenzene	ND	15	μg/Kg-dry	5	10/10/07 19:32
Chloroethane	ND	29	μg/Kg-dry	5	10/10/07 19:32
Chloroform	ND	15	μg/Kg-dry	5	10/10/07 19:32
Chloromethane	ND	29	μg/ <b>Kg</b> -dry	5	10/10/07 19:32

## Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Value exceeds the instrument calibration range
- J Analyte detected below the PQL
- P Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - S Spike Recovery outside accepted recovery limits

Print Date: 10/18/07 15:28 310507 Project Supervisor: Monika Santucci Page 19 of 28

## Life Science Laboratories, Inc.

Sample Size: 1 g

%Moisture: 15.2

TestCode 8260S

## **Analytical Results**

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057 (315) 437-0200 StateCertNo: 10155

CLIENT: O'Brien & Gere Engineers, Inc.

**BMS-Krutulis** 

W Order: 0710024 Matrix: SOIL

Inst. ID: MS03 10

ColumnID: Rtx-VMS

Revision: 10/12/07 11:32

Lab ID: 0710024-006A

Client Sample ID: *MW-03D* (18-20)_100207

10/02/07 10:09 **Collection Date:** Date Received: 10/02/07 16:54

PrepDate:

BatchNo: R11405

FileID: 1-SAMP-J4791.D

Col Type:

Analyte	Result Qua	l PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS		SW8260B		
cis-1,2-Dichloroethene	ND	15	μg/Kg-dry	5	10/10/07 19:32
cis-1,3-Dichloropropene	ND	15	μg/Kg-dry	5	10/10/07 19:32
Dibromochloromethane	ND	15	μg/Kg-dry	5	10/10/07 19:32
Dibromomethane	ND	15	μg/Kg-dry	5	10/10/07 19:32
Dichlorodifluoromethane	ND	29	μg/Kg-dry	5	10/10/07 19:32
Ethylbenzene	51	15	μg/Kg-dry	5	10/10/07 19:32
Hexachtorobutadiene	ND	29	μg/Kg-dry	5	10/10/07 19:32
Isopropylbenzene	ND	15	µg/Kg-dry	5	10/10/07 19:32
Methyl tert-butyl ether	ND	15	μg/Kg-dry	5	10/10/07 19:32
Methylene chloride	ND	29	μg/Kg-dry	5	10/10/07 19:32
n-Butylbenzene	ND	15	μg/Kg-dry	5	10/10/07 19:32
n-Propylbenzene	ND	15	µg/Kg-dry	5	10/10/07 19:32
Naphthalene	ND	29	μg/Kg-dry	5	10/10/07 19:32
p-Isopropyltoluene	ND	15	μg/Kg-dry	5	10/10/07 19:32
sec-Butylbenzene	ND	15	μg/Kg-dry	5	10/10/07 19:32
Styrene	ND	15	μg/Kg-dry	5	10/10/07 19:32
tert-Butylbenzene	ND	15	μg/Kg-dry	5	10/10/07 19:32
Tetrachloroethene	4500 E	15	μg/Kg-dry	5	10/10/07 19:32
Toluene	100	15	μg/Kg-dry	5	10/10/07 19:32
trans-1,2-Dichloroethene	ND	15	μg/Kg-dry	5	10/10/07 19:32
trans-1,3-Dichloropropene	ND	15	μg/Kg-dry	5	10/10/07 19:32
Trichloroethene	8600 E	15	μg/Kg-dry	5	10/10/07 19:32
Trichlorofluoromethane	ND	29	μg/Kg-dry	5	10/10/07 19:32
Vinyl chloride	ND	29	μg/Kg-dry	5	10/10/07 19:32
Xylenes (total)	ND	29	µg/Kg-dry	5	10/10/07 19:32
Surr: 1,2-Dichloroethane-d4	105	71-128	%REC	5	10/10/07 19:32
Surr: 4-Bromofluorobenzene	89.3	59-125	%REC	5	10/10/07 19:32
Surr: Dibromofluoromethane	103	40-156	%REC	5	10/10/07 19:32
Surr: Toluene-d8	99.9	75-125	%REC	5	10/10/07 19:32

### Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- Spike Recovery outside accepted recovery limits

Project Supervisor: Monika Santucci Page 20 of 28 Print Date: 10/18/07 15:28 310507



**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

CLIENT: O'Brien & Gere Engineers, Inc. Lab ID: 0710024-006ADL

Project: BMS-Krutulis Client Sample ID: MW-03D (18-20)_100207

 W Order:
 0710024
 Collection Date:
 10/02/07 10:09

 Matrix:
 SOIL
 Date Received:
 10/02/07 16:54

 Inst. ID:
 MS02 12
 Sample Size: 5 g
 PrepDate:
 10/11/07 14:30

 Galaxy ID:
 PrepDate:
 6357/P.11536

 ColumnID:
 Rtx-502.2
 %Moisture:
 15.2
 BatchNo:
 6357/R11536

 Revision:
 10/29/07 13:44
 TestCode 8260SM
 FileID:
 1-DL-M2909.D

Col Type:

Analyte	Result Qual PQL		Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS - MEC	OH EXTRACT	SW8260B		(SW5035_MED)
1,1,1,2-Tetrachloroethane	ND	320	μg/Kg-dry	1	10/13/07 3:40
1,1,1-Trichloroethane	ND	320	μg/Kg-dry	1	10/13/07 3:40
1,1,2,2-Tetrachloroethane	ND	320	μg/Kg-dry	1	10/13/07 3:40
1,1,2-Trichloroethane	ND	320	μg/Kg-dry	1	10/13/07 3:40
1,1-Dichloroethane	ND	320	μg/Kg-dry	1	10/13/07 3:40
1,1-Dichloroethene	ND	320	μg/Kg-dry	1	10/13/07 3:40
1,1-Dichloropropene	ND	320	μg/Kg-dry	1	10/13/07 3:40
1,2,3-Trichlorobenzene	ND	630	μg/Kg-dry	1	10/13/07 3:40
1,2,3-Trichloropropane	ND	320	μg/Kg-dry	1	10/13/07 3:40
1,2,4-Trichlorobenzene	ND	630	µg/Kg-dry	1	10/13/07 3:40
1,2,4-Trimethylbenzene	ND	320	μg/Kg-dry	1	10/13/07 3:40
1,2-Dibromo-3-chloropropane	ND	630	μg/Kg-dry	1	10/13/07 3:40
1,2-Dibromoethane	ND	320	μg/Kg-dry	1	10/13/07 3:40
1,2-Dichlorobenzene	ND	320	μg/Kg-dry	1	10/13/07 3:40
1,2-Dichloroethane	ND	320	µg/Kg-dry	1	10/13/07 3:40
1,2-Dichloropropane	ND	320	μg/Kg-dry	1	10/13/07 3:40
1,3,5-Trimethylbenzene	ND	320	μg/Kg-dry	1	10/13/07 3:40
1,3-Dichlorobenzene	ND	320	μg/Kg-dry	1	10/13/07 3:40
1,3-Dichloropropane	ND	320	μg/Kg-dry	1	10/13/07 3:40
1,4-Dichlorobenzene	ND	320	µg/Kg-dry	1	10/13/07 3:40
2,2-Dichloropropane	ND	320	μg/Kg-dry	1	10/13/07 3:40
2-Chlorotoluene	ND	320	μg/Kg-dry	1	10/13/07 3:40
4-Chlorotoluene	ND	320	μg/Kg-dry	1	10/13/07 3:40
Benzene	ND	320	μg/Kg-dry	1	10/13/07 3:40
Bromobenzene	ND	320	μg/Kg-dry	1	10/13/07 3:40
Bromochloromethane	ND	320	μg/Kg-dry	1	10/13/07 3:40
Bromodichloromethane	ND	320	μg/Kg-dry	1	10/13/07 3:40
Bromoform	ND	320	μg/Kg-dry	1	10/13/07 3:40
Bromomethane	ND	630	μg/Kg-dry	1	10/13/07 3:40
Carbon tetrachloride	ND	320	μg/Kg-dry	1	10/13/07 3:40
Chlorobenzene	ND	320	μg/Kg-dry		10/13/07 3:40
Chloroethane	ND	630	μg/Kg-dry	1	10/13/07 3:40
Chloroform	ND	320	μg/Kg-dry	1	10/13/07 3:40
Chloromethane	ND	630	μg/Kg-dry	1	10/13/07 3:40

### Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Value exceeds the instrument calibration range
- J Analyte detected below the PQL
- P Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- S Spike Recovery outside accepted recovery limits

Print Date: 10/29/07 13:48 312315 Project Supervisor: Monika Santucci Page 1 of 2



**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

0710024-006ADL

O'Brien & Gere Engineers, Inc. **CLIENT:** 

Project: **BMS-Krutulis** 

0710024 W Order: Matrix: **SOIL** 

MS02 12 Inst. ID: ColumnID: Rtx-502.2

Revision:

10/29/07 13:44

Sample Size: 5 g %Moisture: 15.2 TestCode 8260SM **Collection Date:** Date Received: PrepDate:

Lab ID:

10/11/07 14:30 6357/R11536

10/02/07 10:09

10/02/07 16:54

Client Sample ID: MW-03D (18-20)_100207

BatchNo: 1-DL-M2909.D FileID:

Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	S BY GC/MS - ME	GC/MS - MEOH EXTRACT			(SW5035_MED)
cis-1,2-Dichloroethene	ND	320	μg/Kg-dry	1	10/13/07 3:40
cis-1,3-Dichloropropene	ND	320	μg/Kg-dry	1	10/13/07 3:40
Dibromochloromethane	ND	320	μg/Kg-dry	1	10/13/07 3:40
Dibromomethane	ND	320	μg/Kg-dry	1	10/13/07 3:40
Dichlorodifluoromethane	ND	630	μg/Kg-dry	1	10/13/07 3:40
Ethylbenzene	ND	320	µg/Kg-dry	1	10/13/07 3:40
Hexachlorobutadiene	ND	630	μg/Kg-dry	1	10/13/07 3:40
Isopropylbenzene	ND	320	μg/Kg-dry	1	10/13/07 3:40
Methyl tert-butyl ether	ND	320	μg/Kg-dry	1	10/13/07 3:40
Methylene chloride	ND	630	μg/Kg-dry	1	10/13/07 3:40
n-Butylbenzene	ND	320	μg/Kg-dry	1	10/13/07 3:40
n-Propylbenzene	ND	320	μg/Kg-dry	1	10/13/07 3:40
Naphthalene	ND	630	μg/Kg-dry	1	10/13/07 3:40
p-Isopropyltoluene	ND	320	μg/Kg-dry	1	10/13/07 3:40
sec-Butylbenzene	ND	320	μg/Kg-dry	1	10/13/07 3:40
Styrene	ND	320	µg/Kg-dry	1	10/13/07 3:40
tert-Butylbenzene	ND	320	μg/Kg-dry	1	10/13/07 3:40
Tetrachloroethene	1000	320	μg/Kg-dry	1	10/13/07 3:40
Toluene	320	320	μg/Kg-dry	1	10/13/07 3:40
trans-1,2-Dichloroethene	ND	320	μg/Kg-dry	1	10/13/07 3:40
trans-1,3-Dichloropropene	ND	320	μg/Kg-dry	1	10/13/07 3:40
Trichloroethene	7900	320	μg/Kg-dry	1	10/13/07 3:40
Trichlorofluoromethane	ND	630	μg/Kg-dry	1	10/13/07 3:40
Vinyl chloride	ND	630	μg/Kg-dry	1	10/13/07 3:40
Xylenes (total)	ND	630	μg/Kg-dry	1	10/13/07 3:40
Surr: 1,2-Dichloroethane-d4	91.5	71-128	%REC	1	10/13/07 3:40
Surr: 4-Bromofluorobenzene	92.6	59-125	%REC	1	10/13/07 3:40
Surr: Dibromofluoromethane	88.9	40-156	%REC	1	10/13/07 3:40
Surr: Toluene-d8	93.2	<b>75-12</b> 5	%REC	1	10/13/07 3:40

Project Supervisor: Monika Santucci

### Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - Spike Recovery outside accepted recovery limits

Page 2 of 2



## Life Science Laboratories, Inc.

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

Sample Size: 5 g

%Moisture: 16.2

TestCode 8260S

StateCertNo: 10155

CLIENT: O'Brien & Gere Engineers, Inc.

**BMS-Krutulis** 

W Order: 0710024 Matrix: SOIL

Inst. ID: MS03 10

ColumnID: Rtx-VMS

Revision: 10/11/07 10:49

Lab ID: 0710024-007A

Client Sample ID: MW-03D (26-28)_100207

Collection Date: Date Received:

10/02/07 12:22 10/02/07 16:54

PrepDate:

BatchNo: R11395

FileID:

1-SAMP-J4763.D

Col	Tv	ne:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS		SW8260B		
1,1,1,2-Tetrachloroethane	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
1,1,1-Trichloroethane	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
1,1,2,2-Tetrachloroethane	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
1,1,2-Trichloroethane	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
1,1-Dichloroethane	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
1,1-Dichloroethene	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
1,1-Dichloropropene	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
1,2,3-Trichlorobenzene	ND	6.0	μg/Kg-dry	1	10/09/07 18:01
1,2,3-Trichloropropane	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
1,2,4-Trichlorobenzene	ND	6.0	μg/Kg-dry	1	10/09/07 18:01
1,2,4-Trimethylbenzene	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
1,2-Dibromo-3-chloropropane	ND	6.0	μg/Kg-dry	1	10/09/07 18:01
1,2-Dibromoethane	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
1,2-Dichlorobenzene	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
1,2-Dichloroethane	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
1,2-Dichloropropane	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
1,3,5-Trimethylbenzene	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
1,3-Dichlorobenzene	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
1,3-Dichloropropane	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
1,4-Dichlorobenzene	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
2,2-Dichloropropane	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
2-Chlorotoluene	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
4-Chlorotoluene	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
Benzene	<b>N</b> D	3.0	μg/Kg-dry	1	10/09/07 18:01
Bromobenzene	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
Bromochloromethane	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
Bromodichloromethane	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
Bromoform	ND	3.0	µg/Kg-dry	1	10/09/07 18:01
Bromomethane	ND	6.0	μg/Kg-dry	1	10/09/07 18:01
Carbon tetrachloride	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
Chlorobenzene	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
Chloroethane	ND	6.0	μg/Kg-dry	1	10/09/07 18:01
Chloroform	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
Chloromethane	ND	6.0	μg/Kg-dry	1	10/09/07 18:01

## Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - Spike Recovery outside accepted recovery limits

Page 21 of 28

Print Date: 10/18/07 15:28

310183

Project Supervisor: Monika Santucci

## Life Science Laboratories, Inc.

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

StateCertNo: 10155

**CLIENT:** O'Brien & Gere Engineers, Inc.

**BMS-Krutulis** 

W Order: 0710024 Matrix: SOIL

Inst. ID: MS03 10

ColumnID: Rtx-VMS Revision:

10/11/07 10:49

(315) 437-0200

Sample Size: 5 g

%Moisture: 16.2

TestCode 8260S

Lab ID: 0710024-007A

Client Sample ID: MW-03D (26-28)_100207

**Collection Date:** Date Received:

10/02/07 12:22 10/02/07 16:54

PrepDate:

BatchNo: R11395

FileID:

1-SAMP-J4763.D

Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS BY GC/MS			SW8260B		
cis-1,2-Dichloroethene	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
cis-1,3-Dichloropropene	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
Dibromochloromethane	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
Dibromomethane	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
Dichlorodifluoromethane	ND	6.0	μg/Kg-dry	1	10/09/07 18:01
Ethylbenzene	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
Hexachlorobutadiene	ND	6.0	μg/Kg-dry	1	10/09/07 18:01
Isopropylbenzene	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
Methyl tert-butyl ether	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
Methylene chloride	13	6.0	μg/Kg-dry	1	10/09/07 18:01
n-Butylbenzene	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
n-Propylbenzene	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
Naphthalene	ND	6.0	μg/Kg-dry	1	10/09/07 18:01
p-Isopropyltoluene	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
sec-Butylbenzene	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
Styrene	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
tert-Butylbenzene	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
Tetrachloroethene	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
Toluene	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
trans-1,2-Dichloroethene	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
trans-1,3-Dichloropropene	ND	3.0	μg/Kg-dry	1	10/09/07 18:01
Trichloroethene	9.1	3.0	μg/Kg-dry	1	10/09/07 18:01
Trichlorofluoromethane	ND	6.0	μg/Kg-dry	1	10/09/07 18:01
Vinyl chloride	ND	6.0	μg/Kg-dry	1	10/09/07 18:01
Xylenes (total)	ND	6.0	μg/Kg-dry	1	10/09/07 18:01
Surr: 1,2-Dichloroethane-d4	114	71-128	%REC	1	10/09/07 18:01
Surr: 4-Bromofluorobenzene	73.4	59-125	%REC	1	10/09/07 18:01
Surr: Dibromofluoromethane	120	40-156	%REC	1	10/09/07 18:01
Surr: Toluene-d8	75.8	75-125	%REC	1	10/09/07 18:01

## Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- Spike Recovery outside accepted recovery limits

310183 Print Date: 10/18/07 15:28 Project Supervisor: Monika Santucci Page 22 of 28

## Life Science Laboratories, Inc.

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

0710024-007ARA

**CLIENT:** O'Brien & Gere Engineers, Inc.

**BMS-Krutulis** 

W Order: 0710024 SOIL Matrix:

Inst. ID: MS03 10

ColumnID: Rtx-VMS Revision:

10/12/07 10:25

Sample Size: 5 g

TestCode 8260S

%Moisture: 16.2

PrepDate: BatchNo: FileID:

**Collection Date:** 

Date Received:

Lab ID:

R11405

1-RA-J4788.D

10/02/07 12:22

10/02/07 16:54

Client Sample ID: MW-03D (26-28)_100207

Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS		SW8260B		
1,1,1,2-Tetrachloroethane	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
1,1,1-Trichloroethane	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
1,1,2,2-Tetrachloroethane	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
1,1,2-Trichloroethane	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
1,1-Dichloroethane	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
1,1-Dichloroethene	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
1,1-Dichloropropene	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
1,2,3-Trichlorobenzene	ND	6.0	μg/Kg-dry	1	10/10/07 17:49
1,2,3-Trichloropropane	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
1,2,4-Trichlorobenzene	ND	6.0	μg/Kg-dry	1	10/10/07 17:49
1,2,4-Trimethylbenzene	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
1,2-Dibromo-3-chloropropane	ND	6.0	μg/Kg-dry	1	10/10/07 17:49
1,2-Dibromoethane	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
1,2-Dichlorobenzene	ND	3.0	μg/Kg-dry		10/10/07 17:49
1,2-Dichloroethane	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
1,2-Dichloropropane	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
1,3,5-Trimethylbenzene	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
1,3-Dichlorobenzene	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
1,3-Dichloropropane	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
1,4-Dichlorobenzene	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
2,2-Dichloropropane	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
2-Chlorotoluene	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
4-Chlorotoluene	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
Benzene	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
Bromobenzene	ND	3.0	µg/Kg-dry	1	10/10/07 17:49
Bromochloromethane	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
Bromodichloromethane	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
Bromoform	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
Bromomethane	ND	6.0	μg/Kg-dry	1	10/10/07 17:49
Carbon tetrachloride	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
Chlorobenzene	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
Chloroethane	ND	6.0	μg/Kg-dry	1	10/10/07 17:49
Chloroform	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
Chloromethane	ND	6.0	μg/Kg-dry	1	10/10/07 17:49

### Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - Spike Recovery outside accepted recovery limits

Page 23 of 28

Print Date: 10/18/07 15:28

310506

Project Supervisor: Monika Santucci

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

TestCode 8260S

StateCertNo: 10155

**CLIENT:** O'Brien & Gere Engineers, Inc.

**BMS-Krutulis** Project:

W Order: 0710024 Matrix: **SOIL** 

Inst. ID: MS03 10

ColumnID: Rtx-VMS Revision:

Sample Size: 5 g %Moisture: 16.2

10/12/07 10:25

Lab 1D:

0710024-007ARA Client Sample ID: MW-03D (26-28)_100207

**Collection Date:** Date Received:

10/02/07 12:22 10/02/07 16:54

PrepDate:

R11405 BatchNo:

FileID:

1-RA-J4788.D

Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS	<del></del>	SW8260B		
cis-1,2-Dichloroethene	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
cis-1,3-Dichloropropene	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
Dibromochloromethane	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
Dibromomethane	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
Dichlorodifluoromethane	ND	6.0	μg/Kg-dry	1	10/10/07 17:49
Ethylbenzene	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
Hexachlorobutadiene	ND	6.0	μg/Kg-dry	1	10/10/07 17:49
Isopropylbenzene	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
Methyl tert-butyl ether	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
Methylene chloride	ND	6.0	μg/Kg-dry	1	10/10/07 17:49
n-Butylbenzene	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
n-Propylbenzene	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
Naphthalene	ND	6.0	μg/Kg-dry	1	10/10/07 17:49
p-Isopropyitoluene	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
sec-Butylbenzene	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
Styrene	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
tert-Butylbenzene	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
Tetrachloroethene	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
Toluene	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
trans-1,2-Dichloroethene	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
trans-1,3-Dichloropropene	ND	3.0	μg/Kg-dry	1	10/10/07 17:49
Trichloroethene	7.3	3.0	µg/Kg-dry	1	10/10/07 17:49
Trichlorofluoromethane	ND	6.0	µg/Kg-dry	1	10/10/07 17:49
Vinyl chloride	ND	6.0	μg/Kg-dry	1	10/10/07 17:49
Xylenes (total)	ND	6.0	μg/Kg-dry	1	10/10/07 17:49
Surr: 1,2-Dichloroethane-d4	122	71-128	%REC	1	10/10/07 17:49
Surr: 4-Bromofluorobenzene	76.6	59-125	%REC	1	10/10/07 17:49
Surr: Dibromofluoromethane	121	40-156	%REC	1	10/10/07 17:49
Surr: Toluene-d8	77.8	75-125	%REC	1	10/10/07 17:49

## Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - Spike Recovery outside accepted recovery limits

Project Supervisor: Monika Santucci Page 24 of 28 310506 Print Date: 10/18/07 15:28

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCcrtNo: 10155

CLIENT: O'Brien & Gere Engineers, Inc.

Project: **BMS-Krutulis** 

W Order: 0710024

Matrix: WATER Q

Inst. ID: MS03 10

ColumnID: Rtx-VMS 10/11/07 8:23 Revision:

Sample Size: 5 mL

%Moisture:

TestCode 8260S

0710024-008A

Client Sample ID: EB_100207

**Collection Date:** 10/02/07 15:30 Date Received: 10/02/07 16:54

PrepDate:

Lab 1D:

BatchNo: R11344

FileID: 1-SAMP-J4687.D

Col Type:

1,1,1-Trichloroethane         ND         2.5         µg/Kg         1         10           1,1,2-Trichloroethane         ND         2.5         µg/Kg         1         10           1,1,2-Trichloroethane         ND         2.5         µg/Kg         1         10           1,1-Dichloroethane         ND         2.5         µg/Kg         1         10           1,1-Dichloroethane         ND         2.5         µg/Kg         1         10           1,1-Dichloropene         ND         2.5         µg/Kg         1         10           1,1-Dichloropene         ND         2.5         µg/Kg         1         10           1,1-Dichloropenee         ND         2.5         µg/Kg         1         10           1,2,3-Trichlorobenzene         ND         2.5         µg/Kg         1         10           1,2,3-Trichlorobenzene         ND         2.5         µg/Kg         1         10           1,2,4-Trichlorobenzene         ND         2.5         µg/Kg         1         10           1,2-Tichlorobenzene         ND         2.5         µg/Kg         1         10           1,2-Dichromo-3-chloropropane         ND         2.5         µg/Kg	ate Analyzed	Da	DF	Units	al PQL	Result Qua	Analyte
1,1,1-Trichloroethane         ND         2.5         µg/Kg         1         10           1,1,2-Trichloroethane         ND         2.5         µg/Kg         1         10           1,1,2-Trichloroethane         ND         2.5         µg/Kg         1         10           1,1-Dichloroethane         ND         2.5         µg/Kg         1         10           1,1-Dichloropthane         ND         2.5         µg/Kg         1         10           1,1-Dichloropthane         ND         2.5         µg/Kg         1         10           1,1-Dichloropthane         ND         2.5         µg/Kg         1         10           1,2,3-Trichloropthane         ND         5.0         µg/Kg         1         10           1,2,3-Trichloropthane         ND         2.5         µg/Kg         1         10           1,2,4-Trichloropthane         ND         2.5         µg/Kg         1         10           1,2-Dibromo-3-chloropropane         ND         5.0         µg/Kg         1         10           1,2-Dichlorobenzene         ND         2.5         µg/Kg         1         10           1,2-Dichlorobenzene         ND         2.5         µg/Kg <t< th=""><th></th><th></th><th></th><th>SW8260B</th><th></th><th>GC/MS</th><th>VOLATILE ORGANIC COMPOUNDS B</th></t<>				SW8260B		GC/MS	VOLATILE ORGANIC COMPOUNDS B
1,1,2,2-Tetrachloroethane         ND         2.5         µg/Kg         1         10           1,1,2-Trichloroethane         ND         2.5         µg/Kg         1         10           1,1-Dichloroethane         ND         2.5         µg/Kg         1         10           1,1-Dichloroethane         ND         2.5         µg/Kg         1         10           1,1-Dichloropropene         ND         2.5         µg/Kg         1         10           1,1-Dichloropropene         ND         2.5         µg/Kg         1         10           1,2,3-Trichloropene         ND         5.0         µg/Kg         1         10           1,2,3-Trichloropropane         ND         5.0         µg/Kg         1         10           1,2,4-Trimethylbenzene         ND         5.0         µg/Kg         1         10           1,2-Libromoethane         ND         2.5         µg/Kg         1         10           1,2-Dibromoethane         ND         2.5         µg/Kg         1         10           1,2-Dichloropropane         ND         2.5         µg/Kg         1         10           1,2-Dichloropropane         ND         2.5         µg/Kg         1	0/05/07 11:52	10	1	μg/Kg	2.5	ND	1,1,1,2-Tetrachloroethane
1,1,2-Trichloroethane         ND         2.5         µg/Kg         1         10           1,1-Dichloroethane         ND         2.5         µg/Kg         1         10           1,1-Dichloroethane         ND         2.5         µg/Kg         1         10           1,1-Dichloropropene         ND         2.5         µg/Kg         1         10           1,2,3-Trichloropenzene         ND         5.0         µg/Kg         1         10           1,2,3-Trichloropenzene         ND         2.5         µg/Kg         1         10           1,2,4-Trichlorobenzene         ND         5.0         µg/Kg         1         10           1,2-Hrindelbande         ND         2.5         µg/Kg         1         10           1,2-Dibromo-3-chloropropane         ND         2.5         µg/Kg         1         10           1,2-Dibromo-3-chloropropane         ND         2.5         µg/Kg         1         10           1,2-Dichlorobenzene         ND         2.5         µg/Kg         1         10           1,2-Dichlorobenzene         ND         2.5         µg/Kg         1         10           1,2-Dichlorobenzene         ND         2.5         µg/Kg	0/05/07 11:52	10	1	µg/Kg	2.5	ND	1,1,1-Trichloroethane
1,1-Dichloroethane         ND         2.5         µg/Kg         1         10           1,1-Dichloroethene         ND         2.5         µg/Kg         1         10           1,1-Dichloropropene         ND         2.5         µg/Kg         1         10           1,2,3-Trichlorobenzene         ND         5.0         µg/Kg         1         10           1,2,4-Trichlorobenzene         ND         5.0         µg/Kg         1         10           1,2,4-Trinethylbenzene         ND         5.0         µg/Kg         1         10           1,2-Trimethylbenzene         ND         2.5         µg/Kg         1         10           1,2-Dibromo-3-chloropropane         ND         5.0         µg/Kg         1         10           1,2-Dibromoethane         ND         2.5         µg/Kg         1         10           1,2-Dichlorobenzene         ND         2.5         µg/Kg         1         10           1,2-Dichlorobenzene         ND         2.5         µg/Kg         1         10           1,2-Dichloropropane         ND         2.5         µg/Kg         1         10           1,3-Dichlorobenzene         ND         2.5         µg/Kg	0/05/07 11:52	10	1	μg/Kg	2.5	ND	1,1,2,2-Tetrachloroethane
1,1-Dichloroethene         ND         2.5         µg/Kg         1         10           1,1-Dichloropropene         ND         2.5         µg/Kg         1         10           1,2,3-Trichlorobenzene         ND         5.0         µg/Kg         1         10           1,2,3-Trichlorobenzene         ND         5.0         µg/Kg         1         10           1,2,4-Trichlorobenzene         ND         5.0         µg/Kg         1         10           1,2,4-Trichlorobenzene         ND         5.0         µg/Kg         1         10           1,2-Dibromo-3-chloropropane         ND         5.0         µg/Kg         1         10           1,2-Dibromoethane         ND         2.5         µg/Kg         1         10           1,2-Dichlorobenzene         ND         2.5         µg/Kg         1         10           1,2-Dichloropenzene         ND         2.5         µg/Kg         1         10           1,2-Dichloropenzene         ND         2.5         µg/Kg         1         10           1,2-Dichloropenzene         ND         2.5         µg/Kg         1         10           1,3-Dichloropenzene         ND         2.5         µg/Kg         <	0/05/07 11:52	10	1	μg/Kg	2.5	ND	1,1,2-Trichloroethane
1,1-Dichloropropene         ND         2.5         µg/Kg         1         10           1,2,3-Trichlorobenzene         ND         5.0         µg/Kg         1         10           1,2,3-Trichlorobenzene         ND         5.0         µg/Kg         1         10           1,2,4-Trinethylbenzene         ND         5.0         µg/Kg         1         10           1,2-Dibromo-3-chloropropane         ND         2.5         µg/Kg         1         10           1,2-Dibromo-3-chloropropane         ND         2.5         µg/Kg         1         10           1,2-Dibromo-3-chloropropane         ND         2.5         µg/Kg         1         10           1,2-Dibromo-3-chloropropane         ND         2.5         µg/Kg         1         10           1,2-Dibromo-3-chloropropane         ND         2.5         µg/Kg         1         10           1,2-Dibromo-3-chloropropane         ND         2.5         µg/Kg         1         10           1,2-Dibromo-3-chloropropane         ND         2.5         µg/Kg         1         10           1,2-Dichloropropane         ND         2.5         µg/Kg         1         10           1,3-Dichloropropane         ND	0/05/07 11:52	10	1	μg/Kg	2.5	ND	1,1-Dichloroethane
1,2,3-Trichlorobenzene         ND         5.0         µg/Kg         1         10           1,2,3-Trichloropropane         ND         2.5         µg/Kg         1         10           1,2,4-Trichlorobenzene         ND         5.0         µg/Kg         1         10           1,2,4-Trimethylbenzene         ND         2.5         µg/Kg         1         10           1,2-Dibromo-3-chloropropane         ND         5.0         µg/Kg         1         10           1,2-Dibromo-3-chloropropane         ND         5.0         µg/Kg         1         10           1,2-Dibromo-3-chloropropane         ND         2.5         µg/Kg         1         10           1,2-Dichlorobenzene         ND         2.5         µg/Kg         1         10           1,2-Dichloroptane         ND         2.5         µg/Kg         1         10           1,2-Dichloroptane         ND         2.5         µg/Kg         1         10           1,3-5-Trimethylbenzene         ND         2.5         µg/Kg         1         10           1,3-Dichloroptane         ND         2.5         µg/Kg         1         10           1,3-Dichloroptane         ND         2.5         µg/Kg<	0/05/07 11:52	10	1	µg/Kg	2.5	ND	1,1-Dichloroethene
1,2,3-Trichloropropane         ND         2.5         µg/Kg         1         10           1,2,4-Trichlorobenzene         ND         5.0         µg/Kg         1         10           1,2,4-Trimethylbenzene         ND         2.5         µg/Kg         1         10           1,2-Dibromo-3-chloropropane         ND         5.0         µg/Kg         1         10           1,2-Dibromoethane         ND         2.5         µg/Kg         1         10           1,2-Dichlorobenzene         ND         2.5         µg/Kg         1         10           1,2-Dichloroptopane         ND         2.5         µg/Kg         1         10           1,2-Dichloropropane         ND         2.5         µg/Kg         1         10           1,2-Dichloropropane         ND         2.5         µg/Kg         1         10           1,3-Dichloropropane         ND         2.5         µg/Kg         1         10           1,3-Dichloropropane         ND         2.5         µg/Kg         1         10           1,4-Dichloropropane         ND         2.5         µg/Kg         1         10           2,2-Dichloropropane         ND         2.5         µg/Kg <td< td=""><td>0/05/07 11:52</td><td>10</td><td>1</td><td>μg/Kg</td><td>2.5</td><td>ND</td><td>1,1-Dichloropropene</td></td<>	0/05/07 11:52	10	1	μg/Kg	2.5	ND	1,1-Dichloropropene
1,2,4-Trichlorobenzene       ND       5.0       µg/Kg       1       10         1,2,4-Trimethylbenzene       ND       2.5       µg/Kg       1       10         1,2-Dibromo-3-chloropropane       ND       5.0       µg/Kg       1       10         1,2-Dibromoethane       ND       2.5       µg/Kg       1       10         1,2-Dichlorobenzene       ND       2.5       µg/Kg       1       10         1,2-Dichloroptopane       ND       2.5       µg/Kg       1       10         1,2-Dichloropropane       ND       2.5       µg/Kg       1       10         1,3-Dichloropropane       ND       2.5       µg/Kg       1       10         1,3-Dichloropropane       ND       2.5       µg/Kg       1       10         1,3-Dichloropropane       ND       2.5       µg/Kg       1       10         1,4-Dichloropropane       ND       2.5       µg/Kg       1       10         2,2-Dichloropropane       ND       2.5       µg/Kg       1       10         2,2-Dichloropropane       ND       2.5       µg/Kg       1       10         2-Chlorotoluene       ND       2.5       µg/Kg       1 </td <td>0/05/07 11:52</td> <td>10</td> <td>1</td> <td>μg/Kg</td> <td>5.0</td> <td>ND</td> <td>1,2,3-Trichlorobenzene</td>	0/05/07 11:52	10	1	μg/Kg	5.0	ND	1,2,3-Trichlorobenzene
1,2,4-Trimethylbenzene         ND         2.5         µg/Kg         1         10           1,2-Dibromo-3-chloropropane         ND         5.0         µg/Kg         1         10           1,2-Dibromoethane         ND         2.5         µg/Kg         1         10           1,2-Dichlorobenzene         ND         2.5         µg/Kg         1         10           1,2-Dichloroptopane         ND         2.5         µg/Kg         1         10           1,2-Dichloropropane         ND         2.5         µg/Kg         1         10           1,3-Dichlorobenzene         ND         2.5         µg/Kg         1         10           1,3-Dichloropropane         ND         2.5         µg/Kg         1         10           1,3-Dichloropropane         ND         2.5         µg/Kg         1         10           1,4-Dichlorobenzene         ND         2.5         µg/Kg         1         10           2,2-Dichloropropane         ND         2.5         µg/Kg         1         10           2,2-Dichloropropane         ND         2.5         µg/Kg         1         10           2,2-Dichloropropane         ND         2.5         µg/Kg         1 <td>0/05/07 11:52</td> <td>10</td> <td>1</td> <td>μg/Kg</td> <td>2.5</td> <td>ND</td> <td>1,2,3-Trichloropropane</td>	0/05/07 11:52	10	1	μg/Kg	2.5	ND	1,2,3-Trichloropropane
1,2-Dibromo-3-chloropropane         ND         5.0         µg/Kg         1         10           1,2-Dibromoethane         ND         2.5         µg/Kg         1         10           1,2-Dichlorobenzene         ND         2.5         µg/Kg         1         10           1,2-Dichloroptopane         ND         2.5         µg/Kg         1         10           1,2-Dichloropropane         ND         2.5         µg/Kg         1         10           1,3-Dichlorobenzene         ND         2.5         µg/Kg         1         10           1,3-Dichloropropane         ND         2.5         µg/Kg         1         10           1,4-Dichlorobenzene         ND         2.5         µg/Kg         1         10           2,2-Dichloropropane         ND         2.5         µg/Kg         1         10           2,2-Dichloropropane         ND         2.5         µg/Kg         1         10           2,2-Dichloropropane         ND         2.5         µg/Kg         1         10           2,2-Dichloropropane         ND         2.5         µg/Kg         1         10           4-Chlorotoluene         ND         2.5         µg/Kg         1	0/05/07 11:52	10	1	μg/Kg	5.0	ND	1,2,4-Trichlorobenzene
1,2-Dibromoethane       ND       2.5       µg/Kg       1       10         1,2-Dichlorobenzene       ND       2.5       µg/Kg       1       10         1,2-Dichlorobenzene       ND       2.5       µg/Kg       1       10         1,2-Dichloropropane       ND       2.5       µg/Kg       1       10         1,3,5-Trimethylbenzene       ND       2.5       µg/Kg       1       10         1,3-Dichlorobenzene       ND       2.5       µg/Kg       1       10         1,3-Dichloropropane       ND       2.5       µg/Kg       1       10         1,4-Dichlorobenzene       ND       2.5       µg/Kg       1       10         2,2-Dichloropropane       ND       2.5       µg/Kg       1       10         2,2-Dichloropropane       ND       2.5       µg/Kg       1       10         2,2-Dichloropropane       ND       2.5       µg/Kg       1       10         2,2-Dichloropropane       ND       2.5       µg/Kg       1       10         4-Chlorotoluene       ND       2.5       µg/Kg       1       10         4-Chlorotoluene       ND       2.5       µg/Kg       1	0/05/07 11:52	10	1	μg/Kg	2.5	ND	1,2,4-Trimethylbenzene
1,2-Dichlorobenzene       ND       2.5       µg/Kg       1       10         1,2-Dichloroethane       ND       2.5       µg/Kg       1       10         1,2-Dichloropropane       ND       2.5       µg/Kg       1       10         1,3-Dichloropropane       ND       2.5       µg/Kg       1       10         1,3-Dichloropropane       ND       2.5       µg/Kg       1       10         1,3-Dichloropropane       ND       2.5       µg/Kg       1       10         1,4-Dichlorobenzene       ND       2.5       µg/Kg       1       10         2,2-Dichloropropane       ND       2.5       µg/Kg       1       10         2,2-Dichloropropane       ND       2.5       µg/Kg       1       10         2,2-Dichloropropane       ND       2.5       µg/Kg       1       10         2,2-Dichloropropane       ND       2.5       µg/Kg       1       10         4-Chlorotoluene       ND       2.5       µg/Kg       1       10         4-Chlorotoluene       ND       2.5       µg/Kg       1       10         Benzene       ND       2.5       µg/Kg       1       10 <td>0/05/07 11:52</td> <td>10</td> <td>1</td> <td>μg/Kg</td> <td>5.0</td> <td>ND</td> <td>1,2-Dibromo-3-chloropropane</td>	0/05/07 11:52	10	1	μg/Kg	5.0	ND	1,2-Dibromo-3-chloropropane
1,2-Dichloroethane       ND       2.5       µg/Kg       1       10         1,2-Dichloropropane       ND       2.5       µg/Kg       1       10         1,3,5-Trimethylbenzene       ND       2.5       µg/Kg       1       10         1,3-Dichlorobenzene       ND       2.5       µg/Kg       1       10         1,3-Dichloropropane       ND       2.5       µg/Kg       1       10         1,4-Dichlorobenzene       ND       2.5       µg/Kg       1       10         2,2-Dichloropropane       ND       2.5       µg/Kg       1       10         2,2-Dichloropropane       ND       2.5       µg/Kg       1       10         2-Chlorotoluene       ND       2.5       µg/Kg       1       10         4-Chlorotoluene       ND       2.5       µg/Kg       1       10         Benzene       ND       2.5       µg/Kg       1       10         Bromobenzene       ND       2.5       µg/Kg       1       10         Bromochloromethane       ND       2.5       µg/Kg       1       10         Bromoform       ND       2.5       µg/Kg       1       10	0/05/07 11:52	10	1	μg/Kg	2.5	ND	1,2-Dibromoethane
1,2-Dichloropropane         ND         2.5         µg/Kg         1         10           1,3,5-Trimethylbenzene         ND         2.5         µg/Kg         1         10           1,3-Dichlorobenzene         ND         2.5         µg/Kg         1         10           1,3-Dichloropropane         ND         2.5         µg/Kg         1         10           1,4-Dichlorobenzene         ND         2.5         µg/Kg         1         10           2,2-Dichloropropane         ND         2.5         µg/Kg         1         10           2-Chlorotoluene         ND         2.5         µg/Kg         1         10           4-Chlorotoluene         ND         2.5         µg/Kg         1         10           Benzene         ND         2.5         µg/Kg         1         10           Bromobenzene         ND         2.5         µg/Kg         1         10           Bromochloromethane         ND         2.5         µg/Kg         1         10           Bromoform         ND         2.5         µg/Kg         1         10           Bromomethane         ND         5.0         µg/Kg         1         10 <t< td=""><td>0/05/07 11:52</td><td>10</td><td>1</td><td>μg/Kg</td><td>2.5</td><td>ND</td><td>1,2-Dichlorobenzene</td></t<>	0/05/07 11:52	10	1	μg/Kg	2.5	ND	1,2-Dichlorobenzene
1,3,5-Trimethylbenzene       ND       2.5       µg/Kg       1       10         1,3-Dichlorobenzene       ND       2.5       µg/Kg       1       10         1,3-Dichloropropane       ND       2.5       µg/Kg       1       10         1,4-Dichlorobenzene       ND       2.5       µg/Kg       1       10         2,2-Dichloropropane       ND       2.5       µg/Kg       1       10         2-Chlorotoluene       ND       2.5       µg/Kg       1       10         4-Chlorotoluene       ND       2.5       µg/Kg       1       10         Benzene       ND       2.5       µg/Kg       1       10         Bromobenzene       ND       2.5       µg/Kg       1       10         Bromochloromethane       ND       2.5       µg/Kg       1       10         Bromoform       ND       2.5       µg/Kg       1       10         Bromomethane       ND       2.5       µg/Kg       1       10         Carbon tetrachloride       ND       2.5       µg/Kg       1       10	0/05/07 11:52	10	1	μg/Kg	2.5	ND	1,2-Dichloroethane
1,3-Dichlorobenzene         ND         2.5         µg/Kg         1         10           1,3-Dichloropropane         ND         2.5         µg/Kg         1         10           1,4-Dichlorobenzene         ND         2.5         µg/Kg         1         10           2,2-Dichloropropane         ND         2.5         µg/Kg         1         10           2-Chlorotoluene         ND         2.5         µg/Kg         1         10           4-Chlorotoluene         ND         2.5         µg/Kg         1         10           Benzene         ND         2.5         µg/Kg         1         10           Bromobenzene         ND         2.5         µg/Kg         1         10           Bromochloromethane         ND         2.5         µg/Kg         1         10           Bromoform         ND         2.5         µg/Kg         1         10           Bromomethane         ND         2.5         µg/Kg         1         10           Carbon tetrachloride         ND         2.5         µg/Kg         1         10	0/05/07 11:52	10	1	µg/Kg	2.5	ND	1,2-Dichloropropane
1,3-Dichloropropane         ND         2.5         µg/Kg         1         10           1,4-Dichlorobenzene         ND         2.5         µg/Kg         1         10           2,2-Dichloropropane         ND         2.5         µg/Kg         1         10           2-Chlorotoluene         ND         2.5         µg/Kg         1         10           4-Chlorotoluene         ND         2.5         µg/Kg         1         10           Benzene         ND         2.5         µg/Kg         1         10           Bromobenzene         ND         2.5         µg/Kg         1         10           Bromochloromethane         ND         2.5         µg/Kg         1         10           Bromoform         ND         2.5         µg/Kg         1         10           Bromomethane         ND         2.5         µg/Kg         1         10           Carbon tetrachloride         ND         2.5         µg/Kg         1         10	0/05/07 11:52	10	1	μg/Kg	2.5	ND	1,3,5-Trimethylbenzene
1,4-Dichlorobenzene         ND         2.5         µg/Kg         1         10           2,2-Dichloropropane         ND         2.5         µg/Kg         1         10           2-Chlorotoluene         ND         2.5         µg/Kg         1         10           4-Chlorotoluene         ND         2.5         µg/Kg         1         10           Benzene         ND         2.5         µg/Kg         1         10           Bromobenzene         ND         2.5         µg/Kg         1         10           Bromochloromethane         ND         2.5         µg/Kg         1         10           Bromoform         ND         2.5         µg/Kg         1         10           Bromomethane         ND         2.5         µg/Kg         1         10           Carbon tetrachloride         ND         2.5         µg/Kg         1         10	0/05/07 11:52	10	1	μg/Kg	2.5	ND	1,3-Dichlorobenzene
2,2-Dichloropropane         ND         2.5         µg/Kg         1         10           2-Chlorotoluene         ND         2.5         µg/Kg         1         10           4-Chlorotoluene         ND         2.5         µg/Kg         1         10           Benzene         ND         2.5         µg/Kg         1         10           Bromobenzene         ND         2.5         µg/Kg         1         10           Bromochloromethane         ND         2.5         µg/Kg         1         10           Bromoform         ND         2.5         µg/Kg         1         10           Bromomethane         ND         2.5         µg/Kg         1         10           Carbon tetrachloride         ND         2.5         µg/Kg         1         10	0/05/07 11:52	10	1	μg/Kg	2.5	ND	1,3-Dichloropropane
2-Chlorotoluene         ND         2.5         μg/Kg         1         10           4-Chlorotoluene         ND         2.5         μg/Kg         1         10           Benzene         ND         2.5         μg/Kg         1         10           Bromobenzene         ND         2.5         μg/Kg         1         10           Bromochloromethane         ND         2.5         μg/Kg         1         10           Bromoform         ND         2.5         μg/Kg         1         10           Bromomethane         ND         2.5         μg/Kg         1         10           Carbon tetrachloride         ND         2.5         μg/Kg         1         10	0/05/07 11:52	10	1	μg/Kg	2.5	ND	1,4-Dichlorobenzene
4-Chlorotoluene ND 2.5 μg/Kg 1 10  Benzene ND 2.5 μg/Kg 1 10  Bromobenzene ND 2.5 μg/Kg 1 10  Bromochloromethane ND 2.5 μg/Kg 1 10  Bromodichloromethane ND 2.5 μg/Kg 1 10  Bromodichloromethane ND 2.5 μg/Kg 1 10  Bromoform ND 2.5 μg/Kg 1 10  Bromomethane ND 2.5 μg/Kg 1 10  Carbon tetrachloride ND 2.5 μg/Kg 1 10	0/05/07 11:52	10	1	μg/Kg	2.5	ND	2,2-Dichloropropane
Benzene         ND         2.5         μg/Kg         1         10           Bromobenzene         ND         2.5         μg/Kg         1         10           Bromochloromethane         ND         2.5         μg/Kg         1         10           Bromodichloromethane         ND         2.5         μg/Kg         1         10           Bromoform         ND         2.5         μg/Kg         1         10           Bromomethane         ND         5.0         μg/Kg         1         10           Carbon tetrachloride         ND         2.5         μg/Kg         1         10	0/05/07 11:52	10	1	µg/Kg	2.5	ND	2-Chlorotoluene
Bromobenzene         ND         2.5         μg/Kg         1         10           Bromochloromethane         ND         2.5         μg/Kg         1         10           Bromodichloromethane         ND         2.5         μg/Kg         1         10           Bromoform         ND         2.5         μg/Kg         1         10           Bromomethane         ND         5.0         μg/Kg         1         10           Carbon tetrachloride         ND         2.5         μg/Kg         1         10	0/05/07 11:52	10	1	μg/Kg	2.5	ND	4-Chlorotoluene
Bromochloromethane         ND         2.5         μg/Kg         1         10           Bromodichloromethane         ND         2.5         μg/Kg         1         10           Bromoform         ND         2.5         μg/Kg         1         10           Bromomethane         ND         5.0         μg/Kg         1         10           Carbon tetrachloride         ND         2.5         μg/Kg         1         10	0/05/07 11:52	10	1	μg/Kg	2.5	ND	Benzene
Bromodichloromethane         ND         2.5         μg/Kg         1         10           Bromoform         ND         2.5         μg/Kg         1         10           Bromomethane         ND         5.0         μg/Kg         1         10           Carbon tetrachloride         ND         2.5         μg/Kg         1         10	0/05/07 11:52	10	1	μg/Kg	2.5	ND	Bromobenzene
Bromoform         ND         2.5         μg/Kg         1         10           Bromomethane         ND         5.0         μg/Kg         1         10           Carbon tetrachloride         ND         2.5         μg/Kg         1         10	0/05/07 11:52	10	1	μg/Kg	2.5	ND	Bromochloromethane
Bromomethane         ND         5.0         μg/Kg         1         10           Carbon tetrachloride         ND         2.5         μg/Kg         1         10	0/05/07 11:52	10	1	μg/Kg	2.5	ND	Bromodichloromethane
Carbon tetrachloride ND 2.5 µg/Kg 1 10	0/05/07 11:52	10	1	μg/Kg	2.5	ND	Bromoform
,,,	0/05/07 11:52	10	1	μg/Kg	5.0	ND	Bromomethane
	0/05/07 11:52	10	1	μg/Kg	2.5	ND	Carbon tetrachloride
Chlorobenzene ND 2.5 µg/Kg 1 10	0/05/07 11:52	10	1	μg/Kg	2.5	ND	Chlorobenzene
Chloroethane ND 5.0 μg/Kg 1 10	0/05/07 11:52	10	1	µg/Kg	5.0	ND	Chloroethane
Chloroform ND 2.5 μg/Kg 1 10	0/05/07 11:52	10	1	μg/Kg	2.5	ND	Chloroform
Chloromethane         ND         5.0         μg/Kg         1         10	0/05/07 11:52	10	1	μ <b>g/K</b> g	5.0	ND	Chloromethane

### Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - Spike Recovery outside accepted recovery limits

Page 25 of 28

Print Date: 10/18/07 15:28

309448

Project Supervisor: Monika Santucci

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

Sample Size: 5 mL

TestCode 8260S

%Moisture:

StateCertNo: 10155

**CLIENT:** O'Brien & Gere Engineers, Inc.

Project: **BMS-Krutulis** W Order: 0710024

WATER Q Matrix:

Inst. ID: MS03 10

ColumnID: Rtx-VMS Revision:

10/11/07 8:23

Lab ID: 0710024-008A

Client Sample ID: EB_100207 **Collection Date:** 10/02/07 15:30 Date Received: 10/02/07 16:54

PrepDate:

BatchNo: R11344

FileID:

1-SAMP-J4687.D

Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS		SW8260B		
cis-1,2-Dichloroethene	ND	2.5	μg/Kg	1	10/05/07 11:52
cis-1,3-Dichloropropene	ND	2.5	μg/Kg	1	10/05/07 11:52
Dibromochloromethane	ND	2.5	μg/Kg	1	10/05/07 11:52
Dibromomethane	ND	2.5	μg/Kg	1	10/05/07 11:52
Dichlorodifluoromethane	ND	5.0	μg/Kg	1	10/05/07 11:52
Ethylbenzene	ND	2.5	µg/Kg	1	10/05/07 11:52
Hexachlorobutadiene	ND	5.0	μg/Kg	1	10/05/07 11:52
Isopropylbenzene	ND	2.5	μg/Kg	1	10/05/07 11:52
Methyl tert-butyl ether	ND	2.5	μg/Kg	1	10/05/07 11:52
Methylene chloride	ND	5.0	μg/Kg	1	10/05/07 11:52
n-Butylbenzene	ND	2.5	μg/Kg	1	10/05/07 11:52
n-Propylbenzene	ND	2.5	μg/Kg	1	10/05/07 11:52
Naphthalene	ND	5.0	μg/Kg	1	10/05/07 11:52
p-Isopropyltoluene	ND	2.5	μg/Kg	1	10/05/07 11:52
sec-Butylbenzene	ND	2.5	μg/Kg	1	10/05/07 11:52
Styrene	ND	2.5	μg/Kg	1	10/05/07 11:52
tert-Butylbenzene	ND	2.5	μg/Kg	1	10/05/07 11:52
Tetrachloroethene	ND	2.5	μg/Kg	1	10/05/07 11:52
Toluene	ND	2.5	μg/Kg	1	10/05/07 11:52
trans-1,2-Dichloroethene	ND	2.5	μg/Kg	1	10/05/07 11:52
trans-1,3-Dichloropropene	ND	2.5	μg/Kg	1	10/05/07 11:52
Trichloroethene	ND	2.5	μg/Kg	1	10/05/07 11:52
Trichlorofluoromethane	ND	5.0	μg/Kg	1	10/05/07 11:52
Vinyl chloride	ND	5.0	μg/Kg	1	10/05/07 11:52
Xylenes (total)	ND	5.0	μg/Kg	1	10/05/07 11:52
Surr: 1,2-Dichloroethane-d4	97.6	71-128	%REC	1	10/05/07 11:52
Surr: 4-Bromofluorobenzene	102	59-125	%REC	1	10/05/07 11:52
Surr: Dibromofluoromethane	101	40-156	%REC	1	10/05/07 11:52
Surr: Toluene-d8	108	75-125	%REC	1	10/05/07 11:52

### Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - Spike Recovery outside accepted recovery limits

Print Date: 10/18/07 15:28 Project Supervisor: Monika Santucci Page 26 of 28 309448

## Life Science Laboratories, Inc.

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

0710024-009A

10/02/07 0:00

10/02/07 16:54

**CLIENT:** O'Brien & Gere Engineers, Inc.

**BMS-Krutulis** 

W Order: 0710024

Matrix: WATER Q

Inst. ID: MS03 10

ColumnID: Rtx-VMS

Revision: 10/11/07 8:23

PrepDate: Sample Size: 5 mL

%Moisture:

TestCode 8260S

**Collection Date:** Date Received:

Lab ID:

R11344

BatchNo: FileID:

Client Sample ID: TB_100207

1-SAMP-J4688.D

Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS		SW8260B		
1,1,1,2-Tetrachloroethane	ND	2.5	μg/Kg	1	10/05/07 12:26
1,1,1-Trichloroethane	ND	2.5	μg/Kg	1	10/05/07 12:26
1,1,2,2-Tetrachloroethane	ND	2.5	μg/Kg	1	10/05/07 12:26
1,1,2-Trichloroethane	ND	2.5	μg/Kg	1	10/05/07 12:26
1,1-Dichloroethane	ND	2.5	μg/Kg	1	10/05/07 12:26
1,1-Dichloroethene	ND	2.5	μg/Kg	1	10/05/07 12:26
1,1-Dichloropropene	ND	2.5	μg/Kg	1	10/05/07 12:26
1,2,3-Trichlorobenzene	ND	5.0	μg/Kg	1	10/05/07 12:26
1,2,3-Trichloropropane	ND	2.5	μg/Kg	1	10/05/07 12:26
1,2,4-Trichlorobenzene	ND	5.0	μg/Kg	1	10/05/07 12:26
1,2,4-Trimethylbenzene	ND	2.5	μg/Kg	1	10/05/07 12:26
1,2-Dibromo-3-chloropropane	ND	5.0	μg/Kg	1	10/05/07 12:26
1,2-Dibromoethane	ND	2.5	μg/Kg	1	10/05/07 12:26
1,2-Dichlorobenzene	ND	2.5	μg/Kg	1	10/05/07 12:26
1,2-Dichloroethane	ND	2.5	μg/Kg	1	10/05/07 12:26
1,2-Dichloropropane	ND	2.5	μg/Kg	1	10/05/07 12:26
1,3,5-Trimethylbenzene	ND	2.5	μg/Kg	1	10/05/07 12:26
1,3-Dichlorobenzene	ND	2.5	μg/Kg	1	10/05/07 12:26
1,3-Dichloropropane	ND	2.5	μg/Kg	1	10/05/07 12:26
1,4-Dichlorobenzene	ND	2.5	μg/Kg	1	10/05/07 12:26
2,2-Dichloropropane	ND	2.5	μg/Kg	1	10/05/07 12:26
2-Chlorotoluene	ND	2.5	μg/Kg	1	10/05/07 12:26
4-Chlorotoluene	ND	2.5	μ <b>g/K</b> g	1	10/05/07 12:26
Benzene	ND	2.5	μg/Kg	1	10/05/07 12:26
Bromobenzene	ND	2.5	μg/Kg	1	10/05/07 12:26
Bromochloromethane	ND	2.5	μg/Kg	1	10/05/07 12:26
Bromodichloromethane	ND	2.5	μg/Kg	1	10/05/07 12:26
Bromoform	ND	2.5	μg/Kg	1	10/05/07 12:26
Bromomethane	ND	5.0	μg/Kg	1	10/05/07 12:26
Carbon tetrachloride	ND	2.5	µg/Kg	1	10/05/07 12:26
Chlorobenzene	ND	2.5	μg/Kg	1	10/05/07 12:26
Chloroethane	ND	5.0	μg/Kg	1	10/05/07 12:26
Chloroform	ND	2.5	μg/Kg	1	10/05/07 12:26
Chloromethane	ND	5.0	μg/Kg	1	10/05/07 12:26

## Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - Spike Recovery outside accepted recovery limits

Page 27 of 28

Print Date: 10/18/07 15:28

309449

Project Supervisor: Monika Santucci

## LSL

## Life Science Laboratories, Inc.

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

CLIENT: O'Brien & Gere Engineers, Inc.

Project: BMS-Krutulis

W Order: 0710024

Matrix: WATER Q

Inst. ID: MS03 10

ColumnID: Rtx-VMS Revision: 10/11/07 8:23 Sample Size: 5 mL %Moisture:

TestCode 8260S

Lab ID: 0710024-009A

Client Sample ID: *TB_100207* 

Collection Date: 10/02/07

10/02/07 0:00 10/02/07 16:54

PrepDate:

FileID:

Date Received:

BatchNo: R11344

1-SAMP-J4688.D

Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS		SW8260B		
cis-1,2-Dichloroethene	ND	2.5	μg/Kg	1	10/05/07 12:26
cis-1,3-Dichloropropene	ND	2.5	μg/Kg	1	10/05/07 12:26
Dibromochloromethane	ND	2.5	μg/Kg	1	10/05/07 12:26
Dibromomethane	ND	2.5	μg/Kg	1	10/05/07 12:26
Dichlorodifluoromethane	ND	5.0	μg/Kg	1	10/05/07 12:26
Ethylbenzene	ND	2.5	μg/Kg	1	10/05/07 12:26
Hexachlorobutadiene	ND	5.0	μg/Kg	1	10/05/07 12:26
Isopropylbenzene	ND	2.5	μg/Kg	1	10/05/07 12:26
Methyl tert-butyl ether	ND	2.5	μg/Kg	1	10/05/07 12:26
Methylene chloride	ND	5.0	μg/Kg	1	10/05/07 12:26
n-Butylbenzene	ND	2.5	μg/Kg	1	10/05/07 12:26
n-Propylbenzene	ND	2.5	μ <b>g/K</b> g	1	10/05/07 12:26
Naphthalene	ND	5.0	μg/Kg	1	10/05/07 12:26
p-Isopropyltoluene	ND	2.5	μg/Kg	1	10/05/07 12:26
sec-Butylbenzene	ND	2.5	µg/Kg	1	10/05/07 12:26
Styrene	ND	2.5	μg/Kg	1	10/05/07 12:26
tert-Butylbenzene	ND	2.5	μg/Kg	1	10/05/07 12:26
Tetrachloroethene	ND	2.5	μg/Kg	1	10/05/07 12:26
Toluene	ND	2.5	μg/Kg	1	10/05/07 12:26
trans-1,2-Dichloroethene	ND	2.5	μg/Kg	1	10/05/07 12:26
trans-1,3-Dichloropropene	ND	2.5	μg/Kg	1	10/05/07 12:26
Trichloroethene	ND	2.5	μg/Kg	1	10/05/07 12:26
Trichlorofluoromethane	ND	5.0	μg/Kg	1	10/05/07 12:26
Vinyl chloride	ND	5.0	μg/Kg	1	10/05/07 12:26
Xylenes (total)	ND	5.0	μg/Kg	1	10/05/07 12:26
Surr: 1,2-Dichloroethane-d4	96.4	71-128	%REC	1	10/05/07 12:26
Surr: 4-Bromofluorobenzene	101	59-125	%REC	1	10/05/07 12:26
Surr: Dibromofluoromethane	101	40-156	%REC	1	10/05/07 12:26
Surr: Toluene-d8	106	75-125	%REC	1	10/05/07 12:26

## Qualifiers:

Print Date: 10/18/07 15:28

- Value exceeds Maximum Contaminant Level
- E Value exceeds the instrument calibration range
- J Analyte detected below the PQL
- P Prim./Conf. column %D or RPD exceeds limit

309449

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - S Spike Recovery outside accepted recovery limits

Project Supervisor: Monika Santucci Page 28 of 28

## Page 13 of 45

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

(315) 437-0200 East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc. CLIENT:

SW8260B 0710024 Work Order: Method:

ANALYTICAL QC SUMMARY REPORT

**BMS-Krutulis** Project:

Sample ID: 0710024-006AMS	SampType: MS	TestCode	le: 8260S	Units: 1	Units: µg/Kg-dry	Prep Date:		RunNo:	11382	
MW-03D (18-20)_100 Batch ID:	R11382	Method:	SW8260B			Analysis Date:	10/8/2007	SeqNo:	310165	
ColumnID:	Rtx-VMS		Rtx-VMS, 1.0 df	ďf						-
S S R	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC	LowLimit	HighLimit RPD Ref Val	Val	%RPD RPDLimit	Qual
	261	15	295	0	88	3 70	130			
	235	15	295	0	08 (	0,2	142			
	416	15	295	J	141	63	175			
	226	15	295	Ü	77 0	7 70	132			
	235	15	295	J	0 80	0.2	133			
	228	15	295	J	77 0	7 70	144			
	231	15	295	J	78	3 70	132			
	144	59	295		) 49	9 50	131			S
	402	15	295	•	136	5 62	163			
	137	59	295	Ü	0 47	7 48	131			S
	300	15	295	6.37	66 2	9 62	155			
	286	29	295	_	76 0	7 70	138			
	211	15	295		) 72	2 70	130			
	282	15	295	_	96	3 70	132			
	234	15	295	•	0 79	89 6	135			
	222	15	295	_	0 75		130			
	323	15	295	J	0 109		159			
	271	15	295	J	) 92	2 70	139			
	265	15	295	J	06 0	02 0	130			
	258	15	295	J	0 87		131			
	220	15	295	_	0 75		132			
	353	5	295	_	0 120		143			
	313	15	295	Ū	0 106		137			
	253	15	295	Ŭ	0 86	5 70	130			
	354	5	295		0 120	29 (	144			
	234	15	295		0 79		130			
	238	15	295		0 81	1 68	138			

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank **a** Q ⊃ Oualifiers:

18-Oct-07

Value exceeds the instrument calibration range ш ч

RPD exceeds accepted precision limit

Spike Recovery outside accepted recovery limits J Analyte detected below the PQL Spike Recovery outside accepted

Not Detected at the MDC or R1.

## Page 14 of 45

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc. CLIENT:

SW8260B Method:

ANALYTICAL QC SUMMARY REPORT

0710024 Work Order:

Project:

BMS-Krutulis

Sample ID: 0710024-006AMS	SampType: MS	TestCode:	e: 8260S	Units: µg/Kg-dry	g-dry	Prep Date:		RunNo:	11382	
Client ID: MW-03D (18-20)_100 Batch ID:	00 Batch ID: R11382	Method:	SW8260B			Analysis Date:	10/8/2007	SeqNo:	310165	
Instrument: MS03_10	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	) df						
Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC	LowLimit P	HighLimit RPD Ref Val		%RPD RPDLimit	Quai
Bromoform	210	15	295	0	71	69	137			
Bromomethane	246	29	295	0	83	44	145			
Carbon tetrachloride	201	15	295	0	89	69	140			S
Chlorobenzene	256	15	295	0	87	70	130			
Chloroethane	368	29	295	0	125	49	161			
Chloroform	244	15	295	0	83	20	130			
Chloromethane	190	59	295	0	99	52	151			
cis-1,2-Dichloroethene	250	15	295	11.2	8	20	130			
cis-1,3-Dichloropropene	221	15	295	0	75	55	139			
Dibromochloromethane	243	15	295	0	82	68	141			
Dibromomethane	235	15	295	0	80	70	130			
Dichlorodifluoromethane	166	29	295	0	99	43	161			
Ethylbenzene	224	15	295	51.2	59	70	130			S
Hexachlorobutadiene	185	29	295	0	63	56	130			
Isopropylbenzene	340	15	295	12.3	111	57	168			
Methyl tert-butyl ether	221	15	295	0	75	70	135			
Methylene chloride	196	58	295	0	29	99	132			S
n-Butylbenzene	181	15	295	0	61	29	141			S
n-Propylbenzene	282	15	295	8.31	93	70	134			
Naphthalene	141	29	295	11.7	44	4	142			
p-Isopropyltoluene	251	15	295	0	85	70	136			
sec-Butylbenzene	239	15	295	0	81	69	147			
Styrene	219	15	295	0	74	70	130			
tert-Butylbenzene	338	15	295	0	115	70	136			
Tetrachloroethene	724	15	295	4520	0	63	145			ဟ
Toluene	511	15	295	101	139	70	130			S
trans-1,2-Dichloroethene	239	15	295	4.66	79	70	130			

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank B S Qualifiers:

18-Oct-07

RPD exceeds accepted precision limit ш ∠

Value exceeds the instrument calibration range

Analyte detected below the PQL

Spike Recovery outside accepted recovery limits

Not Detected at the MDC or RL.

## Page 15 of 45

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

(315) 437-0200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc. CLIENT:

Method:

0710024 Work Order:

**BMS-Krutulis** Project:

SW8260B

ANALYTICAL QC SUMMARY REPORT

			Ti.		"							
			Qual		ES							
11382	310165		%RPD RPDLimit									
RunNo:	SeqNo:		%									
<u></u>			RPD Ref Val									
	10/8/20(		ighLimit	135	130	156	146	130	128	125	156	125
Prep Date:	Analysis Date: 10/8/2007		%REC LowLimit HighLimit RPD Ref Val	53	70	59	57	20	7.1	69	40	75
			%REC	74	229	133	83	74	103	82	108	66
Units: pg/Kg-dry			± 0 +	0	8560	0	0	25.2	0	0	0	0
Unit		0 df	Parent Sample Result		~							
8260S	SW8260B	Rtx-VMS, 1.0 df	SPK Added	295	295	295	295	884	295	295	295	295
TestCode: 8260S	Method:		Pol	15	15	53	53	53	0.59	0.59	0.59	0.59
WS	٦11382	Stx-VMS	imple sult	219	9230	392	246	879	303	242	317	291
Sample ID: 0710024-006AMS SampType: MS	Client ID: MW-03D (18-20)_100 Batch ID: R11382	ColumnID: Rtx-VMS	QC Sample Result									
JEAMS	8-20)_100			Te					ane-d4	enzene	ethane	
0710024-00	MW-03D (1	MS03_10		hloropropei	ine	romethane	ø,	(F	Surr: 1,2-Dichloroethane-d4	Surr: 4-Bromofluorobenzene	Surr: Dibromofluoromethane	ene-d8
Sample ID:	Client ID:	Instrument: MS03_10	Analyte	trans-1,3-Dichloropropene	Trichloroethene	Trichlorofluoromethane	Vinyl chloride	Xylenes (total)	Surr: 1,2-l	Surr: 4-Br	Surr: Dibn	Surr: Toluene-d8

Not Detected at the Practical Quantitation Limit (PQL)

Not Detected at the MDC or RL

18-Oct-07

Analyte detected in the associated Method Blank в <u>Q</u> л Qualifiers:

Value exceeds the instrument calibration range шч

Analyte detected below the PQL - s

RPD exceeds accepted precision limit

Spike Recovery outside accepted recovery limits

## Page 16 of 45

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

(315) 437-0200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc. CLIENT:

SW8260B Work Order: Method:

ANALYTICAL QC SUMMARY REPORT

0710024

BMS-Krutulis Project:

	H	T C C C C C C C C C C C C C C C C C C C	00000	112:40:	1000	Drop Date:			DumMo: 44202	200	
Sample ID: 0710024-006AMSD	samplype: MSD	lestCode:		Onits:	Units: hg/hg-ary	riep Dale.				700	
Client ID: MW-03D (18-20)_100 Batch ID:	) Batch ID: R11382	Method:	SW8260B			Analysis Date:	10/8/2007		SeqNo: 310	310166	
Instrument: MS03_10	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	₫ŧ							
	QC Sample	Č		Parent Sample	ć C			2/2/20	20%	:: :: :: ::	7
Analyte	Result	PQL	SPK Added	Kesult	%KE	LowLimit		rp kei vai	טועא	RPDLIMI	Kuai
1,1,1,2-Tetrachloroethane	279	15	295		0 95	02	130	279	0	70	
1,1,1-Trichloroethane	254	15	295		98 0	92 1	142	254	0	20	
1,1,2,2-Tetrachloroethane	431	15	295		0 146	63	175	431	0	24	
1,1,2-Trichloroethane	259	15	295		0 88	1 70	132	259	0	20	
1,1-Dichloroethane	256	15	295		0 87	. 20	133	256	0	20	
1,1-Dichloroethene	419	15	295		0 142	2 70	144	419	0	20	
1,1-Dichloropropene	252	15	295		0 85	2 20	132	252	0	20	
1,2,3-Trichlorobenzene	126	29	295		0 43	3 50	131	126	0	21	S
1,2,3-Trichloropropane	482	15	295		0 164	1 62	163	482	0	27	S
1,2,4-Trichlorobenzene	121	59	295		0 41	48	131	121	0	24	S
1,2,4-Trimethylbenzene	314	15	295	6.37	7 104	1 62	155	314	0	20	
1,2-Dibromo-3-chloropropane	339	59	295		0 115	2 70	138	339	0	24	
1,2-Dibromoethane	240	15	295		0 81		130	240	0	20	
1,2-Dichlorobenzene	302	15	295		0 102	2 70	132	302	0	20	
1,2-Dichloroethane	261	15	295		0 88	3 68	135	261	0	20	
1,2-Dichloropropane	248	15	295		0 84		130	248	0	20	
1,3,5-Trimethylbenzene	332	15	295		0 112		159	332	0	20	
1,3-Dichlorobenzene	288	15	295		0 98	3 70	139	288	0	20	
1,3-Dichforopropane	296	15	295		0 100		130	296	0	20	
1,4-Dichlorobenzene	268	15	295		0 91		131	268	0	24	
2,2-Dichloropropane	232	15	295		0 79		132	232	0	20	
2-Chlorotoluene	367	15	295		0 125	2 67	143	367	0	20	
4-Chiorotoluene	329	15	295		0 112	2 70	137	329	0	20	
Benzene	278	15	295		0 94	4 70	130	278	0	20	
Bromobenzene	376	15	295		0 128	3 67	144	376	0	20	
Bromochloromethane	264	15	295				130	264	0	20	
Bromodichloromethane	268	15	295		0 91	1 68	138	268	0	20	

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank B ND U Qualifiers:

18-Oct-07

Value exceeds the instrument calibration range ш ~

RPD exceeds accepted precision limit

Spike Recovery outside accepted recovery limits Analyte detected below the PQL - s

Not Detected at the MDC or RL

## Page 17 of 45

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc. CLIENT:

SW8260B 0710024 Work Order: Method:

ANALYTICAL QC SUMMARY REPORT

BMS-Krutulis Project:

Sample ID: 0710024-006AMSD SampTyp Client ID: MW-03D (18-20)_100 Batch ID:	ز نة ا	TestCode: Method:	e: 8260S SW8260B	Units: µg/Kg-dry	g-dry	Prep Date: Analysis Date:	10/8/2007	RunNo: SeqNo:	11382 310166		
instrument: M303_10	Columniu: KK-VNIS QC Sample		KIX-VINIS, I.O. CI	Parent Sample							
Analyte	Result	Pal	SPK Added	Result	%REC	LowLimit Hi	HighLimit RP	RPD Ref Val	%RPD RPC	RPDLimit	Qual
Bromoform	235	15	295	0	88	69	137	235	0	20	
Bromomethane	382	59	295	0	130	44	145	382	0	21	
Carbon tetrachloride	240	15	295	0	82	69	140	240	0	20	
Chlorobenzene	274	15	295	0	93	02	130	274	0	20	
Chloroethane	284	59	295	0	96	49	161	284	0	20	
Chloroform	272	15	295	0	92	20	130	272	0	20	
Chloromethane	204	58	295	0	69	52	151	204	0	20	
cis-1,2-Dichloroethene	276	15	295	11.2	90	70	130	276	0	20	
cis-1,3-Dichloropropene	248	15	295	0	84	55	139	248	0	20	
Dibromochloromethane	270	15	295	0	92	68	141	270	0	20	
Dibromomethane	268	15	295	0	91	70	130	268	0	20	
Dichlorodifluoromethane	220	29	295	0	75	43	161	220	0	20	
Ethylbenzene	249	15	295	51.2	29	20	130	249	0	20	တ
Hexachlorobutadiene	222	29	295	0	75	99	130	222	0	42	
Isopropylbenzene	367	15	295	12.3	120	25	168	367	0	20	
Methyl tert-butyl ether	251	15	295	0	85	70	135	251	0	20	
Methylene chloride	222	29	295	0	75	68	132	222	0	20	
n-Butylbenzene	191	15	295	0	65	29	141	191	0	30	ဟ
n-Propylbenzene	306	15	295	8.31	101	70	134	306	0	20	
Naphthalene	144	29	295	11.7	45	41	142	144	0	28	
p-Isopropyltoluene	270	15	295	0	91	02	136	270	0	52	
sec-Butylbenzene	262	15	295	0	89	69	147	262	0	23	
Styrene	232	15	295	0	79	70	130	232	0	20	
tert-Butylbenzene	354	15	295	0	120	70	136	354	0	20	
Tetrachloroethene	1150	15	295	4520	0	63	145	1150	0	21	S
Toluene	605	15	295	101	171	70	130	605	0	70	S
trans-1,2-Dichloroethene	258	15	295	4.66	86	20	130	258	0	20	

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank S В Qualifiers:

Value exceeds the instrument calibration range 日文

RPD exceeds accepted precision limit

Spike Recovery outside accepted recovery limits Analyte detected below the PQL - s

Not Detected at the MDC or RL

5000 Brittonfield Parkway, Suite 200

(315) 437-0200 East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

**BMS-Krutulis** Project:

0710024 Work Order:

SW8260B

Method:

ANALYTICAL QC SUMMARY REPORT

				]								
			Qual		ES							
32	166		%RPD RPDLimit	20	20	20	24	20	0	0	0	0
11382	310166		%RPD	0	0	0	0	0				
RunNo:	SeqNo:											
			RPD Ref Val	254	8750	375	332	713	0	0	0	0
	10/8/2007			135	130	156	146	130	128	125	156	125
Prep Date:	Analysis Date:		LowLimit HighLimit	53	70	59	25	70	71	69	40	75
	•		%REC	98	64	127	113	78	109	82	110	86
-6y/6rl				0	0	0	0	2	0	0	0	0
Units: µg/Kg-dry		) df	Parent Sample Result		8560			25.2				
8260S	SW8260B	Rtx-VMS, 1.0 df	SPK Added	295	295	295	295	884	295	295	295	295
TestCode: 8260S	Method:		PQL	15	15	59	59	58	0.59	0.59	0.59	0.59
MSD	R11382	Rtx-VMS	QC Sample Result	254	8750	375	332	713	322	242	324	289
Sample ID: 0710024-006AMSD SampType: MSD	Cient ID: MW-03D (18-20)_100 Batch ID: R11382	ColumnID: Rtx-VMS	QC S. Re. Se									
06AMSD	18-20)_100			ine					ane-d4	enzene	nethane	
0710024-0	MW-03D (	MS03_10		chloroprope	ene	Trichlorofluoromethane	ē	al)	Surr: 1,2-Dichloroethane-d4	Surr: 4-Bromofluorobenzene	Surr: Dibromofluoromethane	sp-auar
Sample ID:	Client ID:	Instrument: MS03_10	Analyte	trans-1,3-Dichloropropene	Trichloroethene	Trichlorofluc	Vinyl chloride	Xylenes (total)	Surr: 1,2-	Surr: 4-B	Surr: Dib	Surr: Toluene-d8

ш ∠

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank

S 22

Qualifiers:

Value exceeds the instrument calibration range RPD exceeds accepted precision limit

Analyte detected below the PQL - S

Spike Recovery outside accepted recovery limits

## Page 1 of 45

Spike Recovery outside accepted recovery limits

Analyte detected below the PQL

- s

Value exceeds the instrument calibration range RPD exceeds accepted precision limit

шк

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank

Not Detected at the MDC or RL

B

Qualifiers:

18-Oct-07

Date:

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc. CLIENT:

Work Order: Method:

0710024

SW8260B

ANALYTICAL QC SUMMARY REPORT

**BMS-Krutulis** Project:

_										<u> </u>	
_	Batch ID: R11344	Method:	SW8260B			Analysis Date:	e: 10/5/2007		SedNo: 3(	309446	
0	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	o df							
	QC Sample Result	Pol	SPK Added	Parent Sample Result	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	) RPDLimit	Qual
	42.5	2.5	50	0	85	62	127				
	43.0	2.5	90	0	98	78	132				
	47.9	2.5	50	0	96	69	138				
	42.2	2.5	90	0	84	80	122				
	41.8	2.5	20	0	84	76	124				
	39.0	2.5	20	0	78	9/	135				
	41.5	2.5	90	0	83	80	124				
	42.0	5.0	50	0	8	73	127				
	45.1	2.5	20	0	90	70	135				
	41.9	5.0	90	0	84	71	127				
	48.5	2.5	20	0	6	72	128				
	39.1	5.0	20	0	78	69	132				
	41.2	2.5	90	0	82	80	124				
	44.2	2.5	20	0	88	80	120				
	41.8	2.5	20	0	8	73	127				
	41.0	2.5	20	0	82	8	125				
	49.4	2.5	50	0	66	76	127				
	44.3	2.5	20	0	88	89	120				
	43.1	2.5	20	0	86	80	120				
	42.9	2.5	90	0	98	80	120				
	41.6	2.5	50	0	83	99	134				
	47.9	2.5	20	0	96	76	125				
	47.5	2.5	20	0	95	1.1	122				
	45.6	2.5	50	0	91	88	121				
	45.0	2.5	50	0	06	75	126				
	41.2	2.5	50	0	82	79	120				
	42.0	2.5	90	0	84	8	129				

## Page 2 of 45

Spike Recovery outside accepted recovery limits

Analyte detected below the PQL

~ S

Value exceeds the instrument calibration range RPD exceeds accepted precision limit

шк

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank

в В о

Qualifiers:

Not Detected at the MDC or RL

18-Oct-07

Date:

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc. CLIENT:

SW8260B 0710024 Work Order: Method:

ANALYTICAL QC SUMMARY REPORT

Project:

Ξ
_
III
Ż
$\mathbb{Z}$

Sample ID: LCS-11344	SampType: LCS	TestCode:	e: 8260S	Units: µg/Kg	Ē	Prep Date:		RunNo		11344	
Client ID: ZZZZZ	Batch ID: R11344	Method:	SW8260B		•	Analysis Date: 10/5/2007	10/5/2007	SeqNo:		309446	
Instrument: MS03_10	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	df.							
Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC	LowLimit H	HighLimit RPD	RPD Ref Val	%RPD	RPDLimit	Qual
Bromoform	34.9	2.5	20	0	70	70	138		1		
Bromomethane	45.9	5.0	20	0	92	56	147				
Carbon tetrachloride	37.6	2.5	50	0	75	74	138				
Chlorobenzene	44.9	2.5	50	0	06	80	120				
Chloroethane	55.2	5.0	90	0	110	63	142				
Chloroform	43.8	2.5	90	0	88	77	121				
Chloromethane	28.1	5.0	20	0	96	62	141				S
cis-1,2-Dichloroethene	42.4	2.5	50	0	82	42	120				
cis-1,3-Dichloropropene	42.3	2.5	50	0	82	80	125				
Dibromochloromethane	38.9	2.5	90	0	78	92	135				
Dibromomethane	42.0	2.5	50	0	8	42	120				
Dichlorodifluoromethane	23.4	5.0	50	0	47	55	142				S
Ethylbenzene	42.4	2.5	90	0	85	80	121				
Hexachlorobutadiene	36.2	9.0	20	0	72	20	128				
Isopropylbenzene	45.2	2.5	50	0	06	92	131				
Methyl tert-butyl ether	42.9	2.5	20	0	98	76	126				
Methylene chloride	35.2	5.0	20	0	70	75	124				S
n-Butylbenzene	39.7	2.5	20	0	79	65	133				
n-Propylbenzene	46.3	2.5	50	0	93	74	129				
Naphthalene	39.0	5.0	50	0	78	65	143				
p-Isopropyltoluene	47.4	2.5	90	O	95	74	127				
sec-Butylbenzene	42.4	2.5	20	0	82	7.5	128				
Styrene	44.8	2.5	50	0	06	78	122				
tert-Butylbenzene	47.9	2.5	50	0	96	77	127				
Tetrachloroethene	39.8	2.5	50	0	80	74	125				
Toluene	41.0	2.5	20	0	82	80	121				
trans-1,2-Dichloroethene	40.7	2.5	50	0	8	77	123				
				:							

5000 Brittonfield Parkway, Suite 200

(315) 437-0200 East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc. CLIENT:

SW8260B Method:

ANALYTICAL QC SUMMARY REPORT

0710024 Work Order:

**BMS-Krutulis** Project:

Sample ID: LCS-11344	SampType: LCS	TestCode: 8260S	8260S	Units: µg/Kg		Prep Date:		Rur	RunNo:	11344	
Client ID: ZZZZZ	Batch ID: R11344	Method:	SW8260B		•	Analysis Date:	e: 10/5/2007	Sec	SeqNo:	309446	
Instrument: MS03_10	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	df							•
Analyte	QC Sample Result	Pal	SPK Added	Parent Sample Result	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	'D Ref Val	%R	%RPD RPDLimit	Qual
trans-1,3-Dichloropropene	42.3	2.5	99	0	85	78	124				
Trichloroethene	41.5	2.5	90	0	83	80	120				۵
Trichlorofluoromethane	55.0	5.0	20	0	110	67	136				
Vinyl chloride	36.7	5.0	20	0	73	99	135				
Xylenes (total)	132	5.0	150	0	88	2/2	124				
Surr: 1,2-Dichloroethane-d4	53.3	0.10	20	0	107	71	128				
Surr: 4-Bromofluorobenzene	49.2	0.10	90	0	86	59	125				
Surr: Dibromofluoromethane	55.1	0.10	20	0	110	40	156				
Surr: Toluene-d8	53.4	0.10	50	0	107	75	125				

ш ~

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank

e S ⊃

Qualifiers:

Not Detected at the MDC or RL

18-Oct-07

Value exceeds the instrument calibration range

s c RPD exceeds accepted precision limit

Spike Recovery outside accepted recovery limits Analyte detected below the PQL

## Page 4 of 45

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

(315) 437-0200

SW8260B Work Order: Method:

ANALYTICAL QC SUMMARY REPORT

**BMS-Krutulis** 0710024 Project:

Sample ID: MB-11344	SampType: MBLK	TestCode:	e: 8260S	Units: µg/Kg		Prep Date:		RunNo:		11344	
Client ID: ZZZZZ	Batch ID: R11344	Method:	SW8260B			Analysis Date:	10/5/2007	SeqNo:		309447	
Instrument: MS03_10	ColumniD: Rtx-VMS		Rtx-VMS, 1.0 df	) df							
Analyte	QC Sample Result	Pol	SPK Added	Parent Sample Result	%REC	LowLimit Hig	HighLimit RPD Ref Val	ef Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	QN	2.5									
1,1,1-Trichloroethane	QN	2.5									
1,1,2,2-Tetrachloroethane	QN	2.5									
1,1,2-Trichloroethane	Q	2.5									
1,1-Dichloroethane	QV	2.5									
1,1-Dichloroethene	QN	2.5									
1,1-Dichloropropene	QN	2.5									
1,2,3-Trichlorobenzene	QN	5.0									
1,2,3-Trichloropropane	QN	2.5									
1,2,4-Trichlorobenzene	QN	5.0									
1,2,4-Trimethylbenzene	QN	2.5									
1,2-Dibromo-3-chloropropane	Q	5.0									
1,2-Dibromoethane	Q	2.5									
1,2-Dichlorobenzene	QN	2.5									
1,2-Dichloroethane	QN	2.5									
1,2-Dichloropropane	QN	2.5									
1,3,5-Trimethylbenzene	ON.	2.5									
1,3-Dichlorobenzene	Q	2.5									
1,3-Dichloropropane	QN	2.5									
1,4-Dichlorobenzene	QN	2.5									
2,2-Dichloropropane	QN	2.5									
2-Chlorotoluene	QV	2.5									
4-Chlorotoluene	9	2.5									
Benzene	Q	2.5									
Bromobenzene	QN	2.5									
Bromochioromethane	QV	2.5									
Bromodichloromethane	QN	2.5									

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank S М Qualifiers:

Not Detected at the MDC or RL

 $\supset$ 

18-Oct-07

Date:

Value exceeds the instrument calibration range ш к

RPD exceeds accepted precision limit

J Analyte detected below the PQL S Spike Recovery outside accepted

Spike Recovery outside accepted recovery limits

## Page 5 of 45

a Q n

Not Detected at the MDC or RL

18-Oct-07

Date:

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc.

CLIENT:

Method:

SW8260B Work Order:

0710024

ANALYTICAL QC SUMMARY REPORT

BMS-Krutulis
Project:

Sample ID: MB-11344	SampTyme: MBI K	TextCode.	S. 8260.S	Units: ua/Ka	Prep Date:		RunNo:	11344	
Client ID: ZZZZZ	Batch ID: R11344	Method:		) )	ate:	10/5/2007		309447	•
Instrument: MS03_10	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	.0 df					
Analyte	QC Sample Result	Pal	SPK Added	Parent Sample Result %F	%REC LowLimit HighLimit	iit RPD Ref Val	%RPD	D RPDLimit	Qual
Bromoform	QN	2.5							
Bromomethane	QN	5.0							
Carbon tetrachloride	ND	2.5							
Chlorobenzene	QN	2.5							
Chloroethane	QN	5.0							
Chloroform	QN	2.5							
Chioromethane	QN	5.0							
cis-1,2-Dichloroethene	QN	2.5							
cis-1,3-Dichloropropene	QN	2.5							
Dibromochloromethane	QN	2.5							
Dibromomethane	QN	2.5							
Dichlorodifluoromethane	QN	5.0							
Ethylbenzene	QN	2.5							
Hexachlorobutadiene	ON	9.0							
Isopropylbenzene	QN	2.5							
Methyl tert-butyl ether	QN	2.5							
Methylene chloride	QN	5.0							
n-Butylbenzene	QN	2.5							
n-Propylbenzene	QN	2.5							
Naphthalene	QN	5.0							
p-IsopropyItoluene	QN	2.5							
sec-Butylbenzene	Q	2.5							
Styrene	Q	2.5							
tert-Butylbenzene	Q	2.5							
Tetrachloroethene	Q	2.5							
Toluene	QN	2.5							
trans-1,2-Dichtoroethene	QN	2.5							
í		<del>1</del>				Amolista Aptonto	I bolow the DC	<u>-</u>	
	Analyte detected in the associated Method Blank	slank		Value exceeds the instrument calibration range			Delow ule re	1). 1	
ND Not Detec	Not Detected at the Practical Quantitation Limit (PQL)	imit (PQL)	R RPDe	RPD execeds accepted precision limit	limit		outside accepi	Spike Recovery outside accepted recovery limits	

5000 Brittonfield Parkway, Suite 200

(315) 437-0200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc. CLIENT:

SW8260B Method:

ANALYTICAL QC SUMMARY REPORT

Work Order:

0710024

		11344	
BMS-Krutulis		RunNo:	
Project:		Prep Date:	
		Jnits: µg/Kg	
		Units:	
		8260S	
	ı	jaj	

Sample ID: MB-11344	SampType: MBLK	TestCode	TestCode: 8260S	Units: µg/Kg		Prep Date:		RunNo:	11344	
Client ID: ZZZZZ	Batch ID: R11344	Method:	SW8260B		,	Analysis Date: 10/5/2007	10/5/2007	SeqNo:	309447	
Instrument: MS03_10	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	df						
	QC Sample			Parent Sample						,
Analyte	Result	Pol	SPK Added	Result	%REC	LowLimit Hi	%REC LowLimit HighLimit RPD Ref Val		%RPD RPDLimit Qual	Qual
trans-1,3-Dichloropropene	QN	2.5								
Trichloroethene	3.75	2.5								
Trichlorofluoromethane	QN	5.0								
Vinyl chloride	Q	5.0								
Xylenes (total)	Q	5.0								
Surr: 1,2-Dichloroethane-d4	48.4	0.10	20	0	6	71	128			
Surr: 4-Bromofluorobenzene	49.4	0.10	20	0	66	59	125			
Surr: Dibromofluoromethane	49.7	0.10	20	0	66	40	156			
Surr: Toluene-d8	52.3	0.10	20	0	105	75	125			

Not Detected at the MDC or RL

18-Oct-07

Date:

Value exceeds the instrument calibration range

Analyte detected in the associated Method Blank g Qualifiers:

Not Detected at the Practical Quantitation Limit (PQL) S D

RPD exceeds accepted precision limit шк

Analyte detected below the PQL - s

Spike Recovery outside accepted recovery limits

## Page 7 of 45

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

(315) 437-0200 East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc. CLIENT:

SW8260B 0710024 Work Order: Method:

ANALYTICAL QC SUMMARY REPORT

**BMS-Krutulis** Project:

00077 00 1 01 11 0	30 1 Surfaces	Tacthode	8260S	Unite: 110/Kn		Pren Date:		RunNo	11382		
ς.	Date In: D44383	Mothod-		D		Analysis Date:	10/8/2007	SedNo:	309956		
Client ID: ZZZZZ	Batch ID: K11382	Menion.	SANOZONO		•	and yells peak.	100700	<del>,</del>			
Instrument: MS03_10	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	df.							
	QC Sample	č	7.00	Parent Sample	0.00	i i i i i i i i i i i i i i i i i i i	Hinkl imit RPD Ref Val	[6]	%RPD RPDI imit	nit Ottal	<u> </u>
Analyte	Kesuit	PQL	SPK Added	Result	74V8/			2	- [		_
1,1,1,2-Tetrachloroethane	48.2	2.5	90	0	96	79	127				
f.1.1-Trichloroethane	49.3	2.5	20	0	66	78	132				
1.1.2.2-Tetrachloroethane	52.7	2.5	20	0	105	69	138				
1.1.2-Trichloroethane	47.7	2.5	20	0	95	80	122				
1.1-Dichloroethane	47.7	2.5	90	0	92	92	124				
1.1-Dichloroethene	45.6	2.5	50	0	91	9/	135				
1.1-Dichloropropene	48.5	2.5	20	0	97	80	124				
1.2.3-Trichlorobenzene	51.5	5.0	20	0	103	73	127				
1.2.3-Trichloropropane	49.0	2.5	90	0	86	70	135				
1.2.4-Trichlorobenzene	49.8	5.0	20	0	100	71	127				
1,2,4-Trimethylbenzene	54.7	2.5	50	0	109	72	128				
1,2-Dibromo-3-chloropropane	44.9	5.0	20	0	8	69	132				
1.2-Dibromoethane	46.2	2.5	20	0	95	80	124				
1,2-Dichlorobenzene	49.9	2.5	50	0	100	80	120				
1.2-Dichloroethane	47.2	2.5	20	0	94	73	127				
1.2-Dichloropropane	46.4	2.5	9	0	93	80	125				
1,3,5-Trimethy!benzene	55.9	2.5	20	0	112	92	127				
1.3-Dichlorobenzene	50.6	2.5	90	0	101	80	120				
1.3-Dichloropropane	47.6	2.5	20	0	92	80	120				
1.4-Dichlorobenzene	49.0	2.5	20	0	98	80	120				
2.2-Dichloropropane	45.3	2.5	90	0	91	99	134				
2-Chiomfolliene	53.4	2.5	20	0	107	9/	125				
4-Chlorotolliene	53.1	2.5	90	0	106	77	122				
Benzene	52.3	2.5	50	0	105	80	121				
Bromobenzene	49.7	2.5	20	0	66	75	126				
Bromochloromethane	47.3	2.5	90	0	92	79	120				
Bromodichloromethane	48.4	2.5	90	0	97	80	129				

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank മ Qualifiers:

Value exceeds the instrument calibration range RPD exceeds accepted precision limit യ ഷ

Spike Recovery outside accepted recovery limits Analyte detected below the PQL

Not Detected at the MDC or R1. S ⊃

18-Oct-07 Date:

## Page 8 of 45

# Life Science Laboratories, Inc.

ANALYTICAL QC SUMMARY REPORT

SW8260B

Method:

5000 Brittonfield Parkway, Suite 200

(315) 437-0200 East Syracuse, NY 13057

East Syracuse, NY 13057	(315) 437-0200					Worl	Work Order:	0710024			
CLIENT: O'Brien & Ger	O'Brien & Gere Engineers, Inc.					Project:	ct:	BMS-Krutulis			
Sample ID: 1 CS 14383	SampTyne: 100	TestCode:	80908	Units: IId/Ka		Pren Date:		RunNo		11382	
	Batch ID: R11382	Method:		n h L		Analysis Date:	e: 10/8/2007			309956	
Instrument: MS03_10	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	df df							
( <del>+</del> )	QC Sample	Ca	SPK Added	Parent Sample Result	SHR.	imi lwo	High imit	RPD Ref Val	%RPD	D RPDI imit	leno
Alialyte	30.7	ر د د ۳	2000		287	102					
Bromomethane	37.8	5.0	20 22	0	9/	56	147				
Carbon tetrachloride	43.8	2.5	50	0	88	74	138				
Chlorobenzene	51.2	2.5	20	0	102	80	120				
Chloroethane	63.5	5.0	50	0	127	63	142				
Chloroform	49.8	2.5	20	0	100	77	121				
Chloromethane	30.7	5.0	50	0	61	62	141				S
cis-1,2-Dichloroethene	48.1	2.5	50	0	96	79	120				
cis-1,3-Dichloropropene	46.2	2.5	90	0	92	80	125				
Dibromochloromethane	42.7	2.5	90	0	85	76	135				
Dibromomethane	46.9	2.5	20	0	94	79	120				
Dichlorodifluoromethane	25.8	5.0	20	0	52	55	142				S
Ethylbenzene	49.8	2.5	20	0	100	80	121				
Hexachlorobutadiene	45.5	5.0	90	0	91	20	128				
Isopropylbenzene	51.2	2.5	20	0	102	76	131				
Methyl tert-butyl ether	43.8	2.5	90	0	88	9/	126				
Methylene chloride	40.0	5.0	50	0	8	75	124				
n-Butylbenzene	46.8	2.5	50	0	94	65	133				
n-Propylbenzene	53.6	2.5	50	0	107	74	129				
Naphthalene	45.7	5.0	50	0	91	65	143				
p-Isopropyltoluene	54.5	2.5	20	0	109	74	127				
sec-Butylbenzene	49.7	2.5	50	0	66	75	128				
Styrene	51.7	2.5	20	0	103	78	122				
tert-Butylbenzene	54.0	2.5	20	0	108	77	127				
Tetrachloroethene	46.1	2.5	50	0	92	74	125				
Toluene	46.5	2.5	50	0	93	8	121				
trans-1,2-Dichloroethene	47.0	2.5	20	0	94	77	123				

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank в <u>N</u> ⊃ Qualifiers:

18-Oct-07

Value exceeds the instrument calibration range ы ч

RPD exceeds accepted precision limit

Analyte detected below the PQL - s

Spike Recovery outside accepted recovery limits

Not Detected at the MDC or RL

## Page 9 of 45

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

(315) 437-0200 East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc. CLIENT:

Method:

0710024 Work Order:

SW8260B

ANALYTICAL QC SUMMARY REPORT

Project:

**BMS-Krutulis** 

Sample ID: LCS-11382	SampType: LCS	TestCode: 8260S	8260S	Units: µg/Kg		Prep Date:		Rui	RunNo:	11382	
Client ID: ZZZZZ	Batch ID: R11382	Method:	SW8260B			Analysis Dat	Analysis Date: 10/8/2007		SeqNo:	309956	•
Instrument: MS03_10	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	đf							
	QC Sample		•,	Parent Sample							
Analyte	Result	PQL	SPK Added	Result	%REC		LowLimit HighLimit RPD Ref Val	Ref Val	%R	%RPD RPDLimit	Qual
trans-1,3-Dichloropropene	46.8	2.5	90	0	94	78	124				
Trichloroethene	48.6	2.5	20	0	26	80	120				
Trichlorofluoromethane	67.1	5.0	20	0	134	29	136				
Vinyl chloride	39.4	5.0	20	0	79	89	135				
Xylenes (total)	153	5.0	150	0	102	76	124				
Surr: 1,2-Dichloroethane-d4	51.9	0.10	20	0	104	71	128				
Surr: 4-Bromofluorobenzene	49.8	0.10	50	0	100	59	125				
Surr: Dibromofluoromethane	54.7	0.10	50	0	109	40	156				
Surr: Toluene-d8	53.4	0.10	20	0	107	75	125				

Analyte detected in the associated Method Blank 2 Qualifiers:

Not Detected at the Practical Quantitation Limit (PQL) S

ш «

Not Detected at the MDC or RL

Value exceeds the instrument calibration range RPD exceeds accepted precision limit

J Analyte detected below the PQL Spike Recovery outside accounted

Spike Recovery outside accepted recovery limits

Date:

18-Oct-07

## Page 10 of 45

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

(315) 437-0200

SW8260B Method:

ANALYTICAL QC SUMMARY REPORT

Work Order:

Project:

**BMS-Krutulis** 0710024

<u></u> .	iii	TestCode:	8260S	Units: µg/Kg	D.	Prep Date:		RunNo: 11382	, g	
Litent ID: 2222 Instrument: MS03_10	ColumnID: Rtx-VMS	Wethod.	SW6Z50D Rtx-VMS, 1.0 df	ďf					2	
Analyte	QC Sample Result	POL	SPK Added	Parent Sample Resuit	%REC	LowLimit HighLimit	RPD Ref Val	%RPD F	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	QN	2.5		:						
1,1,1-Trichloroethane	Q	2.5								
1,1,2,2-Tetrachloroethane	Q	2.5								
1,1,2-Trichloroethane	QN	2.5								
1,1-Dichloroethane	QN	2.5								
1,1-Dichloroethene	QN	2.5								
1,1-Dichloropropene	QN	2.5								
1,2,3-Trichlorobenzene	ON	5.0								
1,2,3-Trichloropropane	QN	2.5								
1,2,4-Trichlorobenzene	QN	5.0								
1,2,4-Trimethylbenzene	QN	2.5								
1,2-Dibromo-3-chloropropane	QN	5.0								
1,2-Dibromoethane	ON	2.5								
1,2-Dichlorobenzene	QN	2.5								
1,2-Dichloroethane	QV	2.5								
1,2-Dichloropropane	Q	2.5								
1,3,5-Trimethylbenzene	Q	2.5								
1,3-Dichlorobenzene	QN	2.5								
1,3-Dichloropropane	QN	2.5								
1,4-Dichlorobenzene	Q	2.5								
2,2-Dichloropropane	Q	2.5								
2-Chlorotoluene	QN	2.5								
4-Chlorotofuene	QN	2.5								
Benzene	Q	2.5								
Bromobenzene	Q	2.5								
Bromochloromethane	QN	2.5								
Bromodichloromethane	QN	2.5								

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank S N В Qualifiers:

18-Oct-07

Value exceeds the instrument calibration range ш &

RPD exceeds accepted precision limit

Spike Recovery outside accepted recovery limits J Analyte detected below the PQL Spike Recovery outside accepted

Not Detected at the MDC or RL  $\supset$ 

## Page 11 of 45

# Life Science Laboratories, Inc.

ANALYTICAL QC SUMMARY REPORT

5000 Brittonfield Parkway, Suite 200

5000 Brittonfield Parkway, Suite 200	Suite 200					Mothod.	÷	809C8/WS			
East Syracuse, NY 13057	(315) 437-0200					Work Order:	u. Order:	9 W 8200E 0710024			
CLIENT: O'Brien & Gel	O'Brien & Gere Engineers, Inc.					Project:	.1.1	BMS-Krutulis			
Sample ID: MB-11382	SampType: MBLK	TestCode: 8260S	8260S	Units: µg/Kg		Prep Date:	:			11382	
Client ID: ZZZZZ	Batch ID: R11382	Method:	SW8260B			Analysis Date: 10/8/2007	10/8/2007	SeqNo:		309959	
Instrument: MS03_10	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	) df							
Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC	LowLimit HighLimit RPD Ref Val	lighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
Bromoform	QN	2.5	i								
Bromomethane	QN	5.0									
Carbon tetrachloride	QN	2.5									
Chlorobenzene	ON	2.5									
Chloroethane	ON	5.0									
Chloroform	QN	2.5									
Chloromethane	QN	2.0									
cis-1,2-Dichloroethene	Q	2.5									
cis-1,3-Dichloropropene	QN	2.5									
Dibromochloromethane	QN	2.5									
Dibromomethane	Q	2.5									
Dichlorodifluoromethane	QN	5.0									
Ethylbenzene	Q	2.5									
Hexachlorobutadiene	2	5.0									
Isopropylbenzene	2	2.5									
Methyl tert-butyl ether	QN	2.5									
Methylene chloride	QN	5.0									
n-Butylbenzene	Q	2.5									
n-Propylbenzene	Q	2.5									
•		1									

2.5	2.5	2.5	2.5	:
QN	Q	QN	QN	
tert-Butylbenzene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene	

9999

p-Isopropyltoluene sec-Butylbenzene

Styrene

Naphthalene

Analyte detected in the associated Method Blank В Qualifiers:

Not Detected at the Practical Quantitation Limit (PQL) Not Detected at the MDC or RL S  $\supset$ 

18-Oct-07

Date:

RPD exceeds accepted precision limit 田内

Value exceeds the instrument calibration range

Analyte detected below the PQL - s

Spike Recovery outside accepted recovery limits

Page 12 of 45

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

(315) 437-0200 East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc. CLIENT:

Method:

**BMS-Krutulis** Project:

0710024 Work Order:

SW8260B

ANALYTICAL QC SUMMARY REPORT

Sample ID: MB-11382	SampType: MBLK	TestCode: 8260S	8260S	Units: µg/Kg	g/Kg	Prep Date:			RunNo:	11382	
Client ID: ZZZZZ	Batch ID: R11382	Method:	SW8260B			Analysis	Analysis Date: 10/8/2007	72007	SeqNo:	309959	
Instrument: MS03_10	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	₽							
Analyte	QC Sample Result	PQL 8	SPK Added	Parent Sample Result	%Ri	EC LowLim	it HighLim	%REC LowLimit HighLimit RPD Ref Val		%RPD RPDLimit Qual	Qual
trans-1,3-Dichloropropene	Q.	2.5									
Trichloroethene	QV	2.5									
Trichlorofluoromethane	QN	5.0									
Vinyl chloride	ON	9.0									
Xylenes (total)	Q	5.0									
Surr: 1,2-Dichloroethane-d4	48.3	0.10	20	0	σ,	7 79	71 12	128			
Surr: 4-Bromofluorobenzene	49.4	0.10	90	0	J,	9 66	59 12	125			
Surr: Dibromofluoromethane	49.5	0.10	20	0	٠,	99 4	40 15	156			
Surr: Toluene-d8	52.2	0.10	50	0	7	104 7	75 12	125			

Analyte detected in the associated Method Blank മ Qualifiers:

Not Detected at the Practical Quantitation Limit (PQL) S

Not Detected at the MDC or RL

18-Oct-07

Date:

RPD exceeds accepted precision limit ш ~

Value exceeds the instrument calibration range

Spike Recovery outside accepted recovery limits Analyte detected below the PQL - s

## Page 19 of 45

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

(315) 437-0200

SW8260B 0710024 Work Orde Method:

ANALYTICAL QC SUMMARY REPORT

BMS-Krutulis

0/10024	BMS-Krutuli
Work Order:	Project:

							8	O	4430E	
Sample ID: LCS-11395	SampType: LCS	TestCode:		Units: ng/Kg		Ргер Џате:		YOUNG.		
Client ID: ZZZZZ	Batch ID: R11395	Method:	SW8260B		•	Analysis Date:	10/9/2007	SedNo:	310179	
Instrument: MS03_10	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	) df						
	QC Sample			Parent Sample				3	900/0	
Analyte	Result	PQL	SPK Added	Result	%REC		HighLimit RPD Ket Val	r Vai	%RFD RFDLIMIT	Cuai
1,1,1,2-Tetrachloroethane	50.6	2.5	20	0	101	79	127			
1.1.1-Trichloroethane	47.7	2.5	20	0	92	78	132			
1 1 2 2-Tetrachloroethane	55.3	2.5	50	0	111	69	138			
1.1.2-Trichloroethane	49.1	2.5	50	0	98	80	122			
1.1-Dichloroethane	45.7	2.5	20	0	91	92	124			
1,1-Dichloroethene	43.3	2.5	20	0	87	92	135			
1.1-Dichloropropene	45.8	2.5	20	0	92	80	124			
1.2.3-Trichlorobenzene	47.5	5.0	50	0	92	73	127			
1,2,3-Trichloropropane	50.6	2.5	20	0	101	20	135			
1,2,4-Trichlorobenzene	46.4	5.0	90	0	93	71	127			
1,2,4-Trimethylbenzene	53.3	2.5	90	0	107	72	128			
1.2-Dibromo-3-chloropropane	45.5	5.0	20	0	91	69	132			
1,2-Dibromoethane	48.1	2.5	20	0	96	80	124			
1.2-Dichlorobenzene	51.0	2.5	20	0	102	80	120			
1.2-Dichloroethane	46.7	2.5	20	0	93	73	127			
1.2-Dichloropropane	46.2	2.5	20	0	95	80	125			
1,3,5-Trimethylbenzene	54.0	2.5	20	0	108	92	127			
1,3-Dichlorobenzene	50.3	2.5	90	0	101	80	120			
1,3-Dichloropropane	49.6	2.5	50	0	6 6	80	120			
1,4-Dichlorobenzene	48.3	2.5	20	0	6	80	120			
2,2-Dichloropropane	44.6	2.5	20	0	83	99	134			
2-Chlorotoluene	52.7	2.5	90	0	105	9/	125			
4-Chlorotoluene	52.2	2.5	20	0	104	77	122			
Benzene	50.7	2.5	50	0	101	80	121			
Bromobenzene	52.4	2.5	50	0	105	75	126			
Bromochloromethane	49.7	2.5	20	0	66	79	120			
Bromodichloromethane	48.8	2.5	20	0	86	8	129			

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank в В о Qualifiers:

Not Detected at the MDC or RL

18-Oct-07

Value exceeds the instrument calibration range RPD exceeds accepted precision limit шк

Spike Recovery outside accepted recovery limits Analyte detected below the PQL

## Page 20 of 45

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

(315) 437-0200 East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc. CLIENT:

SW8260B Work Order: Method:

0710024

ANALYTICAL QC SUMMARY REPORT

**BMS-Krutulis** Project:

			mit Qual		S					S					S															
11395	310179		%RPD RPDLimit																											
RunNo:	SedNo:																													
	10/9/2007		nit RPD Ref Val	138	147	138	120	142	121	141	120	125	135	120	142	121	128	131	126	124	133	129	143	127	128	122	127	125	121	123
ite:			mit HighLimit	70 1;	56 14	74 13	•	63 14			79 1:	80 1:		79 1.		80		76 1:			65		65	74 1		78 1	77 1		80	77
Prep Date:	Analysis Date:		%REC LowLimit	84	155	91	104	107	86	58	96	95	91	86	54	97	85	103	26	42	88	103	93	107	97	103	109	94	92	06
Units: µg/Kg				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	E0B	Rtx-VMS, 1.0 df	Parent Sample ded Result	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	20	90	90	50	50	20
ode: 8260S	d: SW8260B	Rtx-VI	SPK Added		_			_		_					_		_	10	10	_		10	_	10	10	5	10	10	5	ın
TestCode:	Method:		PQL	2.5	5.0	2.5	2.5	5.0	2.5	5.0	2.5	2.5	2.5	2.5	5.0	2.5	5.0	2.5	2.6	5.0	2.5	2.5	5.0	2.5	2.5	2.5	2.5	2.5	2.5	2.5
SampType: LCS	Batch ID: R11395	ColumnID: Rtx-VMS	QC Sample Result	42.2	77.5	45.5	52.0	53.4	48.8	29.2	48.2	47.3	45.6	48.8	26.8	48.7	42.3	51.5	48.3	39.6	43.8	51.6	46.3	53.4	48.4	51.4	54.5	47.1	45.9	45.0
Sample ID: LCS-11395	Client ID: ZZZZZ	Instrument: MS03_10	Analyte	Bromoform	Bromomethane	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Dibromochloromethane	Dibromomethane	Dichlorodifluoromethane	Ethylbenzene	Hexachlorobutadiene	Isopropylbenzene	Methyl tert-butyl ether	Methylene chloride	n-Butylbenzene	n-Propylbenzene	Naphthalene	p-Isopropyltoluene	sec-Butylbenzene	Styrene	tert-Butylbenzene	Tetrachloroethene	Toluene	trans-1 2-Dichloroethene

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank e Q n Qualifiers:

Value exceeds the instrument calibration range ы ~

RPD exceeds accepted precision limit

Spike Recovery outside accepted recovery limits J Analyte detected below the PQL Spike Recovery outside accented

Not Detected at the MDC or RL

18-Oct-07 Date:

5000 Brittonfield Parkway, Suite 200

(315) 437-0200 East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

0710024 Work Order:

SW8260B

Method:

ANALYTICAL QC SUMMARY REPORT

**BMS-Krutulis** Project:

Sample ID: 1 CS-11395	SampType: LCS	TestCode	FestCode: 8260S	Units: µg/Kg	/Kg	Prep Date:		Rur	RunNo:	11395	
Client ID: ZZZZZ	Batch ID: R11395	Method:	SW8260B			Analysis Date	Analysis Date: 10/9/2007		SeqNo:	310179	
Instrument: MS03_10	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	ďf							
				Parent							
Analyte	QC Sample Result	PQL	SPK Added	Sample Result	%REC	%REC LowLimit HighLimit RPD Ref Val	HighLimit R	PD Ref Val	%RF	%RPD RPDLimit Qual	Qual
trans-1.3-Dichloropropene	47.7	2.5	20	0	98	28	124				
Trichloroethene	47.4	2.5	50	0	95	80	120				
Trichlorofluoromethane	64.4	5.0	20	0	129	29	136				
Vinyl chloride	42.4	5.0	20	0	85	68	135				
Xvlenes (total)	150	5.0	150	0	100	76	124				
Surr. 1.2-Dichloroethane-d4	52.9	0.10	90	0	106	71	128				
Surr: 4-Bromofluorobenzene	20.0	0.10	20	0	100	29	125				
Surr: Dibromofluoromethane	56.0	0.10	90	0	112	40	156				
Surr: Toluene-d8	53.2	0.10	50	0	106	75	125				

Analyte detected in the associated Method Blank

Not Detected at the MDC or RL

n ND

Qualifiers:

18-Oct-07

E Value exceeds the instrument calibration range R RPD exceeds accepted precision limit

Analyte detected below the PQL

Not Detected at the Practical Quantitation Limit (PQL)

## Page 22 of 45

## Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

(315) 437-0200

SW8260B Work Order: Method:

0710024

ANALYTICAL QC SUMMARY REPORT

**BMS-Krutulis** Project:

Sample ID: MB-11395	SampType: MBLK	TestCode:	8260S	Units: µg/Kg	i .	Prep Date:		RunNo: 1	11395	
Client ID: ZZZZZ	Batch ID: R11395	Method:	SW8260B			Analysis Date: 10/	10/9/2007	SeqNo: 3	310180	
Instrument: MS03_10	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	₫ŧ						
	QC Sample		10 m	Parent Sample	( L 2			Caa%	: : : : : :	<u> </u>
Analyte	Result	PQL	SPK Added	Kesult	%REC	LowLimit HignLimit		1790Y		Kual
1,1,1,2-Tetrachloroethane	QN	2.5								
1,1,1-Trichloroethane	QN	2.5								
1,1,2,2-Tetrachloroethane	QN	2.5								
1,1,2-Trichloroethane	QN	2.5								
1,1-Dichloroethane	QN	2.5								
1,1-Dichloroethene	Q	2.5								
1,1-Dichloropropene	QV	2.5								
1,2,3-Trichlorobenzene	QN	5.0								
1,2,3-Trichloropropane	QV	2.5								
1,2,4-Trichlorobenzene	QN	5.0								
1,2,4-Trimethylbenzene	QN	2.5								
1,2-Dibromo-3-chloropropane	QN	5.0								
1,2-Dibromoethane	QN	2.5								
1,2-Dichlorobenzene	QN	2.5								
1,2-Dichloroethane	QN	2.5								
1,2-Dichloropropane	QN	2.5								
1,3,5-Trimethylbenzene	QN	2.5								
1,3-Dichlorobenzene	Q	2.5								
1,3-Dichloropropane	QN	2.5								
1,4-Dichlorobenzene	QN	2.5								
2,2-Dichloropropane	QN	2.5								
2-Chlorotoluene	Q	2.5								
4-Chlorotoluene	Q	2.5								
Benzene	QN	2.5								
Bromobenzene	QN	2.5								
Bromochloromethane	QV	2.5								
Bromodichloromethane	ON	2.5								

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank  $\frac{2}{8}$ В Qualifiers:

Value exceeds the instrument calibration range വ ഷ

RPD exceeds accepted precision limit

Analyte detected below the PQL s s

Spike Recovery outside accepted recovery limits

Not Detected at the MDC or RL  $\Box$ 

18-Oct-07 Date:

## Page 23 of 45

Spike Recovery outside accepted recovery limits

Analyte detected below the PQL

- s

Value exceeds the instrument calibration range RPD exceeds accepted precision limit

<u>ы</u> к

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank

п В в

Qualifiers:

Not Detected at the MDC or RL

18-Oct-07

Date:

## Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

(315) 437-0200

0710024 Work Order:

SW8260B

Method:

ANALYTICAL QC SUMMARY REPORT

BMS-Krutulis Project:

		ŀ		-/11-11		Dross Doto:		DunMo.	4420E	
Sample ID: MB-11395	Samplybe: MBLK	l estCode:		OUIES: pg/kg				Cullino.	0001	
Client ID: ZZZZZ	Batch ID: R11395	Method:	SW8260B			Analysis Date: 10/	10/9/2007	SedNo:	310180	
Instrument: MS03_10	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	df df						
Analyte	QC Sample Result	Pol	SPK Added	Parent Sample Result	%REC	LowLimit HighLimit	nit RPD Ref Val	%F	%RPD RPDLimit	Qual
Bromoform	QN	2.5								
Bromomethane	QN	5.0								
Carbon tetrachloride	QV	2.5								
Chlorobenzene	QV	2.5								
Chloroethane	g	5.0								
Chloroform	g	2.5								
Chloromethane	Q	5.0								
cis-1,2-Dichloroethene	QN	2.5								
cis-1,3-Dichloropropene	Q	2.5								
Dibromochloromethane	Q	2.5								
Dibromomethane	QN	2.5								
Dichlorodifluoromethane	QN	5.0								
Ethylbenzene	Q	2.5								
Hexachlorobutadiene	QN	5.0								
Isopropylbenzene	Q	2.5								
Methyl tert-butyl ether	Q	2.5								
Methylene chloride	QN	5.0								
n-Butylbenzene	ON	2.5								
n-Propylbenzene	QN	2.5								
Naphthalene	ON.	5.0								
p-Isopropyltoluene	QN	2.5								
sec-Butylbenzene	Q	2.5								
Styrene	QN	2.5								
tert-Butylbenzene	QN	2.5								
Tetrachloroethene	QN	2.5								
Toluene	QN	2.5								
trans-1,2-Dichloroethene	QN	2.5								

5000 Brittonfield Parkway, Suite 200

(315) 437-0200 East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

0710024 Work Order: Method:

SW8260B

ANALYTICAL QC SUMMARY REPORT

BMS-Krutulis Project:

Sample ID: MB-11395	SampType: MBLK	TestCode	TestCode: 8260S	Units: µg/Kg		Prep Date:	į	Ru	RunNo:	11395	
Client ID: ZZZZZ	Batch ID: R11395	Method:	SW8260B		1	Analysis Date: 10/9/2007	10/9/20		SeqNo:	310180	
Instrument: MS03_10	ColumniD: Rtx-VMS		Rtx-VMS, 1.0 df	df df							
	QC Sample			Parent Sample			:		ì	: : : :	
Analyte	Result	Pal	SPK Added	Result	%REC	LowLimit	lighLimit	"REC LowLimit HighLimit RPD Ref Val	¥	%RPD RPDLImit Qual	Qual
trans-1,3-Dichloropropene	ON	2.5									
Trichloroethene	Q	2.5									
Trichlorofluoromethane	Q	5.0									
Vinyl chloride	QN	5.0									
Xylenes (total)	Q	5.0									
Surr: 1,2-Dichloroethane-d4	48.7	0.10	50	0	26	71	128				
Surr: 4-Bromofluorobenzene	54.2	0.10	20	0	108	29	125				
Surr: Dibromofluoromethane	49.8	0.10	90	0	100	40	156				
Surr: Toluene-d8	59.1	0.10	50	0	118	75	125				

Value exceeds the instrument calibration range 田内 Not Detected at the Practical Quantitation Limit (PQL)

Spike Recovery outside accepted recovery limits Analyte detected below the PQL - s

RPD exceeds accepted precision limit

Not Detected at the MDC or RL в В

Analyte detected in the associated Method Blank

Qualifiers:

18-Oct-07 Date:

## Page 25 of 45

## Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

(315) 437-0200

SW8260B 0710024 Work Order: Method:

ANALYTICAL QC SUMMARY REPORT

BMS-Krutulis Project:

Sample ID: 1 CS-11405	SampType: LCS	TestCode:	e: 8260S	Units: pg/Kg		Prep Date:		RunNo	l	11405	
Client ID: 77777	Batch ID: R11405	Method:				Analysis Date:	10/10/2007	SeqNo:		310503	
₽	·		Rtx-VMS, 1.0 df	of f							
Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC	LowLimit	HighLimit RPC	RPD Ref Val	%RPD	RPDLimit	Qual
4 4 4 0 T-4	57.1	25	50	0	114	62	127	ļ		i	
1,1,1,Z-Tettacmotoeutaire	 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2.5	30 G	0	110	78	132				
1,1,1-Illiciilotoetaalle 4,4,2,2 Tetrachloroethane	60.6	2.5	50	0	121	69	138				
1, 1, 2, z - 1 ettacinoloeurano 1, 1, 2 - Trichloroethane	54.1	2.5	20	0	108	80	122				
1 1-Dichloroethane	52.8	2.5	20	0	106	9/	124				
1.1-Dichloroethene	46.6	2.5	20	0	93	9/	135				
1.1-Dichloropropene	50.0	2.5	50	0	100	80	124				
1.2.3-Trichlorobenzene	58.1	5.0	50	0	116	73	127				
1,2,3-Trichloropropane	58.5	2.5	50	0	117	70	135				
1.2,4-Trichlorobenzene	53.8	5.0	90	0	108	71	127				
1.2.4-Trimethylbenzene	60.3	2.5	50	0	121	72	128				
1.2-Dibromo-3-chloropropane	56.7	5.0	20	0	113	69	132				
1.2-Dibromoethane	53.6	2.5	50	0	107	80	124				
1.2-Dichlorobenzene	57.4	2.5	50	0	115	80	120				
1.2-Dichloroethane	57.4	2.5	90	0	115	73	127				
12-Dichloropropane	52.4	2.5	90	0	105	80	125				
1.3.5-Trimethylbenzene	61.5	2.5	20	0	123	9/	127				
1.3-Dichlorobenzene	55.2	2.5	50	0	110	80	120				
1.3-Dichloropropane	55.7	2.5	90	0	111	8	120				
1,4-Dichlorobenzene	52.7	2.5	90	0	105	80	120				
2.2-Dichloropropane	6.09	2.5	50	0	102	68	134				
2-Chlorotoluene	59.7	2.5	90	0	119	9/	125				
4-Chlorotoluene	28.0	2.5	20	0	116	7.7	122				
Benzene	55.4	2.5	20	0	111	80	121				
Bromobenzene	58.5	2.5	50	0	117	75	126				
Bromochloromethane	55.2	2.5	50	0	110	79	120				
Bromodichloromethane	56.0	2.5	50	0	112	80	129				

Not Detected at the Practical Quantitation Limit (PQL) Not Detected at the MDC or RL S ⊃

Analyte detected in the associated Method Blank

В

Qualifiers:

Value exceeds the instrument calibration range ш 🗠

RPD exceeds accepted precision limit

Analyte detected below the PQL

Spike Recovery outside accepted recovery limits

18-Oct-07 Date:

## Page 26 of 45

## Life Science Laboratories, Inc.

ANALYTICAL QC SUMMARY REPORT

SW8260B

0710024

**BMS-Krutulis** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

CLIENT:

Work Order: Method: Project: (315) 437-0200O'Brien & Gere Engineers, Inc.

Qual S **RPDLimit** 310503 11405 %RPD SeqNo: RunNo: RPD Ref Val 10/10/2007 120 142 128 126 124 133 129 43 127 128 122 127 125 121 131 121 123 HighLimit 4 Analysis Date: 74 88 77 LowLimit 79 55 80 70 76 92 75 65 74 65 74 78 17 88 Prep Date: %REC 115 118 110 5 5 05 102 112 8 96 114 114 8 22 90 107 Units: µg/Kg 0 0 0 Sample Result Parent Rtx-VMS, 1.0 df SW8260B 50 50 50 50 50 50 50 50 50 SPK Added 8260S FestCode: Method: 2.5 2.5 2.5 5.0 2.5 2.5 2.5 2.5 5.0 2.5 5.0 2.5 2.5 5.0 2.5 2.5 5.0 5.0 ColumnID: Rtx-VMS 57.2 57.0 59.0 53.8 R11405 49.5 54.9 55.8 34.8 52.9 53.7 51.6 54.8 26.3 52.6 51.2 57.7 56.2 45.1 47.8 55.2 49.4 61.1 QC Sample Result SampType: LCS Batch ID: rans-1,2-Dichloroethene Dichlorodifluoromethane Sample ID: LCS-11405 cis-1,3-Dichloropropene Dibromochloromethane cis-1,2-Dichloroethene Instrument: MS03_10 Methyl tert-butyl ether Hexachlorobutadiene Carbon tetrachloride 77777 Methylene chloride p-Isopropyltoluene sec-Butylbenzene **Tetrachloroethene** Isopropylbenzene tert-Butylbenzene Dibromomethane n-Propylbenzene Chloromethane n-Butylbenzene Bromomethane Chlorobenzene Ethylbenzene Chloroethane Naphthalene Chloroform Bromoform Client ID: Styrene Toluene Analyte

18**-**Oct-07

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank S M Qualifiers:

Value exceeds the instrument calibration range ши

RPD exceeds accepted precision limit

Spike Recovery outside accepted recovery limits Analyte detected below the PQL

Not Detected at the MDC or RL

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

(315) 437-0200

Method:

Work Order:

0710024

SW8260B

ANALYTICAL QC SUMMARY REPORT

**BMS-Krutulis** Project:

Sample ID: LCS-11405	SampType: LCS	TestCode:	8260S	Units: µg/Kg	_	Prep Date:		RunNo:	11405		
Client ID: ZZZZ	Batch ID: R11405	Method:	SW8260B			Analysis Date.	Analysis Date: 10/10/2007	SedNo:	310503		
Instrument: MS03_10	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	₫ŧ							
				Parent							
Analyte	QC Sample Result	PQ	SPK Added	Sample Result	%REC	LowLimit 1	%REC LowLimit HighLimit RPD Ref Val		%RPD RPDLimit Qual	it Qual	
trans-1.3-Dichloropropene	54.3	2.5	90	0	109	78	124				
Trichloroethene	51.5	2.5	90	0	103	80	120				
Trichlorofluoromethane	61.0	5.0	20	0	122	29	136				
Vinvl chloride	42.3	5.0	20	0	85	68	135				
Xvlenes (total)	160	5.0	150	0	106	92	124				
Surr 12-Dichloroethane-d4	59.5	0.10	20	0	119	71	128				
Surr 4-Bromofluorobenzene	50.4	0.10	50	0	101	99	125				
Sur: Dibromofluoromethane	57.7	0.10	50	0	115	40	156				
Surr: Toluene-d8	52.9	0.10	20	0	106	75	125				

Spike Recovery outside accepted recovery limits

Not Detected at the MDC or RL ON D

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank

В

Qualifiers:

Date:

18-Oct-07

Value exceeds the instrument calibration range ш ~

Analyte detected below the PQL

RPD exceeds accepted precision limit

## Page 28 of 45

## Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

(315) 437-0200

SW8260B Method:

0710024 Work Order:

ANALYTICAL QC SUMMARY REPORT

**BMS-Krutulis** Project:

Sample 10: 1 CSD 44405	SampType: 1 CSD	TestCode:	8260S	Units: ua/Ka		Prep Date:		RunNo		11405	
Client ID: ZZZZZ	Batch ID: R11405	Method:		) )		Analysis Date:	10/10/2007	.y SeqNo:		310504	
Instrument: MS03_10	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	đf							
	QC Sample	č	70 P	Parent Sample Pecult	)     	H timi baro	High! imit	RPD Ref Val	%RPD	RPDI imit	Ottal
Analyte	Kesun	PQL	SEN Audeu		MINES				֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֡֜֜֡֓֓֡֓֡֓֡֓֜֡֓֓֡֓֡֓֡֡֓֡		
1,1,1,2-Tetrachloroethane	51.7	2.5	20	0	103	79	127	57.1	9	20	
1.1.1-Trichloroethane	52.6	2.5	20	0	105	78	132	55.1	4.7	20	
1.1.2.2-Tetrachloroethane	55.1	2.5	20	0	110	69	138	9.09	9.5	24	
1,1,2-Trichloroethane	50.1	2.5	20	0	100	80	122	54.1	7.8	20	
1.1-Dichloroethane	49.6	2.5	20	0	66	76	124	52.8	6.3	20	
1.1-Dichloroethene	45.0	2.5	20	0	8	76	135	46.6	3.5	20	
1.1-Dichloropropene	90.09	2.5	20	0	100	80	124	50	0	20	
1,2,3-Trichlorobenzene	56.3	5.0	20	0	113	73	127	58.1	3.1	21	
1.2.3-Trichloropropane	52.5	2.5	20	0	105	70	135	58.5	11	27	
1.2.4-Trichlorobenzene	54.5	2.0	50	0	109	71	127	53.8	7.5	24	
1.2.4-Trimethylbenzene	55.8	2.5	20	0	112	72	128	60.3	7.7	20	
1.2-Dibromo-3-chloropropane	50.5	5.0	90	0	101	69	132	56.7	12	24	
1,2-Dibromoethane	49.5	2.5	50	0	66	80	124	53.6	7.8	20	
1,2-Dichlorobenzene	51.4	2.5	20	0	103	80	120	57.4	7	20	
1,2-Dichloroethane	52.6	2.5	20	0	105	73	127	57.4	8.8	20	
1.2-Dichloropropane	47.8	2.5	20	0	96	80	125	52.4	9.0	20	
1.3.5-Trimethylbenzene	56.9	2.5	90	0	114	92	127	61.5	7.7	20	
1.3-Dichlorobenzene	51.7	2.5	50	0	103	80	120	55.2	6.5	20	
1.3-Dichloropropane	50.1	2.5	50	0	100	80	120	55.7	10	20	
1.4-Dichlorobenzene	49.6	2.5	20	0	66	80	120	52.7	6.1	24	
2.2-Dichloropropane	50.4	2.5	90	0	101	99	134	50.9	1.0	20	
2-Chlorotoluene	54.6	2.5	90	0	109	9/	125	59.7	8.9	20	
4-Chlorotoluene	54.4	2.5	20	0	109	77	122	28	6.4	20	
Benzene	52.1	2.5	90	0	104	80	121	55.4	6.2	20	
Bromobenzene	52.5	2.5	90	0	105	75	126	58.5	11	20	
Bromochloromethane	49.2	2.5	50	0	86	79	120	55.2	÷	20	
Bromodichloromethane	51.4	2.5	20	0	103	80	129	56	8.7	20	

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank В Qualifiers:

Value exceeds the instrument calibration range <u>ы</u> қ

RPD exceeds accepted precision limit

Spike Recovery outside accepted recovery limits Analyte detected below the PQL - S

Not Detected at the MDC or RL Q D

## Page 29 of 45

## Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc.

CLIENT:

SW8260B Work Order: Method:

0710024

ANALYTICAL QC SUMMARY REPORT

BMS-Krutulis
Project:

Sample Result A4.5 C5 A7.3 C5.0 C5.0 C5.0 C5.0 C5.0 C5.0 C5.0 C5.0	Sample ID: LCSD-11405 Client ID: ZZZZZ	SampType: LCSD Batch ID: R11405	TestCode: Method:	e: 8260S SW8260B	Units: µg/Kg		Prep Date: Analysis Date:	s: 10/10/2007		RunNo: 11 SeqNo: 31	11405 310504	
Parent         Sample         %REC         LowImit         Hightlinit         RPD Ref Val         %RPD         RPD Limit           3         5.0         5.0         0         95         56         147         51.4         6.2         20           4         5.0         5.0         0         95         56         147         51.4         6.2         20           5         5.0         5.0         0         10.4         80         170         51.4         6.2         20           6         5.0         0         0         10.4         80         170         51.4         8.3         7.1         6.2         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20 <th>0</th> <th>olumnID: Rtx-VMS</th> <th></th> <th>Rtx-VMS, 1.0</th> <th>) df</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	0	olumnID: Rtx-VMS		Rtx-VMS, 1.0	) df							
2.5         50         0         89         70         138         47.4         6.2         20           2.5         50         0         95         56         147         51.4         8.3         21           2.5         50         0         101         74         138         47.4         6.2         20           2.5         50         0         104         77         121         5.8         2.0         20           2.5         50         0         104         77         121         5.8         7.1         20           2.5         50         0         104         77         121         5.8         7.1         20           2.5         50         0         104         77         121         5.8         7.1         20           2.5         50         0         100         80         7.2         5.3         7.1         20           2.5         50         0         100         7.0         7.2         5.3         7.2         20           2.5         50         0         100         7.0         7.2         5.4         7.2         5.0         7.3		QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD		Qual
5.0         5.0         9.5         5.6         147         51.4         8.3         21           2.5         50         0         101         74         138         49.5         2.6         20           2.5         50         0         104         77         121         55.8         2.6         20           2.5         50         0         104         77         121         56.8         7.1         20           2.5         50         0         104         77         121         56.8         7.1         20           2.5         50         0         104         77         121         56.8         7.1         20           2.5         50         0         0         62         62         141         34.8         12         20           2.5         50         0         0         100         100         70         120         52.9         6.9         7.2         6.9         7.2         50         7.2         50         7.2         50         7.2         50         7.2         50         7.2         50         7.2         50         7.2         50         7.2 <td< td=""><td></td><td>44.5</td><td>2.5</td><td>50</td><td>0</td><td>88</td><td>70</td><td>138</td><td>47.4</td><td>6.2</td><td></td><td></td></td<>		44.5	2.5	50	0	88	70	138	47.4	6.2		
2.5         50         101         74         138         49.5         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7		47.3	5.0	20	0	92	56	147	51.4	8.3		
2.5         50         104         80         120         54.9         5.8         2.8         2.8         2.8         2.8         2.8         2.8         2.8         2.8         2.8         2.8         2.8         2.8         2.8         2.8         2.8         2.8         2.8         2.8         2.8         2.8         2.8         2.8         2.8         2.8         2.1         2.8         2.1         2.8         2.1         2.8         2.1         2.8         2.1         2.8         2.1         2.8         2.1         2.8         2.1         2.8         2.1         2.8         2.1         2.8         2.1         2.8         2.1         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2         2.2		50.7	2.5	50	0	101	74	138	49.5	2.6		
5.0         50         113         63         142         61.1         7.6         20           2.5         50         0         104         77         121         55.8         7.1         20           5.0         50         0         62         62         141         34.8         7.1         20           2.5         50         0         94         79         120         52.9         6.9         7.2           2.5         50         0         100         80         125         53.7         7.2         20           2.5         50         0         100         80         126         6.9         7.2         20           2.5         50         0         102         79         120         54.8         7.6         20           2.5         50         0         102         79         120         54.8         7.6         20           2.5         50         0         101         70         128         54.8         7.6         20           2.5         50         0         101         70         128         54.3         7.7         7.8         7.8         7		51.8	2.5	50	0	104	80	120	54.9	5.8		
2.5         50         0         104         77         121         55.8         7.1         20           5.0         50         0         62         141         34.8         1.2         20           2.5         50         0         62         141         34.8         1.2         20           2.5         50         0         100         80         125         6.9         6.9         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0		56.6	5.0	20	0	113	63	142	61.1	7.6		
5.0         5.0         6.2         6.2         141         34.8         12         20           2.5         5.0         0         99         79         120         52.9         6.9         20           2.5         5.0         0         100         80         125         6.9         7.2         20           2.5         5.0         0         100         80         126         6.9         7.2         20         20           2.5         5.0         0         102         52         6.3         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.7         7.6         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7		52.0	2.5	20	0	104	77	121	55.8	7.1	20	
2.5         50         0         99         79         120         52.9         6.9         70         120         52.9         6.9         70         125         52.9         6.9         70         22.9         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20		31.0	5.0	50	0	62	62	141	34.8	12		
2.5         50         100         80         125         53.7         7.2         20           2.5         50         0         94         76         135         51.6         9.5         20           2.5         50         0         102         79         120         54.8         7.6         20           5.0         50         0         102         79         120         54.8         7.6         20           2.5         50         0         100         101         70         121         52.6         4.5         20           2.5         50         0         101         70         128         56.7         7.6         7.7         47.8         20           2.5         50         0         105         7.6         124         45.1         11         20           2.5         50         0         109         7.4         127         59         5.3         50           2.5         50         0         104         7.6         128         57         11         28           2.5         50         0         104         12         12         59         59 <td></td> <td>49.4</td> <td>2.5</td> <td>90</td> <td>0</td> <td>66</td> <td>79</td> <td>120</td> <td>52.9</td> <td>6.9</td> <td></td> <td></td>		49.4	2.5	90	0	66	79	120	52.9	6.9		
2.5         50         94         76         135         51.6         9.5         20           2.5         50         0         102         79         120         54.8         7.6         20           5.0         50         0         102         79         120         54.8         7.6         20           2.5         50         0         100         80         121         52.6         4.5         20           2.5         50         0         101         70         128         51.2         1.6         4.5         20           2.5         50         0         105         76         128         51.2         1.6         4.2         52.0         20           2.5         50         0         105         76         124         45.1         1.1         20           2.5         50         0         105         74         124         45.1         1.1         20           2.5         50         0         109         74         124         45.1         1.1         20           2.5         50         0         104         76         124         45.1 <td< td=""><td></td><td>50.0</td><td>2.5</td><td>20</td><td>0</td><td>100</td><td>80</td><td>125</td><td>53.7</td><td>7.2</td><td></td><td></td></td<>		50.0	2.5	20	0	100	80	125	53.7	7.2		
2.5         50         0         102         79         120         54.8         7.6         20           5.0         50         0         52         55         142         26.3         1.3         20           5.0         50         0         100         80         121         52.6         4.5         20           2.5         50         0         101         70         128         51.2         1.6         42           2.5         50         0         105         76         131         57.7         9.0         20           2.5         50         0         105         76         126         56.2         7.3         20           2.5         50         0         105         76         124         45.1         11         20           2.5         50         0         109         74         129         57.2         5.3         20           2.5         50         0         104         76         127         59         5.3         20           2.5         50         0         104         77         127         59         5.9         5.0		46.9	2.5	20	0	94	9/	135	51.6	9.5		
5.0         50         6         5         142         26.3         1.3         20           2.5         50         0         100         80         121         52.6         4.5         20           5.0         50         0         101         70         128         51.2         1.6         4.5         20           2.5         50         0         105         76         124         45.1         1.1         42           2.5         50         0         105         75         124         45.1         1.1         20           2.5         50         0         98         65         133         47.8         2.3         30           2.5         50         0         109         74         129         57.2         5.3         20           2.5         50         0         103         65         143         57         11         20           2.5         50         0         104         74         127         59         5.3         5           2.5         50         0         104         76         128         5.3         5         5		50.8	2.5	20	0	102	79	120	54.8	7.6		
2.5         50         0         100         80         121         52.6         4.5           5.0         50         0         101         70         128         51.2         1.6           2.5         50         0         105         76         131         57.7         9.0           2.5         50         0         105         76         126         56.2         7.3           2.5         50         0         105         76         124         45.1         11           2.5         50         0         109         65         133         47.8         2.3           2.5         50         0         109         74         129         57.2         5.3           2.5         50         0         103         65         143         57         11           2.5         50         0         104         78         122         59         5.0           2.5         50         0         104         78         122         5.0         6.0           2.5         50         0         104         77         127         49.4         0.9           2.5 <td></td> <td>26.0</td> <td>5.0</td> <td>50</td> <td>0</td> <td>52</td> <td>55</td> <td>142</td> <td>26.3</td> <td>1.3</td> <td></td> <td>S</td>		26.0	5.0	50	0	52	55	142	26.3	1.3		S
5.0         50         101         70         128         51.2         1.6           2.5         50         0         105         76         131         57.7         9.0           2.5         50         0         105         76         126         56.7         9.0           2.5         50         0         105         74         124         45.1         11           2.5         50         0         109         74         129         57.2         5.3           2.5         50         0         103         65         143         57         11           2.5         50         0         104         74         127         59         3.2           2.5         50         0         104         75         128         5.3         5.9           2.5         50         0         104         78         122         5.9         5.0           2.5         50         0         104         77         127         61.1         8.6           2.5         50         0         100         94         80         121         48.9         4.1           2.5 <td></td> <td>50.2</td> <td>2.5</td> <td>90</td> <td>0</td> <td>100</td> <td>80</td> <td>121</td> <td>52.6</td> <td>4.5</td> <td></td> <td></td>		50.2	2.5	90	0	100	80	121	52.6	4.5		
2.5         50         105         76         131         57.7         9.0           2.5         50         0         105         76         126         56.2         7.3           5.0         50         0         80         75         124         45.1         11           2.5         50         0         109         74         129         57.2         5.3           2.5         50         0         103         65         143         57         11           2.5         50         0         104         74         127         59         5.3           2.5         50         0         104         78         122         5.3         5.9           2.5         50         0         104         78         122         5.2         6.0           2.5         50         0         104         77         127         61.1         8.6           2.5         50         0         100         74         125         49.4         0.9           2.5         50         0         100         74         125         49.4         0.9           2.5         50 <td></td> <td>50.4</td> <td>5.0</td> <td>50</td> <td>0</td> <td>10</td> <td>70</td> <td>128</td> <td>51.2</td> <td>1.6</td> <td></td> <td></td>		50.4	5.0	50	0	10	70	128	51.2	1.6		
2.5       50       105       76       126       56.2       7.3         5.0       50       0       80       75       124       45.1       11         2.5       50       0       98       65       133       47.8       2.3         2.5       50       0       109       74       129       57.2       5.3         2.5       50       0       114       74       127       59       3.2         2.5       50       0       101       75       128       5.3       5.9         2.5       50       0       104       78       122       55.2       6.0         2.5       50       0       112       77       127       61.1       8.6         2.5       50       0       100       74       125       49.4       0.9         2.5       50       0       100       74       125       49.4       0.9         2.5       50       0       94       80       121       48.9       4.1         2.5       50       0       93       77       123       48.9       4.6		52.7	2.5	20	0	105	76	131	27.7	9.0		
5.0         50         0         80         75         124         45.1         11           2.5         50         0         98         65         133         47.8         2.3           2.5         50         0         109         74         129         57.2         5.3           2.5         50         0         103         65         143         57.2         5.3           2.5         50         0         114         74         127         59         3.2           2.5         50         0         104         78         122         55.2         6.0           2.5         50         0         112         77         127         61.1         8.6           2.5         50         0         100         74         125         49.4         0.9           2.5         50         0         100         74         125         49.4         0.9           2.5         50         0         94         80         121         48.9         4.1           2.5         50         0         93         77         123         48.9         4.6		52.3	2.5	50	0	105	76	126	56.2	7.3		
2.5       50       0       98       65       133       47.8       2.3         2.5       50       0       109       74       129       57.2       5.3         5.0       50       0       103       65       143       57       11         2.5       50       0       104       75       128       5.3       5.9         2.5       50       0       104       78       122       55.2       6.0         2.5       50       0       112       77       127       61.1       8.6         2.5       50       0       100       74       125       49.4       0.9         2.5       50       0       94       80       121       48.9       4.1         2.5       50       0       93       77       123       48.9       4.6		40.2	5.0	50	0	80	75	124	45.1	7		
2.5       50       0       109       74       129       57.2       5.3         5.0       50       0       103       65       143       57       11         2.5       50       0       114       74       127       59       3.2         2.5       50       0       104       78       128       5.3       5.9         2.5       50       0       112       77       127       61.1       8.6         2.5       50       0       100       74       125       49.4       0.9         2.5       50       0       94       80       121       48.9       4.1         2.5       50       0       93       77       123       48.9       4.6		48.9	2.5	90	0	86	65	133	47.8	2.3		
5.0         50         0         103         65         143         57         11           2.5         50         0         114         74         127         59         3.2           2.5         50         0         104         78         122         5.3         5.9           2.5         50         0         112         77         127         61.1         8.6           2.5         50         0         100         74         125         49.4         0.9           2.5         50         0         94         80         121         48.9         4.1           2.5         50         0         93         77         123         48.9         4.6		54.3	2.5	50	0	109	74	129	57.2	5.3		
2.5       50       0       114       74       127       59       3.2         2.5       50       0       101       75       128       5.38       5.9         2.5       50       0       104       78       122       55.2       6.0         2.5       50       0       112       77       127       61.1       8.6         2.5       50       0       100       74       125       49.4       0.9         2.5       50       0       94       80       121       48.9       4.1         2.5       50       0       93       77       123       48.9       4.6		51.3	5.0	90	0	103	65	143	22	7		
2.5       50       0       101       75       128       53.8       5.9         2.5       50       0       104       78       122       55.2       6.0         2.5       50       0       112       77       127       61.1       8.6         2.5       50       0       100       74       125       49.4       0.9         2.5       50       0       94       80       121       48.9       4.1         2.5       50       0       93       77       123       48.9       4.6		57.2	2.5	20	0	114	74	127	59			
2.5       50       0       104       78       122       55.2       6.0         2.5       50       0       112       77       127       61.1       8.6         2.5       50       0       100       74       125       49.4       0.9         2.5       50       0       94       80       121       48.9       4.1         2.5       50       0       93       77       123       48.9       4.6		50.7	2.5	20	0	101	75	128	53.8	5.9		
2.5     50     0     112     77     127     61.1     8.6       2.5     50     0     100     74     125     49.4     0.9       2.5     50     0     94     80     121     48.9     4.1       2.5     50     0     93     77     123     48.9     4.6		52.0	2.5	20	0	104	78	122	55.2			
2.5     50     0     100     74     125     49.4     0.9       2.5     50     0     94     80     121     48.9     4.1       2.5     50     0     93     77     123     48.9     4.6		56.1	2.5	90	0	112	77	127	61.1	8.6		
2.5     50     0     94     80     121     48.9     4.1       2.5     50     0     93     77     123     48.9     4.6		49.8	2.5	90	0	100	74	125	49.4			
2.5 50 0 93 77 123 48.9 4.6		47.0	2.5	90	0	94	80	121	48.9	4.1		
		46.7	2.5	90	0	93	7.7	123	48.9	4.6		

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank 8 Q D Qualifiers:

18-Oct-07

Value exceeds the instrument calibration range шк

RPD exceeds accepted precision limit

Spike Recovery outside accepted recovery limits Analyte detected below the PQL - s

Not Detected at the MDC or RL

## Page 30 of 45

## Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

(315) 437-0200 East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc. CLIENT:

SW8260B 0710024 Work Order: Method:

ANALYTICAL QC SUMMARY REPORT

**BMS-Krutulis** 

Project:

Sample ID: LCSD-11405	SampType: LCSD	TestCode:	8260S	Units: µg/Kg		Prep Date:		œ	RunNo:	11405	
Client ID: ZZZZZ	Batch ID: R11405	Method:	SW8260B			Analysis Date:	e: 10/10/2007		SeqNo:	310504	
Instrument: MS03_10	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	df							
Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC	LowLimit	LowLimit HighLimit	RPD Ref Val	% R	%RPD RPDLimit	Qual
trans-1,3-Dichloropropene	51.7	2.5	20	0	103	78	124	54.3		5.0 20	
Trichloroethene	49.6	2.5	50	0	66	80	120	51.5		3.7 20	
Trichlorofluoromethane	58.5	5.0	20	0	117	29	136	61		4.2 20	
Viny! chloride	41.3	5.0	50	0	83	89	135	42.3		2.2 24	
Xylenes (total)	154	5.0	150	0	103	76	124	160		3.7 20	
Surr: 1,2-Dichloroethane-d4	57.4	0.10	20	0	115	71	128	0		0	
Surr: 4-Bromofluorobenzene	51.2	0.10	90	0	102	59	125	0		0	
Surr: Dibromofluoromethane	56.2	0.10	90	0	112	40	156	0		0	
Surr: Toluene-d8	53.8	0.10	20	0	108	75	125	0		0	

Not Detected at the MDC or RL

18-Oct-07

Date:

Value exceeds the instrument calibration range

Analyte detected in the associated Method Blank В Qualifiers:

Not Detected at the Practical Quantitation Limit (PQL) Q ⊃

RPD exceeds accepted precision limit ш ж

Spike Recovery outside accepted recovery limits J Analyte detected below the PQL S Spike Recovery outside accepted

## Page 31 of 45

Spike Recovery outside accepted recovery limits

Analyte detected below the PQL

~ ~

Value exceeds the instrument calibration range RPD exceeds accepted precision limit

ш **ж** 

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank

a S

Qualifiers:

Not Detected at the MDC or RL

18-Oct-07

Date:

## Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

(315) 437-0200 East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

Method:

0710024 Work Order:

SW8260B

ANALYTICAL QC SUMMARY REPORT

BMS-Krutulis Project:

Sample ID: MB-11405	SampType: MBLK	TestCode:	s: 8260S	Units: µg/Kg	χ δ	Prep Date:	•	RunNo:	11405	
Client ID: ZZZZZ	Batch ID: R11405	Method:	SW8260B			Analysis Date: 10/10/2007		SeqNo:	310505	
Instrument: MS03_10	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	ďf						_
Analyte	QC Sample Result	Pal	SPK Added	Parent Sample Result	%REC	LowLimit HighLimit	RPD Ref Val	%RPD	PD RPDLimit	Qual
1,1,1,2-Tetrachloroethane	QN	2.5				LALENT				
1,1,1-Trichloroethane	ΩN	2.5								
1,1,2,2-Tetrachloroethane	CN	2.5								
1,1,2-Trichloroethane	Q	2.5								
1,1-Dichloroethane	QN	2.5								
1,1-Dichloroethene	QN	2.5								
1,1-Dichloropropene	QV	2.5								
1,2,3-Trichlorobenzene	QN	5.0								
1,2,3-Trichloropropane	QN	2.5								
1,2,4-Trichlorobenzene	QN	5.0								
1,2,4-Trimethylbenzene	QV	2.5								
1,2-Dibromo-3-chloropropane	2	5.0								
1,2-Dibromoethane	Q	2.5								
1,2-Dichlorobenzene	QV	2.5								
1,2-Dichloroethane	QN	2.5								
1,2-Dichloropropane	QN	2.5								
1,3,5-Trimethylbenzene	Q	2.5								
1,3-Dichlorobenzene	QN	2.5								
1,3-Dichloropropane	QN	2.5								
1,4-Dichlorobenzene	Q	2.5								
2,2-Dichloropropane	QN	2.5								
2-Chlorotoluene	QN	2.5								
4-Chlorotoluene	QN	2.5								
Benzene	QN	2.5								
Bromobenzene	QN	2.5								
Bromochloromethane	Q	2.5								
Bromodichloromethane	QN	2.5								

## Page 32 of 45

## Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

(315) 437-0200

SW8260B 0710024 Work Order: Method:

ANALYTICAL QC SUMMARY REPORT

DIAC V with Its	3	
	- C	

						ľ				10171		ſ
Sample ID: MB-11405	SampType: MBLK	TestCode:		Units: µg/Kg	ng/Kg	ī			KUNNO	11405		
Client ID: ZZZZZ	Batch ID: R11405	Method:	SW8260B			₹	Analysis Date:	10/10/2007	SedNo:	310505		
Instrument: MS03_10	ColumniD: Rtx-VMS		Rtx-VMS, 1.0 df	) df								
Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result	1%	%REC	LowLimit Higl	HighLimit RPD Ref Val		%RPD RPDLimit	mit Qual	
Bromoform	QN	2.5										
Bromomethane	QN	5.0										
Carbon tetrachloride	Q	2.5										
Chlorobenzene	QN	2.5										
Chloroethane	QV	9.0										
Chloroform	Q	2.5										
Chloromethane	QN	5.0										
cis-1,2-Dichloroethene	QN	2.5										
cis-1,3-Dichloropropene	QN	2.5										
Dibromochloromethane	Q	2.5										
Dibromomethane	QN	2.5										
Dichlorodifluoromethane	QN	5.0										
Ethylbenzene	Q	2.5										
Hexachlorobutadiene	QN	5.0										
Isopropylbenzene	QN	2.5										
Methyl tert-butyl ether	QN	2.5										
Methylene chloride	Q	5.0										
n-Butylbenzene	QN	2.5										
n-Propylbenzene	ΩN	2.5										
Naphthalene	Q	5.0										
p-Isopropy!toluene	QN	2.5										
sec-Butylbenzene	QN	2.5										
Styrene	QN	2.5										
tert-Butylbenzene	QN	2.5										
Tetrachloroethene	QN	2.5										
Toluene	QN	2.5										
trans-1,2-Dichloroethene	QN	2.5										
					į					:		

Analyte detected in the associated Method Blank В Qualifiers:

Not Detected at the Practical Quantitation Limit (PQL.)

Value exceeds the instrument calibration range RPD exceeds accepted precision limit ш ~

Analyte detected below the PQL ~ S

Spike Recovery outside accepted recovery limits

Not Detected at the MDC or RL <u>R</u> =

18-Oct-07 Date:

## Page 33 of 45

## Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

(315) 437-0200 East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc. CLIENT:

SW8260B Work Order: Method:

0710024

Project:

BMS-Krutulis

ANALYTICAL QC SUMMARY REPORT

Sample ID: MB-11405	SampType: MBLK	TestCode: 8260S	8260S	Units: µg/Kg	L.	Prep Date:		RunNo:	11405	S	
Client ID: ZZZZZ	Batch ID: R11405	Method:	SW8260B		•	Analysis Date: 10/10/2007	10/10/2007	SeqNo:	310505	92	
Instrument: MS03_10	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	df							
Analyte	QC Sample Result	PaL	SPK Added	Parent Sample Result	%REC	LowLimit H	%REC LowLimit HighLimit RPD Ref Val		%RPD F	%RPD RPDLimit Qual	Qual
trans-1,3-Dichloropropene	QN	2.5		i							
Trichloroethene	Q	2.5									
Trichlorofluoromethane	g	5.0									
Vinyl chloride	Q	5.0									
Xylenes (total)	Q	5.0									
Surr: 1,2-Dichloroethane-d4	52.0	0.10	20	0	104	7.1	128				
Surr: 4-Bromofluorobenzene	51.3	0.10	20	0	103	59	125				
Surr: Dibromofluoromethane	51.1	0.10	20	0	102	40	156				
Surr: Toluene-d8	51.8	0.10	20	0	104	75	125				

Qualifiers:

Value exceeds the instrument calibration range

Analyte detected in the associated Method Blank

Not Detected at the Practical Quantitation Limit (PQL) м 2 п

RPD exceeds accepted precision limit ш ≃

J Analyte detected below the PQL S Spike Recovery outside accepted

Spike Recovery outside accepted recovery limits

## Page 34 of 45

## Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

(315) 437-0200

SW8260B	0710024	BMS-Krutulis
Method:	Work Order:	Project:

ANALYTICAL QC SUMMARY REPORT

Sample ID: LCS-11519 Client ID: ZZZZZ	SampType: LCS Batch ID: 6357	TestCode:	8260SM SW8260B	Units: µg/Kg (SW5035_Me		Prep Date: Analysis Date:	10/17/2007	RunNo: SegNo:	11519 312221	
Instrument: MS01_11	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	df df						
Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC	LowLimit Hig	HighLimit RPD Ref Val	\al	%RPD RPDLimit	Qual
1,1,1,2-Tetrachloroethane	2500	250	2500	0	100	62	127			
1,1,1-Trichloroethane	2620	250	2500	0	105	78	132			
1,1,2,2-Tetrachloroethane	2140	250	2500	0	86	69	138			
1,1,2-Trichloroethane	2400	250	2500	0	96	80	122			
1,1-Dichloroethane	2610	250	2500	0	104	76	124			
1,1-Dichloroethene	2280	250	2500	0	9	9/	135			
1,1-Dichloropropene	2580	250	2500	0	103	80	124			
1,2,3-Trichlorobenzene	2290	200	2500	0	92	73	127			
1,2,3-Trichloropropane	2380	250	2500	0	95	70	135			
1,2,4-Trichlorobenzene	2190	200	2500	0	88	71	127			
1,2,4-Trimethylbenzene	2850	250	2500	0	114	72	128			
1,2-Dibromo-3-chloropropane	2160	200	2500	0	98	69	132			
1,2-Dibromoethane	2230	250	2500	0	83	80	124			
1,2-Dichlorobenzene	2600	250	2500	0	104	80	120			
1,2-Dichloroethane	2660	250	2500	0	107	73	127			
1,2-Dichloropropane	2630	250	2500	0	105	80	125			
1,3,5-Trimethylbenzene	2890	250	2500	0	116	76	127			
1,3-Dichlorobenzene	2590	250	2500	0	104	80	120			
1,3-Dichloropropane	2480	250	2500	0	66	80	120			
1,4-Dichlorobenzene	2470	250	2500	0	66	80	120			
2,2-Dichloropropane	1590	250	2500	0	64	68	134			တ
2-Chlorotoluene	2920	250	2500	0	117	76	125			
4-Chlorotoluene	2940	250	2500	0	118	27	122			
Benzene	2600	250	2500	0	104	80	121			
Bromobenzene	2430	250	2500	0	26	75	126			
Bromochloromethane	2130	250	2500	0	82	79	120			
Bromodichloromethane	2640	250	2500	0	106	80	129			
			:			:				

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank B NO Qualifiers:

Value exceeds the instrument calibration range RPD exceeds accepted precision limit **田 조** 

Analyte detected below the PQL - s

Spike Recovery outside accepted recovery limits

Not Detected at the MDC or RL

## Page 35 of 45

## Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

(315) 437-0200

SW8260B Work Order: Method:

ANALYTICAL QC SUMMARY REPORT

0710024

**BMS-Krutulis** Project:

Sample ID: LCS-11519	SampType: LCS	TestCode:	e: 8260SM	Units: µg/Kg		Prep Date:		RunNo:	11519	
Client ID: ZZZZZ	Batch ID: 6357	Method:	SW8260B	(SW5035_Me	•	Analysis Date:	10/17/2007	SedNo:	312221	
Instrument: MS01_11	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	) df						
Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC	LowLimit H	HighLimit RPD Ref Val	∂ef Val	%RPD RPDLimit	Qual
Bromoform	2040	250	2500	0	82	70	138			
Bromomethane	2080	200	2500	0	83	56	147			
Carbon tetrachloride	2480	250	2500	0	66	74	138			
Chlorobenzene	2370	250	2500	0	92	80	120			
Chloroethane	2330	200	2500	0	93	63	142			
Chloroform	2520	250	2500	0	101	7.7	121			
Chloromethane	2400	200	2500	0	96	62	141			
cis-1,2-Dichloroethene	2430	250	2500	0	26	79	120			
cis-1,3-Dichloropropene	2490	250	2500	0	100	80	125			
Dibromochloromethane	2440	250	2500	0	26	9/	135			
Dibromomethane	2380	250	2500	0	92	79	120			
Dichlorodifluoromethane	2100	200	2500	0	84	55	142			
Ethylbenzene	2600	250	2500	0	104	80	121			
Hexachlorobutadiene	2000	200	2500	0	80	70	128			
Isopropylbenzene	2930	250	2500	0	117	9/	131			
Methyl tert-butyl ether	2670	250	2500	0	107	9/	126			
Methylene chloride	2180	200	2500	0	87	22	124			
n-Butylbenzene	2500	250	2500	0	100	92	133			
n-Propylbenzene	2970	250	2500	O	119	74	129			
Naphthalene	2390	200	2500	0	96	92	143			
p-Isopropyltoluene	2750	250	2500	0	110	74	127			
sec-Butylbenzene	2820	250	2500	0	113	75	128			
Styrene	2270	250	2500	0	91	78	122			
tert-Butylbenzene	2720	250	2500	0	109	77	127			
Tetrachloroethene	2140	250	2500	0	85	74	125			
Toluene	2580	250	2500	0	103	80	121			
trans-1,2-Dichloroethene	2320	250	2500	0	83	77	123			

Analyte detected in the associated Method Blank S В Qualifiers:

Not Detected at the MDC or RL

 $\supset$ 

18-Oct-07

Value exceeds the instrument calibration range ш 🗠 Not Detected at the Practical Quantitation Limit (PQL)

RPD exceeds accepted precision limit

Analyte detected below the PQL _

Spike Recovery outside accepted recovery limits

## Page 36 of 45

## Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc.

CLIENT:

SW8260B Work Order: Method:

Project:

BMS-Krutulis

0710024

ANALYTICAL QC SUMMARY REPORT

Sample ID: LCS-11519	SampType: LCS	TestCod	TestCode: 8260SM	Units: µg/Kg		Prep Date:		8	RunNo:	11519		
Client ID: ZZZZZ	Batch ID: 6357	Method:	SW8260B	(SW5035_Me	•	Analysis Dat	Analysis Date: 10/17/2007		SeqNo:	312221		
Instrument: MS01_11	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	df								
	OC Samole			Parent Sample								
Analyte	Result	PQL	SPK Added	Result	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%R	%RPD RPDLimit	Qual	
trans-1,3-Dichloropropene	2210	250	2500	0	88	78	124					
Trichloroethene	2630	250	2500	0	105	80	120					
Trichlorofluoromethane	2680	200	2500	0	107	29	136					
Vinyl chloride	2440	200	2500	0	88	89	135					
Xylenes (total)	0077	200	7500	0	103	76	124					
Surr: 1,2-Dichloroethane-d4	2820	20	2500	0	113	71	128					
Surr: 4-Bromofluorobenzene	2570	20	2500	0	103	29	125					
Surr: Dibromofluoromethane	2510	20	2500	0	100	40	156					
Surr: Toluene-d8	2700	20	2500	0	108	75	125					

Analyte detected in the associated Method Blank 2 ත Qualifiers:

Value exceeds the instrument calibration range RPD exceeds accepted precision limit ш ч

J Analyte detected below the PQL Spike Recovery outside accounted

Not Detected at the Practical Quantitation Limit (PQL)

Spike Recovery outside accepted recovery limits

Not Detected at the MDC or RL

## Page 37 of 45

## Life Science Laboratories, Inc.

ANALYTICAL QC SUMMARY REPORT

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

CLIENT:

Client ID:

**RPDLimit** 312222 11519 %RPD RunNo: SeqNo: **BMS-Krutulis** SW8260B 0710024 LowLimit HighLimit RPD Ref Val 10/17/2007 Work Order: Method: Project: Analysis Date: Prep Date: %REC Units: µg/Kg (SW5035_Me Parent Sample Result Rtx-VMS, 1.0 df SW8260B 8260SM SPK Added TestCode: Method: В ColumnID: Rtx-VMS (315) 437-0200 SampType: MBLK QC Sample Result 6357 O'Brien & Gere Engineers, Inc. Batch ID: Sample ID: MB-11519 Instrument: MS01_11 77777

250 250 250

2 2 2 2

1,1,2,2-Tetrachloroethane

1,1,2-Trichloroethane

1,1,1-Trichloroethane

1,1,2-Tetrachioroethane

Analyte

250

Qual

ND 250		ND 250	ND 500	ND 250	ND 500	ND 250	ND 500		ND 250	ND 250	ND 250	ND 250			ND 250	ND 250		ND 250	ND 250	ND 250	ND 250	ND 250	
1.1-Dichloroethane	1,1-Dichloroethene	1,1-Dichloropropene	1,2,3-Trichlorobenzene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dibromo-3-chloropropane	1,2-Dibromoethane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	2,2-Dichloropropane	2-Chiorotoluene	4-Chlorotoluene	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	

Qualifiers:

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank S Δ

RPD exceeds accepted precision limit ы ч

~ s Value exceeds the instrument calibration range

Not Detected at the MDC or RL

18-Oct-07

Date:

Spike Recovery outside accepted recovery limits Analyte detected below the PQL

## Page 38 of 45

## Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

(315) 437-0200

SW8260B Method:

ANALYTICAL QC SUMMARY REPORT

Work Order:

**BMS-Krutulis** 0710024 Project:

Sample ID: MB-11519	SampTyne: MBI K	TestCode:	e: 8260SM	Units: µg/Kg		Prep Date:		RunNo:	11519		
Client ID: ZZZZZ	Batch ID: 6357	Method:		(SW5035_Me		Analysis Date:	10/17/2007	SeqNo:	312222		
44	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	df.							
Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC	LowLimit H	HighLimit RPD Ref Val		%RPD RPC	RPDLimit	Qual
Bromoform	QN	250									
Bromomethane	QN	200									
Carbon tetrachloride	Q	250									
Chlorobenzene	QN	250									
Chloroethane	QN	200									
Chloroform	Q	250									
Chloromethane	QN	200									
cis-1,2-Dichloroethene	Q.	250									
cis-1,3-Dichloropropene	Q	250									
Dibromochloromethane	QV	250									
Dibromomethane	QN	250									
Dichtorodifluoromethane	QN	200									
Ethylbenzene	QN	250									
Hexachlorobutadiene	QN	200									
Isopropylbenzene	QN	250									
Methyl tert-butyl ether	QN	250									
Methylene chloride	Q	200									
n-Butylbenzene	Q	250									
n-Propylbenzene	QN	250									
Naphthalene	QN	200									
p-Isopropyltoluene	QN	250									
sec-Butylbenzene	Q	250									
Styrene	QV	250									
tert-Butylbenzene	Q	250									
Tetrachloroethene	QN	250									
Toluene	QN	250									
trans-1,2-Dichloroethene	<b>Q</b>	250									

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank S В Qualifiers:

Value exceeds the instrument calibration range ш ×

RPD exceeds accepted precision limit

Spike Recovery outside accepted recovery limits Analyte detected below the PQL - s

> Not Detected at the MDC or RL  $\supset$

18-Oct-07 Date:

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc.

CLIENT:

SW8260B Method:

Work Order:

0710024

**BMS-Krutulis** 

Project:

ANALYTICAL QC SUMMARY REPORT

Sample ID: MB-11519	SampType: MBLK	TestCod	TestCode: 8260SM	Units: µg/Kg	u.	Prep Date:		RunNo:	11519	
Client ID: ZZZZZ	Batch ID: 6357	Method:	SW8260B	(SW5035_Me	*	Analysis Date: 10/17/2007	10/17/2007	SeqNo:	312222	
Instrument: MS01_11	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	-df						
Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC	LowLimit Hig!	%REC LowLimit HighLimit RPD Ref Val		%RPD RPDLimit Qual	Qual
trans-1,3-Dichloropropene	QN	250								
Trichloroethene	Q	250								
Trichlorofluoromethane	QN	200								
Vinyl chloride	Q	200								
Xylenes (total)	Q	200								
Surr: 1,2-Dichloroethane-d4	2740	20	2500	0	110	71	128			
Surr: 4-Bromofluorobenzene	2660	20	2500	0	106	59	125			
Surr: Dibromofluoromethane	2430	20	2500	0	26	40	156			
Surr: Toluene-d8	2760	20	2500	0	110	75	125			

Value exceeds the instrument calibration range

Analyte detected in the associated Method Blank

Qualifiers:

Spike Recovery outside accepted recovery limits J Analyte detected below the PQL S Spike Recovery outside accented

RPD exceeds accepted precision limit **田 氏** Not Detected at the Practical Quantitation Limit (PQL)

Not Detected at the MDC or RI. S S D

# ANALYTICAL QC SUMMARY REPORT

## Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

(315) 437-0200

SW8260B Work Order: Method:

Project:

0710024

BMS-Krutulis

		}	***************************************	1 laise		Dron Dato	40/44/2007	SupNo.	11536		
Sample ID: MB-6357	Samplype: MBLK	estcod	lestcode: 826USIM	omes. pg/ng		ובה השובי	10111101			. !	_
Client ID: ZZZZZ	Batch ID: 6357	Method:	SW8260B	(SW5035_Me		Analysis Date:	10/13/2007	SedNo:	5: 312322	7	
Instrument: MS02_12	ColumnID: Rtx-502.2		Rtx-502.2, 3.0 df	<b>4</b> =							
Analve	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC	LowLimit H	HighLimit RPD F	RPD Ref Val	%RPD R	RPDLimit	Qual
or grown	C A	030	į			•	•	ī	ŀ		
1,1,1,2-Tetrachloroethane		007									
1,1,1-Trichloroethane	Q	250									
1,1,2,2-Tetrachloroethane	QN	250									
1,1,2-Trichloroethane	QN	250									
1,1-Dichloroethane	QN	250									
1,1-Dichloroethene	QN	250									
1,1-Dichloropropene	Q	250									
1,2,3-Trichlorobenzene	QN	200									
1,2,3-Trichloropropane	Q	250									
1,2,4-Trichlorobenzene	Q	200									
1,2,4-Trimethylbenzene	QN	250									
1,2-Dibromo-3-chloropropane	Q	200									
1,2-Dibromoethane	QN	250									
1,2-Dichlorobenzene	QN	250									
1,2-Dichloroethane	QN	250									
1,2-Dichloropropane	ON	250									
1,3,5-Trimethylbenzene	QN	250									
1,3-Dichlorobenzene	2	250									
1,3-Dichloropropane	QN	250									
1,4-Dichlorobenzene	QN	250									
2,2-Dichloropropane	QN	250									
2-Chlorotoluene	QN	250									
4-Chlorotoluene	QN	250									
Benzene	QN	250									
Bromobenzene	QN	250									
Bromochloromethane	QN	250									
Bromodichloromethane	QN	250									

Page 43 of 45

Spike Recovery outside accepted recovery limits

Analyte detected below the PQL

Value exceeds the instrument calibration range RPD exceeds accepted precision limit

ш **~** 

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank

m Q n

Qualifiers:

Not Detected at the MDC or RL

18-Oct-07

## Page 44 of 45

## Life Science Laboratories, Inc.

ANALYTICAL QC SUMMARY REPORT

5000 Brittonfield Parkway, Suite 200

Qual **RPDLimit** 312322 11536 %RPD RunNo: SeqNo: **BMS-Krutulis** SW8260B 0710024 LowLimit HighLimit RPD Ref Val 10/13/2007 10/11/2007 Work Order: Method: Project: Analysis Date: Prep Date: %REC Units: µg/Kg (SW5035_Me Parent Sample Result Rtx-502.2, 3.0 df SW8260B SPK Added FestCode: 8260SM Method: ColumnID: Rtx-502.2 (315) 437-0200 SampType: MBLK QC Sample Result 6357 O'Brien & Gere Engineers, Inc. Batch ID: East Syracuse, NY 13057 Instrument: MS02_12 Sample ID: MB-6357 77777 CLIENT: Bromoform Client ID: Analyte

250

500 250 500

> 9 99

250

2 9 9

Carbon tetrachloride

Chlorobenzene

Chloroethane

Chloroform

Bromomethane

250 250 250 250 250 500 250

999999

Dichlorodifluoromethane

Dibromomethane

Hexachlorobutadiene

Ethylbenzene

cis-1,3-Dichloropropene Dibromochloromethane

cis-1,2-Dichloroethene

Chloromethane

250

9

Methyl tert-butyl ether

Isopropylbenzene

Methylene chloride

a-Isopropyltoluene

n-Propylbenzene n-Butylbenzene

Naphthalene

sec-Butylbenzene

250 250 500 250

250 250

500

å 9 8 ð 2 99

tert-Butylbenzene	QN	250	
Tetrachloroethene	QN	250	
Toluene	Q	250	
trans-1,2-Dichloroethene	Q	250	

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank  $\frac{1}{2}$ Μ Qualifiers:

18-Oct-07

Date:

 $\supset$ 

ш ~

RPD exceeds accepted precision limit

Value exceeds the instrument calibration range

Spike Recovery outside accepted recovery limits Analyte detected below the PQL - s

Not Detected at the MDC or RL

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc.

CLIENT:

SW8260B 0710024 Work Order: Method:

ANALYTICAL QC SUMMARY REPORT

Project:

**BMS-Krutulis** 

Committee D. Made 6257	SampTime: MRIK	TestCod	TestCode: 8260SM	Units: ua/Ka		Prep Date: 10/11/2007	10/11/2007	RunNo:	11536	36	
Client ID: ZZZZ	Batch ID: 6357	Method:	SW8260B	(SW5035_Me	1	Analysis Date: 10/13/2007	10/13/2007	SeqNo:	312322	322	
Instrument: MS02_12	ColumnID: Rtx-502.2		Rtx-502.2, 3.0 df	dŧ							
	QC Sample	i	:	Parent Sample	( ( (	2 2 3 3 4		17,75	ניםם%	Find the House	<u> </u>
Analyte	Result	Pal	SPK Added	Result	%KEC	LowLimit Hig	WREC LOWLIMIT HIGHLIMIT RPD REI VAI	er val	מולא	ארעבוווו	CO G
trans-1,3-Dichloropropene	QN	250									
Trichloroethene	Q	250									
Trichlorofluoromethane	Q	200									
Vinyl chloride	Q	200									
Xylenes (total)	9	200									
Surr: 1,2-Dichloroethane-d4	4460	20	2000	0	88	71	128				
Surr: 4-Bromofluorobenzene	4460	20	2000	0	89	59	125				
Surr: Dibromofluoromethane	4400	20	2000	0	88	40	156				
Surr: Toluene-d8	4640	20	2000	0	93	75	125				

18-Oct-07

Date:

Analyte detected below the PQL

Value exceeds the instrument calibration range RPD exceeds accepted precision limit

шк

Analyte detected in the associated Method Blank Qualifiers:

Not Detected at the Practical Quantitation Limit (PQL) м <u>Q</u> л

Not Detected at the MDC or RL

Spike Recovery outside accepted recovery limits - s

## Page 40 of 45

Spike Recovery outside accepted recovery limits

J Analyte detected below the PQL S Spike Recovery outside accepted

Value exceeds the instrument calibration range RPD exceeds accepted precision limit

ш ~

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank

Not Detected at the MDC or RL

S ⊃ В

Qualifiers:

18-Oct-07

Date:

## Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

CLIENT:

SW8260B Method

ANALYTICAL QC SUMMARY REPORT

3 W 0200D	0710024	BMS-Krutulis	
Method:	Work Order:	Project:	
NV 12057 (315) 437 0200		O'Brien & Gere Engineers, Inc.	

Batch ID: 6389 Method: SW8260B ColumnID: Rtx-VMS	Sample ID: MB-6389	SampType: MBLK	TestCode:	8260SM	Units: µg/Kg		Prep Date:	10/15/2007	RunNo:	11519		
Feature State (color mill.) RR-VMS         RR-VMS, 1,0 df         Result         SRRC Low Limit         Light Limit         RPD Ret Val         S/RPD         RPDLimit           Feature Result         250         Result         SRC Low Limit         Hight Limit         RPD Ret Val         S/RPD         RPDLimit           Feature Result         ND         250         Result         SRC Result         SRC Result         S/RPD         RPDLimit           Feature Result         ND         250         Result         SRC Result         SRC Result         S/RPD         RPDLimit           Introducedance         ND         250         RPDLimit         RPD Ret Val         S/RPD         RPDLimit           Introducedance         ND         250         RPD         RPDLIMIT         RPD Ret Val         S/RPD         RPDLIMIT           Introducedance         ND         250         RPD         RPDLIMIT         RPD Ret Val         RPDLIMIT           Introducedance         ND         250         RPDLIMIT         RPDLIMIT         RPDLIMIT         RPDLIMIT         RPDLIMIT           Introducedance         ND         250         RPDLIMIT         RPDLIMIT         RPDLIMIT         RPDLIMIT         RPDLIMIT         RPDLIMIT         RPDLIMIT         <	Client ID: ZZZZZ		Method:	SW8260B	(SW5035_Me	•	Analysis Date:	10/17/2007	SeqNo		0	•
CLC Sample         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Small         Spannel Sma	Instrument: MS01_11	ColumnID: Rtx-VMS		Rtx-VMS, 1.	) df							
9	Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC			tef Val		PDLimit	Qual
9e en	1,1,1,2-Tetrachloroethane	QN	250									
e e ND e ene ene ene ene ene ene ene ene ene	1,1,1-Trichloroethane	Q	250									
e e ND e e e ND e e e ND e e e ND e e e e	1,1,2,2-Tetrachloroethane	QV	250									
e ene ene ene ene ene ene ene ene ene e	1,1,2-Trichloroethane	QN	250									
e ene ene ene ene ene ene ene ene ene e	1,1-Dichloroethane	QN	250									
D D D D D D D D D D D D D D D D D D D	1,1-Dichloroethene	Q	250									
A C C C C C C C C C C C C C C C C C C C	1,1-Dichloropropene	QN	250									
Danee Constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the	1,2,3-Trichlorobenzene	QN	200									
pane N N N N N N N N N N N N N N N N N N N	1,2,3-Trichloropropane	Q	250									
ND ND ND ND ND ND ND ND ND ND ND ND ND N	1,2,4-Trichlorobenzene	QV	200									
propane ND ND ND ND ND ND ND ND ND ND ND ND ND	1,2,4-Trimethylbenzene	QN	250									
e e e e e e e e e e e e e e e e e e e	1,2-Dibromo-3-chloropropane	Q	200									
B B B B B B B B B B B B B B B B B B B	1,2-Dibromoethane	QN	250									
B B B B B B B B B B B B B B B B B B B	1,2-Dichlorobenzene	QN	250									
ND ND ND ND ND ND ND ND ND ND ND ND ND N	1,2-Dichloroethane	QN	250									
ND ND ND ND ND ND ND ND ND ND ND ND ND N	1,2-Dichloropropane	Q	250									
B B B B B B B B B B B B B B B B B B B	1,3,5-Trimethylbenzene	QN	250									
ND ND ND ND ND ND ND ND ND ND ND ND ND N	1,3-Dichlorobenzene	QN	250									
e ND ND ND ND ND ND ND ND ND ND ND ND ND	1,3-Dichloropropane	Q	250									
ND ND ND ND ND ND ND ND ND ND ND ND ND N	1,4-Dichlorobenzene	Q	250									
ND ND ND ND ND ND thane ND	2,2-Dichloropropane	Q	250									
ND ND ND thane ND ND	2-Chlorotoluene	QN	250									
O O O	4-Chlorotoluene	QN	250									
ON ON ON	Benzene	Q	250									
ON ON	Bromobenzene	Q	250									
QN	Bromochloromethane	ON	250									
	Bromodichloromethane	QN	250									

## Page 41 of 45

## Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

(315) 437-0200

SW8260B Method:

ANALYTICAL QC SUMMARY REPORT

0710024 Work Order:

BMS-Krutulis Project:

	i i	1		I laite	į	Doto:	40/45/2007	٥	Drawlo.	44540	
Sample ID: MB-6389	Sampiybe: MBLK	estroge		Omits. pg/ng		רוקט טמוק.	10/13/2001			6	
Client ID: ZZZZZ	Batch ID: 6389	Method:	SW8260B	(SW5035_Me		Analysis Date:	10/17/2007	Se	SedNo: 3	312320	
Instrument: MS01_11	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	đ <b>f</b>							
Analyte	QC Sample Result	Pal	SPK Added	Parent Sample Result	%REC	LowLimit Hig	HighLimit RPD	RPD Ref Val	%RPD	) RPDLimit	Qual
Bromoform	QN	250				L.					
Bromomethane	ON.	200									
Carbon tetrachloride	QN	250									
Chlorobenzene	QN	250									
Chloroethane	Q	200									
Chloroform	ON	250									
Chloromethane	QN	200									
cis-1,2-Dichloroethene	QN	250									
cis-1,3-Dichloropropene	Q	250									
Dibromochloromethane	QN	250									
Dibromomethane	QN	250									
Dichlorodifluoromethane	QN	200									
Ethylbenzene	ON	250									
Hexachlorobutadiene	QN	200									
Isopropylbenzene	QN	250									
Methyl tert-butyl ether	QN	250									
Methylene chloride	QN	200									
n-Butylbenzene	QN	250									
n-Propylbenzene	Q	250									
Naphthalene	QN	200									
p-IsopropyItoluene	QN	250									
sec-Butylbenzene	QN	250									
Styrene	Q	250									
tert-Butylbenzene	QN	250									
Tetrachloroethene	QN	250									
Toluene	QN	250									
trans-1,2-Dichloroethene	QN	250									

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank 8 Qualifiers:

Value exceeds the instrument calibration range ш &

RPD exceeds accepted precision limit

Spike Recovery outside accepted recovery limits J Analyte detected below the PQL S Spike Recovery outside accepted

Not Detected at the MDC or RL S ⊃

## Page 42 of 45

## Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

(315) 437-0200

Method:

0710024 Work Order:

SW8260B

BMS-Krutulis

Project:

ANALYTICAL QC SUMMARY REPORT

Complete Name 2280	SampTyne: MRI K	TestCoc	TestCode: 8260SM	Units: ua/Ka		Prep Date:	10/15/2007	RunNo:	11519	9	
Client ID: ZZZZ	Batch ID: 6389	Method:	SW8260B	(SW5035_Me		Analysis Date: 10/17/2007	10/17/2007	SeqNo:	312320	20	
Instrument: MS01_11	ColumnID: Rtx-VMS		Rtx-VMS, 1.0 df	l df							
	elameS JO			Parent Sample							
Analyte	Result	PQL	SPK Added	Result	%REC	LowLimit High	%REC LowLimit HighLimit RPD Ref Val		%RPD	%RPD RPDLimit Qual	Qual
trans-1,3-Dichloropropene	ON	250									
Trichloroethene	Q	250									
Trichlorofluoromethane	Q	900									
Vinyl chloride	Q	200									
Xylenes (total)	QN	200									
Surr: 1.2-Dichloroethane-d4	0809	20	2000	0	122	71	128				
Surr: 4-Bromofluorobenzene	5400	20	2000	0	108	59	125				
Surr: Dibromofluoromethane	4460	90	2000	0	89	40	156				
Surr: Toluene-d8	5740	20	2000	0	115	75	125				

Not Detected at the MDC or RL

<u>Q</u> >

18-Oct-07

Analyte detected in the associated Method Blank B Qualifiers:

Value exceeds the instrument calibration range m × Not Detected at the Practical Quantitation Limit (PQL)

RPD exceeds accepted precision limit

Analyte detected below the PQL ~ ×

Spike Recovery outside accepted recovery limits

**Date:** 13-Oct-07

O'Brien & Gere Engineers, Inc. 0710024 CLIENT:

Lab Order:

BMS-Krutulis Project:

Percent Moisture	19.0	20.4	16.9	15.6	16.8	15.2	16.2
Batch ID	R11441	R11441	R11441	R11441	R11441	R11441	R11441
Date Analyzed	10/11/2007	10/11/2007	10/11/2007	10/11/2007	10/11/2007	10/11/2007	10/11/2007
Date	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007	10/2/2007
Date Collected	10/1/2007	10/1/2007	10/1/2007	10/1/2007	10/2/2007	10/2/2007	10/2/2007
Units	wt%	wt%	wt%	w1%	wt%	wt%	wt%
Lab ID	0710024-001A	0710024-002A	0710024-003A	0710024-004A	0710024-005A	0710024-006A	0710024-007A
Sample ID	MW-06D (8-	MW-06D (22- 24)_100107	MW-06S (10- 12)_100107	MW-06S (16- 18)_100107	MW-03D (8- 10)_100207	MW-03D (18- 20)_100207	MW-03D (26- 28)_100207

## Life Science Laboratories, Inc. Brittonfield Lab

5000 Brittonfield Parkway, Suite 200 East Syracuse, New York 13057

Chain of Custody

(315)437-0200

Time: 165% Comments PID : 2172 PID = 6.1 PID = 1141 Time: Time: S. Date: 19167 Date: Date: Analysis/Method VOC (\$260) Received by Lab Airbill Number: X ¥ × X X Received by: Received by: 4 × Comp. No. of or Grab Containers 1 3 5 Date: 10-2-07 Time: 1654 P 9 3 9  $\mathcal{P}$ P 9 9 Time: Time: Water Phone # 315 437 - 6106 Sample Matrix Soil 38 wither 3 50: Soil 50:1 50:1 Soil 50:1 1630 Date Time
Collected Collected 0949 10-1-07 1412 0713 10-1-01 1507 10-2-01 10-2-01 100 10-2-07 loog 5001 Date: Date: Sample Description 10-1-01 10-2-01 10-2-01 10-1-01 10-2-01 10-1-01 Client Contact: Dave Carriedes Sampled by: Paul Freyer Project: BMS - Krutulis Sample Location 00200 MW-031)(18-20)- 100207 MW-03D (8-10) _ 100207 MW-060(10-12)- 100107 MW-065 (16-18)- 10967 MW-CCD (22-24)_ 100107 MW-CGD(8-10)-100107 MW-030 (24-28)-Relinquished by: 100207 EB- 100207 M50- 100207 MS- 100207 Shipment Method: Client: 08G Relinquished by: Relinquished by: TB-

Turnaround Time Required: Cooler Temperature:

Comments:

te paul theyer - MS/MSD on Comple MW-03D (18-20)

Original - Laboratory Copy - Client

## Sample Receipt Checklist

Client Name: OBG-MS		Date and Time Received:	10/2/2007 4:54:00 PM
Work Order Number 0710024	,	Received by: ads	
Checklist completed by:	10/3/07	Reviewed by: MJ	10 3 07 Date
Matrix: Carrier nam	ne: <u>Hand Delivered</u>		
Shipping container/cooler in good condition?	Yes 🗸	No Not Present	
Custody seals intact on shipping container/cooler?	Yes	No Not Present	
Custody seals intact on sample bottles?	Yes	No Not Present	✓
Chain of custody present?	Yes 🗸	No 🗆	
Chain of custody signed when relinquished and received?	Yes 🗸	No 🗌	
Chain of custody agrees with sample labels?	Yes 🗸	No 🗆	
Samples in proper container/bottle?	Yes 🗸	No 🗆	
Sample containers intact?	Yes 🗸	No 🗌	
Sufficient sample volume for indicated test?	Yes 🗸	No 🗆	
All samples received within holding time?	Yes 🗸	No 🗆	
Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗌	
Water - VOA vials have zero headspace?	Yes 🗸	No OA vials s	ubmitted
Water - nH acceptable upon receipt?	Yes	No Not Applicabl	e 🗸

Comments:

Corrective Action::

<b>SCOPE OF WORK</b> Level of QC Documentation:	1	2	3	4	5	6	7	8	(Circle one)
-------------------------------------------------	---	---	---	---	---	---	---	---	--------------

Number of Samples	Matrix	Analysis Required	
43	Soil	8260	
9	Water	8260	
1	Water	RSK, Cl, TOC, TALK, SO4, S, NO2, NO3, TDS, OP, metals	
2	ТВ	8260	

BOTTLES	Bottle Type:	Standard	I Chem	

Analysis	No. of Bottles	Size of Bottles	Type/Color of Bottle	Preservation
8260	27	3 x 40 ml	Vial	1:1 HCL
RSK	2	2 x 40 ml	vial	1:1 HCL
metals	1	250 ml	PE	HNO3
300.0, TDS	1	250 ml	PE	None
TALK	1	8 oz.	boston round	None
TOC	1	40 m1	Vial	1:1 HCL
S	2	2 x 500 ml	PE	ZnAc + NaOH
TB	4	2 x 40 ml	Vial	1:1 HCL
Field use ***	200	2 oz.	Sed	None
Field use	200	40 ml	Vial	None

****It is anticipated that 43 jars will be submitted for analysis

Charge 50 cents for each unreturned VOA vial

Charge 80 cents for each unreturned sed jar

1 EB water (8 oz.)

48 soils submitted 200-48 = 152 jons - Reld use (202 jans)

MISCELLANEOUS The following checked entries are required.	
Equipment blank water. How many?	
One (1) clear glass liter from extraction room (Semivolatiles/Pesticides/PCBs)	
One (1) Boston round (8 oz.) clear glass from volatile room (Volatiles)	
One (1) liter plastic from metals prep room (Metals/Wet Chem)	
X Please submit copy of this form with the bottle kit for the client.	
Extra coolers are required. How many coolers altogether:	
Bottles need to be labeled with preprinted labels.	
Pack bottles into coolers by site.	
Secondary Containment is required.	



Monday, November 05, 2007

## Dave Carnevale

O'Brien & Gere Engineers, Inc. 5000 Brittonfield Parkway PO Box 4873 Syracuse, NY 13221-4873

TEL: 315-437-6100

Project: BMS-KRUTULIS

RE: Analytical Results

Order No.: 0710127

Dear Dave Carnevale:

Life Science Laboratories, Inc. received 6 sample(s) on 10/18/2007 for the analyses presented in the following report.

Very truly yours,

Life Science Laboratories, Inc.

Morika Landuce

Monika Santucci

Project Manager

## Life Science Laboratories, Inc. 5000 Brittonfield Parkway, Suite 200

**Analytical Results** 

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

**CLIENT:** O'Brien & Gere Engineers, Inc.

Project: **BMS-Krutulis** 

0710127 W Order: Matrix: WATER

Inst. ID: MS02 12

ColumnID: Rtx-502.2

10/24/07 15:43 Revision:

Sample Size: 25 mL %Moisture:

TestCode 8260W

Lab ID: 0710127-001A Client Sample ID: MW-06D_10182007

**Collection Date:** 10/18/07 10:40 10/18/07 19:09 Date Received:

PrepDate:

BatchNo: R11609

FileID: 1-SAMP-M3085.D

Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS		SW8260B		
1,1,2-Tetrachloroethane	ND	25.0	μg/L	50	10/23/07 15:06
1,1,1-Trichloroethane	ND	25.0	μg/L	50	10/23/07 15:06
1,1,2,2-Tetrachloroethane	ND	25.0	μg/L	50	10/23/07 15:06
1,1,2-Trichloroethane	ND	25.0	μg/L	50	10/23/07 15:06
1,1-Dichloroethane	ND	25.0	μg/L	50	10/23/07 15:06
1,1-Dichloroethene	ND	25.0	μg/L	50	10/23/07 15:06
1,1-Dichloropropene	ND	25.0	μg/L	50	10/23/07 15:06
1,2,3-Trichlorobenzene	ND	50.0	μg/L	50	10/23/07 15:06
1,2,3-Trichloropropane	ND	25.0	μg/L	50	10/23/07 15:06
1,2,4-Trichlorobenzene	ND	50.0	μg/L	50	10/23/07 15:06
1,2,4-Trimethylbenzene	ND	25.0	μg/L	50	10/23/07 15:06
1,2-Dibromo-3-chloropropane	NĐ	50.0	μg/L	50	10/23/07 15:06
1,2-Dibromoethane	ND	25.0	μg/L	50	10/23/07 15:06
1,2-Dichlorobenzene	ND	25.0	μg/L	50	10/23/07 15:06
1,2-Dichloroethane	ND	25.0	μg/L	50	10/23/07 15:06
1,2-Dichloropropane	ND	25.0	μg/L	50	10/23/07 15:06
1,3,5-Trimethylbenzene	ND	25.0	μg/L	50	10/23/07 15:06
1,3-Dichlorobenzene	ND	25.0	μg/L	50	10/23/07 15:06
1,3-Dichloropropane	ND	25.0	μg/L	50	10/23/07 15:06
1,4-Dichlorobenzene	ND	25.0	μg/L	50	10/23/07 15:06
2,2-Dichloropropane	ND	25.0	μg/L	50	10/23/07 15:06
2-Chlorotoluene	ND	25.0	μg/L	50	10/23/07 15:06
4-Chlorotoluene	ND	25.0	μg/L	50	10/23/07 15:06
Benzene	ND	25.0	μg/L	50	10/23/07 15:06
Bromobenzene	ND	25.0	μg/L	50	10/23/07 15:06
Bromochloromethane	ND	25.0	μg/L	50	10/23/07 15:06
Bromodichloromethane	ND	25.0	µg/L	50	10/23/07 15:06
Bromoform	ND	25.0	μg/L	50	10/23/07 15:06
Bromomethane	ND	50.0	μg/L	50	10/23/07 15:06
Carbon tetrachloride	ND	25.0	μg/L	50	10/23/07 15:06
Chlorobenzene	<b>N</b> D	25.0	μg/L	50	10/23/07 15:06
Chloroethane	ND	50.0	μg/L	50	10/23/07 15:06
Chloroform	ND	25.0	μg/L	50	10/23/07 15:06
Chloromethane	ND	50.0	µg/L	50	10/23/07 15:06

## Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- Spike Recovery outside accepted recovery limits

Project Supervisor: Monika Santucci Page 1 of 12

**Analytical Results** 

LSL 5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

**CLIENT:** O'Brien & Gere Engineers, Inc.

Project: **BMS-Krutulis** W Order: 0710127

Matrix: WATER

Inst. ID: MS02 12

ColumnID: Rtx-502.2

Revision: 10/24/07 15:43 Sample Size: 25 mL

TestCode 8260W

%Moisture:

0710127-001A Lab ID: Client Sample ID: MW-06D_10182007

**Collection Date:** 10/18/07 10:40 Date Received:

PrepDate:

10/18/07 19:09

BatchNo: R11609

FileID:

1-SAMP-M3085.D

Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS		SW8260B		
cis-1,2-Dichloroethene	ND	25.0	μg/L	50	10/23/07 15:06
cis-1,3-Dichloropropene	ND	25.0	μg/L	50	10/23/07 15:06
Dibromochloromethane	ND	25.0	μg/L	50	10/23/07 15:06
Dibromomethane	ND	25.0	μg/L	50	10/23/07 15:06
Dichlorodifluoromethane	ND	50.0	μg/L	50	10/23/07 15:06
Ethylbenzene	ND	25.0	μg/L	50	10/23/07 15:06
Hexachlorobutadiene	ND	50.0	μg/L	50	10/23/07 15:06
Isopropylbenzene	ND	25.0	μg/L	50	10/23/07 15:06
Methyl tert-butyl ether	ND	25.0	μg/L	50	10/23/07 15:06
Methylene chloride	ND	100	μg/L	50	10/23/07 15:06
n-Butylbenzene	ND	25.0	μg/L	50	10/23/07 15:06
n-Propylbenzene	ND	25.0	μg/L	50	10/23/07 15:06
Naphthalene	ND	50.0	μg/L	50	10/23/07 15:06
p-Isopropyltoluene	ND	25.0	μg/L	50	10/23/07 15:06
sec-Butylbenzene	ND	25.0	μg/L	50	10/23/07 15:06
Styrene	ND	25.0	μg/L	50	10/23/07 15:06
tert-Butylbenzene	ND	25.0	μg/L	50	10/23/07 15:06
Tetrachloroethene	ND	25.0	μg/L	50	10/23/07 15:06
Toluene	1470	25.0	μg/L	50	10/23/07 15:06
trans-1,2-Dichloroethene	ND	25.0	μg/L	50	10/23/07 15:06
trans-1,3-Dichloropropene	ND	25.0	μg/L	50	10/23/07 15:06
Trichloroethene	1940	25.0	μg/L	50	10/23/07 15:06
Trichlorofluoromethane	ND	50.0	μg/L	50	10/23/07 15:06
Vinyl chloride	ND	50.0	μg/L	50	10/23/07 15:06
Xylenes (total)	ND	50.0	μg/L	50	10/23/07 15:06
Surr. 1,2-Dichloroethane-d4	106	75-134	%REC	50	10/23/07 15:06
Surr: 4-Bromofluorobenzene	99.5	75-125	%REC	50	10/23/07 15:06
Surr: Dibromofluoromethane	99.9	75-127	%REC	50	10/23/07 15:06
Surr: Toluene-d8	107	75-125	%REC	50	10/23/07 15:06

## Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- Spike Recovery outside accepted recovery limits

Print Date: 10/24/07 15:43

313763

Project Supervisor: Monika Santucci

## LSL

Project:

Col Type:

## Life Science Laboratories, Inc.

## **Analytical Results**

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

0710127-002A

CLIENT: O'Brien & Gere Engineers, Inc.

BMS-Krutulis

W Order: 0710127 Matrix: WATER

Inst. ID: MS02 12

ColumnID: Rtx-502.2

**Revision:** 10/24/07 14:20

Sample Size: 25 mL

%Moisture: TestCode 8260W Client Sample ID: *MW-06S_10182007*Collection Date: 10/18/07 11:38

10/18/07 11:38 10/18/07 19:09

Date Received: PrepDate:

BatchNo: R11607

FileID:

Lab ID:

1-SAMP-M3074.D

Analyte	Result Qual PQL		Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS	SW8260B	SW8260B		
1,1,1,2-Tetrachloroethane	ND	10.0	μg/L	20	10/22/07 18:04
1,1,1-Trichloroethane	ND	10.0	μg/L	20	10/22/07 18:04
1,1,2,2-Tetrachloroethane	ND	10.0	μg/L	20	10/22/07 18:04
1,1,2-Trichloroethane	ND	10.0	μg/L	20	10/22/07 18:04
1,1-Dichloroethane	ND	10.0	μg/L	20	10/22/07 18:04
1,1-Dichloroethene	ND	10.0	μg/L	20	10/22/07 18:04
1,1-Dichloropropene	ND	10.0	μg/L	20	10/22/07 18:04
1,2,3-Trichlorobenzene	ND	20.0	μg/L	20	10/22/07 18:04
1,2,3-Trichloropropane	ND	10.0	μg/L	20	10/22/07 18:04
1,2,4-Trichlorobenzene	ND	20.0	μg/L	20	10/22/07 18:04
1,2,4-Trimethylbenzene	ND	10.0	μg/L	20	10/22/07 18:04
1,2-Dibromo-3-chloropropane	ND	20.0	μg/L	20	10/22/07 18:04
1,2-Dibromoethane	ND	10.0	μg/L	20	10/22/07 18:04
1,2-Dichlorobenzene	ND	10.0	μg/L	20	10/22/07 18:04
1,2-Dichloroethane	ND	10.0	μg/L	20	10/22/07 18:04
1,2-Dichloropropane	ND	10.0	μg/L	20	10/22/07 18:04
1,3,5-Trimethylbenzene	ND	10.0	μg/L	20	10/22/07 18:04
1,3-Dichlorobenzene	ND	10.0	μg/L	20	10/22/07 18:04
1,3-Dichloropropane	ND	10.0	μg/L	20	10/22/07 18:04
1,4-Dichlorobenzene	ND	10.0	μg/L	20	10/22/07 18:04
2,2-Dichloropropane	ND	10.0	μg/L	20	10/22/07 18:04
2-Chlorotoluene	ND	10.0	μg/L	20	10/22/07 18:04
4-Chlorotoluene	ND	10.0	μg/L	20	10/22/07 18:04
Benzene	ND	10.0	μg/L	20	10/22/07 18:04
Bromobenzene	ND	10.0	μg/L	20	10/22/07 18:04
Bromochloromethane	ND	10.0	μg/L	20	10/22/07 18:04
Bromodichloromethane	ND	10.0	μg/L	20	10/22/07 18:04
Bromoform	ND	10.0	μg/L	20	10/22/07 18:04
Bromomethane	ND	20.0	μg/L	20	10/22/07 18:04
Carbon tetrachloride	ND	10.0	μg/L	20	10/22/07 18:04
Chlorobenzene	ND	10.0	μg/L	20	10/22/07 18:04
Chloroethane	ND	20.0	μg/L	20	10/22/07 18:04
Chloroform	ND	10.0	μg/L	20	10/22/07 18:04

## Qualifiers:

Chloromethane

* Value exceeds Maximum Contaminant Level

ND

- E Value exceeds the instrument calibration range
- J Analyte detected below the PQL.
- P Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank

20

10/22/07 18:04

μg/L

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - S Spike Recovery outside accepted recovery limits

Print Date: 10/24/07 15:43 313727 Project Supervisor: Monika Santucci Page 3 of 12

20.0

## Life Science Laboratories, Inc. LSL 5000 Brittonfield Parkway, Suite 200

**Analytical Results** 

East Syracuse, NY 13057

(315) 437-0200

Sample Size: 25 mL

TestCode 8260W

%Moisture:

StateCertNo: 10155

O'Brien & Gere Engineers, Inc. **CLIENT:** 

**BMS-Krutulis** Project:

W Order: 0710127 WATER

Matrix: MS02 12 Inst. ID:

ColumnID: Rtx-502.2

Revision: 10/24/07 14:20

Lab ID: 0710127-002A Client Sample ID: MW-06S_10182007

**Collection Date:** 10/18/07 11:38 10/18/07 19:09

Date Received: PrepDate:

BatchNo:

R11607

FileID:

1-SAMP-M3074.D

Col Type:

Analyte	Result Qual PQL		Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	SW8260B	SW8260B			
cis-1,2-Dichloroethene	ND	10.0	μg/L	20	10/22/07 18:04
cis-1,3-Dichloropropene	ND	10.0	μg/L	20	10/22/07 18:04
Dibromochloromethane	ND	10.0	μg/L	20	10/22/07 18:04
Dibromomethane	ND	10.0	μg/L	20	10/22/07 18:04
Dichlorodifluoromethane	ND	20.0	μg/L	20	10/22/07 18:04
Ethylbenzene	ND	10.0	μg/L	20	10/22/07 18:04
Hexachlorobutadiene	ND	20.0	μg/L	20	10/22/07 18:04
Isopropylbenzene	ND	10.0	μg/L	20	10/22/07 18:04
Methyl tert-butyl ether	ND	10.0	μg/L	20	10/22/07 18:04
Methylene chloride	ND	40.0	μg/L	20	10/22/07 18:04
n-Butylbenzene	ND	10.0	μg/L	20	10/22/07 18:04
n-Propylbenzene	ND	10.0	μg/L	20	10/22/07 18:04
Naphthalene	ND	20.0	μg/L	20	10/22/07 18:04
p-Isopropyltoluene	ND	10.0	μg/L	20	10/22/07 18:04
sec-Butylbenzene	ND	10.0	μg/L.	20	10/22/07 18:04
Styrene	ND	10.0	μg/L	20	10/22/07 18:04
tert-Butylbenzene	ND	10.0	μg/L	20	10/22/07 18:04
Tetrachloroethene	ND	10.0	μg/L	20	10/22/07 18:04
Toluene	530	10.0	μg/L	20	10/22/07 18:04
trans-1,2-Dichloroethene	ND	10.0	μg/L	20	10/22/07 18:04
trans-1,3-Dichloropropene	ND	10.0	μg/L	20	10/22/07 18:04
Trichloroethene	677	10.0	μg/L	20	10/22/07 18:04
Trichlorofluoromethane	ND	20.0	μg/L	20	10/22/07 18:04
Vinyl chloride	ND	20.0	μg/L	20	10/22/07 18:04
Xylenes (total)	ND	20.0	μg/L	20	10/22/07 18:04
Surr: 1,2-Dichloroethane-d4	102	75-134	%REC	20	10/22/07 18:04
Surr: 4-Bromofluorobenzene	101	75-125	%REC	20	10/22/07 18:04
Surr: Dibromofluoromethane	101	75-127	%REC	20	10/22/07 18:04
Surr: Toluene-d8	108	75-125	%REC	20	10/22/07 18:04

## Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)

Page 4 of 12

Spike Recovery outside accepted recovery limits

Print Date: 10/24/07 15:43 Project Supervisor: Monika Santucci 313727

## Life Science Laboratories, Inc. 5000 Brittonfield Parkway, Suite 200

## **Analytical Results**

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

**CLIENT:** 

O'Brien & Gere Engineers, Inc.

Project:

**BMS-Krutulis** 

W Order:

0710127

Matrix:

WATER

Inst. ID:

MS02 12 ColumnID: Rtx-502.2

10/24/07 14:20

Sample Size: 25 mL

%Moisture: TestCode 8260W Lab 1D:

0710127-003A Client Sample ID: FD 10182007

**Collection Date:** Date Received:

10/18/07 0:00 10/18/07 19:09

PrepDate:

R11607

BatchNo: FileID:

1-SAMP-M3075.D

Revision: Col Type:

Analyte	Result Qual PQL		Units	DF	Date Analyzed	
VOLATILE ORGANIC COMPOUNDS BY GC/MS SW8260B						
1,1,1,2-Tetrachloroethane	ND	10.0	μg/L	20	10/22/07 18:42	
1,1,1-Trichloroethane	ND	10.0	μg/L	20	10/22/07 18:42	
1,1,2,2-Tetrachloroethane	ND	10.0	μg/L	20	10/22/07 18:42	
1,1,2-Trichloroethane	ND	10.0	μg/L	20	10/22/07 18:42	
1,1-Dichloroethane	ND	10.0	μg/L	20	10/22/07 18:42	
1,1-Dichloroethene	ND	10.0	μg/L	20	10/22/07 18:42	
1,1-Dichloropropene	ND	10.0	μg/L	20	10/22/07 18:42	
1,2,3-Trichlorobenzene	ND	20.0	μg/L	20	10/22/07 18:42	
1,2,3-Trichloropropane	ND	10.0	μg/L	20	10/22/07 18:42	
1,2,4-Trichlorobenzene	ND	20.0	μg/L	20	10/22/07 18:42	
1,2,4-Trimethylbenzene	ND	10.0	μg/L	20	10/22/07 18:42	
1,2-Dibromo-3-chloropropane	ND	20.0	μg/L	20	10/22/07 18:42	
1,2-Dibromoethane	ND	10.0	μg/L	20	10/22/07 18:42	
1,2-Dichlorobenzene	ND	10.0	μg/L	20	10/22/07 18:42	
1,2-Dichloroethane	ND	10.0	μg/L	20	10/22/07 18:42	
1,2-Dichloropropane	ND	10.0	μg/L	20	10/22/07 18:42	
1,3,5-Trimethylbenzene	ND	10.0	μg/L	20	10/22/07 18:42	
1,3-Dichlorobenzene	ND	10.0	μg/L	20	10/22/07 18:42	
1,3-Dichloropropane	ND	10.0	μg/L	20	10/22/07 18:42	
1,4-Dichlorobenzene	ND	10.0	μg/L	20	10/22/07 18:42	
2,2-Dichloropropane	ND	10.0	μg/L	20	10/22/07 18:42	
2-Chlorotoluene	ND	10.0	μg/L	20	10/22/07 18:42	
4-Chlorotoluene	ND	10.0	μg/L	20	10/22/07 18:42	
Benzene	ND	10.0	μg/L	20	10/22/07 18:42	
Bromobenzene	ND	10.0	μg/L	20	10/22/07 18:42	
Bromochloromethane	ND	10.0	µg/L	20	10/22/07 18:42	
Bromodichloromethane	ND	10.0	μg/L	20	10/22/07 18:42	
Bromoform	ND	10.0	μg/L	20	10/22/07 18:42	
Bromomethane	ND	20.0	μg/L	20	10/22/07 18:42	
Carbon tetrachloride	ND	10.0	μg/L	20	10/22/07 18:42	
Chlorobenzene	ND	10.0	μg/L	20	10/22/07 18:42	
Chloroethane	ND	20.0	μg/L	20	10/22/07 18:42	
Chloroform	ND	10.0	μg/L	20	10/22/07 18:42	
Chloromethane	ND	20.0	μg/L	20	10/22/07 18:42	

## Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- Spike Recovery outside accepted recovery limits

Project Supervisor: Monika Santucci Page 5 of 12 Print Date: 10/24/07 15:43 313728

**Analytical Results** 

LSL 5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

Sample Size: 25 mL

TestCode 8260W

%Moisture:

StateCertNo: 10155

**CLIENT:** O'Brien & Gere Engineers, Inc.

Project: **BMS-Krutulis** 

W Order: 0710127 Matrix: WATER

Inst. ID: MS02 12

ColumnID: Rtx-502.2

10/24/07 14:20 Revision:

Lab ID: 0710127-003A Client Sample ID: FD 10182007

**Collection Date:** 10/18/07 0:00 10/18/07 19:09 Date Received:

PrepDate:

BatchNo:

R11607

FileID:

1-SAMP-M3075.D

Col Type:

Analyte	Result Qual PQL		Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS BY GC/MS			SW8260B		
cis-1,2-Dichloroethene	ND	10.0	μg/L.	20	10/22/07 18:42
cis-1,3-Dichloropropene	ND	10.0	μg/L	20	10/22/07 18:42
Dibromochloromethane	ND	10.0	μg/L	20	10/22/07 18:42
Dibromomethane	ND	10.0	μg/L	20	10/22/07 18:42
Dichlorodifluoromethane	ND	20.0	μg/L	20	10/22/07 18:42
Ethylbenzene	ND	10.0	μg/L	20	10/22/07 18:42
Hexachlorobutadiene	ND	20.0	μg/L	20	10/22/07 18:42
Isopropylbenzene	ND	10.0	μg/L	20	10/22/07 18:42
Methyl tert-butyl ether	ND	10.0	μg/L	20	10/22/07 18:42
Methylene chloride	ND	40.0	μg/L	20	10/22/07 18:42
n-Butylbenzene	ND	10.0	μg/L	20	10/22/07 18:42
n-Propylbenzene	ND	10.0	μg/L	20	10/22/07 18:42
Naphthalene	ND	20.0	μg/L	20	10/22/07 18:42
p-Isopropyltoluene	ND	10.0	μg/L	20	10/22/07 18:42
sec-Butylbenzene	ND	10.0	μg/L	20	10/22/07 18:42
Styrene	ND	10.0	μg/L	20	10/22/07 18:42
tert-Butylbenzene	ND	10.0	μg/L	20	10/22/07 18:42
Tetrachloroethene	ND	10.0	μg/L	20	10/22/07 18:42
Toluene	529	10.0	μg/L	20	10/22/07 18:42
trans-1,2-Dichloroethene	ND	10.0	μg/L	20	10/22/07 18:42
trans-1,3-Dichloropropene	ND	10.0	μg/L	20	10/22/07 18:42
Trichloroethene	686	10.0	μg/L	20	10/22/07 18:42
Trichlorofluoromethane	ND	20.0	μg/L	20	10/22/07 18:42
Vinyl chloride	ND	20.0	μg/L	20	10/22/07 18:42
Xylenes (total)	ND	20.0	μg/L	20	10/22/07 18:42
Surr: 1,2-Dichloroethane-d4	103	75-134	%REC	20	10/22/07 18:42
Surr: 4-Bromofluorobenzene	101	75-125	%REC	20	10/22/07 18:42
Surr: Dibromofluoromethane	101	75-127	%REC	20	10/22/07 18:42
Surr: Toluene-d8	107	75-125	%REC	20	10/22/07 18:42

## Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- Spike Recovery outside accepted recovery limits

Page 6 of 12 Print Date: 10/24/07 15:43 313728 Project Supervisor: Monika Santucci

Project:

## Life Science Laboratories, Inc. 5000 Brittonfield Parkway, Suite 200

## **Analytical Results**

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

0710127-004A

10/18/07 14:55

10/18/07 19:09

O'Brien & Gere Engineers, Inc. **CLIENT:** 

**BMS-Krutulis** 

W Order: 0710127

Matrix: WATER

MS02 12 Inst. ID:

ColumnID: Rtx-502.2

10/24/07 15:43

Sample Size: 25 mL

%Moisture: TestCode 8260W

PrepDate:

FileID:

BatchNo:

**Collection Date:** 

Date Received:

Lab ID:

R11609

Client Sample ID: MW-03S_10182007

1-SAMP-M3086.D

Revision: Col Type:

Analyte	Result Qual PQL		Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND					
1,1,1,2-Tetrachloroethane	NĐ	100	μg/L	200	10/23/07 15:44
1,1,1-Trichloroethane	ND	100	μg/L	200	10/23/07 15:44
1,1,2,2-Tetrachloroethane	ND	100	μg/L	200	10/23/07 15:44
1,1,2-Trichloroethane	ND	100	μg/L	200	10/23/07 15:44
1,1-Dichloroethane	ND	100	μg/L	200	10/23/07 15:44
1,1-Dichloroethene	ND	100	μg/L	200	10/23/07 15:44
1,1-Dichloropropene	ND	100	μg/L	200	10/23/07 15:44
1,2,3-Trichlorobenzene	ND	200	μg/L	200	10/23/07 15:44
1,2,3-Trichloropropane	ND	100	μg/L	200	10/23/07 15:44
1,2,4-Trichlorobenzene	ND	200	μg/L	200	10/23/07 15:44
1,2,4-Trimethylbenzene	ND	100	μg/L	200	10/23/07 15:44
1,2-Dibromo-3-chloropropane	ND	200	μg/L	200	10/23/07 15:44
1,2-Dibromoethane	ND	100	μg/L	200	10/23/07 15:44
1,2-Dichlorobenzene	ND	100	μg/L	200	10/23/07 15:44
1,2-Dichloroethane	ND	100	μg/L	200	10/23/07 15:44
1,2-Dichloropropane	ND	100	μg/L	200	10/23/07 15:44
1,3,5-Trimethylbenzene	ND	100	μg/L	200	10/23/07 15:44
1,3-Dichlorobenzene	ND	100	μ <b>g</b> /L	200	10/23/07 15:44
1,3-Dichloropropane	ND	100	μg/L	200	10/23/07 15:44
1,4-Dichlorobenzene	ND	100	μg/L	200	10/23/07 15:44
2,2-Dichloropropane	ND	100	μg/L	200	10/23/07 15:44
2-Chlorotoluene	ND	100	μg/L	200	10/23/07 15:44
4-Chlorotoluene	ND	100	μg/L	200	10/23/07 15:44
Benzene	ND	100	μg/L	200	10/23/07 15:44
Bromobenzene	ND	100	μg/L	200	10/23/07 15:44
Bromochloromethane	ND	100	μg/L	200	10/23/07 15:44
Bromodichloromethane	ND	100	μg/L	200	10/23/07 15:44
Bromoform	ND	100	μg/L	200	10/23/07 15:44
Bromomethane	ND	200	μg/L	200	10/23/07 15:44
Carbon tetrachloride	ND	100	µg/L	200	10/23/07 15:44
Chlorobenzene	ND	100	μg/L	200	10/23/07 15:44
Chloroethane	ND	200	μg/L	200	10/23/07 15:44
Chloroform	ND	100	μg/L	200	10/23/07 15:44
Chloromethane	ND	200	μg/L	200	10/23/07 15:44

## Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- Spike Recovery outside accepted recovery limits

Project Supervisor: Monika Santucci Page 7 of 12 Print Date: 10/24/07 15:43 313764

## Life Science Laboratories, Inc. 5000 Brittonfield Parkway, Suite 200

**Analytical Results** 

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

CLIENT:

O'Brien & Gere Engineers, Inc.

**BMS-Krutulis** Project:

W Order: 0710127 Matrix: WATER

Inst. ID:

MS02 12

ColumnID: Rtx-502.2

10/24/07 15:43

Sample Size: 25 mL

%Moisture: TestCode 8260W Lab ID:

0710127-004A Client Sample ID: MW-03S_10182007

**Collection Date:** Date Received:

10/18/07 14:55 10/18/07 19:09

PrepDate:

BatchNo:

R11609

FileID:

1-SAMP-M3086.D

Revision: Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	S BY GC/MS		SW8260B		
cis-1,2-Dichloroethene	3230	100	μg/L	200	10/23/07 15:44
cis-1,3-Dichloropropene	ND	100	μg/L	200	10/23/07 15:44
Dibromochloromethane	ND	100	μg/L	200	10/23/07 15:44
Dibromomethane	ND	100	μg/L	200	10/23/07 15:44
Dichlorodifluoromethane	ND	200	μg/L	200	10/23/07 15:44
Ethylbenzene	ND	100	μg/L	200	10/23/07 15:44
Hexachlorobutadiene	ND	200	μg/L	200	10/23/07 15:44
Isopropylbenzene	ND	100	μg/L	200	10/23/07 15:44
Methyl tert-butyl ether	ND	100	μg/L.	200	10/23/07 15:44
Methylene chloride	ND	400	μg/L	200	10/23/07 15:44
n-Butylbenzene	ND	100	μg/L	200	10/23/07 15:44
n-Propylbenzene	ND	100	μg/L	200	10/23/07 15:44
Naphthalene	ND	200	μg/L	200	10/23/07 15:44
p-Isopropyltoluene	ND	100	μg/L	200	10/23/07 15:44
sec-Butylbenzene	ND	100	μg/L	200	10/23/07 15:44
Styrene	ND	100	μg/L	200	10/23/07 15:44
tert-Butylbenzene	ND	100	μg/L	200	10/23/07 15:44
Tetrachloroethene	ND	100	μg/L	200	10/23/07 15:44
Toluene	ND	100	μg/L	200	10/23/07 15:44
trans-1,2-Dichloroethene	ND	100	μg/L	200	10/23/07 15:44
trans-1,3-Dichloropropene	ND	100	μg/L	200	10/23/07 15:44
Trichloroethene	1140	100	μg/L	200	10/23/07 15:44
Trichlorofluoromethane	ND	200	μg/L	200	10/23/07 15:44
Vinyl chloride	624	200	μg/L	200	10/23/07 15:44
Xylenes (total)	ND	200	μg/L	200	10/23/07 15:44
Surr: 1,2-Dichloroethane-d4	103	75-134	%REC	200	10/23/07 15:44
Surr: 4-Bromofluorobenzene	99.5	75-125	%REC	200	10/23/07 15:44
Surr: Dibromofluoromethane	98.8	75-127	%REC	200	10/23/07 15:44
Surr: Toluene-d8	108	75-125	%REC	200	10/23/07 15:44

## Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - Spike Recovery outside accepted recovery limits

Page 8 of 12

Project:

## Life Science Laboratories, Inc. 5000 Brittonfield Parkway, Suite 200

**Analytical Results** 

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

O'Brien & Gere Engineers, Inc. CLIENT:

**BMS-Krutulis** 

W Order: 0710127

Matrix: WATER

Inst. ID: MS02 12

ColumnID: Rtx-502.2

10/24/07 15:43 Revision:

Sample Size: 25 mL

%Moisture: TestCode 8260W Lab ID: 0710127-005A Client Sample ID: MW-03D_10182007

**Collection Date:** 10/18/07 15:25 10/18/07 19:09 Date Received:

PrepDate:

R11609 BatchNo:

FileID: 1-SAMP-M3087.D

Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS		SW8260B		
1,1,1,2-Tetrachloroethane	ND	100	μg/L	200	10/23/07 16:22
1,1,1-Trichloroethane	ND	100	μg/L	200	10/23/07 16:22
1,1,2,2-Tetrachloroethane	ND	100	μg/L	200	10/23/07 16:22
1,1,2-Trichloroethane	ND	100	μg/L	200	10/23/07 16:22
1,1-Dichloroethane	ND	100	μg/L	200	10/23/07 16:22
1,1-Dichloroethene	ND	100	μg/L	200	10/23/07 16:22
1,1-Dichloropropene	ND	100	μg/L	200	10/23/07 16:22
1,2,3-Trichlorobenzene	ND	200	μg/L	200	10/23/07 16:22
1,2,3-Trichloropropane	ND	100	μg/L	200	10/23/07 16:22
1,2,4-Trichlorobenzene	ND	200	μg/L	200	10/23/07 16:22
1,2,4-Trimethylbenzene	ND	100	μg/L	200	10/23/07 16:22
1,2-Dibromo-3-chloropropane	ND	200	μg/L	200	10/23/07 16:22
1,2-Dibromoethane	ND	100	μg/L	200	10/23/07 16:22
1,2-Dichlorobenzene	ND	100	μg/L	200	10/23/07 16:22
1,2-Dichloroethane	ND	100	μg/L	200	10/23/07 16:22
1,2-Dichloropropane	ND	100	μg/L	200	10/23/07 16:22
1,3,5-Trimethylbenzene	ND	100	μg/L	200	10/23/07 16:22
1,3-Dichlorobenzene	ND	100	μg/L	200	10/23/07 16:22
1,3-Dichloropropane	ND	100	μg/L	200	10/23/07 16:22
1,4-Dichlorobenzene	ND	100	μg/L	200	10/23/07 16:22
2,2-Dichloropropane	ND	100	μg/L	200	10/23/07 16:22
2-Chlorotoluene	ND	100	μg/L	200	10/23/07 16:22
4-Chlorotoluene	ND	100	μg/L	200	10/23/07 16:22
Benzene	ND	100	μg/L	200	10/23/07 16:22
Bromobenzene	ND	100	μg/L	200	10/23/07 16:22
Bromochloromethane	ND	100	μg/L	200	10/23/07 16:22
Bromodichloromethane	ND	100	μg/L	200	10/23/07 16:22
Bromoform	ND	100	μg/L	200	10/23/07 16:22
Bromomethane	ND	200	μg/L	200	10/23/07 16:22
Carbon tetrachloride	ND	100	μg/L	200	10/23/07 16:22
Chlorobenzene	ND	100	μg/L	200	10/23/07 16:22
Chloroethane	ND	200	μg/L	200	10/23/07 16:22
Chloroform	ND	100	μg/L	200	10/23/07 16:22
Chloromethane	ND	200	μg/L	200	10/23/07 16:22

## Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- Spike Recovery outside accepted recovery limits

## LSL 5000 Brittonfield Parkway, Suite 200

**Analytical Results** 

East Syracuse, NY 13057

(315) 437-0200 StateCertNo: 10155

**CLIENT:** O'Brien & Gere Engineers, Inc. Lab ID: 0710127-005A

Project: **BMS-Krutulis**  Client Sample ID: MW-03D_10182007

W Order: 0710127 **Collection Date:** 10/18/07 15:25 Date Received:

Matrix: WATER

10/18/07 19:09

Inst. ID: MS02 12

PrepDate: Sample Size: 25 mL BatchNo:

R11609

ColumnID: Rtx-502.2 Revision: 10/24/07 15:43 %Moisture: FileID: TestCode 8260W

1-SAMP-M3087.D

Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	S BY GC/MS		SW8260B		
cis-1,2-Dichloroethene	ND	100	μg/L	200	10/23/07 16:22
cis-1,3-Dichloropropene	ND	100	μg/L	200	10/23/07 16:22
Dibromochloromethane	ND	100	μg/L	200	10/23/07 16:22
Dibromomethane	ND	100	μg/L	200	10/23/07 16:22
Dichlorodifluoromethane	ND	200	μg/L	200	10/23/07 16:22
Ethylbenzene	ND	100	μg/L	200	10/23/07 16:22
Hexachlorobutadiene	ND	200	μg/L	200	10/23/07 16:22
Isopropylbenzene	ND	100	μg/L	200	10/23/07 16:22
Methyl tert-butyl ether	ND	100	μg/L	200	10/23/07 16:22
Methylene chloride	ND	400	μg/L	200	10/23/07 16:22
n-Butylbenzene	ND	100	µg/L	200	10/23/07 16:22
n-Propylbenzene	ND	100	μg/L	200	10/23/07 16:22
Naphthalene	ND	200	μg/L	200	10/23/07 16:22
p-Isopropyltoluene	ND	100	μg/L	200	10/23/07 16:22
sec-Butylbenzene	ND	100	μg/L	200	10/23/07 16:22
Styrene	ND	100	μg/L	200	10/23/07 16:22
tert-Butylbenzene	ND	100	μg/L	200	10/23/07 16:22
Tetrachloroethene	ND	100	μg/L	200	10/23/07 16:22
Toluene	ND	100	μg/L	200	10/23/07 16:22
trans-1,2-Dichloroethene	ND	100	μg/L	200	10/23/07 16:22
trans-1,3-Dichloropropene	ND	100	μg/L	200	10/23/07 16:22
Trichloroethene	1030	100	µg/L	200	10/23/07 16:22
Trichlorofluoromethane	ND	200	μg/L	200	10/23/07 16:22
Vinyl chloride	ND	200	μg/L	200	10/23/07 16:22
Xylenes (total)	ND	200	μg/L	200	10/23/07 16:22
Surr: 1,2-Dichloroethane-d4	102	75-134	%REC	200	10/23/07 16:22
Surr: 4-Bromofluorobenzene	99.5	75-125	%REC	200	10/23/07 16:22
Surr: Dibromofluoromethane	99.2	75-127	%REC	200	10/23/07 16:22
Surr: Toluene-d8	107	75-125	%REC	200	10/23/07 16:22

## Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- Not Detected at the Practical Quantitation Limit (PQL)
- Spike Recovery outside accepted recovery limits

Page 10 of 12 Print Date: 10/24/07 15:43 313765 Project Supervisor: Monika Santucci

Project:

## Life Science Laboratories, Inc.

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

**CLIENT:** O'Brien & Gere Engineers, Inc.

**BMS-Krutulis** 

W Order: 0710127

Matrix: WATER Q

Inst. ID: MS02 12

ColumnID: Rtx-502.2

10/24/07 14:20

Sample Size: 25 mL %Moisture:

TestCode 8260W

Lab ID: 0710127-006A Client Sample ID: TB 10182007

**Collection Date:** 10/18/07 10:40 Date Received:

10/18/07 19:09

PrepDate:

BatchNo: R11607

FileID: 1-SAMP-M3071.D

Revision: Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUND	OS BY GC/MS		SW8260B		
1,1,1,2-Tetrachloroethane	ND	0.50	μg/L	1	10/22/07 16:08
1,1,1-Trichloroethane	ND	0.50	μg/L	1	10/22/07 16:08
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1	10/22/07 16:08
1,1,2-Trichloroethane	ND	0.50	μg/L	1	10/22/07 16:08
1,1-Dichloroethane	ND	0.50	μg/L.	1	10/22/07 16:08
1,1-Dichloroethene	ND	0.50	μg/L	1	10/22/07 16:08
1,1-Dichloropropene	ND	0.50	μg/L	1	10/22/07 16:08
1,2,3-Trichlorobenzene	ND	1.00	μg/L	1	10/22/07 16:08
1,2,3-Trichloropropane	ND	0.50	μg/L	1	10/22/07 16:08
1,2,4-Trichlorobenzene	ND	1.00	μg/L	1	10/22/07 16:08
1,2,4-Trimethylbenzene	ND	0.50	μg/L	1	10/22/07 16:08
1,2-Dibromo-3-chloropropane	ND	1.00	μg/L	1	10/22/07 16:08
1,2-Dibromoethane	ND	0.50	μg/L	1	10/22/07 16:08
1,2-Dichlorobenzene	ND	0.50	μg/L	1	10/22/07 16:08
1,2-Dichloroethane	ND	0.50	μg/L	1	10/22/07 16:08
1,2-Dichloropropane	ND	0.50	μg/L	1	10/22/07 16:08
1,3,5-Trimethylbenzene	ND	0.50	μg/L	1	10/22/07 16:08
1,3-Dichlorobenzene	ND	0.50	μg/L	1	10/22/07 16:08
1,3-Dichloropropane	ND	0.50	μg/L	1	10/22/07 16:08
1,4-Dichlorobenzene	ND	0.50	μg/L	1	10/22/07 16:08
2,2-Dichloropropane	ND	0.50	μg/L	1	10/22/07 16:08
2-Chlorotoluene	ND	0.50	μg/L	1	10/22/07 16:08
4-Chlorotoluene	ND	0.50	μg/L	1	10/22/07 16:08
Benzene	ND	0.50	μg/L	1	10/22/07 16:08
Bromobenzene	ND	0.50	μg/L.	1	10/22/07 16:08
Bromochloromethane	ND	0.50	μg/L	1	10/22/07 16:08
Bromodichloromethane	ND	0.50	μg/L	1	10/22/07 16:08
Bromoform	ND	0.50	μg/L	1	10/22/07 16:08
Bromomethane	ND	1.00	μg/L	1	10/22/07 16:08
Carbon tetrachloride	ND	0.50	μg/L.	1	10/22/07 16:08
Chlorobenzene	ND	0.50	μg/L	1	10/22/07 16:08
Chloroethane	ND	1.00	μg/L	1	10/22/07 16:08
Chloroform	ND	0.50	μg/L	1	10/22/07 16:08
Chloromethane	ND	1.00	μg/L	1	10/22/07 16:08

## Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - Spike Recovery outside accepted recovery limits

Page 11 of 12 Print Date: 10/24/07 15:43 313726 Project Supervisor: Monika Santucci

## **Analytical Results**

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

O'Brien & Gere Engineers, Inc. CLIENT:

Project: **BMS-Krutulis** 

W Order: 0710127

Matrix: WATER Q

Inst. ID: MS02 12

ColumnID: Rtx-502.2 Revision:

10/24/07 14:20

Sample Size: 25 mL

%Moisture: TestCode 8260W Lab ID: Client Sample ID: TB_10182007

0710127-006A

**Collection Date:** 10/18/07 10:40 Date Received:

PrepDate:

10/18/07 19:09

BatchNo:

R11607

FileID:

1-SAMP-M3071.D

Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	S BY GC/MS		SW8260B		
cis-1.2-Dichloroethene	ND	0.50	μg/L	1	10/22/07 16:08
cis-1,3-Dichloropropene	ND	0.50	μg/L	1	10/22/07 16:08
Dibromochloromethane	ND	0.50	μg/L	1	10/22/07 16:08
Dibromomethane	ND	0.50	μg/L	1	10/22/07 16:08
Dichlorodifluoromethane	ND	1.00	μg/L	1	10/22/07 16:08
Ethylbenzene	ND	0.50	μg/L	1	10/22/07 16:08
Hexachlorobutadiene	ND	1.00	μg/L	1	10/22/07 16:08
Isopropylbenzene	ND	0.50	μg/L.	1	10/22/07 16:08
Methyl tert-butyl ether	ND	0.50	μg/L	1	10/22/07 16:08
Methylene chloride	ND	2.00	μg/L	1	10/22/07 16:08
n-Butylbenzene	ND	0.50	μg/L	1	10/22/07 16:08
n-Propylbenzene	ND	0.50	μg/L	1	10/22/07 16:08
Naphthalene	ND	1.00	μg/L.	1	10/22/07 16:08
p-Isopropyltoluene	ND	0.50	μg/L	1	10/22/07 16:08
sec-Butylbenzene	ND	0.50	μg/L	1	10/22/07 16:08
Styrene	ND	0.50	μg/L	1	10/22/07 16:08
tert-Butylbenzene	ND	0.50	μg/L	1	10/22/07 16:08
Tetrachloroethene	ND	0.50	μg/L	1	10/22/07 16:08
Toluene	ND	0.50	μg/L	1	10/22/07 16:08
trans-1,2-Dichloroethene	ND	0.50	μg/L	1	10/22/07 16:08
trans-1,3-Dichloropropene	ND	0.50	μg/L	1	10/22/07 16:08
Trichloroethene	0.50	0.50	μg/L	1	10/22/07 16:08
Trichlorofluoromethane	ND	1.00	μg/L	1	10/22/07 16:08
Vinyl chloride	ND	1.00	μg/L	1	10/22/07 16:08
Xylenes (total)	ND	1.00	μg/L	1	10/22/07 16:08
Surr: 1,2-Dichloroethane-d4	102	75-134	%REC	1	10/22/07 16:08
Surr: 4-Bromofluorobenzene	101	75-125	%REC	1	10/22/07 16:08
Surr: Dibromofluoromethane	101	75-127	%REC	1	10/22/07 16:08
Surr: Toluene-d8	108	75-125	%REC	1	10/22/07 16:08

## Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- Spike Recovery outside accepted recovery limits

Page 12 of 12 Project Supervisor: Monika Santucci Print Date: 10/24/07 15:43 313726

## Page 10 of 18

24-Oct-07

Date:

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

(315) 437-0200

Work Order:

Method:

SW8260B

ANALYTICAL QC SUMMARY REPORT

0710127

BMS-Krutulis Project:

			Qual																					S									
	Vo: 313760		%RPD RPDLimit																												IOO oha	JW III'G F QL	Spike Recovery outside accepted recovery limits
	07 SeqNo:		RPD Ref Val																												Analyte detected below the POI	ייים המיטימים מלוגון.	pike Kecovery outsi
	10/23/2007		HighLimit F	130	130	136	133	130	135	130	130	143	130	135	149	130	130	130	130	130	130	130	130	130	130	130	132	130	130	130	-		so.
Prep Date:	Analysis Date:		LowLimit Hi	70	70	89	68	70	70	70	70	63	89	64	55	20	20	20	20	20	70	20	20	20	70	70	70	20	70	20		l raligo	
	•		%REC	95	83	91	97	93	80	91	35	96	84	89	82	91	6	06	86	91	98	95	83	20	74	92	85	88	93	88		Il calibiation	ision limit
Units: µg/L		<u>_</u>	Parent Sample Result	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		Value exceeds the instrument calibration range	RPD exceeds accepted precision limit
8260W	SW8260B	Rtx-502.2, 3.0 df	SPK Added	200	200	200	200	200	500	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	500	200	200	200	200			R RPD exc
TestCode:	Method:	Œ.	Pol	25.0	25.0	25.0	25.0	25.0	25.0	25.0	50.0	25.0	50.0	25.0	50.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0		ank	mit (PQL)
MS	R11609	Rtx-502.2	QC Sample Result	474	414	455	484	466	399	454	462	482	421	447	408	456	450	448	492	453	432	460	444	250	372	477	461	442	464	441	C hodron .	Analyte detected in the associated Method Blank	Not Detected at the Practical Quantitation Limit (PQL
SampType: MS	Batch ID:	ColumnID:	QC S Re																												-	ted in the associ	at the Practica
7-001AMS	MW-06D_10182007	12		thane	Φ	thane	ð			n	sne	ıne	ene	ene	opropane		ø		a\	ene	ø	ď	υ	đ)					ле	ane	1 1		
Sample ID: 0710127-001AMS	Client ID: MW-06I	Instrument: MS02_12	Analyte	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	I,1-Dichloropropene	1,2,3-Trichlorobenzene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dibromo-3-chloropropane	1,2-Dibromoethane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	2,2-Dichloropropane	2-Chlorotoluene	4-Chlorotoluene	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane		Qualifiers: B	QN

## Page 11 of 18

# Life Science Laboratories, Inc.

ANALYTICAL QC SUMMARY REPORT

5000 Brittonfield Parkway, Suite 200

5000 Brittonfield Parkway, Suite 200	uite 200					, 1				
East Syracuse, NY 13057	(315) 437-0200					Method:		SW8260B		
						Work Order:	<b>Order:</b> 0710127	127		
CLIENT: O'Brien & Gere Engineers, Inc.	Engineers, Inc.					Project:		BMS-Krutulis		
Sample ID: 0710127-001AMS	SampType: MS	TestCode:	: 8260W	Units: µg/L		Prep Date:		RunNo:	11609	
Client ID: MW-06D_10182007	Batch ID: R11609	Method:	SW8260B			Analysis Date:	10/23/2007	SeqNo:	313760	
Instrument: MS02_12	ColumnID: Rtx-502.2		Rtx-502.2, 3.0 df	#5						
Analyte	QC Sample Result	P. P. P. P. P. P. P. P. P. P. P. P. P. P	SPK Added	Parent Sample Result	%REC	LowLimit H	HighLimit RPD Ref Val		%RPD RPDLimit	Qual
Bromoform	444	25.0	200	0	88					
Bromomethane	353	50.0	200	0	7.	59	156			
Carbon tetrachloride	407	25.0	500	0	8	70	140			
Chlorobenzene	451	25.0	200	0	06	69	130			
Chloroethane	418	50.0	500	0	84	70	130			
Chloroform	466	25.0	500	0	93	70	130			
Chloromethane	359	20.0	200	0	72	58	135			
cis-1,2-Dichloroethene	445	25.0	900	0	89	48	151			
cis-1,3-Dichloropropene	432	25.0	200	0	86	70	130			
Dibromochloromethane	423	25.0	200	0	85	70	130			
Dibromomethane	454	25.0	200	0	91	20	130			
Dichlorodifluoromethane	182	50.0	200	0	36	89	134			S
Ethylbenzene	456	25.0	500	0	91	70	130			
Hexachlorobutadiene	440	50.0	500	0	88	69	130			
Isopropylbenzene	465	25.0	500	0	93	70	130			
Methyl tert-butyl ether	466	25.0	500	0	93	70	130			
Methylene chloride	430	100	500	0	98	70	130			
n-Butylbenzene	430	25.0	900	0	86	69	130			
n-Propylbenzene	460	25.0	900	0	95	70	130			
Naphthalene	413	50.0	200	0	83	46	158			
p-Isopropyltoluene	398	25.0	200	0	80	02	130			
sec-Butylbenzene	461	25.0	500	0	95	70	130			
Styrene	483	25.0	500	0	26	22	133			
tert-Butylbenzene	446	25.0	200	0	88	20	130			
Tetrachloroethene	442	25.0	900	0	88	70	130			
Toluene	2000	25.0	900	0	399	70	130			S
trans-1,2-Dichloroethene	428	25.0	200	0	86	70	130			

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank Ω Qualifiers:

Value exceeds the instrument calibration range ы ч

RPD exceeds accepted precision limit

- s

Spike Recovery outside accepted recovery limits

Analyte detected below the PQL

Not Detected at the MDC or RL Q ¬

Date:

24-Oct-07

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc.

CLIENT:

Work Order: Method:

0710127

SW8260B

ANALYTICAL QC SUMMARY REPORT

BMS-Krutulis Project:

Sample ID: 0710127-001AMS	SampType: MS	TestCode	TestCode: 8260W	Units: µg/L	<u> </u>	Prep Date:		RunNo:	11609	
Client ID: MW-06D_10182007	Batch ID: R11609	Method:	SW8260B			Analysis Dat	Analysis Date: 10/23/2007	SeqNo:	313760	
Instrument: MS02_12	ColumnID: Rtx-502.2		Rtx-502.2, 3.0 df	*						
	QC Sample			Parent Sample						
Analyte	Result	PQL	SPK Added	Result	%REC	LowLimit	LowLimit HighLimit RPD Ref Val		%RPD RPDLimit Qual	Qual
trans-1,3-Dichloropropene	422	25.0	200	0	84	58	132			
Trichloroethene	2390	25.0	500	0	478	42	167			ES
Trichlorofluoromethane	424	50.0	500	0	85	70	131			
Vinyl chloride	369	50.0	200	0	74	70	130			
Xylenes (total)	1300	90.09	1500	0	87	65	132			
Surr: 1,2-Dichloroethane-d4	505	5.00	200	0	101	75	134			
Surr: 4-Bromofluorobenzene	494	5.00	500	0	66	75	125			
Surr: Dibromofluoromethane	530	5.00	500	0	106	75	127			
Surr. Toluene-d8	250	5.00	200	0	110	75	125			

Analyte detected in the associated Method Blank g > В Qualifiers:

шк Not Detected at the Practical Quantitation Limit (PQL)

Not Detected at the MDC or RL

24-Oct-07

Date:

RPD exceeds accepted precision limit

Value exceeds the instrument calibration range

Analyte detected below the PQL

Spike Recovery outside accepted recovery limits

5000 Brittonfield Parkway, Suite 200

(315) 437-0200 East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc. CLIENT:

SW8260B 0710127 Work Order: Method:

ANALYTICAL QC SUMMARY REPORT

**BMS-Krutulis** Project:

	1	Ė				(		ſ			
Sample ID: 0710127-001AMSD	Samplybe: MSD	lestCode:	e: 8260W	Units: µg/L	-	Prep Date:				11609	
Client ID: MW-06D_10182007	Batch ID: R11609	Method:	SW8260B			Analysis Date:	10/23/2007		SeqNo: 31;	313761	
Instrument: MS02_12	ColumnID: Rtx-502.2	61	Rtx-502.2, 3.0 df	df							
Analvte	QC Sample Result	Po	SPK Added	Parent Sample Result	%REC	LowLimit Hi	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Quai
1 1 1 2-Tetrachloroethane	464	25.0	200	0	93	70	130	474	2.3	20	
1,1,1-Trichloroethane	432	25.0	500	0	98	70	130	414	4.4	20	
1,1,2,2-Tetrachloroethane	462	25.0	200	0	95	89	136	455	1.4	20	
1,1,2-Trichloroethane	490	25.0	900	0	86	89	133	484	1.3	20	
1,1-Dichloroethane	479	25.0	200	0	96	70	130	466	2.8	20	
1,1-Dichloroethene	376	25.0	200	0	75	70	135	388	5.8	20	
1,1-Dichloropropene	472	25.0	200	0	94	70	130	454	3.9	20	
1,2,3-Trichlorobenzene	488	50.0	200	0	86	70	130	462	5.6	20	
1,2,3-Trichloropropane	390	25.0	200	0	78	63	143	482	21	20	叱
1,2,4-Trichlorobenzene	432	90.0	200	0	98	68	130	421	2.7	20	
1,2,4-Trimethylbenzene	468	25.0	200	0	98	64	135	447	4.5	20	
1,2-Dibromo-3-chloropropane	419	50.0	900	0	84	55	149	408	2.5	20	
1,2-Dibromoethane	446	25.0	200	0	88	70	130	456	2.3	20	
1,2-Dichlorobenzene	464	25.0	900	0	93	70	130	450	3.0	20	
1,2-Dichloroethane	455	25.0	900	0	91	70	130	448	1.7	20	
1,2-Dichloropropane	493	25.0	200	0	66	70	130	492	0.2	20	
1,3,5-Trimethylbenzene	482	25.0	200	0	96	20	130	453	6.3	20	
1,3-Dichlorobenzene	450	25.0	200	0	06	70	130	432	4.2	20	
1,3-Dichloropropane	460	25.0	200	0	95	70	130	460	0.1	20	
1,4-Dichlorobenzene	462	25.0	200	0	95	70	130	444	4.0	20	
2,2-Dichloropropane	252	25.0	200	0	20	70	130	250	_	20	တ
2-Chlorotoluene	472	25.0	200	0	94	70	130	372	24	20	œ
4-Chlorotoluene	414	25.0	200	0	83	0.2	130	477	14	20	
Benzene	462	25.0	500	0	95	70	132	461	0.2	20	
Bromobenzene	460	25.0	200	0	95	70	130	442	4.0	20	
Bromochloromethane	461	25.0	200	0	92	70	130	464	9.0	20	
Bromodichtoromethane	444	25.0	200	0	89	70	130	441	9.0	20	
		-			:						

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank В Qualifiers:

24-Oct-07

Value exceeds the instrument calibration range ш ~

RPD exceeds accepted precision limit

Spike Recovery outside accepted recovery limits Analyte detected below the PQL

Not Detected at the MDC or RL S ¬

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc. CLIENT:

SW8260B Method:

ANALYTICAL QC SUMMARY REPORT

0710127 Work Order: **BMS-Krutulis** Project:

Sample ID: 0710127-001AMSD	SampType: MSD	TestCode: 8260W	8260W	Units: µg/L		Prep Date:		RunNo:	11609	6	
Client ID: MW-06D_10182007 Instrument: MS02_12	Batch ID: R11609 ColumnID: Rtx-502.2	Method:	SW8260B Rtx-502.2, 3.0 df	ij.		Analysis Date:	10/23/2007	SeqNo:	313761	61	
Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC	LowLimit Hig	HighLimit RP	RPD Ref Val	%RPD	RPDLimit	Qual
Bromoform	434	25.0	500	0	87	20	130	444	2.3	20	
Bromomethane	394	90.09	200	0	79	29	156	353	1	24	
Carbon tetrachloride	415	25.0	200	0	83	70	140	407	1.9	20	
Chlorobenzene	452	25.0	200	0	06	69	130	451	0.2	20	
Chloroethane	442	50.0	200	0	88	70	130	418	5.7	20	
Chloroform	470	25.0	200	0	8	20	130	466	6.0	20	
Chloromethane	347	50.0	200	0	69	58	135	359	3.4	20	
cis-1,2-Dichloroethene	465	25.0	200	0	93	48	151	445	4.3	20	
cis-1,3-Dichloropropene	442	25.0	500	0	88	70	130	432	2.2	20	
Dibromochloromethane	423	25.0	200	0	85	20	130	423	0	20	
Dibromomethane	462	25.0	200	0	95	70	130	454	1.5	20	
Dichlorodifluoromethane	184	50.0	500	0	37	89	134	182	1.1	20	S
Ethylbenzene	462	25.0	500	0	92	20	130	456	1,4	20	
Hexachlorobutadiene	467	50.0	500	0	93	69	130	440	6.0	50	
Isopropylbenzene	496	25.0	200	0	66	70	130	465	6.4	20	
Methyl tert-butyl ether	478	25.0	900	0	96	20	130	466	5.6	20	
Methylene chloride	442	100	200	0	88	70	130	430	2.5	20	
n-Butylbenzene	461	25.0	200	0	92	69	130	430	7.1	20	
n-Propylbenzene	493	25.0	200	0	66	70	130	460	7.0	20	
Naphthalene	448	50.0	900	0	90	46	158	413	8.0	20	
p-Isopropyltoluene	424	25.0	200	0	85	70	130	398	6.2	20	
sec-Butylbenzene	484	25.0	200	0	26	70	130	461	5.0	20	
Styrene	494	25.0	200	0	66	22	133	483	2.4	20	
tert-Butylbenzene	469	25.0	200	0	94	70	130	446	4.9	20	
Tetrachloroethene	454	25.0	200	0	91	70	130	442	5.6	20	
Toluene	2020	25.0	200	0	403	70	130	2000	1.0	20	တ
trans-1,2-Dichloroethene	436	25.0	200	0	87	70	130	428	2.0	20	

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank S > В Qualifiers:

Not Detected at the MDC or RL

24-Oct-07

Value exceeds the instrument calibration range RPD exceeds accepted precision limit ш &

Analyte detected below the PQL

Spike Recovery outside accepted recovery limits

5000 Brittonfield Parkway, Suite 200

(315) 437-0200 East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

SW8260B 0710127 Work Order: Method:

ANALYTICAL QC SUMMARY REPORT

**BMS-Krutulis** Project:

Sample ID: 0710127-001AMSD SampType: MSD	SampType: MSD	TestCod	TestCode: 8260W	Units: µg/L		Prep Date:		R	RunNo:	11609	
Client ID: MW-06D 10182007 Batch ID: R11609	Batch ID: R11609	Method:	SW8260B			Analysis Date:	e: 10/23/2007		SeqNo:	313761	
Instrument: MS02_12	ColumnID: Rtx-502.2		Rtx-502.2, 3.0 df	df.							
Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	D RPDLimit	Qual
trans-1 3-Dichloropropene	416	25.0	200	0	83	58	132	422	4	1.3 25	
Trichloroethene	2410	25.0	200	0	482	42	167	2390	0	0.8 20	ES
Trichlorofluoromethane	423	50.0	200	0	85	70	131	424	0	0.2 20	
Vinvl chloride	364	90.09	900	0	73	70	130	369	-	1.2 20	
Xvlenes (total)	1320	50.0	1500	0	88	65	132	1300	τ-	1.3 20	
Surr: 1.2-Dichloroethane-d4	503	5.00	200	0	101	75	134	0		0	
Surr: 4-Bromofluorobenzene	468	5.00	200	0	98	75	125	0		0	
Surr: Dibromofluoromethane	523	5.00	200	0	105	75	127	0		0	
Surr: Toluene-d8	547	5.00	200	0	109	75	125	0		0	

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank m Q ⊃ Qualifiers:

Value exceeds the instrument calibration range RPD exceeds accepted precision limit ы &

- s

Analyte detected below the PQL

Spike Recovery outside accepted recovery limits

Not Detected at the MDC or R1.

24-Oct-07

24-Oct-07

Date:

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc. CLIENT:

SW8260B 0710127 Work Order: Method:

ANALYTICAL QC SUMMARY REPORT

BMS-Krutulis Project:

			Qual																														
11607	313724		%RPD RPDLimit																													a PQL	Spike Recovery outside accepted recovery limits
RunNo:	SeqNo:																															ed below the	, outside ac
	200		RPD Ref Val																													Analyte detected below the PQI	Spike Recover
	10/22/2007		HighLimit	120	127	122	120	120	126	120	123	126	123	122	124	120	120	126	120	121	120	120	120	128	121	120	120	120	120	125			S
Prep Date:	Analysis Date:		LowLimit	80	80	73	80	80	77	80	75	72	73	80	71	80	80	73	80	80	88	80	80	74	80	80	80	8	80	78		range	
			%REC	104	94	94	102	104	112	106	100	91	101	101	94	103	101	96	103	101	101	66	100	96	86	86	100	66	66	96		Value exceeds the instrument calibration range	sion limit
s: µg/L			+ 0 +	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		e instrumer	RPD exceeds accepted precision limit
Units:	<b>~</b>	.0 df	Parent Sample Result																													e exceeds th	exceeds ao
8260W	SW8260B	Rtx-502.2, 3.0 df	SPK Added	10	10	10	10	10	10	10	10	10	9	10	10	5	10	10	10	10	10	10	10	10	10	10	10	10	10	10	: :	E Valu	R RPD
TestCode: 8260W	Method:	~	PQL S	0.500	0.500	0.500	0.500	0.500	0.500	0.500	1.00	0.500	1.00	0.500	1.00	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500		llank	imit (PQL)
SS	R11607	Rtx-502.2	mple ult	10.4	9.37	9.43	10.2	10.4	11.2	10.6	9.95	9.11	10.1	10.1	9.40	10.3	10.1	9.63	10.3	10.1	10.1	9.93	10.0	9.60	9.75	9.83	10.0	9.90	9.86	9.62		ited Method B	Quantitation U
SampType: LCS	Batch ID: F	ColumnID: F	QC Sample Result																													Analyte detected in the associated Method Blank	Not Detected at the Practical Quantitation Limit (PQL)
307		2		hane	<b>4</b> 1	hane	<i>a</i> .				ne	Je	ne	ine	propane					,ne									Ø	ine	:	Analyte detect	Not Detected
LCS-116	22222	MS02_1		achloroet	oroethane	achloroet	oroethane	ethane	ethene	propene	orobenze	oropropar	orobenze	thylbenze	o-3-chlord	oethane	penzene	ethane	opropane	thylbenze	openzene	эргорапе	openzene	opropane	aner.	nene		ene	omethan	lorometha		В	S =
Sample ID: LCS-11607	Client ID:	Instrument: MS02_12	Analyte	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,1-Dichloropropene	1,2,3-Trichlorobenzene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dibromo-3-chloropropane	1,2-Dibromoethane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	2,2-Dichloropropane	2-Chlorotoluene	4-Chlorotoluene	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane		Qualifiers:	

24-Oct-07

Date:

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc.

CLIENT:

Method: Work Order:

0710127

SW8260B

ANALYTICAL QC SUMMARY REPORT

BMS-Krutulis	
Project:	

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc.

CLIENT:

SW8260B Work Order: Method:

0710127

ANALYTICAL QC SUMMARY REPORT

BMS-Krutulis
Project:

Sample ID: LCS-11607	SampType: LCS	TestCode	TestCode: 8260W	Units: µg/L		Prep Date:		RunNo:	11607	
Client ID: ZZZZZ	Batch ID: R11607	Method:	SW8260B		•	Analysis Date:	Analysis Date: 10/22/2007	SeqNo:	313724	
Instrument: MS02_12	ColumnID: Rtx-502.2		Rtx-502.2, 3.0 df	<b>.</b>						
	QC Sample			Parent Sample		;	-			
Analyte	Result	PQL	SPK Added	Result	%REC	LowLimit	LowLimit HighLimit RPD Ref Val		%KPU RPDLimit	Qual
trans-1,3-Dichloropropene	66.6	0.500	10	0	100	73	121			
Trichloroethene	10.1	0.500	10	0	101	80	120			മ
Trichlorofluoromethane	10.2	1.00	10	0	102	73	132			
Vinyl chloride	9.75	1.00	10	0	86	75	125			
Xylenes (total)	30.2	1.00	30	0	101	80	120			
Surr: 1,2-Dichloroethane-d4	9.40	0.100	10	0	94	75	134			
Surr: 4-Bromofluorobenzene	10.0	0.100	10	0	100	75	125			
Surr: Dibromofluoromethane	10.3	0.100	10	0	103	75	127			
Surr: Toluene-d8	10.8	0.100	10	0	108	75	125			

Analyte detected in the associated Method Blank В Qualifiers:

Value exceeds the instrument calibration range RPD exceeds accepted precision limit ш ~ Not Detected at the Practical Quantitation Limit (PQL)

Analyte detected below the PQL

Spike Recovery outside accepted recovery limits

Not Detected at the MDC or RL S ⊃

24-Oct-07

Not Detected at the Practical Quantitation Limit (PQL)

9

 $\supset$ 

Not Detected at the MDC or RL

24-Oct-07

Date:

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

CLIENT:

O'Brien & Gere Engineers, Inc.

**BMS-Krutulis** 0710127 Work Order: **Project:** 

SW8260B

Method:

ANALYTICAL QC SUMMARY REPORT

Qual Spike Recovery outside accepted recovery limits **RPDLimit** 313759 11609 %RPD Analyte detected below the PQL SeqNo: RunNo: RPD Ref Val 10/23/2007 120 120 120 128 120 HighLimit 120 126 120 123 126 123 122 124 120 120 126 120 121 12 120 - s Analysis Date: LowLimit 80 77 80 74 8 8 8 Prep Date: Value exceeds the instrument calibration range %REC RPD exceeds accepted precision limit 8 97 6 Units: µg/L 00000 Parent Sample Result Rtx-502.2, 3.0 df SW8260B 5 5 5 5 5 5 5 5 5 5 5 5 5 9 5 10 5 9 5 9 SPK Added 8260W ш & FestCode: Method: 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 1.00 1.00 0.500 9 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 Analyte detected in the associated Method Blank ColumnID: Rtx-502.2 R11609 9.15 9.18 9.33 9.13 8.95 8.63 9.05 9.10 9.67 9.26 8.91 9.93 8.98 9.00 7.83 8.70 9.62 8.97 9.17 8.64 9.37 8.27 8.97 8.61 QC Sample Result SampType: LCS Batch ID: 1,2-Dibromo-3-chloropropane 1,1,2,2-Tetrachloroethane 1, 1, 1, 2-Tetrachloroethane Sample ID: LCS-11609 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene Bromodichloromethane 1,2,3-Trichloropropane Instrument: MS02_12 Bromochloromethane 1.1,1-Trichloroethane 1,1,2-Trichloroethane I,3-Dichlorobenzene I,4-Dichlorobenzene 1,1-Dichloropropene 1,2-Dichlorobenzene 1,2-Dichloropropane ,3-Dichloropropane 2,2-Dichloropropane 3,2-Dibromoethane 77777 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane 22 2-Chlorotoluene 4-Chlorotoluene Bromobenzene Qualifiers: Benzene Client ID: Analyte

## Page 8 of 18

24-Oct-07

Date:

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

(315) 437-0200 East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc. CLIENT:

Method: Work Order:

ANALYTICAL QC SUMMARY REPORT

SW8260B 0710127

Krutulis

BMS-K	
oject:	
Ξ.	ı

Patrick   December   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Patrick   Pat	Sample ID: 1 CS-11609	SampType: LCS		TestCode:	8260W	Units: ua/L		Prep Date:		RunNo:	11609	
ColumniD: Rtx-6022, 3.0 of	22722		600	lethod:	SW8260B		•	Analysis Date:	10/23/2007	SeqNo:	313759	
Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   Parent   P	MS02_12		502.2		Rtx-502.2, 3.0	ď,						
ane 847 0.500 10 0 65 72 126  ane 152 130 10 0 0 62 144 157  ane 152 130 10 0 0 62 144 157  ane 152 130 10 0 0 62 144 157  ane 152 130 10 0 0 62 144 157  ane 152 130 10 0 0 62 144 157  ane 152 130 10 0 0 0 62 144 157  ane 152 130 10 0 0 0 0 0 0 0 120  ane 152 140 10 0 0 0 0 0 0 0 120  ane 152 140 10 0 0 0 0 0 0 0 120  ane 153 140 0 0 0 0 0 0 0 0 0 120  ane 154 0 0.500 10 0 0 0 0 0 0 0 120  ane 154 0 0.500 10 0 0 0 0 0 0 0 0 120  ane 154 0 0.500 10 0 0 0 0 0 0 0 0 120  ane 154 0 0.500 10 0 0 0 0 0 0 0 0 0 120  ane 154 0 0.500 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		QC Sampl Result		PQL	SPK Added	Parent Sample Result	%REC			_		Qual
and backed by 2.23 1.00 10 0.0 92 42 156 156 additionable additionable by 1.23 1.00 1.00 0.0 92 42 156 156 150 100 100 100 100 100 100 100 100 100		80		.500	10	0	85	72	126			
8.16 0,500 10 0 82 74 137  9.01 0,500 10 0 0 82 120  10.2 1.00 10.2 75 124  8.80 0,500 10 0 0 88 80 120  9.15 0,500 10 0 0 88 80 120  9.17 0,500 10 0 0 88 80 120  9.18 0,500 10 0 0 89 80 120  9.19 0,500 10 0 0 89 80 120  9.10 0,500 10 0 0 89 80 120  9.10 0,500 10 0 0 89 80 120  9.11 0,500 10 0 0 89 80 120  9.12 0,500 10 0 0 89 80 120  9.13 0,500 10 0 0 89 80 120  9.14 0,500 10 0 0 89 80 120  9.15 0,500 10 0 0 89 80 120  9.16 0,500 10 0 0 89 80 120  9.17 0,500 10 0 0 89 80 120  9.18 0,500 10 0 0 89 80 120  9.19 0,500 10 0 0 89 80 120  9.10 0,500 10 0 0 89 80 120  9.10 0,500 10 0 0 89 80 120  9.10 0,500 10 0 0 89 80 120  9.10 0,500 10 0 0 89 80 120  9.10 0,500 10 0 0 89 80 120  9.10 0,500 10 0 0 99 80 120  9.10 0,500 10 0 0 99 80 120  9.10 0,500 10 0 0 99 80 120  9.10 0,500 10 0 0 99 80 120  9.10 0,500 10 0 0 99 80 120  9.10 0,500 10 0 0 99 80 120  9.10 0,500 10 0 0 99 80 120  9.10 0,500 10 0 0 99 80 120  9.10 0,500 10 0 0 99 80 120  9.10 0,500 10 0 0 99 80 120  9.10 0,500 10 0 0 99 80 120  9.10 0,500 10 0 0 99 80 120  9.10 0,500 10 0 0 99 80 120  9.10 0,500 10 0 0 99 80 120  9.10 0,500 10 0 0 99 80 120  9.10 0,500 10 0 0 99 80 120  9.10 0,500 10 0 0 99 80 120  9.10 0,500 10 0 0 99 80 120  9.10 0,500 10 0 0 99 80 120  9.10 0,500 10 0 0 99 80 120  9.10 0,500 10 0 0 99 80 120  9.10 0,500 10 0 0 99 80 120  9.10 0,500 10 0 0 99 80 120  9.10 0,500 10 0 0 0 99 80 120  9.10 0,500 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	hane	6		1.00	10	0	95	42	156			
9.01 0.500 10 0.0 0.0 10 10 120  8.00 0.500 10 0 0 0 0 0 0 120  9.56 1.00 10 0 0 0 0 0 0 120  9.56 1.00 10 0 0 0 0 0 0 120  9.57 1.00 10 0 0 0 0 0 0 120  9.59 0.500 10 0 0 0 0 0 0 120  9.50 1.00 10 0 0 0 0 0 0 120  9.50 1.00 10 0 0 0 0 0 0 120  9.50 1.00 10 0 0 0 0 0 0 120  9.50 1.00 10 0 0 0 0 0 0 0 120  9.50 1.00 10 0 0 0 0 0 0 0 120  9.50 1.00 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rachloride	œ		.500	10	0	82	74	137			
10.2 1.00 10.0 10.0 10.2 75 124  8.80 1.20 1.00 1.00 1.00 1.00 1.00 1.00 1.0	sene	ó		.500	10	0	06	80	120			
8.80 0.500 10 0.00 0.00 0.00 0.00 0.00 0.00	ine	77		1.00	10	0	102	75	124			
9.56 1.00 10 96 59 133  9.10 0.500 10 0 91 130  9.11 0.500 10 0 91 120  9.12 0.500 10 0 92 85 120  9.10 0.500 10 0 92 85 120  9.10 0.500 10 0 92 85 120  9.10 0.500 10 0 92 92 80 120  9.11 0.500 10 0 92 92 80 120  9.12 0.500 10 0 92 92 80 120  9.13 0.500 10 0 92 92 80 120  9.14 0.500 10 0 92 92 80 120  9.15 0.500 10 0 92 92 80 120  9.16 0.500 10 0 92 92 120  9.17 0.500 10 0 92 92 120  9.18 0.500 10 0 92 92 120  9.10 0.500 10 0 92 92 120  9.10 0.500 10 0 92 92 120  9.10 0.500 10 0 92 92 120  9.10 0.500 10 0 92 92 120  9.10 0.500 10 0 92 92 120  9.10 0.500 10 0 92 92 120  9.10 0.500 10 0 92 92 120  9.10 0.500 10 0 92 92 120  9.10 0.500 10 0 92 92 120  9.10 0.500 10 0 92 92 120  9.10 0.500 10 0 92 92 120  9.10 0.500 10 0 92 92 120  9.10 0.500 10 0 92 92 120  9.10 0.500 10 0 92 92 120  9.10 0.500 10 0 92 92 120  9.10 0.500 10 0 0 92 92 120  9.10 0.500 10 0 0 92 92 120  9.10 0.500 10 0 0 92 92 120  9.10 0.500 10 0 0 92 92 120  9.10 0.500 10 0 0 92 92 120  9.10 0.500 10 0 0 92 92 120  9.10 0.500 10 0 0 0 92 92 120  9.10 0.500 10 0 0 0 92 92 120  9.10 0.500 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_	ထ		0.500	10	0	88	80	120			
e 9.09 0.500 10 0 91 80 120  9.17 0.500 10 0 92 80 120  9.18 0.500 10 0 92 80 120  9.19 0.500 10 0 92 84 63 139  9.19 0.500 10 0 92 84 63 139  9.10 0.500 10 0 92 84 63 139  9.11 0.500 10 0 94 84 63 139  9.12 0.500 10 0 94 84 63 139  9.13 0.500 10 0 94 84 63 120  9.14 0.500 10 0 94 84 84 84 84 84 84 84 84 84 84 84 84 84	thane	Ġ.		1.00	10	0	96	29	133			
e 9.17 0.500 10 0 92 80 120  8.46 0.500 10 0 94 75 123  9.48 0.500 10 0 94 63 139  9.20 1.00 0 94 63 139  9.13 0.500 10 0 95 80 120  9.13 0.500 10 0 95 80 120  9.21 0.500 10 0 99 77 120  9.21 0.500 10 0 90 76 121  9.24 0.500 10 0 90 76 121  9.25 1.00 10 0 90 176 121  9.25 1.00 10 0 90 176 121  9.26 0.500 10 0 90 120  9.27 0.500 10 0 90 120  9.28 0.500 10 0 90 90 120  9.29 0.500 10 0 90 90 120  9.20 0.500 10 0 90 90 120  9.20 0.500 10 0 90 90 120  9.20 0.500 10 0 90 90 120  9.20 0.500 10 0 90 90 120  9.20 0.500 10 0 90 90 120  9.20 0.500 10 0 90 90 120  9.20 0.500 10 0 90 90 120  9.20 0.500 10 0 90 90 120  9.20 0.500 10 0 90 90 120  9.20 0.500 10 0 90 90 120  9.20 0.500 10 0 90 90 120  9.20 0.500 10 0 90 90 120  9.20 0.500 10 0 90 90 120  9.20 0.500 10 0 90 90 120  9.20 0.500 10 0 90 90 120  9.20 0.500 10 0 90 90 120  9.20 0.500 10 0 90 90 120  9.20 0.500 10 0 90 90 90 120  9.20 0.500 10 0 90 90 90 120  9.20 0.500 10 0 0 90 90 90 120  9.20 0.500 10 0 0 90 90 90 120  9.20 0.500 10 0 0 90 90 90 120  9.20 0.500 10 0 0 90 90 90 120  9.20 0.500 10 0 0 90 90 90 120  9.20 0.500 10 0 0 90 90 90 120  9.20 0.500 10 0 0 90 90 90 120  9.20 0.500 10 0 0 90 90 90 120  9.20 0.500 10 0 0 90 90 90 120  9.20 0.500 10 0 0 90 90 90 120  9.20 0.500 10 0 0 90 90 90 120  9.20 0.500 10 0 0 90 90 90 120  9.20 0.500 10 0 0 0 90 90 90 120  9.20 0.500 10 0 0 0 90 90 90 120  9.20 0.500 10 0 0 0 0 90 90 90 120  9.20 0.500 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	chloroethene	o o		0097	10	0	91	80	120			
8.46         0.500         10         85         75         123           9.10         0.500         10         91         79         120           9.10         0.500         10         95         84         63         120           9.20         1.00         1         0         95         80         120           9.13         0.500         10         0         91         120         120           9.13         0.500         10         0         92         77         120           9.13         0.500         10         0         90         121         120           9.00         1.00         0         90         78         120         120           9.14         0.500         10         0         90         72         120           9.24         0.500         10         0         90         122         120           8.55         1.00         10         0         90         120         120           9.28         0.500         10         0         90         120         120           9.20         0.500         10         0         90 <td>chloropropene</td> <td>6</td> <td></td> <td>009.0</td> <td>10</td> <td>0</td> <td>92</td> <td>80</td> <td>120</td> <td></td> <td></td> <td></td>	chloropropene	6		009.0	10	0	92	80	120			
8.35 1.00 10.500 10 84 63 120 120 120 120 120 120 120 120 120 120	Dibromochloromethane	κ.		009.0	10	0	82	22	123			
8.35         1,00         10         84         63         139           9.48         0,500         10         95         80         120           9.20         1,00         10         95         80         120           9.13         0,500         10         90         76         121           9.00         2,00         10         90         76         122           9.21         0,500         10         0         92         77         121           9.49         0,500         10         0         95         80         122           8.55         1,00         10         0         95         80         122           8.27         0,500         10         0         93         80         120           9.28         1,00         0         93         80         120           9.20         0,500         10         0         92         120           9.20         0,500         10         0         92         120           9.20         0,500         10         0         92         120           9.15         0,500         10         0	Dibromomethane	o i		0091	10	0	9	42	120			
9.48         0.500         10         95         80         120           9.20         1.00         10         95         77         120           9.13         0.500         10         0         92         77         120           9.14         0.500         10         0         90         76         121           9.21         0.500         10         0         90         77         121           9.24         0.500         10         0         92         77         121           9.24         0.500         10         0         92         77         121           9.25         1.00         10         0         95         80         122           8.27         0.500         10         0         93         80         120           9.28         0.500         10         0         90         120         120           9.10         0.500         10         0         90         120         120           9.20         0.500         10         0         90         120         120           9.30         0.500         10         0         90	fluoromethane	φ		1.00	10	0	84	63	139			
P.20         1.00         10         92         77         120           P.13         0.500         10         91         80         121           P.01         0.500         10         90         76         122           P.20         2.00         10         90         78         120           P.21         0.500         10         9         77         121           P.22         0.500         10         9         77         121           P.23         0.500         10         0         9         122           P.23         0.500         10         0         9         122           P.24         0.500         10         0         9         120           P.24         0.500         10         0         9         120           P.25         0.500         10         0         9         120           P.20         0.500         10         0         9         120           P.20         0.500         10         0         9         120           P.20         0.500         10         0         9         120           P.20	ene	6		0.500	10	0	92	80	120			
ner         9.13         0.500         10         0         91         80         121           ner         9.01         0.500         10         0         90         76         122           9.00         2.00         10         0         90         77         121           9.21         0.500         10         0         92         77         121           8.49         0.500         10         0         95         80         122           8.55         1.00         1         0         95         80         122           8.77         0.500         10         0         93         80         120           9.18         0.500         10         0         94         79         120           9.20         0.500         10         0         90         120         120           9.30         0.500         10         0         92         80         120           9.31         0.500         10         0         92         80         120           Analyte detected for the Practical Quantitation Limit (PQL)         R         RPD exceeds accepted precision limit         8         Spike Reco	obutadiene	6		1.00	10	0	92	77	120			
Per         9.01         0.500         10         90         76         122           9.02         2.00         10         90         78         120           9.21         0.500         10         92         77         121           9.49         0.500         10         95         80         122           8.55         1.00         10         0         86         67         134           8.27         0.500         10         0         93         80         120           9.28         0.500         10         0         94         79         120           9.36         0.500         10         0         94         79         120           9.01         0.500         10         0         90         120         120           Analyte detected in the associated Method Blank         1         0         92         80         120           Anot Detected at the Practical Quantitation Limit (PQL)         R PID exceeds accepted precision limit         8         Spike Recovery outside accepted recovery limit	enzene	ത്		0.500	10	0	9	80	121			
9.00         2.00         10         9         78         120           9.21         0.500         10         92         77         121           9.49         0.500         10         95         80         122           8.55         1.00         10         0         85         80         120           8.27         0.500         10         0         94         120         120           9.28         0.500         10         0         94         79         120           9.01         0.500         10         0         94         79         120           sthene         9.20         0.500         10         0         90         120           9.20         0.500         10         0         92         80         120           Analyze detected in the associated Method Blank         E         Value exceeds accepted precision limit         9         120           Not Detected at the Practical Quantitation Limit (PQL)         R         RPD exceeds accepted precision limit         8         Spike Recovery outside accepted recovery limit	-butyl ether	G .		009.0	10	0	8	9/	122			
9.21         0.500         10         92         77         121           9.49         0.500         10         0         95         80         122           8.55         1.00         10         0         86         67         134           8.27         0.500         10         0         93         80         120           9.28         0.500         10         0         94         79         120           9.01         0.500         10         0         90         80         120           9.20         0.500         10         0         92         80         120           9.30         0.500         10         0         92         80         120           9.30         0.500         10         0         92         80         120           9.15         0.500         10         0         92         80         120           9.15         0.500         10         0         92         80         120           Oscillated Method Blank         E         Value exceeds the instrument calibration range         Jana Alexander and the Practical Quantitation Limit (PQL)         R RPD exceeds accepted preci	chloride	on i	00.	2.00	10	0	06	78	120			
949         0.500         10         0         95         80         122           8.55         1.00         10         0         86         67         134           8.27         0.500         10         0         93         80         120           9.28         0.500         10         0         94         79         120           9.01         0.500         10         0         90         80         120           9.20         0.500         10         0         92         80         120           9.30         0.500         10         0         93         80         120           9.15         0.500         10         0         92         80         120           9.15         0.500         10         0         93         80         120           9.15         0.500         10         0         92         80         120           9.15         0.500         10         0         92         80         120           Detected at the Practical Quantitation Limit (PQL)         R         RPD exceeds accepted precision limit         S pike Recovery outside accepted recovery outside accepted recovery	zene	ത്		009.0	10	0	95	2.2	121			
8.55         1.00         10         86         67         134           8.27         0.500         10         83         80         120           9.28         0.500         10         0         93         80         120           9.36         0.500         10         0         94         79         120           9.01         0.500         10         0         90         80         120           9.20         0.500         10         0         92         80         120           9.30         0.500         10         0         92         80         120           9.15         0.500         10         0         92         80         120           Detected at the exceed Method Blank         E         Value exceeds the instrument calibration range         J         Analyte detected below the PQL           Detected at the Practical Quantitation Limit (PQL)         R         RPD exceeds accepted precision limit         S pike Recovery outside accepted recovery ling	enzene	o o		0.500	10	0	92	8	122			
8.27         0.500         10         0         83         80         120           9.28         0.500         10         0         94         79         120           9.36         0.500         10         0         94         79         120           9.01         0.500         10         0         90         80         120           9.20         0.500         10         0         92         80         120           9.15         0.500         10         0         92         80         120           9.15         0.500         10         0         92         80         120           Operation of the practical Method Blank         E         Value exceeds the instrument calibration range         J         Analyte detected below the PQL           Detected at the Practical Quantitation Limit (PQL)         R RPD exceeds accepted precision limit         S pirke Recovery outside accepted recovery line	ne	80		1.00	10	0	98	29	134			
9.28         0.500         10         0         93         80         120           9.36         0.500         10         0         94         79         120           9.01         0.500         10         0         90         80         120           9.20         0.500         10         0         92         80         120           9.30         0.500         10         0         92         80         120           9.15         0.500         10         0         92         80         120           Operceded in the associated Method Blank         E         Value exceeds the instrument calibration range         J         Analyte detected below the PQL           Detected at the Practical Quantitation Limit (PQL)         R RPD exceeds accepted precision limit         S Spike Recovery outside accepted recovery lin	/Itoluene	80		0.500	10	0	83	80	120			
9.36 0.500 10 0 94 79 120 9.01 0.500 10 0 90 80 120 9.20 0.500 10 0 92 80 120 9.30 0.500 10 0 93 80 120 9.15 0.500 10 0 92 80 120 9.15 0.500 10 0 92 80 120 9.15 0.500 10 0 92 80 120 Detected at the Practical Quantitation Limit (PQL) R RPD exceeds accepted precision limit S Spike Recovery outside accepted recovery lin	enzene	O		0.500	10	0	93	80	120			
9.01 0.500 10 0 90 80 120 9.20 0.500 10 0 92 80 120 9.30 0.500 10 0 93 80 120 9.15 0.500 10 0 92 80 120 9.15 0.500 10 0 92 80 120  Detected at the Practical Quantitation Limit (PQL) R RPD exceeds accepted precision limit S Spike Recovery outside accepted recovery lin		O		0.500	10	0	94	42	120			
9.20         0.500         10         0         92         80         120           9.30         0.500         10         0         93         80         120           9.15         0.500         10         0         92         80         120           Detected in the associated Method Blank         E         Value exceeds the instrument calibration range         J         Analyte detected below the PQL           Detected at the Practical Quantitation Limit (PQL)         R         RPD exceeds accepted precision limit         S         Spike Recovery outside accepted recovery lin	enzene	O .		0.500	10	0	6	80	120			
9.30 0.500 10 0 93 80 120 9.15 0.500 10 0 92 80 120 lyte detected in the associated Method Blank E Value exceeds the instrument calibration range J Analyte detected below the PQL Detected at the Practical Quantitation Limit (PQL) R RPD exceeds accepted precision limit S Spike Recovery outside accepted recovery lin	oethene.	O		0.500	10	0	95	80	120			
9.15 0.500 10 92 80 120  ye detected in the associated Method Blank E Value exceeds the instrument calibration range J Analyte detected below the PQL  Detected at the Practical Quantitation Limit (PQL) R RPD exceeds accepted precision limit S Spike Recovery outside accepted recovery lin		6		0.500	10	0	93	80	120			
B Analyte detected in the associated Method Blank E Value exceeds the instrument calibration range J Analyte detected below the PQL ND Not Detected at the Practical Quantitation Limit (PQL) R RPD exceeds accepted precision limit S Spike Recovery outside accepted recovery lin	Dichloroethene	O		0.500	10	0	95	80	120			
ND Not Detected at the Practical Quantitation Limit (PQL) R RPD exceeds accepted precision limit S spike Recovery outside accepted recovery lin U Not Detected at the MDC or RL	m	tected in the associated	Method Blank	v		exceeds the instrume	nt calibration	range		letected below the	JÒJ	
Not Detected at the MDC or RL	8	ted at the Practical Quar	ntitation Limit	(PQL)		ceeds accepted prec	ision limit			covery outside ac	septed recovery limit	
		ted at the MDC or RL										

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc.

CLIENT:

SW8260B Method:

ANALYTICAL QC SUMMARY REPORT

0710127 Work Order:

**BMS-Krutulis** Project:

Sample ID: LCS-11609	SampType: LCS	TestCod	TestCode: 8260W	Units: µg/L		Prep Date:		Ā	RunNo:	11609	
Client ID: ZZZZZ	Batch ID: R11609	Method:	SW8260B			Analysis Dat	Analysis Date: 10/23/2007		SedNo:	313759	
Instrument: MS02_12	ColumnID: Rtx-502.2		Rtx-502.2, 3.0 df	7							
	OC Sample			Parent Sample							
Analyte	Result	Pal	SPK Added	Result	%REC		HighLimit	LowLimit HighLimit RPD Ref Val	%R	%RPD RPDLimit	Qual
trans-1,3-Dichloropropene	80.6	0.500	10	0	91	73	121				
Trichloroethene	9.37	0.500	10	0	94	80	120				
Trichlorofluoromethane	29.6	1.00	10	0	6	73	132				
Vinyl chloride	9.40	1.00	10	0	94	75	125				
Xylenes (total)	27.3	1.00	30	0	91	80	120				
Surr: 1,2-Dichloroethane-d4	9.81	0.100	10	0	86	75	134				
Surr: 4-Bromofluorobenzene	9.80	0.100	10	0	86	75	125				
Surr: Dibromofluoromethane	10.1	0.100	10	0	101	75	127				
Surr: Toluene-d8	10.8	0.100	10	0	108	75	125				

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank 22 Qualifiers:

Value exceeds the instrument calibration range ш ~

RPD exceeds accepted precision limit

Analyte detected below the PQL S

Spike Recovery outside accepted recovery limits

Not Detected at the MDC or RL S ¬

24-Oct-07

## Page 4 of 18

24-Oct-07

Date:

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc.

CLIENT:

Method: Work Order:

ANALYTICAL QC SUMMARY REPORT

SW8260B 0710127

**BMS-Krutulis** Project:

Sample ID: MB-11607	SampType: MBLK	TestCode:	8260W	Units: µg/L	Prep Date:		RunNo: 11607	
Client ID: ZZZZZ	Batch ID: R11607	Method:			Analysis Date: 10/2;	10/22/2007	SeqNo: 313725	
Instrument: MS02_12	ColumnID: Rtx-502.2		Rtx-502.2, 3.0 df	0 df				
Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result %REC	LowLimit HighLimit	it RPD Ref Val	%RPD RPDLimit	nit Qual
1,1,1,2-Tetrachloroethane	QN	0.500						
1,1,1-Trichloroethane	QN	0.500						
1,1,2,2-Tetrachloroethane	QV	0.500						
1,1,2-Trichloroethane	9	0.500						
1,1-Dichloroethane	9	0.500						
1,1-Dichloroethene	Q	0.500						
1,1-Dichloropropene	QN	0.500						
1,2,3-Trichlorobenzene	Q	1.00						
1,2,3-Trichloropropane	QV	0.500						
1,2,4-Trichlorobenzene	Q	1.00						
1,2,4-Trimethylbenzene	Q	0.500						
1,2-Dibromo-3-chloropropane	Q	1.00						
1,2-Dibromoethane	QN	0.500						
1,2-Dichlorobenzene	QN	0.500						
1,2-Dichloroethane	QN	0.500						
1,2-Dichloropropane	Q	0.500						
1,3,5-Trimethylbenzene	Q	0.500						
1,3-Dichlorobenzene	Q	0.500						
1,3-Dichloropropane	QN	0.500						
1,4-Dichlorobenzene	QN	0.500						
2,2-Dichloropropane	Q	0.500						
2-Chlorotoluene	Q	0.500						
4-Chlorotoluene	Q	0.500						
Benzene	Q	0.500						
Bromobenzene	QV	0.500						
Bromochloromethane	Q	0.500						
Bromodichloromethane	QN	0.500						
				:				
Qualifiers: B Analyte det	Analyte detected in the associated Method Blank	Blank	E Value	Value exceeds the instrument calibration range		Analyte detected	Analyte detected below the PQL	
_	Not Detected at the Practical Quantitation Limit (PQL)	Limit (PQL)	R RPD	RPD exceeds accepted precision limit	S	Spike Recovery	Spike Recovery outside accepted recovery limits	imits
U Not Detect	Not Detected at the MDC or RL							
	ţ							Dans A at 1

## Page 5 of 18

24-Oct-07

Date:

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc.

CLIENT:

SW8260B Method: Work Order:

ANALYTICAL QC SUMMARY REPORT

0710127

**BMS-Krutulis** Project:

Sample ID: ME	MB-11607	SampType: MBLK	TestCode:		Units: µg/L	Prep Date:			
Client ID: ZZ	77777	Batch ID: R11607	Method:	SW8260B		Analysis Date:	e: 10/22/2007	SeqNo: 313725	
Instrument: MS02_12	S02_12	ColumnID: Rtx-502.2		Rtx-502.2, 3.0 df	) df				
Analyte		QC Sample Result	Pal	SPK Added	Parent Sample Result	%REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	t Qual
Bromoform		QN	0.500						
Bromomethane	an	QN	1.00						
Carbon tetrachloride	loride	QN	0.500						
Chlorobenzene	<b>~</b>	QN	0.500						
Chloroethane		QN	1.00						
Chloroform		QN	0.500						
Chloromethane	d)	QN	1.00						
cis-1,2-Dichloroethene	oethene	Q	0.500						
cis-1,3-Dichloropropene	opropene	Q	0.500						
Dibromochloromethane	methane	QN	0.500						
Dibromomethane	ıne	QN	0.500						
Dichlorodifluoromethane	omethane	QN	1.00						
Ethylbenzene		QN	0.500						
Hexachlorobutadiene	adiene	QN	1.00						
Isopropylbenzene	ene	QN	0.500						
Methyl tert-butyl ether	yl ether	QN	0.500						
Methylene chloride	oride	QN	2.00						
n-Butylbenzene	e	QN	0.500						
n-Propylbenzene	эc	QN	0.500						
Naphthalene		QN	1.00						
p-Isopropyltoluene	ene	QN	0.500						
sec-Butylbenzene	eue	QN	0.500						
Styrene		O <b>X</b>	0.500						
tert-Butylbenzene	sne	QN	0.500						
Tetrachloroethene	ene	QN	0.500						
Toluene		ΩN	0.500						
trans-1,2-Dichloroethene	loroethene	QN	0.500						
					:				
Qualifiers:	B Analy	Analyte detected in the associated Method Blank	Blank	E Value	Value exceeds the instrument calibration range	nt calibration range		Analyte detected below the PQL	
	ND Not D	Not Detected at the Practical Quantitation Limit (PQL)	Limit (PQL)	R RPDe	RPD exceeds accepted precision limit	ision limit	S Spike Recovery	Spike Recovery outside accepted recovery limits	nits
	U Not D	Not Detected at the MDC or RI.							
Doto	146	24-001-07							Page 5 of 1

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc.

CLIENT:

Work Order: Method:

0710127

SW8260B

ANALYTICAL QC SUMMARY REPORT

**BMS-Krutulis** Project:

Sample ID: MB-11607	SampType: MBLK	TestCode	TestCode: 8260W	Units: µg/L		Prep Date:		RunNo:	11607	
Client ID: ZZZZZ	Batch ID: R11607	Method:	SW8260B	•	`	Analysis Date: 10/22/2007	10/22/2007	SeqNo:	313725	
Instrument: MS02_12	ColumnID: Rtx-502.2	_	Rtx-502.2, 3.0 df	14						
	QC Sample			Parent Sample						
Analyte	Result	PQL	SPK Added	Result	%REC	LowLimit H	%REC LowLimit HighLimit RPD Ref Val		%RPD RPDLimit Qual	Quai
trans-1,3-Dichloropropene	QN	0.500								
Trichloroethene	0.650	0.500								
Trichlorofluoromethane	Q	1.00								
Vinyl chloride	Q	1.00								
Xylenes (total)	QN	1.00								
Surr: 1,2-Dichloroethane-d4	9:90	0.100	10	0	66	75	134			
Surr: 4-Bromofluorobenzene	10.1	0.100	10	0	101	22	125			
Surr: Dibromofluoromethane	10.1	0.100	10	0	101	75	127			
Surr: Toluene-d8	10.8	0.100	10	0	108	75	125			

Value exceeds the instrument calibration range Analyte detected in the associated Method Blank

В

Qualifiers:

RPD exceeds accepted precision limit ш к

Analyte detected below the PQL

Spike Recovery outside accepted recovery limits

ND Not Detected at the Practical Quantitation Limit (PQL) U Not Detected at the MDC or RL

24-Oct-07

## Page 16 of 18

Not Detected at the MDC or RL

S D

24-Oct-07

Date:

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc. CLIENT:

SW8260B Method:

ANALYTICAL QC SUMMARY REPORT

0710127 Work Order: **BMS-Krutulis** Project:

		Qual																													য়	š
11609 313762		%RPD RPDLimit																												Ş	Spike Recovery outside accepted recovery limits	
RunNo: SeqNo:	•	_																												Analyte detected below the POI	very outside acce	
10/23/2007		nit RPD Ref Val																												Analyte de		
		HighLimit																													מ ה	
Prep Date: Analysis Date:	,	LowLimit																												42444	जा कास्ट्र	
		%REC																													nt Carronaux ision Jimit	
Units: µg/L	<del>j</del>	Parent Sample Result																												Volue aveads the instrument collibration range	value exceeds the institution caribian RPD exceeds accepted precision limit	ddaaan maaa
8260W SW8260B	Rtx-502.2, 3.0 df	SPK Added																												. Volte		
TestCode: Method:		PQLS	0.500	0.500	0.500	0.500	0.500	0.500	0.500	1.00	0.500	1.00	0.500	1.00	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500		latik mit (POL)	/1/ シャルル
MBLK R11609	Rtx-502.2	mple ult	S	2	Q	Q	2	9	2	2	9	Ñ	9	2	Q	8	9	Q	Q	2	2	Q	Q	S	QN	Q	9	Q	Q	C bodtot bet	ated ivicinou o Diraptitation Li	(danmanna)
SampType: MBLK Batch ID: R1160		QC Sample Result																												1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Analyte detected in the associated Method Blank  Not Detected at the Practical Quantitation Limit (PQL)	di ille i reviewe
609	12		ethane	ā	sthane	9			an an	ene	ıne	ene	ene	ropropane		Φ		a)	zene	<b>Q</b>	ø	ø.	a)					ne	lane	A T. 40. Modes		
D: MB-11609	÷		1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichtoroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,1-Dichloropropene	1,2,3-Trichlorobenzene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	,2-Dibromo-3-chloropropane	1,2-Dibromoethane	1,2-Dichlorobenzene	,2-Dichloroethane	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	2,2-Dichloropropane	oluene	oluene		nzene	Bromochloromethane	Bromodichloromethane		a S	į
Sample ID:	Instrumer	Analyte	1,1,1,2-Te	1,1,1-Tric	1,1,2,2-Te	1,1,2-Tric	1,1-Dichk	1,1-Dichk	1,1-Dichlo	1,2,3-Tric	1,2,3-Tric	1,2,4-Tric	1,2,4-Trin	1,2-Dibro	1,2-Dibro	1,2-Dichk	1,2-Dichl	1,2-Dichk	1,3,5-Trin	1,3-Dichk	1,3-Dichl	1,4-Dichl	2,2-Dichlı	2-Chlorotoluene	4-Chlorotoluene	Benzene	Bromobenzene	Bromoch	Bromodic	:	Qualitiers:	

## Page 17 of 18

## Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

SW8260B Work Order: Method:

ANALYTICAL OC SUMMARY REPORT

0710127

CLIENT: O'Brien & Gere Engineers, Inc.	Gere Engineers, Inc.					Project:		BMS-Krutulis	tulis		
Sample ID: MB-11609 Client ID: ZZZZZ	SampType: MBLK Batch ID: R11609	TestCod Method:	TestCode: 8260W Method: SW8260B	Units: µg/L		Prep Date: Analysis Date: 10/23/2007	10/23/20	20	RunNo: SeqNo:	11609 313762	
Analyte	QC Sample Result	POL	SPK Added	Parent Sample Result	%REC	%REC LowLimit HighLimit RPD Ref Val	ghLimit F	RPD Ref Val	% R	%RPO RPDLimit	Qual
Bromoform Bromomethane	ON ON	0.500									

1.00 1.00 0.500 0.500 2.00 0.500 0.500 1.00 0.500 0.500 0.500 0.500 0.500

Dichlorodifluoromethane

Dibromomethane

cis-1,3-Dichloropropene Dibromochloromethane

cis-1,2-Dichloroethene

Chloromethane

Carbon tetrachloride

Chlorobenzene

Chloroethane

Chloroform

Methyl tert-butyl ether

Isopropylbenzene

Methylene chloride

p-Isopropyltoluene

n-Propylbenzene n-Butylbenzene

Naphthalene

sec-Butylbenzene

Styrene

Hexachlorobutadiene

Ethylbenzene

0.500

1.00 0.500

1.00 0.500

Analyte detected below the PQL ~ s Value exceeds the instrument calibration range ш & Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank g  $\alpha$ Qualifiers:

Not Detected at the MDC or RL

 $\Box$ 

24-Oct-07

Date:

0.500 0.500

trans-1,2-Dichloroethene

**Tetrachloroethene** 

Toluene

lert-Butylbenzene

RPD exceeds accepted precision limit

Spike Recovery outside accepted recovery limits

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

(315) 437-0200

SW8260B 0710127 Work Order: Method:

ANALYTICAL QC SUMMARY REPORT

**BMS-Krutulis** Project:

Sample ID: MB-11609	SampType: MBLK	TestCoc	TestCode: 8260W	Units: µg/L		Prep Date:		RunNo:	11609	
Client ID: ZZZZZ	Batch ID: R11609	Method:	SW8260B		•	Analysis Date:	Analysis Date: 10/23/2007	SedNo:	313762	
Instrument: MS02_12	ColumnID: Rtx-502.2		Rtx-502.2, 3.0 df	<u>u</u>						•
	QC Sample	ļ	:	Parent Sample		:			: : (	
Analyte	Result	PQ	SPK Added	Result	%REC	LowLimit F	"REC LOWLIMIT HIGHLIMIT RPD Ref Val		%KPD RPDLImit Qual	Qual
trans-1,3-Dichloropropene	QN	0.500		}						
Trichloroethene	QN	0.500								
Trichlorofluoromethane	QN	1.00								
Vinyl chloride	QN	1.00								
Xylenes (total)	Q	1.00								
Surr: 1,2-Dichloroethane-d4	10.2	0.100	10	0	102	75	134			
Surr: 4-Bromofluorobenzene	10.3	0.100	10	0	103	75	125			
Surr: Dibromofluoromethane	10.2	0.100	10	0	102	75	127			
Surr: Toluene-d8	11.0	0.100	10	0	110	75	125			

Analyte detected in the associated Method Blank В Qualifiers:

Value exceeds the instrument calibration range ш 🗠

Not Detected at the Practical Quantitation Limit (PQL) Not Detected at the MDC or RL g >

24-Oct-07

Date:

RPD exceeds accepted precision limit

Analyte detected below the PQL

Spike Recovery outside accepted recovery limits

## **Analytical Results**

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

CLIENT: O'Brien & Gere Engineers, Inc.

Project:

**BMS-Krutulis** 

W Order:

0710127

Matrix:

WATER

Inst. ID:

GCOS 17E

ColumnID: Alumina 10/23/07 16:03 Sample Size: 32 mL %Moisture:

TestCode 8015W RSK175

Lab ID:

0710127-001B Client Sample ID: MW-06D_10182007

**Collection Date:** Date Received:

10/18/07 10:40 10/18/07 19:09

PrepDate: BatchNo:

10/22/07 14:39

6427/R11597

1-SAMP-F:\Osioct07\E102311.r FileID:

Revision: Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
DISSOLVED GASES BY GC/FID			8015M/RSK	175M	(RSK 175)
Ethane	ND	0.0042	mg/L	1	10/23/07 11:41
Ethene	ND	0.0042	mg/L	1	10/23/07 11:41
Methane	0.013	0.0021	mg/L	1	10/23/07 11:41

**Qualifiers:** 

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- Spike Recovery outside accepted recovery limits

Page 1 of 4 Project Supervisor: Monika Santucci Print Date: 10/25/07 14:07 313556

## **Analytical Results**

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

O'Brien & Gere Engineers, Inc.

Project:

**BMS-Krutulis** 

W Order: Matrix:

0710127 WATER

Inst. ID:

GCOS 17E

ColumnID: Alumina

10/23/07 16:03

Sample Size: 32 mL

%Moisture: TestCode 8015W RSK175 Lab ID:

0710127-002B Client Sample ID: *MW-06S_10182007* 

**Collection Date:** Date Received:

10/18/07 11:38 10/18/07 19:09

PrepDate: BatchNo:

10/22/07 14:39 6427/R11597

FileID:

1-SAMP-F:\Osioct07\E102312.r

Revision: Col Type:

Result Qu	al PQL	Units	DF	Date Analyzed
		8015M/RSK	175M	(RSK 175)
ND	0.0042	mg/L	1	10/23/07 11:53
ND	0.0042	mg/L	1	10/23/07 11:53
0.0028	0.0021	mg/L	1	10/23/07 11:53
	ND ND	ND 0.0042	8015M/RSK ND 0.0042 mg/L ND 0.0042 mg/L	8015M/RSK175M ND 0.0042 mg/L 1 ND 0.0042 mg/L 1

Qualifiers:

Print Date: 10/25/07 14:07

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit

313557

- B Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- Not Detected at the Practical Quantitation Limit (PQL)
- Spike Recovery outside accepted recovery limits

Page 2 of 4 Project Supervisor: Monika Santucci

## **Analytical Results**

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

StateCertNo: 10155

**CLIENT:** 

O'Brien & Gere Engineers, Inc.

Project:

BMS-Krutulis

W Order:

0710127

Matrix:

WATER

Inst. 1D:

GCOS 17E

ColumnID: Alumina

10/23/07 16:03

Sample Size: 33 mL

%Moisture: TestCode 8015W RSK175 Lab ID:

0710127-004B Client Sample ID: MW-03S_10182007

**Collection Date:** 

10/18/07 14:55

Date Received:

10/18/07 19:09 10/22/07 14:39

PrepDate: BatchNo:

6427/R11597

FileID:

1-SAMP-F:\Osioct07\E102314.r

Revision: Col Type:

Corrype.					
Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
DISSOLVED GASES BY GC/FID			8015M/RSK	175M	(RSK 175)
Ethane	ND	0.0041	mg/L	1	10/23/07 12:29
Ethene	0.0054	0.0041	mg/L	1	10/23/07 12:29
Methane	0.012	0.0021	mg/L	1	10/23/07 12:29

Qualifiers:

Print Date: 10/25/07 14:07

Value exceeds Maximum Contaminant Level

Value exceeds the instrument calibration range

Analyte detected below the PQL

Prim./Conf. column %D or RPD exceeds limit

313559

B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

ND Not Detected at the Practical Quantitation Limit (PQL)

Spike Recovery outside accepted recovery limits

Page 3 of 4 Project Supervisor: Monika Santucci

## **Analytical Results**

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

StateCertNo: 10155

O'Brien & Gere Engineers, Inc. CLIENT:

**BMS-Krutulis** Project:

W Order: 0710127 WATER Matrix:

Inst. ID: GCOS 17E ColumnID: Alumina

10/23/07 16:03 Revision:

Sample Size: 32 mL

TestCode 8015W RSK175

%Moisture:

Lab ID:

FileID:

0710127-005B Client Sample ID: MW-03D_10182007

**Collection Date:** 10/18/07 15:25 Date Received: 10/18/07 19:09 10/22/07 14:39 PrepDate: 6427/R11597 BatchNo:

1-SAMP-F:\Osioct07\E102316.r

Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
DISSOLVED GASES BY GC/FID			8015M/RSK	175M	(RSK 175)
Ethane	ND	0.021	mg/L	5	10/23/07 12:52
Ethene	ND	0.021	mg/L	5	10/23/07 12:52
Methane	0.27	0.011	mg/L	5	10/23/07 12:52

Qualifiers:

Print Date: 10/25/07 14:07

Value exceeds Maximum Contaminant Level

Value exceeds the instrument calibration range

Analyte detected below the PQL

Prim./Conf. column %D or RPD exceeds limit

313561

B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

ND Not Detected at the Practical Quantitation Limit (PQL)

Spike Recovery outside accepted recovery limits

Page 4 of 4 Project Supervisor: Monika Santucci

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc. CLIENT:

8015M/RSK175M Work Order: Method:

ANALYTICAL QC SUMMARY REPORT

0710127

**BMS-Krutulis** Project:

Sample ID: LCS-6427	SampType: LCS	TestCod	e. 8015W RSI	TestCode: 8015W RSK1 Units: mg/L		Prep Date:	10/22/07		RunNo:	11596	
Client ID: ZZZZZ	Batch ID: 6427	Method:	8015M/RSK	015M/RSK1 (RSK 175)	*	Analysis Date:	s: 10/22/07		SeqNo:	313537	
Instrument: GCOS_17E	ColumnID: Alumina		J&W Alumina	ina							•
	QC Sample	č		Parent Sample	C C		: : : :		9		
Analyte	Kesult	PQL	SPK Added	Result	%KEC	LowLimit	HighLimit	%KEC LowLimit HighLimit RPD Ket Val	10V	WAYD RPDLIMIT QUAI	Qual
Ethane	0.0388	0.0044	0.0395	0	98	18	138				
Ethene	0.0304	0.0044	0.0373	0	8	20	130				
Methane	0.0194	0.0022	0.0213	0	9	30	130				

Analyte detected in the associated Method Blank 23 Qualifiers:

Not Detected at the MDC or RL

ON D

25-Oct-07

Date:

Value exceeds the instrument calibration range RPD exceeds accepted precision limit шк Not Detected at the Practical Quantitation Limit (PQL)

Analyte detected below the PQL

Spike Recovery outside accepted recovery limits

5000 Brittonfield Parkway, Suite 200

(315) 437-0200 East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

Method:

0710127 Work Order:

8015M/RSK175M

ANALYTICAL QC SUMMARY REPORT

**BMS-Krutulis** Project:

Sample ID: LCSD-6427	SampType: LCSD	TestCod	e: 8015W_RS	TestCode: 8015W_RSK1 Units: mg/L		Prep Date:	10/22/07		RunNo:	11596	
Client ID: ZZZZZ	Batch ID: 6427	Method:		8015M/RSK1 (RSK 175)	•	Analysis Date:	9: 10/22/07	•	SegNo:	313538	
Instrument: GCOS_17E	ColumnID: Alumina		J&W Alumina	ina							
	QC Sample			Parent Sample							
Analyte	Result	Pol	SPK Added	Result	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%R	%RPD RPDLimit Qual	Qual
Ethane	0.0376	0.0044	0.0395	0	95	18	138	0.0388		2.9 50	
Ethene	0.0293	0.0044	0.0373	0	79	20	130	0.0304	.,	3.6 50	
Methane	0.0191	0.0022	0.0213	0	90	30	130	0.0194	•	1.9 50	

Analyte detected below the PQL

Value exceeds the instrument calibration range RPD exceeds accepted precision limit

ш ~

Spike Recovery outside accepted recovery limits

Not Detected at the MDC or RL ON D

Not Detected at the Practical Quantitation Limit (PQL)

B Analyte detected in the associated Method Blank

Qualifiers:

25-Oct-07

## Page 1 of 5

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc.

CLIENT:

Work Order: Method:

0710127

8015M/RSK175M

ANALYTICAL QC SUMMARY REPORT

**BMS-Krutulis** Project:

Sample ID: MB-6427	SampType: MBLK	TestCod	e: 8015W_RSF	TestCode: 8015W_RSK1 Units: mg/L	щ	Prep Date:	10/22/07		RunNo:	11596	
Client ID: ZZZZZ	Batch ID: 6427	Method:		8015M/RSK1 (RSK 175)	4	Analysis Date: 10/22/07	10/22/07		SedNo:	313536	
Instrument: GCOS_17E	ColumnID: Alumina		J&W Alumina	ina							
	QC Sample			Parent Sample							
Analyte	Result	PQL	SPK Added	Result	%REC	LowLimit	-lighLimit	%REC LowLimit HighLimit RPD Ref Val	%RP	%RPD RPDLimit Qual	Qual
Ethane	QN	0.0042									
Ethene	QN	0.0042									
Methane	QN	0.0021									

Analyte detected in the associated Method Blank в С ⊃

Qualifiers:

Value exceeds the instrument calibration range ш ~ Not Detected at the Practical Quantitation Limit (PQL)

RPD exceeds accepted precision limit

Analyte detected below the PQL - S

Spike Recovery outside accepted recovery limits

Not Detected at the MDC or RL

25-Oct-07 Date:

## Life Science Laboratories, Inc. LSL 5000 Brittonfield Parkway, Suite 200

StateCertNo: 10155

**Analytical Results** 

**CLIENT:** 

O'Brien & Gere Engineers, Inc.

East Syracuse, NY 13057

(315) 437-0200

Lab ID:

0710127-004D

Project:

**BMS-Krutulis** 

Client Sample ID: MW-03S_10182007

W Order:

0710127

10/18/07 14:55

**Collection Date:** 

Matrix:

Date Received:

10/18/07 19:09

Inst. ID:

WATER IC

Sample Size: NA

PrepDate:

R11595

ColumnID:

%Moisture:

BatchNo:

Revision:

10/23/07 14:19

TestCode 300.0W

FileID:

1-SAMP-

Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
INORGANIC ANIONS BY IC			EPA 300.0		
Chloride	6.1	1.0	mg/L	1	10/19/07 10:52
Nitrate (as N)	ND	0.020	mg/L	1	10/19/07 10:52
Nitrite (as N)	ND	0.020	mg/L	1	10/19/07 10:52
Orthophosphate (as P)	ND	0.050	mg/L	1	10/19/07 10:52
Sulfate (as SO4)	38	1.0	mg/L	1	10/19/07 10:52

Qualifiers:

Print Date: 11/02/07 9:55

Value exceeds Maximum Contaminant Level

Value exceeds the instrument calibration range

Analyte detected below the PQL

P Prim./Conf. column %D or RPD exceeds limit

313479

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Practical Quantitation Limit (PQL)

S Spike Recovery outside accepted recovery limits

Project Supervisor: Monika Santucci Page 1 of 5

## Life Science Laboratories, Inc. 5000 Brittonfield Parkway, Suite 200

**Analytical Results** 

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

**CLIENT:** 

O'Brien & Gere Engineers, Inc.

Project: **BMS-Krutulis** 

W Order:

0710127 WATER

Matrix: Inst. ID:

ColumnID:

**DENVER APX-200** 

Revision: 10/23/07 13:37 Sample Size: NA

%Moisture:

TestCode TDS160.1

Lab ID:

0710127-004D Client Sample ID: MW-03S_10182007

**Collection Date:** 

10/18/07 14:55 10/18/07 19:09

Date Received: PrepDate:

BatchNo:

FileID:

R11593

1-SAMP-

Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
TOTAL DISSOLVED SOLIDS			EPA 160.1		
Total Dissolved Solids (Residue, Filterable)	29000	10	mg/L	1	10/22/07 15:30

Qualifiers:

Print Date: 11/02/07 9:55

Value exceeds Maximum Contaminant Level

E Value exceeds the instrument calibration range

Analyte detected below the PQL

Prim./Conf. column %D or RPD exceeds limit

313460

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Practical Quantitation Limit (PQL)

Spike Recovery outside accepted recovery limits

Project Supervisor: Monika Santucci

Page 2 of 5

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

**Analytical Results** 

**CLIENT:** 

O'Brien & Gere Engineers, Inc.

Project:

**BMS-Krutulis** 

W Order: Matrix:

0710127 WATER

Inst. ID:

Revision:

pH meter

ColumnID:

10/20/07 13:11

Sample Size: NA %Moisture:

TestCode ALK310.1

Lab ID:

0710127-004E Client Sample ID: MW-03S_10182007

StateCertNo: 10155

**Collection Date:** 

10/18/07 14:55

Date Received:

10/18/07 19:09

PrepDate:

R11566

BatchNo: FileID:

1-SAMP-

Col Type:					
Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
ALKALINITY, AS CACO3			EPA 310.1		
Alkalinity, as CaCO3	160	10	mg/L	1	10/20/07

Qualifiers:

Print Date: 11/02/07 9:55

Value exceeds Maximum Contaminant Level

Value exceeds the instrument calibration range

Analyte detected below the PQL

Prim./Conf. column %D or RPD exceeds limit

313066

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Practical Quantitation Limit (PQL)

S Spike Recovery outside accepted recovery limits

Project Supervisor: Monika Santucci Page 3 of 5

## Life Science Laboratories, Inc. LSL 5000 Brittonfield Parkway, Suite 200

**Analytical Results** 

East Syracuse, NY 13057

(315) 437-0200

Sample Size: NA

TestCode TOC415.1

%Moisture:

StateCertNo: 10155

CLIENT: O'Brien & Gere Engineers, Inc.

BMS-Krutulis Project:

W Order: 0710127 Matrix: WATER

Inst. ID: TOC-5000A

ColumnID:

Revision: 11/02/07 9:50

Col Type:

Lab ID:

0710127-004F Client Sample ID: MW-03S 10182007

**Collection Date:** Date Received:

10/18/07 14:55

10/18/07 19:09

PrepDate:

BatchNo:

R11735

FileID: 1-SAMP-

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
TOTAL ORGANIC CARBON			EPA 415.1		
Total Organic Carbon	1.3	1.0	mg/L	1	11/01/07 16:01

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- P Prim./Conf. column %D or RPD exceeds limit
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
- Spike Recovery outside accepted recovery limits

Print Date: 11/02/07 9:55 317063 Project Supervisor: Monika Santucci Page 4 of 5

## Life Science Laboratories, Inc. 5000 Brittonfield Parkway, Suite 200

**Analytical Results** 

East Syracuse, NY 13057

(315) 437-0200

Sample Size: NA

TestCode S376.1

%Moisture:

StateCertNo: 10155

CLIENT: O'Brien & Gere Engineers, Inc.

**BMS-Krutulis** Project:

W Order: 0710127 Matrix: WATER

Inst. ID: Buret Type A

ColumnID:

10/25/07 16:22 Revision:

Lab ID:

0710127-004G Client Sample ID: MW-03S_10182007

**Collection Date:** 

10/18/07 14:55

Date Received:

10/18/07 19:09

PrepDate:

BatchNo:

R11631

FileID:

1-SAMP-

Col Type:				
Analyte	Result Qual PQ	L Units	DF	Date Analyzed
SULFIDE		EPA 376.1		
Sulfide	ND 1.0	) mg/L	1	10/25/07 13:00

Qualifiers:

Value exceeds Maximum Contaminant Level

Value exceeds the instrument calibration range

Analyte detected below the PQL

P Prim./Conf. column %D or RPD exceeds limit

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Not Detected at the Practical Quantitation Limit (PQL)

Spike Recovery outside accepted recovery limits

Project Supervisor: Monika Santucci Page 5 of 5 Print Date: 11/02/07 9:55 314282

5000 Brittonfield Parkway, Suite 200

(315) 437-0200 East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc. CLIENT:

EPA 300.0 Method:

ANALYTICAL QC SUMMARY REPORT

0710127 Work Order:

**BMS-Krutulis** Project:

Sample ID: 0710127-004DMS SampType: MS Client ID: MW.038 10182007 Batch ID: P011808	SampType: MS Batch ID: R41595	TestCode	TestCode: 300.0W	Units: mg/L		Prep Date: Analysis Date	Prep Date: Analysis Date: 10/19/2007		RunNo:	11595	
Instrument:	ColumnID:				•				; -		
	QC Sample			Parent Sample							
Analyte	Result	Pol	SPK Added	Result	%REC	LowLimit	HighLimit F	%REC LowLimit HighLimit RPD Ref Val	%	%RPD RPDLimit Qual	Qual
Chloride	16.5	2.0	10	6.07	104	20	125				
Nitrate (as N)	0.989	0.040	_	0	66	69	113				
Nitrite (as N)	1.02	0.040	_	0	102	99	120				
Orthophosphate (as P)	1.58	0.10	-	0.0256	156	65	108				S
Sulfate (as SO4)	47.6	2.0	10	37.6	100	75	125				

-- v Value exceeds the instrument calibration range <u>교</u> ~ Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank

RPD exceeds accepted precision limit

Spike Recovery outside accepted recovery limits Analyte detected below the PQL

> Not Detected at the MDC or RL g p

8

Qualifiers:

02-Nov-07 Date:

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

(315) 437-0200

EPA 300.0 Method:

ANALYTICAL QC SUMMARY REPORT

0710127 Work Order:

BMS-Krutulis Project:

Sample ID: 0710127-004DMSD SampType: MSD Client ID: MW-03S_10182007 Batch ID: R115	SampType: MSD Batch ID: R11595	TestCod Method:	TestCode: 300.0W Method: EPA 300.0	Units: mg/L		Prep Date: Analysis Date: 10/19/2007	10/19/20		RunNo: 1 SeqNo: 3	11595 313471	:
Instrument:	ColumnID:										
	QC Sample			Parent Sample							
Analyte	Result	PaL	SPK Added	Result	%REC	%REC LowLimit HighLimit RPD Ref Val	<b>l</b> ighLimit	RPD Ref Val	%RPI	%RPD RPDLimit Qual	Qual
Chloride	16.6	2.0	10	6.07	105	20	125	16.5		17	
Nitrate (as N)	0.982	0.040	-	0	98	69	113	0.989		15	
Nitrite (as N)	1.02	0.040	-	0	102	99	120	1.02	Ū	17	
Orthophosphate (as P)	1.58	0.10	-	0.0256	156	65	108	1.58		15	S
Sulfate (as SO4)	47.9	2.0	10	37.6	103	75	125	47.6		15	

Value exceeds the instrument calibration range ш & B Analyte detected in the associated Method Blank

ND Not Detected at the Practical Quantitation Limit (PQL)

U Not Detected at the MDC or RL Qualifiers:

RPD exceeds accepted precision limit

Spike Recovery outside accepted recovery limits

Analyte detected below the PQL

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

CLIENT: O'Brien & Gere Engineers, Inc.

(315) 437-0200

EPA 415.1 Method:

ANALYTICAL QC SUMMARY REPORT

0710127 Work Order:

BMS-Krutulis

Project:

			7
		Qual	
11735 317064		%RPD RPDLimit Qual	
		%RPD	
RunNo: SeqNo:		v	
200		%REC LowLimit HighLimit RPD Ref Val	
e: 11/1/20		HighLimit	125
Prep Date: Analysis Date: 11/1/2007		LowLimit	75
		%REC	101
Units: mg/L		Parent Sample Result	1.29
TestCode: TOC415.1 Method: EPA 415.1		SPK Added	10
TestCode: Method:		Pol	1.0
MS R11735		QC Sample Result	11.4
	ColumnID:	0C 8	
Sample ID: 0710127-004FMS Client ID: MW-03S_10182007			ic Carbon
Sample ID: Client ID:	Instrument:	Analyte	Total Organic Carbon

Analyte detected below the PQL Value exceeds the instrument calibration range Spike Recovery outside accepted recovery limits

RPD exceeds accepted precision limit

ы ч

Not Detected at the MDC or RL a Q D

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank

Qualifiers:

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

CLIENT: O'Brien & Gere Engineers, Inc.

(315) 437-0200

EPA 415.1 0710127 Method:

ANALYTICAL QC SUMMARY REPORT

Work Order:

BMS-Krutulis Project:

Sample ID: 07	710127-004FMSD	Samula ID: 0740427-004FMSD SampType: MSD	Tectode	TeetCode: TOCA1E	1 lnite: mad!		100					
Client ID: M' Instrument:	Client ID: MW-03S_10182007 Instrument:	Batch ID: R11735 ColumnID:	Method:	EPA 415.1	Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello Sello	- <b>4</b>	are: Analysis Date: 11/1/2007	11/1/2007	Run Seq	SeqNo: 317	11735 317065	
Analyte	į	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC	%REC LowLimit HighLimit RPD Ref Val	ghLimit RF	od Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Total Organic Carbon	Carbon	11.3	1.0	10	1.29	100	75	125	11.4	9.0	20	

Qualifiers:	В	Analyte detected in the associated Method Blank	ш	Value exceeds the instrument calibration range	J Analyte detected	I below the PQL
	2	Not Detected at the Practical Quantitation Limit (PQL)	ĸ	RPD exceeds accepted precision limit	S Spike Recovery	outside accepted recovery limits
	Ω	Not Detected at the MDC or RL				

02-Nov-07

#### Page 8 of 19

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

CLIENT: O'Brien & Gere Engineers, Inc.

(315) 437-0200

Method:

0710127 Work Order:

EPA 310.1

ANALYTICAL QC SUMMARY REPORT

BMS-Krutulis Project:

			:							
Sample ID: 0710127-004EDUP SampType: DUP	SampType: DUP		TestCode: ALK310.1	Units: mg/L	Pre	Prep Date:		RunNo:	11566	
Client ID: MW-03S_10182007	, Batch ID: R11566	566 Method:	<b>EPA 310.1</b>		An	Analysis Date: 10/	10/20/2007	SegNo:	313067	
Instrument:	ColumnID:									
	QC Sample	Φ		Parent Sample						
Analyte	Result	PQL	SPK Added	Result	%REC L	owLimit HighLi	%REC LowLimit HighLimit RPD Ref Val		%RPD RPDLimit Qual	Qual
Alkalinity, as CaCO3	_	158 10					156		1.3 10	

Analyte detected below the PQL - s Value exceeds the instrument calibration range RPD exceeds accepted precision limit 日氏 Analyte detected in the associated Method Blank

B Analyte detected in the associated Method Blank

ND Not Detected at the Practical Quantitation Limit (PQL)

U Not Detected at the MDC or RL

Spike Recovery outside accepted recovery limits

Not Detected at the MDC or RL

Qualifiers:

02-Nov-07

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

(315) 437-0200

EPA 300.0 Method:

ANALYTICAL QC SUMMARY REPORT

**BMS-Krutulis** 0710127 Work Order: Project:

Sample ID: LCS-R11595	SampType: LCS	TestCode	TestCode: 300.0W	Units: mg/L		Prep Date:		RunNo	11595		
Client ID: ZZZZZ	Batch ID: R11595	Method:	EPA 300.0			Analysis Date	Analysis Date: 10/19/2007	SeqNo:	313478		
Instrument:	Courmin										
	QC Sample			Parent Sample							
Analyte	Result	Pol	SPK Added	Result	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	Ref Val	%RPD RPDLimit Qual	Limit	Qual
Chloride	4.79	1.0	လ	0	96	85	115				
Nitrate (as N)	0.470	0.020	0.5	0	94	85	115				
Nitrite (as N)	0.491	0.020	0.5	0	86	85	115				
Orthophosphate (as P)	0.462	0.050	0.5	0	95	85	115				
Sulfate (as SO4)	4.63	1.0	2	0	93	85	115				

ш ~ Analyte detected in the associated Method Blank Qualifiers:

Not Detected at the Practical Quantitation Limit (PQL)

S ⊃

Not Detected at the MDC or RL

Value exceeds the instrument calibration range RPD exceeds accepted precision limit

Analyte detected below the PQL

Spike Recovery outside accepted recovery limits

02-Nov-07

#### Page 14 of 19

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

(315) 437-0200

EPA 160.1 Method:

ANALYTICAL QC SUMMARY REPORT

0710127 Work Order:

**BMS-Krutulis** Project:

Sample ID: LCS-R11593	SampType: LCS	TestCode	TestCode: TDS160.1	Units: mg/L		Prep Date:		쬬	RunNo:	11593	
Client ID: ZZZZZ	Batch ID: R11593	Method:	EPA 160.1			Analysis Date	Analysis Date: 10/22/2007	Š	SeqNo:	313451	
Instrument:	ColumnID:										
	QC Sample			Parent Sample							
Analyte	Result	PQ	SPK Added	Result	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	D Ref Val	%RF	%RPD RPDLimit Qual	Qual
Total Dissolved Solids (Residue, Filterable)	900	10	200	0	100	06	110				

Value exceeds the instrument calibration range В К Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank в 🖁 ⊃ Qualifiers:

RPD exceeds accepted precision limit

Spike Recovery outside accepted recovery limits Analyte detected below the PQL

Not Detected at the MDC or RL

02-Nov-07

#### Page 6 of 19

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

O'Brien & Gere Engineers, Inc.

CLIENT:

EPA 310.1 0710127 Method:

ANALYTICAL QC SUMMARY REPORT

Work Order:

**BMS-Krutulis** Project:

Sample ID: LCS-R11566 Client ID: ZZZZZ Instrument:	SampType: LCS Batch ID: R11566 ColumnID:	TestCode Method:	TestCode: ALK310.1 Method: EPA 310.1	Units: mg/L	шч	Prep Date: Analysis Date: 10/20/2007	0/20/2007	RunNo: SeqNo:	11566 313052	
Analyte	QC Sample Result	Pol	SPK Added	Parent Sample Result	%REC	LowLimit High	%REC LowLimit HighLimit RPD Ref Val		%RPD RPDLimit Qual	Qual
Alkalinity, as CaCO3	48.0	10	20	0	96	06	110			

Value exceeds the instrument calibration range <u>ы</u> ж B Analyte detected in the associated Method Blank

ND Not Detected at the Practical Quantitation Limit (PQL)

U Not Detected at the MDC or RL Qualifiers:

RPD exceeds accepted precision limit

Spike Recovery outside accepted recovery limits Analyte detected below the PQL r s

Not Detected at the MDC or RL

02-Nov-07

#### Page 10 of 19

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

CLIENT: O'Brien & Gere Engineers, Inc.

(315) 437-0200

Method:

Project:

BMS-Krutulis 0710127 Work Order:

EPA 376.1

ANALYTICAL QC SUMMARY REPORT

_					1
				Qual	
11631	314280			%RPD RPDLimit Qual	
RunNo: 11	SeqNo: 31			%RPD	
R				RPD Ref Val	
	10/25/20			lighLimit F	115
Prep Date:	Analysis Date: 10/25/2007			%REC LowLimit HighLimit RPD Ref Val	85
	•			%REC	100
Units: mg/L			Parent Sample	Result	0
S376.1	EPA 376.1			SPK Added	2.5
TestCode: <b>S376.1</b>	Method:			Pol	1.0
SampType: LCS	Batch ID: R11631	ColumnID:	QC Sample	Result	2.50
Sam	Batch	Colur			
Sample ID: LCS-R11631	22222				
Sample ID	Client ID: ZZZZZ	Instrument		Analyte	Sulfide

Analyte detected below the PQL	Spike Recovery outside accepted re
_	S
Value exceeds the instrument calibration range	RPD exceeds accepted precision limit
ш	×
Analyte detected in the associated Method Blank	Not Detected at the Practical Quantitation Limit (PQL)
В	Ω
Qualifiers:	

RPD exceeds accepted precision limit

Spike Recovery outside accepted recovery limits

ND Not Detected at the Practical Quantitation Limit (PQL) U Not Detected at the MDC or RI.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

(315) 437-0200

EPA 376.1 Method:

ANALYTICAL QC SUMMARY REPORT

BMS-Krutulis

Project:

0710127 Work Order:

Sample ID: LCSD-R11631	SampType: LCSD	TestCode	TestCode: S376.1	Units: mg/L	ш.	Prep Date:		RunNo:	11631	<u>.</u>	
Client ID: ZZZZZ	Batch ID: R11631	Method:	EPA 376.1		1	Analysis Date: 10/25/2007	10/25/2007	SeqNo:	314281	181	
Instrument:	ColumnID:										
	QC Sample			Parent Sample							
Analyte	Result	PQL	SPK Added	Result	%REC	%REC LowLimit HighLimit RPD Ref Val	hLimit RPD I	રef Val	%RPD	%RPD RPDLimit Qual	Qual
Sulfide	2.40	1.0	2.5	0	96	85	115	2.5	4.1	20	

Value exceeds the instrument calibration range ш ~ Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank

Not Detected at the MDC or RL

<u>8</u> > М

Qualifiers:

02-Nov-07

Date:

RPD exceeds accepted precision limit

- s

Spike Recovery outside accepted recovery limits

Analyte detected below the PQL

5000 Brittonfield Parkway, Suite 200 East Syracuse, NY 13057 CLIENT: O'Brien & Gere Engineers, Inc.

(315) 437-0200

EPA 415.1 Method:

ANALYTICAL QC SUMMARY REPORT

Work Order:

0710127

BMS-Krutulis Project:

Sample ID: LCS-R11735	SampType: LCS	TestCode:	TOC415.1	TestCode: TOC415.1 Units: mg/L	Ь	Prep Date:	Ä	RunNo:	11735	
Client ID: ZZZZZ	Batch ID: R11735	Method:	EPA 415.1		∢	Analysis Date: 11/1/2007	•	SeqNo:	317045	
Instrument:	ColumnID:									
	QC Sample			Parent Sample						
Analyte	Result	PoL	SPK Added	Result	%REC	%REC LowLimit HighLimit RPD Ref Val	RPD Ref Val	%R	%RPD RPDLimit Qual	Qual
Total Organic Carbon	10.2	1.0	10	0	102	90 110				

Analyte detected below the PQL

Value exceeds the instrument calibration range RPD exceeds accepted precision limit

ND Not Detected at the Practical Quantitation Limit (PQL) U Not Detected at the MDC or RL Analyte detected in the associated Method Blank

Qualifiers:

Not Detected at the MDC or RL

02-Nov-07

Date:

Spike Recovery outside accepted recovery limits - s

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

(315) 437-0200

EPA 300.0 Method:

ANALYTICAL QC SUMMARY REPORT

0710127 Work Order: **BMS-Krutulis** 

Project:

Sample ID: MB-R11595	SampType: MBLK	TestCode	TestCode: 300.0W	Units: mg/L		Prep Date:		RunNo:	11595		
Client ID: ZZZZZ Instrument:	Batch ID: R11595 ColumniD:	Method:	EPA 300.0			Analysis Date: 10/19/2007	10/19/2007	SeqNo:	313477	4	
Analyte	QC Sample Result	PQL	SPK Added	Parent Sample Result	%REC	LowLimit Hig	%REC LowLimit HighLimit RPD Ref Val		%RPD R	%RPD RPDLimit Qual	Qual
Chloride	QN	1.0									
Nitrate (as N)	QN	0.020									
Nitrite (as N)	QN	0.020									
Orthophosphate (as P)	QV	0.050									
Sulfate (as SO4)	Q	1.0									

Value exceeds the instrument calibration range ш 🕊 Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank

RPD exceeds accepted precision limit

Spike Recovery outside accepted recovery limits Analyte detected below the PQL

Not Detected at the MDC or RL а <u>Q</u> л

Qualifiers:

02-Nov-07

5000 Brittonfield Parkway, Suite 200

(315) 437-0200 East Syracuse, NY 13057

CLIENT: O'Brien & Gere Engineers, Inc.

EPA 160.1 0710127 Work Order: Method:

ANALYTICAL OC SUMMARY REPORT

**BMS-Krutulis** Project:

Qual %RPD RPDLimit 313450 11593 RunNo: SeqNo: %REC LowLimit HighLimit RPD Ref Val Analysis Date: 10/22/2007 Prep Date: Units: mg/L Parent Sample Result EPA 160.1 TestCode: TDS160.1 SPK Added Method: Pal 9 R11593 2 QC Sample Result SampType: MBLK ColumnID: Batch ID: Total Dissolved Solids (Residue, Filterable) Sample ID: MB-R11593 22222 Instrument: Client ID: Analyte

Spike Recovery outside accepted recovery limits Analyte detected below the PQL S

ND Not Detected at the Practical Quantitation Limit (PQL)
U Not Detected at the MDC or RL

Analyte detected in the associated Method Blank

മ

Qualifiers:

Value exceeds the instrument calibration range RPD exceeds accepted precision limit 日民

#### Page 5 of 19

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

(315) 437-0200 East Syracuse, NY 13057

CLIENT: O'Brien & Gere Engineers, Inc.

0710127 Work Order: Method:

ANALYTICAL QC SUMMARY REPORT

BMS-Krutulis

Project:

EPA 310.1

Qual %RPD RPDLimit 313051 11566 RunNo: SeqNo: %REC LowLimit HighLimit RPD Ref Val Analysis Date: 10/20/2007 Prep Date: Units: mg/L Parent Sample Result **EPA 310.1** TestCode: ALK310.1 SPK Added Method: Раг SampType: MBLK Batch ID: R11566 R11566 욷 QC Sample Result ColumnID: Sample ID: MB-R11566 Alkalinity, as CaCO3 22222 Instrument: Client ID: Analyte

J Analyte detected below the PQL	Spike Recovery outside accepted recovery limits
Value exceeds the instrument calibration range	RPD exceeds accepted precision limit
ш	×
Analyte detected in the associated Method Blank	Not Detected at the Practical Quantitation Limit (PQL)
В	N ON
Qualifiers:	

ND Not Detected at the Practical Quantitation Limit (PQL)
U Not Detected at the MDC or RL Not Detected at the MDC or RL

02-Nov-07

#### Page 9 of 19

# Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

CLIENT: O'Brien & Gere Engineers, Inc.

(315) 437-0200

Method:

0710127 Work Order:

EPA 376.1

ANALYTICAL QC SUMMARY REPORT

**BMS-Krutulis** Project:

Sample ID: MB-R11631	SampType: MBLK	TestCode	TestCode: S376.1	Units: mg/L	Prep Date:	ate:		RunNo:	11631	
Client ID: ZZZZZ	Batch ID: R11631	Method:	EPA 376.1		Analysi	Analysis Date: 10	10/25/2007	SeqNo:	314279	
Instrument:	ColumnID:									
	QC Sample			Parent Sample						
Analyte	Result	PQL	SPK Added	Result %R	EC LOWL	imit HighL	%REC LowLimit HighLimit RPD Ref Val		%RPD RPDLimit Qual	Qual
Sulfide	QN	1.0								

Value exceeds the instrument calibration range ਜ਼ ਨ Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank

Not Detected at the MDC or RL

B ND

Qualifiers:

02-Nov-07

Date:

RPD exceeds accepted precision limit

Spike Recovery outside accepted recovery limits Analyte detected below the PQL

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

(315) 437-0200

EPA 415.1 Method:

ANALYTICAL QC SUMMARY REPORT

Work Order:

0710127

**BMS-Krutulis** 

Project:

Sample ID: MB-R11735	SampType: MBLK	TestCode:	TestCode: TOC415.1	Units: mg/L	P	Prep Date:		RunNo:	11735	
Client ID: ZZZZZ	Batch ID: R11735	Method:	EPA 415.1		Ā	Analysis Date: 1	11/1/2007	SeqNo:	317044	-
Instrument:	ColumnID:									
	QC Sample			Parent Sample						·
Analyte	Result	PQL	SPK Added	Result	%REC	LowLimit Highl	%REC LowLimit HighLimit RPD Ref Val		%RPD RPDLimit Qual	Qual
Total Organic Carbon	QN	1.0								

Value exceeds the instrument calibration range 日义 Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank

Not Detected at the MDC or RL

S D Ω

Qualifiers:

02-Nov-07

Date:

~ ~

Spike Recovery outside accepted recovery limits

Analyte detected below the PQL

RPD exceeds accepted precision limit

**Analytical Results** 

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

(315) 437-0200

StateCertNo: 10155

**CLIENT:** 

O'Brien & Gere Engineers, Inc.

Project:

BMS-Krutulis

W Order:

0710127

Matrix:

WATER

Inst. ID:

ICAP 61E

ColumnID:

10/31/07 9:14

%Moisture: TestCode 6010W05

Sample Size: 50 mL

Lab ID:

0710127-004C Client Sample ID: *MW-03S_10182007* 

**Collection Date:** 

10/18/07 14:55

Date Received:

10/18/07 19:09

PrepDate: BatchNo:

10/24/07 0:00 6441/R11693

FileID:

1-SAMP-31826

Revision: Col Type:

Analyte	Result Qu	al PQL	Units	DF	Date Analyzed
TOTAL METALS BY ICP			SW6010B		(SW3005A)
Calcium	52	1.0	mg/L	1	10/26/07 13:30
Iron	3.3	0.050	mg/L	1	10/26/07 13:30
Magnesium	19	1.0	mg/L	1	10/26/07 13:30
Manganese	0.071	0.050	mg/L	1	10/26/07 13:30
Potassium	ND	5.0	mg/L	1	10/26/07 13:30
Sodium	3.0	1.0	mg/L	1	10/26/07 13:30

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Value exceeds the instrument calibration range
- Analyte detected below the PQL
- Prim./Conf. column %D or RPD exceeds limit
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Practical Quantitation Limit (PQL)
  - Spike Recovery outside accepted recovery limits

Page 1 of 1

5000 Brittonfield Parkway, Suite 200

(315) 437-0200 East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc. CLIENT:

ANALYTICAL QC SUMMARY REPORT

SW6010B 0710127 Method: Work Order:

<b>BMS-Krutulis</b>	
Project:	

Sample ID: LCS-6441	SampType: LCS	TestCode	TestCode: 6010W05	Units: mg/L		Prep Date:	10/24/07		RunNo:	11693		
Client ID: ZZZZZ	Batch ID: 6441	Method:	SW6010B	(SW3005A)	`	Analysis Date: 10/26/07	e: 10/26/0		SedNo:	316007		
Instrument:	ColumnID:											
	QC Sample			Parent Sample								
Analyte	Result	PQL	SPK Added	Result	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%	%RPD RPDLimit Qual	g g	ler
Calcium	8.97	1.0	10	0	06	85	115					
Iron	0.934	0.050	-	0	93	85	115					
Magnesium	9.18	1.0	10	0	95	85	115					
Manganese	0.185	0.050	0.2	0	92	85	115					
Potassium	9.41	5.0	10	0	98	85	115					
Sodium	9.50	1.0	10	0	92	85	115					

 В	Analyte detected in the associated Method Blank	Щ	Value exceeds the instrument calibration range	ŗ	Analyte
g	Not Detected at the Practical Quantitation Limit (PQL)	જ	RPD exceeds accepted precision limit	S	Spike R

Recovery outside accepted recovery limits te detected below the PQL

Not Detected at the MDC or RL

Qualifiers:

01-Nov-07 n

#### Page 1 of 2

## Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200

East Syracuse, NY 13057

O'Brien & Gere Engineers, Inc.

CLIENT:

(315) 437-0200

SW6010B Method:

ANALYTICAL QC SUMMARY REPORT

Work Order:

0710127

**BMS-Krutulis** Project:

Sample ID: MB-6441	SampType: MBLK	TestCode	TestCode: 6010W05	Units: mg/L		Prep Date:	10/24/07	RunNo:	lo: 11693	33	
Client ID: ZZZZZ	Batch ID: 6441	Method:	SW6010B	(SW3005A)	•	Analysis Date:	10/26/07	SeqNo:	0: 316006	900	
Instrument:	ColumnID:										
	QC Sample			Parent Sample							
Analyte	Result	Pal	SPK Added	Result	%REC	%REC LowLimit HighLimit RPD Ref Val	ghLimit RPI	D Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Calcium	Q	1.0				C					
Iron	Q	0.050									
Magnesium	Q	1.0									
Manganese	QN	0.050									
Potassium	QN	5.0									
Sodium	QN	1.0									

Analyte detected in the associated Method Blank m Q p Qualifiers:

Not Detected at the Practical Quantitation Limit (PQL)

RPD exceeds accepted precision limit шк

Value exceeds the instrument calibration range

Spike Recovery outside accepted recovery limits Analyte detected below the PQL

Not Detected at the MDC or RL

#### Life Science Laboratories, Inc. Brittonfield Lab

5000 Brittonfield Parkway, Suite 200 East Syracuse, New York 13057

(315) 437-0200

Chain of Custody

Client: O'Brien & Gere									Analy	Analysis/Method	thod		
Project: BMS - Kontulis							_	·					<u> </u>
Sampled by: Paul Frense / Edwin Rohn	Rah	2					_	_	_	_			·
-	Phone #	437	-6100			760		_	_	_	_		
Sample Description	scription					8 -	K	tals	) 50		الباغاء		
Sample Location	Date	Time Collected	Sample Matrix	Comp. or Grab	No. of Containers	DOV	28	Me	II	AT	10T	Comments	
MW-06D- 10182007	10-18-01	1040	water	Grab	S	×	×						
MS-10182007	10-18-07	०००	wher	Grab	3	×						Callected from Mb/6D	MEDE
MSD-1018 2007	10-81-01	1040	Notes	Grab	3	×						collected from Mis 6D	3
MW-065_ 1618 2007	10-18-01	1138	water	Grab	15)	×	×						
FD-10182007	10-18-07	I	water	Grab	3	×							
Mil-035-10182007	10-16-07	1455	Water	Crab	ij	×	イ	义	メメ	×	×		
MW-03D 10182007	10-18-07	1525	water	Grab	13	×	×						
TB_10182007	10-18-07	1	Water	1	7	×							
													T
Relinquished by: Paul A. Thur	Da	Date: 10-18-07		Time: 1908	Received by:	l by:					Date:	Time:	Γ
Relinquished by:	Da	Date:	Time:		Received by:	l by:					Dafe:	Time:	
Relinquished by:	Da	Date:	Time:		Received	Received by Laby	1	0	K	D	Date: 10	Date: 10/19/67 Time: 0800	
Shipment Method:			2		Airbill Number:	mber:			,				T
													7

Turnaround Time Required:
Routine
Rush (Specify)

Comments:

Cooler Temperature: 3.6 °C

Original - Laboratory Copy - Client

#### Sample Receipt Checklist

Client Name:	OBG-MS			Date and Ti	me Received:	10/18/2007 7:09:00 PM
Work Order N	lumber 0710127			Received by	y: ads	
Checklist com	npleted by:	Date	10/22/07	Reviewed	by: MS	10/22/07
Matrix:		Carrier name:	Hand Delivered			
Shipping cont	ainer/cooler in good con	dition?	Yes 🗸	No 🗌	Not Present	
Custody seals	s intact on shipping conta	ainer/cooler?	Yes	No 🗌	Not Present	✓
Custody seals	s intact on sample bottle	s?	Yes	No 🗆	Not Present	V
Chain of custo	ody present?		Yes 🗸	No 🗌		
Chain of cust	ody signed when relinqui	ished and received?	Yes 🗸	No 🗌		
Chain of cust	ody agrees with sample	labels?	Yes 🗸	No 🗌		
Samples in p	roper container/bottle?		Yes 🗸	No 🗌		
Sample conta	ainers intact?		Yes 🗸	No 🗌		
Sufficient san	nple volume for indicated	d test?	Yes 🗸	No 🗌		
All samples re	eceived within holding tir	me?	Yes 🗸	No 🗌		
Container/Ter	mp Blank temperature in	compliance?	Yes 🗸	No 🗌		
Water - VOA	vials have zero headspa	ice?	Yes 🗸	No 🗌	No VOA vials s	ubmitted
	cceptable upon receipt?		Yes 🗸	No 🗌	Not Applicabl	е
<u>рН</u> >12	<u>Preservative</u> NaOH	pH Acceptable Yes ✓ N   NA   NA	Sample ID	<u>Vo</u>	lume of Preserva	ative added in Lab.
<2	HNO3	Yes V N NA				
<2	HSO4	Yes N NA				
<2	1:1 HCL	Yes V N NA				
5-0	Pest/PCBs (608/8081)	Yes N NA V				

Comments:

10/22 @ 9 AM: per Paul Freyer-request 48 hour TAT on 8260.

Corrective Action::

#### CASE FILE FORM

PROGRAM INFORMATION		
CLIENT:	DIV.	REF. No
PROGRAM:	*	
CUSTODY SEAL:INT	ACTNOT,INTACT	NA
AFTER HOURS CUSTODY		
RELINQUISHED BY	RECEIVEDIBY	
GUARD TO COOLER: DATE	TIME SECURITY GUARD:  9 09 SHIFL  TIME SAMPLE CUSTODIAN  115 June June	DATE TIME 1909  DATE TIME 1909
COMMENTS/DISCREPANCIES:		01
	- Coller July	10/19/02, 0800
RESOLUTION/CLIENT COMMEN	T:	
SIGNED:		
DATE:	QA/QC APRO	VAL:
	SIGNED:	
	DATE:	

Appendix C

**Ground Water Sampling Logs** 

O'Brien	& Gere Engine	ers, Inc.		Low F	low Groun	d Water S	ampling Lo	og		
	16-18-07	Person	inel	2F / E	PF/ER		Simony	7500		
	BMS Krutulis	- Evacua	ation Method		Whole Punce		MW-35	<u></u>		
	Kirkvalle, W	- Sampli	ng Method while pump			- Project#	40312.008.004			
Well informa			<del></del>							
Depth of Well		47 ft.		* Measure	ments taken fror	n				
Depth to Wate		30ft.		1110000		Top of Well Ca	sing			
Length of Wat		17 ft.				Top of Protective Casing				
Depth to Intak		ft.				(Other, Specify	-			
		7-7				<del>-</del>				
Start Purge Ti				I	la u u	Blanchad	1			
Elapsed	Depth				Oxidation	Dissolved	T.,_Lidik,	Flow		
Time	To Water	Temperature		Conductivity	Reduction	Oxygen	Turbidity			
(min)	( feet )	( ¹ C )	pН	(m3/cm)	Potential	(mg/l)	(NTU)	Rate (ml/min).		
0 HW	1,30	14, 61	7.46	0.355	-79 8	2.99	450	34 <i>0</i> 300		
1422 2	1139	14.60	7.35	0.354	85.8	2.70	550			
1425 5	1,90	14.22	7.35	8.353	-91.6 -95.7	2.26	700	<u>200</u> 300		
1430 10	1.86	14.05	7.32	0.352			400	300		
1432 12		13.82	7.31	0.352	~101.9	1.55	550	300		
1434 14	1,03	13,763	7,30	0.352	~104.4	0.58	450	1400		
1438 /8	2.03	13,29	7 36	0.352	-115.9	0.55	450	400		
1942 22	2.00	13.36	7.31	0.352	-121,4	0.54	270	400		
1444 24	2.8\	13.31	7.30	0,351	-121.8	0.50	220	460		
1448 28	7.01	13, 47	7,30	0.351	-121.5	0,51	220	400		
	1.98	13.40	7.32	0.351	-124,7	0.48	240	4100		
1450 30	11-15	12:10	<u>ب د ، ،</u>	<u>-</u>		1				
							1			
		<del> </del>					1			
	······································									
					]					
					<u></u>					
				<u> </u>			<del> </del>			
							<u> </u>			
			·		<u></u>	<u> </u>				
End Purge Tir	me: /450							Titration C		
Water sampi	e:									
Time collecte	d: 14< \$			Total volume of	purged water re	moved:	_ S gal			
	earance at start				Physical appea	rance at samplir				
r ilysical appe	Color Cloudy				, , , , , , , , , , , , , , , , , , , ,	Color	Clear			
	Odor Stuby Ch					Odor	Shahl Ol	oc no cad		
Sheen/Free P					Sheen/Fr	ee Product	Slight s	6. b. c.		
Field Test Re	seulte: Diseasus	d ferrous iron:								
rielu Test Re		d total iron:			-					
		a total iron: d total manganese			-					
	Dissolve	o total manganese	·.		-					
Analytical Pa	rameters:				i					
Container	Siza Conta	iner Type	# Collec	ed Fie	ld Filtered	Preservative Container pH				
Container		niier rype	# COREC		n Interes			Container pri		
2000 cm 2			i			H NO-				
250 ml	ml Plastic		1			(11/4)				
<b>49</b> 40	on VOA	<u></u>	2	<del></del>		AZin Acetats	1 1/2/4	<del></del>		
·500 m	1 Plastic				\	16. 1	,			

O'Brien	& Gere Engine	ers, Inc.		Low F	low Groun	nd Water Sa	mpling Lo	g		
Date	10-18	Persor	nnel	ER 1	OF	Weather Swan 72°F				
Site Name	BMS Krutu			· Pump	 Well #	MW-35				
AMERICAN AND THE PROPERTY.	•				×	-		mmi (		
Site Location	Kirkville, N	N Sampi	ing Method	Whale	Pump	_ 110]ect #	0312,008,	00-1		
Well information:										
Depth of Well *ft. * Measurements taken from										
Depth to Wate	er* 5.93	ft.			X	Top of Well Cas				
Length of Wa	ter Column 26.0					Top of Protective	∍ Casing			
Depth to Intake *ft. (Other, Specify)										
Start Purge Time:										
Elapsed	Depth	1 1	1	Ι	Oxidation	Dissolved		T		
Time	To Water	Temperature		Conductivity	Reduction	Oxygen	Turbidity	Flow		
( )	( )	( )	pН	( )	Potential	(mg/l)	(NTU)	Rate (ml/min).		
1400		/								
5	9,69	11,54	7.13	.912	109.8	1048,48	65			
10	10.55	11.63	7.03	, 987	115,5	158	320	600		
15	9,77	11.79	7.02	.967	110.0	,50	600	490		
20	9.35	11.61	7.05	.915	95.9	,46	450	700		
25	9,16	11.64	7.06	.87/	84.0	145	550	540		
30	9,20	11.54	7.08	.832	49.8	,30	320 320	630 450		
35 40	9,32	11.47	7.01	,801 ,777	41.3	119	140	530		
45	8,90	11,54	7,12	760	29.3	,23	55	370		
50	8.73	11,56	7.14	745	23.7	1260	18	500		
55	9,05	11.53	7.14	.725	16.7	,25	100	260		
60	8.79	11.69	7.16	.709	12.7	,21	110	370		
65	8,43	11.80	7.19	.693	8,4	,24	85	190		
70	7.88	12.15	7.17	.688	5,1	,20	80	680		
80	8,82	11.45	7.19	1669	1./	.18	50	450		
					<b></b>	·				
	***************************************									
End Purge Tin	ne: <u>1922</u>		10	8 ppm DE	)					
Water sample				, ,						
Time collected				Total volume of	purged water re	moved:	160	0.6		
	arance at start			Total Volumo of	200	rance at sampling	10 9	47157		
	Color <u>Cloudy</u>	,			riiysicai appea	Color	16 g			
	Odor Alme					Odor	Atome.			
Sheen/Free Product    None   None										
Field Test Results: Dissolved ferrous iron:										
Dissolved total iron:										
Dissolved total manganese:										
Analytical Parameters:										
Container Size Container Type			# Collecte	# Collected Fiel		Preservati	ve la la la la la la la la la la la la la	Container pH		
				# Concoled Fiel		110301141115				

O'Brien	& Gere Engine	ers. Inc.		Low F	low Groun	d Water Sa	mpling Log	 !	
Date							Shary 60		
Site Name	Kontulis BIT	•		Rungo	- Well#	MM-82			
				11	- Project#	40312,008.	cou		
	Kutulis Prop. K	WKNIE COMP				-			
Well informa									
Depth of Well	* 23.	<u>[4</u> ft.		* Measure	ments taken from	1			
Depth to Wate					X	Top of Well Casing			
Length of Wa						Top of Protective Casing (Other, Specify)			
Depth to Intak	ie *	<u>,                                     </u>			L	(Other, Specily)			
Start Purge Ti	ime: 1020		·						
Elapsed	Depth	13%		+ 207.	Oxidation	Dissolved	10%		
Time	To Water	Temperature	ه، ا	Conductivity	Reduction 1/2	Oxygen	Turbidity "	Flow	
(min)	( 64 )	( oc )	pН	(n.43/cm)	Potential ₩V	(mg/l) <u>†</u> 10°%	(NTU)	Rate (ml/min).	
0 1026	10 96	11,71	6.80	17 \$		2.85		300 ml/m m	
<b>15</b> 15	11.45	11.70	6.82	1.326	86.5	2.85	150	300 ml/mo	
10	11.8%	11.69	10.74	1.318	94.5	1,46	200	300mi/m	
2	11.67	11.71	<u>(4.73</u>	1,332	104.7	1,92	320	360	
16	11,52	11.81	(#.70	1.376	(06.6	2,53	340	360	
221	11,68	11.45	6.70	1.390	112.5	2,80	ક્કુંવે	360	
40	11.43	11.49	1:.70	1,373	119.3	リィフダ	550	360	
42	11 .50	11,65	6:21	1.362	121.6	1.60	५५०	360	
46	11.83	11.65	(4.7)	1 . 354	123.6	1.60	450	360	
<u>\$</u> ও	11.72	فعيلا	(0.71	1.354	124.0	ابود	370	370 370	
(eO	11.67	11:69	6.71	1.345	120.0	1.41	320 270	<u> </u>	
62	11.84	11.62	<u>(e.71</u>	1,343	126.8	1,38	210	370	
७५	11.88	11.53	4.7(	1.342	127.1	6,41		370	
	· · · · ·								
				<u> </u>	ļ			<u> </u>	
			<del></del> .	<del>-</del> -				<del> </del>	
			-					<u> </u>	
					-				
				<del></del>		Ţ-	V Theati	) · <u> </u>	
End Purge Tin	ne: $1132$					V	O Titration	m	
Water sample	<b>9</b> :						G.	,	
Time collected	1: 11.38			Total volume of	purged water ren	noved:	8 42		
Physical appe	arance at start				Physical appear	ance at sampling	,		
	Color Pala Bio	~3~				Color	New Pale Bro	wen	
	Odor Siisht on	ernical				Odor	2 Haut Chre.	encoil	
Sheen/Free P	roduct <u>faint Sh</u>	4 P W			Sheen/Fre	e Product	faint she	<u>L</u> e my	
F:-!-! T4 D-	aultar Diagobiae	I ferrous iron:							
Field Test Re		i terrous iron: I total iron:			-				
		i total manganese							
	Dissolved	total manganese			-				
Analytical Pa	rameters:								
Container Size Container Type			# Collected Fiel		d Filtered	Preservat	Preservative Contain		
- Common C	Container Type		# Collected Fiel						
								<del></del>	
•									

O'Brien	<u>&amp; Gere Engine</u>	<u>ers, Inc.</u>		<u>Low F</u>	<u>Iow Groun</u>	<u>d Water Sa</u>	mpling Lo	<u>g</u>
Date	10/18/07	Perso	nnel	PAF	IEBR	Weather	Sunne	1 600
Site Name	Krutulis	ation Method			Well#	6D		
	Krutulis, Ki	•	ling Method	14	9	- Project#	40312,008.004	
		TYME: Samp				- · · · · · · · · · · · · · · · · · · ·		
Well informa								
Depth of Well		7, <u>/3</u> ft.		* Measure	ments taken fron	1		
Depth to Wate		. <u>∂</u>			<u></u>	Top of Well Cas		
Length of Wa Depth to Intak		<u>⊘ 7                                    </u>				Top of Protective (Other, Specify)	-	
Deptil to linal		· C/			<u></u>	1(0101, 0400)		
Start Purge T	ime:							
Elapsed	Depth	13%	± 0,1	1 3%	Oxidation F 10	Dissolved	I 10%	
Time	To Water	Temperature		Conductivity	Reduction	Oxygen 1/0%	Turbidity	Flow
( )	( )	( )	pН	( )	Potential	(mg/l)	(NTU)	Rate (ml/min).
09:56	12 6 6	155 00	1107 . 1009	O 57 D 7	1100 2	42.5	ونړ <u>ر</u>	350
	12,88	10.88	717	0.787	100.2	.81 .42	45 30	300
5	13.50	11.12	7.01	0.830	107.5	37	29	300
C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (	13.50	11.20	10.49	0.844	105.60	134	25	260
5	13.52	1418	10.96	0.857	104.7	30	25 23	
5	13.79	11.01	6.96	0.854	101.9	27	21	320
5	13.79	11.08	6.96	0.865	98.4	126	<u>20</u>	310
_5	13.88	11.00	10.40	0.858	94.0	.25	20	-
								<del> </del>
		•						
								,
								ļ
							,	ļ
			<del> </del>	<del></del>				
							· · · · · · · · · · · · · · · · · · ·	
		·						_
<u> </u>	( = 20		1		<u> </u>			L
End Purge Tin	ne: <u>1039</u>				2.4 pp.	m OV		
Water sample	): 						ابسى	<i>i</i>
Time collected	: 1040		-	Total volume of	purged water ren	ioved:	<u> 5 901</u>	<u>/</u>
Physical appea	- · ·				Physical appeara	ance at sampling	<u>5 gar</u> Clear	
	Color Clear					Color	Clear	_
	Odor None				Sheen/Fre	Odor Brodust	None	_
Sheen/Free Pr	oduci <u>wome</u>				Sileeli/Fie	a Floduct	None	
Field Test Res	sults: Dissolved	ferrous iron:						
		total iron:	-					
	Dissolved	total manganese	: _					
							<u></u>	
Analytical Par	rameters:							
Container Size Container Type		# Collected Fiel		d Filtered	Preservativ	/e l	Container pH	
Container Size Container Type		# CONSULE	(16)	a i morod	i leaciva(i)		Ochtanier pri	
							<del></del>	
					<u>.</u>		<del></del>	<del></del>